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ABSTRACT OF THESIS

THE ROLE OF DATA ANALYSIS METHODS SELECTION AND 

DOCUMENTATION IN PRODUCING COMPARABLE INFORMATION TO 

SUPPORT WATER QUALITY MANAGEMENT

Water quality monitoring is being used in local, regional, and national scales to 

measure how water quality variables behave in the natural environment. A common 

problem, which arises from monitoring, is how to relate information contained in data to 

the information needed by water resource management for decision-making. This is 

accomplished through analysis of the monitoring data. However, how the selection of 

methods with which to analyze the data impacts the quality and comparability of 

information produced is not well understood.

To help understand the connectivity between data analysis methods selection and 

the information produced to support management, the following tasks were performed; 

(1) examined the data analysis methods that are currently being used to analyze water 

quality monitoring data, as well as the criticisms of using those types of methods; (2) 

explored how the selection of methods to analyze water quality data can impact the 

comparability of information used for water quality management purposes, and; (3) 

developed options by which data analysis methods employed in water quality 

management can be made more transparent and auditable.

in



These tasks were accomplished through a literature review of texts, guidance and 

journals related to water quality. Then, the common analysis methods found were 

applied to the New Zealand Water Quality River Network data set. The purpose of this 

was to establish how information changes as analysis methods change, and to determine 

if the information produced from different analysis methods is comparable.

The results of the literature review and data analysis were then discussed and 

recommendations made addressing problems with current data analysis procedures, and 

options through which to begin solving these problems and produce better information 

for water quality management. It was found that significance testing is the most popular 

method through which to produce information, yet assumptions and hypotheses are 

loosely explained and alternatives rarely explored to determine the validity and 

comparability of the results. Other data analysis methods that might be more appropriate 

for producing more comparable information were discussed, along with 

recommendations for further research and cooperative efforts to establish water quality 

data analysis protocols for producing information for management.

Lindsay Melissa Martin 
Department of Chemical and 
Bioresource Engineering 
Colorado State University 
Fort Collins, CO 80523 
Spring 2000
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CHAPTER I. Introduction

The passing of the Federal Water Quality Act of 1965 initiated water quality 

monitoring programs within state water quality management agencies throughout the 

United States. Before these monitoring programs could mature, a major change in water 

quality management occurred with passage of the Federal Water Pollution Control Act 

Amendments of 1972 (commonly referred to as the Clean Water Act today). While 

appearing to be an update of existing law, the 1972 Act revolutionized water quality 

management in the U.S. Management of water quality now required large volumes of 

information about water quality to support sophisticated decision-making (e.g. status of 

water quality conditions over large spatial and temporal scales, standards violations, and 

Total Maximum Daily Loads computations).

Requirements of the Clean Water Act included biannual reports, referred to as 

305(b) reports and 303(d) lists, from each of the states on water quality conditions.

These reports include determinations of designated use support (i.e. is the quality of the 

water good enough for the typical ‘use’ of that water, such as swimming or fishing), and 

lists of waters that are threatened or impaired due to poor water quality. Today, sound 

data on water quality are becoming increasingly important as numerous lawsuits are 

directing renewed nationwide attention to the cleanup of water quality problems through 

the development of total maximum daily loads (TMDLs) for section 303(d) (GAO, 

2000) .



In order to evaluate the status of their waters, and comply with 305(b) and 303(d) 

reporting requirements of the 1972 act, states and other entities have collected water 

quality data and prepared water quality assessments. However, there is a view that the 

assessments and reporting of this data have provided little indisputable information about 

the true quality of our nation’s waters (PEER, 1999; GAO, 2000). “All too often, 

monitoring projects are initiated with a minimum of forethought, and result in a 

collection of poorly-documented data which are never analyzed, [and if they are] provide 

little or any feedback to resource managers, and contribute little or nothing to our 

understanding of the systems being monitored” (MacDonald, 1994).

A classic definition of the word monitor is “to watch, observe, or check, 

especially for a special purpose” (Webster’s New Collegiate Dictionary, 1977). Water 

quality “monitoring” is more than checking to make sure water quality standards are not 

violated. Monitoring is the process of seeking information about the behavior of water 

quality variables in the environment (e.g. average conditions, trends, and extremes) 

(Ward et ah, 1986). “Monitoring is performed in support of water quality management 

and is universally recognized as indispensable for effective management” (Ward et ah, 

1986).

A common problem, which arises from monitoring, is how to relate information 

contained in data to the information needed by management for decision-making. For 

example, if a legal goal from the Clean Water Act is to restore and maintain the nation’s 

water quality, then what information about water quality variables can be used to inform 

the public and water managers if water quality has been maintained or improved?



A common answer to this problem is to use statistical data analysis methods to 

produce information from the water quality data. The field of statistics provides an 

organized approach to quantify the unavoidable uncertainties about the inferences drawn 

from water quality data (Ward, 1998). Snedecor and Cochran (1980) define statistics as a 

field that deals with collecting, analyzing, and drawing conclusions from data, and the 

statistical nature of water quality monitoring has been increasingly recognized (Ward and 

Loftis, 1983).

Ideally, analysis methods related to specific information goals should be spelled 

out in advance of collecting data. A way to ensure that comparable information, over time 

and space, will be developed from water quality data is to thoroughly understand the 

statistical nature of a monitoring program during the initial design of the monitoring 

system (Ward, 1998). Knowledge of which statistical tests are most appropriate to obtain 

the desired information from the collected data plays a role in determining sampling 

frequencies. Thus, the statistics of a monitoring program are dealt with in a quantitative 

and transparent manner, before sampling begins. (Ward, et ah, 1986) This order of 

procedure ensures that the appropriate methods for the desired information will be used, 

and that others who examine the methods will have confidence in the results. It also 

ensures that the requirements of the analysis methods (i.e. type, quality and amount of 

data needed) can be determined and used in the design of the monitoring system.

Whether or not this is done, it is common for management to try to produce water 

quality information from data that were not generated for specific information needs. 

Often, data are made available from historic or existing monitoring projects, and so 

analysis procedures must be chosen after the data are collected. How should data



analysis methods be chosen? Answering this question often raises concerns about the 

validity of the assumptions that are implicit in most statistical analysis procedures, thus 

calling into question the appropriateness of the analysis procedures chosen. The ad hoc 

selection of data analysis methods also hurts the validity of the results and the 

comparability of the information produced. Another, more common concern, is that if 

the analysis methods are not determined prior to the collection of data, then the analyst 

has freedom to choose the methods that will produce the outcome that he or she most 

desires.

Purpose

The purpose of this thesis is to review the current statistical analysis procedures 

used by a variety of monitoring entities to produce information, and provide some 

alternative thinking that will serve to strengthen the connectivity between water quality 

information and the means used to analyze water quality data.

More specifically, the following chapters will: (1) inventory the data analysis 

methods that are currently being used to analyze water quality monitoring data, as well as 

the criticisms of current data analysis methods; (2) explore how the selection of methods 

to analyze water quality data can impact the comparability (i.e. similarity or suitability 

for comparison) of information used for water quality management purposes, and; (3) 

offer options by which data analysis methods employed in water quality management can 

be made more transparent and auditable (i.e. the methods can be reviewed, easily 

understood, and verified).





These tasks will be accomplished through a literature review of texts, guidance 

and journals related to water quality monitoring. Then, the common analysis methods 

found will be applied to a New Zealand Water Quality River Network data set. The 

purpose being to establish how information changes as analysis methods change, and to 

determine if the information produced from different analysis methods is comparable. 

The results of the literature review and data analysis will then be discussed and 

recommendations made addressing problems with current data analysis procedures, and 

options through which to begin solving these problems and produce comparable 

information for water quality management.

Scope

Data analysis, from a water quality management perspective, can be approached 

from one of two directions: (1) production of information from transparent and auditable 

data analysis protocols that are comparable over time and space; or (2) exploration of an 

existing data set to see “what the data say” about water quality conditions in a water 

body. Statistics are used in both situations, but in different ways. This study addresses 

the first approach, but realizes that the use of statistics in water quality management often 

mixes the two.

An argument that often falls out of the above confusion is that there should never 

be “recommendations” of analysis methods, as this censors the methods that might be 

used for exploratory data analysis. However, the analysis methods discussed in this 

thesis will be limited to those methods that are used by water quality management to 

assess water quality; (1) temporal trends, (2) differences in populations (e.g.



upstream/downstream differences and step trends), and (3) standards violations. These 

are the three types of information that are most often studied in water quality assessments 

(Ward, et ah, 1990), and which can be used to interpret the quality of the water for 

regulatory, economic and legal purposes. Therefore, statistics used in modeling analyses 

(including multivariate analyses, time-series analyses and multiple regression techniques) 

were not included in this research, as these are used more often as predictive tools.



Chapter II. Criticisms of Water Quality Data Analysis Methods

Water quality assessments are the primary means through which information 

about our nation’s waters is developed. The methods through which data in the medical 

and behavioral sciences are interpreted are increasingly under fire (i.e. Berger and Berry, 

1988; Carver, 1978; Chow and Liu, 1992; Fleiss, 1987; Goodman, 1993; Nunnally, 1960) 

and some of these criticisms are infiltrating the water quality field. The literature review 

for this research includes the prevalent criticisms of water quality data analysis.

A recent report by an anonymous group of EPA and other agency employees 

criticizes the water quality assessments made by states. It states that “inconsistencies in 

the amounts of waters monitored or evaluated as well as variations in how impairment 

and designated use attainment are measured, produce a hodgepodge of information that is 

of little value in determining national water quality trends or comparing water quality 

among individual States” (PEER, 1999).

Another report produced by the U.S. General Accounting Office reaches similar 

conclusions about the validity the EPA’s National Water Quality Inventory, a 

compilation of all state water quality assessments (305(b) and 303(d) reports). GAO 

(2000) states that this report can not meaningfully compare information across states 

because of considerable variation in: (1) the way states select their monitoring sites; (2) 

the kinds of tests states perform and how the results of these tests are interpreted; (3) the 

methods used to determine causes and sources of pollution; and (4) the analytical



methods chosen to evaluate water quality (i.e. chemical, physical, or biological properties 

of water). “By aggregating these states’ data, EPA is implicitly suggesting that these data 

can, in fact, be compared and in doing so is increasing the likelihood that the data will be 

misused or misinterpreted” (GAO, 2000).

While 15 recommendations are made in the PEER (1999) report to improve the 

305(b) reports produced by states, as well as several recommendations by GAO (2000) to 

improve the usefulness of the National Water Quality Inventory, no recommendation is 

made in either report about how to improve the quality of information produced from 

states’ monitoring systems. One key to this improvement lies in the analysis methods 

used to interpret the monitoring data. Though analysis methods are rarely questioned, 

there are a small number of researchers and academics who are questioning the methods 

used to produce water quality information. This review compiles the arguments brought 

forth by these critiques.

Similar to PEER (1999), a report of the Virginia Water Quality Academic 

Advisory Committee (Shabman et al., 1998) makes 17 recommendations to the Virginia 

Department of Environmental Quality to meet the General Assembly’s Water Quality 

Monitoring, Information and Restoration Act requirements. These recommendations 

basically cover the water quality assessments used for 305(b) and 303(d) reporting. 

Several of the recommendations directly address the statistical analysis methods used to 

produce information from water quality monitoring systems.

Shabman et al. (1998) recognizes the importance of identifying and summarizing 

water quality trends. At present, the Virginia Water Resources Research Center 

(VWRRC) is coordinating a research project in which researchers are using improved





Both trend direction and magnitude are stressed, but it is admitted in the report that long-

term protocols for statistical analysis and data collection need to be developed. Although 

it never recommends specific analysis methods for trend detection, in general the report 

recommends “improved explanations of current use of statistical inference procedures”, 

as well as incorporating the relationship to flow in the analyses for trends. (Shabman et 

ah, 1998)

Currently, Virginia uses EPA’s definition of impaired waters, which is defined as 

an armual violation rate of greater than 10% for numeric water quality standards (referred 

to as the percentage method). The Virginia Department of Environmental Quality wants 

to use a binomial procedure to determine probability of violations, due to their small 

sample sizes, but this is frowned upon by the Virginia Joint Legislative Audit and Review 

Committee (JLARC), which prefers a standard percent calculation. The committee states 

that the percentage method is more prone to drawing a false positive inference that a 

stream segment is impaired, especially if few samples are taken. Use of a binomial 

distribution is more statistically appropriate, and decreases the chance of a false positive 

(Type I error). The binomial procedure does not take the actual value or magnitude into 

account, but if that is of concern, alternatives are suggested. (Shabman et ah, 1998)

Santillo et al. (1998) also criticizes the statistics used to determine standards and 

standards violations. In marine water quality standards, impacts are often based on 

simple single-species toxicity tests. Essentially what is being determined using such tests 

is the distribution of tolerance of a given test species. The problem lies in genetic 

susceptibility of different groups within the same species, as well as the fact that many

(not explained) statistical procedures to perform trend analysis on a watershed scale.



responses of species to certain contaminants is not monotonic. Therefore, the criteria for 

standards violations are not based on the best information.

A third recommendation from the Virginia committee is that the statistical power 

(i.e. sensitivity) of various temporal sampling patterns should be carefully reviewed in 

order to design a monitoring program which will optimize analysis opportunities 

(Shabman et al., 1998). This is a common theme in statistics, and more criticisms of 

testing without considering power will be discussed below.

The process through which water quality information is produced has become 

more targeted in the academic field in recent years. Many researchers are criticizing the 

appropriateness of the actual statistical procedures used to produce the information.

From discrediting specific methods for inappropriate use, to rejecting entire categories of 

methods for inappropriate theory, the typical standard data analysis methods are 

inereasingly being examined in an effort to improve information produced from 

monitoring.

One critique of incorrect use of methods was prompted by the EPA Guidance for 

Statistical Analysis of Groundwater Monitoring at RCRA (Resource Conservation and 

Recovery Act) sites (1989, 1992). In this guidance it is recommended that for a data set 

with large numbers of nondetects, Poisson prediction limits and Poisson tolerance limits 

be used. Loftis, Iyer and Baker (1999) prove that neither the Poisson distribution nor 

associated tolerance or prediction limits should be used with concentration data. “A basic 

criterion that any model must meet is that it be independent of the system of units, and 

the Poisson model does not meet that criterion”. The problem lies in the fact that the 

Poisson model does not scale appropriately with changing units, which results from

10



improper selection of the rate parameter X in the guidance document. (Loftis, Iyer and 

Baker, 1999)

Another type of criticism is the issue of statistical power in monitoring design. 

“Many have noted the lack of attention paid to statistical power in research and 

monitoring programs” (Santillo et al., 1998). Statistical power is defined as the 

probability of detecting an effect where one exists, or the sensitivity of the analysis and 

sampling design to changes in the data. Lack of attention to power has led to 

experimental designs that seek to minimize the probability of incorrectly identifying an 

effect when none exists, known as a Type I error (often denoted as a), so as to avoid 

regulatory regimes that are unnecessarily strict. (Santillo et al., 1998)

However, efforts to minimize Type I errors can lead to increases in Type II errors 

(denoted as [3), an error of accepting the null hypothesis when it is actually false (i.e. not 

identifying real impacts). “A Type II error could lead to inadequate legislative protection 

and failure to prevent adverse impacts on the environment or human health. Experiments 

that fail to identify an effect may lead to acceptance of the null hypothesis (no effect), 

when the experimental design would have lacked sufficient statistical power to have 

identified an effect in the first place.” (Santillo et al., 1998)

This lack of attention to power considerations draws doubts to the capability of 

many monitoring programs to detect trends, because too few data points are available to 

give the analysis much power. “However, designing a monitoring program with enough 

data points for a decision (say, over 20 years) may result in an environmental impact that 

is unacceptable”. The power also depends on the effect determined to be significant. If 

the researcher is unable to understand and quantify the extent of impacts caused by

11



contamination, let alone identify which adverse effects to examine, then a reduction of 

Type 11 errors will not reduce scientific rigor of the experiment. (Santillo et ah, 1998) On 

the flip side of this argument is the fact that as databases may grow, tests become too 

powerful, detecting ever-smaller differences, leading to unimportant differences turning 

out to be statistically significant (McBride, 1999a).

Another publication, made available on the Internet by the Northern Prairie 

Wildlife Research Center and the USGS, takes the opposite view and is critical of power 

analysis. Power analysis, as mentioned above, can be used to determine the sample size 

needed to have a specified probability (power) of declaring as significant a particular 

difference or effect (Johnson, 1999). However, when power is determined after a test has 

been performed to guard against wrongly declaring the null hypothesis to be true, the 

results can be misleading. This retrospective power analysis, estimated with the actual 

data used and the observed effect size, is meaningless, as a high p-value will result in a 

low estimated power (Johnson, 1999). Power analysis programs, however, assume the 

input values for effect and variance are known, rather than estimated, so they give 

misleadingly high estimates of power, “as well as requiring three arbitrary parameters, 

alpha, beta, and effect size”. The author states that the questions about the likely size of 

true effects can be better addressed with confidence intervals than retrospective power 

analysis. (Johnson, 1999)

The criticism with potentially the most far-reaching impact implies that 

significance testing is inappropriate for environmental data. Significance testing is the 

category of statistical analyses that tests a null hypothesis against its alternative, and 

determines if the outcome is significant evidence against the null or not. “Unfortunately,

12



when applied in a cookbook fashion, such significance tests do not extract the maximum 

amount of information available from the data” (McBride, Loftis and Adkins, 1993).

McBride, Loftis and Adkins (1993) claim that significance testing has three 

problems, which are applicable in environmental monitoring:

1. A conclusion that there is a significant result can often be reached merely by 

collecting enough samples (increasing sample size increases chance of rejecting 

the null);

2. A statistically significant result is not necessarily practically significant; and

3. Reports of the presence or absence of significant differences for multiple tests are 

not comparable unless identical sample sizes are used.

For the past several years, the use of significance testing in the medical profession 

has been questioned. The argument has been made that the use of arbitrary (i.e. p < 0.05) 

“significance” values does not objectively prove that the data are displaying a 

characteristic that is not merely chance. In fact, it has been suggested by certain 

statisticians that p-values are “startlingly prone” to attribute significance to fluke results 

(Matthews, 1998). Discussions have been raised over the “value” of a p-value, and what 

it really means in terms of proving anything. Those with less knowledge of statistical 

theory mistakenly confuse it with the Type I error of hypothesis testing (a), and this link 

between the two has become standard, but misleading practice (Goodman, 1993). Some 

data analysts are now questioning the appropriateness of using p-values at all with 

hypothesis testing (i.e. Goodman, 1993; Berger and Berry, 1988; Matthews, 1998).

The water quality and biology fields are also addressing the confusion over using 

p-values to support significant findings. Johnson (1999) states that: (1) the p-value is

13



often used as the probability that the results obtained were due to chance, (2) 1 -p is often 

used as the “reliability” of the result, and (3) p is the probability that the null hypothesis 

is true.

“Unfortunately, all of these conclusions are wrong. The p-value is the probability 

of the observed data or more extreme data, given that the null hypothesis is true, the 

assumed model is correct, and the sampling done randomly” (Johnson, 1999). 

Determining which outcomes of an experiment or survey are more extreme than the 

observed one, so a p-value can be calculated, requires knowledge of the intentions of the 

investigator (i.e. the stopping rule) (Berger and Berry, 1988). “Hence, p, the outcome of 

a statistical hypothesis test, depends on results that were not obtained, that is, something 

that did not happen, and what the intentions of the investigator were” (Johnson, 1999). 

Such information and intentions are often not easily obtained.

Another common mistake in hypothesis testing is that null hypotheses cannot be 

proved, they can only be rejected. Failing to reject a null hypothesis does not prove that 

it is true (Johnson, 1999). Especially with small samples, one must be careful not to 

accept the null hypothesis, as this is a reflection of the lack of power (Johnson, 1999). 

Even more arbitrary is the designation that a result is “significant” if the p-value falls 

below some cut-off value, usually given as the acceptable Type I error, a. This means 

that for an a  of 0.05, then a p-value of 0.049 is significant for a one-sided test, whereas a 

p-value of 0.051 is not (Johnson, 1999). Such a minor difference can be deceptive, as it 

is derived from tests whose assumptions are often only approximately met (Preece, 

1990).

14



P-values are calculated under the assumption that the null hypothesis is true.

Most null hypotheses tested, however, state that some parameter equals zero, or that some 

set of parameters are all equal. These hypotheses, called point null hypotheses, are 

almost invariably known to be false before any data are collected (Berkson, 1938;

Savage, 1957; Johnson, 1995). If these hypotheses are not rejected, it is usually because 

sample size is too small (Nunnally, 1960) and power is too low. (Johnson, 1999)

In the field of drug testing, it has been agreed that testing a null hypothesis 

between means/medians (which is standard practice in water quality data analysis) is not 

appropriate, as it is evident that the probability of rejecting the null hypothesis increases 

with sample size (Chow and Liu, 1992). This is due to the fact that the p-value grows 

smaller as sample size increases. A solution to this problem was given by Good (1982), 

who proposed that p-values be standardized to a sample size of 100, by replacing the p- 

value with p*squareroot(n/10), where n is the sample size.

An even more pertinent question would be: why test a null hypothesis at all, if it 

seems virtually impossible for two different drugs to have the same effect? (McBride, 

1998) It has become common practice in drug testing to test whether or not a difference 

between means/medians might be within a prescribed interval, instead of exactly zero 

(Chow and Liu, 1992).

Water quality guidance documents, such as the EPA’s for statistical analysis of 

monitoring data at RCRA sites (1989, 1992) often recommend significance testing, such 

as ANOVA. This type of test can be stated as the following: For the time period given, 

are the means of a water quality variable equal in all the wells sampled? Or is one or 

more different from the others? McBride, Loftis and Adkins (1993) point out that as in
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drug-testing, we know in advance there will be differences, so why perform the test at 

all? If there exists a statistically significant difference, this may not translate to a 

practical significant difference from a management point of view unless power is 

considered (not the norm).

McBride (1999a) explores this option further. He states that a recurring issue in 

statistical analysis has been the failure of to use power analysis to select an appropriate 

sample size so as to minimize the risk either of failing to detect important differences or 

of detecting the unimportant. “Advocates of power analysis have been increasing in 

environmental science and management. However, there is discomfort with tests 

becoming too powerful, i.e. as sample size increases, tests of point hypotheses will tend 

to detect ever-smaller differences. One response is to de-emphasize the role of tests and 

rely on confidence intervals.” However, McBride (1999a) chooses to support interval 

testing as a solution to the inappropriateness of testing a point null hypothesis.

Such problems, as discussed above, have led to a “significant test controversy” in 

the social and behavioral sciences, as well as water quality and biology, with the 

following remedial measures proposed:

1. Abandonment of testing hypotheses about differences in favor of estimation of 

differences (Oakes, 1986);

2. Use of interval tests (McBride, 1999a); and

3. Using a combination of estimation and testing with greater emphasis on statistical 

power in the design of monitoring systems and interpretation of significant test 

results (Millard, 1987).
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McBride, Loftis and Adkins (1993) suggest that the entrenchment of hypothesis 

testing in the environmental field makes its abandonment unrealistic, but does make 

several other recommendations related to those in the social and behavioral sciences.

One recommendation supports the emphasis on statistical power, stating that both types 

of errors (Type I and Type II) should be considered when designing a sampling program. 

“In this way one can seek to have a higher probability of detecting a difference of 

practical significance (because Type II error is related to the difference in means), 

corresponding to a particular effect size (chosen by the analyzer), as well as a low 

probability of raising false alarms”. (McBride, Loftis and Adkins, 1993)

Another recommendation is to rely more on interval estimation rather than 

hypothesis testing. “In trend detection, more information is conveyed by plotting a trend 

line with confidence limits through a time series than by simplistic yes/no of significance 

testing.” (MeBride, Loftis and Adkins, 1993)

The final recommendation by McBride, Loftis and Adkins (1993) refers to 

interval testing, in which the analysts test whether or not the difference in means is 

greater than some preseribed interval. “An advantage of this test is that the analyst must 

state the difference of practical significance to management, also the failure to reject the 

null no longer induces complacency”. This is because the results now mean something, 

ecologically and environmentally.

Conclusions

The criticisms of data analysis methods in the medical, biology and water quality 

fields have focused on several key issues. Most of these issues center on the
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appropriateness of using hypothesis testing to determine significant results from data. 

Johnson (1999) even goes so far as to say that “statistical hypothesis tests add very little 

value to the products of research. Indeed, they frequently confuse the interpretation of 

data”. The arbitrariness and confusion over the meaning of p-values, lack of attention to 

power, and inappropriate conclusions that the null hypothesis is true all contribute to the 

ineffectiveness of significance testing. Loftus (1991) “found it difficult to imagine a less 

insightful way to translate data into conclusions”.

Nevertheless, significance testing is still widely used and accepted to develop 

information from all sorts of data, especially in the water quality field. This prevalence 

will be demonstrated in the next literature review section. Despite its drawbacks, some 

advocate more appropriate types of hypothesis testing (i.e. McBride, Loftis and Adkins’ 

(1993) discussion of interval testing), as well as greater attention to the details of the test, 

including power analysis, sample size and stating the hypothesis. All of these discussions 

and criticisms help to illustrate the need for more careful attention paid to the selection of 

analysis methods when the ultimate goal is defensible and comparable information.
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The purpose of this literature review is to examine current practice and “state-of- 

the-art” procedures used to analyze water quality data for information purposes. The 

review focuses on the use of statistics in literature to produce information, not summary 

statistics. This information, as discussed in the introduction and scope section, is limited 

to temporal trends, differences in populations, and standards compliance. The extent of 

the review covers the major entities involved in water quality monitoring assessments, 

including the USGS, EPA, private groups and academia, and determines if there are 

established “standards” of monitoring data, as a whole or within organizational 

structures. The review covers environmental statistics textbooks, agency publications, 

water quality reports from state environmental agencies, and the following journals: 

Journal of American Water Resources Association, Environmental Monitoring and 

Assessment, Environmental Management, Water Resources Research and Marine 

Pollution Bulletin.

When beginning this literature review it was thought that there may be “de facto” 

standards for data analysis developing in the water quality field. Use of the term 

“standard” is not meant to imply that there is an established set of statistical analysis 

methods that have been reviewed and recommended for all water quality monitoring 

situations. However, a large part of this thesis will attempt to establish that there are 

certain methods that are used time and time again by a variety of monitoring entities, 

depending on the type of information sought. Conclusions at the end of this literature

Chapter III. Current Water Quality Data Analysis Procedures
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review will address whether or not “de facto” data analysis standards are emerging in the 

analysis of water quality data.

Textbook Guidance for Statistical Procedures to Interpret Water Quality Data

The following tables (Tables III.l -  III.3) summarize information found in three 

textbooks that are commonly used in the water quality field to determine statistical 

procedures for data analysis. The purpose here is not to explain the statistical procedures 

outlined in the text, but to determine which methods seem to be recommended by their 

inclusion in the text.

