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ABSTRACT OF THESIS

THE ROLE OF DATA ANALYSIS METHODS SELECTION AND
DOCUMENTATION IN PRODUCING COMPARABLE INFORMATION TO

SUPPORT WATER QUALITY MANAGEMENT

Water quality monitoring is being used in local, regional, and national scales to
measure how water quality variables behave in the natural environment. A common
problem, which arises from monitoring, is how to relate information contained in data to
the information needed by water resource management for decision-making. This is
accomplished through analysis of the monitoring data. However, how the selection of
methods with which to analyze the data impacts the quality and comparability of
information produced is not well understood.

To help understand the connectivity between data analysis methods selection and
the information produced to support management, the following tasks were performed:
(1) examined the data analysis methods that are currently being used to analyze water
quality monitoring data, as well as the criticisms of using those types of methods; (2)
explored how the selection of methods to analyze water quality data can impact the
comparability of information used for water quality management purposes, and; (3)
developed options by which data analysis methods employed in water quality

management can be made more transparent and auditable.
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These tasks were accomplished through a literature review of texts, guidance and
journals related to water quality. Then, the common analysis methods found were
applied to the New Zealand Water Quality River Network data set. The purpose of this
was to establish how information changes as analysis methods change, and to determine
if the information produced from different analysis methods is comparable.

The results of the literature review and data analysis were then discussed and
recommendations made addressing problems with current data analysis procedures, and
options through which to begin solving these problems and produce better information
for water quality management. It was found that significance testing is the most popular
method through which to produce information, yet assumptions and hypotheses are
loosely explained and alternatives rarely explored to determine the validity and
comparability of the results. Other data analysis methods that might be more appropriate
for producing more comparable information were discussed, along with
recommendations for further research and cooperative efforts to establish water quality

data analysis protocols for producing information for management.

Lindsay Melissa Martin
Department of Chemical and
Bioresource Engineering
Colorado State University
Fort Collins, CO 80523
Spring 2000
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CHAPTER 1. Introduction

The passing of the Federal Water Quality Act of 1965 initiated water quality
monitoring programs within state water quality management agencies throughout the
United States. Before these monitoring programs could mature, a major change in water
quality management occurred with passage of the Federal Water Pollution Control Act
Amendments of 1972 (commonly referred to as the Clean Water Act today). While
appearing to be an update of existing law, the 1972 Act revolutionized water quality
management in the U.S. Management of water quality now required large volumes of
information about water quality to support sophisticated decision-making (e.g. status of
water quality conditions over large spatial and temporal scales, standards violations, and
Total Maximum Daily Loads computations).

Requirements of the Clean Water Act included biannual reports, referred to as
305(b) reports and 303(d) lists, from each of the states on water quality conditions.
These reports include determinations of designated use support (i.e. is the quality of the
water good enough for the typical ‘use’ of that water, such as swimming or fishing), and
lists of waters that are threatened or impaired due to poor water quality. Today, sound
data on water quality are becoming increasingly important as numerous lawsuits are
directing renewed nationwide attention to the cleanup of water quality problems through
the development of total maximum daily loads (TMDLs) for section 303(d) (GAO,

2000).



In order to evaluate the status of their waters, and comply with 305(b) and 303(d)
reporting requirements of the 1972 act, states and other entities have collected water
quality data and prepared water quality assessments. However, there is a view that the
assessments and reporting of this data have provided little indisputable information about
the true quality of our nation’s waters (PEER, 1999; GAO, 2000). “All too often,
monitoring projects are initiated with a minimum of forethought, and result in a
collection of poorly-documented data which are never analyzed, [and if they are] provide
little or any feedback to resource managers, and contribute little or nothing to our
understanding of the systems being monitored” (MacDonald, 1994).

A classic definition of the word monitor is “to watch, observe, or check,
especially for a special purpose” (Webster’s New Collegiate Dictionary, 1977). Water
quality “monitoring” is more than checking to make sure water quality standards are not
violated. Monitoring is the process of seeking information about the behavior of water
quality variables in the environment (e.g. average conditions, trends, and extremes)
(Ward et al., 1986). “Monitoring is performed in support of water quality management
and is universally recognized as indispensable for effective management” (Ward et al.,
1986).

A common problem, which arises from monitoring, is how to relate information
contained in data to the information needed by management for decision-making. For
example, if a legal goal from the Clean Water Act is to restore and maintain the nation’s
water quality, then what information about water quality variables can be used to inform

the public and water managers if water quality has been maintained or improved?



A common answer to this problem is to use statistical data analysis methods to
produce information from the water quality data. The field of statistics provides an
organized approach to quantify the unavoidable uncertainties about the inferences drawn
from water quality data (Ward, 1998). Snedecor and Cochran (1980) define statistics as a
field that deals with collecting, analyzing, and drawing conclusions from data, and the
statistical nature of water quality monitoring has been increasingly recognized (Ward and
Loftis, 1983).

Ideally, analysis methods related to specific information goals should be spelled
out in advance of collecting data. A way to ensure that comparable information, over time
and space, will be developed from water quality data is to thoroughly understand the
statistical nature of a monitoring program during the initial design of the monitoring
system (Ward, 1998). Knowledge of which statistical tests are most appropriate to obtain
the desired information from the collected data plays a role in determining sampling
frequencies. Thus, the statistics of a monitoring program are dealt with in a quantitative
and transparent manner, before sampling begins. (Ward, et al., 1986) This order of
procedure ensures that the appropriate methods for the desired information will be used,
and that others who examine the methods will have confidence in the results. It also
ensures that the requirements of the analysis methods (i.e. type, quality and amount of
data needed) can be determined and used in the design of the monitoring system.

Whether or not this is done, it is common for management to try to produce water
quality information from data that were not generated for specific information needs.
Often, data are made available from historic or existing monitoring projects, and so

analysis procedures must be chosen after the data are collected. How should data



analysis methods be chosen? Answering this question often raises concerns about the
validity of the assumptions that are implicit in most statistical analysis procedures, thus
calling into question the appropriateness of the analysis procedures chosen. The ad hoc
selection of data analysis methods also hurts the validity of the results and the
comparability of the information produced. Another, more common concern, is that if
the analysis methods are not determined prior to the collection of data, then the analyst
has freedom to choose the methods that will produce the outcome that he or she most

desires.

Purpose

The purpose of this thesis is to review the current statistical analysis procedures
used by a variety of monitoring entities to produce information, and provide some
alternative thinking that will serve to strengthen the connectivity between water quality
information and the means used to analyze water quality data.

More specifically, the following chapters will: (1) inventory the data analysis
methods that are currently being used to analyze water quality monitoring data, as well as
the criticisms of current data analysis methods; (2) explore how the selection of methods
to analyze water quality data can impact the comparability (i.e. similarity or suitability
for comparison) of information used for water quality management purposes, and; (3)
offer options by which data analysis methods employed in water quality management can
be made more transparent and auditable (i.e. the methods can be reviewed, easily

understood, and verified).






These tasks will be accomplished through a literature review of texts, guidance
and journals related to water quality monitoring. Then, the common analysis methods
found will be applied to a New Zealand Water Quality River Network data set. The
purpose being to establish how information changes as analysis methods change, and to
determine if the information produced from different analysis methods is comparable.
The results of the literature review and data analysis will then be discussed and
recommendations made addressing problems with current data analysis procedures, and
options through which to begin solving these problems and produce comparable

information for water quality management.

Scope

Data analysis, from a water quality management perspective, can be approached
from one of two directions: (1) production of information from transparent and auditable
data analysis protocols that are comparable over time and space; or (2) exploration of an
existing data set to see “what the data say” about water quality conditions in a water
body. Statistics are used in both situations, but in different ways. This study addresses
the first approach, but realizes that the use of statistics in water quality management often
mixes the two.

An argument that often falls out of the above confusion is that there should never
be “recommendations” of analysis methods, as this censors the methods that might be
used for exploratory data analysis. However, the analysis methods discussed in this
thesis will be limited to those methods that are used by water quality management to

assess water quality: (1) temporal trends, (2) differences in populations (e.g.



upstream/downstream differences and step trends), and (3) standards violations. These
are the three types of information that are most often studied in water quality assessments
(Ward, et al., 1990), and which can be used to interpret the quality of the water for
regulatory, economic and legal purposes. Therefore, statistics used in modeling analyses
(including multivariate analyses, time-series analyses and multiple regression techniques)

were not included in this research, as these are used more often as predictive tools.



Chapter II. Criticisms of Water Quality Data Analysis Methods

Water quality assessments are the primary means through which information
about our nation’s waters is developed. The methods through which data in the medical
and behavioral sciences are interpreted are increasingly under fire (i.e. Berger and Berry,
1988; Carver, 1978; Chow and Liu, 1992; Fleiss, 1987; Goodman, 1993; Nunnally, 1960)
and some of these criticisms are infiltrating the water quality field. The literature review
for this research includes the prevalent criticisms of water quality data analysis.

A recent report by an anonymous group of EPA and other agency employees
criticizes the water quality assessments made by states. It states that “inconsistencies in
the amounts of waters monitored or evaluated as well as variations in how impairment
and designated use attainment are measured, produce a hodgepodge of information that is
of little value in determining national water quality trends or comparing water quality
among individual States” (PEER, 1999).

Another report produced by the U.S. General Accounting Office reaches similar
conclusions about the validity the EPA’s National Water Quality Inventory, a
compilation of all state water quality assessments (305(b) and 303(d) reports). GAO
(2000) states that this report can not meaningfully compare information across states
because of considerable variation in: (1) the way states select their monitoring sites; (2)
the kinds of tests states perform and how the results of these tests are interpreted; (3) the

methods used to determine causes and sources of pollution; and (4) the analytical



methods chosen to evaluate water quality (i.e. chemical, physical, or biological properties
of water). “By aggregating these states’ data, EPA is implicitly suggesting that these data
can, in fact, be compared and in doing so is increasing the likelihood that the data will be

misused or misinterpreted” (GAO, 2000).

While 15 recommendations are made in the PEER (1999) report to improve the
305(b) reports produced by states, as well as several recommendations by GAO (2000) to
improve the usefulness of the National Water Quality Inventory, no recommendation is
made in either report about how to improve the quality of information produced from
states’ monitoring systems. One key to this improvement lies in the analysis methods
used to interpret the monitoring data. Though analysis methods are rarely questioned,
there are a small number of researchers and academics who are qu‘estioning the methods
used to produce water quality information. This review compiles the arguments brought
forth by these critiques.

Similar to PEER (1999), a report of the Virginia Water Quality Academic
Advisory Committee (Shabman et al., 1998) makes 17 recommendations to the Virginia
Department of Environmental Quality to meet the General Assembly’s Water Quality
Monitoring, Information and Restoration Act requirements. These recommendations
basically cover the water quality assessments used for 305(b) and 303(d) reporting.
Several of the recommendations directly address the statistical analysis methods used to
produce information from water quality monitoring systems.

Shabman et al. (1998) recognizes the importance of identifying and summarizing
water quality trends. At present, the Virginia Water Resources Research Center

(VWRRC) is coordinating a research project in which researchers are using improved






(not explained) statistical procedures to perform trend analysis on a watershed scale.
Both trend direction and magnitude are stressed, but 1t is admitted in the report that long-
term protocols for statistical analysis and data collection need to be developed. Although
it never recommends specific analysis methods for trend detection, in general the report
recommends “improved explanations of current use of statistical inference procedures”,
as well as incorporating the relationship to flow in the analyses for trends. (Shabman et
al., 1998)

Currently, Virginia uses EPA’s definition of impaired waters, which is defined as
an annual violation rate of greater than 10% for numeric water quality standards (referred
to as the percentage method). The Virginia Department of Environmental Quality wants
to use a binomial procedure to determine probability of violations, due to their small
sample sizes, but this is frowned upon by the Virginia Joint Legislative Audit and Review
Committee (JLARC), which prefers a standard percent calculation. The committee states
that the percentage method is more prone to drawing a false positive inference that a
stream segment is impaired, especially if few samples are taken. Use of a binomial
distribution is more statistically appropriate, and decreases the chance of a false positive
(Type I error). The binomial procedure does not take the actual value or magnitude into
account, but if that is of concern, alternatives are suggested. (Shabman et al., 1998)

Santillo et al. (1998) also criticizes the statistics used to determine standards and
standards violations. In marine water quality standards, impacts are often based on
simple single-species toxicity tests. Essentially what is being determined using such tests
is the distribution of tolerance of a given test species. The problem lies in genetic

susceptibility of different groups within the same species, as well as the fact that many



responses of species to certain contaminants is not monotonic. Therefore, the criteria for
standards violations are not based on the best information.

A third recommendation from the Virginia committee is that the statistical power
(i.e. sensitivity) of various temporal sampling patterns should be carefully reviewed in
order to design a monitoring program which will optimize analysis opportunities
(Shabman et al., 1998). This is a common theme in statistics, and more criticisms of
testing without considering power will be discussed below.

The process through which water quality information is produced has become
more targeted in the academic field in recent years. Many researchers are criticizing the
appropriateness of the actual statistical procedures used to produce the information.
From discrediting specific methods for inappropriate use, to rejecting entire categories of
methods for inappropriate theory, the typical standard data analysis methods are
increasingly being examined in an effort to improve information produced from
monitoring.

One critique of incorrect use of methods was prompted by the EPA Guidance for
Statistical Analysis of Groundwater Monitoring at RCRA (Resource Conservation and
Recovery Act) sites (1989, 1992). In this guidance it is recommended that for a data set
with large numbers of nondetects, Poisson prediction limits and Poisson tolerance limits
be used. Loftis, Iyer and Baker (1999) prove that neither the Poisson distribution nor
associated tolerance or prediction limits should be used with concentration data. “A basic
criterion that any model must meet is that it be independent of the system of units, and
the Poisson model does not meet that criterion”. The problem lies in the fact that the

Poisson model does not scale appropriately with changing units, which results from
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improper selection of the rate parameter A in the guidance document. (Loftis, Iyer and
Baker, 1999)

Another type of criticism is the issue of statistical power in monitoring design.
“Many have noted the lack of attention paid to statistical power in research and
monitoring programs” (Santillo et al., 1998). Statistical power is defined as the
probability of detecting an effect where one exists, or the sensitivity of the analysis and
samipling design to changes in the data. Lack of attention to power has led to
experimental designs that seek to minimize the probability of incorrectly identifying an
effect when none exists, known as a Type I error (often denoted as @), so as to avoid
regulatory regimes that are unnecessarily strict. (Santillo et al., 1998)

However, efforts to minimize Type I errors can lead to increases in Type II errors
(denoted as B), an error of accepting the null hypothesis when it is actually false (i.e. not
identifying real impacts). “A Type II error could lead to inadequate legislative protection
and failure to prevent adverse impacts on the environment or human health. Experiments
that fail to identify an effect may lead to acceptance of the null hypothesis (no effect),
when the experimental design would have lacked sufficient statistical power to have
identified an effect in the first place.” (Santillo et al., 1998)

This lack of attention to power considerations draws doubts to the capability of
many monitoring programs to detect trends, because too few data points are available to
give the analysis much power. “However, designing a monitoring program with enough
data points for a decision (say, over 20 years) may result in an environmental impact that
is unacceptable”. The power also depends on the effect determined to be significant. If

the researcher is unable to understand and quantify the extent of impacts caused by
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contamination, let alone identify which adverse effects to examine, then a reduction of
Type II errors will not reduce scientific rigor of the experiment. (Santillo et al., 1998) On
the flip side of this argument is the fact that as databases may grow, tests become too
powerful, detecting ever-smaller differences, leading to unimportant differences turning
out to be statistically significant (McBride, 1999a).

Another publication, made available on the Internet by the Northern Prairie
Wildlife Research Center and the USGS, takes the opposite view and is critical of power
analysis. Power analysis, as mentioned above, can be used to determine the sample size
needed to have a specified probability (power) of declaring as significant a particular
difference or effect (Johnson, 1999). However, when power is determined after a test has
been performed to guard against wrongly declaring the null hypothesis to be true, the
results can be misleading. This retrospective power analysis, estimated with the actual
data used and the observed effect size, is meaningless, as a high p-value will result in a
low estimated power (Johnson, 1999). Power analysis programs, however, assume the
input values for effect and variance are known, rather than estimated, so they give
misleadingly high estimates of power, “as well as requiring three arbitrary parameters,
alpha, beta, and effect size”. The author states that the questions about the likely size of
true effects can be better addressed with confidence intervals than retrospective power
analysis. (Johnson, 1999)

The criticism with potentially the most far-reaching impact implies that
significance testing is inappropriate for environmental data. Significance testing is the
category of statistical analyses that tests a null hypothesis against its alternative, and

determines if the outcome is significant evidence against the null or not. “Unfortunately,
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when applied in a cookbook fashion, such significance tests do not extract the maximum
amount of information available from the data” (McBride, Loftis and Adkins, 1993).

McBride, Loftis and Adkins (1993) claim that significance testing has three
problems, which are applicable in environmental monitoring:

1. A conclusion that there is a significant result can often be reached merely by
collecting enough samples (increasing sample size increases chance of rejecting
the null);

2. A statistically significant result is not necessarily practically significant; and

3. Reports of the presence or absence of significant differences for multiple tests are
not comparable unless identical sample sizes are used.

For the past several years, the use of significance testing in the medical profession
has been questioned. The argument has been made that the use of arbitrary (i.e. p < 0.05)
“significance” values does not objectively prove that the data are displaying a
characteristic that is not merely chance. In fact, it has been suggested by certain
statisticians that p-values are “startlingly prone” to attribute significance to fluke results
(Matthews, 1998). Discussions have been raised over the “value” of a p-value, and what
it really means in terms of proving anything. Those with less knowledge of statistical
theory mistakenly confuse it with the Type I error of hypothesis testing (ct), and this link
between the two has become standard, but misleading practice (Goodman, 1993). Some
data analysts are now questioning the appropriateness of using p-values at all with
hypothesis testing (i.e. Goodman, 1993; Berger and Berry, 1988; Matthews, 1998).

The water quality and biology fields are also addressing the confusion over using

p-values to support significant findings. Johnson (1999) states that: (1) the p-value is
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often used as the probability that the results obtained were due to chance, (2) 1-p is often
used as the “reliability” of the result, and (3) p is the probability that the null hypothesis
is true.

“Unfortunately, all of these conclusions are wrong. The p-value is the probability
of the observed data or more extreme data, given that the null hypothesis is true, the
assumed model is correct, and the sampling done randomly” (Johnson, 1999).
Determining which outcomes of an experiment or survey are more extreme than the
observed one, so a p-value can be calculated, requires knowledge of the intentions of the
investigator (i.e. the stopping rule) (Berger and Berry, 1988). “Hence, p, the outcome of
a statistical hypothesis test, depends on results that were not obtained, that is, something
that did not happen, and what the intentions of the investigator were” (Johnson, 1999).
Such information and intentions are often not easily obtained.

Another common mistake in hypothesis testing is that null hypotheses cannot be
proved, they can only be rejected. Failing to reject a null hypothesis does not prove that
it is true (Johnson, 1999). Especially with small samples, one must be careful not to
accept the null hypothesis, as this is a reflection of the lack of power (Johnson, 1999).
Even more arbitrary is the designation that a result is “significant” if the p-value falls
below some cut-off value, usually given as the acceptable Type I error, o.. This means
that for an o of 0.05, then a p-value of 0.049 is significant for a one-sided test, whereas a
p-value of 0.051 is not (Johnson, 1999). Such a minor difference can be deceptive, as it

is derived from tests whose assumptions are often only approximately met (Preece,

1990).
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P-values are calculated under the assumption that the null hypothesis is true.
Most null hypotheses tested, however, state that some parameter equals zero, or that some
set of parameters are all equal. These hypotheses, called point null hypotheses, are
almost invariably known to be false before any data are collected (Berkson, 1938;
Savage, 1957; Johnson, 1995). If these hypotheses are not rejected, it is usually because
sample size is too small (Nunnally, 1960) and power is too low. (Johnson, 1999)

In the field of drug testing, it has been agreed that testing a null hypothesis
between means/medians (which is standard practice in water quality data analysis) is not
appropriate, as it is evident that the probability of rejecting the null hypothesis increases
with sample size (Chow and Liu, 1992). This is due to the fact that the p-value grows
smaller as sample size increases. A solution to this problem was given by Good (1982),
who proposed that p-values be standardized to a sample size of 100, by replacing the p-
value with p*squareroot(n/10), where n is the sample size.

An even more pertinent question would be: why test a null hypothesis at all, if it
seems virtually impossible for two different drugs to have the same effect? (McBride,
1998) It has become common practice in drug testing to test whether or not a difference
between means/medians might be within a prescribed interval, instead of exactly zero
(Chow and Liu, 1992).

Water quality guidance documents, such as the EPA’s for statistical analysis of
monitoring data at RCRA sites (1989, 1992) often recommend significance testing, such
as ANOVA. This type of test can be stated as the following: For the time period given,
are the means of a water quality variable equal in all the wells sampled? Or is one or

more different from the others? McBride, Loftis and Adkins (1993) point out that as in
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drug-testing, we know in advance there will be differences, so why perform the test at
all? If there exists a statistically significant difference, this may not translate to a
practical significant difference from a management point of view unless power is
considered (not the norm).

McBride (1999a) explores this option further. He states that a recurring issue in
statistical analysis has been the failure of to use power analysis to select an appropriate
sample size so as to minimize the risk either of failing to detect important differences or
of detecting the unimportant. “Advocates of power analysis have been increasing in
environmental science and management. However, there is discomfort with tests
becoming too powerful, i.e. as sample size increases, tests of point hypotheses will tend
to detect ever-smaller differences. One response is to de-emphasize the role of tests and
rely on confidence intervals.” However, McBride (1999a) chooses to support interval
testing as a solution to the inappropriateness of testing a point null hypothesis.

Such problems, as discussed above, have led to a “significant test controversy” in
the social and behavioral sciences, as well as water quality and biology, with the
following remedial measures proposed:

1. Abandonment of testing hypotheses about differences in favor of estimation of

differences (Oakes, 1986);

2. Use of interval tests (McBride, 1999a); and
3. Using a combination of estimation and testing with greater emphasis on statistical

power in the design of monitoring systems and interpretation of significant test

results (Millard, 1987).



McBride, Loftis and Adkins (1993) suggest that the entrenchment of hypothesis
testing in the environmental field makes its abandonment unrealistic, but does make
several other recommendations related to those in the social and behavioral sciences.
One recommendation supports the emphasis on statistical power, stating that both types
of errors (Type I and Type II) should be considered when designing a sampling program.
“In this way one can seek to have a higher probability of detecting a difference of
practical significance (because Type Il error is related to the difference in means),
corresponding to a particular effect size (chosen by the analyzer), as well as a low
probability of raising false alarms”. (McBride, Loftis and Adkins, 1993)

Another recommendation is to rely more on interval estimation rather than
hypothesis testing. “In trend detection, more information is conveyed by plotting a trend
line with confidence limits through a time series than by simplistic yes/no of significance
testing.” (McBride, Loftis and Adkins, 1993)

The final recommendation by McBride, Loftis and Adkins (1993) refers to
interval testing, in which the analysts test whether or not the difference in means is
greater than some prescribed interval. “An advantage of this test is that the analyst must
state the difference of practical significance to management, also the failure to reject the
null no longer induces complacency”. This is because the results now mean something,

ecologically and environmentally.

Conclusions

The criticisms of data analysis methods in the medical, biology and water quality

fields have focused on several key issues. Most of these issues center on the
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appropriateness of using hypothesis testing to determine significant results from data.
Johnson (1999) even goes so far as to say that “statistical hypothesis tests add very little
value to the products of research. Indeed, they frequently confuse the interpretation of
data”. The arbitrariness and confusion over the meaning of p-values, lack of attention to
power, and inappropriate conclusions that the null hypothesis is true all contribute to the
ineffectiveness of significance testing. Loftus (1991) “found it difficult to imagine a less
insightful way to translate data into conclusions”.

