Engineering Sciences

JUN 878

mach Library

WIND TUNNEL STUDY OF STACK GAS DISPERSAL AT HARRINGTON POWER STATION

by

R. N. Meroney* J. E. Cermak*

Prepared under contract to Southwestern Public Service Company Amarillo, Texas

Fluid Dynamics and Diffusion Laboratory Department of Civil Engineering College of Engineering Colorado State University Fort Collins, Colorado -

U18401 0074360

CER75-76RNM-JEC24

April 1976

*Co-principal Investigators

ABSTRACT

Tests were conducted in the Colorado State University Meteorological Wind Tunnel facility, to study the gaseous plumes released from stacks associated with the Harrington Power Station of the Southwestern Public Service Company. The tests were conducted over a model power plant to scale 1/250 including all significant structures, topography, and roughness elements in the vicinity. Effects of wind orientation, stack height, plant operation load, and wind velocity were established. Data obtained included photographs and color motion pictures of smoke plume trajectories and contaminant concentration downwind of the power plant at ground level sampling positions.

ACKNOWLEDGMENTS

The support of Southwestern Public Service Company in carrying out this study is gratefully acknowledged. Construction of the building model was accomplished by personnel of the Engineering Research Center Machine Shop. Mr. James A. Garrison supervised motion picture and photographic records of flow visualization. Mr. James Maxton supervised operation of concentration measuring equipment. Mr. Robert Hatcher and Mr. David Neff were responsible for concentration and visualization measurements.

TABLE OF CONTENTS

Chapter		Page
	ABSTRACT	i
	ACKNOWLEDGMENTS	ii
	LIST OF FIGURES	iv
	LIST OF TABLES	vi
	LIST OF SYMBOLS	vii
	CONVERSION TABLE (English to Metric Units)	ix
1.0	INTRODUCTION	1
2.0	SIMULATION OF ATMOSPHERIC MOTION	6
3.0	TEST APPARATUS	13
	3.1 Wind-Tunnels	13
	3.1.1 Test Configuration in the MWT	13
	3.2 Model	13
	3.3 Flow Visualization Techniques	14
	3.4 Wind Profiles and Temperature Measurements	15
	3.5 Gas Tracer Technique	15
	3.5.1 Analysis of Data	15
	3.5.2 Errors in Concentration Measurements	16
	3.5.3 Test Results: Concentration	
	Measurements	18
4.0	TEST PROGRAM AND RESULTS: UNIT 1	22
	4.1 Test Program	22
	4.2 Test Results: Characteristics of Flow	22
	4.3 Test Results: Visualization	23
	4.4 Test Results: Concentration Measurements	25
5.0	TEST PROGRAM AND RESULTS: UNIT 2	27
5.0	5.1 Test Program	27
	5.2 Test Results: Characteristics of Flow	27
	5.3 Test Results. Visualization	28
	5.4 Test Results: Concentration Measurements	30
6.0	CONCLUSIONS	33
	6.1 Unit 1 Stack	33
	6.2 Unit 2 Stack	33
	REFERENCES	35
	FIGURES	39
	TABLES	61

LIST OF FIGURES

Figure		Page
3-1	Views of Harrington Power Station Site	39
3-2	Harrington Power Station, Model Scale 1:250	40
3-3	Wind Rose and Wind Speed Occurrence Amarillo, Texas (Haragan, 1974)	41
3-4	Meteorological Wind Tunnel; Fluid Dynamics and Diffusion Laboratory, Colorado State University	42
3-5a	Model Gas Source and Visualization System	43
3-5b	Tracer Gas Sampling and Analysis System	44
3-6	Coordinator for Concentration Measuring Locations in Meteorological Wind Tunnel	45
3-7	Approach Velocity Profile, Neutral Flow Meteorological Wind Tunnel	46
4 - 1	Flow Visualization. Unit 1: 250 ft Stack, 15 mph, 50% Load, N, NE, E, SE Wind Directions	47
4-2	Flow Visualization. Unit 1: 250 ft Stack, 15 mph, 50% Load, S, SW, W, NW Wind Directions	48
4-3	Flow Visualization. Unit 1: 250 ft Stack, 15 mph, 50, 80, 100% Load, SW Wind Direction	49
4-4	Flow Visualization. Unit 1: 250 ft Stack, 15. 30, 45 mph, 50% Load, SE Wind Direction	50
4-5	Maximum Ground Concentration Profiles for Various Wind Speeds, SE, S, SW Wind Approach Angle and for a 50% Load Emitted from Unit 1 Stack	51
4-6	Maximum Ground Concentration as Influenced by Load and Wind Speed, SE, SW Wind Directions	52
5-1	Flow Visualization. Unit 2: 300 ft Stack, 15 mph, 50% Load, N. NE, E, SE Wind Directions	53
5-2	Flow Visualization. Unit 2: 300 ft Stack, 15 mph, 50% Load, S. SW, W. NW Wind Directions	54
5-3,	Flow Visualization. Unit 2: 300, 350, 375, 400 ft Stack, 30 mph, 80% Load. W Wind Direction	55
5-4	Flow Visualization. Unit 2: 300 ft Stack, 30 mph, 50, 80, 100% Load, W Wind Direction	56

Figure

5-5	Flow Visualization. (1/2 Flow Area), Unit 2: 300 ft Stack, 15, 30, 45 mph, 50% Load, W Wind Direction	57
5-6	Flow Visualization. Unit 2: 300 ft Stack, 30 mph, 50, 80, 100% Load, W Wind Direction	58
5-7	Maximum Ground Concentration Profiles for Various Stack Heights, 80% Load and W Wind Approach Angle	59
5-8	Maximum Ground Concentration as Influenced by Load and Wind Speed, NW, W Wind Approach Angle, 300 ft Stack	60

Page

v

LIST OF TABLES

Table		Page
3-1	Instrumentation and Materials Employed	61
4-1	Prototype Emission Parameters Unit 1: Harrington Station	62
4-2	Model Emission Parameters Unit 1: Harrington Station	63
4-3	Observed Touchdown Distances from Flow Visualization Tests (ft) Unit 1: Harrington Station	64
4-4	Maximum Ground Concentration (ppm) and Distance to Maximum (ft) Unit 1: Harrington Station	65
4-5	Ground Level Concentration Results for Neutral Flow Conditions (concentrations in ppm SO ₂) Unit 1	66
5-1	Prototype Emission Parameters Unit 2: Harrington Station	85
5-2	Model Emission Parameters Unit 2: Harrington Station	86
5-3	Observed Touchdown Distances from Flow Visualization Tests (ft) Unit 2: Harrington Station	87
5-4	Maximum Ground Concentration (ppm) and Distance to Maximum (ft) Unit 2: Harrington Station	89
5-5	Ground Level Concentration Results for Neutral Flow Conditions (concentrations in ppm SO ₂) Unit 2	90

LIST OF SYMBOLS

Symbol	Definition	
Α	Area of the projection of the power station building on a plane transverse to the upstream flow direction	(L ²)
С	Entrainment parameter	(-)
C _p	Specific heat capacity	$(L^2T^{-2}\theta^{-1})$
D	Stack diameter	(L)
Е	Gas Chromatograph Response	(mvs)
Fr	Froude number $\frac{V^2}{g\frac{\Delta\rho}{\rho_a}D}$	(-)
g	Gravitational constant	(L/T ²)
Н	Stack height	(L)
ΔН	Plume rise	(L)
k	von Karman constant	(-)
К	Concentration isopleth or Calibration constant	(-)
М	Molecular weight	(-)
Q	Source strength	(M/T)
R	Exhaust velocity ratio V _s /V _a	(-)
Re	Reynolds number $\frac{VL}{v}$	(-)
U*	Friction velocity	(L/T)
v	Mean velocity	(L/T)
x,y,z	General coordinatesdownwind, lateral, upwind	(L)
z _o	Surface roughness parameter	(L)

Greek symbols

x	Local concentration	$(M/L^3 \text{ or } ppm)$
τ	Sampling time	(T)
θ	Azimuth angle of upwind direction measured from plant north	(-)

Symbol	/mbol Definition		
σ	Standard deviation of either plume dispersion or wind angle fluctuations	(L) (-)	
ν	Kinematic viscosity	(L ² /T)	
δ	Boundary layer thickness	(L)	
Y	Specific weight	$M(T^2L^2)$	
ρ	Density	(M/L ³)	
Ω	Angular velocity	(1/T)	
μ	Dynamic viscosity	M/(TL)	

Subscripts

а	Free stream
s	Stack
m	Mode1
р	Prototype
max	Maximum

CONVERSION TABLE (English to Metric Units)

Multiply units	by	to obtain
inches	2.540	centimeters
square inches	6.452	square centimeters
cubic inches	16.39	cubic centimeters
feet	0.3048	meters
square feet	0.0929	square meters
cubic feet	0.02832	cubic meters
feet/second	0.3048	meters/second
miles/hour	0.4470	meters/second
cubic feet/minute	0.02832	cubic meters/minute
cubic feet/minute	0.00047	cubic meters/second

1.0 INTRODUCTION

A wind tunnel study of the Harrington Power Station, Southwestern Public Service Company, near Amarillo, Texas was performed to determine the optimum stack height which would eliminate plume downwash and reduce the concentration of sulfur dioxide at ground level such that the plant can meet state and federal ambient air quality standards. The power plant is located on a site north-northeast of Amarillo, Texas.

Commercial fossil fuel steam electric generating stations generally require an anlaysis of the potential behavior of gaseous effluents emitted to the atmosphere as a result of combustion processes. The proposed new design incorporates processes to reduce particulate emissions and ground-level concentrations of gaseous chemical effluents to a minimum. Used wisely the atmospheric reservoir permits disposal without damage or nuisance; used without due consideration for its widely varying dispersion capacity, pollutants may at times remain at sufficiently high concentrations near the ground to cause annoyance.

A primary factor in determining whether these gaseous products are to be a nuisance is the stack design. Under certain conditions it may be necessary to make a release in meteorologically unfavorable situations. Hence, it is necessary to design gas exhaust systems such that adequate dispersal of gaseous materials will occur under any realistic meteorological condition.

It has been a traditional design technique to release the various gases through the top of a tall stack located near the power station, where the stack is at least two and one-half times taller than nearby buildings. Calculation of peak and mean ground concentrations of these gases are then based on some semiempirical model which relates the release rate from an elevated point source to the concentration at some point downwind. Mathematical models have been suggested by Sutton (1947), Hay and Pasquill (1962), Roberts and Cramer (1957). These mathematical models require the assumptions of plane homogeneous atmospheric turbulence and constant mean lateral and mean vertical velocities. These assumptions are satisfied for a point release over a flat undisturbed terrain.

In addition, considerable effort has been made to determine the effects of vertical stack velocity and gas buoyancy on the effective stack release height. Carson and Moses (1967) have reviewed over 15 plume rise formulas constructed to calculate effective stack heights for conditions where there are no effects from local terrain or buildings. They concluded that no available plume rise equation can be expected to accurately predict short-term plume rise. Recent results produced by Briggs (1969) are more optimistic concerning isolated plumes suggesting error bounds for plume rise of +20 percent.

Often, it is necessary, due to aesthetics, cost, and public relation reasons, to utilize a short to medium height stack. In these cases plume dispersion is sufficiently modified by the presence of the local building structure or ground topography that the only approach available is one of wind tunnel model tests (Moses, et al. (1964), Halitsky, et al. (1963)).

A number of wind tunnel studies have considered the effects of variations in a single building geometry on plume entrainment and dispersion (Halitsky (1963), Strom et al. (1957), Dickson et al. (1967), Jensen and Frank (1963)). These studies have permitted the specification of pertinent scaling criteria for model studies of plume excursions near buildings. Model laws will be discussed in greater detail in Section 2.

Since each arrangement of the power plant and auxiliary buildings or terrain may have separate effects on the generation of mechanical turbulence and mean flow movement, any specific gas dispersion problem will require individual tests. Hence, there exist in the literature descriptions of a variety of different model studies on reactor and industrial plants (Halitsky et al. (1963), Halitsky (1975), Kalinske (1945), Davies et al. (1964), Sherlock and Stalker (1940), Hohenleiten and Wolf (1942), Martin (1965), Meroney et al. (1967), Meroney et al. (1968), Cermak and Nayak (1973), Isyumov, et al. (1974), Smith (1975), Cagnetti (1974), etc.). These studies are significant in that their results have been essentially confirmed by either direct prototype measurements or the absence of the gases or dusts the study was directed to remove. Kalinske (1945), Davies and Moore (1964), Hohenleiten and Wolf (1942), and Martin (1965), incorporate such comparisons within their text. Halitsky et al. (1963) and Halitsky (1975) have recently been compared with prototype measurements at the National Reactor Testing Station in southeast Idaho (Dickson et al. (1967)). Agreement of the diffusion concentration results were very satisfactory. Martin (1965) favorably compared his wind tunnel study measurements about a model of the Ford Nuclear Reactor at the University of Michigan with prototype measurements. Munn and Cole (1967) have taken diffusion measurements on a power station complex at the National Research Council, Ottawa, Canada, to confirm the general entrainment criteria suggested by the model studies of Davies and Moore (1964). Isyumov, et al. (1974) compared predicted wind tunnel model results for SO₂ concentrations resulting from the operation of a tall stack in hilly terrain with available full scale data for two comparable stacks. Wind tunnel and full scale

data showed close agreement, the wind tunnel bounding the measured behavior of the full scale situations.

Smith (1975) compared near wake behavior of a field dispersion experiment near a small (3m x 3m x 2m high) industrial building with wind tunnel measurements about similar geometries, (Meroney and Yang, 1971). Similar trends were detected; however field results suggested care must be taken to appropriately simulate atmospheric turbulence and aerodynamic roughness of upstream surfaces.

The purpose of this study is to determine the behavior of plumes created by gases discharged from an existing stack for Unit 1 and a proposed new stack for a second unit for the Southwestern Public Service Company Harrington Power Station (Figs. 3-1 and 3-2). Using a 1:250 scale model of the plant in a wind tunnel capable of simulating the appropriate meteorological conditions downwind ground-level stack-gas concentrations were determined by sampling concentrations of tracer gas (Propane) released from the model stacks and overall plume geometry was obtained by photographing smoke plumes created by releasing smoke (titanium oxide) from the model stacks.

The general scope includes determination of how plume behavior is affected by stack height by loading level, wind direction, and wind speed of the atmosphere. A wide range of meteorological conditions can be simulated in the Meteorological Wind Tunnel (MWT) of the Fluid Dynamics and Diffusion Laboratory (FDDL) at Colorado State University. The conditions simulated for this study are limited to the adiabatic lapse rate (thermally neutral flow) case.

The modeling criteria necessary to simulate atmospheric motions over such a site are presented in Section 2. Details of the model construction and the experimental equipment are described in Section 3.

Finally, Sections 4 and 5 discuss the results obtained and their significance.

This report is supplemented by a motion picture (in color) which shows the plume behavior for all stacks for all operating levels, wind directions and meteorological conditions investigated during the course of this study. A set of black-and-white photographs and color slides of each plume realization further supplements the material presented in this report.

2.0 SIMULATION OF ATMOSPHERIC MOTION

The use of wind tunnel for model tests of gas diffusion by the atmosphere is based upon the concept that nondimensional concentration coefficients will be the same at contiguous points in the model and the prototype and will not be a function of the length scale ratio. Concentration coefficients will only be independent of scale if the wind tunnel boundary layer is made similar to the atmospheric boundary layer by satisfying certain similarity criteria. These criteria are obtained by inspectional analysis of physical statements for conservation of mass, momentum and energy. Detailed discussions have been given by Halitsky (1963), Martin (1965), and Cermak et al. (1966). Basically the model laws may be divided into requirements for geometric, dynamic, thermic and kinematic similarity. In addition, similarity of upwind flow characteristics and ground boundary conditions must be achieved.

For the Harrington Power Station study, geometric similarity is satisfied by an undistorted model of length ratio 1:250. This scale was chosen to facilitate ease of measurements, provide a boundary layer equivalent to 1000 ft for the atmosphere and minimize wind tunnel blockage. (The ratio of projected area to the area of the wind tunnel cross section should not exceed five percent. The model of the Harrington Power Station at a scale of 1:250 produced a blockage of less than 3.0 percent in the MWT.)

When interest is focused on the vertical motion of plumes of heated gases emitted from stacks into a thermally <u>neutral</u> atmosphere the following variables are of primary significance:

 ρ_a = density of ambient air $\Delta \gamma = (\rho_a - \rho_s)g$ --difference in specific weight of ambient air and stack gas

 Ω = local angular velocity component of earth

 μ_a = dynamic viscosity of ambient air

 V_a = speed of ambient wind at stack height

 V_s = speed of stack gas emission

H = stack height

D = stack diameter

- δ_{α} = thickness of planetary boundary layer
- z_{o} = roughness heights for upward surface

Grouping the independent variables into dimensionless parameters with ρ_a , V_a and H as reference variables yields the following parameters upon which the dependent quantities of interest must depend:

$$\frac{V_{a}}{H\Omega}, \frac{\delta_{a}}{H}, \frac{z_{o}}{H}, \frac{D}{H}, \frac{V_{a}\rho_{a}H}{\mu_{a}}, \frac{\rho_{s}V_{s}^{2}}{\rho_{a}V_{a}^{2}}, \frac{\rho_{a}V_{a}^{2}}{\Delta\gamma D}, \frac{\Delta\gamma}{g\rho}$$

The laboratory boundary-layer-thickness parameter δ_a/H was made approximately equal to that for the atmosphere. A value for this ratio of at least 1.5 was established for the highest stacks. Equality of the surface parameter z_0/H for model and prototype was achieved through geometrical scaling of the stacks and upwind roughness. Likewise the stack parameter D/H was equal for model and prototype.

Dynamic similarity is achieved in a strict sense if a Reynolds number $\frac{\rho_a V_a H}{\mu_a}$ and a Rossby number $\frac{V_a}{H\Omega}$ for the model is equal to its counterpart for the atmosphere. The model Rossby number cannot be made equal to the atmospheric value. However, over the short distances considered (up to 15,000 ft), the Coriolis acceleration has little influence upon the flow. Accordingly, the standard practice is to relax the requirement of equal Rossby numbers.

Kinematic similarity requires the scaled equivalence of streamline movement of the air over prototype and model. It has been shown in Halitsky et al. (1963) that flow around geometrically similar sharpedged buildings at ambient temperatures in a neutrally stratified atmosphere should be dynamically and kinematically similar when the approaching flow is kinematically similar. This approach depends upon producing flows in which the flow characteristics become independent of Reynolds number if a lower limit of the Reynolds number is exceeded. For example, the resistance coefficient for flow in a sufficiently rough pipe as shown in Schlichting (1960, p. 521) is constant for a Reynolds number larger than 2×10^4 . This implies that surface or drag forces are directly proportional to the mean flow speed squared. In turn, this condition is the necessary condition for mean turbulence statistics such as root-mean square value and correlation coefficient of the turbulence velocity components to be equal for the model and the prototype flow.

Golden, as cited by Halitsky et al. (1963), found that for flow about a cube for Reynolds numbers above 11,000, there was no change in concentration measurements. The minimum Reynolds number encountered in the present study was 9,300 based on the model scale of 1.0 ft and a minimum velocity of 1.4 fps. Correlation tests of flow about the Rock of Gibraltar flow over Pt. Arguello, California, and flow over San Nicolas Island, California, may be cited as examples of large Reynolds number flows which have been modeled successfully in a wind tunnel (Field and Warden (1933), Cermak and Peterka (1966), Meroney and Cermak (1965)).

Buildings and building complexes produce nonuniform fields of flow which perturb the regular upstream atmospheric wind profiles. Around each building a boundary layer exists, where the velocity is zero at the surface but increases rapidly to a relatively constant value a short distance from the building wall. Outside of the boundary layer and downstream there exists a region of low velocities and pressures called the cavity. In this region circulations are such that flow may actually reverse with respect to the upstream winds. Surrounding the cavity but extending further downstream is a parabolic region called the wake in which the presence of the building is still evident in terms of deviations of velocity, turbulence, and pressure from conditions found in the upstream atmospheric boundary layer.

The formation of the wake and cavity regions are associated with a phenomena called boundary-layer separation. Under certain conditions the boundary layer actually detaches and enters the flow streaming about the building. This may occur at the corner of a sharp-edged building or on a curved surface if the pressure increases due to a decelerating flow field. The separated boundary layer forms a sheet which completely surrounds the cavity region which contains relatively stagnant fluid. The extent of the cavity region for the Harrington Power Station building may be approximated by $5H \cong 1000$ ft. Based on the measurements of Evans (1957) the effect of alternate wind approach angles to an elongated rectangular complex may extend this to $6H \cong 1200$ ft.

The need for scaling of the atmospheric mean wind profile was demonstrated by Jensen (1963). Substitutions of a uniform velocity profile for a logarithmic profile results in threefold variation in

the dimensionless pressure coefficient downstream of a model building. Such variance in the pressure fields indicates a strong effect of the upstream wind profile on the kinematic behavior of the fluid near the building complex. One of the few tunnels currently capable of generating a turbulent boundary layer thick enough for a 1:250 model scale is the Meteorological Wind Tunnel at Colorado State University. Other investigators have attempted to generate logarithmic profiles in short tunnels by inserting special grids upstream of the test section; however, this technique normally creates a nontypical turbulence field which decays rapidly downstream.

The length of scale used for scaling the velocity profile is the roughness height z_0 . For the Harrington Power Station site a typical roughness length is assumed to be less than 0.33 ft. This means the critical wind velocities could be modeled in the wind tunnel by a roughness length of less than 1/400 in., or essentially a smooth upstream surface. A turbulent boundary layer approximately 4.0 ft thick was produced by an upstream fetch of 40 ft and a tailored vortex grid in the Meteorological Wind Tunnel. Considering the flat terrain with intermittent covering of trees and shrubs it was decided to simulate the upstream wind profile by a power law exponent of approximately 0.14. This shape profile is characteristic of flow over flat terrain essentially free of trees and obstructions.

Equality of the parameter $\rho_a V_a^2/(\Delta \gamma D)$ for model and prototype in essence determines the relationship between the atmospheric wind speed and the model wind speed once the geometric scale has been selected (1:250 in this case). Often this criteria results in $(V_a)_m$ being too small to satisfy the minimum Reynolds number requirement.

When this happens the specific weight difference for the model $(\Delta \gamma)_m$ can be made larger than $(\Delta \gamma)_p$ to compensate for the effect of small geometric scale. However, equality of the density difference ratio for model and prototype will be maintained in this study. This equality ensures that the initial plume behavior where acceleration of the stack gases is maximum will be modeled correctly. This is particularly important if downwash behavior is to be correctly indicated by a small scale model.

