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ABSTRACT

GEOMETRICALLY AND MATERIALLY NONLINEAR ANALYSIS USING MATERIAL

POINT METHOD

Computational engineering has become an effective tool for different engineering aspects. It

provides suitable simulation models for complex problems. Also, the computational models

are strongly recommended as alternatives to experiments due to the consumed cost and time.

In addition, because this field has gotten attention earlier, the accuracy of computational

models has been improved.

The finite element method (FEM) is one of the famous computer simulations that has been

adopted widely in scientific and technical fields. It considers an excellent tool for different

engineering analyses; however, for the large deformation behavior, the FEM can not with-

stand due to the finite discretization of the systems in which the accuracy would be lost as

a result of the large distortion that occurred for the model. Thereby, the mesh-less methods

are appropriate models for such problems. The material point method (MPM) is one of the

improved mesh-less methods, which is an extension of the Particle In Cell (PIC) method

used for fluid mechanics modeling.

Both static and dynamic applications are intended to simulate the two-dimensional material

point method model. The main objective here is to simulate and validate the material point

method with the analytical solutions for different solid mechanics applications. Further,

to examine the formulation of the nonlinear behavior using the MPM. The research can

be achieved by studying two hypotheses: 1) Beam mechanics analysis using the material

point method and 2) Damage mechanics analysis using the material point method. Both

hypotheses consider different assumptions of the geometry and material constants. Mate-

rial point simulation of the two hypotheses will be conducted through RMACC Summit

Supercomputer using FORTRAN and MATLAB languages.
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1 INTRODUCTION

1.1 Large Deformation Analysis

Flexible structures were used widely in the solid mechanics field. For example, suspension

systems in automobiles use the leaf springs components. Helical springs are used for ab-

sorbing the shock of the motorcycles. Transmission cables could experience large deflection.

All of these lead to model of advanced computational methods to evaluate the structure’s

capacity and predict and understand the behavior of such flexible structures. In model-

ing flexible structure, dealing with rigid body motion is a crucial issue because the rigid

body motions have no strain. Thus, the strain measures need to neglect the impact of the

rigid body rotations. Therefore, Green-Lagrange strains are used widely in large deforma-

tion analysis. Also, different procedures have been proposed a Lagrangian formulation with

corotated references. While Pai and Nayfeh [47, 46] used the local displacements and lo-

cal reference configuration to obtain objective strains (strains without rigid body rotations)

also, they used the local engineering stresses and strains to introduce the derivation of the

geometrically-exact structural theories.

In large deformation analysis of structures, the Lagrangian formulation is widely adopted

because the structure has a standard configuration that the body would experience after

the load removes. Further, the incremental procedure is used for solving the Lagrangian

formulations because the stiffness of the structure is a function of the displacements[45].

A Total Lagrangian approach of the two-dimensional curved beam was made by Surana [60].

The displacement is assumed by using two translations DOFs for the node and a rotational

DOF about the axes normal to the plane. A fully nonlinear strain-displacement relation

has been studied by Pai et al. [45] for flexible beams. The authors used Jaumann stress

and strain measures. The results of the finite element model were verified using two fixtures

experiments data. A satisfactory agreement for the numerical results with experimental

data has been obtained. Later, Nankorn [39] provided a total Lagrangian formulation of a
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two-dimensional Euler-Bernoulli beam using field-consistent interpolations. The interpola-

tions are expressed in terms of polynomials for both transverse and axial displacements. A

rotational vector of the new Riessner’s beam element has been introduced by Makinen [35]

based on the total Lagrangian description. Post-buckling analyses of laminated composite

beams were examined by Pagani and Carrera [43] using Carrera Unified formulation while

the governing equations were derived using the total Lagrangian approach. Recently, nonlin-

ear free vibration of anisotropic beams using total Lagrangian elasticity formulation has been

introduced by Heyliger and Asiri [20]. A fully nonlinear strain was adopted in the analysis.

The results are compared with the finite element model of the Euler-Bernoulli beam using

Föppl–von Karman nonlinearity.

Several aspects of the large deformation of beams have been done. Reissner [50] studied the

plane behavior of beams due to large deformation by introducing new constitutive relations

including the axial strain, shear strain, and bending strain. At the same time, the equilibrium

equations were solved using the virtual work concept. While Irschik and Gerstmaryr [25]

extended this concept for the Euler-Bernoulli model of the beam by eliminating the shear

force influence. Also, Humer and Irschik [23] included sliding boundary conditions with a

continuum-based derivation.

Abedinnasab et al. [1] derived the nonlinear governing equation using Hamilton principal

for the Euler-Bernoulli beams. The authors used Green-Lagrange strains tensor as the

strain formulation of the large deformation. Modified couple stress theory was used by Park

and Gao [48] for the Euler-Bernoulli beam. The introduced model has been included the

size effect by tracking the internal material length. A new matrix displacement approach

has been developed by Yang [64]. The large displacement is considered with the midpoint

tangent incremental method to study the large deformation of the cantilever beam. One of

the published studies of the elastic theory of beam is developed by Steigmann [56] where

three-dimensional rods are considered. The Kirchhoff-Clebsch theories are used to model

the flexural response.
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The finite difference method and finite element method are usually used for analyzing the

large deformation of the elastic structure. For instant, the finite difference method was used

to analyze the fully nonlinear beam equations that were subjected to large static displacement

by Minguet and Dugundj[38]. Finite element method is commonly method that adopted in

nonlinear analysis (e.g. Bathe[5]; Bauchau and Hong [6]; Heyliger and Reddy [22]). However,

the finite element method produces a large distortion in the case of the large deformation

analysis because of the existence of the mesh. Therefore, mesh-less methods have taken place

in studying structure behaviors that undergo large deformation. Starting with a particle in

cell method through smoothed particle Hydrodynamic concept through until the material

point method that introduced by Sulsky and Schreyer [58]. The next section discusses the

history of the material point method used in this research.

1.2 Material Point Method

Different mesh-less frameworks have been developed. Starting with the earlier MMs that

were introduced by Gingold and Monaghan[18]and Lucy [32] which called Smoothed Particle

Hydrodynamic (SPH) was concerned about the modeling of astrophysical events. Later, a

finite difference method was developed by Liszka and Orkisz [31]; then, the diffuse element

method (DEM) by Nayroles, Touzot, and Villon [40]. Then, the material point method by

Sulsky et al.[57] which is adopted in this research.

The material point method is one of the improved mesh-less methods. It has considered an

extension of the particle in cell method introduced by Harlow[19] for fluid mechanics mod-

eling. However, PIC suffers from an energy dissipation issue, which impacts the method’s

accuracy. Later, The Fluid implicit Particle method (FLIP) took place by Brackbill and

Ruppel [26]. FLIP was first used for fluid simulation. Later, Sulsky et al.[57, 59] provided a

modification of this method to be implemented for solid mechanics formulation. As a result,

the material point method has been named for this modification by Sulsky and Schreyer[58].

3



MPM concept depends on two field descriptions; Lagrangian description and Eulerian grid,

as described in Figure 1. A continuum body in the material point method is discrete into

multiple numbers of particles (points). These particles are defined as Lagrangian material

particles. The Lagrangian description of particles means that the particles are embedded and

deformed with the material. Each particle has a position, mass, density, volume, deformation

gradient, and Cauchy stress tensor. The particle’s mass keeps constant through the process

while the volume changes due to the deformation of the material. These particles are tracked

in the deformation process. The background grid of the continuum body allows the body to

deform in the same grid that describes the updated Lagrangian scheme introduced by Sulsky

where also the equation of momentum is solved. However, in the Total Lagrangian material

point method (TLMPM) that has been done by de Vaucorbeli et al.[9], the continuum body

occupies the background grids only in the reference configuration. To better understand the

continuum of solid concepts, one can refer to the chapter two for further discussion.

Figure 1: The Lagrangian description (top) and Eulerian grid (bottom)

The material point method (MPM) algorithm was existed initially to analyze some straight-

forward problems in solid mechanics [57]. Thereby, different material point method algo-

rithms have been developed to solve such problems explicitly, giving more efficient procedures

than implicit solutions. The explicit solutions are considered the simplest form, following the

updated Lagrangian MPM approach. However, the total Lagrangian material point method

(TLMPM) can be developed from the updated Lagrangian MPM with the same simple

4



modification. Figure 2 shows the MPM general algorithm where the first step is transferring

(mapping) the particle information to the grid. Next, the balance equation of momentum

is solved on the nodes. Then, all the particles’ information and variables positions, volume,

density, stresses, etc are updated from the node to the particles. In the end, the grid re-

constructs to the initial status. This final reconstruction prevents distortion from occurring,

allowing the material point method to be a suitable approach for large deformation problems.

Figure 2: Material point method general computational steps

Since the introduction of the MPM, few algorithms have been developed; the updated stress

last (USL) is the standard material point algorithm developed by Sulsky et al.[57]. How-

ever, this technique generates a numerical issue corresponding to the small particle mass.

Thus, Sulsky et al.[59]extended the formulation to the modified updated stress last (MUSL),

where the updated particles’ velocity mapped back to the nodes to avoid the small mass

issue. Further, the Total Lagrangian MPM formulation was developed by de Vaucorbeli et

al.[9] to track the nonlinear behavior under large load impact.

The MPM has some advantages that make it an excellent approach to model for such prob-

lems. The absence of mesh is considered one of the advantages since the particles carry

the analyzed information. Also, the Eulerian grid allows direct and efficient treatment of

frictional contacts of multi-bodies because the Eulerian grids cover the entire deformable

domain. While MPM performs an easy computer implementation compared to other mesh-

less methods, it also gives good images and simulations. The influence of the comprehensive

5



finite element method studies supports the material point method to be considered due to

the similarity of the FEM and MPM.

1.3 Problem Statement

The material point method is characteristic in handling large deformation problems of solid

continuum mechanics due to the particle-based formulation. However, the static response of

solid applications was not a target for many literary works of MPM. The reason behind that

is the ability of MPM to represent and visualize multiple interaction problems. Thus, the

geotechnical and fluid engineering fields are the most leaded fields that got the characteristics

of the MPM. Recently, as de Vaucorbeli et al. [10] stated, ”We observe a lack of MPM

formulations for structural elements such as beams and shells.” Therefore, the static response

of linear behavior of bars is introduced and validated along with the analytical solution based

on the linear elasticity formulation. The aim is to study the particle behaviors under the

different assumptions of the geometry and material constants like modulus of elasticity and

the Passion’s ratio. Based on the best knowledge, a dynamic analysis of the linear bar

problem has gotten little attention in the literature due to the time-dependent formulation

that MPM provides. The validation with the analytical solution also takes place to examine

the accuracy of the material point formulation.

Further, different effects of loads assumption and the variety of the examined geometry must

get more attention in MPM. These play roles in the convergence study of the MPM with

other formulations as well as enrich the solid mechanic’s literature of this new approach. The

static linear behavior of the beams is studied in this research. The MPM results compared

with the analytical solutions introduced by Timoshenko and Goodier[61] where the material

constants impact the response as well as the assumed boundary conditions for linear beam

displacements. Since the domain of the studied structure is represented with a set of material

particles, this allows the examiners to track the behavior of the structure effectively in any

desired location and time. Further, How the material points numbers would play a role

6



in convergence with the analytical solution. These would increase the consideration of the

MPM of such problems and provide a suitable introduction for examining the nonlinear

behavior problems.

