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Definition
Fluctuating pressure at a pressure tap on the structure

Static pressure in the wind tunnel above the model



1. INTRODUCTION

1.1 General

A significant characteristic of modern building design is lighter
cladding and more flexible frames. These features produce an increased
vulnerability of glass and cladding to wind damage and result in larger
deflections of the building frame. In addition, increased use of pedes-
trian plazas at the base of the buildings has brought about a need to
consider the effects of wind and gustiness in the design of these areas.

The building geometry itself may increase or decrease wind loading
on the structure. Wind forces may be modified by nearby structures
which can produce beneficial shielding or adverse increases in loading.
Overestimating loads results in uneconomical design; underestimating may
result in cladding or window failures. Tall structures have histori-
cally produced unpleasant wind and turbulence conditions at their bases.
The intensity and frequency of objectionable winds in pedestrian areas
is influenced both by the structure shape and by the shape and position
of adjacent structures.

Techniques have been developed for wind-tunnel modeling of proposed
structures which allow the prediction of wind pressures on cladding and
windows, overall structural loading, and also wind velocities and gusts
in pedestrian areas adjacent to the building. Information on sidewalk-
level gustiness allows plaza areas to be protected by design changes
before the structure is constructed. Accurate knowledge of the inten-
sity and distribution of the pressures on the structure permits adequate
but economical selection of cladding strength to meet selected maximum
design winds and overall wind loads for the design of the frame for

flexural control.



Modeling of the aerodynamic loading on a structure requires special
consideration of flow conditions in order to guarantee similitude
between model and prototype. A detailed discussion of the similarity
requirements and their wind-tunnel implementation can be found in ref-
erences (1), (2), and (3). 1In general, the requirements are that the
model and prototype be geometrically similar, that the approach mean
velocity at the building site have a vertical profile shape similar to
the full-scale flow, that the turbulence characteristics of the flows be
similar, and that the Reynolds number for the model and prototype be
equal.

These criteria are satisfied by constructing a scale model of the
structure and its surroundings and performing the wind tests in a wind
tunnel specifically designed to model atmospheric boundary-layer flows.
Reynolds number similarity requires that the quantity UD/v be similar
for model and prototype. Since Vv, the kinematic viscosity of air, is
identical for both, Reynolds numbers cannot be made precisely equal with
reasonable wind velocities. To accomplish this the air velocity in the
wind tunnel would have to be as large as the model scale factor times
the prototype wind velocity, a velocity which would introduce unaccept-
able compressibility effects. However, for sufficiently high Reynolds
numbers (>2x104) the pressure coefficient at any location on the struc-
ture will be essentially constant for a large range of Reynolds numbers.
Typical values encountered are 107-108 for the full-scale and 105-—106
for the wind~tunnel model. In this range acceptable flow similarity is
achieved without precise Reynolds number equality.

1.2 The Wind Tunnel Test

The wind-engineering study is performed on a building or building

group modeled at scales ranging from 1:150 to 1:400. The building model



is constructed of clear plastic fastened together with screws. The
structure is modeled in detail to provide accurate flow patterns in the
wind passing over the building surfaces. The building under test is
often located in a surrounding where nearby buildings or terrain may
provide beneficial shielding or adverse wind loading. To achieve simi-
larity in wind effects the area surrounding the test building is also
modeled. A flow visualization study is first made (smoke is used to
make the air currents visible) to define overall flow patterns and
identify regions where local flow features might cause difficulties in
building curtain-wall design or produce pedestrian discomfort.

The test model, equipped with pressure taps (200 to 600 or more),
is exposed to an appropriately modeled atmospheric wind in the wind
tunnel and the fluctuating pressure at each tap measured electronically.
The model, and the modeled area, are rotated 10 or 15 degrees and
another set of data recorded for each pressure tap. Normally, 24 or 36
sets of data (360 degrees of turning) are taken; however, when flow
visualization or recorded data indicate high pressure regions of small
azimuthal extent, data is obtained in smaller azimuthal steps.

