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Interference Estimation with Applications to Blind
Multiple-Access Communication Over Fading
Channels

Michael L. McCloud Student Member, IEEBNd Louis L. ScharfFellow, IEEE

Abstract—We consider the detection of nonorthogonal multi- - explicitly state and generalize this subspace identification algo-
pulse signals on multiple-access fading channels. The generalizedrithm to the higher rank signal subspaces required for NMM
maximum-likelihood rule is employed to decode users whose gignqiing over fading channels. The estimator is shown to be

complex fading gains are unknown. We develop geometrical t | istent and totic b d it ;
interpretations for the resulting detectors and their corresponding strongly consistent and asymptolic bounds on It performance

asymptotic efficiencies. The generalized maximum-likelihood de- are obtained.
tection rule is then applied to find a matched subspace detector for  In Section Ill of this paper we review the generalized max-

the frequency-selective fading channel, under the assumption of a jmum-likelihood (GML) detectors derived in [3]-[6] for NMM.
short coherence time (or long coherence time without the compu- Geometric interpretations of these detectors are presented and

tational power to track the fading parameters). We propose blind S - .
implementations of these detectors for nonorthogonal multipulse their invariances are noted. The detectors are derived for co-

signaling on both frequency-nonselective and frequency-selective herent and noncoherent signaling with an unknown gain term

multiple-access fading channels. These blind detectors extendcorresponding tdrequency nonselectiiading and for multi-

the results of Wang and Poor to multipulse modulation and rank signaling induced througrequency selectiviading. For

fast frequency selective fading. For comparison, the minimum o4 nroplems we assume that the fading parameters are varying

mean-squared error decision rules for these channels are derived - . . e .
sufficiently fast so that reliable estimation is not practical for

and blind implementations of their corresponding detectors are ; .
developed. contiguous symbol periods, although they are assumed constant

. . . . . over at least one signaling period. In each case, we assume that
Index Terms—Blind detection, fading channels, generalized like- . L . )
lihood functions, interference identification, multiuser detection.  the Signaling is synchronous and we derive detectors thatare
variantto the fading through the generalized maximume-likeli-
hood (GML) decision rule. In Section VIl we apply the interfer-
. INTRODUCTION ence identification results of Section VII to the GML detectors

OW-complexity detectors are of fundamental importance Rf Section IlI, developinglind detectors that adapt to the un-
multiple-user communication channels. Linear complexity dknown multiple-access interference (MAI). The computational
tectors are termed decentralized detectors since they make deefnplexity of the blind detectors is examined. It is shown that
sions on each user of a multiple-access channel independerifl§. detectors are feasible to implement even at relatively high
An important decentralized detector for linear modulation is tifata rates due to the relatively small computational burden of
decorrelating detector derived through the generalized likeli2e blind detectors when fast subspace tracking is employed.
hood principle by Lupas and Verdu [1]. This detector has beenFinally, in Section X we give a brief derivation of the min-
generalized to nonorthogonal multipulse modulation (NMMNUm mean-squared error (MMSE) detectors for NMM sig-
on both coherent and noncoherent channels in [2]-[6]. The faling for both the coherent and the noncoherent channel. Blind
sulting detectors have a rich geometric structure, choosing fAgPlementations of the detectors are presented and a numerical
signal which makes the smallest angle with the measurementeifgmple is presented to compare the MMSE and GML detec-
a subspace orthogonal to that occupied by the competing ustqEs for the Rayleigh fading channel. For this example, the de-

Recently, a subspace technique has been proposed by W&§Prs are seen to have essentially identical performance, with
and Poor for implementing blind, decentralized, decorrelatiige GML detector performing slightly better asymptotically. It
detectors for linear signaling, without explicit knowledge of this shown that, unlike the case of linear modulation, the MMSE
interference subspace [7]. Implicit in this technique is an a|ggetector is not necessarily the limit of the generalized likeli-
rithm for identifying the interference subspace and the projegood detector. This topic is discussed in more detail in [31], in

tion matrix onto its complement. In Section VI of this paper wihich the authors derive an asymptotic performance bound on
the MMSE detector. This bound generally differs from that of
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of C% spanned by the columns dfby (A). We use the symbol where{6;} are the principle angles between the subspadgs
P 4 to denote the orthogonal projection matrix with range spaead(B). Here the2-norm of the matrix4, denoted|4||2, is the
(A), and whenA has full column rank then the projection ontdargest singular value od.

the subspacéA) is We will also deal with vectora € L?, i.e., continuous-time,
. Lo . ) finite-energy signals. We will use the usual inner product for
Poa=AAA)" A" =P, =P, (1) these vectors, namely,
We denote the subspace®@t orthogonal to A) by (A)+, with _ /°° .
corresponding projectioP4 = I — P4. (how) = oo A (8) . ©)

When[A, B] has full column rank we may form the orthog- ) _ y
onal projection onto the subspagiel, B]) as Given an mdexeq set of signa{(n)}, _u(n) € L=, let the
vectorU € {L?}* be formed by stacking the(n)'s; that is,

P,p = [A, B|([A, B]*[A, B])"[A, B]". 2 U = [u(1), -, u(N)]". We then find themultilinear inner
product taking{l.2}? x L% into C to be
This orthogonal projection may be rewritten as the sum of two oo
orthogonal projections, or as the sum of teldiqueprojections {(h,U)}i = (h,u(i)) = / R(t)ul (t) dt )
[8]:

t=—o0

where{ },; denotes théth element.
Pap=Pp+Ppio=FEap+ Epa. ©)) L
1. M ULTIUSER COMMUNICATIONS WITH NONORTHOGONAL
MULTIPULSE MODULATION ON THE FREQUENCY
NONSELECTIVE FADING CHANNEL

The oblique projection matri¥ 45 has range spacgd) and
null space(B). This matrix is idempotent but not symmetric
and satisfie€4pA = AandE sz B = 0. It has the algebraic

representation [8] We now apply our linear algebraic results to generalized
1 maximum-likelihood detectors for multiuser communication
Esp=A (A*Pﬁ ) A*Pg. (3a) with NMM. The signaling model that we assume is quite gen-

eral, including as special cases the linear modulation schemes

Note thatE 4 5 = P4 when(B) = (A)*. These properties may such as phase-shift keying and quadrature-amplitude modula-

be easily extended to more finely resolve the projecfan as tion, as well as the “nonlinear” (linear in a higher-dimensional
is shown in the following lemma. basis set) modulation schemes such as frequency-shift keying.

