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ABSTRACT 
 
 
 

CONSERVING TIGERS BEYOND PROTECTED AREA BOUNDARIES: 
 

THE SPATIAL ECOLOGY OF TIGERS AND THEIR PREY IN FARMLANDS IN 
 

NORTH INDIA 
 
 
 

Terrestrial, large mammalian carnivores have experienced dramatic declines in their 

ranges worldwide, and today largely occur within landscapes dominated and modified by 

humans. Within these landscapes, large carnivore conservation has largely been focused on 

protected areas, a practice predicated on the rarely tested assumption that the surrounding human 

modified land (matrix) has little or no carnivore conservation value. While protected areas are 

critical to the persistence of carnivore populations, neglecting the human modified matrix has 

two consequences: 1) it leaves matrix areas that provide important resources such as dispersal 

routes, seasonal prey, and breeding areas, vulnerable to further modification and loss on account 

of land-use change, and 2) it treats carnivore presence within the matrix as anomalous 

occurrences, resulting in a misinterpretation of carnivore resources needs and the drivers of 

human-carnivore conflicts. To effectively address these challenges, conservation efforts need to 

be expanded beyond the boundary of protected areas. This requires an understanding of the 

spatial ecology of carnivores and their prey in the human dominated matrix. In addition, it 

requires an understanding of the scale and nature of the interactions of these species with 

humans.  

There exists a large body of literature on the ecology of carnivores and their herbivorous 

prey species. Most of these studies however, have been conducted within protected areas free of 
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human disturbance. Consequently, very little is currently known about the ecology of these 

species within human modified areas. To address this knowledge gap, between Dec 2015 and 

Aug 2016, I conducted a study examining the spatial ecology of tigers (Panthera tigris), their 

herbivorous prey species, and their interactions with humans within matrix areas of the Central 

Terai Landscape (CTL) in India. The CTL, a tiger conservation landscape of global significance, 

is also one of the most densely human-populated areas within the tigers’ distributional range in 

India. Within the CTL, I selected a 1200 sq. km agricultural corridor region separating two 

protected areas (Dudhwa tiger reserve and Pilibhit tiger reserve) as my intensive study site. The 

study area is comprised of the perennial Sharada River flowing through its center, sugarcane 

farmlands, riparian grassland and forest areas, dense human settlements, and associated 

infrastructure like roads and canals. Within this study area, I examined the environmental and 

anthropogenic factors driving space use by tigers and their prey. I recorded detections of these 

species within 94 grid cells, each measuring 1.6 X 1.6 km, and distributed in a spatially balance 

random fashion across the study area. I recorded detections using three different survey methods; 

Farmer Surveys, Sign surveys, and Camera surveys. To determine the influence of vegetative 

cover on species space use, I repeated these surveys in the winter (Dec-Feb), summer (Mar-May) 

and monsoon (Jun-Aug) seasons. These seasons approximately coincide with the planting and 

harvest cycle of sugarcane, the most dominant agricultural crop in the study area. Winter, when 

the sugarcane crop is ready for harvest, marks a period of very high resource and cover 

availability for tigers and their prey. The crop is completely harvested by the end of the summer 

season, consequently, this season is characterized by very low cover availability in the study 

area. Finally, the monsoon season is characterized again by increasing cover availability and the 

flooding of many portions of the study area, a result of the Sharada River breaching its banks. In 
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addition to estimating space use patterns, I was also interested in determining the relationship 

between habitat use patterns of different species and their interactions with humans. Specifically, 

I was interested in determining how human perceptions of the spatial distribution of tiger and 

prey species, and peoples’ interactions with them, matched the estimated distribution patterns of 

these species within the study area. To achieve this, I conducted detailed interviews, within a 

subset of surveyed cells, with farmers who practiced agriculture within these sample units. Based 

on these interview surveys, I estimated how individual farmers perceived conflicts with different 

species found in the study area and also determined their attitudes towards species and their 

conservation.  

In Chapter 1, I present findings from fitting dynamic occupancy models to detection data 

on tigers. I examined the influence of resource availability and anthropogenic disturbance on the 

spatial and seasonal patterns of space use by tigers. I found that, in the winter season, the study 

area experienced high use by tigers, and the probability that a cell was used by tigers was driven 

primarily by the availability of cover, the length of drainage features, the extent of human 

presence and the distance of the cell to a protected area boundary. Between survey seasons, the 

probability that a used cell will transition to not used by tigers was most strongly related to the 

distance of the cell from a protected area boundary and the availability of permanent water. No 

new cells were to be used by tigers in the summer and monsoon season. Collectively, my results 

suggest that in the winter season tigers use the study area extensively and occur up to six 

kilometers beyond the boundary of protected areas. Space use by tigers in the matrix is driven 

primarily by the avoidance of humans as evidenced by their selection of areas with high cover 

and minimal human presence (e.g., small or few villages). These results, in conjunction with my 

field observations, suggest that tiger presence in the matrix areas is not an irregular or 
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unpredictable occurrence. Rather, these areas serve not only as dispersal routes and seasonal 

habitats, but also provide prey resources and breeding areas for tigers. Consequently, my results 

suggest an urgent need to expand the scope of conservation efforts in tiger landscapes to include 

the agricultural matrix. For the CTL, these efforts should include the establishment of eco-

sensitive zones that extend up to 6 km beyond protected area boundaries and the inclusion of 

land-sharing based agricultural practices within those areas where tiger conservation is a priority. 

In Chapter 2, I modeled the space use patterns of multiple herbivorous tiger prey species 

focusing specifically on three species – hog deer (Axis porcinus), wild boar (Sus scrofa) and 

nilgai (Boselaphus tragocamelus). I determined the environmental correlates that explain the 

spatio-temporal distribution patterns of these species within farmlands by fitting dynamic 

occupancy models to their detection data. I found that the three herbivore species use areas 

within farmlands that are structurally similar to their known native habitats. Unlike tigers, the 

three herbivore species did not demonstrate strong seasonality in their use of matrix areas. All 

three species used farmlands with high probability throughout the study period. Farmlands 

however, do not offer habitats to the majority of mammalian herbivore species found in the CTL. 

Species associated with forested habitats such as chital (Axis axis), and species associated with 

native tall grassland habitats such as swamp deer (Cervus duvaucelli) were detected on only two 

of the 94 sites surveyed with camera traps. Blackbuck (Antilope cervicapra), a species thought to 

occur largely within unprotected grassland habitats in the study area, were also never detected in 

farmlands. In addition, I found that human perceptions about herbivore species richness within 

farmlands, and their perceptions about species’ distributions and conflict potential, differed 

significantly from my estimates of the distribution of these species. In particular, farmers 

perceived wild boar to be the most widely distributed herbivore species in the area, although the 
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species was not more widespread than nilgai and hog deer. In addition, community members 

perceived chital and swamp deer to be more widely distributed than was estimated based on the 

detections of these species using camera traps. My results suggest that current agricultural 

practices significantly fragment the landscape for most mammalian herbivores in the CTL even 

as they provide habitats for a few herbivore species. I found that studies based on interviews of 

community members and self-reported conflict surveys are not a reliable means to estimate the 

distribution and diversity of species within farmlands. 

In Chapter 3, I present an analytical framework for jointly modeling the spatial 

distribution of a species and its spatial interaction probabilities with humans. This framework 

provides estimates of the probability with which conflict with a species is reported at sites where 

the species is present (true-positive conflict reporting) or absent (false-positive conflict 

reporting). I fit the model to wild boar detection data in the CTL and self-reported conflicts with 

the species by farmers. Results demonstrated that farmers falsely reported conflicts with wild 

boar with a probability of nearly 63 %. Wild boar use agricultural landscapes with a probability 

of 27 % in the CTL, and at sites where the species occurs, farmers report conflict with the 

species with a probability of 87 %. In addition, using a simulation study I provide practical 

recommendations for designing studies aimed at jointly estimating species space use and human-

wildlife interaction probabilities. By allowing the estimation of conflict reporting probabilities to 

be conditional on species occupancy, my model represents an important step towards estimating 

the risk associated with farmers sharing space with other wildlife species. As human populations 

expand and encroach further into wildlife habitats, understanding these risks will be key to 

implementing effective conservation measures.  
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CHAPTER ONE 
 
 
 

FARMLANDS OFFER SEASONAL HABITATS TO TIGERS IN A HUMAN-  
 

DOMINATED & FRAGMENTED LANDSCAPE IN INDIA 
 
 
 
Introduction 

Designation of protected areas (PA) is the preferred means for species conservation 

efforts worldwide (Gray et al., 2016). The global PA network has been instrumental in stemming 

the declines of many species, particularly large carnivore species such as tigers (Panthera tigris) 

and lions (Panthera leo) by affording protection to critical breeding habitats and protecting their 

populations from illegal harvest. As human pressures on land increase, and climate change shifts 

the spatial distribution of suitable habitats, the narrow focus on PA-based conservation measures 

is unlikely to be adequate to ensure the persistence of large carnivores into the future (Stephens 

et al., 2015). For example, to ensure the long-term persistence of large carnivores, the expansion 

of the worldwide network of PAs has been identified as a vital goal (Di Minin et al., 2016). This 

is a daunting task, especially in countries where human population growth places competing 

demands on land (Crist et al., 2017). Moreover, as a result of their wide-ranging movements and 

dispersal needs, large carnivore species face many risks within the surrounding landscape matrix 

and beyond PA boundaries. The loss of functional connectivity between isolated populations 

within PAs and human-carnivore conflicts are two significant challenges that arise because of an 

increase in human population and urbanization within the matrix (Ripple et al., 2014). Ensuring 

the persistence of large carnivores into the future requires the expansion of conservation 

measures beyond PAs. To develop a more comprehensive conservation strategy requires a more 
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detailed understanding of how large carnivores use the human dominated matrix (Di Minin et al., 

2016). 

Much of what is known about the spatial ecology of large carnivores stems from well-

studied populations within PAs (Ghosal et al., 2013; Stephens, 2015). As a result, there exists 

major gaps in our understanding of the ecology of large carnivores in matrix areas, especially 

from agricultural landscapes (Ferreira et al., 2018). This knowledge gap impacts carnivore 

conservation efforts in multiple ways by: 1) hindering  our ability to proactively protect lands 

outside PAs that may serve as critical habitats or corridors, 2) confounding  our understanding of 

the drivers of human-carnivore conflicts and impacting  our ability to devise long-term conflict 

prevention and mitigation measures, 3) precluding the inclusion of carnivores in the discourse on 

how agricultural production can be reconciled with biodiversity conservation (Phalan et al., 

2011), and 4) not allowing us to fully understand the functional role of carnivores in human 

dominated landscapes (Braczkowski et al., 2018). 

We conducted a study examining the use of farmland areas by tigers to address some of 

these knowledge gaps. Expanding conservation actions beyond PA boundaries is especially vital 

to the long-term persistence of tiger populations. Nearly 70% of the global tiger population 

occurs within India (Jhala et al., 2015), the second most populous nation in the world.  

Unfortunately, the existing network of PAs in India encompass only a fraction of the landscape 

necessary to sustain viable tiger populations. For example, the average size of a tiger reserve in 

India is 300 km2 (Karanth and Nepal, 2012), whereas the median home range of a single adult 

male tiger is 160 km2 (Chundawat et al., 2016). While most PA’s supporting tiger populations in 

India are widely separated from each other, to date they continue to remain functionally 

connected via the movement of tigers through a matrix of unprotected, agricultural and, 
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community owned lands (Thatte et al., 2018). Besides dispersal movements, areas adjacent to 

PA’s with dense vegetative cover and wild prey also offer seasonal habitats to tigers in many 

landscapes (Athreya et al., 2014; Karanth, 2016) and may increase the effective size of 

neighboring PAs. 

Matrix areas surrounding protected parks worldwide, and particularly in India, are 

experiencing accelerated human population growth rates and land-use alterations (DeFries et al., 

2007) (Wittemyer et al., 2008). The presence of tigers amidst dense human populations increases 

the probability of negative human-tiger interactions, leading to livestock, human, and tiger 

casualties (Goodrich, 2010). However, conversion of matrix habitats to land-use types more 

resistant to tiger use and movement reduces matrix permeability and results in a net loss of 

carnivore habitat (Crooks et al., 2011). Existing conservation initiatives focused solely on PA 

management in Indian tiger landscapes do not comprehensively address these challenges. 

We documented the space use probabilities of tigers in the agricultural corridor between 

two protected areas in the Central Terai Landscape (CTL) in northern India. Our objective was to 

determine the spatio-temporal patterns of matrix use by tigers and the underlying environmental 

drivers of this use.   This information is needed to inform land conservation measures such as the 

need for and size of eco-sensitive zones (ESZ) around PAs. In India, ESZs are mandatory buffer 

zones, extending up to 10 km around protected areas as per the directive issued by the Ministry 

of Environment and Forests (Banerjee et al., 2010). Land-use alterations and developmental 

activities are regulated within ESZs with the explicit intention of reducing adverse human 

impacts on native wildlife. While these zones constrain land conversion, the ESZ notification 

also includes provisions to promote sustainable agricultural practices within its boundaries. In 

addition, information on matrix use when viewed in conjunction with locations of human-tiger 
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conflicts can help clarify the circumstances under which humans and tigers may safely overlap 

without conflicts. This information is critical to determining long-term conflict prevention 

measures. 

Estimating habitat use probabilities requires detecting tigers when, and where, they use 

the surrounding matrix. Unfortunately, conventional, non-invasive species detections methods 

such as camera trapping and sign-encounter surveys are characterized by low detection 

probabilities for tigers because of the species cryptic behaviors and low densities. We therefore 

used a novel sampling strategy to generate detection/ non-detection data for tigers in our study 

area by combining  camera trapping and sign surveys with interview surveys of farmers engaged 

in agricultural within the matrix (Zeller et al., 2011). While interview surveys are cost-effective 

and potentially associated with higher detection probabilities for elusive species, they are prone 

to false-positive detection errors which can bias estimates of habitat use and its drivers (Pillay et 

al., 2011). To address these potential biases, we applied dynamic occupancy models that 

corrected for false positive detection errors (Miller et al., 2013). We discuss the implications of 

our results for tiger conservation in the CTL and in broadening our understanding of the 

importance of the human dominated agricultural matrix in sustaining populations of tigers in 

north India. 

Methods 

Study Area 

Our study was conducted within the Central Terai Landscape (CTL) in the state of Uttar 

Pradesh in north India. The study area was a 1550 km2 agricultural region lying between two 

tiger reserves-Dudhwa Tiger Reserve (Dudhwa National Park and Kishanpur Wildlife Sanctuary) 

and Pilibhit Tiger Reserve (PTR) and bounded on the north by the India-Nepal international 
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border (Figure 1.1). The area is comprised primarily of extensive sugarcane agriculture, dense 

human settlements, and remnant patches of riparian habitats associated with the Sharada River.  

These riparian habitats lie within the jurisdiction of the North and South Kheri Forest Division 

and are designated as multiple-use forests allowing harvest of forest resources. The remaining 

Figure 1.1: Study area and sampling design. The study area was the agricultural matrix separating 
Pilibhit Tiger Reserve (PTR), Kishanpur Wildlife Sanctuary (KWS) and Dudhwa National Park 
(DNP). In the winter season, a total of 94 randomly selected 2.6 km2 cells were surveyed. A subset of 
these cells was surveyed in the summer (91 cells) and monsoon seasons (85 cells). Cell colors indicate 
the survey methods applied during each sampling season (FS-Farmer surveys; SS-Sign surveys; CS- 
Camera surveys). The black and white dashed line represents the international border between India 
and Nepal and features in blue represent water bodies associated with the Sharada River system. 
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land within the study area is comprised of privately-owned agricultural land, village clusters, and 

small towns; the average human population density is 500/km2 (Chandramouli, 2011). The area 

is subject to humid sub-tropical climatic conditions with four dominant seasons: summer (April-

June), monsoon (July-September), post-monsoon (October-November), and winter (December-

March). During the monsoon season substantial portions of the area experienced flooding 

(Midha and Mathur, 2014). Besides tigers, the landscape supports multiple species of threatened 

fauna such as the greater one-horned rhinoceros (Rhinoceros unicornis), swamp deer (Cervus 

duvaucelli duvaucelli), hog deer (Axis porcinus) and Asian elephants (Elephas maximus). 

Study Design & Field Methods: 

We estimated the space-use patterns of tigers and other large mammals within the study 

area using a spatially balanced sample of 94 randomly selected 1.6 km x 1.6 km cells (Figure 

1.1), chosen using Generalized Random Tessellation Stratified (Stevens and Olsen, 2004).  We 

were interested in how tigers use privately-owned lands and multiple-use areas, so we excluded 

areas that overlapped protected areas from our sampling frame. To determine how tiger space-

use changed with available crop and vegetative cover, we conducted repeated surveys over three 

survey seasons defined according to the growth and harvest cycle of sugarcane, the dominant 

crop in the matrix. Seasons were defined as: winter/high cover, summer/low cover and 

monsoon/moderate cover. Survey seasons coincided with the prevailing climatological seasons, 

characterized by marked differences in vegetation growth and cover, temperature, and 

precipitation (Table 1.1).  

Each season, we employed three different survey methods: farmer surveys (FS), animal 

sign surveys (SS) and camera surveys (CS; Table 1.1). Farmer surveys (FS) involved 
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independent interviews of 1-12 farmers directly encountered while walking a random path within 

each cell. 

Table 1.1. Survey season characteristics, sampling effort and tiger detections for three survey 
methods: farmer surveys (FS), sign surveys (SS) and camera surveys (CS). 

Season 

(Survey months) 
Max 

temperature, 

Mean 

precipitation, 

Cover 

Number of cells surveyed (Min–Max 

surveys/cell); 

Number of cells with tiger detections 

  FS SS CS 

     

Winter 
(15 Dec.–15 Feb.) 

22°, 19.1mm, 
Very High 

94 (1–12); 
58 

69 (1–4); 
13 

47 (9-39); 
4 

Summer 
(15 Mar.–15 May 

38°, 5.8mm,  
Low 

91 (1–12); 
55 

56 (1–6); 
3 

43 (8-39); 
3 

Monsoon 
(15 Jul.–15 Aug.) 

33.8°, 277.4mm, 
High 

85 (1–10); 
22 

26 (1)*; 
 1 

32 (4-36); 
2 

*In the monsoon season sign surveys (SS) were conducted only on a single occasion due to 

inclement weather conditions 
Each farmer was shown images and given verbal descriptions of large mammals and their 

signs (e.g., tracks, scat, etc.) and asked if they had observed/detected these species on their lands 

within the past month. Farmer surveys yielded uncertain species detections, allowing for the 

potential of false-positives. Farmers could incorrectly report the presence of a species due to 

multiple factors including species misidentification, memory lapses, or location errors  

Sign Surveys (SS) were conducted in a random subset (69 cells) of cells. Two 

independent observers walked separate random paths (>500 m) searching for sign (spoor, scat, 

direct sightings) of wild mammals within the cell. Surveys were repeated 1-6 times per season. 

We assumed unambiguous sign identification represented certain detections for tigers (that is, no 

false positives); however, sign identification was less reliable for species such as hog deer and 

wild boar (Sus scrofa). Since most cells were either agricultural land or river beds, substrate 

quality for sign detection was consistently high except during the monsoon season. 
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Camera Surveys (CS) were conducted in a random subset of the sign survey cells (47). 

We placed a single motion activated Cuddeback Attack 5.0-megapixel Trail Camera (Cuddeback 

Digital, Green Bay, Wisconsin, USA) within a cell for 30-40 days during a given season. 

Detections of large mammals generated over this period formed an additional source of certain 

detections for all species (i.e., no species misidentification). Within a cell, camera placement 

targeted areas with higher likelihood of animal movements such as natural drainages. In 

subsequent analyses, we treated each five-day period the camera was active as a survey occasion. 

In each season, we first deployed camera traps in cells, followed by sign surveys. Efforts were 

made to conduct farmer surveys towards the end of each season to limit tiger detections to the 

given season.  Because the timing of survey methods were not coincident, and we could not 

safely assume closure across the survey season, our models estimated cell use and not cell 

occupancy. 

Statistical Analyses 

Our goal was to estimate factors influencing the probability and the relative frequency of 

cell use by tigers and the dynamics of use across seasons. We estimated model parameters (Table 

1.2) by fitting dynamic occupancy models that account for false-positive errors. The false-

positive model (Miller et al., 2013; MacKenzie et al., 2017) extends the traditional dynamic 

occupancy model (MacKenzie et al., 2003) to allow for the estimation of false positive detection 

rates by exploiting data from both certain and uncertain detection methods. In our study, FS, the 

more extensively applied survey method, was the source of uncertain detections whereas CS and 

SS were assumed to be the source of certain tiger detections.  

