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ABSTRACT 
 
 
 

DETECTING DURABLE RESISTANCE TO RICE BACTERIAL BLIGHT  
 
 

 
The productivity of rice, a staple crop worldwide, is limited by pathogens such as 

Xanthomonas oryzae pv oryzae (Xoo). Controlling yield loss to the resulting disease, bacterial 

blight, is most effective through growing genetically pathogen resistant rice varieties. However, 

widespread deployment of varieties containing single gene resistance to bacterial blight places an 

immense selection pressure on Xoo to evolve virulence. The major virulence factors employed 

by Xoo to drive infection are transcription activator like (TAL) effectors. TAL effectors are 

secreted into the host cells where they target the transcription of particular host susceptibility 

genes to favor infection. Previous TAL effector research indicates that not all TALs are created 

equal and some are crucial to the virulence of Xoo. By breeding for resistance genes targeting 

necessary TAL effectors we may find more durable resistance as selection pressure on the 

pathogen will result in loss of the TAL effector function and therefore a decrease in virulence 

and pathogen fitness. In the present study, we characterized a novel and widespread TAL 

effector through quantitative trait loci (QTL) mapping. We used the indica rice Multi-Parent 

Advanced Generation Inter-Cross (MAGIC) population to screen for resistance to the cloned 

TAL effector, TAL7b, and the Philippine race 6 Xoo strain PXO99A. Our results confirm that 

TAL7b is a virulence enhancing factor and that the MAGIC population contains six loci 

targeting resistance to TAL7b.We also identified another seven resistance QTL to the highly 

virulent Xoo strain, PXO99A.  
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Introduction 

 

Over 40 resistance (R) genes have been identified to control bacterial blight disease of 

rice (Oryza sativa), caused by Xanthomonas oryzae pv. oryzae (Xoo) (Verdier et al. 2011). These 

R genes elicit a strong, usually race-specific, resistance response that results in very short 

lesions, localized cell death, or lack of susceptibility. The problem, however, is that after 

deployment of these R genes, the pathogen populations rapidly evolve, sometimes within a few 

years, to overcome the resistance.  Finding sources of durable resistance is a continuing 

challenge for effective control of bacterial blight. 

Understanding the molecular mechanisms of plant/pathogen interactions that lead to 

resistance may provide insights into how to identify new sources of resistance, including those 

that might be more durable upon deployment.  In R gene-mediated resistance, the plant R 

proteins either directly recognize specific effectors or indirectly recognize the activity of the 

effectors, and this recognition leads to elicitation of a resistance response. This type of resistance 

is pathogen race-specific, and depends on the pathogen’s repertoire of effectors. In the 

interactions of Xoo and its host, rice, resistance results from host R gene recognition of 

Transcription Activator Like (TAL) virulence effectors (Kameswara Rao et al. 2002; Zhang and 

Wang 2013).   

Xoo TAL effectors are interesting proteins because of their unusual structure and 

functions.  They possess a nuclear localization signal, a transcriptional activation domain and a 

central repeat domain. The central repeat domain consists of many 33-35 amino acid repeats that 

differ only at the 12th and 13th position, referred to as the repeat variable diresidues (RVD) (Deng 

et al. 2014). The nuclear localization domain directs the TAL effector to nucleus where the 
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central repeat domain binds to particular sequences in the promoter of the host genome and 

activates transcription of the target gene. The promoter sequences recognized by the RVD are 

called effector binding elements (EBE). The central repeat domain wraps helically around the 

EBE with the 12th amino acid stabilizing the interaction, and the 13th repeat interacting with the 

nucleotide (Deng et al. 2012). The RVD to DNA specificity is known and target EBE sequences 

can be predicted from the RVD sequence (Boch et al. 2009; Doyle et al. 2012; Noël et al. 2013; 

Deng et al. 2014; Yang et al. 2014).    

TAL effectors target the expression of host genes to influence their regulation in favor of 

pathogen development. Although, occasional differences exist, typically TALs are virulence 

effectors that activate host genes called susceptibility genes by binding to EBE in target gene 

promoters. Examples of susceptibility genes include copper and sugar transporters, transcription 

IIA subunits, and bZIP transcription factors (Iyer and McCouch 2004; Sugio et al. 2007; Yuan et 

al. 2010; Streubel et al. 2013; Hutin et al. 2015b).  However, hosts have evolved diverse and 

clever resistance mechanisms to combat the action of TAL effectors. Several of the host defenses 

include genetic mutations in the TAL target genes or their promoters. Mutations in the EBEs of 

susceptibility genes, for example, result in resistance because the mutations block activation of 

the genes. Two well-characterized R genes to Xoo, xa13 and xa25, are recessive resistance genes 

with such EBE mutations (Chu et al. 2006; Yuan et al. 2009; Zhou et al. 2015). Other TALs 

directly activate resistance genes that regulate cell death (sometimes called death genes).  TAL 

effector AvrXa27, for example, binds to an EBE in the promoter of the resistance gene, Xa27, 

and triggers a hypersensitive response (Gu et al. 2005).  Current knowledge of how TAL 

effectors interact with their target genes to control plant responses has been recently reviewed 

(Hutin et al. 2015a).  
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Genome sequencing studies have confirmed that Xoo strains contain large numbers (up to 

28) of TAL effector genes (Mew et al. 1992; Lee et al. 2005; Salzberg et al. 2008; Scholze and 

Boch 2011; Sebra et al. 2015), but it is clear that some TAL effectors are more important for 

pathogen virulence (activation of susceptibility genes).  Inactivation of TAL effectors AvrXa7, 

PthXo1, PthXo2, PthXo3,Tal5 and TalC in Xoo causes severe reduction in pathogen virulence, 

and these are considered major virulence contributors (Yang et al. 2000; Bai et al. 2000; Yang 

and White 2004; Yu et al. 2011; Streubel et al. 2013). Other TAL contribute less or not at all to 

virulence.  The variation in TAL effector numbers, the activity of the TAL and the variety of 

mechanisms that plants have evolved to avoid or react to TAL effectors supports the importance 

of TAL effector function in plant disease resistance. 

More than 15 years ago, Vera Cruz et al. (2000) demonstrated that durability of disease 

resistance genes in the field is related to the function of pathogen TAL effectors.  They predicted 

that durability of resistance is related to the importance of effectors to pathogen fitness and 

virulence, i.e., the more necessary the effector is to the processes infection, the longer the 

resistance targeted to that effector lasts. Using both laboratory and field experiments, they 

demonstrated that loss of effectiveness of one rice bacterial blight R gene, Xa7, was correlated 

with mutations in the corresponding Xoo TAL effector gene avrXa7, and that the mutations in 

avrXa7 resulted in reduced pathogenic fitness, as measured by reduced aggressiveness on 

susceptible rice cultivars (Bai et al. 2000; Vera Cruz et al. 2000; Ponciano et al. 2004). By 

contrast, mutation of the effector gene avrXa10 did not affect pathogenic fitness, and the 

corresponding R gene, Xa10, was rapidly overcome in the field (Bai et al. 2000; Vera Cruz et al. 

2000). Thus, selection on the pathogen population imposed by the Xa7 gene, but not the Xa10 

gene, resulted in loss of avrXa7 function and reduced pathogenic fitness (Bai et al. 2000; 
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Ponciano et al. 2004), and confirmed that pathogen effectors can be predictors of R gene 

effectiveness and durability (Vera Cruz et al. 2000; Leach et al. 2001). 

Given that R gene durability is linked to the relative importance of effectors to pathogen 

virulence, one strategy to select for longer lasting resistance is to screen for sources of resistance 

that target important virulence factors.  In this study, we test that approach by searching for 

resistance to a novel TAL virulence effector TAL7b.   The tal7b gene was originally cloned from 

PXO86 (Hopkins et al. 1992).  This effector was originally called ab4.5 and was shown to be 

important for Xoo virulence through insertional mutagenesis (Bai et al. 2000). tal7b is of 

particular interest to this study because it is also present in the sequenced Xoo strains C8 and 

PXO99A (Salzberg et al. 2008; Pérez-Quintero et al. 2013), and is similar to a TAL found in Xoo 

strains MAFF311018 and KACC10331 (Ochiai et al. 2005; Lee et al. 2005), see Table 1 for 

RVD sequence similarity. Due to the highly conserved nature of this TAL effector and its 

demonstrated importance to virulence, we proposed that resistance genes targeting TAL7b would 

be durable in the field.  

 The first step to testing this hypothesis was to identify sources of resistance to TAL7b. 

