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Interference Estimation with Applications to Blind
Multiple-Access Communication Over Fading

Channels
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Abstract—We consider the detection of nonorthogonal multi-
pulse signals on multiple-access fading channels. The generalized
maximum-likelihood rule is employed to decode users whose
complex fading gains are unknown. We develop geometrical
interpretations for the resulting detectors and their corresponding
asymptotic efficiencies. The generalized maximum-likelihood de-
tection rule is then applied to find a matched subspace detector for
the frequency-selective fading channel, under the assumption of a
short coherence time (or long coherence time without the compu-
tational power to track the fading parameters). We propose blind
implementations of these detectors for nonorthogonal multipulse
signaling on both frequency-nonselective and frequency-selective
multiple-access fading channels. These blind detectors extend
the results of Wang and Poor to multipulse modulation and
fast frequency selective fading. For comparison, the minimum
mean-squared error decision rules for these channels are derived
and blind implementations of their corresponding detectors are
developed.

Index Terms—Blind detection, fading channels, generalized like-
lihood functions, interference identification, multiuser detection.

I. INTRODUCTION

OW-complexity detectors are of fundamental importance in
multiple-user communication channels. Linear complexity de-
tectors are termed decentralized detectors since they make deci-
sions on each user of a multiple-access channel independently.
An important decentralized detector for linear modulation is the
decorrelating detector derived through the generalized likeli-
hood principle by Lupas and Verdú [1]. This detector has been
generalized to nonorthogonal multipulse modulation (NMM)
on both coherent and noncoherent channels in [2]–[6]. The re-
sulting detectors have a rich geometric structure, choosing the
signal which makes the smallest angle with the measurement, in
a subspace orthogonal to that occupied by the competing users.

Recently, a subspace technique has been proposed by Wang
and Poor for implementing blind, decentralized, decorrelating
detectors for linear signaling, without explicit knowledge of the
interference subspace [7]. Implicit in this technique is an algo-
rithm for identifying the interference subspace and the projec-
tion matrix onto its complement. In Section VII of this paper we
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explicitly state and generalize this subspace identification algo-
rithm to the higher rank signal subspaces required for NMM
signaling over fading channels. The estimator is shown to be
strongly consistent and asymptotic bounds on its performance
are obtained.

In Section III of this paper we review the generalized max-
imum-likelihood (GML) detectors derived in [3]–[6] for NMM.
Geometric interpretations of these detectors are presented and
their invariances are noted. The detectors are derived for co-
herent and noncoherent signaling with an unknown gain term
corresponding tofrequency nonselectivefading and for multi-
rank signaling induced throughfrequency selectivefading. For
both problems we assume that the fading parameters are varying
sufficiently fast so that reliable estimation is not practical for
contiguous symbol periods, although they are assumed constant
over at least one signaling period. In each case, we assume that
the signaling is synchronous and we derive detectors that arein-
variant to the fading through the generalized maximum-likeli-
hood (GML) decision rule. In Section VIII we apply the interfer-
ence identification results of Section VII to the GML detectors
of Section III, developingblind detectors that adapt to the un-
known multiple-access interference (MAI). The computational
complexity of the blind detectors is examined. It is shown that
the detectors are feasible to implement even at relatively high
data rates due to the relatively small computational burden of
the blind detectors when fast subspace tracking is employed.

Finally, in Section X we give a brief derivation of the min-
imum mean-squared error (MMSE) detectors for NMM sig-
naling for both the coherent and the noncoherent channel. Blind
implementations of the detectors are presented and a numerical
example is presented to compare the MMSE and GML detec-
tors for the Rayleigh fading channel. For this example, the de-
tectors are seen to have essentially identical performance, with
the GML detector performing slightly better asymptotically. It
is shown that, unlike the case of linear modulation, the MMSE
detector is not necessarily the limit of the generalized likeli-
hood detector. This topic is discussed in more detail in [31], in
which the authors derive an asymptotic performance bound on
the MMSE detector. This bound generally differs from that of
the GML detector.

II. NOTATION AND LINEAR ALGEBRAIC RESULTS

We will denote matrices and vectors with bold face type,
using capital letters for matrices and lower case letters for vec-
tors. Given a matrix we denote the linear subspace
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of spanned by the columns ofby . We use the symbol
to denote the orthogonal projection matrix with range space
, and when has full column rank then the projection onto

the subspace is

(1)

We denote the subspace of orthogonal to by , with
corresponding projection .

When has full column rank we may form the orthog-
onal projection onto the subspace as

(2)

This orthogonal projection may be rewritten as the sum of two
orthogonal projections, or as the sum of twoobliqueprojections
[8]:

(3)

The oblique projection matrix has range space and
null space . This matrix is idempotent but not symmetric
and satisfies and . It has the algebraic
representation [8]

(3a)

Note that when . These properties may
be easily extended to more finely resolve the projection, as
is shown in the following lemma.