Table III.l; S ta tis tica l M e th o d s  f o r  E n v iro n m en ta l 
P ollu tio n  M o n ito r in g  (Gilbert, 1987)

In fo rm a tio n
R e q u ir e m e n t

G ra p h ic a l P a r a m e tr ic  S ta tis tic s N o n p a ra m e tr ic  S ta tis tic s

Trends T im e series;
C U SU M
charts

R egression  o f  deseasonalized  data 
against tim e w ith  a t- te st o f  
hypothesis: slope =  0; In tervention  
A nalysis and  B ox-Jenk ins M odel 
(A u to reg ressive in teg rated  
m oving-average tim e series 
m odel)

M ann-K endall test; S en ’s 
E stim ato r o f  S lope; Seasonal 
K endall T est/S lope  E stim ato r;
V an  B elle  and  H ughes (1984 ) chi- 
square te s t fo r hom ogeneity  o f  
trend  in d iffe ren t seasons; S en ’s 
aligned  rank  te st fo r trend ; te s t for 
g lobal trend

D iffe ren ces in  
P opu la tion

P aired  D ata: t-test P aired  D ata: sign test; W ilcoxon  
signed rank  test; F ried m an ’s te st

Independen t D ata: W ilco x o n ’s 
rank  sum /M ann-W hitney  te s t fo r 
tw o popu la tions; K ruskal-W allis  
te st fo r > 2  popu la tions

S ta n d a rd s
C om pliance

E stim ating  quantiles, p roportions, 
and  confidence lim its on  m ean

E stim ating  quantiles, p roportions, 
and  confidence lim its on  m ed ian
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Table III.2; D esig n  o f  W ater Q u a lity  M o n ito r in g  S ys tem s  (Ward et al., 1990)

In fo rm a tio n
R e q u ir e m e n t

G ra p h ic a l P a r a m e tr ic  S ta tis tic s N o n p a ra m e tr ic  S ta tis tic s

Trends A nnual B ox- 
and-W hisker 
plo ts; tim e 
series

L inear R egression , t- te st for 
sign ificance o f  slope (S nedeco r and 
C ochran , 1980)

Seasonal K endall T esL S lope 
E stim ato r (G ilbert, 1987)

D iffe ren ce  in 
P op u la tio n s

B ox-and- 
W hisker; 
T im e series

S tu d en t’s t-test; P aired  t-test; 
A N O V A  (S nedeco r and C ochran, 
1980); Sam ple m ean  or geom etric 
m ean w ith  confidence lim its (G ilbert, 
1987); sam ple s tandard  dev iation  
w ith  confidence lim its (Sachs, 1984)

Seasonal H odges-L ehm an  
es tim ato r (H irsch , 1988); 
M ann-W hitney  test, 
W ilcoxon  S igned  ran k  test; 
K ruskal-W allis  te st 
(C onovor, 1980); S am ple 
m ed ian  w ith  con fidence  
lim its (G ilbert, 1987)

S ta n d a rd s
C om pliance

T im e series 
p lo t w ith  
E xcursion  
lim it

P roportion  o f  E xcursions (W ard  et al. 
1988); C onfidence lim it on 
p roportions (G ilbert, 1987); T est for 
equality  o f  p roportions (Snedecor 
and  C ochran , 1980); T o le rance 
In tervals (C onovor, 1980)

P ropo rtion  o f  E xcursions 
( W a rd e ta l .  1988); 
C onfidence lim it on 
proportions (G ilbert, 1987)

Table III.3: S ta tis tic a l M eth o d s  in  W ater R eso u rces  (Helsel and Hirsch, 1992)

In fo rm a tio n
R e q u ir e m e n t

G ra p h ic a l P a r a m e tr ic  S ta tis tic s N o n p a ra m e tr ic  S ta tis tic s

Trends R egression  o f  Y  on  T M ann-K endall test; Seasonal K endall 
test

D iffe ren ce  in 
P o p u la tio n s

S ide-by-S ide 
boxp lo ts ; Q -Q  
plots,
S catterp lo ts w ith  
x= y  line

P aired  data: t-test

Independen t data: t-test 
fo r 2 groups, A N O V A  
for >2 groups, 
m ultifac to r A N O V A , 
tw o-fac to r A N O V A

E stim ating  m agnitude: 
confidence in te rval for 
d iffe rence betw een  
m eans, m ean d iffe rence 
t-test; m ultip le  
com parison  tests

P aired  data: sign  test; s ig n ed -ran k  te st

Independen t data: R ank -sum  test, 
K ruskal-W allis  te st fo r o n e -fac to r >2 
g roups; A N O V A  on  ranks; m u lifac to r 
test. B lock ing  -  F ried m an ’s test; 
m ed ian  aligned -ranks A N O V A ;

E stim ating  m agnitude: H odges- 
L ehm ann  estim ator; m ed ian  d iffe rence  
sign  te st

S ta n d a rd s
C om pliance

C onfidence in tervals 
for m ean; p red ic tion  
intervals; confidence 
in tervals fo r quartiles

C onfidence  in tervals fo r m ed ian ; 
p red ic tion  in tervals; con fidence  
in tervals for quartiles
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Recommended Guidance for Statistical Analysis of Water Quality Data

In the search for guidance (i.e. widely applicable and accepted instructions or 

protocols) on data analysis methods, it appears that no major entity has established a set 

of comprehensive standards for data analysis procedures. However, the nation’s major 

earth science and environmental agencies, the United States Geological Survey (USGS) 

and U.S. Environmental Protection Agency (EPA) respectively, have many publications 

that often serve to guide those who are performing water quality data analysis.

The USGS has no published defined guidance for analysis of water quality data, 

but does have the largest collection of published water-quality assessments. In these 

studies, authors often site USGS researcher’s publications in their data analysis. For 

example, Helsel and Hirsch (1992), the textbook mentioned above, is commonly cited as 

a reference for using the Seasonal Kendall test for detecting trend. In Hirsch (1988), the 

Hodges-Lehmann class of estimators is found to be robust in comparison to other 

nonparametric and moment based estimators for determining the magnitude of changes of 

various constituents between two time periods (step trend). A seasonal Hodges-Lehmann 

estimator was also developed in this study. By the fact that they are commonly cited in 

many USGS water quality studies, these types of publications serve as guidance for water 

quality data analysis in the USGS.

In an academic study, Montgomery and Reckhow (1984) recommend certain 

techniques for detecting trends in lake water quality, and go on to recommend these 

procedures for other water bodies as well. This paper stresses the need to formulate a 

hypothesis, stating that it is only the hypothesis formulated that is being tested. Hence, if 

information is going to be used in planning and management, one must make sure that the
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hypothesis test conducted actually addresses the issue of concern. The authors also 

recommend plotting the data before choosing the statistical test, as these plots (time 

series, cumulative sum, histogram, normal probability) can give a visual impression of 

degree of trend, periodicity, and distribution assumptions. The following statistical tests 

were recommended according to their data characteristics: (1) for normal and 

independent data, use two-tailed t or F tests, (2) for normal and dependent data, use a t- 

test based on the effective number of independent samples, (3) for nonparametric and 

independent data, use the Mann-Whitney test for a step trend, and Spearman Rho for a 

linear trend, and (4) for nonparametric, dependent data use correction values on the tests 

in (3). It was suggested to use statistical tests for dependent data, almost exclusively 

when dealing with lakes.

Another academic study explores the applicability of the t-test for detecting trends 

in water quality variables. Montgomery and Loftis (1987) reviewed the effects of non-

normality, unequal variances, serial dependence, and seasonality on the performance of 

the two-sample t-test. The results of this study “suggest that the t-test is robust for non-

normal distributions if the distributions have the same shape and sample sizes are equal”. 

It is also robust for unequal variances if the sample sizes are equal. If either of these 

considerations is not met, as well as the presence of serial dependence or seasonality, 

then the t-test is not a robust test to detect a step trend.

Another non-agency study, Harcum et al. (1992), recommends using the Seasonal 

Kendall-tau (SKT) test on monthly data for short periods (less than 10 years) when no 

serial correlation exists and there is less than 50% missing values. When serial 

correlation exists, the recommendation is to collapse the data to quarterly values. “Use

23



the Mann-Kendall test on monthly data with larger records and less than 50% missing 

values, and collapse to quarterly if greater than 50% missing values.” For collapsing, it 

recommends using median values, and for serially correlated data with long records, a 

corrected Seasonal Kendall Tau test.

A type of graphical display that is becoming more widely recommended and used 

in data analysis is the box plot. McGill et al. (1978) describes three variants of the box 

plot display, which are used in exploratory data analysis and visual summaries. This type 

of data manipulation does not involve statistics, but an interesting comment from the 

authors states that “if the notches about two medians do not overlap in this display, the 

medians are, roughly, significantly different at about a 95% confidence level”. Although 

the authors explain that the user’s personal preference is the best criterion for 

interpretation, this article suggests that graphical displays of data “provide insight into the 

meaning of the data without the possibility of misinterpretation due to unwarranted 

assumptions”.

Using a study conducted in New Zealand to determine effects of alluvial gold 

mining operations on benthic invertebrate communities, McBride (1998) demonstrated 

that traditional point hypothesis tests may not provide satisfactory answers to questions of 

environmental impact, because they might not be asking or addressing the right 

questions. Using a standard point hypothesis test, a researcher would examine the null 

hypothesis that there is no difference at all between the populations being compared, in 

this ease, benthic invertebrate taxonomic richness upstream and downstream from the 

mining site. The hypothesis is tested by calculating the probability of getting results at 

least as different as those measured merely by chance if this hypothesis were true
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(McBride, 1998). If the probability is small (say, less than 5%, p <= 0.05), then the null 

hypothesis is rejected and a “statistically significant” difference has been detected. Using 

the standard t-test analysis procedure, McBride (1998) found that 4 of the 6 streams 

showed a “statistically significant” difference between upstream and downstream sites 

from the mining operation. (See Appendix A for data and results)

The problem with these results lies in the fact that the point null hypothesis says 

that two of the streams show no numerical difference at all, which can hardly be expected 

in an ecological situation, teeming with natural variability. (McBride, 1998) A better 

question would be whether there is an “ecological difference” between sites (McBride, 

1998). Using the theories of interval testing, an ecological interval could be established 

corresponding to differences that ecologists deem to be “ecologically significant”. If the 

true difference lies within the interval, the sites would still be “equivalent”, and if not, 

then the sites would be “inequivalent” (McBride, 1998).

It is also possible to set-up the data analysis in two different ways, one with a 

hypothesis that the differences between populations are equivalent, or one in which they 

are not (McBride, 1998). When testing using the hypothesis that the sites are equivalent, 

then only 2 of the 6 streams are found to be inequivalent, or impacted by mining. 

However, when the hypothesis is that the sites are inequivalent (the difference in means 

lies outside of the equivalence interval), only one of the streams is deemed equivalent, 

therefore mining has impacted 5 streams. (McBride, 1998) The information produced is 

very different, and reflects an emphasis or non-emphasis on environmental protection, a 

key point to environmental management. Testing the null hypothesis that the streams are 

equivalent protects the environmental user’s risk, resting the “burden of proof’ on the

25



monitoring system to show that an impact has occurred. However, the latter approach of 

testing a null hypothesis of inequivalence is a more ‘precautionary’ approach, assuming 

the stream has been impacted, unless proven otherwise (McBride, 1998). These results 

show the importance of complete understanding of the implications behind each 

hypothesis to management decision making. These results also show the importance of 

determining the test hypothesis before analysis, as information can change depending on 

the structure of the hypothesis.

McBride (1998) also explores the differences between hypothesis testing and 

using Bayesian statistics, which establishes a degree of belief in the hypothesis, then 

updates the belief in light of the data. “Using a Bayesian test procedure only depends on 

the data obtained, and can be viewed as a weight for or against equivalence, which might 

be the most direct answer for the original question asked: are upstream and downstream 

sites of the mining operation equivalent?” (McBride, 1998)

The largest collection of guidance for data analysis was found in publications by 

the U.S. Environmental Protection Agency. Guidance has been published by the EPA for 

the states’ submittal of 305(b) and 303(d) reports. However, no specific statistical 

methods appear to be endorsed by the organization for these reports. For 303(d), it is 

stated that states should determine threatened waters by data showing a statistically 

significant declining trend. The state’s report should describe how the trend was 

determined, but no particular requirements for trend detection are mentioned (EPA,

1998). The EPA does state that it prefers to base listing decisions on monitored data for 

all their waterbodies, though it recognizes most states do not have a comprehensive 

enough monitoring program. This recommendation is due to the EPA’s desire that listing
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decisions be based on sound, high-quality, scientific information. These 303(d) listing 

seem to be closely linked and dependent on the states’ 305(b) reports and designated use 

support determinations.

The Guidelines for Preparation o f State Water Quality Assessments (305(b) 

Reports) and Electronic Updates for the 1998/2000 Reporting Cycle (EPA, 1997a) 

advises entities to document summary statistics for use support and the approaches used 

to identify causes and sources of impairment (i.e. standards violations), along with 

confidence levels. The major reporting format is miles and acres of designated 

threatened, use supporting or non-supporting water bodies, but no mention is made of 

how statistically sound inferences, from limited samples, are to be applied to an entire 

water body. However, the EPA does make recommendations on how states should 

determine use support numerically and narratively. (See Tables III.4 and III.5)

This literature review found that the EPA mainly publishes guidance that helps 

the states and other reporting entities compile and interpret information to support EPA 

rules and programs. One such guidance is the Information Collection Rule: Draft Data 

Analysis Plan (EPA, 1997b). One objective of the ICR is to collect data on specific water 

quality constituents (i.e. DBP precursors, disinfectants) and use this data to characterize 

source water parameters that influence disinfection byproduct (DBP) formation, refine 

models for predicting DBP formation, and establish cost-effective monitoring techniques. 

The guidance discusses the need to characterize baseline conditions and predict changes 

and impacts, but does so by asking questions about how constituent data is to be 

evaluated without providing answers. The only statistics mentioned in the document are 

options for summary statistics used to characterize the data, i.e. averages, ranges and
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suggest that the decision on what statistical approach to use for aggregating the

occurrence data will depend on the specific question which is trying to be addressed.

Table IIL4: Recommendations from EPA’s 305(b) Guidance 
for Interpreting Water Quality Criteria (EPA, 1997a)

percentiles with confidence intervals, and cumulative probabilities. This guidance does

Impaired
Parameter
type

Fully Supporting

Partially Supporting* Not Supporting*

Conventional Criterion exceeded in < 10 percent of 
measurements

Criterion exceeded in 11 to 25 
percent of measurements

Criterion exceeded in > 25 
percent of measurements

Toxicants No more than 1 exceedance of acute 
and chronic criterion within 3 yr. 
period (at least 10 measurements over 
3yr.)

More than one exceedance of 
acute or chronic criterion, but 
in < 10 percent of the samples

Acute or chronic criterion 
exceeded in > 10 percent of 
the samples

Biological
integrity

Reliable data indicate functioning, 
sustainable biological assemblages 
none of which have been modified 
significantly beyond the natural range 
of the reference condition

At least one assemblage 
indicates moderate 
modification of the biological 
community compared to the 
reference condition.

At least one assemblage 
indicates nonsupport. Data 
clearly indicate severe 
modification of the 
biological community 
compared to the reference 
condition.

Habitat Reliable data indicate natural channel 
morphology, substrate composition, 
bank/riparian structure, and flow 
regime of region. Riparian vegetation 
of natural types and of relatively full 
standing crop biomass.

Modification of habitat slight 
to moderate usually due to road 
crossings, limited riparian 
zones because of encroaching 
land use patterns, and some 
watershed erosion. Channel 
modification slight to 
moderate.

Moderate to severe habitat 
alteration by channelization 
and dredging activities, 
removal of riparian 
vegetation, bank failure, 
heavy watershed erosion or 
alteration of flow regime.

Toxicity - 
aquatic or 
sediment

No toxicity noted in either acute or 
chronic tests compared to controls or 
reference conditions

No toxicity noted in acute tests, 
but may be present in chronic 
tests in either slight amounts 
and/or infrequently within an 
annual cycle.

Toxicity noted in many 
tests and occurs frequently.

Bacteria E.coli and enterococci - Geometric 
mean of samples taken should not be 
exceeded and single sample does not 
exceed the maximum allowable 
density
Fecal coliform - geometric mean does 
not exceed 200 per 100ml based on at 
least five samples in 30 day period and 
not more than 10 percent of the total 
samples taken during any 30 day 
period have a density that exceeds 400 
per 100ml

E.coli and enterococci - 
geometric mean met; single 
sample criterion exceeded 
during the recreational season

Fecal coliform - geometric 
mean met; more than 10 
percent of samples exceed 400 
per 100ml

Geometric mean not met
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Table III.5: Recommendations from the 305(b) Guidance 
for Making Use Support Determinations (EPA, 1997a)

Designated
Use

ATTAINING IMPAIRED

Fully
Supporting

Fully Supporting, but 
Threatened

Partially Supporting Not Supporting

Aquatic Life No impairment 
indicated by all 
(available) data 
types

No impairment indicated by 
all (available) data types, 
but:
- one or more categories 
indicate an apparent decline 
in ecological quality over 
time
- potential water quality 
problems requiring 
additional data or 
verification
- other information suggests 
a threatened determination

Impairment indicated 
by one or more data 
types and no 
impairment indicated 
by others

Impairment 
indicated by all 
data types

Primary 
Contact 
Recreation Use

Bathing area 
closure:
- No bathing 
area closures or 
restrictions in 
effect during 
reporting period 
Bacteria:
- See table 1

Bathing area closure:
- On average, one 
bathing area closure per 
year of less than 1 
week’s duration 
Bacteria:
- See table 1

Bathing area 
closure:
- On average, one 
bathing area 
closure per year of 
greater than 1 
week duration, or 
more than one 
bathing area 
closure per year 
Bacteria:
- See table 1

Drinking Water Contaminants 
do not exceed 
water quality 
criteria and/or 
drinking water 
use restrictions 
not in effect

Contaminants are detected, 
but do not exceed water 
quality criteria and/or some 
drinking water use 
restrictions have oceurred 
and/or the potential for 
adverse impacts to source 
water quality exists

Contaminants exceed 
water quality criteria 
intermittently and/or 
drinking water use 
restrictions resulted in 
the need for more than 
conventional treatment 
with associated 
increases in eost.

Criteria exceed 
water quality 
criteria 
consistently 
and/or drinking 
water restrictions 
resulted in 
closures.

Fish/Shellfish
Consumption

No fish/shellfish 
restrictions or 
bans are in 
effect.

“Restricted
consumption” of fish in 
effect or a fish or 
shellfish ban in effect 
for a subpopulation that 
could be at potentially 
greater risk, for one or 
more fish/shellfish 
species.

“No consumption” 
of fish or shellfish 
ban in effect for 
general population 
for one or more 
fish/shellfish 
species or 
commercial 
fishing/shellfishin 
g ban in effect
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The Monitoring Guidance for the National Estuary Program (EPA, 1992) is 

another example of guidance to support an EPA program. One of the five steps outlined 

in the recommended design framework is to “establish testable hypotheses and select 

statistical methods”. The guidance states that “the recommended procedure for ensuring 

that sufficient information and the right type of information is developed in the 

monitoring program is to specify, prior to the collection of any samples, the statistical 

model that will be used to analyze the resulting monitoring data, and to specify testable 

hypotheses”. The selection of the hypothesis is discussed in its relationship to the 

objective of the monitoring program and the question needing to be answered. As far as 

a recommendation of statistical methods, the guidance provides a list of textbooks on 

monitoring design and statistics: Sampling Design and Statistical Methods for 

Environmental Biologists (Green, 1979), Statistical Methods for Environmental Pollution 

Monitoring (Gilbert, 1987), Sampling Techniques (Cochran, 1977) and Statistical 

Principles in Experimental Design (1971). It also recommends several general statistics 

books, and multivariate statistics books. This guidance also gives a good explanation of 

the theory of statistical power and its importance as an evaluation method for the ability 

of a monitoring program to detect statistically significant differences.

The most comprehensive of EPA’s guidance in terms of statistics is the 

Monitoring Guidance for Determining the Effectiveness o f Nonpoint Source Controls 

(EPA, 1997c). This document dedicates a whole section to statistics, covering estimation 

and hypothesis testing, characteristics of environmental data, and recommendations for 

selecting statistical methods. Many of the recommended methods are adapted from the 

textbook Design o f Water Quality Monitoring Systems by Ward et al. (1990), which was
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reviewed at the beginning of this chapter. This guidance covers the theory and application 

of summary statistics, graphical data display, evaluation of test assumptions (i.e. tests for 

normality), and provides a list of references and useful software for data analysis. The 

guidance also covers regression techniques, analysis of covariance, correlation 

coefficients, multivariate analysis, and extreme events. The statistical tests covered and 

explained in the guidance are listed in Table III.6 below.

Table III.6: Recommended Statistical Analysis Tests for Determining 
Effectiveness of Nonpoint Source Controls (EPA, 1997c)

T es ts  fo r  O n e  S a m p le  o r  P a ir e d  d a ta S tu d en t’s t-test 
W ilcoxon  S igned-R ank  te st 
S ign test

T w o -sa m p le  te s ts T w o-sam ple t-test
M ann-W hitney  (W ilco x o n ’s rank-sum ) test

M a g n itu d e  o f  d iffe ren ce s C onfidence in terval o f  d ifferences betw een  m eans 
H odges-L ehm ann  E stim ato r

C o m p a r is o n  o f  > 2  In d e p e n d e n t  S am p le s A N O V A  (one-fac to r and  tw o-fac to r) 
K ruskal-W allis  test 
R anked  transfo rm ed  A N O V A  
F riedm an te st

M u lt ip le  c o m p a r iso n s T u k ey ’s m ethod
B onferron i t-test
D u n can ’s m ultip le  range te st
G ab rie l’s m ultip le  com parison  p rocedure
(R E G W ) m utip le  F -test and  range test
S ch effe ’s m u ltip le -com parison  p rocedure
W aller-D uncan  k -ra tio  te st

M o n o to n ie  T re n d s M ann-K endall te st 
Seasonal K endall test

The EPA has established guidelines for Statistical Analysis o f Groundwater 

Monitoring Data at RCRA (Resource Conservation Recovery Act) Facilities (EPA,

1989; 1992). Five statistical methods were outlined in the Final Rule: (1) a parametric 

analysis of variance (ANOVA), (2) a nonparametric ANOVA based on ranks, (3) using 

tolerance levels or prediction levels from background data and then comparing each 

constituent to the upper levels, (4) a control chart approach which gives control limits for 

each constituent, and then comparing sample values to these limits, and (5) another
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Statistical method submitted by operator and approved by the Regional Administrator.

The guidance provides flowcharts to help operators decide which method to use, as well 

as ways to check distribution assumptions and homogeneity of variance. The 1992 

addendum adds several recommendations. It addresses more methods for checking 

assumptions for statistical procedures and homogeneity of variances, as well as 

recommendations for handling nondetects. For comparison of populations (wells to 

background data), the guidance addendum adds (1) the nonparametric Kruskal-Wallis 

test, and (2) the nonparametric Wilcoxon Rank-Sum (Mann-Whitney) test for two 

groups.

The EPA also has research publications that can be viewed as endorsements for 

particular methods. In Loflis et al. (1989), seven statistical tests for trend were evaluated 

under various conditions and performance was compared using actual significance level 

and power. The evaluations resulted in the following recommendation by the authors: for 

annual sampling use the Mann-Kendall test for trend, and for seasonal sampling, use 

either the Seasonal Kendall test or the Analysis of Covariances (ANOCOV) on ranks test.

A guidance document for determining improvements from agricultural nonpoint 

source control programs was developed and published by North Carolina State University 

for the EPA (Spooner et al., 1985). The authors give recommendations on monitoring 

design, appropriate hypotheses, data requirements, assumptions, and testing procedures. 

For time trend analysis without correction for meteorological variables, Spooner et al. 

(1985) recommends the Students t-test, graphical/regression analysis of the concentration 

versus BMP application level, or the use of a Quantile -  Quantile (Q-Q) plot. Time trend 

analysis corrected for stream flows should use separate linear regressions of
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concentrations versus flows for the pre- and post-BMP periods. Then, the slopes can be 

compared for equality. For upstream/downstream analysis, again the recommendations 

are to use Students t-test, Q-Q plots, or linear regression of concentrations versus BMP 

implementation level or flow. Finally, for paired watershed analysis, the authors 

recommend linear regressions of the concentrations for the treatment versus the control 

watersheds for both the calibration and land treatment time periods. A Students t-test can 

be performed to determine if the “predicted treatment watershed values at the mean 

control watershed concentration decreses over time” (Spooner et al. 1985).

Although not a published document, the EPA is working on a Technical Guidance 

on Monitoring and Data Interpretation to Support Implementation o f Water Quality 

Standards (EPA, 1999). This document is in outline form, but has the objectives of: (1) 

improving the scientific basis of decisions to characterize waters as being compliant, 

threatened or impaired; (2) providing guidance for developing an assessment 

methodology; and (3) promote functional integration of monitoring and data sharing, data 

analysis and interpretation across state programs responsible for water quality 

characterization and decision making. The document was written to support state water 

quality stream standards, 305(b) and 303(d) requirements. Although it makes no 

statistical recommendations itself, the guidance asks that protocols be established for 

determining standards compliance and determining trends, as well as makes 

recommendations for the characteristics of the data needed to support decision making 

(i.e. coverage, number of samples, gaps in record, frequency of samples).

With the exceptions discussed above, attempts to produce standard sets of 

guidance procedures for water quality data analysis are relatively few and uncoordinated
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between agencies. In the field of groundwater monitoring, Adkins (1992) states that “due 

to the wide variety of information needs and site conditions, it is impractical to expect a 

single data analysis protocol to be suitable for all groundwater quality monitoring 

systems... [and that] no generally acceptable design framework for the development of 

groundwater quality data analysis protocols exists today”. Therefore, instead of 

recommending specific analysis procedures, Adkins (1992) presents a framework for the 

development of groundwater quality data analysis protocols.

The next step of the literature review was to determine what the actual current use 

of statistics is in water quality data analysis. Although general standard methods for 

water quality monitoring analysis may not be published, it is hypothesized that they are 

established through common practice, especially within organizations and types of 

monitoring entities.

Peer Reviewed Water Quality Assessments

This section serves to establish the current use of statistics, beyond guidance, in 

the water quality field. To gain a comprehensive view of the use of statistics, recent 

issues of five major environmental refereed journals were examined; Journal of American 

Water Resources Association, Environmental Monitoring and Assessment,

Environmental Management, Water Resources Research and Marine Pollution Bulletin. 

The peer-reviewed studies included here are limited to those which sought information 

related to environmental management: Temporal Trends, Differences in Population 

(including upstream/dovmstream differences, before/after differences, and spatial 

differences), and Standards Compliance.
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Trend Analyses

Most trend analyses were performed with non-parametric tests for trend, to avoid 

complications in the data set and assumptions of normality, making the tests more robust. 