Typically, resistance genes are identified by screening for a resistant rice variety or wild relative 

donor, and creating backcross or nearly isogenic lines (NIL) segregating only in phenotypic 

resistance to certain races of Xoo (Ogawa et al. 1991). While this method is advantageous for 

fine mapping (resolution of a few genes), it only considers one resistance gene in one genetic 

background, and ignores potential genetic interactions. It is also time consuming, labor intensive 

and serves only the purpose of identifying and cloning a single gene. Newer methods of 

discovering resistance genes targeting TAL effectors as well as the targets of TAL effectors 

include expression analysis during the course of Xoo infection in combination with EBE 
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prediction models and transgenic overexpression or knockout of finely mapped genes (Yang et 

al. 2006; Bogdanove et al. 2010; Hutin et al. 2015b). We chose to instead perform a mapping 

analysis to identify genomic regions significantly involved in the virulence of our novel TAL 

effector. We chose this more applied method of characterization to increase the impact our 

results; not only did we have the opportunity to use the extensive genetic resources available in 

rice to examine genes involved in TAL7b infection, but to also identify quantitative trait loci 

(QTL) conferring resistance to bacterial blight.  

In our study, we used an indica rice Multi-Parent Advanced Generation Inter Cross 

(MAGIC) population (Bandillo et al. 2013), because these novel genetic populations possess 

unique advantages to other mapping populations.  Commonly used biparental populations have 

limited genetic diversity because they are developed from only two parent lines.  The indica 

MAGIC was developed with eight parents, providing the potential of up to eight different alleles 

at each locus. Biparental populations differ phenotypically, but interesting QTL may not be 

mapped because there were not contrasting alleles at all loci. Since the indica MAGIC 

population was intercrossed three times, compared to once for a biparental or Nested Association 

Mapping populations, more recombination events may have occurred, and therefore, smaller 

linkage disequilibrium and higher mapping resolution can be achieved. The parental or founder 

lines used to create the indica MAGIC populations are widely used varieties or elite germplasm, 

resulting in a population that is amenable to cultivation and lines that could be easily refined into 

varieties for release. Finally, QTL instability in different genetic backgrounds is a major concern 

of plant breeders. Screening a relatively diverse population such as MAGIC helps to mitigate this 

risk.  
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The overall goal of this study was to identify a source of resistance that targets the Xoo 

virulence effector TAL7b.  In the process, we confirmed the virulence contribution of TAL7b to 

Xoo.  By screening a subset of the rice indica MAGIC population with a strain of Xoo harboring 

the cloned tal7b gene (PXO99A-pHM1-tal7b) or the empty cosmid vector (PXO99A-pHMI), we 

identified six loci with putative novel sources of resistance targeted at Tal7b as well as loci 

conferring resistance to the highly virulent Xoo strain PXO99A. 
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Materials and methods 

 

Bacterial strains and plasmids 

Xoo strain PXO99A (Hopkins et al. 1992) is a Philippine race 6 strain that is virulent on 

most rice varieties, except those harboring the bacterial blight resistance genes xa13, Xa27 and 

Xa21 (Vera Cruz et al. 1992). X. oryzae (Xo) strain X11-5A is deficient of TAL effectors, and is 

weakly virulent on most rice varieties (Jones et al. 1989). Xo and Xoo strains were grown on 

PSA (10 g/L peptone, 10 g/L sucrose, 16 g/L agar,  0.5g/L L-glutamic acid monosodium salt, 50 

µg/L) (Tsuchiya et al. 1982) at 28°C.  Escherichia coli, strain DH5α, was grown on Luria Agar 

with appropriate antibiotics at 37°C.  All bacteria were stored in a 30% glycerol solution at -

80°C.  

tal7b, corresponding to the BamHI fragment referred to aB4.5 (Bai et al. 2000), was 

cloned from the cosmid pXO6-33 (Hopkins et al. 1992) derived from Xoo strain PXO86. The 

central repeat region of tal7b was cloned as a SphI fragment into the single SphI site of the entry 

vector pCS466, a derivative of the Gateway entry vector pCR8-GW (Invitrogen) that contains a 

truncated form of the X. oryzae pv. oryicola BLS256 tal1c gene, from which the SphI fragment 

that comprises the repeat region had been removed (Verdier et al. 2012). tal7b was then 

transferred to the broad host-range destination vector pKEB31(Cermak et al. 2011) Addgene 

plasmid 31224, (www.addgene.org), using Gateway LR Clonase (Invitrogen), to create pKEB31-

tal7b for constitutive expression in Xanthomonas.  Finally, tal7b was cloned into the low-copy 

cosmid vector pHM1 by digesting pKEB31-tal7b with HindIII HF (New England Biolabs, 

Ipswich, MA) to extract the tal7b central repeat region flanked by the tal1c N and C terminal 

domains (Verdier et al. 2012).  The resulting plasmid, pHM1-tal7b was transformed into Xoo 
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PXO99A and Xo X11-5A by electroporation (Choi and Leach 1994) and transformants were 

selected on nutrient agar containing 50 µg/L streptomycin, 50 µg/L spectinomycin and X-

gal/IPTG. Colony PCR was performed with primers F4: CGCAATGCACTGACGGGTGC and 

R2458: CATGCAAAGACGCCTGATCCGG to further confirm the presence of the tal7b gene. 

The PCR program included an initial denaturation step at 96°C for 4 min, followed by 25 repeats 

of a 15 second 96°C denaturation, a 30 second 58°C annealing, and a 45 second 70°C elongation, 

with a final 70°C elongation step for 4 min. Finally, integrity of the tal7b gene was confirmed by 

Sanger sequencing of the fragment. 

Experimental design and growth conditions 

The indica MAGIC parental lines, see Bandillo et al. 2013 for parental line information, 

were screened prior to the population screen to determine compatibility of strains with the 

population. The parental lines were grown in single replication and inoculated with PXO99A, 

PXO99A-pHM1, X11-5A, PXO99A-pKEB31-tal7b and PXO99A-pHM1-tal7b (see Table 2 for 

strain descriptions) by leaf clip at 6 weeks of age. PXO99A-pHM1 was chosen as a control strain 

for PXO99A-pHM1-tal7b and as a proxy for PXO99A.  

A subset of 330 of the advanced inbred lines (AILs) from the indica MAGIC population 

(Bandillo et al. 2013) along with the founder lines and two control lines Nipponbare 

(susceptible) and WAB-56-125 (resistant). The lines were grown in triplicate using an 

incomplete random block (IRB) design. The IRB design was implemented to ensure that a given 

line, but separate plant, was inoculated with PXO99A-pHM1 and PXO99A-pHM1- tal7b on the 

same day.  Planting dates in 2014 were: Replication 1 May 27-29, Replication 2 June 3–5, 

Replication 3 June 24–26.  Three seeds were sown into a 1” square plastic pot filled with a 

mixture containing 1 part volume Pro Mix ® BX Mycorrhizae (Premier Tech Horticulture, 
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Québec, Canada), 1 part volume peat moss, 0.25 part volume playground sand. Seedlings were 

thinned to one plant per pot at 3 weeks after sowing. Iron chelate was applied to the surface at 

two weeks after sowing. Plants were watered at least once dail y from the bottom by filling the 

trays with water; fertilizer was added during watering twice per week starting at one month after 

sowing. Plants were treated for root aphids with Mantra ® 1G (Nufarm Americas Inc., Illinois, 

USA). Plants were grown in Colorado State University Greenhouses and replications were in 

separate areas of the greenhouse.    

Bacterial inoculations and phenotyping 

Rice plants were inoculated at 6 weeks after sowing by a leaf clip inoculation method 

(Kauffman et al. 1973). The two youngest, completely unfurled leaves of each plant were 

inoculated. Technicians were randomly assigned to day, block and strain to inoculate. 

Inoculations were conducted over three days for a given rep to correspond with blocks.  Plate 

Xoo strains were flooded with sterile water, and bacterial suspensions were adjusted to ��600 =ʹ.0 ± 0.͵ in a spectrophotometer for use as inoculum. Lesion lengths were measured in 

centimeters at 14 days after inoculation.   

Genotyping 

Single nucleotide polymorphism markers were generated through genotyping by 

sequencing conducted at Cornell University. Raw reads were trimmed and aligned to the 

Nipponbare reference genome at the International Rice Research Institute. Founder lines were 

sequenced at 10x depth and AILs at 1x depth. Genotyping resulted in 396,361 SNP sites. Data 

filtration was conducted with TASSEL version 5.0.2. All heterozygous SNP sites were changed 

to N to indicate no SNP call. SNP calls with < 0.05% minor allele frequency were also converted 

to N because these were likely to be erroneous reads and not true genetic variation. The SNP 
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sites of the MAGIC population were filtered to allow up to 20% missing data, resulting in 24,742 

SNPs. The MAGIC population SNPs were further filtered to exclude any sites not found in the 

parental haploid maps, resulting in 14,561 SNPs. The taxa (AILs) were then filtered so that all 

AILs must have calls for at least 70% of the sites, resulting in the loss of 14 lines and 316 

remaining lines. Upon intersect join of the hapmap file and the phenotype data, one more line 

was excluded for PXO99A-pHM1 analysis and two lines for the PXO99A-pHM1- tal7b analysis 

due to missing phenotype data. 

