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ABSTRACT

Visual assembly inspection can provide a low cost, accurate,
and efficient solution to the automated assembly inspection prob-
lem, which is a crucial component of any automated assembly
manufacturing process. The performance of such an inspection
system is heavily dependent on the placement of the camera and
light source. This article presents new algorithms that use the
CAD model of a finished assembly for placing the camera and
light source to optimize the performance of an automated assem-
bly inspection algorithm. This general-purpose algorithm utilizes
the component material properties and the contact information
from the CAD model of the assembly, along with standard com-
puter graphics hardware and physically accurate lighting models,
to determine the effects of camera and light source placement on
the performance of an inspection algorithm. The effectiveness of
the algorithms is illustrated on a typical mechanical assembly.

I. INTRODUCTION

At a time when quality and cost are becoming even
more important in the manufacturing process, accu-
rate and efficient inspection is critical. However, the
complexity of electrical and mechanical assemblies has
reached a point where human inspection can be fatigu-
ing, unreliable, and expensive. This has prompted many
manufacturers to implement automated visual inspec-
tion systems. Unfortunately, efforts to achieve the ad-
vantages of CAD-driven visual inspection systems for
three-dimensional assemblies have been largely unreal-
ized. One impediment to achieving this goal is the au-
tomatic determination of camera positions and lighting
environments that facilitate the inspection process.

The general area of sensor planning has received
significant attention from the computer vision research
community [1]. Optimal camera and light placement al-
gorithms have been designed by considering the visibil-
ity of specific object features [2], [3],[4],[5]. Illumination
models have primarily focused on Lambertian surfaces
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[6],[7] since the primary motivation has been object de-
tection. While the assembly inspection application has
analogous constraints, the appearance of various object
features is used for inferring improper functionality due
to errors in assembly. Thus one is more concerned with
how features vary in their appearance and additional in-
formation is available to guide the selection of optimal
camera and light placements.

In this work, we employ a multiscale image pro-
cessing inspection algorithm, developed previously [8],
that uses a statistical model of what a properly as-
sembled component should look like. The statistical
model is generated from synthetic images derived from
the CAD model of the assembly and information about
component tolerances [9]. Naturally the sensitivity of
the statistical model, and therefore of the inspection al-
gorithm’s ability to identify assembly errors, is highly
dependent on the camera placement and lighting in the
inspection environment. Thus the focus of the work
described here is to develop an algorithm for determin-
ing camera and light locations that provide maximum
sensitivity for identifying a class of assembly errors.

The remainder of this article is organized as fol-
lows. A short description of the visual inspection al-
gorithm used in this work is introduced in section II.
The issues related to the rendering techniques are ad-
dressed in section III. The camera placement algorithm
is then described in section IV followed by a descrip-
tion of the light placement algorithm in section V. The
generate-and-test approach is then outlined in section
VI. Experimental results are shown in section VII and
finally, conclusions are presented in section VIIL.

II. MurriscaLE OBJECT DETECTION

Automated inspection is approached in this work as
a problem in object detection, where it is assumed that
the inspection algorithm must make decisions based on
a monochrome image of the object. A multiscale de-
tection algorithm based on a stochastic object model,
which is tailored to a specific object by adjusting the
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model structure and changing model parameters, is
used. The model generation and parameter estimation
is driven by a CAD model of the object. The CAD
model of a simple example assembly is illustrated in
Fig. 1.

The inspection algorithm models an object as a
stochastic tree referred to here on as the object tree,
where the nodes of the tree represent various compo-
nents, or subassemblies, of the object. These subassem-
blies contain the key features for discrimination and er-
ror detection. Nodes near the root of the tree typically
model larger structures that aid in locating the object
while nodes further down “zoom in” on the critical ar-
eas where assembly errors are likely to occur. The po-
sition and orientation of each node in the object tree
is modeled as a random state vector with density func-
tion depending only on the state of the parent node and
on a set of node specific parameters created during the
training stage from a set of synthetic images [9]. For
example, the object tree automatically generated from
the CAD model of the assembly in Fig. 1 is illustrated in
Fig. 2. The data associated with each node is modeled
as a set of random variables with density functions pa-
rameterized by a template that indicates the expected
appearance of the subassembly as well as the expected
data variability. The data values will also depend on the
position of the subassembly in an image. A multireso-
lution Haar transform of each image is used as the data
along with the corresponding multiresolution template
at each node of the object tree. The search for the most
likely position of a node starts at a coarse resolution and
progresses to finer resolutions. For a given resolution
and candidate position and orientation the image data
and templates at that and coarser resolutions are used
to compute a log likelihood ratio between the hypothe-
sis that the node is present and the hypothesis that it
is not. The states with the largest log likelihood ratio
are investigated at the next finer resolution. The search
continues in this fashion until the largest log likelihood
ratio exceeds a predefined decision threshold. The de-
tails of this algorithm are provided in [8].

