
THESIS 

 

 

USE OF GLOBAL DATASETS FOR DOWNSCALING SOIL MOISTURE  

WITH THE EMT+VS MODEL 

 

 

Submitted by 

Nicholas R. Grieco 

Department of Civil and Environmental Engineering 

 

 

In partial fulfillment of the requirements 

For the Degree of Master of Science 

Colorado State University 

Fort Collins, Colorado 

Fall 2017 

 

Master’s Committee:  

Advisor: Jeffrey D. Niemann 

Timothy R. Green 

Gregory L. Butters



 

 

 

 

 

 

 

 

 

 

 

 

Copyright by Nicholas Robert Grieco 2017 

All Rights Reserved 

  



ii 

 

ABSTRACT 

 

 

 

USE OF GLOBAL DATASETS FOR DOWNSCALING SOIL MOISTURE WITH THE 

EMT+VS MODEL 

 

 

 

Satellite remote sensing and land-surface models provide coarse-resolution (9-40 km) soil 

moisture estimates, but various applications require fine-resolution (10-30 m) soil moisture 

patterns. The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model 

downscales soil moisture using fine-resolution topography, vegetation, and soil data. It has been 

shown to reproduce temporally unstable soil moisture patterns (i.e. patterns where the spatial 

structure varies in time). It can also reproduce hillslope dependent patterns (wetter locations 

occur on hillslopes oriented away from the sun) and valley dependent patterns (wetter locations 

occur in valley bottoms). However, the EMT+VS model requires several parameters to 

characterize the local climate, soil, and vegetation characteristics. In previous applications, the 

parameters were calibrated using point soil moisture data, but many regions of interest may not 

have such data. The purpose of this study is to evaluate EMT+VS model performance when the 

parameters are estimated from global datasets without site-specific calibration. Reliable and 

accessible global datasets were identified and methods were developed to estimate the 

parameters from the datasets. The global model (without site-specific calibration) was applied to 

six study sites, and its results were compared to local soil moisture observations and the results 

from the locally calibrated model. The use of global datasets decreased downscaling 

performance and the spatial variability of soil moisture was underestimated. Overall, only 5 of 

the 16 parameters can be estimated from global datasets. However, the global model still 
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provides more reliable soil moisture estimates than the coarse-resolution input for most sampling 

dates at all six study sites.  
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1. INTRODUCTION 

 

 

 

Fine-resolution (10-30 m) patterns of volumetric water content (soil moisture) over 

watershed scales are important for modeling land-atmosphere interactions (Delworth and 

Manabe, 1989), hydrologic response (Houser et al., 1998), weather patterns (Seuffert et al., 

2002), and climate behavior (Dirmeyer, 1999). They are also beneficial for practical applications 

such as drought monitoring (Bolten et al., 2010), wildfire prediction (Nelson, 2001), agricultural 

production (Green and Erskine, 2004; Yuge et al., 2016), soil mechanics (Flores et al., 2014; 

Horn and Fleige, 2003; Vero et al., 2014), and soil erosion (Singh and Thompson, 2016). 

Coarse-resolution soil moisture can be estimated from satellite remote sensing. Passive 

microwave radiometers such as Advanced Microwave Scanning Radiometer (AMSR-E) (see List 

of Abbreviations) (Njoku et al., 2003), AMSR2 (Parinussa et al., 2015), and WindSat (Li et al., 

2010) measure radiation at various frequencies, providing frequent soil moisture estimates (0.5-2 

days) but at coarse resolutions (5-60 km). More recently, synthetic aperture radiometers like Soil 

Moisture Ocean Salinity (SMOS) incorporated the L-band (Kerr et al., 2010) to improve soil 

moisture estimation. Soil Moisture Active and Passive (SMAP) was designed to use both active 

microwave radiometry and passive L-band observations (Entekhabi et al., 2010). This approach 

can provide moderate resolution (9 km) soil moisture estimates but is affected by vegetation (Das 

et al., 2014). The Advanced Scatterometer (ASCAT) uses a real-aperture radar instrument to 

measure surface radar backscatter and estimate soil moisture (Bartalis et al., 2007).  

Coarse-resolution soil moisture can also be provided by land-surface models. These 

models simulate various physical, biological, and chemical processes that affect soil moisture, 

and they vary in their specific inputs and outputs (Williams et al., 2009). Some examples are 
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Noah (Kumar et al., 2014), Variable Infiltration Capacity (VIC) (Liang et al., 1996), Mosaic 

(Koster and Suarez, 2003), simple biosphere (SiB) (Sellers et al., 1986), TOPMODEL-Based 

Land-Atmosphere Transfer Scheme (TOPLATS) (Famiglietti and Wood, 1994), Community 

Land Model (CLM) (Bonan, 1998), and European Centre for Medium-Range Weather Forecasts 

(ECMWF) (Viterbo and Beljaars, 1995). 

To reach the spatial resolutions required by the applications listed earlier, such coarse-

resolution data must be downscaled. Available downscaling methods can be grouped by the 

supplemental data they use (satellites, statistical models, land-surface models, or geo-

information) (Peng et al., 2017). Many satellite-based methods use optical/thermal data to 

determine a downscaling factor for the improvement of fine-resolution soil moisture variability 

(Carlson, 2007; Chauhan et al., 2003; Kim and Hogue, 2012; Merlin et al., 2013; Piles et al., 

2016). Statistical downscaling methods maintain the statistics of in situ and/or fine-resolution 

remotely sensed soil moisture observations across or within scales (Kaheil et al., 2008; Kim and 

Barros, 2002; Mascaro et al., 2010; Perry and Niemann, 2007). Land-surface models can be used 

for downscaling by applying the model regionally at a fine-resolution and adjusting model 

parameters so that the model’s coarse-resolution soil moisture matches the known value (Ines et 

al., 2013). Remotely sensed data can be assimilated for downscaling with land-surface models 

(Sahoo et al., 2013). Land-surface models are also useful for reproducing the statistical 

properties of fine-resolution soil moisture (Verhoest et al., 2015). Geo-information methods infer 

fine-resolution soil moisture variations from relationships to topographic, vegetation, and/or soil 

characteristics (Busch et al., 2012; Droesen, 2016; Pellenq et al., 2003; Temimi et al., 2010; 

Werbylo and Niemann, 2014; Wilson et al., 2005).  
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The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model was 

classified by Peng et al. (2017) as a geo-information method. It models the water balance of the 

vadose zone and infers spatial variations in the relevant hydrologic processes from topographic, 

vegetation, and soil information. It was first applied to small catchments using only fine-

resolution topographic data, and its results were compared to gridded in situ soil moisture 

observations. It was shown to reproduce both hillslope and valley dependent soil moisture 

patterns as well as temporal instability (Coleman and Niemann, 2013). It was later generalized to 

accept fine-resolution vegetation and soil data if available (Ranney et al., 2015). The model was 

further extended to apply to regions with large topographic relief (Cowley et al., 2017) and 

regions that span multiple coarse grid cells (Hoehn et al., 2017).  

In all previous testing, the EMT+VS model parameters were calibrated using point 

observations of soil moisture. Ranges for calibrated parameters were constrained using local 

information about the physical characteristics (Cowley et al., 2017; Ranney et al., 2015), so the 

model is known to perform well when using physically-based parameter values. The 

performance of the model has also been tested as the quantity of calibration data is progressively 

reduced, and it was shown to outperform a statistical method when using few observations for 

calibration (Werbylo and Niemann, 2014). However, many application regions have no point 

observations available for calibration, so parameters may need to be inferred from global soil, 

vegetation, and climatic datasets. Such datasets typically have coarse resolutions and their 

information inevitably includes some degree of inaccuracy. Furthermore, they do not necessarily 

provide the precise information that is needed to estimate the EMT+VS model parameters.  