Data analysis 

SAS® software version 9.4 (SAS Institute Inc., 2013) was used for statistical analysis of 

phenotype means. The two leaves per plant were treated as technical replications and simple 

means calculated. Biological replications were averaged using Least Square means (LSmeans) 

function in PROC MIXED. Bacterial strain, line, and bacterial strain * line interaction were 

treated as fixed effects (type III). Block and replication were treated as random effects. p-values 

for difference in LSmeans between strains and AILs were adjusted using Tukey’s method for 

multiple comparisons.   

GWAS was conducted with TASSEL version 5.0.2. A kinship matrix was generated for 

the MAGIC population, excluding parents, to account for population structure. Statistics and 

effects were generated in TASSEL with both the general linear model (GLM) and mixed linear 

model function (MLM). False discovery rate from GWAS was controlled with q-value package 

(Storey 2003) in R. The default mixed linear model settings were used, where compression level 

was calculated using the optimum level and the variance component estimated using the P3D 

method. Manhattan plots of GWAS results were generated using qqman R package (Turner 

2014). 
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 Interval mapping was conducted in R Fire Safety version 3.2.2 with mpMap package 

(Huang and George 2011). The linkage map (mpcross) was generated from the pedigree 

information (with six generations of self-pollination after crossing) for each AIL, the founder 

genotypes and the AIL genotypes. Genotypes were filtered using TASSEL and the same as those 

used in the GWAS. Interval mapping was conducted independently for PXO99A-pHM1 and 

PXO99A-pHM1-tal7b LSmeans estimates of lesion lengths with the arguments of true marker 

positions, no covariates and step size of 1 cM.  One cM was set as 250,000 bp as per previous 

linkage disequilibrium calculations on the indica MAGIC population (C. Raghavan, personal 

communication). The QTL interval was calculated as the 95% confidence interval, corresponding 

to the markers that are 2 LOD less significant than the most significant marker in the QTL peak.  

Local linkage disequilibrium around significant markers was calculated with the Pearson 

coefficient of correlation squared (�2) in TASSEL v5.0.2 for pairs of SNPs. MAGIC populations 

present a challenge for linkage disequilibrium calculation because the �2 is influenced by uneven 

allele frequency between marker pairs. To control this only the �2 for pairs with similar allele 

frequencies were kept. The rate of LD decay was calculated as described Mackay et al., 2014; 

the pairwise marker distances were plotted by their respective �2 values and fitted with a locally 

weighted linear regression with the Lowess function in R. LD was estimated to end when the 

Lowess line fell below �2 = 0.2.  
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Results and discussion 

 

MAGIC parents segregate for PXO99A +/- TAL7b resistance 

The virulence of Xoo strains PXO99A, PXO99A-pHM1, X11-5A and PXO99A-

pKEB31-tal7b and PXO99A-pHM1-tal7b to the eight indica MAGIC parental varieties was 

assessed to identify if the parents might harbor resistance to the strains. X11-5A was not virulent 

to any of the MAGIC parents and was therefore not used in the MAGIC population screen. 

PXO99A-pKEB31-tal7b was also excluded from the large screen, because the high copy nature 

of pKEB31 lead to increased and artificial resistance responses from some hosts. PXO99A-

pHM1 and PXO99A-pHM1-tal7b were chosen for the MAGIC population screen based on the 

criteria that some of the parents had significantly different responses to PXO99A-pHM1, that 

some parents had significantly different responses between PXO99A-pHM1 and PXO99A-

pHM1-tal7b, and that PXO99A-pHM1-tal7b increased virulence of some of those parents.  In 

the preliminary screen of PXO99A-pHM1 and PXO99A-pHM1-tal7b on the MAGIC parents, 

IR45427-2B-2-2B-1-1 was the most susceptible parent to both strains with LL > 17.7 cm while 

PSBRc82 and IR4630-22-2-5-1-3 were the most resistant with LL < 7.6 cm.  Sanhuangzhan-2 

was more resistant to PXO99A-pHM1-tal7b than PXO99A-pHM1 (p-value = 0.069) and 

IR77298-14-1-2-10 was more susceptible (p-value = 0.083), see Table 3 for all parental 

responses to PXO99A-pHM1 +/- tal7b in the preliminary screen.    

Overall, during the MAGIC population screen both PXO99A-pHM1 and PXO99A-

pHM1-tal7b were more virulent to the parents than during the preliminary parental screen, see 

Table 3 for comparison of parental responses in preliminary and population screen. During the 

population screen, PSBRc158 was the most resistant parent to PXO99A-pHM1-tal7b (LL = 11.5 
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cm) and Samba Mahsuri-sub1 was the most resistant parent to PXO99A-pHM1 (LL = 9.8 cm). 

IR45427-2B-2-2B-1-1 was still the most susceptible to both strains, but became the only parent 

significantly more susceptible to PXO99A-pHM1 than PXO99A-pHM1-tal7b (p-value 0.098). 

Of the five parents with significantly different LL between the two strains, four parents were 

more susceptible to PXO99A-pHM1-tal7b than PXO99A-pHM1. The difference in the parental 

responses suggests that resistance to PXO99A-pHM1-tal7b and PXO99A-pHM1 is influenced 

by environment as the preliminary screen was conducted in greenhouses during spring and the 

MAGIC population screen conducted during the summer. Furthermore, in the MAGIC 

population screen, both replication and nested blocks were significantly different for the AILs as 

well, see Table 4 for ANOVA results with replication and blocks as random effects.  

MAGIC population segregates for resistance to PXO99A +/- TAL7b 

Although no strong resistance (LL < 5 cm) was evident in the founder lines during the 

preliminary screen, the evidence of mild resistance (LL < 10 cm) to the two strains along with 

the significantly increased resistance of Sanhuangzhan-2 to PXO99A-pHM1-tal7b encouraged 

us to screen a subsample of the indica MAGIC population for resistance and susceptibility to 

PXO99A-pHM1 and PXO99A-pHM1-tal7b. Screening of 330 advanced inbred lines (AILs) 

from the MAGIC population with PXO99A-pHM1 and PXO99A-pHM1-tal7b revealed 

transgressive segregation for resistance to both strains (Figure 1B and C). Taken with the normal 

distribution of phenotypic disease to each strain and the lack of strong resistance, our data 

indicate that the MAGIC population has various small and moderate effect resistance QTL. Of 

particular interest to breeding efforts, 24 of the MAGIC population AILs were more resistant to 

PXO99A-pHM1-tal7b than the most resistant parent (Sanhuangzhan-2) and 32 AILs were more 

resistant to PXO99A-pHM1 than the most resistant parent (Samba Mahsuri-sub1). These lines 
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are likely to have a favorable concentration or combination of disease resistance QTL and 

therefore could be incorporated into breeding programs.  

Variance of lesion lengths caused by PXO99A-pHM1 and PXO99A-pHM1-tal7b were 

significantly different (p-value < 0.001), indicating that potential susceptibility gene targets or 

resistance genes responsive to TAL7b were present in the indica MAGIC population, see Table 4 

for ANOVA results. Although the variance of the line by strain interaction was not significant in 

the mixed model (Table 4), the t-tests comparing LSmeans of PXO99A-pHM1 to PXO99A-

pHM1-tal7b individual AILs showed 63 lines with significantly different responses to the 

strains, nine with Tukey adjusted p-value < 0.001, and 54 with Tukey p-values of < 0.05 (data 

not shown). In the screen of the MAGIC population, data summarized in Figure 1A, the overall 

average lesion length calculated from the LSmeans estimate for PXO99A-pHM1 was 13.7 cm, 

compared to 17.1 cm for PXO99A-pHM1-tal7b. PXO99A-pHM1-tal7b caused greater disease 

on 96 AILs than it did on the founders, confirming the previous report that TAL7b is a virulence 

factor (Bai et al., 2000). PXO99A-pHM1 virulence did not increase on the population as 

compared to the founders, suggesting that IR45427-2B-2-2B-1-1, the most susceptible parent to 

PXO99A-pHM1, already contains all of the susceptibility QTL alleles to PXO99A-pHM1 

present in the MAGIC population. Given that four of the five significantly different responses of 

the founder lines to the strains were increased susceptibility to PXO99A-pHM1-tal7b over 

PXO99A-pHM1 during the population screen, we conclude that Tal7b is indeed a virulence-

enhancing factor.   

MAGIC genotypes 

After filtering, 14,561 SNP markers remained to cover the rice genome, with a marker 

density of one SNP marker per 25.6 kb (Figure 2). This estimate is based on release 7 of the 
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MSU Rice Genome, which does contain gaps and covers about 373 Mb of the estimated 430 Mb 

genome.  Estimated LD decay of this population averages around 250 kb resulting in about 10 

markers per LD block. Our markers were overall dense enough to detect most QTL associations. 