III. SYNTHETIC IMAGE GENERATION

There are two image generation algorithms used
to create synthetic images from the CAD model of the
assembly. The first is the standard fast scan-line ren-
dering technique that uses only a simple local illumina-
tion model and takes advantage of special purpose VLSI
hardware for performing geometrical calculations. This
rendering process is primarily for determining the vis-
ibility constraints used to optimize camera and light
source placement. The second rendering technique uses
more computationally expensive, but also more physi-

Fig. 1.  An exploded view of a typical mechanical assembly
generated from the information in the CAD model. This view
illustrates the order of assembly as well as the single common
insertion axis for all of the pins.

Fig. 2. A syntheticimage of the pattern wheel assembly with an
object tree denoted by the connected boxes and calculated using
the CAD information of the inserted pins. This tree is required by
the inspection algorithm to guide its analysis of the image. The
number of boxes around each object represents the object’s level
in the tree. The boxes are automatically generated by calculating
the visible portions of the components in the tree with the first
level box including the entire assembly.

cally realistic models, to generate the synthetic images
that are required to build the statistical model of the
appearance of a correctly assembled product. It is also
used to determine the variation of that appearance, due
to assembly errors, as a function of the camera and light-
ing environment.

A. Fast Rendering Algorithm

Fast rendering algorithms running on special pur-
pose graphics workstations are used to create draft im-
ages of the assembly. These draft images are used to
accomplish two main tasks. The first is to further refine
the object trees used by the inspection algorithm. The
information calculated for the image created from the
optimal camera location is used to identify the location
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Extart of the asignment pin i image plane

Fig. 3. The outer rectangle represents the bounding box of
the projection of an alignment pin in the assembly onto the im-
age plane. The inner rectangle is the bounding box of the visible
portion of this alignment pin. This bounding box is passed to
the inspection algorithm as an object node along with the mask
that identifies the region which corresponds to the alignment pin.
Also, visible faces of the component are identified along with the
amount visible. This information is obtained using Z-buffer hard-
ware.

and size of the object nodes. To simplify processing, all
object nodes are rectangular, however, a mask is used
to identify the regions within the node that correspond
to related component surfaces. Only this region is used
in building the statistical model of the node. This pre-
vents irrelevant background information from affecting
the sensitivity of the inspection process. The second
purpose of these draft images is to identify the extent
to which surfaces of interest are visible. The surfaces
of interest are determined from the contact information
in the CAD model [9] and are an important factor in
determining an optimal camera location (See sections
IV and V). Both of these two tasks are essentially hid-
den surface problems and can utilize the Z-buffer hard-
ware available in most 3D graphics workstations. This is
done by tagging each surface of interest with a unique
ambient color with all other surfaces of other compo-
nents set to black. The assembly is then rendered using
a standard scan-line algorithm available on any graph-
ics workstation equipped with a Z-buffer, using only the
ambient intensity of the polygons. The resulting image
contains the number of visible pixels for each surface of
interest. This process is illustrated in Fig. 3.

B. Accurate Rendering Algorithm

To build an accurate statistical model of the gray
scale appearance of an assembly, the techniques used to

generate the synthetic images must accurately simulate
the physics of light-object interaction. This precludes
the use of the standard scan-line algorithms available in
graphics workstations that only use approximate empir-
ical models and are limited to so-called “local” reflec-
tions. To deal with the multiple light reflections, i.e.
“global reflections”, that are typical of metallic com-
ponents we use standard ray tracing techniques along
with the physically realistic Cook-Torrance model for
local illumination.

The ray tracing paradigm has a long history but
its application as a comprehensive rendering technique
is generally attributed to Whitted [10]. The intensity
of a ray is recursively defined as

I=5+kegl, + kgl (1)
where

I; intensity due to direct (local) illumination
I. intensity due to reflected light
I, intensity due to transmitted (refracted) light
k.4 global bidirectional specular reflectance
k;y global bidirectional transmission coefficient.

and I and I; are calculated recursively by firing rays
in the reflected and refracted directions.