Nevertheless, significance testing is still widely used and accepted to develop
information from all sorts of data, especially in the water quality field. This prevalence
will be demonstrated in the next literature review section. Despite its drawbacks, some
advocate more appropriate types of hypothesis testing (i.e. McBride, Loftis and Adkins’
(1993) discussion of interval testing), as well as greater attention to the details of the test,
including power analysis, sample size and stating the hypothesis. All of these discussions
and criticisms help to illustrate the need for more careful attention paid to the selection of

analysis methods when the ultimate goal is defensible and comparable information.
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Chapter III. Current Water Quality Data Analysis Procedures

The purpose of this literature review is to examine current practice and “state-of-
the-art” procedures used to analyze water quality data for information purposes. The
review focuses on the use of statistics in literature to produce information, not summary
statistics. This information, as discussed in the introduction and scope section, is limited
to temporal trends, differences in populations, and standards compliance. The extent of
the review covers the major entities involved in water quality monitoring assessments,
including the USGS, EPA, private groups and academia, and determines if there are
established “standards” of monitoring data, as a whole or within organizational
structures. The review covers environmental statistics textbooks, agency publications,
water quality reports from state environmental agencies, and the following journals:
Journal of American Water Resources Association, Environmental Monitoring and
Assessment, Environmental Management, Water Resources Research and Marine
Pollution Bulletin.

When beginning this literature review it was thought that there may be “de facto”
standards for data analysis developing in the water quality field. Use of the term
“standard” is not meant to imply that there is an established set of statistical analysis
methods that have been reviewed and recommended for all water quality monitoring
situations. However, a large part of this thesis will attempt to establish that there are
certain methods that are used time and time again by a variety of monitoring entities,

depending on the type of information sought. Conclusions at the end of this literature
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review will address whether or not “de facto” data analysis standards are emerging in the

analysis of water quality data.

Textbook Guidance for Statistical Procedures to Interpret Water Quality Data

The following tables (Tables II1.1 — III.3) summarize information found in three

textbooks that are commonly used in the water quality field to determine statistical

procedures for data analysis. The purpose here is not to explain the statistical procedures

outlined in the text, but to determine which methods seem to be recommended by their

inclusion in the text.

Table II1.1: Statistical Methods for Environmental

Pollution Monitoring (Gilbert, 1987)

Analysis and Box-Jenkins Model
(Autoregressive integrated
moving-average time series
model)

Information Graphical Parametric Statistics Nonparametric Statistics

Requirement

Trends Time series; Regression of deseasonalized data | Mann-Kendall test; Sen’s
CUSUM against time with a t-test of Estimator of Slope; Seasonal
charts hypothesis: slope = 0; Intervention | Kendall Test/Slope Estimator;

Van Belle and Hughes (1984) chi-
square test for homogeneity of
trend in different seasons; Sen’s
aligned rank test for trend; test for
global trend

Differences in
Population

Paired Data: t-test

Paired Data: sign test; Wilcoxon
signed rank test; Friedman’s test

Independent Data: Wilcoxon’s
rank sum/Mann-Whitney test for
two populations; Kruskal-Wallis
test for >2 populations

Standards
Compliance

Estimating quantiles, proportions,
and confidence limits on mean

Estimating quantiles, proportions,
and confidence limits on median
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Table I11.2: Design of Water Quality Monitoring Systems (Ward et al., 1990)

Information Graphical Parametric Statistics Nonparametric Statistics
Requirement
Trends Annual Box- | Linear Regression, t-test for Seasonal Kendall Test/Slope
and-Whisker | significance of slope (Snedecor and Estimator (Gilbert, 1987)
plots; time Cochran, 1980)
series
Difference in Box-and- Student’s t-test; Paired t-test; Seasonal Hodges-Lehman
Populations Whisker; ANOVA (Snedecor and Cochran, estimator (Hirsch, 1988);
Time series 1980); Sample mean or geometric Mann-Whitney test,
mean with confidence limits (Gilbert, | Wilcoxon Signed rank test;
1987); sample standard deviation Kruskal-Wallis test
with confidence limits (Sachs, 1984) | (Conovor, 1980); Sample
median with confidence
limits (Gilbert, 1987)
Standards Time series Proportion of Excursions (Ward et al. | Proportion of Excursions
Compliance plot with 1988); Confidence limit on (Ward et al. 1988);
Excursion proportions (Gilbert, 1987); Test for | Confidence limit on
limit equality of proportions (Snedecor proportions (Gilbert, 1987)

and Cochran, 1980); Tolerance
Intervals (Conovor, 1980)

Table I1L.3: Statistical Methods in Water Resources (Helsel and Hirsch, 1992)

Information Graphical Parametric Statistics Nonparametric Statistics
Requirement
Trends Regressionof Y on T Mann-Kendall test; Seasonal Kendall

test

Difference in
Populations

Side-by-Side
boxplots; Q-Q
plots,
Scatterplots with
x=y line

Paired data: t-test

Independent data: t-test
for 2 groups, ANOVA
for >2 groups,
multifactor ANOVA,
two-factor ANOVA

Estimating magnitude:
confidence interval for
difference between
means, mean difference
t-test; multiple
comparison tests

Paired data: sign test; signed-rank test

Independent data: Rank-sum test,
Kruskal-Wallis test for one-factor >2
groups; ANOVA on ranks; mulifactor
test, Blocking — Friedman’s test;
median aligned-ranks ANOVA;

Estimating magnitude: Hodges-
Lehmann estimator; median difference
sign test

Standards
Compliance

Confidence intervals
for mean; prediction
intervals; confidence
intervals for quartiles

Confidence intervals for median;
prediction intervals; confidence
intervals for quartiles
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Recommended Guidance for Statistical Analysis of Water Quality Data

In the search for guidance (i.e. widely applicable and accepted instructions or
protocols) on data analysis methods, it appears that no major entity has established a set
of comprehensive standards for data analysis procedures. However, the nation’s major
earth science and environmental agencies, the United States Geological Survey (USGS)
and U.S. Environmental Protection Agency (EPA) respectively, have many publications
that often serve to guide those who are performing water quality data analysis.

The USGS has no published defined guidance for analysis of water quality data,
but does have the largest collection of published water-quality assessments. In these
studies, authors often site USGS researcher’s publications in their data analysis. For
example, Helsel and Hirsch (1992), the textbook mentioned above, is commonly cited as
a reference for using the Seasonal Kendall test for detecting trend. In Hirsch (1988), the
Hodges-Lehmann class of estimators is found to be robust in comparison to other
nonparametric and moment based estimators for determining the magnitude of changes of
various constituents between two time periods (step trend). A seasonal Hodges-Lehmann
estimator was also developed in this study. By the fact that they are commonly cited in
many USGS water quality studies, these types of publications serve as guidance for water
quality data analysis in the USGS.

In an academic study, Montgomery and Reckhow (1984) recommend certain
techniques for detecting trends in lake water quality, and go on to recommend these
procedures for other water bodies as well. This paper stresses the need to formulate a
hypothesis, stating that it is only the hypothesis formulated that is being tested. Hence, if

information is going to be used in planning and management, one must make sure that the
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hypothesis test conducted actually addresses the issue of concern. The authors also
recommend plotting the data before choosing the statistical test, as these plots (time
series, cumulative sum, histogram, normal probability) can give a visual impression of
degree of trend, periodicity, and distribution assumptions. The following statistical tests
were recommended according to their data characteristics: (1) for normal and
independent data, use two-tailed t or F tests, (2) for normal and dependent data, use a t-
test based on the effective number of independent samples, (3) for nonparametric and
independent data, use the Mann-Whitney test for a step trend, and Spearman Rho for a
linear trend, and (4) for nonparametric, dependent data use correction values on the tests
in (3). It was suggested to use statistical tests for dependent data, almost exclusively
when dealing with lakes.

Another academic study explores the applicability of the t-test for detecting trends
in water quality variables. Montgomery and Loftis (1987) reviewed the effects of non-
normality, unequal variances, serial dependence, and seasonality on the performance of
the two-sample t-test. The results of this study “suggest that the t-test is robust for non-
normal distributions if the distributions have the same shape and sample sizes are equal”.
It is also robust for unequal variances if the sample sizes are equal. If either of these
considerations is not met, as well as the presence of serial dependence or seasonality,
then the t-test is not a robust test to detect a step trend.

Another non-agency study, Harcum et al. (1992), recommends using the Seasonal
Kendall-tau (SKT) test on monthly data for short periods (less than 10 years) when no
serial correlation exists and there is less than 50% missing values. When serial

correlation exists, the recommendation is to collapse the data to quarterly values. “Use
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the Mann-Kendall test on monthly data with larger records and less than 50% missing
values, and collapse to quarterly if greater than 50% missing values.” For collapsing, it
recommends using median values, and for serially correlated data with long records, a
corrected Seasonal Kendall Tau test.

A type of graphical display that is becoming more widely recommended and used
in data analysis is the box plot. McGill et al. (1978) describes three variants of the box
plot display, which are used in exploratory data analysis and visual summaries. This type
of data manipulation does not involve statistics, but an interesting comment from the
authors states that “if the notches about two medians do not overlap in this display, the
medians are, roughly, significantly different at about a 95% confidence level”. Although
the authors explain that the user’s personal preference is the best criterion for
interpretation, this article suggests that graphical displays of data “provide insight into the
meaning of the data without the possibility of misinterpretation due to unwarranted
assumptions”.

Using a study conducted in New Zealand to determine effects of alluvial gold
mining operations on benthic invertebrate communities, McBride (1998) demonstrated
that traditional point hypothesis tests may not provide satisfactory answers to questions of
environmental impact, because they might not be asking or addressing the right
questions. Using a standard point hypothesis test, a researcher would examine the null
hypothesis that there is no difference at all between the populations being compared, in
this case, benthic invertebrate taxonomic richness upstream and downstream from the
mining site. The hypothesis is tested by calculating the probability of getting results at

least as different as those measured merely by chance if this hypothesis were true
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(McBride, 1998). If the probability is small (say, less than 5%, p <= 0.05), then the null
hypothesis is rejected and a “statistically significant” difference has been detected. Using
the standard t-test analysis procedure, McBride (1998) found that 4 of the 6 streams
showed a “statistically significant” difference between upstream and downstream sites
from the mining operation. (See Appendix A for data and results)

The problem with these results lies in the fact that the point null hypothesis says
that two of the streams show no numerical difference at all, which can hardly be expected
in an ecological situation, teeming with natural variability. (McBride, 1998) A better
question would be whether there is an “ecological difference” between sites (McBride,
1998). Using the theories of interval testing, an ecological interval could be established
corresponding to differences that ecologists deem to be “ecologically significant”. If the
true difference lies within the interval, the sites would still be “equivalent”, and if not,
then the sites would be “inequivalent” (McBride, 1998).

It is also possible to set-up the data analysis in two different ways, one with a
hypothesis that the differences between populations are equivalent, or one in which they
are not (McBride, 1998). When testing using the hypothesis that the sites are equivalent,
then only 2 of the 6 streams are found to be inequivalent, or impacted by mining.
However, when the hypothesis is that the sites are inequivalent (the difference in means
lies outside of the equivalence interval), only one of the streams is deemed equivalent,
therefore mining has impacted 5 streams. (McBride, 1998) The information produced is
very different, and reflects an emphasis or non-emphasis on environmental protection, a
key point to environmental management. Testing the null hypothesis that the streams are

equivalent protects the environmental user’s risk, resting the “burden of proof” on the
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monitoring system to show that an impact has occurred. However, the latter approach of
testing a null hypothesis of inequivalence is a more ‘precautionary’ approach, assuming
the stream has been impacted, unless proven otherwise (McBride, 1998). These results
show the importance of complete understanding of the implications behind each
hypothesis to management decision making. These results also show the importance of
determining the test hypothesis before analysis, as information can change depending on
the structure of the hypothesis.

McBride (1998) also explores the differences between hypothesis testing and
using Bayesian statistics, which establishes a degree of belief in the hypothesis, then
updates the belief in light of the data. “Using a Bayesian test procedure only depends on
the data obtained, and can be viewed as a weight for or against equivalence, which might
be the most direct answer for the original question asked: are upstream and downstream
sites of the mining operation equivalent?” (McBride, 1998)

The largest collection of guidance for data analysis was found in publications by
the U.S. Environmental Protection Agency. Guidance has been published by the EPA for
the states’ submittal of 305(b) and 303(d) reports. However, no specific statistical
methods appear to be endorsed by the organization for these reports. For 303(d), it is
stated that states should determine threatened waters by data showing a statistically
significant declining trend. The state’s report should describe how the trend was
determined, but no particular requirements for trend detection are mentioned (EPA,
1998). The EPA does state that it prefers to base listing decisions on monitored data for
all their waterbodies, though it recognizes most states do not have a comprehensive

enough monitoring program. This recommendation is due to the EPA’s desire that listing
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decisions be based on sound, high-quality, scientific information. These 303(d) listing
seem to be closely linked and dependent on the states’ 305(b) reports and designated use
support determinations.

The Guidelines for Preparation of State Water Quality Assessments (305(b)
Reports) and Electronic Updates for the 1998/2000 Reporting Cycle (EPA, 1997a)
advises entities to document summary statistics for use support and the approaches used
to identify causes and sources of impairment (i.e. standards violations), along with
confidence levels. The major reporting format is miles and acres of designated
threatened, use supporting or non-supporting water bodies, but no mention is made of
how statistically sound inferences, from limited samples, are to be applied to an entire
water body. However, the EPA does make recommendations on how states should
determine use support numerically and narratively. (See Tables 111.4 and III.5)

This literature review found that the EPA mainly publishes guidance that helps
the states and other reporting entities compile and interpret information to support EPA
rules and programs. One such guidance is the Information Collection Rule: Draft Data
Analysis Plan (EPA, 1997b). One objective of the ICR is to collect data on specific water
quality constituents (i.e. DBP precursors, disinfectants) and use this data to characterize
source water parameters that influence disinfection byproduct (DBP) formation, refine
models for predicting DBP formation, and establish cost-effective monitoring techniques.
The guidance discusses the need to characterize baseline conditions and predict changes
and impacts, but does so by asking questions about how constituent data is to be
evaluated without providing answers. The only statistics mentioned in the document are

options for summary statistics used to characterize the data, i.e. averages, ranges and
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percentiles with confidence intervals, and cumulative probabilities. This guidance does

suggest that the decision on what statistical approach to use for aggregating the

occurrence data will depend on the specific question which is trying to be addressed.

Table I11.4: Recommendations from EPA’s 305(b) Guidance
for Interpreting Water Quality Criteria (EPA, 1997a)

Parameter
type

Fully Supporting

Impaired

Partially Supporting*

Not Supporting*

Conventional

Criterion exceeded in < 10 percent of
measurements

Criterion exceeded in 11 to 25
percent of measurements

Criterion exceeded in > 25
percent of measurements

Toxicants

No more than 1 exceedance of acute
and chronic criterion within 3 yr.
period (at least 10 measurements over
3yr.)

More than one exceedance of
acute or chronic criterion, but
in < 10 percent of the samples

Acute or chronic criterion
exceeded in > 10 percent of
the samples

Biological
integrity

Reliable data indicate functioning,
sustainable biological assemblages
none of which have been modified
significantly beyond the natural range
of the reference condition

At least one assemblage
indicates moderate
modification of the biological
community compared to the
reference condition.

At least one assemblage
indicates nonsupport. Data
clearly indicate severe
modification of the
biological community
compared to the reference
condition.

Habitat

Reliable data indicate natural channel
morphology, substrate composition,
bank/riparian structure, and flow
regime of region. Riparian vegetation
of natural types and of relatively full
standing crop biomass.

Modification of habitat slight
to moderate usually due to road
crossings, limited riparian
zones because of encroaching
land use patterns, and some
watershed erosion. Channel
modification slight to
moderate.

Moderate to severe habitat
alteration by channelization
and dredging activities,
removal of riparian
vegetation, bank failure,
heavy watershed erosion or
alteration of flow regime.

Toxicity -
aquatic or
sediment

No toxicity noted in either acute or
chronic tests compared to controls or
reference conditions

No toxicity noted in acute tests,
but may be present in chronic
tests in either slight amounts
and/or infrequently within an
annual cycle.

Toxicity noted in many
tests and occurs frequently.

Bacteria

E.coli and enterococci - Geometric
mean of samples taken should not be
exceeded and single sample does not
exceed the maximum allowable
density

Fecal coliform - geometric mean does
not exceed 200 per 100ml based on at
least five samples in 30 day period and
not more than 10 percent of the total
samples taken during any 30 day
period have a density that exceeds 400
per 100ml

E.coli and enterococci -
geometric mean met; single
sample criterion exceeded
during the recreational season

Fecal coliform - geometric
mean met; more than 10
percent of samples exceed 400
per 100ml

Geometric mean not met
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Table II1.5: Recommendations from the 305(b) Guidance

for Making Use Support Determinations (EPA, 1997a)

ATTAINING IMPAIRED
Designated
Use Fully Fully Supporting, but Partially Supporting Not Supporting
Supporting Threatened
Aquatic Life No impairment | No impairment indicated by | Impairment indicated Impairment
indicated by all all (available) data types, by one or more data indicated by all
(available) data | but: types and no data types
types - one or more categories impairment indicated
indicate an apparent decline | by others
in ecological quality over
time
- potential water quality
problems requiring
additional data or
verification
- other information suggests
a threatened determination
Primary Bathing area Bathing area closure: Bathing area
Contact closure: - On average, one closure:
Recreation Use | - No bathing bathing area closure per | - On average, one

area closures or
restrictions in

year of less than 1
week’s duration

bathing area
closure per year of

effect during Bacteria: greater than 1
reporting period - See table 1 week duration, or
Bacteria: more than one
- See table 1 bathing area
closure per year
Bacteria:
- See table |
Drinking Water { Contaminants Contaminants are detected, Contaminants exceed Criteria exceed

do not exceed
water quality
criteria and/or
drinking water
use restrictions
not in effect

but do not exceed water
quality criteria and/or some
drinking water use
restrictions have occurred
and/or the potential for
adverse impacts to source
water quality exists

water quality criteria
intermittently and/or
drinking water use
restrictions resulted in
the need for more than
conventional treatment
with associated
increases in cost.

water quality
criteria
consistently
and/or drinking
water restrictions
resulted in
closures.

Fish/Shellfish
Consumption

No fish/shellfish
restrictions or
bans are in
effect.

“Restricted
consumption” of fish in
effect or a fish or
shellfish ban in effect
for a subpopulation that
could be at potentially
greater risk, for one or
more fish/shellfish
species.

“No consumption”
of fish or shellfish
ban in effect for
general population
for one or more
fish/shellfish
species or
commercial
fishing/shellfishin
g ban in effect
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The Monitoring Guidance for the National Estuary Program (EPA, 1992) is
another example of guidance to support an EPA program. One of the five steps outlined
in the recommended design framework is to “establish testable hypotheses and select
statistical methods”. The guidance states that “the recommended procedure for ensuring
that sufficient information and the right type of information is developed in the
monitoring program is to specify, prior to the collection of any samples, the statistical
model that will be used to analyze the resulting monitoring data, and to specify testable
hypotheses™. The selection of the hypothesis is discussed in its relationship to the
objective of the monitoring program and the question needing to be answered. As far as
a recommendation of statistical methods, the guidance provides a list of textbooks on
monitoring design and statistics: Sampling Design and Statistical Methods for
Environmental Biologists (Green, 1979), Statistical Methods for Environmental Pollution
Monitoring (Gilbert, 1987), Sampling Techniques (Cochran, 1977) and Statistical
Principles in Experimental Design (1971). It also recommends several general statistics
books, and multivariate statistics books. This guidance also gives a good explanation of
the theory of statistical power and its importance as an evaluation method for the ability
of a monitoring program to detect statistically significant differences.

The most comprehensive of EPA’s guidance in terms of statistics is the
Monitoring Guidance for Determining the Effectiveness of Nonpoint Source Controls
(EPA, 1997¢c). This document dedicates a whole section to statistics, covering estimation
and hypothesis testing, characteristics of environmental data, and recommendations for
selecting statistical methods. Many of the recommended methods are adapted from the

textbook Design of Water Quality Monitoring Systems by Ward et al. (1990), which was
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reviewed at the beginning of this chapter. This guidance covers the theory and application
of summary statistics, graphical data display, evaluation of test assumptions (i.e. tests for
normality), and provides a list of references and useful software for data analysis. The
guidance also covers regression techniques, analysis of covariance, correlation
coefficients, multivariate analysis, and extreme events. The statistical tests covered and
explained in the guidance are listed in Table II1.6 below.

Table II1.6: Recommended Statistical Analysis Tests for Determining
Effectiveness of Nonpoint Source Controls (EPA, 1997¢)

Tests for One Sample or Paired data Student’s t-test
Wilcoxon Signed-Rank test
Sign test
Two-sample tests Two-sample t-test
Mann-Whitney (Wilcoxon’s rank-sum) test
Magnitude of differences Confidence interval of differences between means
Hodges-Lehmann Estimator
Comparison of >2 Independent Samples ANOVA (one-factor and two-factor)

Kruskal-Wallis test
Ranked transformed ANOVA
Friedman test

Multiple comparisons Tukey’s method

Bonferroni t-test

Duncan’s multiple range test

Gabriel’s multiple comparison procedure
(REGW) mutiple F-test and range test
Scheffe’s multiple-comparison procedure
Waller-Duncan k-ratio test

Monotonic Trends Mann-Kendall test
Seasonal Kendall test

The EPA has established guidelines for Statistical Analysis of Groundwater
Monitoring Data at RCRA (Resource Conservation Recovery Act) Facilities (EPA,
1989;1992). Five statistical methods were outlined in the Final Rule: (1) a parametric
analysis of variance (ANOVA), (2) a nonparametric ANOV A based on ranks, (3) using
tolerance levels or prediction levels from background data and then comparing each
constituent to the upper levels, (4) a control chart approach which gives control limits for

each constituent, and then comparing sample values to these limits, and (5) another
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statistical method submitted by operator and approved by the Regional Administrator.
The guidance provides flowcharts to help operators decide which method to use, as well
as ways to check distribution assumptions and homogeneity of variance. The 1992
addendum adds several recommendations. It addresses more methods for checking
assumptions for statistical procedures and homogeneity of variances, as well as
recommendations for handling nondetects. For comparison of populations (wells to
background data), the guidance addendum adds (1) the nonparametric Kruskal-Wallis
test, and (2) the nonparametric Wilcoxon Rank-Sum (Mann-Whitney) test for two
groups.

The EPA also has research publications that can be viewed as endorsements for
particular methods. In Loftis et al. (1989), seven statistical tests for trend were evaluated
under various conditions and performance was compared using actual significance level
and power. The evaluations resulted in the following recommendation by the authors: for
annual sampling use the Mann-Kendall test for trend, and for seasonal sampling, use
either the Seasonal Kendall test or the Analysis of Covariances (ANOCOYV) on ranks test.

A guidance document for determining improvements from agricultural nonpoint
source control programs was developed and published by North Carolina State University
for the EPA (Spooner et al., 1985). The authors give recommendations on monitoring
design, appropriate hypotheses, data requirements, assumptions, and testing procedures.
For time trend analysis without correction for meteorological variables, Spooner et al.
(1985) recommends the Students t-test, graphical/regression analysis of the concentration
versus BMP application level, or the use of a Quantile — Quantile (Q-Q) plot. Time trend

analysis corrected for stream flows should use separate linear regressions of

32



concentrations versus flows for the pre- and post-BMP periods. Then, the slopes can be
compared for equality. For upstream/downstream analysis, again the recommendations
are to use Students t-test, Q-Q plots, or linear regression of concentrations versus BMP
implementation level or flow. Finally, for paired watershed analysis, the authors
recommend linear regressions of the concentrations for the treatment versus the control
watersheds for both the calibration and land treatment time periods. A Students t-test can
be performed to determine if the “predicted treatment watershed values at the mean
control watershed concentration decreses over time” (Spooner et al. 1985).