Data are recorded, analyzed and processed by an on-line
computerized data-acquisition system. Pressure coefficients of several
types are calculated by the computer for each reading on each piezometer
tap and are printed in tabular form as computer readout. Using wind
data applicable to the building site, representative wind velocities are
selected for combination with measured pressures on the building model.
Integration of test data with wind data results in prediction of peak
local wind pressures for design of glass or cladding and may

include overall forces and moments on the structure (by floor if



desired) for design of the structural frame. Pressure contours are
drawn on the developed building surfaces showing the intensity and
distribution of peak wind loads on the building. These results may be
used to divide the building into zones where lighter or heavier cladding
or glass may be desirable.

Based on the visualization (smoke) tests and on a knowledge of
heavy pedestrian use areas, a dozen or more locations may be chosen at
the base of the building where wind velocities can be measured to deter-
mine the relative comfort or discomfort of pedestrians in plaza areas,
near building entrances, near building corners, or on sidewalks.
Usually a reference pedestrian position is also tested to determine
whether the wind environment in the building area is better or worse
than the enviromment a block or so away in an undisturbed area.

The following pages discuss in greater detail the procedures
followed and the equipment and data collecting and processing methods
used. In addition, the data presentation format is explained and the

implications of the data are discussed.



2. EXPERIMENTAL CONFIGURATION

2.1 Wind Tunnel

Wind-engineering studies are performed in the Fluid Dynamics and
Diffusion Laboratory at Colorado State University (Figure 1). Three
large wind tunnels are available for wind loading studies depending on
the detailed requirements of the study. The wind tunnel used for this
investigation is shown in Figure 2. All tunnels have a flexible roof
adjustable in height to maintain a zero pressure gradient along the test
section. The mean velocity can be adjusted continuously in each tunnel
to the maximum velocity available.

2.2 Model

In order to obtain an accurate assessment of local pressures using
piezometer taps, models are constructed to the largest scale that does
not produce significant blockage in the wind-tunnel test section. The
models are constructed of 1/2-in. thick Lucite plastic and fastened
together with metal screws. Significant variations in the building
surface, such as mullions, are machined into the plastic surface.
Piezometer taps (1/16 in. diameter) are drilled normal to the exterior
vertical surfaces in rows at several or more elevations between the
bottom and top of the building. Similarly, taps are placed in the roof
and on any sloping, protruding, or otherwise distinctive features of the
building that might need investigation.

Pressure tap locations are chosen so that the entire surface of the
building can be investigated for pressure loading and at the same time
permit critical examination of areas where experience has shown that
maximum wind effects may be expected to occur. Locations of the

pressure taps for this study are shown in Figure 3. Dimensions are



given both for full-scale building (in ft) and for model (in in.). The
pressure tap numbers are shown adjacent to the taps.

The pressure tests are sometimes made in two stages. In the first
stage measurements are made on the initial distribution of pressure
taps. If it becomes apparent from the data that the loading on the
building is being influenced by some unsuspected geometry of the
building or adjacent structures, additional pressure taps are installed
in the critical areas. The locations of the taps are selected so that
the maximum loading can be detected and the area over which this loading
is acting can be defined. Any added taps are also shown in Figure 3.

A circular area 750 to 2000 ft in radius depending on model scale
and characteristics of the surrounding buildings and terrain is modeled
in detail. Structures within the modeled region are made from styrofoam
and cut to the individual building geometries. They are mounted on the
turntable in their proper locations. Significant terrain features are
included as needed. The model is mounted on a turntable (Figure 2) near
the downwind end of the test section. Any buildings or terrain features
which do not fit on the turntable are placed on removable pieces which
are placed upwind of the turntable for appropriate wind directions. A
plan view of the building and its surroundings is shown in Figure 4.
The turntable is calibrated to indicate azimuthal orientation to 0.1
degree.

The region upstream from the modeled area is covered with a
randomized roughness constructed using various sized cubes placed on the
floor of the wind tunnel. Different roughness sizes may be used for
different wind directions. Spires are installed at the test-section

entrance to provide a thicker boundary layer than would otherwise be



available. The thicker boundary layer permits a somewhat larger scale
model than would otherwise be possible. The spires are approximately
triangularly shaped pieces of 1/2-in. thick plywood 6 in. wide at the
base and 1 in. wide at the top, extending from the floor to the top of
the test section. They are placed so that the broad side intercepts the
flow. A barrier approximately 8 in. high is placed on the test-section
floor downstream of the spires to aid in development of the boundary-
layer flow.