. ) We examine frequency-nonselective fading (unknown gain) in
Le”}{f;"’}w”'l' Given a matrixS = [s1 s, -~ sy]suchthal g section and frequency-selective fading in Section VI. For
5¢eC and$™5 > 0, then we may decompose the orthoGhe nonselective fading channel, we examine both coherent and

onal projectionPs as noncoherent signaling. In all cases we assume synchronous
M signaling and decentralized detectors. This ensures linear
Ps = 8(8*8)7'8" = ZESfo' complexity at the base station for demodulation on each baud

Py interval.

Here we have define§; as the matrix$ with its ith column, A. Coherent Signaling Over the Frequency Nonselective
s;, removed. The oblique projection matd, s, is computed Fading Channel

asin (3a).. . Let K users share a common communication channel. Each
Proof: See Appendix A. O . . .
user employs synchronous coherent NMM signaling with an un-
Theorem 11.2: Given a full rank matrix§ € CY** the known gain affecting each user. Specifically, each user transmits
Moore—Penrose pseudo-inverseSis given by one of the signals from a persondl-ary signal constellation at
N N each baud period. Let the received continuous time signal be
81 Pg, /(3*{135131)

g _ | #Ps [(nPss) @ r= ; u(k)s(k) +n ®
« pl « pl wheres(k) € &(k) = {s,,(k)}M_, is the signal transmitted
P / (SMPS MSM) by thek(th)user én)th@{seéozd baud interval(k) is the kth
with S*§ = I andSS+ = Ps. users' fading parameter (assumed constant across a signaling
Proof: This is readily verified by expandingS* and perio_d), an@ is an additive white Gaussian noise process. Let
Sts. o thesignals)j, &(k) have an orthonormal basjs(n)} -, in

L2 with v < K M. For the detection problem we form a vector
The distance between the subspagésand(B) is defined sufficient statisticy = G(r), G : L2 — RY, by correlatingr
to be [9] against each basis function; that is,

dist ((4), (B)) = |Pa — Ppll2 = max|sin (6;)]  (5) y=Gr)=({rU) )



McCLOUD AND SCHARF: INTERFERENCE ESTIMATION WITH APPLICATIONS TO BLIND MULTIPLE-ACCESS COMMUNICATION 949

User 1 ﬂ—@

w(1)
User 2 s(2)
- ?2) D O G
. I

User K L% n
w(E)

Fig. 1. System model for frequency-nonselective fading.

=HDb+n (20) niques wherein théV basis functions can be chosen as time de-
- ) ) ] ] lays of a common chip pulsg(¢) with chip periodT; that is,
where the multilinear inner produét, U) is defined in (7). The un(t) = 9(t — nTe). It also models Time-Division Multiple

matrix H = [H(1), H(2),-- -, H(K)] contains the signal vec- access (TDMA) wherein the basis functions are again time de-
tors for each user withl (k) = [h1(k), ho(k), - - - has(k)] and  |ays of the same basic pulse and the signaling vediqré:) are
_ constrained to have only one nonzero entry (inktieposition).
hin (k) = {am (R), U). (11) The coherent version also models (block) coded multiple-access
The matrix communications wherein each symbol vedigy(k) is a code-
word representing af/-bit information block. Similarly, the
D = diag{p(1)I, (2)1, - - -, (KO I } noncoherent version of this model, discussed below, is general

enough to include such symboling schemes as frequency shift

keying, wherein the basis functions are truncated complex expo-

nentials of different frequencies. Notice that for the noncoherent
b=1[b"(1),b"(2),-- b (K)" channel, our detector and performance analysis allow for corre-

lated signaling. This allows for bandwidth-efficient signaling in

is anM K x 1 vector. Eactb(k) is a column of theM x M  conjunction with noncoherent detection.

identity matrix that selects the signal transmitted by user

H(k)b,,(k) = h,,(k). Assuming equally likely signals for eachB. Noncoherent Signaling Over the Frequency Nonselective

user and deterministic gain coefficients, the measurement fr&sling Channel

first- and second-order statistics When the channel is noncoherent we employ essentially the

1 T To T 9 same model, withu(k) now representing an unknown complex
Ely] = MHDI andElyy" | = HDRyD" 1" + 07T (12) gain andr replaced by its complex baseband representation. The

generalized samplet; now mapsL? into CV. We have the

is adiagonall K x M K matrix of the users' fading coefficients
and

where
L1 1g L 0 model
% Agj A_gQ y=HDb+n (15)
Ry, = Ebb' | = . : (13)
: : : : whereH andb are defined as in the coherent case but the fading
=@ =@ - I coefficient matrix is now given by
andQ: llT with 1 = [1 1. 1]T D:diag{ul(l)vﬁLQ(l)?"'7NA4(1)7"'7“1(K)7"'7NA4(K)}'

We may expand this model for when thth user is of interest

and has transmitted theth signal from@&(k) as The individual fading parameters are modeled as having ampli-

tude|u(k)|, independent of the transmitted symbol, but a phase
y = p(khy (k) + S(k)B + n. (14) which may be hypothesis-dependent. Such models arise when
] ) ) the fading process is assumed to have a flat magnitude response

The vectorS(k)B is the multiple-access interference correpyi possibly a frequency-selective phase. Modeling the gain co-

sponding to users # k. The system model for this problemetficients as zero-mean random variables, the measuregnent
is shown in Fig. 1. We assume that the users communiCaigs first- and second-order statistics

independently.
This is a general model for code-division multiple access Ely=0 and E[yy*|=H"FH* +5°I (16)
(CDMA) communications, but to distinguish it from direct-se-
quence CDMA (DS-CDMA), Varanasi and Guess [10] hav@’here
proposed that it be called _Correlated-Waveform Multlple_ Ac- F = diag{E[|u(1)[21,- - -, E|u(K)|2I}
cess (CWMA). The model is general enough to include direct-
sequence Code-Division Multiple Access (DS-CDMA) techi@ssumingE[c’fm =i ()] = 5, ).



950 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

When themth signal is transmitted by usér the measure-
ment model becomes

y = (k)| B h,, (k) + S(k)B +n. (17)

The vectorS 8 accounts for MAI.