The most popular analysis was the Seasonal Kendall Tau (seasonal extension of the 

nonparametric Mann-Kendall) test for monotonie trend, used in 12 out of the 19 studies 

where trend was determined (highlighted in gray, Table III.7). It is especially popular 

with USGS studies. The USGS is also very thorough about performing the test on both 

the original data and flow-adjusted concentrations, but only if a strong correlation exists 

between concentration and flow. All studies reviewed which dealt with trend detection 

are summarized in Table III.7. A few of the studies used alternative procedures to 

determine trends, as summarized below.

Lavenstein and Daskalakis (1998): The Kendall-tau nonparametric test for linear 

correlation was used to determine trends in constituent data from 3 Mussel watch 

programs.

Stoddard et al. (1998): In order to infer regional trends (over several monitoring sites 

and data sets), this study employed a variation of meta-analysis. Trends were assessed 

through the use of the Seasonal Kendall-tau test, and then the resulting statistics were 

combined through a technique analogous to ANOVA, to produce quasi-regional 

estimates of changes for key chemical variables. This technique is referred to as Analysis 

of Chi-Squares.
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Table III.7: Water Quality Assessments Involving Trend Detection

A u t h o r M o n ito rin g
E n t ity

D istrib u tio n
A s s u m p tio n

A c tu a i H yp o th e s is  
S ta ted

T e s t  U s e d

Clow and Mast 
(1999)

u se s NP None stated Season Kendall Tau or Mann-Kendall

Baldys, Ham 
and Possum 
(1995)

u se s NP Null hypothesis of no 
significant trend

FAC Season Kendall Tau or Mann-

Mattraw, 
Scheldt and 
Federico 
(1987)

uses, NPS and 
SFWMD

NP None stated FAC Season Kendall Tau or Mann-

Rinella (1986) u se s NP None stated FAC Season Kendall Tau or Mann-
Kendall V '  '  ’ '•

•
Berndt(1996) u se s NP None stated Season Kendall Tau or Mann-Kendall •
Mueller (1995) u se s NP None stated FAC Season Kendall Tau or Mann- 

Kendall". .'i.., - . . . .
Mueller (1990) u se s NP None stated FAC^easotiJ^endall Tau.pr Mann-

Kèn'SaÎi'^riÿviV;;--..^ -,

Snyder et al. 
(1998)

Academia NP, Parametric null = no tendency for 
one sampling location 
to have nutrients 
greater than another 
location

Duncan's new multiple range test (Ott, 
1988) - test of the diff. In means of 
multiple pops., %  reduction of means

Stoddard et al. 
(1998)

EPA, Academia, 
Vermont DEC

NP None stated SKT. Analysis of Chi-squares and meta­
analysis '■ Ü , "■.U--'"

Pinsky et al. 
(1997)

EPA, Academia NP, Parametric None stated Auto-regressive first order process, 
comparing means/medians

Takita (1998) Susquehanna NP None needed Double mass comparison

Havens et al. 
(1996)

SFWMD Parametric None stated Satterwaite's t-test

Dennehy et al. 
(1995)

u se s NP Null states that no 
trend exists

LOWESS (to'highlight patterns), FAC

. ■ •
Butler (1996) u se s NP, Parametric, 

Parametric, NP
Null means there is no 
trend or no sig. diff 
between 
means/medians

F/)C-SKT (periodic ■& monthlv, FAC LH
(annu|r),'^tqpTi|j),d'^^

y '
Smith,
Alexander and 
Wolman (1987)

u se s NP None stated SKT anc FAO-SKT-'S'':?-'.;®

Vaill and Butler 
(1999)

u se s NP Null hypothesis of no 
trend

inomlonic trends’ SKT and FAC SKT, 
Sen.glope èstaâVoj^L^^^^ ..  ̂
determine,jjn^jjat RSOt t̂.the record .the 
trend occurred; Stepjrjerids'; fjarametne 
2-sample t-test and NP Wiiccxon nnk- 
sum t i 't  ai.cli>-d to raw data

Heiskary, 
Lindbloom and 
Wilson (1994)

Minnesota 
Pollution Control 
Agency

NP Null hypothesis of no 
trend

Kendall's tau-b (Gilbert, 1987)

Lavenstein and
Daskalakis
(1998)

NOAA NP None stated Kendall-tau test for linear correlation

Brown et al. 
(1999)

NOAA NP None Stated Spearman-rank Correlation method, 
meta-analysis
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Snyder et al. (1998): This study used Duncan’s new multiple range test to test the 

difference in means of multiple populations. Although this seems like a difference in 

population’s study, the % reduction in means was used to support evidence of temporal 

trends.

Pinsky et al. (1997) and Takita (1998): These two studies didn’t use statistical hypothesis 

tests to determine trends, and instead used information from the actual data. Pinsky et al. 

(1997) just compared means/medians and inferred trends with an auto-regressive first 

order process. Takita (1998) used plotting procedures to determine the data’s approach 

towards a trend, called double mass comparison.

Havens et al. (1996): This study from the South Florida Water Management District used 

Satterwaite’s t-test to determine trend.

Butler (1996): In order to determine smaller trends in the data without the assumption of 

a monotonic trend, this study used a step-trend analysis, using two-sample t-tests, along 

with the Wilcoxon Rank-Sum test. Butler (1996) did use the flow-adjusted SKT test for 

periodic and monthly data trends, but for annual data, used a linear regression technique.

Vaill and Butler (1999): Although this study performed the standard Seasonal Kendall 

test for monotonic trend analysis, it also looked at step trends where a known event 

occurred at a specific time in the watershed. The author used a parametric two-sample t-
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test where the raw data was distributed normally, and the Wilcoxon Rank-Sum test where 

the data was not normal.

Heiskary, Lindbloom and Wilson (1994): Trends were assessed using Kendall’s tau-b 

statistical test, a non-parametric procedure that computes correlation coefficients between 

variables. The null hypothesis was stated as no trend, and the strength of the relationship 

was a function of both the correlation coefficient and the number of years of 

measurement. This study also determined the sampling frequency needed to maximize 

the power of detecting a significant change (established as weekly to allow a 70% chance 

of detecting a 20% change over 10 years). To check the validity of their results, the 

authors attempted to corroborate the results using trophic status, user perception, 

watershed and modeling information.

Brown et al. (1999): The Spearman Rank correlation method, a bivariate nonparametric 

procedure and a meta-analysis procedure (discussed further in Chapter V) were used to 

examine relationships among chemical concentrations in sediment and fish tissue. 

“Although the temporal trends in this study do not conform in the strictest sense to meta-

analysis assumptions of independence, it was assumed that the compartments analyzed 

were distinct enough for synthesis into a single test for trend.” This was accomplished by 

taking the significance levels for the Spearman rank correlations, transforming them into 

z-values, combining them and transforming them back into a single p-value. This 

resultant significance level gave an indication of consistency across compartments and 

statistical certainty with which a trend exists for a contaminant at a site.
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Differences in Populations

There were a greater variety of tests chosen to determine differences in 

population. Three major groups of analyses prevailed: (1) using Signed Rank, Rank Sum 

or variations of those procedures, (2) using cluster type analyses and (3) using ANOVA 

or variations. The most popular tests were the Wilcoxon Rank-sum/Mann-Whitney test 

or its extension for more than 2 populations, the Kruskal-Wallis test (8 out of 20 studies 

reviewed, light gray highlight in Table III.8) and the Analysis of Variance test (ANOVA 

used in 5 out of 20 studies, dark gray highlight in Table III.8). Most studies tested for 

normality before choosing a difference test, though some just assumed nonparametric 

statistics should be used. Almost all the tests used were for nonparametric distributed 

data. With the exception of Dennehy et al. (1995), no hypotheses were given. But it was 

evident by the testing that all performed a significance test with a null hypothesis of the 

means/medians between groups being equal.

The USGS studies seemed to prefer the Wilcoxon Rank-Sum (Bemdt, 1996; 

Abeyta and Roybal, 1996) or Kruskal-Wallis test (Abeyta and Roybal, 1996; McMahon 

and Hamed, 1998; Mueller, 1995; Dennehy et al., 1995). All of the studies reviewed are 

summarized in III. 8. Specific explanations of some of the more unique analysis methods 

are provided below.

Arthur, Coltharp and Brown (1998): This was the only study that used the Wilcoxon 

Signed-Rank test for differences, as opposed to the common Wilcoxon Rank-Sum test.
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Table III.8: Water Quality Assessments Involving Differences in Populations

A u t h o r M o n ito rin g  E n t ity D istrib u tio n
A s s u m p tio n

A c tu a i H yp o th e s is  
S ta ted

T e s t U s e d  1

Younos et al. 
(1998)

VWRRC,
Academia

NP None stated Wilcoxon Test (HSIlöRaer &  Wolfe 73)

Arthur, 
Coltharp and 
Brown (1998)

Academia NP None stated Wilcoxon Signed Rank

Berndt(1996) uses NP None stated
Pinsky et al. 
(1997)

EPA, Academia NP, Parametric None stated Wildomn Ranki^um, Ghi.-Square te'st pf 
h ,pcthe:is of equal pro'f^orfipnsln population

Abeyta and 
Roybal (1996)

uses NP, NP, NP, 
Parametric

None stated W yggffiBIRank-SunirBffliiPwi^^g*-''*. 
fflNoygil^NQyA & p a i ! ^ ^ e | t s ^ | J | ^ Q y g

Sample et al. 
(1998)

US DA NRCS NP, NP, NP None stated Rank Sum, Signed Rank, Hodges-Lehmann 
Estimator

McMahon and 
Named (1998)

uses NP None stated Ki jskal-Wailis, and Tukey's Multiple 
Comparison .. . 'A  ..f

Mueller (1995) uses NP None stated K r u s l i^ a l l i s ; j f c . j  ^¿r~~
Koebel, Jones 
and Arrington 
(1999)

SFWMD NP, NP None stated

Momen et al. 
(1997)

Academia Parametric,
Parametric

None stated

Plotted Annual Loads vs. Discharge RatioTakita (1998) Susquehanna NP None needed

Dennehy et al. 
(1995)

uses NP Null states that no 
difference exists

Kf(fskal-Wallis test- -

Snyder et al. 
(1998)

Academia NP? None stated Friedman's test (Gilbert, 1987), Cluster 
Analysis (Davis, 1986), Cross-Correlation 
Analysis

Stoe (1998) Susquehanna Parametric? None stated PCA, Cluster analysis. Habitat Assessment 
scores and Biological Condition scores

Nimmo et al. 
(1998)

uses, EPA, 
Academia, CDOW

Parametric None stated

................ ,Cotman and 
Clark (1994)

uses NP None stated

Rinella (1986) uses NP None stated Tukey's multiple comparison

Kennedy
(1995)

TxDOT, North 
Central Texas 
COG

NP None stated K r u s ^ W q y ^ ^ ^ ^ a ^ j ^ P p e x i t p t )

Kress,
Hornung and 
Herut (1998)

Israel
Oceanographic 
and Limnological 
Research

Parametric None stated GLM least squares, t-test, Mann-Whitney a- 
parametric test

Brown et al. 
(1999)

NOAA NP None stated GT2 multiple comparison method

Brown et al. (1999): The relative concentration of contaminants in sediment and fish 

tissue were compared statistically using the GT2 multiple comparison method, which is 

equivalent to performing a one-way ANOVA followed by a multiple-range test. In
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graphical displays of GT2 comparison intervals, those that do not overlap are 

significantly different at the (p<=0.05) level.

Kress, Hornung and Herat (1998): The purpose of this study was to assess the influence 

of dumping on the trace metal contents of deep-sea benthos. To compare the populations 

from the dump sites to the fauna population at a control, the authors used a general linear 

model of least squares, a t-test, and a Mann-Whitney a-parametric test at the 95% 

confidence level.

Kennedy (1995): The Texas Department of Transportation used nonparametric 

procedures to determine differences in stormwater runoff Their specific purpose was to 

determine whether a significant difference could be detected among runoff from four 

different landuse categories. They used the Kruskal-Wallis test to determine if there was 

a difference among the four sites, and then the Mann-Whitney test for each combination 

of two-sites to determine the site of greatest difference.

Pinsky et al. (1997): In this study academia and the EPA assumed independence of the 

wells that were sampled. For analysis of the proportions of wells with a certain 

characteristic, the standard normal approximation to the binomial distribution was used to 

generate confidence intervals, and a Chi-Square test was used to test the hypothesis of 

equal proportions in two populations. The Wilcoxon Rank-Sum was used to test whether 

the distribution of a quantitative variable was the same in two populations of wells. No 

tests were performed within a well because of non-independence.
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Sample et al. (1998): The only USDA NRCS study reviewed used the general Rank-Sum 

and Signed-Rank tests, along with a Hodges-Lehmann estimator to determine the 

magnitude of increasing or decreasing water quality degradation.

Koebel, Jones and Arrington (1999): This study by the South Florida Management 

district tried to determine water quality impacts from canal backfilling. The analysts used 

several different tests for to detect differences in populations, including the Kruskal- 

Wallis test, Dunn’s test for post hoc multiple comparisons of site differences, and 

ANOVA with paired t-tests.

Takita (1998): This study’s purpose was to quantify nutrient and sediment transport in 

the Susqueharma River Basin. To analyze for annual variation in loads, the author did 

not even use statistics, but instead used a graphical procedure of plotting Annual Loads 

vs. the Discharge Ratio. If a certain site’s plot differed from the baseline plot, then a 

change in population was assumed to have taken place.

Snyder et al. (1998): To determine the impact of riparian forest buffers on agricultural 

nonpoint source pollution, the authors used a cluster analysis and cross-correlation 

analysis to support evidence of differences.

Stoe (1998): This study utilized a cluster analysis called Principal Components Analysis 

(PCA) for water quality, along with a non-statistical Habitat Assessment Score and
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Biological Condition Score for an ecological assessment of differences between sampling 

sites.

Standards Compliance

Determination of standards compliance was not commonly sought via statistical 

tests in the research type assessments that were reviewed (see Table III.9 for summary of 

assessments which involved standards compliance). Therefore, part of this literature 

review attempted to describe how states generate this information for their 305(b) and 

303(d) reporting requirements, especially in light of the current 303(d) listings and 

TMDL debate. Many states do not publish their assessment methodologies, so personal 

communication via the phone and/or email was the primary venue through which such 

information was gathered. The purpose was to try and establish if there are common 

methods used by the states for their water quality assessments, not to document every 

detail of their assessment methodology. It was found that documented analysis methods 

or statistical tests are rarely used to determine use support assessments or standards 

violations. Often only simple “percentage of standard exceedences” is used to assess a 

water body, along with subjective evaluation of the waterbody according to narrative 

criteria.

Table III.9: Water Quality Assessments Involving Standards Compliance
A u th o r M o iiito r iiig  E n tity D is tr ib u tio n H yp o th es is  S ta te d T est U sed

B e m d t (1996 ) U SG S N P N one sta ted %  exceedence o f  M C L , h ighest m eans 
repo rted

L app  e t al. 
(1998)

A cadem ia N P N one sta ted observed  m ean  does n o t exceed  D W  
standard  in  C anada

N im m o  e t al. 
(1998)

U SG S, EPA , 
A cadem ia, C D O W

P aram etric N one stated average co ncen tra tions com pared  to  
ch ron ic  4 -day  aqua tic  life criterion  
(U S E PA )

B exfie ld  and
A nderho lm
(1997)

U SG S ? N one sta ted com pared  daily  and  quartile  
concen tra tions to  standards
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State Determinations of Designated Use Support

New York: Judgements are made on use support according to narrative criteria 

established by the state. New York stated that “the bulk of Priority Waterbody List 

(PWL) information is reflective of evaluation as opposed to monitoring efforts. This 

report did not qualify how the area of effect (i.e. stream miles) is determined for each 

segment reported. They are currently implementing a rotating basin approach for future 

assessments. (NYS Department of Environmental Conservation, 1998)

New Jersey. Judgements on use support are qualified by monitoring data and criteria 

developed by the state. No statistical tests are used. However, the protocol for 

determining use support is documented thoroughly. For example: for recreational use 

support, data collected over 5 years was compared to the NJ Surface Water Quality 

Standard criteria for fresh water streams, and use support determined according to the 

criteria listed below in Table III. 10.

Table III.IO; New Jersey Recreational Use Support Criteria
Use Support Assessment Criteria
Full Support The fecal coliform geometric avg. was <200 

MPN/lOOml and <10% of individual samples exceeded 
400 MPN/lOOml

Partial Support Fecal coliform geo. Avg. was <200 MPN/lOOml but 
>10% of samples exceeded 400 MPN/lOOml

No support Fecal coliform geo. Avg. >200 MPN/100 ml and >10% 
of samples exceeded 400 MPN/lOOml

New Jersey also established its miles affected according to the criteria that the 

number of miles is the distance between the 2 monitoring points plus 1000 feet upstream. 

Other use support designations and trends were reported, but no protocol was 

documented for their determination. (NJ Department of Environmental Protection, 1998)
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Region III (Delaware, Pennsylvania, Maryland, Virginia, West Virginia, District o f 

Columbia)-. Criteria for use support assessment are those recommended by the EPA for 

305(b) reports (see Table III.4 and III.5). Some states use biology to determine use 

support, following the EPA’s Rapid Bioassessment Protocol. “By and large, simple 

percentages of standard violations are used to make a judgement call for water body 

assessments” (Barath, 2000).

Oklahoma -. This state delineates all of their criteria for use support determination, with 

most criteria being comparisons of monitored data to standards. For example: Oklahoma 

uses the EPA recommendations for numerical parameters (full support = <10% 

violations, partial support = >11% but <25% violations, and no support = >25% 

violations). At least ten samples are required for this determination in streams, and 20 

vertical profiles in lakes. However, fewer can be used if exceedence is assured. Any 

monitoring site shall not represent more than 10 wadable stream miles, or a lake area 

more than 250 surface acres. (Oklahoma Water Resources Board, 1999)

Arizona-. No trends are evaluated, and no statistical tests are used. The use support 

criteria (see Appendix B) are enumerated from Arizona DEQ (2000). Arizona also uses 

macroinvertebrate-based bioassessment criteria to determine use, generally following 

EPA’s guidelines. However, this Index of Biological Integrity (IBI) is not statistically 

based, it uses a scoring system and percentiles. No water body assessed as partially 

supporting or non-supporting based solely on biocriteria will be placed on the state’s
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303(d) list prior to identification and cause of the impairment, as it could be the results of 

natural phenomenon. (Marsh, 2000)

California: Individual regions do not provide information about how they determine use 

support. The only known protocol is for Los Angeles, which uses the criteria 

recommended by the USEPA (see Table III.4 and III.5). (Richard, 2000)

Hawaii: Use support is determined partially by comparing bacteria and chemical water 

quality data to state standards. For those categories which don’t have applicable state 

standards, narrative criteria were created for judgement decisions instead of 

numerical/statistical based decisions. (Teruya, 2000)

Virginia: Criteria for use support enumerated is by the state (see Appendix C). The 

actual numerical/narrative decision protocol follows the EPA recommended criteria for 

use support determinations. Assessment decisions are based on both monitored and 

evaluated data. Virginia also sets protocols for determining affected areas, e.g. stating 

that no station shall represent more than 10 miles of wadable stream. This determination 

is a judgement-based decision taking several enumerated factors into account. (Virginia 

Department of Environmental Quality, 1999)

South Carolina: This state uses the EPA’s recommended assessment criteria for 305(b) 

reporting (See Tables III.4 and III.5 above). (Kirkland, 2000)
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Florida-. As a portion of Florida's efforts, the state has adopted an Environmental 

Mapping and Assessment Program (EMAP) type of statistical analysis. The goal is to 

determine the overall conditions of water bodies within a geographical area. For 

example, the state will make statements such as, "With a confidence level of .90, the 

median value for N03 in small lakes in north central Florida is (say) 1.3 mg/1 plus or 

minus 0.4 mg/1. The state has been broken into 20 geographical units based on 

hydrologic drainage basins. These analyses will be performed for six resources. They 

are confined ground water, unconfmed ground water, small lakes, large lakes, high order 

streams and low order streams. A sister organization in the state is conducting a similar 

analysis for Florida's estuaries. (Copeland, 2000)

Tennessee-. This state generally follows the EPA’s recommendations for use assessments 

(See Tables III.4 and III.5 above), but has some discretion in the “magnitude and 

duration” of water quality standard violations. (Denton, 2000)

North Carolina: Use support for 305(b) and 303(d) listing are based on monitored and 

evaluated data, with more confidence placed on monitored data. Biological indexes and 

physical/chemical data are used to determine use support, similar to the procedures 

Arizona uses (See Appendix B). However, biological data/indexes take precedence over 

chemical/physical data when determining use support. (Swanek, 2000)

Kentucky-. Kentucky’s approach is a combination of targeted sites and random survey 

sites. They mainly use biological data to determine use support. Many of their water
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quality stations are at sites also sampled biologically. However, there are a few sites, 

mainly large rivers, where only water quality data are collected and from which use 

assessments are made. The state has just embarked on an intensive watershed 

monitoring program in 1998, in which the first 5-year watershed cyele will concentrate 

primarily on a broad picture of water quality in the state. (VanArsdall, 2000)

In this watershed cycle, the state will sample approximately 350-400 random sites 

over the 5-year watershed cycle, concentrating on 1 to 3 major river basins each year.

The watershed will be sampled for macroinvertebrates and habitat. These samples will 

allow the state to extrapolate aquatic life use to most miles of wadable streams from a 

1:100,000 scale hydrologic network. (VanArsdall, 2000)

Kentucky does no random survey water quality sampling because of inadequate 

resources. For targeted water quality sampling, the fixed statewide network consists of 

71 sites located at the downstream reaches of 8-digit cataloging units, mid-unit in the 8- 

digit watersheds, influent to major reservoirs, and major tributaries. These are sampled 

bimonthly except when they fall into the watershed cycle, and then they are sampled 

more frequently for that one year. In the rotating watershed water quality network, the 

state will sample about 30 sites each year that fill in the hydrologic gaps in the fixed 

network by pieking up most of the 5th order waterhsheds. Some are also sited for other 

purposes such as predominant land use, TMDLs, least impacted, etc... Sampling 

frequency at these sites depends on the objective of the partieular site. (VanArsdall, 

2000)

Because of help from other federal and state agencies, Kentucky has much more 

biological sampling resources at their disposal, and these resources are used for targeted
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biological sampling. They are able to sample most 4th order streams for at least one 

assemblage and habitat. This informs the state which basins have problems that need to 

be addressed by later sampling and mitigation activities. Over the 5-year watershed 

cycle, this targeted biological sampling will total over 1000 sites. (VanArsdall, 2000)

Alabama: This state follows the EPA recommended assessment criteria (percentages for 

chemical data). If there exists a large data set it is considered "monitored" data for 

assessment. “For example, 5 month (June-October), once-a-month sampling is 

considered monitored, but if the field personnel sample any less than this it would be 

considered evaluated data.” Alabama is also developing specific site criteria for 

biological, physical/chemical, and habitat data, as well as criteria for determination of 

miles/acres affected. However, as of yet, Alabama does not have a state methodology for 

judging biology index/metrices results. (Reif, 2000)

Conclusions

This review indicates that many types of analyses are being used to provide 

information about water quality. The first major conclusion is that although there are 

some who criticize significance testing (Chapter II), this type of analysis is alive and well 

in the field of water quality. It is interesting to note that although hypothesis testing 

seems to be popular, as evidenced by its inclusion in guidance documents and water 

quality studies, the actual hypothesis tested is never reported, despite recommendations to 

the contrary in many of the guidance documents (Gilbert, 1987; Ward et al., 1990; Helsel 

and Hirsch, 1992; Montgomery and Reckhow, 1984; EPA, 1992; EPA, 1997c).
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With a few exceptions (Heiskary, Lindbloom and Wilson, 1994; Momen et al., 

1997; EPA, 1992; EPA, 1997c), the power of significance testing is not considered. The 

weight of evidence in making a decision about trends or differences in populations relies 

solely on the acceptable Type I error (a) and obtained significance level (p-value).

The literature review does not support the conclusion that there exist “de facto” 

standards for data analysis. The review of refereed journals found a large variety of 

graphical, statistical, and estimation analysis techniques. The EPA provides many types 

of guidance for different regulatory programs, yet the analysis recommendations differ 

between programs, and efforts do not seem to be coordinated between programs. It was 

apparent that specific methods were preferred by the USGS for trend detection (Seasonal 

Kendall test) and Differences in Populations (Wilcoxon Rank-Sum/Kruskal-Wallis and 

ANOVA).

The major commonalties to all the data analyses performed was that with a few 

exceptions: (1) justification was rarely given for choosing a certain test beyond the data 

being parametric or nonparametric, (2) the hypothesis tested was rarely stated, (3) 

alternative analysis methods, if explored, were not reported, and (4) the power of the 

significance test was never calculated.

Given the extremely wide array of data analysis methods being employed in 

producing information about water quality conditions, there is little reason to expect 

‘comparable’ information is being produced in support of water quality management 

decision making. This fact leads to many of the criticisms highlighted in the previous 

chapter.
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Chapter IV. Evaluation of Information Comparability Through 

Application of Different Data Analysis Methods

The previous chapters were dedicated to compilation of information in order to 

determine how water quality data are being analyzed for information purposes. Recent 

criticisms of statistical significance testing have questioned the main process through 

which information is produced from water quality data, i.e. significance testing. 

Nevertheless, the literature review established that using hypothesis testing is accepted in 

texts, guidance documents, and water quality studies published in refereed journals.

The literature review also establishes that there are a wide variety of methods that 

are available for data analysis. Many times, those who are analyzing water quality data 

are not statisticians, and rely on these texts, guidance documents, and observations of 

previous studies to select the analysis methods.

The purpose of this chapter is to document the connections between selection of 

data analysis methods and the comparability of the information produced. Using a ‘high 

quality’ data set provided by the New Zealand National Institute of Water & Atmospheric 

Research (NIWA), several different analysis methods were performed in the areas of 

trend detection, differences in populations, and standards compliance. The results of the 

different methods within each area were compared in order to illustrate how information 

changes depending on the analysis methods used.

Three statistical packages were utilized in the data analysis procedures. WQStat 

Plus™ (Version 1.5, developed by Intelligent Decision Technologies) was chosen for its
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inclusion of nonparametric procedures, easy flow-adjustment and water quality data 

analysis focus. Minitab™ (Release 12, developed by Minitab Inc.) was chosen because of 

its broad base of statistical procedures, both parametric and nonparametric. MS-ExceF^ 

(part of the Microsoft Office package) was also used for its basic statistical functions and 

ease of data manipulation (the data used was originally received in MS-Exceft'^ format). 

Comparison of results of like tests between statistical packages should also help to 

demonstrate the variability of information.

There are a large number of statistical packages that may be more commonly used 

for data analysis (i.e. S-Plus, SAS), but were not available for this research. It was 

hypothesized that results from different packages would be identical, and so no effort was 

made to acquire these packages prior to data analysis. This hypothesis will be discussed 

later in this chapter.

