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ABSTRACT 
 
 
 

1 MONTH EFFECT OF BREAKING UP SEDENTARY ACTIVITY ON INSULIN SENSITIVITY 
 

AND GLUCOSE HOMESOTASIS IN FREE-LIVING OVERWEIGHT/OBESE 
 

ADULTS 
 
 
 

Sedentary behavior (SB) triggers an inability to adjust substrate use to substrate 

availability (low metabolic flexibility, MF), which may precede glucose intolerance in the 

pathogenesis of insulin resistance. We and others have shown that frequent interruptions in SB 

leads to improved glycemic control, however the underlying role of MF in this process is 

unknown. This study examined the effects of breaking up SB on MF and glucose metabolism in 

free-living overweight and obese adults. To distinguish effects of breaking up SB from being 

physically active, we also studied a group where participants performed a single energy matched 

continuous bout of exercise. Physically inactive, adults (12F/9M, mean±SD, age: 33±8 yr, BMI: 

29.5±3.3 kg/m2) were randomly assigned to a 4 week intervention consisting of brisk walking for 

5 min each hour for 10h, 5 d/wk (MICRO, n=10), or 4 weeks of an intervention consisting of one 

continuous 45 min bout of exercise per day, 5d/wk (ONE, n=9). Outcomes assessed at baseline 

and after each intervention included: MF (waking respiratory quotient, RQ, minus sleeping RQ 

as measured in a whole room calorimeter), insulin sensitivity (SI, IVGTT), 24h glycemia 

(continuous glucose monitor), 24h glucose oxidation (U13C glucose tracer), SB, time spent 

standing, time spent stepping (ActivPAL) and TEE (double labeled water). Groups were similar 

on all outcome variables at baseline. Linear mixed models evaluated intervention and 

intervention-by-group effects. MICRO and ONE decreased time sitting and increased time 

stepping with no significant changes in TEE. Compared to ONE, MICRO decreased 24h 



iii 

 

glycemic variability (p=0.06), improved the acute whole body insulin sensitivity (p=0.08) and 

acute insulin response to glucose (AIRg) (p=0.02) , maintained exogenous glucose oxidation 

(p<0.03) and improved MF (p=0.02). Independent of time sitting and stepping, breaking up SB 

improves glucose homeostasis and MF. The effects of such an intervention in persons with type 

2 diabetes warrants further study. 
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1. INTRODUCTION 

 

Overweight and obese individuals are major health concerns in most Westernized countries1. 

Experts claim a pandemic of obesity with tremendous burdens on societies and health care 

systems1. In 2016 nearly 72% of all adults were overweight or obese2. Excess weight and obesity 

are risk factors for developing type 2 diabetes (T2D).,9.4% of the US population has been 

diagnosed with T2D, and an additional 84.1 million have prediabetes3. T2D cost US taxpayers 

$245 billion in 2012, a 41% increase from 20071. Because the epidemic has mainly occurred 

over the past 50 years, blaming genetics alone is inappropriate. With the agricultural, industrial 

and technological revolutions, both the built and social environmental factors have however 

drastically been modified, which have influenced diet and physical activity. Poor diet (high fat, 

fructose, high saturated fat, high energy density), passive transportation and general adoption of 

sedentary behaviors have become the new standards of the modern life.  

Physical inactivity (i.e. not meeting the physical activity guidelines of 150 minutes of 

moderate to vigorous physical activity) and sedentary behaviors (i.e. having a MET value 

between 1 and 1.5; equivalent to sitting or lying down)4 are recognized risk factors for 

developing metabolic diseases including obesity and T2D5. Our research group showed that 

physical inactivity induced by bed rest studies in healthy normal-weight adults lead to multiple 

metabolic alterations including whole-body and muscle insulin resistance, even when energy 

balance is maintained6. This is associated with the development of metabolic inflexibility, 

defined as the inability of the body to adjust substrate use to changes in fuel availability and 

energy demand. Metabolic inflexibility is a core component of metabolic diseases and a predictor 

of long term weight gain7. Importantly, we showed that metabolic inflexibility induced by 
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physical inactivity precedes the development of glucose intolerance6. Glucose tolerance is 

essential to metabolic health. Chronic hyperglycemia and also large fluctuations in blood glucose 

are both risk factors for developing T2D and the associated cardiovascular complications for 

people with diabetes 8.  

Based on a large body of epidemiological and experimental evidence, the key to healthy 

body composition, physiology, and T2D management is largely dependent on physical activity. 

However, while most US adults know exercise is beneficial and 62% self-reported meeting the 

ACSM physical activity guidelines of 150 minutes of moderate to vigorous physical activity 

(MVPA), only 9.6% of those surveyed actually met the guidelines based on accelerometry9. 

Some studies have even found that independent of meeting the American College of Sports 

Medicine physical activity guidelines, sedentary time showed associations with waist 

circumference, insulin, and HOMA-IR 10. Furthermore, population studies showed that adults 

who frequently interrupt their sedentary (sitting) time short bouts of activity have healthier 

metabolic profiles than adults who engage in long periods of uninterrupted sitting10. An 

increasing number of intervention studies showed that acute exposure to breaking up sedentary 

behaviors decreases post-prandial glycemia and insulinemia in adults who are normal-weight, 

overweight, obese and attained of T2D11. We and others showed that these metabolic effects 

were more pronounced than when physical activity was performed as a single continuous match 

for total active time and energy expenditure12,13. We further reported that interrupting sedentary 

time with short bouts of walking primarily increases 24-h carbohydrate oxidation, where an 

energy matched single continuous bout increased 24-h fat oxidation11. Finally, performing 

microbouts (< or equal 5-min) of activity also lowers glycemic variability the following night5. 