Little research has focused on the role of calibration in the application of soil moisture 

downscaling methods. Satellite methods that use optical/thermal data have typically been applied 
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without calibration to local soil moisture observations (Carlson, 2007; Chauhan et al., 2003; Kim 

and Hogue, 2012; Merlin et al., 2013; Piles et al., 2016), but recent research suggests that 

optical/thermal soil moisture estimates may require calibration to achieve adequate performance 

in some cases (Alburn et al., 2015). Land-surface models have also been used for downscaling 

without calibration (Ines et al., 2013; Sahoo et al., 2013; Verhoest et al., 2015), but some of these 

models exhibit biases in their soil moisture that may require calibration to overcome (De Lannoy 

et al., 2007; Kumar et al., 2006). Few studies have explicitly compared calibrated and 

uncalibrated performance for a given downscaling method. Notably, Ines et al. (2013) compared 

their deterministic downscaling method when it was optimized with in situ data and when it was 

optimized with idealized experiments. Peng et al. (2017) summarizes the current state of 

knowledge as follows:  “…each method has its applicability under certain purposes, and over 

different surface and climate conditions, none of the methods can be applied everywhere over the 

world without any calibration or improvements.” 

The objectives of this research are (1) to develop methods for estimating the EMT+VS 

model parameters from global soil, vegetation, and climatic datasets and (2) to characterize the 

model performance when its parameters are determined from currently available datasets instead 

of site-specific calibration. The outline of the paper is as follows. Section 2 briefly describes the 

EMT+VS model and highlights its parameters. Section 3 summarizes the four small catchments 

and two large regions where the study is performed and presents the model application methods. 

Section 4 describes the global datasets that are used and how reference parameter values are 

obtained from those datasets. Section 5 compares the reference parameter values to the calibrated 

parameter values and identifies the datasets that can be used to estimate parameters. Section 6 
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develops recommended parameter values, and Section 7 evaluates the global (without site-

specific calibration) model performance. Section 8 summarizes the main conclusions. 
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2. EMT+VS MODEL AND PARAMETERS 

 

 

 

This section summarizes the EMT+VS model and identifies all its parameters. A detailed 

description of the EMT+VS model is provided by Coleman and Niemann (2013), Ranney et al. 

(2015), and Cowley et al. (2017). The EMT+VS model considers the hydrologically active layer, 

which is defined as the surface soil layer within which most lateral flow occurs. Specifically, it 

evaluates the water balance of the hydrologically active layer upslope from an edge of a fine-

resolution grid cell in a digital elevation model (DEM). Four processes are included in the water 

balance:  infiltration F , deep drainage G , lateral flow L , and evapotranspiration (ET) E  (see 

Appendix for List of Variables). The process descriptions are simple, particularly in regards to 

representing temporal variability, because the soil moisture is ultimately calculated using an 

equilibrium assumption.  

Infiltration F  (mm d-1) is described using a simple expression that can account for 

orographic precipitation and interception by the canopy. It can be written: 

 max (1 )F F V    (1) 

where maxF  (mm d-1) is the maximum infiltration rate that depends on precipitation,   is the 

interception efficiency of the vegetation cover (a parameter), and V  is the fractional vegetation 

cover. The parenthetical term represents the throughfall fraction. maxF can be spatially constant 

(in which case it eventually disappears from the model and does not need to be specified) or it 

can be calculated as a function of topographic slope, aspect, and elevation to include orographic 

effects (Cowley et al., 2017). Cowley et al. (2017) found that including orographic precipitation 

did not substantially improve calibrated EMT+VS model performance, so maxF  is treated as a 

constant throughout this study.  
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Deep drainage G  (mm d-1) is calculated from Darcy’s Law with gravity drainage (no 

capillary gradient) and the Campbell (1974) equation for unsaturated hydraulic conductivity. It 

can be written: 

   (2) 

where ,s vK  (mm d-1) is the vertical saturated hydraulic conductivity (a parameter),   (m3 m-3) is 

the volumetric water content in the modeled soil layer,   (m3 m-3) is the soil porosity (a 

parameter), and v  is the vertical pore disconnectedness index (a parameter). 

Lateral flow L  (m2 mm d-1) is described using Darcy’s Law, the Campbell (1974) 

equation for unsaturated hydraulic conductivity, a hydraulic gradient that is a power function of 

the topographic slope, and a soil depth that depends on topographic curvature. It can be written: 

   (3) 

where 0  (m) is the thickness of the hydrologically active layer at locations where topographic 

curvature is zero (a parameter), min  (m-1) is the minimum topographic curvature for which the 

hydrologically active layer is present (a parameter),   (m-1) is the topographic curvature, c  (m) 

is the length of the DEM grid cell,   is the anisotropy of saturated hydraulic conductivity (a 

parameter), h  is the horizontal pore disconnectedness index (a parameter), S  is the topographic 

slope from the DEM, and   relates the horizontal hydraulic gradient to topographic slope (a 

parameter).  

ET E  (mm d-1) is modeled by inferring the spatial variations in potential ET from 

elevation variations, partitioning evaporation and transpiration using fractional vegetation cover, 

partitioning the radiative and aerodynamic components using the Priestley-Taylor (1972) 

,

v

s vG K



 
 
 
 



min
,0

min

h

s vL c K S


    
             



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assumption, accounting for insolation variations using the potential solar radiation index (PSRI), 

and describing moisture limitation effects using power functions. It can be written: 

   (4) 

where pE  (mm d-1) is the spatial average PET (a parameter),   is the elevation dependence of 

PET (a parameter), Z  (m) is the spatial average elevation, Z  (m) is the local elevation,   is the 

portion of total transpiration that is contributed by the hydrologically active layer (a parameter), 

  accounts for shading effects on soil evaporation (a parameter),   is the Priestley-Taylor 

coefficient minus one (a parameter), and pI  is the PSRI, which depends on aspect, slope, and 

latitude. r  and a  characterize the moisture limitation effect in the aerodynamic and radiative 

terms of E , respectively (both are parameters).  

Coleman and Niemann (2013) developed an approximate solution to the water balance 

where local soil moisture is calculated from a supplied spatial average (or coarse-resolution grid 

of) soil moisture. After assuming equilibrium, four explicit analytical solutions for soil moisture 

are found by assuming that each outflow term in the water balance dominates the others. The 

final soil moisture is then found by a weighted average of those analytical solutions where the 

weights are the magnitudes of the outflow terms in the water balance. The final soil moisture is: 

   (5) 

where G , L , R , and A  are the explicit soil moisture estimates if deep drainage, lateral flow, 

radiative ET, and aerodynamic ET dominate, respectively, and Gw , Lw , Rw , and Aw  are 

associated weights. The equations for G , L , R , and A  are: 

1 1
1 1

p

r a
pI

E E Z Z V V

         

 
                                             

      

G G L L R R A A

G L R A

w w w w

w w w w

      


  
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  (6) 

  (7) 

  (8) 

  (9) 

where   is the supplied spatial average soil moisture, is the deep drainage index, is the 

lateral flow index, is the radiative ET index, and is the aerodynamic ET index. The 

quantities , , , and  are the spatial averages of the indices.  

The indices are defined: 

  (10) 

  (11) 

  (12) 

  (13)  

These indices are treated as temporally invariant and produce the spatial variations in the 

fine-scale soil moisture pattern. Those variations are produced by fine-scale variations in 

elevation Z , slope S , curvature  , PSRI pI , contributing area A , and fractional vegetation 

cover V . The associated weights can vary in time. They are: 

DD

DI

I

D
G 

LF

FI

I

L
L 

RE

EI

I

R
R 

AE

EI

I

A
A 

DDI LFI

REI AEI

DDI LFI REI AEI

1

,

1
DDI 

v

s v

V

K




 
   

 

1 11

min

0 ,v min

1
LFI

h hh

s

V A

K cS
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


  


                

 
 

1 1 1

11 1
REI

(1 1 )

r
r r

p p

V

I V VE Z Z
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



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
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a
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  (14) 

  (15) 

  (16) 

  (17) 

In the end, the key model inputs are coarse-resolution soil moisture  , fine-resolution 

topographic elevation (from which the required topographic attributes are calculated), fine-

resolution fractional vegetation cover V , and parameters. All the parameters are specified at the 

coarse-resolution for this study. Three parameters are related to the local climate, eight describe 

the local soil, and five characterize the vegetation cover. The parameters that are evaluated in 

this study are summarized in Table 1. The “Recommended Parameters” column in Table 1 is 

discussed later.  