Table1.2. Name, notation, and definitions for parameters in the false positive dynamic occupancy 
model.  

Parameter (Symbol) Definition 

Probability of use in winter (Ψw) Probability that a cell was used by tigers in the first 
season of the study (winter).  
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Extinction probability (εt) Probability that a used cell in season t will not be used 
in the subsequent season t +1. 

Colonization probability (γt) Probability that an unused cell in season t will be used 
in the subsequent season t +1. 

False positive detection 
probability, 𝑝10𝐹𝑆 

Probability that a species will be incorrectly detected 
during a given survey in an unused cell. This 
probability is nonzero for farmer surveys (FS) only. 
The probability was fixed to zero for sign and camera 
trap surveys (𝑝10𝑆𝑆 = 𝑝10𝐶𝑆 = 0) . 

True detection probability, 𝑝11𝐹𝑆, 𝑝11𝑆𝑆, 𝑝11𝐶𝑆 

Probability of detecting tigers on a survey occasion 
given the cell was used by tigers during the survey 
season. True detection probability varied among the 
three survey types (FS, SS, CS). 

bFS, bSS, bCS Probability that a detection can be designated as certain 
given that a cell was used by tigers and the species was 
detected. This probability was fixed to zero for farmer 
surveys (bFS = 0) and to 1 for camera and sign surveys 
(bSS = bCS=1) 

Derived Parameter  

Probability of tiger use in 
summer (Ψs) and monsoon (Ψm) 
seasons. 

Probability that a cell was used by tigers in the summer 
(s) and monsoon (m) season, respectively. These 
quantities are calculated using estimates of winter use 
probabilities and associated extinction and colonization 
probabilities (Eq. 1) 

Note the first entry of the detection probability subscript designates the detection state 

(1=detected), while the second entry designates the true occupancy (use) state: 0 if the cell was 

truly not used by tigers and 1 if the cell was truly used. 
 

We selected candidate covariates and generated hypotheses explaining possible drivers of 

habitat use of tigers by applying the landscape of coexistence concept (Oriol-Cotterill et al., 

2015). The concept posits that spatio-temporal patterns of carnivore occurrence in human altered 

landscapes are governed largely by carnivore behaviors that minimize exposure to anthropogenic 

risks and maximize access to resources. We selected covariates that represented the spatial 

distribution of risks (human presence) and resources (prey, water and cover) across the three 

survey seasons (Appendix 1.1: Table S1). Prior to model-building, we tested for multicollinearity 

among covariates based on their variance inflation factors (Zuur et al., 2010) and removed 

covariates with a value greater than 5. 
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Our a-priori hypotheses and expected relationships between model parameters and 

covariates are summarized in Table 1.3. Specifically, we modeled the probability of initial tiger 

use within a cell (winter, 𝛹𝑤) as a function of six covariates: median NDVI values (NDVI_W), 

prey availability index (Prey_W; Appendix 1.2), distance to protected areas (PA), length of 

natural drainages (Drain), % tree canopy cover (Tree) and proportion of a cell dominated by 

human settlements (Sett). Changes in cell use between seasons were modeled via two dynamic 

processes, local extinction and colonization. Local extinction probability (𝜀𝑡) is the probability 

that a cell used in one season (t) is not used in the subsequent season (t+1). We expected local 

extinction probabilities to vary across seasons and cells primarily as a function of two covariates: 

water availability (Water) and cover availability in the subsequent season (NDVI_S, NDVI_M). 

Local colonization probability (𝛾𝑡) is the probability that an unused cell in season t will be used 

in the subsequent season (t+1). Local colonization probability was modeled as a function of three 

covariates; median NDVI values in the subsequent season (NDVI_S, NDVI_M), prey 

availability in the subsequent season (Prey_S, Prey_M) and change in prey availability between 

successive seasons (Prey_WS, Prey_SM). 

We modeled two types of detection probabilities: true detection probability (p11), or the 

probability of detecting species’ use when the cell was truly used and false positive detection 

probability (𝑝10), the probability of reporting species’ use when the cell was not used. True 

detection probability (𝑝11) was modeled as a function of survey method (Method), season 

(Season), an index of season-specific cover availability (NDVI_W, NDV_S, NDVI_M), and the 

proportion of settlement within a cell (Sett). Survey effort (spatial coverage) of FS was higher 

than CS and SS--therefore, we expected detection probabilities for all seasons to be highest for 

FS and lowest for CS (𝑝11𝐹𝑆 > 𝑝11𝑆𝑆 > 𝑝11𝐶𝑆 ). Since false positive detections were possible for farmer 
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surveys (𝑝10𝐹𝑆) we modeled this parameter as a function of season and distance to protected area 

boundary (PA). We expected farmers living further from PA boundaries to be less familiar with 

tiger signs and hence more likely to falsely report the species. We hypothesized that the 

probability of false positive reporting of tigers would be highest in the winter since farmers in the 

region believe that tigers occur extensively in the matrix in the winter season. 

We evaluated the above hypotheses using the false-positive, robust design occupancy 

models in Program MARK (White and Burnham, 1999). Models within a set were ranked 

according to Akaike’s Information Criteria (AIC; Burnham and Anderson, 2003). Employing a 

sequential approach to model building, we compared alternative models to identify the best-

supported covariate structure (lowest AIC) for detection probabilities (𝑝11𝐹𝑆 , 𝑝11𝑆𝑆 , 𝑝11𝐶𝑆  and 𝑝10𝐹𝑆) 

while retaining a global structure (i.e. all covariate of interest) on initial tiger use (𝛹𝑤) and 

associated vital rates (local extinction and colonization). We first considered 10 alternative 

model structures on 𝑝11 (Appendix 1.3: Table S4) while allowing false-positive detections to 

vary by season and distance to protected area,  𝑝10𝐹𝑆 (Season+PA). The true detection probability 

structures included univariate and additive combinations of the covariates Season, Method, linear 

and quadratic relationship with cover (NDVI_W, NDVI_S, NDVI_M) and proportion of 

settlement within a cell (Sett). In addition, we fit an intercept only model where true detection 

was assumed constant across surveys. Retaining the best-supported p11 structure, we considered 

four alternative model structures for false-positive detections, 𝑝10𝐹𝑆. These models included 

univariate and additive combinations of Season and distance to protected areas (PA) and an 

intercept only model. 

Retaining the best-supported detection structures and a global covariate structure on the 

dynamic rate parameters, we explored covariates hypothesized to affect tiger space-use in our 
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initial winter survey season (𝛹𝑤; Appendix 1.3: Table S5). We considered 22 alternative models 

including individual or additive combinations for the covariates on 𝛹𝑤 (Drain, Sett, NDVI_W, 

Tree, Prey_W and PA). We retained the best-supported covariate structure for initial use 

probabilities, and subsequently explored specified covariate combinations for local extinction 

(𝜀𝑡) and colonization (𝛾𝑡) probabilities (Appendix 1.3: Table S6-S7). We tested 23 alternative 

covariate models for local extinction probability (𝜀𝑡), fitting individual and additive 

combinations for Season, Water and PA. In addition, we fit models with a seasonal interaction 

term to determine if the relationship between local extinction probability and the specified 

covariates differed for winter-summer and the summer-monsoon transitions (i.e. different slopes 

and intercepts). Finally, after retaining the best-supported structure for local extinction 

probability, we tested 22 alternative models for local colonization probability (𝛾𝑡). These models 

included the covariates of interest for 𝛾𝑡 (Season, NDVI_S, NDVI_M, Prey_S, Prey_M, 

Prey_WS, Prey_SM) either individually or in additive combinations. We also fit interactive 

models with season and all covariates of interest. We hypothesized farmland tiger use would be 

highest in the winter and decline in subsequent seasons, and we expected colonization 

probability to be close to 0 between seasons. We therefore fit a model where we fixed the 

colonization probability at 0 during the study. 

 In each of the above steps, we fit intercept-only models and in the final model set 

included a model where all parameters were modeled without covariates. For comparison, we fit 

a version of the best-supported model in the model-set by assuming no false-positive errors (p10  

= 0 for all survey types; Appendix 1.4: Table S8). Finally, using parameter estimates from the 

best supported model, we derived estimates of the probability of tiger use for summer and 

monsoon seasons using the recursive equation (Eq.1; (MacKenzie et al., 2017)). Specifically, we 
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used estimates of tiger use and associated vital rates in one season (t) to estimate tiger use in the 

subsequent season (t+1). 𝛹𝑡+1 = 𝛹𝑡 ∗ (1 − 𝜀𝑡) + (1 − 𝛹𝑡) ∗ 𝛾𝑡            Eq. 1 

Results 

Survey effort, species detections and naïve use estimates 

We interviewed 1495 farmers, conducted 322 sign surveys and obtained photo-captures 

of tigers and prey species over 3449 trap nights. Using camera surveys, we detected 15 mammal 

species including tigers and locally rare species such as the Indian wolf (Canis lupus pallipes) 

and fishing cat (Prionailurus viverrinus). Tigers were detected in all seasons using all survey 

methods. Detections were highest in the winter season for all three methods and the lowest in the 

monsoon season (Table 1.1). We obtained 11 tiger photo-captures belonging to at least seven 

individuals, including a female with a cub. We compared these photographs to the tiger ID 

database maintained for nearby protected areas. Two individuals were previously photo-captured 

within Dudhwa National Park (DNP) and the tigress with the cub had been photo-captured 

within Kishanpur Wildlife Sanctuary in 2013. Within the study area, two of the seven individuals 

were captured in single cell adjoining the DNP boundary and the other five individuals were 

captured at cells ranging from 0.5 – 3 km from a protected area boundary. Tiger sign was 

detected in multiple cells ranging from 0 – 8 km from PA boundaries. 

Covariate relationships and parameter estimates  

We fit a total of 79 models (Appendix 1.4, Table S8) estimating the effects of covariates 

on the parameters of interest, including intercept-only models and a version of the best supported 

model that assumed no false positive detections (𝑝10 = 0 for all survey methods). Variation in 

true detection probability (𝑝11) was best explained by an additive combination of season and 
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method (Appendix 1.3: Table S4). As hypothesized, the estimated true detection probability 

(𝑝11) was highest for farmer surveys (FS) followed by sign surveys (SS) and camera surveys 

(CS, Figure 1.2). For all survey types, true detection probability was highest during the winter 

season and declined in the summer and monsoon season.  

 

 

 

 

 

 

 

 

 

 

 

 

The best supported model for false positive detection probability for farmer surveys (𝑝10𝐹𝑆) 

included the covariates season (Season) and distance to protected areas (PA). As expected the 

probability of a false positive detection increased with increasing distance to a PA boundary 

(Table 1.3) and was highest in the winter and lowest in the monsoon season. On average, the 

probability of a false positive tiger detection from a farmer survey was 0.09 in the winter (SE 

0.02), 0.06 in the summer (SE 0.01) and 0.01 in the monsoon season (SE 0.01). 

Figure1.2: True detection probability estimates (𝑝11 ) by season and method, Farmer surveys (FS), Sign 
surveys (SS) and Camera surveys (CS) with associated confidence intervals. Estimates are based on the 
best supported model in the overall model-set (Appendix 1.4, Table S4). 



15 

Initial probability of tiger use in the winter (𝛹𝑤) was a function of distance to protected areas 

(PA), length of drainages within a cell (Drain), proportion of the cell area occupied by 

settlements (Sett) and a quadratic relationship with median NDVI values in winter (NDVI_W). 

This model had nearly three times more weight than the next best supported model, which 

included the additional covariate mean % tree cover (Tree). Our hypotheses regarding the 

relationship between initial tiger use and distance to protected areas, and the availability of 

cover, drainages, settlement were supported by the top models (Tables 1.3, Appendix 1.3: Table 

S5, Figure 1.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Covariate relationships with probability of tiger use in winter  𝛹𝑤  and associated confidence 
intervals (gray shaded area). Relationships are based on coefficient estimates from the best supported 
model in the overall model set using mean values for covariates that are not graphed. Drain: Total length 
of drainages within cell (km); NDVI_W: Mean cell specific NDVI in winter; Sett: Proportion of cell area 
under human settlements PA: Cell distance to nearest protected area boundary (km) 
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Table1.3: Covariates and their a-priori hypothesized and estimated relationships with model parameters 

Hypothesis Covariate 𝜷_𝒉𝒚𝒑𝒐𝒕𝒉𝒆𝒔𝒊𝒛𝒆𝒅a 
𝜷̂_𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅b 

(SE) 

Seasonal tiger use and false-positive 
detection probability for farmer surveys will 
be higher in cells proximate to protected 
area boundaries (Karanth, 2016).  

PA: Minimum 
Euclidean distance 
(km) between cell 
center and protected 
area boundary. 

𝛹𝑤 (-) 𝜀𝑡  (+) 𝑝10𝐹𝑆 (+) 

𝛹𝑤 _𝑃𝐴:   -0.42 
(0.14) 𝜀𝑡  _𝑃𝐴:     0.60 
(0.21) 𝑝10𝐹𝑆 _𝑃𝐴:   0.002 
(0.07) 

 
   

Winter tiger use and true detection 
probability using farmer surveys (FS), sign 
surveys (SS) and camera surveys (CS) will 
increase in a linear or quadratic manner with 
cover availability. 
Local extinction probability will decline 
with increase in cover availability. 

NDVI_W, NDVI_S, 
NDVI_M:  Cell-
specific median NDVI 
values for each season 
(index of cover 
availability)          

𝛹𝑤 (+ / quadratic) 𝜀𝑡  (-); 𝛾𝑡 (+)                     𝑝11𝐹𝑆, 𝑝11𝑆𝑆 ,𝑝11𝐶𝑆  (+ / 
quadratic) 

 𝛹𝑤  _𝑁𝐷𝑉𝐼_𝑊: 

42.72 (20.77);  𝛹𝑤  _𝑁𝐷𝑉𝐼_𝑊^2: -

53.78 (24.72) 

    

Winter tiger use should be higher in cells 
with more extensive drainages 

Drain: Total length of 
drainages within cell 

𝛹𝑤 (+) 
 𝛹𝑤  _𝐷𝑟𝑎𝑖𝑛: 1.09 
(0.36) 

 
 

  
Winter tiger use should be higher in cells 
with greater canopy cover (Joshi et al. 2013)  

Tree: Mean tree canopy 
cover within cell 

𝛹𝑤 (+)  

 
   

Winter tiger use and detection probability 
for all surveys methods (FS, SS and CS) 
will be lower in cells with more extensive 
settlement areas (Oriol-Cotteril et al.2015b).    

Sett: Proportion of cell 
area under human 
settlements 

𝛹𝑤 (-) 
 𝑝11𝐹𝑆, 𝑝11𝑆𝑆, 𝑝11𝐶𝑆 (-) 

𝛹𝑤  _𝑆𝑒𝑡𝑡: -38.82 
(11.14) 

 
   

The availability of permanent water sources 
will positively influence use in the summer 
(dry) season (i.e. lower local extinction 
probability) and negatively in the monsoon 
season (flooding). 

Water: Availability of 
permanent water 
sources within cells 

𝜀𝑡  (winter-summer, -) 𝜀𝑡  (summer-
monsoon, +) 

𝜀𝑡  _𝑊𝑎𝑡𝑒𝑟: 0.04 
(0.02) 
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aHypothesized direction of relationship between covariates and model parameters (𝛹𝑤 , probability of cell use in winter; 𝜀𝑡, 

probability that a cell used in season t will not be used in season t+1; 𝛾𝑡, probability that an unused cell in season t will be used in 

season t+1;  𝑝10𝐹𝑆, probability that a surveyed farmer will report a tiger as present in a cell that is truly unused; probability of 

detecting tigers using farmer surveys (𝑝11𝐹𝑆), sign surveys (𝑝11𝑆𝑆) and camera surveys (𝑝11𝐶𝑆)). 
bEstimated relationship between model parameters and covariate based on best supported model in the overall model set

     

The availability of wild prey will positively 
influence spatio-temporal space use patterns 
(Athreya et al., 2014; Gehr et al., 2017).               

Prey_W, Prey_S, 
Prey_M 
Cell-specific prey 
availability index for 
each season. 

𝛹𝑤 (+)   𝛾𝑡 (+) 

 

    

Probability of use should be higher for cells 
that experience a net increase in prey 
availability between seasons 

Prey_WS, Prey_SM            
Cell-specific index of 
change in prey 
availability between 
seasons 

 𝛾𝑡 (+) 
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Winter use probability decreased with distance from PAs and proportion of settlements in 

the cell. Tiger use increased with increasing length of drainages (Drain) within a cell and had a 

quadratic relationship with winter cover availability (NDVI_W) (Table 1.3, Figure 1.3). Contrary 

to our a priori expectations, models that included prey availability as a covariate were not 

strongly supported. 

The probability of local extinction (𝜀𝑡) was best explained by models that included 

seasonal variation (Season), water availability (Water) and distance to protected areas (PA) 

(Appendix 1.3: Table S6). While there was considerable model uncertainty, the season covariate 

was included in seven of the top-supported models, with a cumulative model weight of 80%. The 

covariates Water and PA were also important and were included in six of the top models. 

Consistent with our predictions, local extinction probability increased with increasing distance to 

PAs (Table 1.3, Figure 1.4). Contrary to our expectations, availability of permanent water 

sources within a cell increased the probability of extinction in both the winter-summer and 

summer-monsoon transitions. Local extinction probability was higher in the summer-monsoon 

transition as compared to the winter-summer transition (Table 1.3, Figure 1.4).  

The best-supported colonization probability structure suggested that no new cells were 

used in the summer and monsoon seasons (Appendix 1.3: Table S7). This model was 2.5 times 

more likely than the next best-supported model and suggests that tiger use of the matrix is 

highest during the winter, with declining use throughout the remainder of the year (Figure 1.5). 

The model assuming no false-positive detections performed poorly (Δ AICc = 132.58) compared 

to the best-supported model (Appendix 1.4: Table S8) and overestimated mean tiger use 

probabilities for all seasons (Figure 1.5). The intercept only model was the least supported model 

in our overall model-set (Δ AICc = 291.07)  
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Figure 1.4: Covariate relationships with probability of local extinction (εt) between winter-summer and 
summer-monsoon seasons. Relationships are based on coefficient estimates from the best-supported 
model in the overall model-set using mean values for covariates that are not graphed. PA: Distance of 
cell to nearest protected area boundary; Water: Mean index of water availability within a cell. Values 
range from no water (0) to presence of permanent water sources (100). 

Figure 1.5: Mean season-specific cell use probabilities for tigers with 95% confidence intervals 
based on the best-supported model allowing false-positive detections (FP) and a model assuming 
no false -positive errors (No-FP). 
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Discussion  

We quantified space-use patterns of tigers in agricultural areas of the CTL, one of the 

most densely human populated landscapes in the tiger’s range in India. Using dynamic 

occupancy models that corrected for false-positive detections, we demonstrated that tigers use 

agricultural areas extensively, albeit seasonally. In the human dominated matrix, tigers selected 

habitat features such as hiding/resting cover while avoiding areas with large human settlements. 

Farmlands areas in the landscape experienced high use by tigers for up to eight kilometers from 

the PA boundaries (Figure 1.3). Use probability was particularly high in the winter season when 

cover provided by sugarcane crops and riparian grasslands was most extensive. In addition, we 

found that the presence of extensive natural drainages was associated with habitat use by tigers. 

These drainages may function both as a source of temporary cover and as movement routes, for 

tiger and prey species, to travel between patches of native habitats. Contrary to our expectations 

and findings from recent studies on other large carnivore species (Gehr et al., 2017), the 

availability of wild prey, as measured in our study, was not a strong predictor of local tiger 

habitat use probabilities. We believe, however, that tigers using agricultural areas subsist on wild 

prey since reports of livestock depredation in the matrix are very rare (Chatterjee et al., 2018). 

Space-use probabilities declined from the winter (high use) season as reflected in low 

local colonization probabilities (𝛾𝑡) and high local extinction probabilities (𝜀𝑡, Figures 1.4-1.5). 

Cells with more perennial water sources and further away from protected areas experienced 

higher local extinction probabilities. This may be a result of increasing human disturbances near 

perennial water sources in the summer and the likelihood that these areas are inundated during 

the monsoon season. Our results also highlight the prevalence of false-positive errors in 

interview-based detection data. This probability varied both spatially and across seasons 
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suggesting that caution must be exercised in the interpretation of occupancy and use probabilities 

estimated using citizen science data. We recommend that studies involving interview-based 

detection data incorporate at least one other survey method that is free of false-positive errors, at 

least at a subset of the sample sites.  