Lemma II.1: Given a matrix such that
and , then we may decompose the orthog-

onal projection as

Here we have defined as the matrix with its th column,
, removed. The oblique projection matrix is computed

as in (3a).
Proof: See Appendix A.

Theorem II.2: Given a full rank matrix , the
Moore–Penrose pseudo-inverse ofis given by

...

(4)

with and .
Proof: This is readily verified by expanding and
.

The distance between the subspacesand is defined
to be [9]

(5)

where are the principle angles between the subspaces
and . Here the -norm of the matrix , denoted , is the
largest singular value of .

We will also deal with vectors , i.e., continuous-time,
finite-energy signals. We will use the usual inner product for
these vectors, namely,

(6)

Given an indexed set of signals , , let the
vector be formed by stacking the 's; that is,

. We then find themultilinear inner
product taking into to be

(7)

where denotes theth element.

III. M ULTIUSER COMMUNICATIONS WITH NONORTHOGONAL

MULTIPULSE MODULATION ON THE FREQUENCY

NONSELECTIVEFADING CHANNEL

We now apply our linear algebraic results to generalized
maximum-likelihood detectors for multiuser communication
with NMM. The signaling model that we assume is quite gen-
eral, including as special cases the linear modulation schemes
such as phase-shift keying and quadrature-amplitude modula-
tion, as well as the “nonlinear” (linear in a higher-dimensional
basis set) modulation schemes such as frequency-shift keying.
We examine frequency-nonselective fading (unknown gain) in
this section and frequency-selective fading in Section VI. For
the nonselective fading channel, we examine both coherent and
noncoherent signaling. In all cases we assume synchronous
signaling and decentralized detectors. This ensures linear
complexity at the base station for demodulation on each baud
interval.

A. Coherent Signaling Over the Frequency Nonselective
Fading Channel

Let users share a common communication channel. Each
user employs synchronous coherent NMM signaling with an un-
known gain affecting each user. Specifically, each user transmits
one of the signals from a personal-ary signal constellation at
each baud period. Let the received continuous time signal be

(8)

where is the signal transmitted
by the th user on the -second baud interval, is the th
users' fading parameter (assumed constant across a signaling
period), and is an additive white Gaussian noise process. Let
the signals have an orthonormal basis in

with . For the detection problem we form a vector
sufficient statistic , , by correlating
against each basis function; that is,

(9)
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Fig. 1. System model for frequency-nonselective fading.

(10)

where the multilinear inner product is defined in (7). The
matrix contains the signal vec-
tors for each user with and

(11)

The matrix

is a diagonal matrix of the users' fading coefficients
and

is an vector. Each is a column of the
identity matrix that selects the signal transmitted by user,

. Assuming equally likely signals for each
user and deterministic gain coefficients, the measurement has
first- and second-order statistics

and (12)

where

...
...

...
...

(13)

and with .
We may expand this model for when theth user is of interest

and has transmitted theth signal from as

(14)

The vector is the multiple-access interference corre-
sponding to users . The system model for this problem
is shown in Fig. 1. We assume that the users communicate
independently.

This is a general model for code-division multiple access
(CDMA) communications, but to distinguish it from direct-se-
quence CDMA (DS-CDMA), Varanasi and Guess [10] have
proposed that it be called Correlated-Waveform Multiple Ac-
cess (CWMA). The model is general enough to include direct-
sequence Code-Division Multiple Access (DS-CDMA) tech-

niques wherein the basis functions can be chosen as time de-
lays of a common chip pulse with chip period ; that is,

. It also models Time-Division Multiple
Access (TDMA) wherein the basis functions are again time de-
lays of the same basic pulse and the signaling vectors are
constrained to have only one nonzero entry (in theth position).
The coherent version also models (block) coded multiple-access
communications wherein each symbol vector is a code-
word representing an -bit information block. Similarly, the
noncoherent version of this model, discussed below, is general
enough to include such symboling schemes as frequency shift
keying, wherein the basis functions are truncated complex expo-
nentials of different frequencies. Notice that for the noncoherent
channel, our detector and performance analysis allow for corre-
lated signaling. This allows for bandwidth-efficient signaling in
conjunction with noncoherent detection.

B. Noncoherent Signaling Over the Frequency Nonselective
Fading Channel

When the channel is noncoherent we employ essentially the
same model, with now representing an unknown complex
gain and replaced by its complex baseband representation. The
generalized sampler, now maps into . We have the
model

(15)

where and are defined as in the coherent case but the fading
coefficient matrix is now given by

The individual fading parameters are modeled as having ampli-
tude , independent of the transmitted symbol, but a phase
which may be hypothesis-dependent. Such models arise when
the fading process is assumed to have a flat magnitude response
but possibly a frequency-selective phase. Modeling the gain co-
efficients as zero-mean random variables, the measurement
has first- and second-order statistics

and (16)

where

(assuming ).
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When the th signal is transmitted by user, the measure-
ment model becomes

(17)

The vector accounts for MAI.