Based on these epidemiological and experimental evidence, the US Office of Disease Prevention 
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and Health Promotion updated in 2018 the US physical activity guidelines 14. They state that 

“adults should move more and sit less throughout the day. Some physical activity is better than 

none. Adults who sit less and do any amount of moderate-to-vigorous physical activity gain 

some health benefits.” 

 However, no study to date has proven with a long term study that “sitting less and 

moving more” has positive effects on health via a study in a free living condition or the exact 

degree of effectiveness that this has. The purpose of this study was to examine the sustained 

effect of breaking up sedentary behavior with short bouts of brisk walking over four weeks on 

glucose metabolism, insulin sensitivity, and metabolic flexibility in free-living overweight and 

obese male and female adults. To distinguish the metabolic effects of breaking up sedentary 

behavior from time spent active, this intervention was compared to a second 4-weeks one 

consisting in the performance of brisk walking as a single continuous bout matched for total 

active time. 
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2. METHODS 

 

2.1 Participants 

 

Eligible participants were males and females (premenopausal follicle-stimulating 

hormone<30mUI/mL), between ages 18-45 years old, with a body mass index (BMI) of 25-

35kg/m2, weight stable for the 6 months leading up to study (+/- 3kg), physically inactive (self-

reported < 150-min/week of moderate to vigorous physical activity), who walked less than 6,500 

steps per day (measured over 7 days via pedometer in free- living conditions) and who were 

sedentary (self-reported > 9h sitting per day). Exclusion criteria includes history of renal, 

cardiovascular, or hepatic diseases, type 1 or type 2 Diabetes, cancer, smoking, consumption of 

drugs (>40g/d), HIV positive, psychiatric disorders, or any medications that interfere with energy 

metabolism. Participants were recruited via newspapers and online advertisements, flyers, and 

emails. All subjects signed a written informed consent. This study was performed in accordance 

with the Declaration of Helsinki and approved by the Colorado Multiple Institutional Review 

Board.  

 

2.2 Study Design and Procedures 

 

2.2.1 Overall study design 
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Following a screening visit and baseline measures, participants were randomly assigned to one of 

two 4-week intervention groups. Participants consumed their normal diets throughout the 

intervention with the exception of three days prior to both pre and post chamber visits, during 

which time meals were provided. In pre and post intervention, insulin sensitivity was measured 

by an intra-venous glucose tolerance test (IVGTT), and nutrient metabolism and metabolic 

flexibility were measured during a 24h stay in a whole room calorimeter. During two weeks prior 

to the intervention and during the final two weeks of the intervention, daily glycemic variability 

was assessed by continuous glucose monitoring, total energy expenditure (TEE) and activity 

energy expenditure (AEE) were measured by the combination of doubly labelled water (DLW) 

and indirect calorimetry,  time spent in light, moderate and vigorous physical activity and time 

spent sedentary were measured by 3D-accelerometry. All study visits were done at the 

University of Colorado Hospital Clinical Trial Research Center (CTRC). Overview of the study 

design is summarized in Figure 1. 

 

Figure 1. Overall study design 
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2.2.2 Screening visit 

 

During the screening visit, participants were screened for exclusion criteria. Medical history was 

obtained, and a physical examination were conducted. Fasting blood sample was drawn. The 

International Physical Activity Questionnaire (IPAQ) was completed to inform on participant’s 

habitual physical activity. Total body mass was measured with a calibrated scale and body 

composition was determined using Dual energy X-ray absorptiometry (DXA, Hologic Delphi-W, 

Bedford, MA). Pedometers were given to the participants to record their daily steps for 7 days to 

determine their average daily steps. 

 

2.2.3 Physical Activity Interventions 

 

Participants were assigned to one of the two 4 week-interventions, which were as follows:  

- One bout of traditional exercise (ONE): Participants were asked to perform moderate-

intensity activity (brisk walking) for 45min/day, 5 days/week. Exercise days and time of 

day were determined by the participant. 

- Microbouts of exercise (MICRO): Participants were asked to break up prolonged sitting 

time by completing 5 minutes of moderate-intensity activity (brisk walking) each hour for 

10 consecutive hours, 5 days/week. Exercise days and the 10 hours containing a 

microbout were also selected by the participant. The participants were asked to complete 

10 bouts and not 9, because preliminary data showed that subjects performed 10% less of 

the physical activity when instructed to perform microbouts. The goal was therefore o 
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have them completing 45-min if moderate intensity activity per week, like participants in 

the ONE group. 

 

To ensure compliance, each subject was asked to wear an activity tracker (Charge 2, FitBit, San 

Francisco, CA) at all time except during water-based activities. Every day, the subject 

downloaded the recorded data on their personal account created by the research team. If the 

subject was not reaching the instructed level of activity required, a member of the research team 

was contacting the subject to provide advices and help finding strategy to implement the 

interventions into their daily life. An example of the data retrieved by the FitBit is shown in 

Figure 2. 

 

 

 

Figure 2. Example of the FitBit data obtained during a day with microbouts of activity to 

monitor compliance in real-time. 
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2.2.4 Physical Activity and Sedentary Behavior 

 

For 14 days before the start of the intervention and during the last two weeks of the intervention, 

daily time spent sitting, standing and stepping was monitored via ActivPAL activity monitor 

(PAL Technologies: Glasgow, Scotland) on the participants right leg, and Actigraph activity 

monitor (Actigraph GT3X+, Fort Walton Beach, FL) worn around the participant’s waist. Data 

from the monitors was time stamped and includes time spent sitting/lying, standing, and stepping 

per day. Using a customized R program15, the data is converted into a second by second file that 

can be used to determine time stepping, time sitting, time lying, breaks in sedentary time, 

number of daily steps, and duration of bouts 16,17. Time sitting and lying did not include time 

sleeping, only waking time, by using daily journals participants were given to record bedtime 

and waketime.   