In addition to the Lambertian model used in [10] to
calculate I; we include the physically accurate model of
specular reflection known as the Cook-Torrance lighting
model [11] with a Beckman distribution to describe sur-
face roughness. The accuracy of this model for assem-
blies composed of polished metals, like that illustrated
in Fig. 2, was experimentally verified by comparing the
synthetically generated images with actual video images
at various camera and light locations.

IV. CAMERA PLACEMENT

An analysis of the contact surfaces obtained from
the CAD model of the assembly provides the informa-
tion required to determine locations where assembly er-
rors are likely [9]. These locations are what ultimately
determine the object tree used by the inspection algo-
rithm (see Fig. 2 for an example). Clearly, the size and
visibility of the nodes in the object tree are heavily de-
pendent on the viewing direction. To obtain a viewing
direction which includes as much information as possi-
ble, a two step optimization is performed in which the
criteria are to maximize the separation of the nodes
in the object tree and to minimize occlusion. It is as-
sumed that the viewing direction is always pointing at
the center of the assembly and that the field of view
and distance of the camera are selected so that all nodes
are visible. This effectively constrains the camera to a
hemisphere above the assembly as in [4], [5].
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A. Object Node Separation

The contact information among the different com-
ponents of the assembly is used to determine areas of
interest within the image [9]. Maintaining a spatial sep-
aration between these components within the image im-
proves the performance of the inspection algorithm by
preventing interaction between object nodes. Thus, it
becomes useful to see the distances between these com-
ponents as close as possible to their true lengths.

To determine the view direction in which the ap-
parent distances between the nodes are as close as pos-
sible to their true length, the singular-value decomposi-
tion (SVD) is used. Emphasis is placed on shorter dis-
tances by inversely weighting the component displace-
ment vectors by their magnitude. Accumulating the
displacement vectors [z; y; z;] into a matrix results in

2% L o2
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where m? = 2? + y? + z2, and n is the number of com-

ponents of interest so that all combinations of displace-
2
ment vectors results in e = g"—z‘—")- The SVD of A,

3
A=) oy (3)
i=1

with o1 > o2 > 03 > 0, provides quantitative infor-
mation concerning the quality of various viewing direc-
tions. If maximizing separation were the only criteria
then the viewing direction 5 gives the view direction
from which the graph edges will be seen as close as
possible to their true length (with preference given to
shorter lengths). However, the effects of occlusion need
to be considered. Therefore, rather than selecting the
viewing direction as 93, the effects of occlusion are stud-
ied for candidate viewing directions that lie in the plane
described by 9, and o3 as described in the following sec-
tion. An illustration of the above procedure is presented
in Fig. 4 for the example assembly given in Fig. 1. It is
interesting to note how close the SVD calculation comes
to a totally unoccluded view shown in Fig 4(b).

B. The Visibility Function (V)

A visibility function V is used to quantify the qual-
ity of candidate viewing directions identified using the
procedure described above. Clearly, the more areas of
possible assembly errors are visible, the better perfor-
mance one can expect from the inspection algorithm.
As a result, the issue of visibility is addressed in terms

(b)

Fig. 4. (a) Viewing the shaft and the pins along 7, obtained from
(3) (b) Viewing the shaft and the pins using a totally unoccluded
view direction in the plane spanned by 75 and 93.

of the number of visible components, the number of vis-
ible faces on each component, and the number of image
pixels associated with each face:

V= eiN.+es Zév__fl(l — exp‘F"F-g)

F; -P;; P
D AN e )
+e3 )iy

4)

13
where,

N, number of visible components of interest
F; number of visible faces on component ¢
F? variation of surface normal on visible faces
F;; nurnber of visible pixels on face j of component ¢
P2 contact information for face j
cr empirically determined constants.

The motivation for using exponential functions in
the various terms of V is due to the fact that errors
in a component’s assembly are propagated to the vari-
ous surfaces of that component since it is a rigid body.
Therefore additional surfaces on a single component
simply provide more information about errors in that
component whereas surfaces from other components can
be used to broaden the range of errors that can be iden-
tified.