The distribution of the roughness cubes and the spires in the
roughened area was designed to provide a boundary-layer thickness of
approximately 4 ft, a velocity profile power-law exponent similar to
that expected to occur in the region approaching the modeled area for
each wind direction (a number of wind directions may have the same
approach roughness). A photograph of the completed model in the wind
tunnel is shown in Figure 5. The wind-tunnel ceiling is adjusted after
placement of the model to obtain a zero pressure gradient along the test

section.



3. INSTRUMENTATION AND DATA ACQUISITION

3.1 Flow Visualization

Making the air flow visible in the vicinity of the model is helpful
(a) in understanding and interpreting mean and fluctuating pressures,
(b) in defining zones of separated flow and reattachment and zones of
vortex formation where pressure coefficients may be expected to be high
and (c) in indicating areas where pedestrian discomfort may be a prob-
lem. Titanium tetrachloride smoke is released from sources on and near
the model to make the flow lines visible to the eye and to make it
possible to obtain motion picture records of the tests. Conclusions
obtained from these smoke studies are discussed in Sections 4.1 and 5.1.
3.2 Pressures

Mean and fluctuating pressures are measured at each of the pressure
taps on the model structure. Data are obtained for 24 or 36 wind direc-
tions, rotating the entire model assembly at a complete circle.
Seventy-six pieces of 1/16 in. I.D. plastic tubing are used to connect
76 pressure ports at a time to an 80 tap pressure switch mounted inside
the model. The switch was designed and fabricated in the Fluid Dynamics
and Diffusion Laboratory to minimize the attenuation of pressure fluctu-
ations across the switch. Each of the 76 measurement ports is directed
in turn by the switch to one of four pressure transducers mounted close
to the switch. The four pressure input taps not used for transmitting
building surface pressures are connected to a common tube leading out-
side the wind tunnel. This arrangement provides both a means of
performing in-place calibration of the transducers and, by connecting
this tube to a pitot tube mounted inside the wind tunnel, a means of

automatically monitoring the tunnel speed. The switch is operated by



means of a shaft projecting through the floor of the wind tunnel. A
computer-controlled stepping motor steps the switch into each of the 20
required positions. The computer keeps track of switch position but a
digital readout of position is provided at the wind tunnel.

The pressure transducers used are setra differential transducers
(Model 237) with a 0.10 psid range. Reference pressures are obtained by
connecting the reference sides of the four transducers, using plastic
tubing, to the static side of a pitot-static tube mounted in the wind
tunnel free stream above the model building. In this way the transducer
measures the instantaneous difference between the local pressures on the
surface of the building and the static pressure in the free stream above
the model.

Output from the pressure transducers is fed to an on-line data
acquisition system consisting of a Hewlett-Packard 21 MX computer, disk
unit, card reader, printer, Digi-Data digital tape drive and a Preston
Scientific analog-to-digital converter. The data are processed immedi-
ately into pressure coefficient form as described in Section 4.3 and
stored for printout or further analysis.

All four transducers are recorded simultaneously for 16 seconds at
a 250 sample-per-second rate. The results of an experiment to determine
the length of record required to obtain stable mean and rms (root-mean-
square) pressures and to determine the overall accuracy of the pressure
data acquisition system is shown in Figure 6. A typical pressure port
record was integrated for a number of different time periods to obtain
the data shown. Examination of a large number of pressure taps showed
that the overall accuracy for a 16-second period is, in pressure coeffi-
cient form, 0.03 for mean pressures, 0.1 for peak pressures, and 0.01

for rms pressures. Pressure coefficients are defined in Section 4.3.
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3.3 Velocity

Mean velocity and turbulence intensity profiles are measured
upstream of the model to determine that an approach boundary-layer flow
appropriate to the site has been established. Tests are made at one
wind velocity in the tunnel. This velocity is well above that required
to produce Reynolds number similarity between the model and the
prototype as discussed in Section 1.1.