DDI

v

Gw


 

  
 

LFI

h

Lw


 

  
 

REI

r

Rw


 

  
 

AEI

a

Aw


 

  
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3. APPLICATION TO STUDY SITES 

  

 

 

3.1 STUDY SITES 

The EMT+VS model is tested using four small catchments and two large regions (Figure 

1). The catchments (Tarrawarra, Satellite Station, Cache la Poudre, and Nerrigundah) have 

diverse soil moisture patterns (Ranney et al., 2015) and gridded soil moisture observations 

available for model calibration and evaluation. The two large regions (Reynolds Creek and 

Tibet) also have different soil moisture patterns but fewer soil moisture observations than the 

catchments. These study sites were selected because the observation locations capture some of 

the regional variation in topographic attributes and vegetation density, so they are expected to 

capture more spatial variability in soil moisture than some other available datasets. All of these 

sites except for Tibet have been used previously to evaluate the calibrated EMT+VS model.  

The Tarrawarra dataset was originally described by Western and Grayson (1998). This 

10.5 ha catchment is located in Victoria, Australia. It has an average annual rainfall of about 820 

mm and an average potential ET of about 830 mm. The DEM was originally produced by a total 

station survey and has a 5 m resolution. The vegetation is grazed grass. The soil moisture dataset 

was collected using time domain reflectometry (TDR) in the top 30 cm of the soil. Observations 

were collected on a 10 m by 20 m grid on 13 dates spanning 14 months in 1995 and 1996. The 

soil moisture patterns in this catchment are temporally unstable with both valley dependent and 

hillslope dependent patterns occurring (Western et al., 1999; Wilson et al., 2005). 

The Satellite Station dataset was originally presented by Wilson et al. (2003). The 60 ha 

catchment is located on the North Island of New Zealand. It has an average annual rainfall of 

approximately 1600 mm and annual pan evaporation of approximately 1300 mm. The DEM was 
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originally produced by a total station survey and has a 10 m resolution. The vegetation is 

primarily grazed grass. The soil moisture dataset was collected using TDR and characterizes the 

top 30 cm of the soil. The observations were collected on a 40 m grid on 6 dates spanning 20 

months in 1998 and 1999. The soil moisture patterns in this watershed are valley dependent 

(Coleman and Niemann, 2013).  

The Cache la Poudre dataset was originally described by Coleman and Niemann (2012). 

The 8 ha catchment is located in Colorado, USA. It has an average annual precipitation of about 

400 mm and annual PET of about 930 mm. The DEM was originally produced by a land survey 

and has a 15 m resolution. Vegetation is aspect dependent with shrubs on south-facing slopes and 

coniferous trees on north-facing slopes. The soil moisture dataset was collected using TDR and 

describes the top 5 cm of the soil. Observations were collected on a 15 m grid on 9 dates 

spanning 3 months in 2008. The soil moisture in this watershed is hillslope dependent (Coleman 

and Niemann, 2012).  

The Nerrigundah dataset was originally described by Walker et al. (2001). The 6 ha 

catchment is located near Dungog, New South Wales, Australia. It has an average annual 

precipitation of about 1000 mm and a class A pan evaporation of about 1600 mm. The DEM was 

originally produced by a total station survey and has a 20 m resolution. The vegetation is 

primarily grazed grass. The soil moisture dataset was collected using TDR and is available for 

the top 15 cm on a 20 m grid. Observations were collected on 12 dates that span 2 months in 

1997. Like Satellite Station, the soil moisture patterns in this watershed are valley dependent 

(Ranney et al., 2015).  

The Reynolds Creek dataset was summarized by Seyfried et al. (2001) and is a SMAP 

validation site (Colliander et al., 2017). This 239 km2 watershed is located in Idaho, USA. It has 
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an average annual precipitation that varies from 230 mm at lower elevations to 1100 mm at 

higher elevations (Hanson, 2001), and an average pan evaporation of about 1044 mm (Hanson, 

1989). The DEM was obtained from the United States Geological Survey National Map Viewer 

and has a 30 m resolution. The vegetation is mostly sagebrush with some aspen and firs at higher 

elevations. The soil moisture dataset is from 30 permanently installed Hydra Probes and 

characterizes the top 5 cm of the soil (Seyfried et al., 2005; Seyfried and Murdock, 2004). The 

observations used here are from 30 dates in May and June from 2012 to 2014. The soil moisture 

patterns in this watershed are primarily elevation dependent (Cowley et al., 2017).  

The Tibet dataset was originally described by Yang et al. (2013) and is a SMAP 

validation site (Jackson et al., 2016). This 1960 km2 region is located in Nagqu, China. It has an 

average annual precipitation of about 500 mm and an average annual PET of about 850 mm 

(Zhang et al., 2009). The DEM was obtained from Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) V2 and has a 30 m 

resolution. The vegetation is predominantly short alpine grasses. The soil moisture is 

characterized using 29 permanently installed capacitance probes and characterizes the top 5 cm 

of the soil. The observations used here are from 31 dates during June through September from 

2011 to 2012.  

 

3.2 MODEL APPLICATION 

In order to apply the EMT+VS model to the study sites, the following data must be 

provided: coarse-resolution soil moisture  , fine-resolution topographic and fractional 

vegetation cover V data, and the model parameters. For this study,   was calculated as the 

spatial average of the in situ soil moisture observations. This approach ensures that   is as 
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accurate as possible and that the comparison between the locally calibrated and global models 

does not depend on a particular technology used to determine  . The topographic attributes were 

calculated from the local DEMs described in the previous section, ensuring proper alignment 

between the gridded soil moisture observations and the downscaled patterns. Fractional 

vegetation cover V  was estimated using the soil adjusted vegetation index (SAVI) (Huete, 1988) 

following Cowley et al. (2017). The SAVI was calculated from Landsat images on dates without 

cloud cover during the period of soil moisture data collection. Because the four catchments are 

so small, only a single spatial average V  is used. For Tarrawarra, the Landsat 5 image is from 8 

October 1995, and V = 0.60. For Satellite Station, the Landsat 5 image is from 19 November 

1992, and V = 0.54. For Cache la Poudre, the Landsat 5 image is from 26 June 2006, and V = 

0.22. For Nerrigundah, the Landsat 5 image is from 21 August 1997, and V = 0.34. For the two 

large regions, fine-resolution patterns are used for V . For Reynolds Creek, V  was found by 

averaging the results from Landsat 8 images on 05 June 2013, 08 June 2014, and 11 June 2015. 

For Tibet, V  was found by averaging the results from Landsat 7 images on 17 June 2011, 29 

August 2011, and 14 September 2011. 

For the calibrated model cases, the parameter values were adjusted to maximize model 

performance. Model performance was quantified by calculating the Nash Sutcliffe Coefficient of 

Efficiency (NSCE) (Nash and Sutcliffe, 1970) for each date (referred to as the spatial NSCE) and 

then averaging. For a given date, a spatial NSCE of 1 indicates that the downscaling model 

perfectly reproduces the soil moisture observations. For comparison, if downscaling was not 

implemented and   was used as a soil moisture model, then the NSCE would be equal to 0.Thus, 

an NSCE above 0 indicates that the downscaling model has less error than using   as the soil 

moisture pattern. The feasible range for each parameter was based on locally available 
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information about the physical characteristics (Carsel and Parrish, 1988; Cosby et al., 1984; 

Dingman, 2015). Three parameters were not calibrated, following previous research (Coleman 

and Niemann, 2013; Ranney et al., 2015). The Priestley-Taylor coefficient minus one   was set 

to 0.26, the depth of the hydrologically active layer where topographic curvature is zero 0  was 

set based on local knowledge of the soil layer, and pE  was calculated based on local 

meteorological data. The calibrated model results that are presented later in this paper differ from 

previous studies. Here, the model inputs were selected to be more consistent between study sites 

and to be more representative of what might be available in data sparse regions. For example, 

SAVI is used to characterize vegetation at all sites, whereas previous calibrations sometimes 

neglected vegetation and sometimes used local vegetation datasets. Also, previous calibrations 

did not always include elevation dependence in the calculation of potential ET.  
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4. REFERENCE PARAMETER VALUES 

 

 

 

For the global application of the model (without site-specific calibration), initial estimates 

of the parameters (reference values) were obtained from global datasets. To be considered for 

this study, a dataset was required to have global coverage, to be free of charge, and to be 

publically available. Among the identified alternatives, the final dataset was chosen based on its 

accuracy and spatial resolution.  