 

2.2.5 Resting Metabolic Rate, Total and Activity Energy Expenditure 

 

TEE was measured for two weeks prior to the start of the intervention and during the final 2 

weeks of the intervention using the doubly-labeled water (DLW) method as previously 

described18.  Subjects ingested a premixed 2g/kg total body water (TBW, estimated as 73.2% of 

fat free mass) dose of DLW composed of 0.2 and 0.15 g/kg estimated TBW of H2
18O and 2H2O, 

respectively. Urine samples were collected on days 0 (+4 and +5 hours post dose), 1, 4, 6, 8, 12, 

14, 14+1hr. 2H and 18O enrichments were determined in urine samples by isotope ratio mass 

spectrometry (IRMS, Delta V Advantage, Thermo, Germany). TEE was calculated in MJ/d using 
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Schoeller’s equation 19,20.  The food quotient was assumed to be equal to 24h respiratory quotient 

(RQ) measured in resting condition in the whole room calorimeter.  

AEE was calculated using the following equation:  

AEE (MJ/d) = TEE (MJ/d) – TEF (MJ/d) – RMR (MJ/d); 

Where RMR is resting metabolic rate and was determined  using a metabolic cart (ParvoMedics, 

for 1hr after an overnight fast)21, and TEF is the thermic effect of food that was estimated to be 

10% of TEE (reference needed).  

 

2.2.6. Body Composition 

 

Body composition was measured in pre and post by isotopic dilution as previously described 22. 

 

2.2.7 Daily Glycemic Variability 

 

To measure the daily glycemic variability in free living conditions, a constant glucose monitoring 

system (CGMS) was worn by participants for 14 consecutive days during pre-intervention baseline 

measurements and during the final two weeks of the intervention. The CGMS (FreeStyle LibrePro, 

Abbott) is a small adhesive patch containing a micro-needle that is inserted subcutaneously into 

the triceps. Blood glucose is collected and stored every 15 minutes for the two weeks, and once 

completed, the monitor is scanned via Bluetooth and data is retrieved and stored electronically. 

Data was analyzed using a R software version 3.2.1 (www.rproject.org), to calculate various 
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glycemic variability outcomes8,15. Mean glucose (in mg/dl is the arithmetic mean of all raw CGM 

values. Standard deviation (SD) is the standard deviation of all raw CGMS glucose values taken. 

Mean amplitude of glucose excursions (MAGE) is calculated as the arithmetic average of absolute 

value differences between adjacent glucose peaks and nadirs, where differences exceed 1 SD from 

the mean. Continuous overall net glycemic action (CONGA) represents the SD of all valid 

differences between a current observation and an observation (n) hours earlier23.  

 

2.2.8. Run-in period diet and physical activity prior to the 24h stay in the whole room 

calorimeter and during the study visit 

 

All the meals were provided by the University of Colorado Anschutz Metabolic Kitchen. A 

three-day run-in diet was provided to the subjects during their run-in period, 3 days prior to their 

chamber stay, in both pre and post intervention. The macronutrient composition of the diet was 

30% fat, 55% carbohydrates, and 15% protein of total energy intake. Percent energy per meal 

was as 30% breakfast, 35% lunch, 35% dinner. Total energy was calculated to match their free 

living energy requirements by using resting metabolic rate (RMR) which was derived from the 

average of (1) direct measurement via hood indirect calorimetry and (2) the equation: 24hr 

intake= (23.9 x FFM in kg) + 372, dual energy X-ray absorptiometry (DXA), and an activity 

factor estimated from the free living activity of the participants (ActivPAL data, IPAQ data and 

pedometer data). During the run-in period, participants were instructed to perform the physical 

activity regimen they were assigned to including the day prior to the study visit. 

The assessment of energy needs in the chamber used the same equation but an activity factor of 

1.5 was applied to all our subjects based on data from prior studies including chamber visits11,24. 
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Macronutrient composition was (65%, 20% and 15% of total energy intake for CHO, fat and 

protein respectively). Breakfast, lunch, dinner and snack respectively represented, 30%, 30%, 

30% and 10% of total energy intake. To avoid deconditioning while confined in the chamber, 

subjects were asked to perform three bouts of stepping to mimic their baseline physical activity. 

The duration of the stepping bout was adjusted individually based on their daily steps recorded in 

free living conditions by the activity monitors. The estimated energy expenditure induced by 

stepping was added to the total estimated energy intake. Duration of stepping bout as well as 

total energy intake were similar in pre and post intervention.  

 

2.2.9 Twenty-four hour chamber visit 

 

Participants reported to CTRC at 0700h, voided and were weighed. An IV catheter was placed 

into the antecubital vein for collecting blood samples, and baseline breath tests were collected. 

Subjects then entered the whole-room calorimeter at 0800 for a 23-h stay. Participants remained 

seated and quiet for one hour to achieve steady state within the calorimeter. Breakfast, lunch, 

dinner, and snack were provided at 0900h, 1300h, 1830h, and 2130h with the same 

macronutrient composition and energy intake as the run in diet. Four grams of a U-13 stable 

isotope tracer were given in the breakfast meal to measure exogenous carbohydrate oxidation. 

