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ABSTRACT 

 

ELASTICITY-BASED VIBRATIONS OF HOLLOW ANISOTROPIC BEAMS AND AN 

EVALUATION OF THE SHAPE FACTOR FOR HOLLOW ANISOTROPIC SECTIONS 

 

This study considers the transverse vibrations and natural frequencies of hollow anisotropic 

beams free from end restraints using full three-dimensional elasticity solutions and common one-

dimensional beam theory approximations.  Calculations of the natural frequencies are made for a 

number of hollow beam dimensions using the one-dimensional Euler-Bernoulli, Rayleigh, and 

Timoshenko beam theories.  Complete derivations of the elasticity solutions and beam theories 

are presented.  The accuracy of the approximate methods is determined by comparison to 

elasticity solutions.  Subsequent discussion on the limitations of each approximate beam theory 

in calculating natural frequencies is made.  Mode shapes and cross-section deformations for the 

first five modes of vibration are presented.  Additionally, the shape factor for the Timoshenko 

beam theory is analyzed for hollow-anisotropic sections. 
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Chapter 1 

Introduction 

 

The topic of vibrating beams has been of interest to engineers for a number of years.  The 

eigenvalue problem provides important information about the interaction between a structure or 

any finite object and forcing frequencies.  The natural frequencies of structures are often 

examined to determine how those structures will be affected by the frequencies caused by 

earthquakes and other dynamic loads.  Free vibrations are also studied to determine elastic 

constants of solids small in scale for which traditional experimental methods are not practical 

[1].  In these resonance methods, an accurate determination of natural frequencies is essential. 

The calculation of the natural frequencies of a system is of great significance to engineers of 

many disciplines.  In the design of buildings, bridges, or vehicles, for example, the resonance 

condition is to be avoided.  Resonance occurs when the ratio between the input frequency and 

the natural frequency of the system approaches unity [2].  The largest amplitudes of motion 

occur at the resonance frequency.  These motions can be potentially destructive to the system.  

As a result, much care must be taken to ensure the calculations of natural frequencies are 

accurate.  Olhoff and Parbery used an optimization of the difference between subsequent natural 

frequencies as a way of preventing the resonance condition [3]. 

Extensive work has been done to study the natural frequencies of isotropic and anisotropic 

beams, but little has been done to evaluate hollow beams.  Four simplifications to the exact 
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three-dimensional elasticity theory calculations exist, namely the Euler-Bernoulli, Rayleigh, 

Shear, and Timoshenko beam theories.  This paper will discuss the one-dimensional Euler-

Bernoulli, Rayleigh, and Timoshenko beam theories and how they compare to Ritz-based 

approximations to linear theory of elasticity.  Discussions will be made on how each of these 

one-dimensional simplifications to the exact method performs on hollow beams of varying 

lengths.  One-dimensional beam theories only consider the deflection of a beam in one direction, 

and do not take into account any dilatational or volume changes of the solid.  The work of others 

has shown that with uniform short and stocky beams, one-dimensional beam theories introduce a 

great deal of error when compared to elasticity solution methods.  That is, as the slenderness 

ratio decreases, the beam theories tend to fail.  It is the intent of this paper to determine precisely 

when it is no longer prudent to use the simplified beam theories.  An examination of the first five 

non-zero natural frequencies will be conducted for a number of hollow beam geometries.  

Although it is typical to ignore the higher frequencies in design of a structure, especially for 

relatively short structures, the subsequent frequencies allow for a more complete comparison to 

elasticity solutions.  More error is introduced in the one-dimensional beam theories with the 

higher order modes.  These errors grow more apparent as the slenderness ratio of the beam 

decreases. 

In addition to the evaluation of the natural frequencies of transversely vibrating beams, mode 

shapes and cross-section deformations of the beam will be examined.  The mode shapes can 

provide a visual picture of how a beam will deform through different frequencies of vibration.  

The higher modes of vibration are present in all structures, though the first mode shape typically 

dominates the displacement motion.  The higher order mode shapes become more prevalent in 



3 

 

taller structures.  Plots of the cross-sectional deformations at varying frequencies and modes of 

vibration are useful to depict how beams will behave with different wall thicknesses.  

A number of boundary condition combinations exist for a beam, however this paper will focus 

solely on the free-free case for which no shear or moment can be transmitted.  For the free-free 

case, the stress traction vector will equal zero, allowing for a straightforward comparison of each 

of the beam theories. 

Specific consideration is given to hollow sections for two key reasons.  First, the use of hollow 

structural sections in construction is increasing appreciably.  The primary reason for this is due to 

the efficient nature of the hollow section.  Hollow sections are lighter than solid sections and 

their closed shape proves beneficial to the resistance of torsional effects [4].  Secondly, little 

work has been done to evaluate the transverse vibration of hollow sections.  The most notable 

work was completed by Traill-Nash and Collar over 60 years ago on a built-up box beam section 

that included diaphragms for buckling reinforcement, but even these authors suggest a more 

complete study is necessary [5].  Hollow sections have uses outside the realm of structural 

engineering as well.  For example, several components of the aerospace industry can be modeled 

as a hollow beam, including airplane wings or fuselages [5]. 

Most engineering materials are classified as anisotropic.  For this reason, attention is given to 

hollow anisotropic sections.  The reduction from anisotropic to isotropic is trivial to make.  For 

comparative purposes, the natural frequencies of the isotropic beam have been calculated as well.  

Composite materials that exhibit anisotropic properties are often used because they present some 

other benefit to the application of interest.  For example, the composite graphite-magnesium is 

used for its high modulus of elasticity and low density.  Aldraihem, Wetherhold, and Singh 
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performed a comparison of the Euler-Bernoulli and Timoshenko models as they relate to 

laminated composites [6]. 

To this point, the only knowledge of a proposed method for determining the shape factor for 

hollow orthotropic beams is for laminated composites and uses the ratio of the wall thicknesses 

in its calculations [7].  This procedure does not account for the wall thickness as it compares to 

the outside dimensions of the beam.  An analysis of the validity of this method will be 

performed. 
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Chapter 2 

Literature Review 

 

The governing equations of motion for the displacement of a solid can be determined with a 

combination of Newton’s laws of motion and a number of elastic relations [8].  As stated 

previously, there are several methods used in the evaluation of beam vibrations.  Each of the 

beam theories in use focuses on the transverse displacement and the bending effect.  Transverse 

displacement involves particle displacement perpendicular to the longitudinal axis of the beam.  

Initial work on transversely vibrating beams was performed by Daniel Bernoulli and Leonhard 

Euler in the 18
th

 century.  Daniel Bernoulli is credited with the formulation of the differential 

equation of motion of a vibrating beam [9].  It was Daniel’s uncle Jacob Bernoulli who 

discovered the relationship between the curvature of a beam and the bending moment.  Leonhard 

Euler is responsible for much of the work regarding the deflected shape of elastic beams under a 

number of loading conditions.   

Together, the formulations made by both Euler and Bernoulli create the first and most basic 

beam theory.  The Euler-Bernoulli beam theory, as it is most commonly known, considers only 

the bending moment and the lateral displacement.  Elishakoff and Pentarus present the Euler-

Bernoulli beam in closed form by utilizing a semi-inverse method that specifies the natural 

frequency [10].  With this method, systems can be designed for a specific natural frequency and 

mode shape. 
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In the late 19
th

 century, Lord Rayleigh developed an improvement to the Euler-Bernoulli model 

with the inclusion of the rotary inertia term.  These governing equations became known as 

Rayleigh’s equations [11].  The rotational inertia accounts for the rotation of the cross section in 

addition to the consideration of the bending moment and lateral displacement. 

Stephen Timoshenko took the analysis of transversely vibrating beams one step further with the 

inclusion of a shear deflection term [11].  The addition of the shear term, and more specifically 

the shear coefficient or shape factor, has been of particular interest to engineers including the 

likes of Cowper, Mindlin, and Rubin [12, 13, 14].  The shape factors exist for beams of varying 

cross-sections.  The work of Rubin suggests that a shape factor equal to one is necessary for a 

variety of reasons [14].  The shape factor for a thin-walled square tube reported by Cowper will 

be used for the analysis of the hollow isotropic beam sections [12].  Cowper’s formulation can be 

found in the appendix.  The shape factor for the hollow anisotropic beams used in this study 

comes from the work of Puchegger and colleagues regarding anisotropic rectangles [15].  

Omidvar develops a shape factor for hollow orthotropic laminated composites, but with the 

neglecting of the Poisson ratio, this gives the same result as that produced by Cowper [7].  This 

method also disregards the magnitude of the wall thickness and only considers the ratio of the 

web and flange thicknesses.  Traill-Nash and Collar demonstrate that the effect of the shear term 

in vibration analysis plays a much larger role in comparison to the rotational inertia term [5]. 

The exact solution to the problem of the vibrating beam with the use of elasticity solutions was 

carried out independently by Pochhammer and Chree at the end of the 19
th

 century [9, 16].  The 

so called Pochmammer-Chree frequency equation has been used by several authors in a number 

of applications.  Benatar, Rittel, and Yarin used a simplification of the Pochhammer-Chree 

frequency equation in their study of the material and geometric dispersion of viscoelastic 
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materials [17].  Kolsky examined the effects of dilatational and distortional wave propagation at 

varying frequencies to understand the effects of dispersion as well [8].  Bancroft used the work 

completed by Pochhammer and Chree on cylindrical rods to develop a relation between the 

phase velocity and wave number [18].  Puckett and Peterson used the Pochhammer-Chree 

solutions to examine wave propagation for multiple modes of vibration [19].  Abramson, Plass, 

and Ripperger examine both the Pochhammer-Chree solutions and approximate beam theories to 

evaluate stress wave propagation in beams [20].  In this study, the elasticity solutions first used 

by Pochhammer and Chree will serve as a benchmark in the comparison of the Euler-Bernoulli, 

Rayleigh, and Timoshenko beam theories. 

Elasticity solutions are inherently more complex than approximate beam theory methods due to 

the computational nature of the eigenvalue problem.  The work of Demarest, Ohno, Visscher, 

and Heyliger utilizes Hamilton’s principle and Ritz-based approximations to solve the problem 

of the traction free solid that is of interest in this paper [21, 1, 22, 23].  Demarest uses Rayleigh-

Ritz approximations in his study of the isotropic cube [21].  Visscher demonstrates that the 

Hamilton’s principle approach can also be applied to a wide array of anisotropic objects [22].  

Heyliger and Jilani evaluated the natural frequencies of cylinders and spheres in free vibration 

using Hamilton’s principle and Ritz-based approximations in multiple coordinate systems [23].  

Heyliger’s unpublished study on the accuracy of the approximate beam theories for solid 

parallelepipeds serves as the basis for the work of this paper.  In this paper, the earlier efforts by 

Heyliger have been extended into an examination of hollow beam sections that are more 

commonplace in recent engineering and construction. 

The authors Penny and Reed used an integral equation approach as an approximate numerical 

method to the problem of vibrating beams [24].  However, their work did not consider a beam 
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free from end restraint.  Schmidt used a combination of the Ritz-Rayleigh, Sturm-Liouville, and 

Stodola-Vianello methods to provide accurate numerical approximations to the fundamental 

frequencies of a vibrating beam [25].  Elasticity solutions have a number of applications besides 

the beam.  Liew and Yang performed a study regarding three-dimensional elasticity solutions on 

the free vibrations of circular plates, Love examined the vibrations of cylinders, and Visscher 

analyzed shapes such as spheres, eggs, cones, and pyramids to name a few [26, 27, 22]. 