Unlike grid-based methods such as the finite element method, creating an efficient and accu-

rate model of the nonlinear behavior using the material point method is reasonable due to the

absence of the mesh that provides a solution for the structure under large loads. The model

could handle any Eulerian grid dimensions embedded with material particles and the impact

of the different material constants in the nonlinear behavior. Therfore, the geometrically

nonlinear free vibration of beams has been studied for different geometrical assumptions.

In the solid mechanics field, the total Lagrangian MPM was introduced by de Vaucorbeil et

al.[9]. A total Lagrangian MPM (TLMPM) is established using the FORTRAN language to

examine the very large deformations of solids. In TLMPM, the stress and strains are defined

in the reference configuration where the nonlinear constitutive equations are employed to

track the large deformation of the solid. At the same time, the spatial derivatives are com-

puted concerning the material coordinates. TLMPM is considered an efficient formulation

due to the resistance that TLMPM provides in cell-crossing error and numerical fracture.

The weak forms in this formulation is represented by the integrals referred to the reference

configuration. The procedures of TLMPM are almost identical to the standard MPM. The

objective is to study the structure behavior using this new TLMPM with various load and

geometry assumptions[10]. Algorithms 1 represents the stranded MPM procedure that will

be adopted in this research.
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2 CONTINUUM MECHANICS CONCEPTS

2.1 Motion and deformation

Consider body in undeformed configuration;this configuration can be defined as X which is

considered as Lagrangian coordinate. This body can be formed by multiple material points

that include specific material properties. If the body moves to the deformed configuration,

the same material points are now described by x which refers to the Eulerian coordinate

or spatial coordinate. The solid deformation ”motion” is expressed by φ(X, t) . Thus,

the relationship between the reference ” undeformed” configuration coordinates and current

”deformed” configuration coordinates is given as follows

x = φ(X, t) (2.1)

From this, the relationship between displacement, velocity and acceleration is established.

The displacement of the material points can be described as the difference between the

current location and the reference location with consideration of the initial time that core-

spondents to the reference configuration t = 0. The displacement can be expressed as

u(X, t) = φ(X, t)− φ(X, 0) = x−X (2.2)

while the velocity of the material point X is described as the rate of change in the location

of the corespondents material point as

v(X, t) =
∂φ(X, t)

∂t
(2.3)

and the acceleration is defined as the rate of change in velocity of the corespondents material

point, which expressed as

a(X, t) =
∂v(X, t)

∂t
(2.4)
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The deformation gradient tensor is another concept that introduces the mapping function

that maps every linear element dX in the reference configuration to the current configuration

after the deformation occurred. The expression of the deformation gradient is as follows

F =
∂φ

∂X
=

∂ x

∂X
(2.5)

Material Time Derivative

Consider the field of a body that is defined as φφφ this field might be scalar, vectorial, or

tonsorial. The field should be tracked to determine the rate of change for a given material

point X. This concept is called the material time derivatives of φφφ. This description has two

different definitions according to the variables adopted in desired the application:

1. The Lagrangian description: Lagrangian description considers the material coordinates

X and time t are independent variables. The material time derivative is computed by taking

the partial derivatives of the field with respect to time. The material field can be expressed

as

Dφ(X, t)

Dt
=

∂φ(X, t)

∂t
(2.6)

Because the MPM considers the Lagrangian description, the material time derivative is

applicable straightforward.

2. Eulerian description: In the Eulerian description, the material time derivative is not easy

to determine since the change occurred to the spatial coordinate x along with time t. This

requires applying the derivatives in terms of material description with consideration of the

material coordinate X.

2.2 Strain Measures

To map the body elements from undeformed states and deformed states, we need to consider

the strain measures. In continuum mechanics, the strain measures are different depending on
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the deformation behavior. If a large deformation takes place, the nonlinear strain measures

should be applied. Here is a review of the nonlinear strain measures which are widely adopted

in large deformation modeling like the Green strain tensor, the rate of deformation tensor,

and the right Cauchy-Green strain tensor.

The right Cauchy-Green deformation tensor is given as

C = F T .F (2.7)

where the F T is the transpose operator of the deformation gradient. While the Green strain

tensor is the difference between the squared element length dx and dX written as

E = 1/2(F T .F − I) = 1/2(C − I) (2.8)

The velocity gradient tensor is written as

L =
∂v

∂x
(2.9)

which supports the material time derivatives of the deformation gradient to expressed as

The rate of deformation tensor D is defined as

D = 1/2(L+ LT ),W = 1/2(L− LT ) (2.10)

where D describes the rate of stretching and shearing.

2.3 Stress Measures

The stress measures work unite with the strain measures [9]. The most stress tensors mea-

sures are; 1) Cauchy stress, 2)Kirchhoff stress, 3) First Piola-Kirchhoff stress (1st PK) and

4) Second Piola-Kirchhoff stress (2nd PK). The Cauchy stress is the real stress that is consid-
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Table 1: The relations between stress measures

Cauchy stress σ Kirchhoff stress τ 1stPK P 2ndPK S

σ — τJ−1 J−1PF T J−1FSF T

τ Jσ — PF T FSF T

P JσF−T σJ−1 — FS
S JF−1σF−T F−1τF−T F−1P —

ered along with the rate of deformation D with respect to deformed volume. The Kirchhoff

stress is weighted Cauchy stress that works unite with the deformation rate with respect to

the undeformed volume. At the same time, the 1st Piola-Kirchoff stress takes place along

with the deformation gradient, where both appear at the explicit MPM formulation. Also,

it is considered an unsymmetric stress tensor. The 2nd Piola-Kirchoff stress tensor works

with the Green strain tensor, which is a material symmetric stress tensor. To explain the

relations of the stress measures, Table 1 provides a brief explanation.

2.4 Conservation equations

There are four different conservation laws in continuum mechanics [10]. These laws can be

categorized as; 1) Conservation of mass, 2) Conservation of linear momentum, 3) Conserva-

tion of angular momentum and 4) Conservation of energy.

2.4.1 Conservation of mass

Generally, the conservation of mass concepts refers to the constant value of body mass under

any circumstance that the body can face. The equation of mass conservation can be stated

as

Dρ

Dt
+ ρ.∇.v (2.11)

for the Lagrangian description, the mass conservation equation become

ρ.J = ρ0 (2.12)
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2.4.2 Conservation of linear momentum

Momenta is defined as the mass of the body multiplied by its velocity. This generalized

quantity is equivalent to the required force needed to stop the body at a time unit length

(where the Newton 3rd law of motion must be satisfied). The required law to compute the

change of linear momentum is equal to the sum of external forces applied to the body that

is given by

ρ.
Dv

Dt
= ∇.σ + ρb (2.13)

2.4.3 Conservation of energy

The law states that the rate of change in the total energy in the body must equal the rate of

work done by applied forces added to the rate of work heat flux x and the source of energy

(change). This law can be written as

ρ.
De

Dt
= D : σ −∇.q + ρs (2.14)

where e is the specific internal energy and ρs donates the source per unit volume.

2.5 Constitutive equations

The constitutive relations can apply the expression of the relations between the kinetic

quantities and kinematics quantities. From these equations, The examiners can differentiate

between solids and fluids, steel and plastic. Robert Hooke developed the more straightfor-

ward constitutive equation called Hooke’s law that used to model the linear elastic materials.

For linear elastic isotropic material, the stress tensor can be computed by

σij = λǫkkδij + 2µǫij (2.15)

where λ and µ represent Lame‘ constant. Hence, in MPM, the particle’s stress tensor would
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be updated as following

σt+∆t
p = σt

p + (λtr∆ǫp)I+ 2µ∆ǫp, ∆ǫp =
1

2
(Lt+∆t

p + (Lt+∆t
p )T ) (2.16)

2.5.1 Neo-Hookean

The Neo-Hookean constitutive law is used in modeling the isotropic hyperelastic material

where the material parameters in linear elastic conditions are familiar to the Neo-Hookean

model. First Piola-Kirchhoff stress P is expressed as a function of deformation gradient

matrix F as follows

P = µ(F− F−T ) + λlnJF−T (2.17)

where J is the determinaint of deformation gradiant F. This stress measure can be convenient

to Total Lagrangian formulation.

2.6 Strong form

In the updated Lagrangian description, the differential equations of the conservation equa-

tions, Kinematics equations and boundary conditions can be expressed as a whole as

Conservation of mass:

Dρ

Dt
+ ρ.∇.v (2.18.A)

Conservation of linear momentum:

ρ.
Dv

Dt
= ∇.σ + ρb (2.18.B)

Conservation of energy:

ρ.
De

Dt
= D : σ −∇.q + ρs (2.18.C)

Strain measure:

D = sym(∇v) (2.18.D)
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Constitutive equation:

σ∇ = SσD
t (D, σ) (2.18.E)

Initial condition:

v(x, t = 0) = v0, σ(x, t = 0) = σ0 (2.18.F)

Essential boundary condition:

u = ū on Γu (2.18.G)

Natural boundary condition:

t = t̄ on Γt (2.18.H)

where ρ(X, t), v(X, t), and σ(X, t) are the density, velocity, and the Cauchy stress tensor,

respectively. While the body force represented by b and ∇ is the gradient corresponding to

the deformed configuration. Whereas the σ∇ is representing stress rates related to the large

rotations.

Due to the adopted Lagrangian description in MPM, the conservation of mass equation will

not be solved in this form. While the values like ū , t̄ , v0 and σ0 are considered known values.

The independent variables in Lagrangian formulation are the material coordinates X and

time t. The dependent variables are mass density, velocity v and stress with its 9 components

that turns to 6 independent components in isotropic materials. At the same time, there are 17

equations with consideration of the conservation of energy equation. However, because non-

isothermal models are not considered in this research, the conservation of energy equation

is not PDE and, thus, is not applicable in the model, which turns to 16 equations with 16

unknowns.
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2.7 Weak form

The weak form of the momentum equation (2.18.B) is expressed as

∫

Ω

ρδuiaidΩ +

∫

Ω

ρ
∂δui

∂xj

σs
ijdΩ =

∫

Ω

ρδuibidΩ +

∫

Γt

ρδuit̄
s
idΓt (2.19)

This equation represents the last form of the derivation of the momentum equation. Where

Ω is the current configuration, δu is the virtual displacement field, σs
ij is the Cauchy stress

and the i,j = 1,2,3. , ai is the acceleration field while t̄si represents the specific traction

vector.

The entire domain Ω is discretized by a set of material sub-domains Ωp in which the total

mass of the sub-domain is assumed to be in the corresponding material point; thus, the mass

density function can be written as

ρ(x, t) =

np
∑

p=1

mpδ(x− xp) (2.20)

which δ represents Dirac delta function, mp is the mass of particle p. By applying equation

(2.20) into (2.19) that gives

ρ(x, t) =

np
∑

p=1

mpδui(xp)ai(xp) +

np
∑

p=1

mp

∂δui

∂xj

∣

∣

∣

∣

∣

(xp)

σs
ij(xp) =

np
∑

p=1

mpδui(xp)bi(xp) +

np
∑

p=1

mpδui(xp)t̄
s
i (xp)h

−1 (2.21)

The boundary layer thickness must be introduced when the volume of each particle is identi-

fied. The domain is discretized by a finite element mesh. Every cell has nodes nn with shape

function φI corresponding for every node I. xiI represents the i component of the position

vector of node I. The shape functions and derivatives evaluation is identical to the efficient

finite element analysis, which does not include neighbor search as other mesh-free methods.