SNP markers were named descriptively of genomic location, i.e. the number following S is the 

chromosome number followed by the bp coordinate of the SNP in the MSU7 Nipponbare 

reference genome.    

Marker analyses reveals genomic regions involved in PXO99A-pHM1 +/- TAL7b resistance 

A major advantage of MAGIC populations is that both Genome Wide Association 

Studies (GWAS) and Interval Mapping (IM) can be performed because there should be little 

population structure from three intercrossing events and diverse founder lines. However, we 

tested for population structure that might confound our GWAS results by conducting Principle 

Component Analysis on the genotype data (data not shown). The Principal Component 1 for 

2.6% of all variance in the population. Although PC1 was very small, the QQplot of the General 

Linear Model (GLM) revealed an exceptionally large divergence of expected p-values to 

observed, indicating that population structure was affecting association results (Figure 3). 

Consequently, a Mixed Linear Model (MLM), incorporating population structure through a 

kinship matrix calculated from the SNP genotypes, was run, and the QQplot of this analysis 

showed that most p-values adhered to the normal distribution except for those with very small p-

values. A False Discovery Rate of 5% (q-value < 0.05) was applied to the p-values to further 

control false positive associations.   

PXO99A-pHM1 reveals resistance QTL in the MAGIC population 

Mixed linear model GWAS revealed just two QTL (on Chr 5 and 11) for PXO99A 

resistance, see Figure 3 and Table 5, while interval mapping detected six QTL (on Chr 1, 5, 7 10, 
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11 and 12), see Table 6. The Chr 5 regions from GWAS and interval mapping overlapped, but 

the Chr 11 regions were different. Interval mapping appeared to have more power to detect 

significant QTL than GWAS in this study. All IM QTL contained markers that were significant 

at the p-value 0.001 level in either the MLM or GLM GWAS, except the Chr 1 QTL marker that 

had a MLM p-value of 0.08 (see Table 6 for summary). Bandillo et al. (2013) also detected the 

Chr 1 (IM), Chr 5 (IM and GWAS), Chr 11 (GWAS) and Chr 12 (IM) QTL during the screening 

of the indica MAGIC S4 population for PXO99A resistance. The Chr 5 and 10 QTL were also 

detected for PXO99A-pHM1-tal7b interval mapping. Detection of the same QTL in different 

subpopulations of the indica MAGIC population and in different environments substantiate the 

presence of important resistance genes to PXO99A in the MAGIC population and the efficacy 

performing mapping analyses on as little as 330 AILs from the MAGIC population for disease 

resistance.  

The Chr 5 QTL was most significantly associated region to PXO99A-pHM1 resistance in 

both GWAS (p-value < 0.0001) and interval mapping (p-value < 0.0001). GWAS detected a 

larger region of significant markers, spanning 1.2 Mb from the beginning of Chr 5 to 

S5_1224178, than the QTL detected in IM which spanned 0.194 Mb between markers 

S5_347328 - S5_542193. LD decays in approximately 0.37 Mb around the Chr 5 markers, 

indicating that more than one QTL may exist in the 1.2 Mb region. The markers of the IM QTL 

directly flank the xa5 locus, although xa5 is not considered an effective resistance gene to 

PXO99A-pHM1. Finer mapping of this region will help resolve if xa5 or yet unknown resistance 

gene is the source of PXO99A.  

Chromosome 11 contained two QTL, one detected in GWAS at S11_28483987 and 

another at the IM QTL between S11_17230702 - S11_17352369. The GWAS resistance allele 
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was present in all parents except Samba Mahsuri-sub1 whereas Sanhuangzhan-2 contributed the 

greatest founder resistance effect in the IM analysis. The distance between the two QTL as well 

as the different parental donars strongly support that these QTL are independent of each other. 

The presence of two QTL on Chr 11 is not surprising given the high number of resistance genes 

on this chromosome (Ronald et al. 1992; Sun et al. 2004; Khush et al. 2006; Zheng et al. 2009; 

Hur et al. 2013; Wang et al. 2014a; Zhang et al. 2014; Wang et al. 2014b; Horgan and Henderson 

2015; Kim et al. 2015). The Chr 11 GWAS marker is near a cluster of Xoo resistance genes, 

containing Xa4, Xa3/Xa26, Xa22(t) and Xa40(t), summarized in Table 7 (Niño-Liu et al. 2006; 

Xiang et al. 2006; Kim et al. 2015). The LD decay for Chr 11 in this population is approximately 

1.4 Mb and several interesting candidate genes are near the Chr 11 IM QTL, see Table 8 for a 

summary. LOC_Os11g31540 is within 1 Mb of the Chr 11 IM QTL and shares 74% identity 

with the sorghum lead (Pb) transport gene, SbLRR2 (Zhu et al. 2013). Overexpression of SbLRR2 

prevented lead accumulation in the plant and resulted in the activation of a lead detoxification 

pathway in arabidopsis. The lead detoxification pathway may be a target of TAL effectors given 

that a known TAL target, Xa13, is implicated in promoting pathogen growth by removing copper 

from xylem vessels (Yuan et al. 2010) and that LOC_Os11g31540 is differentially regulated 

upon PXO99A expression (Cernadas et al. 2014). Also within 850 kb of Chr 11 IM QTL is 

OsSWEET14, another nodulin MtN3 family protein and the target of TAL effectors AvrXa7 and 

PthXo3. While PXO99A does not contain either avrXa7 or pthXo3, nor does it induce the 

expression of OsSWEET14 (Antony et al. 2010; Streubel et al. 2013), the resistance allele of 

OsSWEET14, xa41 (Hutin et al. 2015b), may confer resistance against PXO99A by an 

uncharacterized mechanism. About 2 Mb from the Chr 11 IM QTL is LOC_Os11g26790, a 
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dehydrin gene and the putative target of many TAL effectors, including some produced by 

PXO99A (Pérez-Quintero et al. 2013; Wilkins et al. 2015). 

Both interesting and perplexing, are the candidate genes near the Chr 1 QTL revealed in 

the screen with PXO99A-pHM1. Within the marker interval of the Chr 1 QTL is OsSBP, a 

selenium binding protein that increases resistance to Xoo in overexpression rice lines (Sawada et 

al. 2004). The Chr 1 QTL is also 2 Mb from the target gene of PXO99A TAL effector PthXo7, 

TF11Aγ-1. Of particular interest for the QTL is LOC_Os01g68740, a keratin, type I cytoskeletal 

9 gene that is the putative target of the PXO99A TAL (TAL7a) that shares an identical RVD 

sequence with TAL7b (Pérez-Quintero et al. 2013), see Table 1. This gene contains the top 

predicted EBE for TAL7b RVD and is upregulated in susceptible plants upon inoculation with 

PXO99A (Moscou and Bogdanove 2009). Peculiarly, this QTL does not appear in association 

with PXO99A-pHM1-tal7b.  

The Chr 7 and 12 QTL were detected in previous pathogen resistance mapping studies in 

the indica MAGIC population (Bandillo et al. 2013) and the Chr 10 QTL was also detected in 

PXO99A-pHM1-tal7b resistance. No known resistance or susceptibility genes are near the Chr 

12 QTL although the IM QTL contains 11 genes with disease resistance classifications, three 

NB-ARCs and three NBS-LRRs. The Chr 10 QTL is 700 kb from two genes that were not 

induced by PXO99A infection, but were implicated in host redox control by Xoc strain BLS256 

(Cernadas et al. 2014). Although not induced by PXO99A, these genes may still play a role in 

PXO99A resistance and infection through other regulation mechanisms besides transcriptional 

activation. Within the Chr 7 QTL is LOC_Os07g47790, the putative target of Xoc TAL effectors; 

however, this gene did not appear to be involved in PXO99A resistance (Moscou and Bogdanove 

2009; Pérez-Quintero et al. 2013).The stronger candidate gene is SPIN6, a player in rice innate 
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immunity (Liu et al. 2015) because the Chr 7 QTL was associated with rice blast resistance in the 

previous MAGIC study (Bandillo et al. 2013). Future work would shed light on which, if any, of 

the genes in these three genomic regions confer resistance to a broad spectrum of rice pathogens. 

It is possible that the already identified candidate genes may control resistance to PXO99A in 

addition to rice blast and BLS256, or there may be several distinct resistance genes clustered 

near these QTL.  

