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ABSTRACT

STEADY STATE HOPF MODE INTERACTION IN ANISOTROPIC SYSTEMS

A paradigm example of pattern formation in anisotropic extended systems is the electrocon-

vection of nematic liquid crystals, due to its easily accessible control parameters and the variety

of patterns near onset. Some of the patterns observed are oblique and normal rolls which can be

stationary or traveling, and more complex structures such as worms, defects and spatiotemporal

complexity, including spatiotemporal intermittency and chaos, can occur, see e.g., Dennin et al, Sci-

ence 272, 1996. During electroconvection experiments on the nematic liquid crystal mixture Phase

V, a mode interaction between oblique stationary rolls and normal traveling rolls has been observed

by Acharya et al, Int. J. Mol. Sci. 12, 448, 2011; a system of four globally coupled Ginzburg Lan-

dau equations for slowly varying spatiotemporal amplitudes of ideal roll patterns governing the

dynamics of anisotropic systems close to the experimentally observed codimension-two point has

been set up, two equations for the steady oblique rolls and two for the normal traveling rolls. This

dissertation pursues a theoretical and numerical study of the patterns predicted by this system of

globally coupled Ginzburg Landau equations.

Acharya et al presented a bifurcation analysis of the normal form that follows from the Ginzburg

Landau system by ignoring slow variations. The basic solutions of the normal form are two types

of pure mode solutions corresponding to ideal oblique stationary and normal traveling rolls, respec-

tively, and superpositions of pure mode solutions, which are referred to as mixed mode solutions.

Acharya et al distinguished two cases for the bifurcations of these solutions. In one case the mixed

mode solution is stable and a continuous transition between the steady oblique rolls and the normal

traveling rolls is predicted. For the other case, the mixed mode solution is unstable and bistability

occurs between the steady oblique rolls and the normal traveling rolls.

In the present work, a numerical code was developed to simulate the spatiotemporal system

of globally-coupled, complex Ginzburg-Landau equations using a pseudo-spectral method. The

simulations of the system resulted in patterns that were consistent with the normal form analysis.

Steady oblique and normal traveling rolls were found numerically. A region of bistability of the

ii



steady oblique rolls and normal traveling rolls was found numerically, and a continuous transforma-

tion between the two primary branches via a stable mixed mode branch has been observed when the

main bifurcation parameter is varied. Mixed mode solutions have been found that involved either

amplitudes of steady rolls aligned in two different (“zig” and “zag”) directions, or amplitudes of two

counter-propagating normal traveling rolls, for parameter values near the primary instabilities and

when the initial conditions favored their appearance, and a bifurcation diagram showing the occur-

rence of steady state, steady oblique rolls, normal traveling rolls, mixed mode solutions, as well as

bistability of the steady oblique rolls and normal traveling rolls has been obtained numerically.
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1 Introduction

1.1 Overview

Pattern formation in extended systems is a major branch of applied mathematics and

physics which contributes to various areas such as biology, chemistry, and engineering. Var-

ious mathematical models and numerous experiments devoted to the study of the mecha-

nism generating patterns have given this topic a long history of findings and conjectures

[21, 32, 12, 25, 38].

A stationary or an oscillatory instability, caused by the variation of a parameter, are the

two generic ways in which a basic, spatiotemporally uniform state of a physical system loses

stability. A theory of Turing instability was developed by Turing to explain the formation

of stationary patterns on animals’ skins as a result of chemical interactions with different

diffusion rates [41]. Physicists investigated several fluid systems experimentally such as

Rayleigh-Bénard convection or Taylor-Couette flow where they found organized patterns

such as rolls and hexagons as well as disorganized patterns [7].

The degree of organization or symmetry in a pattern is an important feature to describe

patterns. The steady state patterns, such as animals’ skins, are described by spatial sym-

metry and moving patterns, such as in thermal convection and animal gaits, use space-time

symmetry. Symmetries of the dynamical system can be used to investigate the nature of the

pattern-formation mechanism. However, the patterns which lack symmetry and are chaotic

in space and time are difficult to characterize using symmetry alone.

In [8, 36, 21, 16, 24] and references therein, a number of experimental and analytical

studies of steady - oscillatory mode interaction in isotropic pattern forming systems, such as

Taylor-Couette flow, Rayleigh-Bénard convection, and convection in binary mixtures have

been reported. Renardy et al, in [36], explored mode interactions in Taylor-Couette flow

of an upper convected Maxwell liquid. They studied the governing amplitude equations for

1



both a Hopf/steady state and a Hopf/Hopf mode interaction and described the stability of

the resulting bifurcated solutions. The bifurcated solutions, none of which were found to be

stable, resulted from the ‘pure’ modes, Taylor vortices for the steady state and ribbons and

spirals for the Hopf mode.

Fujimura and Renardy [21] looked into a two-layer Bénard problem. They focused on

the case when a pair of Hopf modes and a steady mode are simultaneously at criticality.

Two possible solutions which were found to be unstable were a steady solution and traveling

waves. However, a region of stable mixed standing waves was found as well.

In this work, we will consider physical systems posed in an extended two-dimensional

domain which exhibit a steady-state/Hopf mode interaction. We will perform a quantitative

analysis of this mode interaction through a bifurcation analysis of the associated ODE normal

form and the numerical simulations of the Ginzburg-Landau system derived in [1].

In section 2, we review the derivation of the Ginzburg-Landau equations in one and

two dimensions. This section includes the globally coupled Ginzburg-Landau equations for

the steady-Hopf mode interaction case, followed by an overview of steady and oscillatory

instabilities and mode interactions. Section 3 presents a theoretical study of the normal

form of the globally coupled Ginzburg-Landau equations, including a theoretical bifurcation

diagram. In section 4, numerical simulations of the globally coupled Ginzburg-Landau equa-

tions are discussed and compared with the theoretical results from section 3. Finally, section

5 contains a summary of the results and some possible extensions of the numerical analysis.

1.2 Pattern Formation in Dissipative Systems

The theory of pattern formation in dissipative systems has its origin in the observation

of organized flow patterns in fluids. In this context, a bifurcation is a structural change in an

observed flow when one or more parameters are progressively varied. When the bifurcation

parameter crosses a critical value, a flow with certain symmetries may lose some of these

symmetries, or a steady flow may become time dependent (which is also a symmetry breaking,
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since the new flow is no longer invariant under shifts in time). A bifurcation occurs for

instance when a branch of steady or time-periodic solutions (as function of parameter) loses

its local uniqueness, in other words, it intersects another branch of different solutions and

the crossing point is called the bifurcation point. The analysis of such bifurcations is the

main tool for the understanding of the mechanism of pattern formation and appearance of

complicated dynamics in fluid flows [8].

1.2.1 Couette-Taylor Flow

In Couette-Taylor experiments a viscous incompressible fluid is confined between two

concentric rotating cylinders. In theoretical studies, e.g. [8], the cylinders are usually as-

sumed to be infinitely extended, i.e. the fluid fills the domain Q = Σ× R, where Σ denotes

the cross section of the cylinders as shown in Figure 1. In cylindrical coordinates, (r, θ, z),

the cross section Σ is defined by R1 < r < R2, θ ∈ T1, where T1 denotes the circle R/2πZ

and R1 and R2 denote the inner and outer radii of the cylinders respectively. The flow is

Figure 1: The geometry of the problem, from [8].

described by the Navier-Stokes equations on Q,

∂V

∂t
+ (V.∇)V +

1

ρ
∇ρ = ν∆V + f

∇.V = 0 (1)
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where ρ is the constant density, ν is the kinematic viscosity, p is the pressure, V is the

velocity vector of fluid particles, f is the density of external forces per unit of mass, ∇ is

the gradient, ∇. is the divergence, and ∆ is the Laplace operator. The functions V and p

depend on (x, t), with x ∈ Q often written x = (y, z), y ∈ Σ and z ∈ R. The components of

V (x, t) are (vr, vθ, vz) in cylindrical coordinates. The no-slip boundary conditions for fluid

particles on the cylinders are expressed as vr = vz = 0 and vθ = ΩjRj at r = Rj, j = 1, 2

where Ωj, j = 1, 2 respectively denote the angular velocities of the inner and outer cylinders

[8].

A rich variety of patterns occur in Taylor-Couette experiments. The patterns have a

degree of spatial and temporal symmetry. Also, as Ω1 is increased patterns become more

complicated, breaking more symmetries in space and time, leading to a turbulent regime

which contains large-scale structures with many symmetries [8].

Couette flow is the exact solution of (1) which has the form of a pure azimuthal flow

(ie. streamlines are concentric circles) and is seen when Ω2 − Ω1 is not too large [8]. If the

outer cylinder is fixed and the inner cylinder is rotated at an angular velocity Ω1, then an

instability occurs for Ω1 exceeding a value Ω1c according to Taylor [8].

Taylor’s investigation used the idealization introduced above that the cylinders were of

infinite length and with given nonzero axial periodicity [8]. The first instability he found

occurred via a stationary and axisymmetric disturbance of the Couette flow. The value of

Ω1c found was close to the ‘experimental’ value and the predicted pattern of the solution

associated with this type of disturbance was similar to the one observed in the experiment.

The flow is called Taylor vortex flow and is a superposition of horizontal vortices of length

exactly equal to half of the axial period of the basic disturbance, as seen in Figure 2a. The

flow is axisymmetric, periodic along the axis of the cylinders and stationary.

When both cylinders are rotated, in opposite directions, rich ‘routes’ to turbulence are

observed [8]. When the cylinders are co-rotating and Couette flow becomes unstable, Taylor
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(a) (b) (c)

Figure 2: (a) Taylor vortex flow. (b) Spiral flow. (c) Wavy vortex flow, [8].

vortices are usually observed in experiments. Spiral flow, seen in Figure 2b, is usually the

first instability observed when the cylinders are counter rotating [8].

Couette flow and Taylor vortex flow are stationary flows, while spiral flow and wavy

vortex flow in Figure 2b-c are time periodic and assume the form of rotating waves. Spiral

flow is also a traveling wave in the direction of the axis of the cylinders [8].

When the Reynolds number R = R1Ω1d/ν is increased, more complicated spatio-temporal

patterns are observed in the mode interaction regime. Some of them, such as the wavy

vortex flow, Figure 2c, or the interpenetrating spirals, have been observed close to primary

bifurcation curves. This stimulated theoreticians to explore such regimes by looking at higher

codimension bifurcation points on the primary bifurcation curve [8], such as those leading

to steady state-steady state, steady state-Hopf, or Hopf-Hopf mode interactions.

Additional parameters which are allowed to vary will be necessary to look at these higher

codimension bifurcation points [8]. The basic parameter is the average angular velocity,

Ω = 1/2(Ω1 + Ω2). Depending on Ω, Couette flow can lose stability by either an eigenvalue

crossing the imaginary axis at zero with axisymmetric eigenvectors (azimuthal wave number

m = 0) or by a pair of purely imaginary eigenvalues with nonzero azimuthal wave number

for the eigenmodes [8]. Both wavy vortex flow and twisted vortices are mixed mode solutions

consisting of stationary and time-periodic modes. These solutions can be studied analytically
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near a mode interaction point where both instabilities occur simultaneously when a second

parameter is fixed to a critical value. The analysis of this mode interaction is explored

further in Appendix A.

1.2.2 Rayleigh-Bénard Convection

One of the most comprehensively studied nonequilibrium fluid systems in both exper-

imental and theoretical aspects is the Rayleigh-Bénard convection. In this experiment a

viscous fluid is placed between two flat horizontal plates. Heat conductors for the plates

maintain the lower plate at a temperature above the upper plate temperature. The tem-

perature difference, ∆T , leads to the fluid near the bottom plate expanding and being less

dense than the fluid near the top plate. Assuming the density ρ depends linearly on the

temperature, the fluid from the bottom tends to rise due to the buoyancy force. For suffi-

ciently small ∆T the fluid remains at rest and heat is transported only by conduction from

the bottom plate to the top one. When the temperature difference ∆T is strong enough to

overcome the resistance effects due to viscosity, convection sets in resulting in various kinds

of Rayleigh-Bénard convective patterns.

The Rayleigh number,

R =
αg∆Td3

κν
, (2)

is one control parameter and is the dimensionless ratio of the destabilizing buoyancy force

to the stabilizing dissipative force, where α is the thermal expansion coefficient for the fluid,

g is the acceleration of gravity, ν is the kinematic viscosity, κ is the thermal diffusivity, and

d is the plate separation distance. Another dimensionless parameter, the Prandtl number,

σ =
ν

κ
, (3)

represents the ratio of the two dampening mechanisms acting on the fluid, viscosity and

thermal conductivity.
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Figure 3: Schematic representation of the idealized roll pattern from Rayleigh-Bénard con-
vection, from [10].

When R is slightly above the critical value Rc, convective rolls are observed. The growth

of the pattern is limited due to the convective flow which transports part of the heat, thus

decreasing the temperature gradient and the buoyancy force; these nonlinear effects force

the fluid to settle down to a certain level and convective rolls are formed with diameters

close to the separation distance d as illustrated in Figure 3.

Superpositions of rolls forming hexagons or squares can develop from other instabilities

and parameters of the experiment [2]. Hexagons, rolls, and squares, as shown in Figure 4,

are found in physical experiments above onset in different geometries.

Figure 4: Hexagonal, roll, and square patterns from Rayleigh-Bénard convection in different
geometries, from [2].

Increasing R further above the critical value Rc results in the convection patterns possibly

becoming complex in space and time leading to spatio temporal complexity and chaos (STC).

Factors that STC depends on are the size of system, the Rayleigh number, the Prandtl
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number, and the geometry of the experimental devices [2, 10]. As the spatial extent increases

more degrees of freedom of the STC become important.

(a) (b)

Figure 5: Two examples of STC from Rayleigh-Bénard convection under different conditions.
(b) from [26] and (a) from [30].

Two examples of STC are shown in Figure 5. In Figure 5a it is shown a complex pattern

formed experimentally exhibiting the coexistence of domains of rolls of more or less uniform

orientation when a horizontal fluid is rotated about a vertical axis [26]. Another type of

experimentally observed STC, spiral-defect chaos, consisting of moving, rotating spirals and

other defects in the roll structure is shown in Figure 5b [30]. The defects have modest lifetime

and drift about irregularly, and new defects are constantly created as old ones disappear.

A similar case to explore is where the space between the plates is filled by two fluids with

different thermal and mechanical properties. Bifurcations from the rest state, in which the

temperature profile in each fluid is linear, have been studied in [21] and steady-Hopf mode

interaction has been observed. The destabilizing mechanism is the temperature difference.

Depending on the stratification in the fluid properties, the presence of two liquids and an

interface introduces other destabilizing or stabilizing mechanisms [21]. The possible bifurcat-

ing solutions are standing rolls and traveling rolls according to Ruelle [37]. Both are unstable

if either is subcritical and one of them is stable if both are supercritical. An aspect of the
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interaction of Hopf and steady modes is that they may be subcritical and yet give birth to

a mixed mode which is stable in some parameter range. While choosing a stratification in

the thermal conductivities to stabilize the interface and choosing a Rayleigh number that is

not too far from the onset of the one-fluid problem, so as to destabilize the bulk modes, the

situation where a pair of Hopf modes with wavenumber α and a steady mode at wavenumber

2α are simultaneously at criticality was investigated in [21]. The interfacial mode and the

least stable bulk mode combine to form a complex conjugate pair which reaches criticality at

wavenumber α under these competing mechanisms. A small adverse density difference forces

the steady mode to reach criticality at 2α and surface tension effectively stabilizes shorter

waves [21].

1.2.3 Nematic Electroconvection

Electroconvection in nematic liquid crystals has been the testing system for many ex-

perimental studies and theoretical predictions for pattern formation in spatially extended

systems, [28, 4, 5], due to the wide variety of pattern formation phenomena that occur in the

system. It is also the primary example in the study of anisotropic dissipative structures. In

electroconvection, a charge carrying fluid is sandwiched between two electrode glass plates

across which an electric potential difference is applied. The molecules of nematic liquid crys-

tals are on average locally oriented along a preferred direction, called the director, unlike

ordinary isotropic fluids such as in Rayleigh-Bénard convection. The system is favored ex-

perimentally for its easily accessible control parameters, namely the amplitude and frequency

of the applied voltage, short time scales, and high aspect ratio. An electrohydrodynamic

instability combined with a transition from the uniform state to a variety of patterns can

occur when the applied voltage is above a critical value [28]. Depending on the frequency,

at onset periodic patterns of normal or oblique convective rolls are typically observed. Tran-

sitions take place either to complex spatio-temporal states, induced by defects, or to more

complicated quasi-periodic patterns when the voltage is increased.
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A unique reduced mathematical description for nematic electroconvection through four

amplitudes associated with two counter propagating pairs of traveling waves in two oblique

directions, whose dynamics are governed by corresponding Ginzburg-Landau amplitude

equations, and that takes into account the anisotropy, results in four critical wave vec-

tors with nonzero angles with respect to the director. Zag rolls refer to one pair of traveling

waves in one oblique direction, and the traveling waves in the other oblique direction are

referred to as zig rolls. Experimental observation of a variety of patterns was reported in

[17, 19, 18]. One of the patterns is an alternating-wave pattern seen in Figure 6 [19], which

results from a superposition of zig and zag standing waves, where one standing wave is one

quarter of cycle out of phase with the other. A second pattern is STC for a different set of

control parameters where spatial demodulation is performed to generate amplitudes of the

zig and zag waves in Figure 7 [17].