Using the lowest wind speed of 15 mph or 22.0 ft/sec and a scale of 1:250, the Froude number equality gives

$$\frac{(V_a)_m^2}{(V_a)_p^2} = (\frac{1}{250})$$

or

$$(V_a)_m = 22 \left(\frac{1}{250}\right)^{1/2}$$

 $(V_a)_m = 1.39 \text{ ft/sec.}$

The corresponding model Reynolds number then becomes approximately

$$\frac{\begin{pmatrix} v & \rho & H \\ \mu & u \end{pmatrix}}{a}_{m} = \frac{1.39 \times 1}{1.5 \times 10^{-4}}$$
$$= 9266 < 11,000.$$

Since minimum Reynolds number for the 30 and 45 mph cases seem sufficiently high no corrections are recommended. Inaccuracies in near field behavior resulting from adjustment in density ratios do not appear to justify any improvements expected at long distance downwind.

Rather than heat the model stack gases to obtain the same specificweight-difference ratio as for the prototype, helium may be used to attain the proper density differences $(\Delta \gamma)_m$. This approach will be used since the helium-air mixture can be accurately metered to provide better monitoring and adjustment of the stack gas.

To summarize the following scaling criteria were applied for the neutral boundary layer situation:

1/ Re =
$$\frac{\rho V H}{\mu_a} > 11,000$$

$$\underline{2}/Fr = \frac{\rho_a V_a^2}{\Delta \gamma D}; (Fr)_m = (Fr)_p$$

- $\underline{3}$ / R = $\frac{V_s}{V_a}$; R_m = R_p
- $\underline{4}/(z_0)_m = (z_0)_p$

5/ Similar velocity and turbulence profiles upwind.

Operating conditions for the Harrington Power Station have been supplied by Southwestern Public Service for the various units. (See Table 4-1 and 5-1.) Meteorological data converted to the form of wind rose patterns (Fig. 3-3) suggest tests at eight primary wind orientations. Modeled wind velocities, stack velocities, and plume densities based upon the selected scaling criteria are tabulated together in Tables 4-2 and 5-2.

3.0 TEST APPARATUS

3.1 Wind-Tunnels

The meteorological wind tunnel (MWT) shown in Fig. 3-4 was used for this neutral flow study. This wind tunnel, specially designed to study atmospheric flow phenomena, incorporates special features such as adjustable ceiling, rotating turntables, transparent boundary walls, and a long test section to permit adequate reproduction of micrometeorological behavior. Mean wind speeds of 0.2 to 120 ft/sec (0.14 to 80 mi/hr) in the MWT can be obtained. In the MWT boundary layers four feet thick over the downstream 40 ft can be obtained with the use of the vortex generators at the test section entrance. The flexible test section roof on the MWT is adjustable in height to permit the longitudinal pressure gradient to be set at zero.

3.1.1 Test Configuration in the MWT

Vortex generators were installed at the tunnel entrance together with an initial roughness to accelerate the preliminary growth of the modeled boundary layer.

The Harrington Power Station model (see Section 3.2) was constructed to represent a swath 1750 ft to the right and left of the wind orientation chosen. The floor of the tunnel was equipped with 25 taps arranged in sampling arrays to measure ground level concentrations.

3.2 Model

The model consisted of the power station, the stacks, and the auxiliary buildings constructed from lucite to a linear scale of 1:250 (see Fig. 3-2).

The model was built at a 1:250 scale to dimensions taken from drawings supplied by Southwestern Public Service Company. Four stacks

were constructed for each unit, 250 ft, 300 ft, 350 ft, 375 ft, and 400 ft in height. All connections to the stacks were made by the addition of fittings at the base of each stack.

Metered quantities of gas were allowed to flow from each stack to simulate the exit velocity and also account for buoyancy effects due to the temperature difference between the stack gas and the ambient atmosphere. Helium and compressed air were mixed in metered amounts to adjust the specific weight as proposed in Section 2. Fischer-Porter flow rator settings were adjusted for pressure, temperature, and molecular weight effects as necessary. When a visible plume was required the gas was bubbled through titanium tetrachloride before emission. When a traceable plume was required a high pressure mixture of propane and air was used in place of the compressed air.

3.3 Flow Visualization Techniques

Smoke was used to define plume behavior over the power plant complex. The smoke was produced by passing the air mixture through a container of titanium tetrachloride located outside the wind tunnel and transported through the tunnel wall by means of a tygon tube terminating at the stack inlet within the model complex. The plume was illuminated with arc-lamp beams. A visible record was obtained by means of pictures taken with a Speed Graphic camera utilizing Polaroid film for immediate examination. Additional still pictures were obtained with a Hasselblad camera. Stills were taken with camera speeds of both 1/30 and 1 seconds--the first to capture characteristic plume excursions on the short time scale, the second to identify mean plume boundaries. A series of color motion pictures were also taken with a Bolex motion picture camera mounted on a movable dolly which was traversed

the length of the tunnel parallel to the plume trajectory at the average wind speed.

3.4 Wind Profiles and Temperature Measurements

A standard pitot-static tube was utilized to measure the up and downstream velocity profiles in the MWT for neutral flow fields. In addition a Datametrics Series 800-L Linear Flow Anemometer was used to set and monitor tunnel velocities.

3.5 Gas Tracer Technique

After the flow in the tunnel was stabilized, a mixture of propane, helium, and air of predetermined concentration was released from model stacks at the required rate. Samples of air were withdrawn from the sample points and analyzed. The flow rate of propane mixture was controlled by a pressure regulator at the supply cylinder outlet and monitored by Fischer and Porter precision flow meters. The sampling and detection systems are shown in Figs. 3-5a and 3-5b.

3.5.1 Analysis of Data

Propane is an excellent tracer gas in wind tunnel dispersion studies. It is a gas that is readily obtainable and of which concentration measurements are easily obtained using gas chromatography techniques.

The procedure for analyzing the samples was as follows:

- A sample volume drawn from the wind-tunnel of 2 cc was introduced into the Flame Ionization Detector.
- The output from the electrometer (in millivolt seconds) was integrated and then the readings were recorded for each sample.

3) These readings were transformed into concentration values by the following steps:

 $\chi(ppm) = K(ppm/mvs) E(mvs)$

where K was determined from a calibration gas of known concentration

K = (ppm/mvs)
calibration gas

The values of the concentration parameter initially determined apply to the model and it is desirable to express these values in terms of the field. At the present time there is no set procedure for accomplishing this transformation. The simplest and most straightforward procedure is to make this transformation using the scaling factor of the model. Since

$$1 \text{ ft } |_{m} = 250 \text{ ft } |_{p} (= 76 \text{ m } |_{p}),$$

one can write

$$\frac{\chi V}{Q}\Big|_{p}$$
 (ft⁻²) = $\frac{1}{250^{2}} \times \frac{\chi V}{Q}\Big|_{m}$ (ft⁻²)

or

$$\frac{\chi V}{Q}|_{p} (m^{-2}) = \frac{1}{250^{2}} \times \frac{\chi V}{Q}|_{m} (m^{-2})$$

The sample scaling of the concentration parameter from model to field appears to give reasonable results. All data reported herein are in terms of their equivalent prototype value $\frac{\chi V}{Q}|_p$ and again as ppm SO₂. 3.5.2 Errors in Concentration Measurement

Each sample as it passes through the flame-ionization detector is separated from its neighbors by a period during which nitrogen flows. During this time the detector is at its baseline, or zero level. When the sample passes through the detector the output rises to a value equal to the baseline plus a level proportional to the amount of tracer gas flowing through the detector. The baseline signal is set to zero and monitored for drift. Since the chromatograph used features a temperature control on the flame and electrometer there is very low drift. The integrator circuit is designed for linear response over the range considered. A total system error can be evaluated by considering the standard deviation found for a set of measurements where a precalibrated gas mixture is monitored. For a gas of ~ 100 ppm propane ± 1 ppm the average standard deviation from the electrometer was two percent.

Since the source gas was premixed to the appropriate molecular weight and repetitive measurements were made of its source strength the confidence in source strength concentration is similar. The flow rate of the source gas was monitored by Fischer-Price Flowmeters which are expected to be accurate to \pm two percent including calibration and scale fraction error. The wind tunnel velocity was constant to \pm 10 percent at such low settings. Hence the cumulative confidence in the measured values of $\chi V/Q$ will be a standard deviation of about \pm 11 percent, whereas the worst cumulative scenario suggests an error of no more than \pm 20 percent.

The lower limit of measurement is imposed by the instrument sensitivity and the background concentrations of hydrocarbons in the air within the wind tunnel. Background concentrations were measured and subtracted from all measurements quoted herein; however, a lower limit of 1 to 2 ppm of propane is available as a result of background methane levels plus previous propane releases. An upper limit for propane with the instrument used is 10 percent propane by volume;

however, chromatograph columns are necessary to avoid overwhelming the detector at flowrates above 5-6 percent. A recent report on the flame ionization detector for sampling gases in atmospheric wind tunnels prepared by Dear and Robins (1974) arrives at similar figures.

3.5.3 Test Results: Concentration Measurements

Since the conventional point-source diffusion equations cannot be used for predicting diffusion near objects which cause the wind to be nonuniform and nonhomogeneous in velocity and turbulence, it is necessary to calculate gaseous concentrations on the basis of experimental data. It is convenient to report dilution results in terms of a nondimensional factor independent of model to prototype scale.

In Cermak et al. (1966) and Halitsky (1963) the problem of similarity for diffusion plumes is discussed in detail. It is suggested that concentration measurements be transformed to K-isopleths by the formula

$$K = \frac{\chi}{Q/AV_a}$$

where

x = sample volume concentration
 A = frontally projected area of power plant complex
 V_a = mean wind velocity at some references height
 Q = gas source release rate

This expression is specifically suitable for measurements within the near-wake and cavity region. Data reported herein, however, represent measurements made at equivalent distances of 5000 ft from the power plant. Concentration measurements were made at various downwind distances in the horizontal plane. Count rates were corrected to concentration in ppm and compensation was made for background. Since measurements were made at a variety of wind approach angles, wind velocities, and stack heights, the ground-level concentration data has been reported in terms of the ratio $\chi V_a/Q$ which has units of length squared. For dispersion in a homogeneous flow this should produce similarity for various V_a and Q values. The significance of all results is discussed in the following section.

When interpreting model diffusion measurements it is important to remember that there can be considerable difference between the instantaneous concentration in a plume and the average concentration due to horizontal meandering. The average dilution factors near a building complex will correlate well with wind tunnel dilution factors since the mechanical turbulence of the wake and cavity region dominate the dispersion. In the wind tunnel a plume does not generally meander due to the absence of large-scale eddies. Thus, it is found that field measurements of peak concentrations which effectively eliminate horizontal meandering, should correlate with the wind tunnel data (Hino (1968)). In order to compare downwind measurements of dispersion to predict average field concentrations it is necessary to use data on peak-to-mean concentration ratio as gathered by Singer, et al. (1953, 1963). Their data is correlated in terms of the gustiness categories suggested by Pasquill for a variety of terrain conditions. It is possible to determine the frequency of different gustiness categories for a specific site. Direct use of wind tunnel data at points removed

from the building cavity region may underestimate the dilution capacity of a site by a factor of four unless these adjustments are considered (Martin (1965)).

An alternate technique has also been suggested by Hino (1968) who argues the relationship between the maximum of time-mean ground concentration χ_{max} and the sampling time is $\chi_{max} \sim \tau^{-1/2}$. Field experiments may be compared with wind tunnel data by the formula:

$$(x_a)_p = \frac{(x_a)_m Q_p V_p^{-1} H_p^{-2}}{Q_m V_m^{-1} H_m^{-2}} (\frac{\tau_p}{\tau_m})^{-1/2}$$

where χ_a is the maximum axial concentration, Q discharge rate of gases from a stack, V wind speed at, H effective height of stack, τ sampling time, and subscripts p and m represent values for a prototype and model respectively. One may assume that τ_m corresponds to three to five minutes in the atmosphere for the wind tunnel experiment. Pasquill's suggested values for the standard deviations σ_z and σ_y correspond to 10 minute averages (Turner (1969)). Hence tunnel concentrations could be high by a factor of 1.7 if a 10 minute average is desired, or by a factor of 21.9 if a 24-hour average is desired.

An examination of Singer's results for peak-to-mean concentration ratios suggests the ratio is a function of both stability and boundary surface roughness. Hence for a variation of stratification from unstable to moderately stable the peak/mean concentration ratio may be nearly equal though the sampling time might vary from 30 minutes to three minutes respectively and the power law coefficient in Hino's equation above would vary from -0.6 to -0.3. It is not likely that a decisive interpretation of the effects of plume meandering will be available in the near future; hence, the conservative assumption is recommended that the wind tunnel measurements correspond to a 30 minute averaging time and, when correcting results to alter sampling periods, a power law coefficient of -1/2 be utilized. (A five minute wind tunnel equivalent sampling time results in 24 hour equivalent concentrations 50 percent smaller.) The values presented herein have not been corrected to alternative time average periods.

4.0 TEST PROGRAM AND RESULTS: UNIT 1

4.1 Test Program

The test program consisted of (1) a qualitative study of the flow field around the power plant by visual observation of the smoke plume trajectory released from the stacks; and (2) a quantitative study of gas concentrations produced by the release of a propane tracer from the stacks. The test conditions are summarized in Table 4-2. Angular locations of the approach winds are referred to in terms of angles from a nominal north. Downwind distances refer to lengths as measured from the center of the complex as marked in Fig. 3-6. Unless otherwise noted, the term wind velocity refers to the velocity in the undisturbed free stream at an equivalent height of 250 feet; however, a velocity at any reference height is available by referring to the velocity profiles (Fig. 3-7).

4.2 Test Results: Characteristics of Flow

All the experiments were carried out in the MWT over the range of conditions shown in Table 4-2. The atmospheric boundary layer was modeled to produce a velocity profile equivalent to flow typical of irregular terrain. Figure 3-7 shows the development of the velocity profile over the model for a neutral situation. No comparison of model velocity data with that in the prototype is possible because the latter is not available over a range of height. However, as the model velocity profiles were carefully produced over roughness tailored to reflect the characteristics of the site, it is expected that the prototype flow is adequately represented in the model. The power law exponent for the upstream velocity profile was 0.13.

4.3 Test Results: Visualization

The test results consist of photographs and movies showing the general nature of airflow and diffusion in the vicinity of the power station (Figs. 4-1 to 4-4). A general understanding of wake and cavity flows is necessary for an interpretation of the plume behavior (see Halitsky, 1963).

The sequences of photographs shown in Figs. 4-1 and 4-2 show side views of the behavior of a smoke plume released from Unit 1 for 50 percent load at 15 mph for various wind angles. Observation of plume behavior suggests that SE and SW wind approach angles develop flow fields about the plant buildings which encourage plume downwash. These orientations of the wind to the plant complex seem to develop a venturi-like behavior between the boiler units. As a result of the insuing low pressure region the plumes from Unit 1 are swept to the surface very near the plant and gases are sucked upwind into the center of the plant area.

At low wind speeds the plume lofts high above the separation cavity and aerodynamic wake generated by the power plant complex. The gas behaves as a plume released at an elevated point and is convected well downstream. As the wind speed increases (see Fig. 4-4) the stack effluent plume is bent over and behaves as though it were released at increasingly lower effective heights. At a sufficiently large free stream velocity the plume intermittently entrains behind the stack itself and the plume intersects the building wake. For such a short stack at high wind speeds the plume becomes entrained in the building complex cavity. Entrainment, as utilized herein, will be understood as the presence of any of the gas released from the stack in the power

station cavity. A small amount of entrainment usually first occurs under conditions where the gas plume follows the cavity separation streamline to the downstream cavity stagnation point from which it diffuses upstream into the cavity proper. Downwash will be understood as severe entrainment where the plume does not penetrate the separation streamline but rather ventilates directly into the cavity region. A decrease in load from full to one-half has the same effect on the plume behavior as an increase in wind speed. In general lower load aggravates plume behavior; however one must consider the reduced pollutant burden in any assessment of the net significance. Figure 4-3 displays the effect of change in load for Unit 1, wind angle SW, when the mean effective wind speed is 15 mph.

Since the Unit 1 stack diameter is fairly large and the exit velocity is modest the velocity ratio R drops below 1.5 for most combinations of wind speed and load studied. As a result downwash behind the stack body is probable; this effect tends to aggravate pollution levels in the vicinity of the plant. It is instructive to consider the plume behavior for both instantaneous effluent boundary location and when averaged over a larger time period. In an instantaneous sense a plume may contact the ground yet result in rather low ground average concentrations. The longer averaging time tends to emphasize locations beyond which extensive ground contact will occur.

The observed "touchdown" distances evaluated from the flow visualization tests are summarized in Table 4-3. Touchdown is defined during observation as that point where the plume encounters the ground more than 10 percent of the time. Such an interpretation is necessarily qualitative but different observers do not vary by more than

500 ft. Smoke photographs tend to confirm the initial opinion. Complete sets of still photographs supplement this report. Color motion pictures have been arranged into titled sequences and the sets available are summarized in Table 4-3.

4.4 Test Results: Concentration Measurements

Turbulent diffusion of gaseous effluent released for three different stack heights was studied. Propane concentrations at ground level were measured at distances equivalent to 500 ft to 5000 ft downwind.

Twenty-five samples were taken over the model distributed at ground level over the topography in the matrix shown in Fig. 3-6. The stack for Unit 1 was sometimes displaced to the right or left of the concentration grid centerline, the zero coordinate rests due west of Unit 1 stack centered between Unit 1 and 2 boilers. All concentration data have been converted to the prototype scale levels as explained in Section 3.5.1. The data is recorded herein in dimensional form as $\frac{xV_a}{Q}$ where χ is the concentration over the assumed equivalent averaging time for laboratory measurements, Q is the source strength, and V_a is the mean wind velocity at stack height (250 ft). The source flow rate and thermal condition assumed for each stack and load condition are summarized in Tables 4-1 and 4-2. Data in Table 4-1 were provided by Southwestern Public Service Company.

The results for various loads, wind directions, and wind velocities are presented in Table 4-5. Sample positions shown in the tables are located on the definition sketch (Fig. 3-6). The maximum concentration measured and its respective downwind location for each situation has been gathered together in Table 4-4.

A series of figures have been prepared from the bulk data to enable some general conclusions to be made concerning the influence of wind approach angle, load, and wind velocity on the plume behavior over the Harrington Power Station model. The influence of wind approach angle for Unit 1 is displayed in Fig. 4-5. Plume downwash is apparently enhanced for winds approaching the plant from the SE and SW wind directions. Once entrained into the wake however, the plume dispersion rate seems very similar. Wind speed or load variation appears to effect the plume trajectory in a similar manner. Figure 4-6 displays the degrading influence of increased wind speed or decreased load on plume rise and subsequent ground level concentrations.
5.0 TEST PROGRAM AND RESULTS: UNIT 2

5.1 Test Program

The test program consists of (1) a qualitative study of the flow field around the power plant by visual observation of the smoke plume trajectory released from the stacks, and (2) a quantitative study of gas concentrations produced by the release of a propane tracer from the stacks. The test conditions are summarized in Table 5-2. Angular locations of the approach winds are referred to in terms of angles from a nominal north. Downwind distances refer to lengths as measured from the center of the complex as marked in Fig. 3-6. Unless otherwise noted, the term wind velocity refers to the velocity in the undisturbed free stream at an equivalent height of 250 feet; however, a velocity at any reference height is available by referring to the velocity profiles (Fig. 3-7).

5.2 Test Results: Characteristics of Flow

All the experiments were carried out in the MWT over the range of conditions shown in Table 5-2. The atmospheric boundary layer was modeled to produce a velocity profile equivalent to flow typical of irregular terrain. Figure 3-7 shows the development of the velocity profile over the model for a neutral situation. No comparison of model velocity data with that in the prototype is possible because the latter is not available over a range of height. However, as the model velocity profiles were carefully produced over roughness tailored to reflect the characteristics of the site, it is expected that the prototype flow is adequately represented in the model. The power law exponent for the upstream velocity profile was 0.13.

5.3 Test Results: Visualization

The test results consist of photographs and sketches showing the general nature of airflow and diffusion in the vicinity of the power station (Figs. 5-1 to 5-6). A general understanding of wake and cavity flows is necessary for an interpretation of the plume behavior (see Halitsky, 1963).

The sequences of photographs shown in Figs. 5-1 and 5-2 show side views of the behavior of a smoke plume released from Unit 2 for 50 percent load at 15 mph for various wind angles. Since Unit 2 stack sets some distance from the tall boiler units of the complex the plume is not strongly influenced by the immediate cavity and wake of these buildings. Nevertheless it was the opinion of those observing the visualization experiments that plumes spread more rapidly downward to the surface for wind approach angles from the W, NW, and SW. In no case did the plume appear to travel upwind on the ground surface or become directly entrained into the building complex wake cavity.

At low wind speeds the plume lofts high above the separation cavity and aerodynamic wake generated by the power plant complex. The gas behaves as a plume released at an elevated point and is convected well downstream. As the wind speed increases the stack effluent plume is bent over and behaves as though it were released at increasingly lower effective heights. At a sufficiently large free stream velocity the plume intermittently entrains behind the stack itself (see Fig. 5-4) and the plume may intersect the building wake. For a short stack at high wind speeds the plume may become entrained in the building complex cavity. Entrainment, as utilized herein, will be understood as the presence of any of the gas released from the stack in the power station

cavity. A small amount of entrainment usually first occurs under conditions where the gas plume follows the cavity separation streamline to the downstream cavity stagnation point from which it diffuses upstream into the cavity proper. Downwash will be understood as severe entrainment where the plume does not penetrate the separation streamline but rather ventilates directly into the cavity region. A decrease in load from full to one-half has the same effect on the plume behavior as an increase in wind speed. In general lower load aggravates plume behavior; however one must consider the reduced pollutant burden in any assessment of the net significance. Figure 5-4 displays the effect of change in load for Unit 2, wind angle W, when the mean effective wind speed is 30 mph.

As a result of low stack velocity ratio, R, resulting from the large stack diameter, low exit velocities, and range of wind speeds and loads examined plume downwash behind the stack occurred frequently. Indeed the advantages associated with taller stacks (see Fig. 5-3) were to a large extent diminished by the progressive decrease in R which occurs with increasing wind velocities found at greater elevations.