PXO99A-pHM1-tal7b reveals resistance QTL distinct from PXO99A-pHM1 

GWAS and interval mapping detected a total seven QTL for PXO99A-pHM1-tal7b 

resistance in the MAGIC population. The Chr 5 and 10 QTL overlapped with the PXO99A-

pHM1 QTL, but all others were unique to PXO99A-pHM1-tal7b as indicated by distance and the 

parental resistance allele contributor (Tables 9). Interval mapping identified six QTL on 

chromosomes 3, 5, 8, 10, 11 and 12 (Table 10). Similar to PXO99A-pHM1, fewer QTL were 

detected in the GWAS analysis than interval mapping. The MLM method of GWAS for 

PXO99A-pHM1-tabl7b detected significant markers (q-value < 0.05) in the Chr 5 and 8 interval 

mapping QTL, but a unique Chr 12 region. Also similar to PXO99A-pHM1 mapping, markers 

within the IM QTL of the remaining QTL were almost significant in either the MLM or GLM 

GWAS methods, see Table 10 for corroboration of IM with GWAS.  

Two QTL for PXO99A-pHM1-tal7b resistance were detected on Chr 12. Interval 

mapping detected a QTL spanning the markers S12_19452481- S12_19836912 whereas the 

GWAS detected significant markers 3 Mb away at S12_23092043 and S12_23120151. Given 

that different parents contributed the resistance alleles along with the distance, we conclude that 

two QTL exist on Chr 12. The IM Chr 12 QTL is 2 Mb from Os12N3/OsSWEET13, a nodulin 

MtN3 family protein gene that is the susceptibility target of Xoo TAL effector PthXo2 (Liu et al. 
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2011; Cernadas et al. 2014; Zhou et al. 2015). xa25 is the recessive resistance allele of 

OsSWEET13 conferred by a SNP mutation in the promoter  (Liu et al. 2011). Within 456 kb of 

the GWAS marker S12_23092043 is a calmodulin binding protein that was shown to be 

upregulated during PXO99A infection (Cernadas et al. 2014) and within 348 kb of 

S12_23120151 is SPL11 (Tables 11 and 12 summarize candidate genes near the GWAS and IM 

QTL, respectively). Strikingly, SPL11 modulates rice resistance to Xoo and rice blast through 

ubiquitination of the immunity negative regulator SPIN6 (Liu et al. 2015) . SPIN6 is a PXO99A-

pHM1 Chr 7 candidate gene identified in this study. The markers near the Chr 7 QTL were 

detected for rice blast resistance in previous screening of the MAGIC population with rice blast 

(Bandillo et al. 2013), supporting the importance of this QTL in plant immunity signaling and 

suggesting that TAL7b may target this signaling pathway to suppress host immune response. 

The Chr 3 and 10 QTL contained GWAS markers with p-value < 0.005 and 0.07, 

respectively. The Chr 3 QTL contained LOC_Os03g07540, a bHLH family protein that is the 

putative target TAL3c of X. oryzae pv. oryzicola (Xoc) strain BLS256 (Cernadas et al. 2014), but 

does contain a highly ranked EBE for TAL7b. bHLH proteins are a superfamily of transcription 

factors implicated in susceptibility and resistance (Kim et al. 2012; Muñoz Bodnar et al. 2013). 

For example, upa20, a bHLH gene targeted by TAL effector AvrxBs3 of X. campestris pv. 

vesicatoria, regulates host cell size genes (Kay et al. 2007). Though TAL7b likely does not target 

this locus, a non-genetic interaction may be important for TAL7b resistance.  

The Chr 8 QTL contains the markers detected in GWAS and was also donated by the 

same parent as designated in GWAS, Sanhuangzhan-2. Within 1.4 Mb of the Chr 8 QTL is 

OsSerk1 (LOC_Os08g07760) a brassinosteriod LRR-RLK. This gene is upregulated upon Xoo 

infection, is coexpressed with the broad spectrum HR gene Xa39 (Zhang et al. 2015), and, 
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interestingly, contains EBEs for several TAL effectors including TAL7b. The role of OsSerk1 in 

plant immunity is unclear, but this gene appears to be important in Xoo infection and future 

expression and silencing studies will shed light on OsSerk1’s role in TAL mediated resistance.  

The Chr 11 PXO99A-pHM1-tal7b QTL is 1.7 Mb upstream from the PXO99A QTL. The 

PXO99A-pHM1-tal7b Chr11 QTL contains LOC_Os11g26790, a dehydrin gene putatively 

targeted by multiple TAL effectors in Xoo and Xoc (Pérez-Quintero et al. 2013). This gene is 

targeted by TAL6a and Avrxa23 of PXO99A and two TAL effectors from MAFF311018 (Pérez-

Quintero et al. 2013). The TAL effectors have unique EBE elements within this gene and the 

gene was upregulated between 3 and 5 fold upon inoculation of the given strains (Pérez-Quintero 

et al. 2013). This gene is also a candidate target of TALs in nine Xoc strains that are similar to 

TAL2g of Xoc strain BLS256 (Wilkins et al. 2015). Although this gene is undoubtedly crucial to 

Xoo and Xoc infection, it is unclear whether this QTL is truly unique to TAL7b given that two 

other PXO99A TALs are predicted to target this gene. TAL Effector-Nucleotide Targeter 2.0 

does not rank LOC_Os11g26790 highly as a predicted target of TAL7b, i.e., it is ranked as # 

95,795 (Doyle et al. 2012). While LOC_Os11g26790 may not be the direct target of TAL7b, this 

function of this gene or the ability of TALs to change its regulation may be dependent on TAL7b 

function. Another putative target of TAL7b is the keratin gene within the Chr 1 QTL detected for 

PXO99A-pHM1 resistance. Both keratins and dehydrins play roles in drought stress tolerance in 

plants (Yang et al. 2012; Hanin et al. 2011), but their roles in plant-pathogen interactions remain 

uncertain.  

Screening the MAGIC population for TAL7b resistance genes yielded five unique QTL. 

Although the regions were large, interesting genes fell within or near the marker interval. Some 

of the candidate genes were susceptibility genes, indicating that recessive resistance may exist 
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against TAL7b. Fine mapping of these QTL along with expression studies will help clarify 

which genes near the QTL are involved in TAL7b resistance and resolve the role TAL7b plays in 

manipulating the host genome.   

Interacting QTL 

To test for interactions among the QTL, a linear model of the most signficant markers 

was run in SAS. The markers were set as interaction terms and each interaction term was within 

an independent model. None of the interaction terms were signficant at the 0.05 level. However, 

interactions are difficult to detect even in scenarios with relatively high power (Tian et al. 2011). 

These results did not identify interacting QTL, though true interactions may still exist.  

Founder line PSBRc82, known to carry the resistance genes Xa4 on Chr 11 and xa5 on 

Chr 5, donated the Chr 5 resistant alleles and was one of seven parents that carried the resistant 

Chr 11 allele. All 32 AILs with PXO99A lesion lengths < 10 cm had the resistant Chr 11 marker. 

All 11 AILs with lesion lengths < 8.1 cm and eight of 21 AILs with lesion lengths between 8.2 

and 10 cm had the Chr 5 resistant markers. The combination of the two QTL resulted in greater 

resistance, as the most resistant lines (LL < 8 cm) had both the Chr 5 and Chr 11 markers.  This 

is consistent with previous work that demonstrated pyramiding of Xa4 and xa5 results in stronger 

resistance (Suh et al. 2013). 
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Conclusions 

 

The indica MAGIC population was more susceptible to PXO99A when carrying the 

plasmid borne tal7b gene, confirming our hypothesis that TAL7b is a virulence enhancing factor. 

Additionally, unique and significantly different phenotypes and QTL were observed between 

PXO99A-pHM1 and PXO99A-pHM1-tal7b, indicating that novel TAL effectors can be 

characterized in strains containing TALs with identical RVD sequences. Seven and six QTL 

were detected in the MAGIC population for PXO99A-pHM1 and PXO99A-pHM1-tal7b 

resistance, respectively. Almost all of the QTL contained or were near a gene involved in Xoo or 

Xoc disease susceptibility or near markers previously associated with disease resistance, 

corroborating the legitimacy of our QTL. By using a MAGIC population for QTL study we 

observed the background dependent nature of many of the QTL, and future studies with these 

lines may reveal the molecular basis of how host genetic backgrounds can influence function of 

resistance alleles.  

The identification of regions harboring xa5 and Xa4 as being most significant QTL to 

PXO99A-pHM1 resistance was surprising, as neither of these R genes is considered an effective 

resistance gene to PXO99A. However, although PXO99A virulence decreases slightly in the 

presence of xa5, PXO99A is one of the few Xoo strains to cause disease on xa5 rice lines (Mew 

1987). Likely, PXO99A’s virulence on xa5 is due to the activity its TAL effector PthXo7. 

PthXo7 increases the transcription of a TFIIAγ homolog on Chr 1 and restores virulence to xa5 

of other strains when transgenically introduced (Sugio et al. 2007). Interestingly, PXO99A TAL 

Avrxa27 recruits TFIIAγ-5 (Xa5) to activate Xa27 which leads to a strong HR response and lines 
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homozygous for xa5 fail to activate Xa27 (Gu et al. 2009). Therefore, the fitness cost to 

PXO99A by xa5 appears to be necessary to avoid Xa27.  