 

4.1 CLIMATE PARAMETERS 

Spatial average potential ET pE  was obtained from the Consultative Group for 

International Agriculture Research Consortium for Spatial Information (CGIAR-CSI) (Trabucco 

et al., 2008). Compared to the MODerate resolution Imaging Spectroradiometer (MODIS) global 

ET from the University of Montana (Mu et al., 2011), CGIAR-CSI produced better estimates 

when compared to the pE  values calculated from meteorological data for the study sites. 

CGIAR-CSI calculated potential ET using the Hargreaves equation, WorldClim meteorological 

data, and Shuttle Radar Topography Mission (SRTM) DEM data. The dataset provides annual 

and monthly averages from 1950 to 2000 at a 30 arc-second (~1 km) resolution. For pE , the 

average value over the entire time period was calculated for each study site with the annual 

average dataset. 

The elevation dependence of potential ET   is not directly available from any identified 

dataset, but we investigate if it can be estimated from other available data. An analysis was 

performed at Reynolds Creek because it has 17 meteorological stations at different elevations 

with measurements of air temperature, vapor pressure, relative humidity, incoming solar 
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radiation, and wind speed (Hanson et al., 2001). Using this data, daily ASCE short grass 

standardized reference ET (Walter et al., 2000) was calculated for 2012 and 2013 and used as an 

estimate of potential ET. For each day, the potential ET was plotted against elevation and used to 

estimate   on that day. The dependence of the daily   values on various daily meteorological 

conditions was then examined. Empirically, wind speed exhibits the strongest relationship with 

potential ET among the variables considered (and this dependence can be seen in the equations 

used to obtain reference ET as well). Figure 2 shows the   values plotted as a function of the 

wind speed and the fitted zero-intercept linear relationship. The relationship is: 

 0.00018*W    (18) 

where   has units of m-1 and W  is the average wind speed (m s-1). This relationship has a 

coefficient of determination (r2) of 0.36 and can potentially be used to estimate   at any study 

site based on the local wind speed. A logarithmic nonlinear relationship was also considered but 

it produced similar   values for the six study sites.  

Global wind speed data were obtained from the National Centers for Environmental 

Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) (Saha et al., 2010). This dataset 

is based on observations and a coupled atmosphere-ocean-land surface-sea ice modeling system. 

It has been shown to be a viable alternative when direct observations are not available for the 

variables of interest (Dile and Srinivasan, 2014; Fuka et al., 2014). The dataset provides daily 

wind speed data at a 38 km resolution from 1979 to 2014. To estimate  , we used the average 

reported daily wind speed for the entire time period of the dataset. 

No global datasets were found to allow regional estimation of . However, multiple 

authors have supported the assumption that  is approximately constant at 0.26 (Dingman, 

2015; Ershadi et al., 2014; Mu et al., 2011). Furthermore, 0.26 has been used in calibrated 




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applications of the EMT+VS model (Coleman and Niemann, 2013; Cowley et al., 2017; Ranney 

et al., 2015), so 0.26 is also assumed for the global cases.  

 

4.2 SOIL PARAMETERS 

Soil characteristics were obtained from the International Soil Reference and Information 

Centre World Inventory of Soil property Estimates (ISRIC-WISE) (Batjes, 2015), who released 

an update to the Harmonized World Soil Database (FAO et al., 2012). Other soil datasets are 

available, but they either have issues with quality control like the Global Soil Dataset for Earth 

System Modeling (Shangguan et al., 2014) or remain unfinished like the Global Soil Map 

(Sanchez et al., 2009). The ISRIC-WISE database provides soil properties at a 30 arc-second (~1 

km) resolution (Batjes, 2015). Data provided in the database includes bulk density, organic 

carbon content, and percent sand, silt, clay, among many others. 

The ISRIC-WISE percent sand, silt, clay, and organic carbon content were used in the 

Saxton and Rawls (2006) pedotransfer functions to estimate porosity  , vertical saturated 

hydraulic conductivity ,s vK , and vertical pore disconnectedness v . Note that we assume that the 

pedotransfer functions describe the vertical properties. The Saxton and Rawls (2006) functions 

were selected because they are based on more soil samples than, for example, the Cosby et al. 

(1984) pedotransfer functions. The Cosby et al. (1984) functions also produced similar values for 

the hydraulic properties. The porosity   is calculated: 

   (19) 33 ( 33) 0.097* 0.043S S      
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where S  is the percentage of sand, 33  is the field capacity, and ( 33)S   is the saturated soil 

moisture minus field capacity. The  33  and ( 33)S   values can be determined with other 

equations from Saxton and Rawls (2006). ,s vK  is calculated:  

  (20) 

  (21) 

where B  is the pore size distribution index and 1500  is the wilting point. Both B  and 1500  can 

be calculated from Saxton and Rawls (2006). Finally, v  is found from: 

   (22) 

Anisotropy   is not available from the ISRIC-WISE dataset, but we investigate if it can 

be estimated by matching the extents of saturated valley bottoms to observed stream extents. 

This approach is based on the simplified conceptual model that a stream forms where the soil is 

continuously saturated. In reality, soil may not even be present where streams occur (e.g., 

bedrock rivers), and streams are often sustained by groundwater discharge rather than saturated 

soil. Observed stream extents were obtained from the USGS-generated Hydrological data and 

maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS) (Lehner et al., 

2008). This vector dataset has a resolution of 15 arc-seconds (~500 m). It is based on SRTM 

DEM data, Water Body Data, Digital Chart of the World rivers and lakes data, the ArcWorld 

global vectorized river network, and the Global Lakes and Wetlands Database. Previous results 

show an accuracy that significantly exceeds other global watershed and river maps (Lehner et al., 

2008). To estimate  , the other EMT+VS parameters were set to their reference values and   

was set to the average among the dates in each study site’s dataset. As the parameter   increases, 

the valley bottoms become saturated further up towards their headwaters.   was increased until 

1(3 )

, 331930( ) B
s vK    

33 1500(ln1500 ln33) (ln ln )B    

2 3v B  
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the saturated valley bottoms matched the stream extents. This value was selected as the reference 

value. The small catchments do not include streams, so the area was extended to a 0.25° x 0.25° 

square centered on the original catchment for estimating  .  

No global datasets were found to estimate 0 , min , h  and  . Several authors assume a 

typical rooting depth or soil thickness of 30 cm (Jackson et al., 2000; Porporato et al., 2004; 

Schenk and Jackson, 2002), which would imply that 0  is near that value. Also, 0  only appears 

in the model with ,s viK , which can vary over a much larger range than 0 . So, 0  is assumed to 

be 30 cm in the global model for simplicity. Any dependence of soil thickness on topographic 

curvature is usually neglected in such models, which would suggest that min  has a very large 

negative value. Past calibrations of the EMT+VS model have also found large negative values, 

so min is assumed to be -999,999 m-1 in the global model. The values of h  and   potentially 

have larger effects on the model results, so their values will be investigated later in the paper. 

 

4.3 VEGETATION PARAMETERS 

The vegetation parameters are expected to depend mainly on the vegetation type, so we 

investigate if they can be estimated from land cover classifications. The selected land cover 

dataset is from MODIS (Friedl et al., 2010). This dataset provides land cover classification 

(among other information) at a 500 m resolution. The land cover is classified into 17 categories 

as defined by the International Geosphere Biosphere Programme (IGBP) (Loveland and 

Belward, 1997). The classification is reported to have about a 75% accuracy (Friedl et al., 2010), 

which is competitive with other land cover classification datasets (Grekousis et al., 2015) such as 

GlobCover, GLC-SHARE, and GLCC (Bontemps et al., 2011; Latham et al., 2014; Loveland et 
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al., 2000). The MODIS dataset was selected because it exhibits the best accuracy for the study 

sites. 