So, the position of a node is written as approximated in FE as
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xi(x, t) =
nn
∑

I=1

φI(X)xiI(t) (2.22)

Similar to the Lagrangian finite element, the shape function refers to the undeformed La-

grangian coordinates X. Apply the initial configuration when t = 0 in equation (2.22) this

provides

Xi(x, t) =
nn
∑

I=1

φI(X)XiI (2.23)

where XI is the coordinates position of the node I in the initial configuration and the XiI

is the component corresponding to XI . Thus, the displacement can be expressed as

ui = xi −Xi =
nn
∑

I=1

φI(X)(xiI −XiI) =
nn
∑

I=1

φI(X)uiI(t) (2.24)

The velocity and the acceleration fields are written as

vi(X, t) =
nn
∑

I=1

φI(X)viI(t) (2.25)

ai(X, t) =
nn
∑

I=1

φI(X)aiI(t) (2.26)

where the viI and aiI are the components of the corresponding node I for velocity and

acceleration, respectively. Equation (2.25) is going to be used to determine the velocity

gradient and update the particle position. Also, equation (2.24) can be approximated by

using the shape function as

δui =
nn
∑

I=1

φI(X)δuiI (2.27)

From this, the generated spatial derivatives of δui is expressed as

∂δui

∂xj

=
nn
∑

I=1

∂φI

∂xj

δuiI (2.28)
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Now, apply the finite element approximation ” Equations (2.26) to (2.28)” into Equation

(2.21) that gives

np
∑

p=1

mp

[

nn
∑

I=1

φI(xp)δuiI

][

nn
∑

I=1

φJ(xp)aiJ

]

+

np
∑

p=1

mp

[

nn
∑

I=1

∂φI

∂xj

∣

∣

∣

∣

∣

(xp)

δuiI

]

σs
ij(xp) =

np
∑

p=1

mp

[

nn
∑

I=1

φI(xp)δuiI

]

bi(xp) +

np
∑

p=1

mp

[

nn
∑

I=1

φI(xp)δuiI

]

t̄si (xp)h
−1 (2.29)

It is known that the virtual displacement is arbitrary ” it can be any possible value”, therefor,

the Equation (2.29) can be written as

np
∑

p=1

mpφI(xp)

(

nn
∑

I=1

φJ(xp)aiJ

)

+

np
∑

p=1

mp

∂φI

∂xj

∣

∣

∣

∣

∣

(xp)

σs
ij(xp) =

np
∑

p=1

mpφI(xp)bi(xp) +

np
∑

p=1

mpφI(xp)t̄
s
i (xp)h

−1 (2.30)

Equation(2.30) can be expressed in terms of mass matrix, external and internal force vectors

as

mIJaJ = f ext
I + f int

I , I = 1, 2, ..., nn (2.31)

This equation represents the semi-discrete equation in which just domain was discretized

that is identical to FEM.

The I J component of the consistent mass matrix is expressed as

mIJ =

np
∑

p=1

mpφI(xp)φJ(xp) (2.32)

Note that, in the standard MPM, the mass matrix is not constant as in FEM. The external

force vector is expressed as
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f ext
I =

np
∑

p=1

mpφI(xp)(b)(xp) +

np
∑

p=1

mpφI(xp)t̄
s
i (xp)h

−1 (2.33)

While the internal force vector become

f int
I = −

np
∑

p=1

mp/ρσp∇ φI(xp) = −

np
∑

p=1

Vpσp∇ φI(xp) (2.34)

where the Vp is the volume of particle p ,note that, the particle density is the ratio of the

particle mass to particle volume; ∇ φI =
(

∂φI

∂x1

, ∂φI

∂x2

, ∂φI

∂x3

)T
; σp is the 3×3 Cauchy stress matrix

of particle p.

To warm up, the derivation of the momentum weak form equation has been illustrated in

Equation(2.31). Also, the MPM semi-discrete equation has been explained as described

in[57].
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3 MATERIAL POINT METHOD

3.1 Discretization and Material Point Method Algorithms

The time integration of the weak form equation (2.31) provides the full discretized solution

of the MPM. In this section, the general MPM algorithms are illustrated.

3.1.1 Mass Matrix

Solving the nodal acceleration needs to apply a linear solution in each time step. This

generates a large number of systems, especially in the MPM 3D model. Therefore, the

lumped mass matrix is a good simplification method where it’s a diagonal matrix system;

thus, the diagonal terms in mass matrix can be written as

mI =
nn
∑

I=1

mIJ =
nn
∑

J=1

np
∑

p=1

mpφI(xp)φJ(xp) =

np
∑

p=1

mpφI(xp) (3.1)

Recall the FE shape functions property in which the summation of the shape function equal

to one along x,
∑

J φJ(x) = 1, so that provides the last form in the equation (3.1).

conservation of mass at the nodes is also satisfied because the momentum equation is solved

at the grid nodes; thus, the equation (3.1) is expressed as

∑

I

mI =
∑

I

( np
∑

p=1

mpφI(xp)

)

=

np
∑

p=1

mp

(

∑

I

φI(xp)

)

=
∑

p

mp (3.2)

Lumped mass matrix lead to provide the ordinary differential equations of equation (2.31)

as

mIaI(t) = fI(t) = f ext
I (t) + f int

I (t) (3.3.A)

where the acceleration is given as

aI =
dvI(t)

dt
(3.3.B)
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at all node I

The time domain 0 ≥ t ≥ tf is divided to time steps ∆t = tf/nT with time increments

. To apply the solution in time, solving the semi-discrete equations provides an explicit

formulation that increases the time with each time step from t to t+∆t regardless the linear

algebra equations. However, the explicit formulation must consider the use of small time

steps ∆t to satisfy the stability of the model.

In MPM, the node velocities are avoided after each time step when the node is in reset.

Thereby, the particle velocities must be protruded to the nodes to provide a start point for

the time increment. This extremely important step will be discussed in the next section.

3.1.2 Nodal Velocities Determination

The particle velocities must be protruded to the nodes at the beginning of each time step.

Thus, the nodal momenta are mapped to the nodes by using the shape function as

(mv)tI =
∑

p

φ(xt
p)(mv)tp (3.4)

Note that the use of superscript t is referred to the current time step t, which is a known

value, while the superscript t+∆t refers to the next time step with an unknown value.

An important question should be raised by the reader, which velocity particle should be

mapped to the node since the number of particles is larger than the number of nodes? The

use of the least square approximation provides a suitable answer for this question. The

least square approximation is considered the best approximation that reduces the difference

between the exact function to the approximated one; thus, the quality of this approach can

be measured by tracking the differences between the two mentioned functions.
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3.2 Material Point Method Algorithms

3.2.1 Standard Formulation (USL)

The Updated Stress Last (USL) is considered the most common MPM algorithm. From the

nodal acceleration equation at
I = ftI/m

t
I , the nodal velocity is obtained as

vt+∆t
I = vt

I +∆tat
I (3.5)

This is called Euler forward method where vt
I is the nodal velocity in the current time step,

which is known, ∆t is the time increment. While the new position of nodes is written as

xt+∆t
I = xt

I +∆tvt
I (3.6)

The nodes’ new positions can not be recognized because the grid would be reset at the

beginning of the next time step. The updating of the node position is a continuous process

until the grid is distorted or replaced.

After the grid is updated, the particle state will be updated using the grid velocities. All

position, velocity, volume, deformation gradient, stress, etc., are updated from grid to par-

ticle. Different ways have been used to compute the particle velocities; for example, in the

particle-in-cell (PIC), total grid velocity is used to find the particle velocity. However, in

FLIP (The Fluid implicit Particle method), the grid velocity increments are used to find the

particle velocity. Both ways can be expressed mathematically as

PIC: vt+∆t
I =

∑

I φI(x
t
p)v

t+∆t
I ,

FLIB: vt+∆t
I = vt

p +
∑

I φI(x
t
p)[v

t+∆t
I − vt

I ],

while the position has been expressed mathematically as

xt+∆t
p = xt

p +∆t
∑

I

φI(x
t
p)v

t+∆t
I (3.7)

Then, the particle stresses would be updated using the constitutive models. This update

21



starts with determination of the deformation gradient F, the velocity gradient L and the

deformation rate D. For the elastic body, the key step to update the stress is to obtain

the particle velocity gradients, then determination of the deformation gradient Ḟ = LF and

then compute the updated particle volume. This procedure can be expressed as

Lt+∆t
p ≡ ∇vt+∆t

p xt
p =

∑

I

∇φI(x
t
p)v

t+∆t
I (3.8.A)

Ft+∆t − Ft

∆t
= Lt+∆t − Ft,→ Ft+∆t

p = (I+ Lt+∆t∆t)Ft
p (3.8.B)

V t+∆t
p = JV 0

p , → J = detFt+∆t
p (3.8.C)

ρt+∆t
p = ρ0/J (3.8.D)

where I is the Identity matrix,∇ is the gradient multiplier and J is the determinant of the

updated deformation gradient.

The strain increment is computed regarding to the hypo-elastic constitutive models. The

aim is to use it to compute the stress increments; thus, the strain increment equation is

written as

∆ep = (
∑

Lt+∆t
p )∆t (3.9)

while the updated particle stress equation is expressed as

σt+∆t
p = (σt

p +∆ σp) (3.10)

3.2.2 Modified Updated Stress Last (MUSL)

In this algorithm, Sulsky et al. [59] introduced a solution for the small mass issue. After

mapping the nodal velocities to the particle, the updated particle velocities are mapped back
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to the nodes to provide nodal velocities as

(mv)t+∆
I t =

∑

p

φI(xp)(mv)t+∆t
p (3.11)

So, the nodal velocity become

vt+∆t
I =

(mv)t+∆t
p

mt
I

=

∑

p φI(xp)(mv)t+∆t
p

∑

p φI(xp)mp

=

∑

p φI(xp)(mv)t+∆t
p

mt
I

(3.12)

The shape functions are occupied in the numerator and denominator; therefore, the shape

functions role disappears. As a result, this cancellation solves the issue of the large velocity

gradient in the USL. This method is also called the double mapping USL as the momenta

is mapped at the beginning of each time step and after the update of nodal velocity. This

algorithm is adopted in this research for the MPM analysis.

3.2.3 Total Lagrangian Material Point method (TLMPM)

Background

Mesh-less methods represent appropriate concepts to simulate large deformation problems in

solid mechanics compared to mesh-based methods. However, Mesh-less methods consist of

instability issues and numerical fracture. Thus, such methods could not perform accurately

for analyzing engineering problems such as machining, wear, and impacts where the damage

and fracture appear[9]. Total- Lagrangian (TL) particle-based methods show resistance to

the numerical fracture due to the stability of the background grids of the reference config-

uration through the analysis. The Total-Lagrangian material point method could be used

for the same reason; it was introduced by Steffen et al. [55] to study the convergence of the

standard MPM. Further, it was used for graphic simulation by Zhu et al. [65].