CO2 measurements and blood samples were collected every hour for 14 consecutive hours 

(0900h-2200h), and again at 0600 the following morning. Urine was collected in one jug for the 

“waking time” (0900h-2230h), and a different jug for “sleep-time” (2230h-0600h). Participant 

exited the room at 0700 the following morning. Stepping bouts were performed at 1100h, 1500h, 

and 1900h using an aerobic step and stepping 72 beats per minute. 
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2.2.10. Twenty-four total and exogenous substrate oxidation 

 

O2 consumption (VO2) and CO2 production (VCO2) were determined from the flow rates and 

differences in gas concentrations between air entering and air exiting the calorimeter as 

previously described25, providing respiratory quotient (RQ) values. To isolate the non-protein 

respiratory quotient (npRQ), urinary nitrogen excretion was used.  

 

Participants also collected an hourly breath sample for 13CO2 by blowing through a tube into two 

15 ml vacutainer tubes. Breath CO2 was sampled directly from the vacutainer with a syringe, and 

13CO2/12CO2 was measured with isotopic ratio mass spectrometer (IRMS, Delta V, Thermo 

Electron, Bremen, Germany). The average baseline enrichment value was subtracted from the 

enrichment relative to the subject’s own baseline. By using time matched CO2 production rates 

from the whole room calorimeter, 13C glucose was calculated as the instantaneous percentage 

recovery of 13C in expired CO2 per hour for 14-h and after 24-h. 

 

 

2.2.11. Insulin Sensitivity 

 

Whole body insulin sensitivity was determined via ‘intravenous glucose tolerance test’ (IVGTT). 

Participants reported to the CTRC at 0700h after an overnight fast. Participants were instructed 

to maintain physical activity three days prior to the test. They were also asked to eat a high carb 
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diet the night prior that contained either pasta, potatoes, rice or white bread (examples of meals 

were provided to the participants). They were asked to take pictures and write down in a dietary 

log the exact meal they consumed in pre intervention and to have the exact same meal post-

intervention. For the IVGTT, two antecubital catheters were inserted, one on one arm for 

infusion of exogenous glucose and insulin, and one on the other arm for blood draws. After 

baseline samples were obtained at minute 0, intravenous glucose (0.3 g/kg) was infused over 1 

minute and samples were collected at minutes 2, 3, 4, 5, 6, 8, 10, 12, 14, 16,and 19. After 19 

minutes, 0.03U/kg of insulin was administered and blood samples were collected at minutes 22, 

23, 24, 25, 27, 30, 40, 50, 70, 90, 100, 120, 140, 160, and180. 

 

2.2.12.. Plasma metabolite and hormones analysis 

Whole blood was added to a preservative (3.6 mg EDTA plus 2.4 mg glutathione in distilled 

water). Plasma and serum were separated after spinning and stored at -80 until analyzed. EDTA 

plasma samples were analyzed for glucose and insulin. Insulin concentrations were measured 

using a standard double antibody radioimmunoassay (EMD Millipore, St Charles, Missouri). 

Serum glucose concentrations were determined using the hexokinase method (reference). 

 

2.3 Data and Statistical Analysis 

 

2.3.1. Metabolic Flexibility 
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Metabolic flexibility, i.e. shift from carbohydrate oxidation during the day (while feeding) to fat 

oxidation at night (while fasting), was assessed as the delta between the waking npRQ and sleeping 

npRQ values.  

 

Metabolic flexibility = npRQ= waking npRQ – sleeping npRQ 

 

A metabolically flexible individual utilizes primarily carbohydrates during the daytime as they 

are feeding, and oxidize primarily fat during fasting hours at night. Therefore, a metabolically 

flexible individual who is capable of a large change in substrate utilization based on availability 

of the course of 24 hours, have a greater arithmetic difference between waking npRQ and fasting 

npRQ than someone who is metabolically inflexible.  

 

2.3.2. Insulin Sensitivity Analysis 

 

The minimal model analysis by Richard Bergman’s MinMod program (MINMOD 6.02, 

MinMod, Los Angeles, CA, USA) has been applied to various insulin resistant states, including 

obesity, gestational diabetes, experimental hyperinsulinemia, and insulin dependent diabetes 26. It 

uses a mathematical model to examine the closed system feedback loop of the body in response 

to an IVGTT (Figure 3). Outcome variables include insulin sensitivity (SI) which represents the 

effect of insulin to accelerate the ability of glucose to enhance glucose disappearance from 

extracellular fluid via suppression of endogenous glucose output and increased glucose disposal. 

The first phase of the body’s response to exogenous glucose can be measured via the Acute 
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Insulin Response to glucose (AIRg). This is found by calculating the area under the curve from 

the start of the mixing phase up until the exogenous insulin is pushed, and is indicative and the 

body’s endogenous response to glucose. Lastly, is glucose effectiveness (Sg), or the ability of 

glucose to clear itself without the presence of insulin. This is hypothesized to be via uptake in the 

brain. However, it is known that Beta cells can compensate for lack of insulin sensitivity by 

upregulating insulin secretion; using the fourth variable called Disposition Index (DI) which is 

the product of SI x AIRg. If an individual’s endogenous organs become less insulin sensitive 

pancreatic beta cells will compensate for this by releasing more insulin; this produces a larger 

AIRg which will compensate for the decrease in SI and allow a healthy individual to maintain 

their DI. A DI that changes overtime shows the lack of ability to compensate and becomes a risk 

factor for developing diabetes27.  

 

 

Figure 3.  Example of the plasma glucose and insulin concentrations during an IVGTT. Blue 

represents blood glucose post exogenous bolus is given in minute 1 Green represents blood 
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insulin (the first peak representing endogenous insulin in response to glucose, the second peak 

representing exogenous insulin being given at minute 19).  