IV. GENERALIZED MAXIMUM -LIKELIHOOD DETECTION

We employ the generalized maximum-likelihood (GML) de-
tection rule for the coherent and the noncoherent channels. The
idea behind this detection strategy is that if the gain and
the multiple-access interference term, were known to the
receiver, the optimum (minimum probability of error) decision
rule would be

(18)

assuming equal priors. In the absence of this information we
form maximum-likelihood estimates of and and sub-
stitute those into the detector. In the following two sections we
give a brief outline of this procedure for the coherent and non-
coherent channels. The noncoherent GML rule is also derived
in [2]–[6].

A. The Coherent GML Detector

When the channel is phase-coherent we may find the max-
imum-likelihood estimates of and as [11],
[3]

(19)

where and are the oblique projection
matrices defined in Section II. Notice that we have included the
subscript on the estimates to indicate that is the max-
imum-likelihood estimate of theth user's gain under theth
hypothesis, and similarly for .

The resulting GML detection rule is

(20)

Notice that in the case oflinear modulation, ,
with a fixed vector and a scalar, the GML detector is
the decorrelating detector of Lupas and Verdú [1], which was
derived from a GML framework.

B. The Noncoherent GML Detector

When the channel is noncoherent we proceed in the same
manner, with the maximum-likelihood estimates now given by

(21)

Fig. 2. Geometrical interpretation of coherent detector for thekth user. The
detector makes the decision̂m(k) = argmax � where� is the angle
betweenyyy andhhh (k) in the interference-free subspacehSSS(k)i .

The corresponding noncoherent GML detection rule is

(22)

C. Geometry of the GML Detectors

Defining the “interference-free signal matrix”
, we notice that

Thus we can replace the matrix by everywhere it oc-
curs in (21) and (22). Then we may normalize each detector by
the measurement's energy in the spaceto get the following
geometrical interpretation [3], [5] of the GML rules:1

coherent
noncoherent.

(23)

We see that the detector chooses the signal which makes
the smallest angle to the measurement in the perpendicular sub-
space . Fig. 2 illustrates this geometrical interpretation of
the detector. It is also worth noting the invariances of the two de-
tectors. The coherent detector is invariant to positive scaling and
to addition of vectors lying in . The noncoherent detector
is invariant to gain and rotations (by a complex exponential) as

1When all vectors lie in we define

cos (xxx; yyy;AAA) = hxxx; yyyi =(hxxx; xxxi hyyy; yyyi )

and use the notationcos (xxx; yyy) whenAAA = III . When we are in we define

cos (yyy; xxx;AAA) = jhxxx; yyyi j =(hyyy; yyyi hxxx; xxxi ):
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well as to addition of vectors in . These generalize the in-
variance sets of the subspace detectors presented in [12] to the
multiple hypothesis testing problem.

V. ASYMPTOTICEFFICIENCY OF THEGML DETECTORS

A common performance measure for multiuser detection is
the Multiuser Asymptotic Efficiency (MAE), which measures
the performance loss of a detection strategy in multiple-access
interference relative to the case of a single-user channel. The
MAE for user is defined by [1]

(24)

where is the probability of error for the th user em-
ploying the GML detector with additive white Gaussian noise
(AWGN) power , and is the probability of error
for the GML decentralized detector in the absence of interfering
users with effective noise power .

We find the MAE of the detectors using the upper and lower
bounds as in [13]. Suppose we can find functions

and

Then for any pair we have

(25)

and so

(26)

We can generate a lower bound in an analogous
fashion using the bounding functions and .
Clearly, whenever we have an exact expression for

, namely, . In the next section we use a union
upper bound and a two-signal lower bound on the probability of
error to derive the asymptotic efficiency of each of the detectors.
This implies that we only need an expression for the probability
of a binary error, choosing hypothesiswhen hypothesis is
in effect, for the detectors. This process is sketched in the next
two sections and the resulting values of the MAE are given.

A. Asymptotic Efficiency of the Coherent GML Detector

To form our bounds for the probability of error using the co-
herent GML detector in (23) we begin with the binary error
probability. We will find an expression for the single-user de-
tector (in the absence of multiple-access interference). The mul-
tiple-access case is treated in an identical fashion with
replaced by .

The probability of choosing signal when signal was
transmitted using the decision rule in (23) is

This allows us to form the two-signal lower bound

(27)

We can find expressions for , , and
in a similar manner. Substituting these values into (26) we find
the asymptotic efficiency of our detector to be given by (28) at
the bottom of this page. We see that the asymptotic efficiency
is nonzero as long as the user's signal set is not contained in
the span of the interfering user's signals, and no two signals are
positive multiples of each other.

B. Asymptotic Efficiency of the Noncoherent Detector

In order to derive an expression for the MAE of the nonco-
herent detector, we start as in Section V-A and find the proba-
bility of a binary error with our detector. An independent deriva-
tion of this result was presented in a somewhat different notation
in [4] and [6]. The probability of choosing signal when

was transmitted is given by

where we have defined (29) and (30) at the top of the following
page.