Currently, the Total-Lagrangian material point method of solid mechanics undergoing large

deformation was developed by deVaucorbeil et al. [9] for the first time. Convergence study

of the Total-Lagrangian material point method was also examined based on the Method of
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Algorithm 1 MUSL analytical procedure

1: procedure Sulsky et al([59])
2: Model Initialization
3: Discertize the Cartesuan grid, set time t=0
4: Read the particle data: x0

p, v
0
p, σ

0
p,F

0
p, V

0
p, mp,ρ

0
p

5: end
6: while t < tf do:
7: Initialize the grid quantities: mt

I = 0, (mv)tI = 0, fextI = 0, fintI = 0.
8: Mapping from particle to nodes
9: Compute nodal mass: mt

I =
∑

p φ(x
t
p)mp

10: Compute nodal momentum: (mv)tI =
∑

p φ(x
t
p)(mv)tp

11: Compute external force: f ext,t
I =

∑

p φ(xp)mpb(xp)

12: Compute external force: f int,t
I = −

∑

p V
t
pσ

t
p∇φ(xt

p)

13: Compute nodal force: f t
I = f ext,t

I + f int,t
I

14: end
15: Update the momenta (mv)t+∆t

I = (mv)tI + f t
I∆t

16: Fix the nodes corresponding to the boundary conditions (mv)t+∆t
I = 0 and

(mv)tI = 0
17: Update particle velocities and grid velocities (double mapping)
18: Compute nodal velocities: vt+∆t

I = (mv)t+∆t
I /mt

I

19: Update the particle positions: xt+∆t
p = xt

p + vt+∆t
I ∆t

20: Update the particle velocities: vt+∆t
p = vt

p + at
p∆t

21: Update the grid velocities:(mv)t+∆t
I =

∑

p φ(x
t
p)(mv)t+∆t

p

22: Fix the Dirichlet nodes: (mv)t+∆t
I = 0

23: end
24: Updated particles
25: Compute nodal Velocities: vt

I = (mv)tI/m
t
I

26: Compute the gradient velocity: Lt+∆t
p =

∑

I ∇φI(x
t
p)v

t+∆t
I

27: Update the gradient deformation: Ft+∆t
p = (I+ Lt+∆t∆t)Ft

p

28: Update the volume : V t+∆t
p = JV 0

p ,→ J = detFt+∆t
p

29: Update the stress: σt+∆t
p = (σt

p +∆ σp)
30: end
31: Next time step = t+ ∆t
32: end while
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Manufactured Solution. Applications subjected to large deformation have been presented

for the vibration of the compliant bar subjected to the gravity field and Taylor bar impact

test. The presented Total-Lagrangian material point method (TLMPM) is not similar to the

Figure 3: Difference betweem ULMPM and TLMPM (Retrieved from [10])

Total-Lagrangian finite element method (TLFEM) since the TLMPM does not represent a

conforming mesh that allows analysis of the extremely large deformation problems.

Based on the Lagrangian formulation concept, two independent variable refer to the reference

configuration are the material coordinate X and time t . In the Total-Lagrangian material

point method, the stress and strains components are introduced based on the reference

configuration. Thus, the integration of the weak form is established with respect to the

reference configuration. The material coordinate in the current configuration x can be

presented in terms of the displacement u as

x = u +X (3.13)

The Total-Lagrangian conservation equation is given as

ρ = Jρ0 (3.14)
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∂v

∂t
=

1

ρ0
∇0 ·P

T + b (3.15)

where the v velocity field, ρ is the mass density, P is the first Piola–Kirchhoff stress tensor,

b are the external forces, ∇0 is the gradient operator where is applied with respect to the

reference configuration and J is the determinant of the deformation gradient F that is

presented as:

F =
∂x

∂X
=

du

dX
+ I (3.16)

In the current Total-Lagrangian material point method (TLMPM), The procedure is almost

identical to the standard MPM. The differences can be represented in 1) the 1st PK stress

is applied in the internal forcing function, 2) the spatial derivatives are in terms of the

material coordinate Xp, 3) different deformation gradient and velocity gradient computa-

tional approaches are adopted in TLMPM. Algorithms 2 represents the TLMPM procedure

developed by [9].

3.3 Shape Functions of MPM

The previous sections discussed the general framework of the MPM. However, the shape

functions have not been decided yet. Different shape functions were examined with MPM for-

mulations as; 1)Linear Lagrange functions, 2)Generalized interpolation MPM, 3) B-splines,

4) Bernstein functions. Note that the discussion here is specified to the Cartesian grid for

the linear shape function adopted in this research.

3.3.1 Shape Functions Properties

Any shape functions φ(x) should be continuous along the grid’s boundaries. In addition,

they should meet the listed properties as

1. Partition of Unity
∑

I φI(x) = 1 along all x.
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Algorithm 2 TLMPM analytical procedure

1: procedure de Vaucorbeil et al([9])
2: Model Initialization
3: Read the particle data: x0

p, v
0
p, σ

0
p,F

0
p, V

0
p, mp,ρ

0
p

4: Compute nodal mass: mt
I =

∑

p φ(x
t
p)mp

5: Compute and store the shape function and the derivatives: φI(Xp)and∇0φI(Xp) ⊲
For undeformed configuration

6: end
7: while t < tf do:
8: Reset the grid quantities: mt

I = 0, (mv)tI = 0, fextI = 0, fintI = 0.
9: Mapping from particle to nodes
10: Compute nodal momentum: (mv)tI =

∑

p φ(x
t
p)(mv)tp

11: Compute external force: f ext,t
I

12: Compute external force: f int,t
I = −

∑np

p=1 V
o
p P

t
p∇φ(Xp)

13: Compute nodal force: f t
I = f ext,t

I + f int,t
I

14: end
15: Update the momenta (mv)t+∆t

I = (mv)tI + f t
I∆t

16: Fix the nodes corresponding to the boundary conditions (mv)t+∆t
I = 0 and

(mv)tI = 0
17: Update particle velocities and grid velocities (double mapping)
18: Compute nodal Velocities: vt

I = (mv)t+∆t
I /mt

I

19: Update the particle positions: xt+∆t
p = xt

p + vt+∆t
I ∆t

20: Update the particle velocities: vt+∆t
p = vt

p + at
p∆t

21: Update the grid velocities:(mv)t+∆t
I =

∑

p φ(Xp)(mv)t+∆t
p

22: Fix the Dirichlet nodes: (mv)t+∆t
I = 0

23: end
24: Updated particles

25: Compute Ḟ
t+∆t

p =
∑

I ∇φ(Xp) v
t+∆t
I

26: Update the gradient deformation: Ft+∆t
p = Fp +∆tḞ

t+∆t

p

27: Compute the gradient velocity: Lt+∆t
p = Ḟ

t+∆t

p (Ft+∆t
p )−1

28: Update the stress: σt+∆t
p = (σt

p +∆σp)

29: convert stresses to 1st PK stresses: Pt+∆t
p = g(σt+∆t

p )

30: Updated particle position : xt+∆t
p = xt

p +∆t
∑

I φ(Xp)v
t+∆t
I

31: end
32: end while

27



2. Compact support φI(x) 6= 0 to the particle that close to node I.

3. Positive shape functions φI(x) ≥ 0 for all x.

4. Kronecker delta property φI(xJ) = δIJ .

3.3.2 Linear Lagrangian Function

Consider 1D element, the shape function are defined as

Nx
I (x) =















1−
∣

∣x− xI

∣

∣/hx, if
∣

∣x− xI

∣

∣ ≤ /hx

0, else

(3.17)

where hx is the element length in x direction. Note that The shape functions are defined in

the global coordinates system. While their derivatives are defined as

Nx
I,x(x) ≡

dNx
I (x)

dx
=















1− sign(x− xI)|/hx, if
∣

∣x− xI

∣

∣ ≤ /hx

0, else

(3.18)

In a 2D element, the shape function is the tensor- product of two shape functions in the x

and y directions which can be given as

NI(x, y) = Nx
I (x)N

y
I (y) (3.19)

This shape functions ’hat functions’ used in the standard MPM formulation.
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4 BEAMS MECHANICS ANALYSIS USING THE

MATERIAL POINT METHOD

4.1 Linear Beams Mechanics Analysis

4.1.1 Introduction and Literature Review

After establishing the elasticity equations that reflect the kinematics constraints and lin-

ear deformation theory ‘small deformation’ as well as the stress field that generalized the

equilibrium equations in the linear elastic solid, the response of the materials takes place to

complete the general formulation of the elasticity solutions under linear deformation concept

which usually known as “linear elastic material.” This theory is related to the description of

the physical properties and relating them under the “constitutive equations” concept. Due

to the limitation of the materials and loading cases, the generalization of the constitutive

equations is one of the most important concepts in mechanics.

The most important contributions to the elasticity solution were made by 1) Timoshenko and

Goodier [61] they introduced the elasticity solutions to engineering problems. Both focused

on the limited produced deformation due to the external loads. Also, the bodies that were

studying assumed to have the same properties in the different directions “isotropic.” 2) While

the anisotropic plate was investigated by Lekhintskii [28]. 3) Exact solution of composite

laminates has been studied by Pagano [44]. The author considered the classical laminates

plate theory in the investigation compared to the elasticity solutions with different boundary

values problems.

For beams investigations, Gere and Timoshenko[17] studied the beams for fixed ends under-

going uniform load conditions using the Euler-Bernoulli beam theory. Later, the elasticity

of variable-arc- length beams subjected to the end moment was studied by chucheepsahul,

Bunacharoen and Huang [8]. The examiners considered the large deformation as the basis of

this research. The method yields the exact solution with results compared to finite element
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analysis and linear theory showing good agreements. In addition, functionally graded (FG)

beams subjected to transverse load have been studied by B.V. Sankar [53]. The author

assumed the effect of the Poisson ratio is held constant. A slender beam theory, “Euler -

Bernoulli beam theory,” was considered in this analysis. The author validated the FG beam

theory for Euler- Bernoulli when the transverse load varies slowly. Also, the static response

of simply supported functionally graded plate has been analyzed. Based on the third-order

shear theory, the results obtained were compared with the result of the finite point mul-

tiquadric method[16]. Ding et al. [13] analyzed the different fixed end beams conditions:

cantilevered beam, propped-cantilevered beam, and fixed ends beam using stress functions.

The study has been done considering different material properties: isotropic and anisotropic

beams. Also, they expanded the analysis to include the functionally graded beam in this

investigation sets[12].

Eer Nisse[14] purposed one of the earliest analyses of linear vibration for piezoelectric desk

investigation. The direct approximation method has been used for formulation. The results

show excellent agreements for natural frequencies and mode shapes with different approxi-

mation solutions. Later, OHNO [41] studied the free vibration of parallelepiped rectangular

crystal based on Demarest’s cube resource theory. Later, Heyliger and Al Jilani [21] exam-

ined the free vibration of cylinders and spheres using Ritz approximation. Three different

coordinate systems were adopted in this research. The results compared with other ap-

proaches were in remarkable agreement. While Reddy[49] used various beam theories to

formulate the nonlocality approach. Then, Ma et el. [33] extended the analysis to include

the Timoshenko beam theory of dynamic response. Their model produces natural frequencies

larger than the classical model. Poisson ratio impact is considered and plays a role in natu-

ral frequency values. Also, the size effect has been examined and has a noticeable effect on

the results. Functionally graded beams with vibrating boundary conditions were introduced

by Mesut[24] Both Lagrange equation and Lagrange multipliers were used to formulate the

equations of frequencies and the boundary conditions, respectively. Aluminum and alumina
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beam-type materials were used in this analysis. As the slenderness ratio increases, the higher

frequency values are increased.