Figure 6: A time series of a pattern alternating between zig and zag rolls in nematic elec-
troconvection, from [19].

The weak electrolyte model (WEM) has been developed to model the electroconvection

(EC) in nematic liquid crystals [40]. The WEM is a particular case of an axially anisotropic,

dissipative system with two extended dimensions (x, y). In such systems the axial anisotropy

induces reflection and translation invariance in both extended directions, thus the underly-

ing symmetry group is E(1)×E(1) which compactifies to O(2)×O(2) if periodic boundary

conditions are imposed [32]. The WEM is an extension of the standard model [6] by includ-
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Figure 7: Left: an example of STC in nematic electroconvection. The maxima and minima
are mapped to blue and red, respectively. Middle: the envelope of the zig rolls. Right: the
envelope of the zag rolls, from [17].

ing the slow dissociation-recombination process of the charge carrying ions and the ohmic

behavior replaced by the dynamics of two species of oppositely charged mobile ions. It

provides a basis for understanding the Hopf bifurcation which predicts the travelling wave

patterns observed experimentally, as was studied in [12, 29, 43]. Above the critical value

of the applied voltage an electohydrodynamic instability combines with a transition from

the uniform state to show a variety of patterns such as stationary and travelling rolls and

complex spatiotemporal structures (worms, defects, and spatiotemporal chaos). As shown

in Figure 8, so far there has been fair agreement between the analysis of the WEM and ex-

periments, but more accurate numerical computation for other parameters and other types

of instabilities are necessary to test the validity of the WEM [12]. At onset, the WEM can

Figure 8: On the left, a zig-zag chaos pattern seen experimentally [17]. On the right, a
pattern computed numerically [33].

show an oscillatory or stationary instability either of which can lead to oblique or normal
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rolls depending on the parameters. This allows for the occurence of steady-oscillatory mode

interactions.

Physicists at Kent State University studied the nematic mixture Phase V in the standard

planar EC geometry, and observed a discontinuous jump in the Hopf frequency from zero

(stationary state) to over 20 rad/sec as the driving frequency is increased along the thresh-

old curve [1]. Measurements of the wave vector components also exhibit an abrupt jump in

their values at the oblique stationary to normal traveling transition regime. The stationary

oblique (OS), Figure 9a, and normal traveling (NT), Figure 9b, patterns during electro-

convection were recorded using shadowgraph technique [35]. This experimentally observed

steady oblique - Hopf normal traveling behavior can be understood through a straightfor-

ward consideration of the relevant amplitude equations near this codimension-2 bifurcation

point.

(a) (b)

Figure 9: (a) Experimentally observed stationary oblique rolls. (b) Experimentally observed
normal traveling rolls.

In recent experiments in a box with large aspect ratios, a jump in the Hopf frequency

from zero to over 20 rad/sec was observed experimentally as the driving (AC) frequency

was increased above a critical value [1], meaning that there were oblique stationary rolls at

lower frequencies and normal traveling rolls at higher frequencies. The critical AC frequency

and the corresponding electroconvective threshold voltage determine the mode interaction
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point [1], further implying that the mode interaction is caused by the same minimal voltage

for two neutral stability surfaces. The two fixed parameters imply that we are dealing

with a codimension-two bifurcation point with a discontinuity in the Hopf frequency, wave

numbers, and roll angle [1]. This stationary-Hopf mode interaction can be modeled by four

two-dimensional anisotropic Ginzburg-Landau equations to describe the time evolution of

the amplitudes [1].

The minimum of a neutral stability surface in (V, p2, q2)-space determines the critical

onset voltage where V is the applied voltage and p, q are the horizontal and vertical wave

numbers [1]. Let Vs(p
2, q2, ω0) be the stationary neutral stability surface with minimum

Vsc(ω0) = Vs(p
2
sc, q

2
sc, ω0), where ω0 is the circular frequency of the applied ac-voltage. Also,

let Vo(p
2, q2, ω0) to be the oscillatory neutral stability surface with minimum Voc(ω0) =

Vo(p
2
oc, q

2
oc, ω0) and Hopf frequency ωH(ω0) at criticality [1]. Experimentally normal traveling

rolls were observed leading to qoc(ω0) = 0 and at the critical value of the AC frequency

Voc(ωoc) = Vsc(ωoc) [1]. Also, Voc(ω0) > Vsc(ω0) if ω0 < ωoc and Voc(ω0) < Vsc(ω0) if ω0 > ωoc.

From this we deduce that the critical wave numbers at onset are (psc(ω0), qsc(ω0)) for ω0 < ωoc

and (poc(ω0), 0) for ω0 > ωoc. The codimension-two mode interaction point, ω0 = ωoc, is

determined by setting V = Vsc(ωoc) = Voc(ω0), and is associated with the normal traveling

rolls frequency ωH(ωoc) [1]. A jump is expected in both the horizontal and vertical critical

wave numbers since there is no relation between the locations of the minima on the two

neutral stability surfaces [1]. Two transition scenarios are possible, either it is a continuous

transition via a stable mixed mode branch or a region with bistability and an unstable

mixed mode branch leading to a hysteretic transition. The experiments do not yet provide

evidence which of the two scenarios is present in the physical system. Further experiments

and a thorough analysis of the recorded patterns is necessary to discriminate between the two

scenarios. The next step in the theoretical analysis of the mode interaction is a numerical

study of the patterns predicted by the globally coupled Ginzburg Landau equations. The two
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normal form scenarios described lead to somewhat different spatiotemporal patterns which

will hopefully provide further criteria allowing to distinguish between them in experiments.

In Section 3 we will describe and study analytically the Ginzburg-Landau equations in

detail, and in Section 4 we will describe their numerical simulations in the case of mode

interactions.

1.3 Symmetry and Equivariance

The spontaneous breaking of the symmetry leads to pattern formation [10]. The concept

of a symmetry of a dynamical system and the concept of a symmetry of a pattern, which is a

solution of the governing equations of the dynamical system, in terms of equivariant theory

are required to formalize pattern formation from a symmetry point of view [9, 22, 23].

To simplify the discussion, we consider here finite dimensional dynamical systems. The

extension to infinite dimensional dynamical systems including systems of PDEs such as (1)

is straightforward, but requires additional technical considerations that are not relevant from

a symmetry perspective.

Let the dynamical system in Rn be written as

dx

dt
= f(x, λ), (4)

where the smooth vector field f : Rn × Rr → Rn depends on a set of parameters λ ∈ Rr.

Also, assume γ is an n× n invertible matrix. Define a symmetry of a dynamical system as

Definition 1 The invertible n×n matrix γ is a symmetry of (4) if for every solution x(t) ∈ Rn

of (4), γx(t) is also a solution.

Both γ−1 and γδ satisfy Definition 1 if γ and δ are invertible matrices satisfying Definition

1. Thus, the set of symmetries of a dynamical system forms a group. Now, extend the concept

of a symmetry in Definition 1 from a matrix to an abstract group element by representation

theory and call an element γ of a group Γ a symmetry of the dynamical system (4) if there is
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a representation Tγ acting on Rn such that the matrix Tγ satisfies the hypothesis of Definition

1 (for ease of notation write γx ≡ Tγx).

However, a more useful condition than Definition 1 is needed to determine whether a

group element γ is a symmetry of a dynamical system (4). Suppose y(t) = γx(t) is another

solution of (4) then

ẏ(t) = f(y(t)) = f(γx(t)) (5)

and

ẏ(t) = γẋ(t) = γf(x(t)). (6)

Thus,

f(γx(t)) = γf(x(t)) (7)

for all solutions x(t) of (4). Since solutions exist for any arbitrary initial conditions this is

equivalent to

f(γx) = γf(x) for all x ∈ Rn. (8)

This gives equivariance.

Definition 2 (Γ-equivariance) Let Γ act on Rn and let f : Rn × Rr → Rn in (4). Then f

is Γ-equivariant and Γ is a symmetry group for (4) if f(γx, λ) = γf(x, λ) for all γ ∈ Γ,

x ∈ Rn.

Next, we need to formalize the notion of the symmetry of a pattern created in an equiv-

ariant dynamical system. In a finite dimensional setting, a pattern is defined as an element

x in the vector space Rn in which (4) is posed. The symmetry of the pattern x is a group

element σ from Γ in definition 2 such that σx = x. The set of all such σ’s also preserves a

group structure and the resulting group is known as the isotropy subgroup of x, as defined

in Definition 3.
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Definition 3 (Isotropy subgroup) Let v ∈ Rn. The isotropy subgroup of v is

Σv = {σ ∈ Γ : σv = v}. (9)

A pattern’s isotropy subgroup can provide useful information. Using all isotropy sub-

groups of the system a technique for finding solutions with specific symmetries can be de-

veloped. In order to classify different isotropy subgroups we need the following definition.

Definition 4 (Group orbit) Let x ∈ Rn and γ ∈ Γ. The group orbit of x is

Γx = {γx : γ ∈ Γ}. (10)

From Definition 4, the conjugacy property, Σγx = γΣxγ
−1, is apparent. This leads to

the isotropy subgroup of γx being a conjugate subgroup of the isotropy subgroup of x. One

considers conjugate isotropy subgroups to be different realizations of the same symmetry and

classifies patterns in terms of conjugacy classes of isotropy subgroups, by which we mean the

set of all conjugates of a given isotropy subgroup. The relations between different conjugacy

classes are defined by containment. We define the following abstract structure to formalize

this concept.

Definition 5 (Conjugacy classes) Let H = {Hi} and K = {Kj} be two conjugacy classes of

isotropy subgroups of Γ. Define a partial ordering ≤ on the set of such conjugacy classes by

H ≤ K ⇔ Hi ⊆ Kj (11)

for some representatives Hi, Kj. The isotropy lattice of Γ in its action on Rn is the set of

all conjugacy classes of isotropy subgroups, partially ordered by ≤.

The isotropy lattice classifies all possibilities for a pattern to break symmetry and can

be arranged in a hierarchy with the property that smaller isotropy subgroups correspond to

breaking more symmetries. Using the structure of the isotropy lattice for a given symmetry
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group, a systematic method to search for patterns with any possible symmetries is given in

the following definition.

Definition 6 (Fixed-point subspace) Let Σ ⊆ Γ be a subgroup. The fixed-point subspace of Γ

is

Fix(Σ) = {v ∈ Rn : σv = v,∀σ ∈ Σ}. (12)

The following theorem is important to the development of the theory of equivariant

dynamics.

Theorem 1 Let f : Rn → Rn be Γ-equivariant and let Σ ⊆ Γ be a subgroup. Then

f(Fix(Σ)) ⊆ Fix(Σ). (13)

Theorem 1 implies that the dynamics of a pattern with isotropy subgroup Σ is restricted to

the subspace Fix(Σ). Therefore to seek a pattern from a dynamical system with isotropy

subgroup Σ, we restrict the search to the subspace Fix(Σ). The searching problem is posed

in a space of lower dimension and ought to be simpler, unless Fix(Σ) is the whole space

Rn. The larger Σ is, the smaller is the dimension of Fix(Σ). We can start with the largest

subgroups in the lattice of isotropy subgroups and work down the lattice systematically to

determine patterns of the system with successively lower symmetries. This means working

from the larger isotropy subgroups down to the smaller ones.
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2 Mathematical Approaches to Pattern Formation

Systems of Ginzburg Landau equations are commonly used to describe pattern forma-

tion in spatially extended, dissipative systems. The equations govern the evolution of slowly

varying envelopes of periodic spatiotemporal patterns determined by a linear stability anal-

ysis of a basic, homogeneous solution of a system of PDEs. The stationary bifurcation in

systems with one extended spatial direction (one dimensional systems) leads to a standard

real one-dimensional Ginzburg Landau equation for a single envelope of a spatially periodic,

but temporally constant plane wave pattern. The Hopf bifurcation in one dimensional sys-

tems requires two envelopes for two counterpropagating traveling waves. The basic patterns

are now periodic in space and time. It is complicated further by the group velocity of these

waves being finite and energy being transported fast, thus the waves interact on average

rather than locally in space. This leads to two globally coupled Ginzburg Landau equations

for the envelopes of the two traveling waves. In the two dimensional Hopf bifurcation case

the linear stability analysis leads to two pairs of counterpropagating waves in two oblique

directions. This means that there are four possible basic wave patterns, thus four envelopes

are needed to describe the instability. The finite group velocities lead to a system of four

globally coupled Ginzburg Landau equations for the envelopes. The four complex Ginzburg-

Landau equations derived in [15] are used to study evolution of traveling envelopes arising in

a weakly nonlinear analysis of the WEM equations. A comprehensive bifurcation analysis of

the WEM demonstrating the existence of a primary Hopf instability involving four oblique

rolls was pursued in [12, 13].
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2.1 Mode Interactions

2.1.1 Generic Instabilities

The solutions of a system of differential equations can change depending on the param-

eters. A small change in the parameter commonly leads to a small change in the behavior

of the solutions. Near certain critical parameter values, a small change in the parameter

can lead to a qualitative change in the long-term behavior of the solutions. The parameter

values where such a change occurs are called a bifurcation points [39]. Consider the following

equation

dz

dt
= F (z, R), (14)

where z ∈ Rn, t ∈ R, R represents the bifurcation parameters, and F ∈ Ck(Rn,Rn) for a

large enough integer k. The points z∗ where F (z∗, R) = 0 are the equilibrium points of the

system.

A local bifurcation occurs when the Jacobian matrix, DF =
(
∂Fi(z,R)
∂zj

)
i,j=1,...,n

, evaluated

at an equilibrium has eigenvalues on the imaginary axis [23]. As R is increased, the first

eigenvalues with zero real part are called ‘critical’ eigenvalues. The surface where a critical

eigenvalue has zero real part is a neutral stability surface in the parameter space. A steady

state/stationary bifurcation occurs when the critical eigenvalue is zero. A Hopf/oscillatory

bifurcation occurs when there is a pair of nonzero purely imaginary critical eigenvalues.

‘Modes’ commonly refers to the eigenfunctions corresponding to the eigenvalues of the

Jacobian matrix [23]. A mode is stable if the real part of the eigenvalue is negative and

unstable if the real part is positive. When the eigenvalue is positive the eigenfunction

‘increases’ without bound, in contrast when the eigenvalue is negative the eigenfunction is

bounded.

A single local bifurcation that depends on one parameter is called a codimension-one

bifurcation. Thus, two local bifurcations occurring simultaneously is called a (local)

codimension-two bifurcation or mode interaction [23]. The two modes involved in mode
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interactions are usually coupled by the nonlinear terms, which often combines the behaviors

of the two modes to create more complicated behavior than is expected from them separately

[23].

2.1.2 Generic Mode Interaction

For a linear stability analysis of a system of nonlinear PDEs for field variables U(t,x),

the PDEs are separated into linear, L(∇, R, µ), and nonlinear, N , parts

∂U

∂t
= L(∇, R, µ)U +N(∇, U,R, µ), (15)

where R is the main bifurcation parameter, such as the Rayleigh number in Rayleigh Bénard

convection, and µ is another parameter (e.g. a material parameter). Also, let x = (x, z),

with the horizontal (x) direction infinitely extended, −∞ < x < ∞, while the vertical (z)

direction is bounded, 0 < z < d.

The ansatz U(t,x) = eσteikxUk(z) is used to transform the linearized equation of (15) to

the eigenvalue problem,

L(ik, ∂z, R, µ)Uk = σ(k,R, µ)Uk. (16)

A countable set of eigenvalues, σm(k,R, µ) with m = 1, 2, ..., results from z being bounded.

Since, in general,

σm(k,R, µ) = σmr(k,R, µ) + iωm(k,R, µ), (17)

the mode eikxUk(z) is neutrally (or marginally) stable if σm(k,R, µ) = 0. Assuming this

equation can be solved for R for each m, R = Rm(k, µ), we have for fixed µ a countable

set of neutral stability curves Rm(k, µ) in the (k,R)-plane. Typically, each of these curves

has a minimum Rmc at a wave number kmc(µ), Rmc(µ) = Rm(kmc(µ), µ). The instability

of the basic state (U = 0) sets in when R exceeds the lowest of these minima, i.e. for
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R below this value σmr < 0 for all m and k and the basic state is asymptotically stable.