In addition, mean velocity and turbulence intensity measurements
are made 5 to 7 ft (prototype) above the surface at a dozen or more
locations on and near the building for 16 wind directions. The measure-
ment locations are shown on Figure 4. The surface measurements are
indicative of the wind environment to which a pedestrian at the measure-
ment location would be subjected. The locations are chosen to determine
the degree of pedestrian comfort or discomfort at the building corners
where relatively severe conditions frequently are found, near building
entrances and on adjacent sidewalks where pedestrian traffic traffic is
heavy, and in open plaza areas. In most studies a reference pedestrian
position, located about a block away, is also tested. These data are
helpful in evaluating the degree of pedestrian comfort or discomfort in
the proposed plaza area in terms of the undisturbed environment in the
immediate vicinity.

Measurements are made with a single hot-wire anemometer mounted
with its axis vertical. The instrumentation used is a Thermo Systems
constant temperature anemometer (Model 1050) with a 0.001 in. diameter
platinum film sensing element 0.020 in. long. Output is directed to the
on-line data acquisition system for analysis.

Calibration of the hot-wire anemometer is performed by comparing

output with the pitot-static tube in the wind tunnel. The calibration



11

data are fit to a variable exponent King's Law relationship of the form
E2 = A + BU"

where E is the hot-wire output voltage, U the velocity and A, B,
and n are coefficients selected to fit the data. The above relation-
ship was used to determine the mean velocity at measurement points using
the measured mean voltage. The fluctuating velocity in the form Urms
(root-mean-square velocity) was obtained from

2 E Erms
U =

rms B n Un-l

where Erms is the root-mean-square voltage output from the anemometer.
For interpretation all turbulence measurements for pedestrian winds were
divided by the mean velocity outside the boundary-layer U_. Turbulence

intensity in velocity profile measurements used the local mean velocity.
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4. RESULTS

4.1 Flow Visualization

A film is included as part of this report showing the
characteristics of flow about the structure using smoke to make the flow
visible. A 1listing of the contents of the film is shown in Table 1.
Several features can be noted from the visualization. As with all large
structures, wind approaching the building is deflected down to the plaza
level, up over the structure and around the sides. A description of the
smoke test results emphasizing flow patterns of concern relative to
possible high-wind load areas and pedestrian comfort is given in Section
5.1.

4.2 Velocity

Velocity and turbulence profiles are shown in Figure 7. Profiles
were taken upstream from the model which are characteristic of the
boundary layer approaching the model and sometimes at the building site
with building removed. The boundary-layer thickness, &, is shown in
Figure 7. The corresponding prototype value of & for this study is
also shown in the figure. This value was established as a reasonable
height for this study. The mean velocity profile approaching the

modeled area has the form
== 3"
The exponent n for the approach flow established for this study is
shown in Figure 7.
Profiles of longitudinal turbulence intensity in the flow
approaching the modeled area are shown in Figure 7. The turbulence

intensities are appropriate for the approach mean velocity profile

selected. For the velocity profiles, turbulence intensity is defined
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as the root-mean-square about the mean of the longitudinal velocity
fluctuations divided by the local mean velocity U,

U
rms

U

Tu =
Velocity data obtained at each of the pedestrian measurement
locations shown in Figure 4 are listed in Table 2 as mean velocity U/Um,

turbulence intensity Urm /Um, and largest effective gust

s
U+ 30
_ rm

s
Upk B U

®©

These data are plotted in polar form in Figure 8. Measurements were
taken 5 to 7 ft above the ground surface. A site map is superimposed on
the polar plots to aid in visualization of the effects of the nearby
structures on the velocity and turbulence magnitudes. An analysis of
these wind data is given in Section 5.2.

To enable a quantitative assessment of the wind environment, the
wind-tunnel data were combined with wind frequency and direction infor-
mation obtained at the local airport. Table 3 shows wind frequency by
direction and magnitude obtained from summaries published by the
National Weather Service. These data, usually obtained at an elevation
of about 30-40 ft, were converted to velocities at the reference veloc-
ity height for the wind-tunnel measurements and combined with the wind-
tunnel data to obtain cumulative probability distributions (percent time
a given velocity is exceeded) for wind velocity at each measuring
location. The percentage times were summed by wind direction to obtain
a percent time exceeded at each measuring position independent of wind
direction (but accounting for the fact that the wind blows from differ-
ent directions with varying frequency). These results are plotted in