A series of tests were performed on a 300 ft stack for Unit 2 with an exit area one-half that used in earlier tests (runs 70-81). This change increased the velocity ratio R by two for equivalent wind speed and load scenarios. Plume behavior in Figs. 5-5 and 5-6 may be compared with corresponding plates from Figs. 5-1 to 5-4. Increased stack velocity definitely decreases a tendency toward plume downwash; thus it increases effective stack height. It is instructive to consider the plume behavior for both instantaneous effluent boundary location and when averaged over a larger time period. In an instantaneous sense

a plume may contact the ground yet result in rather low ground average concentrations. The longer averaging time tends to emphasize locations beyond which extensive ground contact will occur.

The observed "touchdown" distances evaluated from the flow visualization tests are summarized in Table 5-3. Touchdown is defined during observation as that point where the plume encounters the ground more than 10 percent of the time. Such an interpretation is necessarily qualitative but different observers do not vary by more than 500 ft. Smoke photographs tend to confirm the initial opinion. Complete sets of still photographs supplement this report. Color motion pictures have been arranged into titled sequences and the sets available are summarized in Table 5-3.

5.4 Test Results: Concentration Measurements

Turbulent diffusion of gaseous effluent released for three different stack heights was studied. Propane concentrations at ground level were measured at distances equivalent to 500 ft to 5000 ft downwind.

Twenty-five samples were taken over the model distributed at ground level over the topography in the matrix shown in Fig. 3-6. Since the stack for Unit 2 was sometimes displaced to the right or left of the concentration grid centerline, the zero coordinate rests due west of Unit 1 stack centered between Unit 1 and 2 boilers. All concentration data have been converted to the prototype scale levels as explained in Section 3.5.1. The data is recorded herein in dimensional form as

 $\frac{\chi V_a}{Q}$ where χ is the concentration over the assumed equivalent averaging time for laboratory measurements, Q is the source strength,

and V_a is the mean wind velocity at stack height (250 ft). The source flow rate and thermal condition assumed for each stack and load condition are summarized in Tables 5-1 and 5-2. Data in Table 5-1 were provided by Southwestern Public Service Company.

The results for various loads, wind directions, and wind velocities are presented in Table 5-5. Sample positions shown in the tables are explained in the definition sketch in Fig. 3-6. The maximum concentration measured and its respective downwind location for each situation has been gathered together in Table 5-4.

A series of figures have been prepared from the bulk data to enable some general conclusions to be made concerning the influence of wind approach angle, stack height, load, and wind velocity on the plume behavior over the Harrington Power Station model. The influence of wind approach angle for a single unit is indicated in Table 5-4, runs 25-39. Unit 2 stack is far enough from the boiler that wind angle is not a dominant factor in plume behavior here. Plume downwash is apparently enhanced for winds exceeding 30 mph for all loads. Once entrained into the wake however, the plume dispersion rate seems very similar. Wind speed or load variation appears to effect the plume trajectory in a similar manner. Figure 5-8 displays the degrading influence of increased wind speed or decreased load on plume rise and subsequent ground level concentrations.

Increase in stack height definitely provides some site protection. Figure 5-7 depicts the advantages of increased stack height with respect to ground level concentration profiles. Increase of the units stacks from 300 to 350 ft decreases maximum observed concentration by about 25 percent. A further increase in stack height to 400 ft reduces

the ground concentrations to about 50 percent of the maximums observed for a 300 ft stack. Unfortunately the advantage of added stack height is degraded by the strong stack downwash associated with low exit velocities. A series of measurements were made for conditions which increase R by two in runs 71-81. A marked improvement is noted on Fig. 5-8 and photograph Figs. 5-5 and 5-6.

6.0 CONCLUSIONS

The investigation was undertaken to determine the dispersion of exhaust gases released from stacks of the Harrington Power Station operated by the Southwestern Public Service Company, Texas. The primary aim of the study was to determine the optimum height of stack to utilize for a new boiler unit and effect of building-complex wake on ground-level concentration of sulfur dioxide.

On the basis of the experimental measurements reported herein, the following comments may be made:

6.1 Unit 1 Stack

 Plumes from Unit 1 do entrain directly into the building complex cavity for a number of the wind angles, velocities, and loads studied.

2) For a 250 ft stack on Unit 1, there is significant visual evidence of ground contact within 500 ft of the plant when the wind speed exceeds 30 mph.

3) The plume-building wake influence for all plumes is a maximum for the SE and SW wind approach directions and a minimum for the E to NE orientation.

4) Concentration measurements show that maximum SO_2 groundlevel concentrations of .404 ppm will result from a 250 ft stack at 50 percent load for a 15 mph and approaching from the SW.

6.2 Unit 2 Stack

1) Plumes from Unit 2 do not appear to entrain directly into the building complex cavity for any wind angle, velocity, load, or stack height considered.

2) For a 27 ft I.D. stack significant stack downwash occurred for most wind velocity and load combinations studied. This influence decreased the value of increasing stack height since downwash was more frequent at the higher velocities found at greater elevations.

3) For a 19 ft I.D. stack the probability of stack downwash decreased due to the increased momentum of exhaust gases at stack exit.

4) Concentration measurements show that maximum SO_2 ground-level concentrations of .210 ppm will result from a 300 ft 27 ft diameter stack at 50 percent load for a 30 mph wind approaching from the SW.

Since specific maximum source levels may vary depending on the source of coal or the load, dimensional prediction tables have been prepared in the manner of Pasquill for the Harrington Power Station configuration. If percent frequency of winds and stability conditions at various wind approach angles are known for the Harrington site, average annual concentrations or 24-hour averages including the effects of wind angle frequency distribution may be calculated in the manner of Turner (1969) or Sherlock and Stalker (1940). If one desires the meteorological significant situations such as looping, fanning, fumigation, or trapping one may combine the experimental results developed herein with the expressions suggested by Bierly and Hewson (1962) or Slade (1968, Chapter 3, Section 3.1.5).

REFERENCES

- Barrett, R. V., "Use of the Wind Tunnel to Investigate the Influence of Topographical Features on Pollution from a Tall Stack," Chimney Design Symposium, April 9-11, 1973. Edinburgh, Scotland, 16 p.
- Barry, P. J., "Estimation of Downwind Concentration of Airborne Effluents Discharged in the Neighborhood of Buildings," Canada, AECL-2043, July 1964.
- Bierly, E. W. and E. W. Hewson, "Some Restrictive Meteorological Conditions to be Considered in the Design of Stacks," <u>Journal of</u> Applied Meteorology, Vol. 1, 1962, pp. 383-390.
- Carson, J. E. and H. Moses, "Validity of Currently Popular Plume Rise Formulas," USAEC Meteorological Information Meeting, September 11-14, 1967, Chalk River, Canada, AECL-2787, pp. 1-15.
- Cermak, J. E. and J. Peterka, "Simulation of Wind Fields over Point Arguello, California, by Wind-Tunnel Flow over a Topographical Model," Final Report, U.S. Navy Contract N126(61756)34361 A(PMR), Colorado State University, CER65JEC-JAP64, December 1965.
- Cermak, J. E., "Laboratory Simulation of the Atmospheric Boundary Layer," AIAA J1., Vol. 9, No. 9, pp. 1746-1754, September 1971.
- Cermak, J. E. and S. K. Nayak, "Wind-Tunnel Model Study of Downwash from Stacks at Maui Electric Company Power Plant, Kahului, Hawaii," Fluid Dynamics and Diffusion Laboratory Report CER72-73JEC-SKN8, Colorado State University, March 1973.
- Cermak, J. E., V. A. Sandborn, E. J. Plate, G. J. Binder, H. Chuang, R. N. Meroney and S. Ito, "Simulation of Atmospheric Motion by Wind-Tunnel Flows," Colorado State University, CER66JEC-VAS-EJP-HC-RNM-SI17.
- Cramer, H. E., "A Practical Method for Estimating the Dispersal of Atmospheric Contaminants," Proceedings, First National Conference of Applied Meteorology, Amer. Meteor. Soc., <u>C</u>., pp. 33-35, Hartford, Connecticut, October 1957.
- Davies, P. O. A. L. and P. L. Moore, "Experiments on the Behavior of Effluent Emitted from Stacks at or near the Roof Level of Tall Reactor Buildings," <u>Int. Journ. Air Water Pollution</u>, Vol. 8, pp. 515-533, 1964.
- Dear, D. J. A. and A. G. Robins, "A Technique used to Study the Dispersion of Gases in the MEL 9.14 m x 2.74 m Wind Tunnel," Central Electric Generating Board Report R/M/N752, United Kingdom, 1974.

- Dickson, C. R., G. E. Start and E. H. Markee, Jr., "Aerodynamic Effects of the EBR-II Containment Vessel Complex on Effluent Concentrations," USAEC Meteorological Information Meeting, Chalk River, Canada, AECL-2787, pp. 87-104, September 11-14, 1967.
- Evans, B. H., "Natural Air Flow around Buildings," Research Report 59, Texas Engineering Experiment Station, 1957.
- Field, J. H. and R. Warden, "A Survey of the Air Currents in the Bay of Gibraltar, 1929-1930," Air Ministry, Geophys. Mem. No. 50, London, 1933.
- Halitsky, J., J. Golden, P. Halpern and P. Wu, "Wind Tunnel Tests of Gas Diffusion from a Leak in the Shell of a Nuclear Power Reactor and from a Nearby Stack," Geophysical Sciences Laboratory Report No. 63-2, New York University, April 1963.
- Halitsky, J., "Gas Diffusion near Buildings," Geophysical Sciences Laboratory Report No. 63-3, New York University, February 1963.
- Halitsky, J., "Mean Speed, Turbulence and Diffusion in the Wake of the EBR-II Building Complex," Paper prepared for Atmospheric Environment by author, Consultant in Environmental Meteorology, 122 North Highland Place, Croton-on-Hudson, New York 10520, October 15, 1975.
- Hewson, E. W., "Stack Heights Required to Minimize Ground Concentrations," ASME Transactions, Vol. 77, pp. 1163-1172, 1955.
- Hino, M., "Maximum Ground-Level Concentration and Sampling Time," Atmospheric Environment, Vol. 2, pp. 149-165, 1968.
- Hoot, T. G., R. N. Meroney and J. A. Peterka, "Wind Tunnel Tests of Negatively Buoyant Plumes," FDDL Report CER73-74TGH-RNM-JAP13, Colorado State University, October 1973.
- Hoult, D. P. et al., "A Theory of Plume Rise Compared with Field Observations," MIT Fluid Lab. Publ. 68-2, (PB 179 536), March 1968,
- Integrated Army Meteorological Wind-Tunnel Research Program, Eleventh Quarterly Progress Report, 22 p., 1 November 1967--31 January 1968.
- Isyumov, N., T. Jandali and A. G. Davenport, "Model Studies and the Prediction of Full-Sclae Levels of Stack Gas Concentration," 67th APCA Annual Meeting, Paper 74-162, Denver, Colorado, June 9-13, 1974.
- Jensen, M. and N. Frank, "Model-Scale Test in Turbulent Wind, Part I," The Danish Technical Press, Copenhagen, 1963.
- Kalinske, A. A., "Wind Tunnel Studies of Gas Diffusion in a Typical Japanese Urban District," National Defense Res. Council OSCRD Informal Report No. 10, 3A-48 and 48a, 1945.
- Martin, J. E., "The Correlation of Wind Tunnel and Field Measurements of Gas Diffusion using Kr-85 as a Tracer," Ph.D. Thesis, MMPP 272, University of Michigan, June 1965.

- Meroney, R. N., J. E. Cermak and F. H. Chaudhry, "Wind Tunnel Model Study of Shoreham Nuclear Power Station Unit 1, Long Island Lighting Company," Progress Report 1, FDDL Report CER68-69RNM-JEC-FHC1, Colorado State University, July 1968.
- Meroney, R. N. and J. E. Cermak, "Wind Tunnel Modeling of Flow Diffusion over San Nicolas Island, California," U.S. Navy Contract No. N123(61756)50192 A(PMR), Colorado State University, CER66-67RNM-JEC44, September 1967.
- Meroney, R. N., J. E. Cermak and F. H. Chaudhry, "Wind Tunnel Model Study of Shoreham Nuclear Power Station Unit 1, Long Island Lighting Company," Progress Report 2, CER68-69RNM-JEC-FHC14, October 1968.
- Meroney, R. N. and B. T. Yang, "Wind Tunnel Study on Gaseous Mixing Due to Various Stack Heights and Injection Rates above an Isolated Structure," USAEC Report C002053-6, Colorado State University, 1971.
- Moses, H., G. H. Strom and J. E. Carson, "Effects of Meteorological and Engineering Factors on Stack Plume Rise," <u>Nuclear Safety</u>, Vol. 6, No. 1, pp. 1-19, Fall 1964.
- Montgomery, T. L. and M. Cain, "Adherence of Sulfur Dioxide Concentrations in the Vicinity of a Steam Plant to Plume Dispersion Models," Journal of APCA, Vol. 17, No. 8, pp. 512-517, 1967.
- Munn, R. E. and A. F. W. Cole, "Turbulence and Diffusion in the Wake of the Building," Atmospheric Environment, Vol. 1, pp. 34-43, 1967.
- Pasquill, F., Atmospheric Diffusion, D. Van Nostrand Co., London, 1962.
- Roberts, O. F. T., "The Theoretical Scaling of Smoke in a Turbulent Atmosphere," Proc. Roy. Soc., A. 104, p. 640, 1957.
- Roshko, A., "On the Development of Turbulent Wakes from Vortex Steel," NACA Report 1191, 1954.
- Schlichting, H., Boundary Layer Theory, McGraw Hill, New York, 1960.
- Sherlock, R. H. and E. A. Stalker, "The Control of Gases in the Wake of Smokestacks," <u>Mechanical Engineering</u>, Vol. 62, No. 6, pp. 455-458, June 1940.
- Singer, I. A., I. Kazukiko and G. D. Roman, "Peak to Mean Pollutant Concentration Ratios for Various Terrain and Vegetative Cover," Journal of APCA, Vol. 13, No. 1, p. 40, 1963.
- Singer, I. A. and M. E. Smith, "The Relation of Gustiness to Other Meteorological Parameters," Journ. Meteor., Vol. 10, No. 2, 1953.
- Slade, D. H., editor, "Meteorology and Atomic Energy-1968," U.S. Atomic Energy Commission, TID-24190, July 1968.

- Smith, D. G., "Influence of Meteorological Factors upon Effluent Concentrations on and near Buildings with Short Stacks," Department of Environmental Health Sciences, Harvard School of Public Health, Department 75-26.2, Boston, 1975.
- Smith, M., editor, "Recommended Guide for the Prediction of the Dispersion of Airborne Effluenct," ASME, 1968.
- Strom, G. H., M. Hackman and E. J. Kaplin, "Atmospheric Dispersal of Industrial Stack Gases Determined by Concentration Measurements in the Scale Model Wind Tunnel Experiments," <u>Journal of APCA</u> Vol. 7, No. 3, pp. 198-204, November 1957.
- Sutton, O. G., "The Theoretical Distribution of Airborne Pollution from Factory Chimneys," Quar. J. R. Meteor. Soc. 73, p. 426, 1947.
- Sutton, O. G., Micrometeorology, McGraw-Hill, 1953.
- Turner, P. B., "Workbook of Atmospheric Dispersion Estimates," U.S. Department of Health, Education and Welfare, Public Health Service, Cincinnati, Ohio, 1969.
- Yang, B. T. and R. N. Meroney, "Gaseous Dispersion into Stratified Building Wakes," Atomic Energy Commission Report C00-2053-3, Colorado State University, CER70-71BTY-RNM8, August 1970.

Figure 3-1. Views of Harrington Power Station Site.

Figure 3-2. Harington Power Station, Model Scale 1:250.

Figure 3-4. METEOROLOGICAL WIND TUNNEL (Completed in 1963) FLUID DYNAMICS & DIFFUSION LABORATORY COLORADO STATE UNIVERSITY

Figure 3-5a. Model Gas Source and Visualization System.

Figure 3-5b. Tracer Gas Sampling and Analysis System.

Figure 3-6. Coordinator for Concentration Measuring Locations in Meteorological Wind Tunnel.

Figure 3-7. Approach Velocity Profiles, Neutral Flow, Meteorological Wind Tunnel.

0.4

0.6 V V_{ref}

0.8

1.0

1.2

0.5

0, 0

0.2

Figure 4-1. Flow Visualization: Unit 1, 250 ft Stack, 15 mph, 50% Load, N, NE, E, SE Wind Directions

Figure 4-2. Flow Visualization: Unit 1, 250 ft Stack, 15 mph 50% Load, S, SW, W, NW Wind Directions

Figure 4-5. Maximum Ground Concentration Profiles for Various Wind Speeds, SE, S, SW Wind Approach Angle and for a 50% Load Emitted from Unit 1 Stack.

Figure 4-6. Maximum Ground Concentration as Influenced by Load and Wind Speed, SE, SW Wind Directions.

Figure 5-1. Flow Visualization: Unit 2, 300 ft Stack, 50% Load, 15 mph, N, NE, E, SE Wind Directions

Figure 5-2. Flow Visualization: Unit 2, 300 ft Stack, 50% Load 15 mph, S, SW, W, NW Wind Directions

Figure 5-3. Flow Visualization: Unit 2, 80% Load, 30 mph, W Wind Direction, 300, 350, 375, 400 ft Stacks

Figure 5-7. Maximum Ground Concentration Profiles for Various Stack Heights, 80% Load and W Wind Approach Angle.

Figure 5-8. Maximum Ground Concentration as Influenced by Load and Wind Speed, NW, W Wind Approach Angle, 300 ft Stack.

Table 3-1. Instrumentation and Materials Employed

Camera	movie: still:	Bolex 16 mm camera lens Speed Graphic Camera 4" x 5" & Hasselblad 2" x 3"					
Film	movie: still:	Extachrome - 7242, ASA 125 - Forced developed ASA 500 Tri-X-Pan-4164 Kodak film, Polaroid					
Exposure	movie: still:	ovie: f-1.9, 18 frames per second till: f = 8-11, t = 1/30 sec or 1 sec					
Flow Meters		Fischer & Porter Co. Precision flow rator No B4-21-10 float B SVT-45					

Concentration System

- Hewlett-Packard Model 5711-A Gas Chromatograph; dual flame ionization detector; electrometer isothermal oven controller; 1/2 cc dual sampling loops.
- Sampling Panels: CSU design; 16 sample volumes; transfer equipment; and flow rators.
- Hewlett-Packard Integrating Digital Voltmeter Model 2401C

Velocity Control System

Trans-Sonics type 120B Equibar Pressure Meter-Serial 44801 United Sensor Pitot-Static Probe Datametric 800-L Linear Flowmeter

Table 4-1. Prototype Emission Parameters.

Unit 1:	Harrington	Station*
---------	------------	----------

	Load	100%	80%	50%
Stack Size (ft)		27	27	27
Stack Area (ft ²)		573	573	573
Stack Height (ft)	250	250	250	
Gas Temperature (°F)		160	160	160
@ (26.57" Hg)				
Gas Velocity (ft/sec)		33.6	26.8	16.8
Actual Source Strength (SO ₂)	(50% removal)	156.0	124.5	78.0
Q _s (gm/sec)				
Free Stream Velocity (ft/sec) (15,30,45 mph)		22,44,66	22,44,66	22,44,66
R T-T		1.52,0.76,0.50	1.22,0.61,0.41	0.76,0.38,0.25
$\Delta \rho / \rho_a = \left(\frac{s a}{T_a} \right)^{\Delta}$		0.15	0.15	0.15
$Fr_{s} = \frac{v^{2}}{g\frac{\Delta\rho}{\rho_{a}D}}$		8.77	5.58	2.19

*Taken from tables proved by K. Ladd, August 25, 1975 and Haragan Report, July 20, 1974 (Table 3). $\Delta T_a = 68^{\circ}F + 460 = 528^{\circ}R$
Table 4-2. Model Emission Parameters.

Unit 1	1:	Harrington	Station
--------	----	------------	---------

	Load	100%	80%	50%
Stack size (in.)	<u></u>	1.30	1.30	1.30
Stack area (in. ²)		1.33	1.33	1.33
Stack height (in.)		12	12	12
R		1.52,0.76,0.50	1.22,0.61,0.41	0.76,0.38,0.75
$\Delta \rho / \rho_{a}$.150	.150	.150
Fr _s		8.77	5.58	2.19
$V_{am}(ft/sec) = V_{sm}/R$		1.39,2.79,4.25	1.39,2.79,4.25	1.39,2.79,4.25
V _{sm} (ft/sec)		2.13	1.70	1.06
Q _{sm} (cfm)		1.18	0.94	0.59
Mol Wts = $29(1-\Delta\rho/\rho_a)$		24.7	24.7	24.7
[×] He _s		0.20	0.20	0.20
^X Prop _s		0.05	0.05	0.05

Run	Wind Speed (mph)	Direction	Load	Stack Height (ft)	Distance to Touchdown (ft)
1	15	N	50%	250	5000+
2		NE			1000
3		Е			2000 occ 3500
4		SE			500
5		S			1000
6		SW			700
7		W			1200
8		NW			1000 2200
9	30	Ν			750
10		NE			700
11		Е			500 1000
12		SE			0
13		S			1000
14		SW			400
15		W			500
16		NW			500
17	45	SE			0
18		SW			500
19	15	SE	100%	250	1000 occ 2000
20			80%	250	500
21	30	SE	100%	250	0
22			80%	250	0
23	45	SE	100%	250	0
24			80%	250	0

Table 4-3. Observed Touchdown Distances from Flow Visualization Tests (ft).

Unit 1: Harrington Station

Run	Wind Speed (mph)	Direction	Load	Stack Height (ft)	Distance to Maximum Ground Concentration (ft)	Maximum Concentration (~ 10 min avg)(ppm)
1	15	N	50%	250	2875	.075
2		NE			4500	.048
3		Е			2875	.075
4		SE			1000	.220
5		S			1750	.078
6		SW			500	.404
7		W			5350	.057
8		NW			1000	.115
9	30	N			1000	.310
10		NE			1750	.175
11		Е			1750	.150
12		SE			1000	.367
13		S			1750	.242
14		SW			1000	.283
15		W			1750	. 205
16		NW			1000	.403
17	45	SE			1000	.346
18		SW			1000	. 274

Table 4-4. Maximum Ground Concentration (ppm) and Distance to Maximum (ft).

Unit 1: Harrington Station

Table 4-5.