We investigate if the interception efficiency   can be estimated from the land cover 

classifications using an approach from Galdos et al. (2012). They studied interception in a 

manner that is consistent with the EMT+VS model for 11 land cover classifications in Northern 

Spain. Their categories do not perfectly align with the IGBP classifications, but they are similar 

enough to be matched. For each land cover, Galdos et al. (2012) provided an empirical power 

function that calculates the interception fraction from the gross daily rainfall. This interception 

fraction implicitly depends on the local fractional vegetation cover, which is considered 

separately in the EMT+VS model. Thus, the interception fraction is divided by the provided 

mean fractional vegetation cover to obtain  for each classification. The resulting  still 

depends on the gross rainfall, so global daily rainfall data were obtained from land-based 

weather stations of National Oceanic and Atmospheric Administration (NOAA) National Centers 

for Environmental Information (NCEI) Global Historical Climate Network (GHCN) (Peterson 

and Vose, 1997). For each study site, daily   values were calculated for the length of the 

available rainfall data. The average   was then determined by weighting the daily  values by 

the daily precipitation. 

We investigate if the portion of transpiration from the modeled soil layer   can be 

estimated based on Jackson et al. (1996). They analyzed root distribution data from around the 

world to generate equations for cumulative root fraction as a function of depth for 11 terrestrial 

biomes. These biomes are not perfectly consistent with the IGBP land cover classifications, but 

the classifications for the study sites are among the 11 biomes considered. To estimate  , it is 

assumed that the portion of transpiration from the layer is the same as the portion of the roots in 
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the layer, which neglects root increased root water uptake from soil layers with more available 

moisture (Jarvis, 1989).  

In the EMT+VS model, different moisture limitation functions are allowed for the 

aerodynamic and radiative components of ET, and those functions are controlled by a  and r , 

respectively. Other similar models instead allow different functions for evaporation and 

transpiration (Ek et al., 2003; Laio et al., 2001; Rosero et al., 2010; van der Velde et al., 2009). 

The EMT+VS model could be generalized to treat evaporation and transpiration separately, but 

this modification would introduce more parameters. Instead, we note that a  and r  are 

expected to depend on the relative contributions of evaporation and transpiration, and pE  may 

crudely indicate the importance of evaporation for a region. Figure 3 plots the calibrated a  and 

r  values against the reference pE  values, and a weak relationship is observed. A generalized 

logistic function was fitted to these data. This relationship was selected because it ensures that 

estimated a  and r  values always fall within their feasible range (0.2 to 5 according to Lowry 

(1959)). We also attempted to estimate a  and r  values from land cover classifications, but 

that approach was found to be less reliable. 

No global datasets were found to estimate the shading exponent  . Appropriate values of 

this parameter will be evaluated later in this study.  
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5. EVALUATING REFERENCE PARAMETERS 

 

 

 

The accuracy of the reference parameter values can be evaluated in part by comparing 

them to the calibrated parameter values. However, the calibrated values may not be the only 

values that allow good performance of the EMT+VS model. Good performance means that the 

NSCE value is near the highest value observed among all the feasible parameter sets. For 

example, some parameters may have little effect on the model results, so any value would allow 

good performance. Other parameters may be important, but a range of values may provide good 

performance if accommodated by certain values of other parameters (Zak and Beven, 1999). 

Generalized Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992) was 

used to determine the ranges of parameter values that allow good model performance. In this 

procedure, parameter sets are first randomly generated within their feasible ranges. The ranges 

were selected to encompass all physically realistic values and not constrained by any local 

information. Thus, they are the same for all study sites. For each study site, 10,000 parameter 

sets were generated (larger numbers of parameter sets did not change the GLUE results). The 

likelihood of each generated parameter set was then evaluated based on its average spatial 

NSCE. Any parameter set whose average spatial NSCE was less than 50% of the highest average 

spatial NSCE was considered non-behavioral and discarded. Then, the marginal cumulative 

likelihood function was calculated for each parameter, and the interquartile ranges (IQRs) were 

identified. A narrow IQR for a parameter suggests that accurate estimation of that parameter is 

important because only a limited range of values allows good model performance. Note that the 

IQR only includes 50% of the total likelihood, so some good performing parameter sets always 

fall outside of this range. 
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Figure 4 considers the EMT+VS parameters that are related to climate. The axis limits 

correspond to the feasible ranges for the parameters. Each vertical error bar shows the IQR from 

GLUE at each study site (the horizontal coordinate is the reference parameter value at that site). 

The individual symbols show the calibrated value at each study site. Note that the calibrated 

parameter value can fall outside the IQR, particularly if good performance can be achieved with 

a wide range of parameter values at that site. A 1:1 line is also shown in the figure. If the 

symbols fall near the 1:1 line, then the reference values are very similar to the calibrated values. 

The solid line in each plot shows the regression between the reference and calibrated values 

(with a zero intercept). If this line deviates from the 1:1 line, then the reference values are biased. 

If the points fall near the regression line (and thus the line’s coefficient of determination r2 is 

high), then the reference values are accurate estimates of the calibrated values after the bias has 

been corrected. Note that r2 can be negative because the intercept is forced to be zero. 

For the spatial average potential ET  pE  (Figure 4a), the IQRs are all broad, suggesting 

that a wide range of pE  values can produce good model performance (i.e. average spatial NSCE 

values that are similar to the average spatial NSCE for the calibrated parameter set) at all sites. 

Thus, accurate estimation of pE  may not be critical. The regression line indicates that the 

reference values are typically lower than the calibrated values. However, the points are clustered 

near the regression line (r2 = 0.58), which suggests that the calibrated pE  values can be roughly 

estimated from the reference values. For the elevation dependence of potential ET   (Figure 

4b), the IQRs are broad for the four catchments and narrower for the two regions. Also, the IQRs 

for the two large regions do not overlap. The four catchments have small elevation ranges, so   

has little effect on the model performance. The two large regions have greater topographic relief, 

so it is more important to estimate   accurately. The calibrated values are far from the reference 
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values (r2 = -1.00). This disagreement could occur because: (1) the global NCEP CFSR wind 

speed dataset is not accurate, (2) the wind speed relationship does not apply outside of Reynolds 

Creek, and/or (3) the calibrated   values include effects beyond spatial variations in potential 

ET. For the time period of analysis at Reynolds Creek, the average daily wind speed is 2.5 m s-1 

from the in situ data and 2.9 m s-1 from the NCEP CFSR data, which suggests that the NCEP 

data is not the primary source of error. However, the calibrated   at Reynolds Creek is much 

higher than the value expected from the potential ET and elevation data. This difference suggests 

that   includes elevation dependence in other variables such as precipitation and soil properties 

(Cowley et al., 2017). 

The soil related parameters are evaluated in Figure 5. For porosity   (Figure 5a), the 

IQRs are narrow at Tarrawarra, Satellite Station, and Tibet, but broad for the other sites. Also, 

the IQRs for Satellite Station and Tibet do not overlap. Both Tibet and Tarrawarra require high 

  values in part because high observed soil moisture values occur at these sites. The upper limit 

of the calibration range was set to the maximum value of the observed soil moisture among all 

datasets, which is 0.70 at Tarrawarra. The reference values all fall within a very narrow range 

compared to the calibrated values, and no relationship exists between the reference and 

calibrated parameters (r2 = -0.04). Overall, these results suggest site-specific   values are 

required for some sites yet the reference values are not useful for estimating local   values. For 

vertical saturated hydraulic conductivity ,s vK (Figure 5b), all the IQRs are broad, which suggests 

a wide range of ,s vK  allows good model performance. In the EMT+VS model, ,s vK  directly 

affects the importance of deep drainage, but deep drainage does not introduce spatial variations 

in soil moisture unless the vegetation has spatial variations. ,s vK  also affects the importance of 
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lateral flow. However, in the lateral flow expression, ,s vK  is multiplied by  . Thus, a range of 

,s vK  values can produce the same lateral flow if   also varies to accommodate the ,s vK  values. 

Aside from Reynolds Creek, a moderately strong relationship is observed between reference and 

calibrated ,s vK  parameters (r2 = 0.49 when Reynold Creek is excluded). Reynolds Creek appears 

to be an outlier because its value is inconsistent with the other study sites and its calibrated value 

is above its wide IQR. The reference ,s vK values are typically greater than the calibrated values. 

Overall, the results suggest that reproduction of the calibrated ,s vK  values is not mandatory for 

good model performance, but the global datasets can provide reasonable estimates for most sites. 