Screening the MAGIC population with Xoo strains revealed new sources of resistance to 

PXO99A and helped to characterize the function of TAL7b. This method is useful for initial 

characterization of novel TAL effectors and locating existing resistance in widely used cultivars. 

Although no major effect QTL were identified for TAL7b or PXO99A, we now have genomic 

regions to explore as potential sources of quantitative resistance to this common virulence TAL 

effector. Future studies may scan more diverse germplasm such as a collection of landraces to 

find existing strong resistance alleles or alternatively, expression studies may identify the precise 

susceptibility gene(s) involved in TAL7b virulence that would enable EBE editing to create a 

resistant allele of this TAL’s target. Rice provides a model to which downstream recognition of 

infection through changes in the susceptibility targets may offer another avenue of resistance 

engineering. Many of the QTL identified in this study are near known TAL targets, indicating 

that MAGIC interval mapping is a useful tool in identifying genomic regions containing TAL 

targets for susceptibility in addition to resistance genes. Furthermore, this method is contingent 

on naturally occurring contrasting alleles so any regions identified must contain a resistance 

allele. Susceptibility alleles turned to resistance alleles offer theoretically more durable resistance 

compared to ligand receptor mediated resistance. 
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Figures 

 

Table 1: TAL7b is a common virulence effector in sequenced Xoo strains. The RVDs of PXO86 TAL7b, PXO99A TAL7a and 
TAL8a, and a C8 TAL are identical. KACC10331 and MAFF311018 also contain TALs with similar RVDs to TAL7b.   

Strain TAL Repeat Variable Diresidue (RVD) Sequence  
 (TAL accession number) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

PXO86 TAL7b NI HG NI NI NI NN HD NS NN NS NN HD NN NI HD NN NS NG   

PXO99A 
TAL7a/TAL8a 
(ACD59223.1) 

NI HG NI NI NI NN HD NS NN NS NN HD NN NI HD NN NS NG   

C8 (ACD11364.1) NI HG NI NI NI NN HD NS NN NS NN HD NN NI HD NN NS NG   

KACC10331 (AAW75382.1) NI HG NI NI NI NN HD NS NN NS NN HD NN NI HD NN NI NG HD N*  

KACC10331 (YP_200767.1) NI HG NI NI NI NN HD NS NN NS NN HD NN NI HD NN NI NG HD NG 

MAFF311018 (YP_451027.1) NI HG NI NI NI NN HD NS NN NS NN HD NN NI HD NN NI NG HD NG 
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Table 2: Plasmids and strains in this study.  

Strain Species  Relevant Characteristics  

PXO86 Xanthomonas oryzae pv 
oryzae 

Philippine Race 2, donor of TAL7b 

PXO99A Xanthomonas oryzae pv 
oryzae 

Philippine Race 6, carrier of TAL7a and 
TAL8a 

PXO99A-pHM1 Xanthomonas oryzae pv 
oryzae 

PXO99A control strain with empty vector 
pHM1 

PXO99A-pHM1-
TAL7b 

Xanthomonas oryzae pv 
oryzae 

PXO99A carrying pHM1 borne TAL7b 

PXO99A-pKEB31-
TAL7b 

Xanthomonas oryzae pv 
oryzae 

PXO99A carrying pKEB31 borne TAL7b 

X11-5A Xanthomonas oryzae  Weakly virulent United States strain, no TAL 
effectors 

C8 Xanthomonas oryzae pv 
oryzae 

Chinese strain 

KACC10331 Xanthomonas oryzae pv 
oryzae 

Korean sequenced strain 

MAFF311018 Xanthomonas oryzae pv 
oryzae 

Japanese sequenced strain 

BLS256 Xanthomonas oryzae pv 
oryzicola 

Philippine sequenced strain 

   

Plasmids   

pHM1  Cosmid vector, Broad-host range, derivative of 
pRI40, low copy 

pKEB31  Addgene plasmid 31224, high copy  
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Table 3: MAGIC parents have differential levels of resistance to PXO99A-pHM1 and PXO99A-
pHM1-tal7b. Reported LL are simple average lesion lengths in cm. * p-value <0.0001. 1 

PSBRc158 was not inoculated with PXO99A due to poor germination.  

 Preliminary Screen on 
MAGIC parents 

Screen with MAGIC 
population 

 PXO99A 
LL (cm)  

PXO99A-
pHM1-
tal7b LL 
(cm) 

p-
value 

PXO99A 
LL (cm)  

PXO99A-
pHM1-
tal7b LL 
(cm) 

p-value 

Fedearroz 50 13.6 13.2 0.682 12.0 18.4 0.002 
IR45427-2B-2-
2B-1-1 17.7 17.8 0.959 22.8 19.4 0.098 
IR4630-22-2-5- 7.1 7.6 0.720 11.3 19.2 0.000* 
IR77298-14-1-2-
10 11.6 13.5 0.083 11.8 16.2 0.013 
PSBRc82 6.3 7.6 0.242 10.8 13.2 0.195 
PSBRc158 15.8 15.5 0.837 ND1 11.5 ND 
Sanhuangzhan-2 14.0 11.7 0.069 11.3 13.8 0.022  
Samba Mahsuri-
sub1 13.4 12.6 0.515 9.8 13.5 0.291 
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Table 4: Mixed model ANOVA for the MAGIC population response to PXO99A-pHM1 +/- 
tal7b. p-values of significant differences in variance show that the MAGIC population (including 
parents and AILs) are significantly different in resistance response. Additionally, the two strains, 
PXO99A and PXO99A-pHM1-tal7b are significantly different in virulence on the MAGIC lines. 
Finally, of importance to environmental effect, the 3 replications as well as the blocks with the 
complete random block design are significantly different.  

Type 3 Analysis of Variance 
Source DF Sum 

of 
Square

s 

Mean 
Square 

Expected 
Mean Square 

Error Term Erro
r DF 

F 
Value 

Pr > 
F 

MAGIC 
AILs 

338 18693 55.31 Var(Residual) 
+ Q(Line, 
Line*Strain) 

MS(Residual) 125
1 

4.20 <.000
1 

Strain 1 5277.3
7 

5277.3
7 

Var(Residual) 
+ Q(Strain, 
Line*Strain) 

MS(Residual) 125
1 

400.4
0 

<.000
1 

AILs * 
Strain 

336 3995.4
5 

11.89 Var(Residual) 
+ 
Q(Line*Strain
) 

MS(Residual) 125
1 

0.90 0.876
0 

Rep 2 8566.1
4 

4283.0
7 

Var(Residual) 
+ 206.62 
Var(Block(Re
p)) + 619.86 
Var(Rep) 

1.48 
MS(Block(Re
p)) - 0.48 
MS(Residual) 

5.73 15.94 0.004
6 

Block(Re
p) 

6 1117.1
8 

186.12 Var(Residual) 
+ 139.89 
Var(Block(Re
p)) 

MS(Residual) 125
1 

14.13 <.000
1 

Residual 125
1 

16488 13.18 Var(Residual) . . . . 



 

29 
    

A    Comparison of MAGIC population response to Xoo PXO99A-pHM1 +/- tabl7b 

Strain 

Average 
Lesion 
Length 

(cm) 

Minimum and 
maximum 

(cm) 

# of resistant 
AILs (LL < 

5.0 cm) 

# of 
moderately 

resistant AILs 
(LL < 10.0 cm) 

# of 
susceptible 
AILs (LL > 

20.0 cm) 
PXO99A-

pHM1 
13.8 4.4 - 22.9 1 34 4 

PXO99A-
pHM1-tal7b 

17.1 3.2 – 26 1 10 81 
 

 

B     MAGIC population and parental response to Xoo PXO99A-pHM1 

 

C      MAGIC population and parental response to Xoo PXO99A-pHM1-tal7b 

 

Figure 1: TAL7b is a virulence effector. (A) Disease, measured in lesion lengths (cm), increased 
with the addition tal7b to Xoo PXO99A. Average lesion length was calculated with LSMeans. 
(B, C) Distribution of lesion lengths in the MAGIC population with parental lesion lengths 
indicated with downward arrows. Connecting letters report of significantly different parental 
responses to the right of the downward arrows in legend
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A  
 

# Markers 
Chr size 

(Mb) 
Marker/Mb 

Average 
distance 
between 
markers 

(bp) 
Chr 1 1878 43.3 43.4 23,056 
Chr 2 1976 35.9 55.0 18,168 
Chr 3 1079 36.4 29.6 33,735 
Chr 4 1585 35.5 44.7 22,397 
Chr 5 706 30.0 23.5 42,492 
Chr 6 1035 31.2 33.2 30,144 
Chr 7 1094 29.7 36.8 27,148 
Chr 8 1178 28.4 41.5 24,109 
Chr 9 728 23.0 31.7 35,593 