Figure 9.
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Interpretation of Figure 9 is aided by a description of the effects
of wind of various magnitudes on people. The earliest quantitative
description of wind effects was established by Sir Francis Beaufort in
1806 for use at sea and is still in use today. Several recent investi-
gators have added to the knowledge of wind effects on pedestrians.
These investigations along with suggested criteria for acceptance have
been summarized by Penwarden and Wise (4) and Melbourne (5). The
Beaufort scale (from ref. 4), based on mean velocity only, is reproduced
as Table 4 including qualitative descriptions of wind effects. Table 4
suggests that mean wind speeds below 12 mph are of minor concern and
that mean speeds above 24 mph are definitely inconvenient. Quantitative
criteria for acceptance from reference 5 are superimposed as dashed
lines on Figure 9. The peak gust curves shown in Figure 9 are the
percent of time during which a short gust of the stated magnitude could
occur (say about one of these gusts per hour). Implications of the data
plotted in Figure 9 are presented in Section 5.2.

Because some pedestrian wind measuring positions are purposely
chosen at sites where the smoke tests showed large velocities of small
spacial extent, the general wind environment about the structure may be
less severe than one might infer from a strict analysis of Table 2 and
Figure 9.

4.3 Pressures

For each of the pressure taps examined at each wind direction, the

data record is analyzed to obtain four separate pressure coefficients.

The first is the mean pressure coefficient
_ (p_pm)mean

Phean 0.5p Um2
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where the symbols are as defined in the List of Symbols. It represents
the mean of the instantaneous pressure difference between the building
pressure tap and the static pressure in the wind tunnel above the

building model, nondimensionalized by the dynamic pressure
0.5 p u*

at the reference velocity position. This relationship produces a
dimensionless coefficient which indicates that the mean pressure dif-
ference between building and ambient wind at a given point on the
structure 1is some fraction less or some fraction greater than the
undisturbed wind dynamic pressure near the upper edge of the boundary
layer. Using the measured coefficient, prototype mean pressure values
for any wind velocity may be calculated.

The magnitude of the fluctuating pressure is obtained by the rms

pressure coefficient

- ((p*pm) ) (p-pm)mean>rms

: - 2
Prms 0.5 p U,

in which the numerator is the root-mean-square of the instantaneous
pressure difference about the mean.

If the pressure fluctuations followed a Gaussian probability
distribution, no additional data would be required to predict the
frequency with which any given pressure level would be observed.
However, the pressure fluctuations do not, in general, follow a Gaussian
probability distribution so that additional information is required to
show the extreme values of pressure expected. The peak maximum and peak

minimum pressure coefficients are used to determine these values:
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(P=Pe) ok

Pnax 0.5 p Um2

- (p-pm)min

Pmin 0.5 p U *
The values of p-p  which were digitized at 250 samples per second for
16 seconds, representing about one hour of time in the full-scale, are
examined individually by the computer to obtain the most positive and
most negative values during the 16-second period. These are converted
to Cp and Cp . by nondimensionalizing with the free stream

max min

dynamic pressure.

The four pressure coefficients are calculated by the on-line data
acquisition system computer and tabulated along with the approach wind
azimuth in degrees from true north. The 1list of coefficients is
included as Appendix A. The pressure tap code numbers used in the
appendix are explained in Figure 3.

To determine the largest peak loads acting at any point on the
structure for cladding design purposes, the pressure coefficients for
all wind directions were searched to obtain, at each pressure tap, the
largest peak positive and peak negative pressure coefficients. Table 6
lists the larger values and associated wind directions. Included in
Section 5.3 is an analysis of the coefficients of Table 6 including the
maximum values obtained and where they occurred on the building.

The pressure coefficients of Table 6 can be converted to full-scale
loads by multiplication by a suitable reference pressure selected for

the field site. This reference pressure is represented in the equations

for pressure coefficients by the 0.5 p Uoo2 denominator. This value is
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the dynamic pressure associated with an hourly mean wind at the
reference velocity measurement position at the edge of the boudary
layer. In general, the method of arriving at a design reference
pressure for a particular site involves selection of a design wind
velocity, translation of the velocity to an hourly mean wind at the
reference velocity location and conversion to a reference pressure.
Selection of the design velocity can be made from statistical analysis
of extreme wind data or selected from wind maps contained in the pro-
posed wind loading code ANSI A58.1 of the American National Standards
Institute (6). The calculation of reference pressure for this study is
shown in Table 5. The factor used in Table 5 to reduce gust winds to
hourly mean winds is given in reference (7).