The frequency analysis of the beam problem, including evaluation of mode shapes and frequency 

equations, has been studied by authors including Traill-Nash and Collar, Dolph, Kruszewski, and 

Huang [5, 28, 29, 30].  Of particular interest to this paper is the work by Traill-Nash, Collar, 

Kruszewski, and Huang that involves the free-free boundary condition.  Traill-Nash and Collar 

also provide an explanation of how the rotary inertia term in hollow beam sections is even less 

important than for solid sections.  Traill-Nash and Collar used closely spaced diaphragms to 

reinforce the hollow section to limit the effects of buckling and to give the beam a mass loading 

to reduce the natural frequencies so that they could be measured experimentally [5].  In this 

present study, no transverse diaphragms will be used, in part because physical testing is not 

considered.  Kruszewski performed a study on the free vibrations of box beams as well.  His 

work used the same Rayleigh-Ritz method of approximations as discussed earlier, but focused on 

the torsional vibrations as opposed to transverse vibrations that will be discussed in this paper.  

Kruszewski concluded that the cross-sectional deformation due to shear effects is important to 

consider for beams with fewer bulkheads [29].  The bulkheads that are used in the hulls of ships 

or airplane wings and fuselages are very similar in nature to the transverse diaphragms used by 

Traill-Nash and Collar.  Thompson and Kruszewski performed an analysis on thin wings with an 

airfoil-type cross-section that also considered the importance of cross-sectional deformations on 
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the natural frequencies [31].  In their analysis, the airfoil shaped wing was modeled as two 

curved beams.  Huang provides excellent derivations of the frequency equations for flexural 

vibrations for a number of end restraint combinations, including the free-free case [30]. 
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Chapter 3 

Theoretical Development 

 

Section 3.1:  Governing Equations 

The governing equations of motion and the frequency equations can be determined with the use 

of Newton’s laws and the elastic relations of solids.  The evaluation of natural frequencies is 

simplified by the condition of traction free surfaces.  The free-free boundary condition also 

allows for a more direct comparison between beam theories and elasticity methods.  By 

assuming that the solid is linear elastic, Hooke’s law is used to relate the components of the 

infinitesimal or Cauchy strain tensor to the elastic stiffness tensor.  It states that stress varies as 

the stretch 

 

where  represents the second-order elastic stress tensor,  is the fourth-order elastic 

stiffness tensor, and  represents the second-order Cauchy strain tensor.  This law represents 

nine equations.  However, if the material is isotropic, symmetry is introduced and the system can 

be reduced significantly.  When strains are infinitesimal, the Cauchy strain tensor can be 

represented by the strain-displacement equation below 
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where  and  are partial derivatives of the transverse displacement with respect to the 

orthogonal coordinate direction.   

Fung and Tong present a derivation of the equations of motion similar to that described below 

[11].  For an oscillating solid that undergoes small deformations, the equation of motion is given 

as 

 

where  represents the body force vector and  is the mass density of the solid.  The virtual work 

done by the body force vector and the surface traction vector is given as 

 

where  represents the virtual displacements and  represents the surface traction vector.  

Using Cauchy’s formula that states 

 

the virtual work of the surface traction vector becomes 

 

Now, utilizing  and the symmetry of stress, the right hand side of   becomes 

 

Finally, the variational equation of motion is given as 
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Assuming that the solid is elastic, a substitution of the strain energy density can be made into the 

variational equation of motion as follows 

 

where  represents the strain energy density.  By letting the virtual displacements  be 

functions of space and time, the variational equation of motion can be integrated with respect to 

time to yield another variational principle 

 

After a few manipulations, the final term in  becomes  

 

where  represents the kinetic energy of the moving solid and 

 

If the assumption is made that all of the virtual displacements are zero along the beam at the time 

 and , 

 

then  becomes 
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where the right hand side of this equation represents the potential energy of the system due to 

any external forces acting on the beam.  By letting 

 

and 

 

where  is the strain energy of the body and  is the potential energy, we arrive at the extended 

Hamilton’s principle 

 

Hamilton’s principle, named after Sir William Rowan Hamilton, is an integral statement used as 

the key building block to the equations of motion of dynamic bodies [2].  The transverse 

vibration of beams is a common application of Hamilton’s principle.  To apply Hamilton’s 

principle to the problem of the beam, the strain energy, kinetic energy, and potential energy 

terms in  must be known for beam bending.  These quantities will differ for the Euler-

Bernoulli, Rayleigh, and Timoshenko models. 
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Section 3.2:  Beam Theories 

Three-dimensional elasticity solutions to beam bending are very complex problems.  

Subsequently, simplifications to the elasticity theory are made that restrict the motion of the 

solid.  By kinematically constraining the deformation of the solid to one dimension using an 

assumed displacement field, the evaluation of the beam bending can be simplified dramatically.  

It is the variations in the assumed displacement fields that make up the one-dimensional beam 

theories. 

 

Section 3.2.1:  Euler-Bernoulli Beam 

The Euler-Bernoulli beam theory assumes the simplest and most basic deformation of the beam.  

It only considers the transverse displacement of the beam.  Neglecting the Poisson effect 

assumes that the cross-section of the solid does not change and allows for the reduction to one-

dimension.  The displacement field of the Euler-Bernoulli Beam is given by 

 

 

 

where ,  , and  represent the displacement in the , , and  directions, respectively.  The 

transverse displacement is represented by the variable .  The process of deriving the frequency 

equations for the Euler-Bernoulli beam follows closely the work of Han and Fung [9, 11].  Using 

the displacement field, the strain energy for the Euler-Bernoulli model is given as 
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where  represents the modulus of elasticity and  represents the area moment of inertia of the 

beam.  The kinetic energy is given as 

 

where  represents the mass per unit length of the beam.  For the case of a free-free beam, the 

surface traction vectors are equal to zero and there are no applied body forces, therefore  

disappears from .  Substituting into Hamilton’s principle yields the following 

 

Using the notion that  is zero at times  and , further manipulation gives 

 

Performing two steps of integration by parts gives 

 

Finally, the equation of motion for the Euler-Bernoulli model is  
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This equation is known as the Euler equation of motion.  The boundary conditions to be satisfied 

for a beam free from end restraint are as follows 

 

where  is the displacement,  is the slope,  is the moment, and  is the 

shear.  For the case of the free-free beam, the moment and shear must equal zero to meet the 

physical limitations of a beam free from end restraint.  That is 

 

 

With the use of separation of variables techniques as laid out by Han [9], where the transverse 

displacement  is 

 

the Euler equation of motion can be split into two ordinary differential equations 

 

where the wave number  and the angular frequency  are related as follows 
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In frequency analysis it is often convenient to use dimensionless variables.  By non-

dimensionalizing , , , , and  as listed in the appendix, the dimensionless wave number can 

be related to the angular frequency as follows 

 

Here, the variables with the superscript  represent the dimensionless quantities.  For the 

remainder of this study, variables will be presented that include the dimensions so as to aide in 

future computations unless otherwise noted.  The dimensionless wave number is also given as 

 divided by the wavelength.  Solving the two ordinary differential equations leads to the 

solutions 

 

 

with  and  representing arbitrary constants.  Rewriting the boundary conditions given in 

 leads to  

 

 

From this point, the eigenvalue problem is solved in order to obtain an expression for finding the 

dimensionless wave numbers.   
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By solving for the roots of this equation, the wave numbers for the first five modes of vibration 

were attained as listed in Table 1 for the case of the free-free beam.  The equation for 

determining the natural frequencies comes from rearranging the dispersion relationship in 

 as follows 

 

Substituting the wave numbers into  will yield the natural frequencies to be discussed 

later. 

Table 1. Euler-Bernoulli Wave Numbers 

Wave Numbers 

     

4.730 7.853 10.996 14.137 17.279 

 

 

Section 3.2.2:  Rayleigh Beam 

The Rayleigh beam theory builds off of the Euler-Bernoulli theory by accounting for the rotary 

inertia of the solid.  The assumed displacement field of the beam is the same as for the Euler-

Bernoulli model, but an additional term will be included in the calculation of the kinetic energy.  

Again, literature from Han and Fung is followed in the determination of the frequency equations 

for the Rayleigh beam [9, 11].  The rotation of the beam cross-section is given as 

 

Now the total kinetic energy is  
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Substituting the strain energy term as given in  and the kinetic energy term in  

into Hamilton’s principle of  gives 

 

and 

 

when the virtual displacements vanish at times  and .  Integrating by parts twice gives  

 

The Euler equation of motion now becomes 

 

for a beam free from body forces and surface tractions.  The boundary conditions given now 

become 
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for the free-free beam.  Using the same separation of variables method with the transverse 

displacement  the same as in  again leads to two ordinary differential equations.  

The differential equation involving  remains the same as , and that with  

becomes 

 

The solutions to these two differential equations are 

 

 

with  as an additional wave number.  If the variables are non-dimensionalized once again, the 

dispersion relationships for the two wave numbers can be presented as 

 

 

The boundary conditions in terms of the spatial solution  become 
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As was the case with the Euler-Bernoulli model, the wave numbers are needed in order to obtain 

the natural frequencies of vibration.  Initially the two wave numbers must be expressed in terms 

of one another.  An excellent description of this process is given in the literature of Han [9], 

which gives 

 

 

This leads to 

 

where 

 

The variable  is commonly referred to as the radius of gyration and  is the slenderness ratio.  

Now the eigenvalue problem is solved for the case of the free-free beam which yields the 

following expression for attaining the wave numbers 

 

This expression contains both wave numbers which are related by the slenderness ratio.  

Therefore, to solve for the wave numbers to be used in determining the natural frequencies, 

specific properties pertaining to the shape of the beam must be known.  For the Euler-Bernoulli 

model, the wave number was independent of the beam geometry and the respective wave 
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numbers for each mode of vibration do not change.  Accordingly, no specific wave numbers can 

be given for the Rayleigh model.  To solve for the natural frequencies,  are used 

to give 

 

 

Section 3.2.3:  Timoshenko Beam 

The Timoshenko beam includes the effects of shear along with the transverse displacement and 

the rotary inertia.  The assumed displacement field of the Timoshenko beam is given as 

 

 

 

where  represents the section rotation of the solid.  The addition of the shear and rotary 

inertia terms in the Timoshenko model effectively reduces the stiffness of the solid to better 

approximate three-dimensional elasticity solutions.  Literature from Han and Fung is utilized 

once more in the Timoshenko theory derivations [9, 11].  Using the displacement field to obtain 

the normal stresses and normal strains of the Timoshenko model, the strain energy term due to 

bending becomes 

 

Relating the shear strains and shear stresses gives the strain energy due to shear 
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where  is introduced as the Timoshenko shear coefficient, also known as the shape factor, and 

 is the shear modulus of elasticity.  The kinetic energy for the Timoshenko model is  

 

Substituting into Hamilton’s principle yields  

 

and 

 

Now the virtual displacements  and  must both vanish at times  and .  Integration by 

parts gives 

 

There will be two Euler equations of motion because there are two virtual displacements.  That is 
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The boundary conditions associated with the Euler equations for the free-free beam are 

 

since the shear and moment must be equal to zero.  It is necessary to decouple the Euler 

equations of motion so that the variables associated with the transverse displacement and the 

section rotation are separated.  Next, separation of variables is used to obtain the equations of 

time and space.  Following methods laid out by Han [9], it is assumed that the time solution for 

the transverse displacement and the section rotation are the same 

 

Substituting into the Euler equations and again separating variables yields the temporal and 

spatial solutions.  The temporal solution will remain the same as in  and the spatial 

solution is given as 

 

It is necessary to decouple once again and assume the spatial solutions for the transverse 

displacement and section rotation take the form 

 

where  is a constant,  is a vector of constants, and  is a wave number.  Substituting these 

relations into the spatial solution given in  gives 
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To determine the non-trivial solutions to this set of equations, the determinant of the matrix in 

 must be zero, which leads to the characteristic equation 

 

that has roots 

 

The roots  

 

are always imaginary, while the roots 

 

can be real or imaginary depending upon the frequency .  If the frequency is less than  the 

roots are real, but if they are greater than  the roots are imaginary.  This frequency is known 

as the cutoff or critical frequency and is represented by the variable .  The presence of this 

critical frequency complicates behavior when solving for the spatial solutions.  As a result, it is 
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necessary to break up the spatial solutions into two cases: one when  and one when 

  For  with sinusoidal and hyperbolic terms instead of the exponential terms as in 

, that is 

 

where 

 

 

The eigenvectors of  lead to the relations between  and  as follows 

 

 

For , the spatial solution only uses sinusoidal terms 

 

where  
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and  

 

 

Following the same procedure as for the Rayleigh model to obtain the equation for the natural 

frequency of vibration, we let 

 

so that the dispersion relationships of  and  become 

 

 

Now, solving for , , and  gives 

 

 

where  

 



28 

 

Equating the ratio of  to  using both  and  gives a 

relationship between the wave numbers and the slenderness ratio as follows 

 

Relating  and  also gives a new expression for  

as 

 

 

Since it is not of concern to consider the imaginary solutions, only the case when  will be 

examined.  For a free-free beam with  the frequency equation is given as  

 

Using  and  leads to the equation for the natural frequency for 

the free-free beam given as 
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Section 3.3:  Three-Dimensional Elasticity Solutions 

The solution to the three-dimensional elasticity solutions utilizes Ritz-based approximations and 

Hamilton’s principle.  Demarest, Visscher, and Heyliger proceed through derivations to give an 

equation for the natural frequencies [21, 22, 23].  Initially, the kinetic energy density  and the 

potential energy density  are given as 

 

 

where  

 

Substituting the strain displacement relation of  the Cauchy stress of  and the 

definitions of the kinetic and potential energy densities into Hamilton’s principle gives 

 

Ritz approximations for the displacements are expressed in the form 
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where , , and  are unknown constants.  The  functions are known functions of position.  