Assuming that the lowest minimum occurs for m = 1, the “onset value” or “critical value”

of R is Rc(µ) = Rc1(µ) and the corresponding wave number is referred to as the “critical

wave number”, kc(µ) = kc1(µ). The neutral stability curve R1(k, µ) for fixed µ is sketched

in Figure 10. The type of instability at Rc can be stationary (ω1(kc, µ) = 0) or oscillatory

Figure 10: Neutral Stability curve either stationary or oscillatory.

(ω1(kc, µ) 6= 0).

If µ is varied, the minima Rmc(µ) vary as well, and it may happen for a critical value,

µc, of µ that two minima, say Rc1 and Rc2, coincide with Rmc > R1c = R2c for m > 2. This

gives rise to a codimension-two linear mode interaction as illustrated in Figure 11.

Figure 11: Neutral Stability curves either stationary or oscillatory at a mode interaction.

There are three types of codimension-two linear mode interactions:
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(i) Steady-state/steady-state mode interaction which has two stationary bifurcations,

(ii) Steady-state/Hopf mode interaction which has one stationary bifurcation and one os-

cillatory bifurcation, and

(iii) Hopf/Hopf mode interaction which has two oscillatory bifurcations [22].

The usual multiple bifurcation phenomenon is that of steady-state/steady-state mode in-

teractions, which is when two different stationary modes simultaneously bifurcate from a

trivial solution of an evolution equation. This mode interaction may occur, for example, in

reaction-diffusion equations [11]. Both steady-state/Hopf and Hopf/Hopf mode interaction

can occur for different parameters in viscoelastic Taylor-Couette flow [36]. We present in

Appendix A the derivation of amplitude equations in the case of the interaction of an ax-

isymmetric mode and a nonaxisymmetric mode. Boussinesq magnetoconvection also shows

steady-state/Hopf mode interaction under specific conditions [16].

The steady-state/Hopf interaction is the one of interest and has been studied in various

systems [1, 8]. An example of an anisotropic system exhibiting steady state-Hopf mode

interaction is the electroconvection of the nematic mixture Phase V [1]. Previously, the

Phase V sample was sandwiched in a “channel” (thin cell in one direction) and exhibited a

transition from traveling to stationary normal rolls at the critical frequency. One-dimensional

Ginzburg-Landau equations sufficed to describe the amplitudes.

Following is an overview of the Ginzburg Landau equations in one and two dimensions.

2.2 Derivation of the One-Dimensional Ginzburg-Landau Equation

To derive the Ginzburg-Landau equations, we begin with a linear stability analysis of a

nonlinear PDE for field variables U(t,x). As in Section 2.1.2, the PDE is separated into a

linear, L(∇, R), and a nonlinear, N , part

∂U

∂t
= L(∇, R)U +N(∇, U,R), (18)
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where here we consider only one bifurcation parameter, R.

In the case of a one-dimensional stationary bifurcation, we let x = (x, z) with the hor-

izontal (x) direction infinitely extended, −∞ < x < ∞, while the vertical (z) direction

is bounded, 0 < z < d. The ansatz U(t,x) = eσteikxUk(z) leads again to the eigenvalue

problem,

L(ik, ∂z, R)Uk = σ(k,R)Uk, (19)

with a countable set of eigenvalues, σm(k,R), m = 1, 2, .... For R below a critical Rc, all

eigenvalues have negative real parts. At the onset of instability, R = Rc, a single eigenvalue,

σ1, has zero real part. This eigenvalue is referred to as the critical eigenvalue.

Since we are dealing with a stationary bifurcation, the critical eigenvalue σ(k,R) ≡

σ1(k,R) is real and the neutral stability curve is defined by

σ(k,R) = 0. (20)

Usually the equation (20) has a smooth solution called the stationary neutral stability curve,

R = Rs(k), with a minimum Rc = Rs(kc) at a ‘critical’ wave number kc. The critical

eigenvalue σ(k,R) is negative below this curve and positive above it. Thus, below this curve

the basic solution is stable. For R − Rc ∼ ε2, where ε is small and R > Rc, there is a band

of linearly unstable wave numbers, k, around kc for which σ(k,R) > 0 [20].

The minimum Rc, of Rs(k), is also attained at −kc when the governing PDE is invariant

under the reflection operation x→ −x. Thus, when R = Rc the linearized PDE, ∂U
∂t

= LU ,

has the non-decaying, temporally constant and spatially periodic solution

U(x) = Uc(z)e±ikcx (21)
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where Uc = Ukc is the critical vertical mode. Near (kc, Rc) the eigenvalue σ(k,R) can be

expanded as

σ(k,R) = α(R−Rc) + d(k − kc)2 + ... (22)

where α = ( ∂σ
∂R

)c and d = 1
2
(∂

2σ
∂k2

)c and the subscript c means the expression is evaluated at

(kc, Rc). For the solution of the linearized problem we make the ansatz

U(t,x) = A(t, x)eikcxUc(z) + cc (23)

where cc denotes the complex conjugate expression and A(t, x) is a small and slowly varying

complex amplitude. We then use the relationship ik ↔ ∂
∂x

to derive the linear PDE for A

from σ. With (22) truncated at the quadratic term, this gives

∂A

∂t
= λA+ d

∂2A

∂x2
(24)

with λ = α(R − Rc) [20]. Using a weakly nonlinear analysis, this equation can be extended

to a nonlinear equation for A whose solutions correspond to asymptotic solutions of the

original PDE (18) via (23). The symmetries of (18) restrict the symmetries of this equation.

The translation invariance of (18) requires the invariance of the PDE for A against phase

shift transformation, A→ eikcξA. The reflection x→ −x gives eikcx → e−ikcx. The reflection

invariance of (18) requires the invariance of the PDE for A against A → Ā (where the bar

denotes complex conjugate). Under these symmetry operations, the only invariant nonlinear

term up to cubic order is a|A|2A with a real parameter a [20]. Thus up to cubic order the

nonlinear extension of the PDE for A is

∂A

∂t
= λA+ d

∂2A

∂x2
+ a|A|2A. (25)
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Considering only values of R slightly above Rc, we rescale the PDE (25) using X = εx,

T = ε2t, and A = εB. This results in

∂B

∂T
= ΛB + d

∂2B

∂X2
+ a|B|2B (26)

where Λ = α(R−Rc)/ε
2 is the rescaled bifurcation parameter. Since it has real coefficients,

(26) is called the “real Ginzburg-Landau equation”. The nonlinear coefficient a is uniquely

determined by the quadratic and cubic terms of N [20]. If a < 0 the solutions of (26) are

bounded and evolve toward a stationary solution and the bifurcation is called supercritical.

On the other hand, if a > 0 the solutions may grow without bound and the bifurcation is

called subcritical. In the supercritical case, the main property of the solutions manifold of

(26) is many kink-like stationary solutions, which induce wave number jumps in the solution

of the original PDE [20].

The case of a one-dimensional Hopf bifurcation is similar except that the critical eigen-

value is complex,

σ(k,R) = σr(k,R) + iω(k,R). (27)

This means that σr(k,R) = 0 defines the oscillatory neutral stability curve. The critical

frequency is the frequency at the minimum of the neutral stability curve, ωc = ω(kc, Rc). A

pair of counterpropagating traveling wave solutions,

U(t,x) = eiωte±ikcxUc(z), (28)

is possible at criticality of the linearized problem. Two small and slowly varying complex

envelopes, Al and Ar, for left and right traveling waves must be introduced to describe the

non-decaying solutions of the linearized problem,

U(t,x) = eiωct(Al(t, x)eikcx + Ar(t, x)e−ikcx)Uc(z) + cc. (29)
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Expanding σ(k,R) about (kc, Rc) leads to the PDE-system for Al, Ar. The complex σ ex-

pansion is

σ(k,R) = iωc + α(R−Rc) + iv(k − kc) + d(k − kc)2 + ... (30)

with the critical group velocity, v = (∂ω/∂k)c, and α and d defined as in stationary case.

However, while v is real, α and d are usually complex. Due to the v-term, the expansion

about (−kc, Rc),

σ(k,R) = iωc + α(R−Rc)− iv(k − kc) + d(k − kc)2 + . . . , (31)

is slightly different. Translating the critical eigenvalue into a differential operator leads to

linear equations for Al and Ar. The equation for Al comes from the expansion about kc and

the equation for Ar comes from the expansion about −kc,

∂Al
∂t
− v∂Al

∂x
= α(R−Rc) + d

∂2Al
∂x2

∂Ar
∂t

+ v
∂Ar
∂x

= α(R−Rc) + d
∂2Ar
∂x2

. (32)

These equations can be extended to nonlinear equations for solutions of the full PDE and

the form of the equations is found again through symmetry considerations. Translation,

x→ x+ ξ, causes opposite phase shifts for the two envelopes,

(Al, Ar)→
(
eikcξAl, e

−ikcξAr
)
. (33)

Reflection, x→ −x, flips the envelopes,

(Al, Ar)→ (Ar, Al) . (34)
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Since the basic patterns are time dependent and the original PDE is also time translation

invariant, the invariance caused by t→ t+ τ leads to

(Al, Ar)→
(
eiωcτAl, e

iωcτAr
)
. (35)

The terms (|Al|2Al, |Ar|2Ar) and (|Ar|2Al, |Al|2Ar) are the only terms up to cubic order that

are invariant under the operations (33)-(35) [20]. This leads to the nonlinear extension of

(32) having the form

∂Al
∂t
− v∂Al

∂x
= α(R−Rc) + d

∂2Al
∂x2

+ (a|Al|2 + b|Ar|2)Al

∂Ar
∂t

+ v
∂Ar
∂x

= α(R−Rc) + d
∂2Ar
∂x2

+ (a|Ar|2 + b|Al|2)Ar (36)

with two complex coefficients a and b [27].

Unfortunately (36) can not be directly rescaled. Since if x is rescaled by X = εx,

the first and second x-derivatives in (36) are of different orders. A way around this is to

notice the terms on the left hand side are defined by first order wave operators. Because

∂A/∂t∓ v∂A/∂x = 0 has the solution A = f(x± vt), we can let ξ± = ε(x/v± t) and T = ε2t

which are of order ε. The expansions

Al(t, x) = εBl(ξ+, T ) + ε2Cl(ξ+, ξ−, T ) + . . .

Ar(t, x) = εBr(ξ−, T ) + ε2Cr(ξ+, ξ−, T ) + . . . (37)

are then substituted into (36). Because of the first order of wave operators, the equations

are automatically satisfied at order O(ε2). At order O(ε3), we have the equation

−2
∂Cr
∂ξ−

= −∂Bl

∂T
+ ΛBl +D

∂2Bl

∂ξ2
+

+ (a|Bl|2 + b|Br|2)Bl (38)
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with Λ = α(R − Rc)/ε
2 and D = d/v2. The condition that this equation has a bounded

solution, Cr, requires that the average on the right hand side vanishes. The argument for Cl

is similar. The system of equations for Bl, Br is then obtained as

∂Bl

∂T
=

(
Λ +D

∂2

∂ξ2
+

+ a|Bl|2 + b < |Br(T, ζ)|2 >
)
Bl

∂Br

∂T
=

(
Λ +D

∂2

∂ξ2
−

+ a|Br|2 + b < |Bl(T, ζ)|2 >
)
Br (39)

where the bracket denotes the average over ζ

< f(ζ) >= lim
L→∞

1

2L

∫ L

−L
f(ζ)dζ. (40)

The pair of equations (39) is the system of globally coupled Ginzburg Landau equations

introduced by Knobloch and deLuca [27]. If spatial (ξ+, ξ−) dependence is ignored (39)

reduces to the ODE-system

∂Bl

∂T
=

(
Λ + a|Bl|2 + b|Br|2

)
Bl

∂Br

∂T
=

(
Λ + a|Br|2 + b|Bl|2

)
Br. (41)

The system (41) is known as the normal form for a Hopf bifurcation with O(2)-symmetry.

The non-transient solutions, for generic a, b, are of the form

• (Bl, Br) = BeiΩt(1, 1) corresponding to standing waves and

• BeiΩt(1, 0) and BeiΩt(0, 1) corresponding to left and right traveling waves.

Substituting the solution ansatz into (41) gives the frequency Ω and the amplitude B. In

the framework of the ODE-system (41), the stability of these solutions can be classified in

terms of the real parts of a and b [27].
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2.3 Derivation of the Two-Dimensional Ginzburg-Landau Equations

In what follows we will describe the derivation of the globally coupled Ginzburg Landau

equations in two dimensions for an extended system that is reflection invariant about the

x- and y-axis. We start by looking at the Hopf bifurcation for the PDE (18) in a three

dimensional layer,

x = (x, y, z), −∞ < x, y <∞, 0 < z < d. (42)

Now we assume that (18) is reflection invariant about the x- and y-axes and anisotropic (i.e.

not rotationally invariant).

The Fourier transformed eigenvalue problem for the linearized PDE is

L(ik, ∂z, R)Uk = σUk (43)

and depends on two horizontal wave numbers k = (p, q). As in the previous one dimensional

Hopf bifurcation case, we assume there is a complex critical eigenvalue

σ(p, q, R) = σr(p, q, R) + iω(p, q, R). (44)

The neutral stability surface R = Rh(p, q) in the three dimensional (p, q, R)-space is defined

by σr(p, q, R) = 0. Suppose σr < 0 for R < Rh and Rh(p, q) has a minimum Rc which

identifies the onset of instability of the basic state. Because the system has two reflection

invariances, the p-axis and q-axis are symmetry axes of the neutral stability surface R = Rh.

Also, the minimum is either at the origin, on a symmetry axis, or off both symmetry axes.

We will consider only the case where the minimum is not on a symmetry axis. Thus, there

are four minima at (±pc,±qc) with pc, qc both nonzero because of the reflection invariances.

The derivation of the Ginzburg Landau equations is similar to the one dimensional case.

The linearized system has four traveling wave solutions in four oblique directions when

R = Rc. Thus the solution slightly above the instability threshold, Rc, can be represented
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as

U(t,x) = eiωct
(
A1(t, x, y)ei(pcx+qcy) + A2(t, x, y)ei(−pcx+qcy)+

A3(t, x, y)ei(−pcx−qcy) + A4(t, x, y)ei(pcx−qcy)
)
Uc(z) + cc (45)

with four slowly varying complex envelopes A1, A2, A3, A4 [14]. In order to find the form of

the linear part of the equations for these envelopes, the critical eigenvalue is expanded about

(pc, qc, Rc),

σ(p, q, R) = iω0 + α(R−Rc) + ivxδp+ ivyδq + d20δp
2 + d11δpδq + d02δq

2 + . . . (46)

where δp = p− pc and δq = q − qc. The parameters, α, d20, d11, d02, are usually complex but

the two critical group velocities are real. Translating the expansion of σ about (pc, qc) into

a differential operator in physical space leads to the linear part of the equation for A1.

The symmetry invariance of the original system is used to determine the nonlinear terms.

Translations of x, y, t and reflections of x, y induce the following operations on the envelopes

in two dimensions

• x→ x+ ξ: (A1, A2, A3, A4)→ (eipcξA1, e
−ipcξA2, e

−ipcξA3, e
ipcξA4),

• y → y + η: (A1, A2, A3, A4)→ (eiqcηA1, e
iqcηA2, e

−iqcηA3, e
−iqcηA4),

• t→ t+ τ : (A1, A2, A3, A4)→ eiωcτ (A1, A2, A3, A4),

• x→ −x: (A1, A2, A3, A4)→ (A2, A1, A4, A3), and

• y → −y: (A1, A2, A3, A4)→ (A4, A3, A2, A1).

There are five independent cubic terms and no quadratic terms which are invariant under

these operations.
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Combining the linear part taken from the expansion of σ with the nonlinear terms found

using symmetry considerations leads to the equation for A1 becoming

∂A1

∂t
− vx

∂A1

∂x
− vy

∂A1

∂y
=

(
λ+ d20

∂2

∂x2
+ d11

∂2

∂x∂y
+ d02

∂2

∂y2
+

4∑
i=1

ai|Ai|2
)
A1

+a5A2Ā3A4. (47)

Applying the reflections (x, y) → (−x, y), (x, y) → (−x,−y), and (x, y) → (x,−y) to

equation (47) gives the equations for A2, A3, A4 respectively [14].

Since equation (47) involves first and second order spatial derivatives, we need to note

that the first order derivative terms form the spatial part of a first order wave operator

applied to A1. This leads to again introducing slowly varying wave variables

ξ± = ε

(
x

vx
± t
)
, η± = ε

(
y

vy
± t
)

(48)

and the time T = ε2t to deal with the wave operator. These variables are related by

ξ+ + ξ− = η+ + η− = εt, (49)

thus they are not independent.