For vertical pore disconnectedness index v  (Figure 5c), the IQRs are relatively narrow and have 

different ranges for the different sites, which suggests that accurate estimation of site-specific v  

values is required for good model performance. The narrow range likely occurs because v  has a 

unique role in the model equations and no other parameter can be adjusted to accommodate a 

given v  value. The reference values are typically higher than the calibrated values, but a 

moderate relationship exists between the reference and calibrated parameters (r2 = 0.34). Thus, 

v  can be roughly estimated from the global dataset. For anisotropy   (Figure 5d), the IQRs are 

consistently broad, suggesting that a wide range of values allows good model performance. 

However, no relationship exists between reference and calibrated parameter values (r2 = -0.54), 

which suggests that estimating   by matching stream extents is unreliable.  

The vegetation related parameters are evaluated in Figure 6. For interception efficiency 

  (Figure 6a), the IQRs are broad except for Tibet, but Tibet’s calibrated value still falls outside 

its IQR. These features suggest that a wide range of values allow good model performance. No 
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relationship exists between reference and calibrated parameters (r2 = -1.36). For the portion of 

transpiration derived from the modeled soil layer   (Figure 6b), the IQRs are broad except for 

Tibet, but its calibrated value again falls outside its IQR. These features suggest that a wide 

range of values again allow good model performance. Note that the reference value depends on 

land cover classification, so study sites with the same classification also have the same reference 

value. No relationship exists between the reference and calibrated parameter values (r2 = 0.11). 

For the aerodynamic ET exponent a  (Figure 6c), the IQR for Tibet is very narrow and the IQR 

for Reynolds Creek is also somewhat narrow, so accurate estimation of a  is important for these 

two sites. However, the reference values are typically similar to the calibrated values (r2 = 0.53) 

with little bias. Thus, a  can be roughly estimated from its relationship with pE . For the 

radiative ET exponent r  (Figure 6d), the IQRs are fairly narrow for all sites, which suggests 

that accurate estimation of r  values is important. A strong relationship exists between the 

reference and calibrated values (r2  = 0.92) with little bias, which suggests that r  can be 

estimated from pE  as described earlier in this study. 

Figure 7 examines the three parameters without reference values to determine whether 

they can be assumed to be constant across all sites. For the horizontal pore disconnectedness 

index h , the IQRs are broad except for Satellite Station, where the IQR is quite narrow. Thus, 

assuming a constant value will produce errors at this catchment unless its preferred range of 

values is selected. For   and  , the IQRs are all broad. For  , Tibet exhibits a smaller IQR, but 

its range overlaps the ranges for the other study sites. Thus, constant values can likely be 

assumed for both   and  .   
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6. RECOMMENDED PARAMETERS 

 

 

 

The previous section suggested that pE , ,s vK , v , a  , and r  could be roughly 

estimated from the global datasets, while the other parameters must be assumed to be constant. 

The reference values were also found to exhibit biases compared to the calibrated values in some 

cases. This section identifies recommended parameter values for use in the global EMT+VS 

model using an optimization method. If relationships were seen between the reference and 

calibrated values in the previous section, then the reference values are used to determine 

recommended values. Otherwise, a global constant is used as the recommended value. 

For pE , ,s vK , v , the recommended parameter value recommendedP  is found from: 

 

where P  is a site-independent adjustment factor and referenceP  is the reference parameter value 

from the global dataset. The adjustment factors are control variables in the optimization. They 

aim to overcome biases in the reference values and select parameter values that are compatible 

with the other parameter values of the model. For a  and r , the center and rate parameters of 

the generalized logistic functions are also control variables, but the feasible limits are fixed at 0.2 

and 5.0. For the remaining parameters, the constant values are included as control variables, but 

the constants are constrained within each parameter’s feasible limits.  

The objective function is: 
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where objf  is the overall fraction of the average spatial NSCE that is retained by the global 

model, ,global iNSCE  is the average spatial NSCE for the global model at study site i , ,cal iNSCE  is 

the average spatial NSCE for the calibrated model at study site i , and N  is the total number of 

study sites. The initial values for the control variables were randomly generated within their 

feasible limits and the sequential quadratic programming optimization was repeated 50 times.  

The final recommended parameters are summarized in Table 1. Considering the climate 

parameters first, the recommended pE  values are much lower than the reference values (the 

adjustment factor is 0.48). Although Figure 4a showed that the reference values are higher than 

the calibrated values, the bias was not so large. The low pE  values reduce the overall variation 

in the global EMT+VS soil moisture patterns, which tends to reduce errors when they occur. The 

recommended   value is similar to the calibrated value at Tibet but much lower than the value 

for Reynolds Creek.  

For the soil parameters, the recommended   value is reasonable but low compared to the 

IQRs for Tarrawarra and Tibet (Figure 5a). The lower   constrains the range of EMT+VS soil 

moisture values and reduces the possibility of large errors. The adjustment factors for vertical 

saturated hydraulic conductivity ,s vK  and vertical pore disconnectedness index v  are slightly 

greater than 1, which is expected from Figures 5c and 5d. The recommended h  value is within 

the narrow IQR for Satellite Station, which is the only site with a narrow IQR for this variable 

(Figure 7a). The recommended   of 375 falls within the broad IQRs seen in Figure 5d, but it is 

higher than expected for typical soils (Maidment, 1993). The recommended   value is towards 

the lower end of the IQRs in Figure 5c. This low value reduces the nonlinearity in the slope 

dependence (Equation 3), which likely reduces the magnitude of errors when they occur. 
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For the vegetation parameters, the recommended   value is realistic and falls within all 

the IQRs. The recommended   value is high because it suggests that almost all transpired water 

is drawn from the top 30 cm of the soil. The recommended   value falls near the upper end of 

the IQRs in Figure 7c and near the calibrated values for four of the six study sites. The 

parameters for the generalized logistic functions produce a  and r  values that are similar to the 

calibrated values.   
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7. GLOBAL MODEL PERFORMANCE 

 

 

 

This section evaluates the performance of the global model. Figure 8 compares the soil 

moisture patterns from the observations, locally calibrated EMT+VS model, and global 

EMT+VS model for an example date at each of the four small catchments. Figure 9 compares the 

locally calibrated and global EMT+VS soil moisture patterns for example dates at the two large 

regions (the observed patterns cannot be shown due to the sparseness of the observations). For all 

cases, the global model’s patterns use the recommended parameter values. Overall, the global 

model’s soil moisture patterns usually preserve the main features in the calibrated patterns and 

observations. For example, the global model’s pattern at Satellite Station exhibits wetter 

locations in the valleys (valley dependence) and the global model’s pattern at Cache la Poudre 

exhibits wetter locations on the north-facing hillslope (hillslope dependence) like their respective 

observations. For Tibet, both the calibrated and global model’s patterns exhibit a strong 

dependence on the fractional vegetation cover. The global model is less successful at Tarrawarra, 

where the global model’s soil moisture has much less spatial variation than the observations and 

calibrated model. It is also less successful at Reynolds Creek where the calibrated soil moisture 

exhibits a strong elevation dependence while the global model’s soil moisture exhibits a strong 

hillslope dependence. The poor performance at Reynolds Creek occurs because the   values 

that allow good performance at Reynolds Creek and Tibet are inconsistent. The recommended 

constant value can only allow good performance at one of the two sites. Thus, it is important to 

find a way to estimate site-specific   values from global datasets to improve performance. 

The spatial structure of the EMT+VS soil moisture patterns is largely controlled by the 

relative weights in the model (Equations 14 to 17) (Coleman and Niemann, 2013). For example, 
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large Lw  values emphasize lateral flow and tend to produce valley dependence, while large Rw  

values emphasize radiative ET and tend to produce hillslope dependence. Figure 10 plots the 

relative weights at each study site as a function of the spatial average soil moisture for both the 

global and calibrated models. The weights differ quantitatively due to differences in the 

parameter values, but the correct processes tend to be emphasized as the spatial average soil 

moisture changes for most sites. This similarity explains why the global model’s soil moisture 

patterns are visually similar to the calibrated patterns for most cases. Reynolds Creek has the 

largest difference between the weights for the locally calibrated and global models, which 

explains why the calibrated and global soil moisture are visually dissimilar.  