In their recent review, Ferreira et al. (2018) note the conspicuous absence of studies 

examining the use of agroecosystems by large carnivores and the causal factors underlying this 

use. We believe our study is the first to comprehensively document the seasonal space-use 

patterns of tigers within an agricultural matrix. During our study, we obtained photos of multiple 

tigers, including a tigress with a cub, previously photographed within the boundaries of 

Kishanpur Wildlife Sanctuary during a camera trap-based population study in 2013. The 

presence of tigresses with cubs had been reported on multiple occasions both within the study 

area and in the larger landscape. In 2016, camera-trapping in protected areas in the landscape 

documented the first known successful dispersal of a tiger from Kishanpur Wildlife Sanctuary 

into Dudhwa National Park (personal communication, WWF-India). Our results and these 

observations together suggest that the matrix areas of the CTL, despite high human densities, 

serve not only as dispersal routes but also breeding areas for tigers. 

Preserving the functional role of the matrix requires immediate efforts to regulate land-

use change. Human populations are projected to increase across most tiger landscapes in India 

including the CTL. The consequent increase in the rates of urbanization is predicted to 

significantly impact tiger persistence probabilities (Sanderson et al., 2019). In the CTL, cells 

with > 15 % of area under human settlements were not used by tigers (Figure 1.3). This suggests 

that even minor increases in the extent of human settlement in the matrix may cause sharp 

declines in the net available habitat for tigers. As a first step towards regulating land-use change 
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in the CTL, we recommend the establishment of an ESZ around protected areas that extends at 

least eight kilometers beyond the boundaries of existing PAs. In addition, promoting land sharing 

based conservation measures such as incentivizing the cultivation of cover crops, the restoration 

of native riparian grassland habitats currently threatened by livestock grazing, and establishment 

of long-term conservation easements  can help enhance the role the matrix plays in sustaining 

tigers populations in India (Kinnaird and O’brien, 2012).  Such measures stand to benefit other 

species besides tigers given the diverse community of mammals that were detected using the 

matrix during this study.  

In addition, our study provides a much needed spatio–temporal context to better 

understand human-tiger conflicts both within the CTL and in other tiger landscapes. When 

viewed in conjunction with known records of conflicts in the CTL (Chatterjee et al., 2018), our 

study demonstrates that conflicts (livestock depredation and human attacks) occur in only a 

subset of locations and time periods where tigers and humans overlap (i.e. conflict free co-

occurrence of humans and tigers is the norm rather than the exception in the CTL). Even though 

tigers use areas up to six kilometers beyond PA boundaries in the winter and summer season, 

most conflicts occur at or near PA boundaries in the winter (Chatterjee et al., 2018). This pattern 

of co-occurrence has been shown to be true in other landscapes that harbor large carnivores 

(Athreya et al., 2013).  The presence of tigers in agricultural areas may also impose a landscape 

of fear on other human adapted, wild herbivore (e.g. wild boar, nilgai) and carnivore (e.g. 

leopard, Indian wolf and golden jackals) species that are involved in conflicts with local 

communities (Thinley et al., 2018). For example, detections of jackals using camera traps were 

lower at sites where we detected tigers. Accounting for such trophic interactions may help us 

better understand patterns of human-wildlife conflict in landscapes with large carnivores. 



 

23 

Space-use patterns of large carnivores within human dominated areas are also strongly 

influenced by social factors such as degree of tolerance within human communities. In India, 

culturally mediated tolerance for tigers, in combination with strict wildlife protection laws, mean 

that tigers may not be subject to the same risks as other large carnivores such as wolves that use 

human dominated areas. A recent study in Sumatra, for example, found that community 

tolerance towards tigers is influenced not only by spiritual factors but also by the risk of an 

actual attack (Struebig et al., 2018). We speculate that the high tolerance of human communities 

towards tigers in the CTL and elsewhere in India may in part be attributed to the long history of 

largely conflict free sharing of space with these species. We recommend that future efforts to 

understand community attitudes towards large carnivores and the spatial patterns of conflicts 

with these species should be conducted in conjunction with studies such as ours to gain a more 

nuanced perspective on the socio-ecological factors that facilitate the persistence of large 

carnivores in human dominated landscapes. 

The loss of unprotected critical habitats is predicted to exacerbate the rate of decline of 

many large carnivore populations (Di Minin et al., 2016). Results from this study add to the body 

of literature that expands our current understanding of the role of unprotected habitats to include 

annual croplands (Ferreira et al., 2018). In India, as in many tropical nations that harbor large 

carnivores, agroecosystems support many small land holders or subsistence agriculture, and are 

subject to  high vulnerability as a consequence of climate change (Morton, 2007). While the role 

of large carnivores in buffering the impacts of climate change on species communities has been 

explored (Ripple et al., 2014), little is known about the diverse impacts that climate change is 

likely to have on large carnivore populations themselves. Our results suggest that in agricultural 

landscapes with large carnivore populations, climate change impacts on large carnivore 
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persistence may be mediated by its effects on subsistence agriculture. We recommend that within 

agricultural landscapes, large carnivore conservation should integrate existing PA based 

measures with broader land sharing approaches. Such an approach, while acknowledging the 

primacy of native habitats in the conservation process, would also treat agricultural lands and 

practices as integral to the success of large carnivore conservation efforts.   
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CHAPTER TWO 
 
 
 

ECOLOICAL DRIVERS OF HERBIVORE SPACE USE & HUMAN-HERBIVORE  
 

INERACTIONS IN FARMLANDS IN THE CENTRAL TERAI LANDSCAPE, INDIA 
 
 
 

Introduction 

Wild, terrestrial mammalian herbivores belong to a diverse taxonomic group comprised 

of numerous species spanning multiple taxonomic families. This group includes charismatic 

species such as the African elephant (Loxodonta africana) and one-horned rhinoceros 

(Rhinoceros unicornis), and lesser known species such as the recently discovered saola 

(Pseudoryx nghetinhensis). As primary consumers, wild herbivores mediate both the bottom-up, 

and top-down forces that shape the structure and function of the ecosystems (Paine, 2000). For 

humans who share landscapes with these species, they are not only an important source of 

protein, but also a significant source of conflict because of potential competition with livestock 

and agricultural production. Most species of wild herbivores have experienced world-wide 

population declines with nearly 60% of the largest of these species (body mass ≥ 100 kg) 

currently threatened with extinction (Ripple et al., 2015).  In many ecosystems, ongoing declines 

in herbivore populations have triggered the collapse of predator populations (Wolf and Ripple, 

2016) and alteration of ecosystem functions (Pringle et al., 2007). The abundance and 

distribution of wild mammalian herbivores are the nexus of many contemporary conservation 

challenges. 

Globally, declines in large herbivore populations have been precipitated by over-hunting, 

habitat loss and competition with livestock (Ripple et al., 2015). An insidious threat facing these 
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species is the conversion of critical habitats  surrounding existing protected areas (PAs) to 

agricultural expansion and other anthropogenic land-uses (Gordon, 2009). Agricultural 

expansion around PAs affect herbivore populations in multiple ways. For species tolerant of 

anthropogenic disturbance, some agricultural practices  often provide  resource rich habitats 

(Abbas et al., 2011) .The presence of herbivores within agricultural areas however, often leads to 

conflicts with local communities, resulting in eventual wildlife conflicts and persecution. Beyond 

population-level consequences for crop-raiding species, sustained human-herbivore conflicts 

undermine local livelihoods and erode community support for conservation overall (Treves et al., 

2006). In  addition, for species sensitive to anthropogenic disturbances, agricultural areas may 

create barriers to movements resulting in isolation of populations within PAs and precluding 

herbivore access to key seasonal resources (Hobbs et al., 2008). 

Agriculture land use is projected to expand and intensify in African and Asian nations 

accompanied by a rapid increase in human populations (Laurance et al., 2014; Wilcove et al., 

2013). These nations together harbor > 80 % of global mammalian herbivore diversity (Ahrestani 

and Sankaran, 2016). Agriculture expansion is expected to particularly affect herbivore 

populations in Asian nations, where a large majority of herbivore species are currently threatened 

with extinction (Ripple et al., 2015). Among Asian nations, India, with its dense and increasing 

human population, exemplifies many of the challenges facing large herbivore conservation 

globally. India currently harbors 39 species of wild mammalian herbivores, a large proportion of 

which are endemic to south Asia. Mirroring global trends, many of these Indian species are 

currently threatened with extinction (Ahrestani and Sankaran, 2016). PAs in India are embedded 

within largely agricultural landscapes and herbivore populations in many PAs are threatened by 

hunting and competition with livestock (Harihar et al., 2014). In addition, across most Indian 
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landscapes, crop depredation by wild herbivores is the most pervasive form of human-wildlife 

conflict. Today 22 of the 29 states in India offer compensations for crop losses, and in the period 

between 2012 and 2013 these payments totaled over 5 million USD (Karanth et al., 2018). While 

compensations offer a means to temporarily mitigate the adverse effects of wildlife conflicts, 

they are not a panacea since little evidence exists to suggest that they result in improved, long-

term conservation outcomes (Naughton-Treves et al., 2003).  

Addressing the twin challenges of habitat loss and human - herbivore conflict resulting 

from agricultural expansion requires an understanding of the spatial ecology of herbivores within 

agricultural areas as well as their patterns of interactions with humans. Even as studies on the use 

of agricultural lands by wild mammals, particularly carnivores, has gained traction in recent 

years (Ferreira et al., 2018; Chapter 1), little to no information exists about the ecology of wild 

herbivores in these human modified areas. In India, much of our limited understanding of how 

wild mammalian herbivores use farmlands stems from studies examining human-herbivore 

interactions, the spatio-temporal patterns of crop depredation, and species distribution models 

based on key informant surveys (Sankaran and Ahrestani, 2016). Undoubtedly, these studies 

provide important insights into how local communities perceive the impacts of herbivore species 

on their lives. Where community perceptions of different species, their abundances, and their 

potential for undesired effects are highly uncertain, conflict surveys have the potential to paint a 

biased picture of the true underlying distribution patterns of these species (Naughton-Treves, 

1997). When these biases are accounted for, leveraging the ecological knowledge of local 

community members can be an efficient way to sample human dominated areas, where 

conventional species detection methods such as camera traps, animal signs may be characterized 

by low detection probabilities and other logistical constraints (Pillay et al., 2014). 
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In our research, we examined the differential impacts of agriculture on a diverse 

assemblage of herbivore species in the Central Terai Landscape (CTL) in northern India. The 

alluvial tall grassland and riparian forest habitats of the CTL support multiple mammalian 

herbivores including several threatened and endangered species such as hog deer (Axis porcinus), 

swamp deer (Cervus duvaucelli) and one horned rhinoceros (Rhinoceros unicornis). Previous 

studies have shown that compared to many similar landscapes, herbivore densities within PAs of 

the CTL are very low, undermining tiger population recovery efforts (Chanchani et al., 2014). 

The key objective of our study was to determine the environmental factors associated with 

spatio-temporal variation in the distribution patterns of mammalian herbivores that occur within 

agricultural areas in the CTL. In addition, we determined the perceptions of local human 

communities to herbivore use and conflicts in this area. Specifically, we were interested in the 

relationship between community perceptions of the spatial occurrence patterns of herbivore 

species, perceived patterns of conflicts, and the estimated distribution of these species relative to 

the reported areas of conflict.  

To address these objectives, we collected species detection data under a novel sample 

design, employing two different species detection methods; camera traps and rapid farmer 

interviews. We applied dynamic occupancy models that corrected for positive and false- negative 

detection errors (Miller et al., 2013) to estimate the environmental factors underlying the space 

use patterns of multiple herbivore species and to determine the probability with which farmers 

report a species from a site where it is truly absent (false-positive detection probability). In 

addition, we generated a map showing the location of human-wildlife conflicts in the CTL by 

conducting detailed interviews of farmers. From this dataset we investigated the relationship 

between reported levels of conflict with a species and its estimated site level use probability.  
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Methods 

Study Area 

The Central Terai Landscape (CTL) lies within the state of Uttar Pradesh in northern 

India. Remnant fragments of the Terai ecosystem occur within this landscape separated by 

extensive areas of human habitation and agriculture. Protected areas (PAs) and multiple-use 

forests encompassing these fragments support a globally significant population of tigers 

(Chanchaniet al. 2014). In addition, the landscape also supports populations of eleven species of 

wild mammalian herbivores (Appendix 2.1, Table S9). While most of these species occur 

predominantly within PAs, a small population of the endemic antelope species, blackbuck 

(Antilope cervicapra), is believed to occur exclusively within matrix areas. Our study was 

conducted in a 1500 sq.km agricultural area in the CTL that forms a movement corridor for 

tigers and swamp deer between Pilibhit Tiger Reserve (PTR) and Dudhwa Tiger Reserve (DTR; 

Fig. 2.1). The CTL has a sub-tropical climate comprising of four seasons: summer (April-June), 

monsoon (July-September), post-monsoon (October-November), and winter (December-March). 

Sugarcane is the dominant agricultural crop in the matrix between PAs and has an eight-month 

growing cycle beginning with planting in March and harvest starting in December. In addition to 

sugarcane, wheat and rice are also cultivated in the winter and post monsoon season, 

respectively. The Sharada River flows through the center of the study area and the river system, 

along with its extensive network of drainages, supports riparian grassland and forest habitats that 

lie within the jurisdiction of the North and South Kheri Forest Divisions. These areas experience 

various forms of resource extraction including timber harvest, livestock grazing, and the 

collection of non-timber forest produce.  
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Species detection/non-detection surveys 

Using Generalized Random Tessellation Stratified (GRTS; Stevens & Olsen 2004), we 

randomly selected 94, 1.6 km x 1.6 km cells (Fig. 2.1). Our sampling frame excluded any cells 

that overlapped protected areas, since we were primarily interested in determining herbivore 

space use on privately-owned and multiple-use lands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Study area and sampling design. Pink polygons indicate human settlements and the 
Sharad River and its associated drainages are shown in blue. The study area separates Dudhwa 
National Park (DNP) from Pilibhit Tiger Reserve (PTR) and Kishanpur Wildlife Sanctuary (KWS). 
Interview surveys to assess human-wildlife conflicts in the study area were conducted within the dark 
green cells and included both farmer surveys (FS) and camera surveys (CS). The dimension of each 
cell is 1.6 X 1.6 km. 
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Within the selected cells we sampled for herbivore species using two different survey 

methods; farmer surveys (FS) and camera surveys (CS). FS were conducted in all cells and 

involved rapid interviews with 1-12 farmers per cell to document the presence of multiple 

mammalian species on their lands within a given season. Each farmer was shown images of large 

mammals along with verbal descriptions of each species and their signs (e.g. tracks, scat, etc.) 

and asked if they observed these species on their lands within the past month. By surveying 

farmers within their fields, we limited the possibility of their misunderstanding the spatial extent 

of the cell being surveyed. CS were conducted in a randomly selected subset of the cells where 

FS were conducted (Fig. 2.1).  

For CS. we placed a single motion-activated Cuddeback Attack 5.0-megapixel Trail 

Camera (Cuddeback Digital, Green Bay, Wisconsin, USA) within the cell for a period of 30-40 

days. For each camera location, we collected data on the presence of guard dogs, fences and the 

number of homes within a 100 m radius of the camera trap. We also noted the presence of water, 

sugarcane, and wheat/ rice crop near the camera trap.  In the final analysis, we treated each five-

day period as an independent survey occasion.  

In this study, farmer surveys (FS) were considered a source of uncertain detections, that 

is, farmers may report a herbivore species as present at a site that is truly unoccupied (false-

positive error) or fail to report a species that is present (false-negative error). False-positive 

errors could arise for a variety of reasons including, mis-identifying a species, mis-

understanding the spatial extent of the cell for which information is being sought, or memory 

lapses. In contrast, CS were considered a source of certain data—that is, CS were assumed to be 

free of false-positive errors. We repeated both surveys (FS and CS) in each of the three sampled 
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seasons (Appendix 2.1, Table S10). In each season, sampling entailed first deploying camera 

traps followed by farmer surveys which were conducted towards the end of each season.  

To understand the influence of cover availability on site use, we repeated these surveys 

over three survey seasons. The seasons were defined according to the growth and harvest cycle 

of sugarcane, the dominant crop in the matrix; winter/high cover, summer/low cover and 

monsoon/moderate cover. Our survey seasons also coincided with the prevailing climatological 

seasons in the area and were characterized by marked differences in vegetation growth, cover, 

temperature, and precipitation (Appendix 2.1, Table S10). The seasons also roughly demarcate 

periods of forage availability for prey species both within and outside PAs. The native grassland 

patches within PAs in the CTL are at their tallest and most unpalatable state during the winter 

months. Towards the end of January, grassland habitats are burnt to stimulate fresh grass 

production (Moe and Wegge, 1997). These grassland areas are generally low-lying and become 

inundated during the monsoon season. Outside PAs, wheat is planted in early winter, whereas 

rice is planted in late summer and post-monsoon season.  

Conflict surveys 

To characterize community perceptions of human-herbivore conflicts in the landscape, 

we conducted 350 semi-structured interviews with farmers. We restricted these interviews to a 

random set of farmers practicing agriculture within cells where we applied both types of species 

detection surveys (FS and CS; Fig.2.1). We asked farmers to list the ongoing livelihood 

challenges they face as agriculturalists living in the area. Farmers who reported crop losses as a 

challenge were asked to list the species they believed to be responsible, the crops most 

vulnerable, and extent of damage annually. They were also asked about the measures they 
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employed to address wildlife conflicts—for example, the use of guard dogs, fences, or night 

guarding.  

Analysis 

Seasonal use probabilities.  

We estimated, by fitting dynamic occupancy models that correct for false-positive errors 

(Miller et al. 2013), season-specific use probabilities for the three wild herbivore species (hog 

deer, wild boar and nilgai) for which we had adequate camera detections. These models extract 

information from uncertain (FS) and certain (CS) survey data to estimate initial use, vital rates 

associated with seasonal use dynamics (extinction and colonization probability), and detection 

probability parameters. Model parameters, associated notations and their descriptions are 

summarized in Table 2.1.  

Table 2.1: Definitions and notations for model parameters 
Parameter (Notation) Definition 

Probability of use in winter 
(Ψw) 

Probability that a cell was used by a species in 
the first season of the study. 

Extinction probability (𝜀𝑡) Probability that a cell that is used in one season 
will not be used in the subsequent season. 

Colonization probability (𝛾𝑡) Probability that an unused cell will be used in 
the subsequent season. 

False positive detection 
probability, 𝑝10,𝐹𝑆 

Probability that an unused cell will be 
incorrectly classified as used. This probability is 
nonzero for farmer surveys (FS) only. The 
probability was zero for camera trap surveys. 

Detection probability for FS 
and CS 𝑝11,𝐹𝑆 ,  𝑝11,𝐶𝑆 

Probability of detecting a species on a survey 
occasion given the cell was used by the species 
during the survey season 

Derived Parameters  

Probability of use in summer 
(Ψs) and monsoon (Ψm) 
seasons. 

Probability that a cell was used in the summer 
and monsoon season, respectively. These 
quantities are calculated using estimates of 
winter use probabilities and associated 
extinction and colonization probabilities 

 



 

37 

For each species, we estimated parameters as functions of covariates that were a-priori 

hypothesized to influence their habitat use dynamics and detection probabilities.  We selected 

covariates that together represented the availability of vegetative cover, native habitats, and 

anthropogenic disturbances within the study area. In addition, we measured the minimum 

Euclidean distance between a cell and the nearest PA boundary and the mean elevation of each 

cell. We tested for multicollinearity among covariates based on their variance inflation factor 

(Zuur et al. 2010) and retained covariates with a value less than 5 for possible inclusion in the 

occupancy models (Appendix 2.2, Table S11). 