The expanded version of A1(t, x, y) is

A1(t, x, y) = εB1(T, ξ+, η+) + ε2C1(T, ξ+, η+, ξ−) + . . . . (50)

The equations for A2, A3, A4 are similarly expanded with

B2 = B2(T, ξ+, η−), B3 = B3(T, ξ−, η−), B4 = B4(T, ξ−, η+). (51)
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Substituting these expansions into (47) yields an equation of the form

−2
∂C1

∂ξ−
= F (A1, A2, A3, A4). (52)

Since C1 must be bounded the average of F with respect to ξ− needs to vanish, which leads

to an equation for B1. Finding equations for B2, B3, B4 from the expansion for A2, A3, A4 is

similar. The explicit form of the resulting coupled system is

∂B1

∂T
=

(
Λ +D(∂ξ+ , ∂η+) + a1|B1|2 + a2 < |B2(T, ζ, η+)|2 >

+a3 < |B3(T, ζ − ξ+, ζ − η+)|2 > +a4 < |B4(T, ξ+, ζ)|2 >
)
B1

+a5 < B2(T, ζ − ξ+, η+)B̄3(T, ζ − ξ+, ζ − η+)B4(T, ξ+, ζ − η+) >,

∂B2

∂T
=

(
Λ +D(∂ξ− , ∂η+) + a1|B2|2 + a2 < |B1(T, ζ, η+)|2 >

+a3 < |B4(T, ζ − ξ−, ζ − η+)|2 > +a4 < |B3(T, ξ−, ζ)|2 >
)
B2

+a5 < B1(T, ζ − ξ−, η+)B̄4(T, ζ − ξ−, ζ − η+)B3(T, ξ−, ζ − η+) >,

∂B3

∂T
=

(
Λ +D(∂ξ− , ∂η−) + a1|B3|2 + a2 < |B4(T, ζ, η−)|2 >

+a3 < |B1(T, ζ − ξ−, ζ − η−)|2 > +a4 < |B2(T, ξ−, ζ)|2 >
)
B3

+a5 < B4(T, ζ − ξ−, η−)B̄1(T, ζ − ξ−, ζ − η−)B2(T, ξ−, ζ − η−) >,

∂B4

∂T
=

(
Λ +D(∂ξ+ , ∂η−) + a1|B4|2 + a2 < |B3(T, ζ, η−)|2 >

+a3 < |B2(T, ζ − ξ+, ζ − η−)|2 > +a4 < |B1(T, ξ+, ζ)|2 >
)
B4

+a5 < B3(T, ζ − ξ+, η−)B̄2(T, ζ − ξ+, ζ − η−)B1(T, ξ+, ζ − η−) > . (53)

The second order differential operator, D, is defined by

D(∂ξ, ∂η) = D20∂
2
ξ +D11∂xi∂η +D02∂

2
η (54)
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Table 1: Different patterns of solutions.

Name Description (B1, B2, B3, B4)
TW oblique traveling wave BeiΩt(1, 0, 0, 0)
TRy traveling rectangle in the y-direction BeiΩt(1, 1, 0, 0)
TRx traveling rectangle in the x-direction BeiΩt(1, 0, 0, 1)
SW oblique standing wave BeiΩt(1, 0, 1, 0)
SR standing rectangle BeiΩt(1, 1, 1, 1)
AW alternating wave BeiΩt(1, i, 1, i)

with rescaled coefficients

D20 =
d20

v2
x

, D11 =
d11

vxvy
, D02 =

d02

v2
y

. (55)

The brackets denotes the average with respect to ζ as before.

Ignoring the dependence on the wave variables reduces (53) to the ODE-system

dB1

dT
=
(
Λ + a1|B1|2 + a2|B2|2 + a3|B3|2 + a4|B4|2

)
+ a5B2B̄3B4,

dB2

dT
=
(
Λ + a1|B2|2 + a2|B1|2 + a3|B4|2 + a4|B3|2

)
+ a5B1B̄4B3,

dB3

dT
=
(
Λ + a1|B3|2 + a2|B4|2 + a3|B1|2 + a4|B2|2

)
+ a5B4B̄1B2,

dB4

dT
=
(
Λ + a1|B4|2 + a2|B3|2 + a3|B2|2 + a4|B1|2

)
+ a5B3B̄2B1. (56)

The system (56) is referred to as the normal form for a Hopf bifurcation with O(2)×O(2)-

symmetry. It has been studied in [38, 42, 29]. For generic values of the coefficients (56), it

has the six basic non-transient types of solutions in the Table 1. The frequency Ω and the

amplitude B follow by substituting the solution into (56) and the stability can be classified

in terms of the coefficients ai.

2.4 Globally Coupled Ginzburg-Landau Equations for the WEM

The constitutive equations which form the weak electrolyte model (WEM) are derived

from the Navier-Stokes equation for an anisotropic electrically conduction fluid, the conser-
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vation of charge, Poisson’s law, and a partial differential equation for the conductivity [32].

A weakly nonlinear analysis at the onset is particularly useful since the WEM equations for

a fully three-dimensional numerical simulation are complicated [32].

The superposition of oblique-steady and normal-traveling modes represented by

u(t, x, y, z) = ε(AeipscxUs+(z) +Be−ipscxUs−(z))eiqscy +

ε(CeipocxUo+(z) +De−ipocxUo−(z))eiωHct + cc+O(ε2) (57)

describes the dynamics of patterns above threshold. The field variables of the WEM (veloc-

ities, electric potential, director, conductivity) are represented by u, ε is a small parameter

such that ε2 ∼ |V/Vc−1|, Us±(z) and Uo±(z) are vertical critical modes, and cc is the complex

conjugate expression [32]. The slowly varying complex envelopes of the oblique-stationary

(OS) rolls, A and B, and the counter-propagating normal traveling (NT) rolls, C and D,

are functions of a slow time T = ε2t and slow space variables. The amplitudes A and B

depend on (ξ, η) = (εx, εy). The amplitudes C and D depend on (ξ+, η) and (ξ−, η) when

ξ± = ε(x ± vct) where vc is the critical group velocity derived from the oscillatory neutral

surface at criticality [32].

The main objective of this work is to study the system of four globally coupled com-

plex Ginzburg-Landau equations introduced in [1] to model the steady-oblique/normal-Hopf

interaction observed experimentally. The four equations are

AT =
(
Λ1 +D(∂ξ, ∂η)− |A|2 − a|B|2 + c < |C|2 > +c̄ < |D|2 >

)
A,

BT =
(
Λ1 +D(−∂ξ, ∂η)− |B|2 − a|A|2 + c < |D|2 > +c̄ < |C|2 >

)
B,

CT =
(
Λ2 + iΩ +D0(∂ξ+ , ∂η)− b1|C|2 − b2|D|2 + d < |A|2 + |B|2 >

)
C,

DT =
(
Λ2 + iΩ +D0(∂ξ− , ∂η)− b1|D|2 − b2|C|2 + d < |A|2 + |B|2 >

)
D. (58)
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The solutions of (58) are complex envelopes A(T, ξ, η), B(T, ξ, η), C(T, ξ+, η), and

D(T, ξ−, η). For our numerical computation we chose periodic boundary conditions in

(ξ, η), (ξ+, η), (ξ−, η) of periods L in both variables. The average which appears in (58) is

< |f |2 >=
1

L

∫ L

0

|f |2dξ̃, (59)

where ξ̃ = ξ, ξ+, ξ−.The coefficients are a ∈ R, a > 1, Ω ∈ R, b1, b2, c, d ∈ C, and b2r > b1r > 0

to match the experimental situation [1]. The diffusion operators are

D(∂ξ, ∂η) = ∂2
ξ + 2δ∂ξ∂η + ∂2

η

D0(∂ξ± , ∂η) = α∂2
ξ± + β∂2

η (60)

with δ ∈ R such that δ2 < 1 and α, β ∈ C, αr, βr > 0. The O(1) “unfolding parameters”

describing the deviations of the external voltage, V , and the AC frequency, ω0, from the

codimension-two point are

Λ1 = λ− bsµ, Λ2 + iΩ = a0λ− b0µ, (61)

where

ε2λ =
V

Vc
− 1, ε2µ =

ω0

ω0c

− 1, (62)

with bs ∈ R and a0, b0 ∈ C. The patterns are generated by

U(t, x, y) = A(ε2t, εx, εy)ei(pcx+qcy) +B(ε2t, εx, εy)ei(−pcx+qcy) +

C(ε2t, ε(x+ vct), εy)ei(wct+kcx) +D(ε2t, ε(x− vct), εy)ei(wct−kcx) +

cc (63)
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with 0 < ε� 1 and vc, pc, qc, kc > 0. We will pursue a theoretical and numerical study of the

system (58) for appropriate values of the parameters as determined from the experimental

situation and a normal form analysis of (58) (see Section 4.2).
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3 Bifurcation Analysis of the Normal Form

3.1 Normal Form

If spatial variations are neglected the Ginzburg-Landau system (58) in section 2.4 becomes

AT = (Λ1 − |A|2 − a|B|2 + c|C|2 + c̄|D|2)A,

BT = (Λ1 − |B|2 − a|A|2 + c|D|2 + c̄|C|2)B,

CT = (Λ2 + iΩ− b1|C|2 − b2|D|2 + d|A|2 + d|B|2)C,

DT = (Λ2 + iΩ− b1|D|2 − b2|C|2 + d|A|2 + d|B|2)D, (64)

where a ∈ R, a > 1, Ω ∈ R, b1, b2, c, d ∈ C with b2r > b1r > 0, and Λ1 and Λ2 as defined in

(61) with bs ∈ R and a0, b0 ∈ C.

The system (64) has the following symmetries that follow by applying translations and

reflections to (57):

(i) Assuming that psc/poc is irrational, the translations x → x + x0 induce the phase

shift invariances (A,B,C,D) → (Aeiθ1 , Be−iθ1 , Ceiθ2 , De−iθ2) with arbitrary (θ1, θ2) ∈

[0, 2π)× [0, 2π).

(ii) The translations y → y + y0 induce the invariance (A,B,C,D) → (Beiθ3 , Aeiθ3 , C,D)

with arbitrary θ3 ∈ [0, 2π).

(iii) The reflection x→ −x induces the invariance under (A,B,C,D)→ (B,A,D,C).

(iv) The reflection y → −y induces the invariance under (A,B,C,D)→ (Ā, B̄, C,D).

(v) The time translation τ → τ + τ0 induces the phase shift invariance (A,B,C,D) →

(A,B,Ceiθ4 , Deiθ4) with arbitrary θ4 ∈ [0, 2π).
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A consequence of the phase shift symmetries is that the radial parts decouple from the

phases. Rewriting (64) in polar form with A = ρAe
iψA and likewise for B, C, and D leads to

(ρA)T = (Λ1 − ρ2
A − aρ2

B + crρ
2
C + crρ

2
D)ρA,

(ρB)T = (Λ1 − ρ2
B − aρ2

A + crρ
2
D + crρ

2
C)ρB,

(ρC)T = (Λ2 − b1rρ
2
C − b2rρ

2
D + drρ

2
A + drρ

2
B)ρC ,

(ρD)T = (Λ2 − b1rρ
2
D − b2rρ

2
C + drρ

2
A + drρ

2
B)ρD (65)

and

(ψA)T = ci(ρ
2
C − ρ2

D),

(ψB)T = ci(ρ
2
D − ρ2

C),

(ψC)T = Ω− b1iρ
2
C − b2iρ

2
D + diρ

2
A + diρ

2
B,

(ψD)T = Ω− b1iρ
2
D − b2iρ

2
C + diρ

2
A + diρ

2
B. (66)

Possible patterns that could be observed in this system are steady oblique rolls (OS), sta-

tionary rectangles (RS), traveling waves (TW), and standing waves (SW).

If C = D = 0 or A = B = 0, the system (64) decouples as follows:

• C = D = 0 gives the ODE system for the steady-oblique solutions

AT = (Λ1 − |A|2 − a|B|2)A,

BT = (Λ1 − |B|2 − a|A|2)B, (67)

where Λ1, a ∈ R and a > 1.
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• A = B = 0 gives the ODE system for the normal-Hopf solutions

CT = (Λ2 + iΩ− b1|C|2 − b2|D|2)C,

DT = (Λ2 + iΩ− b1|D|2 − b2|C|2)D, (68)

where Λ2,Ω ∈ R and b1, b2 ∈ C with b2r > b1r > 0.

These decoupled systems are similar/identical to the amplitude equations found when looking

at the Hopf bifurcation with O(2)-symmetry in Couette-Taylor flow. The system (64) bears a

marked similarity to the non-resonant case in [34, 31, 36] and the systems discussed in [38, 12].

For clarity in the comparisons below our parameters and coefficients will be underlined. The

parameters and coefficients in the non-resonant case in [34, 31] are σ, µ,A,B,C,D, P, S, U, V .

By identifying σ → Λ1, µ→ Λ2 + iΩ, A→ −1, B → −a, C → c,D → c̄, P → d, S → d, U →

−b1, V → −b2 the non-resonant systems [34, 31] become identical to (64). The restriction to

the non-resonant case in [36] is similar.

3.2 Bifurcation Diagrams

The trivial solution, basic conduction state, A = B = C = D = 0 , is stable in the region

where Λ1,Λ2 < 0. It loses stability in a bifurcation when Λ1 = 0, Λ2 < 0 and when Λ1 < 0,

Λ2 = 0.

At Λ1 = 0, two types of stationary solutions bifurcate from the trivial solution [1]. These

two pure mode solutions are stationary oblique (OS) rolls and stationary rectangles (RS).

Both solutions are fixed points of the systems (64) and (65) in Section 3.1. The OS rolls

satisfy either ρA or ρB equal to Ro > 0 such that R2
o = Λ1, and all other ρi = 0. The RS

solution satisfies ρA = ρB = Rrs > 0, such that R2
rs = Λ1

a+1
, and ρC = ρD = 0. Only one of

these solutions can be stable in a region of the (Λ1,Λ2)-plane.
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In the case of the OS-solution, the Jacobian matrix for only ρA nonzero is



−2Λ1 0 0 0

0 Λ1(1− a) 0 0

0 0 dΛ1 + Λ2 0

0 0 0 dΛ1 + Λ2


. (69)

The eigenvalues determine that the conditions for the OS-solution to be stable are a > 1,

Λ1 > 0, and Λ2 < −drΛ1. The experiments support that a > 1 is a condition for the OS-

solution to be stable. These conditions are for either ρA or ρB being the only nonzero radial

part. The OS-solution exists for Λ1 > 0 and transitions to instability on the half-line

(O) : drΛ1 + Λ2 = 0, J(b1rΛ1 + crΛ2) ≥ 0 (70)

where J = b1r − crdr. If dr < 0, (O) is in the first quadrant and if dr > 0, (O) is in the

fourth quadrant.

The RS-solution has the Jacobian matrix



−2Λ1

a+1
−2aΛ1

a+1
0 0

−2aΛ1

a+1
−2Λ1

a+1
0 0

0 0 2dΛ1

a+1
+ Λ2 0

0 0 0 2dΛ1

a+1
+ Λ2


(71)

with associated eigenvalues 2Λ1(a−1)
a+1

, −2Λ1, 2dΛ1

a+1
+ Λ2, and 2dΛ1

a+1
+ Λ2, leading to the stability

conditions being Λ1 > 0, −1 < a < 1, and Λ2(a+ 1) < −2drΛ1.

At Λ2 = 0, two types of oscillatory solutions bifurcate from the trivial solution. These

two pure mode solutions are normal traveling (NT) rolls and standing waves (SW). Both

solutions are fixed points of the system (65) and periodic solutions of the system (64). The

NT rolls satisfy either ρC or ρD equal to Rn > 0 such that R2
n = Λ2

b1r
, and all other ρi = 0.
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The SW solution satisfies ρC = ρD = Rsw > 0, such that R2
sw = Λ2

b1r+b2r
, and ρA = ρB = 0.

Again, only one of these solutions can be stable in a region of the (Λ1,Λ2)-plane. In the case

of the NT-solution, the Jacobian matrix for only ρC nonzero is



Λ1 + crΛ2

b1r
0 0 0

0 Λ1 + crΛ2

b1r
0 0

0 0 −2Λ2 0

0 0 0 Λ2

(
1− b2r

b1r

)


. (72)

The eigenvalues that determine the conditions for the NT-solution to be stable are 0 < b1r <

b2r, Λ2 > 0, and Λ1 < − cr
b1r

Λ2. These conditions are for either ρC or ρD being the only

nonzero radial part. The NT-solution exists for Λ2 > 0 and transition to instability on the

half-line

(N) : b1rΛ1 + crΛ2 = 0, J(drΛ1 + Λ2) ≥ 0. (73)

If cr < 0, (N) is in the first quadrant and if cr > 0, (N) is in the second quadrant.