Although not a published document, the EPA is working on a Technical Guidance
on Monitoring and Data Interpretation to Support Implementation of Water Quality
Standards (EPA, 1999). This document is in outline form, but has the objectives of: (1)
improving the scientific basis of decisions to characterize waters as being compliant,
threatened or impaired; (2) providing guidance for developing an assessment
methodology; and (3) promote functional integration of monitoring and data sharing, data
analysis and interpretation across state programs responsible for water quality
characterization and decision making. The document was written to support state water
quality stream standards, 305(b) and 303(d) requirements. Although it makes no
statistical recommendations itself, the guidance asks that protocols be established for
determining standards compliance and determining trends, as well as makes
recommendations for the characteristics of the data needed to support decision making
(i.e. coverage, number of samples, gaps in record, frequency of samples).

With the exceptions discussed above, attempts to produce standard sets of

guidance procedures for water quality data analysis are relatively few and uncoordinated
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between agencies. In the field of groundwater monitoring, Adkins (1992) states that “due
to the wide variety of information needs and site conditions, it is impractical to expect a
single data analysis protocol to be suitable for all groundwater quality monitoring
systems...[and that] no generally acceptable design framework for the development of
groundwater quality data analysis protocols exists today”. Therefore, instead of
recommending specific analysis procedures, Adkins (1992) presents a framework for the
development of groundwater quality data analysis protocols.

The next step of the literature review was to determine what the actual current use
of statistics is in water quality data analysis. Although general standard methods for
water quality monitoring analysis may not be published, it is hypothesized that they are
established through common practice, especially within organizations and types of

monitoring entities.

Peer Reviewed Water Quality Assessments

This section serves to establish the current use of statistics, beyond guidance, in
the water quality field. To gain a comprehensive view of the use of statistics, recent
issues of five major environmental refereed journals were examined: Journal of American
Water Resources Association, Environmental Monitoring and Assessment,
Environmental Management, Water Resources Research and Marine Pollution Bulletin.
The peer-reviewed studies included here are limited to those which sought information
related to environmental management: Temporal Trends, Differences in Population
(including upstream/downstream differences, before/after differences, and spatial

differences), and Standards Compliance.
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Trend Analyses

Most trend analyses were performed with non-parametric tests for trend, to avoid
complications in the data set and assumptions of normality, making the tests more robust.
The most popular analysis was the Seasonal Kendall Tau (seasonal extension of the
nonparametric Mann-Kendall) test for monotonic trend, used in 12 out of the 19 studies
where trend was determined (highlighted in gray, Table I11.7). It is especially popular
with USGS studies. The USGS is also very thorough about performing the test on both
the original data and flow-adjusted concentrations, but only if a strong correlation exists
between concentration and flow. All studies reviewed which dealt with trend detection
are summarized in Table III.7. A few of the studies used alternative procedures to

determine trends, as summarized below.

Lavenstein and Daskalakis (1998): The Kendall-tau nonparametric test for linear
correlation was used to determine trends in constituent data from 3 Mussel watch

programs.

Stoddard et al. (1998): In order to infer regional trends (over several monitoring sites
and data sets), this study employed a variation of meta-analysis. Trends were assessed
through the use of the Seasonal Kendall-tau test, and then the resulting statistics were
combined through a technique analogous to ANOVA, to produce quasi-regional
estimates of changes for key chemical variables. This technique is referred to as Analysis

of Chi-Squares.
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Table II1.7: Water Quality Assessments Involving Trend Detection

Duncan's new multiple range test (Ott,
1988) - test of the diff. In means of
multiple pops., % reduction of means

Auto-regressive first order process,

Clow and Mast [USGS NP None stated

(1999)

Baldys, Ham [USGS NP Null hypothesis of no

and Fossum significant trend

(1995)

Mattraw, USGS, NPS and |[NP None stated

Scheidt and SFWMD

Federico

(1987)

Rinella (1986) [USGS NP None stated

Berndt (1996) |USGS NP None stated

Mueller (1995) |USGS NP None stated

Mueller (1990) |USGS NP None stated

Snyderetal. |Academia NP, Parametric null = no tendency for

(1998) one sampling location
to have nutrients
greater than another
location

Stoddard et al. |EPA, Academia, |NP None stated

(1998) Vermont DEC

Pinsky et al. EPA, Academia |NP, Parametric None stated

(1997)

comparing means/medians

Takita (1998) [Susguehanna NP None needed Double mass comparison
Havens etal. |SFWMD Parametric None stated Satterwaite's t-test
(1996)
Dennehy et al. |[USGS NP Null states that no {e)
(1995) trend exists
Butler (1996) [USGS NP, Parametric, Null means there is no
Parametric, NP trend or no sig. diff

between

means/medians
Smith, USGS NP None stated
Alexander and
Wolman (1987)
Vaill and Butler [lUSGS NP Null hypothesis of no
(1999) trend
Heiskary, Minnesota NP Null hypothesis of no  |Kendall's tau-b (Gilbert, 1987)
Lindbloom and |Pollution Control trend
Wilson (1994) |Agency
Lavenstein and [NOAA NP None stated Kendall-tau test for linear correlation
Daskalakis
(1998)
Brown et al. NOAA NP None Stated Spearman-rank Correlation method,
(1999) meta-analysis

36



Snyder et al. (1998): This study used Duncan’s new multiple range test to test the
difference in means of multiple populations. Although this seems like a difference in
population’s study, the % reduction in means was used to support evidence of temporal

trends.

Pinsky et al. (1997) and Takita (1998): These two studies didn’t use statistical hypothesis
tests to determine trends, and instead used information from the actual data. Pinsky et al.
(1997) just compared means/medians and inferred trends with an auto-regressive first
order process. Takita (1998) used plotting procedures to determine the data’s approach

towards a trend, called double mass comparison.

Havens et al. (1996): This study from the South Florida Water Management District used

Satterwaite’s t-test to determine trend.

Butler (1996): In order to determine smaller trends in the data without the assumption of
a monotonic trend, this study used a step-trend analysis, using two-sample t-tests, along
with the Wilcoxon Rank-Sum test. Butler (1996) did use the flow-adjusted SKT test for

periodic and monthly data trends, but for annual data, used a linear regression technique.

Vaill and Butler (1999): Although this study performed the standard Seasonal Kendall

test for monotonic trend analysis, it also looked at step trends where a known event

occurred at a specific time in the watershed. The author used a parametric two-sample t-
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test where the raw data was distributed normally, and the Wilcoxon Rank-Sum test where

the data was not normal.

Heiskary, Lindbloom and Wilson (1994): Trends were assessed using Kendall’s tau-b
statistical test, a non-parametric procedure that computes correlation coefficients between
variables. The null hypothesis was stated as no trend, and the strength of the relationship
was a function of both the correlation coefficient and the number of years of
measurement. This study also determined the sampling frequency needed to maximize
the power of detecting a significant change (established as weekly to allow a 70% chance
of detecting a 20% change over 10 years). To check the validity of their results, the
authors attempted to corroborate the results using trophic status, user perception,

watershed and modeling information.

Brown et al. (1999): The Spearman Rank correlation method, a bivariate nonparametric
procedure and a meta-analysis procedure (discussed further in Chapter V) were used to
examine relationships among chemical concentrations in sediment and fish tissue.
“Although the temporal trends in this study do not conform in the strictest sense to meta-
analysis assumptions of independence, it was assumed that the compartments analyzed
were distinct enough for synthesis into a single test for trend.” This was accomplished by
taking the significance levels for the Spearman rank correlations, transforming them into
z-values, combining them and transforming them back into a single p-value. This
resultant significance level gave an indication of consistency across compartments and

statistical certainty with which a trend exists for a contaminant at a site.
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Differences in Populations

There were a greater variety of tests chosen to determine differences in
population. Three major groups of analyses prevailed: (1) using Signed Rank, Rank Sum
or variations of those procedures, (2) using cluster type analyses and (3) using ANOVA
or variations. The most popular tests were the Wilcoxon Rank-sum/Mann-Whitney test
or its extension for more than 2 populations, the Kruskal-Wallis test (8 out of 20 studies
reviewed, light gray highlight in Table III.8) and the Analysis of Variance test (ANOVA
used in 5 out of 20 studies, dark gray highlight in Table I11.8). Most studies tested for
normality before choosing a difference test, though some just assumed nonparametric
statistics should be used. Almost all the tests used were for nonparametric distributed
data. With the exception of Dennehy et al. (1995), no hypotheses were given. But it was
evident by the testing that all performed a significance test with a null hypothesis of the
means/medians between groups being equal.

The USGS studies seemed to prefer the Wilcoxon Rank-Sum (Berndt, 1996;
Abeyta and Roybal, 1996) or Kruskal-Wallis test (Abeyta and Roybal,1996; McMahon
and Harned, 1998; Mueller, 1995; Dennehy et al., 1995). All of the studies reviewed are
summarized in III.8. Specific explanations of some of the more unique analysis methods

are provided below.

Arthur, Coltharp and Brown (1998): This was the only study that used the Wilcoxon

Signed-Rank test for differences, as opposed to the common Wilcoxon Rank-Sum test.
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Table I11.8: Water Quality Assessments Involving Differences in Populations

Author

Younos et al.

Monitoring Entity

VWRRC,

Distribution
Assumption

Actual Hypothesis

Stated
None stated

Test Used

(1998) Academia
Arthur, Academia NP None stated Wilcoxon Slgnedl Rank
Coltharp and
Brown (1998) .
Berndt (1996) |USGS NP None stated Wilcoxon Rank-Sum
Pinsky et al. |EPA, Academia  |NP, Parametric None stated xon RankaSum, Shi-Square test of
(1997) kypathiesis of egual pro ns in population
Abeyta and USGS NP, NP, NP, None stated
Roybal (1996) Parametric )V
Sample et al. {USDA NRCS NP, NP, NP None stated Rank Sum
(1998) Estimator
McMahon and [USGS NP None stated Kruskal-\Wallis, andl FuKey's Multiple
Harned (1998) Compafison . LTI .
Mueller (1995) |[USGS NP None stated Kiru Wallls:
Koebel, Jones |SFWMD NP, NP None stated
and Arrington
(1999)
Momen et al. |Academia Parametric, None stated
(1997) Parametric
Takita (1998) |Susquehanna NP None needed Plotted Annual Loads vs. Discharge Ratio
Dennehy et al. JUSGS NP Null states that no KrusKal-Wallis test-
(1995) difference exists
Snyder et al. |Academia NP? None stated Friedman's test (Gilbert, 1987), Cluster
(1998) Analysis (Davis, 1986), Cross-Correlation
Analysis
Stoe (1998) Susquehanna Parametric? None stated PCA, Cluster analysis, Habitat Assessment
scores and Biological Condition scores
Nimmo et al. |USGS, EPA, Parametric None stated
(1998) Academia, CDOW
Colmanand |USGS NP None stated
Clark (1994)
Rinella (1986) [USGS NP None stated Tukey's multiple comparison
Kennedy TxDOT, North NP None stated
(1995) Central Texas
COG et
Kress, Israel Parametric None stated GLM least squares, t-test, Mann-Whitney a-
Hornung and |Oceanographic parametric test
Herut (1998) |and Limnologicat
Research
Brown et al. NOAA NP None stated GT2 multiple comparison method
(1999)

Brown et al. (1999): The relative concentration of contaminants in sediment and fish

tissue were compared statistically using the GT2 multiple comparison method, which is

equivalent to performing a one-way ANOVA followed by a multiple-range test. In
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graphical displays of GT2 comparison intervals, those that do not overlap are

significantly different at the (p<=0.05) level.

Kress, Hornung and Herut (1998): The purpose of this study was to assess the influence
of dumping on the trace metal contents of deep-sea benthos. To compare the populations
from the dump sites to the fauna population at a control, the authors used a general linear
model of least squares, a t-test, and a Mann-Whitney a-parametric test at the 95%

confidence level.

Kennedy (1995): The Texas Department of Transportation used nonparametric
procedures to determine differences in stormwater runoff. Their specific purpose was to
determine whether a significant difference could be detected among runoff from four
different landuse categories. They used the Kruskal-Wallis test to determine if there was
a difference among the four sites, and then the Mann-Whitney test for each combination

of two-sites to determine the site of greatest difference.

Pinsky et al. (1997): In this study academia and the EPA assumed independence of the
wells that were sampled. For analysis of the proportions of wells with a certain
characteristic, the standard normal approximation to the binomial distribution was used to
generate confidence intervals, and a Chi-Square test was used to test the hypothesis of
equal proportions in two populations. The Wilcoxon Rank-Sum was used to test whether
the distribution of a quantitative variable was the same in two populations of wells. No

tests were performed within a well because of non-independence.
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Sample et al. (1998): The only USDA NRCS study reviewed used the general Rank-Sum
and Signed-Rank tests, along with a Hodges-Lehmann estimator to determine the

magnitude of increasing or decreasing water quality degradation.

Koebel, Jones and Arrington (1999): This study by the South Florida Management
district tried to determine water quality impacts from canal backfilling. The analysts used
several different tests for to detect differences in populations, including the Kruskal-
Wallis test, Dunn’s test for post hoc multiple comparisons of site differences, and

ANOVA with paired t-tests.

Takita (1998): This study’s purpose was to quantify nutrient and sediment transport in
the Susquehanna River Basin. To analyze for annual variation in loads, the author did

not even use statistics, but instead used a graphical procedure of plotting Annual Loads
vs. the Discharge Ratio. If a certain site’s plot differed from the baseline plot, then a

change in population was assumed to have taken place.
Snyder et al. (1998): To determine the impact of riparian forest buffers on agricultural
nonpoint source pollution, the authors used a cluster analysis and cross-correlation

analysis to support evidence of differences.

Stoe (1998): This study utilized a cluster analysis called Principal Components Analysis

(PCA) for water quality, along with a non-statistical Habitat Assessment Score and
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Biological Condition Score for an ecological assessment of differences between sampling

sites.

Standards Compliance

Determination of standards compliance was not commonly sought via statistical
tests in the research type assessments that were reviewed (see Table II1.9 for summary of
assessments which involved standards compliance). Therefore, part of this literature
review attempted to describe how states generate this information for their 305(b) and
303(d) reporting requirements, especially in light of the current 303(d) listings and
TMDL debate. Many states do not publish their assessment methodologies, so personal
communication via the phone and/or email was the primary venue through which such
information was gathered. The purpose was to try and establish if there are common
methods used by the states for their water quality assessments, not to document every
detail of their assessment methodology. It was found that documented analysis methods
or statistical tests are rarely used to determine use support assessments or standards
violations. Often only simple “percentage of standard exceedences” is used to assess a
water body, along with subjective evaluation of the waterbody according to narrative
criteria.

Table I11.9: Water Quali Standards Compliance

Assessments Involving

Author Monitoring Entity Distribution  Hypothesis Stated Test Used

Berndt (1996)|USGS NP None stated % exceedence of MCL, highest means
reported

Lappetal. [Academia NP None stated observed mean does not exceed DW

(1998) standard in Canada

Nimmo et al. {USGS, EPA, Parametric |None stated average concentrations compared to

(1998) Academia, CDOW chronic 4-day aquatic life criterion
(USEPA)

Bexfield and |USGS ? None stated compared daily and quartile

Anderholm concentrations to standards

(1997)
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State Determinations of Designated Use Support

New York: Judgements are made on use support according to narrative criteria
established by the state. New York stated that “the bulk of Priority Waterbody List
(PWL) information is reflective of evaluation as opposed to monitoring efforts. This
report did not qualify how the area of effect (i.e. stream miles) is determined for each
segment reported. They are currently implementing a rotating basin approach for future

assessments. (NYS Department of Environmental Conservation, 1998)

New Jersey: Judgements on use support are qualified by monitoring data and criteria
developed by the state. No statistical tests are used. However, the protocol for
determining use support is documented thoroughly. For example: for recreational use
support, data collected over 5 years was compared to the NJ Surface Water Quality
Standard criteria for fresh water streams, and use support determined according to the
criteria listed below in Table III.10.

Table I11.10: New Jersey Recreational Use Support Criteria

Use Support Assessment Criteria

Full Support The fecal coliform geometric avg. was <200
MPN/100ml and <10% of individual samples exceeded
400 MPN/100ml

Partial Support Fecal coliform geo. Avg. was <200 MPN/100ml but
>10% of samples exceeded 400 MPN/100ml

No support Fecal coliform geo. Avg. >200 MPN/100 ml and >10%
of samples exceeded 400 MPN/100ml

New Jersey also established its miles affected according to the criteria that the
number of miles is the distance between the 2 monitoring points plus 1000 feet upstream.
Other use support designations and trends were reported, but no protocol was

documented for their determination. (NJ Department of Environmental Protection, 1998)
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Region III (Delaware, Pennsylvania, Maryland, Virginia, West Virginia, District of
Columbia): Criteria for use support assessment are those recommended by the EPA for
305(b) reports (see Table II1.4 and II1.5). Some states use biology to determine use
support, following the EPA’s Rapid Bioassessment Protocol. “By and large, simple
percentages of standard violations are used to make a judgement call for water body

assessments” (Barath, 2000).

Oklahoma: This state delineates all of their criteria for use support determination, with
most criteria being comparisons of monitored data to standards. For example: Oklahoma
uses the EPA recommendations for numerical parameters (full support = <10%
violations, partial support =>11% but <25% violations, and no support = >25%
violations). At least ten samples are required for this determination in streams, and 20
vertical profiles in lakes. However, fewer can be used if exceedence is assured. Any
monitoring site shall not represent more than 10 wadable stream miles, or a lake area

more than 250 surface acres. (Oklahoma Water Resources Board, 1999)

Arizona: No trends are evaluated, and no statistical tests are used. The use support
criteria (see Appendix B) are enumerated from Arizona DEQ (2000). Arizona also uses
macroinvertebrate-based bioassessment criteria to determine use, generally following
EPA’s guidelines. However, this Index of Biological Integrity (IBI) is not statistically
based, it uses a scoring system and percentiles. No water body assessed as partially

supporting or non-supporting based solely on biocriteria will be placed on the state’s
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303(d) list prior to identification and cause of the impairment, as it could be the results of

natural phenomenon. (Marsh, 2000)

California: Individual regions do not provide information about how they determine use
support. The only known protocol is for Los Angeles, which uses the criteria

recommended by the USEPA (see Table I11.4 and III.5). (Richard, 2000)

Hawaii: Use support is determined partially by comparing bacteria and chemical water
quality data to state standards. For those categories which don’t have applicable state
standards, narrative criteria were created for judgement decisions instead of

numerical/statistical based decisions. (Teruya, 2000)

Virginia: Criteria for use support enumerated is by the state (see Appendix C). The
actual numerical/narrative decision protocol follows the EPA recommended criteria for
use support determinations. Assessment decisions are based on both monitored and
evaluated data. Virginia also sets protocols for determining affected areas, e.g. stating
that no station shall represent more than 10 miles of wadable stream. This determination
is a judgement-based decision taking several enumerated factors into account. (Virginia

Department of Environmental Quality, 1999)

South Carolina: This state uses the EPA’s recommended assessment criteria for 305(b)

reporting (See Tables II1.4 and II1.5 above). (Kirkland, 2000)
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Florida: As a portion of Florida's efforts, the state has adopted an Environmental
Mapping and Assessment Program (EMAP) type of statistical analysis. The goal is to
determine the overall conditions of water bodies within a geographical area. For
example, the state will make statements such as, "With a confidence level of .90, the
median value for NO3 in small lakes in north central Florida is (say) 1.3 mg/I plus or
minus 0.4 mg/l. The state has been broken into 20 geographical units based on
hydrologic drainage basins. These analyses will be performed for six resources. They
are confined ground water, unconfined ground water, small lakes, large lakes, high order
streams and low order streams. A sister organization in the state is conducting a similar

analysis for Florida's estuaries. (Copeland, 2000)

Tennessee: This state generally follows the EPA’s recommendations for use assessments
(See Tables II1.4 and II1.5 above), but has some discretion in the “magnitude and

duration” of water quality standard violations. (Denton, 2000)

North Carolina: Use support for 305(b) and 303(d) listing are based on monitored and
evaluated data, with more confidence placed on monitored data. Biological indexes and
physical/chemical data are used to determine use support, similar to the procedures
Arizona uses (See Appendix B). However, biological data/indexes take precedence over

chemical/physical data when determining use support. (Swanek, 2000)

Kentucky: Kentucky’s approach is a combination of targeted sites and random survey

sites. They mainly use biological data to determine use support. Many of their water
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quality stations are at sites also sampled biologically. However, there are a few sites,
mainly large rivers, where only water quality data are collected and from which use
assessments are made. The state has just embarked on an intensive watershed
monitoring program in 1998, in which the first 5S-year watershed cycle will concentrate
primarily on a broad picture of water quality in the state. (VanArsdall, 2000)

In this watershed cycle, the state will sample approximately 350-400 random sites
over the 5-year watershed cycle, concentrating on 1 to 3 major river basins each year.
The watershed will be sampled for macroinvertebrates and habitat. These samples will
allow the state to extrapolate aquatic life use to most miles of wadable streams from a
1:100,000 scale hydrologic network. (VanArsdall, 2000)

Kentucky does no random survey water quality sampling because of inadequate
resources. For targeted water quality sampling, the fixed statewide network consists of
71 sites located at the downstream reaches of 8-digit cataloging units, mid-unit in the 8-
digit watersheds, influent to major reservoirs, and major tributaries. These are sampled
bimonthly except when they fall into the watershed cycle, and then they are sampled
more frequently for that one year. In the rotating watershed water quality network, the
state will sample about 30 sites each year that fill in the hydrologic gaps in the fixed
network by picking up most of the Sth order waterhsheds. Some are also sited for other
purposes such as predominant land use, TMDLs, least impacted, etc... Sampling
frequency at these sites depends on the objective of the particular site. (VanArsdall,
2000)

Because of help from other federal and state agencies, Kentucky has much more

biological sampling resources at their disposal, and these resources are used for targeted
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biological sampling. They are able to sample most 4th order streams for at least one
assemblage and habitat. This informs the state which basins have problems that need to
be addressed by later sampling and mitigation activities. Over the 5-year watershed

cycle, this targeted biological sampling will total over 1000 sites. (VanArsdall, 2000)

Alabama: This state follows the EPA recommended assessment criteria (percentages for
chemical data). If there exists a large data set it is considered "monitored" data for
assessment. “For example, 5 month (June-October), once-a-month sampling is
considered monitored, but if the field personnel sample any less than this it would be
considered evaluated data.” Alabama is also developing specific site criteria for
biological, physical/chemical, and habitat data, as well as criteria for determination of
miles/acres affected. However, as of yet, Alabama does not have a state methodology for

judging biology index/metrices results. (Reif, 2000)

Conclusions
This review indicates that many types of analyses are being used to provide

information about water quality. The first major conclusion is that although there are
some who criticize significance testing (Chapter 1II), this type of analysis is alive and well
in the field of water quality. It is interesting to note that although hypothesis testing
seems to be popular, as evidenced by its inclusion in guidance documents and water
quality studies, the actual hypothesis tested is never reported, despite recommendations to
the contrary in many of the guidance documents (Gilbert, 1987; Ward et al., 1990; Helsel

and Hirsch, 1992; Montgomery and Reckhow, 1984; EPA, 1992; EPA, 1997¢).
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With a few exceptions (Heiskary, Lindbloom and Wilson, 1994; Momen et al.,
1997; EPA, 1992; EPA, 1997¢), the power of significance testing is not considered. The
weight of evidence in making a decision about trends or differences in populations relies
solely on the acceptable Type I error (o) and obtained significance level (p-value).