 

2.3.3. Statistical analysis 

 

 Changes (pre vs post) in 24 hour sitting/lying, stepping and standing time, waking sedentary 

time, 24hr TEE and AEE, RMR, body weight and composition, daily glycemic variability, whole 

body insulin sensitivity, 24hr exogenous CHO oxidation, 24h npRQ and metabolic flexibility 

were analyzed using linear mixed model with time as repeated effect, group and group by time 

interaction as main effect and subjects as random effect with compound symmetry as covariance. 

Associations between primary outcomes were determined using linear mixed model as well. 

Mean and standard deviation (SD) were reported unless stated otherwise. Significance was set up 

at  p<0.05 except for the time-by-group interaction for which it was set up at 0.1. Statistical 

analysis were performed with SPSS software (SPSS v.22, SAS, IBM).  
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3. RESULTS 

 

3.1 Participant Characteristics 

To date, nineteen sedentary adults (n=7M/12F; 33.0±8.3 years; BMI=29.9±3.0 kg/m2) out of 28 

participants completed the study. There were no differences at baseline among groups, and 

participant’s characteristics are displayed in Table 1.  

Table 1. Anthropometric characteristics of study participants 

 
MICRO ONE 

Sex 3M/6F 4M/6F 

Age (year) 32.8 ± 10.0 33.1 ± 6.5 
Body weight (kg) 87.9 ± 12.7 80.2 ± 10.7 
Lean body mass (kg) 51.3 ± 8.3 50.1 ± 9.3 
% Fat Mass 41.3 ±7.2) 31.1 ±7.4 
BMI (kg/m2) 31.1 ± 3.9) 28.1 ± 2.1 
Step counts (pedometer) 4782 ± 993 4954 ± 1286 

Mean (±SD) 

 

3.2 Changes in sedentary behavior, physical activity, energy expenditure and body 

composition 

At baseline, participants in ONE spent more time stepping than those in MICRO (p<0.05). No 

other baseline difference was observed. Stepping time over 24hr, sitting/lying time over 24hr 

(sedentary time), and TEE are shown in Figure 2. As designed, both ONE (1.12±0.52 versus 

1.77±0.88 hrs) and MICRO (1.91±0.74 versus 2.19±0.86 hrs) increased time spent stepping over 

24hours. Neither MICRO nor ONE modified time spent sedentary over waking hours, 

sitting/lying over 24h and standing. Similarly, no significant changes were observed in TEE, 
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AEE and physical activity level (PAL). RMR tended to increase (p=0.07) after four weeks of 

active intervention but was no longer modified when the slight increase in FFM (p=0.07) was 

taken into account. Body and fat mass were maintained, indicating that subjects were in stable 

energy balance. No between-group nor interaction were observed (Figure 4). 

 

Table 2. Effects of 4 weeks of MICRO versus ONE on body composition, RMR, TEE, AEE, 

PAL measured by doubly labeled water and a metabolic cart 

 
MICRO ONE Group 

effect 
Interven

tion 

effect 

Group-

by-

Interventi

on effect 

 
PRE POST PRE POST 

n 8 8 8 8       

Body mass (kg) 

  

84.5 ± 
13.8 

84.6 ±14.5 78.1 ± 
10.0 

79.8 ± 
10.0 

0.4 0.2 0.2 

Fat mass (kg) 

  

34.1 ± 
12.1 

33.0 ±12.7 26.9 ± 
5.6 

27.0 ± 
4.6 

0.2 0.6 0.5 

Fat free mass 

(kg) 

  

50.4 ± 6.1 51.6 ± 6.4 51.3 ± 
10.0 

52.8 ± 
10.1 

0.8 0.07 0.8 

Percent body 

fat (%) 
39.5 ± 8.6 38.1 ± 8.6 34.7 ± 

7.0 
34.1 ± 

6.4 
0.3 0.3 0.6 

RMR (MJ/d) 
 

6.43 ± 0.7 6.64 ± 
0.93 

6.59 ± 
1.1 

6.91 ± 
1.1 

0.6 0.07 0.7 

RMR/FFM 

(MJ/D/kg) 
0.13 ± 
0.01 

0.13 ± 
0.01 

0.13 ± 
0.01 

0.13 ± 
0.02 

1.0 0.2 0.4 

TEE (MJ/d) 
 

10.8 ±  2.1 10.7 ± 1.6 11.6 ± 
3.3 

12.8± 
3.5 

0.2 0.3 0.4 

TEE/FFM 

(MJ/d/kg) 
0.21 ± 
0.04 

0.21 ± 
0.02 

0.22 ± 
0.03 

0.24 ± 
0.03 

0.14 0.4 0.2 

AEE (MJ/d) 
 

4.16 ±  1.8 4.10 ± 
0.82 

5.02 ± 
2.4 

5.95 ± 
2.9 

0.14 0.5 0.4 

AEE/FFM 

(MJ/kg) 

 

0.09 ±  
0.04 

0.08 ± 
0.01 

0.09 ± 
0.03 

0.11 ± 
0.04 

0.2 0.6 0.3 

PAL 

(TEE/RMR) 
 

1.64 ±  
0.26 

1.62 ± 
0.09 

1.76 ± 
0.27 

1.86 ± 
0.38 

0.09 0.7 0.5 

Mean ±SD 
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Figure 4. Waking sitting, standing, stepping and doubly-labelled water-derived total energy 

expenditure (TEE), before (PRE) and during the last two weeks of a 4-week intervention (POST) 

consisting of either nine 5-min brisk walking bouts per day, 5 d/wk (n=9, MICRO) or of 45-min 

brisk walking performed once per day, 5 d/wk (n=10, ONE). 