The virtual displacements take the form  

 

It is noteworthy to point out that the functions of time are assumed to be harmonic in order to 

introduce the frequency term.  Substituting the displacement relations into Hamilton’s principle 

as given in  yields the eigenvalue problem 

 

with 
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Solving this system of equations for  yields the natural frequencies. 

 

Section 3.4:  Computations 

 

FORTRAN coding was utilized to obtain the natural frequencies for a number of beam 

geometries.  All properties of the material composition and beam geometry were inputted into 

the code.  Using the derived equations, the natural frequencies could be calculated.  Initially, the 

individual codes for the Euler-Bernoulli, Rayleigh, Timoshenko, and elasticity solutions were 

tested for solid isotropic and anisotropic sections to ensure no fundamental flaws were present.  

To ensure accuracy, the frequencies were cross-referenced with those calculated in Heyliger’s 

unpublished study.  At this point, each of the codes were altered to account for the hollow 

sections. 

The Euler-Bernoulli code was the most simple, needing only 34 lines of code in order to produce 

the first five natural frequencies.  The code for the Rayleigh beam needed 462 lines of code, 

while the Timoshenko theory needed just 57 lines.  The elasticity solutions contained 664 lines 

of code and a separate input file that varied in size depending on the beam length.  The code for 
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the elasticity solutions contains the calculations of the eigenvalue problem given in  for 

a 6 X 6 stiffness matrix.  Using the Rayleigh and Timoshenko codes, only one frequency could be 

obtained at a time, further increasing the computational demand.  The code for the elasticity solutions 

calculates hundreds of frequencies with each run.  When altering the codes to adjust for changes in 

geometry, the codes vary in terms of the maintenance necessary to make the adjustments.  For the Euler-

Bernoulli and Rayleigh codes, only the wall thicknesses and lengths have to be changed.  The 

Timoshenko code has to include the shape factor as well.  The elasticity code is the most demanding and 

time consuming when switching beam sizes. 

For plotting of mode shapes and cross-section deformations, the elasticity code is used.  An input file has 

to be changed in order to accommodate each beam size.  A number of lines of code have to be adjusted 

depending on which mode shape is to be plotted, not just the beam dimensions as was the case for the 

frequency analysis. 
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Chapter 4 

Results and Discussion 

 

To compare the three beam theories with the elasticity solutions, four beam cross-sections and 

seven beam lengths were used.  It is important to consider shorter beams as well as long, slender 

beams to examine when it is appropriate to use each respective theory.  The hollow cross-

sections had wall thicknesses that varied in width from 0.0005 m to 0.004 m.  The outside 

dimensions of each beam were 0.01 m X 0.01 m.  Beam lengths varied from 0.01 m to 1.0 m.  A 

wide variety of hollow beam sizes were necessary for computational analysis to determine when 

it is appropriate to use the specific beam theories.  Table 2. shows the four undeformed beam 

cross-sections and the respective radius of gyration for each case.  Graphite-magnesium was the 

anisotropic material used to model the beams.  Graphite-magnesium has a mass density of 1738 

kg/m
3
 and components of the elastic stiffness tensor as follows 

 

 

Steel was used to model the isotropic beams for comparative purposes.  Steel has a density of 

7830 kg/m
3
 and components of the elastic stiffness tensor as follows 

 



34 

 

A Poisson’s ratio of zero was used in the analysis of the approximate beam theories.  Neglecting 

the Poisson effect, which accounts for the three dimensional deformation of a solid, allows for a 

straightforward comparison between the three approximate beam theories.  The components of 

the elastic stiffness tensor listed previously include the Poisson effect. 

As discussed in detail previously, the Timoshenko model utilizes the shear or shape factor.  For 

the purposes of this testing, a shear factor of 0.8442 was used for the anisotropic beams as 

calculated from the equation given by Pucheggar [15].  An evaluation of the appropriateness of 

using this shape factor will be presented in the conclusions. 

For each wall thickness and cross-section, the first five non-zero natural frequencies were 

calculated using the derived frequency equations as given in , , , and 

.  These anisotropic frequencies are tabulated in Tables 3 through 6 and the isotropic 

frequencies are tabulated in Tables 7 through 10.  In these tables, EB stands for the Euler-

Bernoulli model and Full represents the full three-dimensional elasticity solutions.  For the 

anisotropic beam with length of 1.0 m and wall thickness of 0.0005 m, the natural frequencies 

could not be calculated for the elasticity solutions because the matrix was not positive-definite.  

This is likely attributable to the thin walls and thin cross-sectional area of this beam. 

It is clear from Tables 3 through 10 that the natural frequencies are reduced as beams increase in 

length and cross sectional area.  When the beam length is kept constant and the cross-sectional 

area is varied, a noticeable behavior occurs.  The percent error for each beam theory in 

calculating the natural frequencies as compared to full elasticity solutions is typically reduced as 

the cross-sectional area increases.  Not only is the accuracy of the approximate methods 

dependent on the length of the beam as others have suggested, but on the wall-thickness, and 
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correspondingly, the cross-sectional area as well.  In looking at the definition of the slenderness 

ratio as given in , one can see that the length is directly related to the slenderness ratio, 

while only the root of the area is related.  Nevertheless, both factors contribute significantly to 

the slenderness ratio.  The percent error as a function of the inverse of the slenderness ratio is 

plotted for the first mode of vibration in Figures 1 through 4 to demonstrate this behavior. 

It is clear for each beam that the Timoshenko model gives the best approximation to elasticity 

solutions.  The inclusion of the shear coefficient proves pivotal in accurately calculating the 

frequencies, especially for short and stocky beams.  More will be discussed on this issue later.  

The plots of the percent error also show that the Rayleigh beam model, which adds the rotary 

inertia term, does not provide a significant improvement over the more simple Euler-Bernoulli 

beam method. 

In most instances, Tables 3 through 10 give natural frequencies that are greater than those 

provided by elasticity methods.  This behavior, where the computed natural frequencies approach 

the true values from above, is to be expected.  Frequency can be defined as 

 

with  defined as the stiffness and  defined as the mass.  Each beam theory limits the 

deflection of the beam, or in essence, makes the beam stiffer.  From this equation, it is clear that 

as the stiffness increases, the frequencies will become larger.  Since the Euler-Bernoulli model 

limits the flexibility of the beam the most, one would expect it to produce the highest natural 

frequencies.  Tables 3 through 10 and a plot of the scaled natural frequencies as given in Figures 

5 through 8 depict that this is indeed the case.  The Rayleigh model relaxes the constraints on the 



36 

 

movement of the beam with the inclusion of the rotary inertia and effectively reduces the 

stiffness.  As a result, one would expect natural frequencies to be less than those predicted by the 

Euler-Bernoulli model.  Again Tables 3 through 10 and Figures 5 through 8 demonstrate that this 

is indeed the case.  The Timoshenko model further reduces the stiffness of the beam with the 

inclusion of the shear term.  Again this reduces the natural frequencies. 

Some unexpected behavior occurs with the results of the natural frequencies for the Timoshenko 

model for the isotropic beam.  While the natural frequencies are lower than those calculated by 

the Euler-Bernoulli and Rayleigh models, Tables 7 through 10 show that the natural frequencies 

for a number of beam lengths are lower than elasticity solutions.  This probably results from an 

underestimation of the strain energy term.  The strain energy contains the stiffness term that is 

located in the numerator of .  With the strain energy, and thus the stiffness too small, it 

is possible that the Timoshenko beam theory can produce natural frequencies that are below 

those of elasticity solutions.  Table 11 shows the percent error of the natural frequencies for the 

three beam theories as compared to the full elasticity solutions for the anisotropic beam.  The 

percent error for the isotropic beam is given in Table 12.  For the cells with green shading, the 

error is within five percent of elasticity solutions, blue cells have error between five and fifty 

percent, and cells shaded red have error greater than fifty percent.  As evident from these two 

tables, less error is associated with beams of larger wall thicknesses, longer lengths, and lower 

modes. 

As expected, the percent error for the three beam models decreases as the slenderness ratio 

increases.  The longer and more slender a beam becomes, the less significant is the deflection 

resulting from shear effects.  This fact becomes clear in looking at a plot of the scaled natural 

frequencies as shown in Figures 5 through 8.  For large slenderness ratios, where the inverse of 
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the slenderness ratio is small, the three beam theories produce results very similar to those 

produced by elasticity solutions.  As the beams shrink in length, the approximate theories stray 

noticeably. 

In examining the frequency analysis for higher order modes of vibration, it becomes evident that 

the reliability on the approximate methods to produce accurate results is inextricably linked to 

the slenderness ratio.  Not only is more error introduced with stocky beams, but that error 

generally increases with increasing mode numbers, though there were exceptions.  For the beams 

with a length of 1.0 m, each of the approximate beam theories provided adequate results, having 

percent error in calculating the natural frequency for the fifth mode of vibration of less than four 

percent.   However, for the shortest beams, the Euler-Bernoulli model produced errors of nearly 

2,300 percent for the fifth mode of vibration.  The Rayleigh method produced errors of nearly 

450 percent for the fifth mode of vibration and the Timoshenko model produced errors of nearly 

44 percent for the fifth mode of vibration on the shortest beam.  Plotting results for the higher 

modes of vibration would not show any significantly different behavior from that of the first 

mode.  The only differences from Figures 1 through 4 would be that the approximate methods 

would show even more error for higher modes at the same slenderness ratios.  Replicating 

Figures 5 through 8 for higher modes would look nearly the same, except that the approximate 

methods would begin to stray from the elasticity solutions sooner. 

The first five flexural mode shapes were plotted for the case with beam length of 0.20 m and 

wall thickness of 0.002 m.  These mode shapes depict the deformation that will occur to the 

beam when excited at the specific natural frequencies given in Table 5.  Figures 9 through 13 

                                                           
*
 Percent error could not be calculated for beam with length 1.0 m and wall thickness of 0.0005 m because of 

positive definite matrix 
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contain the plots of the mode shapes.  The first five flexural mode shapes were also plotted for a 

beam with length of 0.05 m and wall thickness of 0.001 m.  These plots can be seen in Figures 

14 through 18.  Modes one, three, and five are called the symmetric modes, because their shape 

is symmetric about the midpoint of the beam.  Modes two and four are called the antisymmetric 

modes because their deflected shape is not symmetric about the midpoint of the beam. 