Approach for Demonstrating Various Statistical Methods on New Zealand Data Set

The New Zealand River Network data set was chosen for analysis because of its 

high quality and accessibility. The data record is from a 77 river-site monitoring network 

distributed throughout New Zealand’s North and South Islands (Smith et a l, 1996). The 

monitoring network’s design is well documented and the network has been operated 

consistently over its 10-year life with excellent quality control procedures in place. The 

data was readily made available, in an easy to use format (MS-ExceE“ Spreadsheets) for 

purposes of this study. (Refer to Appendix D for the actual data used in this study)

The format of the New Zealand data allowed for easy transition to data analysis, a 

reason that this particular set was chosen. The New Zealand data was accompanied by
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meta-data that described the monitoring sites, how the samples were collected and 

analyzed, and all other ancillary data which would be of use to a data analyst (i.e. dates 

and units of measurement). Censored data (e.g. nondetects) were not used in this data, as 

all concentrations were reported. A few sites had missing data for certain dates, which 

were represented with a period (.) in the appropriate worksheet cell.

The only manipulation required for importation of the data into WQStat Plus"̂  ̂

and Minitab"^“, was cutting and pasting of the data columns into the appropriate format 

for the respective software. The required formats were described in the software user 

manuals (Intelligent Decision Technologies; p 34-50, 1998; Minitab: p 2-1 -  2-11, 1997).

A preliminary analysis for trends was performed after the first five years of 

monitoring, and results were published in a paper. Trends in New Zealand’s National 

River Water Quality Network (Smith et al., 1996). This allowed comparison and 

verification of results of trend analysis for this thesis with results from Smith et al.

(1996).

Selection of Three Sites and Constituents for Data Analysis 

Not all sites or constituents of the River Network were analyzed as part of this 

demonstration. Sites and constituents were chosen upon review of the trends paper 

(Smith et al., 1996), and with input from Graham McBride, Project Director, NIWA, 

Hamilton, New Zealand. Descriptions of the sites were provided in the appendices of the 

New Zealand data set (Bryers, 1999; see Appendix D). For purposes of this study, four 

data records, at four sites, were selected as follows;
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A. Site HM4 for BODS -  This site is on the Waikato River, and is located 

downstream of the catchment area. It has potential impacts from agriculture, 

paper and pulp industries, and has additional inputs from Hamilton, 

Ngaruawahia, Huntly, thermal power stations, swamps, pasture and coal 

mining. (Bryers, 1999) The New Zealand Trends paper (Smith et al., 1996) 

showed no trend for BODS after the first S years at this site.

B. Site R02 for NH4 analysis -  This site is on the Tarawera River, a major river 

in the area, downstream of major pulp and paper industries and exotic forest 

plantations. There is agricultural pasture in the valley. (Bryers, 1999)

The New Zealand Trends paper (Smith et al., 1996) showed an upward trend 

in NH4 at (p<S%) level for the first S years at this site.

C. Site ROl for NH4 analysis -  This site will only be used in the differences in 

population analysis. ROl is upstream of site R02 (above) on the Tarawera 

River. Between the two sites are potential environmental impacts from a pulp 

mill (The Tasman Pulp and Paper mill), farming, a town, Kawerau, and a 

geothermal area. (Bryers, 1999) This site was used as an upstream site for 

differences in population’s analysis only.

D. Site HM6 for N03 data -  This site is not downstream of any urban sources, 

but is a major tributary of the Waihou River. It contains or will contain 

discharges from several large gold mining operations as well as agricultural
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impacts from some pasture usage. (Bryers, 1999) The New Zealand Trends 

paper (Smith et ah, 1996) showed an upward trend of NOS at the (p<5%) level 

after the first 5 years.

Testing Data for Normality

In order to illustrate the importance of distribution assumption in hypothesis 

testing, it was necessary to test each data set for normality. This was accomplished using 

the Chi-Squared Goodness-of-Fit Procedure in WQStat Plus™ (Intelligent Decision 

Technologies: p 71-72, 1998). In this procedure the calculated chi-square test statistic is 

compared to a table of chi-squared distributions with alpha = 0.05 and K-3 degrees of 

freedom, where K is the number of subgroups, or number of observations divided by an 

appropriate number (12 in this case). The null hypothesis as stated in WQStat Plus'̂ '̂  

(Intelligent Decision Technologies: p 72,1998) is:

Ho: the data are normally distributed (1)

vs.

Ha: the data are not normally distributed (2)

If the calculated value exceeds the tabulated value, then the program fails to reject the 

null hypothesis.

Flow Adjustment Procedures

Flow adjustment of the raw data was performed only in WQStat Plus'̂ '̂ , as this 

was the only package that had the ability to directly calculate the flow-adjusted 

concentrations. This procedure was used to help determine how flow can affect or
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change the information produced from the monitoring data. Flow adjusted concentrations 

(FAC) were used in normality testing, trend detection and standards compliance testing. 

The most common application of flow adjustment is trend analysis. For water quality 

constituents that are closely related to flow, an apparent trend in quality could be caused 

by a change in flow. By flow adjusting before trend analysis, the user can remove flow 

effects and determine the magnitude and statistical significance of trends that are not 

explained by flow. (Intelligent Decision Technologies p: 72, 1998)

WQStat Plus‘S“ uses a log-log relationship assumption for its flow adjustment.

The logs of the raw data are plotted against the logs of the flow. Then linear regression 

(least squares) is performed to determine the slope and the intercept of the line:

Log concentration = b*(log flow) + a

Then, from each water quality observation (concentration), the corresponding prediction 

based on flow, b(log flow) + a, is subtracted. This produces a flow-adjusted series of 

water quality observations with a sample mean of zero. To complete the adjustment, the 

overall sample mean of the water quality constituent series is added back in to each 

observation so that the mean of the flow-adjusted series is equal to the original mean. 

(Intelligent Decision Technologies p: 72 - 73, 1998)

It is realized that this procedure can introduce bias and error into the flow- 

adjusted data if the raw data does not fit the log-log model. However, the purpose of this 

procedure for WQStat Plus^“ and this research is to give an indication of how flow- 

adjustment can change results from trend analysis.
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Statistical Methods Used to Determine Trends

Analysis of the New Zealand data set for trends includes data from all ten years.

As a means of additional quality control on the information being produced, analysis of 

the first 5 years was compared to the same analysis performed by a study published after 

the first 5 years of New Zealand’s monitoring effort, entitled Trends in New Zealand’s 

National River Water Quality Network (Smith et al., 1996). The second 5-year data was 

also analyzed separately, as well as a comparison of both 5-year analyses to an analysis 

of the 10-year data. Analyses were performed on raw data and flow-adjusted 

concentrations (FAC). The following statistical methods to detect trends were 

performed:

A. Mann-Kendall Test/Sen Slope Estimator -  WQStat Plus^“

The Mann-Kendall test for temporal trend is a nonparametric test, which 

uses the relative magnitude of the data, rather than actual values. The null 

hypothesis as stated in WQStat Plus"̂  ̂(Intelligent Decision Technologies: p 

77, 1998) is:

Ho: No significant trend of a constituent exists over time (3)

versus the alternative hypothesis:

Ha: A significant upward or downward trend exists over time (4)

In WQStat Plus^^, a normal approximation was used because the New 

Zealand data set contained more than 41 points (sample size was 

approximately 120 for each set). A test statistic, Z, is computed and compared 

to a critical value, Zi^ / 2  (for this two-tailed test). WQStat Plus^^ tests for
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trend at the significance levels (corresponding to acceptable Type I error) of a  

= 0.2, 0.1, 0.05 and 0.01 respectively. (Intelligent Decision Technologies: p 

77-80, 1998) In this procedure. Sen’s nonparametric slope estimator is also 

calculated. This is a nonparametric procedure used to estimate the true slope. 

(Intelligent Decision Technologies: p 81-82, 1998)

B. Seasonal Kendall Test -  WQStat Plus™

The Seasonal Kendall Test is an extension of the Mann-Kendall Test that 

removes seasonal cycles and tests for trend. WQStat Plus^“ uses the 

hypotheses listed above (equations (3) and (4)), and tests at the 80%, 90% and 

95% confidence levels, which correspond to a  = 0.2, 0.1, and 0.05 

respectively. This procedure also includes a slope estimator. (Intelligent 

Decision Technologies: p 82-85, 1998)

The Seasonal Kendall Test was also used to test for trends in flow data at 

the three sites chosen: HM4, R02 and HM6 for both 10-year data and each 5- 

year data set. This was performed to help in interpretation of the flow- 

adjusted trend results.

Statistical Methods Used to Determine Differences in Populations

The difference in population analysis was performed between the first 5-year and 

second 5-year data sets for the sites HM4, HM6 and R02, as well as a test between sites 

ROl and R02 for NH4. The following tests, listed below, were performed for 

comparability of results. For further demonstration of comparability of results, the two-
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sample t-test was performed in both MS-ExceF^ and Minitab^^, and the Mann-Whitney 

test was performed in WQStat Plus™ and Minitab'''“.

A. Two Sample T-test -  MS-Excel™ and Minitab™

This is a standard parametric statistical test; perhaps the most widely used 

method for comparing two independent groups of data (Helsel and Hirsch, 

1992). The t-test assumes that both groups of data are normally distributed 

around their means, and that they have the same variance. The null 

hypothesis for the two-sample t-test is stated in Minitab'''“ (Minitab'''“ Help, 

1997) as:

Ho: px = Py the means for groups x and y are identical (5) 

vs.

Ha: px ^ py the means for groups x and y are not equal (6)

A two-tailed test was used in the New Zealand data analysis to avoid any 

assumptions of which group’s mean might be higher. Helsel and Hirsch 

(1992) list five problems with the standard t-test that make it less applicable 

for general use than a nonparametric test. These are: 1) lack of power when 

applied to non normal data, 2) dependence on an additive model, 3) lack of 

applicability for censored data, 4) assumption that the mean is a good measure 

of central tendency for skewed data, and 5) difficulty in detecting non-

normality and inequality of veiriance for the small sample sizes common to 

water resources data.
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To help in interpreting data analysis results, the following analysis 

procedures were followed: First, each data set was tested for normality (see 

discussion above). Then, a standard two-sample F-test for equality of 

variances was applied using MS-ExceF^. This test uses the F statistic and 

distribution to test the following null hypothesis:

Ho: a^x = The variances of two populations are equal (7) 

vs.

Ha: a^x ^ The variances of the two populations are not equal(8)

The variances of site ROl and R02 for NH4 data rejected the null 

hypothesis, thus proven to be not equal, so the t-test for unequal variances was 

performed. All other data were analyzed with the two-sample t-test for equal 

variances. The only difference between the two t-tests is in modification of 

the degrees of freedom and t-statistic using Satterwaite’s approximation. 

(Helsel and Hirsch: p i26, 1992)

B. Mann-Whitney test -  WQStat Plus^^ and Minitab"^“

This is a nonparametric test for difference in populations. The null 

hypothesis tested in WQStat Plus™ (Intelligent Decision Technologies: p 95, 

1998) is stated as:

Ho: The populations from which the two data sets have been dravm have 

the same mean. (9)

vs.

Ha: The populations have different means ( 10)
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WQStat Plus'^“ uses a normal approximation for sample sizes > 10 for the 

test statistic calculation. It also tests and reports results for the 80%, 90%, 

95% and 98% confidence levels (a of 0.2, 0.1, 0.05, and 0.02 respectively). 

(Intelligent Decision Technologies: p 95 - 98, 1998)

Minitab"^  ̂calculates the test statistic and the attained significance level (p- 

value), but it is not known if a normal approximation is used for large sample 

sizes. The main deviation from the WQStat Plus'^“ procedure is that the null

hypothesis is stated as (Minitab'^  ̂Help, 1997): 

Ho: the medians of two populations are equal

vs.

Ha: the medians of the two populations are not equal

( 11)

( 12)

C. Interval Tests -  MS-Excel™

This is a parametric t-test procedure developed to test for differences in 

populations. Interval tests are largely used in the pharmaceutical industry 

involved in drug-testing analyses (Chow and Liu, 1992). The hypothesis for 

an interval test can take two forms, one testing for equivalence between 

groups, and one testing for inequivalence. Both the equivalence and 

inequivalence tests are used to determine whether the difference between 

means does not exceed an established interval. In the equivalence test, the 

null hypothesis (meaning the tested hypothesis, not implying that the 

difference is zero) is specifically:
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means does not exceed an established interval. In the equivalence test, the 

null hypothesis (meaning the tested hypothesis, not implying that the 
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Ho: lower bound of equivalence interval <= î x - qy <= upper bound of 

equivalence interval (the difference in means lies within an accepted prior 

established interval) (McBride, 1999) (13)

The null hypothesis for an inequivalence test is:

Ho: px - M-y < lower bound of equivalence interval 

Or px - Py > upper bound of equivalence interval (the difference in means 

lies outside of an accepted prior established interval) (McBride, 1999) (14) 

The difference between these two tests is that in the equivalence test, the 

assumption is that the populations are statistically and ecologically 

equivalent, whereas in the inequivalence test, the assumption is that the 

populations are not equivalent (a hypothesis which takes more precaution). 

Both tests recognize that the means will be different, but not necessarily 

equivalent. (McBride, 1999)

The interval chosen for these tests in this analysis was one of +/- 20% of 

the mean of the upstream or background data. While this was arbitrarily 

chosen, the estimates provided in McBride (1998) served as a guide for the 

magnitude. The purpose is to illustrate how different data analysis methods 

affect information. Establishing an equivalence interval requires knowledge 

of the behavior and affect of each constituent in the environment, something 

which is beyond the scope of this thesis.

A highly detailed explanation of the development of this type of testing 

used for environmental data can be found in McBride (1999a). The algorithm
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through which the tests were performed in MS-ExceF'^ can be found in 

Appendix E (McBride, 1999b).

Statistical Methods Used to Determine Compliance (Standards Violations)

For these tests the New Zealand standard for BODS was compared to the data for 

BODS from site HM4. Although the country has few national numerical standards, 2 or 

3 ppm is often the accepted limit set by waste load allocations (McBride, 1999c). The 

data set for site HM4 never exceeded 3 ppm, so for the purposes of this illustration, the 

excursion limit was set at 2 ppm. The following methods will be used:

A. Proportion Estimate -  WQStat Plus™

This estimating procedure computes the proportion of observations in the 

record that exceed a stated excursion limit and computes a confidence limit 

for this proportion. In WQStat Plus^“, the distribution model is the binomial 

distribution (success/failure distribution), and the significance levels reported 

are 95% and 99%. The proportions, upper and lower confidence limits are 

given for each season and the overall data set. (Intelligent Decision 

Technologies: p 98-100, 1998)

B. Tolerance Limits -  WQStat Plus^“

Tolerance limits define an interval that contains a specified fraction 

(coverage) of the population with specified probability (confidence level).
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They are often used to compare concentrations from compliance stations to 

the upper limit of the tolerance interval. Calculations for this procedure are 

provided in the WQStat Plus™ user manual (Intelligent Decision 

Technologies: p 100-103, 1998)

For the tolerance limit procedure, an interval was established with 95% 

coverage from the 1̂ ‘ five years of data (background), and then the upper limit 

of the interval was compared to the 2"*̂  5 years (compliance) data. If 

compliance concentrations fall above the upper limit of the tolerance interval, 

this provides statistical evidence of a difference (Intelligent Decision 

Technologies, 1998). If more than 1-a fall outside the limits (5%) the 

evidence of a difference is statistically significant. However any excursion of 

the limit might indicate further need for investigation. (Intelligent Decision 

Technologies, 1998) Both parametric and nonparametric estimating 

procedures were performed for comparison.

C. Tolerance Interval -  WQStat Plus™

Like the Tolerance Limit procedure, the Tolerance Interval estimation 

procedure is defined by tolerance limits for a specified coverage and 

confidence level. However, in the tolerance interval procedure, an interval 

was established from all of the data (instead of compliance data), which 

contained 95% coverage at the 95% confidence level. This interval was 

compared to the excursion limit of 2 ppm (instead of limit determined by 

background data). This estimating procedure was performed both
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parametrically and nonparametrically. For a complete explanation of the 

calculations, see the WQStat Plus™ user manual (Intelligent Decision 

Technologies: p 108-110, 1998).

D. Confidence Interval -  WQStat Plus™

This estimation interval is constructed with a mean concentration 

(parametric procedure) or a median concentration (nonparametric procedure) 

with a designated level of confidence. If the entire confidence interval 

exceeds the compliance limit, this is statistically significant evidence that the 

mean concentration exceeds the compliance limit. (Intelligent Decision 

Technologies: p 105-108, 1998) Both the parametric and nonparametric 

procedures were used.

E. Prediction Limits -  WQStat Plus^“

The prediction limit method used the 5-year data as background to

establish an interval, and the 5-year data were compared to the interval to 

determine excursions. The interval includes k future observations from the 

same population with a specified confidence (95%). If any observation 

exceeds the bounds of the prediction interval, this is statistically significant 

evidence that the observation is not representative of the background group. 

(Intelligent Decision Technologies, 1998) If there is more than one source of 

variation, the parametric Prediction Limit should is inappropriate. The 

complete procedure can be found in the WQStat Plus user manuaP“
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(Intelligent Decision Technologies; p 103-105, 1998). Both parametric and 

nonparametric methods were used for comparison.

Results of Data Analysis

The following section examines the results of applying the methods discussed 

above. Particular attention is paid to comparing the differences in results (i.e. 

information) that are consequences of changing the analysis method. It is the lack of 

comparable information resulting from arbitrary selection of data analysis methods that is 

the focus of the results presentation.

Testing for Normality

All data sets were tested for normality in order to interpret the resulting 

information from parametric and nonparametric significance tests. This was 

accomplished through the Chi-Square Goodness of fit test in WQStat Plus"̂ “, in which the 

null hypothesis is that the data are normally distributed (stated in equation (1)).

Table IV. 1: Normality Testing Results

Site Constituent Hypothesis Test Result Conclusion
ROl NH4(raw) Reject the null hypothesis Not normal
R02 NH4 (raw) Fail to reject the null Carmot prove normal
R02 NH4 (FAC) Fail to reject the null Carmot prove normal
HM4 BODS (raw) Reject the null hypothesis Not normal
HM4 BODS (FAC) Fail to reject the null Cannot prove normal
HM6 NOS (raw) Fail to reject the null Carmot prove normal
HM6 N03 (FAC) Fail to reject the null Cannot prove normal
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Comments

Raw vs. flow-adjusted concentrations (FAC) affected the outcome of this test. 

Most data sets tested failed to reject the null hypothesis that they were normally 

distributed. However, as discussed in the Background Chapter, failure to reject a null 

hypothesis does not prove that it is true. This is why there is a question as to whether 

these data are normally distributed or not. This test can only give confidence (95%) that 

a data set is not normally distributed. (See Appendix F for WQStat Plus'̂ '̂  results)

Results for Trend Detection

This analysis compared the Marm-Kendall/Sen’s Slope Estimator (MK) for trend 

with the Seasonal Kendall (SKT) test on 10-year data, raw and flow-adjusted (FAC), as 

well as the and 2"  ̂5-year data. All calculations were performed using WQStat Plus'''' .̂ 

Table IV,2: Trend Detection Results for Site HM6, Constituent N03

Data Test Results Slope Estimate
lOyr -flow SKT U- 80% Confidence Level -0.1073 units/year
10 y r -  raw MK Fail to reject null of no trend 2.955 units/year
10 yr -  raw SKT Fail to reject null of no trend 1.929 units/year
lOyr-FAC MK fl - 95% Confidence Level 11.125 units/year
lOyr-FAC SKT fl - 90% Confidence Level 8.953 units/year

5 yr -flow SKT U- 95%) Confidence Level -0.8778 units/year
5 y r-raw MK Fail to reject null of no trend -9.359 units/year
5 y r-raw SKT U - 80% Confidence Level -28.25 units/year

C‘ 5yr-FA C MK Ij - 95% Confidence Level 36.81 units/year
E‘ 5 yr-FAC SKT fl - 90% Confidence level 28.42 units/year
2"  ̂5 yr -  flow SKT Fail to reject null o f no trend -0.1298 units/year
2"“ 5 yr - raw MK Fail to reject null of no trend 7.953 units/year

5 yr - raw SKT Fail to reject null of no trend 20.13 units/year
2"“ 5 yr - FAC MK fl - 90% Confidence Level 27.24 imits/year
2"̂ ' 5 yr - FAC SKT fl - 80% Confidence Level 23.28 units/year
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Results

Both tests showed no significant trend at any alpha (a) or confidence for the 10- 

year raw data, but detected an upward trend in the 10-year flow-adjusted concentrations. 

Mann-Kendall detected at the 0.05 a, and Seasonal-Kendall at the 90% confidence (a = 

0.1).

The Mann-Kendall test resulted in no trend for the 5-year raw data, the

Seasonal Kendall test detected a downward trend at the 80% confidence level (a = 0.2). 

When flow-adjusted concentrations were used, both tests showed an upward trend, 

Mann-Kendall at a  = 0.05, Seasonal Kendall at a  = 0.1.

No significant trend was found for the 2"‘* 5-year raw data. Mann-Kendall 

showed an upward trend in flow-adjusted concentrations at an a  = 0.1, and Seasonal 

Kendall showed an upward trend at a  = 0.2.

The trend results on flow (see Appendix K for results) showed a downward trend 

in flow for the 10-yr data at the 80% confidence level (a = 0.2). The first 5-yr data 

showed a downward trend at 95% confidence, but the second 5-yr data failed to reject the 

null of no significant trend.

Comments

Findings are similar for both tests, but not exact. It is often standard practice to 

choose an acceptable Type I error of 0.05 (95% Confidence Level). If that were the case 

in this analysis, only the Mann-Kendall test would have detected any trends in the 10- 

year flow-adjusted concentrations and the 5-year flow-adjusted concentrations. 

WQStafl“ gives results for various alphas (confidence levels) up to 0.2 (80% confidence)
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and so allows the user to see the alpha giving a significant result. These results illustrate 

that findings can change by choosing a confidence level (a) after results are obtained.

Flow-adjusted concentrations changed the outcome of the trend test upon 

examination of the trendline in the time series plot and in the 1̂* 5-year significance test, 

as the direction changed from downward to upward trend. The slope estimators seem to 

have similar (i.e. comparable) results. (See Appendix G for Trend Analysis results) It is 

interesting to note that where a downward trend in flow existed, so did an upward trend 

in constituent concentration in flow-adjusted concentrations, but not exclusively. This 

finding could aid in the interpretation of the temporal behavior of the constituent.

Table IV.3: Trend Detection Results for Site HM4, Constituent BODS

Data Test Results Slope Estimate
lOyr -  flow SKT Fail to reject null o f no trend -4.692 units/year
10 yr -  raw MK U - 99% Confidence Level -0.033 units/year
10 yr -  raw SKT U - 95% Confidence Level -0.0332 units/year
lOyr-FAC MK U - 99% Confidence Level -0.034 units/year
lOyr-FAC SKT li - 95% Confidence Level -0.03591 units/year

5 yr -  flow SKT U -95% Confidence Level -45.21 units/year
1*‘ 5 yr -  raw MK Fail to reject null of no trend -0.016 units/year
1'* 5 y r-raw SKT Fail to reject null of no trend 0 units/year
l*‘ 5yr-FA C MK Fail to reject null of no trend -0.039 units/year
l̂ ’̂ Syr-FAC SKT Fail to reject null of no trend -0.03132 units/year
2'^ 5 yr — flow SKT Fail to reject null o f no trend 1.211 units/year
2"“* 5 yr - raw MK Fail to reject null of no trend -0.028 units/year
2"** 5 yr - raw SKT Fail to reject null of no trend -0.04568 units/year
2"‘' 5 yr - FAC MK Fail to reject null of no trend -0.025 units/year
2"“ 5 yr - FAC SKT Fail to reject null of no trend -0.04418 units/year

Results

Both tests give a significant downward trend in 10-year raw and flow-adjusted 

concentration data at all alphas. First 5-year raw and flow-adjusted concentration data
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show no trend for both tests at all alpha levels. Second 5-year raw and flow-adjusted 

concentration data show no significant trend for both tests at all alpha levels. There was 

a large downward trend in flow in the first 5-year data, but no significant trend in the 10- 

year or second 5-year data (See Appendix K for results).

Comments

These findings illustrate how significance tests are more likely to detect a trend as 

sample size increases, a phenomenon common to all the tests performed in this chapter. 

No trend was detected in either 5 years of data, but was detected in the 10-year data. 

These results were determined by comparing a calculated test statistic to a tabled value, 

and not by a calculated p-value (observed significance level). Therefore, the results from 

the five-year tests are comparable to the ten-year tests, although the sample sizes are 

different (see discussion in Chapter V). The slope estimates are highly comparable at this 

site. (See Appendix G for complete results) Determination of flow trend did not reveal 

anything about flow-adjusted constituent behavior.
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Table IV.4: Trend Detection Results for Site R02, Constituent NH4

Data Test Results Slope Estimate
10 yr -  flow SKT Fail to reject null o f no trend 0.01263 units/year
10 yr -  raw MK ii - 90% Confidence Level 1.142 units/year
10 yr -  raw SKT il - 95% Confidence Level 1.283 units/year
lOyr-FAC MK ii - 95% Confidence Level 1.391 units/year
lOyr-FAC SKT fi - 95% Confidence Level 1.344 units/year

5 yr -flow SKT U -  95% Confidence Level -2.105 units/year
5 y r-raw MK fl - 99% Confidence Level 7.063 units/year

1 5 yr -  raw SKT fi - 95% Confidence Level 6.53 units/year
5 yr -  FAC MK fi -  99% Confidence Level 6.044 units/year

l^ '5yr-FA C SKT ii -  95% Confidence Level 5.305 units/year
2"‘̂ 5 yr -flow SKT if  - 95%} Confidence Level 1.47 units/year

5 yr -  raw MK U -  99% Confidence Level -4.991 units/year
5 yr -  raw SKT ■li - 95% Confidence Level -4.26 units/year

2"  ̂5 yr -  FAC MK U - 95% Confidence Level -4.219 units/year
2"“' 5 yr - FAC SKT li - 90% Confidence Level -3.066 units/year

Results

10-year raw data shows an upward trend at a  = 0.1 (90% confidence level) for the 

Mann-Kendall test, and a  = 0.05 (95% confidence level) for the Seasonal Kendall test. 

Flow-adjusted concentrations show an upward trend at the 95% confidence level for both 

tests. The first 5-year raw and flow-adjusted concentration data show an upward trend 

for both tests at all alpha levels. The second 5-year raw data show a downward trend for 

both tests at all alpha levels. Flow-adjusted concentrations give a downward trend at a  = 

0.05 (95 % confidence level) for the Mann-Kendall test, and a  = 0.1 (90% confidence 

level) for the Seasonal Kendall test.

Flow trend results failed to reject the null of no trend for the 10-year data, but 

showed a dovmward trend in the first 5-year data (95% confidence) and an upward trend 

in flow for the second 5-year data (95% confidence) (See Appendix K).
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Comments

These findings illustrate how an upward trend in the first half of the constituent 

data record and a downward trend in the second half of the record might reconcile itself 

The upward trend was stronger than the downward trend, and so was detected in the 

overall 10-year data. Again, the level of detection of trend was different for both tests. 