The value of F? controls the rate of increase in
the exponential function with respect to F;. Since faces
that have widely varying surface normals will have wider
shading variations, such surfaces are desirable since
there is more information that will be available to the
inspection algorithm. Therefore, F? is calculated to
sense the degree to which the surface normals of the
visible surfaces on component ¢ vary. This is done by
first associating with each face a dominant surface nor-
mal. For planar faces this dominant surface normal is
simply the unique face normal. For curved faces, the
dominant normal is calculated as the average surface
normal weighted by the number of visible pixels that
have that normal. To obtain a measure of how much
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all of these dominant face normals vary over the en-
tire component, they are concatenated into an F; by 3
matrix denoted N. The SVD of N,

3
N = Z Um'amf)zl (5)
m=1

provides information about how the dominant surface
normals are distributed over the entire component. This
information is used to calculate the exponential coeffi-
cient F? using:

3
po - Sheom ;
P =t (®)

so that % <F'<1.

In an analogous manner, the coeflicient P,% is used
to emphasize faces that provide more information to
the inspection algorithm. In this case, the displacement
of faces that are in contact with other components are
more likely to result in visible effects from assembly
errors. Therefore, the more surfaces that are in contact
with face j of component i, the larger its value of P,-‘} .

V. LIGHT PLACEMENT

To determine an optimal light source position, our
approach is to experimentally determine the effects of
light position on the inspection algorithms ability to
distinguish both translational and rotational errors in
assembled components. An analysis of these experimen-
tal results is then used to develop an algorithm that can
automatically determine good light locations by evalu-
ating a metric L.

A. The Effect of Light Position on Performance

An experiment based on raytraced synthetic im-
ages and real video images was used to study the ef-
fect of light on the performance of the inspection algo-
rithm. The simple test assembly, illustrated in Fig. 5,
consists of a pin inserted in a hole. In the experiment
the camera is placed at 45 degrees from the top of the
pin in the X-Y plane, which was determined to be op-
timal based solely on the camera placement algorithm
discussed above. Different light positions located 10
degrees apart in the X-Y plane are then tested to de-
termine how accurately the inspection algorithm can
detect errors in the pins location relative to the plane
into which it was inserted. For each light position the
inspection algorithm is trained on the correct assem-
bly and then used to test assemblies that have various
degrees of rotational (misalignment) and translational
(misinsertion) errors. The log likelihood statistics from
the inspection algorithm are a measure of how much the

Fig. 5. Experiment setup used to test the effect of light on the
performance of the inspection algorithm. At every light position
synthetic images are used to train the algorithm. Then errors
are introduced to the images. The effectiveness of detecting these
errors shows the effect of light on performance.

Fig. 6. (a) A quadraticfit among the log likelihood match results
from the experiment shown in Fig. 5 with rotational errors around
the Z axis. (b) Same as (a) with rotational errors around the X
axis. (c) A quadratic fit among the log likelihood match results
from the experiment shown in Fig. 5 with horizontal insertion
errors.

incorrect assemblies match the images of the correctly
inserted pin. These results are plotted as a function of
both the light position and the degree of error in the
insertion for both types of errors in Fig. 6. Fig. 6(a)
shows the results for misalignment errors between -20
and 20 degrees around the Z axis. Fig. 6(b) illustrates
misalignment errors between 0 and 20 degrees around
the X axis (negative rotations around the X axis gen-
erate symmetrical images). Finally, Fig. 6(c) shows the
results from inserting the pin to an incorrect depth, be-
tween 0.5 in. Note that in all three cases the algorithm
is most sensitive to the errors when the light source is
positioned at 135 degrees, the perfect specular direction

for the top surface of the pin in its correctly assembled
location.
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B. The Light Source Placement Algorithm

Based on the above and similar experiments, it has
been empirically determined that the statistical model
built by the inspection algorithm is most sensitive in
cases where variations in the surfaces of interest are lo-
cated at orientations that correspond to perfect specu-
lar reflections. An analysis of the experimental data has
allowed us to characterize why the appearances change
rapidly due to assembly errors into the following three
categories:

1. A visible surface is displaced such that the inten-
sity of its specular reflection changes rapidly.

2. A surface with a normal different from the sur-
rounding surfaces is covered or uncovered.

3. A surface is displaced in such a way that either
casts or removes a shadow.

Clearly, placing the light source so that one receives a
specular reflection from the surfaces of interest utilizes
the first point (in much the same manner as a poten-
tial customer evaluates the paint job on an automo-
bile). It is not as obvious, however, that it also uti-
lizes the second category of appearance variation. This
is true because specular highlights of polished surfaces
tend to decrease rapidly as the surface normal varies.
Therefore, it is statistically unlikely that uncovering a
random surface will result in a high degree of specular
reflection. Therefore, our light placement algorithm at-
tempts to find light locations that attain a high degree
of specular reflection from the surfaces of interest, i.e.,
those at which assembly errors are likely.