The first mode of vibration is regarded as the most important mode because it will dominate the 

motion.  For taller, more slender structures, the higher order modes can be excited.  Tall 

buildings can provide such behavior under earthquake or wind loadings.  In comparing the plots 

of the mode shapes with beam lengths of 0.20 m and 0.05 m, greater amplitudes of deformation 

are noticeable for the longer beam.  For the longer beam, less deformation occurs to the cross-

section because it is more difficult to bend the beam about the strong axis.  With the short beam, 

lower amplitudes of deformation occur to the beam length while more deformation occurs to the 

cross-section. 

Plots of the undeformed beam cross-sections can be seen in Table 12.  The deformed cross-

sections are plotted for three beam lengths and four wall thicknesses for each of the first five 

modes of vibration in Tables 13 through 17.  These plots show that less distortion to the hollow 

beam cross-section occurs for lower order modes of vibration.  Also, as the beam length and 

cross-sectional areas increase, less deformation is present.  This is attributable once again to the 

increased slenderness ratio.  It is safe to assume that if similar plots were made for shorter 

beams, more deformation would occur, and for longer, more slender beams, less deformation 

would occur.  Tables 13 through 17 also show that there is no distinct pattern as to how the 

cross-section will deform.  In some cases the top of the beam collapses inward, while in others 

the bottom of the beam folds upward.  This poses a problem similar in nature to a long beam 
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vibrating back and forth.  As the input frequency is increased, higher modes of vibration will be 

excited and the cross-sectional distortion will force the beam walls to fold in and out.  This back 

and forth motion could potentially cause localized buckling of the beam’s walls.  As with the 

design of structures, these higher order modes are less likely to be excited, but nevertheless, they 

are important enough that they cannot be disregarded.  



40 

 

Table 2. Undeformed Cross-sections 

Wall Thickness (m)  Radius of Gyration (m) 

0.0005 

 

0.00388 

0.001 

 

0.00370 

0.002 

 

0.00337 

0.004 

 

0.00294 

 Note: The outside dimensions of each cross-section are 0.01 m X 0.01 m 
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Table 3. Dimensionless Natural Frequencies--Wall Thickness 0.0005 m (Anisotropic) 

 
Note: The first five flexural frequencies are listed for the anisotropic graphite-magnesium. 

All units of length are given in meters 

 

 

 

Flexural Mode EB Rayleigh Timoshenko Full

1 8,508,198.4      2,896,831.3    1,121,794.1 925,730.7     

2 23,453,544.5    5,783,522.9    1,731,578.1 1,125,322.3 

3 45,978,042.4    8,945,498.4    2,665,146.0 1,794,892.7 

4 76,004,113.6    12,068,058.2  3,021,510.3 2,688,227.7 

5 113,537,470.0  15,188,245.2  3,578,000.3 4,750,597.3 

1 2,127,049.6      1,250,043.5    802,574.5     409,230.0     

2 5,863,386.1      2,607,496.4    821,513.4     543,853.8     

3 11,494,510.6    4,161,758.5    1,346,080.9 668,646.4     

4 19,001,028.4    5,747,235.8    1,582,533.3 1,021,037.3 

5 28,384,367.5    7,338,791.1    1,851,363.0 1,335,596.7 

1 340,327.9          298,474.6        240,503.7     261,822.4     

2 938,141.7          727,727.2        436,467.3     362,519.6     

3 1,839,121.6      1,262,660.9    645,632.4     397,399.2     

4 3,040,164.3      1,854,964.6    738,850.0     480,122.3     

5 4,541,498.5      2,479,844.7    902,545.4     546,279.5     

1 85,082.0            82,070.8          75,560.9       65,150.2       

2 234,535.4          217,307.3        170,654.5     103,632.6     

3 459,780.4          406,012.4        274,564.6     280,673.7     

4 760,041.1          635,741.2        377,006.4     353,103.6     

5 1,135,374.6      896,319.2        477,570.2     357,785.3     

1 21,270.5            21,075.0          20,573.3       20,034.7       

2 58,633.9            57,464.3          52,909.1       48,005.4       

3 114,945.1          111,094.5        94,920.1       76,285.6       

4 190,010.3          180,559.1        142,158.4     100,703.4     

5 283,843.7          264,484.3        191,947.4     115,148.1     

1 5,317.6               5,305.3            5,272.0          5,241.0          

2 14,658.5            14,583.7          14,252.4       13,944.5       

3 28,736.3            28,486.5          27,163.8       25,915.4       

4 47,502.6            46,877.6          43,329.1       40,142.4       

5 70,960.9            69,652.2          62,102.7       55,327.8       

1 850.8                  850.5                849.6             

2 2,345.4               2,343.4            2,334.5          

3 4,597.8               4,591.4            4,554.2          

4 7,600.4               7,584.2            7,479.0          

5 11,353.7            11,319.4          11,081.5       

L=.01

L=.02

L=.05

L=.10

L=.20

L=.40

L=1.0
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Table 4. Dimensionless Natural Frequencies--Wall Thickness 0.001 m (Anisotropic) 

 
 Note: The first five flexural frequencies are listed for the anisotropic graphite-magnesium. 

All units of length are given in meters 

 

 

 

Flexural Mode EB Rayleigh Timoshenko Full

1 8,098,792.3      2,879,927.7    1,142,992.9 1,098,817.9 

2 22,324,983.1    5,755,442.5    1,727,638.0 1,572,846.9 

3 43,765,624.4    8,919,116.9    2,665,638.7 2,829,909.4 

4 72,346,870.7    12,045,363.7  3,028,453.0 3,647,158.5 

5 108,074,159.0  15,169,022.4  3,581,385.9 4,730,907.6 

1 2,024,698.1      1,228,473.5    816,932.9     715,709.4     

2 5,581,245.8      2,578,522.3    828,348.1     964,494.7     

3 10,941,406.1    4,127,010.9    1,349,199.9 1,282,486.4 

4 18,086,717.7    5,712,795.3    1,588,667.0 1,350,633.5 

5 27,018,539.8    7,306,669.6    1,861,790.4 1,810,717.4 

1 323,951.7          287,255.9        234,179.6     182,740.9     

2 892,999.3          706,061.0        432,877.1     431,896.5     

3 1,750,624.9      1,232,488.8    641,678.0     619,737.5     

4 2,893,874.6      1,818,850.0    758,249.1     776,778.6     

5 4,322,966.0      2,439,960.2    912,855.1     899,088.6     

1 80,987.9            78,378.4          72,626.8       67,943.8       

2 223,249.8          208,242.5        166,087.7     138,557.9     

3 437,656.2          390,536.0        269,439.7     198,793.6     

4 723,468.7          613,842.0        372,204.7     253,077.4     

5 1,080,741.5      868,581.1        473,289.9     295,652.8     

1 20,247.0            20,078.2          19,642.3       19,293.1       

2 55,812.5            54,801.0          50,802.0       47,924.2       

3 109,414.1          106,077.7        91,704.5       82,371.5       

4 180,867.2          172,659.4        138,138.4     118,779.4     

5 270,185.4          253,329.7        187,440.3     153,632.2     

1 5,061.7               5,051.1            5,022.4          4,999.3          

2 13,953.1            13,888.6          13,601.3       13,381.1       

3 27,353.5            27,137.8          25,985.9       25,139.5       

4 45,216.8            44,676.8          41,569.5       39,470.5       

5 67,546.3            66,414.7          59,764.8       55,541.2       

1 809.9                  809.6                808.9             808.3             

2 2,232.5               2,230.8            2,223.2          2,217.1          

3 4,376.6               4,371.0            4,338.9          4,314.0          

4 7,234.7               7,220.7            7,129.8          7,061.9          

5 10,807.4            10,777.8          10,571.7       10,420.6       

L=.01

L=.02

L=.05

L=.10

L=.20

L=.40

L=1.0
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Table 5. Dimensionless Natural Frequencies--Wall Thickness 0.002 m (Anisotropic) 

 
 Note: The first five flexural frequencies are listed for the anisotropic graphite-magnesium. 

 All units of length are given in meters 

 

 

 

Flexural Mode EB Rayleigh Timoshenko Full

1 7,375,097.8    2,843,857.7    1,187,910.0 1,294,272.8 

2 20,330,060.0  5,697,664.2    1,719,284.0 2,181,280.1 

3 39,854,801.6  8,862,909.5    2,666,813.4 3,287,391.3 

4 65,882,075.6  11,996,549.0  3,043,098.6 4,225,871.6 

5 98,416,833.3  15,127,340.1  3,589,055.2 5,236,653.7 

1 1,843,774.4    1,184,799.9    801,987.7     617,640.5     

2 5,082,515.0    2,519,463.3    880,041.8     975,284.0     

3 9,963,700.4    4,055,513.6    1,357,375.3 1,450,010.6 

4 16,470,518.9  5,640,629.3    1,599,845.7 1,963,287.5 

5 24,604,208.3  7,238,488.5    1,885,619.1 3,335,808.9 

1 295,003.9        266,512.1        221,993.6     201,585.9     

2 813,202.3        664,631.6        424,254.6     357,299.5     

3 1,594,191.9    1,173,492.2    633,012.3     520,829.5     

4 2,635,282.8    1,747,125.1    785,810.6     725,374.1     

5 3,936,673.0    2,359,743.6    945,411.7     829,200.1     

1 73,751.0          71,764.7          67,240.0       64,867.2       

2 203,300.6        191,777.8        157,246.2     143,501.7     

3 398,548.0        361,992.9        259,172.0     227,195.7     

4 658,820.7        572,824.5        362,190.7     310,835.5     

5 984,168.3        815,870.1        464,084.2     392,262.8     

1 18,437.7          18,310.0          17,976.9       17,787.2       

2 50,825.1          50,057.9          46,946.3       45,376.1       

3 99,637.0          97,098.2          85,673.3       80,608.9       

4 164,705.2        158,435.7        130,418.1     119,958.6     

5 246,042.1        233,110.6        178,603.6     160,856.5     

1 4,609.4            4,601.4            4,579.6          4,566.9          

2 12,706.3          12,657.5          12,438.7       12,317.1       

3 24,909.2          24,746.1          23,861.8       23,392.8       

4 41,176.3          40,767.3          38,359.9       37,195.8       

5 61,510.5          60,652.3          55,447.7       53,096.9       

1 737.5                737.3                736.7             736.4             

2 2,033.0            2,031.7            2,025.9          2,022.6          

3 3,985.5            3,981.3            3,957.0          3,943.2          

4 6,588.2            6,577.6            6,508.6          6,471.4          

5 9,841.7            9,819.3            9,662.6          9,579.6          

L=.01

L=.02

L=.05

L=.10

L=.20

L=.40

L=1.0
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Table 6. Dimensionless Natural Frequencies--Wall Thickness 0.004 m (Anisotropic) 

 
 Note: The first five flexural frequencies are listed for the anisotropic graphite-magnesium. 