However, this time the Seasonal Kendall test was more sensitive in the 10-year HM4 data 

set, as opposed to results for site HM6, in which the Marm-Kendall test seemed more 

sensitive. The Mann-Kendall test detected a trend at a smaller alpha level in the 2"‘* 5- 

year flow-adjusted concentrations. The slope estimates are very comparable at this site. 

(See Appendix G for complete results) Again, a downward trend in flow correlated to an 

upward constituent trend, and vice versa, in both the raw and flow-adjusted constituent 

concentrations.

Results for Differences in Populations Analysis

This series of analyses compared the first 5-year data to the second 5-year data for 

BOD5 (site HM4), N03 (site HM6) and NH4 (site R02). This is often referred to as step 

trend detection, but in actuality is a test for population differences before and after a 

specific point in time. To illustrate an analysis for spatial differences, a comparison was 

made between upstream and downstream NH4 values for sites ROl (u) and R02 (d).

These analyses utilized the nonparametric Mann-Whitney test in Minitab^^ and 

WQStat Plus'̂ ' ,̂ and the two-sample t-test in MS-ExceF“ and Minitab'^ .̂ Differences 

were also sought through Interval tests developed in MS-Excef“ by Graham McBride
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(See Methods section above, and Appendix E). The t-test for equal variances was used in 

all cases except for site ROl vs. R02. As described in the Methods section, results of F- 

tests for equal variances in MS-ExceE'^ resulted in the finding of equal variances between 

the first and second 5-year data from each site, as expected. However, the F-test resulted 

in the finding of unequal variances between RO1 and R02 data for NH4, therefore 

requiring the use of the t-test for non-equal variances. (For F-test results see Appendix 

H).

Table IV.5: Differences in Population Results for Site HM4, Constituent BODS

Test Results
MS-Excel™ t-test (H‘ 5-yrs vs. 2"̂ ' 5- 
yrs)

Significant Difference (p = 0.019)

Minitab™ t-test (H‘ 5-yrs vs. 2"̂  5-yrs) Significant Difference (p = 0.019)
Equivalence Interval test Equivalent (2"‘' 5-yrs within interval of +/- 

20% of 5-yrs mean -  95% confidence)
Inequivalence Interval test Inequivalent (2"  ̂5-yrs not within interval of 

+/- 20% of 5-yrs mean -  95% confidence)
Minitab"^“ Mann-Whitney Significant difference (p=0.0148)
WQStaE*  ̂Plus Mann-Whitney Shows no significant difference (see below)

Results

Two-sample t-tests (two-tailed assuming equal variances) in MS-ExceF“, and 

Minitab''^“ gave identical results of a significant difference in BODS between the first and 

second 5-year data (p = 0.019).

The interval test for equivalence failed to reject the null of equivalent mean 

concentrations (see equation (13)) at an a  = 0.05 and equivalence interval of +/- 20% 

change in the first 5-year mean. However, when the null hypothesis for the equivalence 

t-test is changed to inequivalence, the result is the failure to reject the null of inequivalent
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concentrations (equation (14)) in population BODS at alpha = 0.05 and equivalence 

interval of +/- 20% change in the first 5-year mean.

Using the nonparametric Marm-Whitney test, Minitab"^“ gave a significant 

difference in BODS at p = 0.0148. WQStat Plus™ showed no rejection of the null of 

equal means at all confidence levels, though the test statistic calculated should have 

rejected the null hypothesis and found a significant difference.

Comments

These findings vary depending on alpha level, test and hypothesis. This illustrates 

how important assumptions of distribution and hypothesis are when testing, as well as 

selection of an acceptable Type I error (a). Again it illustrates that choosing the 

confidence level needed (a) after results are obtained can change the information 

obtained.

Minitab"^“ and WQStat Plus‘S“ gave comparable results for the Mann-Whitney test, 

however a mistake in the WQStat Plus^“ software misinterpreted the final results. In 

general the results from different statistical packages are comparable, though results are 

presented differently in each one.

At the beginning of this section it was found that the raw data for site 

HM4_BOD5 are not normally distributed. This could mean that a parametric t-test is not 

appropriate, as a nonparametric procedure could be more powerful. Therefore, the best 

information from this analysis comes from the Mann-Whitney test. (See Appendix I for 

Differences in Populations results)
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Table IV.6: Differences in Population Results for Site HM6, Constituent N03

Test Result
MS-ExceF^ t-test (E‘ 5-yrs vs. 2"'* 5-yrs) Fail to reject the null of equal means
Minitab™ t-test (E* 5-yrs vs. 2"‘* 5-yrs) Fail to reject the null of equal means
Equivalence Interval test Fail to reject the null of equivalence
Inequivalence Interval test Rejected the null of inequivalence (2"  ̂5- 

yrs within interval of +/- 20% of E‘ 5-yrs 
mean -  95% confidence)

Minitab"^  ̂Mann-Whitney Fail to reject the null of equal medians
WQStaf” Plus Mann-Whitney Fail to reject the null of equal means

Results

Two-sample t-tests (two-tailed assuming equal variances) in MS-ExceP'^ and 

Minitab"^“ failed to reject the null of equal means (equation (5)) between the first and 

second 5-year data (p = 0.51).

The interval test with either null hypothesis of equivalence (equation (13)) or 

inequivalence (equation (14)) resulted in equivalent populations at 95% confidence 

(alpha = 0.05) and an equivalence interval of +/- 20% of the 5-year mean.

In computing the Mann-Whitney test, both Minitab"^“ and WQStat Plus'^“ failed to 

reject the null of equal medians (equation (11)) or means (equation (9)) between groups 

at a  = 0.1.

Comments

All of these tests failed to reject the null hypotheses of equal central tendency 

between the first and second 5-year data. This data also failed to reject the null of normal 

distribution, so the t-tests are more powerful tests of the difference in the two 

populations. However, failure to reject the null of equal means in the standard t-test does
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not prove that they are equal. The best information in this analysis comes from the 

equivalence test with the null hypothesis that the two populations are inequivalent 

(equation (14)). Rejection of this null proves with 95% confidence that the mean of the 

second 5-year data lays within an interval of +/- 20% of the first 5-year data mean, 

making them equivalent. Of course, this is supposing that the +/- 20% change is an 

ecologically acceptable change inN03. (See Appendix I for complete results)

Table IV.7: Differences in Population Results for Site R02, Constituent NH4

Test Result
MS-ExceF“ t-test (F* 5-yrs vs. 2"‘* 5-yrs) Fail to reject the null of equal means
Minitab™ t-test (F* 5-yrs vs. 2"̂ ' 5-yrs) Fail to reject the null of equal means
Equivalence Interval test Fail to reject the null of equivalence
Inequivalence Interval test Rejected the null of inequivalence (2"*' 5- 

yrs within interval of +/- 20% of F‘ 5-yrs 
mean -  95% confidence)

Minitab"^“ Mann-Whitney Fail to reject the null of equal medians 
(p=0.259)

WQStaf^ Plus Mann-Whitney Fail to reject the null of equal means

Results

Two-sample t-tests (two-tailed assuming equal variances) in MS-ExceF“ and 

Minitab^“ failed to reject the null of equal means (equation (5)) between the first and 

second 5-year NH4 data (p = 0.18).

The Interval test with a null hypothesis of equivalent means (equation (13)) failed 

to reject the null, whereas the Interval test with a null hypothesis of inequivalence 

(equation (14)) rejected the null of inequivalent means at 95% confidence (a = 0.05) and 

an equivalence interval of +/- 20% of the first 5-year mean.
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Calculating the Mann-Whitney test statistic in Minitab and WQStat Plus failed to 

reject the null hypotheses of equal medians (equation (11)) or means (equation (9)) at the 

90% confidence level (a = 0.1).

Comments

This NH4 data failed to reject the null of normal distribution, so the t-test is an 

appropriate and powerful test. However, as in the analysis at the previous site (HM6), 

failure to reject the null of equal means does not prove that the means are in fact exactly 

equal. Again the best information comes from the equivalence test with the null 

hypothesis that the two populations are inequivalent (equation (14)). Rejection of this 

null proves with 95% confidence that the mean of the second 5-year NH4 data lies within 

an interval of +/- 20% of the first 5-year NH4 data mean, making them equivalent. (See 

Appendix I for complete results)

Table IV.8: Analysis of Differences Between NH4 at ROl and R02

Test Result
MS-Excel™ t-test (E‘ 5-yrs vs. 2"‘* 5-yrs) Significant Difference (p=0.000)
Minitab"^“ t-test (E‘ 5-yrs vs. 2"̂ * 5-yrs) Significant Difference (p=0.000)
Equivalence Interval test Rejected the null of equivalence (R02 

not within interval of +/- 20% of ROl -  
95% confidence)

Inequivalence Interval test Fail to reject the null of inequivalence
Minitab^“ Mann-Whitney Significant Difference (p=0.000)
WQStaf“ Plus Mann-Whitney Significant Difference-99% confidence
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Results

Two-sample t-tests (two-tailed assuming unequal variances, as discussed above) 

in MS-ExceF^ and Minitab’̂“ result in a significant difference between the means of NH4 

at sites ROl and R02 (p = 0.000).

The Interval tests with both hypotheses of equivalence and inequivalence support 

significant differences in concentration of NH4 at 95% confidence (alpha = 0.05) and an 

equivalence interval of +!- 20% of the upstream (ROl) mean concentration.

The Mann-Whitney test in both Minitab^^ and WQStat Plus‘S“ result in significant 

differences between the medians/means of NH4 at sites ROl and R02.

Comments

This analysis shows that when the concentration differences are large between 

populations, distribution assumptions, hypotheses and alphas do not have a great affect 

on the results. Although NH4 at site R02 failed to reject the null of normal distribution, 

the Mann-Whitney test is most appropriate because NH4 at site ROl is not normally 

distributed. (See Appendix I for complete results)

Results for Standards Compliance

Standards compliance analysis alternatives were examined using the BOD5 data 

for site HM4. Common limits in New Zealand are 2 or 3 ppm. The analyses were 

performed using 2 ppm, since no data exceeded the 3 ppm limit. Excursion analysis was 

performed on both raw and flow-adjusted concentrations. The following analyses were
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performed in WQStat Plus™; Proportion Estimates, Tolerance Limits, Tolerance 

Intervals, Prediction Limits, and Confidence Intervals about the mean.

Table IV.9: Standards Compliance Results for Site HM4, Constituent BODS

Test Compliance Results
Proportion Estimate -  raw 3.3% excursions (0,7%) Cl
Proportion Estimate -  FAC 3.3% excursions (0,7%) Cl
Parametric Tolerance Limit -  raw Exceeded limit
Parametric Tolerance Limit -  FAC Exceeded limit
Nonparametric Tolerance Limit -  raw Compliant
Nonparametric Tolerance Limit -  FAC Exceeded limit
Parametric Tolerance Interval -  raw Compliant
Parametric Tolerance Interval -  FAC Compliant
Nonparametric Tolerance Interval -  raw Exceeded limit
Nonparametric Tolerance Interval -  FAC Exceeded limit
Parametric Prediction Limit -  raw Exceeded limit
Parametric Prediction Limit -  FAC Compliant
Nonparametric Prediction Limit -  raw Compliant
Nonparametric Prediction Limit -  FAC Exceeded limit
Parametric Confidence Interval for the mean - raw Compliant
Parametric Confidence Interval for the mean - FAC Compliant
Nonparametric Confidence Interval for the median - raw Compliant
Nonparametric Confidence Interval for the median - FAC Compliant

Results

For Standards Compliance results from WQStat Plus‘S“, see Appendix J. Both the 

raw and flow-adjusted concentrations data gave a 0.033 (3.3%) excursion proportion, 

with the 95% confidence interval ranging from 0 to 7% excursions.

The Tolerance Limit procedure was performed using the first 5-year BOD5 data 

establishing the Tolerance Interval. Then the second 5-year BOD5 data were compared 

to that interval for compliance. Both the raw and flow-adjusted concentration data 

exceeded the limit in the parametric Tolerance Limit procedure, but only the flow-
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adjusted BODS concentrations exceeded the Tolerance Limit in the nonparametric 

procedure.

For the Tolerance Interval procedure, the compliance limit (2 ppm) is used to 

determine the excursion, not the background data (first 5-year data, as discussed in the 

Statistical Methods section). In this analysis, neither the raw nor flow-adjusted 

concentration data exceeded the parametric Tolerance Limit (95% coverage). However, 

both exceeded the nonparametric procedure limit.

In the parametric Prediction Limit procedure, the raw BODS data exceeded the 

Prediction Limit, whereas the flow-adjusted concentration data did not. For the 

nonparametric procedure, the opposite was true. The raw data did not exceed its 

Prediction Limit, whereas the flow-adjusted concentration data did.

In both the parametric and nonparametric Confidence Interval determinations, 

neither the raw nor flow-adjusted concentrations data means/medians exceeded the 

excursion limit of 2 ppm.

Comments

Each of these analyses gives different kinds of information about the data. The 

most straightforward is the proportion estimate, which tells exactly the proportion of 

excursion, along with a confidence interval so that the data can be representative of not 

only the sample, but also the population as a whole. These findings show that 3.3% of 

the data exceeded the excursion, and that up to 7% exceedance can be expected at the 

95% confidence level.
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The other procedure’s outcomes (Tolerance Limit, Tolerance Interval, Prediction 

Limit and Confidence Interval) were highly influenced by the distribution assumption, 

and the concentration used (raw vs. flow-adjusted concentrations). The raw BODS data 

was shown to be not normal in the Testing for Normality section, so the nonparametric 

results are more appropriate in assessing compliance. The Tolerance Limit/Interval and 

Prediction Limit procedures are more appropriate for determining if a single sample 

exceeds a compliance limit or interval based on background data. Whereas the 

Confidence Interval is more appropriate for determining if the mean/median of a 

population exceeds a standard that is based on central tendency. The variety of results 

again illustrates the noncomparability of information produced from different analysis 

methods.
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Chapter V. Discussion

The previous chapters have established that: (1) there are a large variety of 

methods employed in water quality data analysis to produce information; (2) significance 

testing is by far the most popular type of analysis used to interpret water quality 

monitoring data (used in 17 of 19 Trend Studies and 16 of 20 Differences in Population 

Studies from Chapter III), and; (3) many of these common methods, when applied to one 

set of data, do not produce comparable results.

When completing a water quality assessment, it is usually assumed that the 

analyst will make an independent decision based on his or her interpretation of the data 

and information needs, after the data are collected. This fact introduces considerable 

uncertainty into the analysis of water quality data and results in non-comparable 

information. This raises concerns about the actual management decision, stemming from 

the information on which it was based. If there is a lack of confidence in the methods 

used to produce information for management, then there will be a lack of confidence in 

the ultimate decision as well. The only way to instill confidence in the management 

decision is to remove the concerns over the process through which information for the 

decision was created.
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‘Standard’ Data Analysis Methods?

This issue raises the question: Is it feasible to develop a set of ‘standard’ water 

quality data analysis methods for specific forms of management information (i.e. trends, 

differences, standards compliance) that can produce comparable information that is 

defensible? The simple answer is yes, as this question is not new to water quality 

management. “Perhaps the best way to ensure that data collected during different studies 

are comparable is to encourage all investigators to use standardized sampling and 

analysis protocols whenever possible “ (Becker and Armstrong, 1988). Currently there 

are professionals in the field who have been charged with determining which sampling 

and laboratory analysis methods result in comparable information (see Methods and Data 

Comparability Board of the National Water Quality Monitoring Council; 

http://wi.water.usgs.gov/pmethods). This is an especially pertinent issue as the interest in 

data sharing continues to rise.

This suggestion is not made without reservation. A natural conflict stems from 

the need to obtain comparable information, and permitting site-specific conditions to be 

considered in how data are analyzed and interpreted. The answer to this issue is not 

readily apparent, nor are professionals studying the problem and its solutions. At present, 

the discussions of ‘appropriate’ use of statistics in water quality monitoring tend to be 

within various water-management related agencies. The literature review in Chapter III 

clearly illustrates that some agencies have produced guidance for data analysis over the 

years, yet without much coordination within or outside of the agency. The National 

Water Quality Monitoring Council is currently facing the issue described here, and
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exploring the mechanisms that could help monitoring systems produce comparable 

information.

Several issues besides the methods selection itself will need to be addressed. 

Although some advise to the contrary (Ward et al., 1986), many analysts select the 

analysis methods after examining the data and its distribution. In fact, this is 

recommended by existing guidance (i.e. Montgomery and Reckhow, 1984; Chatfield, 

1985). Chatfield (1985) recommends the following process: (1) Clarify the objectives of 

the investigation; (2) Collect the data in an appropriate way; (3) Investigate the structure 

and quality of the data; (4) Carry out an initial examination of the data; (5) Select and 

carry out an appropriate formal statistical analysis; (6) Compare the findings with 

previous results or acquire further data if necessary; and (7) Interpret and communicate 

the results." If ‘standard’ data analysis methods are developed, should they follow this 

same line of thinking?

There are good arguments for both sides of this issue. Choosing the analysis 

method before examining the data allows for impartial agreement and approval of the 

process by all interested parties without the bias of data results. However, choosing the 

method after analysis allows for selection of the most scientifically appropriate methods 

for the type of data gathered, without prior assumptions, but also allows for post-hoc 

selection of alpha, which, as illustrated in Chapter IV, can greatly influence the results. 

This issue in and of itself begs the assistance of professionals who are knowledgeable 

about water management to provide guidance for data analysis protocols.

Another topic that develops from the suggestion of standardizing data analysis 

methods deals with the extent that the analyst is allowed to produce information that
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directly relates to the management decision-making. Most management decision-makers 

are not statisticians. Should results of analysis only be presented (such as a rejection of a 

null hypothesis and obtained p-value), or an interpretation in terms of meaning presented 

as well? Should management be allowed to decipher statistical results, without the bias 

of the analyst? Guidance is needed for these questions to be resolved. Only those 

involved in water management know the expertise of their colleagues in understanding 

these scientific issues. Comprehension will vary among managers, and so may the role of 

the analyst in interpreting information produced from the data analysis. The EPA (1998) 

dealt with this issue in the development of their Guidelines for Ecological Risk 

Assessment. The following process was recommended: “To ensure mutual understanding 

between risk assessor [i.e. analysts] and managers, a good risk characterization will 

express results clearly, articulate major assumptions and uncertainties, identify 

reasonable alternative interpretations, and separate scientific conclusions from policy 

judgments. Risk managers use risk assessment results, along with other factors (e.g. 

economic or other legal concerns), in making risk management decisions and as a basis 

for communicating risks to interested parties and the general public.”

Finally, the question that directly pertains to the work presented in this thesis is: 

What would these ‘standard’ data analysis methods look like? With the exception of a 

few estimation and graphical procedures, the methods used in the previous chapter were 

all based on the statistical theory of significance testing, which Chapter II established is 

“under fire” in some parts of the scientific world. It is easy to see in the results of the 

New Zealand data analysis (Chapter IV) that information changes depending on the
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method selection, but why? The answer lies in several flaws of applying significance 

testing to environmental (observational) data.

One flaw, which is rarely understood, is that results based on p-values from tests 

with different sample sizes are not comparable. A calculated p-value is affected not only 

by the data collected, but also by the data which might have been observed if the trial had 

gone differently than it in fact did (DuPont, 1983). Therefore, premature termination of 

an experiment (or monitoring effort) affects the outcome of the final calculated p-value. 

Unfortunately, there is often no way of knowing whether a test was performed at the end 

of an experiment, or in the middle, and so reported p-values might not be comparable, 

even for similar sample sizes.

The greatest of these flaws, which has been mentioned previously, is that the 

resource managers and analysts of water quality monitoring data are often not 

statisticians, and so are repeatedly guilty of choosing analysis methods without a 

thorough understanding of the underlying assumptions, meaning of test parameters, or 

interpretation of results. Johnson (1999) states, “While many of the arguments against 

significance tests stem from their misuse, rather than intrinsic value, I believe that one of 

their intrinsic problems is that they encourage misuse”.

Why Use Significance Testing?

Nester (1996) suggests several reasons why hypothesis tests are so widely used: 

(1) they appear to be objective and exact; (2) they are readily available and easily 

invoked in many commercial statistics packages; (3) everyone else seems to use them; (4) 

students, statisticians and scientists are taught to use them; and (5) some journals and
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editors and thesis supervisors demand them. The research in the previous chapters 

validates these claims. Yet the best explanation of why hypothesis testing is so popular 

rests on the foundation of the scientific method. Under that method, a theory is 

postulated, which generates predictions, or hypotheses. A scientific experiment is 

conducted to ‘test’ the hypothesis. The results of the experiment either refute the 

hypothesis, dictating that the theory is incorrect, or do not refute the hypothesis, letting 

the theory stand. In contrast, statistical hypotheses employed by environmental data 

analysts are known a priori to be false (Johnson, 1999).

So why test statistical hypotheses at all? McBride (2000) states that comparison 

of p-values for tests with similar numbers of samples does provide an elegant way of 

ranking the importance of differences measured, if sample sizes are identical. He also 

acknowledges that in constructing models, p-values are most useful in determining 

important explanatory variables in statistical models. However, this is more a function of 

exploratory data analysis, and not data analysis that better cormects water quality 

information to management decision-making.

One answer would be that a statistical test could be only one factor in evidence of 

interpretation of the data. In this way, a single rejection of a point null hypothesis, or a p- 

value, would not be the only information leading to a management decision. Other pieces 

of information would need to be gathered to either support or refute the findings of the 

statistical test. EPA (1998) has produced guidance for ecological risk assessment that 

follows this type of process.

“Ecological risk assessment evaluates the likelihood that adverse ecological 

effect may occur or are occurring as a result of exposure to one or more stressors. It is a
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flexible process for organizing and analyzing data, information, assumptions and 

uncertainties. Ecological risk assessment provides a critical element for environmental 

decision making by giving risk managers an approach for considering available scientific 

information along with the other factors they need to consider (e.g. social, political, legal 

or economic), in selecting a course of action.” (EPA, 1998)

There exist alternatives to statistical testing which can provide scientifically 

defensible information to management about the quality of the water being monitored. It 

is not within the scope of this thesis to provide great detail about analysis alternatives, but 

the following section will outline some of the other pieces of information that could 

accompany or even replace statistical tests in order to make the information more 

comparable and meaningful to management.

Data Analysis Tools to Make Information More Comparable

There are many procedures that can be applied along with statistical tests in order 

to give more meaning to the results beyond the p-value. It might be assumed that these 

procedures are already mandatory for statistical analysis of water quality data, yet the 

literature review in Chapter III suggests that they are not. The first of these is to test the 

data for normality, and if the data are not normal, only use nonparametric analysis 

procedures, which are more powerful than parametric procedures for non-normal data, 

being less affected by nondetects or extreme values. The second is to use flow-adjusted 

concentrations, especially for trend detection and standards compliance. The third is to 

consider the power of the test. This gives a good indication of the likelihood of actually 

detecting an effect of the size practical to the analyst.
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Power analysis is becoming more prevalent due to the availability of statistical 

software packages and Internet “power calculators”. However, the increase in 

availability does not directly translate into an increase in calculating the true power. 

Cursory exploration of three Internet calculators (listed below) found that input 

parameters are often ambiguous, especially in retrospective calculations, resulting in less 

confidence in the results. The software packages which include power analysis provide 

more confidence, but only when the procedures for calculation are thoroughly explained. 

Georgetown University:

■ h ttp ://m em bers.ao I.com /johnp71 /postpow r.h tm l;

UCLA;

■ http  ://w w w . stat. ucla .edu /ca lcu la to rs/pow erca lc ;

EPA beta version:

■ h ttp ://w w w .ep a .g o v /ea rth lr6 /6 w q /eco p ro /w atersh d /m o n itm g /q ap p sp rt/sam p lin g .h tm )

Power should be a consideration for any hypothesis test, yet the difficulty in

calculating power for nonparametric tests means that it is often ignored. For 

demonstration purposes, power was considered for the two-sample t-test analyses found 

in Chapter IV. The powers of these tests were approximated using Minitab'^”, which has 

a power analysis calculation for a two-sample t-test (but does not provide an explanation 

of calculation procedures).

Using the inputs of sample size, minimum detectable difference (chosen to be 

10% of the mean of each upstream/background data set), and the standard deviation

Power Analysis
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(background sigma used as an estimate of an overall sigma), the power of each t-test was 

actually very low (see results below).

Table V.l: Power Analysis Example

Site Sample
Size

Deteetable Differenee Sigma Power

HM4 BODS 60 0.1 (10% of 5-yr mean) 0.4 0.2741
HM6 NOS 60 40 (10% of 5-yr mean) 265 0.1299
R02 NH4 60 5 (10 % of 5-yr mean) 17 0.3588
ROl R02 NH4 120 0.3 (10% of upstream mean) 2 0.2120

This means that the t-tests performed in Chapter IV actually had a small chance 

(all less than 50%) of aetually detecting the prescribed difference in means, even with 

these large sample sizes. Of course, the power increases as the minimum detectable 

difference required increases (e.g. the power of detecting a difference of 1.0 between sites 

ROl and R02 equals 0.9989), but perhaps not enough to satisfy management concerned 

with detecting real differences and impacts in the environment. Power also changes as 

the estimate of standard deviation (sigma) changes. Also, the actual data for these sites 

did not have the exact sample size included in the power calculation (See Appendix D), 

this was just an expeeted value determined by the sampling protocol. In the real world, 

data can be missing from the record, deceasing the power of the analysis used to detect 

differences. Power analysis needs a great deal of attention, as it can potentially provide a 

type of quality control for analysis methods.

Graphical Depietion of Data

One of the simplest ways to help in the interpretation of data is to include a 

graphical depiction. For example, using time series plots, Q-Q plots, histograms, and box
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plots, the analyst can visually interpret the data and make decisions about distribution 

assumptions, trends, and standards violations with a glance. Plotting the data before 

analysis was strongly recommended by Montgomery and Reckhow (1984), but in the 

context of exploratory data analysis. Graphical depictions can aid in the comparability of 

information from monitoring data by allowing others to ‘see’ the data, and judge for 

themselves whether a trend is apparent, or samples have exceeded a standard limit. This 

type of information should only accompany more scientifically defensible analysis 

methods, as graphs and pictures can be manipulated with scale, color, or resolution to 

achieve a desired affect. Careful attention must be paid to the attributes of graphs and 

pictures, as the analyst can chose a scale to bias the graphical representation, and thus the 

information conveyed.

Estimation and Confidence Intervals

Another analysis tool, which can be eombined with graphics or significance 

testing, is that of estimates and confidence intervals. “Ordinary confidence intervals 

provide more information than do p-values. Knowing that a 95% confidence interval 

includes zero tells one that, if a test of the hypothesis that the parameter equals zero is 

conducted, the resulting p-value will be greater than 0.05” (Johnson, 1999). A 

confidence interval gives an estimate of the effect size, as well as a measure of 

uncertainty, i.e. a confidence interval of (-5, 300) is less well estimated [and potentially 

embarrassing result] than a parameter with an interval of (120, 130) (Johnson, 1999). 