Figure 11 compares the spatial NSCE values for the calibrated and global models on each 

date for the study sites. For the calibrated model, the spatial NSCE value is positive for nearly 

every date at every study site. A positive spatial NSCE value means that the model reproduces 

the observations better than if   was used as the fine-resolution pattern. The global model shows 

a substantial reduction in spatial NSCE values and exhibits more days with negative spatial 

NSCE values. For Reynolds Creek, the spatial NSCE is near zero on all dates. The low 

performance is expected from the difference between the calibrated and global soil moisture 

patterns shown earlier. For Tibet, good performance occurs on dry dates but not for wet dates. 

The performance at Tarrawarra also decreases for wet dates. This result may occur because the 

recommended   is lower than some soil moisture observations for wet dates at these sites. 

Overall, however, most dates continue to exhibit positive spatial NSCE values, which suggests 

that the global EMT+VS patterns are more accurate than the coarse-resolution input. 

Figure 12 compares the performance of the locally calibrated and global models when all 

dates are combined together. Figure 12a shows the average spatial NSCE, which characterizes 
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the EMT+VS model’s ability to reproduce observed spatial variations in soil moisture. Overall, 

the global model retains about 52% of the calibrated model’s average spatial NSCE for the four 

small catchments. While the average spatial NSCEs remain positive for the two large regions, the 

reduction in performance is larger. As seen earlier, the low performance at Reynolds Creek 

occurs because the global model emphasizes hillslope dependence more than elevation 

dependence. The low performance at Tibet primarily occurs because the global model does not 

reproduce the unusually high soil moisture values that occur for wet conditions. Overall, 38% of 

the calibrated model’s average spatial NSCE is retained by the global model.  

Figure 12b shows the space-time NSCE, which combines all soil moisture observations 

from a given study site into a single NSCE calculation. This calculation method is more 

consistent with typical applications of NSCE in hydrologic modeling and characterizes the 

downscaling method’s ability to reproduce both the spatial and temporal variations in the 

observed soil moisture. The model captures much of the temporal variability in the soil moisture 

patterns because the spatial average soil moisture is provided to the model as its key input. Thus, 

the space-time NSCE values are higher than the spatial NSCE values. Only Reynolds Creek 

performs poorly when overall variability of soil moisture is considered. Overall, 82% of the 

calibrated model’s space-time NSCE is retained by the global model.  

It is conceivable that the global model maintains good performance by underestimating 

the spatial variations in soil moisture. For example, the spatial NSCE would be zero if the 

downscaling method simply returns the coarse-resolution (average) soil moisture as the fine-

resolution pattern. To investigate this possibility, Figure 12c compares the average spatial 

standard deviation of soil moisture   for the calibrated and global models. In all cases,   is 

smaller for the global model than the calibrated model. Overall, the global   is on average 58% 
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of the calibrated  . Thus, the global model typically underestimates the spatial variation but still 

reproduces a substantial portion of the calibrated model’s spatial variation. The global model 

exhibits the lowest NSCE values at Reynolds Creek, but it retains a larger portion of the 

calibrated model’s   for this site than all other study sites except for Tarrawarra.  

The root mean square error (RMSE) was also calculated for the calibrated and global 

models at each study site to measure the accuracy of the soil moisture estimates, as summarized 

in Table 2. The RMSE values at Tarrawarra and Cache la Poudre are comparable to the 

commonly-reported TDR measurement errors of +/- 0.03 m3 m-3 (Huisman et al., 2001). The 

RMSE values at Satellite Station and Nerrigundah are comparable to the SMAP mission 

requirement of 0.04 m3 m-3 (Das et al., 2011), while Reynolds Creek and Tibet have higher 

errors. Both the calibrated and global models have lower errors for the smaller catchments than 

the larger regions, likely because the larger regions have more heterogeneity that is not captured 

using spatially uniform parameters. Similarly, the difference in RMSE between the calibrated 

and global models is less for the small catchments than the large regions.  

The preceding analyses included all study sites to evaluate the global model. Because all 

study sites were included in the development of the recommended parameters, the model 

evaluation is not completely independent from its development. It is difficult to perform 

extensive split sample testing because the number of study sites is small and most study sites 

have distinctive features. However, to provide an independent evaluation, Nerrigundah was 

excluded from the development of the recommended parameters and used as a validation site. 

Nerrigundah was selected as the validation site because it has few distinctive features in its soil 

moisture patterns. Thus, the remaining sites still capture the range of soil moisture patterns and 

allow estimation of recommended parameters. When Nerrigundah is used for validation, the 
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global model retains 37% of the average spatial NSCE, 83% of the space-time NSCE, 28% of the 

average standard deviation. The average RMSE is 0.044 m3 m-3. Thus, the performance is 

reduced compared to the earlier evaluation (Figure 12), but the global model still provides more 

accurate soil moisture estimates than the coarse-resolution input while introducing spatial 

variability.  
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8. CONCLUSIONS 

 

 

 

This study developed procedures to estimate EMT+VS model parameters from global 

datasets and evaluated the model performance when these values are used instead of calibrated 

values. It also used GLUE to determine the ranges of parameter values that allow good model 

performance at each study site. Based on the results, the following conclusions can be made:   

1. GLUE produces wide IQRs for most parameters in the EMT+VS model. Specifically,  

pE , ,s vK ,  , and   have wide IQRs at all study sites, and  ,  , h , and   have wide 

IQRs at all but one study site. A wide IQR means the EMT+VS model can achieve good 

results (as measured by the average spatial NSCE) using a wide range of values for that 

parameter. In some cases, this property might occur because the parameter does not affect 

the model results, while in other cases, it might occur because the value of this parameter 

can be accommodated by adjusting the values of other parameters. A wide IQR is helpful 

for using the EMT+VS model in a global manner. For example, if a site-specific value 

cannot be estimated for a parameter, it is possible that a constant value can be used. 

Similarly, if the global value does not exactly match the calibrated value, the model is 

still likely to be able to maintain good performance. In contrast, GLUE produces narrow 

IQRs for  ,  , v , a , and r  at multiple study sites. Errors in the values of these 

parameters are more likely to cause EMT+VS model performance to deteriorate, so it is 

important for the global values of these parameters to be accurate. 

2. The identified global datasets are only useful for estimating pE , ,s vK , v , a , and r . In 

particular, the CGIAR-CSI potential ET values provide reasonable approximations of the 

potential ET values that were calculated from local meteorological data at the study sites. 
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In addition, the CGIAR-CSI potential ET values can be used in generalized logistic 

functions to estimate a  and r . The ISRIC-WISE soil database can be used with 

pedotransfer functions to approximate ,s vK  and v . However, all parameter estimates that 

were derived from the MODIS land cover data are highly inaccurate. Neither   or   

could be reliable estimated from the global datasets, but their values are important for 

achieving good model performance. Thus, future research should focus on methods for 

determining reliable local values for these variables. 

3. When the parameter values are estimated from the global datasets using the 

recommended procedures, the EMT+VS model still provides value as a downscaling 

method. In particular, the generated fine-resolution soil moisture patterns are more 

accurate than the coarse-resolution input in most cases. Overall, 38% of the calibrated 

model’s average spatial NSCE is retained by the global model, and 82% of the calibrated 

model’s space-time NSCE is retained by the global model. The global model also 

continues to introduce substantial spatial variations in the soil moisture patterns, but it is 

lower than the calibrated model. Overall, 58% of the calibrated model’s soil moisture 

standard deviation is retained by the global model. 

Overall, the results suggest that the EMT+VS model can be used without local 

calibration, which potentially allows it to be applied to many more locations around the world. 

The recommended parameters presented here are restricted to cases like those considered, but the 

method used to develop their values can be used to improve the recommended values as more 

datasets become available. Thus, more work is needed to develop a method that truly can be used 

everywhere without calibration or improvement (the aspiration expressed by Peng et al. (2017)). 

Future work should expand the number of study sites to include a greater diversity of climatic, 
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soil, and vegetation conditions. For example, agricultural, thickly forested, and tropical sites 

have not been considered. In addition, if the larger set included multiple study sites with each 

type of soil moisture pattern, it would allow more split sample testing (i.e. the use of multiple 

independent validation sites). Future research should also consider new datasets as they become 

available. No global vegetation datasets were used to determine the recommended parameter 

values, but vegetation properties are expected to be important to the values of several parameters. 
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TABLES AND FIGURES 

 

 

 

Table 1. Summary of EMT+VS model parameters and recommended values. 