The SW-solution has the Jacobian matrix



Λ1 + 2crΛ2

b1r+b2r
0 0 0

0 Λ1 + 2crΛ2

b1r+b2r
0 0

0 0 −2b1rΛ2

b1r+b2r

−2b2rΛ2

b1r+b2r

0 0 −2b2rΛ2

b1r+b2r

−2b1rΛ2

b1r+b2r


(74)

with associated eigenvalues Λ1 + 2crΛ2

b1r+b2r
, Λ1 + 2crΛ2

b1r+b2r
, 2Λ2(b2r−b1r)

b1r+b2r
, and −2Λ2, leading to the

stability conditions being Λ2 > 0, |b2r| < |b1r|, and Λ1 < − 2crΛ2

b1r+b2r
.

The mixed mode (MM) solutions branch off primary solutions in secondary bifurcations.

There are four possible mixed mode solutions consisting of a primary stationary solution and

a primary oscillatory solution. Using parameter restrictions we limit ourselves to the case of

a superposition of OS and NT. The relevant parameters satisfy ρA or ρB nonzero and equal
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to Ro > 0, R2
o = b1rΛ1+crΛ2

J
, and ρC or ρD nonzero and equal to Rn > 0, R2

n = drΛ1+Λ2

J
. All

combinations of two modes which result in a mixed mode solution have the same stability

conditions. MM solutions are quasiperiodic solutions of the equation (64), because as seen

in the phase equations

(ϕA)T = ci(ρ
2
C − ρ2

D),

(ϕC)T = Ω− b1iρ
2
C − b2iρ

2
D + di(ρ

2
A + ρ2

B) (75)

there are two nonzero frequencies. The two half-lines (70) and (73) define a wedge in the

(Λ1,Λ2)-plane where the MM solution exists, as seen in figures (12). The MM solution is

stable if J > 0 and unstable if J < 0.

(a) (b)

Figure 12: (a) MM solution is stable in the wedge. (b) MM solution is unstable in the wedge.

The stability diagrams (Figure 12) in the (Λ1,Λ2)-plane for the cases J > 0 and J < 0,

with both cr < 0 and dr < 0 summarize the existence and stability of the OS, NT, and MM

solutions. The existence domains are indicated by circle-segments, and the dots on these

segments separate regions in which the solution is stable (s) and unstable (u). The trivial
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Figure 13: Bifurcation diagrams of OS, NT, and MM for µ = 0, µ < 0, and µ > 0 with
J < 0 and J > 0 and b1r > a0r.

solution is stable in the third quadrant. The primary bifurcation occur along the axes, and

the secondary bifurcations occur along (70) and (73).

For µ = 0, as the parameters increase from below criticality to above criticality we are

traversing a straight path from the third quadrant, through the origin (mode-interaction

point), to the first quadrant. This path is below the wedge in which MM exists if

J > 0, dr < 0, 0 < aor < −dr, (76)

or

J < 0, cr < 0, 0 < aor < −b1r/cr. (77)

Bifurcation diagrams in the (λ,R) plane are shown for this path and the cases where µ < 0

and µ > 0 with J > 0 and J < 0, and aorbs − bor > 0 in Figure 13. Stable branches are

displayed as solid lines and unstable are dashed lines in the diagrams and the MM-branch
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has been sketched as a straight line for simplicity. For all four diagrams, b1r > aor leads to

an intersection of the OS and NT branches for µ > 0, however this does not imply a stability

exchange. When J > 0, we have a continuous transition of stable branches, NT→MM→OS.

However, for J < 0 we find bistability leading to hysteresis.

When the perturbed path for µ > 0 crosses the (O) and (N) half-lines, the stability

of the primary branches changes. These stability exchanges are combined with secondary

bifurcations of MM, which connects the two bifurcation diagrams, as in the right panels of

Figure 13. The amplitude R along MM is R =
√
R2
o +R2

n. The experimental observations

support the bifurcation scenarios, since in the NT-regime the OS-rolls reappear when V is

further increased above the Voc-threshold.

The derivation of the system of globally coupled Ginzburg Landau equations governing

the dynamics of slowly varying spatiotemporal envelopes of ideal rolls patterns in anisotropic

systems near the experimentally observed codimension-two point was one result of the qual-

itative theoretical study in [1]. Another result is the identification of the primary solution

branches, their stability, and the regions in parameter space giving rise to superpositions of

these solutions (mixed mode solutions) in the context of an idealized normal form description

restricted to spatially uniform envelopes of ideal parameters. An important feature of the

bifurcation diagrams is how the transition between two primary branches happens. Either

it is a continuous transition via a stable mixed mode branch or a region with bistability and

an unstable mixed mode branch leading to a hysteretic transition. The experiments do not

yet provide evidence which of the two scenarios is present in the physical system. Further

experiments and a thorough analysis of the recorded patterns is necessary to discriminate

between the two scenarios. The next step in the theoretical analysis of the mode interaction

is a numerical study of the patterns predicted by the globally coupled Ginzburg Landau

equations. The two normal form scenarios described lead to somewhat different spatiotem-

poral patterns which will hopefully provide further criteria allowing to distinguish between

them in experiments.
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4 Numerical Simulations

A pseudo-spectral based code was used to simulate the globally coupled complex

Ginzburg-Landau equations. The Pseudo-Spectral Method has the same underlying

principles as the spectral method with regards to an orthonormal set of basis functions.

The primary difference is the space in which the components of the resulting system are

evaluated. The spectral method maps the PDE into Fourier space and computes the

basis coefficients in this space [3]. This works well for linear partial differential equations.

Many of the PDEs that occur naturally have nonlinear terms, which causes the loss of the

superposition principle for solutions. The pseudo-spectral method can be applied to such

problems by evaluating the linear terms in Fourier space as in the spectral method, but

using collocation where the nonlinear terms are evaluated in real space and the result is

transformed into Fourier space using a discrete Fourier transform. This results in multiple

transformations between real and Fourier space and a technique such as the fast Fourier

transform (FFT) is useful.

For problems with periodic boundary conditions and smooth solutions such as wave prob-

lems the pseudo-spectral method is particularly attractive. It is one of the most common

techniques for solving the Ginzburg-Landau equations in one or two dimensions. The con-

vergence of this method in one dimension was proved by Yisong Yang, [44], where the rate

of convergence was shown to depend on the smoothness of the initial data.

In this work Matlab’s routine ODE45, a fourth order Runge-Kutta method with variable

time step, was used in time while a pseudo-spectral based method was used in space. The

use of the spectral method is attractive since the functions are two-periodic and the spatial

derivatives can then be turned into scalar multiplication of the Fourier coefficients.

There were M2 Fourier modes used in the simulation. Four M×M random, complex ma-

trices in physical space were used as the initial condition, one for each amplitude (A,B,C,D).

A new set of random matrices were generated for each run of the simulation. Next, each
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of the four grid point values were converted into Fourier modes through a two-dimensional

Fourier transform. Each matrix was then vectorized by taking each column and adjoining it

to the bottom of a growing column vector. Then the amplitude vectors were adjoined into a

single column vector by adjoining the A,B,C,D vectors together in this order. This is done

because ODE45 only takes in a vector. The intermediate calculations were done by reconsti-

tuting the four M×M matrices as much as necessary. The Fourier mode matrix was used to

calculate the linear and derivative terms via scalar multiplication and scalar addition. The

computation of the nonlinear terms was done in physical space by taking the Fourier mode

matrices and calculating a two-dimensional inverse Fourier transform. These terms simplify

to scalar multiplication at grid points in physical space. The average term is a sum across

the rows divided by 2M with the resulting vector adjoined with itself appropriately to give

a M ×M matrix. The nonlinear terms are then summed and transformed back into Fourier

space and added to the linear and derivative terms. Then the matrices are revectorized as

before and fed into the ODE45 solver for the next step. A final two-dimensional inverse

Fourier transform returns the amplitudes to real space. The visualization of the pattern

took the resulting amplitudes and set them up according to the pattern equation (63).

4.1 Numerical Implementation

In order to apply the Spectral Method to our Ginzburg-Landau Equations, assume that

A can be written as

A(ξ, η) =
N∑
k=1

N∑
j=1

akje
ckξ+cjη (78)

where cα = −2πi(α−M−1)
L

and N = 2M + 1, and similarly for B, C, and D. Then define the

Fourier projection onto the space spanned by the mode eckξ+ckη as

T
(kj)
F [g(ξ, η)] =

1

L2

∫ L

0

∫ L

0

g(ξ, η)eckξ+ckηdξdη. (79)

46



The linear term in the equation for A becomes

T
(kj)
F [(Λ1 + ∂2

ξ + 2δ∂ξ∂η + ∂2
η)A]

=
1

L2

∫ L

0

∫ L

0

N∑
α=1

N∑
β=1

(Λ1 + c2
α + 2δcαcβ + c2

β)Aαβe
cαξ+cβηe−ckξ−cjηdξdη

= (Λ1 + c2
k + 2δckcj + c2

j)akj (80)

and

T
(kj)
F [

∂A

∂T
] = Ȧkj (81)

where the differentiation is assumed to be with respect to T . The linear terms in the

equations for B, C, and D are similar.

If we were to continue with a spectral method for the nonlinear terms of the amplitude

equation we would be forced to do multiple nested loops such as those described in the

following. A nonlinear term in the equation for A becomes

T
(kj)
F [|B|2A]

=
1

L2

∫ L

0

∫ L

0

(
N∑
α=1

N∑
β=1

N∑
γ=1

N∑
ρ=1

N∑
m=1

N∑
n=1

BαβBγρAmne
(cα−cγ+cm)ξe(cβ−cρ+cn)η

)
e−ckξ−cjηdξdη

=
N∑
α=1

N∑
β=1

N∑
γ=1

N∑
ρ=1

BαβBγρAmn (82)

where m = k + γ − α and n = j + ρ− β. Similarly, the other nonlinear term becomes

T
(kj)
F [|A|2A] =

N∑
α=1

N∑
β=1

N∑
γ=1

N∑
ρ=1

AαβAγρAmn (83)

where m = k + γ − α and n = j + ρ− β.
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The average in the global term in the equation for A becomes

< |C|2 > =
1

L

∫ L

0

N∑
α=1

N∑
β=1

N∑
γ=1

N∑
ρ=1

Cαβe
cαξ+cβηCγρe

−(cγξ+cρη)dξ

=
N∑
α=1

N∑
β=1

N∑
ρ=1

CαβCαρe
(cβ−cρ)η), (84)

resulting in

T
(kj)
F [< |C|2 > A]

=
1

L2

∫ L

0

∫ L

0

(
N∑
α=1

N∑
β=1

N∑
ρ=1

CαβCαρe
(cβ−cρ)η

)(
N∑
m=1

N∑
n=1

Amne
cmξ+cn

)
e−ckξ−cjηdξdη

=
N∑
α=1

N∑
β=1

N∑
ρ=1

CαβCαρAkn (85)

where m = k and n = j + ρ− β. Similarly,

T
(kj)
F [< |D|2 > A] =

N∑
α=1

N∑
β=1

N∑
ρ=1

DαβDαρAkn (86)

where m = k and n = j + ρ− β. The global term in the equations for C and D are similar.

The average is

< |A|2 + |B|2 > =
1

L

∫ L

0

(
N∑
α=1

N∑
β=1

N∑
γ=1

N∑
ρ=1

Aαβe
cαξ+cβηAγρe

−(cγξ+cρη)

)

+

(
N∑
α=1

N∑
β=1

N∑
γ=1

N∑
ρ=1

Bαβe
cαξ+cβηBγρe

−(cγξ+cρη)

)
dξ

=
N∑
α=1

N∑
β=1

N∑
ρ=1

(
AαβAαρ +BαβBαρ

)
e(cβ−cρ)η, (87)
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leading to

T
(kj)
F [< |A|2 + |B|2 > C]

=
1

L2

∫ L

0

∫ L

0

(
N∑
α=1

N∑
β=1

N∑
ρ=1

(
AαβAαρ

+BαβBαρ

)
e(cβ−cρ)η

)( N∑
m=1

N∑
n=1

Cmne
cmξ+cn

)
e−ckξ−cjηdξdη

=
N∑
α=1

N∑
β=1

N∑
ρ=1

(
AαβAαρ +BαβBαρ

)
Ckn (88)

where m = k, n = j + ρ− β, and β − ρ+ n− j = 0.

Due to the long processing time required for the nested sums, a fully spectral code

proved inadvisable and a pseudo-spectral code which would compute the nonlinear terms in

real space was implemented.

4.2 Numerically Observed Patterns

We are interested in a systematic numerical study of the solutions of (58) in those regions

where either bistability or mode interaction of the steady oblique and normal traveling rolls is

theoretically possible. The mode interaction of the steady oblique and normal traveling rolls

is theoretically possible and has been seen experimentally. The parameters of the system are

(a, b1, b2, c, d,Λ1,Λ2,Ω, pc, qc, wc, kc, vc, ε) (89)

and the periodicity of the solutions in the ξ, η spatial directions. In Case I, we study the

region where bistability of the steady oblique and normal traveling rolls is expected from

the normal form analysis. The theoretically stable mode interaction of the steady oblique

and normal traveling rolls is explored in Case II. We treat this problem as a multiparametric

bifurcation study. We fix all parameters except for (c, d,Λ1,Λ2). The parameters Λ1, Λ2 ∈ R
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varied according to

Λ1 = cos(φ) and Λ2 = sin(φ) for
−π
2
≤ φ ≤ 3π

2
. (90)

In order to have non-steady state patterns we need to have several active Fourier modes

for at least one amplitude. The linear terms of the PDE (58),

AT =
(
Λ1 + ∂2

ξ + 2δ∂ξ∂η + ∂2
η

)
A,

BT =
(
Λ1 + ∂2

ξ − 2δ∂ξ∂η + ∂2
η

)
B,

CT =
(
Λ2 + iΩ + α∂2

ξ+
+ β∂2

η

)
C,

DT =
(
Λ2 + iΩ + α∂2

ξ− + β∂2
η

)
D (91)

combined with writing the amplitudes as in

A(ξ, η) =
2M+1∑
k=1

2M+1∑
j=1

akje
i(ckξ+cjη) (92)

where cα = −2π(α−M−1)
L

, leads to the expressions

Λ1 − (c2
k + 2δckcj + c2

j)

Λ1 − (c2
k − 2δckcj + c2

j)

Λ2 − (αrc
2
k + βrc

2
j)

Λ2 − (αrc
2
k + βrc

2
j) (93)

where αr = Re(α) and βr = Re(βr). The associated Fourier modes are active when the

expressions (93) are positive. Thus, we want to adjust the diffusion coefficients (δ, α, β) such
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that

Λ1 > (c2
k + 2δckcj + c2

j)

Λ1 > (c2
k − 2δckcj + c2

j)

Λ2 > (αrc
2
k + βrc

2
j)

Λ2 > (αrc
2
k + βrc

2
j) (94)

are true for several values of (k, j) when (Λ1,Λ2) are positive, φ ∈ [0, π/2].

For φ = {4π/20, 5π/20, 6π/20}, the diffusion coefficients were reduced to

δ = 0.00000000001

α = 0.00000000002 + 0.00000000002i

β = 0.00000000002− 0.00000000004i (95)

which theoretically allows several Fourier modes to be active. Simulations showed only one

to three active Fourier modes per amplitude.

A first set of numerical simulations has been done with the following fixed parameters,

(a, b1, b2,Ω) = (1.2, 1 + 1.2i, 1.2 + i, 5), (96)

pc = qc = wc = kc = vc = 1.00 (97)

with ε = 0.01 and the periodicity defined as 2π in both the ξ, η spatial directions. All

simulation were run with M = 16. The fixed diffusion coefficients were

(δ, α, β) = (0.1, 0.02 + 0.2i, 0.02− 0.4i). (98)

The varied parameters (c, d) were (−2 + i,−1.5 + i) for Case I or (−0.5 + i,−0.5 + i) for

Case II. The Table 2 gives an overview of the numerically observed behavior in each wedge,

51



which is examined in more detail in the following two sections. For Case I, the theoretical

predictions show the mixed mode solutions are unstable in the wedge and bistability of the

steady oblique and normal traveling solutions was expected and found for several values of

φ within the wedge. In this case we observe numerically the steady oblique and normal

traveling waves where they are expected according to the normal form analysis. We also

did not observe a steady oblique normal traveling mixed mode solution. The mixed mode

solutions seen were a mix of either the two steady oblique amplitudes or the two normal

traveling amplitudes.