Providing a trendline on a time-series plot, with a confidence interval of the slope of that 

line, can answer questions about trends and compliance without statistical testing.
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A type of statistical analysis, called meta-analysis, has been used in the medical 

and behavioral sciences to combine results from different studies to help draw 

conclusions about the overall status of the area of interest. This type of analysis might be 

very useful in the water quality field to combine results from separate studies into one 

large “picture” of the water quality of a specific river or watershed. Two studies 

reviewed in Chapter III performed such an analysis (Stoddard, 1998; Brown, 1998). 

Unfortunately, most water quality studies poorly document the statistical assumptions 

and parameters that are vital to a meta-analysis study. This restricts the use of such 

studies in the water quality field. Another perspective is that meta-analysis can reduce 

dependence on significance testing by examining replicated studies. However, meta-

analysis can be dangerously misleading if nonsignificant results, or results that did not 

conform to the conventional wisdom, were less likely to have been published. (Johnson, 

1999)

Interval Testing

Another type of data analysis that shows promise in the water quality field was 

that described by McBride (1998). Interval testing, though a type of significance testing, 

allows for the connection between what is statistically significant, and what is 

ecologically significant. Using the inequivalence hypothesis described by McBride 

(1993, 1998, 1999a) takes into account extra precaution towards the environment, as the 

null assumes that an environmental impact has already taken place, and the analysis must

Meta-Analysis
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prove that it hasn’t. Whereas in any point null hypothesis or equivalence hypothesis, the 

assumption is that there has been no impact, and the test must prove differently.

Decision Theory

One approach to data analysis is especially related to management is to use 

statistical decision theory: the theory of acting rationally with respect to anticipated gains 

and losses, in the face of uncertainty (Johnson, 1999). For example, in most hypothesis 

testing, the Type I error (rejecting a true null hypothesis) is strictly set at 0.05, yet the 

type II error (accepting a false null hypothesis) is not examined. Environmentally, a type 

II error may be more costly, and thus should be taken into account. There are other 

parameters of water quality (i.e. central tendency, constituent variance or variability in 

the “natural” environment, biological conditions) that could also be taken into account 

before a decision is made. This is not unlike the evidentiary or risk assessment process 

described at the beginning of this chapter.

Biological Assessments

Probably the greatest argument against significance testing is that results may not 

be biologically or ecologically relevant. “It is not enough to detect differences in lieu of 

determining an impact’s magnitude and cause or in lieu of understanding its 

consequences. It would be wiser to decide first what is biologically relevant and then use 

hypothesis testing to look for biologically relevant effects, not merely run a general 

‘search for significance’.” (Karr and Chu, 1998) “Overreliance on statistical correlation, 

t-tests, or other statistical models can short-circuit the process of looking at data and
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asking whether they make sense and what they show. Dependence on p-values can divert 

scientists and managers from exploring the biology responsible for patterns in data, no 

matter when or by whom they were collected.” (Karr and Chu, 1998)

To better connect monitoring with information about the biological integrity of 

the waterbody, the EPA has recommended to all states the use of its Rapid Bioassessrnent 

Protocol (RBP) modified habitat assessment. The framework of bioassessment consists 

of characterizing reference conditions upon which comparisons can be made, and 

identifying appropriate biological attributes with which to measure the condition. These 

reference conditions are representative of biological health. (Gerritsen and Leppo, 1998). 

The biological attributes to be measured represent elements of the structure of the 

ecosystem and are called metrics. A metric is defined as a characteristic of the biota that 

changes in some predictable way with increased human influence. (Gerritsen and Leppo, 

1998)

Sampling of the biological metrics, and assessing the subsequent water quality 

using a biological index (ranking and scoring) procedure, is becoming increasingly 

popular in the water quality field. This type of static analysis does not give information 

about changing conditions (i.e. trends and differences in populations), but can be 

combined with significance testing to bring real meaning to the monitoring data, both 

chemical and biological. “The objective of biological monitoring is to detect human- 

caused deviations from baseline biological integrity, and to evaluate the biological -  not 

statistical -  significance of those deviations and their consequences.” (Karr and Chu, 

1998) “When a study is based on tested biological metrics, hypothesis testing can be 

appropriate. By providing a biological yardstick for ranking sites according to their
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condition, multimetric indexes can answer these questions. Because their statistical 

properties are known and their statistical power can be calculated, multimetric indexes 

can be used to compare sites statistically”. (Karr and Chu, 1998) Although the same 

statistical arguments apply to using this type of data for analysis, using biological 

assessment data in combination with chemical data and appropriate statistical analyses 

can provide more thorough information about the dynamic condition of the water.

Bayesian Methods

A final statistical analysis approach, which was mentioned briefly in McBride 

(1998), is that of using a different branch of statistics, called Bayesian statistics. “Bayes’ 

theorem offers a formula for converting between the probability of observed or more 

extreme data given that the null hypothesis is true (p-value) and the probability that the 

null hypothesis is true, given the data [for one-sided tests only]" (often the information 

sought in the first place!) (Johnson, 1999).

Bayes’ Theorem: Pr[Ho I  data] = Pr[datal Ho] * Pr[Ho] / Pr[data]

Another, more lucid explanation of this theorem is provided by Carver (1978). 

“What is the probability of obtaining a dead person (D) given that the person was hanged 

(H); that is, in symbol form, what is p(D|H)? Obviously, it will be very high, perhaps .97 

or higher. Now, let us reverse the question: What is the probability that a person has been 

hanged (H) given that the person is dead (D); that is, what is p(HlD)? This time the 

probability will undoubtedly be very low, perhaps .01 or lower. No one would be likely 

to make the mistake of substituting the first estimate (.97) for the second (.01); that is, to 

accept .97 as the probability that a person has been hanged given that the person is dead.
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Even though this seems to be an unlikely mistake, it is exactly the kind of mistake that is 

made with the interpretation of statistical significance testing—by analogy, calculated 

estimates of p(H|D) are interpreted as if they were estimates of p(D|H), when they are 

clearly not the same." (Carver, 1978)

Using Bayesian approaches, the Pr[Ho], probability of a true null hypothesis, is 

determined before data are gathered and referred to as the prior probability of Ho. 

Standard (sometimes referred to as ‘frequentisf) significance testing considers this 

probability to be unknown. This prior probability of Ho can be determined subjectively 

or through objective means. Then, collection of data can update or modify the belief in 

its value. (Johnson, 1999)

A Bayesian confidence interval (say for 95%) is interpreted to mean that the 

probability that the true value of the parameter lies in the interval is 95%, as opposed to a 

standard (frequentist) confidence interval (say for 95%), which interprets to mean that if 

the study were repeated a large number of times, 95% of the confidence intervals that 

resulted would contain the true value of the parameter. McBride (2000) Therefore, the 

Bayesian approach only considers the data obtained, not data that might be obtained if the 

study were repeated infinitely, nor the data more extreme than that obtained. “For 

decision analysis, Bayes’ theorem offers a very logical way to make decisions in the face 

of uncertainty. It allows for incorporating beliefs, data, and the gains or losses expected 

from possible consequences of decisions.” (Johnson, 1999) Type I and II errors and p- 

values are therefore meaningless and not needed.
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Comparable Information in Other Fields of Data Collection

One excellent example of the goal for the water quality field is the area of weather 

reporting. Atmospheric scientists have developed, from a large list of variables and 

processes, a graphical interpretation of weather conditions that conveys instantly to the 

user the current state of the weather, what has occurred in the past, and what is likely to 

happen in the future. The importance of weather in our immediate lives has perhaps been 

the impetus to create consensus in atmospheric condition assessment. These weather 

interpretations are transparent, comparable and auditable, as they are standardized and 

accepted to convey the best information upon which to act.

Another example is the area of economic reporting. Several different indicators 

and indexes have been developed to aid in interpretation of the daily/monthly/yearly flux 

of the economy. Graphics, in the form of time series plots of these indexes, are used to 

convey understanding of trends in various sectors of the economy (Ward, 1998). For 

example, the Dow Jones Index has become an accepted ‘standard’ method for reporting a 

type of economic information upon which management and business decisions are based.

“The indicators and indices have been developed through well-documented and 

reviewed protocols. This is not to say that there are not disagreements over how the 

indices are computed, but it does reflect these debates occurring away from day-to-day 

reporting of the information” (Ward, 1998). “In other words, the science that underpins 

economic reporting is well developed and documented in protocols that are established 

on their scientific merit and not their particular outcome” (Ward, 1998).
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The above section has outlined just a few of the analysis alternatives that can 

either replace, or supplement statistical data analysis methods. However, the 

entrenchment of significance testing in the scientific world, combined with the plethora 

of analysis alternatives, make it difficult for data analysts to produce comparable 

information from water quality data analysis.

The subject of this discussion has focused on developing ‘standard’ guidance for 

data analysis methods, and how some methods might improve the comparability of 

information from monitoring. It is obvious that there are many ‘right’ methods for 

analysis, yet management is often missing comparable information for decision-making. 

Management needs information that is dependable, concise, comparable and bias-free in 

order to make fair and auditable decisions regarding the environment. Arguments about 

the process through which the information underlying management decision-making was 

created can only be eliminated through acquisition of comparable information in a 

manner that is transparent and auditable. Does this call for the development of ‘standard’ 

analysis methods?

Development of ‘standard’ protocols for water quality data analysis is suggested 

as a means to help this field mature to the same point of confidence about information for 

management decision-making as observed in weather and economic reporting. This, in 

turn, could perhaps bring the water quality field closer to the public, allowing water 

quality monitoring information to be broadly examined, and increasing public support for 

monitoring efforts.

Conclusions

98



Chapter VI. Summary, Conclusions and Recommendations

Summary

The previous five chapters of this thesis have fulfilled the tasks outlined in 

Chapter I: (1) to examine the data analysis methods that are currently being used to 

analyze water quality monitoring data, as well as the criticisms of using those types of 

methods; (2) to explore how the selection of methods to analyze water quality data can 

impact the comparability of information used for water quality management purposes, 

and; (3) to offer options by which data analysis methods employed in water quality 

management can be made more transparent and auditable.

These tasks were accomplished through a literature review of criticisms of current 

data analysis methods (Chapter II), as well as texts, guidance and journals dealing with 

water quality assessments (Chapter III). Then, the common statistical analysis methods 

found were applied to the New Zealand Water Quality River Network data set. The 

purpose being to establish how information changes as analysis methods change, and to 

determine if the information produced from different data analysis methods was 

comparable (Chapter IV). The results of the literature review and data analysis were then 

discussed, highlighting problems with the prevalent use of significance testing in the 

water quality field. Chapter V further discussed options through which to begin solving 

these problems and produce comparable information for water quality management 

deci sion-making.
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For several years it has been known, or suspected, that current methods for 

producing information from water quality data are subject to misuse and inappropriate 

application. Lack of statistical knowledge has caused poorly planned method selection 

and results that are not always comparable. This thesis has documented the problems 

associated with data analysis method selection for water quality monitoring, in an effort 

to provide problem definition as the first step in creating a solution. The process of 

documenting these problems has led to the conclusions discussed below:

1) Reviewing literature on water quality monitoring reveals the frequent use of a 

common class of statistical procedures (e.g. hypothesis testing) to produce information 

about water quality from the raw data. The majority of reviewed analysis methods use the 

concept of “statistical significance” to validate the information produced, be it 

comparison of means/medians (e.g. upstream/downstream averages), or evaluation of 

trends, or detection of extremes. It is with these methods that most of our knowledge 

about the water quality of our nation has been derived. From government monitoring 

projects to private monitoring studies, it appears from the literature review (Chapter III) 

that despite recent efforts to provide auditable information, data analysis procedures are 

often loosely planned and documented and statistical results rarely explained. Except for 

a few studies of water quality statistics (Harcum et ah, 1992; Hirsch, 1988; Montgomery 

and Reckhow, 1984, Montgomery and Loftis, 1987; Loftis et ah, 1989; McBride, 1998, 

1999a), alternative analysis methods with which to compare results are never explored,

Conclusions
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significance rarely explained, and information, once produced, never questioned, just 

reported as is. Of course discussions that led up to publication, if they questioned the 

methods, are rarely shared with the reader.

2) Through EPA’s requirements for State 305(b) reports and 303(d) listing of impaired 

waters, it is apparent that the vision is being developed to create monitoring systems that 

will produce information that will answer basic questions about our nation’s water 

quality. But when reviewing state assessment methodologies and other water quality 

studies, it is evident that the analysis procedures fall short of providing indisputable 

information due to the fact that the assessments are often based on subjective narrative 

criteria or relatively small monitoring data sets, and lack broadly peer-reviewed and 

agreed upon data analysis methods.

3) Although the methods selected to produce water quality information are being used 

correctly, they may not be universally accepted, or appropriate for the type of information 

about the environment that is needed. The availability of numerous analysis procedures 

means that methods selected to produce the same type of information (i.e. trends) may be 

different, resulting in a non-comparable basis for the same management decisions 

(Chapter IV).

4) Because significance testing methods have been available and accepted for years, their 

appropriateness has been rarely questioned in the field of water quality monitoring, until 

now. An argument that is at the forefront of the medical sciences is whether to use
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significance testing at all (Chow and Liu, 1992; Loftus, 1991; Royall, 1992; Berger and 

Berry, 1988). The value of these discussions in medicine is that they illustrate to other 

scientific fields that there are concerns with creating valid information using hypothesis 

testing methods for data analysis (McBride, 1993, 1998, 1999a; Johnson, 1999).

5) The solution to producing more valid information for management decision-making 

depends on the appropriateness of the methods chosen for the type of questions being 

asked, and the comparability of these methods with other, similar assessments. Many of 

the supplemental and alternative methods to significance testing discussed in the previous 

chapters could be utilized to aid in the interpretation of monitoring data, data which is 

influenced by so many unknown variables that interpretation is often difficult.

The use of new methods that £ire more appropriate in creating scientifically defensible 

information is becoming more common in the medical field (Chow and Liu, 1992). 

However, these methods have not managed to effectively infiltrate water quality 

monitoring. Medical and epidemiological studies have shown that the use of methods 

such as meta-analyses, Bayesian statistics, and equivalence testing can produce more 

objective and valid information from the data than standard significance testing. These 

alternatives, as well as others, need to be explored for applicability to water quality data 

analysis, in an effort to produce more comparable information from monitoring.

6) Solutions to the problems documented in this research may not come through 

common analysis methods, but instead require a deeper understanding of statistical 

theory, closer connections to the use of the information (i.e. management input), as well
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as new thinking about data analysis procedures. These considerations in the development 

of ‘standard’ water quality data analysis protocols will help to ensure that the procedures 

are transparent and auditable, and that results are comparable.

Recommendations

The following recommendations are suggested to help further the endeavor of 

providing better data analysis methods through which to produce information for 

management decision-making. These suggestions could be fulfilled through further 

academic study, interagency cooperative efforts (e.g. state and national water quality 

monitoring councils), or through a single entity taking the lead in providing guidance for 

water quality data analysis.

1) The subjects explored in this thesis established that there are many methods available 

for analysis and interpretation of water quality data. Not only are there statistical 

methods, but graphical, estimation, Bayesian, and biological methods, to name a few. It 

was beyond the scope of this thesis to explore the applicability of these methods to water 

quality data and compare the results with those from hypothesis testing, but such an 

examination could prove very useful.

2) If hypothesis testing is to continue to be the main venue through which water quality 

data are interpreted, better attention must be paid to distribution assumptions, flow- 

adjustment, and power analysis. The first two are easily handled, but the third, power 

analysis, is a complex subject. Power can be used to determine effective sample sizes to
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detect a significant difference fairly easily. However, calculation of the power of certain 

tests given a sample size can be complicated for parametric statistics, and even more so 

for nonparametric. Power analysis tools (software, internet calculators) can aid greatly, 

but a broad review of these tools for comparability of results must first take place in order 

to ensure quality of results.

3) The recent development of protocols for biological monitoring and assessment 

methodologies could prove to be the most informative way to assess water quality. These 

methods are relatively new, and so have not been scrutinized like the methods used to 

interpret chemical data. Many of the same statistical issues discussed in this thesis apply 

to biological data as well. The movement towards establishing broadly peer-reviewed 

methods for data analysis is impending, and all avenues of analysis methods should be 

thoroughly explored.

The bottom line is that the application of science, individually administered, is not 

going to make data analysis any easier, or results more comparable. There are too many 

variables involved, and too many methods through which to explore data. Nevertheless, 

if management requires accepted, scientifically defensible methods that produce 

comparable results upon which to base their decisions, consensus must be obtained about 

what those methods should be. Several documents have been developed for standard 

methods for sampling protocols and laboratory analysis. Following this trend, it seems 

only natural to develop standard methods of data analysis as well. As discussed in the 

Scope section of Chapter I, this should only include methods used for management
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decision-making. Exploratory data analysis employed by researchers needs to remain 

untethered and flexible.

This is an issue that can only partially be resolved through science. Research, 

such as this thesis, can establish that there are common methods being used, compare the 

results obtained with differing methods, and document that there are problems with 

current data analysis procedures. But the decision-makers who are knowledgeable about 

monitoring resources, costs, and consequences of individual decisions will need to be the 

ones who, through a fair and open process, develop a guidance of acceptable methods for 

water quality monitoring data analysis.
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Appendix A. Data and Results from
McBride (1998)

Null and equivalence hypothesis tests and Bayesian probabilities on taxonomic richness data, 
from Quinn et al. 1992 (Hydrobiologia 248: 235-247). There are seven replicates (in 
runs) from
upstream and from dovrnstream of gold mining 
operations in six streams.

INPUT DATA ("U" & "D" appellations denote upstream and downstream; "d"

Replicate
G e r m a n  G u l ly H o u h o u K a n ie r e K a p i te a R e d  J a c k s W a im e a

GU GD HU HD KnU KnD KpU KpD RU RD WU WD
1 21 8 13 11 8 10 15 8 19 14 13 12
2 16 7 15 10 11 13 21 7 16 14 12 14
3 18 7 16 11 9 8 16 9 18 13 18 12
4 15 12 15 12 15 8 20 10 17 15 11 11
5 14 10 19 11 15 8 17 8 21 14 14 15
6 18 9 14 12 10 8 23 9 18 11 11 13
7 12 8 20 14 11 9 21 9 25 13 13 14

dL%
dU%
alpha

-20
20

5

lower bound of environmentally significant %age change in upstream value 
upper bound of environmentally significant %age change in upstream value 
maximum permissible probability of rejecting HO for any comparison, IF that 
hypothesis is actually true (not that we will ever know for sure) ________ I

NB. If the overall significance level is to be controlled (e.g., to 5%), alpha must usually be reduced to a lower value. 
The most pessimistic reduction is the Bonferroni correction: alpha = l-(0.95)^l/6 = 0.85% (there being 6 
comparisons to be made). I say "usually" because the correction needs to account only for the number of cases 
where HO is in fact true. One could argue that it need never be made for the two-sided difference test, because its 
HO is never true for observational data like these! And if half the "HO: equivalence" cases were true (and so half 
were not) the correction would be alpha = l-(0.95)^l/3 = 1.7%.

RESULTS
SUMMARY
H O : n o  
d i f fe r e n c e

Sig. diff. Sig. diff. No sig. diff. Sig. diff Sig. diff. No sig. diff.

HO:
in e q u iv a le n c e

Inequiv. Inequiv. Inequiv. Inequiv. Inequiv. Equiv.

HO:
e q u iv a le n c e

Inequiv. Equiv. Equiv. Inequiv. Equiv. Equiv.

B a y e s ia n  p o s t e r io r  p r o b a b i l i t y  (% ) th a t  th e  tr u e  d i f fe r e n c e  is  w i th in  th e  e q u iv a le n c e  in te r v a l  ( u s in g  
u n i fo r m  p r io r s )

1 0,33| 14.04| 53.33] 0.011 7.711 97.06

CALCULATED SAMPLE SIZES, DEGREES OF FREEDOM AND CRITICAL t VALUES
Number of replieates, nU = nD = 7 nu = 2(nU + nD -2) = 12 t[alpha(2),nu] = 2.179 t[alpha(l),nu] = 1.782

NB. "alpha(2)" means that we are using the upper AND lower tails of the t-distribution, there being an area = alpha/2 in each. 
This is used in the two-sided difference tests shown below, and is calculated from Excel's function TINV(alpha,2(n-l)). But 
"alpha(l)" means that we are considering only the upper tail of the t-distribution, containing an area = alpha. This is used in 
equivalence tests (which are in effect an amalgam of two one-sided tests). Because the TINV function gives only the 
two-tailed inverse (i.e., abscissa) of the t-distribution, we must use t[alpha(l),2(n-l)] =
TINV(2'^alpha,2(n-l)).__________________________________________________________________________________
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DERIVED DATA

Appendix A. McBride (1998)

Median 16 8 15 II 11 8 20 9 18 14 13 13
Means (muU, 
muD)

16.29 8.71 16.00 11.57 11.29 9.14 19.00 8.57 19.14 13.43 13.14 13.00

SD (standard 
deviation)

2.98 1.80 2.58 1.27 2.75 1.86 3.00 0.98 3.02 1.27 2.41 1.41

CV (= SD/mu, %) 18.3 20.6 16.1 II.O 24.4 20.4 15.8 11.4 15.8 9.5 18.3 10.9
sp [= sqrt{sum(SD^2)}] 2.46 2.04 2.35 2.23 2.32 1.98
SE [= sp*sqrt(2/n)] 1.32 1.09 1.26 1.19 1.24 1.06
dhat (= muD - 
muU)

-7.57 -4.43 -2.14 -10.43 -5.71 -0.14

dL (=
muU*dL%/100)

-3.26 -3.20 -2.26 -3.80 -3.83 -2.63

dU (= muU*dU%/100) 3.26 3.20 2.26 3.80 3.83 2.63
1100*dhat/muU|
(%)

46.5 27.7 19.0 54.9 29.9 1.1

T  (= |dhat|/SE) 5.75 4.07 1.71 8.75 4.61 0.14
Ta [= (dhat- -3.28 -1.13 0.09 -5.56 -1.52 2.35
dL)/SE]
Tb [= (dhat- 
dU)/SE]

-8.22 -7.01 -3.50 -11.93 -7.70 -2.62

F(Ta) (cumulative t,%) 0.33 14.04 53.55 0.01 7.71 98.18
F(Tb) (cumulative t,%) 0.00 0.00 0.22 0.00 0.00 1.11
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Appendix Bl. Arizona Assessment Criteria Using Numeric Standards

D E SIG N A T E D  USES A ND  
C O N ST IT U E N T S

N U M B E R  O F SAMPLES ASSESSM ENT CRITER IA

All uses Only 1 sample Cannot assess based only on one water chemistry 
sample.

Aquatic and Wildlife. — Toxic 
Substance

Less than 10 samples (more 
than 1 sample)

1 sample exceeds = partial support 
Mote than 1 sample exceeds = discretion in 
choosing partial or non-support based on 
number of samples magnitude of exceedances.

10 or more samples Toxic substances -- Acute criteria
1 sample exceeds standard = full 
support
2 or more samples exceed standard = 
non-support

4 consecutive days of samples Toxic substances — Chronic criteria
Mean exceeds standard

Aquatic and Wildlife — Nontoxic 
substance (except nutrients) 
and
Full Body/Partial Body Contact, 
Agriculture Irrigation/Livestock 
Water —
Toxic or N on Toxic Substances

Less than 10 samples (more 
than 1 sample)

1 sample exceeded standards = partial support. 
More than 1 sample exceeds standards = partial 
or non-support based on number of samples and 
magnitude of exceedances.

More than 10 samples Less than 10% samples exceed = full support 
10-25% samples exceed = partial support 
More than 25% samples exceed = non-support

Full Body Contact Minimum number estabhshed 
in Rules.

Geom etric m ean for bacteria testing during the 
past two years;

Geometric mean repeatedly exceeded 
= nonsupport
Geometric mean exceeded only once 
= partial support

Nutrients (nitrogen or phosphorus) 
for
Aquatic and Wildlife Uses

More than 1 sample “Single sample” criteria exceeded
Less than 10% samples exceed = full 
support
10-25% samples exceed = partial 
support
More than 25% samples exceed = 
nonsupport

Minimum number estabhshed 
in Rules.

Annual mean standard or 90% standard is 
exceeded = partial or non-support depends on 
number of times exceeded in a 5 year period and 
whether there is substantiating evidence of 
negative impacts (i.e., fish kills)

Fish Consumption and Domestic 
Water Source Uses

More than 2 samples Median of all samples exceeds standard = non-
support.

Trends in Water Chemistry 
Use dependent on parameter.

Samphng periods 10 years 
apart and > 1 0  samples per 
period.

Downward trend, such that standard may be 
exceeded within the next assessment cycle = full 
support but “ threatened.”

(A rizo n a  D epartm en t o f  E nv ironm enta l Q uality  A ssessm en t C riteria, 2000)
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Appendix B2. Arizona Assessment Criteria Using Narrative Standards

C O N ST IT U E N T  AN D  
D E SIG N A T E D  U SE S

N U M B E R  O F SAM PLE S A SSE SSM E N T  C R IT E R IA

Fish Consumption Fish consum ption advisory = non support

O ff-flavor in aquatic organisms or waterfowl 
documented. = partial support.

Used only as supporting 
evidence

Fish tissue concentration median value is above 
narrative standards assessment guidance = FuU (use as 
weight o f evidence and flag for potential problems)

Aquatic and Wildlife Used only as supporting 
evidence

Fish tissue concentration median value is above 
narrative standards assessment guidance = flag for 
potential problems. Contact USFWS, AGFD, or other 
expert to determine whether “toxic” impacts 
documented.

“N arrative toxic standard” — Impacts to aquatic and 
wUdUfe documented (i.e., fish kiUs or anomalies). (See 
“toxic” definition in Appendix A.)

Used only as supporting 
evidence.

Index o f  B io logical In tegrity (B ioassessm ents): See
explanation on page C-4 of this appendix.

Aquatic and Wildlife or 
Full Body/Partial Body 
Contact

Used only as supporting 
evidence.

C ontam inated sedim ent median value exceeds 
criterion

“N arrative nutrient standard” — Noxious weeds or 
algal blooms documented along with elevated pH  or low 
dissolved oxygen. Partial support or non-support based 
on how often and severe.

E xcessive sedim entation documented = partial 
support.

FuU Body/Partial Body 
Contact

O bjectionable odor is documented = partial support. 
W ater color change from background levels 
documented = partial support.

Domestic Water Source D rinking w ater advisory: Within the past two years 
related to source water quaUty of surface water:

Advisory issued for less than one week per 
year = partial support.
Advisory issued for more than one week per 
year = non-support.

O ff-taste or odor in drinking water documented = 
partial support.
Cause a vio lation o f  an aquifer w ater quality  
standard (or contribute to a violation.).= non-support.

FuU Body Contact Sw im m ing area closures within the past two years:
Less than one week closure per year = partial 
support.
Greater than one week closure per year = 
non-support.