A comparison of the material point method (MPM) with the elasticity solutions has been

completed by S.Andersen and L.Andersen [3]. The investigations considered different simple-

linear elastic problems including the cantilevered beam subjected to the transverse point load

in the end. The result shows as the order of the used interpolations increases, the error to

the elasticity solutions is reduced. A quasi-static material point method formulation was

validated by Beuth et al. [7] for the cantilevered beam model and the results were compared

to the finite element method.

The material point method was developed about 25 years ago. The method is used in the

formulation of continuum mechanics problems. Continuum mechanics concepts generally are

well-known in modeling solids and fluids at macroscopic scales considering the homogenizes.

Thus, the smooth functions of spatial variables can determine solids and fluids behaviors.

In continuum mechanics, four significant aspects are included; 1) motion and deformation

as known as ”Kinematics”, 2) the impact of the internal forces that are related to the ap-

plied external conditions ”kinetics”, 3) the conservation equations which allow the physical

properties to be introduced and stored like; mass, momentum and energies and 4) the con-

stitutive equations that describe the relationship between the kinematics and the kinetics.

In the MPM, The continuum can be represented by a set of the material particles that are

tracked through the calculation, while the background grids are used to solve the continuum

equations [10].

The earliest material point method (MPM) solid mechanics applications were introduced

by and Sulsky et al. [57, 59] in the formulation of the dynamic and impacted behavior

of cylinders and spheres. The first representation of the axial vibration of continuum bar

analysis was developed by S.Andersen and L.Andersen [3]. Later, de Vaucorbeil et al. [9]

examined the nonlinear formulation on the extended bar under large deformation.
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4.1.2 Static Bar Analysis

The aim is to generate the bar axial displacement that performs in the generated stress and

the bar stiffness. The material point model of the case of the axially loaded bar is established,

however, to analyze a static model in the MPM dynamic framework, the load is applied with

increasing in time increments, whereas the boundary conditions are imposed on the related

velocity nodes variable. Thus, the particle’s position would be followed through each time

step to the end of the simulation. The updated particles’ strain can be tracked in the two

directions (x and y) to examine the influence of the Passion’s ratio in the static response,

which is mainly a ratio of the transverse strain to the axial strains.

The proposed material point model starts to solve the axially loaded bar behavior and

validates its outcomes with the linear elasticity solution based on the plane-stress concept,

where the stress components out of the plane are equal to zero. Depending on the fourth-

order elastic tensor C, the in-plane stress components are function of the elasticity module

E and the Poisson ratio parameters ννν. Small deformation analysis was adopted to validate

the result with the linear elasticity solution. The normal component of stress was taken as

σxx =
P

A
(4.1)

while the strain component in y direction is computed as

ǫyy =
ν ∗ σxx

E
(4.2)

In the material point model, the two-dimensional four nodes elements were considered for

representing each background cell over the entire domain ΩΩΩ. The entire domain is discretized

by a set of material sub-domains ΩpΩpΩp in which the total mass of the sub-domain is assumed

to be carried by the material point. Every background cell has nodes nnnnnn with shape function
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φIφIφI corresponding for every node I. The evaluation of the shape functions and derivatives

is identical to the finite element analysis, which does not include neighbor search as other

mesh-free methods. The linear interpolation function was used in the analysis based on the

location of each particle, which allows the particles’ information to transform to the nodes.

L

x

y

P

Figure 4: The bar geometry

The bar geometry is shown in Figure 4 with the length L = 8 m, the height h = 1 m,

and the modulus of elasticity E = 3 × 105 Gpa. The bar meshed to the 8 elements with

192 embedded material points. To simulate the behavior, the left end boundary conditions

have been imposed considering the nodal velocity values equal to zero. The external force

assumption has been applied directly to the nodes in the background cell. The resulted axial

displacement was in excellent agreement with the analytical solution for various applied

loads.

Passion’s ratio influence was examined using the material point model. Unlike other approxi-

mated methods, the strain increments of each particle can be tracked for a time step in which

provides a known variable to the constitutive equation. Thus, by assuming a Passion’s ratio

ν = 0.3, the material point model generated transverse strains that accomplished excellent
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agreements with the elasticity solution. However, a slight reduction for axial displacements

in compersion to the analytical solution was notable due to the change in the bar stiffness.

Table 2 and Table 3 show the axial particle displacements and the transverse strain results

for different applied loads at ν = 0.0 and ν = 0.3 , respectively.

Table 2: Bar axial displacements and strains, ν = 0.0

Elasticity MPM

load (P) PL/AE ∆xx ǫyy ∆xx ǫyy

10 0.00027 0.0002667 0.00 0.0002728 0.00
20 0.00053 0.0005333 0.00 0.0005455 0.00
30 0.00080 0.0008000 0.00 0.0008182 0.00
40 0.00107 0.0010667 0.00 0.0010908 0.00
50 0.00133 0.0013333 0.00 0.0013632 0.00
60 0.00160 0.0016000 0.00 0.0016356 0.00
70 0.00187 0.0018667 0.00 0.0019080 0.00
80 0.00213 0.0021333 0.00 0.0021802 0.00
90 0.00240 0.0024000 0.00 0.0024523 0.00
100 0.00267 0.0026667 0.00 0.0027700 0.00

4.1.3 Dynamic Bar Analysis

To study the dynamic behavior of the material point method, the axial vibration of a con-

tinuum of two-dimensional bar considered with length L = 10 m, the height h = 1 m, and

the modulus of elasticity E = 10000 Gpa. This test is an extension of the one-dimensional

analysis that was done by Bardenhagen [4]. The one-dimensional analysis was done based on

both Updated Stress Last (USL) and Modified Updated Stress Last (MUSL) formulations.
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Table 3: Bar axial displacements and strains, ν = 0.3

Elasticity MPM

load (P) PL/AE ∆xx ǫyy ∆xx ǫyy

10 0.00027 0.0002427 -0.000009 0.0002421 -0.000008
20 0.00053 0.0004853 -0.000018 0.0004846 -0.000016
30 0.00080 0.0007280 -0.000027 0.0007275 -0.000025
40 0.00107 0.0009707 -0.000036 0.0009708 -0.000034
50 0.00133 0.0012133 -0.000046 0.0012144 -0.000043
60 0.00160 0.0014560 -0.000055 0.0014585 -0.000052
70 0.00187 0.0016987 -0.000064 0.0017029 -0.000061
80 0.00213 0.0019413 -0.000073 0.0019478 -0.000071
90 0.00240 0.0021840 -0.000082 0.0021930 -0.000080
100 0.00267 0.0024267 -0.000091 0.0024387 -0.000090

Here, in this analysis, the (MUSL) with consideration of the FILB approach, is adopted as

described in algorithm 1. The outcomes were compared to the exact solution of

u(x, t) =
v0
ωn

sin(ωnt)sin(βnx) (4.3)

v(x, t) = v0cos(ωnt)sin(βnx) (4.4)

where ωn = βnc. The wavelength is given by c =
√

E
ρ
. In the analysis, the initial velocity is

given as t=0 as

v(x, 0) = v0sin(βnx) (4.5)

The amplitude v0 was taken as 0.1 since the analysis used linear interpolation functions. First

mode analysis was considered in this example. Various material point discretization has been

applied to examine the influence of the point sizes. The result shows some erroneous occurred

as the minimum material points were applied. However, The MPM appears in excellent

agreement with the analytical solution when the mesh becomes fine, as given in Figures 5
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and 6. Thus, the linear shape functions perform excellently under the MPM formulation.
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(a) Mesh 10x1

(b) Mesh 20x4

Figure 5: Axial displacement of cantilevered bar
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(a) Mesh 10x1

(b) Mesh 20x4

Figure 6: Particle velocity of cantilevered bar
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Table 4: Transverse deflection of the end of cantilever beam

Analytical solution[61] MPM 16 MPM 32

-0.683 -0.787 -0.681

4.1.4 Static Cantilevered Beam Analysis

The material point method was used here to find the transverse deflection of a cantilevered

beam and compare it to the linear elasticity solution introduced by Timoshenko and Goodier

[61]. The beam geometry is shown in Figure 7 with length L = 8 m, the height h = 1 m , and

the modulus of elasticity E = 3000 Gpa. The beam deformation field has meshed to the 32

elements with 16 and 32 embedded material points over the beam domain, respectively. To

simulate the behavior, the left end boundary conditions have been imposed considering the

nodal resultant force values equal to zero. To study the static behavior using the dynamic

framework of the material point method, the load has been gradually increased in each

time step in which the external force assumption has been applied directly as a particle

acceleration. The analysis started by solving the linear-elastic behavior of the beam to track

the transverse deflection of a selected particle in each time step. To validate the result with

the linear elasticity solution, the beam was assumed to be subjected to a small load value

during the analysis. Imposing the boundary conditions was done by two assumptions were;

1) considering the vertical and axial components of the left end are fixed and 2) fixing the

vertical component of the center of the left end and the components of the axial nodes. Both

assumptions show convergence of the material point model with the analytical solution.

Figure 9 shows the deflection at the end of the beam. The behavior is obtained at t = 4.44.

For the 16 material points model, the tip deflection gave larger displacement in comparison

to the exact solution while the result appears a remarkable convergence when the martial

points increased to 32 at the beam tip, as given in Table 4
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P

Figure 7: Geometrical description of the cantilevered beam

Figure 8: Initial MPM mesh of cantilever beam

4.1.5 Static Simply Supported Beam Analysis

Simply supported beam analysis was studied. The beam is assumed to be subjected to the

uniformly distributed load along its length. The model can track the transverse deflection of

each particle. Further, the convergence study of the number of impeded particles has been

examined in this analysis. The results show that as the number of particles increases, the

convergence to the analytical solution increase, as shown in Table 5. The beam geometry

is as same as the cantilevered beam model with length L = 8 m, the height h = 1 m, and

the modulus of elasticity E = 3000 Gpa. The beam deformation field meshed to the 32

elements with 16, 32, and 64 embedded material points over the beam domain, respectively.

To simulate the behavior, the left and right ends have been imposed considering the nodal
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(a) MPM 16

(b) MPM 32

Figure 9: Cantilevered beam deflection compared with analytical solution
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Table 5: Transverse deflection at the middle of simply supported beam

Analytical solution MPM 16 MPM 32 MPM 64

-0.212 -0.333 -0.346 -0.206

resultant force values equal to zero. The external uniformly distributed load has been applied

directly as accelerations for the upper particles along the beam. The results compared to

the analytical deflection of the Euler-Bernoulli beam that is given by

∆y =
wx

24EI
(l3 − 2lx2 + x3) (4.6)

The total load is also was taken as 1 with very small increments in each iteration. Figure 11

shows the average vertical deflection of the particles at the center of the cross-section along

the beam length. Also, in the analysis, the load was increased as time function as described

in Figure 11.b.