The reference pressure associated with the design hourly mean
velocity at the reference velocity location can be used directly with
the peak-pressure coefficients to obtain peak local design wind loads
for cladding design. Local, instantaneous peak loads on the full-scale
building suitable for cladding design were computed by multiplying the
reference pressure of Table 5 by the peak coefficients of Table 6 and
are listed as peak pressures in that table. The maximum psf loads given
at each tap location are the largest peak positive and peak negative
values found in the tests. For ease in visualizing the loads on the
structure, contours of equal peak pressures for cladding load shown in
Table 6 have been plotted on developed elevation views of the structure,
Figure 10. 1If a data point which is taken in the basic model configura-
tion is retaken in a resolution configuration, the data are averaged in
preparing Figure 10. For control of water infiltration from outside to
inside, the largest positive (inward-acting) pressure at each tap

location is tabulated in Table 6.
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For glass design pressures, a glass load factor is used to account
for the different duration between measured peak pressures and the one
minute loading commonly used in glass design charts. The design pres-
sure used for glass is normally less than the peak pressures used for
cladding design because of the static fatigue property of glass which
can withstand higher pressures for short duration loads than for long
duration loads. Recent research (8) indicates that the period of appli-
cation of the peak pressures reported herein is about 5-10 seconds or
less. If a glass design is based on these peak-pressure values, then a
glass strength associated with this duration load should be used.
Because glass design charts are normally based on some alternate load
duration--usually one minute--then some reduction in peak loads should
be made. An estimate of a load reduction factor can be obtained from an
empirical relation of glass strength as a function of load duration.
Current glass selection charts showing glass strength as a function of
load duration (9) and older references (10) indicate the following load

reduction factors:

ref. 9 ref. 10

annealed float 0.80 0.81
heat strengthened 0.94
tempered 0.97 0.98

Loadings appropriate for glass design can be computed by multiplying the

peak-pressure loads of Table 6 by these load factors.
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5. DISCUSSION

5.1 Flow Visualization

The Keflavik airport terminal building has two large skylight
structures whose wind loads were desired in this test. 1In addition,
wind loads and pedestrian comfort were evaluated for the entrance canopy
structures. Flow visualization about these two structural features
showed that the largest pressures on the skylights would be near corners
where flow separation phenomena were observed. Flow separation occurs
because the inertia of the wind prevents it from abruptly turning
corners on the building. High negative pressures (outward acting) are
often found near points of flow separation, especially when the
separating wind stream is of high velocity and/or has high curvature.
Although difficult to see, it appeared that small vortices also formed
at some corners. A vortex is a flow separation that rolls up into a
tornado-like structure. These flow features also are known to produce
high local negative pressures.

Wind flow over the canopies did not show wind flows which would
indicate especially high pressures. Winds under the canopy appeared
somewhat stronger for some wind directions than flow in an open area.
For other wind directions, the shielding of the building decreased the
wind speeds under the canopy.

5.2 Pedestrian Wind

Figure 4 shows the 10 1locations selected for investigation of
pedestrian wind comfort. Location 1 was positioned about 150 ft away
from the building in an open area where the influence of the terminal
building on wind speeds would be small. The remaining locations were
positioned to examine the wind environment near and under the canopy on

the east side of the building.
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Table 2 and Figure 8 show that the largest mean velocities were
measured at locations 3, 4, 9 and 10 with mean velocities ranging from
55 to 65 percent of Uw, the velocity at 180 m elevation. These values
are somewhat above those expected in an open area (about 50-55 percent)
and were due to winds accelerated by the terminal building. Location 1
had a largest mean velocity of 49 percent, close to that expected in an
open area.

The largest values of fluctuating velocity, Urms’ were less than
16 percent of Um‘ These values are less than typically found in a city
environment (20~25 percent) but larger than those for an open-country
environment away from buildings or other surface roughness features
(10-13 percent). The presence of the terminal building explains the rms
results at locations 2-10.