(A rizona D ep artm en t o f  E nv ironm en ta l Q uality  A ssessm en t C riteria, 2000 )
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Appendix B3. Arizona Trophic Classification Thresholds

T roph ic  State T rophic 
Status Index

Chlorphyll-a Secchi
D epth

(meters)

T otal Phosphorus (P) 
(Pg/1)

T otal N itrogen (N) 
(m g/1)

Phosphorus-
Limited

N& P- 
Limited

Nitrogen-
Limited

N & P-
Limited

Ohgo trophic <30 <5 >3 <10 <13 <0.25 <0.28

Mesotrphic 30-45 5-12 1.2-3 10-20 13-35 0.25-0.65 0.28-0.75

Eutorphic 45-65 12-20 0.6-1.2 20-35 35-65 0.65-1.1 0.75-1.2

Hypereutrophic >65 >20 <0.6 >35 >65 >1.1 >1.2

“Nitrogen-Limited” = N:P ratio is <10 
“Phosphoms-Limited” = N:P ratio is >30 
“N&P-Limited” = Colimited = N:P ratio is 10-30

Trophic Classification based on: Brezonik, Patrick L., “Trophic State Indices: Rationale for Multivariate Approaches”, 
Lake and Reservoir Management, pp 441-445.

(A rizo n a  D epartm en t o f  E nv ironm ental Q uality  A ssessm en t C riteria, 2000)

122



Appendix C.
Virginia Designated Use Assessment Criteria
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Appendix Cl: Virginia’s Designated Use Assessment Criteria

F u lly
S u p p o r tin g

F u lly  S u p p o r tin g  b u t 
T h re a te n e d

P a r t ia l ly  S u p p o r tin g N o t S u p p o r t in g

C o n v e n tio n a l
P o llu ta n ts

R < 1 0 % N A 11% < R  < 25% R > 25%

T o x ic
P o llu ta n ts

N o  m ore 
than 1 
exceedance 
in a 3 year 
period  (10 
sam ple 
m in im um )

* See fish  tissue and  
sed im en t criteria

R >  1
E xceedance  bu t < 10% 
o f  sam ples (10 sam ple 
m in im um )

R > 10 %  sam ples 
(10 sam ple 
m in im um )

B io lo g ica l
D a ta

N ot
Im paired  or
S lightly
Im paired

U nconfirm ed, 
M odera tely  Im paired , 
E valuated  data  show  
poten tia l W Q  problem s

C onfirm ed  M odera tely  
Im paired  o r degraded  
(o r tw o su rveys show s 
m odera te  im pairm ent)

S evere ly  Im paired  
o r D egraded

F ish
C o n s u m p tio n  
A d v iso r ie s  o r  
R e s tr ic t io n s

N one N A A n adv iso ry  from  
V D H  is in  p lace

A restric tio n  from  
V D H  is in  p lace

S h ellfish
R e s tr ic t io n s
o r
P ro h ib i t io n s

N one A rea classified  as 
C o n d itio n a lly  
A p p ro v e d  (includes 
seasonal condem nations)

A reas c lassified  as 
R e s tr ic te d

A reas c lassified  as 
P ro h ib i te d  
(exception : V PD E S 
outfall areas)

B each
C lo su re s

N one O ne short te rm  V D H  
closu re  w ith  low  
p robab ility  o f  recurrence 
(po llu tion  source 
tran sien t and no V D H  
plans to  im plem ent any 
con tro l m easures)

O ne o r m ore  V D H  
closure w ith  m edium  
probab ility  o f  
recu rrence  (V D H  
preparing  p lans to 
im plem en t contro ls 
m easures)

O ne o r m ore  V D H  
closu re w ith  h igh 
p robab ility  o f  
recu rrence  (V D H  
initiates p lans to  
im plem en t con tro ls 
m easures)

D rin k in g  
W a te r  S o u rc e  
C lo su re s

N one O ne sho rt te rm  V D H  
closu re w ith  low  
p robab ility  o f  recurrence 
(po llu tion  source 
tran sien t and  no V D H  
plans to  im plem ent any 
contro l m easures)

O ne o r  m ore V D H  
closure w ith  m edium  
p robab ility  o f  
recu rrence (V D H  
p repa ring  p lans to  
im plem en t contro ls 
m easures)

O ne o r m ore  V D H  
closu re w ith  h igh  
p robab ility  o f  
recu rrence  (V D H  
in itiates p lans to  
im p lem en t con tro ls 
m easures)

* F ish  C o n s u m p tio n  C r i te r ia * S ed im en t C riteria
I f  one or m ore  L eve l 1 
sam ples ex ceed  one o r m ore 
risk  b ased  S V ’s -  th rea tened  
for fish  consum ption  
C ause: v io la tio n  o f  SV fo r 
a ffec ted  param eter 
Source: unknow n

I f  one o r m ore E R -M  S V (s) o r i f  no  E R -M  exists, 99“' p ercen tile  SV 
exceed  -  th rea tened  fo r aquatic  life.
C ause: v io la tion  o f  S V  fo r affec ted  param eter

R  = a rithm etic  percen t v io la tion  rate; SV = sc reen ing  value; E R -M  = effec ts range -  m edium  value 
*N o w ate r body  shou ld  be  designated  im paired  (partia lly  o r no t supporting ) based  on L evel 1 F ish  tissue  or 
S ed im en t o r da ta  a lone. (V irg in ia  D epartm en t o f  E nv ironm ental Q uality , 1999)
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Appendix C2. Virginia Use Support Assessment

N O . D E S IG N A T E D
U S E

S U P P O R T  O F  U S E  A S S E S S M E N T  C R IT E R IA

1 A quatic  L ife U se C onventional P o llu tan ts (D O , pH , T em p.); T oxics in w ater co lum n; F ish 
tissue and  sed im ents; B io log ica l evaluation .

la . F ish  C onsum ption  
U se

A dvisories and  restric tions issued  by  V D H ;
C om parison  o f  w ate r co lum n data  to  hum an  hea lth  standards; 
C om parison  o f  fish  tissue data  to  n a tional screen ing  values.

lb . S hellfish
C onsum ption  U se

R estric tive ac tions fo r harvesting  and  m arke ting  o f  she llfish  resou rces m ade 
by D iv. O f  S hellfish  S anita tion  o f  V D H ; com parison  o f  da ta  to  w ate r quality  
bac te ria  standards app licab le  to  des ignated  she llfish  w aters.

2 S w im m ing  U se C onven tional P o llu tan t (Fecal C o lifo rm  B acteria) and /o r V D H  beach  
closures.

3 Pub lic  W ater 
S upply  U se

C losures or adv iso ries by  V D H ; com parison  o f  da ta  to  app licab le  pub lic  
w ate r supp ly  standards.

(Virginia Department of environmental Quality, 1999)

125



Appendix D.
Data and Meta-Data for New Zealand River Network (Dryers, 1999)
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Appendix Dl. New Zealand Data - Site
HM4 BODS

)a t e S ite B O D 5 D a t e Site B O D 5 D a t e S ite B O D 5
( p p m ) ( p p m ) ( p p m )

8 9 0 1 2 5 H M 4 1 .1 0 9 2 0 5 1 3 H M 4 1 .2 0 9 5 0 9 1 3 H M 4 0 .8 0
8 9 0 2 2 2 H M 4 0 .9 5 9 2 0 6 1 7 H M 4 1 .1 5 9 5 1 0 1 1 H M 4 1 .4 0
8 9 0 3 2 3 H M 4 1 .5 0 9 2 0 7 1 5 H M 4 0 .9 5 9 5 1 1 0 8 H M 4 1 .6 5

8 9 0 4 1 9 H M 4 1 .2 0 9 2 0 8 1 2 H M 4 1 .2 0 9 5 1 2 1 3 H M 4 2 .2 5
8 9 0 5 2 4 H M 4 1 .1 0 9 2 0 9 1 7 H M 4 0 .7 5 9 6 0 1 1 7 H M 4 1 .1 0

8 9 0 6 1 4 H M 4 1 .2 0 9 2 1 0 1 3 H M 4 0 .8 0 9 6 0 2 1 4 H M 4 0 .8 0
8 9 0 7 1 2 H M 4 1 .3 0 9 2 1 1 2 0 H M 4 1 .1 0 9 6 0 3 1 3 H M 4 0 .8 5

8 9 0 8 1 7 H M 4 0 .8 0 9 2 1 2 1 8 H M 4 1 .1 0 9 6 0 4 1 7 H M 4 1 .0 0

8 9 0 9 1 3 H M 4 0 .8 5 9 3 0 1 1 3 H M 4 2 .0 0 9 6 0 5 1 5 H M 4 0 .7 5

8 9 1 0 1 8 H M 4 1 .7 5 9 3 0 2 1 7 H M 4 1 .6 0 9 6 0 6 1 2 H M 4 0 .9 0

8 9 1 1 1 6 H M 4 2 .0 5 9 3 0 3 1 7 H M 4 1 .4 5 9 6 0 7 1 7 H M 4 0 .6 0
8 9 1 2 1 4 H M 4 1 .9 5 9 3 0 4 1 4 H M 4 1 .1 5 9 6 0 8 1 4 H M 4 0 .8 5

9 0 0 1 1 7 H M 4 1 .2 0 9 3 0 5 1 3 H M 4 0 .7 5 9 6 0 9 1 8 H M 4 1 .0 0

9 0 0 2 1 4 H M 4 1 .1 5 9 3 0 6 1 6 H M 4 0 .7 5 9 6 1 0 1 6 H M 4 0 .9 0

9 0 0 3 1 4 H M 4 1 .1 0 9 3 0 7 1 4 H M 4 0 .5 5 9 6 1 1 1 3 H M 4 0 .5 0
9 0 0 4 1 8 H M 4 0 .3 0 9 3 0 8 1 8 H M 4 0 .9 5 9 6 1 2 1 8 H M 4 1 .6 0

9 0 0 5 1 6 H M 4 1 .3 5 9 3 0 9 1 5 H M 4 1 .4 5 9 7 0 1 1 5 H M 4 0 .9 5

9 0 0 6 2 0 H M 4 0 .8 0 9 3 1 0 1 3 H M 4 1 .8 0 9 7 0 2 1 2 H M 4 0 .6 5

9 0 0 7 1 8 H M 4 0 .9 5 9 3 1 1 1 7 H M 4 0 .6 0 9 7 0 3 1 2 H M 4 1 .4 0

9 0 0 8 1 5 H M 4 1 .1 0 9 3 1 2 1 5 H M 4 0 .9 5 9 7 0 4 1 6 H M 4 1 .6 5
9 0 0 9 1 2 H M 4 1 .0 0 9 4 0 1 1 0 H M 4 1 .1 0 9 7 0 5 1 4 H M 4 1 .2 5

9 0 1 0 1 7 H M 4 1 .2 5 9 4 0 2 1 4 H M 4 0 .4 0 9 7 0 6 1 8 H M 4 0 .8 5

9 0 1 1 1 4 H M 4 1 .5 0 9 4 0 3 1 4 H M 4 2 .0 5 9 7 0 7 1 6 H M 4 1 .2 0
9 0 1 2 1 2 H M 4 1 .5 0 9 4 0 4 1 1 H M 4 1 .2 5 9 7 0 8 1 3 H M 4 0 .5 0
9 1 0 1 1 6 H M 4 1 .6 0 9 4 0 5 1 8 H M 4 1 .1 5 9 7 0 9 1 7 H M 4 0 .8 0
9 1 0 2 1 3 H M 4 1 .2 0 9 4 0 6 1 3 H M 4 1 .1 5 9 7 1 0 1 5 H M 4 0 .8 5
9 1 0 3 2 0 H M 4 1 .5 0 9 4 0 7 1 3 H M 4 0 .7 5 9 7 1 1 1 2 H M 4 1 .4 5
9 1 0 4 1 7 H M 4 1 .7 5 9 4 0 8 1 7 H M 4 0 .7 5 9 7 1 2 1 7 H M 4 1 .4 5
9 1 0 5 1 5 H M 4 1 .1 0 9 4 0 9 1 3 H M 4 0 .8 0 9 8 0 1 1 4 H M 4 0 .7 5

9 1 0 6 1 3 H M 4 0 .8 5 9 4 1 0 1 1 H M 4 0 .8 0 9 8 0 2 1 8 H M 4 1 .6 5
9 1 0 7 1 7 H M 4 0 .9 5 9 4 1 1 1 4 H M 4 1 .0 0 9 8 0 3 1 8 H M 4 1 .2 5
9 1 0 8 1 4 H M 4 0 .9 0 9 4 1 2 1 2 H M 4 1 .2 0 9 8 0 4 1 5 H M 4 0 .7 0
9 1 0 9 1 8 H M 4 1 .2 5 9 5 0 1 1 8 H M 4 1 .7 5 9 8 0 5 1 3 H M 4 0 .5 0
9 1 1 0 1 6 H M 4 1 .0 5 9 5 0 2 1 3 H M 4 1 .8 0 9 8 0 6 1 7 H M 4 0 .7 5
9 1 1 1 1 3 H M 4 1 .6 0 9 5 0 3 1 5 H M 4 1 .3 0 9 8 0 7 2 2 H M 4 1 .0 0

9 1 1 2 1 8 H M 4 1 .9 5 9 5 0 4 1 2 H M 4 1 .4 0 9 8 0 8 1 2 H M 4 1 .5 5

9 2 0 1 1 5 H M 4 1 .9 0 9 5 0 5 1 7 H M 4 0 .6 0 9 8 0 9 1 6 H M 4 0 .7 5
9 2 0 2 1 3 H M 4 1 .8 5 9 5 0 6 1 4 H M 4 1 .1 5 9 8 1 0 1 4 H M 4 1 .2 0

9 2 0 3 1 9 H M 4 2 .2 5 9 5 0 7 1 2 H M 4 1 .1 0 9 8 1 1 2 5 H M 4 0 .5 5
9 2 0 4 1 5 H M 4 1 .6 0 9 5 0 8 1 6 H M 4 0 .5 5 9 8 1 2 1 6 H M 4 1 .1 5
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Appendix D2. New Zealand Data - Site
HM6 N03

Date S ite N 0 3 D a t e Site N 0 3 D a t e S ite N 0 3

(P P b ) ( p p b ) (p p b )
8 9 0 1 2 5 H M 6 7 8 0 9 2 0 5 1 3 H M 6 7 1 0 9 5 0 9 1 3 H M 6 5 2 4

8 9 0 2 2 2 H M 6 4 4 5 9 2 0 6 1 7 H M 6 8 7 5 9 5 1 0 1 1 H M 6 5 0 4

8 9 0 3 2 3 H M 6 2 0 0 9 2 0 7 1 5 H M 6 7 6 5 9 5 1 1 0 8 H M 6 341

8 9 0 4 1 9 H M 6 2 2 0 9 2 0 8 1 2 H M 6 7 5 0 9 5 1 2 1 3 H M 6 2 4 4

8 9 0 5 2 4 H M 6 3 8 0 9 2 0 9 1 7 H M 6 5 8 5 9 6 0 1 1 7 H M 6 2 9 7

8 9 0 6 1 4 H M 6 6 9 0 9 2 1 0 1 3 H M 6 5 7 0 9 6 0 2 1 4 H M 6 1 1 7

8 9 0 7 1 2 H M 6 5 1 0 9 2 1 1 2 0 H M 6 4 4 0 9 6 0 3 1 3 H M 6 9 2

8 9 0 8 1 7 H M 6 8 1 0 9 2 1 2 1 8 H M 6 6 0 5 9 6 0 4 1 7 H M 6 4 3 0

8 9 0 9 1 3 H M 6 1 1 3 5 9 3 0 1 1 3 H M 6 1 5 0 9 6 0 5 1 5 H M 6 4 0 5

8 9 1 0 1 8 H M 6 6 9 5 9 3 0 2 1 7 H M 6 2 2 0 9 6 0 6 1 2 H M 6 5 0 7

8 9 1 1 1 6 H M 6 3 9 0 9 3 0 3 1 7 H M 6 1 6 0 9 6 0 7 1 7 H M 6 4 9 5

8 9 1 2 1 4 H M 6 3 7 0 9 3 0 4 1 4 H M 6 1 85 9 6 0 8 1 4 H M 6 8 2 0

9 0 0 1 1 7 H M 6 1 7 5 9 3 0 5 1 2 H M 6 5 5 0 9 6 0 9 1 8 H M 6 8 3 2

9 0 0 2 1 4 H M 6 5 5 5 9 3 0 6 1 6 H M 6 8 4 0 9 6 1 0 1 6 H M 6 4 71

9 0 0 3 1 4 H M 6 2 6 5 9 3 0 7 1 4 H M 6 6 8 5 9 6 1 1 1 3 H M 6 3 8 7

9 0 0 4 1 8 H M 6 2 8 5 9 3 0 8 1 8 H M 6 5 8 0 9 6 1 2 1 8 H M 6 3 5 5

9 0 0 5 1 6 H M 6 3 6 0 9 3 0 9 1 5 H M 6 4 2 5 9 7 0 1 1 5 H M 6 4 71

9 0 0 6 2 0 H M 6 4 8 5 9 3 1 0 1 3 H M 6 4 5 5 9 7 0 2 1 2 H M 6 3 3 3

9 0 0 7 1 8 H M 6 7 9 0 9 3 1 1 1 7 H M 6 3 4 0 9 7 0 3 1 2 H M 6 6 0 6

9 0 0 8 1 5 H M 6 8 5 5 9 3 1 2 1 5 H M 6 3 2 5 9 7 0 4 1 6 H M 6 3 7 7

9 0 0 9 1 2 H M 6 6 7 0 9 4 0 1 1 2 H M 6 2 1 8 9 7 0 5 1 4 H M 6 3 8 0

9 0 1 0 1 7 H M 6 5 7 5 9 4 0 2 1 6 H M 6 3 9 7 0 6 1 8 H M 6 5 4 2

9 0 1 1 1 4 H M 6 4 7 5 9 4 0 3 1 6 H M 6 2 0 2 9 7 0 7 1 6 H M 6 7 7 7

9 0 1 2 1 2 H M 6 2 1 5 9 4 0 4 1 3 H M 6 1 1 8 8 9 7 0 8 1 3 H M 6 4 4 0

9 1 0 1 1 6 H M 6 8 9 4 0 5 1 8 H M 6 4 0 9 9 7 0 9 1 7 H M 6 7 0 4

9 1 0 2 1 3 H M 6 9 9 4 0 6 1 5 H M 6 6 9 6 9 7 1 0 1 5 H M 6 3 3 5

9 1 0 3 2 0 H M 6 1 6 0 9 4 0 7 1 3 H M 6 7 4 2 9 7 1 1 1 2 H M 6 3 8 0

9 1 0 4 1 7 H M 6 1 8 5 9 4 0 8 1 7 H M 6 7 2 3 9 7 1 2 1 7 H M 6 2 1 4

9 1 0 5 1 5 H M 6 5 0 0 9 4 0 9 1 4 H M 6 3 5 9 9 8 0 1 1 4 H M 6 41

9 1 0 6 1 3 H M 6 2 1 0 9 4 1 0 1 2 H M 6 7 4 9 9 8 0 2 1 8 H M 6 8 7

9 1 0 7 1 7 H M 6 5 2 0 9 4 1 1 1 6 H M 6 4 4 2 9 8 0 3 1 8 H M 6 3 7 3

9 1 0 8 1 4 H M 6 8 2 0 9 4 1 2 1 4 H M 6 2 5 6 9 8 0 4 1 5 H M 6 481

9 1 0 9 1 8 H M 6 6 0 5 9 5 0 1 1 8 H M 6 4 0 9 8 0 5 1 3 H M 6 4 51

9 1 1 0 1 6 H M 6 4 8 0 9 5 0 2 1 5 H M 6 51 9 8 0 6 1 7 H M 6 1091

9 1 1 1 1 3 H M 6 3 5 0 9 5 0 3 1 5 H M 6 5 7 0 9 8 0 7 2 2 H M 6 9 8 7

9 1 1 2 1 8 H M 6 9 2 9 5 0 4 1 2 H M 6 1 0 5 2 9 8 0 8 1 2 H M 6 8 9 2

9 2 0 1 1 5 H M 6 1 0 5 9 5 0 5 1 7 H M 6 4 3 8 9 8 0 9 1 6 H M 6 3 8 7

9 2 0 2 1 3 H M 6 4 1 5 9 5 0 6 1 4 H M 6 9 4 4 9 8 1 0 1 4 H M 6 5 3 5

9 2 0 3 1 9 H M 6 1 1 0 9 5 0 7 1 2 H M 6 9 2 8 9 8 1 1 2 5 H M 6 5 4 4

9 2 0 4 1 5 H M 6 3 9 5 9 5 0 8 1 6 H M 6 7 9 2 9 8 1 2 1 6 H M 6 371
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Appendix D3. New Zealand Data - Site 
ROl NH4

Date S ite N H 4 D a t e S ite N H 4 D a t e S ite N H 4

(P P b ) ( p p b ) ( p p b )
8 9 0 2 1 5 R O l 11 9 2 0 6 1 7 R O l 2 9 5 1 0 1 1 R O l 2

8 9 0 3 1 5 R O l 5 9 2 0 7 1 5 R O l 7 9 5 1 1 1 5 R O l 3

8 9 0 4 1 2 R O l 4 9 2 0 8 1 2 R O l 3 9 5 1 2 1 2 R O l 2

8 9 0 5 1 0 R O l 2 9 2 0 9 1 6 R O l 3 9 6 0 1 1 7 R O l 3

8 9 0 6 1 5 R O l 3 9 2 1 0 1 4 R O l 5 9 6 0 2 1 5 R O l 5

8 9 0 7 1 9 R O l 6 9 2 1 1 1 2 R O l 2 9 6 0 3 1 2 R O l 4

8 9 0 8 1 5 R O l 3 9 2 1 2 0 9 R O l 5 9 6 0 4 1 7 R O l 5

8 9 0 9 1 3 R O l 5 9 3 0 1 1 3 R O l 8 9 6 0 5 1 5 R O l 1

8 9 1 0 1 1 R O l 6 9 3 0 2 1 7 R O l 6 9 6 0 6 1 2 R O l 1

8 9 1 1 1 5 R O l 9 9 3 0 3 1 6 R O l 2 9 6 0 7 1 8 R O l 5

8 9 1 2 1 2 R O l 5 9 3 0 4 1 4 R O l 2 9 6 0 8 1 4 R O l 2

9 0 0 1 1 7 R O l 4 9 3 0 5 1 2 R O l 3 9 6 0 9 1 2 R O l 2

9 0 0 2 1 4 R O l 3 9 3 0 6 1 5 R O l 6 9 6 1 0 1 6 R O l 4

9 0 0 3 1 4 R O l 2 9 3 0 7 1 5 R O l 4 9 6 1 1 1 2 R O l 3

9 0 0 4 1 8 R O l 4 9 3 0 8 1 1 R O l 3 9 6 1 2 1 2 R O l 4

9 0 0 5 1 6 R O l 5 9 3 0 9 1 5 R O l 4 9 7 0 1 1 6 R O l 1

9 0 0 6 1 3 R O l 4 9 3 1 0 1 4 R O l 2 9 7 0 2 1 2 R O l 4

9 0 0 7 1 8 R O l 3 9 3 1 1 1 7 R O l 3 9 7 0 3 1 1 R O l 5

9 0 0 8 1 5 R O l 5 9 3 1 2 1 5 R O l 4 9 7 0 4 1 6 R O l 1

9 0 0 9 1 2 R O l 2 9 4 0 1 1 3 R O l 9 7 0 5 1 5 R O l 2

9 0 1 0 1 7 R O l 1 9 4 0 2 1 6 R O l 9 7 0 6 1 1 R O l 1

9 0 1 1 1 4 R O l 6 9 4 0 3 1 6 R O l 9 7 0 7 1 6 R O l 2

9 0 1 2 1 2 R O l 2 9 4 0 4 1 3 R O l 9 7 0 8 1 2 R O l 0

9 1 0 1 1 6 R O l 3 9 4 0 5 1 1 R O l 9 7 0 9 1 7 R O l 1

9 1 0 2 1 3 R O l 10 9 4 0 6 1 5 R O l 9 7 1 0 1 5 R O l 1

9 1 0 3 1 2 R O l 11 9 4 0 7 1 3 R O l 9 7 1 1 1 3 R O l 1

9 1 0 4 1 6 R O l 8 9 4 0 8 1 7 R O l 9 7 1 2 1 8 R O l 1

9 1 0 5 1 5 R O l 1 9 4 0 9 1 4 R O l 9 8 0 1 1 4 R O l 2

9 1 0 6 1 2 R O l 2 9 4 1 0 1 2 R O l 9 8 0 2 1 1 R O l 2
9 1 0 7 1 7 R O l 1 9 4 1 1 1 7 R O l 9 8 0 3 1 1 R O l 3

9 1 0 8 1 4 R O l 2 9 4 1 2 1 4 R O l 9 8 0 4 1 5 R O l 0
9 1 0 9 1 1 R O l 9 9 5 0 1 1 1 R O l 3 9 8 0 5 1 3 R O l 2
9 1 1 0 1 6 R O l 1 9 5 0 2 1 5 R O l 3 9 8 0 6 1 8 R O l 4

9 1 1 1 1 3 R O l 2 9 5 0 3 1 5 R O l 2 R O l

9 1 1 2 1 2 R O l 4 9 5 0 4 1 1 R O l 3 9 8 0 8 1 2 R O l 4

9 2 0 1 1 5 R O l 2 9 5 0 5 1 7 R O l 1 9 8 0 9 1 6 R O l 3

9 2 0 2 1 2 R O l 2 9 5 0 6 1 4 R O l 2 9 8 1 0 1 4 R O l 2

9 2 0 3 1 8 R O l 1 9 5 0 7 1 3 R O l 4 9 8 1 1 1 1 R O l 1

9 2 0 4 1 5 R O l 1 9 5 0 8 1 6 R O l 2 9 8 1 2 1 7 R O l 2

9 2 0 5 1 3 R O l 5 9 5 0 9 1 4 R O l 2
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Appendix D4. New Zealand Data - Site
R02 NH4

D a t e S ite N H 4 D a te S ite N H 4 D a t e S ite N H 4

(P P b ) (P P b ) (P P b )
8 9 0 2 1 5 R 0 2 4 8 9 2 0 6 1 7 R 0 2 7 4 9 5 1 0 1 1 R 0 2 6 4