IV. GENERALIZED MAXIMUM -LIKELIHOOD DETECTION

We employ the generalized maximum-likelihood (GML) de
tection rule for the coherent and the noncoherent channels.
idea behind this detection strategy is that if the gaffh) and
the multiple-access interference tewfix )8 were known to the
receiver, the optimum (minimum probability of error) decisiol
rule would be

(k) = argmin |y — p(k)ho (k) — S(k)B|> (18)

assuming equal priors. In the absence of this information \
form maximum-likelihood estimates @f(%k) and.S8 and sub-
St,ItUte th_ose mtp the deFector. In the following two sections V\ﬁg. 2. Geometrical interpretation of coherent detector forkttreuser. The
give a brief outline of this procedure for the coherent and NoRetector makes the decisioi(k) = arg max,, o, wherea.,, is the angle
coherent channels. The noncoherent GML rule is also deriviegiweery andh,..(k) in the interference-free subspa@(x)) -
in [2]-[6].

The corresponding noncoherent GML detection rule is
A. The Coherent GML Detector

When the channel is phase-coherent we may find the max-
imum-likelihood estimates ofi(k)h.,(k) and S(k)B as [11],
3]

v P (b
(B () Piayhn ()

(22)

m(k) = arg max

m

En,,)sm)¥, (F)Psyy > 0

Arn k hrn k)=
finl )A “ {0, (k)Psyy < 0
S(k) B,,(k) = Esgin,. (0¥ (19)

where Es iy, vy and By, sk are the oblique projection
matrices defined in Section II. Notice that we have included the
subscript on the estimates to indicate thgt(k) is the max-
imum-likelihood estimate of théth user's gain under theth  Thus we can replace the matrBé(k) by P¢ everywhere it oc-
hypothesis, and similarly fq8,, (k). curs in (21) and (22). Then we may normalize each detector by

The resulting GML detection rule is the measurement's energy in the spa&gto get the following
geometrical interpretation [3], [5] of the GML rulés:

b,
XA C. Geometry of the GML Detectors
Defining the “interference-free signal matrixG

Pﬁ(k)H(k), we notice that

P.JS_(k)hm(k) = Pch,, (k).

(k) = argmin |y — jim (F)ho (k) = S(R)B,, (1)1
— . | argmax,, cos (y, by, (k); Pa), coherent
— arg max Y Psghn(k) el (20) (k) = {arg max,, cos>(y, b (k); Pg), noncoherent.
(B3 (0 PE o hon () ) (23)

Notice that in the case dihear modulation ... (k) = o, h(k), We see that the detector chooses the sigpdl) which makes
with h(k) a fixed vector andy,, a scalar, the GML detector is the smallest angle to the measurement in the perpendicular sub-

the decorrelating detector of Lupas and Verdu [1], which wapace(S)L. Fig. 2 illustrates this geometrical interpretation of
derived from a GML framework. the detector. It is also worth noting the invariances of the two de-

tectors. The coherent detector is invariant to positive scaling and
to addition of vectors lying idS(k)). The noncoherent detector

B. The Noncoherent GML Detector d : g ’ )
) ) is invariant to gain and rotations (by a complex exponential) as
When the channel is noncoherent we proceed in the same

manner, with the maximum-likelihood estimates now given by *When all vectors lie iR™ we define
cos (z,: A) = (x.9)a/ ((z. 2){* (4. 9) ")

1/2
A

/lrn(k)hrn(k) = Ehm(k)S(k)yv

5B,,(k) = Esgon,, (1)¥- (21)

and use the notatioros (2, y) whenA = I. When we are irC"™ we define
cos®(y. 2, A) = (2, y)al*/((v. ¥) alz. T) 4).
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well as to addition of vectors i{5(k)). These generalize the in- The probability of choosing signal when signalm was
variance sets of the subspace detectors presented in [12] totthasmitted using the decision rule in (23) is
multiple hypothesis testing problem.

RE (K RE (k
Pl By . By bt
V. ASYMPTOTIC EFFICIENCY OF THEGML DETECTORS (hm(k)hm(k)) (hn (’f)hn(/f))

A common performance measure for multiuser detection is (k) (hfl(k)hm(k))i )
the Multiuser Asymptotic Efficiency (MAE), which measures = @ [1 — cos(h,(k), h,(K))]?
the performance loss of a detection strategy in multiple-access oV2
interference relative to the case of a single-user channel. Th

MAE for user is defined by [1] Shis allows us to form the two-signal lower bomlmd

T 2
n(k) = sup {0 <r<, i AT) o oo} (24)  pyu(ort) = LQ<min ARICACLD)
- M

o2 -0 PSU(O'27’_1) mn O\/§
where P,(o?) is the probability of error for théith user em-
ploying the GML detecto# with additive white Gaussian noise )
(27)

(AWGN) powera?, and Psy (a7 1) is the probability of error % [1 = cos(hym (k), b (k)]
for the GML decentralized detector in the absence of interfering
users(S = 0) with effective noise powes? /r. We can find expressions fdty(o2), P, (0?), andPsy(a?r™1)

We find the MAE of the detectors using the upper and lowén a similar manner. Substituting these values into (26) we find
bounds as in [13]. Suppose we can find functions the asymptotic efficiency of our detector to be given by (28) at
0 < Pgy(0?r™Y) < Psu(o®r™) the bottom of this page. We see that the asymptotic efficiency

) is nonzero as long as the user's signal set is not contained in

and ) _ the span of the interfering user's signals, and no two signals are
Py(0") < Py(o”) < 1. positive multiples of each other.
Then for any paifo?,r) we have
P (P¢(0)2) Py(o?) B. Asymptotic Efficiency of the Noncoherent Detector
Psy(o2r=1) = Pgy(a?r1) (25) In order to derive an expression for the MAE of the nonco-
and so a herent detector, we start as in Section V-A and find the proba-

. P,
k) <7n(k)= sup lim —————.
n(k) < n(k) 09‘21 o250 Pey(02r—1)

o2) bility of a binary error with our detector. An independent deriva-
(26)  tion of this result was presented in a somewhat different notation
in [4] and [6]. The probability of choosing signal, (k) when

We can generate a lower bountk) < n(k) in an analogous h,» (k) was transmitted is given by

fashion using the bounding functiofs,(o*) and Psu (o7 ~1). . i
Clearly, whenever(k) = n(k) we have an exact expression for Pe = P(y"Pry —y"Pry) > 0| hin (k)]

n(k), namelyn(k) = (k). In the next section we use a union = Ply*Apy > 0| h,. (k)]

upper bound and a two-signal lower bound on the probability gfhere we have defined (29) and (30) at the top of the following
error to derive the asymptotic efficiency of each of the detectogsage.