Lemma V.1:Let and be two or-
thogonal projection matrices with range spaces of the
same dimension. Then the matrix has
eigenvalues equal to zero andeigenvalues given by ,
where is the th principle angle between the subspaces
and .

Proof: The characteristic polynomial for is given by

where we have used the fact that

(28)
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SU case

MU case.
(29)

(30)

when all of the matrices are of appropriate size [14, Appendix
A.13]. We can expand the first term as

The second term may be expanded through the Woodbury iden-
tity

[14, Appendix A.20]. Collecting these terms we find

The eigenvalues of are known to be
[15] and the lemma follows.

Factoring the projections into and
it follows from Lemma V.1 that

(31)

where and is the angle between and
Using the definitions

(32)

the following relationships hold:

(33)

We find the characteristic function for the quadratic form
using the techniques of [16, Appendix B]:

(34)

Following the method employed in [17, Appendix B] we find
the probability of error to be

(35)

(36)

where is Marcum's -function and we have used the
relationships listed in (33). We can obtain an asymptotically
tight expression for (35) using the results of [18] to find

(37)

as , where .
Building , and

as in Section V-A we find the MAE in (38) at the bottom of
this page. Hence the asymptotic efficiency is nonzero as long as
the signal set for each user is not pairwise colinear in the inter-
ference-free subspace (meaning ),
and not in the span of the interfering user's signals. Notice that
the fading parameter, , does not affect the asymptotic ef-
ficiency. It does, however, effect the probability of error for a
given value of . The upper and lower bounds would be ob-
tained by averaging the expression of (37) over the distribution
for .

VI. M ULTIUSER COMMUNICATION ON THE FREQUENCY

SELECTIVE FADING CHANNEL

In the presence of frequency-selective fading with multipath
spread (assumed to be equal for each user for simplicity)
we develop a tapped-delay line model of the channel as in [17].

(38)
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The th user transmits a signal . Let
be the effective bandwidth of the . The received signal

has the complex baseband model

(39)

where the are the time-varying fading coefficients
(assumed constant over one signal period) affecting theth
signal of the th user, is the delay operator in with

, is additive (complex) white noise,
and . Let the set have
the orthonormal basis , with . Then the
correlation receiver computes the vector statistic

where

and

The vector contains just one nonzero-vector

(40)

and .
We consider the case where the fading vectors are

varying sufficiently fast from symbol to symbol so as to make
accurate estimation infeasible. This implies that the fading co-
herence time is commensurate with the signaling period. Then
we might ask for decision rules which are invariant to the par-
ticular fading realization.

The GML detector for this problem is found as in the fre-
quency-nonselective case. First, the maximum-likelihood esti-
mates of and are found

(41)

These estimates are then substituted into the likelihood func-
tions for the measurementand the corresponding GML rule is

(42)

This is a full generalization of the rank-detector of (22) to the
case of multiple-rank signaling imposed by the frequency-selec-
tive fading (with the short coherence time assumption) and ap-
pears to be original. The GML detector is amatched subspace
detector[11], [12] which seeks the subspace in
which has the most energy. The detector is invariant to ro-
tations and scaling within the subspace as well as to
addition of vectors lying in . It should be noted that we re-
quire linearly independent subspaces, , in order
to perform detection.

By letting , we can rewrite the quadratic
form in (42) as

(43)

The detector may be written as

(44)

The advantage of this form of the GML detector is that the pro-
jection matrices can be estimated with low compu-
tational complexity. This will be explored in Section VIII-C.

VII. I NTERFERENCEIDENTIFICATION

The detectors of (21), (22), and (42) require knowledge of the
interference subspace for their implementations. This
knowledge may be unavailable to the receiver or it may be com-
putationally burdensome to track in a time-varying situation as
users enter and exit the channel. To mitigate this problem, we
seek low-complexity estimators of this subspace based on actual
channel measurements. In the following section, we derive and
analyze such an estimation procedure based on second-order
statistics of the measurement. The results generalize a lemma of
Wang and Poor [7] to NMM signaling and to OMM signaling
over the frequency-selective fading channel.

A. The Interference Identification Procedure

In this section we address the problem of identifying the inter-
ference subspace from channel measurements. We assume
that we have a set of measurements consisting of a stochastic
signal constrained to lie in aknownsubspace , plus a sto-
chastic interference lying in anunknownsubspace , plus ad-
ditive white noise. We assume that the signal and the interfer-
ence terms are uncorrelated, as is the case in the multiple-ac-
cess communication models that we have considered. We seek
to identify and will do so by deriving a technique for esti-
mating . Our result is a generalization of a theorem of Wang
and Poor [7] with a proof derived from our representations of
projections and pseudo-inverses in Section II.

Theorem VII.1: Given where
and with . Let have the
correlation matrix

where , , and
. The eigendecomposition of is

where

Defining , we have and
.