 All units of length are given in meters 

 

 

 

Flexural Mode EB Rayleigh Timoshenko Full

1 6,449,335.9    2,782,052.6    1,264,075.1 1,713,931.6 

2 17,778,121.7  5,603,956.9    1,705,133.8 1,176,389.9 

3 34,852,012.7  8,766,747.1    2,669,272.1 3,343,966.4 

4 57,612,203.5  11,911,512.2  3,067,581.2 2,913,778.5 

5 86,063,023.6  15,053,729.0  3,603,733.2 4,340,298.5 

1 1,612,334.0    1,116,504.3    775,225.5     760,951.1     

2 4,444,530.4    2,424,969.5    954,462.5     1,355,770.7 

3 8,713,003.2    3,939,803.4    1,377,444.1 1,665,487.9 

4 14,403,050.9  5,520,535.2    1,613,985.8 2,236,926.3 

5 21,515,755.9  7,122,566.8    1,930,628.3 2,955,171.3 

1 257,973.4        238,284.0        204,311.3     202,481.1     

2 711,124.8        605,391.8        408,437.2     402,924.8     

3 1,394,080.4    1,085,991.4    617,838.3     611,658.3     

4 2,304,488.0    1,637,880.5    799,660.4     792,615.2     

5 3,442,520.7    2,234,998.1    989,298.4     997,299.8     

1 64,493.4          63,153.0          59,976.2       59,763.2       

2 177,781.2        169,925.0        144,371.8     143,147.9     

3 348,520.1        323,285.3        243,379.0     240,567.3     

4 576,122.0        515,935.0        345,932.9     342,260.7     

5 860,630.2        741,150.3        448,500.2     444,203.8     

1 16,123.3          16,037.8          15,811.8       15,795.2       

2 44,445.3          43,929.5          41,773.8       41,641.7       

3 87,130.0          85,417.3          77,288.3       76,849.4       

4 144,030.5        139,782.1        119,299.2     118,465.8     

5 215,157.5        206,349.5        165,465.3     164,055.6     

1 4,030.8            4,025.5            4,010.9          4,009.8          

2 11,111.3          11,078.7          10,930.9       10,921.0       

3 21,782.5          21,673.1          21,070.5       21,032.3       

4 36,007.6          35,733.2          34,074.0       33,987.2       

5 53,789.4          53,212.7          49,580.7       49,403.5       

1 644.9                644.8                644.4             644.4             

2 1,777.8            1,777.0            1,773.1          1,772.8          

3 3,485.2            3,482.4            3,466.1          3,465.0          

4 5,761.2            5,754.1            5,707.8          5,705.1          

5 8,606.3            8,591.3            8,485.7          8,479.8          

L=.01

L=.02

L=.05

L=.10

L=.20

L=.40

L=1.0
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Table 7. Dimensionless Natural Frequencies--Wall Thickness 0.0005 m (Isotropic) 

 
 Note: The first five flexural frequencies are listed for the isotropic steel. 

   All units of length are given in meters 

 

 

Flexural Mode EB Rayleigh Timoshenko Full

1 4,391,440.3    1,495,176.9 757,567.0     637,298.7     

2 12,105,364.4  2,985,120.3 1,108,075.7 916,622.8     

3 23,731,208.6  4,617,149.3 1,600,774.1 1,280,534.1 

4 39,228,931.4  6,228,834.3 1,766,730.2 1,496,147.3 

5 58,601,481.0  7,839,294.5 2,367,920.9 2,097,193.2 

1 1,097,860.1    645,200.2     510,304.7     485,067.8     

2 3,026,341.1    1,345,839.0 545,390.9     574,741.5     

3 5,932,802.1    2,148,059.3 888,333.9     678,735.6     

4 9,807,232.9    2,966,391.0 910,759.2     895,065.3     

5 14,650,370.2  3,787,859.9 1,202,357.0 920,886.8     

1 175,657.6        154,055.4     135,414.2     113,896.3     

2 484,214.5        375,610.7     269,452.1     155,604.4     

3 949,248.3        651,712.6     408,283.1     177,652.1     

4 1,569,157.1    957,425.5     496,819.6     222,099.1     

5 2,344,059.1    1,279,952.5 596,543.4     256,530.7     

1 43,914.4          42,360.2       40,368.3       39,903.9       

2 121,053.6        112,161.4     96,712.4       90,128.4       

3 237,312.1        209,560.1     162,951.2     128,655.6     

4 392,289.3        328,132.9     231,764.5     157,811.3     

5 586,014.8        462,628.2     300,668.1     167,683.1     

1 10,978.6          10,877.7       10,728.9       10,725.0       

2 30,263.4          29,659.8       28,262.2       28,158.2       

3 59,328.0          57,340.6       52,168.1       51,327.7       

4 98,072.3          93,194.1       80,403.7       77,696.5       

5 146,503.7        136,511.5     111,441.8     103,491.5     

1 2,744.7            2,738.3          2,728.5          2,728.8          

2 7,565.9            7,527.3          7,429.1          7,430.9          

3 14,832.0          14,703.1       14,305.0       14,302.9       

4 24,518.1          24,195.5       23,107.6       23,095.4       

5 36,625.9          35,950.4       33,587.8       33,501.0       

1 439.1                439.0             438.7             438.7             

2 1,210.5            1,209.5          1,206.9          1,207.1          

3 2,373.1            2,369.8          2,358.9          2,359.4          

4 3,922.9            3,914.5          3,883.5          3,885.1          

5 5,860.1            5,842.4          5,772.0          5,775.4          

L=.01

L=.02

L=.05

L=.10

L=.20

L=.40

L=1.0
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Table 8. Dimensionless Natural Frequencies--Wall Thickness 0.001 m (Isotropic) 

 
 Note: The first five flexural frequencies are listed for the isotropic steel. 

   All units of length are given in meters 

 

 

Flexural Mode EB Rayleigh Timoshenko Full

1 4,180,128.6    1,486,452.3 772,460.9     1,118,469.6 

2 11,522,866.2  2,970,626.8 1,103,058.6 1,082,172.0 

3 22,589,286.2  4,603,532.7 1,611,200.2 1,711,546.4 

4 37,341,273.9  6,217,120.7 1,766,544.2 2,515,013.7 

5 55,781,635.6  7,829,372.8 2,368,820.6 2,889,490.4 

1 1,045,032.1    634,067.0     502,929.8     363,712.5     

2 2,880,716.5    1,330,884.2 562,684.8     516,052.7     

3 5,647,321.6    2,130,124.5 890,414.3     698,071.3     

4 9,335,318.5    2,948,614.8 921,683.6     962,197.8     

5 13,945,408.9  3,771,280.6 1,205,861.3 1,251,027.3 

1 167,205.1        148,264.9     131,250.1     129,377.2     

2 460,914.6        364,427.9     265,542.0     246,870.8     

3 903,571.4        636,139.5     404,856.6     330,694.6     

4 1,493,650.9    938,785.3     506,221.4     413,958.0     

5 2,231,265.3    1,259,366.5 607,012.4     482,441.3     

1 41,801.3          40,454.4       38,700.1       38,757.3       

2 115,228.7        107,482.8     93,614.9       93,620.7       

3 225,892.8        201,572.1     158,969.3     156,592.6     

4 373,412.7        316,829.8     227,510.7     220,457.4     

5 557,816.3        448,311.4     296,535.0     276,644.9     

1 10,450.3          10,363.2       10,234.1       10,243.4       

2 28,807.2          28,285.1       27,062.8       27,143.1       

3 56,473.2          54,751.2       50,182.4       50,398.3       

4 93,353.2          89,116.8       77,704.6       78,202.2       

5 139,454.1        130,754.2     108,169.6     108,732.1     

1 2,612.6            2,607.1          2,598.7          2,599.4          

2 7,201.8            7,168.5          7,083.5          7,090.8          

3 14,118.3          14,007.0       13,661.1       13,689.3       

4 23,338.3          23,059.6       22,110.5       22,193.2       

5 34,863.5          34,279.4       32,209.0       32,378.2       

1 418.0                417.9             417.7             417.7             

2 1,152.3            1,151.4          1,149.2          1,149.4          

3 2,258.9            2,256.1          2,246.6          2,247.5          

4 3,734.1            3,726.9          3,700.1          3,702.9          

5 5,578.2            5,562.9          5,501.9          5,508.2          

L=1.0

L=.01

L=.02

L=.05

L=.10

L=.20

L=.40
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Table 9. Dimensionless Natural Frequencies--Wall Thickness 0.002 m (Isotropic) 

 
 Note: The first five flexural frequencies are listed for the isotropic steel. 

   All units of length are given in meters 

 

 

Flexural Mode EB Rayleigh Timoshenko Full

1 3,806,599.3    1,467,835.0 803,927.7     1,049,709.1 

2 10,493,202.2  2,940,805.0 1,092,966.4 1,740,655.3 

3 20,570,745.5  4,574,521.7 1,632,977.4 2,525,834.7 

4 34,004,520.3  6,191,925.3 1,766,260.2 3,287,580.5 

5 50,797,082.1  7,807,858.8 2,370,877.5 3,592,310.0 

1 951,649.8        611,525.2     488,209.6     493,844.2     

2 2,623,300.5    1,300,401.4 596,351.9     633,226.4     

3 5,142,686.4    2,093,221.8 896,366.6     852,602.8     

4 8,501,130.1    2,911,366.9 943,087.5     882,584.4     

5 12,699,270.5  3,736,089.5 1,214,420.8 1,189,987.2 

1 152,264.0        137,558.2     123,377.1     125,588.4     

2 419,728.1        343,044.4     257,153.8     268,238.1     

3 822,829.8        605,688.8     397,125.9     417,208.2     

4 1,360,180.7    901,765.0     515,951.9     552,657.6     

5 2,031,883.1    1,217,963.3 628,880.5     672,454.4     

1 38,066.0          37,040.8       35,668.5       35,917.6       

2 104,932.0        98,984.6       87,762.2       89,662.7       

3 205,707.4        186,839.8     151,201.6     156,538.7     

4 340,045.2        295,658.9     218,942.1     229,944.4     

5 507,970.8        421,105.0     287,935.7     305,191.9     

1 9,516.5            9,450.6          9,352.1          9,370.9          

2 26,233.0          25,837.0       24,892.1       25,072.4       

3 51,426.9          50,116.5       46,523.6       47,179.9       

4 85,011.3          81,775.3       72,639.2       74,315.9       

5 126,992.7        120,318.2     101,921.2     105,140.7     

1 2,379.1            2,375.0          2,368.6          2,369.8          

2 6,558.3            6,533.1          6,468.4          6,481.3          

3 12,856.7          12,772.5       12,508.1       12,560.1       

4 21,252.8          21,041.7       20,311.3       20,460.4       

5 31,748.2          31,305.2       29,699.1       30,023.5       

1 380.7                380.6             380.4             380.4             

2 1,049.3            1,048.7          1,047.0          1,047.3          

3 2,057.1            2,054.9          2,047.8          2,049.2          

4 3,400.5            3,395.0          3,374.7          3,379.0          

5 5,079.7            5,068.2          5,021.9          5,031.8          

L=.01

L=.02

L=.05

L=1.0

L=.20

L=.40

L=.10
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Table 10. Dimensionless Natural Frequencies--Wall Thickness 0.004 m (Isotropic) 

 
 Note: The first five flexural frequencies are listed for the isotropic steel. 