Figure 10: MPM mesh of simply supported beam with 64 points

4.1.6 Forced vibration of Cantilever Beam

To run a dynamic behavior, a cantilever beam analysis was adopted. The beam is assumed

to be subjected to a harmonic force function. This force function was applied as an external
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(a) MPM result with analytical solution

(b) MPM results at different time period

Figure 11: Vertical deflection of simply supported beam
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force located at the end nodes of the beam. The force function is given by

f(t) = Fsin(ωt) (4.7)

Where F is the assumed amplitude taken as 0.002 in this analysis and ω is the forcing

frequency. Weaver [62] interceded the steady-state response of the cantilever beam as

w(x, t) =
Fl3

EI

∞
∑

i=1

βiXi(Xi)x=l

(kil)4
sin(ωt) (4.8)

Where βi are the magnification factors and kil are the roots of the system frequency equation

while Xi are the characteristic functions representing the normal modes of beam vibration.

From equation (4.8), the vertical velocity at the free end is given as

v(x, t) =
4Fl3ω

EI

∞
∑

i=1

βi

(kil)4
cos(ωt), (4.9)

after replacing the roots of the frequency equation, equation (4.9) can be rewritten as

v(x, t) =
4Fl3ω

EI

[

β1

1.87514
+

β2

4.69414
+ ...

]

cos(ωt) (4.10)

The beam has the same geometric assumptions as of the static bar analysis with length

L = 10 m, the height h = 1 m, the modulus of elasticity E = 10000 Gpa , and ν = 0.3

. The analysis considered studying the dynamic behavior of the beam under the effect of

the first three modal frequencies. To get the frequency for the MPM model, various forcing

(driving) frequencies have been applied to track the amplitude of the particles near the end

of the beam. It can be mentioned that, as the forcing frequency approaches the value of the

natural frequency of the system, the amplitude reaches the maximum value, then it starts

to decrease as the forcing frequency value exceeds the natural frequency, as shown in Figure

12.
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(a) First natural frequency

(b) Second natural frequency

(c) Third natural frequency

Figure 12: First three natural frequencies of vibration of cantilever beam
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4.1.7 Free Vibration of Cantilever Beam

Based on the assumption of Euler-Bernoulli beam theory, free vibration of cantilever beam

was simulated using MPM. The Euler-Bernoulli beam theory was used to drive the equation

of motion by performing Newton’s second law of motion. The model has no external exci-

tation applied in this analysis and, thus, the equation of motion of transverse vibration of

beams is given as

∂2

∂x2

(

EI
∂2w

∂x2

)

+ ρA
∂2w

∂t2
= 0 (4.11)

The general solution of free vibration can be done by using the method of separation of

variables. After mathematical analysis, the total solution of transverse vibration of the

beam is found as

w(x, t) =
∞
∑

i=1

Wi(x)(Aicosωit+Bisinωit), (4.12)

the Wi(x) is the normal mode and ωi is the natural frequency. Ai and Bi are constants that

are determined by the initial conditions of the beam. The normal mode equation that is

related to the free vibration of the beam is given as

Wn(x) = (cosβnx+ coshβnx)−
cosβnl + coshβnl

sinβnl + sinhβnl
(sinβnx− sinhβnx), (4.13)

The general natural frequency of vibration given as

ωn = (βnl)
2

√

EI

ρAl4
(4.14)

For linear natural frequency, the amplitude is taken as 0.001 to ensure that the analysis is

on a linear level. Figure 13 shows the mode shapes of the material point method compared

with the analytical solution of the Euler-Bernoulli theory. therefore, the velocity equation

that proposed in this analysis will be

ẇ(x, t) = ωnBnWn(x)cos(ωn, t) (4.15)
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(a) First normal mode

(b) Second normal mode

(c) Third normal mode

Figure 13: MPM normal modes compared to beam theory analysis
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Table 6: First three natural frequency of cantilever beam

Frequency Euler-Bernoulli (Hz) MPM (Hz) Error

First natural frequency 0.138 0.146 5.6%
Second natural frequency 0.866 0.879 1.5%
Third natural frequency 2.426 2.441 0.62%

Where Bn is a constant were assumed to equal to 1. The general natural frequency anal-

ysis was obtained from the displacement of the particles using the Fast Fourier Transform

(FFT), which provides a transformation of the displacement - time domain to the frequency

domain. The natural frequency of the MPM shows a slight increase when compared to

Euler-Bernoulli’s theory due to the large stiffness in using the linear interpolating functions.

The first three natural frequencies of the analysis are given in Table 6.

4.1.8 Free Vibration of Simply Supported Beam

Free vibration of the simply supported beam due to initial velocity has been studied. The

mode shape of the proposed simply supported beam is given as

Wn(x) = Cnsinβnx = Cnsin
nπx

l
(4.16)

Since the beam vibrating due to initial velocity, the velocity equation is given by

ẇ(x, t) =
∞
∑

i=1

ωnBnsin
nπx

l
cos(ωnt) (4.17)

Where Bn is a constant where assumed to equal to 1 in this analysis, the velocity of each

point has been computed along with the period. The general natural frequency analysis was

obtained from the displacement of the particles using the Fast Fourier Transform (FFT). The

first three natural frequencies of the analysis are given in Table 7. Also, Figure 14 shows the

normal modes related to the three natural frequencies.
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(a) First normal mode

(b) Second normal mode

(c) Third normal mode

Figure 14: MPM normal modes compared to beam theory analysis
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Table 7: First three natural frequency of simply supported beam

Frequency Euler-Bernoulli (Hz) MPM (Hz) Error

First natural frequency 0.388 0.391 0.77%
Second natural frequency 1.552 1.563 0.71%
Third natural frequency 3.498 3.516 0.51%

4.1.9 Free Vibration of Fixed-Fixed Beam

To show the ability of MPM in simulation beams behavior, a vibration of a fixed-fixed beam

is also analyzed following the procedure discussed in previous sections. For fixed-fixed beam,

the normal mode equation is as follows

Wn(x) = (cosβnx+ coshβnx)−
cosβnl − coshβnl

sinβnl − sinhβnl
(sinβnx− sinhβnx), (4.18)

and the velocity equation of fixed-fixed beam is given as,

ẇ(x, t) = ωnBnWn(x)cos(ωn, t) (4.19)

The first three natural frequencies in Table 8. Also, the related normalized mode shapes are

shown in Figure 15.
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(a) First normal mode

(b) Second normal mode

(c) Third normal mode

Figure 15: MPM normal modes compared to beam theory analysis
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Table 8: First three natural frequency of fixed-fixed beam

Frequency Euler-Bernoulli (Hz) MPM (Hz) Error

First natural frequency 0.880 0.879 0.11%
Second natural frequency 2.425 2.441 0.66%
Third natural frequency 4.754 4.736 0.38%

To capture the beam response, Figure 16 provides the mode shape of the fixed-fixed beam

at different time steps. It’s worth mentioning that the natural frequency of the MPM shows

a slight increase when compared to Euler-Bernoulli’s theory due to the larger stiffness in

using the linear interpolating functions for the standard material point method formulation.

In addition, for both free and forced vibration beam analyses, two different procedures

were used to obtain the natural frequency values. Thus, It should be mentioned that the

procedure of the frequency analysis used on the forced vibration of cantilever beam analysis

provides accurate outcomes in comparison to the FFT algorithm that was applied for the

free vibration analysis of beams.

Figure 16: First mode shape at different time steps
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Table 9: First three natural frequency of fixed-hinged beam

Frequency Euler-Bernoulli (Hz) MPM (Hz) Error

First natural frequency 0.606 0.586 3.3%
Second natural frequency 1.965 1.953 0.61%
Third natural frequency 4.099 4.102 0.07%

4.1.10 Free Vibration of Fixed-Hinged Beam

Following the assumption made for the cantilever beam vibration, fixed-hinged beam vibra-

tion has been examined using MPM. The first three natural frequencies are shown in Table

9 while the mode shapes are plotted in Figure 17.
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(a) First normal mode

(b) Second normal mode

(c) Third normal mode

Figure 17: MPM normal modes compared to beam theory analysis
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4.2 Large Deformation of Beams Mechanics

4.2.1 Introduction

For the nonlinear vibration analysis, the deformation is assumed to be moderately large to

ensure the stability of the dynamic frame of the explicit MPM formulation. In addition, the

analysis of the first natural frequency is related to the fundamental mode shape. All beams

model were selected with height h = 1 m, and the modulus of elasticity E = 3000 Gpa with

different lengths. The linear natural frequency is computed following the Euler-Bernoulli

theory as

ωn = (βnl)
2

√

EI

ρAl4
(1)

Beams were discretized to 72 elements with 64 embedded material points over the beam

domain. The nonlinear frequencies are computed for several a/r values, where a is the

amplitude and the r is the radius of gyration. The amplitude was taken at the mid-span

of the beam. The linear frequency was computed following the assumption of the Euler-

Bernoulli theory.

4.2.2 Nonlinear free vibration of Simply Supported Beam

Moderately large deformation is assumed to be the governed assumption in this problem,

where the stretching of the natural axis generates axial displacement that affects the value of

the natural frequency. Here, the nonlinear frequencies were obtained using the material point

method for the simply supported beam at the particle close to the mid span. The boundary

conditions were also applied to the nodal momentum and the resultant force functions. The

frequencies are expressed in terms of (ωNL/ωL)
2 . Table 10 shows the obtained values of

(ωNL/ωL)
2 for the L/r = 27.713.

The nonlinear natural frequencies were computed using the Fast Fourier transform (FFT)

for each a/r value. Figure 18 shows the nonlinear frequencies obtained using FFT theory
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Table 10: (ωNL/ωL)
2 ratio for simply supported beam

L/r = 13.856 L/r = 27.713 KRIEGER [63]

a/r (ωNL/ωL)
2 (ωNL/ωL)

2 (ωNL/ωL)
2

0.1 1.0071 1.0023 1.0025
0.2 1.0103 1.0095 1.0100
0.4 1.0485 1.0468 1.0400
0.6 1.0922 1.0907 1.0900
0.8 1.1769 1.1569 1.1600
1.0 1.2626 1.2402 1.2500

for the first three a/r values.

4.2.3 Nonlinear free vibration of Fixed - Fixed Beam

To capture the lowest bending mode behavior, the boundary conditions are applied to the

related nodes in terms of nodal momentum and resultant force functions. In this case, the

initial velocity is the same as those used for the case of the linear fixed-fixed vibration.

However, the focus is now on the amplitude influence associated with the lowest bending

mode.
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(a) a/r =0.1

(b) a/r =0.2

(c) a/r =0.4

Figure 18: Nonlinear frequencies for simply supported beam when L/r = 27.713
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(a) a/r =0.1

(b) a/r =0.2

(c) a/r =0.4

Figure 19: Nonlinear frequencies for Fixed-Fixed beam when L/r = 27.713
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Table 11: (ωNL/ωL)
2 ratio for Fixed-Fixed beam

L/r = 13.856 L/r = 27.713 EVENSON [15]

a/r (ωNL/ωL)
2 (ωNL/ωL)

2 (ωNL/ωL)
2

0.1 1.0002 1.0002 1.0006
0.2 1.0039 1.0020 1.0024
0.4 1.0204 1.0185 1.0096
0.6 1.0373 1.0277 1.0216
0.8 1.0566 1.0372 1.0384
1.0 1.0968 1.0605 1.0599

4.2.4 Nonlinear free vibration of Fixed - Hinged Beam

In the case of the fixed-hinge beam, the system should also include the increased amplitude’s

effect on the frequency response. Fundamental mode shape was captured and explained in

the linear vibration sections; however, the boundary condition in this example was applied

to the nodal velocity functions along with the resultant force functions to examine the ability

of MPM to simulate the beam behavior. Table 12 shows the nonlinear frequency ratio for

different a/r values. Also, the Figure 20 describes the FFT analysis for the first three a/r

values.