 

** 1 MICRO and 2 ONE group participants were excluded from this data set due to inability to 

analyze doubly labeled water data 

Group: p=0.2 
Intervention: p=0.3 
Grp x Intervent: p=0.4 
 

Group: p=0.8 
Intervention: p=0.02 
Grp x Intervent: p=0.3 
 

Group: p=0.6 
Intervention: p=0.2 
Grp x Intervent: p=0.9 
 

Group: p=0.3 
Intervention: p=0.7 
Grp x Intervent: p=0.08 
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3.3 Daily Glycemic Variability 

Data obtained over 14 days from the CGMS in pre and during the last two weeks of the intervention 

are provided in Table 3. No between-group differences at baseline were observed. Mean, SD, 

MAGE, and CONGA did not differ between the groups. Intervention-by-group interactions were 

observed for SD, MAGE, and CONGA (p<0.1 for all). While MICRO decreased SD from 0.95 

±0.28 to 0.81±0.21 mg/dl, ONE increased SD from 0.78±0.14 to 0.81±0.16 (p=0.06). MICRO 

decreased MAGE from 2.4±0.9 to 2.0±0.5, ONE increased MAGE from 1.9±0.5 to 2.2±0.5 

(p=0.03). MICRO increased CONGA from 3.9±0.4 to 4.3±0.7, ONE decreased CONGA from 

4.2±0.6 to 4.0±0.7 (p=0.07). Daily mean glucose was not modified by either of the active 

interventions. 

 

Table 3. Effects of 4 weeks of MICRO versus ONE on 24hr glycemia measured by CGMS 

 
MICRO ONE Grou

p 

effect 

Interventi

on effect 
Group-by-

Interventi

on effect 

 
PRE POST PRE POST 

n  9 9 9 9       
Mean glucose 

(mg/dl) 
4.7 ± 0.44 5.0 ± 0.78 4.9 ± 0.60 4.7 ± 0.79 0.9 1 0.12 

SD 
(mg/dl) 

  

0.95 ± 
0.28 

0.81 ± 
0.21 

0.78 ± 
0.14 

0.81 ± 
0.16 

0.3 0.2 0.06 

MAGE 
 

  

2.4 ± 0.89 2.0 ± 0.49 1.9 ± 0.45 2.2 ± 0.51 0.6 0.3 0.03 

CONGA 

 
  

3.9 ± 0.44 4.3 ± 0.69 4.2 ± 0.55 4.0 ± 0.66 0.9 0.8 0.07 
  

Mean ±SD , Standard deviation (SD), mean amplitude of glucose excursions (MAGE), continuous 

overall net glycemic action (CONGA) 

**1 ONE group participant was excluded due to loss of CGMS monitor by participant 
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3.4 Insulin Sensitivity 

 

Data from the IVGTT are reported in Table 4. No between-group differences at baseline were 

observed. No group effect was observed in SI, AIRg and DI. Intervention-by-group interaction 

were observed for SI (p=0.08) and AIRg (p=0.02). While MICRO increased SI from 5.5 (±3.2) 

[mU/l]−1 min−1 to 11.3 (±12.5) , ONE decreased SI from 6.6 (±5.2) to 5.8 (±4.5). While MICRO 

increased AIRg from 603.9 (441.7) mU/l × min to 470.3 (±560.1) , ONE decreased AIRg from 

673.2 (±419.9) to 810.5 (±573.1). None of the physical activity interventions modified DI. 

Although the activity interventions did not change Sg, it tended to be lower in MICRO than in 

ONE (group effect: p=0.08) across the intervention period. 

 

Table 4. Effects of 4 weeks of MICRO versus ONE on whole body insulin sensitivity measured 

by IVGTT 

 
MICRO  ONE Group 

effect 
Interventi

on effect 
Group-by-

Interventi

on effect 

 
PRE POST PRE POST 

n 9 9 10 10       

SI 

([mU/l]−1 min−1 

)  

5.5 ±  
3.2 

11.3 ± 
12.5 

6.6 ±  
5.2 

5.8 ± 
4.5 

0.4 0.18 0.08 

AIRg 
(mU/l × min)  

603.9 ± 
441.7 

470.2 ± 
560.1 

673.2 ± 
419.9 

810.5 ± 
573.1 

0.4 1 0.02 

DI 2549.1 ± 
1421.8 

2307.2 
± 

1991.2 

3428.2 ± 
1656.7 

3507.0 ± 
2111.9 

0.18 0.8 0.7 

Sg  
(min−1 ) 

0.021 ± 
0.012 

0.015 ± 
0.010 

0.029 ± 
0.013 

0.025 ± 
0.012# 

0.08 0.16 0.7 

Mean ±SD , #p=0.07 vs. MICRO; IVGTT, Intra-venous glucose tolerance test; MICRO, 4 weeks 

of microbouts of activity (9 bouts of 5-min brisk walking, 5 d/wk); ONE, 4 weeks of single 

continuous 45-min of brisk walking (5d/wk) 
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3.5 Metabolic Flexibility and Substrate Utilization 

No between-group difference was observed at baseline. A group-by-intervention interaction was 

observed for the index of metabolic flexibility, i.e. delta between day npRQ and night npRQ; 

while it increased in MICRO, it did not change in ONE (p=0.03; Figure 5). While MICRO (post: 

59.5±7.0% versus pre: 46.3±8.9% recovery of ingested dose) maintained 24h exogenous 

carbohydrate oxidation at baseline levels, ONE decreased it (post: 59.9±5.4% versus pre: 

50.4±7.8% recovery of ingested dose; group-by-intervention interaction: p=0.007).  

 

 

Figure 5. Effect of 4 weeks of microbouts of activity (MICRO, n=9) vs single continuous bouts 

of activity (ONE, n=10) matched for total active time (45-min), on 24h exogenous carbohydrate 

oxidation and metabolic flexibility in overweight/obese adults. 