For Case II, the choice of parameters corresponds to the case where the mixed mode

solutions are stable according to the normal form analysis. Mixed mode solutions which

were a superposition of a steady oblique mode and a normal traveling mode were observed

numerically for values of φ within the wedge. As φ increased with the theoretical wedge, the

magnitude of the A or B amplitudes decreased and the magnitude of the C and D amplitudes

increased. Mixed mode solutions were observed at all the theoretical bifurcation lines. The

mixed mode solutions seen at the bifurcations from the steady state were a mix of either the

two steady oblique amplitudes or the two normal traveling amplitudes. At the bifurcation

to the mixed mode solution within the wedge, a mixed mode consisting of either one of the

steady oblique modes and both of the traveling normal modes or one of the traveling normal

modes and both of the steady oblique modes was observed depending on the ‘side’ of the

wedge.

Table 2: Summary of regions and numerically computed patterns for Cases I and II.

Region Numerically Computed Patterns

Case I
−4π/20 ≤ φ ≤ 3π/20 Steady oblique rolls and a mixed mode solution
3π/20 < φ < 6π/20 Steady oblique rolls, traveling normal rolls, steady rect-

angles, and standing waves
6π/20 ≤ φ ≤ 15π/20 Traveling normal rolls and a mixed mode solution

Case II
−π/2 < φ ≤ 2.9π/20 Steady oblique rolls
3π/20 ≤ φ ≤ 7π/20 Mixed mode solution

7.1π/20 ≤ φ < π Traveling normal rolls
φ = −π/2, 3π/2, π Mixed mode solution
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The third section presents a numerically obtained bifurcation diagram in the cr, φ plane.

During the exploration, both bistability of the steady oblique and normal traveling solutions

and stable mixed mode solutions were observed as cr and φ were varied. The last section

here studies the consistency of the theoretical and numerical results. Overall, the numerical

behavior of the solutions agrees with the theoretical prediction.

4.2.1 Case I: Theoretical Bistability

We begin by considering the case where there is bistability of the steady oblique and

normal traveling solutions for the normal form (64). Given the parameters (c, d) = (−2 +

i,−1.5 + i), the stability diagram, Figure 14, predicts that the steady oblique solutions

will be stable for −π/2 < φ < 0.98279 and that the normal traveling solution will be

stable for 0.46365 < φ < π. These two regions overlap giving us a bistability region when

0.46365 < φ < 0.98279. This also means that the mixed mode solutions are unstable

solutions of (64).

Figure 14: The stability diagram for the given parameters.

Stable steady oblique rolls, normal traveling rolls, and mixed mode solutions were found

by varying the parameter φ and the initial conditions for the amplitudes (A,B,C,D). In
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all simulations, for a point in space the magnitudes of the (A,B,C,D) amplitudes became

constant in time after some transient behavior. As φ was increased, the transition from a

solution dominated by the A and/or B modes to one dominated by the C and/or D modes

varied. This may be caused by some sensitivity to the initial conditions. The magnitude

of the (A,B,C,D) amplitudes for the assorted simulations is shown in Figure 15. The

magnitude of the (A,B) amplitudes, which give us the steady oblique rolls, appears to peak

at about φ ≈ 0. The amplitudes also jump to zero for φ ≈ 1. The magnitude of the normal

traveling rolls’ associated amplitudes, (C,D), peaks for φ ≈ 1.5. There is also a sudden

jump in their magnitudes at φ ≈ 0.5.

Figure 15: The magnitude of the amplitudes (A,B,C,D) for all simulations with the Case
I parameters. This includes simulations with the same value for φ, but different initial
conditions for (A,B,C,D).

For −4π/20 ≤ φ ≤ 5.8π/20, stable steady oblique rolls were observed consisting of (zig)

stationary rolls oriented at an oblique angle to the x- and y-axes, as seen in Figure 16, or

54



(zag) stationary rolls oriented at an opposite oblique angle to the x- and y-axes, as seen in

Figure 17. The zig steady oblique rolls occur when the B mode is dominant, Figure 18a,

and the zag steady oblique rolls appear when the A mode is dominant, Figure 18b. Neither

zig or zag steady oblique rolls were favored in the simulations. The pattern, U , is sinusoidal

in both the x- and y-directions.

(a) (b)

Figure 16: Zig steady oblique rolls observed when φ = −4π/20 and T = 199.9875 in two
(a) and three (b) dimensions. The B amplitude is dominant as seen in Figure 18a and the
magnitude of the (A,B,C,D) amplitudes is (O(10−11), 0.8995, O(10−156), O(10−156)).

For 3.2π/20 ≤ φ ≤ 15π/20, stable normal traveling rolls are observed and consist of

rolls aligned with the y-axis traveling to the right, Figure 20, or to the left, Figure 21. The

left normal traveling rolls were seen when the C mode was dominant and the right normal

traveling rolls were observed when the D mode was dominant. Neither left or right traveling

normal rolls were favored in the simulations. The pattern, U , is sinusoidal in the x-direction

and uniform in the y-direction.

For 3.2π/20 ≤ φ ≤ 6π/20, both steady oblique and normal traveling solutions were

observed to be stable and the transition between them varied, as recorded in Table 3.

The columns of random initial conditions revealed that the transition between the steady

oblique and normal traveling solutions is not strictly based on the parameters, since steady

oblique rolls were observed for φ ≤ 5.2π/20 and the normal traveling rolls were observed for
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(a) (b)

Figure 17: Zag steady oblique rolls observed when φ = −2π/20 and T = 199.9875 in two (a)
and three (b) dimensions. The amplitude A is the dominant amplitude as seen in Figure 18b
and the magnitude of the (A,B,C,D) amplitudes is (0.9752, O(10−16), O(10−150), O(10−150)).

(a) Time series for n = −4 showing a dominant
B amplitude.

(b) Time series for n = −2 showing a dominant
A amplitude.

Figure 18: A time series of the magnitude of the amplitudes at a specific spatial point
when φ = nπ/20. The time series for the moduli of the amplitudes (A,B,C,D) is depicted
as a solid red line, a dashed green line, a dotted blue line, and a dash-dot magenta line,
respectively.
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(a) Time series for n = 12 showing a dominant
C amplitude.

(b) Time series for n = 15 showing a dominant
D amplitude.

Figure 19: A time series of the magnitude of the amplitudes at a specific spatial point
when φ = nπ/20. The time series for the moduli of the amplitudes (A,B,C,D) is depicted
as a solid red line, a dashed green line, a dotted blue line, and a dash-dot magenta line,
respectively.
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(a) (b)

Figure 20: Left traveling normal rolls observed when φ = 12π/20 and T = 198.7375
to T = 199.9875 in two (a) and three (b) dimensions. The C amplitude is
dominant, seen in Figure 19a, and the magnitude of the (A,B,C,D) amplitudes is
(O(10−11), O(10−191), 0.9752, O(10−17)).
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(a) (b)

Figure 21: Right traveling normal rolls observed when φ = 15π/20 and T = 198.7375
to T = 199.9875 in two (a) and three (b) dimensions. The amplitude D is the domi-
nant amplitude, seen in Figure 19b, and the magnitude of the (A,B,C,D) amplitudes is
(O(10−11), O(10−182), O(10−12), 0.8409).
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φ ≥ 4.7π/20. Bistability of the steady oblique and normal traveling solutions was confirmed

for φb = {nπ/20, n = 4.8, 5, 5.08, 5.2}. For the different φb the only changes between sim-

ulations were the initial conditions for the amplitudes which were randomly generated for

each simulation, thus the observed behavior must be sensitive to the initial conditions of the

amplitudes.

(a) (b)

Figure 22: Initial condition used to explore the effect of a specified fixed initial conditions
on the behavior of the solutions in two (a) and three (b) dimensions.

In order to explore the sensitivity to initial conditions, fixed values for (A,B,C,D)’s

initial conditions, ICj for j = 1, .., 5, used values proportional to values of the function

depicted in Figure 22 while φ was allowed to vary over the interval [3π/20, 6.8π/20]. For

the simulations with initial conditions IC1, the proportionality multiples for (A,B,C,D)

amplitudes’ initial conditions were (1,−0.2, 1,−0.2). The initial condition IC2 had the

opposite multiples, (−0.2, 1,−0.2, 1), to IC1 for the initial conditions of the amplitudes.

For both of these initial conditions, the transition between OS and NT behavior occurred

between φ = 4.2π/20 and φ = 4.4π/20 for the given parameter values.

The IC3 initial condition has the fixed proportionality multiples of (1, 1,−0.2,−0.2) for

the amplitudes (A,B,C,D). In this case, for 3π/20 ≤ φ ≤ 5.8π/20 the patterns observed

were steady rectangles, Figure 23, involving equally dominant (A,B) modes, Figure 24a.
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(a) (b)

Figure 23: Steady rectangle solution observed when φ = 3π/20 and T = 199.9875 in two (a)
and three (b) dimensions.

(a) Time series for n = 3. The mag-
nitude of the (A,B,C,D) amplitudes are
(0.6364, 0.6364, O(10−63), O(10−64)).

(b) Time series for n = 6. The mag-
nitude of the (A,B,C,D) amplitudes are
(0.6364, 0.6364, O(10−63), O(10−64)).

Figure 24: A time series of the magnitude of the amplitudes at a specific spatial point
when φ = nπ/20. The time series for the moduli of the amplitudes (A,B,C,D) is depicted
as a solid red line, a dashed green line, a dotted blue line, and a dash-dot magenta line,
respectively.

The similarity of the initial conditions may be the cause of this pattern being seen for

3π/20 ≤ φ ≤ 5.8π/20. We remark here that although the standing rectangles were not

stable in the normal form, for the selection of parameters used in the runs, they can be

stable solutions, though, in the Ginzburg Landau equations as observed numerically. For

φ ≥ 6π/20, normal standing waves, Figure 25, were observed and the C and D amplitudes
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were equally dominant, Figure 24b. Thus, the standing wave is a superposition of the two

normal traveling modes. Again, the pattern may be a result of the similarity of the initial

conditions.

The proportionality multiples for the IC4 and IC5 initial conditions were

(1,−0.2,−0.2,−0.2) and (−0.2,−0.2, 1,−0.2), respectively. For IC4, the transition from

zag steady oblique rolls to the standing wave solution occurred between φ = 5.8π/20 and

φ = 6π/20. Also, the magnitude of the A amplitude decreases from 0.9439 when n = 3

to 0.7829 at n = 5.8 and then drops to O(10−10) for n = 6. For the other case, IC5, the

transition from the steady rectangles solution to left traveling normal rolls occurred between

φ = 3π/20 and φ = 3.2π/20. Also, the modulus of the C amplitude jumps from O(10−30)

when n = 3 to 0.6941 at n = 3.2 and then increases to 0.8995 for n = 6.

Over all the simulations, bistability of the steady oblique rolls and the normal traveling

rolls was observed for

φb = {nπ/20, n = 3.2, 3.4, 3.6, 3.8, 4, 4.2, 4.4, 4.6, 4.8, 5, 5.08, 5.2, 5.4, 5.6, 5.8}. (99)

The φb are within the theoretical expectation for where the bistability region would occur.
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(a) (b)

Figure 25: Standing wave solution observed when φ = 6π/20 and T = 197.8625 to T =
199.9875 in two (a) and three (b) dimensions.

63



Table 3: Behavior of solutions for various φ values and different initial conditions. For the ICj simulations, the (A,B,C,D)’s
initial conditions were fixed to be proportional to the values seen in Figure 22. The proportionality multiples for IC1, IC2,IC3,
IC4, and IC5 were (1,−0.2, 1,−0.2), (−0.2, 1,−0.2, 1), (1, 1,−0.2,−0.2), (1,−0.2,−0.2,−0.2), and (−0.2,−0.2, 1,−0.2), respec-
tively. Here OS are steady oblique rolls, NT are normal traveling rolls, RS are standing rectangles, and SW are normal standing
waves.

φ = nπ/20 Initial Condition φ = nπ/20 Initial Condition

n random IC1 IC2 IC3 IC4 IC5 n random IC1 IC2 IC3 IC4 IC5

3 OS OS OS RS OS RS 5.12 NT NT
3.2 OS OS RS OS NT 5.14 NT NT
3.4 OS OS RS OS NT 5.16 NT NT
3.6 OS OS RS OS NT 5.18 NT NT
3.8 OS OS RS OS NT 5.2 OS NT NT NT NT RS OS NT
4 OS OS OS RS OS NT 5.22 NT

4.2 OS OS RS OS NT 5.24 NT
4.4 NT NT RS OS NT 5.26 NT
4.5 OS 5.28 NT
4.6 OS NT NT RS OS NT 5.3 NT NT NT NT NT RS
4.7 NT NT NT 5.32 NT
4.8 NT OS NT NT RS OS NT 5.34 NT
4.82 OS 5.36 NT
4.86 NT 5.38 NT
4.88 NT 5.4 NT NT NT NT NT RS OS NT
4.9 NT NT 5.5 NT NT
4.92 NT 5.6 NT NT NT RS OS NT
4.94 NT 5.7 NT
4.96 OS 5.8 NT NT NT RS OS NT
4.98 NT 5.9 NT

5 OS NT OS NT NT RS OS NT 6 NT NT NT SW NT
5.02 NT NT 6.2 NT NT SW SW
5.04 NT NT 6.4 NT NT SW
5.06 NT NT 6.6 NT NT SW
5.08 OS NT 6.8 NT NT SW
5.1 NT NT NT NT RS
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4.2.2 Case II: Theoretically Stable Mixed Mode Solution

In this case (c, d) = (−0.5 + i,−0.5 + i) and the normal form analysis leads to the

prediction that the steady oblique solution is stable for −π/2 < φ < 0.4636, the normal

traveling solution is stable for 1.1071 < φ < π, and a mixed mode solution is stable for

0.4636 < φ < 1.1071, Figure 26. The various solutions were observed where expected. Only

individually generated random initial conditions were used for the simulations in this section.

Figure 26: The theoretical stability diagram for the given the parameters.

The magnitude of the amplitudes (A,B,C,D) are shown in Figure 27. Changes in the

magnitude of the amplitudes are gradual with no jumps. The magnitude of the larger of the

(A,B) amplitudes peaks at φ ≈ 0, increasing from φ = −π/2 until φ ≈ 0 and decreasing to

zero for φ > 0 until φ ≈ 1.1. The magnitude of the larger of the (C,D) amplitudes increases

from zero at φ ≈ 0.5 until φ ≈ 1.6 and decreasing back to zero for φ > 1.6 until φ ≈ 1.1.

Near the bifurcation lines, φ = −π/2, π, either the (A,B) or the (C,D) amplitudes are small

but influence the resulting pattern. For φ = −π/2 there are steady rectangles, Figure 23,
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from a superposition of the (A,B) modes and a (C,D) mixed mode solution when φ = π.

There is a mixed mode solution consisting of three modes for φ near 0.5 and 1.1.

Figure 27: The magnitude of the amplitudes (A,B,C,D) for all simulations with the specified
parameters.

For −9π/20 ≤ φ ≤ 2.9π/20, stable zig or zag steady oblique rolls were observed, one such

is depicted in Figure 28, and either the A or B amplitude is dominant, Figure 29. Again,

there is no preferred direction for the steady oblique rolls and the only change between

simulations other than φ is the initial conditions for the amplitudes. The pattern, U , has a

stationary sinusoidal wave in the x- and y- directions.

For 7.1π/20 ≤ φ ≤ 19π/20, stable leftward and rightward traveling normal rolls were

observed as seen in Figures 30 and 31, and either the C or D amplitude is dominant, Figure

32. Neither the left or the right traveling normal rolls were favored in the simulations. The

pattern, U , has traveling sine wave in the x-direction and is uniform in the y-direction.
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(a) (b)

Figure 28: Zig steady oblique rolls φ = 2.8π/20 and T = 199.9875 in two (a) and
three (b) dimensional representations. The magnitude of the amplitudes (A,B,C,D) is
(O(10−11), 0.9512, O(10−4), O(10−4)).

Figure 29: A time series of the magnitude of the amplitudes at a specific spatial point
when φ = 2.8π/20. The dominant amplitude is B. The time series for the moduli of the
(A,B,C,D) amplitudes is depicted as a solid red line, a dashed green line, a dotted blue
line, and a dash-dot magenta line, respectively.
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(a) (b)

Figure 30: Left traveling normal rolls observed when φ = 7.2π/20 and T = 197.4875 to
T = 199.9875 in two (a) and three (b) dimensional representations. The C mode is dominant.
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(a) (b)

Figure 31: Right traveling normal rolls observed when φ = 7.4π/20 and T = 197.4875 to
T = 199.9875 in two (a) and three (b) dimensional representations. The D mode is dominant.
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(a) Time series for n = 7.2. The
magnitude of the amplitudes (A,B,C,D) is
(O(10−4), O(10−4), 0.9512, O(10−16)).

(b) Time series for n = 7.4. The
magnitude of the amplitudes (A,B,C,D) is
(O(10−7), O(10−7), O(10−16), 0.9580).

Figure 32: A time series of the magnitude of the amplitudes at a specific spatial point
when φ = nπ/20. The time series for the moduli of the (A,B,C,D) amplitudes is depicted
as a solid red line, a dashed green line, a dotted blue line, and a dash-dot magenta line,
respectively.