The literature review does not support the conclusion that there exist “de facto”
standards for data analysis. The review of refereed journals found a large variety of
graphical, statistical, and estimation analysis techniques. The EPA provides many types
of guidance for different regulatory programs, yet the analysis recommendations differ
between programs, and efforts do not seem to be coordinated between programs. It was
apparent that specific methods were preferred by the USGS for trend detection (Seasonal
Kendall test) and Differences in Populations (Wilcoxon Rank-Sum/Kruskal-Wallis and
ANOVA).

The major commonalties to all the data analyses performed was that with a few
exceptions: (1) justification was rarely given for choosing a certain test beyond the data
being parametric or nonparametric, (2) the hypothesis tested was rarely stated, (3)
alternative analysis methods, if explored, were not reported, and (4) the power of the
significance test was never calculated.

Given the extremely wide array of data analysis methods being employed in
producing information about water quality conditions, there is little reason to expect
‘comparable’ information is being produced in support of water quality management
decision making. This fact leads to many of the criticisms highlighted in the previous

chapter.
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Chapter IV. Evaluation of Information Comparability Through

Application of Different Data Analysis Methods

The previous chapters were dedicated to compilation of information in order to
determine how water quality data are being analyzed for information purposes. Recent
criticisms of statistical significance testing have questioned the main process through
which information is produced from water quality data, i.e. significance testing.
Nevertheless, the literature review established that using hypothesis testing is accepted in
texts, guidance documents, and water quality studies published in refereed journals.

The literature review also establishes that there are a wide variety of methods that
are available for data analysis. Many times, those who are analyzing water quality data
are not statisticians, and rely on these texts, guidance documents, and observations of
previous studies to select the analysis methods.

The purpose of this chapter is to document the connections between selection of
data analysis methods and the comparability of the information produced. Using a ‘high
quality’ data set provided by the New Zealand National Institute of Water & Atmospheric
Research (NIWA), several different analysis methods were performed in the areas of
trend detection, differences in populations, and standards compliance. The results of the
different methods within each area were compared in order to illustrate how information
changes depending on the analysis methods used.

Three statistical packages were utilized in the data analysis procedures. WQStat

Plus™ (Version 1.5, developed by Intelligent Decision Technologies) was chosen for its
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inclusion of nonparametric procedures, easy flow-adjustment and water quality data
analysis focus. Minitab™ (Release 12, developed by Minitab Inc.) was chosen because of
its broad base of statistical procedures, both parametric and nonparametric. MS-Excel™
(part of the Microsoft Office package) was also used for its basic statistical functions and
ease of data manipulation (the data used was originally received in MS-Excel™ format).
Comparison of results of like tests between statistical packages should also help to
demonstrate the variability of information.

There are a large number of statistical packages that may be more commonly used
for data analysis (i.e. S-Plus, SAS), but were not available for this research. It was
hypothesized that results from different packages would be identical, and so no effort was
made to acquire these packages prior to data analysis. This hypothesis will be discussed

later in this chapter.

Approach for Demonstrating Various Statistical Methods on New Zealand Data Set

The New Zealand River Network data set was chosen for analysis because of its
high quality and accessibility. The data record is from a 77 river-site monitoring network
distributed throughout New Zealand’s North and South Islands (Smith et al., 1996). The
monitoring network’s design is well documented and the network has been operated
consistently over its 10-year life with excellent quality control procedures in place. The
data was readily made available, in an easy to use format (MS-Excel™ Spreadsheets) for
purposes of this study. (Refer to Appendix D for the actual data used in this study)

The format of the New Zealand data allowed for easy transition to data analysis, a

reason that this particular set was chosen. The New Zealand data was accompanied by
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meta-data that described the monitoring sites, how the samples were collected and
analyzed, and all other ancillary data which would be of use to a data analyst (i.e. dates
and units of measurement). Censored data (e.g. nondetects) were not used in this data, as
all concentrations were reported. A few sites had missing data for certain dates, which
were represented with a period (.) in the appropriate worksheet cell.

The only manipulation required for importation of the data into WQStat Plus™
and Minitab™, was cutting and pasting of the data columns into the appropriate format
for the respective software. The required formats were described in the software user
manuals (Intelligent Decision Technologies: p 34-50, 1998; Minitab: p 2-1 —2-11, 1997).

A preliminary analysis for trends was performed after the first five years of
monitoring, and results were published in a paper, Trends in New Zealand’s National
River Water Quality Network (Smith et al., 1996). This allowed comparison and
verification of results of trend analysis for this thesis with results from Smith et al.

(1996).

Selection of Three Sites and Constituents for Data Analysis

Not all sites or constituents of the River Network were analyzed as part of this
demonstration. Sites and constituents were chosen upon review of the trends paper
(Smith et al., 1996), and with input from Graham McBride, Project Director, NIWA,
Hamilton, New Zealand. Descriptions of the sites were provided in the appendices of the
New Zealand data set (Bryers, 1999; see Appendix D). For purposes of this study, four

data records, at four sites, were selected as follows:
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A. Site HM4 for BODS5 — This site is on the Waikato River, and is located
downstream of the catchment area. It has potential impacts from agriculture,
paper and pulp industries, and has additional inputs from Hamilton,
Ngaruawahia, Huntly, thermal power stations, swamps, pasture and coal
mining. (Bryers, 1999) The New Zealand Trends paper (Smith et al., 1996)

showed no trend for BODS after the first 5 years at this site.

B. Site RO2 for NH4 analysis — This site is on the Tarawera River, a major river
in the area, downstream of major pulp and paper industries and exotic forest
plantations. There is agricultural pasture in the valley. (Bryers, 1999)

The New Zealand Trends paper (Smith et al., 1996) showed an upward trend

in NH4 at (p<5%) level for the first 5 years at this site.

C. Site RO1 for NH4 analysis — This site will only be used in the differences in
population analysis. ROI1 is upstream of site RO2 (above) on the Tarawera
River. Between the two sites are potential environmental impacts from a pulp
mill (The Tasman Pulp and Paper mill), farming, a town, Kawerau, and a
geothermal area. (Bryers, 1999) This site was used as an upstream site for

differences in population’s analysis only.

D. Site HM6 for NO3 data — This site is not downstream of any urban sources,

but is a major tributary of the Waihou River. It contains or will contain

discharges from several large gold mining operations as well as agricultural
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impacts from some pasture usage. (Bryers, 1999) The New Zealand Trends
paper (Smith et al., 1996) showed an upward trend of NO3 at the (p<5%) level

after the first 5 years.

Testing Data for Normality

In order to illustrate the importance of distribution assumption in hypothesis
testing, it was necessary to test each data set for normality. This was accomplisbed using
the Chi-Squared Goodness-of-Fit Procedure in WQStat Plus™ (Intelligent Decision
Technologies: p 71-72, 1998). In this procedure the calculated chi-square test statistic is
compared to a table of chi-squared distributions with alpha = 0.05 and K-3 degrees of
freedom, where K is the number of subgroups, or number of observations divided by an
appropriate number (12 in this case). The null hypothesis as stated in WQStat Plus™
(Intelligent Decision Technologies: p 72, 1998) is:

Ho: the data are normally distributed (D)

Vs.

Ha: the data are not normally distributed (2)

If the calculated value exceeds the tabulated value, then the program fails to reject the

null hypothesis.

Flow Adjustment Procedures

Flow adjustment of the raw data was performed only in WQStat Plus™, as this
was the only package that had the ability to directly calculate the flow-adjusted

concentrations. This procedure was used to help determine how flow can affect or
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change the information produced from the monitoring data. Flow adjusted concentrations
(FAC) were used in normality testing, trend detection and standards compliance testing.
The most common application of flow adjustment is trend analysis. For water quality
constituents that are closely related to flow, an apparent trend in quality could be caused
by a change in flow. By flow adjusting before trend analysis, the user can remove flow
effects and determine the magnitude and statistical significance of trends that are not
explained by flow. (Intelligent Decision Technologies p: 72, 1998)

WQStat Plus™ uses a log-log relationship assumption for its flow adjustment.
The logs of the raw data are plotted against the logs of the flow. Then linear regression
(least squares) is performed to determine the slope and the intercept of the line:

Log concentration = b*(log flow) + a
Then, from each water quality observation (concentration), the corresponding prediction
based on flow, b(log flow) + a, is subtracted. This produces a flow-adjusted series of
water quality observations with a sample mean of zero. To complete the adjustment, the
overall sample mean of the water quality constituent series is added back in to each
observation so that the mean of the flow-adjusted series is equal to the original mean.
(Intelligent Decision Technologies p: 72 - 73, 1998)

It is realized that this procedure can introduce bias and error into the flow-
adjusted data if the raw data does not fit the log-log model. However, the purpose of this
procedure for WQStat Plus™ and this research is to give an indication of how flow-

adjustment can change results from trend analysis.
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Statistical Methods Used to Determine Trends

Analysis of the New Zealand data set for trends includes data from all ten years.
As a means of additional quality control on the information being produced, analysis of
the first 5 years was compared to the same analysis performed by a study published after
the first 5 years of New Zealand’s monitoring effort, entitled Trends in New Zealand’s
National River Water Quality Network (Smith et al., 1996). The second 5-year data was
also analyzed separately, as well as a comparison of both 5-year analyses to an analysis
of the 10-year data. Analyses were performed on raw data and flow-adjusted
concentrations (FAC). The following statistical methods to detect trends were

performed:

A. Mann-Kendall Test/Sen Slope Estimator — WQStat Plus™

The Mann-Kendall test for temporal trend is a nonparametric test, which
uses the relative magnitude of the data, rather than actual values. The null
hypothesis as stated in WQStat Plus™ (Intelligent Decision Technologies: p
77, 1998) is:

Ho: No significant trend of a constituent exists over time 3)
versus the alternative hypothesis:

Ha: A significant upward or downward trend exists over time 4)

In WQStat Plus™, a normal approximation was used because the New
Zealand data set contained more than 41 points (sample size was
approximately 120 for each set). A test statistic, Z, is computed and compared

to a critical value, 7.4 » (for this two-tailed test). WQStat Plus™ tests for
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trend at the significance levels (corresponding to acceptable Type I error) of a
=0.2, 0.1, 0.05 and 0.01 respectively. (Intelligent Decision Technologies: p
77-80, 1998) In this procedure, Sen’s nonparametric slope estimator is also
calculated. This is a nonparametric procedure used to estimate the true slope.

(Intelligent Decision Technologies: p 81-82, 1998)

B. Seasonal Kendall Test — WQStat Plus™

The Seasonal Kendall Test is an extension of the Mann-Kendall Test that
removes seasonal cycles and tests for trend. WQStat Plus™ uses the
hypotheses listed above (equations (3) and (4)), and tests at the 80%, 90% and
95% confidence levels, which correspond to o = 0.2, 0.1, and 0.05
respectively. This procedure also includes a slope estimator. (Intelligent
Decision Technologies: p 82-85, 1998)

The Seasonal Kendall Test was also used to test for trends in flow data at
the three sites chosen: HM4, RO2 and HM6 for both 10-year data and each 5-
year data set. This was performed to help in interpretation of the flow-

adjusted trend results.

Statistical Methods Used to Determine Differences in Populations

The difference in population analysis was performed between the first 5-year and
second 5-year data sets for the sites HM4, HM6 and RO2, as well as a test between sites
RO1 and RO2 for NH4. The following tests, listed below, were performed for

comparability of results. For further demonstration of comparability of results, the two-
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sample t-test was performed in both MS-Excel™ and Minitab™, and the Mann-Whitney

test was performed in WQStat Plus™ and Minitab™.

A. Two Sample T-test — MS-Excel™ and Minitab™

This is a standard parametric statistical test; perhaps the most widely used
method for comparing two independent groups of data (Helsel and Hirsch,
1992). The t-test assumes that both groups of data are normally distributed
around their means, and that they have the same variance. The null
hypothesis for the two-sample t-test is stated in Minitab™ (Minitab™ Help,
1997) as:

Ho: py=py the means for groups x and y are identical ~ (5)

Vs.

Ha: py# py the means for groups x and y are not equal  (6)

A two-tailed test was used in the New Zealand data analysis to avoid any
assumptions of which group’s mean might be higher. Helsel and Hirsch
(1992) list five problems with the standard t-test that make it less applicable
for general use than a nonparametric test. These are: 1) lack of power when
applied to non normal data, 2) dependence on an additive model, 3) lack of
applicability for censored data, 4) assumption that the mean is a good measure
of central tendency for skewed data, and 5) difficulty in detecting non-
normality and inequality of variance for the small sample sizes common to

water resources data.
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To help in interpreting data analysis results, the following analysis
procedures were followed: First, each data set was tested for normality (see
discussion above). Then, a standard two-sample F-test for equality of
variances was applied using MS-Excel™. This test uses the F statistic and
distribution to test the following null hypothesis:

Ho: o’ = cr?'}. The variances of two populations are equal (7)

Vs.

Ha: o’ # Gzy The variances of the two populations are not equal(8)

The variances of site RO1 and RO2 for NH4 data rejected the null
hypothesis, thus proven to be not equal, so the t-test for unequal variances was
performed. All other data were analyzed with the two-sample t-test for equal
variances. The only difference between the two t-tests is in modification of

the degrees of freedom and t-statistic using Satterwaite’s approximation.

(Helsel and Hirsch: p126, 1992)

. Mann-Whitney test - WQStat Plus™ and Minitab™
This is a nonparametric test for difference in populations. The nuil
hypothesis tested in WQStat Plus™ (Intelligent Decision Technologies: p 95,
1998) is stated as:
Ho: The populations from which the two data sets have been drawn have
the same mean. 9
vs.

Ha: The populations have different means 10)
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WQStat Plus™ uses a normal approximation for sample sizes > 10 for the
test statistic calculation. It also tests and reports results for the 80%, 90%,
95% and 98% confidence levels (o of 0.2, 0.1, 0.05, and 0.02 respectively).
(Intelligent Decision Technologies: p 95 - 98, 1998)

Minitab™ calculates the test statistic and the attained significance level (p-
value), but it is not known if a normal approximation is used for large sample
sizes. The main deviation from the WQStat Plus™ procedure is that the null
hypothesis is stated as (Minitab™ Help, 1997):

Ho: the medians of two populations are equal (1)

Vs.

Ha: the medians of the two populations are not equal (12)

. Interval Tests — MS-Excel™

This is a parametric t-test procedure developed to test for differences in
populations. Interval tests are largely used in the pharmaceutical industry
involved in drug-testing analyses (Chow and Liu, 1992). The hypothesis for
an interval test can take two forms, one testing for equivalence between
groups, and one testing for inequivalence. Both the equivalence and
inequivalence tests are used to determine whether the difference between
means does not exceed an established interval. In the equivalence test, the
null hypothesis (meaning the tested hypothesis, not implying that the

difference is zero) is specifically:
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difference is zero) is specifically:
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Ho: lower bound of equivalence interval <= p, - p, <= upper bound of

equivalence interval (the difference in means lies within an accepted prior

established interval) (McBride, 1999) (13)
The null hypothesis for an inequivalence test is:

Ho: py - py <lower bound of equivalence interval

Or py - py > upper bound of equivalence interval (the difference in means

lies outside of an accepted prior established interval) (McBride, 1999) (14)

The difference between these two tests is that in the equivalence test, the
assumption is that the populations are statistically and ecologically
equivalent, whereas in the inequivalence test, the assumption is that the
populations are not equivalent (a hypothesis which takes more precaution).
Both tests recognize that the means will be different, but not necessarily
equivalent. (McBride, 1999)

The interval chosen for these tests in this analysis was one of +/- 20% of
the mean of the upstream or background data. While this was arbitrarily
chosen, the estimates provided in McBride (1998) served as a guide for the
magnitude. The purpose is to illustrate how different data analysis methods
affect information. Establishing an equivalence interval requires knowledge
of the behavior and affect of each constituent in the environment, something
which is beyond the scope of this thesis.

A highly detailed explanation of the development of this type of testing

used for environmental data can be found in McBride (1999a). The algorithm
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through which the tests were performed in MS-Excel™ can be found in

Appendix E (McBride, 1999b).

Statistical Methods Used to Determine Compliance (Standards Violations)

For these tests the New Zealand standard for BODS was compared to the data for
BODS5 from site HM4. Although the country has few national numerical standards, 2 or
3 ppm is often the accepted limit set by waste load allocations (McBride, 1999¢). The
data set for site HM4 never exceeded 3 ppm, so for the purposes of this illustration, the

excursion limit was set at 2 ppm. The following methods will be used:

A. Proportion Estimate — WQStat Plus™
This estimating procedure computes the proportion of observations in the
record that exceed a stated excursion limit and computes a confidence limit
for this proportion. In WQStat Plus™, the distribution model is the binomial
distribution (success/failure distribution), and the significance levels reported
are 95% and 99%. The proportions, upper and lower confidence limits are

given for each season and the overall data set. (Intelligent Decision

Technologies: p 98-100, 1998)

B. Tolerance Limits — WQStat Plus™

Tolerance limits define an interval that contains a specified fraction

(coverage) of the population with specified probability (confidence level).
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They are often used to compare concentrations from compliance stations to
the upper limit of the tolerance interval. Calculations for this procedure are
provided in the WQStat Plus™ user manual (Intelligent Decision
Technologies: p 100-103, 1998)

For the tolerance limit procedure, an interval was established with 95%
coverage from the 1* five years of data (background), and then the upper limit
of the interval was compared to the 2™ 5 years (compliance) data. If
compliance concentrations fall above the upper limit of the tolerance interval,
this provides statistical evidence of a difference (Intelligent Decision
Technologies, 1998). If more than 1-a fall outside the limits (5%) the
evidence of a difference is statistically significant. However any excursion of
the limit might indicate further need for investigation. (Intelligent Decision
Technologies, 1998) Both parametric and nonparametric estimating

procedures were performed for comparison.

. Tolerance Interval — WQStat Plus™

Like the Tolerance Limit procedure, the Tolerance Interval estimation
procedure is defined by tolerance limits for a specified coverage and
confidence level. However, in the tolerance interval procedure, an interval
was established from all of the data (instead of compliance data), which
contained 95% coverage at the 95% confidence level. This interval was
compared to the excursion limit of 2 ppm (instead of limit determined by

background data). This estimating procedure was performed both
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parametrically and nonparametrically. For a complete explanation of the
calculations, see the WQStat Plus™ user manual (Intelligent Decision

Technologies: p 108-110, 1998).

. Confidence Interval — WQStat Plus™

This estimation interval is constructed with a mean concentration
(parametric procedure) or a median concentration (nonparametric procedure)
with a designated level of confidence. If the entire confidence interval
exceeds the compliance limit, this is statistically significant evidence that the
mean concentration exceeds the compliance limit. (Intelligent Decision
Technologies: p 105-108, 1998) Both the parametric and nonparametric

procedures were used.

. Prediction Limits — WQStat Plus™

The prediction limit method used the 1% 5-year data as background to
establish an interval, and the 2" 5-year data were compared to the interval to
determine excursions. The interval includes k future observations from the
same population with a specified confidence (95%). If any observation
exceeds the bounds of the prediction interval, this is statistically significant
evidence that the observation is not representative of the background group.
(Intelligent Decision Technologies, 1998) If there is more than one source of
variation, the parametric Prediction Limit should is inappropriate. The

complete procedure can be found in the WQStat Plus user manual™
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(Intelligent Decision Technologies: p 103-105, 1998). Both parametric and

nonparametric methods were used for comparison.

Results of Data Analysis

The following section examines the results of applying the methods discussed
above. Particular attention is paid to comparing the differences in results (i.e.
information) that are consequences of changing the analysis method. It is the lack of
comparable information resulting from arbitrary selection of data analysis methods that is

the focus of the results presentation.

Testing for Normality

All data sets were tested for normality in order to interpret the resulting
information from parametric and nonparametric significance tests. This was
accomplished through the Chi-Square Goodness of fit test in WQStat Plus™, in which the
null hypothesis is that the data are normally distributed (stated in equation (1)).

Table IV.1: Normality Testing Results

Site Constituent Hypothesis Test Result Conclusion

RO1 NH4 (raw) Reject the null hypothesis Not normal

RO2 NH4 (raw) Fail to reject the null Cannot prove normal
RO2 NH4 (FAC) Fail to reject the null Cannot prove normal
HM4 BODS (raw) Reject the null hypothesis Not normal

HM4 BODS5 (FAC) Fail to reject the null Cannot prove normal
HM6 NO3 (raw) Fail to reject the null Cannot prove normal
HM6 NO3 (FAC) Fail to reject the null Cannot prove normal
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Comments

Raw vs. flow-adjusted concentrations (FAC) affected the outcome of this test.

Most data sets tested failed to reject the null hypothesis that they were normally

distributed. However, as discussed in the Background Chapter, failure to reject a null

hypothesis does not prove that it is true. This is why there is a question as to whether

these data are normally distributed or not. This test can only give confidence (95%) that

a data set is nof normally distributed. (See Appendix F for WQStat Plus™ results)

Results for Trend Detection

This analysis compared the Mann-Kendall/Sen’s Slope Estimator (MK) for trend

with the Seasonal Kendall (SKT) test on 10-year data, raw and flow-adjusted (FAC), as

well as the 1* and 2™ 5-year data. All calculations were performed using WQStat Plus™.

Table IV.2: Trend Detection Results for Site HM6, Constituent NO3

Data Test Results Slope Estimate
10yr—flow | SKT U - 80% Confidence Level -0.1073 units/year
10 yr — raw MK Fail to reject null of no trend 2.955 units/year
10 yr — raw SKT Fail to reject null of no trend 1.929 units/year
10yr-FAC | MK 1 - 95% Confidence Level 11.125 units/year
10 yr - FAC SKT 1l - 90% Confidence Level 8.953 units/year
I*'5 yr—flow | SKT U-95% Confidence Level -0.8778 units/year
1"Syr—raw | MK Fail to reject null of no trend -9.359 units/year
1"5yr—raw | SKT | U -80% Confidence Level -28.25 units/year
1" 5 yr-FAC | MK 1 - 95% Confidence Level 36.81 units/year
1*5yr-FAC | SKT |1 -90% Confidence level 28.42 units/year
2" Syr—flow | SKT Fail to reject null of no trend -0.1298 units/year
2" Syr-raw | MK Fail to reject null of no trend 7.953 units/year
2" Syr-raw | SKT Fail to reject null of no trend 20.13 units/year
25 yr-FAC | MK 1 - 90% Confidence Level 27.24 units/year
2""5yr-FAC | SKT |- 80% Confidence Level 23.28 units/year
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Results

Both tests showed no significant trend at any alpha (o) or confidence for the 10-
year raw data, but detected an upward trend in the 10-year flow-adjusted concentrations.
Mann-Kendall detected at the 0.05 a, and Seasonal-Kendall at the 90% confidence (o =
0.1).

The Mann-Kendall test resulted in no trend for the 1% 5-year raw data, the
Seasonal Kendall test detected a downward trend at the 80% confidence level (o = 0.2).
When flow-adjusted concentrations were used, both tests showed an upward trend,
Mann-Kendall at o = 0.05, Seasonal Kendall at o = 0.1.

No significant trend was found for the 2" 5-year raw data. Mann-Kendall
showed an upward trend in flow-adjusted concentrations at an o = 0.1, and Seasonal
Kendall showed an upward trend at o = 0.2.