This implies that we only need an expression for the probability . .

of a binary error, choosing hypothesisvhen hypothesig: is ~_ Lemma V.1:Let P, = U,U; andP; = U,U, be two or-

in effect, for the detectors. This process is sketched in the nd¥pgonaliV x N projection matrices with range spaces of the

two sections and the resulting values of the MAE are given. S@me dimension. Then the matrbp = P, — P» hasN —2r
eigenvalues equal to zero akdeigenvalues given by sin(6; ),

whered; is theith principle angle between the subspatEs)
and(P-).

To form our bounds for the probability of error using the co-  Proof: The characteristic polynomial fak p is given by
herEnL_?é\I/II;Ndete_ﬁt?r(ijn (23) we b_eginf Wig: th_e blinary ercr;lor p(s) = det(sI — P; + Py)
probability. We will find an expression for the single-user de- _ e -1
tector (in the absence of multiple-access interference). The mul- = det (sI+ Py)det (I - Us(sl + P1)= U»)
tiple-access case is treated in an identical fashion jtkk:) Where we have used the fact that
replaced byP_é(k)hm(k). det(sI — A— BC) = det (sI — A)det (I — C(sI — A)"'B)

A. Asymptotic Efficiency of the Coherent GML Detector

m¥#En

min \/hfl(k)P;k)hm(k) [1 — cos (hm(k), hn(k);P;k))}
n(k) = .

(28)

s /7 (o (BIL = 08 (R (). (1))
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- {h,m(/f)(hfn(k)hm(k))‘lh;(k),

-1
Pgyhon(®) (B, (K)Pgggha(k)) B, (K)Psg, MU case.

AP:Pn_Pnr

SU case
(29)

(30)

when all of the matrices are of appropriate size [14, Appendix

- lexp{—él}?()\l +A2)}10 <\/W>

A.13]. We can expand the first term as 2 202
det (sI + Py) = sV (s 4+ 1)". (35)

The second term may be expanded through the Woodbury iden- -0, <\/|N |? [ushan (K|
tity 9252 ’
det(I— U (SI+U1U ) lUg) |N | |u1 o )|

=s5""(s+1)"det((s — 1)(s + I + U3 P U>) \/ 252 )
[14, Appendix A.20]. Collecting these terms we find (8|2 ()2

p(s) = sV det(sI + [I — U P U,5M?) 5 < T)
~det(sI — [I - U3 PU,)Y?). |1(R)? [P ()| B, (BB, (R

The eigenvalues of — U P, U, are known to besin?(6;)} 1o < 202 ||y, (k)| ) (36)
[15] and the lemma follows. U whereQ(a,b) is Marcum'sQ-function and we have used the

relationships listed in (33). We can obtain an asymptotically
tight expression for (35) using the results of [18] to find

Plz> 0] = 1;;0(3 <\/Iu(k)l2hi;l(k)hm(k)(1 — c))

202

Factoring the projections int#,, = U, U;, andP, =
U, U it follows from Lemma V.1 that

Ap = UEU* = [ul,ug] |:g —08:| [‘ulauQ]* (31)

wheres =| sin(#)| andé is the angle betweeh,, (k) andh,, (k).
Using the definitions

z=y Apy aso® — 0, wherec = +/1 — s2.
= |p(B) PR, (kg by, (K) Building Pgy (0r™1), Py(o?), Psy(o®r™t), and P, (0?)
A = (k) 2RE, (kY tuaulh, (k) (32) asin Section V-A we find the_MAI_E in (38_) at the bottom of
this page. Hence the asymptotic efficiency is nonzero as long as
the signal set for each user is not pairwise colinear in the inter-
A Ay = |u( )| R e 1 PLh (k) ference-free subspads) (meaning| cos(hp, hn; P3)| < 1),
and not in the span of the interfering user's signals. Notice that
AL+ Az = |k )| ()P (F) the fading parametey(k), does not affect the asymptotic ef-
A0 = (k) PR, (k) (k)2 cos(hy,, (k), k. (k)% (33) ficiency. It does, however, effect the probability of error for a

We find the characteristic function for the quadratic form 9iven value ofe?. The upper and lower bounds would be ob-
using the techniques of [16, Appendix BJ: tained by averaging the expression of (37) over the distribution

(37)

the following relationships hold:

. N Ao for |uu(k)|.
a ( ) exp | —Jw 1+jwse? ~ 1—jwso? (34)
z\W) = " " .
(1+jwso?)(1 — jwsa?) VI. MULTIUSER COMMUNICATION ON THE FREQUENCY

Following the method employed in [17, Appendix B] we find
the probability of error to be

Pl > 0] = Q, (V%M%)

SELECTIVE FADING CHANNEL

In the presence of frequency-selective fading with multipath
spreadly,, (assumed to be equal for each user for simplicity)
we develop a tapped-delay line model of the channel as in [17].

. w0 b5, () P& b () (1~ ‘cos (hm(k),hn(k);P;k))D -
e N st By (B (R)(1 = [ cos(hn (K), B (F))1) '
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Thekth user transmits a signalk) € G(k) = {s,,.(k)}}4. Let By letting G = Pﬁ(k)H(k), we can rewrite the quadratic
W be the effective bandwidth of ths, (k). The received signal form in (42) as
has the complex baseband model

K J y*PpémHm(k)y =¥ Ppoumy- (43)
_ . J/W
r= ; 221 Cm,j (R)S 8 (k) + (39) The detector may be written as
i
where the{c;..(k)} are the time-varying fading coefficients (k) = argmax y" Ppg.,, 1)Y- (44)

(assumed constant over one signal period) affectingntlie
signal of thekth user,S™ is the delay operator ilL? with The advantage of this form of the GML detector is that the pro-

{STh}(t) = h(t — 7), n is additive (complex) white noise, jection matricesPp g, (x) can be estimated with low compu-
andJ = [T, W] + 1. Let the set{S//Ws,,,(k)}m 1, have tational complexity. This will be explored in Section VIII-C.
the orthonormal basiév(n)}Y_;, with N < JK M. Then the

correlation receiver computes the vector statistic VII. | NTERFERENCEIDENTIFICATION