   All units of length are given in meters 

 

 

 

Flexural Mode EB Rayleigh Timoshenko Full

1 3,328,774.5    1,435,934.8 857,025.2     1,289,693.0 

2 9,176,039.1    2,892,438.7 1,077,313.7 2,198,843.1 

3 17,988,595.0  4,524,888.3 1,669,083.2 2,677,970.4 

4 29,736,090.2  6,148,034.3 1,766,183.1 2,723,232.0 

5 44,420,759.4  7,769,865.0 2,374,886.6 3,522,333.7 

1 832,193.6        576,275.0     465,526.8     515,036.6     

2 2,294,009.8    1,251,629.1 641,320.0     830,878.6     

3 4,497,148.7    2,033,498.9 912,394.3     1,197,539.2 

4 7,434,022.6    2,849,381.3 974,055.2     1,230,420.2 

5 11,105,189.9  3,676,257.4 1,232,847.5 1,311,148.5 

1 133,151.0        122,988.5     112,272.9     116,943.8     

2 367,041.5        312,468.3     243,384.8     270,903.1     

3 719,543.7        560,526.0     383,489.3     447,773.4     

4 1,189,443.5    845,379.2     514,603.4     628,086.0     

5 1,776,830.2    1,153,576.9 640,203.6     802,567.5     

1 33,287.7          32,595.9       31,639.3       32,070.8       

2 91,760.4          87,705.5       79,536.7       83,077.5       

3 179,885.9        166,861.2     139,744.7     150,856.8     

4 297,360.9        266,295.8     205,713.0     229,465.1     

5 444,207.6        382,538.9     274,078.0     314,571.0     

1 8,321.9            8,277.8          8,211.2          8,241.7          

2 22,940.1          22,673.9       22,024.4       22,319.7       

3 44,971.5          44,087.5       41,565.8       42,688.0       

4 74,340.2          72,147.4       65,588.5       68,458.9       

5 111,051.9        106,505.7     92,995.5       98,742.6       

1 2,080.5            2,077.7          2,073.4          2,075.4          

2 5,735.0            5,718.2          5,674.6          5,694.7          

3 11,242.9          11,186.4       11,007.2       11,089.5       

4 18,585.1          18,443.4       17,944.0       18,173.8       

5 27,763.0          27,465.3       26,356.8       26,862.2       

1 332.9                332.8             332.7             332.8             

2 917.6                917.2             916.0             916.6             

3 1,798.9            1,797.4          1,792.6          1,794.9          

4 2,973.6            2,970.0          2,956.3          2,962.7          

5 4,442.1            4,434.3          4,403.2          4,417.8          

L=.01

L=.02

L=.05

L=.10

L=.20

L=.40

L=1.0
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Table 11. Percent Error from Elasticity Solutions (Anisotropic) 

 
Note: Percent error for each beam theory as compared to elasticity solutions are given for the anisotropic graphite magnesium for 

the first five flexural modes of vibration.  EB = Euler-Bernoulli, Ray = Rayleigh, Timo = Timoshenko 

Green-shaded cells have error within 5 percent of elasticity solutions, blue-shaded cells have error between 5 and 50 

percent, red shaded cells have error in excess of 50 percent 

 

 

 

 

 

 

Beam Flexural

Length Mode 0.0005 0.001 0.002 0.004

(m) Number EB Ray Timo EB Ray Timo EB Ray Timo EB Ray Timo

1 -819.08 -212.92 -21.18 -637.05 -162.09 -4.02 -469.83 -119.73 8.22 -276.29 -62.32 26.25

2 -1984.16 -413.94 -53.87 -1319.40 -265.93 -9.84 -832.02 -161.21 21.18 -1411.24 -376.37 -44.95

3 -2461.60 -398.39 -48.48 -1446.54 -215.17 5.80 -1112.35 -169.60 18.88 -942.24 -162.17 20.18

4 -2727.29 -348.92 -12.40 -1883.65 -230.27 16.96 -1459.02 -183.88 27.99 -1877.23 -308.80 -5.28

5 -2289.96 -219.71 24.68 -2184.43 -220.64 24.30 -1779.38 -188.87 31.46 -1882.88 -246.84 16.97

1 -419.77 -205.46 -96.12 -182.89 -71.64 -14.14 -198.52 -91.83 -29.85 -111.88 -46.72 -1.88

2 -978.12 -379.45 -51.05 -478.67 -167.34 14.12 -421.13 -158.33 9.77 -227.82 -78.86 29.60

3 -1619.07 -522.42 -101.31 -753.14 -221.80 -5.20 -587.15 -179.69 6.39 -423.15 -136.56 17.29

4 -1760.95 -462.88 -54.99 -1239.13 -322.97 -17.62 -738.93 -187.31 18.51 -543.88 -146.79 27.85

5 -2025.22 -449.48 -38.62 -1392.15 -303.52 -2.82 -637.58 -116.99 43.47 -628.07 -141.02 34.67

1 -29.98 -14.00 8.14 -77.27 -57.19 -28.15 -46.34 -32.21 -10.12 -27.41 -17.68 -0.90

2 -158.78 -100.74 -20.40 -106.76 -63.48 -0.23 -127.60 -86.02 -18.74 -76.49 -50.25 -1.37

3 -362.79 -217.73 -62.46 -182.48 -98.87 -3.54 -206.09 -125.31 -21.54 -127.92 -77.55 -1.01

4 -533.21 -286.35 -53.89 -272.55 -134.15 2.39 -263.30 -140.86 -8.33 -190.74 -106.64 -0.89

5 -731.35 -353.95 -65.22 -380.82 -171.38 -1.53 -374.76 -184.58 -14.01 -245.18 -124.10 0.80

1 -30.59 -25.97 -15.98 -19.20 -15.36 -6.89 -13.70 -10.63 -3.66 -7.91 -5.67 -0.36

2 -126.31 -109.69 -64.67 -61.12 -50.29 -19.87 -41.67 -33.64 -9.58 -24.19 -18.71 -0.85

3 -63.81 -44.66 2.18 -120.16 -96.45 -35.54 -75.42 -59.33 -14.07 -44.87 -34.38 -1.17

4 -115.25 -80.04 -6.77 -185.87 -142.55 -47.07 -111.95 -84.29 -16.52 -68.33 -50.74 -1.07

5 -217.33 -150.52 -33.48 -265.54 -193.78 -60.08 -150.90 -107.99 -18.31 -93.75 -66.85 -0.97

1 -6.17 -5.19 -2.69 -4.94 -4.07 -1.81 -3.66 -2.94 -1.07 -2.08 -1.54 -0.11

2 -22.14 -19.70 -10.21 -16.46 -14.35 -6.00 -12.01 -10.32 -3.46 -6.73 -5.49 -0.32

3 -50.68 -45.63 -24.43 -32.83 -28.78 -11.33 -23.61 -20.46 -6.28 -13.38 -11.15 -0.57

4 -88.68 -79.30 -41.17 -52.27 -45.36 -16.30 -37.30 -32.08 -8.72 -21.58 -17.99 -0.70

5 -146.50 -129.69 -66.70 -75.87 -64.89 -22.01 -52.96 -44.92 -11.03 -31.15 -25.78 -0.86

1 -1.46 -1.23 -0.59 -1.25 -1.04 -0.46 -0.93 -0.76 -0.28 -0.53 -0.39 -0.03

2 -5.12 -4.58 -2.21 -4.28 -3.79 -1.65 -3.16 -2.76 -0.99 -1.74 -1.44 -0.09

3 -10.89 -9.92 -4.82 -8.81 -7.95 -3.37 -6.48 -5.78 -2.00 -3.57 -3.05 -0.18

4 -18.34 -16.78 -7.94 -14.56 -13.19 -5.32 -10.70 -9.60 -3.13 -5.94 -5.14 -0.26

5 -28.26 -25.89 -12.24 -21.61 -19.58 -7.60 -15.85 -14.23 -4.43 -8.88 -7.71 -0.36

1 -0.20 -0.17 -0.07 -0.15 -0.12 -0.05 -0.08 -0.06 0.00

2 -0.69 -0.62 -0.27 -0.51 -0.45 -0.16 -0.28 -0.23 -0.02

3 -1.45 -1.32 -0.58 -1.07 -0.97 -0.35 -0.58 -0.50 -0.03

4 -2.45 -2.25 -0.96 -1.81 -1.64 -0.58 -0.98 -0.86 -0.05

5 -3.71 -3.43 -1.45 -2.74 -2.50 -0.87 -1.49 -1.32 -0.07

Wall Thickness (m)

L=1.0

L=.01

L=.02

L=.05

L=.10

L=.20

L=.40
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Table 12. Percent Error from Elasticity Solutions (Isotropic) 

 
Note: Percent error for each beam theory as compared to elasticity solutions are given for the isotropic steel for the first five 

flexural modes of vibration.  EB = Euler-Bernoulli, Ray = Rayleigh, Timo = Timoshenko 

Green-shaded cells have error within 5 percent of elasticity solutions, blue-shaded cells have error between 5 and 50 

percent, red shaded cells have error in excess of 50 percent 

 

Beam Flexural

Length Mode 0.0005 0.001 0.002 0.004

(m) Number EB Ray Timo EB Ray Timo EB Ray Timo EB Ray Timo

1 -589.07 -134.61 -18.87 -273.74 -32.90 30.94 -262.63 -39.83 23.41 -158.11 -11.34 33.55

2 -1220.65 -225.67 -20.89 -964.79 -174.51 -1.93 -502.83 -68.95 37.21 -317.31 -31.54 51.01

3 -1753.23 -260.56 -25.01 -1219.82 -168.97 5.86 -714.41 -81.11 35.35 -571.72 -68.97 37.67

4 -2522.00 -316.32 -18.09 -1384.73 -147.20 29.76 -934.33 -88.34 46.27 -991.94 -125.76 35.14

5 -2694.28 -273.80 -12.91 -1830.50 -170.96 18.02 -1314.05 -117.35 34.00 -1161.12 -120.59 32.58

1 -126.33 -33.01 -5.20 -187.32 -74.33 -38.28 -92.70 -23.83 1.14 -61.58 -11.89 9.61

2 -426.56 -134.16 5.11 -458.22 -157.90 -9.04 -314.28 -105.36 5.82 -176.09 -50.64 22.81

3 -774.10 -216.48 -30.88 -708.99 -205.14 -27.55 -503.17 -145.51 -5.13 -275.53 -69.81 23.81

4 -995.70 -231.42 -1.75 -870.21 -206.45 4.21 -863.21 -229.87 -6.86 -504.19 -131.58 20.84

5 -1490.90 -311.33 -30.57 -1014.72 -201.45 3.61 -967.18 -213.96 -2.05 -746.98 -180.38 5.97

1 -54.23 -35.26 -18.89 -29.24 -14.60 -1.45 -21.24 -9.53 1.76 -13.86 -5.17 3.99

2 -211.18 -141.39 -73.16 -86.70 -47.62 -7.56 -56.48 -27.89 4.13 -35.49 -15.34 10.16

3 -434.33 -266.85 -129.82 -173.23 -92.36 -22.43 -97.22 -45.18 4.81 -60.69 -25.18 14.36

4 -606.51 -331.08 -123.69 -260.82 -126.78 -22.29 -146.12 -63.17 6.64 -89.38 -34.60 18.07

5 -813.75 -398.95 -132.54 -362.49 -161.04 -25.82 -202.16 -81.12 6.48 -121.39 -43.74 20.23

1 -10.05 -6.16 -1.16 -7.85 -4.38 0.15 -5.98 -3.13 0.69 -3.79 -1.64 1.35

2 -34.31 -24.45 -7.31 -23.08 -14.81 0.01 -17.03 -10.40 2.12 -10.45 -5.57 4.26

3 -84.46 -62.88 -26.66 -44.26 -28.72 -1.52 -31.41 -19.36 3.41 -19.24 -10.61 7.37

4 -148.58 -107.93 -46.86 -69.38 -43.71 -3.20 -47.88 -28.58 4.78 -29.59 -16.05 10.35

5 -249.48 -175.89 -79.31 -101.64 -62.05 -7.19 -66.44 -37.98 5.65 -41.21 -21.61 12.87

1 -2.36 -1.42 -0.04 -2.02 -1.17 0.09 -1.55 -0.85 0.20 -0.97 -0.44 0.37

2 -7.48 -5.33 -0.37 -6.13 -4.21 0.30 -4.63 -3.05 0.72 -2.78 -1.59 1.32

3 -15.59 -11.71 -1.64 -12.05 -8.64 0.43 -9.00 -6.22 1.39 -5.35 -3.28 2.63

4 -26.22 -19.95 -3.48 -19.37 -13.96 0.64 -14.39 -10.04 2.26 -8.59 -5.39 4.19

5 -41.56 -31.91 -7.68 -28.25 -20.25 0.52 -20.78 -14.44 3.06 -12.47 -7.86 5.82

1 -0.58 -0.35 0.01 -0.51 -0.30 0.03 -0.39 -0.22 0.05 -0.24 -0.11 0.09

2 -1.82 -1.30 0.02 -1.57 -1.10 0.10 -1.19 -0.80 0.20 -0.71 -0.41 0.35

3 -3.70 -2.80 -0.01 -3.13 -2.32 0.21 -2.36 -1.69 0.41 -1.38 -0.87 0.74

4 -6.16 -4.76 -0.05 -5.16 -3.90 0.37 -3.87 -2.84 0.73 -2.26 -1.48 1.26

5 -9.33 -7.31 -0.26 -7.68 -5.87 0.52 -5.74 -4.27 1.08 -3.35 -2.24 1.88

1 -0.09 -0.06 0.00 -0.08 -0.05 0.00 -0.06 -0.04 0.01 -0.04 -0.02 0.02

2 -0.29 -0.21 0.01 -0.25 -0.18 0.02 -0.19 -0.13 0.03 -0.11 -0.07 0.06

3 -0.58 -0.44 0.02 -0.51 -0.38 0.04 -0.38 -0.28 0.07 -0.22 -0.14 0.12

4 -0.97 -0.76 0.04 -0.84 -0.65 0.07 -0.63 -0.47 0.13 -0.37 -0.24 0.22

5 -1.47 -1.16 0.06 -1.27 -0.99 0.11 -0.95 -0.72 0.20 -0.55 -0.37 0.33

Wall Thickness (m)