 

 

Group: p=0.5 
Intervention: p=0.12 
Grp x Intervent: p=0.03 
 

Group: p=0.1 
Intervention: p=0.07 
Grp x Intervent: p=0.007 
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4. DISCUSSION 

 

In this longitudinal randomized intervention study, we showed that four weeks of 

frequent interruptions of sedentary time with short bouts of brisk walking performed each hour 

for nine consecutive hours reduce glycemic variability, improve whole body insulin sensitivity, 

and improve metabolic flexibility to a greater extent than four weeks of intervention consisting 

of a single bout of brisk walking matched for total active time. Importantly, these differential 

metabolic responses were observed while both interventions had similar impact on the pattern of 

physical activity, i.e. increase in time spent stepping and MVPA, decrease in time spent sitting 

and light-intensity activity, and no change in AEE or TEE. These results indicate that the 

beneficial effects of breaking up sedentary behaviors are independent of changes in time spent 

active and sedentary or changes in energy expenditure. 

Our study measured free living blood glucose concentration and fluctuations over the 

course of 14 days using constant blood glucose monitoring systems prior to and in the final two 

weeks of the exercise intervention. We found that frequent brisk walking bouts spread 

throughout the day decrease glycemic variability over 24 hours when compared to the 

performance of a single continuous bout of brisk walking. Blankenship et al. also used constant 

glucose monitoring systems to study frequent bouts of physical activity in adults with type 2 

diabetes. They found that when active time was matched to 30-minutes, breaks from sitting with 

moderate intensity walking bout were more effective at decreasing glycemic variability28 than 

the performance of moderate intensity walking as a continuous bout. One of the benefits to 

constant glucose monitoring systems is the ability to examine glucose values and changes in 

free-living conditions, during rest days, and during sleeping hours. Dempsey et al. used this 
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monitoring system to examine the effects of glucose values in type 2 diabetics after completing a 

seven hour intervention of either 3 minutes of walking every 30 minutes, 3 minutes of resistance 

exercise every 30 minutes, or sedentary for 7 hours, and continued to monitor them for a total of 

22 hours. They found that the repeated walking bouts and resistance exercises significantly 

decreased blood glucose during nocturnal hours compared to the sedentary control, showing that 

this type of intervention has acute lasting effects that limit the episodes of hyperglycemia in type 

2 diabetics 5. Our study however didn’t show any significant decrease in mean blood glucose 

during wake or sleep times (data not shown) meaning maybe it is a temporary effect that 

dissipates with an intervention as long as ours. Importantly, our data took into account both the 

days during which participants performed the intervention but also the days during which they 

did not. Future analysis will have to only consider only the “active days” to examine the effect of 

the interventions on mean blood glucose. The decrease in glycemic variability with the 

microbouts of activity may therefore be even more pronounced when only looking at the active 

days. This has important clinical implications because high fluctuations of glycemia is a 

recognized risk factor for type 2 diabetes and cardiovascular disease 8.  

Although no change in mean glycemia was detected over 24h (day or night), we observed  

a decrease in post prandial glucose concentration (data not shown) in response to standard 

breakfast, lunch and dinner. This result is in line with an increasing number of intervention  that 

observed a decrease in postprandial glycemia in response to an acute exposure to the breaks11,28–

30. Importantly, our data suggests that breaking up sedentary behaviors improves glucose control 

not only acutely, but also when participants are resting, after 4 weeks of intervention. We 

recently showed that the decrease in post-prandial glycemic variability induced by 4 days of 

breaking was associated with a greater use of carbohydrate oxidation for 24 hours11. Here we did 
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not observe an increase in 24h total carbohydrate oxidation (data not shown), but a maintenance 

of 24h exogenous carbohydrate oxidation, contrary to the performance of 4 weeks of continuous 

bout of brisk walking that decreased it. De Jong attributed this effect to the fact that bouts of 

activity are effective at training the body to preferentially use glucose as they believe the reason 

to be that glycogen at the skeletal muscle was being utilized due to increased translocation of the 

GLUT4 transporter which triggered uptake and oxidation of glucose11. Once again, it is 

important to note that this greater use of dietary carbohydrate as fuel was observed when subjects 

were rested, and not exercising, suggesting that other adaptations come at play going beyond the 

translocation of the GLUT4 transporter to facilitate glucose uptake. In addition, the frequent bout 

group had an improved metabolic flexibility compared to the single bout. This means that they 

were essentially utilizing carbohydrates as substrates during the feeding/waking hours (npRQ 

closer to 1.0) but mainly relied upon fat as fuel during sleeping/fasting hours (npRQ closer to 

0.7). In previous study, our group showed that physical inactivity induced by bed rest trigger the 

development of metabolic inflexibility, which precedes the development of glucose intolerance. 

Our present data suggest that the lack of frequent muscle contraction, use of energy or use of 

carbohydrate contribute to this metabolic inflexibility rather than physical inactivity per se, i.e. 

fact of not reaching the recommended level of physical activity. Future studies will be warranted 

to confirm this hypothesis. 

Understanding effective ways to treat metabolic inflexibility is important as it is a common 

characteristic of type 2 diabetics, insulin resistance, obesity, and metabolic syndrome. Here we 

observed a positive correlation between the 4-week changes in whole-body metabolic flexibility 

and in insulin sensitivity. The directionality between the two however remains unknown, and 

will need to be investigated. Our study showed that frequent bouts of physical activity improve 
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whole body insulin sensitivity as well as in the acute insulin response to glucose in 

overweight/obese adults in a greater extent than what is observed when physical activity us 

performed as a single continuous bout. This is in line with the observations from other studies of 

the acute effects of breaking up sedentary behavior on post prandial insulinemia which suggests 

an improvement in insulin sensitivity with breaking up sedentary behavior31,28.  In this line, our 

study also showed improved insulin sensitivity post prandially (data not shown).  