The largest peak gusts, as defined in Section 4.2, ranged up to
106 percent of U,. These were only moderately above the 80-90 percent
which might be expected in an open area. City environments might have
peak gusts up to 120-140 percent of U_.

Local wind data were used to convert the data of Table 2 into
predictions of wind speeds at the terminal site. Data were obtained
from the U.S. National Climatic Center for Keflavik. The data were
obtained from U.S. Air Weather Service records from 1949-1958 which used
an anemometer at 164 ft (50 m) above the ground at Keflavik. The wind
data received from the sponsor came just before this report was
submitted for printing, thus it was not incorporated into this report.

Velocity data of Table 2 integrated with local wind data listed in
Table 3 are shown in Figure 9. Based on the data of this figure, the

windiest pedestrian locations near the terminal building will be about
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as windy as the environment at location 1 away from the building. This
environment predicts that winds exceed the unacceptable level, based on
published acceptance criteria, about 3-8 percent of the time and exceed
the comfort level for walking 20-40 percent of the time. It is likely
that the published acceptance criteria in Figure 9 will apply primarily
to travelers unfamiliar with the general level of winds in Iceland.
Local inhabitants, who are more used to a windy environment, may have a
higher level of acceptance of winds than the average population for
which the criteria were established. The presence of the terminal
building has not made the local environment windier than an open-country
environment.

Several locations under the <canopy are predicted to Dbe
significantly 1less windy than the open-area environment. Locations 5
and 7 positioned close to the building where pedestrian traffic will
presumably be highest have low wind speeds which should not be
objectionable for these locations.

On the whole, the pedestrian wind environment in the area measured
appears to be acceptable in the present configuration. Modifications to
the wind environment will be necessary only if it is desired to decrease
wind speeds below the open-country environment at locations which are
similar to the open-country case.

5.3 Pressures

Table 6 shows the largest peak pressure coefficients and
corresponding loads measured on the building for each pressure tap
location. Data identified as Configuration A in Table 6 and Appendix A
represent data obtained at all pressure tap locations for 36 wind
directions. Configuration B represents data obtained at selected taps

at 2-degree azimuthal increments near azimuths where large pressure
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peaks were observed in Configuration A to ensure that the largest peaks
were obtained.

The largest peak pressure measured was -4260 Pa (outward acting) at
tap 335 near a corner of the A version of the south skylight. The
location of this largest peak pressure is consistent with the flow
visualization results. Peak pressure distributions over the skylight
are shown in Figure 10. Typical negative peak pressures on the sky-
lights ranged from about -1500 to -3000 Pa with several areas near
corners extending above -3000. Peak positive pressures on the skylights
ranged up to about 2000 Pa with most of the surface area less than
1500 Pa.

Table 6 and Figure 10 also show peak pressure loads acting on the
top and soffit surface of the canopy. Peak negative pressures ranged up
to -1290 Pa at tap 922 and peak positive pressures ranged up to +1380 Pa
at tap 931. If local cladding pressures are subjected to simultaneous
loads from top and bottom, a reasonable estimate of, for example uplift
load, can be obtained by combining the peak negative pressure on the
top surface with the peak positive pressure on the bottom surface at
critical wind directions. For example, at taps 922/804, the peak uplift
pressure at wind azimuth 10 (at which tap 922 was a maximum) would be:

P = [cpmin(922,10) - cpmax (804,10)] P_

]

[-.583 - (+.002)] 2210

-1293 Pa (upward acting) .

In this equation, Cp (922,10) refers to the value of peak minimum
min
pressure coefficient for tap 922 at azimuth 10 and C (804,10) refers
max
to the value of peak maximum pressure coefficient for tap 804 at

azimuth 10. Pr is the reference pressure of Table 5.
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Figure 5. Completed Model in Wind Tunnel
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Figure 5. Completed Model in Wind Tunnel
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TABLE 1

MOTION PICTURE SCENE GUIDE

Introduction
Purposes for model testing
Procedures for conducting tests

Specific flow visualization scenes for

AIRPORT TERMINAL BUILDING
Keflavik, Iceland

HIGH PRESSURE AREAS

Run No. Tap No.

Config. A 101
" 1"t 336
131
1115

£ WON
o =

Config.