The trend results on flow (see Appendix K for results) showed a downward trend
in flow for the 10-yr data at the 80% confidence level (oo = 0.2). The first 5-yr data

showed a downward trend at 95% confidence, but the second 5-yr data failed to reject the

null of no significant trend.

Comments

Findings are similar for both tests, but not exact. It is often standard practice to
choose an acceptable Type I error of 0.05 (95% Confidence Level). If that were the case
in this analysis, only the Mann-Kendall test would have detected any trends in the 10-
year flow-adjusted concentrations and the 1*' 5-year flow-adjusted concentrations.

WQStat™ gives results for various alphas (confidence levels) up to 0.2 (80% confidence)
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and so allows the user to see the alpha giving a significant result. These results illustrate

that findings can change by choosing a confidence level (o) after results are obtained.

Flow-adjusted concentrations changed the outcome of the trend test upon

examination of the trendline in the time series plot and in the 1% 5-year significance test,

as the direction changed from downward to upward trend. The slope estimators seem to

have similar (i.e. comparable) results. (See Appendix G for Trend Analysis results) It is

interesting to note that where a downward trend in flow existed, so did an upward trend

in constituent concentration in flow-adjusted concentrations, but not exclusively. This

finding could aid in the interpretation of the temporal behavior of the constituent.

Table IV.3: Trend Detection Results for Site HM4, Constituent BODS

Data Test Results Slope Estimate
10 yr — flow SKT Fail to reject null of no trend | -4.692 units/year
10 yr — raw MK U - 99% Confidence Level -0.033 units/year
10 yr — raw SKT U - 95% Confidence Level -0.0332 units/year
10yr-FAC | MK U - 99% Confidence Level -0.034 units/year
10yr-FAC | SKT U - 95% Confidence Level -0.03591 units/year
1" 5yr—flow | SKT U - 95% Confidence Level -45.21 units/year
1"5yr—raw | MK Fail to reject null of no trend | -0.016 units/year
1®5yr—raw | SKT Fail to reject null of no trend | O units/year
15 yr- FAC | MK Fail to reject null of no trend | -0.039 units/year
15 yr- FAC | SKT Fail to reject null of no trend | -0.03132 units/year
2 5yr—flow | SKT Fail to reject null of no trend | 1.211 units/year
2" Syr-raw | MK Fail to reject null of no trend | -0.028 units/year
2" 5yr-raw | SKT Fail to reject null of no trend | -0.04568 units/year
2" 5 yr- FAC | MK Fail to reject null of no trend | -0.025 units/year
25 yr-FAC | SKT Fail to reject null of no trend | -0.04418 units/year
Results

Both tests give a significant downward trend in 10-year raw and flow-adjusted

concentration data at all alphas. First 5-year raw and flow-adjusted concentration data
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show no trend for both tests at all alpha levels. Second 5-year raw and flow-adjusted
concentration data show no significant trend for both tests at all alpha levels. There was
a large downward trend in flow in the first 5-year data, but no significant trend in the 10-

year or second 5-year data (See Appendix K for results).

Comments

These findings illustrate how significance tests are more likely to detect a trend as
sample size increases, a phenomenon common to all the tests performed in this chapter.
No trend was detected in either 5 years of data, but was detected in the 10-year data.
These results were determined by comparing a calculated test statistic to a tabled value,
and not by a calculated p-value (observed significance level). Therefore, the results from
the five-year tests are comparable to the ten-year tests, although the sample sizes are
different (see discussion in Chapter V). The slope estimates are highly comparable at this
site. (See Appendix G for complete results) Determination of flow trend did not reveal

anything about flow-adjusted constituent behavior.
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Table IV.4: Trend Detection Results for Site RO2, Constituent NH4

Data Test Results Slope Estimate
10 yr — flow SKT Fail to reject null of no trend | 0.01263 units/year
10 yr —raw MK M - 90% Confidence Level | 1.142 units/year
10 yr —raw SKT 1 - 95% Confidence Level | 1.283 units/year

10 yr - FAC MK 11 - 95% Confidence Level | 1.391 units/year

10 yr - FAC SKT 1 - 95% Confidence Level | 1.344 units/year

I"'5 yr—flow | SKT U~ 95% Confidence Level | -2.105 units/year

1¥5 yr —raw MK 1 - 99% Confidence Level | 7.063 units/year

1"5yr—raw | SKT | f1-95% Confidence Level | 6.53 units/year

I*5yr-FAC | MK {l - 99% Confidence Level | 6.044 units/year

1"5yr-FAC | SKT 1 - 95% Confidence Level | 5.305 units/year

25 yr—flow | SKT 77- 95% Confidence Level | 1.47 units/year

2" 5yr-raw | MK U -99% Confidence Level | -4.991 units/year

2" 5 yr - raw SKT U - 95% Confidence Level | -4.26 units/year

2" 5yr-FAC | MK U - 95% Confidence Level | -4.219 units/year

2" 5yr-FAC | SKT U - 90% Confidence Level | -3.066 units/year

Results

10-year raw data shows an upward trend at a = 0.1 (90% confidence level) for the
Mann-Kendall test, and o = 0.05 (95% confidence level) for the Seasonal Kendall test.
Flow-adjusted concentrations show an upward trend at the 95% confidence level for both
tests. The first 5-year raw and flow-adjusted concentration data show an upward trend
for both tests at all alpha levels. The second 5-year raw data show a downward trend for
both tests at all alpha levels. Flow-adjusted concentrations give a downward trend at o, =
0.05 (95 % confidence level) for the Mann-Kendall test, and oo = 0.1 (90% confidence
level) for the Seasonal Kendall test.

Flow trend results failed to reject the null of no trend for the 10-year data, but
showed a downward trend in the first 5-year data (95% confidence) and an upward trend

in flow for the second 5-year data (95% confidence) (See Appendix K).
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Comments

These findings illustrate how an upward trend in the first half of the constituent
data record and a downward trend in the second half of the record might reconcile itself.
The upward trend was stronger than the downward trend, and so was detected in the
overall 10-year data. Again, the level of detection of trend was different for both tests.
However, this time the Seasonal Kendall test was more sensitive in the 10-year HM4 data
set, as opposed to results for site HM6, in which the Mann-Kendall test seemed more
sensitive. The Mann-Kendall test detected a trend at a smaller alpha level in the 2™ 5-
year flow-adjusted concentrations. The slope estimates are very comparable at this site.
(See Appendix G for complete results) Again, a downward trend in flow correlated to an
upward constituent trend, and vice versa, in both the raw and flow-adjusted constituent

concentrations.

Results for Differences in Populations Analvsis

This series of analyses compared the first 5-year data to the second 5-year data for
BODS (site HM4), NO3 (site HM6) and NH4 (site RO2). This is often referred to as step
trend detection, but in actuality is a test for population differences before and after a
specific point in time. To illustrate an analysis for spatial differences, a comparison was

made between upstream and downstream NH4 values for sites RO1 (u) and RO2 (d).
These analyses utilized the nonparametric Mann-Whitney test in Minitab™ and
WQStat Plus™, and the two-sample t-test in MS-Excel™ and Minitab™. Differences

were also sought through Interval tests developed in MS-Excel™ by Graham McBride
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(See Methods section above, and Appendix E). The t-test for equal variances was used in
all cases except for site RO1 vs. RO2. As described in the Methods section, results of F-
tests for equal variances in MS-Excel™ resulted in the finding of equal variances between
the first and second 5-year data from each site, as expected. However, the F-test resulted
in the finding of unequal variances between RO1 and RO2 data for NH4, therefore
requiring the use of the t-test for non-equal variances. (For F-test results see Appendix
H).

Table IV.S: Differences in Population Results for Site HM4, Constituent BOD5

Test Results

MS-Excel™ t-test (1 5-yrs vs. 2™ 5- Significant Difference (p = 0.019)

yrs)

Minitab™ t-test (1% 5-yrs vs. 2™ 5-yrs) Significant Difference (p = 0.019)

Equivalence Interval test Equivalent (2°¢ 5-yrs within interval of +/-
20% of 1¥ 5-yrs mean — 95% confidence)

Inequivalence Interval test Inequivalent (2" 5-yrs not within interval of
+/- 20% of 1™ 5-yrs mean — 95% confidence)

Minitab™ Mann-Whitney Significant difference (p=0.0148)

WQStat™ Plus Mann-Whitney Shows no significant difference (see below)

Results

Two-sample t-tests (two-tailed assuming equal variances) in MS-Excel™, and
Minitab™ gave identical results of a significant difference in BODS between the first and
second 5-year data (p = 0.019).

The interval test for equivalence failed to reject the null of equivalent mean
concentrations (see equation (13)) at an a = 0.05 and equivalence interval of +/- 20%
change in the first 5-year mean. However, when the null hypothesis for the equivalence

t-test is changed to inequivalence, the result is the failure to reject the null of inequivalent
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concentrations (equation (14)) in population BODS5 at alpha = 0.05 and equivalence
interval of +/- 20% change in the first 5-year mean.

Using the nonparametric Mann-Whitney test, Minitab™ gave a significant
difference in BODS5 at p = 0.0148. WQStat Plus™ showed no rejection of the null of
equal means at all confidence levels, though the test statistic calculated should have

rejected the null hypothesis and found a significant difference.

Comments

These findings vary depending on alpha level, test and hypothesis. This illustrates
how important assumptions of distribution and hypothesis are when testing, as well as
selection of an acceptable Type I error (o). Again it illustrates that choosing the
confidence level needed (o) after results are obtained can change the information
obtained.

Minitab™ and WQStat Plus™ gave comparable results for the Mann-Whitney test,
however a mistake in the WQStat Plus™ software misinterpreted the final results. In
general the results from different statistical packages are comparable, though results are
presented differently in each one.

At the beginning of this section it was found that the raw data for site
HM4 BODS are not normally distributed. This could mean that a parametric t-test is not
appropriate, as a nonparametric procedure could be more powerful. Therefore, the best
information from this analysis comes from the Mann-Whitney test. (See Appendix I for

Differences in Populations results)
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Table IV.6: Differences in Population Results for Site HM6, Constituent NO3

Test Result
MS-Excel™ t-test (1% 5-yrs vs. 2™ 5-yrs) | Fail to reject the null of equal means
Minitab™ t-test (1% 5-yrs vs. 2™ 5-yrs) Fail to reject the null of equal means
Equivalence Interval test Fail to reject the null of equivalence
Inequivalence Interval test Rejected the null of inequivalence (2" 5-

yrs within interval of +/- 20% of 1% 5-yrs
mean — 95% confidence)

Minitab™ Mann-Whitney Fail to reject the null of equal medians
WQStat™ Plus Mann-Whitney Fail to reject the null of equal means
Results

Two-sample t-tests (two-tailed assuming equal variances) in MS-Excel™ and
Minitab™ failed to reject the null of equal means (equation (5)) between the first and
second S-year data (p = 0.51).

The interval test with either null hypothesis of equivalence (equation (13)) or
inequivalence (equation (14)) resulted in equivalent populations at 95% confidence
(alpha = 0.05) and an equivalence interval of +/- 20% of the 1*' 5-year mean.

In computing the Mann-Whitney test, both Minitab™ and WQStat Plus™ failed to
reject the null of equal medians (equation (11)) or means (equation (9)) between groups

ata =0.1.

Comments

All of these tests failed to reject the null hypotheses of equal central tendency
between the first and second S5-year data. This data also failed to reject the null of normal
distribution, so the t-tests are more powerful tests of the difference in the two

populations. However, failure to reject the null of equal means in the standard t-test does
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not prove that they are equal. The best information in this analysis comes from the

equivalence test with the null hypothesis that the two populations are inequivalent

(equation (14)). Rejection of this null proves with 95% confidence that the mean of the

second S-year data lays within an interval of +/- 20% of the first 5-year data mean,

making them equivalent. Of course, this is supposing that the +/- 20% change is an

ecologically acceptable change in NO3. (See Appendix I for complete results)

Table IV.7: Differences in Population Results for Site RO2, Constituent NH4

Test

Result

MS-Excel™ t-test (1% 5-yrs vs. 2™ 5-yrs)

Fail to reject the null of equal means

Minitab™ t-test (1% 5-yrs vs. 2™ 5-yrs)

Fail to reject the null of equal means

Equivalence Interval test

Fail to reject the null of equivalence

Inequivalence Interval test

Rejected the null of inequivalence (2™ 5-
yrs within interval of +/- 20% of 1% 5-yrs
mean — 95% confidence)

Minitab™ Mann-Whitney

Fail to reject the null of equal medians
(p=0.259)

WQStat™ Plus Mann-Whitney

Fail to reject the null of equal means

Results

Two-sample t-tests (two-tailed assuming equal variances) in MS-Excel™ and

Minitab™ failed to reject the null of equal means (equation (5)) between the first and

second 5-year NH4 data (p = 0.18).

The Interval test with a null hypothesis of equivalent means (equation (13)) failed

to reject the null, whereas the Interval test with a null hypothesis of inequivalence

(equation (14)) rejected the null of inequivalent means at 95% confidence (oo = 0.05) and

an equivalence interval of +/- 20% of the first 5-year mean.
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Calculating the Mann-Whitney test statistic in Minitab and WQStat Plus failed to

reject the null hypotheses of equal medians (equation (11)) or means (equation (9)) at the

90% confidence level (a0 = 0.1).

Comments

This NH4 data failed to reject the null of normal distribution, so the t-test is an

appropriate and powerful test. However, as in the analysis at the previous site (HM6),

failure to reject the null of equal means does not prove that the means are in fact exactly

equal. Again the best information comes from the equivalence test with the null

hypothesis that the two populations are inequivalent (equation (14)). Rejection of this

null proves with 95% confidence that the mean of the second 5-year NH4 data lies within

an interval of +/- 20% of the first 5-year NH4 data mean, making them equivalent. (See

Appendix I for complete results)

Table IV.8: Analysis of Differences Between NH4 at RO1 and RO2

Test

Result

MS-Excel™ t-test (13 5-yrs vs. 2" 5-yrs)

Significant Difference (p=0.000)

Minitab™ t-test (1% 5-yrs vs. 2" 5-yrs)

Significant Difference (p=0.000)

Equivalence Interval test

Rejected the null of equivalence (RO2
not within interval of +/- 20% of RO1 -
95% confidence)

Inequivalence Interval test

Fail to reject the null of inequivalence

Minitab™ Mann-Whitney

Significant Difference (p=0.000)

WQStat™ Plus Mann-Whitney

Significant Difference-99% confidence
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Results

Two-sample t-tests (two-tailed assuming unequal variances, as discussed above)
in MS-Excel™ and Minitab™ result in a significant difference between the means of NH4
at sites RO1 and RO2 (p = 0.000).

The Interval tests with both hypotheses of equivalence and inequivalence support
significant differences in concentration of NH4 at 95% confidence (alpha = 0.05) and an
equivalence interval of +/- 20% of the upstream (RO1) mean concentration.

The Mann-Whitney test in both Minitab™ and WQStat Plus™ result in significant

differences between the medians/means of NH4 at sites RO1 and RO2.

Comments

This analysis shows that when the concentration differences are large between
populations, distribution assumptions, hypotheses and alphas do not have a great affect
on the results. Although NH4 at site RO2 failed to reject the null of normal distribution,
the Mann-Whitney test is most appropriate because NH4 at site RO1 is not normally

distributed. (See Appendix I for complete results)

Results for Standards Compliance

Standards compliance analysis alternatives were examined using the BODS5 data
for site HM4. Common limits in New Zealand are 2 or 3 ppm. The analyses were
performed using 2 ppm, since no data exceeded the 3 ppm limit. Excursion analysis was

performed on both raw and flow-adjusted concentrations. The following analyses were
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performed in WQStat Plus™: Proportion Estimates, Tolerance Limits, Tolerance

Intervals, Prediction Limits, and Confidence Intervals about the mean.

Table IV.9: Standards Compliance Results for Site HM4, Constituent BODS

Test

Compliance Results

Proportion Estimate — raw

3.3% excursions (0,7%) CI

Proportion Estimate — FAC

3.3% excursions (0,7%) CI

Parametric Tolerance Limit — raw

Exceeded limit

Parametric Tolerance Limit - FAC

£xceeded limit

Nonparametric Tolerance Limit — raw Compliant
Nonparametric Tolerance Limit — FAC Exceeded limit
Parametric Tolerance Interval — raw Compliant
Parametric Tolerance Interval — FAC Compliant

Nonparametric Tolerance Interval — raw

Exceeded limit

Nonparametric Tolerance Interval — FAC

Exceeded limit

Parametric Prediction Limit — raw

Exceeded limit

Parametric Prediction Limit - FAC Compliant
Nonparametric Prediction Limit — raw Compliant
Nonparametric Prediction Limit — FAC Exceeded limit
Parametric Confidence Interval for the mean - raw Compliant
Parametric Confidence Interval for the mean - FAC Compliant
Nonparametric Confidence Interval for the median - raw | Compliant
Nonparametric Confidence Interval for the median - FAC | Compliant

Results

For Standards Compliance results from WQStat Plus™, see Appendix J. Both the

raw and flow-adjusted concentrations data gave a 0.033 (3.3%) excursion proportion,

with the 95% confidence interval ranging from 0 to 7% excursions.

The Tolerance Limit procedure was performed using the first 5-year BODS data

establishing the Tolerance Interval. Then the second 5-year BODS data were compared

to that interval for compliance. Both the raw and flow-adjusted concentration data

exceeded the limit in the parametric Tolerance Limit procedure, but only the flow-
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adjusted BODS5 concentrations exceeded the Tolerance Limit in the nonparametric
procedure.

For the Tolerance Interval procedure, the compliance limit (2 ppm) is used to
determine the excursion, not the background data (first 5-year data, as discussed in the
Statistical Methods section). In this analysis, neither the raw nor flow-adjusted
concentration data exceeded the parametric Tolerance Limit (95% coverage). However,
both exceeded the nonparametric procedure limit.

In the parametric Prediction Limit procedure, the raw BODS5 data exceeded the
Prediction Limit, whereas the flow-adjusted concentration data did not. For the
nonparametric procedure, the opposite was true. The raw data did not exceed its
Prediction Limit, whereas the flow-adjusted concentration data did.

In both the parametric and nonparametric Confidence Interval determinations,
neither the raw nor flow-adjusted concentrations data means/medians exceeded the

excursion limit of 2 ppm.

Comments

Each of these analyses gives different kinds of information about the data. The
most straightforward is the proportion estimate, which tells exactly the proportion of
excursion, along with a confidence interval so that the data can be representative of not
only the sample, but also the population as a whole. These findings show that 3.3% of
the data exceeded the excursion, and that up to 7% exceedance can be expected at the

95% confidence level.
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The other procedure’s outcomes (Tolerance Limit, Tolerance Interval, Prediction
Limit and Confidence Interval) were highly influenced by the distribution assumption,
and the concentration used (raw vs. flow-adjusted concentrations). The raw BODS5 data
was shown to be not normal in the Testing for Normality section, so the nonparametric
results are more appropriate in assessing compliance. The Tolerance Limit/Interval and
Prediction Limit procedures are more appropriate for determining if a single sample
exceeds a compliance limit or interval based on background data. Whereas the
Confidence Interval is more appropriate for determining if the mean/median of a
population exceeds a standard that is based on central tendency. The variety of results
again illustrates the noncomparability of information produced from different analysis

methods.
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Chapter V. Discussion

The previous chapters have established that: (1) there are a large variety of
methods employed in water quality data analysis to produce information; (2) significance
testing is by far the most popular type of analysis used to interpret water quality
monitoring data (used in 17 of 19 Trend Studies and 16 of 20 Differences in Population
Studies from Chapter III), and; (3) many of these common methods, when applied to one
set of data, do not produce comparable results.

When completing a water quality assessment, it is usually assumed that the
analyst will make an independent decision based on his or her interpretation of the data
and information needs, after the data are collected. This fact introduces considerable
uncertainty into the analysis of water quality data and results in non-comparable
information. This raises concerns about the actual management decision, stemming from
the information on which it was based. If there is a lack of confidence in the methods
used to produce information for management, then there will be a lack of confidence in
the ultimate decision as well. The only way to instill confidence in the management
decision is to remove the concerns over the process through which information for the

decision was created.
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‘Standard’ Data Analysis Methods?

This issue raises the question: Is it feasible to develop a set of ‘standard’ water
quality data analysis methods for specific forms of management information (i.e. trends,
differences, standards compliance) that can produce comparable information that is
defensible? The simple answer is yes, as this question is not new to water quality
management. “Perhaps the best way to ensure that data collected during different studies
are comparable is to encourage all investigators to use standardized sampling and
analysis protocols whenever possible “ (Becker and Armstrong, 1988). Currently there
are professionals in the field who have been charged with determining which sampling
and laboratory analysis methods result in comparable information (see Methods and Data
Comparability Board of the National Water Quality Monitoring Council;
http://wi.water.usgs.gov/pmethods). This is an especially pertinent issue as the interest in
data sharing continues to rise.

This suggestion is not made without reservation. A natural conflict stems from
the need to obtain comparable information, and permitting site-specific conditions to be
considered in how data are analyzed and interpreted. The answer to this issue is not
readily apparent, nor are professionals studying the problem and its solutions. At present,
the discussions of ‘appropriate’ use of statistics in water quality monitoring tend to be
within various water-management related agencies. The literature review in Chapter III
clearly illustrates that some agencies have produced guidance for data analysis over the
years, yet without much coordination within or outside of the agency. The National

Water Quality Monitoring Council is currently facing the issue described here, and

83


http://wi.water.usgs.gov/pmethods

exploring the mechanisms that could help monitoring systems produce comparable
information.

Several issues besides the methods selection itself will need to be addressed.
Although some advise to the contrary (Ward et al., 1986), many analysts select the
analysis methods after examining the data and its distribution. In fact, this is
recommended by existing guidance (i.e. Montgomery and Reckhow, 1984; Chatfield,
1985). Chatfield (1985) recommends the following process: (1) Clarify the objectives of
the investigation; (2) Collect the data in an appropriate way; (3) Investigate the structure
and quality of the data; (4) Carry out an initial examination of the data; (5) Select and
carry out an appropriate formal statistical analysis; (6) Compare the findings with
previous results or acquire further data if necessary; and (7) Interpret and communicate
the results." If ‘standard’ data analysis methods are developed, should they follow this
same line of thinking?

There are good arguments for both sides of this issue. Choosing the analysis
method before examining the data allows for impartial agreement and approval of the
process by all interested parties without the bias of data results. However, choosing the
method after analysis allows for selection of the most scientifically appropriate methods
for the type of data gathered, without prior assumptions, but also allows for post-hoc
selection of alpha, which, as illustrated in Chapter IV, can greatly influence the results.
This issue in and of itself begs the assistance of professionals who are knowledgeable
about water management to provide guidance for data analysis protocols.

Another topic that develops from the suggestion of standardizing data analysis

methods deals with the extent that the analyst is allowed to produce information that
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directly relates to the management decision-making. Most management decision-makers
are not statisticians. Should results of analysis only be presented (such as a rejection of a
null hypothesis and obtained p-value), or an interpretation in terms of meaning presented
as well? Should management be allowed to decipher statistical results, without the bias
of the analyst? Guidance is needed for these questions to be resolved. Only those
involved in water management know the expertise of their colleagues in understanding
these scientific issues. Comprehension will vary among managers, and so may the role of
the analyst in interpreting information produced from the data analysis. The EPA (1998)
dealt with this issue in the development of their Guidelines for Ecological Risk
Assessment. The following process was recommended: “To ensure mutual understanding
between risk assessor [i.e. analysts] and managers, a good risk characterization will
express results clearly, articulate major assumptions and uncertainties, identify
reasonable alternative interpretations, and separate scientific conclusions from policy
judgments. Risk managers use risk assessment results, along with other factors (e.g.
economic or other legal concerns), in making risk management decisions and as a basis
for communicating risks to interested parties and the general public.”