To accomplish this task, all of the visible surfaces
are sampled and the resulting pixels, denoted p;; for the
Jjth face of the ith component, are used to determine
a least-squares fit for the light location that maximizes
specular reflection. For each pixel p;;, a vector iz,:i is cal-
culated which represents a unit vector halfway between
the surface normal, 1i;;, and the viewing direction, 9;;.
All of these ilij vectors are concatenated into a matrix
H, the SVD of which provides quantitative information
about the dominant value of A and its variation. The
average p;; is then used to calculate the angle, 6, be-
tween h and the viewing vector. For optimal specular
reflections the light direction [ is then calculated by a
clockwise rotation of & by 36 in the plane containing
the viewing vector.

C. The Illumination Function (L)

To quantitatively evaluate the quality of a particu-
lar light source location, the following equation is used:

N F; <nij i 5
s [ FY (T8 5 R
L= };1 (F,- ( 2 +.5 (1)

where,

N, number of visible components of interest
F; number of visible faces on component i
F} number of F; faces not in shadows
n;; number of points from face j, component ¢
Rkij perfect specular direction for kth sample point p;;.

The value of £ is a measure of the effectiveness of a
particular lighting direction based on the portion of the
visible surfaces of an assembly component that are not
shadowed from the light and how close it is to the per-
fect specular direction of these surfaces. The determi-
nation of whether the sampled points p;; are shadowed
from the light source is efficiently calculated by using
the Z-buffer hardware in a manner analogous to that
described in section III-A except that light location re-
places the camera location.

VI. THE GENERATE-AND-TEST ANALYSIS

While the results of section IV can be used to de-
termine a camera location and then used to apply the
results of section V to determine a light location, this
will not result in an optimal camera-light pair since the
camera location affects the illumination function £. To
determine an optimal camera-light pair, the camera is
first only constrained to lie in the plane determined from
(3) and then a linear combination of the functions V and
L is evaluated for camera locations that lie in this plane.
The optimal value of this overall function M, given by

M=CyV+CL (8)

where Cy, C¢ are constants, is then used to determine
the optimal camera-light placement pair. Results for
the simple example used throughout this article are pre-
sented in the following section.

VII. REsuLTS

The camera and light placement algorithm was ini-
tially tested on simple assemblies to verify its perfor-
mance. Then, it was tested on more complex assem-
blies. In this section the results from running the algo-
rithm on the wheel assembly shown earlier in Fig. 1 are
presented. The pins of the wheel assembly were used
as the components of interest. The camera was con-
strained to lie on a semicircle as described in section
IV-A. This set of valid camera locations was then sam-
pled and the camera-light pair function M was eval-
uated. Fig. 7 plots the different components of M.
Curve (a) shows the second term of V (eq. (4)). It
shows that the visibility of the components’ faces di-
minishes at near horizontal and vertical views. On the
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Fig. 7. The values of the different terms in M for the assembly
shown in Fig. 2 when the camera is constrained to lie on the
plane determined using (3). The first term of V is constant (not
plotted), the second term is denoted (a), the third term (b), and
(c) shows L.

(@) (b)

Fig. 8. (a) Error in top wheel placement. The location of a
mismatch is identified by a rectangle with an “X” mark. The
tree shown in Fig. 2 is used here. (b) Error in high density pin
insertion.

other hand, plot (b}, the third term of V, shows higher
values at these views since equally large face areas are
visible on the different assembly components of inter-
est. Similarly, curve (c) of the £ function shows better
light positions at horizontal views because of the better
match to the specular direction of the different visible
faces. The combination of these terms in M lead to pre-
ferring the inclined views. For example, setting all the
constants to unity except for ¢ which is set to .1leads to
selecting the view at 140 degrees shown in Fig. 2. Test-
ing the real assembly from different views after training
on synthetic images showed the advantages of using the
inclined views around 140 degrees. Fig. 8 shows two
examples. Fig. 8 (a) shows a detected error caused by
misplacing the top wheel. This error passes undetected
from a horizontal view. Fig. 8 (b) shows a detected pin
insertion error which passes undetected from a vertical
view.

VIII. CoNCLUSION

This article has discussed automatic camera and
light source placement for an assembly inspection sys-
tem that uses a multiscale algorithm to detect errors

in assemblies after being trained on synthetic images of
correctly assembled products. It was shown that the
performance of this inspection algorithm can be im-
proved by optimizing an empirically determined func-
tion that describes the quality of an image based on the
visibility and intensity of the components of interest.
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