 

While there are many valid ways measure insulin sensitivity, our study used IVGTTs, 

however the choice to not use an hyperinsulinemic euglycemic clamp or oral glucose tolerance 

test (OGTT) did come with downfalls, as each test has it’s own variety of pros and cons. While a 

hyperinsulinemic euglycemic clamp is technically the “gold standard” for measuring insulin 

sensitivity, and has the ability to show tissue-specific changes in insulin sensitivity32, the IVGTT 

is a shorter test at around 4 hours total compared to around 7 hours of a clamp. IVGTTs are also  

less costly were within the scope of funding for this study, and do not require a physician present 

(making participant scheduling easier and compliance better). They are validated against the 

hyperinsulinemic clamp when using the Minimal Model program for analysis 27. Another 

validated method that could have been used and had outcomes that the IVGTT did not was the 

OGTT. This test is also less costly than a glucose clamp, and is also more effective at classifying 

participants into diabetic or normal as the estimated efficiency of glucose disposal rates is better 

shown with OGTTs with participants with mild glucose tolerance abnormalities when compared 

to the IVGTT. The IVGTT was chosen over this however as when it is paired with minimal 

model, it still gives a valid insulin sensitivity value as well as the DI and AIRG which the OGTT 

does not.  
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The improvement in AIRg suggest that frequent bouts of physical activity lead to an acute 

release of insulin in response to exogenous glucose load when compared to the single bout 

group. The reasons for this remain unknown but there are two hypothesis, either (1) a better 

pancreatic function leading to a quick insulin secretion or (2) the presence of insulin in the beta 

cell ready to be quickly released into the blood stream. To determine this mechanism, future 

studies will need to test the effects of breaking up sedentary behavior on beta cell function by 

using a stepwise glucose tolerance test in which c-peptide is measured.  

A major strength of this study was the randomized controlled trial and the study for the 

first time of the sustained effects of breaking up sitting time. It also included use of a 24 hr whole 

room calorimeter and 3 day run in diet, as well as using active-time matched controls. Our 

limitations include the fact that there was a lack of beneficial changes shown in the single bout 

group. However, we believe that this is due to the fact that this group did not increase their 

overall total energy expenditure. We believe that because they adopted exercise into their daily 

routine, they were inadvertently doing less physical activity during the rest of the waking hours. 

Other limitations include the fact that some participants either gained or lost weight throughout 

the study rather than remaining weight stable, which could have affected our main outcomes. 

With this being said, while there were changes in individuals (weight gain and weight loss), there 

were no significant differences on average in body weight or fat mass in neither group. While 

there is not enough statistical power with our 19 participants currently to run post-hoc tests to 

determine the pre/post changes in each group and the between-group differences in post. 

However, upon completion of the study, changes in energy balance, body weight, and body 

composition will be taken into account in the definitive statistical analysis. IVGTTs were also 

conducted at 0700 for each participant, however recent studies have shown that insulin 
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sensitivity is associated with circadian rhythms and therefore the tests should have been 

conducted in relation to each of the participants natural wake time33.  Finally, when determining 

24 hour energy intake to feed the participants in their 3 day run in diet and the chamber, we had 

to multiply RMR with an activity factor. This activity factor was estimated based on pedometers, 

ActivPAL, IPAQ, but was not objectively measured. Applying an activity factor of 1.5 or 1.6 

automatically induce a 10% difference in energy intake and potentially energy balance, which 

can also affect the results.  

 

Conclusions and future perspectives 

 In conclusion, we showed that 4 weeks of microbouts of physical activity result in 

decreased 24hr glycemic variability, which is associated with improved metabolic flexibility, 

high levels of exogenous carbohydrate oxidation, and increased whole-body insulin sensitivity, 

compared to the performance of 4 weeks of single continuous bout of brisk walking matched for 

total active time. It is important to note however that these findings are specific to sedentary 

overweight and obese adults and is aiming to find an intervention that can compare to the 

traditional exercise recommendations of 150 minutes of MVPA, not be overall better.  The 

number one indicator of premature death is lack of cardiorespiratory fitness34 and our frequent 

bouts of physical activity does not increase this, however for some of the US population, our 

intervention could be effective to combat common barriers of to exercise (time, knowledge, 

enjoyability, etc), and be better than nothing at all. It is also designed specifically with 

individuals who have high glycemia, and would be used as an intervention specific to this issue 

rather than a normal or healthy individual. Ideally, we believe that the perfect intervention for 

health of our study population and the general public would be breaking up sedentary behavior 
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with the addition of 150 minutes of MVPA.  Future studies will be needed to further our 

understanding of the health effect of physical activity interventions varying in terms of dose, 

timing, duration, etc, so that more specific guidelines on physical activity will be developed. In 

addition, future research should also be conducted to help determine the most effective way to 

implement frequent bouts of exercise into daily life. It’s been shown that even when reaching 

150 minutes of moderate to vigorous physical activity, it does not protect an individual from 

cardiometabolic risk factors if they are sedentary otherwise10; while we and others have shown 

that breaking up sedentary behavior is beneficial on these same biomarkers 6,11,35. However, the 

minimum amount of time active in order to offset sedentary behavior still remains unknown. 

Determining this, or the maximum amount of time that one can remain sedentary until walking 

without having detrimental health outcomes, would provide extremely valuable knowledge for 

public health and clinical purposes and the ACSM physical activity guidelines could be made 

more specific. 
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