Figure 33: Magnitude of the amplitudes for 3π/20 ≤ φ ≤ 7π/20. As φ increases from
2.8π/20 to 7.4π/20 the modulus of the A and B amplitudes decreases and the modulus of
the C and D amplitudes increases.
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For 3π/20 ≤ φ ≤ 7π/20, a continuous deformation from the steady oblique rolls to the

traveling normal rolls was observed as seen in Figures 34 through 54. In an exploration of

this region, Figure 33 shows that as φ increases the moduli of a steady oblique amplitude

decreases and the moduli of a normal traveling amplitude increases. When φ is near 3π/20,

the modulus of the C andD amplitudes both become larger than zero yet significantly smaller

than the dominant steady oblique amplitude. This leads to (C,D) mixed mode component

added to the steady oblique pattern created by the dominant amplitude. At the other end,

for φ near 7π/20 the magnitude of the A and B amplitudes both become larger than zero

though smaller than the dominant normal traveling amplitude. The traveling normal rolls

created by the dominant amplitude has a (A,B) mixed mode component added to it.

The individual stages which the transformation from steady oblique rolls to normal trav-

eling rolls goes through as φ increases from 3π/20 to 7π/20, start with the pattern for

φ = 3π/20, seen in Figure 34, in which steady oblique rolls have shifting formations along

the extrema of the steady oblique rolls. This pattern is a superposition of a steady oblique

mode and both of the normal traveling modes, Figure 55a.

For 3.2π/20 ≤ φ ≤ 3.6π/20, the steady oblique rolls which have traveling formations

along the extrema are observed (see Figures 35-37). The magnitude of the formations is less

than half that of the magnitude of the steady oblique rolls. The pattern is a superposition

of a steady oblique mode and a normal traveling mode (see Figures 55b-d) and has the

characteristics of wavy patterns.

For 3.8π/20 ≤ φ ≤ 4.8π/20, the pattern represented in Figures 38-43, shows forma-

tions traveling along a steady oblique roll of decreasing amplitude. The formations have a

magnitude of more than half of the amplitude of the steady oblique rolls. The pattern is a

superposition of a steady oblique mode and a normal traveling mode with smaller magnitude,

Figures 55e-56d.

Through the last three stages the magnitude of the dominant steady oblique amplitude

has decreased while the larger of the normal traveling amplitudes has increased, until at
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φ = 5π/20 they have the same magnitude. This pattern shown in Figure 44, has formations

traveling along oblique paths and is a superposition of steady oblique rolls and normal

traveling rolls of equal magnitude, Figure 56e.

For 5.2π/20 ≤ φ ≤ 6π/20, Figures 45-49, there are formations traveling upward or

downward along the extrema of normal traveling rolls of increasing amplitude, however the

overall appearance is that of formations traveling along an oblique path. This pattern is a

superposition of one normal traveling mode and one steady oblique mode with the magnitude

of the normal traveling mode being roughly twice that of the magnitude of the steady oblique

mode, Figures 56f-57d.

For 6.2π/20 ≤ φ ≤ 6.6π/20 the amplitude of the normal traveling rolls increases and the

patterns have normal traveling rolls with formations traveling upward or downward along the

extrema of the normal traveling rolls, as in Figures 50-52. This pattern is a superposition of

one normal traveling mode and one steady oblique mode with the magnitude of the normal

traveling mode being roughly twice that of the magnitude of the steady oblique mode, Figures

57e-58a.

In the last stage of the transformation before traveling normal rolls, for 6.8π/20 ≤ φ ≤

7π/20, the patterns becomes normal traveling rolls with a standing wave pattern along the

extrema, seen in Figures 53-54. The pattern, U , has a traveling sine wave in the x-direction

and a standing wave in the y-direction. This pattern is a superposition of a normal traveling

mode and both of the steady oblique modes, Figures 58b-58c.
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(a) (b)

Figure 34: Zig steady oblique rolls with a standing wave pattern along the oblique’s extrema
observed when φ = 3π/20 and T = 198.8625 to T = 199.8625 in two (a) and three (b)
dimensional representations. The dominant amplitude is B, but there is some influence from
C and D, Figure 55a.
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(a) (b)

Figure 35: Zig steady oblique rolls with formations traveling downward along the oblique’s
extrema observed when φ = 3.2π/20 and T = 199.2375 to T = 199.9875 in two (a) and three
(b) dimensional representations. The dominant amplitudes are B and C, Figure 55b.
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(a) (b)

Figure 36: Zag steady oblique rolls with formations traveling downard along the oblique’s
extrema observed when φ = 3.4π/20 and T = 198.7375 to T = 199.9875 in two (a) and three
(b) dimensional representations. The dominant amplitudes are A and D, Figure 55c.
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(a) (b)

Figure 37: Zag steady oblique rolls with formations traveling downward along the oblique’s
extrema observed when φ = 3.6π/20 and T = 198.7375 to T = 199.9875 in two (a) and three
(b) dimensional representations. The dominant amplitudes are A and D, Figure 55d.
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(a) (b)

Figure 38: Formations travel downward along a zig oblique path observed when φ = 3.8π/20
and T = 198.7375 to T = 199.9875 in two (a) and three (b) dimensional representations.
The dominant amplitudes are B and C, Figure 55e.
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(a) (b)

Figure 39: Formations travel downward along a zag oblique path observed when φ = 4π/20
and T = 198.7375 to T = 199.9875 in two (a) and three (b) dimensional representations.
The dominant amplitudes are A and D, Figure 55f.
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(a) (b)

Figure 40: Formations traveling downward along a zig oblique path observed when φ =
4.2π/20 and T = 198.7375 to T = 199.9875 in two (a) and three (b) dimensional represen-
tations. The dominant amplitudes are B and C, Figure 56a.
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(a) (b)

Figure 41: Formations traveling downward along a zag oblique path observed when φ =
4.4π/20 and T = 198.7375 to T = 199.9875 in two (a) and three (b) dimensional represen-
tations. The dominiant amplitudes are A and D, Figure 56b.
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(a) (b)

Figure 42: Formations traveling downward along a zag oblique path observed when φ =
4.6π/20 and T = 198.7375 to T = 199.9875 in two (a) and three (b) dimensional represen-
tations. The A and D amplitudes are dominant, Figure 56c.
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(a) (b)

Figure 43: Formations traveling downward along a zig oblique path observed when φ =
4.8π/20 and T = 198.7375 to T = 199.9875 in two (a) and three (b) dimensional represen-
tations. The B and C amplitudes are dominant, Figure 56d.
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(a) (b)

Figure 44: Formations traveling upward along a zag oblique path observed when φ = 5π/20
and T = 198.7375 to T = 199.9875 in two (a) and three (b) dimensional representations.
The dominant amplitudes are A and C, Figure 56e.
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(a) (b)

Figure 45: Formations traveling downward along a zag oblique path observed when φ =
5.2π/20 and T = 198.7375 to T = 199.9875 in two (a) and three (b) dimensional represen-
tations. The A and D amplitudes are dominant, Figure 56f.
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(a) (b)

Figure 46: Formations traveling upward along a zag oblique path observed when φ = 5.4π/20
and T = 198.7375 to T = 199.9875 in two (a) and three (b) dimensional representations.
The A and C amplitudes are dominant, Figure 57a.
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(a) (b)

Figure 47: Formations traveling downward along a zag oblique path observed when φ =
5.6π/20 and T = 198.7375 to T = 199.9875 in two (a) and three (b) dimensional represen-
tations. The dominant amplitudes are A and D, Figure 57b.
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(a) (b)

Figure 48: Left traveling normal rolls with a downward moving formation on the extrema
observed when φ = 5.8π/20 and T = 198.7375 to T = 199.9875 in two (a) and three (b)
dimensional representations. The B and C amplitudes are dominant, Figure 57c.
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(a) (b)

Figure 49: Right traveling normal rolls with a downward moving formation on the extrema
observed when φ = 6π/20 and T = 198.7375 to T = 199.9875 in two (a) and three (b)
dimensional representations. The dominant amplitudes are A and D, Figure 57d.
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(a) (b)

Figure 50: Left traveling normal rolls with a downward moving formation on the extrema
observed when φ = 6.2π/20 and T = 198.7375 to T = 199.9875 in two (a) and three (b)
dimensional representations. The B and C amplitudes are dominant, Figure 57e.
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(a) (b)

Figure 51: Left traveling normal rolls with an upward moving formation on the extrema
observed when φ = 6.4π/20 and T = 198.7375 to T = 199.9875 in two (a) and three (b)
dimensional representations. The dominant amplitudes are A and C, Figure 57f.
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(a) (b)

Figure 52: Left traveling normal rolls with an upward moving formation on the extrema
observed when φ = 6.6π/20 and T = 198.7375 to T = 199.9875 in two (a) and three (b)
dimensional representations. The A and C amplitudes are dominant, Figure 58a.
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(a) (b)

Figure 53: Left traveling normal rolls with a formation on the extrema observed when
φ = 6.8π/20 and T = 191.7375 to T = 199.9875 in two (a) and three (b) dimensional
representations. The C amplitude is dominant, but there is some influence from the A and
B amplitudes, Figure 58b.
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(a) (b)

Figure 54: Left traveling normal rolls with a formation on the extrema observed when
φ = 7π/20 and T = 193.4875 to T = 199.9875 in two (a) and three (b) dimensional rep-
resentations. The C ampltiude is dominant, but there is some influence from the A and B
amplitudes, Figure 58c.
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(a) Time series for n = 3. The mag-
nitude of the amplitudes (A,B,C,D) are
(O(10−11), 0.9413, 0.0783, 0.0616).

(b) Time series for n = 3.2. The mag-
nitude of the amplitudes (A,B,C,D) are
(O(10−11), 0.9205, 0.2406, 0.0117).

(c) Time series for n = 3.4. The mag-
nitude of the amplitudes (A,B,C,D) are
(0.8991, O(10−14), 0.0025, 0.3239.

(d) Time series for n = 3.6. The mag-
nitude of the amplitudes (A,B,C,D) are
(0.8767, O(10−13), 0.0012, 0.3893).

(e) Time series for n = 3.8. The mag-
nitude of the amplitudes (A,B,C,D) are
(O(10−11), 0.8533, 0.4450, O(10−4)).

(f) Time series for n = 4. The mag-
nitude of the amplitudes (A,B,C,D) are
(0.8288, O(10−12), O(10−4), 0.4943.

Figure 55: A time series of the magnitude of the amplitudes at a specific spatial point
when φ = nπ/20. The time series for the moduli of the (A,B,C,D) amplitudes is depicted
as a solid red line, a dashed green line, a dotted blue line, and a dash-dot magenta line,
respectively.
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(a) Time series for n = 4.2. The mag-
nitude of the amplitudes (A,B,C,D) are
(O(1010), 0.8031, 0.5389, O(106)).

(b) Time series for n = 4.4. The mag-
nitude of the amplitudes (A,B,C,D) are
(0.7761, O(10−11), O(10−6), 0.5798).

(c) Time series for n = 4.6.
The magnitude of (A,B,C,D) are
(0.7478, O(10−11), O(10−7), 0.6178).

(d) Time series for n = 4.8. The mag-
nitude of the amplitudes (A,B,C,D) are
O(10−10), 0.7180, 0.6533, O(10−7)).

(e) Time series for n = 5. The
magnitude of the (A,B,C,D) are
(0.6866, O(10−9), 0.6866, O(10−9)).

(f) Time series for n = 5.2. The
magnitude of the (A,B,C,D) are
(0.6533, O(10−8), O(10−8), 0.7180).

Figure 56: A time series of the magnitude of the amplitudes at a specific spatial point
when φ = nπ/20. The time series for the moduli of the (A,B,C,D) amplitudes is depicted
as a solid red line, a dashed green line, a dotted blue line, and a dash-dot magenta line,
respectively.
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(a) Time series for n = 5.4. The
magnitude of the (A,B,C,D) are
(0.6178, O(10−7), 0.7478, O(10−10)).

(b) Time series for n = 5.6. The
magnitude of the (A,B,C,D) are
(0.5798, O(10−5), O(10−11), 0.7761).

(c) Time series for n = 5.8. The mag-
nitude of the amplitudes (A,B,C,D) are
(O(10−5), 0.5389, 0.8031, O(10−12)).

(d) Time series for n = 6. The
magnitude of the (A,B,C,D) are
(0.4943, O(10−4), O(10−12), 0.8288).

(e) Time series for n = 6.2. The
magnitude of the (A,B,C,D) are
(O(10−4), 0.4450, 0.8533, O(10−13)).

(f) Time series for n = 6.4. The mag-
nitudes of the (A,B,C,D) amplitudes being
(0.3893, O(10−4), 0.8767, O(10−13)).

Figure 57: A time series of the magnitude of the amplitudes at a specific spatial point
when φ = nπ/20. The time series for the moduli of the (A,B,C,D) amplitudes is depicted
as a solid red line, a dashed green line, a dotted blue line, and a dash-dot magenta line,
respectively.
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(a) Time series for n = 6.6. The
magnitude of the (A,B,C,D) are
(0.3237, 0.0080, 0.8991, O(10−15)).

(b) Time series for n = 6.8. The
magnitudes of (A,B,C,D) are
(0.1177, 0.1964, 0.9220, O(10−15)).

(c) Time series for n = 7. The mag-
nitude of the (A,B,C,D) amplitudes are
(0.0604, 0.0823, 0.9412, O(10−16)).

Figure 58: A time series of the magnitude of the amplitudes at a specific spatial point
when φ = nπ/20. The time series for the moduli of the (A,B,C,D) amplitudes is depicted
as a solid red line, a dashed green line, a dotted blue line, and a dash-dot magenta line,
respectively.
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4.3 Bifurcation Diagram in the (cr, φ) plane

In order to explore the behavior of the solutions in the cr − φ plane, the parameters

(a, b1, b2, ci, d,Ω) = (1.2, 1 + 1.2i, 1.2 + i, 1,−0.5 + i, 5), (100)

the diffusion coefficients

(δ, α, β) = (0.1, 0.02 + 0.2i, 0.02− 0.4i), (101)

and pc = qc = wc = kc = vc = 1.00 were fixed and (cr, φ) was allowed to vary. The

parameter cr was cycled through the set {n/2, n = −9,−8, ..., 4} and φ was cycled through

the set {nπ/20, n = −10,−9, ..., 30}.

The behavior of the numerical solutions in the cr, φ-plane is shown in Figure 59. The

Figure 59: Bifurcation diagram in the (cr, φ) plane.
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steady state solutions (SS) occur in the region where π < φ < 3π/2 as seen in Figure 59.

Also, Figure 59 shows regions of stable steady oblique rolls (OS), normal traveling rolls (NT),

and mixed mode solutions (MM). For cr ∈ {n/2, n = −4,−3, ..., 4} the mixed mode solutions

are stable and for cr ∈ {n/2, n = −9,−8, ...,−5} bistabilty of the normal traveling and the

steady oblique rolls exists.

The behavior designated with RS occurring at and slightly above φ = −π/2 and at

φ = 30π/20 are steady rectangles, Figure 23, resulting from a superposition of the two

steady oblique modes. The region designated by MMC,D has (C,D) mixed mode solutions

and further investigation is needed to quantify these solutions. The last region of stable

mixed mode solutions, designated by MM and occurring for −2 ≤ cr ≤ 1.5 is composed of

(A,C), (A,D), (B,C), and (B,D) mixed mode solutions. The solution is a superposition of

one steady oblique mode and one normal traveling mode. The region denoted by B where

−4.5 ≤ cr ≤ −2 is where bistability of the steady oblique rolls and the normal traveling rolls

has been observed.

On the border between the regions of the MM solutions and the OS solutions there are

mixed mode solutions consisting of a superposition of three modes, one steady oblique mode

and both normal traveling modes. At the other border of the MM region, between the MM

and the NT solutions, there is another region of mixed modes combining three different

modes, this time the (A,B) modes and either the C or D mode.

The ‘pure’ mixed modes and the combinations of three modes were interesting mixed

mode structures and require further investigation.

4.4 Consistency of Numerical and Theoretical Results

The behavior of the numerical simulations has been consistent with the normal form

analysis except for near the theoretical bifurcation lines, φ = −π/2 and φ = π, where stable

‘pure’ mixed mode solutions were observed. These mixed mode solutions were unstable in

the normal form analysis. For all values of cr used, at φ = −π/2 a steady rectangles solution
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with amplitude of O(10−2) was seen and for φ = π a (C,D) mixed mode solution with

amplitude of O(10−1) was observed.

In all cases, Figures 60a - 63b, the steady oblique rolls, normal traveling rolls, and steady

state solution are only observed within the regions where the theory indicates that they are

stable.