L=1.0

L=.01

L=.02

L=.05

L=.10

L=.20

L=.40
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Figure 1. Mode 1 Percent Error from Elasticity--Wall Thickness 0.0005 m 

 
Figure 2. Mode 1 Percent Error from Elasticity--Wall Thickness 0.001 m  
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Figure 3. Mode 1 Percent Error from Elasticity--Wall Thickness 0.002 m  

 
Figure 4. Mode 1 Percent Error from Elasticity--Wall Thickness 0.004 m  
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Figure 5. Scaled Mode 1 Frequencies--Wall Thickness 0.0005 m 

Note: The dimensionless natural frequencies are scaled by the factor  

 
Figure 6. Scaled Mode 1 Frequencies--Wall Thickness 0.001 m 

Note: The dimensionless natural frequencies are scaled by the factor  
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Figure 7. Scaled Mode 1 Frequencies--Wall Thickness 0.002 m 

Note: The dimensionless natural frequencies are scaled by the factor  

 
Figure 8. Scaled Mode 1 Frequencies--Wall Thickness 0.004 m 

Note: The dimensionless natural frequencies are scaled by the factor  
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Figure 9. Mode 1 Deformation--Length of 0.20 m 

 

 
Figure 10. Mode 2 Deformation--Length of 0.20 m 
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Figure 11. Mode 3 Deformation--Length of 0.20 m 

 

 
Figure 12. Mode 4 Deformation--Length of 0.20 m 
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Figure 13. Mode 5 Deformation--Length of 0.20 m 

 
Figure 14. Mode 1 Deformation--Length of 0.05 m 
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Figure 15. Mode 2 Deformation--Length of 0.05 m 

 

 
Figure 16. Mode 3 Deformation--Length of 0.05 m 
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Figure 17. Mode 4 Deformation--Length of 0.05 m 

 

 

 

 
Figure 18. Mode 5 Deformation--Length of 0.05 m 
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Table 13. Mode 1 Deformed Cross-Sections 

 Beam Length (m) 

Wall  

Thickness 

(m) 
0.05 0.10 0.20 

0.0005 

   

0.001 

   

0.002 

   

0.004 

   
Note: The outside dimensions of each cross-section are 0.01 m X 0.01 m.  The deformed shapes are for the 

anisotropic graphite-magnesium 
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Table 14. Mode 2 Deformed Cross-Sections 

 Beam Length (m) 

Wall 

Thicknes

s 

(m) 

0.05 0.10 0.20 

0.0005 

   

0.001 

   

0.002 

   

0.004 

   
Note: The outside dimensions of each cross-section are 0.01 m X 0.01 m.  The deformed shapes are for the 

anisotropic graphite-magnesium 
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Table 15. Mode 3 Deformed Cross-Sections 

 Beam Length (m) 

Wall  

Thickness 

(m) 
0.05 0.10 0.20 

0.0005 

   

0.001 

   

0.002 

   

0.004 

   
Note: The outside dimensions of each cross-section are 0.01 m X 0.01 m.  The deformed shapes are for the 

anisotropic graphite-magnesium 
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Table 16. Mode 4 Deformed Cross-Sections 

 Beam Length (m) 

Wall 

Thickness 

(m) 
0.05 0.10 0.20 

0.0005 

   

0.001 

   

0.002 

   

0.004 

   
Note: The outside dimensions of each cross-section are 0.01 m X 0.01 m.  The deformed shapes are for the 

anisotropic graphite-magnesium 
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Table 17. Mode 5 Deformed Cross-Sections 

 Beam Length (m) 

Wall 

Thickness 

(m) 
0.05 0.10 0.20 

0.0005 

   

0.001 

   

0.002 

   

0.004 

   
Note: The outside dimensions of each cross-section are 0.01 m X 0.01 m.  The deformed shapes are for the 

anisotropic graphite-magnesium 
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Chapter 5 

Conclusions 

 

Section 5.1: Anisotropic Beams 

The slenderness ratio is certainly the key to the accuracy of the approximate beam theories.  As 

the slenderness ratio increases, accuracy in predicting the natural frequencies of vibration 

increases as well.  This result begs the question: At what point does it become prudent to use one 

beam theory over another?  For very slender anisotropic beams with a slenderness ratio of 270.5 

or more, each of the three approximate beam theories is accurate to within 4 % for the first five 

modes of vibration.  When the slenderness ratio is at least 108.2, each of the beam theories is 

accurate to within 5 % for just the first two modes of vibration.  When the slenderness ratio is at 

least 54.1, each of the beam theories is still within 5 % error, but only for the first mode of 

vibration.  See Table 22 in the Appendix for a listing of the slenderness ratios for each beam 

length and wall thickness combination. 

As other researchers have pointed out and as was confirmed in this study, the Timoshenko beam 

theory is without question the most accurate predictor of natural frequencies as far as 

approximate methods are concerned.  In regards to the first mode of vibration, it is recommended 

that only the Timoshenko model be used to approximate the natural frequencies for hollow 

anisotropic beams with slenderness ratios below 54.1.  As the slenderness ratio dips below this 

level, the percent error for the Euler-Bernoulli and Rayleigh models exceed 5 %.  In some cases 
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the Timoshenko model is accurate to within 1.9 % for a slenderness ratio as low as 6.8.  

However, another beam with a slenderness ratio of 13.5 produced a natural frequency that was 

over 28 % higher than the full elasticity solutions.  For every case with a slenderness ratio greater 

than 29.7, the Timoshenko model gave natural frequencies under 3.7 % error for the lowest mode 

of vibration.  With this in mind, it is recommended that only three-dimensional elasticity 

solutions be used to calculate the natural frequencies for hollow anisotropic beams with a 

slenderness ratio below 29.7. 

For hollow beams with slenderness ratios above 60.4, the Rayleigh beam theory provides an 

improvement over the Euler-Bernoulli beam theory of as little as 0.02 % and as much as 4.3 %.  

Over the same range of slenderness ratios, the Timoshenko beam theory provides an 

improvement over the Euler-Bernoulli beam theory of between 0.08 % and 30.0 %.  Knowing 

this, it seems impractical to ever use the Rayleigh beam theory.  If accuracy is of significant 

concern, the Timoshenko beam theory provides much more improvement from the Euler-

Bernoulli theory than does the Rayleigh theory.  Given that the Rayleigh theory is also more 

complex than the Euler-Bernoulli theory, this conclusion is reinforced even further.  The rotary 

inertia term used in the Rayleigh method can also be incorporated into the mass matrix in finite 

element formulations that are commonly used to solve such problems.  Thus, it is clear the 

Rayleigh beam theory provides limited resourcefulness as compared to the Euler-Bernoulli and 

Timoshenko models. 

As stated previously, the Euler-Bernoulli method provides natural frequencies within 4 % of 

exact solutions for slenderness ratios above 270.5 up to the fifth mode of vibration.  Since higher 

modes of vibration are very unlikely to be excited, even for such slender structures, it is 

recommended that the Euler-Bernoulli model be used with slenderness ratios beyond 270.5.  
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Even on the chance that the higher order modes are excited, their contribution to the total 

deformation is very small. 

For hollow beams with slenderness ratios above 67.9, the Timoshenko theory produced natural 

frequencies up to the fifth mode of vibration that were within 5 % of elasticity solutions with 

only one exception.  At a slenderness ratio of 108.2, the natural frequencies for the fourth and 

fifth modes were within 7.6 %.  Because the higher order modes of vibrations are unlikely to be 

excited in beams with such low slenderness ratios, the Timoshenko model proves to be adequate 

in this range.  In calculating natural frequencies for modes of vibration higher than mode one, the 

full elasticity solutions are recommended for slenderness ratios below 67.9.  Above a slenderness 

ratio of 67.9, the Timoshenko model is accurate to within 5.3 % for the first four modes of 

vibration.  Table 18 provides a summary of the recommended situations in which the respective 

beam theories are satisfactory for anisotropic beams. 

 

Table 18. Suggested Uses of Beam Theories (Anisotropic) 

 
 

 

Section 5.2: Isotropic Beams 

For isotropic beams with a slenderness ratio of 135.9 or more, each of the beam theories is 

accurate to within 3.4 % for the first five modes of vibration.  In some instances with the 

isotropic beams, beam theories are accurate to within 3.7 % for the first three modes of vibration 

Slenderness Ratio 1 2 3 4 5

0-29.7 Elasticity Elasticity Elasticity Elasticity Elasticity

29.7-67.9 Timoshenko Elasticity Elasticity Elasticity Elasticity

67.9-108.2 Timoshenko Timoshenko Timoshenko Timoshenko Timoshenko

108.2-270.5 Euler-Bernoulli Euler-Bernoulli Timoshenko Timoshenko Timoshenko

above 270.5 Euler-Bernoulli Euler-Bernoulli Euler-Bernoulli Euler-Bernoulli Euler-Bernoulli

Modes of Vibration
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when the slenderness ratio is at least 60.4, however there are a few exceptions.  When the 

slenderness ratio drops below 13, none of the beam theories are accurate for the isotropic case.   

As was the case for the anisotropic beams, the Timoshenko model is clearly the most accurate in 

calculating natural frequencies for isotropic beams.  For the first mode of vibration, the 

Timoshenko theory is accurate to within 1.5 % for most instances with a slenderness ratio down 

to 13.5.  It is recommended that for slenderness ratios ranging between 13.5 and 27.1, the 

Timoshenko model be used for the first mode of vibration for hollow isotropic beams.  Below 

this level, errors ranged as high as 38 %.  As such, only the elasticity solutions should be used to 

calculate natural frequencies for the isotropic beams below 13.5.  Elasticity solutions should also 

be used for the second mode of vibration and beyond when the slenderness ratio is between 13.5 

and 27.1.  For slenderness ratios between 27.1 and 135.9, the Timoshenko model is 

recommended for the first four modes of vibration.  In this range, the Timoshenko theory is 

accurate to within 4.8 % for nearly every case.  For isotropic beams with slenderness ratios 

above 135.9, the Euler-Bernoulli method is recommended for the first five modes, as it is 

accurate to within 3.4 % of elasticity solutions. 

For isotropic beams with a slenderness ratio of at least 51.5, the Rayleigh beam theory provides 

an improvement over the Euler-Bernoulli beam theory that ranges between 0.02 % and 6.8 %.  

The Timoshenko theory provides an improvement over the Euler-Bernoulli model of 0.05 % to 

23.9 % for the same range of slenderness ratios.  Similar to the anisotropic case, the Rayleigh 

model proves to be of limited resourcefulness.  While it provides a better representation of the 

true natural frequencies as compared to the Euler-Bernoulli model, the improvement is 

insignificant given the more complex nature of the calculations.  For a similarly complex 

formulation, the Timoshenko model provides much greater improvement over the Euler-
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Bernoulli model.  As mentioned in the discussion of the anisotropic results, the rotary inertia 

term can be included in the mass matrix of finite element formulations if desired.  Thus, the 

Rayleigh beam theory is not recommended for calculating the natural frequencies. Table 19 

provides a summary of suggested uses of beam theories for isotropic beams. 