Chr 10 787 23.2 33.9 29,479 
Chr 11 988 29.0 34.1 29,352 
Chr 12 1527 27.5 55.5 18,009 
Overall 14,561 373.1 39.0 25,623 

 

B 
 
 
 

 

Figure 2: SNP Marker Density. A total of 14,561 SNP markers were retained after filtering. This SNP density averaged to 
approximately 1 SNP per 25.6 kb across the rice genome. With the overall estimated linkage disequilibrium for the MAGIC 
population at 250 kb (Bandillo et al. 2013), we expect nearly 10 SNPs per linkage block. Chromosome size estimates are from MSU 
Rice Genome Release 7. Gaps in reference genome account for missing genome size.  
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A   PXO99A-pHM1 (MLM) 

  

B   PXO99A-pHM1 (GLM) 

 
 

C   PXO99A-pHM1-tal7b (MLM)  

 
 

D   PXO99A-pHM1-tal7b (GLM) 

 
 

Figure 3: GWAS results of SNPs associated with Xoo strains PXO99A-pHM1 and PXO99A-
pHM1-tal7b disease. Horizontal line represents significance cutoff of q-value < 0.05. Manhattan 
plots (right) and corresponding QQ-plots (left) for Mixed Linear Models (kinship matrix) and 
General Linear Models (no population structure control). QQ-plots, representing fitness of the 
models, indicate that GLMs overestimate significant associations. 
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Table 5: GWAS markers significantly associated with Xoo PXO99A-pHM1 resistance. The R2 
estimates the percent of variance in PXO99A-pHM1 disease due to the given marker. Effect 
Estimate compares average lesion lengths of AILs with the contrasting SNP allele; negative 
effects correspond to a decrease in lesion length and therefore resistance. Effect Allele/Null gives 
the SNP allele associated with the effect estimate. AILs with Effect allele/Null gives the number 
or AILs for each allele. The most significant SNP in a region is in bold.  

Chr Marker 
(Chr_Pos) 

p-value q-value R2 Effect 
Estimate 

(cm) 

Effect 
Allele/Null 

AILs with 
Effect 

allele/Null 
5 S5_37878 6.40 x 10-5 3.59 x 10-2 5.84 -1.75060 A/G 211/70 
 S5_69302 5.20 x 10-5 3.29 x 10-2 5.55 -1.75400 C/T 228/70 
 S5_103237 2.42 x 10-7 3.92 x 10-4 9.41 -2.37150 C/T 59/238 
 S5_179519 5.79 x 10-5 3.51 x 10-2 5.57 1.99713 A/C 46/255 
 S5_196176 6.36 x 10-5 3.59 x 10-2 5.53 1.96248 A/G 47/255 
 S5_219803 1.04 x 10-4 5.24 x 10-2 5.21 1.91462 G/T 47/253 
 S5_227187 8.76 x 10-10 7.78 x 10-6 13.12 -3.63670 A/C 33/270 
 S5_269480 2.01 x 10-4 9.46 x 10-2 5.32 -1.94530 A/G 222/41 
 S5_285834 2.14 x 10-9 7.78 x 10-6 12.47 -3.68220 A/G 30/277 
 S5_312457 1.40 x 10-4 6.81 x 10-2 5.01 -1.85890 A/C 252/48 
 S5_340482 6.82 x 10-5 3.68 x 10-2 5.76 -1.60470 C/T 80/194 
 S5_347328 6.82 x 10-5 6.82 x 10-5 8.28 2.25709 A/G 239/60 
 S5_353165 1.83 x 10-9 7.78 x 10-6 12.48 3.46202 C/T 269/35 
 S5_365871 9.48 x 10-7 1.30 x 10-3 9.28 -2.35270 A/G 52/218 
 S5_440644 2.78 x 10-8 6.74 x 10-5 10.88 -3.32040 A/G 33/260 
 S5_453169 1.83 x 10-9 7.78 x 10-6 12.41 -3.64740 A/G 32/276 
 S5_574926 1.23 x 10-8 3.59 x 10-5 11.36 3.30109 C/T 264/35 
 S5_704336 2.11 x 10-5 1.71 x 10-2 6.33 1.93800 A/G 230/67 
 S5_759048 1.45 x 10-5 1.29 x 10-2 6.44 -1.97890 C/T 65/227 
 S5_761061 3.61 x 10-5 2.63 x 10-2 5.90 1.64879 C/T 191/102 
 S5_761063 4.03 x 10-5 2.67 x 10-2 5.82 -1.63510 C/T 103/191 
 S5_761076 4.03 x 10-5 2.67 x 10-2 5.82 1.63509 C/T 191/103 
 S5_849335 5.42 x 10-6 5.26 x 10-3 7.27 2.95058 C/T 280/25 
 S5_850180 1.52 x 10-7 3.16 x 10-4 9.47 -3.14340 C/G 32/272 
 S5_904372 2.43 x 10-5 1.86 x 10-2 6.26 2.01421 G/T 242/50 
 S5_934093 1.74 x 10-7 3.16 x 10-4 11.55 -3.43520 A/T 26/228 
 S5_1200961 2.42 x 10-7 3.92 x 10-4 7.44 -2.72030 A/G 34/274 
 S5_1200964 2.49 x 10-6 2.59 x 10-3 7.44 -2.72030 C/G 34/274 
 S5_1200971 2.49 x 10-6 2.59 x 10-3 7.44 2.72033 G/T 274/34 
 S5_1224178 2.49 x 10-6 2.59 x 10-3 6.42 -2.46180 A/G 33/275 
        

11 S11_28483987 1.02 x 10-4 5.42 x 10-2 5.61 -3.04360 C/T 267/16 
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Table 6: QTL mapping intervals (95% Confidence Intervals) significantly associated with Xoo PXO99A-pHM1 resistance. Parental 
sources of resistance report the parent with the largest resistance effect for the given QTL. Corroboration compares the given QTL to 
the GWAS analysis or previous mapping studies.  

Chr QTL position  Markers flanking the QTL 
(size) 

p-value  Parental source of 
resistance   

Corroboration  

1  S1_38949958  S1_37958733 - S1_40897952 
(2.9 Mb) 

5.97 e-
04 

Samba Mahsuri-sub1, 
PSBRc82 and 
Sanhuangzhan-2 

Almost significant in GWAS MLM (p-
value 0.08) 

5 S5_361080  S5_347328 - S5_542193 (194 
kb) 

1.83 e-
10 

PSBRc82 Highly significant in GWAS MLM (p-
value 8.76 x 10-10) 

7 S7_28335793  S7_28223058 - S7_28741818 
(519 kb) 

7.30 e-
04 

Samba Mahsuri-sub1 
and PSBRc82 

Almost significant in GWAS MLM (p-
value 0.07) and significant in GWAS 
GLM (p-value <0.001). Blast resistance 
association at 27Mb (Bandillo et al. 2013) 

10 S10_19832491  S10_19621750 - 
S10_19916740 (295 kb)  

1.41 e-
05 

Fedearroz 50  Almost significant in GWAS MLM (p-
value 0.07) and significant in GWAS 
GLM (p-value <0.0001).  

11 S11_17316445 

 

 S11_17230702 -  
S11_17352369 (122 kb) 

2.06 e-
05 

Sanhuangzhan-2 Significant at the 0.005 p-value level for 
GWAS MLM.  

12 S12_6733540  S12_5033870 - S12_6913707 
(1.9 Mb) 

8.44 e-
05 

IR.4630.22.2.5.1.3 Almost significant in GWAS MLM (p-
value 0.05) and significant in GWAS 
GLM (p-value <0.0001). Bandillo et al. 
2013 detected 29 markers on Chr 12 
between 5-14 Mb. 
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Table 7: Candidate resistance genes near GWAS marker for Xoo PXO99A-pHM1 resistance.  

Marker Candidate genes  
Gene name (locus identity, if 
applicable),  

Distance from Marker Citation 

S11_28483987 Xa40(t) (LOC_Os11g46900) 303 kb Kim et al. 2015 

 Xa3/Xa26/Xa6/Xa9/Xaw 
(LOC_Os11g47210) 

81 kb Niño-Liu et al. 2006 

 Xa4 and Xa22(t) are linked to Xa3   Niño-Liu et al. 2006; Kim et 
al. 2015 

 

Table 8: Candidate genes within or near interval mapping QTL for Xoo PXO99A-pHM1 resistance.  