The detectors of (21), (22), and (42) require knowledge of the

v= <Z,’ V) interference subspades(k)) for their implementations. This
_ Z H(b(E) +n knowledge may be unavailable to the receiver or it may be com-
— putationally burdensome to track in a time-varying situation as
— H(k)b(k) + S(k)B +n, users enter and e_xit the_ channel. TQ mitigate this problem, we
seek low-complexity estimators of this subspace based on actual
where channel measurements. In the following section, we derive and
. analyze such an estimation procedure based on second-order
H(k)=[H(k), -, Hy (k)] eCM*M/ statistics of the measurement. The results generalize a lemma of
and Wang and Poor [7] to NMM signaling and to OMM signaling
H (k) =[(SYY 8, (k), V), - (SV/ W 8, (k), V)] eCN*7.  over the frequency-selective fading channel.
The vectom(k) contains just one nonzerbvector A. The Interference Identification Procedure

o T .ol In this section we address the problem of identifying the inter-
bk) € {Bmem (k) En =[0---1---0] (40) ference subspades) from channel measurements. We assume
ande,, ()T = [erm(k), czm(k), -+, crm(E)]. that we have a set of measurements consisting of a stochastic

We consider the case where the fading vecigrgk) are Signal constrained to lie in knownsubspaceH), plus a sto-
varying sufficiently fast from symbol to symbol so as to makghastic interference lying in amknowrsubspaces), plus ad-
accurate estimation infeasible. This implies that the fading c@ltive white noise. We assume that the signal and the interfer-

herence time is commensurate with the signaling period. Th@fce terms are uncorrelated, as is the case in the multiple-ac-
we m|ght ask for decision rules which are invariant to the pa?.ess communication models that we have considered. We seek

ticular fading realization. to identify (8} and will do so by deriving a technique for esti-

The GML detector for this problem is found as in the frematingPs. Our resultis a generalization of a theorem of Wang
guency-nonselective case. First, the maximum-likelihood es@nd Poor [7] with a proof derived from our representations of
mates ofH ,,,(k)e(k) andS(k)A are found projections and pseudo-inverses in Section Il.

e (k) = Theorem VII.1: Giveny = Ha+ SB+n whereH € CN*"
Hrn(k)Acrn(k') = ‘EHm(k)S(k)y andS e CNX(P—T) with rank([H’ S]) = p. Let y have the
5B,n(F) = Esgor,. )Y (41) correlation matrix

These estimates are then substituted into the likelihood func- R = Elyy"| = HRooH" + SRgsS* + oI
tions for the measuremegtand the corresponding GML rule is o o8

where Roa = Elaa®] > 0, Rgg = E[BB] > 0, and

(k) = arg maxy Prgo mn¥: (42) E[nn*] = ¢2I. The eigendecomposition @ is
This is a full generalization of the rarkeetector of (22) to the ALet o2 O U
case of multiple-rank signaling imposed by the frequency-selec- R = [Ugs Uj] HSO 021} { Ug_s}
A

tive fading (with the short coherence time assumption) and ap-

pears to be original. The GML detector isrmtched subspace where

detector{11], [12] which seeks the subspa@ﬁ(k)Hm(k)) in

which ¢ has the most energy. The detector is invariant to ro- HR. H" + SRgpS" = UnsAysUss.

tations and scaling within the subspadg,,,(k)) as well as to

addition of vectors lying ifS(k)). It should be noted that we re- Defining G = UpysAgsUysH, we have(G) = (PsH) and
quire M linearly independent subspacéBz H,,(k)), inorder Pg = P,,g_,,.

to perform detection. Proof. See Appendix B.
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From the identityPgs = Ps + Pp. y it follows that (8 — 62I)~! = A% + A;. Thekth singular value o\, is
bounded by /(A — ) A« SO letA maximize this bound over the
Ps=Pys—Pp.y set{\}. Then||A;]|2 < ¢/(A(A — ¢)). The estimate(@, of G
s : .
~ UnsUhs - Pe. @g) 'Soventy
G=Uys(¥ —0°1)" UpsH (49)
Each of the terms in (45) may be adaptively estimated from mea- -G+ N, (50)

surements using an eigendecomposition of the sample covari- ) )
ance matrix for block processing or an iterative approximatio¥nere the matrixVv, is found to be

to this decomposition using subspace tracking as described in N, = UHSABQSﬁZH + UHsf\lff;rsH
Section VII-D. . Lo A\
Notice that we can drop the requirement tRat, and Rz be +Ua (AHS + Al) UpsH. (51)

fullrank in Theorem VII.1 by replacingf R H* andSRggS™
by their appropriate reduced dimensional representations.

1leincep\k — | € eand||Uall2 < ¢ by construction we find
results of the theorem would still hold. t

St

Nills < ||H|j2 (€ A*QH + |Ay]]2 + € A*2+AH
B. Perturbation Analysis I¥.llo < 1l ( H31l, 4 s : 2>
In this section we will find bounds for the distance between < ¢||H||2 <1 4 = _1 + 1 ) (52)
the estimated subspa¢@) and the true subspa¢@), whenG A AMA—e  A—e
is computed from a perturbed version&f We assume whereA = min;{\;}.
. Let the singular values & be {3 }. Then we can bound the
R=R+N (46) distancelist ((G), (@) using the invariant subspace sensitivity
results of [9, Sec. 7.2] to find
whereN is a “small” matrix in the2-norm sense. . AR
Let R have the model of (46) and write the SVD Bfas dist ((G), (@) <4———. (53)
ming {S }
R=[Uys U, [% 20 } [I{]’is} . (47) C. Convergence
’ 4 Having established bounds dist ((G). (G)) through a per-
The matrixGand the noise power? are estimated as turbation analysis, we now examine the convergence of the sub-
o . 1. space estimation algorithm. We will show that estimatd&g
G=Upgs (21 - 5'21) UpysH based on an eigendecomposition of the sample correlation ma-
o 1 R trix from independent and identically distributed (i.i.d.) mea-
07 = pTl‘ (X2) (48)  surements with correlation matriR produces a strongly con-

wherep is the rank of the signal plus interference subspace. W@@Eenr(ljtse;:rt?waet?ji(s)g::et:zgar:jrtf and we give asymptotic
this decomposition we find the following result. .'
P A g . We assume that we havg@ independent measurements,
Lemma VII.2: Define the matriceA s = Ay s— (8, —620) {yq}le, each identically distributed with zero mean and
andUa = Ups — Upgs. Let||N||2 = 6. Then if the diagonal correlation matrix

entries ofAzs, {\;}_,, are distinct ands < ||As|l2, and R HR..H' + SRasS" + 021
- oo 88 .