We modeled the initial probability of use (𝛹𝑤)—the probability of use in winter—for 

each species as a function of 5 covariates: cell-specific median NDVI values in the winter 

(NDVI_W), distance of cell to protected area boundary (PA), proportion of cell under native 

habitats (Nat), proportion of cell under human settlements (Sett) and mean elevation of the cell 

(Elev). We expected use probabilities for all species to decline with increasing distance to  PA 

boundaries (Karanth, 2016). In the winter season, standing sugarcane crop and native riparian 

grassland habitats are the principal source of vegetative cover in the matrix. Wild boar and hog 

deer are known to regularly occur within sugarcane stands and dense stands of riparian 

grasslands. We therefore expected use probabilities for these species to be higher in cells with 

dense cover reflected by a positive or quadratic relationship between initial occupancy and our 

index for cell specific winter cover availability (NDVI_W).  In contrast, we expected use 

probabilities to decline with the availability of denser cover for nilgai which uses more open 

habitats (Dinerstein, 1979). We expected cells with a higher proportion of their area under native 

vegetation (Nat) to have higher use probabilities for all three species. Conversely, we predicted 

use probabilities to decline for all species as the area covered by human settlements (Sett) 
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increased within a cell. While elevation does not vary dramatically across the study area, the 

presence of multiple drainage features lends some topographic variation to the site. Low-lying 

areas are typically characterized by marshy conditions, higher probability of inundation during 

monsoon, and are populated by either by native vegetation or sugarcane cultivation. We 

therefore expected use probabilities to be higher for wild boar and hog deer in cells with lower 

mean elevation (Elev) and lower for nilgai.  

Local extinction (𝜀𝑡) and colonization probabilities (𝛾𝑡) influence temporal habitat use 

dynamics. Extinction probability (𝜀𝑡) reflects the probability that a cell used in season t, will 

become unused in season t+1. Conversely, colonization probability (𝛾𝑡) describes the probability 

that an unused cell in season t will become used in the subsequent season (t+1). The study area 

experiences a net loss of cover in the summer season following the harvest of sugarcane. In the 

monsoon season, flooding inundates many parts of the study area, resulting in a decline in 

available habitats. Moreover, the availability of palatable forage within native grasslands inside 

PAs in the CTL is at its lowest in the winter season. Forage availability increases steadily 

through the summer and monsoon season following the burning of grasslands. We therefore 

predicted that herbivore use of matrix areas would be high during the winter season and 

progressively decline through the summer and monsoon seasons.  

False-positive dynamic occupancy models allow for the estimation of two detection 

probabilities: the probability of detecting a species given the cell is occupied (used) by the 

species (𝑝11, true detection probability) and the probability of reporting a species as present 

when the cell is unoccupied (unused) by the species (𝑝10, false-positive detection probability). 

For this study, we estimated true detection probabilities for both farmer surveys (𝑝11,𝐹𝑆) and 

camera surveys (𝑝11,𝐶𝑆) and false-positive detection probabilities (𝑝10) for the farmer surveys 
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(FS). We modeled these parameters as functions of covariates hypothesized a-priori to influence 

the detection process. We expected false-positive detection probabilities for all species to decline 

with increasing distance to protected areas (PA). Since farmers in the area believe that wild 

mammals are most prevalent in the study area during the winter season and ‘return’ to the forest 

in the monsoon season, we predicted that false-positive probabilities for all species would be 

highest in the winter season and lowest in the monsoon season.  

The probability of detecting a species given it used a cell can be influenced by the 

abundance of the species within the cell (Royle and Nichols, 2003) . We modeled true detection 

probabilities for farmer surveys (𝑝11,𝐹𝑆) and camera surveys (𝑝11,𝐶𝑆) for all species as functions 

of covariates predicted to influence species abundance at the scale of the cell. We predicted that 

detection probabilities for both FS and CS would be higher for all species in cells closer to park 

boundaries (PA) and with small settlement areas (Sett). In addition, we tested the additive effects 

of five local level covariates (Home, Dog/Fence, Wheat, Cane, Water) on detection probabilities 

using CS. We expected detection probabilities with camera traps to be higher at camera locations 

proximate to water features and sugarcane or wheat cultivation. Similarly, we predicted detection 

probabilities to be lower at camera locations with higher anthropogenic disturbance (Home) and 

the presence of crop protection measures (Dog/Fence). Finally, we predicted that true detection 

probabilities with both surveys methods would be highest in the winter season and lowest in the 

monsoon seasons reflecting our expectations of the change in abundance of the species within 

the study area across seasons.  

We tested these hypotheses in Program MARK (White and Burnham 1999) using the 

false-positive robust design occupancy model. We built models using a step-wise approach and 

compared them based on Akaike’s Information Criteria (AIC; Burnham and Anderson, 2003). 
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The step-wise approach involved comparing alternative models for a given parameter to identify 

the best supported covariate structure (lowest AIC) while holding a global covariate structure 

constant (all covariates of interest) on all other parameters. Once the best structure was identified 

for the parameter under consideration, we retained this structure and proceeded to identify the 

best covariate structure for the next model parameter. We first identified the best-supported 

covariate structure from among nine competing models for our true detection probability 

parameters (𝑝11,𝐹𝑆, 𝑝11,𝐶𝑆,). In these models, we included the cell level covariates (PA, Sett), the 

local level covariates (Home, Dog/Fence, Wheat, Cane, Water), the effect of survey season 

(Season), and survey method (Method) in various additive and interactive combinations 

(Appendix 2.2, Table S12). Retaining the best supported structure on 𝑝11 we considered three 

alternative model structures for false-positive detection probability (𝑝10,𝐹𝑆) that included both 

univariate and additive combinations of the covariates distance to protected area boundary (PA) 

and survey season (Season). Next, we considered models for initial use in the winter season (𝛹𝑤) 

where the covariates of interest (PA, Sett, Nat, NDVI_W, Elev) were included in select additive 

combinations (Appendix 2.2, Table S13), while retaining a global structure on the vital rate 

parameters (𝜀𝑡, 𝛾𝑡). Retaining the best fit structure on the detection and occupancy parameters, 

we fit seven models to explore the effects of season on extinction and colonization probabilities 

(Appendix 2.2, Table S14). We explicitly tested whether herbivore use changed among seasons by 

fitting models where either extinction and/or colonization probability were fixed to zero (i.e., models with 

no extinction and/or models with no colonization among seasons).  

At each step we also fit intercept-only models.  Our final model-set included a version of 

the best-supported model in the model-set assuming no false-positive errors (𝑝10,𝐹𝑆 = 0 for all 

survey types). Finally, using parameter estimates from the best supported model, we derived 
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estimates of the probability of cell use by herbivores for summer (𝛹𝑠) and monsoon (𝛹𝑚) seasons 

(MacKenzie et al., 2017).  

Perceived conflicts 

We summarized data from social surveys to determine the frequencies with which 

respondents reported experiencing different livelihood challenges, the frequency with which 

different species were reported as causing conflict, and the conflict prevention measures 

employed. We generated these summaries both at the scale of the study area and for individual 

cells where respondents practiced agriculture.  

Relationship between species use probabilities and perceived levels of conflicts 

For each species, we estimated conditional use probabilities for the winter season at cells 

where we conducted camera surveys. Conditional use probability, or the probability that the cell 

was used given the sampling effort, is 100 % for cells were the camera detected the species.  For 

all cells where the species was never detected using CS,  we estimated conditional use 

probabilities using eq. 1 (MacKenzie et al., 2017). We estimated use probabilities for each cell 

(Ψ̂𝑖) using coefficient estimates from the best-supported model and associated covariates. We 

estimated use (𝛹̂𝑤) and detection probabilities (𝑝̂𝑖) for each cell using covariate values and 

coefficient estimates from the best-supported model’.  𝛹̃𝑖,𝑐𝑜𝑛𝑑𝑙 = 𝛹̃𝑖 (1−𝑝𝑖)𝐽(1−𝛹̃𝑖)+ 𝛹̃𝑖 (1−𝑝̂𝑖)𝐽    eq. 1 

 

In addition, within each cell we calculated the proportion of interviewed farmers who 

reported experiencing conflicts with wild boar, nilgai or hog deer. We were interested in 

estimating the relationship between the frequencies with which species are reported as conflict 

causing with the use probabilities of these species. We therefore estimated the Pearson’s 
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correlation between each species conditional use probability at a site and the proportion of 

respondents who report the species as problematic.  

Results 

Of the 11 herbivore species found in the CTL, five were detected within agricultural 

areas with camera traps including chital, wild boar, nilgai, hog deer and swamp deer. Naïve 

estimates of the proportion of cells used for these species varied substantially between FS and 

CS and were higher for all species using FS across the three survey seasons (Table 2.2). 

Discrepancies between naïve use estimates based on FS and CS were highest for chital, wild boar 

and swamp deer  

Table 2.2: Naïve proportion of cells used by different herbivore species based on farmer surveys 
(FS) and camera surveys (CS) 

Species Winter Summer Monsoon 

 FS CS FS CS FS CS 

Chital 0.64 0.04 0.40 0.02 0.30 0.06 
Hog deer 0.75 0.40 0.59 0.39 0.46 0.28 
Swamp 
deer 

0.40 0.02 0.26 0 0.19 0.09 

Nilgai 0.96 0.46 0.83 0.25 0.76 0.21 
Wild boar 0.82 0.19 0.76 0.19 0.72 0.18 

 

Detection Probability 

Models where detection probabilities varied by method and season had the highest 

support for all three species (Appendix 2.2, Table S12). Detection probabilities via FS were 3-5 

times those for CS and were highest in the winter and lowest in the summer season (Table 2.3). 

Detection probabilities associated with FS were highest for nilgai and lowest for wild boar. 

Contrary to our expectations, the local scale covariates (Home, Dog/Fence, Water, Cane, Wheat) 

influenced the detection probabilities of wild boar and nilgai, but not hog deer.  
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As expected, proximity to water and the presence of sugarcane positively affected wild 

boar detection probabilities using camera traps whereas presence of wheat crop was associated 

with lower detection probability (Table 2.4). These covariates had the opposite effect on the 

detection probabilities of nilgai. Detection probability for the species was higher at camera 

locations proximate to wheat crop and lower at locations with water and sugarcane crop. As 

hypothesized, anthropogenic disturbance, indexed by the number of homes within a 100 m radius 

of a camera trap, negatively influenced the detection probabilities of both nilgai and wild boar. 

Unexpectedly, the presence of crop protection measures such as fencing, and guard dogs were 

associated with higher detection probabilities for both wild boar and nilgai (Table 2.4).  

Table 2.3: Species and season specific true detection probabilities (standard errors) for 
Farmer Surveys (FS) and Camera Surveys (CS) 

Species Hog deer Nilgai Wild boar 

 
FS CS FS CS FS CS 

Winter 0.84 
(0.02) 

0.27 
(0.03) 

0.92 
(0.01) 

0.32 
(0.03) 

0.59 
(0.03) 

0.14 
(0.02) 

Summer 0.64 
(0.03) 

0.11 
(0.02) 

0.85 
(0.02) 

0.18 
(0.02) 

0.45 
(0.03) 

0.09 
(0.02) 

Monsoon 0.73 
(0.04) 

0.15 
(0.03) 

0.87 
(0.02) 

0.20 
(0.03) 

0.52 
(0.03) 

0.11 
(0.02) 

 

Table 2.4: Effects of local scale covariates on specific detection probabilities associated with 
camera surveys. Beta coefficients and standard errors are based on best supported models 

Species Home Dog/Fence Water Sugarcane Wheat 

Hog deer - - - - - 

Nilgai -1.47 (0.34) 0.99 (0.47) -0.9 0.25) -0.21 (0.32) 0.13 0.26) 

Wild boar -0.13 (0.35)   0.89 (0.64)  1.37 (0.38) 0.16 (0.43)  -0.84 (0.44)  
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The cell level covariates (PA and Sett) only influenced the detection probabilities of wild 

boar. Consistent with our hypothesis, detection probabilities for the species declined with 

increasing distance to protected areas (βPA= -0.21, SE 0.03) and increasing area of settlements 

within a cell (βSett; -5.5, SE 1.67). False-positive detection probabilities varied by season for hog 

deer and nilgai and were highest in the winter but declined in the summer and monsoon season 

(Fig.2.2). False-positive probabilities for wild boar declined with increasing distance to PA 

boundaries (PA; -0.37, SE 0.08). False-positive probabilities averaged across sites was highest 

for wild boar and lowest for hog deer (Fig.2.2).  

Use Probability 

Among candidate models for winter hog deer habitat use, a model that included elevation 

(Elev), a linear relationship with cover (NDVI_W), distance to protected areas (PA), availability 

of native habitats (Nat) and proportion of cell area under settlements (Sett) had the highest 

support (Appendix 2.2, Table S13). Individual covariate effects on use probabilities estimated 

with this model were consistent with our expectations. Hog deer use increased with increasing 

cover availability, with increasing proportion of native habitats (Nat), and elevation (Elev; Table 

5). Use probabilities for hog deer decreased with increasing distance to protected areas (PA) and 

increasing proportion of settlements within a cell (Sett). For nilgai, the best supported model for 

winter use probabilities included a quadratic relationship with cover availability of cover 

(NDVI_W + NDVI_W^2) and the availability of native habitats (Nat) (Appendix 2.2, Table 

S13). As hypothesized, nilgai habitat use peaked at low cover availability and was lowest at 

intermediate and high cover availability (Table 2.5).  

None of the covariates considered were included in the best-supported model for wild 

boar winter use probabilities (Table 2.5, Appendix 2.2, table S13). However, univariate models 
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that included a linear relationship with cover (NDVI_W) and the proportion of the cell area 

under human settlements (Sett) were the second and third best supported models. Contrary to our 

hypotheses, wild boar use probabilities declined with increasing cover availability and increased 

with increasing settlement area within a cell (Table 2.5). 

Table 2.5: Covariate coefficients and standard errors associated with species-specific 
initial use probability (Ψw) based on best-supported models 

 Hog deer Nilgai Wild boar 

Intercept -59.65 (15.87) 95.75 (16.13) 0.12 (0.27) 

PA -0.23 (0.16)   

Sett -25.38 (11.55)  8.72 (7.17)* 

NDVI_W 51.01 (16.41) -732.75 (125.41) -8.02 (6.5)** 

NDVI_W^2  1383.68 (244.58)  

Nat 1.73 (1.67) 4.89 (3.08)  

Elev 312.24 (85.15)   

Estimates based on model with second (*) and third (**) highest support (Appendix 2.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Species and season specific false-positive detection probability estimates using farmer 
surveys (FS). 
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Vital rates 

Our hypothesis that use of farmlands by herbivores would decline following the winter 

season was supported only for hog deer (Appendix 2.2, table S14). A model where colonization 

probabilities were fixed at 0 had the highest support for the species (Table 2.6). Extinction 

probabilities for the species was marginally higher in the summer-monsoon transition compared 

to the winter-summer transition, resulting in a steep decline habitat use probabilities by hog deer 

in the monsoon season. As per the best-supported model, the number of sites used by nilgai 

declined slightly during the winter-summer transition, following which habitat use remained 

static in the summer and monsoon (Table 2.6, Appendix 2.2, Table S14). Wild boar was the only 

species characterized by an increase in the number of sites used in the summer season. Based on 

the best-supported model, the habitat use probabilities for wild boar increased in the summer 

season before declining in the monsoon season (Table 2.6, Fig 2.3, Appendix 2.2, Table S14). 

Table 2.6: Local extinction and colonization probabilities based on best-supported models for 
each species. 

 

Socio-economic characteristics of interviewed farmers and perceived conflicts. 

We interviewed a total of 351 farmers across 46 grid cells. All but three interviewed 

farmers were male, and the median age of respondents was 45. Flooding and crop depredation by 

wildlife were the two most frequently reported challenges. Seventy-one percent of interviewed 

farmers reported flooding as a significant challenge, whereas crop raiding by wild herbivores 

was reported by 57 % of the farmers. Other challenges reported less frequently (<5%) included 

Species Extinction 
probability 

(Winter-Summer) 

Colonization 
probability 

(Winter-Summer) 

Extinction 
probability 

(Summer-Monsoon) 

Colonization 
probability 

(Summer-Monsoon) 

Hog deer 0.05 (0.04) 0 0.21 (0.07) 0 

Nilgai 0.25 (0.06) 0.20 (0.08) 0 0 

Wild boar 0.14 (0.05) 0.37 (0.09) 0.14 (0.05) 0.05 (0.06) 
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poverty, non-profitability of agriculture, unemployment and livestock depredation. All instances 

of livestock depredation recorded were attributed to the Indian wolf (Canis lupus pallipes) and 

jackals (Canis aureus). 

 

 

 

 

 

 

 

 

 

 

 

Wild boar was the most frequently reported conflict-causing species during the survey 

period. Similarly, nilgai and hog deer were the second and fifth most commonly reported 

conflict-causing species (Fig. 2.4). Most interviewed farmers (82 %) reported using some form 

of crop protection measure including fencing, watch dogs, guarding, and chemicals repellents. 

On average, farmers reported spending approximately 60 USD annually and 8 hours per day on 

crop protection.  

Relationship between species use probabilities and perceived levels of conflicts 

For wild boar and hog deer we found no correlation between their use probabilities and 

the reported conflict frequency (ρ = 0.08 for wild boar and ρ = 0.14 for hog deer). There was 

moderate correlation between these variables for nilgai (ρ = 0.60).  

Figure 2.3: Species-specific seasonal occupancy probabilities based on mean values of covariates 
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Discussion 

We found that farmlands were used by only a subset of mammalian herbivore species 

found in the CTL. Six of the 11 species found in the CTL were never detected within agricultural 

areas. Notable among these is the black buck, whose populations are thought to exist primarily 

within unprotected grassland and agricultural areas in the larger Terai landscape (Dinerstein, 

1979). The two largest herbivore species found in the CTL, one-horned rhinoceros and Asian 

elephants, were also not detected using the study area. There have been sporadic reports of one-

horned rhinoceros moving through agricultural areas of the CTL, particularly in the northern 

sections of the study area. Elephants on the other hand, have only been reported using farmlands 

proximate to the southern boundary of Dudhwa National Park (DNP). Herbivore species that are 

largely restricted to forested habitats such as the four-horned antelope, barking deer and sambar 

deer (Appendix 2.1, Table S9) were also never detected using farmlands. Even though chital are 

Figure 2.4: Number of farmers (frequency) which reported conflicts with species across the study area 
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the most numerous wild herbivore within PAs in the CTL (Chanchani et al., 2014), nilgai, hog 

deer and wild boar were the most widely distributed species in farmlands (Fig. 2.3). Using 

camera traps, swamp deer and chital were only detected at two sites, both adjoining PA 

boundaries.  

Nilgai, hog deer and wild boar, the three most widely distributed species in the landscape, 

used agricultural areas with high probability across all three seasons. This result is consistent 

with a hog deer study conducted within native habitats in Nepal which showed that the species  

tends to show high habitat fidelity and low movement rates across seasons, including during 

periods of low cover availability (Moe and Wegge, 1997). This contrasts with tiger habitat use of 

the matrix which peaked during the winter and dropped significantly during the other two 

seasons (Chapter 1). The summer season was characterized by a decline in detection probabilities 

for all three species. We believe this decline may be indicative of a decline in the abundance of 

these species within agricultural areas suggesting movement of individuals of all three species 

into PAs. All else equal, abundance variation within a cell will lead to substantial variation in 

detection probability (Royle and Nichols, 2003). Movement into PAs may be triggered by an 

increase in forage availability within PAs in the summer season associated with the management 

practice of burning of grasslands in late winter. A study conducted in Nepal, for example, 

documented an increase in the density of hog deer within burnt grasslands in the summer season 

(Moe and Wegge, 1997). The decline in detection probabilities in the summer season may also 

result from a behavioral response to decreased cover during this season.  

Use probabilities of hog deer and nilgai were influenced primarily by the distribution of 

native habitat and agricultural crop cover (Table 2.5, Appendix 2.2, Table S13). Proportion of 

cell area under native habitats was positively associated with use probabilities for both species. 
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These native habitats are comprised of riparian vegetation that are currently threatened by 

uncontrolled livestock grazing. Dense sugarcane crop cover was associated with higher use 

probabilities for hog deer and lower use probabilities for nilgai consistent with what is known 

about the ecology of these species. Dense sugarcane stands structurally resemble native alluvial 

tall grasslands, the primary native habitats of hog deer, whereas nilgai show strong associations 

with open savanna habitats (Bagchi et al., 2004; Dinerstein, 1979). Avoidance of dense 

sugarcane stands by nilgai was evident even at finer spatial scales. Detection probabilities for 

nilgai was lower at camera locations proximate to dense sugarcane crop and higher near low 

cover crops such as wheat.   

Anthropogenic disturbances negatively impacted use probabilities of hog deer and were 

positively associated with wild boar use. Stillfried et al. (2017) demonstrated that wild boar show 

considerable behavioral plasticity when using human dominated areas and modulate exposure to 

anthropogenic risks by avoiding areas near homes. We documented a similar pattern where at 

larger spatial scales wild boar used areas with large settlements; however, at finer spatial scales 

(near camera traps) their detection probabilities declined with increasing number of homes. The 

relative insensitivity of nilgai use  to anthropogenic disturbances may reflect the fact that the 

species is not hunted by local communities due to religious taboos (Johnson et al., 2018) and that 

settlement areas offer few foraging opportunities to the species. However, like wild boar, the 

species may occur at lower densities near homes reducing its detection probability.  