Proof: See Appendix B.
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From the identity it follows that

(45)

Each of the terms in (45) may be adaptively estimated from mea-
surements using an eigendecomposition of the sample covari-
ance matrix for block processing or an iterative approximation
to this decomposition using subspace tracking as described in
Section VII-D.

Notice that we can drop the requirement that and be
full rank in Theorem VII.1 by replacing and
by their appropriate reduced dimensional representations. The
results of the theorem would still hold.

B. Perturbation Analysis

In this section we will find bounds for the distance between
the estimated subspace and the true subspace , when
is computed from a perturbed version of. We assume

(46)

where is a “small” matrix in the -norm sense.
Let have the model of (46) and write the SVD ofas

(47)

The matrix and the noise power are estimated as

(48)

where is the rank of the signal plus interference subspace. With
this decomposition we find the following result.

Lemma VII.2: Define the matrices
and . Let . Then if the diagonal
entries of , are distinct2 and , and

then and . The interpretation is that the
error norms and are of the same order as .

Proof: See Appendix C.

We are interested in estimating, which requires an expres-
sion for . To this end, let the eigenvalues of
be and the diagonal entries of be given by

. Define the matrix , and note

2The restriction that the eigenvalues be distinct can be lifted. The dominant
eigenvectors ofRRR will not be unique when there are multiple eigenvalues but
any eigendecomposition of^RRR will yield eigenvectors “close” to a valid decom-
position ofRRR.

. The th singular value of is
bounded by so let maximize this bound over the
set . Then . The estimate, , of
is given by

(49)

(50)

where the matrix is found to be

(51)

Since and by construction we find
that

(52)

where .
Let the singular values of be . Then we can bound the

distance using the invariant subspace sensitivity
results of [9, Sec. 7.2] to find

(53)

C. Convergence

Having established bounds on through a per-
turbation analysis, we now examine the convergence of the sub-
space estimation algorithm. We will show that estimating
based on an eigendecomposition of the sample correlation ma-
trix from independent and identically distributed (i.i.d.) mea-
surements with correlation matrix produces a strongly con-
sistent estimate of the true matrix and we give asymptotic
bounds on the distance measure.

We assume that we have independent measurements,
, each identically distributed with zero mean and

correlation matrix

Compute the sample correlation matrix

(54)

and eigendecompose as in (47). The sample correlation ma-
trix converges to almost surely (a.s.) by the Kolmogorov Law
of Large Numbers [19] and hence [20]3

a.s. and a.s (55)

Notice that the preceding equations are enough to show that
a.s. but that in general this is not sufficient to con-

clude that . Consider, for example, the non-
stochastic sequence of matrices for some

3In order to discuss the convergence of the eigenvector matrix,^UUU , we make
the standard assumption that each eigenvector satisfies some uniqueness condi-
tion. We could, for example, constrainfUUU g to be real-valued for eachn,
see, e.g., [20].
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TABLE I
THE PASTd [27], [28] ALGORITHM FOR

UPDATING THE DOMINANT CORRELATION STRUCTUREUSING EXPONENTIAL

AVERAGING, ^RRR(q) = �R̂RR(q � 1) + (1 � �)yyy(q)yyy(q) . THE “EXTRA”
EIGENVALUE � (q) IS USED TOUPDATE THE NOISEESTIMATE, �

low-rank matrix and vector , then in
the matrix norm but . The perturbation
bounds on this subspace distance (see (52) and (53)) developed
in Section VII-B do allow us to prove such convergence as they
bound asymptotically by a constant times the
maximum of and . Each
of these terms approaches zero almost surely and hence so does

. The estimator is therefore strongly consistent.
It is known [21] that for i.i.d. samples the matrices and

have asymptotic -norms

a.s.

a.s.

We may use our bounds from Section VII-B together with these
asymptotic expressions to find

a.s. (56)

D. Subspace Tracking for Low-Complexity Blind Detection

The subspace estimator of Theorem VII.1 requires estimates
of the dominant eigenvectors and dominant eigenvalues

of the measurement correlation matrixand of the addi-
tive noise power . When the channel is time-variant, for ex-
ample, when users are entering and departing a multiple-access
system and their average received powers are varying due to mo-
tion of the transmitters relative to the receiver, we might estimate
the measurement correlation either from a block of data or with
a running window estimator of the form

In either case, an eigendecomposition of must be per-
formed. There are several computationally efficient methods
for updating the estimates of the parameters of interest

through subspace tracking, see, e.g.,
[22]–[28]. A key result from this literature is that it is possible

to track these parameters with a complexity of , where
is the dimensionality of , and is the dimension of the

dominant subspace.
For the numerical results presented in Section IX we use the

Projection Approximation Subspace Tracking with Deflation
(PASTd) algorithm [27], [28] to perform the subspace tracking.
The PASTd algorithm is an algorithm and is summa-
rized in Table I.