2
¢ = max{ 26, 4,/p max 1+ < 6 ) -1 Compute the sample correlation matrix
i# R L@
R=5> vy, (54)
1 I Q g=1
|Ai = Al

and eigendecomposfé as in (47). The sample correlation ma-
then||A4||> < ¢ and|[Tal|» < e The interpretation is that the [fiX converges taZ almost surely (a.s.) by the Kolmogorov Law
error norms|A4||» and||[UA||» are of the same order §&V||,. ©f Large Numbers [19] and hence [20]

Proof: See Appendix C. Ups — Uys as.and £, — 621 — Ajs as  (55)

We are interested in estimatidg which requires an expres- Notice that the preceding equations are enough to show that
sion for(¥; — 62I)~L. To this end, let the eigenvaluesdfs & — @ a.s. but that in general this is not sufficient to con-
be {\+} and the diagonal entries &, — 5>I be given by clude thadist ((G), (@) — 0. Consider, for example, the non-
{Ar}. Define the matrixA; = diag{1/A — 1/Ax}, and note stochastic sequence of matricks = X + (1/2*)vv* for some

2The restriction that the eigenvalues be distinct can be lifted. The dominan®in order to discuss the convergence of the eigenvector m&tgps, we make
eigenvectors o will not be unique when there are multiple eigenvalues buhe standard assumption that each eigenvector satisfies some uniqueness condi-
any eigendecomposition @ will yield eigenvectors “close” to a valid decom- tion. We could, for example, constrafi/ ms }.. ... to be real-valued for each,
position of R. see, e.g., [20].
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TABLE | to track these parameters with a complexityfNp), where
THE PASTd [27], [28] AGORITHM FOR N is the dimensionality ofR, andp is the dimension of the
UPDATING THE DOMINANT CORRELATION STRUCTURE USING EXPONENTIAL .
AVERAGING, R(q) = aR(q — 1) + (1 — a)y(q)y(q)*. THE “EXTRA" dominant subspace.
EIGENVALUE A, 11(g) IS USED TOUPDATE THE NOISE ESTIMATE, ¢ For the numerical results presented in Section IX we use the
Projection Approximation Subspace Tracking with Deflation
Inputs: Ulg-1) e CV? {\(g—- DY y(9), (PASTd) algorithm [27], [28] to perform the subspace tracking.
. The PASTd algorithm is a®(Np) algorithm and is summa-
Main Loop: rized in Table I.
x1(q) = Notice that this algorithm increases the rank of the domi-
1@ =y : . .
nant subspace by at each iteration. If the true rank is known
FOR k=1:pDO we allow the PASTd algorithm to perform this increase uptil
N equals the true rank and then prune off the extra eigenvalue and
Bi(9) = u g - 1)xi(q) . eigenvector after each iteration. The noise estimate is updated
Ak(g) = adi{g — 1) + |Be(a)l as
wi(g) = uplg - 1) + ﬁk(l)[xk(4))‘—’0“;)@—1)%(4)] 1
— - ~2 ~2
END xk+1(9) = %i(g) — Br(g)urle) 5%(q) «— N p((N p—Das(g—1)+ Apy1(q). (57)
Ap+1(g) = a8%(g — 1) + |%p41 ()II*/(V — p) When the true rank of the dominant subspace is not known we
Up+1(0) = Xpr1 @)/ 1%p41(0) employ the PASTd algorithm together with a rank estimation
Outputs: U(q) € CNx(p+D) procedure such as the Akaike Information Criterion (AIC) [29],
(@)t which chooses the rank by
N
Nop | YR 2 )
low-rank matrixX and vectomw € (X)*, thenX, — X in P =argmaxq ——log : 1N
the matrix norm butX ) — ([X. )~ (X). The perturbation < 3o (q)>
bounds on this subspace distance (see (52) and (53)) developed ikl
in Section VII-B do allow us to prove such convergence as they N
bounddist ((G), (G)) asymptotically by a constant times the
maximum of||[Ugs — Ugs|| and||Ags — (£1 — 6°I)||. Each + (2N — k) (58)
of these terms approaches zero almost surely and hence so does
dist ({G), (@)). The estimator is therefore strongly consistent.

/7

It is known [21] that for i.i.d. samples the matricAs, and . ]
F wherel/(1 — «) is the effective number of measurements.

U A have asymptoti@-norms i i )
. There are three possible actions based on the outcome of this
[Aallz = O(yloglogQ/Q)  as. test.
[Uallz = O(y/loglog Q/Q) as. 1) (5 > p) we allow the rank to increase by keeping
+1 ; ;
We may use our bounds from Section VII-B together with these ~ 1Ni(@}1™ andU(g) and update the noise power with
asymptotic expressions to find 6%(q) — ad®(q — 1);
dist((G), (G)) = O(\/loglog Q/Q) as.  (56) 2) (p = p) we keep{\;(¢q)}* and the firsp columns o/ (¢)
and update the noise power with (57);

D. Subspace Tracking for Low-Complexity Blind Detection  3) (5 < p) we keep{A;(¢)}y " and the firsp — 1 columns

The subspace estimator of Theorem VII.1 requires estimates of U(g) and update the noise power with

of the dominant eigenvectoldgs and dominant eigenvalues &Q(Q) - 1 (N—p— 1)a&2(q ~1)
{\:} of the measurement correlation matfxand of the addi- N-p+1
tive noise power2. When the channel is time-variant, for ex- + Ap(q) + Apr1(@)-

ample, when users are entering and departing a multiple-access
system and their average received powers are varying due to mo-
tion of the transmitters relative to the receiver, we might estimate

the measurement correlation either from a block of data or with e now use these interference subspace identification proce-

VIII. B LIND MULTIUSER COMMUNICATIONS

a running window estimator of the form dures to findblind implementations of the decentralized detec-
Rl — ol | 1 . tors developed in Sections Ill and VI. This extends the blind
(¢) = aR(g — 1)+ (1 — a)y(g)y™(@)- decorrelating detector of Wang and Poor [7] to multidimen-

In either case, an eigendecomposition Bfmust be per- sional signal sets arising from NMM and frequency-selective
formed. There are several computationally efficient methofsding. We show that the computational complexity of the blind
for updating the estimates of the parameters of interef#tectors is of the same order as that of the subspace tracking
(Ugs,Ags,c?) through subspace tracking, see, e.gproblem, which can be solved efficiently. This shows that the
[22]-[28]. A key result from this literature is that it is possibleblind detectors are feasible even at high data rates.
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A. Blind Detection for Frequency Nonselective Fading where, from (40),

When we do not know the interference subspgte:)), we
can use the results of Section VI to estimate it. We require a few Ry (k) = 1/M diag{Ree(k), - - -, Ree(k)}
additional assumptions in order to make the correlation matrix
for y meet the conditions of Theorem VII.1. We list the addiis a block-diagonal matrix witd/ blocks. We see that our data
tional assumptions for the coherent and noncoherent cases $igpthe conditions of Theorem VII.1 and we can use measure-
arately. ments ofy to estimateP¢ and hence blindly build the detector
When the channel is coherent we assume that the signal setfio(44).
each user is symmetric abdlin the mean, e.gE[H (k)b] = 0.