8 9 0 3 1 5 R 0 2 3 8 9 2 0 7 1 5 R 0 2 5 7 9 5 1 1 1 5 R 0 2 4 8

8 9 0 4 1 2 R 0 2 4 6 9 2 0 8 1 2 R 0 2 7 5 9 5 1 2 1 2 R 0 2 6 6

8 9 0 5 1 0 R 0 2 5 5 9 2 0 9 1 6 R 0 2 6 9 9 6 0 1 1 7 R 0 2 58

8 9 0 6 1 5 R 0 2 5 4 9 2 1 0 1 4 R 0 2 7 9 6 0 2 1 5 R 0 2 6 9

8 9 0 7 1 9 R 0 2 3 7 9 2 1 1 1 2 R 0 2 7 5 9 6 0 3 1 2 R 0 2 4 3

8 9 0 8 1 5 R 0 2 7 9 2 1 2 0 9 R 0 2 6 2 9 6 0 4 1 7 R 0 2 6 4

8 9 0 9 1 3 R 0 2 5 7 9 3 0 1 1 3 R 0 2 6 5 9 6 0 5 1 5 R 0 2 4 7

8 9 1 0 1 1 R 0 2 16 9 3 0 2 1 7 R 0 2 6 2 9 6 0 6 1 2 R 0 2 15

8 9 1 1 1 5 R 0 2 3 5 9 3 0 3 1 6 R 0 2 9 9 6 0 7 1 8 R 0 2 3 5

8 9 1 2 1 2 R 0 2 4 6 9 3 0 4 1 4 R 0 2 6 3 9 6 0 8 1 4 R 0 2 2 0

9 0 0 1 1 7 R 0 2 3 3 9 3 0 5 1 2 R 0 2 6 9 9 6 0 9 1 2 R 0 2 2 2

9 0 0 2 1 4 R 0 2 3 6 9 3 0 6 1 5 R 0 2 6 2 9 6 1 0 1 6 R 0 2 59

9 0 0 3 1 4 R 0 2 31 9 3 0 7 1 5 R 0 2 4 9 9 6 1 1 1 2 R 0 2 4 8

9 0 0 4 1 8 R 0 2 5 2 9 3 0 8 1 1 R 0 2 7 5 9 6 1 2 1 2 R 0 2 54

9 0 0 5 1 6 R 0 2 31 9 3 0 9 1 5 R 0 2 5 7 9 7 0 1 1 6 R 0 2 7 0

9 0 0 6 1 3 R 0 2 4 3 9 3 1 0 1 4 R 0 2 81 9 7 0 2 1 2 R 0 2 6 5

9 0 0 7 1 8 R 0 2 8 9 3 1 1 1 7 R 0 2 6 7 9 7 0 3 1 1 R 0 2 6 2

9 0 0 8 1 5 R 0 2 3 3 9 3 1 2 1 5 R 0 2 61 9 7 0 4 1 6 R 0 2 6 0

9 0 0 9 1 2 R 0 2 2 7 9 4 0 1 1 3 R 0 2 9 7 0 5 1 5 R 0 2 5 3

9 0 1 0 1 7 R 0 2 2 3 9 4 0 2 1 6 R 0 2 9 7 0 6 1 1 R 0 2 6 8

9 0 1 1 1 4 R 0 2 3 8 9 4 0 3 1 6 R 0 2 9 7 0 7 1 6 R 0 2 41

9 0 1 2 1 2 R 0 2 2 2 9 4 0 4 1 3 R 0 2 9 7 0 8 1 2 R 0 2 4 7

9 1 0 1 1 6 R 0 2 4 9 9 4 0 5 1 1 R 0 2 9 7 0 9 1 7 R 0 2 5 9

9 1 0 2 1 3 R 0 2 6 4 9 4 0 6 1 5 R 0 2 9 7 1 0 1 5 R 0 2 5 2

9 1 0 3 1 2 R 0 2 3 8 9 4 0 7 1 3 R 0 2 9 7 1 1 1 3 R 0 2 5 4

9 1 0 4 1 6 R 0 2 4 3 9 4 0 8 1 7 R 0 2 9 7 1 2 1 8 R 0 2 34

9 1 0 5 1 5 R 0 2 4 2 9 4 0 9 1 4 R 0 2 9 8 0 1 1 5 R 0 2 4 7

9 1 0 6 1 2 R 0 2 4 4 9 4 1 0 1 2 R 0 2 9 8 0 2 1 1 R 0 2 4 7

9 1 0 7 1 7 R 0 2 5 8 9 4 1 1 1 7 R 0 2 9 8 0 3 1 1 R 0 2 6 6

9 1 0 8 1 4 R 0 2 5 2 9 4 1 2 1 4 R 0 2 9 8 0 4 1 5 R 0 2 3 3

9 1 0 9 1 1 R 0 2 6 6 9 5 0 1 1 1 R 0 2 7 7 9 8 0 5 1 3 R 0 2 5 2

9 1 1 0 1 6 R 0 2 3 4 9 5 0 2 1 5 R 0 2 71 9 8 0 6 1 8 R 0 2 4 5

9 1 1 1 1 3 R 0 2 5 7 9 5 0 3 1 5 R 0 2 5 5 9 8 0 7 1 4 R 0 2 5 8

9 1 1 2 1 2 R 0 2 7 8 9 5 0 4 1 1 R 0 2 4 5 9 8 0 8 1 2 R 0 2 5 0

9 2 0 1 1 5 R 0 2 51 9 5 0 5 1 7 R 0 2 6 0 9 8 0 9 1 6 R 0 2 53

9 2 0 2 1 2 R 0 2 81 9 5 0 6 1 4 R 0 2 9 7 9 8 1 0 1 4 R 0 2 5 4

9 2 0 3 1 8 R 0 2 4 2 9 5 0 7 1 3 R 0 2 71 9 8 1 1 1 1 R 0 2 4 0

9 2 0 4 1 5 R 0 2 5 6 9 5 0 8 1 6 R 0 2 81 9 8 1 2 1 7 R 0 2 2 8

9 2 0 5 1 3 R 0 2 5 3 9 5 0 9 1 4 R 0 2 4 6
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Appendix E: Algorithm for Interval Testing in MS-Excel (McBride,
1999b)

Example calculations, Waimea Creek data, using Excer”

Input data
Upstream taxonomic richness (per 0.1 m̂  sampling area, 7 replicates): 13, 12, 18, 11, 14, II, 13 
Downstream taxonomic richness (7 replicates): 12, 14, 12, 11, 15, 13, 14 
Significance level for each comparison: a  =  5%.
Lower and upper bounds on environmentally significant percentage change from the upstream mean taxonomic 
richness: D i  = -20%, D u  = +20%.

Calculated degrees of freedom and critical t values for hypothesis tests
With n„p =  =  1  replicates at each site there are v = n „ p  + -  2 = 12 degrees of freedom for each comparison.
Critical values (“inverses”) of the r-distribution are calculated using Excel’s TfNV function, which gives the value of t 
that cuts off a given total area in b o th  tails of the distribution.

For the null hypothesis test we need tap.),v [“«(2)” denotes the two-tailed value, cutting off an area 'A a  in each tail 
of the distribution]. For the Waimea Creek case to(2),K~ k).os(2),i2 = TfNV(0.05,12) = 2.179.
For equivalence tests we need [“a(l)” signifies a one-tailed value, cutting off an area a  in the upper tail of the 
distribution]. For the Waimea Creek case toci),!/ = n̂.05(i),i2 TfNV(2’''0.05,12) = 1.782.

A. Two-tailed critical values B. One-tailed critical value C. Bayesian probability

I*
A  0.2

1 1 1 ^ 1 1

\

. / I Area-0.05|\
/

t _1_1_1_1_-3-2-10 1 2 3 4

Derived data
R e q u i r e d  f o r  a l l  p r o c e d u r e s

•  upstream & downstream means; estimated difference: x „ p = l 3 . l 4 ,  = 13.00; d  =  =-0.14

• upstream and downstream standard deviations: = 2.41, Sja>m =1-41

• pooled standard deviation: ) =1-98

• standard error: S E  =  s ^ . ^ 1 /  +1/ = 1.06

R e q u i r e d  f o r  n u l l  h y p o th e s is  te s t

• test statistic: T  = \ d \ ! S E  =0.14 
R e q u i r e d  f o r  e q u iv a le n c e  te s ts

•  lower equivalence interval limit: d ^  =  x ^ ^ D ^  1 1 0 0  =-2.63

• upper equivalence interval limit: = x^^D ^, / 100 = 2.63

• lower test statistic: =  \ d  — d j ^ j S E  =2.35

• upper test statistic: =  { d  —  d ^ ^ l S E  =-2.62
R e q u i r e d  f o r  B a y e s ia n  c a lc u la t io n s  
The preceding four items, plus:
• cumulative t  probability up to Ty. F {T a) = 98.2%
• cumulative t probability up to T y  F { T i,)=  1.1 % 
where F { t)  is the cumulative i-distribution probability, calculated using Excel’s TDIST function via the formula F ( t)  = 
'A + SlGN(i) ( ‘/2  -TDIST(ABS(r),v,l)). (The formula accounts for cases where t is negative.)
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Appendix E. Algorithm for Interval Testing in MS-Excel (McBride, 1999b)

Rules and outcomes
• The null hypothesis is rejected if 7’> ia^2),v This condition is not satisfied (because 0.14 < 2.179) and so we do not 

reject the hypothesis. Therefore we infer “no statistically significant difference”.
• The equivalence hypothesis is rejected if e i th e r  < - ta ( \) ,v  or 7), > Neither condition is satisfied (because

2.35 > -1.782 and -2.62 < 1.782) and so the hypothesis is not rejected. Therefore we infer “equivalence”.
• The inequivalence hypothesis is rejected if b o th  T„ > to(i),̂  and T* < t a ^ ’, y. Both conditions are satisfied (because

2.35 > 1.782 and -2.62 < 1.782) and so the hypothesis is rejected. Therefore we infer “equivalence”.
• The Bayesian probability that the true difference lies within the equivalence interval is F(7j,) -  FjTj) = 97.1 %

Multiple comparisons
The null and equivalence hypothesis tests have used a significance level of a= 5%. This means that the risk of falsely 
rejecting a true hypothesis is 5% f o r  e a c h  c o m p a r is o n  (i.e., for each stream). To keep the risk over a l l  comparisons to 
5% one must adjust the significance level downward. The pessimistic (Bonferroni) adjustment reduces a to 0.85%. In 
that case tap\) y =  2.769 so that the inequivalence hypothesis would n o t  be rejected.
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Appendix F. Normality Test Results in WQStat Plus'*''̂

Raw NH4 data for ROl and R02

Chi-Squared Norm ality Tesrt

St^aclon. TrattSCo cm , Calculated Tabulated Normal
ROl (n=104) >!

None 79.8462 14. 07 false
log 91.3846 14, 07 false

R02 (n=107)
Hone 3. 14. 07 true
log 38.514 14. 07 false

A

Close j Print Repo'it | Ptint Data |

Flow-adjusted NH4 data for ROl and R02

r C hi-Squared N orm l^ity Test

Station Transform
-ni.1- 11-1.....1-..

Calculated Tabulated Normal
ROl (n=104) ♦ i

None 79.8462 14. 07 false
log 56-7692 14. 07 false

R02 (n=107)
None 3.7477 14. 07 true
log 28.6075 14. 07 false

jt

Close j I Print Report || Print Data |
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Appendix F. Normality Test Results in WQStat Plus'’'’’̂

Raw BOD5 data for HM4

Chi-Squared Norm ality Test

Station Transform 
HH4 (n=120)

Hone
log

Calculated

16.1667
10.1667

Tabulated

14. 07 
14. 07

normal

false
true

jc iq s^  I . Print Report ( Print Data

Flow-adjusted BOD5 data for HM4

C h i-S t|u a red  N o rm a lity  Test

station Transform
HH4 (n=120)

None
log

Caloulafeed *

5.3333
7.5

Tabulated-

14. 07 
14.07

Normal

true
true

Close!■'"i I P rin t R e p o rt | P rin t D a ta
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Appendix F, Normality Test Results in WQStat Plus’’’'̂

Raw N03 data for HM6

Flow-adjusted NOS data for HM6

137



Appendix G.
Trend Analysis Results in WQStat Plus™
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Appendix Gl. Mann-Kendall Results for R02_NH4

10-yr, raw data
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Print Graph I Print Data!
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W«w:R02 NH4
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Appendix Gl. Mann-Kendall Results for R02_NH4

10 yr, FAC
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Print G rap in  Print Data~| Refresh | Zoom | lExit I

iReady'

140



Appendix Gl. Mann-Kendall Results for R02-NH4

1®‘ 5-yr, raw
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Appendix Gl. Mann-Kendall Results for R02_NH4

1** 5-yr, FAC
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Appendix Gl. Mann-Kendall Results for R02_NH4

2"*̂  5-yr, raw

«■ I M  Ca A ' ri
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Appendix Gl. Mann-Kendall Results for R02_NH4

2"** 5-yr, FAC
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SEN'S SLOPE ESTIMATOR (Alt. Values) 
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Appendix G2. Seasonal Kendall Results for R02_NH4

10-yr, raw
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Appendix G2. Seasonal Kendall Results for R02_NH4

1®‘ 5-yr, raw
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Appendix G2. Seasonal Kendall Results for R02_NH4

1*‘ 5-yr, FAC
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Appendix G2. Seasonal Kendall Results for R02_NH4

2"** 5-yr, raw

«■ i M TaA'

SEASONAL KENDALL SLOPE ESTTMATOR
R02

100

80

60

° 40

I 8I I 20

♦

►

♦ ♦ ♦ 
♦ *

♦ 4̂

♦
♦ ▼

► ♦ 4

♦ ^

♦ ♦ ♦
4

♦

n=48
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Appendix G2. Seasonal Kendall Results for R02_NH4

2"“ 5-yr, FAC
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Appendix G3. Mann-Kendall Results for HM4_BOD5

10-yr, FAC
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Appendix G3. Mann-Kendall Results for HM4 BOD5

1** 5-yr, raw
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Appendix G3. Mann-Kendall Results for HM4_BOD5

1®‘ 5-yr, FAC
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Appendix G3. Mann-Kendall Results for HM4_BOD5

2 nd ^5-yr, raw
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Appendix G3. Mann-Kendall Results for HM4_BOD5

2"“ 5-yr, FAC
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Appendix G4. Seasonal Kendall Results for HM4_BOD5

10-yr, raw
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Appendix G4. Seasonal Kendall Results for HM4_BOD5

5-yr, raw
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Appendix G4. Seasonal Kendall Results for HM4_BOD5

!*• 5-yr, FAC
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Appendix G4. Seasonal Kendall Results for HM4 BOD5

5-yr, FAC
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Appendix G5. Mann-Kendall Results for HM6_N03

10-yr, raw
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Appendix G5. Mann-Kendall Results for HM6 N03

10-yr, FAC
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Appendix G5. Mann-Kendall Results for HM6_N03

1®* 5-yr, raw
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Appendix G5. Mann-Kendall Results for HM6_N03

1** 5-yr, FAC
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Appendix G5. Mann-Kendall Results for HM6_N03

I"** 5-yr, raw
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Appendix G6, Seasonal Kendall Results for HM6_N03

10-yr, raw
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Appendix G6, Seasonal Kendall Results for HM6 N03

10-yr, FAC
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Appendix G6. Seasonal Kendall Results for HM6_N03

1** 5-yr, raw
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Appendix G6. Seasonal Kendall Results for HM6_N03

1** 5-yr, FAC
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Appendix G6. Seasonal Kendall Results for HM6_N03
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Appendix G6. Seasonal Kendall Results for HM6_N03

2"** 5-yr, FAC
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Appendix H.
F-test for Equal Variances Results in MS-Excel™
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Appendix H. F-test for equal variances results

F - T e s t  T w o - S a m p l e  for V a r ia n c e s F - T e s t  T w o - S a m p l e  for V a r ia n c e s

H M 4 _ B O D 5 R 0 2 _ N H 4

V ariab le  1 V ariab le  2 V ariab le  1 V ariab le  2
M e a n 1 .2 4 1 6 6 7 1 .0 6 3 3 3 3 M e a n 4 8 .5 2 5 4 2 5 3 . 1 8 7 5

V a r i a n c e 0 . 1 7 0 4 3 8 0 .1 6 4 3 1 1 V a r ia n c e 3 6 2 .2 8 8 1 2 4 9 . 8 5 7 7

O b s e r v a t i o n s 6 0 6 0 O b s e r v a t i o n s 5 9 4 8

d f 5 9 5 9 df 5 8 4 7
F 1 .0 3 7 2 9 F 1 .4 4 9 9 7 8

P ( F < = f )  o n e -ta i l 0 . 4 4 4 3 2 6 P ( F < = f )  o n e -ta i l 0 ,0 9 5 0 4 3

F  C rit ic a l  o n e -ta i l 1 .5 3 9 9 5 6 F  C ritica l o n e -ta i l 1 .5 9 5 5 4

F - T e s t  T w o - S a m p l e  for V a r ia n c e s F - T e s t  T w o - S a m p l e  for V a r i a n c e s

H M 6 _ N 0 3 R 0 1 & R 0 2

V ariab le  1 V ariab le  2 Variab le  1 V ariab le  2
M e a n 4 5 8 . 4 8 3 3 4 9 0 . 3 6 6 7 M e a n 3 . 3 2 0 7 5 5 5 0 .6 1 6 8 2

V a r i a n c e 6 2 9 4 8 . 1 5 7 7 4 8 4 .7 1 V a r ia n c e 5 . 0 1 9 9 4 6 3 1 4 .4 4 6 1

O b s e r v a t i o n s 6 0 6 0 O b s e r v a t i o n s 1 0 6 1 0 7

d f 5 9 5 9 df 1 0 5 1 0 6

F 0 . 8 1 2 3 9 4 F 0 .0 1 5 9 6 4

P ( F < = f )  o n e -ta i l 0 . 2 1 3 6 3 6 P ( F < = f )  o n e -ta i l 0

F  C r it ic a l  o n e -ta i l 0 . 6 4 9 3 6 9 F  Crit ica l  o n e -ta i l 0 . 7 2 4 7 8 9
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Appendix I.
Differences in Populations Results in MS-Excel™, Minitab™,

and WQStat Plus™
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Appendix II. T-test and Interval Test Results in MS-ExceF*^

Input data BODS N03 NH4 R01&R02
n u p  = 6 0 6 0 5 9 1 0 6

n d o w n = 6 0 6 0 4 8 1 0 7

a  = 5 5 5 5

D l = - 2 0 - 2 0 - 2 0 - 2 0

D u  = 2 0 2 0 2 0 2 0

d f  = 1 18 118 1 0 5 211

t(a 2 ,  df) 1 .9 8 0 2 7 1 .9 8 0 2 7 1 .9 8 2 8 1 7 1 . 9 7 1 2 7 0 6

t (a ,d f ) 1 .6 5 7 8 7 1 .6 5 7 8 7 1 .6 5 9 4 9 6 1 . 6 5 2 1 0 6 2

Derived data
x b a r - u p 1 . 2 4 1 6 6 7 4 5 8 . 4 8 3 3 4 8 . 5 2 5 4 2 3 .3 2 0 7 5 4 7

x b a r - d o w n 1 .0 6 3 3 3 3 4 9 0 . 3 6 6 7 5 3 .1 8 7 5 5 0 .6 1 6 8 2 2

d e lta - 0 . 1 7 8 3 3 3 1 . 8 8 3 3 3 4 . 6 6 2 0 7 6 4 7 . 2 9 6 0 6 8

s u p 0 .4 1 2 8 4 1 2 5 0 . 8 9 4 7 1 9 . 0 3 3 8 7 2 . 2 4 0 5 2 3 6

s d o w n 0 .4 0 5 3 5 3 2 7 8 . 3 6 0 8 1 5 .8 0 6 8 9 1 7 .7 3 2 6 2 9

s p o o le d 0 .4 0 9 1 1 4 2 6 4 . 9 8 3 8 1 7 .6 5 9 3 3 1 2 .6 6 7 2 5 7

S E 0 .0 7 4 6 9 4 4 8 .3 7 9 2 1 3 .4 3 2 5 7 1 1 . 7 3 5 9 1 1 4

dl - 0 . 2 4 8 3 3 - 9 1 . 6 9 6 7 - 9 . 7 0 5 0 8 - 0 .6 6 4 1 5 1

d u 0 .2 4 8 3 3 3 9 1 . 6 9 6 6 7 9 .7 0 5 0 8 5 0 . 6 6 4 1 5 0 9

T l 0 . 9 3 7 1 6 1 2 .5 5 4 4 0 3 4 . 1 8 5 5 3 9 2 7 . 6 2 8 2 6 5

T u - 5 . 7 1 2 2 2 - 1 . 2 3 6 3 4 - 1 . 4 6 9 1 6 2 6 . 8 6 3 0 7 5

T 2 . 3 8 7 5 3 0 .6 5 9 0 3 1 .3 5 8 1 8 8 2 7 .2 4 5 6 7

Results
null  (t -te st ) re je cte d a c c e p t a c c e p t re ject

e q u i v a l e n c e a c c e p t e d a c c e p t a c c e p t re ject

i n e q u iv a l e n c e a c c e p t e d re je cte d re je cte d a c c e p t
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Two Sample T-Test and Confidence Interval for HM4_BOD5
Two sample T for BODS (ppm) vs BODS

Appendix 12. T-test Results in Minitab' ’̂̂

N
BODS (pp 60 
BODS 60

Mean StDev SE Mean 
1.242 0.413 0.053 
1.063 0.405 0.052

95% Cl for mu BODS (pp - mu BODS: ( 0.030, 0.326)
T-Test mu BODS (pp = mu BODS (vs not =): T = 2.39 P = 0.019 DF = 118 
Both use Pooled StDev = 0.409

Saving file as: C:\USERS\Lindsay\thesis\BOD5.MTW

Two Sample T-Test and Confidence Interval for R02_NH4 vs. R01_NH4
Two sample T for NH4 vs NH4(2)

N Mean StDev SE Mean
NH4 106 3.32 2.24 0.22
NH4(2) 107 50.6 17.7 1.7

95% C l  for mu NH4 - mu NH4{2): ( -50.72, -43.9)
T-Test mu NH4 = mu NH4(2) (vs not =): T = -27.25 P = 0.0000 DF = 211 
Both use Pooled StDev = 12.7

Two Sample T-Test and Confidence Interval for HM6_N03
Two sample T for N03 vs N03 (2)

N Mean StDev SE Mean
N03 60 458 251 32
N03 (2) 60 490 278 36

95% Cl for mu N03 - mu N03 (2): ( -128,
T-Test mu N03 = mu N03 (2) (vs not = ) : T

64'
-0.66 P = 0.51 DF = 118

Both use Pooled StDev = 265

Saving file as: C:\USERS\Lindsay\thesis\N03.MTW

Two Sample T-Test and Confidence Interval for R02_NH4
Two sample T for NH4 vs NH4 (2)

N Mean StDev SE Mean
NH4 59 48.5 19.0 2.5
NH4 (2) 48 53.2 15.8 2.3

95% Cl for mu NH4 - mu NH4 (2): ( -11.5, 2.1)
T-Test mu NH4 = mu NH4 (2) (vs not =): T = -1.36 P = 0.18 DF 
Both use Pooled StDev = 17.7

Saving file as: C:\USERS\Lindsay\thesis\NH4.MTW

= 105
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Mann-Whitney Confidence Intervai and Test for R01_NH4 vs. R02_NH4

NH4 N = 106 Median = 3.000
NH4(2) N = 107 Median = 52.000
Point estimate for ETA1-ETA2 is -49.000
95.0 Percent CI for ETA1-ETA2 is (-51.999,-45.000)
W = 5696.0
Test of ETAl = ETA2 vs ETAl not = ETA2 is significant at 0.0000 
The test is significant at 0.0000 (adjusted for ties)

Appendix 13. Mann-Whitney Results in Minitab’’''’'*

Mann-Whitney Confidence Interval and Test for HM4_BOD5

BOD5 (pp N = 60 Median = 1.1750
BOD5 N = 60 Median = 1.0000
Point estimate for ETA1-ETA2 is 0.2000
95.0 Percent Cl for ETA1-ETA2 is (0.0501,0.3499)
W = 4095.0
Test of ETAl = ETA2 vs ETAl not = ETA2 is significant at 0.0148 
The test is significant at 0.0146 (adjusted for ties)

Saving file as: C:\USERS\Lindsay\thesis\R01_R02.MTW

Mann-Whitney Confidence Interval and Test for R02_NH4

NH4 N = 59 Median = 51.00
NH4 (2) N = 48 Median = 53.50
Point estimate for ETA1-ETA2 is -4.00
95.0 Percent Cl for ETA1-ETA2 is (-10.99,3.00)
W = 3005.5
Test of ETAl = ETA2 vs ETAl not = ETA2 is significant at 0.2595 
The test is significant at 0.2594 (adjusted for ties)

Cannot reject at alpha = 0.05

Mann-Whitney Confidence Interval and Test for HM6_N03

N03 N = 60 Median = 450.0
N03 (2) N = 60 Median = 441.0
Point estimate for ETA1-ETA2 is -20.0
95.0 Percent Cl for ETA1-ETA2 is (-126.0,75.0)
W = 3555.0
Test of ETAl = ETA2 vs ETAl not = ETA2 is significant at 0.6958 
The test is significant at 0.6958 (adjusted for ties)

Cannot reject at alpha = 0.05
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Appendix 14. Mann-Whitney Results in WQStat Plus'̂ '̂
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Appendix 14. Mann-Whitney Results in WQStat PIus'*’’̂
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Appendix 14. Mann-Whitney Results in WQStat Plus’’̂ '̂
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Appendix 14. Mann-Whitney Results in WQStat PIus^”̂
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Appendix J.
Standards Compliance Results in WQStat Plus™
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Appendix J. Standards Compliance for HM4_BOD5

Raw data

PR O P O R T IO N  E ST IM ATE  
HM4

Conf S e u o n N Prop. L o w -H i^
95*/** A ll 120 0 0 3 3 0 0 0 -0 0 7
99*A* A ll 120 0 0 3 3 0 -0 0 8
95*/** 5/1 30 0 0-0
99*/** 5/1 30 0 0-0
95*/** 8/1 30 0 0-0
99*/** 8/1 30 0 0-0
95*/** 11/1 60 0 0 6 7 000-0 .13
99*/** 11/1 60 0 0 6 7 0-0.15

• fuCUnsJ >ipp7*fvv*nri?itirm (n>20 )

CcsiftiiiiM ii: B 0 D 6  

DtOjt : 2 /29/00

Print Graph 11 Print Data |

HTit4 dal& B OD5 

Time: 11:48 A M

I Refresh \  \ Zoom |

DaiA F ile : HM 4_B OD5 

\?iew:HM 4 B 0D 5

ix i l

I Bieady

FAC data

P R O P O R T IO N  E ST IM ATE  (Alt. Values) 
HM4

■g 1

nV >f
X  J1

Cooif Seuoai N P rop. Low-Ifis4i
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Appendix J. Standards Compliance for HM4_BOD5

Raw data
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Appendix J. Standards Compliance for HM4_BOD5

FAC data
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Appendix J. Standards Compliance for HM4 BOD5

Raw data
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Appendix J. Standards Compliance for HM4 BOD5

FAC data
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Appendix J. Standards Compliance for HM4 BOD5

Raw data
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Appendix J. Standards Compliance for HM4_BOD5

FAC data
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Appendix J. Standards Compliance for HM4 BOD5

Raw data
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Appendix J. Standards Compliance for HM4_BOD5

FAC data
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Appendix K.
Trend Results for Flow Data using Seasonal Kendall Test for Trend
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Appendix Kl. Trend Results on Flow Data for HM4
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Appendix Kl. Trend Results on Flow Data for HM4
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Appendix K2. Trend Results on Flow for HM6
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Appendix K3. Trend Results on Flow Data for R02
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Appendix K3. Trend Results on Flow for R02
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