RUN NUM UNIT NUM WIND DIE WIND SPE PERCENT SO2 RELE STACK LO STACK HE STACK HE STACK VE	BER MBER RECTION EED (FT/S) LOAD EASE RATE (OCATION (FT EIGHT (FT) ICATION ELOCITY (FT	1 1 22 50 50 50 50 50 Y= 100 250 NEUTRAL 75) 16.80		
SAMPLE F	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SOP CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
5000 5500 99155 99155 991555 99155555555 99155555555	$\begin{array}{r} 420\\ 210\\ -210\\ 420\\ 210\\ -210\\ -420\\ 540\\ -270\\ -540\\ -270\\ -540\\ 270\\ -540\\ 270\\ -540\\ -270\\ -540\\ 0\\ -270\\ -540\\ 0\\ -270\\ -540\\ 0\\ 0\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ .277\\ 0.000\\ .069\\ 1.453\\ 0.557\\ 0.000\\ 0.000\\ .138\\ 1.384\\ .346\\ 0.000\\ 0.000\\ 0.623\\ 1.591\\ .761\\ .484\\ .415\\ 1.522\\ 1.384\\ .969\\ .623\\ .133\\ 1.107\end{array}$	$\begin{array}{c} 0 \cdot 00 \\ 0 \cdot 00 \\ 34 \cdot 63 \\ 0 \cdot 00 \\ 8 \cdot 66 \\ 131 \cdot 83 \\ 69 \cdot 27 \\ 0 \cdot 00 \\ 0 \cdot 00 \\ 17 \cdot 32 \\ 173 \cdot 17 \\ 43 \cdot 29 \\ 0 \cdot 00 \\ 77 \cdot 93 \\ 199 \cdot 15 \\ 95 \cdot 25 \\ 60 \cdot 61 \\ 51 \cdot 95 \\ 190 \cdot 49 \\ 173 \cdot 17 \\ 121 \cdot 22 \\ 77 \cdot 93 \\ 17 \cdot 32 \\ 138 \cdot 54 \end{array}$	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0130\\ 0.0000\\ 0.0032\\ 0.0682\\ 0.0682\\ 0.0662\\ 0.0000\\ 0.000\\ $
MAXIMUM	VALUES	1.591	199.15	.0747

RUN NUMF UNIT NUM WIND DIF WIND SPE PERCENT SO2 RELE STACK LO STACK HE STACK HE STACK VE	HER HEER RECTION ED (FT/S) LOAD EASE RATE (DCATION (FT) ICATION ICATION ELOCITY (FT	22 1 NE 22 50 (GM/S) 78 1) X= 68 Y= 68 250 NF(ITPAL I/S) 16.80		
SAMPLE F	POSITION	CONCENTRATION COFFFICIENT K*10**6 (FT)**-2	SO2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
5000 5500 9915 9915 17750 17755 288875 28875 28875 28875 28875 28875 28875 28875 28875 28875 28875 28500 2000 2000 2000 2000 2000 2000 20	$\begin{array}{r} 420\\ 210\\ -210\\ 420\\ 210\\ -210\\ -420\\ 540\\ 270\\ -540\\ 270\\ -540\\ -270\\ -540\\ -270\\ -540\\ -270\\ -540\\ -270\\ -540\\ 0\end{array}$	$\begin{array}{c} 0 \cdot 0 \ 0 \ 0 \\ -479 \\ -274 \\ 0 \cdot 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \\ -342 \\ -543 \\ 0 \cdot 0 \ 0 \ 0 \\ -6543 \\ 0 \cdot 0 \ 0 \ 0 \\ -6543 \\ 0 \cdot 0 \ 0 \\ -6543 \\ 0 \cdot 0 \ 0 \\ -6543 \\ -11 \\ -205 \\ -682 \\ $	$\begin{array}{c} 0 \cdot 00\\ 60 \cdot 00\\ 34 \cdot 28\\ 0 \cdot 00\\ 0 \cdot 00\\ 42 \cdot 855\\ 68 \cdot 57\\ 0 \cdot 00\\ 17 \cdot 14\\ 0 \cdot 00\\ 17 \cdot 14\\ 0 \cdot 00\\ 102 \cdot 855\\ 51 \cdot 71\\ 255 \cdot 71\\ 255 \cdot 71\\ 128 \cdot 56\\ 58 \cdot 57\\ 42 \cdot 45\\ 0 \cdot 00\\ 94 \cdot 28\end{array}$	$\begin{array}{c} 0.0000\\ .0225\\ .0129\\ 0.0000\\ .0161\\ .0257\\ 0.0000\\ .0032\\ 0.0000\\ .0032\\ 0.0000\\ .0064\\ 0.0000\\ .0064\\ 0.0000\\ .0064\\ 0.0000\\ .0386\\ .0143\\ .0193\\ .0096\\ .0386\\ .0143\\ .0196\\ .0386\\ .0143\\ .0096\\ .0386\\ .0143\\ .0096\\ .0386\\ .0143\\ .0096\\ .0386\\ .0161\\ .0257\\ .0161\\ 0.0000\\ .0354 \end{array}$
MAXTMUM	VALUES	1.027	128.56	.0482

PUN NUM UNIT NUM WIND DIF WIND SPF PERCENT SC2 PELE STACK LO STACK HE STACK HE	BER BER RECTION EED (FT/S) LOAD EASE RATE (C DCATION (FT) EIGHT (FT) ICATION ELOCITY (FT)	$ \begin{array}{c} 3 \\ 1 \\ F \\ 72 \\ 50 \\ 50 \\ 50 \\ 78 \\ 100 \\ Y = 0 \\ Y = 0 \\ NFUTRAL \\ (5) 16 a 80 \end{array} $		
SAMPLE I	POSTTION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SO2 CONCENTRATION MICRO GM PER CU-M	SO2 CONCENTRATION
5555999999775557777888888885550000055 1117788888888555000005 117788888888555000005	$\begin{array}{c} 420\\ 210\\ -2420\\ -220\\ -2420\\ -4440\\ -4440\\ -57$	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ & 2 & 0 & 5 \\ 0 & 0 & 0 & 0 \\ & 4 & 7 & 4 \\ & 4 & 7 & 4 \\ & 4 & 7 & 4 \\ & 4 & 7 & 4 \\ & 6 & 0 & 0 \\ & 0 & 0 & 0 \\ & 0 & 0 & 0 \\ & 0 & 0$	$\begin{array}{c} 0 \cdot 0 \\ 0 \cdot 0 \\ 0 \cdot 0 \\ 0 \cdot 0 \\ 25 \cdot 71 \\ 0 \cdot 0 \\ 0 \cdot 0$	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0096\\ 0.0000\\ 0.0225\\ 0.0225\\ 0.0225\\ 0.0000\\ 0.0000\\ 0.0096\\ 0.739\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0064\\ 0.0289\\ 0.129\\ 0.064\\ 0.021\end{array}$
MAXIMUM	VALUES	1.575	197.13	.0739

SAMPLE	POSITION	CONCENTENTION COEFFICIENT K#10##6 (FT)###2	SUR CONCENTRATION WICHO GM PER CU.M	SO2 CONCENTRATION
500	420	0.000	U • 9.0	0.0000
500	210	.274	34 - 14	•0129
500	210			• UKU4 0 & 75
	-210	j • 4 3× 753	1/4.20	0354
915	210	4.657	502-52	2186
61 5	ĨŐ	4.746	531.39	1993
9 15	-210	.479	60.00	.0225
915	-420	0.000	000	0.0000
1750	540	2.200	C 13 2 - 14 4	•1061
1720	270	4. (25		• < < 18
1750	~270	• (7) *	54 <u>670</u> 51 <u>4</u> 3	.0193
1750	-540	S 4 A	68.57	0257
2875	540	3.561	445 CH	1671
2875	270	2.32A	291.41	.1093
2875	0	1.046	137.13	•0514
2875	-270	• (] ([[•]4	•0289
2875	-540		14	• U 2 8 9 0 7 0 7
4500	270	1,233	154.28	.0579
4500		1 2 2 3 1	111.42	0418
4500	-270	ိုမှုနှစ်	114,44	.0450
4500	-540	•616	77.14	0289
5355	0	1.301	162.45	•0611
MAXTMU	M VALUES	4.725	~ J] . AV	•2218

RUN NUMPER 4 1 SF UNIT NUMBER WIND DIRECTION WIND SPFED (FT/S) PERCENT LOAD SO2 RELEASE PATE (GM/S) 22 78 STACK LOCATION (FT) AH X = Y= -68 STACK HEIGHT (FT) STRATIFICATION STACK VELOCITY (FT/S) 250 NEUTRAL 16.80

SAMPLE	POSITION	CONCENTRATION COEFFICIENT K*10**6 (FT)**-2	SUP CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
500	420	.214	26.77	.0100
500	210	• 285	37.57	+VI34 0369
500	-210	• 7 (7)	11•31 202	- 0033
016	-210	0 () () 2 A S	35.69	0134
015	210	1_141	142.75	.0535
	10		107.06	.0401
415	-210	0.000	0.00	0.0000
915	-420	0.000	0.00	0.0000
1750	540	.214	26.77	.0100
1750	270	1.+40	205.20	.0770
Ī750	0	₀ 784	₩ <u>8</u> .14	•0368
1750	-270	0.000	0.00	0.0000
1750	-540	$0 \bullet 0 0 0$	$0 \cdot 0 0$	0.0000
2875	540	1.243	100.02	• 0605
2875	270	1. 641		• 0 / / 0
2875	270	• / 54	9× • 14 36 77	• 0 3 0 0
2075		0714	20011	0100
2500	540	• / 1 4 . Quiki	124.90	.0468
4500	270	094	124.90	0468
4500	<i>,</i> , , , , , , , , , , , , , , , , , ,	356	44.61	0167
4500	-270	474	53.53	0201
4500	-540	354	44.61	.0167
5355	Ô	.754	5H.14	.0368
MAXIMUN	VALUES	1.649	205.20	.0770

	5
WIND DIRECTION	5
WIND SPEED (FT/S) PERCENT LOAD	50 50
SO2 RELEASE RATE (GM/S STACK LOCATION (ET)	5) 7유 X= 9
STACK HEIGHT (ET)	Y = -100
STRATIFICATION STACK VELOCITY (ET/S)	NEUTRAL

RUN NUMBER UNIT NUMBER WIND DIRECTION WIND SPEED (FT/S PERCENT LOAD SO2 RELEASE PATE STACK LOCATION (STACK HEIGHT (FT STRATIFICATION STACK VELOCITY ($ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
SAMPLE POSITION X Y	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SUP CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1 \cdot 782$ $8 \cdot 554$ $3 \cdot 208$ $0 \cdot 000$ $6 \cdot 701$ $7 \cdot 2026$ $1 \cdot 266$ $0 \cdot 000$ $5 \cdot 845$ $3 \cdot 493$ $0 \cdot 000$ $0 \cdot 6365$ $1 \cdot 570$ $0 \cdot 6325$ $0 \cdot 6365$ $1 \cdot 570$ $0 \cdot 6365$ $1 \cdot 570$ $0 \cdot 6365$ $1 \cdot 570$ $0 \cdot 6325$ $0 \cdot 6365$ $1 \cdot 570$ $0 \cdot 6365$ $1 \cdot 570$ $0 \cdot 6365$ $1 \cdot 570$ $0 \cdot 6325$ $0 \cdot 6365$ $1 \cdot 570$ $0 \cdot 6365$ $1 \cdot 570$ $0 \cdot 6365$ $1 \cdot 570$ $0 \cdot 6325$	$\begin{array}{c} 223 \cdot 04 \\ 1070 \cdot 61 \\ 401 \cdot 44 \\ 0 \cdot 00 \\ + 38 \cdot 65 \\ 901 \cdot 10 \\ 174 \cdot 44 \\ 133 \cdot 43 \\ 0 \cdot 00 \\ 731 \cdot 59 \\ 437 \cdot 17 \\ 733 \cdot 53 \\ 0 \cdot 00 \\ 437 \cdot 17 \\ 733 \cdot 53 \\ 0 \cdot 00 \\ 455 \cdot 01 \\ 240 \cdot 69 \\ 71 \cdot 37 \\ 26 \cdot 77 \\ 26 \cdot 77 \\ 26 \cdot 77 \\ 26 \cdot 77 \end{array}$	$\begin{array}{c} 0836 \\ +015 \\ 1506 \\ 0.0000 \\ 3145 \\ 3379 \\ 0669 \\ 0502 \\ 0.0000 \\ 2743 \\ 1639 \\ 0201 \\ 0.0000 $
MAXIMUM VALUES	∺ <mark></mark>	1070.61	.4015

SAMPLE	POSITION	CONCENTRATION COFFFICIENT K*10**6 (FT)**-2	SO2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
500	420 210	• 071 • 570	A.92 71.37	•0033 •0268
500	-210	•143 0•000	17.84	0067
915 917	420	• 071 • 428	8.92	.0033 .0201
915 915	-210	• 071 0•000	4.92 0.00	0033
915 1750	-420	0.000 •355	0.00	0.0000 .0167
1750	270	• 071 4	89.22	•0033
1750	-540	0.000	$0 \cdot 00$ 71 37	0.0000
2875 2875	270	1.059	133.83	•0502
2875	-270 -540	235	35.67	0134
4500	540 270	- <u>927</u> - 998	115.98 124.90	0435 0468
4500 4500	-270	- 642 - 570	H0.30 71.37	•0301 •0268
4500 5355	-540	1.212	151.67	•0569
MAXIMUM	VALUES	1.215	151.67	•0569

RUN NUMBER 7 UNIT NUMBER 1 WIND DIRECTION W WIND SPEED (FT/S) 22 PERCENT LOAD SO2 RELEASE PATE (GM/S) STACK LOCATION (FT) 50 73 X = -100 Y = - O STACK HEIGHT (FT) STRATIFICATION STACK VELOCITY (FT/S) 250 NEUTRAL 16.90

73

514(K VELOCITY (F175) IN-80				
SAMPLE	POSITION	CONCENTRATION COEFFICIENT K*10*** (FT)**-2	SO2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
500	420	0.00	000	0.0000
500	210	له لمه که ا	53.53	.0201
500	0	•713	49.55	•0335
500	-210	0.000	0.00	0.0000
915	210	• 14	202 24	• 0 1 0 0
015	610	<u> </u>	115,4A	0435
915	-210	071	μ, 32	0033
915	-420	0.000	0.00	0.0000
1750	540	•7H4	9×.14	.0368
1750	270	1.568	196-28	• 0736
1750	- 270	• (13	84•72	
1750	-540	0.000	0.00	0.0000
2875	540	1.640	205.20	0770
2875	270	2.424	303.34	.1138
2875	0	1.141	142.75	.0535
2875	-270	• 355	44.51	•0167
2875	-540	• 4 2 8	, <u>5</u> 3•53	•0201
4500	270	1.420		• UDD7 0366
4500		• 704		.0268
4500	-270	- 4 P H	5 3 4 5 3	.0201
4500	-540	.356	44.61	0167
5355	0	• 09¥	124.40	.0468
MAXIMUN	VALUES	2.424	363.34	.1138

RUN NUMBER pì. UNIT NUMBER 1 WIND DIRECTION Nier WIND SPEED (FT/S) 22 PERCENT LOAD 50 SO2 RELEASE PATE (GM/S) 78 STACK LOCATION (FT) X= -53 Y = 44 250 STACK HEIGHT (FT) STRATIFICATION STRATIFICATION NEUTHAL 16.80

SAMPLE POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SU2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 0.000\\715\\ 3.434\\859\\ 2.714\\ 13.164\\ 5.437\\ 0.000\\ 0.000\\ 0.000\\ 3.291\\ 13.307\\ 2.719\\284\\424\\ 3.299\\ 5.151\\ 0.000\\424\\ 3.291\\572\\143 \end{array} $	$\begin{array}{c} 0.00\\ 44.77\\ 214.89\\ 53.72\\ 170.12\\ 823.76\\ 340.25\\ 0.00\\ 205.94\\ 832.71\\ 170.12\\ 17.91\\ 26.86\\ 519.32\\ 402.92\\ 322.34\\ 0.00\\ 25.86\\ 205.94\\ 35.82\\ 455\\ 845\\ \end{array}$	0.0000 .0168 .0806 .0201 .0638 .3089 .1276 0.0000 0.0000 .0772 .3123 .0638 .0067 .0101 .1947 .1511 .1209 0.0000 .0101 .0772 .0134 .0034
4500 -270 4500 -540 5355 0	429 0.000 .143	26 46 0 00 4 95	0101 0.0000 0034

RUN NUMPER	9
UNIT NUMBER	1
WIND DIRECTION	N
WIND SPEED (FT/S)	44
PERCENT LOAD	50
SO2 PFLEASE PATE (GM/S)) 78
STACK LOCATION (FT)	X = 0
	Y = 100
STACK HEIGHT (FT)	250
STRATIFICATION	NEUTRAL
STACH VELOCITY (FT/S)	16.40

STACK V	STACK VELOCITY (FT/S) 16.80					
SAMPLE	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SO2 CONCENTRATION MICRO GM PFR CU.M	SOZ CONCENTRATION		
500	420		0.00			
500	0	2.289	143.26	0537		
500	-210	1.002	62.68	• 0235		
915	420	0.009		0.0000		
915	0	5.008	313.39	1175		
915	-210	1.717	107.45	0403		
915	-420	•285		•0067		
1750	270	7.440	465.60	-1746		
1750	i î î	4.149	254.66	. 0974		
1750	-270	• 259	53.72	.0201		
1750	-540	•572 2•724	35.42	•0134		
2875	270	2-862	179-08	.0672		
2875	Ő	4.006	250 71	.0940		
2875	-220	.572	35.82	.0134		
2875	-540	•715	44.77	• 0168		
4500	540	1.002	126.66	0235		
4500	0	.429	26.86			
4500	-270	572	35.82	.0134		
4500	-540	•285	17.91	.0067		
5355	0	• 4 <i>2</i> 4	26.56	•0101		
MAXIMUM	VALUES	7.440	465.60	.1746		

RUN NUMPER		10
UNTT NUMBER		1
WIND DIRECTION		NE
WIND SPEED (FT/S)		44
PERCENT LOAD		50
SOZ PELEASE PATE (GM/S)	78
STACK LOCATION (FT)	X =	68
	Y =	68
STACK HEIGHT (FT)		250
STRATIFICATION	NEU	THAL
STPATT ICATION	- 18 E C	1 - 4L

RUN NUMBE UNIT NUME WIND DIRE WIND SPEE PERCENT L SO2 RELEA STACK LOO STACK HES STACK VEL	ER BER ECTION ED (FT/S) LOAD ASE PATE ((CATION (FT) CATION CATION LOCITY (FT)	11 E 44 50 3M/S) 78) X= 100 Y= 0 NEUTRAL /S) 16.80		
SAMPLE P	OSTTION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SU2 CONCENTRATION MIGRO GM PER CU.M	SO2 CONCENTRATION
50000555555555555555 9999975555555555555	$\begin{array}{c} 420\\ 210\\ -210\\ 420\\ 210\\ -420\\ -420\\ -420\\ -540\\ -70\\ -540\\ -270\\ -540\\ -270\\ -540\\ -270\\ -540\\ -270\\ -540\\ 0\\ -270\\ -540\\ 0\\ -270\\ -540\\ 0\\ -270\\ -540\\ 0\\ -270\\ -540\\ 0\\ -270\\ -540\\ 0\\ -270\\ -540\\ 0\\ -270\\ -540\\ 0\\ -270\\ -540\\ 0\\ -270\\ -540\\ 0\\ -270\\ -540\\ 0\\ -270\\ -540\\ 0\\ -270\\ -540\\ 0\\ -270\\ -540\\ 0\\ -270\\ -540\\ 0\\ 0\\ -270\\ -540\\ 0\\ 0\\ -270\\ -540\\ 0\\ 0\\ -270\\ -540\\ 0\\ 0\\ -270\\ -540\\ 0\\ 0\\ -270\\ -540\\ 0\\ 0\\ -270\\ -540\\ 0\\ 0\\ -270\\ -540\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	$\begin{array}{c} 0.000\\ 0.000\\$	$\begin{array}{c} 0.00\\ 0.00\\ 44.77\\ 134.31\\ 0.00\\ 17.91\\ 528.68\\ 0.00\\ 58.96\\ 26.986\\ 259.96\\ 266.866\\ 259.96\\ 266.866\\ 259.96\\ 4074.56\\ 4074.56\\ 17.91\\ 629.666\\ 259.666\\ 53.72\\ 0.00\\ 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0168\\ 0.0000\\ 0.0067\\ 1981\\ 0.235\\ 0.0000\\ 0.034\\ 1343\\ 1511\\ 0.101\\ 0.0101\\ 0.0101\\ 0.0101\\ 0.0101\\ 0.0101\\ 0.0101\\ 0.0101\\ 0.00074\\ 1511\\ 0.235\\ 0.067\\ 0.235\\ 0.074\\ 0.269\\ 0.034\\ 0.201\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ \end{array}$
MAXIMUM	VALUES	8.442	524.28	.1981

STACK HI Stpatif Stack VI	EIGHT (FT) ICATION ELOCITY (F1	250 NEUTHAL [/5] 16.80		
X	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SU2 CONCENTRATION WICHO GM PER CU.M	SO2 CONCENTRATION
5555999115550000555555599911555000055555775555555500005555555555	420 210 -4200 -457 -57 -57 -57 -57 -57 -57 -57 -	0.000 1.145 5.437 7.870 2.576 11.018 15.596 5.728 1.288 3.291 12.019 13.307 3.005 1.717 6.296 4.722 6.153 1.602 4.579 1.429 0.000 286	0.00 71.63 340.25 440.25 440.46 161.17 689.46 161.17 689.45 975.97 358.16 205.97 358.16 205.91 3407.45 7338.71 188.03 107.45 7338.78 202.77 358.59 7358.50 202.78 203.78 202.79 202.78 200.797 202.78 202.78 200.797 200.797 200.797 200.7977 200.797777777777	$\begin{array}{c} 0 & 0 & 0 & 0 \\ & 0 & 269 \\ & 1276 \\ & 1847 \\ & 0604 \\ & 2585 \\ & 3660 \\ & 1343 \\ & 0302 \\ & 0772 \\ & 2820 \\ & 3123 \\ & 0705 \\ & 0403 \\ & 1477 \\ & 1108 \\ & 1444 \\ & 0201 \\ & 0235 \\ & 1074 \\ & 0336 \\ & 0101 \\ & 00101 \\ & 0000 \\ & 0067 \end{array}$
MUNTXAM	VALUES	15.546	975.97	•3660

RUN NUMBER12UNIT NUMBER1WIND DIRECTIONSEWIND SPEED (FT/S)44PERCENT LOAD50SO2 RELEASE RATE (GM/S)78STACK LOCATION (FT)X=STACK HEIGHT (FT)250STACK HEIGHT (FT)250