Notice that this algorithm increases the rank of the domi-
nant subspace by at each iteration. If the true rank is known
we allow the PASTd algorithm to perform this increase until
equals the true rank and then prune off the extra eigenvalue and
eigenvector after each iteration. The noise estimate is updated
as

(57)

When the true rank of the dominant subspace is not known we
employ the PASTd algorithm together with a rank estimation
procedure such as the Akaike Information Criterion (AIC) [29],
which chooses the rank by

(58)

where is the effective number of measurements.
There are three possible actions based on the outcome of this

test.

1) we allow the rank to increase by keeping
and and update the noise power with

2) we keep and the first columns of
and update the noise power with (57);

3) we keep and the first columns
of and update the noise power with

VIII. B LIND MULTIUSER COMMUNICATIONS

We now use these interference subspace identification proce-
dures to findblind implementations of the decentralized detec-
tors developed in Sections III and VI. This extends the blind
decorrelating detector of Wang and Poor [7] to multidimen-
sional signal sets arising from NMM and frequency-selective
fading. We show that the computational complexity of the blind
detectors is of the same order as that of the subspace tracking
problem, which can be solved efficiently. This shows that the
blind detectors are feasible even at high data rates.
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A. Blind Detection for Frequency Nonselective Fading

When we do not know the interference subspace , we
can use the results of Section VII to estimate it. We require a few
additional assumptions in order to make the correlation matrix
for meet the conditions of Theorem VII.1. We list the addi-
tional assumptions for the coherent and noncoherent cases sep-
arately.

When the channel is coherent we assume that the signal set for
each user is symmetric aboutin the mean, e.g., .
This forces the cross correlation to be

(the users signal independently)

When the channel is noncoherent we need to be a little more
careful. Proceeding as in the coherent case we require

In order to satisfy this condition we will assume that the phase
angle is uniformly distributed on for each . To
reiterate, the noncoherent detector given in (21) was derived
without any assumptions on the complex gain but the blind
detector requires the assumption that is a zero-mean
complex random variable. This assumption is met for Rayleigh
fading channels, for example.

With these assumptions we find the correlation matrix for
to be

(59)

If is modeled as an unknown deterministic quantity for the
coherent channel, then .

It may be the case that the matrix is rank deficient (for
example, when phase-shift keying is employed). Since we know

we may change the model in (59) to

(60)

where has full column rank.
We see that our correlation matrix satisfies the conditions of

Theorem VII.1. This means that we may collect a time series of
measurements and use them to form the sample correla-
tion matrix and its eigendecomposition. These terms are then
used to form the estimate and the projection is used in
the detector of (22).

B. Blind Detection for Frequency Selective Fading

For frequency selective fading recall that our model for the
measurement is

Let have the correlation matrix and let
be distributed complex normal .

Then has the correlation

(61)

where, from (40),

is a block-diagonal matrix with blocks. We see that our data
fits the conditions of Theorem VII.1 and we can use measure-
ments of to estimate and hence blindly build the detector
of (44).

C. Computational Complexity

In order for a detection scheme to be feasible for a commu-
nications channel it must be possible to implement it with low
computational complexity, corresponding to high data rates. In
this section we examine the computational complexity of the
blind schemes developed in the previous two sections and show
that when the correlation matrix for all users has rankand the
measurement size is , the procedure has complexity .

First consider the detectors for frequency-nonselective fading
in (21) and (22). Notice that for each

(62)

where is defined in Section VII. Consequently, we need only
find , the left singular vectors of .

When subspace tracking is employed to iteratively decom-
pose we may update the subspace matrices and
with computational cost using an efficient update algo-
rithm of the type described in Section VII-D. The matrix mul-
tiply to find has complexity . The decomposition of
to get an orthonormal basis for has complexity
when an efficient technique is employed as described in [9, Ch.
5], where has rank . The overall computational complexity
is hence where .

The computational complexity of the blind detector for fre-
quency-selective fading is found as in the frequency-nonselec-
tive fading case. The matrix may be estimated with com-
plexity , where and the right sin-
gular vectors of may be estimated with complexity

. When is small relative to we find the
overall complexity to be .

IX. SIMULATION EXAMPLE

In order to gauge the effectiveness of the blind de-
tector we examine the residual interference energy defined by

for the noncoherent detector with Rayleigh
fading. The user gains were taken to be complex
normal random variables with variance . The
signal-to-noise ratio (SNR) of user 1 was 26 dB. Each user
employed with length Gold codes (user 1 used
codes 5–7, user 2 used codes 8–10, etc.) normalized to have
unit norm.

At iteration 1 there where two interfering users each with en-
ergy levels of 14 dB relative to user 1.
Fig. 3 shows the residual interference energy as a function of
iteration number, averaged over 50 simulations, employing the
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Fig. 3. Residual energy versus iteration number for the example of Section IX. At timek = 0 there are two interfering users, each with energy levels of 14 dB
relative to user 1. At timek = 2000, a third user with energy level�6 dB enters the channel. At timek = 4000, the�6-dB and one of the 14-dB users exit the
channel and a new user with energy level 44 dB enters.