This forces the cross correlation to @e C. Computational Complexity
E[p(R)H (BT H(D)™ 1u(1)] In order for a detection scheme to be feasible for a commu-
= E[u(k)H()b(k)|E[(Db()T H(D)Y] nications channel it must be possible to implement it with low

computational complexity, corresponding to high data rates. In

(the users signal independently) this section we examine the computational complexity of the

=0. blind schemes developed in the previous two sections and show

When the channel is noncoherent we need to be a little mdfi&t when the correlation matrix for all users has ramid the

careful. Proceeding as in the coherent case we require measurement size i§, the procedure has complexi(Nr).
" First consider the detectors for frequency-nonselective fading
E ||u(k)] Z m ) p, )| =0 in (21) and (22). Notice that for each
m=1
L

In order to satisfy this condition we will assume that the phase Psylm(k) = PP;(k>H(k)h"l(k)
angleg,, (k) is uniformly distributed or0, 2] for eachm. To =UgUgh,.(k) (62)

reiterate, the noncoherent detector given in (21) was derived
without any assumptions on the complex gain but the blinghe o1, is defined in Section VII. Consequently, we need only
detector requires the assumption theat(%) is a zero-mean find U &

. _ Y _ & the left singular vectors d&.
complex random variable. This assumption is met for Rayleigh\ynen subspace tracking is employed to iteratively decom-
fading channels, for example.

, \ ) ) , poseR we may update the subspace matritggs andAgs

With these assumptions we find the correlation matrixgfor with computational cosP(Vr) using an efficient update algo-
to be rithm of the type described in Section VII-D. The matrix mul-

R = Elyy"| tiply to find G has complexityD(Nr). The decomposition &
— E[|/¢L(k)|2]H(k)H(k)* + S(/%)R’@’gS(k)* + O'QI. (59) to get an Or.th.onormal baSleQG> has COTnpleXlt)O(NMQ)
when an efficient technique is employed as described in [9, Ch.
If 12(k) is modeled as an unknown deterministic quantity for they \yhereH has ranki/. The overall computational complexity
coherent channel, theli|.(k)[*] = |u(k)[*. N is henceD(N P) whereP = max (M?2,r).

It may be the case that the mat#k(k) is rank deficient (for  The computational complexity of the blind detector for fre-
example, when phase-shift keying is employed). Since we kn@jjency-selective fading is found as in the frequency-nonselec-
H(F) we may change the model in (59) to tive fading case. The matric may be estimated with com-

R = E[|u(k)|H(k)H (k)" + S(k)RgaS(k)* + oI (60) plexity O(N(MJ+ L)), whereL = rank (8 and the right sin-

gular vectors ol/¢.H ,,,(k) may be estimated with complexity

whereH (k) has full coumnrank. _.O(J®). When.J? is small relative taV (M.J + L) we find the
We see that our correlation matrix satisfies the conditions g{erall complexity to be&(N(MJ + L))

Theorem VII.1. This means that we may collect a time series of
measurementgy(q) } and use them to form the sample correla-

tion matrix R and its eigendecomposition. These terms are then _ )
used to form the estima® and the projectioPy, is used in  In order to gauge the effectiveness of the blind de-

IX. SIMULATION EXAMPLE

the detector of (22). tector we examine the residual interference energy defined by
Tr[U;SRs3S8™ U ] for the noncoherent detector with Rayleigh
B. Blind Detection for Frequency Selective Fading fading. The user gaing;.,,(k)} were taken to be complex

Haormal random variables with variane§ = E|u(k)|?. The
signal-to-noise ratio (SNR) of user 1 was 26 dB. Each user
employedM = 3 with lengthV = 31 Gold codes (user 1 used

For frequency selective fading recall that our model for t
measurement is

y = H(k)b(k) + S(k)B +n. codes 5-7, user 2 used codes 8-10, etc.) normalized to have
Let S(k)B have the correlation matri§(k)RggS(k)* and let unit norm. . _ _
¢(k) be distributed complex norma(k) ~ CN[0, Ree(k)]. Atiteration 1 there where two interfering users each with en-

ergy levels E(|(1))?)/E(|1(1)]?)) of 14 dB relative to user 1.
Fig. 3 shows the residual interference energy as a function of
R = H(k)Ry(k)H (k)" + S(k)RggS(k)* +¢°I  (61) iteration number, averaged over 50 simulations, employing the

Theny has the correlation
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Fig. 3. Residual energy versus iteration number for the example of Section IX. Aktim@® there are two interfering users, each with energy levels of 14 dB
relative to user 1. At timé& = 2000, a third user with energy levet6 dB enters the channel. At tinke= 4000, the —6-dB and one of the 14-dB users exit the
channel and a new user with energy level 44 dB enters.

PASTd subspace tracking algorithm together with the interfesecur without this restriction since they do not suffer from the
ence estimation. At the 2000th iteration, a third interfering usergenstructure mismatch of the rank reductions. This controls
was added to the channel with an energy level 6fdB relative the dominant eigenstructure mismatch observed in the second
to user 1. At iteration number 4000 the5-dB user and one of mode of operation.
the 14-dB users left the channel and a 44-dB user entered. The

. . . L . X. THE MMSE DETECTOR
simulations were run with the receiver in three different modes
of operation; 1) automatic rank adjustment using the AIC, 2) In this paper we have concentrated on interference-canceling
perfect rank information, and 3) perfect rank information witkior zero-forcing) detection of a desired user in multiple-access
a transition period following each rank adjustment. During thiaterference, wherein the interfering users' signals are com-
transition period the rank is held fixed. The third mode of opepletely nulled out by the interference nulling transformation
ation allows a smooth transition when interfering users enterE@ (or Pg) prior to detection. We may also consider the min-
exit the channel. The advantage of this is seen in the figure. imum mean-square error (MMSE) detector in these scenarios

Notice that the rank-adaptive mode allows for good transieinta manner analogous to the linear modulation case of [30].

response but poor steady-state estimation. This is especially ev=or the case of flat fading, we return to the measurement
ident when the-6-dB user enters the channel. This user comodel
tributes little to the eigenvalues of the estimated correlation ma-
trix and the AIC underestimates the rankR®f causing a con- y=HDb+n (63)
stant amount of user power to remain unaccounted for.