Multiple studies have demonstrated that crop depredation by wild herbivores is higher 

near the boundaries of PAs (Linkie et al., 2007; Naughton-Treves, 1997). Similarly, we found 

support for a negative relationship between distance to PA boundary and use probability for hog 

deer (Table 2.6). Alluvial grassland areas that are critical hog deer habitats lie along the 
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boundaries of PAs in the CTL and are a potential reason why farmlands proximate to PA 

boundaries had higher hog deer use probabilities. The two most commonly reported crop- raiding 

species, nilgai and wild boar, however, did not show declines in their use probabilities with 

increasing distance to PA boundaries suggesting that PAs may not be an important source of 

individuals for these species. Finally, the presence of two crop guarding measures (fences and 

guard dogs) was associated with higher detection probabilities for both nilgai and wild boar. 

Other studies have found that guard animals and fencing significantly reduce crop losses 

(Karanth et al., 2013; Linkie et al., 2007). Our result may be indicative of the fact that farmers 

who experience high levels of crop depredation by these species are more likely to invest in these 

forms of crop protection measures (Karanth and Kudalkar, 2017).  

Species using novel and human dominated habitats are often characterized by behaviors 

such as increased vigilance, altered grouping patterns, and avoidance that reduce their exposure 

to anthropogenic risks (Stillfried et al., 2017) . Based on our camera trap data, we did not detect 

any age or sex bias in the use of agricultural areas by hog deer, nilgai and wild boar. However, 

our sample sizes did not allow for powerful tests of potential differences. In the case of hog deer 

and nilgai, we detected females with young fawns suggesting that these species may breed within 

agricultural areas. Grouping patterns of these species were also not markedly different from 

those seen within native habitats. Hog deer were typically detected in groups of two which is 

consistent with their grouping patterns within native habitats (Dhungel and O’Gara, 1991). 

Nilgai are known to segregate into lose groups by sex, with females and fawns grouping together 

and males occurring either solitarily or in small bachelor herds (Bagchi et al., 2008). Nilgai 

detected using camera traps within farmlands were either females with yearling and fawns or 

solitary adult males. This contradicts findings by Bayani and Watve (2016) who found that crop 
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raiding nilgai tended to be largely female, with males and young calves occurring less frequently 

within farmlands. Alternatively, wild boar were never detected in groups and most camera trap 

captures were of solitary individuals. 

Our results provide an important ecological basis for understanding farmland use and 

depredation patterns. In the CTL, herbivore use of agricultural areas is consistent with their 

habitat use patterns within native habitats. The availability of cover was a strong determinant of 

both nilgai and hog deer use patterns. For example, nilgai prefer areas with native habitats and 

areas with low cover. This suggests that depredation by nilgai is more likely in areas where low 

cover crops such as wheat and rice are grown in the proximity of native habitats. Conversely, 

depredation potential for wild boar may be higher in areas with dense patches of sugarcane 

cultivation located adjacent to large settlements. In addition, for both nilgai and hog deer, the 

presence of native habitats within a cell positively affected their use probabilities. These patches 

of riparian grassland habitats are currently threatened by intense domestic livestock grazing 

pressures. Competition for forage with domestic livestock may cause increased crop depredation 

by hog deer and nilgai in farmlands proximate to these native habitat patches. In addition, with 

increasing urbanization in the CTL, we speculate that the area will experience an increase in crop 

depredation by species such as nilgai and wild boar and a decline in overall habitat availability 

for hog deer.  

Use estimates from FS resulted in positively biased estimates of herbivore species’ 

diversity and the distribution of individual species within farmlands. There were significant 

disparities between the naïve proportion of sites occupied by different species estimated using FS 

and CS (Table 2.3).  While naïve estimates of use were higher using FS for all species, these 

disparities were especially large for chital, swamp deer and wild boar (Table 2.3). Chital and 
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swamp deer were reported as present by farmers in 65 and 40 % of the study area respectively 

however, they were detected with camera traps only at two sites proximate to PAs. We believe 

that disparities in naïve use estimates reflect the fact that farmer perceptions of the spatial 

distribution of herbivore species overestimates their true distributions. This is reflected in the 

high false-positive probabilities with which farmers report the presence of hog deer, nilgai and 

wild boar. At sites not used by wild boar, there was an 80 % probability of farmers falsely 

reporting the presence of the species (Fig. 2.2). False-positive probabilities were lower for nilgai 

and lowest for hog deer. Based on these results, we speculate that farmers in the study area 

perceive wild boar as the most abundant herbivore species followed by nilgai and hog deer.  

Farmers perceptions of the abundance of conflict-causing species is often used as an index of 

their acceptance capacity or tolerance for that species (Zinn et al., 2008). These false-positive 

probabilities may therefore also indicate low community tolerance for wild boar and nilgai, 

consistent with studies from other areas in India (Karanth and Kudalkar, 2017). 

Detection biases are also reflected in the frequencies with which conflicts with different 

species are reported. Across the study area, wild boar were reported with the highest frequency 

followed by nilgai and hog deer (Fig. 2.4). In addition, at the scale of the sampling unit, we 

found no relationship between the conditional probability that a cell was used by wild boar or 

hog deer and the proportion of interviewed farmers who report conflict with these species. This 

suggests that conflicts with wild boar and hog deer are potentially reported from cells where 

these species may not occur. Interestingly, we found a moderate correlation between nilgai use 

probabilities and the frequency with which farmers reported conflicts with the species. Perceived 

conflicts with a species may often be influenced by social, cultural and psychological factors, 

besides the direct impact of the species on a person’s livelihood (Dickman, 2010). In the absence 



 

54 

of parallel studies on the behavior and ecology of conflict species, studies on perceived levels of 

conflicts may be of limited value in inferring the distribution of conflict causing species and in 

the subsequent formulation of conflict prevention measures.  

The need to implement additional conservation measures to arrest the decline of these 

mammalian herbivorous species has been well-documented (Ripple et al., 2015). Our study 

found that agriculture, a rapidly expanding land use globally, adversely affects the populations of 

herbivore species in the CTL, either through the direct loss of habitats or by attracting 

individuals of these species to areas where they can experience higher mortality rates.  The 

conversion of native riparian grasslands to agriculture has resulted in the loss of habitat for most 

mammalian herbivore species in the CTL. For example, agriculture has resulted in a loss of 

functional connectivity between Dudhwa National Park (DNP) and Pilibhit Tiger Reserve (PTR) 

for the endangered swamp deer and possibly in the local extirpation of the threatened black buck. 

Agricultural lands, however, continue to support populations of hog deer, nilgai and wild boar, 

species which are perceived by community members to cause significant crop damage. 

Currently, interview-based data and data on human-wildlife conflicts are the primary 

sources for estimating herbivore use of agroecosystems. As a result of false positive detections, 

these data may vastly overestimate the extent to which agricultural areas are used by different 

herbivore species and their impacts on human communities. In the absence of rigorous 

verification of conflict claims, compensation schemes based on these data, while mitigating 

perceived conflicts, may do little to aid the long-term conservation of herbivores within these 

landscapes. We recommend that studies aimed at understanding human-herbivore conflicts 

within human dominated areas be paired with independent studies examining the behavior and 

spatial ecology of these species.  
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Like many landscapes in India, ongoing conservation initiatives in the CTL fall short of 

addressing conservation challenges plaguing wild herbivores in the human dominated matrix 

(Karanth et al., 2018). There is an urgent need to proactively conserve remaining native habitat 

patches and regulate the expansion of human settlements in the landscape. Additional studies are 

needed to understand both the movement ecology of herbivores within the matrix and to examine 

the effects of habitat management within PAs on seasonal habitat use patterns of these species 

both within and beyond PA boundaries. Perceived escalations in conflicts with species such as 

nilgai and wild boar have prompted contentious debates on the use of culling to reduce conflicts 

(Karanth et al., 2018). Given our results, we suggest that defensible population estimates of 

herbivore species within farmlands should be conducted prior to adopting lethal action as a 

conflict reduction measure. Finally, we recommend that conservation programs expend more 

efforts towards educating local community members about the rich diversity of wildlife species 

that occur within the CTL and working with them to identify effective measures to reduce crop 

depredation.  
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CHAPTER THREE 
 
 
 

A FRAMEWORK FOR ESTIMATING HUMANWILDLIFE INTERACTION  
 

PROBABILITIES CONDITIONAL ON SPECIES OCCUPANCY  
 
 
 

Introduction 

In many parts of the world, biodiversity conservation is undermined by habitat loss, 

fragmentation, and urbanization, all a consequence of rapid human population growth and 

unconstrained economic development (DeFries et al., 2007). Expanding human populations 

result in a net loss of habitat outside protected areas (PA) boundaries and increases the frequency 

of human-wildlife interactions (Nyhus, 2016). Human-wildlife conflicts (HWC) are a subset of 

these interactions that adversely affect species populations and human communities. Acting 

synergistically, habitat loss and HWC increase the isolation of PAs and eventually reduce the 

size of wildlife populations within them. Habitat loss beyond PA boundaries and HWC can 

significantly compromise the conservation of large mammal species characterized by their small 

population sizes and wide-ranging behaviors. The conservation of these imperiled species 

increasingly depends on extending conservation measures beyond PA boundaries with the goal 

of minimizing habitat loss and HWC. Consequently, there is growing interest in understanding 

the spatio-temporal habitat use patterns of species when they occur beyond PA boundaries and  

with the behavioral responses of wildlife that lead to HWC (Cushman et al., 2018). This 

understanding is essential in guiding spatial prioritization decisions pertaining to land-use 

planning and the implementation of conflict prevention measures within the matrix areas 

that surround PAs.  
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Space use patterns of species within matrix areas have been investigated by applying 

species distribution models to species occurrence or detection/non-detection data (Elith and 

Leathwick, 2009; Morelle and Lejeune, 2015). These approaches identify areas in the matrix that 

are “used” or “occupied” and assumed to represent suitable habitats. However, these models are 

subject to several sources of bias and may not serve as an adequate measure of the probability 

that species conflicts are likely to occur at those sites. For example, while large carnivores such 

as tigers (Panthera tigris), lions (Panthera leo) and wolves (Canis lupus) use human dominated 

areas extensively (Ferreira et al., 2018; Chapter 1), conflicts with these species are often 

clustered in space and time (Gazzola, Capitani, Mattioli, & Apollonio, 2008; Packer et al., 2019; 

Treves et al., 2004). Thus, in most landscapes, HWC typically occurs over a smaller, non-

random subset of the area over which wildlife and humans co-occur. 

Patterns of HWC have primarily been investigated using distribution models applied to 

spatial records of reported conflicts. Historical records of conflict locations (e.g. compensation 

records) or self-reporting of conflicts by affected human communities are typical sources of 

these data (Krafte Holland et al., 2018). These models allow us to infer the spatial and temporal 

drivers of conflicts across a landscape and help delineate areas at high risk for conflicts 

(Goswami et al., 2015; Miller, 2015). Such risk models, however, do not allow inference to the 

full distribution of the species across the landscape. Specifically, it is not possible to determine if 

the absence of conflicts at a site is simply the consequence of the absence of the species at the 

site, or if the species occurred at the site without conflict. Similarly, recording conflict at a site 

may not always imply that the species of interest was present at the site. This may occur when a 

conflict event is incorrectly attributed to a particular species. For example, a study collating 

instances of livestock depredation in Wisconsin found that out of the 575 cases where livestock 
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owners blamed wolves for depredation, only 60% of the cases were attributable to wolves 

following independent verification (Treves et al., 2002). Such false attribution of conflicts may 

be especially high for species for whom local community members have low tolerance 

(Suryawanshi et al., 2013). Moreover, in the absence of information on where the species occurs 

in the larger landscape,  spatial models of conflict risk do not identify the ecological factors that 

precipitate HWC, thereby limiting their applicability in forecasting where new conflicts are 

likely to emerge (Treves et al., 2011). 

Previous studies have attempted to link species distribution models with conflict risk 

models (e.g..Braunisch et al., 2011; de Souza et al., 2018). However, these studies do not 

explicitly link the probability of a species occurring at a site with conflict information—that is, 

estimating the probability of conflict occurring conditional on species occupancy. Failure to 

understand the link between species occupancy and conflict probability impacts species 

conservation efforts in multiple ways. For example, the willingness of human communities to 

coexist with a species is often linked to their perceptions of the risk that the species poses to their 

lives or livelihoods. This risk perception therefore inevitably determines the course of individual 

or management actions directed towards a species (Riley and Decker, 2000). In many cases, 

these perceptions of risks are often disproportionately higher than the real risks posed by the 

species. A study on community perceptions of risks from cougars (Puma concolor) found that a 

large proportion of respondents incorrectly believed that the risks from cougars were higher than 

those incurred when using airplanes, automobiles and tractors (Riley and Decker, 2000). 

Determining the probability of HWC conditional on species occupancy presents an effective way 

to understand and clearly communicate the risks associated with sharing landscapes with 

multiple wildlife species. In addition, for many species, our current understanding of their use of 
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human-dominated areas are based on conflict risk maps (Miller, 2015). Since the presence of a 

species in the midst of humans is implicitly linked to conflict in these risk maps, they obscure 

complex human-wildlife interactions that may be at play within the landscape. For example, a 

recent study by Laverty et al., (2019) found that pastoralist communities in Namibia experience 

both positive and negative interactions with wildlife that co-occur on their lands. In this study, 

negative interactions experienced by pastoralists were typically associated with HWC, whereas 

positive interactions included encounters that appealed to their aesthetic or spiritual sensibilities.  

In the following, we develop a Bayesian hierarchical occupancy model to integrate data 

on species occurrence and perceived or actual conflicts. In doing so, we offer a generalized 

framework for estimating the spatio-temporal dynamics of species occupancy and the probability 

of conflict occurring at a site conditional on species presence. As a novel contribution, our model 

also allows the estimation of the probability that conflicts are reported at sites the species did not 

use or occupy. After introducing the model, we provide study design recommendations based on 

a simulation study. We also illustrate the practical utility of the model by applying it to data on 

wild boar (Sus scrofa) distribution and self-reported human-wild boar conflict data generated by 

interviewing farmers in north India. These data were collected from the matrix areas of the 

Central Terai Landsacpe (CTL; state of Uttar Pradesh) , a globally significant tiger conservation 

region  (Wikramanayake et al., 2011). Our objective in applying the model to these data was to 

identify the factors associated with real and perceived conflicts with wild boar in the CTL. We 

define real conflicts as any conflict report that is recorded from a site where the species occurs, 

whereas perceived conflicts are those that are reported from a site where the species does not 

occur. The spatial patterns of real conflicts may be driven by environmental factors that 

determine the distribution of conflict causing species and influence their foraging decisions and 
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behaviors. In contrast, perceived conflicts may be driven by the attitudes of community members 

towards the species, community beliefs about the species potential to cause damage, etc. 

(Dickman, 2010). Consequently, these two types of conflicts can be resolved only by the 

application of fundamentally different mitigation measures. Our goal was to determine what 

proportion of recorded conflicts with wild boar within the CTL are perceived, and how 

community attitudes towards species conservation drive the reporting of these perceived 

conflicts. In doing so, we illustrate how our model can help illuminate the complex socio-

ecological drivers of observed patterns of conflicts with species. 

Methods 

Determining the spatio-temporal occurrence patterns of a species, and their 

environmental correlates, is a central pursuit in ecology and conservation biology. However, 

efforts to this end are often impeded by the observer’s inability to perfectly detect the species of 

interest. Occupancy modeling (MacKenzie et al., 2002) approaches offer a means to explicitly 

address potential biases in estimating habitat use probabilities arising from imperfect detection. 

Detection histories generated based on repeated searches for the species within sampling units 

constitute the primary data for estimating detection and occurrence probabilities within an 

occupancy modeling framework.  It is important to understand that occupancy, or use (that is, the 

sampling unit is not continuously occupied during the survey period) probability is a property of 

the sample unit. 

Application of occupancy models is premised on a few critical assumptions (MacKenzie 

et al., 2002). Key among these is the assumption that a species is not incorrectly recorded as 

present within an unoccupied site (i.e. no false detections). Violation of this assumption results in 

a false-positive detection error and a positive bias in the estimate of occupancy (use). False-
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positive detection errors can arise because of species mis-identification or when detections are 

assigned to an incorrect spatial or temporal survey unit. Recent studies have demonstrated that 

even low levels of false-positive detections can significantly bias inferences of site occupancy 

probability and occupancy dynamics (McClintock et al., 2010; Royle and Link, 2006). 

Miller et al., (2011; 2013) proposed a general occupancy model that explicitly 

accommodates both false- negative and false-positive detection errors. The application of these 

models necessitates the collection of additional auxiliary data that allows the estimation of the 

false-positive detection rate. These additional data may be collected under three broad sampling 

designs: 1) site confirmation design, 2) calibration design and 3) observation confirmation design 

(Chambert et al., 2015; Miller et al., 2011). The site confirmation design assumes or generates 

information on the true underlying occurrence state of a subset of sampled sites (Clement, 2016) 

determining for certain if the species truly occurs at the site. Known occurrence can be achieved 

by using an additional survey method that is known to be free of false-positive errors at all or a 

subset of the survey sites (multiple detection methods approach). It can also be achieved by 

classifying a subset of observations at a site as certain at the time of sampling (multiple detection 

states approach). Our Bayesian hierarchical model builds on the site confirmation design using 

multiple detection methods to determine the spatial correlates of species occupancy and HWC 

probabilities. 

Survey protocol 

Data on conflicts with the species of interest are collected for i = 1, 2, ...S sites or spatial 

units (sites). At each site within each of t = 1, 2, ...T primary surveys periods (seasons), conflict 

data are collected over j = 1, 2, ...J survey occasions. If interviews of community members are 

used to generate data on conflicts, each interview respondent may be treated as a survey occasion 
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(Karanth, 2016). Survey occasions may also include spatial units or temporal intervals over 

which conflict episodes are recorded at a site. Additional data pertaining to each survey occasion 

may also be collected. These surveys generate information on the number of occasions within a 

site where a conflict event with the species of interest was detected. Since the probability of 

conflict occurring at a site is conditional on the species occupying/using the site, species 

occupancy may be inferred from these conflict surveys. However, these surveys may be an 

unreliable source of information on site occupancy even if there is a small probability of  a false 

positive detection. 

Conversely, if conflicts are not recorded at a site during any of the survey occasions it is 

not possible to determine whether the site was occupied by the focal species. To estimate the true 

underlying state of the surveyed sites during each primary period, additional surveys for the 

species of interest are simultaneously conducted at all or a subset of the sites (i = 1, 2,..s; s ≤ S) 

using a method that is  assumed to be free of false-positive errors. Certain detection methods 

could include, for example, the use of camera traps, acoustic recorders, or unambiguous sign 

surveys with surveys repeated k = 1, 2, ..K times at each site within each primary period. For 

example, when using camera traps, if the species of interest is detected at a site, then it may be 

inferred with certainty that the site is occupied. Using the terminology associated with the site 

confirmation-multiple-detection methods design, we categorized the conflict surveys as a source 

of ambiguous data (i.e. they provide ambiguous information on whether or not the species occurs 

at a site) whereas the auxiliary surveys were assumed to provide unambiguous detection data. 