PASTd subspace tracking algorithm together with the interfer-
ence estimation. At the 2000th iteration, a third interfering user
was added to the channel with an energy level of6 dB relative
to user 1. At iteration number 4000 the6-dB user and one of
the 14-dB users left the channel and a 44-dB user entered. The
simulations were run with the receiver in three different modes
of operation; 1) automatic rank adjustment using the AIC, 2)
perfect rank information, and 3) perfect rank information with
a transition period following each rank adjustment. During this
transition period the rank is held fixed. The third mode of oper-
ation allows a smooth transition when interfering users enter or
exit the channel. The advantage of this is seen in the figure.

Notice that the rank-adaptive mode allows for good transient
response but poor steady-state estimation. This is especially ev-
ident when the 6-dB user enters the channel. This user con-
tributes little to the eigenvalues of the estimated correlation ma-
trix and the AIC underestimates the rank of, causing a con-
stant amount of user power to remain unaccounted for.

The receiver with perfect rank information has a good steady
state but poor transient response. This is especially evident when
the 44-dB user enters the channel. In effect, the estimator forces
the rank to be small when the estimated covariance matrix is far
from its mean; this forces a large mismatch between the esti-
mated and the true eigenstructure, allowing for power to be dis-
tributed in the subdominant eigenstructure. In steady state, the
estimated covariance matrix has an eigenstructure much closer
to its mean and the powerful user is then well accounted for by

.
The third mode of operation attempts to improve the tran-

sient dynamics of the perfect rank estimator by allowing each
rank reduction to occur after a set transition period (in this ex-
ample 300 iterations were used). Increases in rank are allowed to

occur without this restriction since they do not suffer from the
eigenstructure mismatch of the rank reductions. This controls
the dominant eigenstructure mismatch observed in the second
mode of operation.

X. THE MMSE DETECTOR

In this paper we have concentrated on interference-canceling
(or zero-forcing) detection of a desired user in multiple-access
interference, wherein the interfering users' signals are com-
pletely nulled out by the interference nulling transformation

(or ) prior to detection. We may also consider the min-
imum mean-square error (MMSE) detector in these scenarios
in a manner analogous to the linear modulation case of [30].

For the case of flat fading, we return to the measurement
model

(63)

where , , and are defined for the coherent and noncoherent
channels in Sections III-A and III-B, respectively. We seek the
MMSE estimate of and make a decision on userby exam-
ining the th block of the estimate .

It is straightforward to show that the MMSE estimator for the
coherent model is

(64)
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where is defined in Section III-A. Denote theth length
subvector of by . The MMSE detector for user

makes the decisions

(65)

When the users' signals satisfy the symmetry property

then we have and . In
this case, we may simplify the MMSE detector to the matched
filter rule

(66)

where is the measurement correlation matrix.
For the case of noncoherent signaling we assume as before

that the fading terms are zero-mean complex random
variables. The MMSE estimator is

(67)

where is defined in Section III-B. This leads to the simple
decision rule for the noncoherent channel

(68)

where . Geometrically, we see that the noncoherent
detector seeks thewhitenedsignal vector which
is closest to thewhitenedmeasurement in terms of the
magnitude squared inner product.

Notice that the MMSE detectors require knowledge of the
fading parameters , or their correlation structure if they
are stochastic and hence arenot invariant to unknown measure-
ment gain. It is interesting to note that asymptotically (as the
background noise power goes to zero), the term
approaches , as can be verified
through the Woodbury identity [14, A.21]. This means that the
MMSE detectors donot approach the GML rules of (21) and
(22), except for the case of diagonal . In the
rank-one case (linear modulation), we have and
the MMSE detector will always approach the GML solution (as
is well known, see e.g. [30]). The conclusion is that the two tech-
niques can yield different asymptotic performances (and hence
asymptotic efficiencies) for the case of NMM. This problem is
studied in [31] and the two techniques are shown to have dif-
ferent asymptotic performance characteristics, with the MMSE
outperforming the GML detector for binary modulation (this
does not generalize to larger cardinality constellations). In the
following section we present a numerical example in which the
GML detector outperforms the MMSE detector asymptotically
for Rayleigh fading.

The blind implementation of the MMSE detectors is straight-

forward, requiring only the tracking of , which can be ef-
ficiently updated using the rank-one update of a matrix inverse
(the Woodbury identity, [14, A.21])

(69)

when is updated through the exponential window

Alternatively, we can employ a subspace-tracking procedure as
in the blind GML detectors since

This is the -ary extension of the blind MMSE algorithm de-
rived in [7].

We end this section by noting that the MMSE detector for the
frequency-selective channel of Section VI can be derived in the
same manner as the noncoherent detector for flat fading. In this
case, we require knowledge of the joint correlation structure of
the fading parameters for each user.