STACK HEIGHT (FT) 250 STRATIFICATION NEUTPAL STACK VELOCITY (FT/S) 16.80						
SAMPLE POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SOR CONCENTRATION MICRO 64 PER CU.M	SO2 CONCENTRATION			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0 \cdot 0 0 0 \\ 1 \cdot 7 3 \\ 8 \cdot 5 \\ 2 \cdot 6 \\ 7 \cdot 6 \\ 8 \cdot 5 \\ 5 \cdot 5 \\ 6 \cdot 8 \cdot 1 \\ 7 \cdot 0 \\ 0 \cdot 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 0 \cdot 00\\ 108 \cdot 73\\ 418 \cdot 21\\ 16 \cdot 73\\ 75 \cdot 28\\ 535 \cdot 30\\ 426 \cdot 57\\ 0 \cdot 00\\ 0 \cdot 00\\ 58 \cdot 55\\ 644 \cdot 04\\ 200 \cdot 74\\ 59 \cdot 18\\ 66 \cdot 91\\ 443 \cdot 30\\ 434 \cdot 94\\ 359 \cdot 66\\ 0 \cdot 00\\ 41 \cdot 82\\ 200 \cdot 74\\ 33 \cdot 46\\ 30 \cdot 66\\ 30 \cdot $	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ & 0 & 4 & 0 & 8 \\ & 1 & 5 & 6 & 8 \\ & 0 & 0 & 6 & 3 \\ & 0 & 2 & 8 & 2 \\ & 2 & 0 & 0 & 7 \\ & 0 & 0 & 0 & 0 \\ & 0 & 0 & 0 & 0 \\ & 0 & 0$			
MAXIMUM VALUES	10.292	644.04	.2415			

Ő

-100

X=

Y=

RUN NUMBER

UNIT NUMBER

WIND DIRECTION WIND SPEED (FT/S) PERCENT LOAD SO2 RELEASE RATE (GM/S) STACK LOCATION (FT) X:

RUN NUM UNIT NU WIND DI WIND SP PERCENT SO2 PEL STACK H STRATIF STACK V	PUN NUMBER14JNIT NUMBER1JND DIRECTIONSWVIND SPEED (FT/S)44PERCENT LOAD50502 PELEASE RATE (GM/S)78STACK LOCATION (FT)X= -68Y= -68Y= -68STACK HEIGHT (FT)250STRATIFICATIONNEUTHALSTACK VELOCITY (FT/S)16.80						
SAMPLE	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SUZ CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION			
5555999997777788888855000005 11112222224444445	$\begin{array}{c} 420\\ 710\\ -210\\ 4210\\ -2420\\ -4200\\ -4200\\ -4200\\ -2100\\ -24400\\ -2560\\ -2560\\ -$	$ \begin{array}{c} 1 \cdot 604 \\ 6 \cdot 817 \\ 12 \cdot 163 \\ \cdot 401 \\ 4 \cdot 411 \\ 12 \cdot 029 \\ 14 \cdot 302 \\ 10 \cdot 827 \\ \cdot 535 \\ 2 \cdot 673 \\ 10 \cdot 292 \\ 9 \cdot 891 \\ 4 \cdot 544 \\ 2 \cdot 540 \\ 6 \cdot 416 \\ 4 \cdot 143 \\ 6 \cdot 950 \\ 1 \cdot 069 \\ 1 \cdot 069$	100.37 426.57 761.14 25.09 276.02 752.77 896 677.50 33.46 167.28 644.94 528 404 54.93 259.29 434.94 259.29 436.91 259.29 436.91 259.29 436.91 259.01 15.73 33.46 559.01 15.73	0376 1600 2854 0094 1035 2823 3356 2541 0125 0627 2415 2321 1066 0596 1506 0972 1631 0251 0251 0251 0251 0251 0345 0043 0125 0031 0063			
MAXIMUM	VALUES	14.302	H94.96	•3356			

STRATIFICATION NEUTRAL STACK VELOCITY (FT/S) 16.80					
SAMPLE POS	SITION CONCEN	NTRATION COEFFICIENT #10##6 (FT)##-2	SO2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION	
500 500 500 915 915 915 1750 1750 1750 1755 28875 28875 28875 28875 28875 28875 4500 4500 4500 500 500 500 500	$\begin{array}{c} 420\\ 210\\ -210\\ 420\\ 210\\ -210\\ -420\\ 540\\ -70\\ -540\\ 540\\ -770\\ -540\\ -770\\ -540\\ -270\\ -540\\ -270\\ -540\\ 0\end{array}$.40] 3.609 1.337 .134 2.807 6.416 1.604 .134 0.000 2.005 8.688 2.272 .535 .401 6.950 3.609	25.09 225.83 83.64 8.36 175.65 401.48 100.37 8.36 0.00 125.46 543.67 142.19 33.46 25.09 434.94 225.83 225.83 8.36 117.10 117.10 117.10 25.09 16.73 25.09 0.00 8.36	$\begin{array}{c} 0 0 94 \\ 0 847 \\ 0 314 \\ 0 0 31 \\ 0 659 \\ 1506 \\ 0 376 \\ 0 0 31 \\ 0 0 0 00 \\ 0 470 \\ 2039 \\ 0 533 \\ 0 125 \\ 0 094 \\ 1631 \\ 0 847 \\ 0 847 \\ 0 847 \\ 0 847 \\ 0 0 31 \\ 0 439 \\ 0 0 94 \\ 0 0 04 \\ 0 0 04 \\ 0 0 04 \\ 0 0 04 \\ 0 0 04 \\ 0 0 01 \\ 0 0 31 \\ \end{array}$	
MAXIMUM V	ALUES	8.688	543.67	.2039	

RUN NUMBER15UNIT NUMBER1WIND DIRECTIONWWIND SPEED (FT/S)44PERCENT LOAD50SO2 RELEASE PATE (GM/S)78STACK LOCATION (FT)X=Y=0STACK HEIGHT (FT)250STACK HEIGHT (FT)250

STACK V	ĒĽŌĊĪŤY (F	T/S) 16.80		
SAMPLE I	POSTTION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SU2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
55000555599915500000555599915500000555599915500005555500000000	420 - 210 - 220 - 257 - 25440 - 257 - 25440 - 257 - 2557 - 2557 - 25540 - 25540 - 2557 - 25540 - 25560 - 255600 -	$1 \cdot 069$ $8 \cdot 020$ $4 \cdot 544$ $0 \cdot 000$ $8 \cdot 554$ $17 \cdot 109$ $4 \cdot 010$ $0 \cdot 000$ $6 \cdot 817$ $9 \cdot 757$ $3 \cdot 743$ 936 $6 \cdot 683$ $3 \cdot 4755$ $4 \cdot 143$ 802 $6 \cdot 684$ $2 \cdot 941$ $1 \cdot 203$ $1 \cdot 470$ $1 \cdot 069$ $\cdot 134$ $\cdot 802$	$\begin{array}{c} 66.91\\ 501.85\\ 284.38\\ 284.38\\ 284.38\\ 284.38\\ 284.38\\ 285.30\\ 1070.61\\ 250.92\\ 0.00\\ 0.00\\ 426.57\\ 610.558\\ 234.555\\ 50.18\\ 234.555\\ 50.18\\ 418.21\\ 217.429\\ 50.18\\ 41.82\\ 184.01\\ 75.28\\ 92.01\\ 66.91\\ 8.36\\ 50.18\end{array}$	• 0251 • 1882 • 1066 0 • 0000 • 2007 • 4015 • 0941 0 • 0000 • 0000 • 1600 • 2290 • 0878 • 0220 • 0188 • 1568 • 0816 • 0972 • 0188 • 0157 • 0690 • 0282 • 0345 • 0251 • 0031 • 0188
MAXTMUM	VALUES	17.109	1070.61	.4015

RUN NUMPER	16
UNIT NUMRER	1
WIND DIRECTION	NW
WIND SPEED (FT/S)	44
PERCENT LOAD	50
SOZ RELEASE RATE (GM/S)	78
STACK LOCATION (FT) X=	-68
Y =	68
STACK HEIGHT (FT)	250
STRATIFICATION NEL	THAL

• • •				
SAMPLE X	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SU2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
55599999997777888888855000005 11111222224444445	$\begin{array}{r} 420\\ 210\\ -210\\ 420\\ 210\\ -210\\ -420\\ 540\\ -70\\ -540\\ -270\\ -540\\ -270\\ -540\\ -270\\ -540\\ -270\\ -540\\ -270\\ -540\\ 0\end{array}$	0.000 1.222 6.923 13.234 12.624 13.438 22.397 17.917 5.090 3.665 11.809 9.773 1.832 5.294 2.647 9.773 3.461 1.832 3.054 2.240 .814 .61] 0.000 1.018	$\begin{array}{c} 0.00\\ 50.96\\ 286.80\\ 5526.63\\ 5526.63\\ 5526.61\\ 9347.38\\ 2556.661\\ 9347.38\\ 2556.661\\ 9347.38\\ 2152.865\\ 1497.711\\ 407.711\\ 407.711\\ 220.455\\ 120.455\\ 120.455\\ 120.455\\ 127.41\\ 93.98\\ 25.40\\ 127.41\\ 93.48\\ 24.47\\ 127.41\\ 93.48\\ 24.47\\ 127.41\\ 127.41\\ 144.45\\ 127.41\\ 127.$	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ & 0 & 1 & 9 & 1 \\ & 1 & 0 & 8 & 3 \\ & 2 & 0 & 7 & 0 \\ & 1 & 9 & 7 & 5 \\ & 2 & 1 & 0 & 2 \\ & 3 & 2 & 8 & 0 & 3 \\ & 0 & 2 & 8 & 0 & 3 \\ & 0 & 2 & 8 & 7 \\ & 0 & 1 & 5 & 2 & 9 \\ & 0 & 2 & 8 & 7 \\ & 0 & 0 & 8 & 7 \\ & 0 & 0 & 8 & 7 \\ & 0 & 0 & 8 & 7 \\ & 0 & 0 & 1 & 5 & 7 \\ & 0 & 0 & 9 & 6 \\ & 0 & 0 & 0 & 0 \\ & 0 & 0 & 0 & 0 \\ & 0 & 0$
MAXIMUN	VALUES	22.397	934.35	• 3504

RUN NUMBER	17
UNIT NUMBER	_1
WIND DIRECTION	SE
WIND SPEED (F175)	20
PERCENT LOAD	28
SUC RELEASE RAIL (GM/S)	18
STACK LOCATION (PT) X=	60
Y=	-08
STACK HEIGHT (FT)	250
STRATIFICATION NE	UTRAL
STACK VELOCITY (FT/S)	15.80

STALK L	UCATION OF			
STACK H STPATIF STACK V	FIGHT (FT) ICATION ELOCITY (F	72 250 NEUTRAL T/S) 16.80		
SAMPLE	POSITION	CONCENTRATION COEFFICIENT K*10**6 (FT)**-2	SO2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
555999999777555555000005 11112222444455	42100 -2577 -55777 -55777 -55777 -55777 -55777 -557777 -557777 -557777 -5577777777	$3 \cdot 258$ $10 \cdot 384$ $16 \cdot 085$ $0 \cdot 000$ $7 \cdot 941$ $17 \cdot 714$ $7 \cdot 941$ $12 \cdot 827$ $\cdot 204$ $4 \cdot 276$ $10 \cdot 791$ $9 \cdot 773$ $3 \cdot 869$ $\cdot 814$ $5 \cdot 294$ $6 \cdot 515$ $5 \cdot 294$ $\cdot 814$ $1 \cdot 018$ $2 \cdot 443$ $1 \cdot 018$ $2 \cdot 443$ $1 \cdot 018$ $0 \cdot 600$ $0 \cdot 000$ $0 \cdot 000$	13590 433.20 671.03 0.00 331.27 738.98 331.27 535.13 6.49 178.38 407.71 161.39 33.98 220.85 271.81 220.85 23.98 42.47 101.93 42.47 0.00 0.00 0.00 0.00	$\begin{array}{c} .0510 \\ .1624 \\ .2516 \\ 0.0000 \\ .1242 \\ .2771 \\ .12007 \\ .0032 \\ .0669 \\ .1688 \\ .1529 \\ .0605 \\ .0127 \\ .0828 \\ .1019 \\ .0127 \\ .0828 \\ .0159 \\ .0382 \\ .0159 \\ .0382 \\ .0159 \\ .0382 \\ .0159 \\ .0382 \\ .0159 \\ .0382 \\ .0159 \\ .0382 \\ .0159 \\ .0382 \\ .0159 \\ .0382 \\ .0159 \\ .0382 \\ .0159 \\ .0382 \\ .0159 \\ .0382 \\ .0159 \\ .0382 \\ .0159 \\ .0000 \\ .0000 \\ .0000 \\ .0000 \\ .0000 \end{array}$
MAXIMUM	VALUES	17.714	738 . 98	•2771

RUN NUMBER18UNIT NUMBER1WIND DIRECTIONSwWIND SPEED (FT/S)66PERCENT LOAD50SO2 RELEASE RATE (GM/S)78STACK LOCATION (FT)X= -68STACK HFIGHT (FT)Y= -68STACK HFIGHT (FT)250SIPATIFICATIONNFUTHAL

Table 5-1. Prototype Emission Parameters.

Unit 2: Harrington Station*

	Load	100%	80%	50%
Stack size (ft)		27,19	27,19	27,19
Stack area (ft ²)		573,287	573,287	573,287
Stack height (ft)		300,350,375,400	300,350,375,400	300,350,375,400
Gas temperature (°F)				
@ (26.57" Hg)		313	313	313
Gas velocity (ft/sec)		40.9,81.8	32.7,65.4	20.5,41.0
Actual source strength (SO ₂)				
Q _s (gm/sec)	(0% removal)	331.0	264.8	165.5
Free stream velocity (ft/sec)				
(15,30,45 mph)		22,44,66	22,44,66	22,44,66
R		1.86,0.93,0.62; 3.72,1.86,1.24	1.49,0.74,0.50; 2.97,1.49,1.00	0.93,0.47,0.31; 1.86,0.93,0.62
$\Delta \rho / \rho_{a} = \left(\frac{T_{s} - T_{a}}{T_{s}} \right)^{\Delta}$		0.32	0.32	0.32
$Fr_s = \frac{V_s^2}{g\frac{\Delta\rho}{\rho_a}D}$		6.06	3.88	1.52

^{*}Taken from tables proved by K. Ladd, August 25, 1975 and Haragan Report, July 20, 1974 (Table 3). ^{Δ}T_a = 68°F + 460 = 528°R

Table 5-2. Model Emission Parameters.

	Load	100%	80%	50%
Stack size (in.)		1.30,0.92	1.30,0.92	0.30,0.92
Stack area (in. ²)		1.33,0.665	1.33,0.665	1.33,0.665
Stack height (in.)		14.4,16.8 18.0,19.2	14.4,16.8 18.0,19.2	14.4,16.8 18.0,19.2
R		1.86,0.93,0.62; 3.72,1.86,1.24	1.49,0.74,0.50; 2.97,1.49,1.00	0.93,0.47,0.31; 1.86,0.93,0.62
Δρ/ρ _a		. 32	. 32	. 32
^r s		6.06	3.88	1.52
/am(ft/sec)		1.39,2.79,4.25	1.39,2.79,4.25	1.39,2.79,4.25
/(ft/sec) 		2.59	2.07	1.30
(cfm)		1.43	1.14	0.72
Nol Wts = $29(1-\Delta\rho/\rho_a)$		19.8	19.8	19.8
He _s		0.40	0.40	0.40
(Props		0.05	0.05	0.05

Unit 2: Harrington Station

Run	Wind Speed (mph)	Direction	Load	Stack Height (ft)	Distance to Touchdown (ft)
25	15	N	50%	300	>5000
26		NE			>5000
27		Е			>5000
28		SE			4000>5000
29		S			>5000
30		SW			4000
31		W			3000-5000
32		NW			3000-4200
33	30	N			1500-2000
34		NE			1500
35		Ε			1000-1500
36		SE			1000-1500
37		S			1000-2000
38		SW			1000-1200
39		W			500-1000
40		NW			700-1500
41	15	W	80%	300	3500
42		NW	80%	300	3500
43	30	W	80%	300	1500-2000
44		NW	80%	300	2000
45	15	W	80%	350	4500
46		NW	80%	350	2000(occ)-3500
47	30	W	80%	350	1500
48		NW	80%	350	/00-1500
49	15	W	80%	375	2000(occ)->5000
50		••	80%	400	3000(occ)->5000
51	30	W	80%	375	1000(occ)-2000
52		•.•	80%	400	1800-2500
53	45	W	50%	3/5	1000-1500
53A		1.1	50%	400	1000-2000
54	15	W	100%	300	2500(occ) -4000
55	7.0	1.1	80%	300	3000
56	30	W	100%	300	1000-2000
5/		1.7	80%	300	1000-1500
58	15	W	100%	350	
59	70	1.1	80%	350	3500-5000
60	30	W	100%	350	2000-2500
61	15	141	80%	350	1500-2000
/U 71	12	W	3U8 010	300(5	D) 4500
/1			0U%	300(5	D) 3000
12	70		100%	300(5	D) 1000
/5	30		3U%	300(5	
/4 75			808 1004	300(5	D) 1500
/5			100%	300 (S	DJ 2000

Table 5-3. Observed Touchdown Distances from Flow Visualization Tests (ft).

Unit 2: Harrington Station

Run	Wind Speed (mph)	Direction	Load	Stack Height (ft)	Distance to Touchdown (ft)
76	45		50%	300(SD)	1000
77			80%	300 (SD)	1000
78			100%	300 (SD)	1000
79	30	SW	50%	300(SD)	1500
80			80%	300 (SD)	1500
81			100%	300 (SD)	2000

Table 5-3 (continued)

* (SD) refers to Unit 2 stack diameter of 19 ft.

	Unit 2: Harrington Station						
Run	Wind Speed (mph)	Direction	Load	Stack Height (ft)	Distance to Maximum Ground Concentration (ft)	(~	Maximum Concentration 10 min avg)(ppm)
25	15	N	50%	300	5350		. 095
26		NE			4500		.069
27		Е			4500		.037
28		SE			2875		.038
29		S			1750		.134
30		SW			4500		.115
31		W			2875		.120
32		NW			5350		.127
33	30	Ν			2875		.086
34		NE			2875		.081
35		Е			1750		.086
36		SE			2875		.090
37		S			2875		.050
38		SW			2875		.210
39		W			1000		.180
40		NW			2875		.108
41	15	W	80%	300	5350		.005
42		NW	80%	300	5350		.005
43	30	W	80%	300	4500		.065
44		NW	80%	300	2875		.120
45	15	W	80%	350	2875		.037
46		NW	80%	350	2875		.005
47	30	W	80%	350	4500		.124
48		NW	80%	350	4500		.096
49	15	W	80%	375	2875		.011
50			80%	400	2875		.011
51	30	W	80%	375	5350		.091
52			80%	400	5350		.069
53	45	W	50%	375	1750		.121
53A			50%	400	2875		.126
70	15	W	50%	300(SD)	* 4500		.036
71			80%	300(SD)	4500		.056
72			100%	300(SD)	2875		.041
73	30		50%	300(SD)	2875		.076
74			80%	300(SD)	4500		.044
75			100%	300(SD)	4500		.051
76	45		50%	300(SD)	4500		.103
77			80%	300(SD)	4500		.053
78			100%	300(SD)	4500		.039
79	30	SW	50%	300(SD)	4500		.100
80			80%	300(SD)	4500		.051
81			100%	300(SD)	4500		.053

Table 5-4. Maximum Ground Concentration (ppm) and Distance to Maximum

* (SD) refers to Unit 2 stack diameter of 19 ft.

Table 5-5.