4.2.5 Total Lagrangian Material Point Method

A recent TLMPM study was done by de Vaucorbeil et al. [9] for the vibration of a compliant

bar subjected to the gravity field. The objective was to examine the TLMPM stability by

extension the work of Sadefhirad et al. [28] by modeling the 2D TLMPM. The generated

displacement of the tracked material point presents a stable harmonic behavior through the

time simulation. Further, the model extended to 3D; forming a uniform cube with the same

material properties used in the 2D model. Shape functions of standard MPM have been
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(a) a/r =0.1

(b) a/r =0.2

(c) a/r =0.4

Figure 20: Nonlinear frequencies for Fixed- Hinged beam when L/r = 27.713
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Table 12: (ωNL/ωL)
2 ratio for Fixed-Hinged beam

L/r = 13.856 L/r = 27.713 KRIEGER [63] EVENSON [15]

a/r (ωNL/ωL)
2 (ωNL/ωL)

2 (ωNL/ωL)
2 (ωNL/ωL)

2

0.1 1.0035 1.0007 1.0013 1.0013
0.2 1.0060 1.0053 1.0053 1.0053
0.4 1.0136 1.0162 1.0213 1.0214
0.6 1.0608 1.0637 1.0479 1.0481
0.8 1.0856 1.0887 1.0850 1.0854
1.0 1.1380 1.1413 1.1323 1.1335

adopted this time to study the qualitative of the TLMPM formulation. Although various

assumptions are adopted in this model, the TLMPM still performs stability and does not

generate any numerical fracture. At the same time, the result generally was in satisfactory

agreement with the finite element model used in that examination.

According to this study, the Total-Lagrangian material point method presents stable be-

havior for solids undergoing large deformation as well as refined material point method

formulation under extreme applied load. Further, TLMPM shows considerable efficiency

comparing to the various material point method formulations. To warm up, the TLMPM

could be adopted to examine solid behaviors with various geometries assumptions. To vali-

date the formulation of the TLMPM analysis the bar vibration due to gravity load that [9]

simulated was replicated and the results are shown in Figure 21.

Also, for the small deformation assumption, the free vibration of the bar has been simulated

using the TLMPM. The bar geometries and assumptions as the same as the ULMPM intro-

duced in section 4.1.3. The result compared with the exact solution as shown in Figure 22,

where the simulated result created excellent agreement behavior with an analytical solution.

A cantilever beam subjected to uniformly distributed load was studied for a static beam

under moderated large deformation. Heyliger and Reddy [22] completed this analysis . As

shown in Figure 23, The result shows that the TLMPM under moderated large deformation
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Figure 21: Vertical bar vibration under gravity load

Figure 22: Free vibration of bar using TLMPM

generates a behavior for the stiffening beam in agreement with the elasticity solution done in

[22]. In addition, as the load increases, the TLMPM provides larger displacement compared

to the FEM analysis due to the ability of TLMPM to handle large deformation analysis

better than FEM.
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Figure 23: Cantilever beam results (red dashed line) compared to Heyliger and Reddy results
[22]

5 DAMAGE MECHANICS USING MATERIAL

POINT METHOD

Damage of materials has been examined based on different damage models that reflect the

characteristic variations of material properties and failure processes. The damage variable

can be obtained by microstructural analysis or by experimental test analysis. Different

damage variables can be used based on the different phenomena of materials. For instance,

the effective stress concept was adopted for Kachanov [27] Lemaitre and Chaboche [29] and

Westlund [51] to define the damage variable while Rosuselier [52] included the mass density

of the failed material.

Structures failure can be modeled using the Material Point Method. Considering damage

analysis, MPM could be adopted to study the effects of loaded structures for different as-
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sumptions. The slab bridge can be modeled as a thin plate as done by [42] which provided

a simple beam-plate model using the finite element method. Also, Minalu[37] assumed the

bridge deck to be an orthotropic plate model. The beam and slab type bridge was converted

to an equivalent slab system. The finite element model was created using SCIA Engineer.

Also, slab bridge loaded until the failure has been studied by researchers of University of

Cincinnati and Delft University of Technology using nonlinear finite element model[54]. The

slab of the bridge is modeled as a shell/ plate element with different assumptions of beam-

columns or supports. Large deformation of failure analysis of slope examined using smoothed

particle finite element method[36].

In order to enhance the safe design, computational analysis requires a proper evaluation of

structure subjected to different load conditions. An appropriate selection of the constitutive

relations is challenging due to the need for an accurate description of material behavior

under different conditions. It’s known that the permanent changes in structure are related

to the nonlinear response of the material; therefore, the formulation of constitutive equations

should include the mechanical concepts related to these changes that might be as a slip or

micro-cracking.

5.1 Damage Constitutive Model

In rock mechanics, the constitutive model is crucial in developing numerical analysis. A

rock structure is supposed to be composed of numerous mesoscopic elements, which allow

including micro cracks. In addition, these mesoscopic elements are small enough to be treated

as particles that should be analyzed using continuum mechanics. The constitutive model of

elastic isotropic rock materials in uniaxial experiments is given as

σ1 = Eǫ1 (5.1)
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where σ1 is the axial stress, E is the modulus of elasticity of the rock material, and ǫ1 is the

axial strain. For damaged rock materials, the constitutive model becomes

σ1 = E(1−D)ǫ1 (5.2)

D here is the damage variable that is a measure for material degradation. Including the

damage variable in the constitutive equation lead the impact of micro cracks to be included

in the response of the rock. This equation is known as the rock damage constitutive model.

In MPM, it is known that the stress of the current time step is obtained using the updated

stress increment from the strain updating. Hence, the rock damage constitutive equation in

MPM form is as follows

σn
p = σn−1

p + Ep(1−D)ǫnp (5.3)

where Ep is the modulus of elasticity of the material point and ǫnp is the updated strain of

the material point.

The distribution of rock stress function was assumed to be empirical Weibull distribution [11].

According to the Weibull failure criterion, the Weibull distribution work conjugate with the

ultimate material strength. The probability density function of the Weibull random variable

is

f(x;λ,m) =















m
λ

(

x
λ

)m−1
exp
{

−
(

x
λ

)m}

, x, x > 0

0, x ≤ 0

(5.4)

where m > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution.

The cumulative distribution function for the Weibull distribution is

F (x;λ,m) =















1− exp
{

−
(

x
λ

)m}

, x, x > 0

0, x ≤ 0

(5.5)

So, the rock analysis uses the material point method. the survival probability Ps(Vref ) of a
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material point subjected to maximum stress σ computed as

Ps(Vref ) = exp

{

−

(

σ

[σ]

)m}

(5.6)

Where [σ] is the reference stress that can be assumed as a kind of reference strength param-

eter. Based on Weibull’s theory, the survival probability from tensile damage P(st) of the

material point under maximum principal stress can be obtained as

Pst = exp

[

−

(

σ

ft

)m]

(5.7)

whereft is the mean uniaxial tensile strength, m is the shape parameter that reflects how the

probability would reduce as σ hits the strength ft. In this study, the compression strength of

the rock is applied to (5.2) in order to simulate the compression analysis of Trajan’s column.

Therefore, the equation (5.7) will be

Pst = exp

[

−

(

σc

fc

)m]

(5.8)

According to [11], the rock damage variable for Weibull theory is expressed as

D = 1− exp

[

−

(

σc

fc

)m]

(5.9)

Thereby, the Weibull distribution damage constitutive law or Weibull model for the uniaxial

compression analysis becomes

σ1 = Eexp

[

−

(

σc

fc

)m]

ǫ1 (5.10)

By substituting (5.10) to (5.2), the damaged constitutive equations of rocks in the material

point method scheme are computed as

σn
p = σn−1

p + Ep

{

exp

[

−

(

σc

fc

)m]}

ǫnp (5.10)
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The following section will describe the analysis made on real life model using the proposed

formulations with different material assumptions.
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6 AXISYMMETRIC SOLID

To allow the 3D solid behavior to be inherent to a 2D model, axisymmetric solids formulation

takes place, especially with solids with axial symmetry. Thus, the solids geometrical and

material characteristics become independent of the circumferential coordinate θ as shown in

Figure 24. In these solid assumptions, the load is also axisymmetric where the displacement

vector has only two components in the radial and axial axial axes. Axisymmetric solids

can be represented in different engineering structures such as; water and oil tanks, cooling

towers, domes and cylindrical structures, as shown in Figure 25.

Figure 24: Axisymmetric solid

6.1 Basic Formulation

6.1.1 Displacement field

Consider the axisymmetric solid subjected to the axisymmetric loading shown in Figure

24. The radial movement of any point is identified as (u) while the axial displacement of

this point is represented by (w). The circumferential displacement(v) is assumed to be zero
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Figure 25: Some axisymmetric structures

because of the axial symmetry. Thereby, the displacement vector is given as

u =











u(r, z)

w(r, z)











(6.1)

6.1.2 Strain field

Because the solid is assumed to be axial symmetry in this formulation, the displacement

vectors u and w are independent of the circumferential coordinate θ. As a result, the shear

strains γrθ and γzθ are zero. Therefore, the strains field are given as

ǫr =
∂u

∂r
; ǫr =

∂w

∂z
; γrz =

∂u

∂z
+

∂w

∂r
(6.2)

where ǫr , ǫz and γrz are the radial, axial and tangential strains, respectively.

The circumferential strain generated due to the axial deformation, this strain measure can

be computed as

ǫθ =
2π(r + u)− 2πr

2πr
=

u

r
(6.3)

in which explains the movement of the point from the circumference of radius r to a circum-
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ference of radius r + u. Therefore, the strain vector of any point includes four components

as

ǫ =

[

ǫr, ǫz, ǫθ, γrz

]T

=

[

∂u
∂r
, ∂w

∂z
, u

r
, ∂u

∂z
+ ∂w

∂r

]T

(6.4)

6.1.3 Stress field

The stress are related to strain measures as follow

ǫ =

[

σr, σz, σθ, τrz

]T

(6.5)

here σr, σz and σθ are, respectively, the radial, axial and circumferential stresses and τrz is

the tangential stress while the other stresses are zero. The sign convention for all stresses is

shown in Figure 26.

Figure 26: Stresses acting on a differential volume of an axisymmetric solid underaxisym-
metric loading

6.1.4 Constitutive equation

The relationship between stress and strain in axisymmetric solid as

σ = D(ǫ− ǫ0) + σ0 (6.6)

This equation includes the initial stains ǫ0 and stresses σ0 components. Matrix D for the

isotropic material can be computed as
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D =
E

(1 + ν)(1− 2ν)



















1− ν ν 0 0

ν 1− ν 0 0

0 0 1− ν 0

0 0 0 1−2ν
2



















(6.7)

In this study, the thermal isotropic case is not included; therefore, both the initial stains ǫ0

and initial stresses σ0 components are going to be neglected in (6.6).