A. Simulation Example Comparing the MMSE and the GML
Detectors

Using the same signal sets as in the example of Section IX
we consider users with Gold sequences of
length for each user. The interfering users each have
a power of 14 dB relative to the user of interest. In Fig. 4 we
plot the probability of error for the MMSE detector of (68) and
the GML detector of (22). Each point was generated with 50 000
measurement realizations. Also plotted is the union upper bound
on the probability of error for the GML detector. This bound is
found by first obtaining the union upper bound conditioned on
a particular as

under hypothesis

(70)

where is defined in (30) and the pairwise error probabilities
are given by (37). This expression is then averaged against the
Rayleigh distribution of to find the upper bound

(71)

This bound was evaluated numerically.
Also shown in the figure is the probability of error when blind

detection is performed. The blind detectors were built as de-
scribed in Sections VIII and X from the eigendecomposition of
the sample correlation matrix built from a block of 200 channel
measurements. Each point on the blind curves is the average of
50 independent Monte Carlo simulations of the detectors (with
different realizations of the sample-correlation matrix). Notice
that the GML and the MMSE detector have almost identical per-
formance for this channel. This is also true for the blind detec-
tors. Notice further that the performance of both blind detectors
approach a noise floor induced by the finite sample estimation
of the correlation matrix.

XI. CONCLUSION

The contributions of this paper are threefold. First, we re-
viewed the theory of generalized maximum-likelihood detectors
for multiple-access communication with nonlinear signaling
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Fig. 4. Probability of a symbol error versus the output SNR per bit for the Rayleigh fading example of Section X-A. Each point is generated from 50 000
measurement realizations.

for both the coherent and the noncoherent frequency-nonse-
lective fading channel and for the frequency-selective fading
channel with a short coherence time. These detectors were
posed in their most general form (without any requirements
on the invertibility of the joint user signal correlation matrix

). Geometrical interpre-
tations of these detectors were presented and the relevant
restrictions on the signal sets were derived.

We next developed a technique for determining an unknown
interference subspace from channel measurements in a multidi-
mensional signal plus multidimensional interference plus addi-
tive noise problem. This is useful not only for multiple-access
communication, but for many statistical signal processing prob-
lems, including sensor array processing and Gauss–Gauss de-
tection. The estimate is shown to be strongly consistent through
a perturbation analysis and an asymptotic expression for the
subspace fitting error was derived.

We applied these results to find blind detectors for multiuser,
fading communication channels. The detectors are computa-
tionally efficient and hence feasible for high-speed data com-
munication. These detectors build upon and generalize the re-
cent blind decorrelating detector of Wang and Poor [7] for linear
modulation.

Finally, the MMSE detectors for NMM signaling were pre-
sented. The MMSE detectors require knowledge of either the
channel gains (for the coherent channel) or their statistics (for
the noncoherent channel), which place them in a different cat-
egory from the GML detectors which were designed to be in-
variant to these gains. In the case of the noncoherent detector,
however, it was noted that a blind implementation of the MMSE
detector is possible which does not require such knowledge. It
was also shown that the GML isnot generally the high SNR

limit of the MMSE detector for NMM signaling, an issue which
is further explored in [31].

APPENDIX A
PROOF OFTHEOREM II.1

Following a method similar to that used in [8] we may first
decompose as

Let us now write as , where
and . Then expand the

th term of as follows:
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(permuting each term and applying the Matrix

Inversion Lemma [12])

APPENDIX B
PROOF OFTHEOREM VII.1

Let and , a permis-
sible factorization for any positive definite matrix. Define

and and rewrite as

(72)

where . Then has the singular value decompo-
sition , where and . The
pseudo-inverse of is given by and from
the definitions of and we see that . Since

has full column rank, it is clear that

and so

We now employ Theorem II.2 to expand

...

...

where denotes the matrix with its th column removed.
Let and for .
Then we can write in the form

It is clear that and that

• (since has full rank);

• (since and );

• for each (since
, each in );

• and since and has
full rank by assumption.

So , but and the sub-
space spanned by a rankmatrix is identical to that spanned by
any linearly independent vectors in the subspace. Hence

and

APPENDIX C
PROOF OFLEMMA VII.2

By the Hoffman–Wielandt theorem [32] we have
, so the difficulty comes in bounding .
We begin by stating a lemma on eigenvalue sensitivity [9,

Corollary 7.2.6].

Lemma C.1:Suppose , , and that
is unitary with . Assume

and

where is diagonal. If

and , then there exists a with
such that is a unit

-norm eigenvector for .
For our problem we see that defined in the preceding

lemma is nonzero for each of the unique eigenvaluesof .
In fact, for each associated with we see that

. We note further that by the
properties of the-norm. Let , then we find
that

Since are the eigenvectors associated with theunique
eigenvalues of corresponding to we may bound the
Frobenius norm of by

Since

the lemma follows.
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