 

Table 19. Suggested Uses of Beam Theories (Isotropic) 

 
 

 

When comparing the accuracy of beam theories for the anisotropic and isotropic conditions, it is 

clear that more error is introduced for the anisotropic case.  The only constants that changed 

when moving from anisotropic to isotropic were the density, the components of the elastic 

stiffness tensor, and the shape factor.  The shear modulus for the isotropic steel is smaller relative 

to the modulus of elasticity as compared to the relative size of the shear modulus to the elastic 

modulus of the graphite-magnesium.  This will introduce greater error for the Timoshenko model 

in evaluating the anisotropic beams.  The density for the isotropic steel is also much greater than 

the density of the anisotropic graphite-magnesium.  As a result, the frequencies themselves will 

be reduced significantly for the isotropic beams.  In referring back to Tables 3 through 10, this 

trend is evident.  In most instances the anisotropic frequencies are double the frequencies of the 

isotropic steel for beams with the same slenderness ratios.  As discussed earlier, much greater 

accuracy is introduced at lower frequencies.  This provides logical reasoning for the reduced 

Slenderness Ratio 1 2 3 4 5

0-13.5 Elasticity Elasticity Elasticity Elasticity Elasticity

13.5-27.1 Timoshenko Elasticity Elasticity Elasticity Elasticity

27.1-135.9 Timoshenko Timoshenko Timoshenko Timoshenko Elasticity

above 135.9 Euler-Bernoulli Euler-Bernoulli Euler-Bernoulli Euler-Bernoulli Euler-Bernoulli

Modes of Vibration
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accuracy of the beam theories in calculating natural frequencies for anisotropic beams as 

compared to the isotropic beams. 

 

 

Section 5.3: Shape Factor 

To assess the validity of using a single shape factor for all square, hollow anisotropic beams with 

the Timoshenko theory, an iterative calculation method to find the shape factor was introduced.  

Initially, the lowest natural frequency for each beam length and wall thickness combination was 

forced to match the natural frequency calculated by elasticity methods by using an iterative 

process that altered the shape factor.  Then, using this new shape factor, the higher order natural 

frequencies were determined for each case.  Table 20 shows a comparison of the error in 

determining the natural frequencies using the Timoshenko model with a fixed shape factor of 

0.8442 and a shape factor determined by matching the lowest natural frequency.  It is clear that 

error in determining the subsequent natural frequencies is significantly reduced when a shape 

factor that comes from matching the lowest natural frequency is used.  In some cases, an 

improvement of nearly 4700 times is evident for higher order modes.  This leads one to question 

the validity of using Pucheggar’s proposed method for determining the shape factor as it applies 

to hollow anisotropic beams.  Clearly, the absolute dimensions of the wall thicknesses have to be 

considered, not only the outside dimensions of the beam.  In the determination of the shape 

factor, the cross-sectional area and the moment of inertia should take into consideration the wall 

thickness as well.  While Omidvar’s formulation of the shape factor for thin-walled orthotropic 

laminated composite sections does take into account the wall thicknesses, it only considers their 

ratio, not the absolute dimensions [7].  Therefore, the shape factor would be the same for a beam 
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with walls 0.002 m thick as one with walls 0.004 m thick.  In looking at Table 21 which displays 

the shape factors found by matching the lowest natural frequencies, one can see that this is not 

true.  Table 21 shows that as the wall thickness increases, the shape factor increases, leaving 

much room for improvement.  As Table 20 demonstrates, there are still several cases in which 

the error ranges between 50 % and 128 % for higher order modes of vibration, even when the 

lowest frequency is fixed to exact solutions.  The only adjustment that can be made to the 

Timoshenko beam theory to correct this error is to alter the shape factor.  This indicates that the 

shape factor is also dependent on the mode number, not just the beam cross-section. 
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Table 20. Percent Error from Elasticity Solutions Using Adjusted Shape Factor 

 
Note: The columns labeled .8442 use a shape factor of magnitude 0.8442.  The columns labeled Matching use the shape factor 

found from matching the lowest natural frequency of the Timoshenko theory to the elasticity solutions for each beam 

geometry as indicated in Table 21. 

 

Beam Flexural

Length Mode

(m) Number 0.8442 Matching 0.8442 Matching 0.8442 Matching 0.8442 Matching

1 -21.18 0.00 -4.02 0.00 8.22 0.00 26.25 0.00

2 -53.87 -16.01 -9.84 -22.29 21.18 -38.35 -44.95 -14.64

3 -48.48 4.32 5.80 -3.50 18.88 -65.11 20.18 -75.42

4 -12.40 -2.63 16.96 -32.65 27.99 -100.49 -5.28 -93.43

5 24.68 -22.93 24.30 -41.57 31.46 -86.41 16.97 -82.21

1 -96.12 0.00 -14.14 0.00 -29.85 0.00 -1.88 0.00

2 -51.05 -1.91 14.12 -0.74 9.77 -2.41 29.60 -0.96

3 -101.31 -18.59 -5.20 -27.55 6.39 -55.62 17.29 -38.05

4 -54.99 9.16 -17.62 -2.26 18.51 -62.29 27.85 -50.86

5 -38.62 -12.49 -2.82 -19.77 43.47 -68.86 34.67 -49.22

1 8.14 0.00 -28.15 0.00 -10.12 0.00 -0.90 0.00

2 -20.40 -27.13 -0.23 -10.11 -18.74 0.47 -1.37 0.54

3 -62.46 -79.56 -3.54 -53.25 -21.54 0.00 -1.01 1.28

4 -53.89 -70.39 2.39 -63.19 -8.33 -1.16 -0.89 1.77

5 -65.22 -76.78 -1.53 -70.73 -14.01 -17.05 0.80 -0.03

1 -15.98 0.00 -6.89 0.00 -3.66 0.00 -0.36 0.00

2 -64.67 -19.60 -19.87 -2.13 -9.58 0.16 -0.85 0.17

3 2.18 -53.83 -35.54 -9.14 -14.07 0.17 -1.17 0.43

4 -6.77 -89.43 -47.07 -13.97 -16.52 0.88 -1.07 0.96

5 -33.48 -127.58 -60.08 -29.58 -18.31 1.12 -0.97 1.38

1 -2.69 0.00 -1.81 0.00 -1.07 0.00 -0.11 0.00

2 -10.21 -1.55 -6.00 -0.15 -3.46 0.07 -0.32 0.04

3 -24.43 -8.42 -11.33 -0.90 -6.28 0.14 -0.57 0.11

4 -41.17 -17.20 -16.30 -1.51 -8.72 0.54 -0.70 0.32

5 -66.70 -33.20 -22.01 -3.25 -11.03 0.75 -0.86 0.49

1 -0.59 0.00 -0.46 0.00 -0.28 0.00 -0.03 0.00

2 -2.21 -0.09 -1.65 0.01 -0.99 0.02 -0.09 0.01

3 -4.82 -0.56 -3.37 -0.03 -2.00 0.05 -0.18 0.03

4 -7.94 -1.13 -5.32 0.02 -3.13 0.21 -0.26 0.09

5 -12.24 -2.62 -7.60 -0.09 -4.43 0.33 -0.36 0.14

1 -0.07 0.00 -0.05 0.00 0.00 0.00

2 -0.27 0.00 -0.16 0.00 -0.02 0.00

3 -0.58 0.01 -0.35 0.00 -0.03 0.00

4 -0.96 0.04 -0.58 0.03 -0.05 0.02

5 -1.45 0.06 -0.87 0.05 -0.07 0.03

Wall Thickness (m)

L=1.0

0.0005 0.001 0.002 0.004

L=.01

L=.02

L=.05

L=.10

L=.20

L=.40
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Table 21. Shape Factor from Matching Frequencies 

 
Note: These shape factors were found by iteration until the lowest natural 

frequency as calculated by Timoshenko theory matched the elasticity 

solutions 

 

 

 

Section 5.4: Summary 

 Improved accuracy with larger slenderness ratios 

o For slenderness ratios of at least 118.8, all three approximate beam theories are 

accurate to within 0.94 % for the first mode. 

o For slenderness ratios below 12.9, all three approximate beam theories show 

errors in excess of 96 % in most instances for the first mode. 

 Timoshenko beam theory most accurate 

o In consideration of the error associated with all calculated natural frequencies, the 

Timoshenko theory provided an average improvement over the Euler-Bernoulli 

theory of 21.08 times, with a minimum of 1.91 times.   

o Meanwhile, it provided an average improvement of 9.58 times over the Rayleigh 

theory, with a minimum of 1.62 times. 

0.0005 0.001 0.002 0.004

L=0.01 0.00997 0.04718 0.234567 0.489292

L=0.02 0.019984 0.09196 0.429996 0.796788

L=0.05 0.085302 0.31106 0.512967 0.792065

L=0.1 0.264373 0.42462 0.527019 0.787272

L=0.2 0.39205 0.45690 0.529863 0.785144

L=0.4 0.43294 0.46554 0.530348 0.784297

L=1.0 -- 0.46798 0.533981 0.783107

Wall Thickness (m)Beam Length 

(m)
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 Rayleigh theory impractical to use 

o For slenderness ratios of at least 60.4, the Rayleigh theory is reasonably accurate, 

but only offers an improvement over the Euler-Bernoulli method that ranges from 

0.02 % to 4.3 %.   

o In this same range, the Timoshenko theory offers improvement that ranges 

between 0.08 % and 30.0 %. 

 Euler-Bernoulli model accurate for very slender beams 

o When the slenderness ratio is at least 108.2, the Euler-Bernoulli model is accurate 

to within 4.3 % for the first two modes of vibration. 

o With a slenderness ratio of at least 270.5, the Euler-Bernoulli theory is accurate to 

within 3.7 % for each of the first five modes. 

 Shape factor for hollow anisotropic beams should account for magnitude of wall 

thicknesses, not just their ratio, as well as the mode number 

o In calculating natural frequencies, error can be reduced by a factor of nearly 4700 

for higher order modes when matching the lowest order frequency. 

o An average improvement of 31.99 times occurs for the higher modes of vibration 

when utilizing this method. 

o Errors as high as 127.6 % are evident for higher order modes even after the first 

mode is fixed to the exact frequency, suggesting the shape factor is also 

dependent on the mode number. 
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Appendix 

Nomenclature 

  Cross-sectional area 

  Wave numbers 

  Components of elastic stiffness tensor 

  Modulus of elasticity 

  Transverse force 

  Shear modulus of elasticity 

  Moment of inertia 

  Components of stiffness matrix 

  Shape factor 

  Radius of Gyration 

  Length of beam 

  Components of mass matrix 

  Mass 

  Roots of characteristic equation, wave numbers 

  Slenderness ratio 

  Surface traction vector 

  Time 

  Strain energy 

 Displacements 

  Transverse displacement 

  Volume  

  Strain energy density 

  Kinetic energy 

  Potential energy  

  Cauchy strain 

  Density 

  Cauchy stress 

  Natural frequency 

  Critical frequency 

  Virtual displacement 

  Function of position 

  Section rotation 

 

Dimensionless Variables 

 

 Dimensionless area 

 Dimensionless density 

  Dimensionless length 

 Dimensionless frequency 

 Dimensionless moment of 

inertia 
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Table 22. Slenderness Ratios 

 
 

Cowper’s Shape Factor for Thin-walled Square Tubes 

 

Note:  represents the Poisson Ratio 

0.0005 0.001 0.002 0.004

L=0.01 2.575 2.705 2.970 3.397

L=0.02 5.150 5.410 5.941 6.794

L=0.05 12.874 13.525 14.852 16.984

L=0.1 25.748 27.050 29.704 33.968

L=0.2 51.497 54.100 59.409 67.937

L=0.4 60.447 108.200 118.818 135.873

L=1.0 257.485 270.501 297.044 339.683

Beam Length 

(m)

Wall Thickness (m)