Model 

We adopted a Bayesian hierarchical modeling approach to predict the spatio-temporal 

dynamics of species occupancy and probability of HWC. The hierarchical model is comprised of 

two sub-components, a process model and an observation model. The process model describes 
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the ecological processes that give rise to the unobserved (latent) spatio-temporal site occupancy 

states and temporal dynamics. In the model, zi,t describes the occupancy state of a site ’i’ in 

season ’t’ for S sites surveyed over T primary seasons. A site in season ’t’ can be in one of two 

possible states, occupied (zi,t = 1) or unoccupied (zi,t  = 0) by the target species. Within a given 

season, sites are assumed closed to changes in their occupancy state. If sites cannot be assumed 

closed within a survey season then Ψ estimates site use. The occupancy state of a site ’i’ in the 

first season (zi,1) is treated as a Bernoulli random variable with occupancy probability equal to 

ψi,1. The parameter ψi,1 describes the probability a site is occupied at the start of the study and 

may be defined as a function of site-specific covariates. The occupancy state of a site zi,t may 

change between the T seasons as a result of stochastic processes or as a consequence of changing 

environmental conditions. A site occupied in one season may stay occupied in the subsequent 

season with probability φi,t. Conversely, an unoccupied site may transition to an occupied state 

with probability γi,t. Both these parameters may be related to spatio-temporally varying 

covariates. 𝑧𝑖,1~ Bernoulli 𝛹𝑖,1 

𝑧𝑖,1~ { Bernoulli (𝜙𝑡−1)          𝑧𝑖,𝑡−1  = 1  Bernoulli (𝛾𝑡−1)          𝑧𝑖,𝑡−1  =  0 

                                                                                             eq. 1 

At site i in season t, the number of occasions during which a conflict event is recorded is 

represented by wi,t. Similarly, yi,t represents the number of detections of the species at  site i in 

season t using the unambiguous survey method. For occupied sites, the number of occasions 

during which conflicts with a species is recorded (wi,t ≥ 0|zi,t = 1) is described by a binomial 

distribution with probability p11i,t. Whereas, at unoccupied sites, the number of occasions where 
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conflict with the species of interest is reported (wi,t ≥ 0|zi,t = 0) follows a binomial probability 

distribution with probability 𝑝10,𝑖,𝑡. Thus, p11 describes the probability with which conflicts with 

the focal species are recorded at a site occupied by the species. In contrast, p10 represents the 

probability with which conflicts with the focal species are recorded at a site unoccupied by the 

species. Similarly, using the unambiguous survey method (e.g., camera trap surveys), the total 

number of detections at an occupied site within a season given ’K’ survey occasions (yi,t ≥ 0|zi,t  

= 1) follows a binomial probability distribution with detection probability ’ri,t’. 

     𝑦𝑖,𝑡 ~ { 0 𝑧𝑖,𝑡 = 0    , for 𝑖 ∈  𝑠 ⊆  𝑆Binom (𝐾𝑖,𝑡, 𝑟𝑖,𝑡) 𝑧𝑖,𝑡 = 1   

𝑤𝑖,𝑡 ~ {Binom (𝐽𝑖,𝑡, 𝑝10,𝑖,𝑡) 𝑧𝑖,𝑡 = 0    , for 𝑖 ∈  𝑆Binom (𝐽𝑖,𝑡, 𝑝11,𝑖,𝑡) 𝑧𝑖,𝑡 = 1   

                                                                                                          eq. 2 

Across sites where conflicts have been reported, uncertainty lies only in whether or not 

the conflict has been correctly attributed to the focal species. This differentiates our model from 

other studies that have used an occupancy modeling framework to determine spatial HWC 

patterns (Goswami et al., 2015). In previous studies, the probability of detecting and reporting 

conflicts was assumed to be less than 1. Consequently, the state variable ψ denoted the 

probability with which HWC occurs at a site given imperfect reporting of conflicts. In contrast, 

in our model, ψ represents the probability that the species of interest occurs at a site and the 

detection probability parameters p11 and p10 represent the probability with which conflicts with 

the species are reported at sites given the species is truly present or absent. 
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Simulation study 

We assessed the ability of our model to predict species occupancy (Ψ) for a simulated 

study involving three survey seasons and an assumed decline in occupancy across seasons. We 

simulated data for 100 sites that explored multiple scenarios involving alternative probabilities of 

falsely attributing conflicts to the focal species (𝑝10) and true detection probabilities associated 

with the unambiguous survey method (r). We considered three alternative possibilities for the 

probability that conflicts would be reported for the focal species at least once at a site unoccupied 

by the species (𝑝10∗ ; 10% (low), 50% (medium), 80% (high)). We assumed that these 

probabilities remained constant across sites and seasons. For each level of 𝑝10∗  we considered 

three scenarios for the probability of detecting the species using the unambiguous method at least 

once at any site during each survey season (𝑟∗; 10 % (low), 50 % (medium) and 80 % (high)). 

For each level of 𝑝10∗ ; and r∗, we explored five alternate scenarios with respect to the proportion 

of sites where the unambiguous method is applied (5%, 20%, 50%, 75% and 100%). This 

resulted in a total of 45 alternative combinations of false positive reporting and survey effort for 

the unambiguous method.  We also set the probability of conflicts being reported at least once 

during a survey season from a site where the species truly occurs (𝑝11∗ ) as 60%. For all scenarios 

we simulated site-specific occupancy probabilities as a function of a single covariate such that 

logit (𝛹𝑖)  =  𝛽0  +  𝛽1  ∗  𝑐𝑜𝑣𝑖. We assumed that, on average, the probability of a species 

occurring at a site is 25% and that occupancy probability declines with increasing values of the 

simulated, normally distributed covariate (𝛽1 = −3). We simulated data such that occupancy 

probabilities declined across seasons by assuming low season-specific survival and colonization 

probabilities (φ1 = φ2 = 0.2 and γ1 = γ2 = 0.1. For each scenario we fit our model to 100 

simulated datasets and evaluated the precision with which the intercept (𝛽0) and slope (𝛽1) 
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parameter associated with occupancy probability were predicted. For all simulations, we used 

vague priors on all model parameters and generated 25,000 MCMC samples with a burn-in 

period of 5000 iterations. For all parameters modeled without covariates, we generated MCMC 

samples by sampling from their full conditional distributions via Gibb’s sampling, whereas for 

parameters that were modeled as functions of covariates we used the Metropolis MCMC 

algorithm (Geyer, 1997; Appendix 3.1). All simulations were carried out in the R statistical 

computing environment (R Core Team, 2013). 

Application 

We demonstrate the practical utility of this modeling approach by applying a single 

season version of the model to data on conflicts and detection collected for wild boar from an 

agricultural corridor area separating two tiger reserves (Dudhwa Tiger Reserve and Pilibhit Tiger 

Reserve) in north India. Wild boar are an important tiger prey species (Hayward et al., 2012) and 

are widely regarded as an agricultural pest across their distributional range (Lewis et al., 2017). 

We explored how conflicts with wild boar are reported from sites occupied and unoccupied by 

the species. Specifically, we were interested in understanding how attitudes towards wildlife and 

situational factors associated with farmers influence the reporting of conflicts with wild boar. We 

surveyed 46 randomly selected sites for wild boar presence and simultaneously collected data on 

human-wild boar conflicts between December 2015 and February 2016. Sites were 1.6 km X 1.6 

km grid cells selected in a spatially balanced manner using Generalized Random Tessellation 

Stratified (GRTS; Stevens and Olsen (2004)). We generated data on wild boar presence by 

placing a single motion-activated camera (Cuddeback Attack) within the cell for a period of 40 

days. The camera-trap surveys are assumed to be a source of unambiguous data, free of false-

positive errors. We interviewed farmers within a randomly selected subset (27 sites) of the sites 
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where camera-trapping was conducted. We interviewed 1-10 farmers resident within each site 

using a survey instrument designed to generate data on conflict perception, and various, social, 

economic and attitudinal variables. Using the survey instrument, we obtained data on whether or 

not the respondent was experiencing crop losses due to wildlife and what species were believed 

to be responsible. We asked each farmer to select their preferred conflict mitigation option from 

among three possible choices; 1) compensation for losses, 2) permission to take lethal action and 

3) fencing of protected areas. We also assessed the attitudes of respondents towards the 

prevailing Indian government ban on hunting of all wildlife by asking them if they favored the 

removal of the ban. Responses to all queries were recorded on a binary (Yes/No) response scale. 

We interpreted attitudes towards mitigation measures and hunting to be indicative of the degree 

of farmer tolerance for the species in general. For example, we expected that farmers who had 

low tolerance towards wild boar to be more accepting of the removal of a ban on hunting.  

We generated detection histories for wild boars using one or both survey methods for all 

sites. For the camera trap surveys, we treated each eight– day period as an occasion. For the 

farmer interview surveys, each farmer was treated as a unique survey occasion. We fit a model 

where we treated site-specific wild boar occupancy probability (Ψi) as a function of distance of 

the site to the nearest protected area boundary (PA). We evaluated how the probability of a 

farmer falsely reporting conflicts with wild boar at an unoccupied site (p10) was related to their 

tolerance for wildlife as reflected by their attitudes towards the three conflict mitigation 

measures and their attitude towards hunting. We a priori predicted that farmers who favored 

compensation (Comp) as a conflict mitigation strategy and who favored the removal of the ban 

on hunting (Hunt) were more likely to falsely report conflicts (Johnson et al., 2018). We also 

expected younger, less experienced farmers (Age) to have a higher probability of falsely 
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reporting conflicts. We evaluated the probability of a farmer reporting conflicts from a site 

occupied by wild boar (p11) as a function of their land holding size. We expected conflict 

reporting probabilities to decline with increasing farm size since smaller land holders may 

disproportionately experience the effects of significant crop depredation and therefore to be more 

likely to report the conflict. We a priori expected wild boar occupancy probabilities to decline 

with increasing distance to park boundaries. Finally, for comparison with covariate models, we 

fit models where parameters were estimated without covariates. We implemented our analysis in 

the R statistical computing environment (R Core Team, 2013). We specified vague priors on the 

model parameters and ran three chains with 50,000 MCMC samples each and used a burn-in 

period of 5000 iterations. We tested for chain convergence by calculating the Gelman-Rubin 

statistic for each parameter. We fit a total of six models and compared them based on their 

Deviance Information Criterion (DIC; Hooten and Hobbs, 2015). 

Results 

Simulation Results 

Our model recovered the data generating parameter values under all 45 simulation 

scenarios. An increase in survey effort associated with the unambiguous method resulted in 

greater precision in posterior means of parameters associated with ψ (i.e. β0 and β1). This trend 

was evident both when there was an increase in the proportion of sites where the unambiguous 

method was applied and an increase in its associated detection probability (r∗). Loss in precision 

was highest in scenarios involving high levels of false-positive reporting (𝑝10∗  = 80%) and when 

the unambiguous method was associated with low detection probability (r∗ = 10%) or was 

applied in fewer than 50% of the sites (Fig. 3.1). Loss in precision was more pronounced for the 

slope parameter (β1; Fig. 3.1b). In simulation scenarios involving medium (𝑝10∗  = 50%) and high  
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Figure 3.1: Simulation results: 95% credible intervals associated with predicted posterior mean probabilities for β0 (a) and β1 (b) 
across 45 scenarios. Data were simulated across a range of false-positive conflict reporting probabilities (𝑝10∗ ), true detection 
probabilities for the unambiguous method (r∗) and proportion of sites where the unambiguous method is applied (Effort). The true 
value of β0 (intercept) and β1 (slope) used to simulate data is indicated by the solid black line. Each dot indicates the upper/lower 
95 % credible interval associated with estimates resulting from fitting the model to 100 simulated datasets across each scenario. 

(a)  (b) 
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(𝑝10∗  = 80%) levels of false positive reporting probabilities and low true detection probabilities 

(r* = 10%), we observed a positive bias in the β1 estimates.  

Application results 

Using camera traps, we collected data on wild-boar occurrence over 286 trap weeks 

across 46 sites. Wild boar were detected at least once at nine sites across 19 trap weeks. Conflicts 

with wild boar were reported at least once at 26 of the 27 sites where we conducted interview 

surveys with farmers. Of the six candidate models, a model where the probability of falsely 

reporting conflicts with wild boars at an unoccupied site was a function of the attitudes of the 

survey respondent towards hunting (Hunt) had the highest support (Table 3.1).  

Table 3.1 Candidate models and associated DIC values. ψ- probability site is occupied 

by wild boar; p11- probability that conflict with wild boar is reported from a site 
occupied by the species; p10 probability that conflict with wild boar is reported from a 
site unoccupied by the species; r- probability that wild boar are detected using camera 
traps at a site occupied by the species 

No. Model DIC 

1 ψ(.)p10(Hunt)p11(.)r(.) 518.9 
2 ψ(.)p10(Hunt)p11(LandOwned)r(.) 522.02 
3 ψ(.)p10(.)p11(.)r(.) 525.56 
4 ψ(.)p10(Compensation)p11(.)r(.) 526.25 
5 ψ(.)p10(Age)p11(.)r(.) 527.33 
6 ψ(PA)p10(Hunt)p11(LandOwned)r(.) 688.86 

7 ψ(PA)p10(.)p11(.)r(.) 691.23 
 

Estimates of the probability that wild boar used the study area was 24% (Fig. 2). On 

average, there was an 87% probability that a farmer interviewed at random from a site used by 

wild boar would report experiencing conflicts with the species. Similarly, there was a 63% 

probability that a farmer would falsely report experiencing conflicts with wild boar from a site 

with no evidence of use by the species (Fig. 3.2). Farmers who favored the removal of the 

hunting ban had a higher probability of falsely reporting conflicts with wild boar (Fig. 3.3). The 
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probability of detecting wild boar using camera trap given the site was occupied was 33.6 % for 

each eight day survey occasion (Fig.3.2) 

 

 

Figure 3.2: Marginal posterior distributions for model parameters based on the best supported model. Ψ 
mean probability of wild boar occupancy; p11 - mean probability of conflict being reported from a site 
occupied by wild boar; p10 - mean probability of reporting conflicts from a site unoccupied by wild boar; r 
- mean probability of detecting wild boar using camera traps in an occupied site. Dotted lines indicate 
95% credible intervals 
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Figure 3.3: Mean probability of falsely reporting conflicts with wild boar by respondents who do (Yes) 
and do not (No) favor removal of the prevailing ban on hunting wildlife 

Discussion 

The model we developed allows for the joint modelling of the spatio-temporal dynamics 

of species habitat use and human-wildlife conflicts. Unlike previous efforts (Karanth et al., 

2013), in our model formulation HWC reporting probabilities are estimated conditional on the 

presence or absence of the species at the site. This allows for the estimation of the probability 

that conflicts may be falsely recorded at an unoccupied site. Our model explicitly incorporates 

ecological processes (survival and colonization) that drive changes in species distribution across 

survey seasons. The simple data collection protocol and flexible modeling approach offers a 

cost-effective and efficient strategy to monitor species space-use and conflict over large spatial 

and temporal scales. This model requires the collection of additional auxiliary data at all or a 

subset of the sites over which conflict monitoring was conducted. Our simulation results suggest 

that using auxiliary survey methods that are free of false positive errors and that have a high 
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probability of detecting the species, yields unbiased coefficient estimates across all scenarios. 

The precision of estimated coefficients varies with the probability that conflict with the species 

of interest is falsely reported at an unoccupied site. Conflict monitoring programs surveying 

species  with low human tolerance, or whose depredation patterns closely resemble those of 

other species ( e.g. wolves and coyotes ; Treves et al., 2002) are likely situations where false 

reporting of conflicts may be high. In these situations, conducting auxiliary surveys at 

approximately 50% of the sites over which conflict is being monitored are needed to precisely 

estimate species occupancy probabilities (Fig 3.1). When false-positive probabilities are very 

low, the proportion of sites where the auxiliary method should be applied depends on how likely 

conflicts are at a site where the species occurs (p11) and the probability that the auxiliary survey 

method can detect the species when it occurs (r).  

Foraging decisions made by animals are the underlying driver of the observed patterns of 

many forms of HWC (Hill, 2015). Foraging decisions typically involve tradeoffs between risks 

in accessing a food item and the net profitability of the food item (Baruch-Mordo et al., 2013; 

Blackwell et al., 2016). Long-term conflict prevention therefore depends upon clearly 

understanding what factors are driving foraging decisions by species. For example, a study of 

livestock depredation patterns by wolves in the Tibetan plateau found that while wolves occurred 

over a large portion of the landscape, attacks on livestock were non-random, occurring more I 

frequently in areas of low ruggedness (Suryawanshi et al., 2013). By allowing the estimation of 

conflict reporting probabilities conditional on the occurrence of the species at a site our modeling 

approach makes it possible to clearly determine the socio-ecological factors shaping the risk-

benefit landscape that drives depredation decisions. 

As our example illustrates, a further application of our model is in the integration of 
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social survey data on human perceptions of conflicts and the ecological drivers of species space-

use patterns. In many cases, how affected communities perceive conflicts can be at odds with the 

actual patterns of conflicts. The perceived levels of conflicts are often shaped by multiple other 

factors besides the actual impacts of the species (Dickman, 2010). These factors include human 

social (e.g. age, religion), psychological (e.g. attitudes, beliefs), situational factors (e.g. economic 

status), and other unresolved human-wildlife conflicts that may manifest as reduced tolerance. In 

our analyses, we found that community members who supported the ability to hunt wild animals 

were more likely to falsely report experiencing conflicts with wild boar (Fig. 3.3). Wild boar 

occurs in the study area with a mean probability of 24%, yet farmers perceived it to be the most 

important agricultural pest, exemplified by the fact that conflicts with the species were reported 

from all the surveyed sites. In the absence of information on the actual distribution of wild boar, 

the conflict survey data alone would lead us to believe that the species was more widespread in 

the landscape than in actuality. 

 The inclusion of auxiliary, unambiguous detection data from a subset of sites where 

conflict surveys were conducted can clarify the spatial patterns of perceived and real conflicts. 

This information has important consequences for the formulation of conflict mitigation 

measures. Where significant disparities exist between perceived and real conflicts, efforts need to 

be expended to increase the tolerance or acceptance of the species by community members. In 

the CTL, conflict mitigation should employ in a two-pronged approach that includes 

compensation for crop losses in conjunction with educational programs to improve community 

tolerance for species perceived to be sources of conflict. 

Protected areas around the world are becoming increasingly  isolated by expanding 

human populations and anthropogenic land-uses, particularly agriculture (Balmford et al., 2012; 
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Benton et al., 2003). The resulting acceleration in the loss of critical habitats outside protected 

areas and the increases in HWC pose important challenges to the conservation of species, 

particularly large-bodied, wide-ranging species (Ripple et al., 2014). Consequently, expanding 

conservation actions beyond protected area boundaries is an urgent need in most conservation 

landscapes (Stephens, 2015b). This entails not only retaining elements of the landscape that 

serve as critical wildlife habitats, or provide structural connectivity between habitat fragments, 

but also focusing on mitigating and preventing HWC related impacts on wildlife and the 

wellbeing of communities (Crespin and Simonetti, 2019; Cushman et al., 2018). Understanding 

the linkages between the probabilities with which humans and wildlife co-occur and the 

probabilities of HWC is essential for effective conservation planning measures beyond protected 

area boundaries. The model developed herein is an important step in this direction.  
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APPENDIX 1.1 

 
 
 

Covariates used to model winter occupancy probability for tigers  

Table S1: Description of covariates used in the false-positive dynamic occupancy model 
Covariate  Type and source of covariate Range  

PA Minimum Euclidean distance (km) between cell center and protected area 

boundaries. 

 

0 - 8.97 

NDVI_W, 

NDVI_S, 

NDVI_M 

A median NDVI layer for the study area was generated from NDVI data 

for date ranges spanning each of the survey seasons using the Landsat-8, 

8-Day NDVI composite data set on the Google Earth Engine platform 

(Gorelick et al. 2017). These layers were then used to calculate cell and 

season specific median NDVI values for each season. 

 

0.12 - 0.65 

0.07 - 0.39 

0.05 - 0.74 

 

 Drain All visible drainages were digitized in Google Earth. The total length (km) 

of these features within each surveyed cell was calculated in R. 

0 - 4.36 

Prey_W 

Prey_S 

Prey_M 

 

Index of prey availability within cells in winter (W), summer (S), and 

monsoon (M). (Appendix S2) 

0.88 - 1.70 

1.01 - 1.99 

1.07 - 1.66 

Prey_WS 

Prey_SM 

Calculated change in prey availability index between winter and summer 

(WS) and summer and monsoon (SM). (Appendix S2) 

-0.39 - 0.42 

-0.19 - 0.35 

Water Indicates seasonality in the occurrence of water. Values closer to 0 

indicate highly seasonal water availability whereas values closer to 100 

indicate permanent water sources. Layer was calculated by isolating the 

 0 - 92 
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‘occurrence band’ from JRC Global Surface Water Metadata (Pekel et al. 

2016) 

Tree Percent of canopy cover within a cell, calculated from Hansen Global 

Forest Change Dataset v1.5 (2000-2017) (Hansen et al. 2013). Canopy 

cover for 2016 was calculated in Google Earth Engine platform by 

deducting areas of tree canopy loss (band = “lossyear”) experienced 

between the years 2000 and 2016 from the layer depicting tree canopy 

cover in 2000 (band= “treecover2000”). Mean percent tree cover values 

were calculated for each cell. 

 

0.01 – 20.05 

Sett All settlements within the matrix were digitized in Google Earth. The 

proportion of each cell covered by settlement polygons was estimated in 

R. 

0 - 0.19 

Propnat* Proportion of native habitat within a cell. Calculated using vegetation 

cover classification map for India (Roy et al. 2006). Pixels representing 

six different native vegetation types in the study site were reclassified as 

one land-use i.e.”native habitats”. Pixels representing this vegetation class 

were summed together to calculate the proportion of each cell covered by 

native vegetation. 