PEDESTRIAN LOCATIONS

Config. B Flow under east canopy
" " 2] 1 1t tt

o\ m

Wind Direction

80°
120°
280°
330°

0°
135°
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TABLE 4

SUMMARY OF WIND EFFECTS ON PEOPLE

Calm, light air

Light breeze

Gentle breeze

Moderate breeze

Fresh breeze

Strong breeze

Near gale

Gale

Strong gale

Beaufort Speed
number (mph)
0,1 0-3
2 4-7
3 8-12
4 13-18
5 19-24
6 25-31
7 32-38
8 39-46
9 47-54

Effects
Calm, no noticeable wind
Wind felt on face

Wind extends light flag
Hair is disburbed
Clothing flaps

Raises dust, dry soil and
loose paper
Hair disarranged

Force of wind felt on body
Drifting snow becomes airborne
Limit of agreeable wind on land

Umbrellas used with difficulty
Hair blown straight
Difficult to walk steadily
Wind noise on ears unpleasant
Windborne snow above head

height (blizzard)

Inconvenience felt when walking
Generally impedes progress
Great difficulty with Dbalance

in gusts

People blown over by gusts

Note: Table from Reference 4, p. 40,
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TABLE 5

CALCULATION OF REFERENCE PRESSURE

Basic wind speed from data provided by sponsor:

50~-yr 10-min mean at 15 m = 43.4 mps

Mean hourly wind speed = %gég = 41.3 mps
300 0.15
Mean hourly gradient wind speed = 41.3 (_Tg) = 64.7 mps
180 0.15
Mean hourly wind at ref location U at 180 m = 41.3 (—T§>

Reference pressure = 0.5 ono2 = (0.613)(60.0)2 = 2207 Pa

Use reference pressure = 2210 Pa
Loads for 100~-yr wind:
100-yr 10-min mean at 15 m = 46.4 mps

46.4\2
Multiply 50-yr loads by (Zg;z) =1.14

= 60 mps
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GURATION R : AIRPORT TER:

* & 15 GREARTEST PRESSURE MAGNITUDES *

TAP QZ1- PRESS NEGATIVE POSITIVE
MUTH COEFF ggﬁf Py fgff
335 220 -1.97 -4258 .4 1331.7
33 i20 -1.84 -4064 0 120¢.3
iits 330 -1.62 -3585.8 59¢.3
32¢ 2¢¢ -1.58 -35¢02.6 1169 .4
310 80 -1.54 -339¢.5 12.1
131 260 -1.53 -3390.4 12¢1.5
302 32¢ -1.53 -3377.2 6.4
ied 50 -1.51 -332%.1 i172.2
127 2¢¢ -1.50 -3318.3 888 .4
331 20 -1.50 -3304.6 1045 .1
11 ¢ 270 -1.49 -3299.9 -1¢.6
w14 32¢ -1.49% -3289.3 290.7
169 80 -1.45 -3204.¢ 79,4
91 ¢ ¢ -1.45 -32¢09 . 4 3¢2.8
1334 12¢ -1.44 -3187.2 1475.¢

SL



ICELAND

Pa
TAP AZ21-

AIRPORT TER

H

NFIGURATION B
0ad

co
L
NEGATIVE POSITIVE

R
o

~
(o]

POSITIVE
PERK

PERK

ESS NEGATIVE

PR
COEFF

HUTH

POSITIVE
PERK

PERK

PRESS NEGATIVE
CQEFF

AZl1-
MUTH

TAP

PEAK

PERK

S
F

.

PA

Pa

PA

OO
Mesin
AL
LR 4

o
b T
M
[ ]
oo
mer
——
)
oon
M

L S dd
oMM
MMM



GURATION &

* ® ]

ThP

336
3335
221
1119
1334
1315
309
1108

1]
.

AIRPORY TER

GREATEST PRESSURE HAGHITUDES

PRES
COEF

N

.83
.76
.62
.96
.52
.42
.39
3%

NE

[VE

-4093.
-3767.
-3571.
-3443.
~-3349.
~3144.
-3069.
~-2987.

> o O WA eN

P#

-22¢0,

& W 0 N NN,

FLAY

=22
* %
E

LL



78

APPENDIX A

PRESSURE DATA

Note: Pressure coefficients are defined in Section 4.3.

Pressure tap designation is explained in Figure 3.
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