Finally, the question that directly pertains to the work presented in this thesis is:
What would these ‘standard’ data analysis methods look like? With the exception of a
few estimation and graphical procedures, the methods used in the previous chapter were
all based on the statistical theory of significance testing, which Chapter II established is
“under fire” in some parts of the scientific world. It is easy to see in the results of the

New Zealand data analysis (Chapter [V) that information changes depending on the

85



method selection, but why? The answer lies in several flaws of applying significance
testing to environmental (observational) data.

One flaw, which is rarely understood, is that results based on p-values from tests
with different sample sizes are not comparable. A calculated p-value is affected not only
by the data collected, but also by the data which might have been observed if the trial had
gone differently than it in fact did (DuPont, 1983). Therefore, premature termination of
an experiment (or monitoring effort) affects the outcome of the final calculated p-value.
Unfortunately, there is often no way of knowing whether a test was performed at the end
of an experiment, or in the middle, and so reported p-values might not be comparable,
even for similar sample sizes.

The greatest of these flaws, which has been mentioned previously, is that the
resource managers and analysts of water quality monitoring data are often not
statisticians, and so are repeatedly guilty of choosing analysis methods without a
thorough understanding of the underlying assumptions, meaning of test parameters, or
interpretation of results. Johnson (1999) states, “While many of the arguments against
significance tests stem from their misuse, rather than intrinsic value, I believe that one of

their intrinsic problems is that they encourage misuse”.

Why Use Significance Testing?

Nester (1996) suggests several reasons why hypothesis tests are so widely used:
(1) they appear to be objective and exact; (2) they are readily available and easily
invoked in many commercial statistics packages; (3) everyone else seems to use them; (4)

students, statisticians and scientists are taught to use them; and (5) some journals and

86



editors and thesis supervisors demand them. The research in the previous chapters
validates these claims. Yet the best explanation of why hypothesis testing is so popular
rests on the foundation of the scientific method. Under that method, a theory is
postulated, which generates predictions, or hypotheses. A scientific experiment is
conducted to ‘test’ the hypothesis. The results of the experiment either refute the
hypothesis, dictating that the theory is incorrect, or do not refute the hypothesis, letting
the theory stand. In contrast, statistical hypotheses employed by environmental data
analysts are known a priori to be false (Johnson, 1999).

So why test statistical hypotheses at all? McBride (2000) states that comparison
of p-values for tests with similar numbers of samples does provide an elegant way of
ranking the importance of differences measured, if sample sizes are identical. He also
acknowledges that in constructing models, p-values are most useful in determining
important explanatory variables in statistical models. However, this is more a function of
exploratory data analysis, and not data analysis that better connects water quality
information to management decision-making.

One answer would be that a statistical test could be only one factor in evidence of
interpretation of the data. In this way, a single rejection of a point null hypothesis, or a p-
value, would not be the only information leading to a management decision. Other pieces
of information would need to be gathered to either support or refute the findings of the
statistical test. EPA (1998) has produced guidance for ecological risk assessment that
follows this type of process.

“Ecological risk assessment evaluates the likelihood that adverse ecological

effect may occur or are occurring as a result of exposure to one or more stressors. It is a
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flexible process for organizing and analyzing data, information, assumptions and
uncertainties. Ecological risk assessment provides a critical element for environmental
decision making by giving risk managers an approach for considering available scientific
information along with the other factors they need to consider (e.g. social, political, legal
or economic), in selecting a course of action.” (EPA, 1998)

There exist alternatives to statistical testing which can provide scientifically
defensible information to management about the quality of the water being monitored. It
is not within the scope of this thesis to provide great detail about analysis alternatives, but
the following section will outline some of the other pieces of information that could
accompany or even replace statistical tests in order to make the information more

comparable and meaningful to management.

Data Analysis Tools to Make Information More Comparable

There are many procedures that can be applied along with statistical tests in order
to give more meaning to the results beyond the p-value. It might be assumed that these
procedures are already mandatory for statistical analysis of water quality data, yet the
literature review in Chapter III suggests that they are not. The first of these is to test the
data for normality, and if the data are not normal, only use nonparametric analysis
procedures, which are more powerful than parametric procedures for non-normal data,
being less affected by nondetects or extreme values. The second is to use flow-adjusted
concentrations, especially for trend detection and standards compliance. The third is to
consider the power of the test. This gives a good indication of the likelihood of actually

detecting an effect of the size practical to the analyst.
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Power Analysis

Power analysis is becoming more prevalent due to the availability of statistical
software packages and Internet “power calculators”. However, the increase in
availability does not directly translate into an increase in calculating the true power.
Cursory exploration of three Internet calculators (listed below) found that input
parameters are often ambiguous, especially in retrospective calculations, resulting in less
confidence in the results. The software packages which include power analysis provide
more confidence, but only when the procedures for calculation are thoroughly explained.
Georgetown University:

= http://members.aol.com/johnp71/postpowr.html;

UCLA:
*  http://www.stat.ucla.edu/calculators/powercalc;

EPA beta version:

= http://www.epa.gov/earth1r6/6wg/ecopro/watershd/monitrng/qappsprt/sampling.htm)

Power should be a consideration for any hypothesis test, yet the difficulty in
calculating power for nonparametric tests means that it is often ignored. For
demonstration purposes, power was considered for the two-sample t-test analyses found
in Chapter IV. The powers of these tests were approximated using Minitab™, which has
a power analysis calculation for a two-sample t-test (but does not provide an explanation
of calculation procedures).

Using the inputs of sample size, minimum detectable difference (chosen to be

10% of the mean of each upstream/background data set), and the standard deviation
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(background sigma used as an estimate of an overall sigma), the power of each t-test was

actually very low (see results below).

Table V.1: Power Analysis Example

Site Sample Detectable Difference Sigma Power
Size
HM4 BODS 60 0.1 (10% of 1* 5-yr mean) 0.4 0.2741
HMé6 NO3 60 40 (10% of 1*' 5-yr mean) 265 0.1299
RO2 NH4 60 5(10 % of 1" 5-yr mean) 17 0.3588
RO1 RO2 NH4 120 0.3 (10% of upstream mean) | 2 0.2120

This means that the t-tests performed in Chapter IV actually had a small chance
(all less than 50%) of actually detecting the prescribed difference in means, even with
these large sample sizes. Of course, the power increases as the minimum detectable
difference required increases (e.g. the power of detecting a difference of 1.0 between sites
RO1 and RO2 equals 0.9989), but perhaps not enough to satisfy management concerned
with detecting real differences and impacts in the environment. Power also changes as
the estimate of standard deviation (sigma) changes. Also, the actual data for these sites
did not have the exact sample size included in the power calculation (See Appendix D),
this was just an expected value determined by the sampling protocol. In the real world,
data can be missing from the record, deceasing the power of the analysis used to detect
differences. Power analysis needs a great deal of attention, as it can potentially provide a

type of quality control for analysis methods.

Graphical Depiction of Data

One of the simplest ways to help in the interpretation of data is to include a

graphical depiction. For example, using time series plots, Q-Q plots, histograms, and box
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plots, the analyst can visually interpret the data and make decisions about distribution
assumptions, trends, and standards violations with a glance. Plotting the data before
analysis was strongly recommended by Montgomery and Reckhow (1984), but in the
context of exploratory data analysis. Graphical depictions can aid in the comparability of
information from monitoring data by allowing others to ‘see’ the data, and judge for
themselves whether a trend is apparent, or samples have exceeded a standard limit. This
type of information should only accompany more scientifically defensible analysis
methods, as graphs and pictures can be manipulated with scale, color, or resolution to
achieve a desired affect. Careful attention must be paid to the attributes of graphs and
pictures, as the analyst can chose a scale to bias the graphical representation, and thus the

information conveyed.

Estimation and Confidence Intervals

Another analysis tool, which can be combined with graphics or significance
testing, is that of estimates and confidence intervals. “Ordinary confidence intervals
provide more information than do p-values. Knowing that a 95% confidence interval
includes zero tells one that, if a test of the hypothesis that the parameter equals zero is
conducted, the resulting p-value will be greater than 0.05” (Johnson, 1999). A
confidence interval gives an estimate of the effect size, as well as a measure of
uncertainty, i.e. a confidence interval of (-5, 300) is less well estimated [and potentially
embarrassing result] than a parameter with an interval of (120, 130) (Johnson, 1999).
Providing a trendline on a time-series plot, with a confidence interval of the slope of that

line, can answer questions about trends and compliance without statistical testing.
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Meta-Analysis

A type of statistical analysis, called meta-analysis, has been used in the medical
and behavioral sciences to combine results from different studies to help draw
conclusions about the overall status of the area of interest. This type of analysis might be
very useful in the water quality field to combine results from separate studies into one
large “picture” of the water quality of a specific river or watershed. Two studies
reviewed in Chapter III performed such an analysis (Stoddard, 1998; Brown, 1998).
Unfortunately, most water quality studies poorly document the statistical assumptions
and parameters that are vital to a meta-analysis study. This restricts the use of such
studies in the water quality field. Another perspective is that meta-analysis can reduce
dependence on significance testing by examining replicated studies. However, meta-
analysis can be dangerously misleading if nonsignificant results, or results that did not

conform to the conventional wisdom, were less likely to have been published. (Johnson,

1999)

Interval Testing

Another type of data analysis that shows promise in the water quality field was
that described by McBride (1998). Interval testing, though a type of significance testing,
allows for the connection between what is statistically significant, and what is
ecologically significant. Using the inequivalence hypothesis described by McBride
(1993, 1998, 1999a) takes into account extra precaution towards the environment, as the

null assumes that an environmental impact has already taken place, and the analysis must
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prove that it hasn’t. Whereas in any point null hypothesis or equivalence hypothesis, the

assumption is that there has been no impact, and the test must prove differently.

Decision Theory

One approach to data analysis is especially related to management is to use
statistical decision theory: the theory of acting rationally with respect to anticipated gains
and losses, in the face of uncertainty (Johnson, 1999). For example, in most hypothesis
testing, the Type I error (rejecting a true null hypothesis) is strictly set at 0.05, yet the
type II error (accepting a false null hypothesis) is not examined. Environmentally, a type
II error may be more costly, and thus should be taken into account. There are other
parameters of water quality (i.e. central tendency, constituent variance or variability in
the “natural” environment, biological conditions) that could also be taken into account
before a decision is made. This is not unlike the evidentiary or risk assessment process

described at the beginning of this chapter.

Biological Assessments

Probably the greatest argument against significance testing is that results may not
be biologically or ecologically relevant. “It is not enough to detect differences in lieu of
determining an impact’s magnitude and cause or in lieu of understanding its
consequences. It would be wiser to decide first what is biologically relevant and then use
hypothesis testing to look for biologically relevant effects, not merely run a general

‘search for significance’.” (Karr and Chu, 1998) “Overreliance on statistical correlation,

t-tests, or other statistical models can short-circuit the process of looking at data and
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asking whether they make sense and what they show. Dependence on p-values can divert
scientists and managers from exploring the biology responsible for patterns in data, no
matter when or by whom they were collected.” (Karr and Chu, 1998)

To better connect monitoring with information about the biological integrity of
the waterbody, the EPA has recommended to all states the use of its Rapid Bioassessment
Protocol (RBP) modified habitat assessment. The framework of bioassessment consists
of characterizing reference conditions upon which comparisons can be made, and
identifying appropriate biological attributes with which to measure the condition. These
reference conditions are representative of biological health. (Gerritsen and Leppo, 1998).
The biological attributes to be measured represent elements of the structure of the
ecosystem and are called metrics. A metric is defined as a characteristic of the biota that
changes in some predictable way with increased human influence. (Gerritsen and Leppo,
1998)

Sampling of the biological metrics, and assessing the subsequent water quality
using a biological index (ranking and scoring) procedure, is becoming increasingly
popular in the water quality field. This type of static analysis does not give information
about changing conditions (i.e. trends and differences in populations), but can be
combined with significance testing to bring real meaning to the monitoring data, both
chemical and biological. “The objective of biological monitoring is to detect human-
caused deviations from baseline biological integrity, and to evaluate the biological — not
statistical — significance of those deviations and their consequences.” (Karr and Chu,
1998) “When a study is based on tested biological metrics, hypothesis testing can be

appropriate. By providing a biological yardstick for ranking sites according to their
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condition, multimetric indexes can answer these questions. Because their statistical
properties are known and their statistical power can be calculated, multimetric indexes
can be used to compare sites statistically”. (Karr and Chu, 1998) Although the same
statistical arguments apply to using this type of data for analysis, using biological
assessment data in combination with chemical data and appropriate statistical analyses

can provide more thorough information about the dynamic condition of the water.

Bavesian Methods

A final statistical analysis approach, which was mentioned briefly in McBride
(1998), is that of using a different branch of statistics, called Bayesian statistics. “Bayes’
theorem offers a formula for converting between the probability of observed or more
extreme data given that the null hypothesis is true (p-value) and the probability that the
null hypothesis is true, given the data [for one-sided tests only]” (often the information
sought in the first place!) (Johnson, 1999).

Bayes’ Theorem: Pr[Ho|data] = Pr[data| Ho] * Pr[Ho] / Pr[data]

Another, more lucid explanation of this theorem is provided by Carver (1978).
“What is the probability of obtaining a dead person (D) given that the person was hanged
(H); that is, in symbol form, what is p(D|H)? Obviously, it will be very high, perhaps .97
or higher. Now, let us reverse the question: What is the probability that a person has been
hanged (H) given that the person is dead (D); that is, what is p(H|D)? This time the
probability will undoubtedly be very low, perhaps .01 or lower. No one would be likely
to make the mistake of substituting the first estimate (.97) for the second (.01); that is, to

accept .97 as the probability that a person has been hanged given that the person is dead.
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Even though this seems to be an unlikely mistake, it is exactly the kind of mistake that is
made with the interpretation of statistical significance testing---by analogy, calculated
estimates of p(H|D) are interpreted as if they were estimates of p(D|H), when they are
clearly not the same." (Carver, 1978)

Using Bayesian approaches, the Pr[Ho], probability of a true null hypothesis, is
determined before data are gathered and referred to as the prior probability of Ho.
Standard (sometimes referred to as ‘frequentist’) significance testing considers this
probability to be unknown. This prior probability of Ho can be determined subjectively
or through objective means. Then, collection of data can update or modify the belief in
its value. (Johnson, 1999)

A Bayesian confidence interval (say for 95%) is interpreted to mean that the
probability that the true value of the parameter lies in the interval is 95%, as opposed to a
standard (frequentist) confidence interval (say for 95%), which interprets to mean that if
the study were repeated a large number of times, 95% of the confidence intervals that
resulted would contain the true value of the parameter. McBride (2000) Therefore, the
Bayesian approach only considers the data obtained, not data that might be obtained if the
study were repeated infinitely, nor the data more extreme than that obtained. “For
decision analysis, Bayes’ theorem offers a very logical way to make decisions in the face
of uncertainty. It allows for incorporating beliefs, data, and the gains or losses expected
from possible consequences of decisions.” (Johnson, 1999) Type I and II errors and p-

values are therefore meaningless and not needed.
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Comparable Information in Other Fields of Data Collection

One excellent example of the goal for the water quality field is the area of weather
reporting. Atmospheric scientists have developed, from a large list of variables and
processes, a graphical interpretation of weather conditions that conveys instantly to the
user the current state of the weather, what has occurred in the past, and what is likely to
happen in the future. The importance of weather in our immediate lives has perhaps been
the impetus to create consensus in atmospheric condition assessment. These weather
interpretations are transparent, comparable and auditable, as they are standardized and
accepted to convey the best information upon which to act.

Another example is the area of economic reporting. Several different indicators
and indexes have been developed to aid in interpretation of the daily/monthly/yearly flux
of the economy. Graphics, in the form of time series plots of these indexes, are used to
convey understanding of trends in various sectors of the economy (Ward, 1998). For
example, the Dow Jones Index has become an accepted ‘standard’ method for reporting a
type of economic information upon which management and business decisions are based.

“The indicators and indices have been developed through well-documented and
reviewed protocols. This is not to say that there are not disagreements over how the
indices are computed, but it does reflect these debates occurring away from day-to-day
reporting of the information” (Ward, 1998). “In other words, the science that underpins
economic reporting is well developed and documented in protocols that are established

on their scientific merit and not their particular outcome” (Ward, 1998).
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Conclusions

The above section has outlined just a few of the analysis alternatives that can
either replace, or supplement statistical data analysis methods. However, the
entrenchment of significance testing in the scientific world, combined with the plethora
of analysis alternatives, make it difficult for data analysts to produce comparable
information from water quality data analysis.

The subject of this discussion has focused on developing ‘standard’ guidance fer
data analysis methods, and how some methods might improve the comparability of
information from monitoring. It is obvious that there are many ‘right’ methods for
analysis, yet management is often missing comparable information for decision-making.
Management needs information that is dependable, concise, comparable and bias-free in
order to make fair and auditable decisions regarding the environment. Arguments about
the process through which the information underlying management decision-making was
created can only be eliminated through acquisition of comparable information in a
manner that is transparent and auditable. Does this call for the development of ‘standard’
analysis methods?

Development of ‘standard’ protocols for water quality data analysis is suggested
as a means to help this field mature to the same point of confidence about information for
management decision-making as observed in weather and economic reporting. This, in
turn, could perhaps bring the water quality field closer to the public, allowing water
quality monitoring information to be broadly examined, and increasing public support for

monitoring efforts.
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Chapter VI. Summary, Conclusions and Recommendations

Summary

The previous five chapters of this thesis have fulfilled the tasks outlined in
Chapter I: (1) to examine the data analysis methods that are currently being used to
analyze water quality monitoring data, as well as the criticisms of using those types of
methods; (2) to explore how the selection of methods to analyze water quality data can
impact the comparability of information used for water quality management purposes,
and; (3) to offer options by which data analysis methods employed in water quality
management can be made more transparent and auditable.

These tasks were accomplished through a literature review of criticisms of current
data analysis methods (Chapter II), as well as texts, guidance and journals dealing with
water quality assessments (Chapter III). Then, the common statistical analysis methods
found were applied to the New Zealand Water Quality River Network data set. The
purpose being to establish how information changes as analysis methods change, and to
determine if the information produced from different data analysis methods was
comparable (Chapter IV). The results of the literature review and data analysis were then
discussed, highlighting problems with the prevalent use of significance testing in the
water quality field. Chapter V further discussed options through which to begin solving
these problems and produce comparable information for water quality management

decision-making.
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Conclusions

For several years it has been known, or suspected, that current methods for
producing information from water quality data are subject to misuse and inappropriate
application. Lack of statistical knowledge has caused poorly planned method selection
and results that are not always comparable. This thesis has documented the problems
associated with data analysis method selection for water quality monitoring, in an effort
to provide problem definition as the first step in creating a solution. The process of

documenting these problems has led to the conclusions discussed below:

1) Reviewing literature on water quality monitoring reveals the frequent use of a
common class of statistical procedures (e.g. hypothesis testing) to produce information
about water quality from the raw data. The majority of reviewed analysis methods use the
concept of “statistical significance” to validate the information produced, be it
comparison of means/medians (e.g. upstream/downstream averages), or evaluation of
trends, or detection of extremes. It is with these methods that most of our knowledge
about the water quality of our nation has been derived. From government monitoring
projects to private monitoring studies, it appears from the literature review (Chapter I1I)
that despite recent efforts to provide auditable information, data analysis procedures are
often loosely planned and documented and statistical results rarely explained. Except for
a few studies of water quality statistics (Harcum et al., 1992; Hirsch, 1988; Montgomery
and Reckhow, 1984, Montgomery and Loftis, 1987; Loftis et al., 1989; McBride, 1998,

1999a), alternative analysis methods with which to compare results are never explored,
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significance rarely explained, and information, once produced, never questioned, just
reported as is. Of course discussions that led up to publication, if they questioned the

methods, are rarely shared with the reader.

2) Through EPA’s requirements for State 305(b) reports and 303(d) listing of impaired
waters, it is apparent that the vision is being developed to create monitoring systems that
will produce information that will answer basic questions about our nation’s water
quality. But when reviewing state assessment methodologies and other water quality
studies, it is evident that the analysis procedures fall short of providing indisputable
information due to the fact that the assessments are often based on subjective narrative
criteria or relatively small monitoring data sets, and lack broadly peer-reviewed and

agreed upon data analysis methods.

3) Although the methods selected to produce water quality information are being used
correctly, they may not be universally accepted, or appropriate for the type of information
about the environment that is needed. The availability of numerous analysis procedures
means that methods selected to produce the same type of information (i.e. trends) may be

different, resulting in a non-comparable basis for the same management decisions

(Chapter IV).

4) Because significance testing methods have been available and accepted for years, their
appropriateness has been rarely questioned in the field of water quality monitoring, until

now. An argument that is at the forefront of the medical sciences is whether to use
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significance testing at all (Chow and Liu, 1992; Loftus, 1991; Royall, 1992; Berger and
Berry, 1988). The value of these discussions in medicine is that they illustrate to other
scientific fields that there are concerns with creating valid information using hypothesis

testing methods for data analysis (McBride, 1993, 1998, 1999a; Johnson, 1999).

5) The solution to producing more valid information for management decision-making
depends on the appropriateness of the methods chosen for the type of questions being
asked, and the comparability of these methods with other, similar assessments. Many of
the supplemental and alternative methods to significance testing discussed in the previous
chapters could be utilized to aid in the interpretation of monitoring data, data which is
influenced by so many unknown variables that interpretation is often difficult.

The use of new methods that are more appropriate in creating scientifically defensible
information is becoming more common in the medical field (Chow and Liu, 1992).
However, these methods have not managed to effectively infiltrate water quality
monitoring. Medical and epidemiological studies have shown that the use of methods
such as meta-analyses, Bayesian statistics, and equivalence testing can produce more
objective and valid information from the data than standard significance testing. These
alternatives, as well as others, need to be explored for applicability to water quality data

analysis, in an effort to produce more comparable information from monitoring.

6) Solutions to the problems documented in this research may not come through

common analysis methods, but instead require a deeper understanding of statistical

theory, closer connections to the use of the information (i.e. management input), as well
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as new thinking about data analysis procedures. These considerations in the development
of ‘standard’ water quality data analysis protocols will help to ensure that the procedures

are transparent and auditable, and that results are comparable.

Recommendations

The following recommendations are suggested to help further the endeavor of
providing better data analysis methods through which to produce information for
management decision-making. These suggestions could be fulfilled through further
academic study, interagency cooperative efforts (e.g. state and national water quality
monitoring councils), or through a single entity taking the lead in providing guidance for

water quality data analysis.

1) The subjects explored in this thesis established that there are many methods available
for analysis and interpretation of water quality data. Not only are there statistical
methods, but graphical, estimation, Bayesian, and biological methods, to name a few. It
was beyond the scope of this thesis to explore the applicability of these methods to water
quality data and compare the results with those from hypothesis testing, but such an

examination could prove very useful.

2) If hypothesis testing is to continue to be the main venue through which water quality
data are interpreted, better attention must be paid to distribution assumptions, flow-
adjustment, and power analysis. The first two are easily handled, but the third, power

analysis, is a complex subject. Power can be used to determine effective sample sizes to
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detect a significant difference fairly easily. However, calculation of the power of certain
tests given a sample size can be complicated for parametric statistics, and even more so
for nonparametric. Power analysis tools (software, internet calculators) can aid greatly,
but a broad review of these tools for comparability of results must first take place in order

to ensure quality of results.

3) The recent development of protocols for biological monitoring and assessment
methodologies could prove to be the most informative way to assess water quality. These
methods are relatively new, and so have not been scrutinized like the methods used to
interpret chemical data. Many of the same statistical issues discussed in this thesis apply
to biological data as well. The movement towards establishing broadly peer-reviewed
methods for data analysis is impending, and all avenues of analysis methods should be

thoroughly explored.