0 - 1 

The proportion of native habitats within a cell (Propnat) was used only to model the cell use probabilities 

of prey species to calculate the covariate (Prey_W, Prey_S, Prey_M; Appendix S2) 
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APPENDIX 1.2 

 
 
 

Calculation of Prey availability index: Prey species occupancy models 

Prey availability is an important driver of carnivore abundance and distribution patterns 

(Karanth et al. 2011). To test the effects of prey availability on tiger use probabilities we created 

a seasonal and cell-specific prey availability index. The index was calculated using detection 

data generated using farmer surveys (FS) and camera surveys (CS) for three prey species- hog 

deer (Axis porcinus), wild boar (Sus scrofa ) and nilgai (Boselaphus tragecamerlus)- that 

commonly use the agricultural matrix. The following sections detail the steps involved in the 

calculation of this index. 

Prey occupancy models:  

Detection data for prey species generated using farmer surveys (FS) are prone to both 

false-positive and false-negative detection errors. To account for these errors in calculating an 

index of prey availability, we fit dynamic false positive occupancy models (Miller et al 2013) to 

detection/non-detection data from farmer surveys (FS) and camera surveys (CS). As with the 

models for tigers, FS is a source of uncertain detections for prey species (false-positive errors 

possible) and CS is a source of certain detections (no false-positive errors). For FS surveys, each 

farmer interviewed within a cell is treated as an occasion whereas for CS each 24-hour period is 

treated as an occasion. For each species, we used a step-wise approach and fit 7 candidate 

models (Table S2) that examined the relationship between select covariates of interest and the 

model parameters: initial probability of use (𝛹𝑤 ); vital rates (𝜀𝑡, 𝛾𝑡); true detection probability 

(𝑝11 ) and false –positive detection probability (𝑝10 ).  
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Table S2: Set of candidate models tested for hog deer, nilgai and wild boar using a step-wise 
modeling approach 

Step 𝛹𝑤  𝜀𝑡  and  𝛾𝑡 𝑝10  𝑝11  
1 PA+Propnat+Sett  Season Season Season*Method 

2 PA+Propnat+Sett Intercept only (.) Season Season*Method 

3 PA Intercept only (.) Season Season*Method 

4 Propnat Best model between step 1 and 2 Season Season*Method 

5 Sett Best model between step 1 and 2 Season Season*Method 

6 Intercept only (.) Best model between step 1 and 2 Season Season*Method 

7 Intercept only (.) Intercept only (.) Intercept only (.) Intercept only (.) 

 

Specifically, we explored the relationship between the probability of winter cell use (𝛹𝑤 ) 
and three covariates of interest. We hypothesized that for all three species 𝛹𝑤  will scale 

positively with increasing proportion of native habitats (Propnat) and negatively with the 

proportion of cell under human settlements (Sett). In addition, we predicted that 𝛹𝑤  would 

decline with increasing distance from a protected area boundary (PA).  We fit 𝛹𝑤  model 

structures with singular or additive combinations of these covariates. We tested whether vital 

rates (local colonization ( 𝛾𝑡) and local extinction (𝜀𝑡) probabilities) were similar or varied 

among seasons. The final model set and associated model selection results are included in Table 

S3.  

Species-specific model results and covariate relationships 

Based on AICc scores (Table S2), the best-supported model for hog deer was one where 

the probability of cell use in winter (𝛹𝑤 ) varied as an additive function of all three covariates 

under consideration (i.e. PA, Propnat, Sett). For nilgai, winter use probability was only a 

function of the proportion of native habitats within a cell (Propnat). Cell use was influenced only 
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by distance to protected areas (PA) for wild boar. For all three species the relationship between 

winter use (𝛹𝑤) and the covariates were consistent with our a priori expectations. Similarly, for 

all species except wild boar, models that included the effect of season (Season) on the vital rates 

( 𝛾𝑡 and 𝜀𝑡) ranked better than models that assumed these probabilities were constant among 

seasons.  

Composite prey availability index 

For each species, we calculated model-averaged season- and cell-specific estimates of use 

(𝛹𝑤 ,𝛹𝑠 , 𝛹𝑚 ) using regression coefficients from the best supported models. We then calculated a 

seasonal prey availability index for each cell (Prey_W, Prey_S, Prey_M) by summing together 

season- and cell-specific use estimates for the three species. This index represents a combined 

measure of prey availability. This covariate can take on values between 0 and 3. Higher values 

indicate higher probabilities of availability of one or more prey species. We also calculated an 

index representing the change in cell specific prey availability between seasons (Prey _WS, 

Prey_SM). This was done by subtracting the cell specific prey availability index values for the 

following season (t+1) from the current season (t)  
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Table S3: Table of model results for hog deer, nilgai and wild boar. AICc- Akaike’s information criterion score, Δ AICc - 

Difference in adjusted Akaike’s information criterion (AIC) score between best supported model and any other model, ω – 
Model weight; K- Number of parameters; Deviance - Model deviance (-2ln( Model Likelihood)) 

Model AICc Δ AICc ω K Deviance 

Hog Deer       

ΨW (PA+Propnat+Sett) εt (Season) γt (Season) p10 (Season) p11 (Season*Method) 2355.84 0.00 0.90 17 2319.45 

ΨW (PA) εt (Season) γt (Season) p10 (Season) p11 (Season*Method) 2361.61 5.76 0.05 15 2329.75 

ΨW (Sett) εt (Season) γt (Season) p10 (Season) p11 (Season*Method) 2362.50 6.65 0.03 15 2330.64 

ΨW (.) εt (Season) γt (Season) p10 (Season) p11 (Season*Method) 2366.13 10.28 0.00 12 2340.93 

ΨW (Propnat) εt (Season) γt (Season) p10 (Season) p11 (Season*Method) 2366.30 10.45 0.00 13 2338.90 

ΨW (.) εt (.) γt (.) p10 (Season) p11 (Season*Method) 2366.89 11.04 0.00 11 2343.89 

ΨW (.)εt (.) γt (.) p10(.) p11(.)  2414.90 59.05 0.00 5 2404.67 

Nilgai      

ΨW (Propnat) εt (Season) γt (Season) p10(Season) p11(Season*Method) 2951.97 0 0.30 15 2920.11 

ΨW (Sett) εt (Season) γt (Season) p10 (Season) p11 (Season*Method) 2952.21 0.23 0.27 15 2920.35 

ΨW (PA+Propnat+Sett) εt (Season) γt (Season) p10 (Season) p11 (Season*Method) 2953.24 1.26 0.16 17 2916.85 
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ΨW (.) εt (Season) γt (Season) p10 (Season) p11 (Season*Method) 2953.67 1.69 0.13 14 2924.05 

ΨW (PA) εt (Season) γt (Season) p10 (Season) p11 (Season*Method) 2953.92 1.94 0.11 15 2922.06 

ΨW (.) εt (.) γt (.) p10 (Season) p11 (Season*Method) 2963.92 11.94 0.00 12 2938.73 

ΨW (.) εt (.) γt (.) p10 (.) p11 (.) 3003.37 51.39 0 6 2991.05 

Wild Boar      

ΨW (PA) εt (.) γt (.) p10 (Season) p11 (Season*Method) 2288.99 0 0.57 13 2261.59 

ΨW (PA+Sett+Propnat) εt (.) γt (.) p10 (Season) p11 (Season*Method) 2290.04 1.04 0.33 15 2258.18 

ΨW (.) εt (.) γt (.) p10 (Season) p11 (Season*Method) 2294.38 5.38 0.03 12 2269.18 

ΨW (Sett) εt (.) γt (.) p10 (Season) p11 (Season*Method) 2295.50 6.50 0.02 13 2268.10 

ΨW (Propnat) εt (.) γt (.) p10 (Season) p11 (Season*Method) 2295.99 6.99 0.01 13 2268.59 

ΨW (.) εt (season) γt (Season) p10 (Season) p11 (Season*Method) 2297.03 8.03 0.01 14 2267.41 

ΨW (.)εt (.) γt (.) p10 (.) p11(.) 2630.78 341.78 0 5 2620.55 
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APPENDIX 1.3 
 
 
 
Model selection tables for model parameters (𝒑𝟏𝟎 , 𝒑𝟏𝟏 , 𝜳𝒘, 𝜺𝒕   𝜸𝒕) for tigers. 

 

Table S4: Model selection results for true detection probability (p11 ) and false-positive detection 
(p10 ) parameter structures. AICc- Akaike’s information criterion score, Δ AICc - Difference in 
adjusted Akaike’s information criterion (AIC) score between best supported model and any other 
model, ω – Model weight; K- Number of parameters; Deviance - Model deviance (-2ln( Model 
Likelihood)) 

 
 
 
Table S5: Model results for models evaluating covariate effects on initial use probability 𝛹𝑤 . The 
p11, 𝑝10 , 𝜀𝑡 and  𝛾𝑡 structure used for all models: 𝑝11  (Season*Method); 𝑝10 p10(Season + PA); 𝜀𝑡  (Season * (Water + PA+ NDVI_S/M));  𝛾𝑡 (Season* (NDVI_S/M + Prey_S/M + PREY_WS/SM)). 
AICc- Akaike’s information criterion score, Δ AICc - Difference in adjusted Akaike’s 
information criterion (AIC) score between best supported model and any other model, ω – Model 
weight; K- Number of parameters; Deviance - Model deviance (-2ln( Model Likelihood)) 

Model AICc Δ AICc ω K Deviance 

ΨW (PA + Drain + Sett + NDVI_W +NDVI_W^2) 1573.49 0.00 0.59 31 1503.19 

ΨW (PA + Drain + Sett + Tree + NDVI_W +NDVI_W^2) 1575.63 2.14 0.20 32 1502.75 

Model AICc Δ AICc ω K Deviance 

p10(Season + PA) p11(Season + Method) 1577.33 0.00 0.65 33 1501.86 

p10(Season + PA) p11(Season + Method+ Sett) 1579.21 1.88 0.25 34 1501.13 

p10(Season + PA) p11(Season * Method) 1582.37 5.04 0.05 37 1496.30 

p10(Season + PA) p111(Season + Method + Sett + NDVI) 1582.96 5.63 0.04 35 1502.23 

p10(Season + PA) p11(Season + Method + Sett + 
NDVI_W +NDVI_W^2) 

1594.40 17.07 0.00 36 1511.01 

p10(Season + PA) p11(Method) 1596.67 19.34 0.00 31 1526.37 

p10(Season + PA) p11(Season + Method + NDVI) 1634.09 56.76 0.00 34 1556.00 

p10(Season + PA) p11(Season + Method NDVI_W 
+NDVI_W^2) 

1670.23 92.90 0.00 35 1589.51 

p10(Season) p11(Season + Method) 1715.05 137.72 0.00 32 1642.17 

p10(PA) p11(Season + Method) 1733.37 156.04 0.00 31 1663.07 

p10(.) p11(Season + Method) 1737.25 159.92 0.00 30 1669.50 

p10(Season + PA) p111(Season) 1739.37 162.04 0.00 31 1669.07 

p10(Season + PA) p11(.) 1781.01 203.68 0.00 29 1715.79 
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ΨW (PA + Drain + Sett + Tree) 1577.10 3.61 0.10 30 1509.35 

ΨW (PA + Drain + Sett + Prey_W + Tree + NDVI_W + 

NDVI_W^2) 1577.33 3.84 0.09 33 1501.86 

ΨW (PA + Drain + Sett + Prey_W + Tree + NDVI_W) 1580.97 7.48 0.01 32 1508.09 

ΨW (Drain + Sett + Tree + NDVI_W +NDVI_W^2) 1584.15 10.66 0.00 31 1513.85 

ΨW (PA + Sett + NDVI_W + NDVI_W^2) 1585.26 11.77 0.00 30 1517.51 

ΨW (PA + Drain + Prey_W + Tree + NDVI_W + 

NDVI_W^2) 1588.23 14.75 0.00 32 1515.36 

ΨW (Drain + Prey_W + Tree + NDVI_W +NDVI_W^2) 1590.74 17.25 0.00 31 1520.44 

ΨW (PA + Sett + Prey_W) 1590.74 17.26 0.00 29 1525.52 

ΨW (PA + Drain + Tree+ NDVI_W +NDVI_W^2) 1591.52 18.03 0.00 31 1521.22 

ΨW (Sett+ Prey_W) 1592.90 19.41 0.00 28 1530.19 

ΨW (PA + Prey_W) 1594.70 21.22 0.00 28 1531.99 

ΨW (Drain) 1595.07 21.58 0.00 27 1534.84 

ΨW (Prey_W) 1595.59 22.10 0.00 27 1535.36 

ΨW (PA + Sett) 1595.65 22.16 0.00 28 1532.93 

ΨW (Drain + Tree + NDVI_W + NDVI_W^2) 1597.49 24.00 0.00 30 1529.74 

ΨW (Sett) 1600.67 27.19 0.00 27 1540.45 

ΨW (PA) 1607.90 34.41 0.00 27 1547.68 

ΨW (Tree) 1608.46 34.98 0.00 27 1548.24 

ΨW (NDVI_W +NDVI_W^2) 1611.75 38.26 0.00 28 1549.04 

ΨW (.) 1612.49 39.00 0.00 26 1554.74 

ΨW (NDVI_W) 1613.21 39.72 0.00 27 1552.99 
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Table S6: Model results for models evaluating covariate effects on local extinction probability 
(𝜀𝑡). The p11 , 𝑝10 , 𝛹𝑤 and γt structure used for all models: 𝑝11  (Season*Method); 𝑝10  (Season + PA); 𝛹𝑤  (PA + Sett + NDVI_W + NDVI_W^2 + Drain);  𝛾𝑡 (Season* (NDVI_S/M + Prey_S/M + 
PREY_WS/SM)). AICc- Akaike’s information criterion score, Δ AICc - Difference in adjusted 
Akaike’s information criterion (AIC) score between best supported model and any other model, 
ω – Model weight; K- Number of parameters; Deviance - Model deviance (-2ln( Model Likelihood)) 

Model AICc Δ AICc ω K Deviance 

εt (Season + Water + PA) 1567.31 0.00 0.14 27 1507.09 

εt (Water + PA + NDVI_S/M) 1567.57 0.26 0.12 27 1507.35 

εt (Season) 1567.79 0.47 0.11 25 1512.48 

εt (Season + PA) 1567.93 0.61 0.10 26 1510.17 

εt (Season + Water) 1568.34 1.03 0.08 26 1510.59 

εt (Season * PA) 1568.99 1.68 0.06 27 1508.77 

εt (Water + NDVI_S/M) 1569.10 1.78 0.06 26 1511.34 

εt (Season *(Water + PA)) 1569.41 2.10 0.05 29 1504.19 

εt (Season + Water + PA + NDVI_S/M) 1569.48 2.16 0.05 28 1506.77 

εt (PA + NDVI_S/M) 1569.77 2.46 0.04 26 1512.02 

εt (Season * Water) 1570.12 2.80 0.03 27 1509.89 

εt (NDVI_S/M) 1570.12 2.80 0.03 25 1514.81 

εt (Season *  NDVI S/M) 1570.20 2.88 0.03 26 1512.44 

εt (Season +  NDVI_S/M + PA) 1570.37 3.06 0.03 27 1510.15 

εt (Season + Water + PA) 1570.63 3.32 0.03 27 1510.41 

εt (Season * (NDVI S/M) 1572.24 4.93 0.01 27 1512.02 

εt (Season * (NDVI_S/M + PA)) 1572.71 5.40 0.01 29 1507.49 

εt (Water+ PA) 1573.11 5.80 0.01 26 1515.36 

εt (Season * (Water + PA + NDVI_S/M)) 1573.49 6.17 0.01 31 1503.19 

εt (PA) 1573.91 6.59 0.01 25 1518.60 

εt (Season *  (NDVI_S/M + Water)) 1574.31 7.00 0.00 29 1509.09 

εt (.) 1574.62 7.30 0.00 24 1521.74 

εt (Water) 1575.55 8.23 0.00 25 1520.24 
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Table S7: Results for models evaluating covariate effects on local colonization probability ( 𝛾𝑡). 
The  𝑝11  , 𝑝10 , 𝛹𝑤  and 𝜀𝑡  structure used for all models: 𝑝11  (Season*Method); 𝑝10  (Season + PA); 𝛹𝑤(PA + Sett + NDVI_W + NDVI_W^2 + Drain); 𝜀𝑡  (Season + PA +vWater). AICc- Akaike’s 
information criterion score, Δ AICc - Difference in adjusted Akaike’s information criterion (AIC) 
score between best supported model and any other model, ω – Model weight; K- Number of 
parameters; Deviance - Model deviance (-2ln( Model Likelihood)) 

Model AICc Δ AICc ω K Deviance 

γt (= 0) 1565.52 0.00 0.38 19 1524.50 

γt (Season *( NDVI_S/M +Prey_S/M+ Prey_WS/SM )) 1567.31 1.79 0.15 27 1507.09 

γt (NDVI_S/M + Prey_WS/SM) 1568.33 2.80 0.09 22 1520.25 

γt (Season + Prey_WS/SM) 1568.78 3.26 0.07 22 1520.70 

γt (Prey_S/M ) 1569.04 3.51 0.06 21 1523.33 

γt (NDVI_S/M + Prey_S/M) 1570.03 4.50 0.04 22 1521.95 

γt (Season* ( NDVI_S/M + Prey_S/M + 

PREY_WS/SM)) 1570.12 4.60 0.04 25 1514.81 

γt (NDVI_S/M ) 1570.21 4.68 0.04 21 1524.50 

γt (NDVI_S/M + Prey_S/M + Prey_WS/SM) 1570.72 5.19 0.03 23 1520.25 

γt (Season +  NDVI_S/M + Prey_S/M) 1570.72 5.19 0.03 23 1520.25 

γt (Season +  NDVI_S/M + Prey_WS/SM) 1570.72 5.19 0.03 23 1520.25 

γt (Season + NDVI_S/M) 1572.21 6.69 0.01 22 1524.13 

γt (Season + Prey_S/M) 1572.58 7.05 0.01 22 1524.50 

γt (Season  * (NDVI_S/M + Prey_S/M)) 1573.06 7.54 0.01 25 1517.76 

γt (Season + NDVI_S/M + Prey_S/M + Prey_WS/SM) 1573.12 7.60 0.01 24 1520.25 

γt (Season * Prey_S/M ) 1663.79 98.27 0.00 23 1613.32 

γt (.) 1679.89 114.37 0.00 20 1636.53 

γt (Prey_WS/SM) 1681.95 116.43 0.00 21 1636.24 

γt (Season) 1682.22 116.69 0.00 21 1636.50 

γt (Season * Prey_WS/SM) 1683.02 117.50 0.00 23 1632.55 

γt (Season * (NDVI_S/M + Prey_WS/SM)) 1685.03 119.51 0.00 25 1629.72 

γt (Season * NDVI_S/M) 1685.19 119.67 0.00 23 1634.72 
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APPENDIX 1.4 
 
 
 

Composite table of models fit to detection and non-detection tiger data using 3 methods over 3 seasons.  

Applying the step-wise model building process, we fit a total of 79 models. The following table includes 22 of the best 

supported models that together account for 90 % of the overall model weights. In addition, a version of the best supported model 

where the false positive probability is fixed at 0 (No false positives model) and a model without covariates (Intercept only model) are 

included for comparison. 

