

UNIVERSITEIT • STELLENBOSCH • UNIVERSITY jou kennisvennoot • your knowledge partner

Fallow deer in southern Africa: a potential meat source or is it just an invasive species?

Louw Hoffman

Department of Animal Sciences, Stellenbosch University, South Africa SARChI Chair: Meat Science

9th International Wildlife ranching Symposium 12-16 September 2016

- Background of deer farming
- South Africa game meat industry
- Consumer perceptions
- Carcass composition & yields
- Meat quality
- Conclusions
- Recommendations

Deer farming

- Origins: Far East (3000 years ago)
- Modern: Over 5 million deer across the world
 - Pioneered in NZ 1970's (currently dominates market)
 - Largest farmed deer population (1.1 million)
 - Largest farmed venison producer in the world
- Fastest growing rural industry in USA
- USA & Canada: Fallow deer, wapiti, chital, sika & white tailed deer
- Arctic regions: Reindeer
- Europe: Fallow deer & red deer
- Asia: Sika deer, wapiti, rusa deer, red deer, fallow deer & sambar

- Fallow deer (FD)
- 2 species
 - European FD (Dama dama)
 - Globally distributed
 - Persian FD (Dama mesopotamica)
 - Globally endangered
- Ruminants
 - Largely grazers, but some browsing
- Form large herds
- Rut (4 weeks)
 - Males grow antlers

- Feasibility & profitability realised since 1960's
 40-fold increase (21 m game animals vs. 14 m cattle)
- Springbok, blesbok, greater kudu
- FD overlooked in SA
- FD introduction to SA unknown
 - ca. 1869 Newlands House, Cape Town
- Adapted well
 - Grew in numbers & expanded across SA
 - WC, EC, FS, GP, KZN

Processed meats: 30 000 tons/year Local hunters: 120 000 tons/year Trophy hunters: 20 000 tons/year Sold directly: 1 400 tons/year

Negative attitudes from farmers & even more so from Conservation bodies

- Thrive in SA conditions (invasive \rightarrow no nationwide census)
- Pest-to-profit

Consumer perceptions

- Meat industry: production to consumer driven
- Modern consumer increasingly discerning
 - Health, quality, ethical & welfare
- Trend: low fat, natural, "free-range" products

- Lack of game meat uptake in SA → limited understanding of health benefits
 - Limited nutritional information on game meat packaging
 - Most information on loin

S Carcass composition & yields of wild Fallow deer (*Dama Dama*) in South Africa

Sexual dimorphism present

Parameter		Male (n = 8)	Female (n = 14)	p-value
Live weight	kg	47.4 ± 4.37	41.9 ± 1.96	0.023
Warm carcass	kg	29.6 ± 2.73	25.2 ± 1.15	0.006
Cold carcass	kg	29.2 ± 2.72	24.7 ± 1.13	0.006
Chiller shrink (16h) ¹	kg	0.5 ± 0.04	0.5 ± 0.06	0.590
	%	1.6 ± 0.00	2.0 ± 0.00	0.244
Dress-out ²	%	61.5 ± 0.52	59.0 ± 0.57	0.006

¹ Cold carcass weight relative to warm carcass weight

² Cold carcass weight as percentage of live weight

Age not taken into account

Bone & meat contributions

Mean (\pm standard error) bone and meat contributions (kg and %) from fallow deer (n = 11) as influenced by gender.

		Effect = Gender		
Parameter		Male (n = 4)	Female (n = 7)	p-value
Neck	kg	2.4 ± 0.48	1.5 ± 0.12	0.038
	%1	6.7 ± 0.67	5.6 ± 0.33	0.120
Total meat	kg	20.4 ± 2.14	16.0 ± 0.49	0.028
	%1	57.9 ± 1.33	60.5 ± 0.93	0.139
Total bone	kg	9.1 ± 0.46	6.9 ± 0.35	0.005
	%1	26.2 ± 1.70	26.1 ± 1.08	0.934
Meat / bone ratio		2.2 ± 0.04	2.3 ± 0.02	0.617

¹ Parameters as a percentage of cold carcass weight Significant differences (p < 0.05) are indicated in bold

- Ante mortem stress influences meat quality

- Post mortem pH changes
- Colour
 - L*<40, high a* & low b* values
 - Typical of meat from wild ungulates
- Drip loss
- Toughness
- Flavour
- Males during rut
- etc.

Chemical composition

- Typical of most wild ungulates
 - Lean meat
 - 73-76 % for moisture
 - 20-23 % for protein
 - 2-3 % for total lipids

Depending on season,

deer are known to have subcutaneous fat cover

~1 % for ash

Fatty acid composition

The average, minimum and maximum values (mean ± standard error) calculated for fatty acid groups.

	mg/g meat			
Fatty acid groups	Average	Minimum	Maximum	
SFA	10.20 ± 0.616	6.08	15.30	
MUFA	6.46 ± 0.439	3.98	11.23	
PUFA	13.57 ± 0.669	9.67	21.60	
PUFA:SFA	1.40 ± 0.073	0.68	1.97	
n-6 PUFA	9.47 ± 0.424	6.28	14.36	
n-3 PUFA	4.10 ± 0.265	2.87	7.23	
(n-6)/(n-3)	2.38 ± 0.075	1.79	3.02	

(SFA) total saturated fatty acids; (MUFA) total monounsaturated fatty acids; (PUFA) total polyunsaturated fatty acids; (n-3 PUFA) total omega-3 polyunsaturated fatty acids; (n-6 PUFA) total omega-6 polyunsaturated fatty acids; (PUFA:SFA) polyunsaturated to saturated fatty acid ratio; (n-6:n-3) omega-6 to omega-3 polyunsaturated fatty acid ratio.

Averages were calculated irrespective of main effects (muscle and gender) or interactions [MxG].

Conclusions

FD alternative species

- Undervalued due to lack of information
- Negative perception
- Many attributes important to modern consumer
 - Free roaming ("free-range") & free from human intervention
- FD could contribute to national food security
 - DP Compete with indigenous game & domestic stock
 - DP 58-60%; edible offal 9% (excluding stomach & intestines)
- Physical characteristics compare favourably with SA game
 - Muscle variation & some gender variations
 NB for meat industry (prime vs. processed)
 - 3 of 6 muscles "tender" & all 6 low drip loss
 - LTL desirable physical attribute scores

Conclusions

Chemical characteristics

- High protein values
- Low lipid, but slightly higher than indigenous game
 - Juicy, tender & flavoursome
 - Highly variable (intrinsic & extrinsic)
 - PUFAs higher than SFAs (EFAs LA, ALA & LC PUFAs)
- FD appears to be a healthy, good quality meat source
- Supply various income classes

Recommendations

Initial results indicate

- Meat quality of this species is of highest standard
- Typical of wild game animals

Distribution of this species

 Requires quantification to develop strategies for use as a sustainable protein source for human consumption

The ecological impact of this species

 Needs to be quantified so that adequate legislation can be developed to either curb or grow the potential deer farming industry