RUN NUM UNIT NU WIND DI WIND SPI SO2 RELI STACK LO STACK HI STACK HI STACK VI	BER MBER RECTION EED (FT/S) LOAD EASE RATE OCATION (FT EIGHT (FT) ICATION ELOCITY (FT	25 N 22 S0 (GM/S) 165 T) X= -210 Y= -165 300 NEUTRAL T/S) 20.50		
SAMPLE I	POSITION	CONCENTRATION COEFFICIENT K*10**6 (FT)**-2	SOZ CONCENTRATION MICRO GM PFR CU.M	SO2 CONCENTRATION
500005555999991500005555555000000555555500000055555555	$\begin{array}{c} 420\\ 210\\ -210\\ 4210\\ -210\\ -210\\ -210\\ -210\\ -210\\ -220\\ -540\\ -2540\\ -2540\\ -2540\\ -2540\\ -2540\\ 0\\ -570\\ -2740\\ 0\\ -570\\ 0\\ -570\\ 0\\ -570\\ 0\\ -570\\ 0\\ 0\\ -570\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	$ \begin{array}{r} 158 \\ 2211 \\ 264 \\ 158 \\ 158 \\ 2211 \\ 211 \\ 2158 \\ 053 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 0000 \\ 158 \\ 2211 \\ 581 \\ 211 \\ 581 \\ 211 \\ 581 \\ 581 \\ 581 \\ 581 \\ 581 \\ 581 \\ 581 \\ 581 \\ 581 \\ 581 \\ 5$	41.95 55.94 69.92 41.95 55.94 55.94 41.95 13.98 111.87 13.98 0.00 0.00 0.00 0.00 41.95 55.94 153.82 97.69 125.866 181.79 195.78 111.87 251.71	$\begin{array}{c} 0157\\ 0210\\ 0262\\ 0157\\ 0157\\ 00157\\ 0210\\ 0210\\ 0052\\ 0420\\ 00052\\ 0420\\ 0000\\ 0000$
MAXIMUM	VALUES	•951	251.71	•0944

RUN NUM UNIT NU WIND DI WIND SP PERCENT SO2 PEL STACK L STACK H STRATIF STACK V	PER MAFR RECTION EED (FT/S) LOAD EASE PATE (OCATION (FT) ICATION ELOCITY (FT	$ \begin{array}{rcl} & 26 \\ & NE \\ & 27 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & 50 \\ & Y = 35 \\ & 300 \\ & NEUTRAL \\ & /5) & 20.50 \\ \end{array} $		
SAMPLE	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SO2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
55559999915555555555555555 99999777778888885555000005 111122222224444455	$\begin{array}{c} 420\\ 210\\ -210\\ 420\\ 210\\ -420\\ -420\\ -240\\ -270\\ -2540\\ -270\\ -540\\ 270\\ -540\\ 270\\ -540\\ 270\\ -540\\ 0\end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ .159\\ .053\\ 0.000\\ .159\\ .159\\ .159\\ 0.000\\ $	$\begin{array}{c} 0.00\\ 0.00\\ 41.95\\ 13.98\\ 0.00\\ 41.95\\ 41.95\\ 41.95\\ 0.00\\ $	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
MAXIMUM	VALUES	•687	181.79	.0682

STACK VELOC	CITY (FT/S)	20.50		
SAMPLE POSI	TION CONCE	NTRATION COEFFICIENT #10##6 (FT)##-2	SU2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION PPM
500 -22 500 -24 500 -44 915 -45 915 -45 915 -45 915 -45 915 -45 915 -45 915 -45 915 -45	20 20	$ \begin{array}{c} 106\\ 106\\ 0.000\\ 0.000\\ 106\\ 053\\ 0.000\\ 0.$	27.97 27.97 0.00 0.00 27.97 13.98 0.00 0.00 83.90 13.98 0.00 0.00 0.00 55.94 0.00 0.00 41.95 97.89 97.89 97.89 97.89 41.95 97.89 97.89 97.97	$\begin{array}{c} 0105\\ 0105\\ 00000\\ 00000\\ 00000\\ 0052\\ 00000\\ 0000\\ 000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 000\\ 0000\\ 0000\\ 000$
MAXIMUM VAL	UES	.370	97.49	.0367

PUN NUMPER		27
UNIT NUMBER		5
WIND DIRECTION		E
WIND SPEED (FT/S)		22
PERCENT LOAD		<u>, 50</u>
SOZ RELEASE RATE (GM/S))	165
STACK LOCATION (FT)	(= -	165
	(=	510
STACK HEIGHT (FT)		300
STRATIFICATION	NEUT	RAL
STACK VELOCITY (FT/S)		-50

RUN NUM UNIT NU WIND DI WIND SP PERCENT SO2 REL STACK L STACK H STRATIF STACK V	REP RECTION EED (FT/S) LOAD EASE RATE (OCATION (FT EIGHT (FT) ICATION ELOCITY (FT	2H SE 22 50 GM/S) 165) X= 35 Y= 260 300 NFUTRAL /S) 20.50		
SAMPLE	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SOP CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
5500055559999997775557555555000005 111117888888855500005 11111788888885550005	$\begin{array}{r} 420\\ 210\\ -210\\ 420\\ 210\\ -420\\ -420\\ -420\\ -240\\ -270\\ -540\\ -270\\ -540\\ -270\\ -540\\ -270\\ -540\\ -270\\ -540\\ 0\\ 0\\ -270\\ -540\\ 0\\ 0\\ -270\\ -540\\ 0\\ 0\\ -270\\ -560\\ 0\\ 0\\ 0\\ 0\\ -270\\ 0\\ -560\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	$ \begin{array}{r} 215 \\ 054 \\ 377 \\ 269 \\ 054 \\ 269 \\ 215 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 377 \\ 108 \\ 377 \\ 323 \\ 161 \\ 269 \\ 054 \\ 054 \\ \end{array} $	57.00 14.25 99.75 71.255 14.255 71.255 57.000 0.000 71.250 0.000 0.000 0.000 0.000 0.000 99.750 99.750 99.750 99.750 99.750 99.750 99.575 14.255 14.	$\begin{array}{c} 0214\\ 0053\\ 0374\\ 0267\\ 0053\\ 02267\\ 02214\\ 0.0000\\ 0.0000\\ 0.0267\\ 0.0000\\ 0.000\\ 0.00$
MAXIMUM	VALUES	•377	99.75	.0374

RUN NUMBER 29 UNIT NUMBER 2 WIND DIRECTION S WIND SPEED (FT/S) 22 PERCENT LOAD 50 SO2 RELEASE RATE (GM/S) 165 STACK LOCATION (FT) X= 210 Y= 165 STACK HEIGHT (FT) 8300 STRATIFICATION NEUTRAL STACK VELOCITY (FT/S) 20.50				
SAMPLE	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SOP CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
5000555555555555555000005 111177557755755555000005 1111222222444445	$\begin{array}{c} 420\\ 210\\ -210\\ 420\\ 210\\ -2420\\ -420\\ -420\\ -2400\\ -270\\ -570\\ -5400\\ -2500\\ -2500$	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.048\\ 0.048\\ 0.287\\ .527\\ .048\\ 0.000\\ .383\\ 1.341\\ .670\\ .383\\ .096\\ .862\\ .335\\ 1.245\\ 1.197\\ .718\\ 1.054\\ 1.149\\ 1.293\\ 1.197\\ .862\\ .766\end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 12.68\\ 12.68\\ 76.07\\ 139.68\\ 76.07\\ 139.68\\ 0.00\\ 101.43\\ 355.01\\ 177.50\\ 101.43\\ 25.325\\ 326.97\\ 328.75\\ 329.697\\ 190.18\\ 276.93\\ 316.97\\ 304.29\\ 3316.97\\ 228.26\\ 202.86\end{array}$	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0048\\ 0.0285\\ 0.0523\\ 0.0523\\ 0.0523\\ 0.048\\ 0.0000\\ 0.380\\ 1331\\ 0.6666\\ 0.380\\ 0.0380\\ 0.03856\\ 0.333\\ 1236\\ 0.03856\\ 0.1189\\ 0.713\\ 1046\\ 1141\\ 1284\\ 0.1189\\ 0.0761\\ \end{array}$
MAXIMUM	VALUES	1.341	355.01	.1331

PERCENT LOAD 50 SO2 RELEASE RATE (GM/S) 165 STACK LOCATION (FT) X= 260					
Y= -35 STACK HEIGHT (FT)					
SAMPLE	POSITION Y	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SOP CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION	
$\begin{array}{c} 500\\ 5000\\ 915\\ 5000\\ 915\\ 5000\\ 915\\ 5000\\ 915\\ 5500\\ 1775\\ 550\\ 575\\ 575\\ 550\\ 224\\ 44\\ 5500\\ 00\\ 555\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\$	$\begin{array}{c} 420\\ 210\\ -210\\ -420\\ 210\\ -420\\ -420\\ -2420\\ -2420\\ -2420\\ -2540\\ -2540\\ -2540\\ -2540\\ -2540\\ -2540\\ -2540\\ -5640\\ -270\\ -5640\\ -5660\\ -5600\\ -5000\\$	$ \begin{array}{c} 0 & 0 & 0 & 0 \\ & & 0 & 48 \\ & & 0 & 48 \\ 0 & 0 & 0 & 0 \\ & & 0 & 96 \\ & & 527 \\ & & 479 \\ & & 287 \\ 0 & 0 & 000 \\ & & 192 \\ & & 527 \\ & & 958 \\ 1 & 0 & 06 \\ & & 239 \\ & & 670 \\ & & 670 \\ & & 670 \\ & & 814 \\ & & 862 \\ 1 & 0 & 06 \\ 1 & 0 & 6 \\ 1 & 0 & 6 \\ 1 & 0 & 6 \\ 1 & 0 & 6 \\ 1 & 149 \\ & & 862 \\ 1 & 0 & 6 \\ 1 & 149 \\ & & 862 \\ & 956 \\ & 383 \\ \end{array} $	0.00 12.68 12.68 0.00 25.36 139.47 126.79 76.07 50.72 139.47 253.58 265.29 177.50 275.54 265.26 304.29 204.29 204.29 204.29 205.58 101.43	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ & 0 & 0 & 0 & 48 \\ & 0 & 0 & 0 & 0 & 0 \\ & 0 & 0 & 0 & 0$	
MAXIMUM	VALUES	1.149	304.29	.1141	

PUN NUMPER UNIT NUMPER WIND DIRECTION WIND SPEED (FT/S) 2 5 8 22

RUN NUM UNIT NUI WIND DII WIND SPI PERCENT SO2 RELI STACK LO STACK HI STACK HI STACK VI	RER MBER RECTION EED (FT/S) LOAD EASE RATE (OCATION (FT EIGHT (FT) ICATION ELOCITY (FT	31 22 50 50 50 50 50 50 50 50 50 50 50 50 50		
SAMPLE I	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SO2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
5555999999777778888888555000005 1111778888888555000005 11117788888888555000005	$\begin{array}{c} 420\\ 210\\ -210\\ 420\\ 210\\ -2420\\ -420\\ -2420\\ -270\\ -540\\ -270\\ -540\\ -270\\ -540\\ -270\\ -540\\ -270\\ -540\\ 0\\ -270\\ -540\\ 0\\ -270\\ 0\\ 0\\ -270\\ 0\\ -270\\ 0\\ -270\\ 0\\ -270\\ 0\\ -270\\ 0\\ -270\\ 0\\ -270\\ 0\\ -270\\ 0\\ -270\\ 0\\ -270\\ 0\\ 0\\ -270\\ 0\\ 0\\ 0\\ -270\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$.048 .048 .048 .048 .048 .144 .239 .096 .048 .144 .383 .670 .718 .239 .623 1.149 1.054 1.197 .718 .910 1.101 .862 .623	12.68 12.68 12.68 12.68 12.68 12.68 12.68 12.68 12.68 12.68 12.68 12.68 12.68 12.68 101.43 177.50 177.50 190.18 164.82 278.93 164.82 316.97 190.18 228.22 164.82 164.82	.0048 .0048 .0048 .0048 .0048 .0143 .0238 .0095 .0048 .0143 .0380 .06666 .0713 .0238 .0618 .1141 .1046 .1189 .0713 .0713 .0713 .0713 .0903 .1094 .0856 .0618
MAXTMUM	VALUES	1.197	316.97	.1189

STACK HEIGHT (FT) STRATIFICATION STACK VELOCITY (F	Y= -260 300 NEUTRAL T/S) 20.50		
SAMPLE POSITION X Y	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SO2 CONCENTRATION MICRO SM PER CU.M	SO2 CONCENTRATION
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 158\\ 158\\ 158\\ 053\\ 0&000\\ 0&053\\ 106\\ 158\\ 0&000\\ 0&00\\ 0&0\\$	$ \begin{array}{r} 41.95\\ 41.95\\ 41.95\\ 13.98\\ 0.00\\ 13.98\\ 27.97\\ 41.95\\ 0.00\\ 0.00\\ 125.86\\ 0.00\\ 0.00\\ 0.00\\ 55.94\\ 223.74\\ 97.89\\ 139.94\\ 167.21\\ 279.68\\ 265.70\\ 335.62\end{array} $	$\begin{array}{c} 0157\\ 0157\\ 0157\\ 0052\\ 0&0000\\ 0&0052\\ 0105\\ 0157\\ 0&0000\\ 0&000\\ 0&00\\ 0&000\\ 0&000\\ 0&000\\ 0&000\\ 0&000\\ 0&000\\ 0&000\\ 0&00\\ 0&000\\ 0&000\\ 0&000\\ 0&000\\ 0&00\\ 0&00\\ 0&00\\$
MAXIMUM VALUES	1.768	335.62	.1259

32

NW

22

50 155

-35

X=

Ĩ2

RUN NUMPER

UNIT NUMBER

WIND DIRECTION

WIND SPEED (FT/S)

PERCENT LOAD SO2 PELEASE PATE (GM/S) STACK LOCATION (FT) X=
SAMPLE	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SUZ CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
500	420	• 096 • 384	12.72	•0048
500	-210	1.538	203.59	0763
915 915	210	•288 1•346	34.17 178.14	•0143 •0668
915 915 1750	-210 -420 540	1.057 .481 .288	139.97 63.62 38.17	•0525 •0239 •0143
1750 1750 1750	270 -270	- 289 - 961 1-536	38.17 127.24 203.59	•0143 •0477
1750	-540	•961 •481	127.24 63.62	.0477 .0239
2875	-270	• 374 1•153 1•057	152.69 139.97	•0191 •0573 •0525
2875 4500 4500	-540 540 270	1.730 .865 .865	229.04 114.52 114.52	•0859 •0429 •0429
4500	-270	1.057 1.250 1.153	139.97 165.42 165.63	0525 0620
5355	0	.673	89.07	.0334
MAXTMUM	VALUES	1.730	229.04	.0859

RUN NUMBER		33
UNIT NUMBER		2
WIND DIRECTION		N
WIND SPEED (FT/S)		44
PERCENT_LOAD	_ .	50
SO2 PELEASE RATE (GM/S	5)	165
STACK LOCATION (FT)	X =	-210
	Y =	-165
STACK HEIGHT (FT)		300
STPATIFICATION	NE	UTRAL
STACK VELOCITY (FT/S)		20.50

RUN NUM UNIT NU WIND DI WIND SP PERCENT SO2 REL STACK L STACK L STACK H STRATIF STACK V	HER MBER RECTION EED (FT/S) LOAD EASE RATE (OCATION (FT) EIGHT (FT) ICATION ELOCITY (FT)	$ \begin{array}{rcl} 34 \\ NE \\ 44 \\ 50 \\ 50 \\ 165 \\ Y = -260 \\ Y = -260 \\ Y = -35 \\ 300 \\ NEUTRAL \\ 7S) 20.50 \end{array} $		
SAMPLE	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SO2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
50000555599999155000005555777555775550000055555777555000000	420 210 -210 -210 -210 -420 270 -540 -270 -540 -270 -540 -270 -540 -270 -540 -270 -540 -270 -540 -270 -540 -50 -540 -500	$\begin{array}{c} 0.000\\ .288\\ .769\\ .481\\ .192\\ .961\\ 1.346\\ 1.057\\ .577\\ .384\\ .673\\ 1.730\\ 1.250\\ .769\\ .384\\ .577\\ 1.346\\ 1.250\\ 1.634\\ 1.057\\ .961\\ 1.250\\ 1.634\\ 1.057\\ .961\\ 1.250\\ 1.153\\ 1.250\\ .769\end{array}$	$\begin{array}{c} 0.00\\ 38.17\\ 101.80\\ 63.62\\ 25.45\\ 127.24\\ 178.14\\ 139.97\\ 76.35\\ 50.90\\ 89.07\\ 229.04\\ 165.42\\ 101.80\\ 50.90\\ 76.35\\ 178.14\\ 165.42\\ 216.32\\ 139.97\\ 127.24\\ 165.42\\ 157.69\\ 165.42\\ 101.80\\ 100.80\\ 1$	0.0000 0143 0382 0239 0095 0477 0668 0525 0286 0191 0334 0859 0668 0620 0811 0525 0477 0620 0811 0525 0477 0620 0811 0573 0620 0382
MAXIMUM	VALUES	1.730	229.04	.0859

RUN NUM UNIT NU WIND DI WIND SP PERCENT SO2 REL STACK L STACK H STRATIF STACK V	RER MBER RECTION EED (FT/S) LOAD EASE PATE (OCATION (F1 EIGHT (FT) ICATION ELOCITY (F1	.35 E 44 50 (GM/S) 165 T) X= -165 Y= 210 300 NEUTRAL T/S) 20.50		
SAMPLE	POSITION	CONCENTRATION COEFFICIENT K*10**6 (FT)**-2	SO2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
5000055559999997755000005555000005555777788888888555000055555500000555550000055555000005555	$\begin{array}{c} 420\\ 210\\ -210\\ -420\\ 210\\ -420\\ -420\\ -420\\ -210\\ -420\\ -210\\ -420\\ -210\\ -210\\ -210\\ -210\\ -210\\ -270\\ -2$	0.000 .192 1.057 .288 .788 .577 .961 .384 0.000 .865 1.730 1.153 .577 .192 .961 .577 1.057 .865 1.057 .865 1.057 .865 1.057 .884 .577	$\begin{array}{c} 0.00\\ 25.45\\ 139.97\\ 38.17\\ 38.17\\ 76.35\\ 127.24\\ 50.90\\ 0.00\\ 114.52\\ 229.04\\ 152.635\\ 25.45\\ 127.24\\ 152.635\\ 127.24\\ 139.97\\ 1139.97\\ 139.97\\ 139.97\\ 139.97\\ 139.97\\ 139.97\\ 139.97\\ 139.97\\ 50.90\\ 63.62\end{array}$	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ & 0 & 0 & 0 & 9 & 5 \\ & 0 & 5 & 2 & 5 \\ & 0 & 1 & 4 & 3 \\ & 0 & 1 & 4 & 3 \\ & 0 & 1 & 4 & 3 \\ & 0 & 1 & 4 & 3 \\ & 0 & 1 & 4 & 3 \\ & 0 & 1 & 4 & 3 \\ & 0 & 1 & 4 & 3 \\ & 0 & 1 & 4 & 3 \\ & 0 & 0 & 0 & 0 & 0 \\ & 0 & 0 & 0 & 0$
MAXIMUM	VALUES	1.730	229.04	.0859

RUN NUMBER	36
UNIT NUMBER	2
WIND DIRECTION	SE
WIND SPEED (FT/S)	44
PERCENT LOAD	.50
SOZ RELEASE RATE (GM/S)	105
STACK LUCATION (FT) X=	: 35
	· 500
STACK HEIGHT (FT)	.500
STACK VELOCITY (ET/C)	20 50
STACK VELOCITY (F1/S)	<i>∠</i> ∧ ⊕ ⊅ ∧

SAMPLE X	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SO2 CONCENTRATION MICHO GM PER CU.M	SO2 CONCENTRATION
500 500 500	420 210 -210	$ \begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} $	0 • 0 0 0 • 0 0 0 • 0 0 0 • 0 0	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
915 915 915 915	420 210 -210 -420	•101 •302 •101 0•000	13.33 39.98 13.33 0.00	• 0050 • 0150 • 0050 0 • 0000
1750 1750 1750 1750	540 270 -270	1.107 1.208 .201 0.000	146.59 159.91 26.65 0.00	•0550 •0600 •0100 0•0000
2875 2875 2875 2875	-270 -270	1.612 .906 .201 .101	239.87 119.93 26.65 13.33	00000 0900 0450 0100 0050
2875 4500 4500 4500 4500	-540 540 270 -270	0.000 .805 .302 .302 .201	0.00 105.61 39.98 39.98 26.65	0.0000 .0400 .0150 .0150 .0100
4500 5355 Maximum	-540 0	0.000 .101 1.812	0.00 13.33 239.87	0.0000 .0050

RUN NUM UNIT NU WIND DI WIND SP PERCENT SO2 RELI STACK L STACK H STRATIF STACK V	UN NUMBER 37 NIT NUMBER 2 IND DIRECTION 5 IND SPEED (FT/S) 44 VERCENT LOAD 50 02 RELEASE RATE (GM/S) 165 TACK LOCATION (FT) X= 210 Y= 165 TACK HEIGHT (FT) 300 TRATIFICATION NEUTRAL TACK VELOCITY (FT/S) 20.50					
SAMPLE	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SUZ CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION		
500005559155000055555555000005555555555	$\begin{array}{c} 420\\ 210\\ -210\\ -420\\ 210\\ -420\\ -420\\ -420\\ -420\\ -210\\ -420\\ -210\\ -210\\ -210\\ -210\\ -210\\ -270\\ -270\\ -270\\ -2740\\ -2540\\ -270\\ -2740\\ -2540\\ -2740\\ -2560\\ -2560\\ -2560\\ -2560\\ -2560\\ -2560\\ -2560\\ -2560\\ -250\\ $	$ \begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 $	$\begin{array}{c} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 \\ 3 & 3 \\ 0 & 0 \\ 0 &$	$\begin{array}{c} 0.0000\\ 0.000\\ 0.0$		
MAXTMUM	VALUES	1.007	133.26	.0500		

RUN NUM UNIT NU WIND DI WIND SP PERCENT SO2 REL STACK L STACK H STRATIF STACK V	BER MAEP RECTION EED (FT/S) LOAD EASE RATE (OCATION (FT) ICATION ELOCITY (FT	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
SAMPLE	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SOP CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
50000555599999155000055557777770000055 111778888855000005 111778888855000005	$\begin{array}{c} 420\\ 210\\ -210\\ -210\\ -210\\ -2420\\ -2420\\ -2420\\ -2540\\ -2540\\ -2540\\ -2540\\ -2540\\ -2540\\ -2540\\ 0\\ 0\\ -2540\\ 0\\ 0\\ -2540\\ 0\\ 0\\ -2540\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{c} 0 & \cdot & 0 \\ 26 & \cdot & 65 \\ 159 & \cdot & 91 \\ 26 & \cdot & 65 \\ 0 & \cdot & 0 \\ 333 & \cdot & 15 \\ 493 & \cdot & 06 \\ 139 & \cdot & 98 \\ 339 & \cdot & 78 \\ 106 & \cdot & 61 \\ 399 & \cdot & 78 \\ 553 & \cdot & 69 \\ 399 & \cdot & 78 \\ 553 & \cdot & 69 \\ 399 & \cdot & 78 \\ 553 & \cdot & 69 \\ 399 & \cdot & 78 \\ 553 & \cdot & 69 \\ 399 & \cdot & 78 \\ 553 & \cdot & 69 \\ 553 & \cdot & $	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0100\\ 0.0100\\ 0.0100\\ 0.0100\\ 0.0150\\ 0.1249\\ 0.1849\\ 0.0400\\ 0.0150\\ 0.1499\\ 0.2099\\ 0.949\\ 0.2099\\ 0.949\\ 0.200\\ 0.100\\ 0.1449\\ 0.200\\ 0.0100\\ 0.0050\\ 0.0000\\ 0.050\\ \end{array}$
MAXIMUM	VALUES	4.228	559.69	.2099

SAMPLE	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SO2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
5000 5000 915 915 915 1750 1750	420 210 -210 420 210 -210 -420 540 270	$ \begin{array}{r} 103 \\ 308 \\ 1 \cdot 439 \\ \cdot 411 \\ 2 \cdot 365 \\ 2 \cdot 262 \\ 1 \cdot 954 \\ 3 \cdot 599 \\ 0 \cdot 000 \\ \cdot 514 \\ 1 \cdot 439 \\ 3 \cdot 187 \\ \end{array} $	13.61 40.83 190.54 54.44 54.44 313.04 294.43 258.60 476.36 0.00 64.05 190.54 421.92	•0051 •0153 •0715 •0204 •1174 •1123 •0970 •1786 0•0000 •0255 •0715 •1582
17575 28775 28775 28755 28575 285755 28755 28575 2555 255	-540 270 -270 -540 -540 -700 -270	1 • 748 • 206 • 925 1 • 645 1 • 542 2 • 570 1 • 028 1 • 239 1 • 748 1 • 451 • 617	231 • 32 27 • 22 122 • 49 217 • 77 204 • 15 340 • 26 136 • 10 163 • 32 190 • 54 231 • 38 244 • 99 31 • 66	• 13668 • 0102 • 0459 • 0417 • 0766 • 1276 • 0510 • 0612 • 0715 • 0868 • 0919 • 0306
MAXIMU	M VALUES	3.599	476.36	.1786