The bistability regions found numerically in Figures 60a - 61a agree with the predictions

from the normal form analysis. Bistability of the steady oblique and normal traveling rolls

has yet to be found at the theoretical limits. As cr < −2 decreases the bistability of the

steady oblique and normal traveling solutions are observed for a larger number of φ values.

The steady oblique-normal traveling mixed mode solutions were observed where pre-

dicted, Figures 61b - 63b, and usually from one theoretical bifurcation line to the other of

the expected region. For cr = −2, the theoretical bifurcation half-lines, (O) and (N), overlap.

An (A,C), (A,D), (B,C), or (B,D) mixed mode solution was observed in the ‘wedge’ in the

parameter plane where the normal form has the mixed mode solution. As cr > −2 increases

the mixed mode solution is observed for a larger number of φ values.

There are stable mixed mode solutions consisting of three non-zero amplitudes along the

theoretical bifurcation half-lines (O) and (N) for cr ∈ {−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2}. These

solutions consist of either the A or B mode and the (C,D) modes near the (O) half-line and

either the C or D mode and the (A,B) modes near the (N) half-line.
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(a) cr = −4.5 (b) cr = −4

(c) cr = −3.5 (d) cr = −3

Figure 60: Numerically found behavior of solutions at T = 200 at cr ∈ {−4.5,−4,−3.5,−3}
and φ ∈ {nπ/20, n = −10, .., 30} and the theoretical bifurcation boundaries, where the blue
half-line is the theoretical boundary for a stable steady oblique solution. The green half-line
is the theoretical boundary for a stable normal traveling solution. The green squares are the
numerically observed normal traveling behavior. The blue ‘X’s are the numerically observed
steady oblique behavior. The magenta diamonds are where the steady state solution was
observed numerically. The red asterisks are where mixed mode solutions were observed
numerically.
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(a) cr = −2.5 (b) cr = −2

(c) cr = −1.5 (d) cr = −1

Figure 61: Numerically found behavior of solutions at T = 200 at cr ∈ {−2.5,−2,−1.5,−1}
and φ ∈ {nπ/20, n = −10, .., 30} and the theoretical bifurcation boundaries, where the blue
half-line is the theoretical boundary for a stable steady oblique solution. The green half-line
is the theoretical boundary for a stable normal traveling solution. The green squares are the
numerically observed normal traveling behavior. The blue ‘X’s are the numerically observed
steady oblique behavior. The magenta diamonds are where the steady state solution was
observed numerically. The red asterisks are where mixed mode solutions were observed
numerically.
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(a) cr = −0.5 (b) cr = 0

(c) cr = 0.5 (d) cr = 1

Figure 62: Numerically found behavior of solutions at T = 200 at cr ∈ {−0.5, 0, 0.5, 1}
and φ ∈ {nπ/20, n = −10, .., 30} and the theoretical bifurcation boundaries, where the blue
half-line is the theoretical boundary for a stable steady oblique solution. The green half-line
is the theoretical boundary for a stable normal traveling solution. The green squares are the
numerically observed normal traveling behavior. The blue ‘X’s are the numerically observed
steady oblique behavior. The magenta diamonds are where the steady state solution was
observed numerically. The red asterisks are where mixed mode solutions were observed
numerically.
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(a) cr = 1.5 (b) cr = 2

Figure 63: Numerically found behavior of solutions at T = 200 at cr ∈ {−2.5,−2,−1.5,−1}
and φ ∈ {nπ/20, n = −10, .., 30} and the theoretical bifurcation boundaries, where the blue
half-line is the theoretical boundary for a stable steady oblique solution. The green half-line
is the theoretical boundary for a stable normal traveling solution. The green squares are the
numerically observed normal traveling behavior. The blue ‘X’s are the numerically observed
steady oblique behavior. The magenta diamonds are where the steady state solution was
observed numerically. The red asterisks are where mixed mode solutions were observed
numerically.
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5 Conclusions and Further Work

A system of globally coupled Ginzburg Landau equations was set up to model the ex-

perimentally observed interaction of steady oblique rolls and normal traveling rolls which

nematic electroconvection experiments have displayed near onset. From a qualitative theo-

retical study, the system of equations dictates the actions of slowly varying spatiotemporal

envelopes of ideal roll patterns for anisotropic systems close to the experimentally observed

codimension-two point. The equations predict steady and traveling, oblique and normal

rolls and are experimentally supported as the “correct theoretical description governing the

spatiotemporal dynamics of nematic electroconvection,” according to [1].

Through a normal form analysis of the globally coupled Ginzburg Landau equations

the primary solution branches and their stability regions were found analytically. A region

where the primary solutions interact (resulting in mixed mode solutions or bistability) was

identified. The mixed mode solutions in this region of the (Λ1,Λ2) plane are either stable or

unstable solutions of the normal form depending on the parameters b1r, cr, and dr. When

the mixed mode solutions are unstable, the analysis states that the region has bistability of

the primary solutions (steady oblique rolls and normal traveling rolls).

When the mixed mode solution is stable in the normal form, we have numerically con-

firmed the presence of a continuous transition between the steady oblique rolls and the

normal traveling rolls. Two regions of more complicated behavior were found near the bi-

furcation half-lines which define the region of stable mixed mode solutions. Near the (O)

half-line (70), the solutions were a combination of either an A or B amplitude and both the

C,D amplitudes. The three amplitudes involved in the patterns near the (N) half-line (73)

were the A,B amplitudes and either a C or D amplitude. The effect of the initial conditions

on the stable mixed mode region was not studied here.

The existence of the bistability region found analytically was also numerically confirmed.

The parameters and the initial conditions appear to determine the φ at which the pattern
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changes between steady oblique rolls and normal traveling rolls. The steady rectangles

solutions and the standing wave solution were observed within this region only when similar

initial conditions were used. Thus, further study is needed to determine the conditions under

which these mixed mode solutions are stable.

Given the parameters, the normal form analysis predicted that the steady rectangles and

standing wave solutions would be unstable. Stable steady rectangles, consisting of both of

the steady oblique amplitudes, occurred at the bifurcation between the steady state region

and the steady oblique region. At the bifurcation between the steady state solution and the

normal traveling rolls is a mixed mode solution region where both of the normal traveling

amplitudes are combined. Both of these regions appear to be transitional regions for the

respective bifurcations from the steady state solution to either the steady oblique or the

normal traveling solutions. A further study of these mixed mode solution regions is needed

to identify the extent of the regions and other factors which contribute to this behavior.

One direct extension of the results found here would be expanding the numerical bifurca-

tion diagram to cr > 2 and cr < −4.5. Another extension would be numerically finding the

bifurcation diagrams in the (dr, φ) and (b1r, φ) planes and studying the results of variations

of the parameters (cr, dr, b1r, φ).
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Appendix A Coutte-Taylor Example

For the interaction of an axisymmetric and a nonaxisymmetric mode, at criticality there

needs to be one eigenvalue at zero and a pair ±iω0 on the imaginary axis [8]. The procedure

of center manifold reduction and normal form transformation [8] allows the reduction of the

original PDEs (1) to a system of normal formal differential equations for the coordinates

in the center eigenspace, which is six dimensional since the eigenvalues are doubled. The

normal form is equivariant under the action of the group Γ = O(2) × SO(2) restricted to

the center eigenspace, where O(2) is generated by translations Tψ : z → z + ψ and the

reflection S : z → −z, and SO(2) is generated by rotations Rϕ : θ → θ+ϕ of the cylindrical

coordinated (r, θ, z). Let the zero eigenvalue have eigenvectors ζ0 and ζ̄0 and the eigenvalue

iω0 have eigenvectors ζ1 and ζ2, such that ζ2 = Sζ1. The group Γ acts on ζ0 via the operations

Tψζ = einψζ, Sζ = ζ̄ , Rϕζ = ζ ∀ψ and ϕ ∈ R, (102)

and on ζ1 and ζ2 according to the matrix operations

Tψ =

 einψ 0

0 e−inψ

 , S =

 0 1

1 0

 , Rϕ = eiϕ

 1 0

0 1

 . (103)

Let elements in the eigenspace, V , be written as

X =
2∑
j=0

Ajζj + Āj ζ̄j. (104)
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Thus the group Γ acts on the coordinates according to

TψAj = einψAj (j = 0, 1) and TψA2 = e−inψA2,

A2 = SA1 and Ā0 = SA0,

RϕAj = eijϕAj (j = 0, 1) and RϕA2 = eiϕA2. (105)

Next, the structure of the Γ-equivariant maps in V need to be computed. Let the difference

between the Reynolds number, R, and the critical Reynolds number, Rc, be denoted as

µ = R− Rc, ν = Ω− Ω(0), and

F (µ, ν,X) =
2∑
j=0

Fj(µ, ν,X)ζj + Fj(µ, ν,X)ζ̄j. (106)

Thus the amplitude equations are

dAj
dt

= Fj(µ, ν,X) (j = 0, 1, 2). (107)

The Fj’s have the relations

F0(µ, ν,RϕX) = F0(µ, ν,X),

F0(µ, ν, TψX) = einψF0(µ, ν,X),

F0(µ, ν,SX) = F0(µ, ν,X),

F1(µ, ν,RϕX) = eiϕF1(µ, ν,X),

F1(µ, ν, TψX) = einψF1(µ, ν,X),

F2(µ, ν,X) = F0(µ, ν,SX) (108)

through the equations (105). Therefore, to write the differential system in V in terms of

coordinates the following lemma is helpful.
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Lemma 1 Any polynomial map F (X) satisfying the relations (108) has the following struc-

ture: let us set Aj = ρje
iψj , uj = ρ2

j , and v = A2
0Ā1A2. Then

F0 = A0g0(u0, u1, u2, v) + Ā0A1Ā2h0(u0, u1, u2, v̄),

F1 = A1g1(u0, u1, u2, v̄) + A2
0A2h1(u0, u1, u2, v),

F2 = A2g1(u0, u2, u1, v) + Ā2
0A1h1(u0, u2, u1, v̄), (109)

where gj and hj are complex polynomials and g0, h0 satisfy the relation f(x, y, z, t̄) =

f(x, y, z, t).

By expanding F (µ, ν,X) in a Taylor series helps rewrite the differential system in V in terms

of coordinates resulting in

dA0

dt
= A0(α0µ+ β0ν + c0ρ

2
0 + d0ρ

2
1 + d̄0ρ

2
2) + f0Ā0A1Ā2 + h.o.t.,

dA1

dt
= A1(iω0 + α1µ+ β1ν + c1ρ

2
0 + d1ρ

2
1 + e1ρ

2
2) + f1A

2
0A2 + h.o.t.,

dA2

dt
= A2(iω0 + α1µ+ β1ν + c1ρ

2
0 + e1ρ

2
1 + d1ρ

2
2) + f1Ā

2
0A1 + h.o.t., (110)

with α0, β0, c0, f0 ∈ R. However, while equations (110) are useful, they can be rewritten in

a global way which takes into account all orders according to the following lemma.

Lemma 2 The six dimensional vector field satisfying relations (108) can be written as

dAj
dt

= eiψjfj(µ, ν, ρ0, ρ1, ρ2, θ), j = 0, 1, 2, (111)

where Aj = ρje
iψj , fj are 2π-periodic in θ = 2ψ0 − ψ1 + ψ2, and f0 is odd in ρ0, even in

(ρ1, ρ2), while f1 and f2 are even in ρ0, odd in (ρ1, ρ2). Moreover,

f0(µ, ν, ρ0, ρ2, ρ1,−θ) = f̄0(µ, ν, ρ0, ρ1, ρ2, θ),

f2(µ, ν, ρ0, ρ2, ρ1,−θ) = f1(µ, ν, ρ0, ρ1, ρ2, θ) (112)
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and if one of the ρj’s is 0, then fk is independent of θ and odd in ρk, even in ρl for k 6= j,

l 6= j, k 6= l.

Due to the symmetry of the problem, there are subspaces that are invariant under the

vector field F and therefore under the equations (107). Due to the equivariance of F , if

such a subspace is transformed by the action of an element γ of the group Γ, then the

resulting subspace is also invariant under the system. Also, any trajectory is isometrically

transformed by γ to another trajectory. Thus, one only needs to know one representative

of each equivalence class of the flow-invariant subspaces [8]. The invariant subspaces in the

following lemma.

Lemma 3 For any ψ ∈ T1 the following subspaces of V are invariant under the system (107):

(i) eiψA0 (A0 ∈ R), A1 = A2 = 0;

(ii) A0 = A2 = 0;

(iii) A0 = A1 = 0;

(iv) A0 = 0, A2 = eiψA1;

(v) A0 = 0, A1A2 6= 0;

(vi) eiψA0 (A0 ∈ R), A1 = −e2iψA2;

(vii) eiψA0 (A0 ∈ R), A1 = e2iψA2.

Subspaces (i), (ii), and (iii) from Lemma 3 are the lowest dimensional, nontrivial sub-

spaces which correspond to pure mode solutions (only pure stationary or pure Hopf bifurca-

tions). The Taylor vortices are found in subspace (i). In subspace (ii), spiral flow is found.

Through the actions of S, the symmetric solutions to that found in subspace (ii) are found

in subspace (iii). The ribbons are found in subspace (iv). In subspace (v), both spiral flow

and ribbons are found [8].
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From Lemma 1 (or Lemma 2) and system (110), the principal part of the differential

system in the subspace (vi) of Lemma 3 is

dA0

dt
= A0

[
α0µ+ β0ν + c0ρ

2
0 + (2d0r − f0)ρ2

1 +O(|µ|+ |ν|+ ρ2
0 + ρ2

1)2
]
, (113)

dA1

dt
= A1

[
iω0 + α1µ+ β1ν + (c1 − f1)ρ2

0 + (d1 + e1)ρ2
1

+O(|µ|+ |ν|+ ρ2
0 + ρ2

1)2
]
, (114)

with an the equation for A2 being similar to (114). This system decouples into phase and

modulus equations and the equations for the moduli take the form

dρ0

dt
= ρ0

[
α0µ+ β0ν + c0ρ

2
0 + (2d0r − f0)ρ2

1 +O(|µ|+ |ν|+ ρ2
0 + ρ2

1)2
]
,

dρ1

dt
= ρ1

[
α1rµ+ β1rν + (c1r − f1r)ρ

2
0 + (d1r + e1r)ρ

2
1

+O(|µ|+ |ν|+ ρ2
0 + ρ2

1)2
]
. (115)

There are three cases for equilibria of the moduli system:

(i) A1 = 0, which shows Taylor vortices;

(ii) A0 = 0, which shows ribbons; and

(iii) A1A0 6= 0, which simplifies the principal part of the system to be

α0µ+ β0ν + c0ρ
2
0 + (2d0r − f0)ρ2

1 = 0

α1rµ+ β1rν + (c1r − f1r)ρ
2
0 + (d1r + e1r)ρ

2
1 = 0. (116)
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Figure 64: Wavy vortex flow.

Continuing with the third case, let D = c0(d1r + e1r) − (2d0r − f0)(c1r − f1r). For D 6= 0,

nontrivial solutions of the system (116) exist and the leading terms of the branch are

ρ2
0 =

α1r(2d0r − f0)− α0(d1r + e1r)

D
µ+

β1r(2d0r − f0)− β0(d1r + e1r)

D
ν,

ρ2
1 =

α0(c1r − f1r)− α1rc0

D
µ+

β0(c1r − f1r)− β1rc0

D
ν. (117)

The corresponding wavy vortex flow solutions of (113)-(114) is a mix of the stationary and

time-periodic modes and are rotating waves, depicted in Figure 64 [8].

In subspace (vii), similar to that of subspace (vi), the principal part of the system becomes

dA0

dt
= A0

[
α0µ+ β0ν + c0ρ

2
0 + (2d0r + f0)ρ2

1 +O(|µ|+ |ν|+ ρ2
0 + ρ2

1)2
]
, (118)

dA1

dt
= A1

[
iω0 + α1µ+ β1ν + (c1 + f1)ρ2

0 + (d1 + e1)ρ2
1

+O(|µ|+ |ν|+ ρ2
0 + ρ2

1)2
]
, (119)

with the equation for A2 being similar to (119). Eliminating the primary solutions, Taylor

vortices and ribbons, leaves the mixed mode branch. On this branch, the solution of the

amplitude equations for the equilibria gives

ρ2
0 =

α1r(2d0r + f0)− α0(d1r + e1r)

D
µ+

β1r(2d0r + f0)− β0(d1r + e1r)

D
ν,

ρ2
1 =

α0(c1r + f1r)− α1rc0

D
µ+

β0(c1r + f1r)− β1rc0

D
ν. (120)
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Figure 65: Twisted vortices.

with D = c0(d1r + e1r) − (2d0r + f0)(c1r + f1r). The twisted vortices solutions, depicted

in Figure 65, are rotating waves which have a “2-torus group orbit by rotations (or time

evolution) and translations” [8].
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