The bottom line is that the application of science, individually administered, is not
going to make data analysis any easier, or results more comparable. There are too many
variables involved, and too many methods through which to explore data. Nevertheless,
if management requires accepted, scientifically defensible methods that produce
comparable results upon which to base their decisions, consensus must be obtained about
what those methods should be. Several documents have been developed for standard
methods for sampling protocols and laboratory analysis. Following this trend, it seems
only natural to develop standard methods of data analysis as well. As discussed in the

Scope section of Chapter I, this should only include methods used for management
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decision-making. Exploratory data analysis employed by researchers needs to remain
untethered and flexible.

This is an issue that can only partially be resolved through science. Research,
such as this thesis, can establish that there are common methods being used, compare the
results obtained with differing methods, and document that there are problems with
current data analysis procedures. But the decision-makers who are knowledgeable about
monitoring resources, costs, and consequences of individual decisions will need to be the
ones who, through a fair and open process, develop a guidance of acceptable methods for

water quality monitoring data analysis.
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Appendix A. Data and Results from
McBride (1998)

Null and equivalence hypothesis tests and Bayesian probabilities on taxonomic richness data,
from Quinn et al. 1992 (Hydrobiologia 248: 235-247). There are seven replicates (in

runs) from

upstream and from downstream of gold mining

operations in six streams.

INPUT DATA ("U" & "D" appellations denote upstream and downstream; "d"
denotes difference)

German Gully | Houhou Kaniere Kapitea Red Jacks Waimea

Replicate GU| GD HU| HD KnU| KnD KpU KpD RU RD wWuU| WD
1 21 8 131 11 8 10 15 8 19 14 13 12
2 16 7 151 10 11 13 2] 7 16 14 12 14
3 18 7 16] 11 9 8 16 9 18 13 18 12
4 15 12 151 12 15 8 20 10 17 15 11 11
5 14 10 19] 11 15 8 17 8 21 14 14 15
6 18 9 14 12 10 8 23 9 18 11 11 13
7 12 8 201 14 I1 9 21 9 25 13 13 14

diL% -20!lower bound of environmentally significant %age change in upstream value

dU% 20]upper bound of environmentally significant %age change in upstream value

alpha 5|maximum permissible probability of rejecting HO for any comparison, IF that

hypothesis is actually true (not that we will ever know for sure)

NB. If the overall significance level is to be controlled (e.g., to 5%), alpha must usually be reduced to a lower value.
The most pessimistic reduction is the Bonferroni correction: alpha = 1-(0.95)*1/6 = 0.85% (there being 6
comparisons to be made). I say "usually" because the correction needs to account only for the number of cases
where HO is in fact true. One could argue that it need never be made for the two-sided difference test, because its
HO is never true for observational data like these! And if half the "HO: equivalence" cases were true (and so half
were not) the correction would be alpha = 1-(0.95)*1/3 = 1.7%.

RESULTS
SUMMARY
HO: no Sig. diff. Sig. diff. No sig. diff. Sig. diff. Sig. diff. No sig. diff.
difference
HO: Inequiv. Inequiv. Inequiv. Inequiv. Inequiv. Equiv.
inequivalence
HO: Inequiv. Equiv. Equiv. Inequiv. Equiv. Equiv.
equivalence
Bayesian posterior probability (%) that the true difference is within the equivalence interval (using
uniform priors)
0.33] 14.04| 53.33| 0.01] 7.71] 97.06

CALCULATED SAMPLE SIZES, DEGREES OF FREEDOM AND CRITICAL t VALUES

Number of replicates, nU=nD=7 | nu=2(nU+nD-2)=12 | talpha(2),nu] =2.179 | t[alpha(1),nu] = 1.782
NB. "alpha(2)" means that we are using the upper AND lower tails of the t-distribution, there being an area = alpha/2 in each.
This is used in the two-sided difference tests shown below, and is calculated from Excel's function TINV(alpha,2(n-1)). But
"alpha(1)" means that we are considering only the upper tail of the t-distribution, containing an area = alpha. This is used in
equivalence tests (which are in effect an amalgam of two one-sided tests). Because the TINV function gives only the

two-tailed inverse (i.e., abscissa) of the t-distribution, we must use t[alpha(1),2(n-1)] =
TINV(2*alpha,2(n-1)).
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Appendix A. McBride (1998)

DERIVED DATA

Median 16 8 15 11 Il 8 20 9 18 14 13 13
Means (muU, 16.29] 8.71| 16.00} 11.57) 11.29( 9.14] 19.00| 8.57{ 19.14| 13.43| 13.14] 13.00
muD)

SD (standard 298] 1.80f 2.58 1.27) 2.75( 1.86] 3.00] 0.98 3.02 1.27) 241 1.41
deviation)

CV (= SD/mu, %) 18.31 20.6| 16.1 11.0| 24.4] 204| 158 11.4| 158 9.5 18.3 10.9
sp [= sqrt{sum(SD"2)}] 2.46 2.04 2.35 2.23 232 1.98
SE [= sp*sqrt(2/n)] 1.32 1.09 1.26 1.19 1.24 1.06
dhat (= muD - -7.57 -4.43 -2.14 -10.43 -5.71 -0.14
mul)

dL (= -3.26 -3.20 -2.26 -3.80 -3.83 -2.63
muU*dL%/100)

dU (= muU*dU%/100) 3.26 3.20 226 3.80 3.83 2.63
|100*dhat/muU| 46.5 27.7 19.0 54.9 299 1.1
(%)

T (= |dhat|/SE) 5.75 4.07 1.71 8.75 4.61 0.14
Ta [= (dhat- -3.28 -1.13 0.09 -5.56 -1.52 2.35
dL)/SE]

Tb [= (dhat- -8.22 -7.01 -3.50 -11.93 -7.70 -2.62
dU)Y/SE]

F(Ta) (cumulative t,%) 0.33 14.04 53.55 0.01 7.71 98.18
F(Tb) (cumulative t,%) 0.00 0.00 0.22 0.00 0.00 .11

118



Appendix B.
Arizona Assessment Criteria

119



Appendix Bl. Arizona Assessment Criteria Using Numeric Standards

DESIGNATED USES AND NUMBER OF SAMPLES ASSESSMENT CRITERIA
CONSTITUENTS
All uses Only 1 sample Cannot assess based only on one water chemistry

sample.

Aquatic and Wildlife. -- Toxic
Substance

Less than 10 samples (more
than 1 sample)

1 sample exceeds = partial support

More than 1 sample exceeds = discretion in
choosing partial or non-support based on
number of samples magnitude of exceedances.

10 or more samples

Toxic substances -- Acute criteria
1 sample exceeds standard = full
support
2 or more samples exceed standard =
non-support

4 consecutive days of samples

Toxic substances -- Chronic criteria
Mean exceeds standard

Aquatic and Wildlife -- Nontoxic
substance (except nutrients)

and

Full Body/Partial Body Contact,
Agriculture Irrigation/Livestock

Water --

Toxic or Non Toxic Substances

Less than 10 samples (more
than 1 sample)

1 sample exceeded standards = partial support.
More than 1 sample exceeds standards = partial
or non-support based on number of samples and
magnitude of exceedances.

More than 10 samples

Less than 10% samples exceed = full support
10-25% samples exceed = partial support
More than 25% samples exceed = non-support

Full Body Contact

Minimum number established
in Rules.

Geometric mean for bacteria testing during the
past two years:
Geometric mean repeatedly exceeded
= nonsupport
Geometric mean exceeded only once
= partial support

Nutrients (nitrogen or phosphorus)
for

Aquatic and Wildlife Uses

More than 1 sample

“Single sample” criteria exceeded
Less than 10% samples exceed = full

support

10-25% samples exceed = partial
support

More than 25% samples exceed =
nonsupport

Minimum number established
in Rules.

Annual mean standard or 90% standard is
exceeded = partial or non-support depends on
number of times exceeded in a 5 year period and
whether there is substantiating evidence of
negative impacts (i.e., fish kills)

Fish Consumption and Domestic
Water Source Uses

More than 2 samples

Median of all samples exceeds standard = non-
support.

Trends in Water Chemistry
Use dependent on parameter.

Sampling periods 10 years
apart and > 10 samples per
period.

Downward trend, such that standard may be
exceeded within the next assessment cycle = full
support but “threatened.”

(Arizona Department of Environmental Quality Assessment Criteria, 2000)
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Appendix B2. Arizona Assessment Criteria Using Narrative Standards

CONSTITUENT AND
DESIGNATED USES

NUMBER OF SAMPLES

ASSESSMENT CRITERIA

Fish Consumption

Fish consumption advisory = non support

Off-flavor in aquatic organisms or waterfowl
documented.= partial support.

Used only as supporting
evidence

Fish tissue concentration median value is above
narrative standards assessment guidance = Full (use as
weight of evidence and flag for potential problems)

Aquatic and Wildlife

Used only as supporting
evidence

Fish tissue concentration median value is above
narrative standards assessment guidance = flag for
potential problems. Contact USFWS, AGFD, or other
expert to determine whether “toxic” impacts
documented.

“Narrative toxic standard” -- Impacts to aquatic and
wildlife documented (i.e., fish kills or anomalies). (See
“toxic” definition in Appendix A.)

Used only as supporting
evidence.

Index of Biological Integrity (Bioassessments): See
explanation on page C-4 of this appendix.

Aquatic and Wildlife or
Full Body/Partial Body
Contact

Used only as supporting
evidence.

Contaminated sediment median value exceeds
criterion

“Narrative nutrient standard” -- Noxious weeds or
algal blooms documented along with elevated pH or low
dissolved oxygen. Partial support or non-support based
on how often and severe.

Excessive sedimentation documented = partial
support.

Full Body/Partial Body
Contact

Objectionable odor is documented = partial suppost.
Water color change from background levels
documented = partial support.

Domestic Water Source

Drinking water advisory: Within the past two years
related to source water quality of surface water:
Advisory issued for less than one week per
year = partial support.
Advisory issued for more than one week per
year = non-support.
Off-taste or odor in drinking water documented =
partial support.
Cause a violation of an aquifer water quality
standard (or contribute to a violation.).= non-support.

Full Body Contact

Swimming area closures within the past two years:
Less than one week closure per year = partial
support.

Greater than one week closure per year =
non-support.

(Arizona Department of Environmental Quality Assessment Criteria, 2000)
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Appendix B3. Arizona Trophic Classification Thresholds

Trophic State Trophic Chlorphyll-a Secchi Total Phosphorus (P) Total Nitrogen (N)
Status Index Depth (ng/bH (mg/1)
(meters)
Phosphorus- | Né& P- Nitrogen- N& P-
Limited Limited Limited Limited
Oligotrophic <30 <5 >3 <10 <13 <0.25 <0.28
Mesotrphic 30-45 5-12 1.2-3 10-20 13-35 0.25-0.65 0.28-0.75
Eutorphic 45-65 12-20 0.6-1.2 20-35 35-65 0.65-1.1 0.75-1.2
Hypereutrophic | >65 >20 <0.6 >35 >65 >1.1 >1.2

“Nitrogen-Limited” = N:P ratio 15 <10

“Phosphorus-Limited” = N:P ratio is >30

“N&P-Limited” =

Colimited = N:P ratio is 10-30

‘Trophic Classification based on: Brezonik, Patrick L., “Trophic State Indices: Rationale for Multivariate Approaches”,

Lake and Reservoir Management. pp 441-445.

(Arizona Department of Environmental Quality Assessment Criteria, 2000)
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Appendix C.
Virginia Designated Use Assessment Criteria
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Appendix C1:

Virginia’s Designated Use Assessment Criteria

Fully Fully Supporting but Partially Supporting | Not Supporting
Supporting | Threatened
Conventional | R <10% NA 11% <R <25% R > 25%
Pollutants
No more * See fish tissue and R>1 R > 10 % samples
Toxic than 1 sediment criteria Exceedance but < 10% | (10 sample
Pollutants exceedance of samples (10 sample | minimum)
ina3 year minimum)
period (10
sample
minimum)
Not Unconfirmed, Confirmed Moderately | Severely Impaired
Biological Impaired or | Moderately Impaired, Impaired or degraded | or Degraded
Data Slightly Evaluated data show (or two surveys shows
Impaired potential WQ problems moderate impairment)
Fish None NA An advisory from A restriction from
Consumption VDH is in place VDH is in place
Advisories or
Restrictions
None Area classified as Areas classified as Areas classified as
Shellfish Conditionally Restricted Prohibited
Restrictions Approved (includes (exception: VPDES
or seasonal condemnations) outfall areas)
Prohibitions
Beach None One short term VDH One or more VDH One or more VDH
Closures closure with low closure with medium closure with high
probability of recurrence | probability of probability of
(pollution source recurrence (VDH recurrence (VDH
transient and no VDH preparing plans to initiates plans to
plans to implement any implement controls implement controls
control measures) measures) measures)
Drinking None One short term VDH One or more VDH One or more VDH
Water Source closure with low closure with medium closure with high
Closures probability of recurrence | probability of probability of

(pollution source
transient and no VDH
plans to implement any
control measures)

recurrence (VDH
preparing plans to
implement controls
measures)

recurrence (VDH
initiates plans to
implement controls
measures)

* Fish Consumption Criteria

* Sediment Criteria

If one or more Level 1
samples exceed one or more
risk based SV’s — threatened
for fish consumption

Cause: violation of SV for
affected parameter

Source: unknown

If one or more ER-M SV(s) or if no ER-M exists, 99™ percentile SV
exceed — threatened for aquatic life.
Cause: violation of SV for affected parameter

R = arithmetic percent violation rate; SV = screening value; ER-M = effects range — medium value
*No water body should be designated impaired (partially or not supporting) based on Level 1 Fish tissue or
Sediment or data alone. (Virginia Department of Environmental Quality, 1999)
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Appendix C2. Virginia Use Support Assessment

NO. | DESIGNATED SUPPORT OF USE ASSESSMENT CRITERIA
USE
1 Aquatic Life Use Conventional Pollutants (DO, pH, Temp.); Toxics in water column; Fish
tissue and sediments; Biological evaluation.
la. Fish Consumption | Advisories and restrictions issued by VDH;
Use Comparison of water column data to human health standards;
Comparison of fish tissue data to national screening values.
1b. Shellfish Restrictive actions for harvesting and marketing of shellfish resources made
Consumption Use by Div. Of Shellfish Sanitation of VDH; comparison of data to water quality
bacteria standards applicable to designated shellfish waters.
2 Swimming Use Conventional Pollutant (Fecal Coliform Bacteria) and/or VDH beach
closures.
3 Public Water Closures or advisories by VDH; comparison of data to applicable public
Supply Use water supply standards.

(Virginia Department of Environmental Quality, 1999)

125




Appendix D.
Data and Meta-Data for New Zealand River Network (Bryers, 1999)
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Appendix D1. New Zealand Data - Site

HM4_BODS
Date Site BODS Date Site BODS5 Date Site BODS5
(ppm) (ppm) (ppm)
890125 HMA4 1.10 920513 HM4 1.20 950913 HM4 0.80
890222 HM4 0.95 920617 HM4 1.15 951011 HM4 1.40
890323 HMA4 1.50 920715 HM4 0.95 951108 HM4 1.65
890419 HM4 1.20 920812 HM4 1.20 951213 HM4 2.25
890524 HM4 1.10 920917 HM4 0.75 960117 HM4 1.10
890614 HMA4 1.20 921013 HM4 0.80 960214 HM4 0.80
890712 HM4 1.30 921120 HM4 1.10 960313 HM4 0.85
890817 HM4 0.80 921218 HM4 1.10 960417 HMA4 1.00
890913 HMA4 0.85 930113 HM4 2.00 960515 HM4 0.75
891018 HM4 1.75 930217 HM4 1.60 960612 HM4 0.90
891116 HM4 2.05 930317 HMA4 1.45 960717 HM4 0.60
891214 HM4 1.95 930414 HM4 1.15 960814 HM4 0.85
900117 HM4 1.20 930513 HM4 0.75 960918 HM4 1.00
900214 HM4 1.15 930616 HM4 0.75 961016 HM4 0.90
900314 HM4 1.10 930714 HM4 0.55 961113 HM4 0.50
900418 HM4 0.30 930818 HM4 0.95 961218 HM4 1.60
900516 HM4 1.35 930915 HM4 1.45 970115 HM4 0.95
900620 HM4 0.80 931013 HM4 1.80 970212 HM4 0.65
900718 HM4 0.95 931117 HM4 0.60 970312 HM4 1.40
900815 HM4 1.10 931215 HM4 0.95 970416 HM4 1.65
900912 HM4 1.00 940110 HM4 1.10 970514 HM4 1.25
901017 HM4 1.25 940214 HM4 0.40 970618 HM4 0.85
901114 HM4 1.50 940314 HM4 2.05 970716 HM4 1.20
901212 HM4 1.50 940411 HM4 1.25 970813 HM4 0.50
910116 HM4 1.60 940518 HM4 1.15 970917 HM4 0.80
910213 HM4 1.20 940613 HM4 1.15 971015 HM4 0.85
910320 HM4 1.50 940713 HM4 0.75 971112 HM4 1.45
910417 HM4 1.75 940817 HM4 0.75 971217 HM4 1.45
910515 HM4 1.10 940913 HM4 0.80 980114 HM4 0.75
910613 HM4 0.85 941011 HM4 0.80 980218 HM4 1.65
910717 HM4 0.95 941114 HM4 1.00 980318 HM4 1.25
910814 HM4 0.90 941212 HM4 1.20 980415 HM4 0.70
910918 HM4 1.25 950118 HM4 1.75 980513 HM4 0.50
911016 HM4 1.05 950213 HM4 1.80 980617 HMA4 0.75
911113 HM4 1.60 950315 HM4 1.30 980722 HM4 1.00
911218 HM4 1.95 950412 HM4 1.40 980812 HM4 1.55
920115 HM4 1.90 950517 HM4 0.60 980916 HM4 0.75
920213 HM4 1.85 950614 HM4 1.15 981014 HM4 1.20
920319 HM4 2.25 950712 HM4 1.10 981125 HM4 0.55
920415 HM4 1.60 950816 HM4 0.55 981216 HM4 1.15
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Appendix D2. New Zealand Data - Site
HM6_NO3

Date Site NO3 Date Site NO3 Date Site NO3

(ppb) (ppb) (ppb)
890125 HM6 780 920513 HM6 710 950913  HMS6 524

890222 HM6 - 445 920617 HM6E 875 951011 HM6 504
890323 HM®6 200 920715 HM6 765 951108 HM6 341
890419 HMG6 220 920812 HM6 750 951213 HM6 244
890524 HMG6 380 920917 HM6 585 960117 HM6 297
890614 HMS6 690 921013 HM6 570 960214 HM6 117
890712 HMG6 510 921120 HM6 440 960313 HM6 92

890817 HM®6 810 921218 HM6 605 960417 HM6 430
890913 HM6 1135 930113 HM6 150 960515 HM6 405
891018 HM6 695 930217 HM6 220 960612 HM6 507
891116 HMS6 390 930317 HM6 160 960717 HM6 495
891214 HM6 370 930414 HM6 185 960814 HM6 820
900117 HMS6 175 930512 HM6 550 960918 HM6 832
900214 HM6 555 930616 HM6 840 961016 HM6 471
900314 HMG6 265 930714 HM6 685 961113 HM6 387
900418 HMG6 285 930818 HM6 580 961218 HM6 355
900516 HMe6 360 930915 HM6 425 970115 HM6 471
900620 HM6 485 931013 HM6 455 970212 HM6 333
900718 HMS6 790 931117 HM6 340 970312 HM6 606
900815 HM®6 855 931215 HM6 325 970416 HM6 377
900912 HMS6 670 940112 HM6 218 970514 HM6 380
901017  HMS6 575 940216 HM6 3 970618 HM6 542
901114 HM6 475 940316 HM6 202 970716 HM6 777
901212 HMS6 215 940413 HM6 1188 970813 HM6 440
910116 HMS6 8 940518 HM6 409 970917 HM6 704
910213 HMS6 9 940615 HM6 696 971015 HM6 335
910320 HMS6 160 940713 HM6 742 971112 HM6 380
910417 HM6 185 940817 HM6 723 971217 HM6 214
910515 HM6 500 940914 HM6 359 980114 HM6 41

910613 HMS6 210 941012 HM6 749 980218 HM6 87

910717 HM6 520 941116 HM6 442 980318 HM6 373
910814 HMS6 820 941214 HM6 256 980415 HM6 481
910918 HMS6 605 950118 HM6 40 980513 HM6 451
911016 HM®6 480 950215 HM6 51 980617 HM6 1091
911113 HMS6 350 950315 HM6 570 980722 HM6 987
911218 HMS6 92 950412 HM6 1052 980812 HM6 892
920115 HM®6 105 950517 HM6 438 980916 HM6 387
920213 HM6 415 950614 HM6 944 981014 HM6 535
920318 HM6 110 950712 HMG6 928 981125 HM6 544
920415 HM6 395 950816 HM6 792 981216 HM6 371
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Appendix D3. New Zealand Data - Site

RO1_NH4
Date Site NH4 Date Site NH4 Date Site NH4
(ppb) (ppb) (ppb)
890215 RO1 11 920617 RO1 2 951011 RO1 2
890315 RO1 5 920715 RO1 7 951115 RO1 3
890412 RO1 4 920812 RO1 3 951212 RO1 2
890510 RO1 2 920916 ROf1 3 960117 RO1 3
890615 RO1 3 921014 RO1 5 960215 RO1 5
890719 RO1 6 921112 RO1 2 960312 RO1 4
890815 RO1 3 921209 RO1 5 960417 RO1 5
890913 RO1 5 930113 RO1 8 960515 RO1 1
891011 RO1 6 930217 RO1 6 960612 RO1 1
891115 RO1 9 930316 RO1 2 960718 RO1 5
891212 RO1 5 930414 RO1 2 960814 RO1 2
900117 RO1 4 930512 RO1 3 960912 RO1 2
900214 RO1 3 930615 RO1 6 961016 RO1 4
900314 RO1 2 930715 RO1 4 961112 RO1 3
900418 RO1 4 930811 RO1 3 961212 RO1 4
900516 RO1 5 930915 RO1 4 970116 RO1 1
900613 RO1 4 931014 RO1 2 970212 RO1 4
900718 ROt 3 931117 RO1 3 970311 RO1 5
900815 RO1 5 931215 RO1 4 970416 ROf1 1
900912 RO1 2 940113 RO1 ) 970515 RO1 2
901017 RO1 1 940216 RO1 ) 970611 RO1 1
901114 RO1 6 940316 RO1 ) 970716 RO1 2
901212 ROt 2 940413 ROf1 ) 970812 RO1 0
910116 RO1 3 940511 RO1 ) 970917 RO1 1
910213 RO1 10 940615 ROf1 ) 971015 RO1 1
910312 RO1 11 940713 RO1 ) 971113 RO1 1
910416 ROt 8 940817 RO1 : 971218 ROt 1
910515 RO1 1 940914 ROf1 ) 980114 RO1 2
910612 RO1 2 941012 ROf1 ) 980211 RO1 2
910717 RO1 1 941117 ROf1 ) 980311 RO1 3
910814 RO1 2 941214 RO1 . 980415 RO1 0
910911 RO1 9 950111 RO1 3 980513 ROf1 2
911016 RO1 1 950215 RO1 3 980618 RO1 4
911113 RO1 2 950315 RO1 2 : RO1 .
911212 RO1 4 950411 RO1 3 980812 RO1 4
920115 RO1 2 950517 RO1 1 980916 RO1 3
920212 RO1 2 950614 RO1 2 981014 RO1 2
920318 RO1 1 950713 RO1 4 981111  RO1 1
920415 RO1 1 950816 RO1 2 981217 RO1 2
920513 RO1 5 950814 RO1 2
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Appendix D4. New Zealand Data - Site

RO2 NH4
Date Site
890215 RO2
890315 RO2
890412 RO2
890510 RO2
890615 RO2
890719 RO2
890815 RO2
890913 RO2
891011 RO2
891115 RO2
891212 RO2
900117 RO2
900214 RO2
900314 RO2
900418 RO2
900516 RO2
900613 RO2
900718 RO2
900815 RO2
900912 RO2
901017 RO2
901114 RO2
901212 RO2
910116 RO2
910213 RO2
910312 RO2
910416 RO2
910515 RO2
910612 RO2
910717 RO2
910814 RO2
910911 RO2
911016 RO2
911113 RO2
911212 RO2
920115 RO2
920212 RO2
920318 RO2
920415 RO2
920513 RO2

NH4

(ppb)
48

38
46
55
54
37
7
57
16
35
46
33
36
31
52
31
43
8
33
27
23
38
22
49
64
38
43
42
44
58
52
66
34
57
78
51
81
42
56
53

Date

920617
920715
920812
920916
921014
921112
921209
930113
930217
930316
930414
930512
930615
930715
930811
930915
931014
931117
931215
940113
940216
940316
940413
940511
940615
940713
940817
940914
941012
941117
941214
950111
950215
950315
950411
950517
950614
950713
950816
950914

Site

RO2
RO2
RO2
RO2
RO2
RO2
RO2
RO2
RO2
RO2
RO2
RO2
RO2
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NH4

(ppb)
74

57
75
69
7
75
62
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Date
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NH4

(ppb)
64

48
66
58
69
43
64
47
15
35
20
22
59
48
54
70
65
62
60
53
68
41
47
59
52
54
34
47
47
66
33
52
45
58
50
53
54
40
28
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Appendix E: Algorithm for Interval Testing in MS-Excel (McBride,

1999b)

Example calculations, Waimea Creek data, using Excel™

Input data

e Upstream taxonomic richness (per 0.1 m” sampling area, 7 replicates): 13, 12, 18, 11, 14, 11,13

e Downstream taxonomic richness (7 replicates): 12, 14, 12, 11, 15, 13, 14
= Significance level for each comparison: a = 5%.

e Lower and upper bounds on environmentally significant percentage change from the upstream mean taxonomic

richness: D; = -20%, Dy = +20%.