39 2 RUN NUMBER UNIT NUMBER WIND DIRECTION W WIND SPEED (FT/S) 44 PERCENT LOAD SOZ RELEASE RATE (GM/S) STACK LOCATION (FT) 50 165 165 X = Y= -210 STACK HEIGHT (FT) STRATIFICATION STACK VELOCITY (FT/S) 300 NEUTRAL 20.50

STACK H STRATIF STACK V	TACK HEIGHT (FT) 300 TRATIFICATION NEUTHAL STACK VFLOCITY (FT/S) 20.50					
SAMPLE	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SOZ CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION		
5000 5000 99155 9915500 11755555555 888755000 1177755555555 888755000 11777555555555 8855000 117775555555555 8855000 100055555555555555555	420 210 -210 -210 -420 -420 -420 -540 -540 -5400 -55400 -55600 -55600 -55600 -55600 -55600 -55600 -55600 -55000 -55000 -55000 -55000 -55000 -55000 -55000 -55000 -55000 -55000 -55000 -55000 -55000 -55000 -55000 -55000 -55000 -55000 -550000 -550000 -5500000000000000000000000000000000000	$\begin{array}{c} 0 & 0 & 0 & 0 \\ & & 3 & 0 & 0 \\ & & 6 & 17 \\ & & 3 & 0 & 0 \\ & & 1 & 0 & 3 \\ & & 1 & 0 & 3 \\ & & 4 & 25 \\ & & 4 & 11 \\ & & 8 & 23 \\ & & 4 & 11 \\ & & 8 & 23 \\ & & 4 & 11 \\ & & 8 & 23 \\ & & 4 & 11 \\ & & 8 & 23 \\ & & 4 & 11 \\ & & 8 & 23 \\ & & 4 & 11 \\ & & 8 & 23 \\ & & 5 & 14 \\ & & & 5 & 14 \\ & & & 5 & 14 \\ & & & 5 & 14 \\ & & & 5 & 14 \\ & & & 5 & 14 \\ & & & 5 & 14 \\ & & & 5 & 14 \\ & & & 5 & 14 \\ & & & 5 & 14 \\ & & & 5 & 14 \\ & & & 5 & 14 \\ & & & 5 & 14 \\ & & & & 5 & 14 \\ & & & & 5 & 14 \\ & & & & & 14 \\ & & & & & 14 \\ & & & & & & 14 \\ & & & & & & & 14 \\ & & & & & & & 14 \\ & & & & & & & & 14 \\ & & & & & & & & & & 14 \\ & & & & & & & & & & & & & & & & & & $	$\begin{array}{c} 0 & \cdot & 0 \\ 40 & \cdot & \cdot & 3 \\ 81 & \cdot & 66 \\ 40 & \cdot & 83 \\ 13 & \cdot & 61 \\ 122 & \cdot & 49 \\ 231 & \cdot & 38 \\ 244 & \cdot & 99 \\ 108 & \cdot & 88 \\ 144 & \cdot & 88 \\ 144 & \cdot & 88 \\ 144 & \cdot & 71 \\ 176 & \cdot & 93 \\ 128 & \cdot & 89 \\ 144 & \cdot & 93 \\ 128 & \cdot & 89 \\ 285 & \cdot & 80 \\ 285 & \cdot & 80 \\ 136 & \cdot & 10 \\ 128 & \cdot & 49 \\ 136 & \cdot & 10 \\ 128 & \cdot & 49 \\ 136 & \cdot & 10 \\ 128 & \cdot & 49 \\ 136 & \cdot & 52 \\ 295 & \cdot & 27 \end{array}$	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ & 0 & 1 & 5 & 3 \\ & 0 & 3 & 0 & 6 \\ & 0 & 1 & 5 & 3 \\ & 0 & 0 & 5 & 1 \\ & 0 & 4 & 5 & 9 \\ & 0 & 8 & 6 & 8 \\ & 0 & 9 & 1 & 9 \\ & 0 & 4 & 0 & 8 \\ & 0 & 2 & 0 & 4 \\ & 0 & 4 & 0 & 8 \\ & 0 & 2 & 0 & 4 \\ & 0 & 4 & 0 & 8 \\ & 0 & 2 & 0 & 4 \\ & 0 & 0 & 9 & 1 & 9 \\ & 0 & 6 & 6 & 4 \\ & 0 & 0 & 5 & 5 \\ & 0 & 4 & 5 & 9 \\ & 0 & 6 & 6 & 4 \\ & 0 & 7 & 1 & 5 \\ & 0 & 6 & 6 & 4 \\ & 0 & 7 & 1 & 5 \\ & 0 & 3 & 5 & 7 \end{array}$		
MAXTMUM	VALUES	2.159	285.42	.1072		

RUN NUMBER40UNIT NUMBER2WIND DIRECTIONNWWIND SPEED (FT/S)44PERCENT LOAD50SO2 RELEASE RATE (GM/S)165STACK LOCATION (FT)X= -35Y= -260Y= -260STACK HEIGHT (FT)300STRATIFICATIONNEUTHAL

STACK H Stratif Stack V	STACK HEIGHT (FT) 300 STRATIFICATION NEUTRAL STACK VELOCITY (FT/S) 32.70					
SAMPLE	POSITION	CONCENTRATION COEFFICIENT K*10**6 (FT)**-2	SU2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION		
5000055 999977775500000000 111112222224444455	$\begin{array}{r} 420\\ 210\\ -210\\ 420\\ 210\\ -420\\ -420\\ -420\\ -270\\ -540\\ -270\\ -540\\ 270\\ -2740\\ -2740\\ -270\\ -2540\\ 0\end{array}$	$\begin{array}{c} 0 \cdot 0 0 0 \\ 0 \cdot 0 \\ 0 \\$	$\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$		
MAXIMUM	VALUES	.032	13.47	•0051		

265 165

Y = -210

X =

RUN NUMBER UNIT NUMBER WIND DIRECTION

WIND SPEED (FT/S) PERCENT LOAD SO2 RELEASE RATE (GM/S) STACK LOCATION (FT) X:

RUN NUM UNIT NU WIND DI PERCENT SO2 PEL STACK L STACK H STRATIF STACK V	RER MBFR RECTION EED (FT/S) LOAD EASE RATE (OCATION (F1 FIGHT (FT) ICATION ELOCITY (F1	42 2 (GM/S) 265 1) X= -35 Y= -260 300 NEUTRAL 1/S) 32.70		
X	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SO2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
50000555599999155000005555999997755000055555000005555500000555550000005555	$\begin{array}{c} 420\\ 210\\ -210\\ 420\\ -210\\ -2420\\ -2420\\ -2420\\ -2540\\ -2560\\ -250\\ -2$	$ \begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 $	$\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
MAXIMUM	VALUES	• 06 3	26.94	.0101

PUN NUMBER43UNIT NUMBER2WIND DIRECTIONWWIND SPEED (FT/S)44PERCENT LOAD80SO2 RELEASE RATE (GM/S)265STACK LOCATION (FT)X=Y=-210STACK HEIGHT (FT)300STRATIFICATIONNEUTRALSTACK VELOCITY (FT/S)32.70				
SAMPLE	POSITION Y	CONCENTRATION COEFFICIENT K*10**6 (FT)**-2	SOP CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
555599999997775555555555000005 11177778888885555555 111172222224444445	420 -2557 -24400 -2557 -	.068 .068 .068 .068 .000 .000 .000 .068 .000 .000	$ \begin{array}{r} 14.46\\ 14.46\\ 14.46\\ 14.46\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 14.46\\ 72.29\\ 72.29\\ 14.46\\ 173.50\\ 86.75\\ 72.29\\ 14.46\\ 173.50\\ 86.75\\ 72.29\\ 14.46\\ 57.83 \end{array} $	$\begin{array}{c} 0054\\ 0054\\ 0054\\ 00054\\ 00000\\ 00000\\ 00054\\ 00000\\ 00000\\ 00000\\ 00000\\ 00000\\ 00000\\ 00000\\ 00000\\ 00000\\ 00000\\ 00054\\ 00271\\ 0054\\ 0054\\ 0054\\ 0054\\ 0054\\ 0054\\ 0054\\ 0054\\ 0054\\ 0054\\ 0054\\ 0054\\ 0054\\ 0054\\ 0054\\ 0054\\ 0054\\ 00217\\ \end{array}$
MAXIMUM	VALUES	.816	173.50	.0651

SAMPLE I	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SO2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
500	420	0.000	0.00	0.0000
500	510	0.000	0.00	0.0000
500	9	0.000	0.00	0.0000
500	-210	0.000	0.00	0.0000
315	210		0.00	0.0000
015	210	068		0.054
015	-210	0.000		0.0000
915	-420	0.000	0.00	0.0000
1750	540	0.000	0.00	Ŭ . 0000
1750	270	•136	28.92	.0108
1750	- 70	• 680	144.58	•0542
1/50	-210	• 136	CH • 92	.0108
1 (51)	-540	0.000	20 02	0108
2875	270	- 340	72.20	.0271
2875	0	1.496	318.08	1193
2875	-270	-40A	86.75	0325
2875	-540	.068	14.46	.0054
4500	540	•748	159.04	• 0596
4500	510	1.156	245.02	• 0922
4500	270	• MA4 410		• 0 / 0 7
4500	-640	-204	130.12	-0163
5355	0	• 452	202.42	0759
MAXIMUM	VALUES	1.496	318.08	. 1193

RUN NUMBER 44 2 UNIT NUMBER WIND DIRECTION NIW WIND SPEED (FT/S) 44 PERCENT LOAD SO2 RELEASE RATE (GM/S) STACK LOCATION (FT) X: 80 265 X = -35 Y= -260 STACK HEIGHT (FT) STRATIFICATION STACK VELOCITY (FT/S) 300 NEUTRAL 32.70

Simth .		(73) <u>38</u> 410		
SAMPLE X	POSITION	CONCENTRATION COEFFICIENT K*10**6 (FT)**-2	SOP CONCENTRATION MICHO GM PER CU.M	SO2 CONCENTRATION
55559999997555555555555555 00005555555555	$\begin{array}{r} 420\\ 210\\ -200\\ 210\\ -210\\ -210\\ -210\\ -210\\ -210\\ -210\\ -210\\ -210\\ -210\\ -210\\ -210\\ -210\\ -210\\ -210\\ -210\\ -210\\ -270\\ -2$	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 14.12\\ 0.00$	$\begin{array}{c} 0.0000\\ 0.000\\$
MAXIMUM	VALUES	•535	98.82	.0371

RUN NUMBER45UNIT NUMBER2WIND DIRECTIONWWIND SPEED (FT/S)22PERCENT LOAD80SO2 RELEASE RATE (GM/S)265STACK LOCATION (FT)X=STACK HEIGHT (FT)350STACK HEIGHT (FT)350STACK HEIGHT (FT)350STACK VELOCITY (FT/S)32.70

RUN NUMBER 46 UNIT NUMBER 2 WIND DIRECTION NW WIND SPEED (FT/S) 22 PERCENT LOAD 80 SO2 RELEASE RATE (GM/S) 265 STACK LOCATION (FT) X= -35 STACK LOCATION (FT) X= -260 STACK HEIGHT (FT) 350 STRATIFICATION NEUTRAL STACK VELOCITY (FT/S) 32.70					
SAMPLE P	OSITION	CONCENTRATION COEFFICIENT K*10**6 (FT)**-2	SU2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION	
50000555555555555555555555555555555555	$\begin{array}{c} 420\\ 210\\ -210\\ -210\\ -210\\ -420\\ -420\\ -210\\ -2420\\ -2540\\ -2540\\ -2540\\ -2540\\ -270\\ -540\\ -270\\ -540\\ -270\\ -540\\ 0\end{array}$	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{c} 0 \cdot 0 \\ 0 \cdot 0 \\$	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0054\\ 0.0000\\ 0.0054\\ 0.0000\\ 0.0054\\ 0.0000\\ 0.0054\\$	
MAXIMUM	VALUES	• 0 3 4	14.41	.0054	

RUN NU UNIT N WIND D WIND S PEPCEN STACK STACK STACK STACK	MARER JUMBER JIRECTION PEED (FT/S) IT LOAD LEASE PATE LOCATION (FT HEIGHT (FT) FICATION VELOCITY (FT	$ \begin{array}{c} 47 \\ 2 \\ 44 \\ 80 \\ (GM/S) & 265 \\ 1) & X = 165 \\ Y = -210 \\ 350 \\ NEUTRAL \\ 1/S) & 32.70 \end{array} $		
SAMPLE	POSITION	CONCENTRATION COEFFICIENT K*10**6 (FT)**-2	SU2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
555599999155500055555550000005 111777888888555000005 111777888888555000005	420 -210 -2100 -2100 -2100 -42100 -42100 -42100 -2100	$ \begin{array}{c} 101 \\ 101 \\ 101 \\ 0 \\ 0000 \\ 101 \\ 101 \\ 101 \\ 101 \\ 101 \\ 152 \\ 202 \\ 1522 \\ $	21.48 21.48 21.48 21.48 21.48 21.48 21.48 21.48 21.48 221.48 221.48 322.23 422.97 322.23 422.97 322.28 10.74 322.28 10.74 328.95 8209 1225.58 2098 225.58 2098 225.58 2093.32 225.58 2093.32 2333.00 139.65	$\begin{array}{c} 0 & 0 & 8 \\ 0 & 0 & 0 & 8 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 8 \\ 0 & 0 & 0 & 8 & 1 \\ 0 & 0 & 0 & 8 & 1 \\ 0 & 0 & 0 & 8 & 1 \\ 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
MAXIMU	M VALUES	1.566	333.00	.1249

SAMPLE X	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SO2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
55559999995555555555555555555555555555	$\begin{array}{c} 420\\ 210\\ -210\\ -210\\ 210\\ -2420\\ -2420\\ -2440\\ 270\\ -570\\ -540\\ -270\\ -540\\ -540\\ -270\\ -540\\ -270\\ -540\\ 0\end{array}$	•101 •152 •101 0 •000 •101 •101 •101 •253 •152 •202 •354 •202 •101 •101 •354 •202 •101 •101 •354 •208 •101 •356 •606 •408 1 •011 1 •213 •303 •859	21.48 32.23 21.48 0.00 21.48 2	• 0081 • 0121 • 0081 • 0081 • 0081 • 0081 • 0081 • 0081 • 0121 • 0161 • 0161 • 0161 • 0282 • 0161 • 0081 • 0121 • 0161 • 0081 • 0086 • 0081 • 0081 • 0086 •
MAXIMUM	VALUES	1.213	257.81	.0967

RUN NUMPER UNIT NUMBER 48 2 WIND DIRECTION NW WIND SPEED (FT/S) 44 PERCENT LOAD SO2 RELEASE PATE (GM/S) STACK LOCATION (FT) X 80 265 -35 X= Ŷ= -260 STACK HEIGHT (FT) STRATIFICATION STACK VELOCITY (FT/S) 350 NEUTRAL 32.70

STPATIF STACK V	STPATIFICATION: NEUTRAL STACK VFLOCITY (FT/S) 32.70				
SAMPLE X	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SUZ CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION	
555599991555577778888885500005 111112222224444455	$\begin{array}{c} 420\\ 210\\ -210\\ 420\\ 210\\ -21$	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{c} 0 & 0 \\$	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	
MAXTMUN	VALUES	• 966	28.24	.0106	

RUN NUMBER49UNIT NUMBER2WIND DIRECTIONWWIND SPEED (FT/S)22PERCENT LOADR0SO2 RELEASE RATE (GM/S)265STACK LOCATION (FT)X=STACK HEIGHT (FT)Y=STACK HEIGHT (FT)375STPATIFICATIONNEUTRALSTACK HEIGHT (FT)NEUTRAL

STACK VF	LOCITY (F	7/5) 32.70		
SAMPLE F	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SUZ CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
50000555555555555555555555555555555555	$\begin{array}{c} 420\\ 210\\ -210\\ 420\\ 210\\ -420\\ -420\\ -420\\ -420\\ -420\\ -270\\ -540\\ 270\\ -270\\ -540\\ 270\\ -270\\ -540\\ 270\\ -270\\ -540\\ 0\end{array}$	$\begin{array}{c} 033\\ 033\\ 0033\\ 0000\\ 0000\\ 0033\\ 0000\\ 0033\\ 0000\\ 0000\\ 0033\\ 0000\\ 0033\\ 0033\\ 0033\\ 0033\\ 0033\\ 0033\\ 0033\\ 0066\\ 006\\ 0$	14.12 14.12 14.12 14.12 0.00 14.12 14.12 0.00 14.12 0.00 14.12 0.00 14.12 0.00 14.12 0.00 14.12 0.00 14.12 14.12 0.00 14.12 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.	$\begin{array}{c} 0053\\ 0053\\ 0053\\ 0053\\ 00000\\ 00000\\ 0053\\ 00000\\ 00053\\ 00000\\ 00053\\ 00053\\ 00053\\ 0053\\ 0053\\ 0053\\ 00106\\ 00053\\ 00053\\ 0000\\ 00053\\ 0000\\ 000\\ 000\\ 000\\ 0000\\ 0000\\ 0000\\ 0000\\ 000\\ 000\\ 000\\ 0000\\ $
MAXTMUM	VALUES	.066	24.24	.0106

RUN NUMBER50UNIT NUMBER2WIND DIRECTIONWWIND SPEED (FT/S)22PERCENT LOAD80SO2 RELEASE RATE (GM/S)265STACK LOCATION (FT)X=STACK HEIGHT (FT)400STRATIFICATIONNFUTRALSTACK VELOCITYFT (S)

STRATIFICA STACK VELO	STACK HEIGHT (FT) 375 STRATIFICATION NEUTRAL STACK VELOCITY (FT/S) 32.70				
SAMPLE POS	ITION CONCENTR Y K#10	ATION COEFFICIENT ##6 (FT)##-2	SO2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION	
500 500 500 915 915 915 1750 1750 1750 1750 1755 2875 2875 2875 2875 2875 - 2875 - 2875 - 2875 - 2875 - - - - - - - - - - - - -	$\begin{array}{c} 420\\ 210\\ 0\\ 210\\ 420\\ 210\\ 210\\ 210\\ 210\\ 210\\ 210\\ 210\\ 2$	$\begin{array}{c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	
MAXIMUM VA	LUES	1.133	240.86	.0903	

51 2 W RUN NUMBER UNIT NUMBER WIND DIRECTION WIND SPEED (FT/S) PERCENT LOAD SO2 RELEASE RATE (GM/S) STACK LOCATION (FT) X= 44 265 165 X = Ϋ́= -210 STACK HETCHT (ET)

PUN NUMH UNIT NUM WIND DIR WIND SPE PERCENT SO2 RELE STACK LO STACK HE STACK HE STACK VE	ER BER ECTION ED (FT/S) LOAD ASE RATE (G CATION (FT) IGHT (FT) CATION LOCITY (FT/	52 W 44 80 54/5) 265 X = 165 Y = -210 400 NEUTRAL (S) 32.70		
SAMPLE P	OSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SUP CONCENTRATION MICRO RM PER CU.M	SO2 CONCENTRATION
5000 5500 99155 9955 900 9955 95555 95555 95555 95555 95555 95555 95555 95555 95555 95555 95555 955555 955555 955555 9555555	$\begin{array}{r} 420\\ 210\\ -210\\ 420\\ 210\\ -210\\ -210\\ -420\\ 540\\ -70\\ -540\\ -70\\ -540\\ 270\\ -270\\ -540\\ 270\\ -270\\ -540\\ 0\end{array}$	0.000 0.0000 0.0000 0.0000 0.000000	$\begin{array}{c} 0 \cdot 0 \\ 0 \cdot 0 \\$	$\begin{array}{c} 0.0000\\ 0.000\\ 0.000$
MAXIMUM	VALUES	•R66	184.14	.0691

SAMPLE	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SO2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
5000055555999155550000055555000055555000055555500005555	$\begin{array}{r} 420\\ 210\\ -210\\ -210\\ -210\\ -420\\ -210\\ -2420\\ -540\\ -270\\ -540\\ -570\\ -540\\ -540\\ -540\\ -540\\ -540\\ -540\\ -540\\ -540\\ 0\end{array}$	$ \begin{array}{c} 161 \\ 161 \\ 0 \\ 000 \\ 0 \\ 000 \\ 161 \\ 161 \\ 161 \\ 161 \\ 0 \\ 000 \\ 000 \\ 321 \\ 1 \\ 447 \\ 804 \\ 161 \\ 322 \\ 1 \\ 322 \\ 3 \\ 697 \\ 2 \\ 893 \\ 1 \\ 697 \\ 2 \\ 893 \\ 5643 \\ 2 \\ 732 \\ 2 \\ 732 \\ 2 \\ 732 \\ 2 \\ 572 \\ \end{array} $	$14 \cdot 18$ $14 \cdot 18$ $14 \cdot 18$ $14 \cdot 18$ $0 \cdot 00$ $14 \cdot 18$ $28 \cdot 37$ $127 \cdot 662$ $14 \cdot 18$ $226 \cdot 33$ $241 \cdot 14$ $256 \cdot 74$ $226 \cdot 96$.0053 .0053 .0053 .0053 .0053 .0053 .0053 .0053 .0053 .0053 .0053 .0053 .0106 .0479 .0266 .0053 .0106 .0479 .0266 .0106 .0479 .0213 .0957 .0904 .0904 .0904 .0851
MAXTMUN	VALUES	3.697	326.25	.1223

RUN NUMBER53UNIT NUMBER2WIND DIRECTIONWWIND SPEED (FT/S)66PERCENT LOAD50SO2 RELEASE RATE (GM/S)165STACK LOCATION (FT)X=Y=-210STACK HEIGHT (FT)375STRATIFICATIONNFUTRALSTACK VELOCITY (FT/S)20.50