QTL Candidate genes  
Locus identity (gene name, if 
applicable),  
annotation  

Distance 
from 
QTL 

Importance Citation 

S1_38949958 LOC_Os01g68740, 
keratin, type I cytoskeletal 9, 
putative, expressed 

Within  Putative target of PXO99A TAL7a (homolog 
of TAL7b) 

Moscou & 
Bogdanove 2009 

 LOC_Os01g65880 (OsSWEET1a) 
nodulin MtN3 family protein, 
putative, expressed 

Within  Similar to known susceptibility genes, but not 
shown to be a target 

Streubel et al. 2013 

 LOC_Os01g68770 (OsSBP) 
selenium-binding protein, putative, 
expressed 

Within  Rice OsSBP overexpression lines show 
increased resistance to Xoo 

Sawada et al. 2004 

S5_361080 Xa5/xa5 Within  Known Xoo resistance gene Iyer & McCouch 
2004 
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S7_28335793 LOC_Os07g47790 
AP2 domain containing protein 

Within  Putative target of TAL3c and TAL6 of Xoc 
strain BLS256 

Moscou & 
Bogdanove 2009; 
Pérez-Quintero et 
al. 2013 

 LOC_Os07g46450 (SPIN6) 
pleckstrin homology domain-
containing protein, 
putative, expressed 

1 Mb  Works with SPL11 to negatively regulate 
innate immunity in rice 

Liu et al. 2015 

S10_19832491 LOC_Os10g38590 and 
LOC_Os10g38640 
glutathione S-transferase, N-
terminal domain 
containing protein, expressed 

700 kb  Implicated in redox control by BLS256, but 
was not shown to be induced by PXO99A 

Cernadas et al. 
2014 

S11_17316445 
 

LOC_Os11g31190 
(OsSWEET14/xa41)  
nodulin MtN3 family protein, 
putative, expressed 

850 kb   Target of TAL effectors AvrXa7 of PXO86 and 
TalC of BAI3 

Römer et al. 2010; 
Yu et al. 2011 

 LOC_Os11g31540 
BRASSINOSTEROID 
INSENSITIVE 1-associated 
receptor kinase 1 precursor, 
putative, expressed 

1 Mb  Differentially expressed in response to 
PXO99A inoculation  
Homologous to SbLRR2, a lead transporter in 
sorghum  

Zhu et al. 2013; 
Cernadas et al. 
2014 
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Table 9: GWAS markers significantly associated with Xoo PXO99A-pHM1-tal7b resistance. 

The R2 estimates the percent of variance in Xoo PXO99A-pHM1-tal7b disease due to the given 
marker. Effect Estimate compares average lesion lengths of AILs with the contrasting SNP 
allele; negative effects correspond to a decrease in lesion length and therefore resistance. Effect 
Allele/Null gives the SNP allele associated with the effect estimate. AILs with Effect allele/Null 
gives the number or AILs for each allele. The most significant SNP in a region is in bold. 

Chr Marker  
(Chr_Pos) 

p-value q-value R2 Effect 
Estimate 
(cm)  

Effect 
Allele/Null 

AILs with 
Effect 
allele/Null 

 S5_103237 5.86 x 10-5 4.74 x 10-3 5.76 -2.2181 C/T 59/236 

 S5_227187 3.89 x 10-9 3.60 x 10-5 12.26 -4.3477 A/C 33/268 

 S5_285834 4.37 x 10-8 1.06 x 10-4 10.51 -4.1760 A/G 30/275 

 S5_353165 7.42 x 10-9 3.60 x 10-5 11.65 4.1393 C/T 267/35 

 S5_440644 3.22 x 10-8 9.39 x 10-5 11.29 -4.1221 A/G 33/258 

 S5_453169 5.17 x 10-9 3.60 x 10-5 11.91 -4.4172 A/G 32/274 

 S5_574926 2.46 x 10-8 8.97 x 10-5 11.18 4.0330 C/T 262/35 

 S5_849335 4.55 x 10-6 7.36 x 10-3 7.63 3.6595 C/T 278/25 

 S5_934093 1.24 x 10-6 2.26 x 10-3 9.51 -3.9703 A/T 26/226 

 S5_1200961 1.72 x 10-5 2.08 x 10-2 6.23 -3.0855 A/G 34/272 

 S5_1200964 1.72 x 10-5 2.08 x 10-2  6.23 -3.0855 C/G 34/272 

 S5_1200971 1.72 x 10-5 2.08 x 10-2 6.23 3.0855 G/T 272/34 

        

 S8_2778495 5.22 x 10-5 4.46 x 10-2 5.53 -3.7745 C/T 16/288 

 S8_2778496 5.22 x 10-5 4.46 x 10-2 5.53 3.7745 C/T 288/16 

 S8_2778497 5.22 x 10-5 4.46 x 10-2 5.53 -3.7745 G/T 16/288 

        

 S12_23092043 4.04 x 10-5 4.21 x 10-2 6.12 -2.2773 C/T 196/93 

 S12_23120151 2.57 x 10-5 2.88 x 10-2 6.43 2.3934 A/G 91/197 
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Table 10: QTL mapping intervals (95% Confidence Intervals) significantly associated (p-value < 0.0001) with  Xoo PXO99A-pHM1-
tal7b resistance. Parental sources of resistance report the parent with the largest resistance effect for the given QTL. Corroboration 
compares the given QTL to the GWAS analysis or previous mapping studies. 

Chr QTL position Markers flanking the QTL (size) p-value  Parental source of 
resistance   

Corroboration  

3 S3_4771783 S3_3639639 - S3_6052491 (2.4 
Mb)  

9.53 e-05 Samba Mahsuri-sub1 Almost significant in GWAS MLM (p-
value 0.03) and significant in GWAS 
GLM (p-value 0.008).   

5 S5_353165 S5_37878 - S5_685714 (647.8 
kb) 

6.09 e-10 PSBRc82 Also in PXO99A. Also in GWAS, p-
value = 3.89 x 10-9   

8 S8_2778548 S8_2208918 - S8_2913918 (705 
kb) 

7.47 e-04 Sanhuangzhan-2 Also detected in GWAS, p-value = 
5.22 x 10-5 

10 S10_19598933 S10_19229371 - S10_20082337 
(853 kb) 

5.22 e-04 Fedearroz-50 Also in PXO99A. Almost significant in 
GWAS MLM (p-value 0.07) and 
significant in GWAS GLM (p-value < 
0.0001). 

11 S11_14981109 S11_14605845 - S11_15708610 
(1.1 Mb) 

3.22 e-04 IR.77298.14.1.2.10 Almost significant in GWAS MLM (p-
value 0.07) and significant in GWAS 
GLM (p-value < 0.0001). 

12 S12_19676337 S12_19452481-  S12_19836912 
(384.3 kb)  

7.74 e-06 Fedearroz-50 Almost significant in GWAS MLM (p-
value 0.04) and significant in GWAS 
GLM (p-value < 0.0001).  
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Table 11: Candidate genes near GWAS markers for Xoo PXO99A-pHM1-tal7b resistance.  

Marker Candidate genes  
Gene name (locus identity, if 
applicable),  
annotation 

Distance 
from 
Marker 

Importance Citation 

S12_23092043 (LOC_Os12g36920), 
calmodulin binding protein, putative, 
expressed 

456 kb Upregulated during PXO99A infection Cernadas et al. 
2014 

S12_23120151 SPL11 (LOC_Os12g38210), 
spotted leaf 11, putative, expressed 

348 kb Negative regulator of rice immunity  Zeng et al. 2004 
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Table 12: Candidate genes under or near the unique QTL identified through interval mapping for resistance to Xoo PXO99A-pHM1-
tal7b.   

QTL Candidate genes  
Locus identity (gene name, if 
applicable),  
Annotation 

Distance 
from QTL 

Importance Citation 

S3_4771783 LOC_Os03g07540, 
bHLH family protein, putative, 
expressed 

Within  Putative target of BLS256 TAL3c  Cernadas et al. 
2014 

S8_2778548 LOC_Os08g07760 (OsSerk1), 
BRASSINOSTEROID 
INSENSITIVE 1-associated receptor 
kinase 1 precursor, putative, 
expressed 

1.4 Mb  Predicted target TAL7b homologs in C8 and 
PXO99A and a similar TAL in KACC10331  

Pérez-Quintero et 
al. 2013 

S11_14981109 LOC_Os11g26790, putative 
dehydrin  

Within  Putative target of TALs in Xoo strains 
MAFF311018 and PXO99A 
Putative target of 9 Xoc TALs similar to BLS256 
TAL2g 

Pérez-Quintero et 
al. 2013 
Wilkins et al. & 
Bogdanove, 2015 

S12_19676337 LOC_Os12g29220 (xa25/ 
OsSWEET13) 
nodulin MtN3 family protein, 
putative, expressed 

2 Mb  Upregulated by Xoo strains PXO339, 
KACC10331, MAFF311018, but not PXO99A. 
Suspected TAL effector target. 

Liu et al. 2011; 
Pérez-Quintero et 
al. 2013 
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