Calculated degrees of freedom and critical ¢ values for hypothesis tests

With n,, = nym., = 7 replicates at each site there are v= n,, + ny, — 2 = 12 degrees of freedom for each comparison.
Critical values (“inverses”) of the ¢-distribution are calculated using Excel’s TINV function, which gives the value of ¢

that cuts off a given total area in both tails of the distribution.

« For the null hypothesis test we need t,0),, [“{2)” denotes the two-tailed value, cutting off an area ‘2« in each tail
of the distribution]. For the Waimea Creek case 42 , = 50512 = TINV(0.05,12) = 2.179.
= For equivalence tests we need £, [“a(1)” signifies a one-tailed value, cutting off an area a in the upper tail of the
distribution]. For the Waimea Creek case f,y,, = foosqry,12 = TINV(2*0.05,12) = 1.782.

A. Two-tailed critical values B. One-tailed critical value
04 =1 T 0 1 o T T  —
[
[ 2
£ 03 £ 53l 3
€
5 - "~ o
< o e ©
z \ i z
£ : £
3 02 3 02 oo \ = 3
g g , E
a : & =0 [
D,I, £ A . ! o1 / | Arel-0.05|\
A S\ e
; \ | ¥ »
0 M pl—=t ’.“
X 8 3 A0 KT F A 4 3 2 1 06 1 2 3 4
t—> t —»

C. Bayesian probability

Derived data
Required for all procedures

e upstream & downstream means; estimated difference: ;,,,, =13.14, ;‘*m, =13.00; c} =X — f,r =-0.14

e upstream and downstream standard deviations: 5,, = 2.41, Sgm, = 1.41

* pooled standard deviation: 5, = J(n s:+n, s )/(nw "'"d,...,) =1.98

up " up dhorwen ™ down

e standard error: SE = sﬂll/nw +i/n,,, =1.06

v
Required for null hypothesis test
e test statistic: 7 =|d|/SE =0.14
Required for equivalence tests

» lower equivalence interval limit: d, = x, D, /100 =-2.63

e upper equivalence interval limit: 4, =X, D, /100 =2.63
e lower test statistic: Tn = (d = dL) SE =235

e upper test statistic: T;, = (d - d( ,) SE =-2.62
Required for Bayesian calculations

The preceding four items, plus:

e cumulative ¢ probability up to T,: F(T,) = 98.2%

e cumulative ¢ probability up to T: F(T3) = 1.1%

where F(¢) is the cumulative ¢-distribution probability, calculated using Excel’s TDIST function via the formula F(f) =
2 + SIGN(£)(Y2 — TDIST(ABS(Y), v,1}). (The formula accounts for cases where ¢ is negative.)
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Appendix E. Algorithm for Interval Testing in MS-Excel (McBride, 1999b)

Rules and outcomes

e The null hypothesis is rejected if T> £,(;,~ This condition is not satisfied (because 0.14 <2.179) and so we do not

reject the hypothesis. Therefore we infer “no statistically significant difference”.

e The equivalence hypothesis is rejected if either T, < —tyy, or Tj > [, Neither condition is satisfied (because

2.35>-1.782 and -2.62 < 1.782) and so the hypothesis is not rejected. Therefore we infer “equivalence”.

e The inequivalence hypothesis is rejected if both T, > ¢4y, and Tj < t4,y,. Both conditions are satisfied (because

2.35 > 1.782 and -2.62 < 1.782) and so the hypothesis is rejected. Therefore we infer “equivalence”.
¢ The Bayesian probability that the true difference lies within the equivalence interval is F(T,) — F(T;) =97.1%

Multiple comparisons

The null and equivalence hypothesis tests have used a significance level of @= 5%. This means that the risk of falsely
rejecting a true hypothesis is 5% for each comparison (i.e., for each stream). To keep the risk over a/l comparisons to
5% one must adjust the significance level downward. The pessimistic (Bonferroni) adjustment reduces ato 0.85%. In

that case f4 , = 2.769 so that the inequivalence hypothesis would not be rejected.
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Appendix F. Normality Test Results in WQStat Plus™

Raw NH4 data for RO1 and RO2

Chi-Squared Normality Test

Station Transform talcuiated Tabulated Normal
ROl (n=104) ﬁ
None 79.8462 14.07 false !
log 91. 3846 14.07 false
R0O2 {(n=107}
HNone 3. 14.07 true
log 38.514 14.07 false
=

| gﬁ»l ose! I

I Print Regu’;{! errlnt Data I

Flow-adjusted NH4 data for RO1 and RO2

&

Chi-Sgquared Nutmﬁity Test

{Station Transform

ROl (n=104)
None
log

ROZ2 (n=107)
Hone
log

Calculated

79.8462
56.7692

3.7477
Z28.6075

Tabulated

l4.07
14.07

14.07
14.07

Normal
false =
false
true
false

&

Print Report II Print Data |
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Appendix F. Normality Test Results in WQStat Plus™

Raw BODS data for HM4

[ Chi-Squared Normality Test
[station Transform Calculated Tebulated Hormal
HM4 (n=120) =4
Hone 16.1667 14.07 false [ |
log 10.1667 14.07 true
, | Print Report ” Print Data l
Flow-adjusted BODS data for HM4
| Chi-Syuared Normality Test
Station Transform Caloulated” Tabulated Normal
HM4 (n=120) s
None 5.3333 14.07 true Pt
log 7.5 14.07 true

Print Report || Print Data |
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Appendix F. Normality Test Results in WQStat Plus™

Raw NO3 data for HM6

Chi-Squared

Station Tr

| HM6 (n=120)
None 10.3333
log 47.1667

Flow-adjusted NO3 data for HM6

HM6 (n=120)
None 12.8333
log a5.
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Appendix G1. Mann-Kendall Results for RO2_NH4

10-yr, raw data

e

Concentrallon(ppbl

[0 WS Plux™
SEN'S SLOPE ESTIMATOR
RO2
100 ry
20 » n=107
" o -4 Slope = 1.142
. o+, e Bl o | =wspere
60 < o ’é S m%;
L . *F] 1931
gy .ty . .
40 Y 001 2575 No
+* 005 196 Ho
Ploa 1.645 Up
20 2 1.282 Up
*
] **
0
Feb 1989 Jan 1994 Dec 1998

Comstihuerd: NHA (pb)
Date: 2/29/00

| Print GraEh || Print Data l

Facility: RO2 data NH4
Tme: 10:54 AM

Duta File: RO2_NH4
View: RO2_NH4

| Refresh ”Zoori’i |

|_Exit_|

139



Appendix G1. Mann-Kendall Results for RO2_NH4

10 yr, FAC

vl Ca%' v

SEN'S SLOPE ESTIMATOR (Alt. Values)
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100 -
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& o o Slope = 1.391
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o 2 * by,
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| Refresh || Zoom |
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View: RO2_NEH4

[Ready
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Appendix G1. Mann-Kendall Results for RO2-NH4

1% 5-yr, raw

v i

Concenirsl lon{ppbl

(Y- WS um Plus™
SEN'S SLOPE ESTIMATOR
RO2
100
0 & n=59
'S 2R 4 Slope = 7.063
L, » Units per year.
60 *"Lﬁ::’—“ Mam Kendall
o T -
4+ 4312
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40 LA * Aloha  Criticsl  Sienif
w * 001  2.575 Up
4 * 005 196 Up
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0
Feb 1989 Jal 1991 Dec 1993
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Date: 2/29/00

rPﬁnt Graph‘“ Print Data |

Facility: RO2 data NH4
Time: 11:00 AM

| Refresh ” Zoom |

Drata File: RO2_NH4
View: RO2_NH4

|Ready
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Appendix G1. Mann-Kendall Results for RO2_NH4

1° 5-yr, FAC

vise [T W Plia ™
SEN'S SLOPE ESTIMATOR (Alt. Values)
RO2
&0
+* ¢J .
¢ @ 39
e
N +
60 - = ry 7S -’_‘_‘Qﬂ—“- Slope = 6.044
¢ BTy fane
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= ek
3 A = . -
-§ . :: + 4 * * M o —
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Date: 2/20/00 Time: 11:02 AN View: RO2_NH#
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Appendix G1. Mann-Kendall Results for RO2_NH4

2" 5.yr, raw
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Appendix G1. Mann-Kendall Results for RO2_NH4

2" 5-yr, FAC
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Appendix G2. Seasonal Kendall Results for RO2_NH4

10-yr, raw
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Appendix 2. Seasonal Kendall Results for RO2Z_NH4
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Appendix G2. Seasonal Kendall Results for RO2_NH4

1% 5-yr, raw
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Appendix G2. Seasonal Kendall Results for RO2_NH4
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Appendix G2. Seasonal Kendall Results for RO2_NH4
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Appendix G2. Seasonal Kendall Results for RO2_NH4
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Appendix G3. Mann-Kendall Results for HM4 BODS
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Appendix G3. Mann-Kendall Results for HM4_BODS

10-yr, FAC
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Appendix G3. Mann-Kendall Results for HM4_BODS
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Appendix G3. Mann-Kendall Results for HM4_BODS
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Appendix G3. Mann-Kendall Results for HM4_BOD3S
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Appendix G3. Mann-Kendall Results for HM4_BODS
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Appendix G4. Seasonal Kendall Results for HM4_BODS5
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Appendix G4. Seasonal Kendall Results for HM4_BODS
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Appendix G4. Seasonal Kendall Results for HM4_BODS
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Appendix G4. Seasonal Kendall Results for HM4_BODS
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Appendix G4. Seasonal Kendall Results for HAM4_BODS
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Appendix G4. Seasonal Kendall Results for HM4_BODS
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Appendix G5. Mann-Kendall Results for HM6_NO3
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Appendix G5. Mann-Kendall Results for HM6_NO3
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Appendix G5. Mann-Kendall Results for HM6_NO3
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Appendix G5. Mann-Kendall Results for HM6_NO3
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Appendix G5. Mann-Kendall Results for HM6_NO3

2" 5.yr, raw

WS Plus™
SEN'S SLOPE ESTIMATOR
HM®6
1500
. n=160
X . Slope = 7 953
1000 * units per yesr.
“ & Marn Kendall
2 RS y - * 0203
H . o '
= * 001 2575 H
500 2= N — L4 -3, o T No
g o % | 8 . *e Wt ol des M
& + R o ¥ [t o Plo2 1289 1o
4 + ¢+ L <
* >
o s L ad *
Jan 1994 Jun 1996 Dec 1998

Constituerd: NO3 (pph) Facility: HIM6 data NO3

Date: 2/29/00 Time: 11:34 AM

[ Print Graph } | Print Data | [ Refresh | [ Zoom |

Data File: HM6_N03
View: HM6_NO03

|Ready

167



Appendix G5, Mann-Kendall Results for HM6G6_NO3J
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Appendix G6. Seasonal Kendall Results for HM6_NO3
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Appendix G6. Seasonal Kendall Results for HM6_NO3
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Appendix G6. Seasonal Kendall Results for HM6_NO3
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Appendix G6. Seasonal Kendall Results for HM6_NO3
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Appendix G6. Seasonal Kendall Results for HM6_NO3
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Appendix G6. Seasonal Kendall Results for HM6_NO3
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Appendix H.
F-test for Equal Variances Results in MS-Excel™

175



Appendix H. F-test for equal variances results

F-Test Two-Sample for Variances
HM4_BOD5

Variable 1 Variable 2

F-Test Two-Sample for Variances
RO2_NH4

Mean 1.241667 1.063333
Variance 0.170438 0.164311
Observations 60 60
df 59 59
F 1.03729
P(F<=f) one-tail 0.444326
F Critical one-tail  1.5639956

Variable 1 Variable 2

F-Test Two-Sample for Variances
HM6_NO3

Mean 48.52542 53.1875
Variance 362.2881 249.8577
Observations 59 48
df 58 47
F 1.449978
P(F<=f) one-tail 0.095043
F Critical one-tail 1.59554

Variable 1 Variable 2

F-Test Two-Sample for Variances
RO1&R0O2

Mean 458.4833 490.3667
Variance 62948.15 77484.71
Observations 60 60
df 59 59
F 0.812394
P(F<=f) one-tail 0.213636
F Critical one-tail 0.649369

Variable 1 Variable 2

Mean 3.320755 50.61682
Variance 5.019946 314.4461
Observations 106 107
df 105 106
F 0.015964
P(F<=f) one-tail 0

F Critical one-tail  0.724789
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Appendix L.
Differences in Populations Results in MS-Excel™, Minitab™,
and WQStat Plus™
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Appendix I1

. T-test and Interval Test Results in MS-Excel™

Input data BOD5 NO3 NH4 RO1&RO2
nup = 60 60 59 106
ndown= 60 60 48 107
a= 5 5 5 5
DI = -20 -20 -20 -20
Du= 20 20 20 20
df = 118 118 105 211
t(a2, df) 1.98027| 1.98027| 1.982817| 1.9712706
t(a,df) 1.65787| 1.65787| 1.659496| 1.6521062
Derived data

xbar-up 1.241667| 458.4833| 48.52542| 3.3207547
xbar-down 1.063333| 490.3667| 53.1875] 50.616822
delta -0.17833| 31.88333| 4.662076| 47.296068
sup 0.412841| 250.8947| 19.03387| 2.2405236
sdown 0.405353| 278.3608| 15.80689| 17.732629
spooled 0.409114| 264.9838| 17.65933| 12.667257
SE 0.074694| 48.37921| 3.432571| 1.7359114
dl -0.24833f -91.6967| -9.70508] -0.664151
du 0.248333| 91.69667 9.705085| 0.6641509
Tl 0.937161| 2.554403| 4.185539| 27.628265
Tu -5.71222| -1.23634| -1.46916| 26.863075
T 2.38753| 0.65903| 1.358188| 27.24567
Results

null (t-test) rejected [accept accept reject
equivalence accepted |accept accept reject
inequivalence |accepted |rejected |rejected [accept
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Appendix I12. T-test Results in Minitab™

Two Sample T-Test and Confidence Interval for HM4_BOD5
Two sample T for BOD5 (ppm) vs BODS5

N Mean StDev SE Mean
BOD5 (pp 60 1.242 0.413 0.053
BOD5 60 1.063 0.405 0.052

95% CI for mu BOD5 (pp - mu BOD5: ( 0.030, 0.326)

T-Test mu BOD5 (pp = mu BOD5 (vs not =): T = 2.39 P = 0.019

Both use Pooled StDev = 0.409

Saving file as: C:\USERS\Lindsay\thesis\BOD5.MTW

DF

= 118

Two Sample T-Test and Confidence Interval for RO2_NH4 vs. RO1_NH4

Two sample T for NH4 vs NH4(2)

N Mean StDev SE Mean
NH4 106 3.32 2.24 0.22
NH4 (2) 107 50.6 17.7 1.7

95% CI for mu NH4 - mu NH4(2): ( -50.72, -43.9)

T-Test mu NH4 = mu NH4(2) (vs not =): T = -27.25 P = 0.0000

Both use Pooled StDev = 12.7

Two Sample T-Test and Confidence Interval for HM6_NO3
Two sample T for NO3 vs NO3 (2)

N Mean StDev SE Mean
NO3 60 458 251 32
NO3 (2) 60 490 278 36
95% CI for mu NO3 - mu NO3 (2): ( -128, 64)
T-Test mu NO3 = mu NO3 (2) (vs not =): T = -0.66 P = 0.51
Both use Pooled StDev = 265

Saving file as: C:\USERS\Lindsay\thesis\NO3.MTW

Two Sample T-Test and Confidence Interval for RO2_NH4
Two sample T for NH4 vs NH4 (2)

N Mean StDev SE Mean
NH4 59 48.5 19.0 2.5
NH4 (2) 48 53.2 15.8 2.3
95% CI for mu NH4 - mu NH4 (2): ( -11.5, 2.1)
T-Test mu NH4 = mu NH4 (2) (vs not =): T = -1.36 P = 0.18

Both use Pooled StDev = 17.7

Saving file as: C:\USERS\Lindsay\thesis\NH4.MTW

DF

DF

DF

= 211

118

105
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Appendix I3. Mann-Whitney Results in Minitab™

Mann-Whitney Confidence Interval and Test for RO1_NH4 vs. RO2_NH4

NH4 N = 106 Median = 3.000
NH4 (2) N = 107 Median = 52.000
Point estimate for ETA1-ETAZ is -49.000

95.0 Percent CI for ETAl-ETA2 is (-51.999,-45.000)

W = 5696.0

Test of ETAl = ETA2 vs ETAl not = ETA2 is significant at 0.0000
The test is significant at 0.0000 (adjusted for ties)

Mann-Whitney Confidence Interval and Test for HM4_BODS5

BODS (pp N = 60 Median = 1.1750
BODS5 N = 60 Median = 1.0000
Point estimate for ETAl1-ETAZ is 0.2000

95.0 Percent CI for ETAl-ETAZ is (0.0501,0.3499)

W = 4095.0

Test of ETAl = ETA2 vs ETALl not = ETA2 is significant at 0.0148
The test is significant at 0.0146 (adjusted for ties)

Saving file as: C:\USERS\Lindsay\thesis\ROl ROZ2.MTW

Mann-Whitney Confidence Interval and Test for RO2_NH4

NH4 N = 59 Median = 51.00
NH4 (2) N = 48 Median = 53.50
Point estimate for ETA1-ETA2 is -4.00

95.0 Percent CI for ETAl1-ETA2 is (-10.99,3.00)

W = 3005.5

Test of ETAl = ETA2 vs ETAl not = ETA2 is significant at 0.2595
The test is significant at 0.2594 (adjusted for ties)

Cannot reject at alpha = 0.05

Mann-Whitney Confidence Interval and Test for HM6_NO3

NO3 N = 60 Median = 450.0
NO3 (2) N = 60 Median = 441.0
Point estimate for ETAl-ETA2 is -20.0

95.0 Percent CI for ETR1-ETAZ is (-126.0,75.0)

W = 3555.0

Test of ETAl = ETA2 vs ETAl not = ETA2 is significant at 0.6958
The test is significant at 0.6958 (adjusted for ties)

Cannot reject at alpha = 0.05
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Appendix I4. Mann-Whitney Results in WQStat Plus™
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Appendix I14. Mann-Whitney Results in WQStat Plus™
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Appendix I4. Mann-Whitney Results in WQStat Plus™
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Appendix I14. Mann-Whitney Results in WQStat Plus™
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Appendix J.
Standards Compliance Results in WQStat Plus™
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Appendix J. Standards Compliance for HM4_BODS
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Appendix J. Standards Compliance for HM4_BODS
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Appendix J. Standards Compliance for HM4_BODS
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Appendix J. Standards Compliance for HM4_BODS
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Appendix J. Standards Compliance for HM4_BODS

FAC data
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Appendix J. Standards Compliance for HM4_BODS
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Appendix J. Standards Compliance for HM4_BODS

FAC data
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Appendix J. Standards Compliance for HM4_BODS
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Appendix J. Standards Compliance for HM4_BODS
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Appendix K.
Trend Results for Flow Data using Seasonal Kendall Test for Trend
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Appendix K1. Trend Results on Flow Data for HM4

10-yr data
i CASF e Wt Plua ™
SEASONAL KENDALL SLOPE ESTIMATOR
HM4
1000 Y
*
ol * . n=120
Slope = 4592
* 4 " " mlqm’i:perym.
600 15w ry £ " =1
= + | i Corf. Tible Siemific
2 ¢ oo ‘e o o| f0% 138 1o =
F 40 = P 0% 1645 Mo
= P 2 0? e N I 'Y psv. 1960 No
R 7. X N v
0
Jan 1989 Jan 1994 Dec 1998
Censtituent: flow rd/s) Facility: HIV4 dta BODS D File: HM4_BODS
Date: 3/20/00 Time: 2:59 PM View: HM4flow
| Print Graph || Print Data | Refresh || Zoom | Exit i
[Ready

196



Appendix K1. Trend Results on Flow Data for HM4
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Appendix K2, Trenmd Results on Flow Data for HMG
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Appendix K2. Trend Results on Flow for HM6
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Appendix K3. Trend Results on Flow Data for RO2
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Appendix K3. Trend Results on Flow for RO2

SEASONAL KENDALL SLOPE ESTIMATOR

n= 359

Slope =-2.105
UMitS peryear.

WiSm Pl ™

t
1% 5-yr data
RO2
50
40
L
30 ""1:—.— b
SO P e A
i [ b o
< 20
7
=
£ 10
0
Fabh 1989

Constouerd: flow m3/sec)

Date: 3/20/00

Jul 1991

| Print Graph || Print Data |

Facility: RO2 data NH4
Time: 3:22 PM

Dec 1993

Data File: RO2_NH4

[ Refresh ;anﬂm i

View: RO2flow

‘T’H.eady
2" 5.yr data
«i'se [ WOhum Plua ™
SEASONAL KENDALL SLOPE ESTIMATOR
RO2
100
20 n=060
Slope = 147
Units peryear.
60
£
T 4L S
z e, L%
.t_.—‘—-—-
g 20 « rd
0
Jan 1994

Consiibhrard: flow (mcd/secy

Date: 352000

Jun 1996

| Print Graph !|3,Print Data {

[Ready

Facility: RO2 data NH4
Time: 3:23 PM

Dec 1998

Data File: RO2_NH4

| Refreiul Zaom |

View: ROXlow

1

201