Category Parameter Symbol Recommended Value Units 

Climate Coarse potential ET 
pE  0.48*Reference pE *  mm d-1 

PET elevation dependence   0.00017 m-1 

Soil Porosity   0.48 m3 m-3 

Vertical saturated hydraulic 

conductivity 
,s vK

 
1.17* Reference ,s vK † mm d-1 

Vertical pore disconnectedness 
v  

1.07* Reference 
v  †  

Horizontal pore disconnectedness 
h  

12.05  

Anisotropy of saturated hydraulic 

conductivity 

  375  

Relation of hydraulic to 

topographic gradient 

  1.33  

Vegetation Interception efficiency   0.36  

Portion of transpiration from soil 

layer 

  0.98  

Shading effect on soil 

evaporation 

  2.77  

Aerodynamic ET exponent 
a  

11.54*( 2.65)

4.80
0.20

1 pEe 



* 

 

Radiative ET exponent 
r  

6.84*( 3.76)

4.80
5.00

1 pEe 





 * 

 

* This reference parameter is determined from the CGIAR-CSI PET dataset. 
† This reference parameter is determined from the ISRIC-WISE soil dataset. 

 

Table 2. Root mean square error (RMSE) (m3 m-3) of the locally calibrated and global 

applications of the EMT+VS model. 

 Tarrawarra Satellite 

Station 

Cache la 

Poudre 

Nerrigundah Reynolds 

Creek 

Tibet 

Calibrated 0.028 0.048 0.030 0.048 0.055 0.053 

Global 0.032 0.050 0.031 0.050 0.067 0.060 
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Figure 1. Elevation maps of the four small catchments (a) Tarrawarra, (b) Satellite Station, (c) 

Cache la Poudre, and (d) Nerrigundah and two large regions (e) Reynolds Creek, and (f) Tibet 

used for EMT+VS model evaluation. For the catchments, soil moisture observations are 

available at nearly every elevation grid cell. For the regions, the symbols indicate the locations 

with soil moisture observations. 
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Figure 2. Daily   values estimated from potential ET and elevation data at Reynolds Creek 

plotted as a function of daily wind speed. The fitted relationship between those two variables is 

also shown with the coefficient of determination r2. 
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Figure 3. Calibrated (a) a  and (b) r  values plotted as a function of the reference pE  values for 

each study site. The fitted generalized logistic function is also shown (solid line). 

 

 

Figure 4. Calibrated values for climate parameters (a) pE  and (b)   plotted against their 

reference values for the six study sites with vertical error bars showing the interquartile ranges 

(IQRs) from Generalized Likelihood Uncertainty Estimation (GLUE). 1:1 (dashed) and 

regression (solid) lines are also shown. 
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Figure 5. Calibrated values for soil parameters (a)  , (b) ,s vK , (c) v , and (d)   plotted against 

their reference values for the six study sites with vertical error bars showing the interquartile 

ranges (IQRs) from Generalized Likelihood Uncertainty Estimation (GLUE). 1:1 (dashed) and 

regression (solid) lines are also shown. 
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Figure 6. Calibrated values for vegetation parameters (a)  , (b)  , (c) a , and (d) r  plotted 

against their reference values for the six study sites with vertical error bars showing interquartile 

ranges (IQRs) from Generalized Likelihood Uncertainty Estimation (GLUE). 1:1 (dashed) and 

regression (solid) lines are also shown. 
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Figure 7. Calibrated values for (a) h , (b)  , and (c)   at the six study sites with vertical error 

bars showing the interquartile ranges (IQRs) from Generalized Likelihood Uncertainty 

Estimation (GLUE). 

 

 
Figure 8. Maps of the soil moisture ( , m3 m-3) patterns from the observations (top), calibrated 

EMT+VS model (middle), and global EMT+VS model (bottom) for example dates at the four 

catchments (a-c) Tarrawarra, (d-f) Satellite Station, (g-i) Cache la Poudre, and (j-l) Nerrigundah. 

The global model uses the recommended parameters. 

 



46 

 

 
Figure 9. Maps of the calibrated (top) and global (bottom) EMT+VS model soil moisture ( , m3 

m-3) patterns for example dates at the two regions (a-b) Reynolds Creek and (c-d) Tibet. The 

global model uses the recommended parameters. 
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Figure 10. Locally calibrated and global relative weights for the six study sites (a) Tarrawarra, 

(b) Satellite Station, (c) Cache la Poudre, (d) Nerrigundah, (e) Reynolds Creek, and (f) Tibet. 

The weights for each site are shown for the range of average soil moisture values included in the 

associated soil moisture observations. 
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Figure 11. Spatial Nash-Sutcliffe Coefficient of Efficiency (NSCE) plotted as a function of 

spatial average soil moisture for the (a) calibrated and (b) global models at the six study sites. 

 

 
Figure 12. Comparison of (a) average spatial Nash-Sutcliffe Coefficient of Efficiency (NSCE), 

(b) space-time NSCE, and (c) average spatial standard deviations for the locally calibrated and 

global EMT+VS models.  
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APPENDIX 

 

 

The following symbols are used in this paper: 

 

 

 

 

 

 

 

 

 

Category Description Symbol 

Model variables Soil moisture    

Infiltration F  
Deep drainage G  

Lateral flow L  
Evapotranspiration E  
Precipitation rate maxF  

Fractional vegetation cover V   

Topographic curvature    
Length of the DEM grid cell c   

Topographic slope S   

Spatial average elevation Z   
Local elevation Z   
Potential solar radiation 

pI   

Contributing area A   
Spatial average soil moisture   

Deep drainage index DDI 

Lateral flow index LFI 

Radiative ET index REI 

Aerodynamic ET index AEI 

Climate parameters Coarse potential evapotranspiration 
pE  

PET elevation dependence   
Priestley-Taylor coefficient    

Soil parameters Porosity   
Vertical saturated hydraulic conductivity 

,s vK
 

Vertical pore disconnectedness 
v  

Horizontal pore disconnectedness 
h  

Soil depth where topographic curvature is zero 
0  

Minimum topographic curvature with soil 
min   

Anisotropy of saturated hydraulic conductivity   
Relation of hydraulic to topographic gradient   

Vegetation parameters Interception efficiency   

Portion of transpiration from soil layer   

Shading effect on soil evaporation   

Aerodynamic ET exponent 
a  

Radiative ET exponent 
r  
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LIST OF ABBREVIATIONS 

 

 

 

AMSR – Advanced Microwave Scanning Radiometer 

ASCAT – Advanced Scatterometer 

ASTER – Advanced Spaceborne Thermal Emission and Reflection Radiometer 

CFSR – Climate Forecast System Reanalysis 

CGIAR-CSI – Consultative Group for International Agriculture Research Consortium for Spatial 

Information 

CLM – Community Land Model 

DEM – digital elevation model 

ECMWF – European Centre for Medium-Range Weather Forecasts 

EMT+VS – Equilibrium Moisture from Topography, Vegetation, and Soil 

ET – evapotranspiration 

GHCN – Global Historical Climate Network 

GLUE – Generalized Likelihood Uncertainty Estimation 

HydroSHEDS – Hydrological data and maps based on SHuttle Elevation Derivatives at multiple 

Scales 

IGBP – International Geosphere Biosphere Programme 

ISRIC-WISE – International Soil Reference and Information Centre World Inventory of Soil 

property Estimates. 

IQR – interquartile range 

MODIS – MODerate resolution Imaging Spectroradiometer 

NCEI – National Centers for Environmental Information 
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NCEP – National Centers for Environmental Prediction 

NSCE – Nash Sutcliffe Coefficient of Efficiency 

NOAA – National Oceanic and Atmospheric Administration 

PSRI – potential solar radiation index 

RMSE – root mean square error 

SAVI – soil adjusted vegetation index 

SiB – simple biosphere 

SMAP – Soil Moisture Active Passive 

SMOS – Soil Moisture Ocean Salinity 

SRTM – Shuttle Radar Topography Mission 

TOPLATS – TOPMODEL-Based Land-Atmosphere Transfer Scheme 

VIC – Variable Infiltration Capacity 