RUN NUM UNIT NU WIND DI WIND SP PERCENT SO2 REL STACK L STACK H STRATIF STACK V	HER HECTION PEED (FT/S) LOAD EASE RATE (OCATION (FT) TCATION VELOCITY (FT)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
SAMPLE	POSITION	CONCENTRATION COEFFICIENT K*10**6 (FT)**-2	SOP CONCENTRATION MICKO GM PER CU.M	SO2 CONCENTRATION
55559999911555557777888885555000055555777788888855555555	$\begin{array}{c} 420\\ 710\\ -210\\ 420\\ 710\\ -210\\ -420\\ 770\\ -2540\\ -2540\\ -570\\ -540\\ -270\\ -540\\ -270\\ -540\\ 0\end{array}$	$\begin{array}{c} 0 \cdot 0 0 0 \\ 0 \cdot 0$	$\begin{array}{c} 0 \cdot 00 \\ 14 \cdot 18 \\ 0 \cdot 00 \\ 0 \cdot 00 \\ 14 \cdot 18 \\ 999 \cdot 728 \cdot 37 \\ 288 \cdot 37 \\ 141 \cdot 84 \\ 340 \cdot 40 \\ 1226 \cdot 655 \\ 3256 \cdot 674 \\ 716 \cdot 77 \\ 71$	$\begin{array}{c} 0.0000\\ 0.000\\ 0.000$
MAXTMUM	VALUES	3.858	340.43	.1277

SAMPLE	POSITION	CONCENTRATION COFFFICIENT K*10*** (FT)**-2	SO2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
500	420	•104	27.63	.0104
500	510	• ¢ 0 0 6 0 1	123.05	.0199
500	-210	0.000		0.0000
915	420	.170	44.40	.0168
915	S 10	• 17 0	44.00	•0168
215	210	•261	<u> ဗမ္မာစိုနှိုန်</u>	• 0259
212	-210	0.000	0.00	0.0000
1750	540	_ 048	12-66	.0047
1750	270	017	4.61	0017
1750	0	0.000	0 • 0 Ū	0.0000
1750	-270	0.000	0.00	0.0000
1750	-540	0.000	$6 \bullet 0 0$	0.0000
2875	54() 270			0.0000
2875	0	139	36.44	0138
2875	-270	.170	44.90	0168
2875	-540	.265	70.23	0263
4500	540	• 239	63.32	•0237
4500	270	• Z L 3		• 0212
4500	-270	- 226	つけ。(1 59、47	.0224
4500	-540	.361	95.56	0358
5355	0	•117	31.08	.0117
MAXIMU	VALUES	• 4 9 1	183.05	.0686

RUN NUMBER	70
UNIT NUMBER	2
WIND DIRECTION	W
WIND SPEED (FT/S)	22
PERCENT LOAD	50
SO2 RELEASE RATE (GM/S)	165
STACK LOCATION (FT) X=	165
Y=	-210
STACK HEIGHT (FT)	300
STRATIFICATION NET	UTHAL
STACK VELOCITY (FT/S)	41.00

RUN NUM UNIT NU WIND DI PERCENT SO2 REL STACK L STACK H STACK H STACK V	IUN NUMBER71INIT NUMBER2IND DIRECTIONWIND SPEED (FT/S)22PERCENT LOAD80SO2 RELEASE RATE (GM/S)265STACK LOCATION (FT)X=Y= -210STACK HEIGHT (FT)300STRATIFICATIONNEUTRALSTACK VELOCITY (FT/S)65.40					
SAMPLE (POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SO2_CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION		
5000055599999991500000555555555555550000055555555	420 210 -2100 -2100 -2100 -2100 -24200 -25400 -25400 -25400 -25400 -25400 -2700 -25400 -2700 -25400 -2700 -25400 -2700 -25400 -2700 -25400 -2700 -25400 -2700 -25400 -2700 -25400 -2700 -25400 -2700 -25400 -2700 -25400 -2700 -25400 -2700	-269 -294 -330 -239 -239 -239 -332 -154 -096 -107 -102 -107 -102 -107 -102 -107 -239 -204 -228 -239 -228 -220 -352 -220	114.44 124.95 140.14 0.00 101.60 123.79 141.30 65.40 40.887 47.888 45.54 40.877 43.21 37.37 49.05 57.22 100.43 101.60 88.75 96.93 93.42 149.43	$\begin{array}{c} .0429\\ .0469\\ .0526\\ 0\\ .0000\\ .0381\\ .0464\\ .0530\\ .0245\\ .0153\\ .0180\\ .0171\\ .0162\\ .0162\\ .0162\\ .0162\\ .0140\\ .0184\\ .0215\\ .0377\\ .0381\\ .0333\\ .0363\\ .0350\\ .0561\\ .0350\end{array}$		
MAXIMUM	VALUES	•352	149.48	.0561		

RUN NUMF UNIT NUM WIND DIF WIND SPE PERCENT SO2 RELE STACK LO STACK HE STACK VE	RECTION RECTION ED (FT/S) LOAD EASE RATE (DCATION (FT EIGHT (FT) ICATION FLOCITY (FT	72 22 100 GM/S) 331) X= 165 Y= -210 300 NFUTRAL /S) 81.90		
SAMPLE F	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SOR CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
500005555599999977555555500000555555000055555550000555555	$\begin{array}{c} 420\\ 210\\ -210\\ 420\\ 210\\ -210\\ -420\\ 540\\ -70\\ -540\\ -540\\ -540\\ -540\\ -270\\ -540\\ -270\\ -540\\ -270\\ -540\\ 0\end{array}$	$\begin{array}{c} 088\\ 077\\ 074\\ 0.000\\ 070\\ 070\\ 083\\ 057\\ 024\\ 057\\ 057\\ 057\\ 055\\ 057\\ 055\\ 055\\ 057\\ 055\\ 055$	$\begin{array}{c} 46.51\\ 40.70\\ 39.54\\ 0.00\\ 37.21\\ 37.21\\ 44.19\\ 30.23\\ 12.79\\ 30.23\\ 30.23\\ 30.23\\ 30.23\\ 30.23\\ 30.23\\ 30.23\\ 30.23\\ 30.23\\ 112.58\\ 15.58\\ 111.558\\ 75.58\\ 111.558\\ 75.58$.0174 .0153 .0148 0.0000 .0140 .0140 .0146 .0113 .0048 .0113 .0113 .0113 .0113 .0113 .0113 .0109 .0153 .0218 .0283 .0218 .0283 .0218 .0283 .0297 .0305 .0174 .0135
MAXIMUM	VALUES	•210	111.63	.0419

RUN NUM UNIT NU WIND DI WIND SPI PERCENT SO2 RELI STACK LO STACK HI STACK HI STACK V	HER RECTION FED (FT/S) LOAD EASE RATES CCATION (FT FIGHT (FT) ICATION ELOCITY (FT	$ \begin{array}{c} 73\\ 2\\ 44\\ 50\\ (GM/S) \\ 165\\ 1) \\ X = 165\\ Y = -210\\ 300\\ NFUTPAL\\ 1/S) \\ 41.00 \end{array} $		
X	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SO? CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
555599999915550005555777555500005 111112222224444455	$\begin{array}{c} 420\\ 210\\ -220\\ -220\\ -220\\ -420\\ -420\\ -57\\ 00\\ -57\\ 00\\ -57\\ 00\\ -57\\ 00\\ -57\\ 740\\ 0\\ -5\\ 770\\ 0\\ -5\\ 770\\ 0\\ -5\\ 770\\ 0\\ -5\\ 770\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	•415 •456 •464 0 •000 •340 •340 •506 •166 •114 •133 •075 •056 •133 •075 •050 •091 •390 •415 1•525 •854 1•227 1•376 1•600 •473 •282	54.87 60.36 61.46 0.00 45.00 45.00 45.00 66.95 21.95 15.36 17.56 9.88 7.68 17.56 9.88 12.07 51.58 54.87 201.93 113.04 162.43 152.18 211.81 62.56 37.31	.0206 .0226 .0230 0.0000 .0169 .0169 .0251 .0282 .0058 .0066 .0037 .0029 .0066 .0037 .0025 .0045 .0193 .0206 .0757 .0424 .0683 .0794 .0235 .0140
MAXIMUM	VALUES	1.600	S11*HJ	.0794

SAMPLE	POSITION	CONCENTRATION COEFFICIENT K#10**6 (FT)**-2	SU2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
500	420	• 4 2 9	91.28	.0342
500	S 10	• 4 0 8	86.83	.0326
500	0	.398	84.60	.0317
500	-210	0.000	0.00	0.0000
215	420	.398	84.60	•0317
915	210	• 3 9 3	83.49	•0313
215	-210	• 4 1 4 • 7 7 5	₿ /• 94	• 0 3 3 9
615	-420	• C C C . 1 9 Z		0154
1750	540	236	50 10	0194
1750	270	•262	55-66	.0209
1750	Ŏ	283	60.11	0225
1750	-270	.351	74.59	.0280
1750	-540	•340	72.36	.0271
2875	540	• 283	60.11	.0225
2875	510	•461	.97.96	.0367
2075	- 270	• 4 8 7 • C D D	103-53	• 0 3 8 8
2076		• 7 1 B 6 A 2		• 0405
4560	540	- 740	72.36	• 0401
4500	270	-461	97.96	0367
4500	, Ö	461	97 96	0367
4500	-270	-51A	110.21	0413
4500	-540	.550	116.89	0438
5355	0	• 356	75.70	0284
MAXTMUM	VALUES	• 5 50	116.89	.0438

RUN NUMPER 74 2 W UNIT NUMBER WIND DIRECTION WIND SPEED (FT/S) PERCENT LOAD 44 . 90 SO2 RELEASE RATE (GM/S) STACK LOCATION (FT) X 265 X = 165 Y = -210STACK HEIGHT (FT) STRATIFICATION STACK VELOCITY (FT/S) 300 NEUTHAL 65.40

PUN NUM UNIT NU WIND DI WIND SP PERCENT SO2 REL STACK L STACK H STACK H STACK V	RER RECTION FED (FT/S) LOAD EASE RATE OCATION (FT) EIGHT (FT) ELOCITY (FT)	$ \begin{array}{c} 75\\ 2\\ W\\ 44\\ 100\\ (GM/S) 331\\ T) X = 165\\ Y = -210\\ 300\\ NEUTRAL\\ 1/S) 81.80 \end{array} $		
SAMPI F X	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SO2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
5555999991555000555555555000005 11777788888855500005 11777788888855500005	$\begin{array}{c} 420\\ 210\\ -210\\ 420\\ 210\\ -240\\ -210\\ -420\\ -270\\ -270\\ -540\\ 270\\ -540\\ 270\\ -540\\ 270\\ -540\\ 0\\ -540\\ 0\\ -540\\ 0\\ 0\\ \end{array}$.480 .455 .459 0.000 .430 .413 .447 .409 .250 .363 .367 .376 .430 .401 .338 .538 .611 .413 .430 .4430 .472 .509 .434	127.48 120.43 121.93 0.00 114.17 109.74 118.61 106.53 66.51 97.55 99.4.17 104.79 114.17 106.42 89.79 104.20 129.69 143.00 162.74 114.17 104.20 129.74 104.20 129.74 114.77 104.79 104.20 129.74 114.77 104.74 114.77 105.55 105.74 114.77 125.74 114.77 125.74 114.77 125.74	.0478 .0453 .0457 0.0000 .0428 .0412 .0445 .0407 .0249 .0366 .0374 .0428 .0399 .0337 .0391 .0428 .0536 .0611 .0412 .0428 .0470 .0499 .0507 .0432
MAXIMUM	VALUES	• € 14	162.45	.0611

JIAUN VC		1/3/ 4100		
SAMPLE P	POSITION	CONCENTRATION COEFFICIENT K*10**6 (FT)**-2	SU2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
5000055599915550000005 1177555555550000005 11775555555555	420 210 -210 210 -210 -420 -420 -700 -5400 -27	$1 \cdot 099$ $1 \cdot 288$ $1 \cdot 326$ $0 \cdot 000$ $1 \cdot 124$ $1 \cdot 187$ $4 \cdot 168$ $\cdot 972$ $\cdot 530$ $\cdot 897$ $\cdot 935$ $1 \cdot 061$ $1 \cdot 061$ $1 \cdot 061$ $1 \cdot 036$ $\cdot 935$ $1 \cdot 339$ $2 \cdot 033$ $2 \cdot 033$ $2 \cdot 035$ $1 \cdot 253$ $\cdot 846$ $1 \cdot 086$ $2 \cdot 501$ $3 \cdot 119$ $1 \cdot 225$ $1 \cdot 137$	96.46 113.68 117.02 99.19 104.76 367.79 104.76 367.82 47.46 93.63 91.47 47.63 93.63 91.44 21.6.25 74.65 2205.65 2275.11 100.31	.0364 .0439 0.0000 .0372 .0393 .1379 .0322 .0176 .0297 .0309 .0364 .0351 .0343 .0309 .0443 .0673 .0811 .0418 .0280 .0359 .0828 .1032 .0405 .0376
MAXIMUM	VALUES	4.168	367.74	.1379

RUN NUMBER76UNIT NUMBER2WIND DIRECTIONWWIND SPEED (FT/S)66PERCENT LOAD50SO2 RELEASE RATE (GM/S)165STACK LOCATION (FT)X=Y=-210STACK HEIGHT (FT)300STRATIFICATIONNFUTPALSTACK VELOCITY(FT/S)41-00

STRATIF STRACK V	STACK HEIGHT (FT) SHO STRATIFICATION NEUTRAL STACK VELOCITY (FT/S) 65.40					
SAMPLE	POSITION Y	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SO2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION		
555599999915550000555550000055555999999155555555	$\begin{array}{c} 420\\ 210\\ -220\\ 210\\ -220\\ -220\\ -2420\\ -2420\\ -2420\\ -2540\\ -2540\\ -5540\\ -5540\\ -5540\\ -5540\\ 0\\ -5540\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	- 351 - 335 - 367 - 000 - 295 - 314 1 - 316 - 271 - 104 - 263 - 231 - 263 - 231 - 263 - 231 - 263 - 231 - 263 - 231 - 255 - 343 - 546 - 646 - 670 - 407 - 510 - 638 - 383 - 295	49.74 47.48 52.00 0.00 41.43 45.22 186.53 38.44 14.70 37.78 33.44 32.78 33.42 41.83 32.78 33.44 32.78 35.61 78 36.61 74.65 794.96 57.66 57.65 57.66 57.65 41.83	$\begin{array}{c} 0187\\ 0178\\ 0195\\ 0.0000\\ 0157\\ 0170\\ 0700\\ 0144\\ 0055\\ 0144\\ 00123\\ 0127\\ 0157\\ 0123\\ 0127\\ 0157\\ 0123\\ 0136\\ 0216\\ 0243\\ 0256\\ 0216\\ 0271\\ 0339\\ 0534\\ 0203\\ 0157\end{array}$		
MAXTMUM	VALUES	1.316	186.53	.0700		

RUN NUMPER77UNIT NUMBEP2WIND DIRECTIONWWIND SPEED (FT/S)66PERCENT LOAD80SO2 RELEASE RATE (GM/S)265STACK LOCATION (FT)X=STACK HEIGHT (FT)300STACK HEIGHT (FT)300STRATIFICATIONNEUTRAL

SAMPLE	POSITION	CONCENTRATION COFFFICIENT K#10##6 (FT)##-2	SOP CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
5555999999777778888885500005 1111122222444445553	$\begin{array}{c} 4210\\ -2410\\ -2420\\ -24210\\ -24200\\ -24200\\ -24400\\ -52700\\ -55700\\ -57000\\ -55700\\ -57000\\ -57$	$ \begin{array}{c} 191 \\ $	$\begin{array}{c} 33.77\\ 39.40\\ 41.65\\ 0.00\\ 33.77\\ 33.77\\ 33.77\\ 154.27\\ 24.75\\ 24.77\\ 224.51\\ 224.51\\ 224.51\\ 224.51\\ 224.51\\ 224.51\\ 224.51\\ 244.51\\ 244.51\\ 244.51\\ 244.51\\ 244.55\\ 104.44\\ 53.77\\ 1044.44\\ 33.77\end{array}$	0127 0148 0156 00000 0127 0127 0578 0110 0008 0093 0093 0084 0084 0084 0089 0076 0076 0077 0232 0266 0283 0224 0118 0122 0291 0393 0182 0127
MAXIMUM	VALUES	•871	154.22	.0578

7B 2 W RUN NUMBER UNIT NUMBER WIND DIRECTION WIND SPEED (FT/S) 66 PERCENT LOAD SO2 RELEASE PATE (GM/S) STACK LOCATION (FT) 100 331 X = 165 Y = -210 STACK HEIGHT (FT) STRATIFICATION 300 NEUTHAL STACK VELOCITY (FT/S) 81.80

SAMPLE	POSITION	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SO2 CONCENTRATION MICHO GM PER CU.M	SO2 CONCENTRATION
55599999775555555555555555555555555555	$\begin{array}{c} 420\\ 210\\ -210\\ -210\\ -210\\ -210\\ -2420\\ -2420\\ -2440\\ -2760\\ -27$	$\begin{array}{c} 204 \\ 179 \\ 587 \\ 0.000 \\ 111 \\ 119 \\ 3.439 \\ 009 \\ 077 \\ 392 \\ 1.159 \\ 009 \\ 077 \\ 162 \\ 1.59 \\ 1.477 \\ 162 \\ 1.70 \\ 1.269 \\ 2.639 \\ 1.430 \\ 7.93 \\ .741 \\ 1.694 \\ 2.617 \\ 1.771 \\ .366 \\ .167 \end{array}$	$\begin{array}{c} 27 \cdot 04 \\ 23 \cdot 66 \\ 77 \cdot 75 \\ 0 \cdot 00 \\ 14 \cdot 65 \\ 15 \cdot 78 \\ 4 \cdot 55 \cdot 78 \\ 1 \cdot 13 \\ 10 \cdot 14 \\ 53 \cdot 25 \\ 63 \cdot 10 \\ 21 \cdot 41 \\ 22 \cdot 54 \\ 167 \cdot 90 \\ 349 \cdot 32 \\ 167 \cdot 90 \\ 224 \cdot 24 \\ 206 \\ 234 \cdot 39 \\ 48 \cdot 45 \\ 21 \cdot 41 \end{array}$.0101 .0089 .0292 0.0000 .0055 .0059 .1707 .0059 .0004 .0038 .0194 .0575 .0237 .0080 .0085 .0630 .1310 .0389 .0368 .0841 .1001 .0879 .0182 .0080
MAXTMUN	VALUES	3.434	455 . 25	.1707

RUN NUMBER 74 UNIT NUMBER 2 WIND DIRECTION SW WIND SPEED (FT/S) 44 PERCENT LOAD SO2 RELEASE RATE (GM/S) STACK LOCATION (FT) 50 165 260 X = Y = -15 STACK HEIGHT (FT) STRATIFICATION STACK VELOCITY (FT/S) 300 NEUTRAL 41.00

RUN NUN UNIT NU WIND D PERCEN SO2 REL STACK I STACK I STACK I STACK	MAER UMBER IRECTION PEED (FT/S) T LOAD LEASE RATE (LOCATION (FT) FICATION VELOCITY (FT)	80 5W 44 90 (GM/S) 265 F) X= 260 Y= -35 300 NFUTHAL I/S) 65.40		
SAMPLE	POSITION	CONCENTRATION COEFFICIENT K*10**6 (FT)**-2	SUR CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
55000555599999155000055555550000055555555	$\begin{array}{r} 420\\ 210\\ -210\\ 420\\ 210\\ -210\\ -210\\ -240\\ -270\\ -270\\ -540\\ 270\\ -270\\ -540\\ 270\\ -540\\ 0\\ -270\\ -540\\ 0\\ -270\\ -540\\ 0\\ 0\\ \end{array}$	$\begin{array}{c} .059\\ .119\\ .220\\ 0.000\\ .081\\ .115\\ .081\\ .081\\ .081\\ .081\\ .081\\ .081\\ .081\\ .081\\ .097\\ .414\\ .8662\\ .3927\\ .247\\ .194\\ .452\\ .634\\ .473\\ .134\\ .108\end{array}$	12.57 25.46 0.00 17.15 25.15 209.17 17.15 3.43 209.57 145.15 209.57 144.03 445.55 20.57 88.01 184.555 96.01 184.555 96.01 134.555 20.58 22.58 23.58 24.5555 24.5555 24.5555 24.5555 24.5555 24.5555 24.5555 24.5555 24.5555 24.5555 24.5555 24.5555 24.5555 24.5555 24.5555 24.5555 24.5555 24.55555 24.55555 24.555555 24.555555555555555555555555555555555555	$\begin{array}{c} 0047\\ 0094\\ 0176\\ 0.0000\\ 0064\\ 0094\\ 0784\\ 0064\\ 0013\\ 0081\\ 00167\\ 0094\\ 0034\\ 0077\\ 0034\\ 0077\\ 00330\\ 0690\\ 0313\\ 0197\\ 0154\\ 0360\\ 0506\\ 0377\\ 0107\\ 0086\end{array}$
MAXIMU	M VALUES	•9 <u>8</u> 4	204.17	.0784

SAMPLE	POSITION Y	CONCENTRATION COEFFICIENT K#10##6 (FT)##-2	SO2 CONCENTRATION MICRO GM PER CU.M	SO2 CONCENTRATION
55000555555555555555555555555555555555	$\begin{array}{c} 420\\ 210\\ -$	• 056 • 047 • 073 0 • 000 • 026 • 039 • 836 • 034 0 • 000 • 009 • 047 • 184 • 064 • 026 • 030 • 235 • 591 • 300 • 287 • 287 • 287 • 287 • 287 • 343 • 064 • 039	$ \begin{array}{c} 14.40\\ 12.52\\ 19.35\\ 0.00\\ 6.83\\ 10.24\\ 221.94\\ 9.11\\ 0.00\\ 2.28\\ 12.52\\ 44.94\\ 17.07\\ 62.60\\ 157.07\\ 76.26\\ 62.60\\ 113.82\\ 142.27\\ 91.05\\ 17.07\\ 10.24 \end{array} $	$\begin{array}{c} . 0055 \\ . 0047 \\ . 0073 \\ 0 0000 \\ . 0026 \\ . 0038 \\ . 0832 \\ . 0034 \\ 0 0000 \\ . 0000 \\ . 0000 \\ . 00047 \\ . 0184 \\ . 0064 \\ . 0026 \\ . 0030 \\ . 0235 \\ . 0589 \\ . 0235 \\ . 0589 \\ . 0235 \\ . 0584 \\ . 0038 \\ . 00427 \\ . 0534 \\ . 0038 \\ \end{array}$
MAXIMU	VALUES	•836	221.94	.0832

RUN NUMBER	Ą	1
UNIT NUMBER		2
WIND DIRECTION	S	W
WIND SPEED (FT/S)	4	4
PERCENT LOAD	10	0
SO2 PELEASE PATE (GM/S) 33	1
STACK LOCATION (FT)	X= 26	0
	Y= -3	5
STACK HEIGHT (FT)	30	0
STRATIFICATION	NEUTRA	Ļ
STACK VELOCITY (ET/S)	81.8	0