6.2 Trajan’s Column

Ancient structures are always unique and represent people’s historical, cultural and emo-

tional values. Because of these, they consider precious structures that could associate with

the effects on different aspects of any society. Some countries and entities consider many

historical assets as attractions that would reflect positively on the economy. In addition,

They could explain significant events that affected the country’s history. Protection of such

structures is critical and challenging due to various parameters like size, the age of the used

material, and the construction condition at that time. Studying their ability to withstand

is an essential aspect of tracking the workability and the safety of such structures.

Trajan’s column is one of the ancient structures in Rome, Italy. The column constructions

were completed in AD 113 under the supervision of the architect Apollodorus. It represents

the Roman emperor Trajan’s victory against the Dacian wars. It has 98 feet in height and

is formed by 20 drums of marble; each drum weighs 32 tons.

The failure test is done to the whole column’s shape during compression loading using MPM.

Due to the cylindrical geometry of the column, the axisymmetric model was adopted in the

analysis with materials properties that are independent of the circumferential coordinate θ.

The column modeled with height h = 43 m, width w = 1.85 m. Based on experimental

data, the modulus of elasticity of marble is 22.2 Gpa while the density of marble ρ = 2711

kg/m3. The column was discretized to 430 elements with initial 172 material points.
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Figure 27: Trajan’s column

Figure 28: Trajan’s cloumn drums distrubution

The test was conducted by applying an axial load at a constant rate with respect to time

until the maximum principal stress hits the compression strength of the marble. Based

on Anastasiadis et al. [2], the typical marble stress-strain curve can be divided into three

different behaviors, as shown in Figure 29. In the first behavior, a nonlinear response between

stress and strain relationship appears due to the closing of pores under the applied load

impact. This behavior is very short and referred to as the quasi- plastic range, and it does

not extend 0.1 of maximum stress. Then, along linear behavior between stress and strain

appears, which corresponds to the linear elastic response of rocks. After that, the plastic
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behavior starts and the linearity does not appear anymore, and the plastic response continues

up to fracture. It is worth mentioning that the material point simulation behaves as a typical

marble stress-strain curve considering the three different behavior shown in Figure 29.

The macroscale simulation of uniaxial compression of the column was compared with a

laboratory test of marble done by Mahmutoglu [34]. The stress was applied by a loading

function with a constant rate 1 × 10−3 sec for every point along the column. The results

agree with experimental data, especially when the material point number increased, in which

both failure stress and strain of the column converge to the test values, as shown in Figure

30.

Figure 29: Typical marble stress-strain curve by Anastasiadis et al [2]
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(a) 172 points

(b) 688 points

Figure 30: Stress- strain curve of Trajan’s column (Red dashed lines) compared with labo-
ratory test of Carrara marble of Mahmutoglu [34]
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6.3 Phyllostachys Edulis bamboo

Phyllostachys edulis bamboo is also known as Moso bamboo, considered the most crucial

bamboo type in China and Taiwan. It is one of the giant bamboo species in the world by

height, reaches 92 ft and is used widely in wood textile manufactory. Bamboo generally

provides good mechanical features such as elasticity and toughness along with the excel-

lent environmental influence of low carbon energy-saving properties that make it one of

the adopted construction components in different applications. In this study, the compres-

sion test will be simulated using MPM to study the proposed constitutive relation for such

material and bamboo responses of the model with [30].

Figure 31: Phyllostachys Edulis bamboo

The bamboo scrimber was adopted for the compression test using MPM. Based on the exper-

imental conditions of bamboo scrimber, the tested samples were dried under a temperature

reached 165. Therefore, the model is assumed to be a drained bamboo scrimber. The gen-

eral damage constitutive model was adopted in the constitutive relation. The load is applied

incrementally with a small load rate and the mechanical properties are extracted from the
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Table 13: Mechanical properties of the Phyllostachys edulis bamboo

E1(GPa) E2(GPa) ν

4.31 14.16 0.38

experimental stress-strain curve described in Table [13]. The model is discretized to an

orthotropic strip, as shown in Figure 32.

In the simulation, the sample’s mechanical properties were adopted from the experimental

results based on the mean values of elastic modulus, ultimate stress and Poisson’s ratio. The

simulated stress-strain curves show good coincided agreement to the experiment and theo-

retical results introduced by Li et al. [30]; however, the ultimate strength of the MPM model

shows a smaller peak stress value in compression to the experiments. Generally, the material

point method simulation can express the brittle damage features of the Phyllostachys edulis

bamboo specimens in satisfactory agreement with the experiment, as shown in Figure 33.

Figure 32: MPM mesh of Phyllostachys Edulis bamboo
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Figure 33: MPM Compression test result (Red dashed lines) compared to experimental result
of Phyllostachys edulis bamboo by Li et al. [30]
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7 DISCUSSION AND CONCLUSION

7.1 Material points number Influence

7.1.1 Material points number impact on displacement response

In this research, a convergence study was performed to examine the effect of the material

point number on the simulated results. In the beginning, the analysis of free vibration of

the bar started with the minimum possible number of material points with10 × 1(i.e., 10

here represents the material point number in the x-direction, and 1 reflects the rows number

that the 10 points would be added more in the y-direction). The point displacement shows a

non-convergence as the simulation time increase. By applying 20×4 points for bar modeling,

the displacement of the particle was almost identical to the exact solution as the simulated

time increased, as shown in Figure 5. As a result, the displacement response converged as

the material point analysis increased for axially vibration analysis.

In addition, the static analysis for beams shows good converged results as the material points

increase. Following the static cantilever beam analysis, the result of 16 × 2 appears result

closed to elasticity results, especially when the material point is near to the loaded end. The

static simply supported beam also experienced converged displacement response for every

material point along the beam as the material point number increased from 8 × 2, 16 × 2

to 16 × 4. The displacement of the expected large value (near to mid-span) was tracked as

described in Table[5].

7.1.2 Material points number impact on frequency response

As this research aims to analyze the frequency using MPM, the frequency responses have been

tracked for different numbers of the material points to measure their influence on frequency

values. From the observation of frequency results following Fast Forum Transfer (FFT), the

material point number does not affect the frequency due to the constant periodic motion of

the whole model which is represented by the analyzed particle with a different number of
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material points. That satisfies the frequency concept of a wave in general. Even with more

time-domain samples, the frequencies of MPM were identical for different point numbers.

7.2 Time integration of Material Point Method

After getting the semi-discrete equation, the full discrete one is done by applying a time

integration. This integration leads to the acceleration at the nodal function; therefore, the

nodal acceleration should be satisfied for every step. In addition, in the material point

method, the nodal velocity is deleted after every time step due to the grid reset; therefore,

the particle velocity must be mapped to the nodes at the starting point of the time loop.

Thus, the material point method follows an explicit formulation to solve the fully discrete

equation. This formulation requires very small time steps to ensure the stability of the

simulation. As a result, considering this concept is critical to producing stable analysis,

especially when the large deformation behavior is simulated.

7.3 Strain Measures in Material Point Method

Many strain measures can be used in large deformation formulations based on continuum

mechanics. In this study, besides the linear strain measures, the Green Lagrangian strain

tensor was examined by including the nonlinear terms in the strain increments function. For

the nonlinear beam analysis, due to the small contribution of the nonlinear terms to the

strain function. The frequency values experienced a small impact when using the Green

Lagrangian tensor which led to conclude that using a linear assumption of strain measure

would be sufficient even for the large deformation problems. Table [14] explains the frequency

of simply supported beam at different a/r values.
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Table 14: Frequency values for different strain measures

a/r Green Lagrangian strain measure Linear strain measure

0.1 0.38845 0.38938
0.2 0.38985 0.38985
0.4 0.39698 0.39698
0.6 0.40521 0.40521
0.8 0.41733 0.41733
1.0 0.43210 0.43210
1.5 0.48344 0.48344

7.4 Euler-Bernoulli beam behavior

A study of Euler Bernoulli beam assumptions has been done in this research. The aim

is to validate the behavior of Euler Bernoulli theory using MPM simulation. It is known

that, in Euler-Bernoulli assumptions (thin beams theory), the plane cross-section should be

plane after the beam deforms. In addition, this deformed plane section is perpendicular

to the beam’s natural axis. From these concepts, a simply supported beam under a small

deformation assumption of free vibration is examined with different lengths L = 8 and

L = 16. The axial displacement of material points at L
4
was tracked to validate the simulated

assumptions of thin beam theory that was done in this research. Figure 34 shows the first

mode shape of vibrated simply supported beam with L = 8, the axial displacement of

material points at L
4
gives the cross-section behavior close to Timoshenko beam theory (thick

beam theory) instead of the thin beam theory assumption as given in Figure 35.

As the beam length increase, the beam behavior expresses the Euler Bernoulli beam theory.

This expression can be noted with the same problem for L = 16 which the axial displacement

of material points at L
4
tracked and the result is given in Figure 37; therefore, the MPMmodel

can capture the Euler Bernoulli beam theory as the system get thinner which supports the

use of this formulation for beam applications.
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(a) Bending beam

(b) Naturl axis bending

Figure 34: First mode shape of simply supported beam
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Figure 35: Deformed cross section of beam L = 8 at L
4

7.5 Element Size Effect

The material point method was tested to get the element size effect on vibrated simply

supported beam results for small deformation assumption. The maximum displacement

value of the beam was tracked along with different element sizes. The examined elements

were taken for the size of 2−k where k here applied as [1,2,3,4]. According to Figure 38, as

the element size decreases, the error of the maximum displacement decrease and the MPM

simulation converges to the exact peak value when the element size is equal to 2−4.
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(a) Bending beam

(b) Naturl axis bending

Figure 36: First mode shape of simply supported beam
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Figure 37: Deformed cross section of beam L = 16 at L
4

7.6 Conclusion

A geometric and material analysis using the material point method has been done. In this

research, the free vibration of beams under the assumptions of small and moderated large

deformations is the key analysis that was introduced using MPM. Although the representa-

tion of boundary conditions in MPM is more complex than FEM, the simulated responses

of beams show satisfactory agreement with exact solutions as well as FEM approximations

introduced in this research. The research extended to examine both updated Lagrangian

and the total Lagrangian MPM formulations for solid mechanics. In addition, a damage

evaluation simulation has been discussed for rock and bamboo type applications and all the

related results are verified with experimental findings. The computational algorithms have

been implemented using the FORTRAN language through the RMACC Summit Supercom-

puter platform. The modified updated stress last (MUSL) formulation exhibit considerable

and strong results along different assumptions made in this analysis as the very large de-

formation analysis performed using TLMPM. Generally, MPM behaves appropriately under

the external force impact; however, this does not prevent the effects of velocity assumption
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Figure 38: Element size effect of material point method

that collaborate to predict the free vibration behavior in this analysis, which can be noted

in the frequency analysis done in two different ways.

MPM has been used for over two decades, creating an efficient algorithm for solid mechanics

simulations. Based on the outcomes of this research, MPM can be a reliable formulation

of different structural elements like beams and bars. Improvement of frequency analysis is

recommended as where it is done for FEM analysis. Also, the MPM should be tested for

other beam theories with representations of their assumptions.
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