Table S8: Model selection results showing best supported models across all parameter model sets.  Key: 𝛹𝑤 (Best fit)- 𝛹𝑤 (PA+ Drain + 

Sett + NDVI_W^2);  𝜀𝑡 (Best fit)- 𝜀𝑡 (Season + Water + PA); p(Best fit)- 𝑝10  (Season +PA) 𝑝11  (Season+Method). AICc- Akaike’s 
information criterion score, Δ AICc - Difference in adjusted Akaike’s information criterion (AIC) score between best supported model 
and any other model, ω – Model weight; K- Number of parameters; Deviance - Model deviance (-2ln( Model Likelihood)) 

Model AICc Δ AICc ω K Deviance 

ΨW (Best fit) εt (Best fit) γt (== 0) p(Best fit) 1565.52 0.00 0.19 19 1524.50 

ΨW (Best fit) εt (Best fit) γt (Season * NDVI_S/M +Prey_S/M +PREY_WS/SM) p(Best fit) 1567.31 1.79 0.08 27 1507.09 

ΨW (Best fit) εt (Water +PA +NDVI_S/M) γt (Season *NDVI_S/M +Prey_S/M +PREY_WS/SM) p(Best fit) 1567.57 2.05 0.07 27 1507.35 

ΨW (Best fit) εt (Season) γt (Season *NDVI_S/M +Prey_S/M +PREY_WS/SM) p(Best fit) 1567.79 2.26 0.06 25 1512.48 

ΨW (Best fit) εt (Season + PA) γt (Season *NDVI_S/M +Prey_S/M +PREY_WS/SM) p(Best fit) 1567.93 2.40 0.06 26 1510.17 

ΨW (Best fit) εt (Best fit) γt (NDVI_S/M +Prey_WS/SM) p(Best fit) 1568.33 2.80 0.05 22 1520.25 

ΨW (Best fit) εt (Season + Water) γt (Season *NDVI_S/M +Prey_S/M +PREY_WS/SM) p(Best fit) 1568.34 2.82 0.05 26 1510.59 

ΨW (Best fit) εt (Best fit) γt (Season +PREY_WS/SM) p(Best fit) 1568.78 3.26 0.04 22 1520.70 

ΨW (Best fit) εt (Season *PA) γt (Season *NDVI_S/M +Prey_S/M +PREY_WS/SM) p(Best fit) 1568.99 3.47 0.03 27 1508.77 
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ΨW (Best fit) εt (Best fit) γt (PREY_S/M) p(Best fit) 1569.04 3.51 0.03 21 1523.33 

ΨW (Best fit) εt (Water+NDVI_S/M) γt (Season *NDVI_S/M +Prey_S/M +PREY_WS/SM) p(Best fit) 1569.10 3.57 0.03 26 1511.34 

ΨW (Best fit) εt (Season *Water+PA) γt (Season *NDVI_S/M +Prey_S/M +PREY_WS/SM) p(Best fit) 1569.41 3.89 0.03 29 1504.19 

ΨW (Best fit) εt (Season+ Water +PA +NDVI_S/M) γt (Season *NDVI_S/M +Prey_S/M +PREY_WS/SM) p(Best fit) 1569.48 3.95 0.03 28 1506.77 

ΨW (Best fit) εt (PA +NDVI_S/M) γt (Season *NDVI_S/M +Prey_S/M +PREY_WS/SM) p(Best fit) 1569.77 4.25 0.02 26 1512.02 

ΨW (Best fit) εt (Best fit) γt (NDVI_S/M +Prey_S/M) p(Best fit) 1570.03 4.50 0.02 22 1521.95 

ΨW (Best fit) εt (ISeason * Water) γt (Season *NDVI_S/M +Prey_S/M +PREY_WS/SM) p(Best fit) 1570.12 4.59 0.02 27 1509.89 

ΨW (Best fit) εt (NDVI_S/M) γt (Season *NDVI_S/M +Prey_S/M +PREY_WS/SM) p(Best fit) 1570.12 4.60 0.02 25 1514.81 

ΨW (Best fit) εt (Season * NDVI S/M) γt (Season *NDVI_S/M +Prey_S/M +PREY_WS/SM) p(Best fit) 1570.20 4.67 0.02 26 1512.44 

ΨW (Best fit) εt (Best fit) γt (NDVI_S/M) p(Best fit) 1570.21 4.68 0.02 21 1524.50 

ΨW (Best fit) εt (Season +NDVI_S/M +PA) γt (Season *NDVI_S/M +Prey_S/M +PREY_WS/SM) p(Best fit) 1570.37 4.85 0.02 27 1510.15 

ΨW (Best fit) εt (Season + Water+PA) γt (Season *NDVI_S/M +Prey_S/M +PREY_WS/SM) p(Best fit) 1570.63 5.11 0.02 27 1510.41 

ΨW (Best fit) εt (Best fit) γt (== 0) p10(=0) p11(Season +Method)g 1698.11 132.58 0.00 14 1668.47 

ΨW (.)εt (.)γt (.) p10(.) p11(.)h 1856.59 291.07 0.00 5 1846.369 
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APPENDIX 2.1 
 
 
 
Table S9: Mammalian herbivore species found in the Central Terai Landscape. 

Species 
Habitat 
Type 

 
IUCN 
Status 

Endemic 

Family: Cervidae    

Chital (Axis axis) F, G, S LC South Asia 

Swamp deer (Rucervus duvaucelli) G, W V India, Nepal 

Sambar (Rusa unicolor) 
F, S, Sh, 
G 

V 
South and South-
east Asia 

Hog deer (Axis porcinus) 
Sv, Sh, 
G, W 

E South Asia 

Barking deer (Muntiacus munjac) F LC 
South and South-
east Asia 

Family: Bovidae    

Four-horned antelope (Tetracerus 

quadricornis) 
F, S V India, Nepal 

Black buck (Antilope cervicapra) G, D, F NT India 

Nilgai (Boselpahus tragocamelus) G, S, F LC 
India, Nepal, 
Pakistan 

Family: Suidae    

Wild boar (Sus scrofa) 
F, G, Sv, 
Sh, W 

LC Asia, Europe 

Family: Rhinocerotidae    

One-horned rhinoceros (Rhinoceros 

unicornis) 
W, F, G V India, Nepal 

Family: Elephantidae    

Asian elephant (Elephas maximus) F, G, Sh E 
South and South-
east Asia 

IUCN Status: LC- Least concern; NT- near threatened; V- Vulnerable; E- Endangered 

Habitat Type: F- Forest; G-Grassland; S-Savanna; Sh-Shrubland; W- Wetland 

 

Table S10: Season characteristics and season-specific survey effort 

SEASON Max 

temperature, 

Precipitation, 

Cover 

FS 

Grids 

surveyed 

(farmers 

interviewed) 

CS 

Grids surveyed 

(maximum 

days) 

Winter 
(15 Dec.–15 Feb.) 

22 C, 19.1mm, 
High 

94 (565) 47 (40) 

Summer 
(15 Mar.–15 May) 

38 C, 5.8mm, 
Low 

91 (514) 43 (40) 

Monsoon 
(15 Jul.–15 Aug.) 

33.8 C, 277.4mm, 
Moderate 

85 (416) 32 (37)  
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Table S11: Description of covariates used to model winter use probabilities using false-positive 
dynamic occupancy models for nilgai, wild boar and hog deer. 

Covariate  Type and source of covariate Range  

PA Minimum Euclidean distance (km) between cell center and 

protected area boundaries. 

 

0 - 

8.97 

NDVI_W,  A median NDVI layer for the study area was generated from NDVI 

data for date ranges spanning the winter season using the Landsat-

8, 8-Day NDVI composite data set on the Google Earth Engine 

platform (Gorelick et al. 2017).  

 

0.12 - 

0.65 

 

Elev SRTM Digital Elevation data (Jaarvis et al., 2008) at 90 mtr 

resolution was used to calculate mean cell-specific elevation values 

measured in kilometers  

0.14 – 

0.17 

Sett All settlements within the matrix were digitized in Google Earth. 

The proportion of each cell covered by settlement polygons was 

estimated in R. 

0 - 

0.19 

Nat Proportion of native habitat within a cell. Calculated using 

vegetation cover classification map for India (Roy et al. 2006). 

Pixels representing six different native vegetation types in the study 

site were reclassified as one land-use i.e.”native habitats”. Pixels 

representing this vegetation class were summed together to 

calculate the proportion of each cell covered by native vegetation. 

0 - 1 
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APPENDIX 2.2 
 
 
 

Model sets for true detection, false-positive detection, initial occupancy, local extinction and local colonization probabilities for 

hog deer, nilgai and wild boar. 

Table S12: True and false-positive detection probability models Key:AICc- Akaike’s information criterion score, Δ AICc - Difference 
in adjusted Akaike’s information criterion (AIC) score between best supported model and any other model, ω – Model weight; K- 
Number of parameters; Deviance - Model deviance (-2ln( Model Likelihood)). Models for p11and p10 with highest support are shown 
in bold 
Models for 𝛹𝑤, ε, γ: Hog deer: 𝛹𝑤 (PA + Sett + NDVI_W+ NDVI_W ^2 + Elev + Nat) ε (S) γ (S) 
Nilgai: 𝛹𝑤 (PA + Sett + NDVI_W+ NDVI_W ^2 + Elev + Nat) ε (S) γ (S) 
Wild boar: 𝛹𝑤 (PA + Sett + NDVI_W+ NDVI_W ^2 + Elev + Nat) ε (S) γ (S) 
Model AICc Δ AICc ω K Deviance 

Hog deer           

p11 (S + M) p10 (S) 1905.26 0 0.28 18 1866.57 

p11 (S + M) p10 (S + PA)  1905.49 0.24 0.25 19 1864.5 

p11(S + M + Sett + PA) p10 (S + PA) 1907.51 2.26 0.09 21 1861.85 

p11 (S + M) p10 (PA) 1907.55 2.3 0.09 17 1871.16 

p11 (S + M *Resource) p10 (S + PA)  1907.67 2.41 0.08 22 1859.64 

p11 (S + M) p10 (Intercept) 1907.68 2.43 0.08 16 1873.56 

p11 (S + M * Crop Protection) p10 (S + PA)  1908.03 2.77 0.07 21 1862.36 

p11 (S + M *( Crop Protection + Resource)) p10 (S + PA) 1910.31 5.05 0.02 24 1857.49 

p11 (S + PA + Sett +M*( Crop Protection + Resource)) p10 (S + PA) 1913.16 7.9 0 26 1855.47 

p11 (M) p10 (S + PA)  1948.73 43.47 0 17 1912.34 

p11 (S) p10 (S + PA) 2279.56 374.31 0 18 2240.88 

p11 (Intercept) p10 (S + PA) 2310.07 404.81 0 16 2275.95 

Nilgai           

p11 (S + M *( Crop Protection + Resource)) + p10 (S) 2090.87 0 0.67 23 2040.45 
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p11 (S + M *( Crop Protection + Resource)) p10 (S + PA)  2093.14 2.05 0.23 24 2040.32 

p11 (S + PA + Sett + M*(Crop Protection + Resource)) p10 (S + PA) 2094.59 3.49 0.11 26 2036.91 

p11 (S + M *( Crop Protection)) p10 (S + PA)  2101.26 10.16 0 21 2055.59 

p11(S + M *( Crop Protection + Resource)) p10 (Intercept) 2106.76 15.67 0 21 2061.1 

p11 (S + M *( Crop Protection + Resource)) p10 (PA) 2108.92 17.83 0 22 2060.89 

p11 (S + M + Sett + PA) p10 (S + PA) 2116.38 25.28 0 21 2070.71 

p11 (S + M *(Resource)) p10 (S + PA) 2117.48 26.39 0 22 2069.45 

p11 (S + M) p10 (S +PA) 2120.23 29.13 0 19 2079.23 

p11 (M) p10 (S +PA) 2131.98 40.89 0 17 2095.59 

p11 (Intercept) p10 (S +PA) 2441.23 350.14 0 16 2407.12 

p11 (S) p10 (S +PA) 2442.03 350.93 0 18 2403.35 

Wild boar           

p11 (S + PA + Sett + M *(Crop Protection + Resource)) p10 (PA) 2024.96 0 0.82 24 1972.14 

p11 (S + PA + Sett + M*(Crop Protection + Resource)) p10 (S + PA) 2028.24 3.28 0.16 26 1970.55 

p11 (S + M + Sett + PA) p10 (S + PA)  2033.72 8.76 0.01 21 1988.06 

p11 (S + PA + Sett + M*(Crop Protection + Resource)) p10 (S) 2043.44 18.48 0 25 1988.2 

p11 (S + PA + Sett + M*(Crop Protection + Resource)) p10 (Intercept) 2044.39 19.43 0 23 1993.97 

p11 (S + M + Resource) p10 (S + PA) 2067.82 42.86 0 22 2019.79 

p11 (S + M *(Crop Protection + Resource)) p10 (S + PA) 2070.87 45.91 0 24 2018.05 

p11 (S + M*(Crop Protection)) p10 (S + PA)  2076.1 51.13 0 21 2030.43 

p11 (S + M) p10 (S + PA)  2077.25 52.29 0 19 2036.25 

p11 (M) p10 (S + PA)  2085.95 60.99 0 17 2049.56 

p11 (S) p10 (S + PA)  2158.22 133.26 0 18 2119.54 

p11 (Intercept) p10 (S + PA) 2165.36 140.39 0 16 2131.24 

 
Table S13: Models of initial occupancy probability (Ψw) for hog deer, nilgai and wild boar. Key:AICc- Akaike’s information criterion 
score, Δ AICc - Difference in adjusted Akaike’s information criterion (AIC) score between best supported model and any other model, 
ω – Model weight; K- Number of parameters; Deviance - Model deviance (-2ln( Model Likelihood)). PA – Distance of cell to 
protected area; Sett – Proportion of cell under human settlements; NDVI_W – Cell specific median NDVI values in winter; Elev – 
Mean elevation; Nat – Proportion of cell area under native habitats.  
Models for 𝑝11, 𝑝10, ε, γ 
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 Hog deer: 𝑝11 (S + M) 𝑝10 (S) ε (S) γ (S) 
Nilgai: 𝑝11 (S + M + Crop Protection + Resource) 𝑝10 (S) ε (S) γ (S) 
Wild boar: 𝑝11 (S + M + PA + Sett + Crop Protection + Resource) 𝑝10 (PA) ε (S) γ (S) 
Model AICc Δ AICc ω K Deviance 

Hog deer      

ΨW (PA + Sett + NDVI_W + Elev + Nat) 1902.97 0 0.747 17 1866.58 

ΨW (PA + Sett + NDVI_W+ NDVI_W ^2 + Elev + Nat) 1905.26 2.29 0.238 18 1866.57 

ΨW (NDVI_W+ NDVI_W ^2 + Elev + Nat) 1910.89 7.92 0.01 16 1876.78 

ΨW (PA + Sett) 1942.29 39.32 0 14 1912.67 

ΨW (NDVI_W + NDVI_W^2 + Nat) 1944.67 41.7 0 15 1912.81 

ΨW (NDVI_W + NDVI_W^2) 1944.76 41.79 0 14 1915.14 

ΨW (PA) 1945.9 42.93 0 11 1922.9 

ΨW (NDVI_W) 1946.27 43.29 0 13 1918.87 

ΨW (Sett) 1946.59 43.62 0 11 1923.58 

ΨW (Intercept) 1959.08 56.11 0 12 1933.88 

ΨW (Nat) 1959.29 56.32 0 13 1931.89 

Nilgai      

ΨW (NDVI_W + NDVI_W^2 + Nat) 2087.26 0 0.56 20 2043.94 

ΨW (NDVI_W + NDVI_W^2) 2087.74 0.48 0.30 19 2046.75 

ΨW (NDVI_W+ NDVI_W ^2 + Elev + Nat) 2088.34 1.08 0.23 21 2042.68 

ΨW (PA + Sett + NDVI_W+ NDVI_W ^2 + Elev + Nat) 2090.87 3.61 0.06 23 2040.45 

ΨW (PA + Sett) 2096.57 9.31 0 19 2055.58 

ΨW (Sett) 2097.37 10.11 0 18 2058.68 

ΨW (Nat) 2098.09 10.83 0 18 2059.40 

ΨW (PA) 2099.11 11.85 0 18 2060.43 

ΨW (NDVI_W) 2099.41 12.15 0 18 2060.73 

ΨW (Intercept) 2099.81 12.55 0 17 2063.42 

Wild boar      

ΨW (Intercept) 2022.66 0 0.21 18 1983.98 

ΨW (NDVI_W) 2023.31 0.64 0.15 19 1982.32 

ΨW (Sett) 2023.35 0.684 0.14 19 1982.36 
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ΨW (NDVI_W+ NDVI_W^2) 2024.03 1.36 0.14 20 1980.71 

ΨW (NDVI_W+ NDVI_W ^2 + Elev + Nat) 2024.4 1.74 0.08 22 1976.37 

ΨW (Nat) 2024.49 1.82 0.083 19 1983.49 

ΨW (PA) 2024.75 2.08 0.07 19 1983.76 

ΨW (PA + Sett + NDVI_W+ NDVI_W ^2 + Elev + Nat) 2024.97 2.3 0.06 24 1972.15 

ΨW (PA + Sett) 2025.41 2.74 0.05 20 1982.08 

ΨW (NDVI_W + NDVI_W^2 + Nat) 2026.37 3.7 0.03 21 1980.7 

 
Table S14: Models for local extinction and colonization probabilities for hog deer, wild boar and nilgai Key:AICc- Akaike’s 
information criterion score, Δ AICc - Difference in adjusted Akaike’s information criterion (AIC) score between best supported model 
and any other model, ω – Model weight; K- Number of parameters; Deviance - Model deviance (-2ln( Model Likelihood));   
Models for p11, p10 and Ψw 
Hog deer: Ψw (PA + Sett + NDVI_W+ NDVI_W ^2 + Elev + Nat) p11 (S + M) p10 (S) 
Nilgai: Ψw (NDVI_W + NDVI_W^2 + Nat) p11 (S + M + Crop Protection + Resource) p10 (S) 
Wild boar: 𝛹𝑤 (Intercept) 𝑝11 (S + M + PA + Sett + Crop Protection + Resource) 𝑝10 (PA 

Model AICc Δ AICc ω K Deviance 

Hog deer           

ε (S) γ (S1=S2=0) 1898.44 0 0.52 15 1866.58 

ε (S) γ (Intercept) 1900.69 2.26 0.16 16 1866.58 

ε (S) γ (S2=0) 1900.69 2.26 0.16 16 1866.58 

ε (S) γ (S) 1902.97 4.53 0.05 17 1866.58 

ε (Intercept) γ (S) 1903.93 5.49 0.03 16 1869.816 

ε (S2=0) γ (S2=0) 1921.74 23.29 0 15 1889.878 

ε (S1=S2=0) γ (S1=S2=0) 1932.67 34.23 0 13 1905.27 

NOFP 2161.15 262.71 0 12 2135.95 

Nilgai           

ε (S2=0) γ (S2=0) 2080.33 0 0.72 17 2043.94 

ε (S) γ (S2=0) 2082.62 2.29 0.23 18 2043.94 

ε (S) γ (S) 2087.26 6.93 0.02 20 2043.94 

ε (S2=0) γ (Intercept) 2087.65 7.32 0.01 19 2046.65 

ε (Intercept) γ (S) 2092.44 12.11 0 19 2051.45 
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ε (S2=0) γ (S1=S2=0) 2096.12 15.79 0 16 2062.01 

ε (S1=S2=0) γ (S1=S2=0) 2158.36 78.03 0 15 2126.5 

NOFP 2482.84 402.51 0 15 2450.98 

Wild Boar           

ε (Intercept) γ (S)  2020.41 0 0.44 17 1984.02 

ε (S) γ (S2=0) 2021.16 0.76 0.3 17 1984.77 

ε (S) γ (S) 2022.66 2.25 0.14 18 1983.98 

ε (Intercept) γ (Intercept)  2023.99 3.58 0.07 16 1989.87 

ε (S) γ (Intercept) 2026.15 5.74 0.02 17 1989.76 

ε (S2=0) γ (S2=0) 2028.4 7.99 0 16 1994.28 

NOFP 2037.61 17.2 0 15 2005.75 

ε (S1=S2=0) gam (S1=S2-0) 2044.02 23.61 0 14 2014.4 

Models with highest support are shown in bold. NOFP: A version of the model with the highest support in the model set for each 
species that does not include false-positive errors (𝑝10,𝐹𝑆 set to 0)
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APPENDIX 3.1 
 
 
 

Posterior distribution and marginal probability distribution for all model parameters 
 

Posterior Distribution 

 

Full Conditional Distributions 

 

We derive full conditional distributions for 𝑧𝑖,𝑡 for cases where 𝑡 = 1, 1 < 𝑡 < 𝑇 and 𝑡 = 𝑇 
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Since 𝜙𝑡describes a survival probability, this is relevant only to those sites where 𝑧𝑡−1 = 1. 
Therefore, conditioning on sites that are occupied at time t-1 we get 
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Since 𝛾𝑡 describes a colonization probability, this is relevant only to those sites where 𝑧𝑡−1 = 0 . 
Therefore, conditioning on sites that are unoccupied at time t-1 we get 

 

 

 

 

 

 

 

 

  

Since 𝑝11 describes the detection probability of the uncertain method it applies only to sites 

where 𝑧𝑖,𝑡−1 = 1 
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Since 𝑝10 is the false-positive probability for the uncertain method this is applicable only to sites 

where 𝑧,𝑖,𝑡−1 = 0 

 

 

Since r is the detection probability for the certain method this is applicable only to sites where 𝑧𝑖,𝑡−1 = 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