The receiver with perfect rank information has a good steagyhere?s, D, andb are defined for the coherent and noncoherent
state but poor transient response. This is especially evident wh@annels in Sections III-A and I1I-B, respectively. We seek the
the 44-dB user enters the channel. In effect, the estimator forggf1SE estimate of’b and make a decision on useby exam-
the rank to be small when the estimated covariance matrix is fafng the kth block of the estimat®b.
from its mean; this forces a large mismaich between the estiyt js straightforward to show that the MMSE estimator for the
mated and the true eigenstructure, allowing for power to be digsherent model is
tributed in the subdominant eigenstructure. In steady state, the
estimated covariance matrix has an eigenstructure much closer 1
to its mean and the powerful user is then well accounted for by =~ Db =D <Rbb - W11T> DTH
Ugns.

-1
_ The third _rnode of operation attempts to improve t_he tran- <021+ HD <Rbb _ %11T> DTHT>
sient dynamics of the perfect rank estimator by allowing each M
rank reduction to occur after a set transition period (in this ex- 1 1
ample 300 iterations were used). Increases in rank are allowed to <y M "D 1) Tu D1 (64)
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where Ry, is defined in Section IlI-A. Denote theth length whenR is updated through the exponential window
M subvector ofDb by Db(k). The MMSE detector for user jg(q +1) = ajg(q) +(1—a)y(g+ Dy*(g+1).

makes the decisions Alternatively, we can employ a subspace-tracking procedure as

in the blind GML detectors since

m1\Cr11\qu = arg Hﬁx{pb(/ﬂ)}m- (65) H'R = H*UHS(A%IS + UQI)AUBS
When the users' signals satisfy the symmetry property I\?;Iiisnt?;]M-ary extension of the blind MMSE algorithm de-
Z hin(k) = H(k)1 =0 We end this section by noting that the MMSE detector for the

then we haveRy, DT HY = (1/M)DTHT andH D1 = 0. In  frequency-selective channel of Section VI can be derived in the
this case, we may simplify the MMSE detector to the matcheg@me manner as the noncoherent detector for flat fading. In this
filter rule case, we require knowledge of the joint correlation structure of

Sy rsp(k) = arg max {hri;(k)R—ly} (66) the fading parametei&|e,,(k)e, (k)] for each user.

whereR = E[yy”] is the measurement correlation matrix. ~ A. Simulation Example Comparing the MMSE and the GML
For the case of noncoherent signaling we assume as befogiectors

that the fading termg(™ (k) are zero-mean complex random ysing the same signal sets as in the example of Section IX

variables. The MMSE estimator is we considerk = 3 users withM = 3 Gold sequences of
Db=FH*(o*I+ H'FH*) 'y (67) lengthN = 31 for each user. The interfering users each have
whereF is defined in Section I11-B. This leads to the simple® Power of 14 dB relative to the user of interest. In Fig. 4 we
decision rule for the noncoherent channel plot the probability of error for the MMSE detector of (68) and
. NC o X —1 2 the GML detector of (22). Each point was generated with 50 000
s (k) = avg max{|h,, (k) y["}, (68)  measurement realizations. Also plotted is the union upper bound

whereR = E[yy*]. Geometrically, we see that the noncoheremin the probability of error for the GML detector. This bound is
detector seeks thehitenedsignal vectorR_l/th(k) which found by first obtaining the union upper bound conditioned on
is closest to thevhitenedmeasuremenR /2y in terms of the a particular|z(k)| as
magnitude squared inner product. L MM
Notice that the MMSE detectors require knowledge of thgt - Plu*A nder hvoothesi
fading parameterg(k), or their correlation structure if they (kD) M,;Z " 2py <Olunder hypothesisr]
are stochastic and hence a invariant to unknown measure- A
ment gain. It is interesting to note that asymptotically (as the (70)

background noise power goes to zero), the téf'('k)*R__l?l whereA p is defined in (30) and the pairwise error probabilities
approachegH (k)*Pg H(k))~*H(k)* Pgy, as can be verified are given by (37). This expression is then averaged against the

through the WOOdbUry |dent|ty [14, A21] This means that ﬂ’ﬁay|e|gh distribution Ofli(k)| to find the upper bound
MMSE detectors dmot approach the GML rules of (21) and

(22), except for the case of diagonHi(k)*PsH(k). In the — pU — ~ Me—lu(’v)lz/Elu(k)lzpb’(m(k)|)d|u(/€)|_
rank-one case (linear modulation), we ha#¢k) = h(k) and o Eluk)?

the MMSE detector will always approach the GML solution (as (71)
is well known, see e.g.[30]). The conclusion is that the two tecl?—his bound was evaluated numerically.

niques can Yie_'o_' diff_erent asymptotic performanc_es (and henceAIso shown in the figure is the probability of error when blind
asymptotic efficiencies) for the case of NMM. This problem Hetection is performed. The blind detectors were built as de-

?tudied in [31] apd thfe two techr;]iques a_re_shovv_nhtohhave déféribed in Sections VIl and X from the eigendecomposition of
erent asympto'uc performance c aractgnstms, wit t'e MM,S(Fre sample correlation matrix built from a block of 200 channel
outperforming ‘h?‘ GML detector f_or bmary modul_atlon (thisyeasurements. Each point on the blind curves is the average of
does not gengrahze to larger cardlna_hty constellat_lons): In the independent Monte Carlo simulations of the detectors (with
following section we present a numerical example in Wh'c_:h MNeitferent realizations of the sample-correlation matrix). Notice
GML detgctor ogtperforms the MMSE detector asymptotically, jhe GML and the MMSE detector have almostidentical per-
for Rayl§|gh_ fading. . ) . formance for this channel. This is also true for the blind detec-
The blind implementation of the MMSE detectors is straightg g notice further that the performance of both blind detectors

L . < —1 .
forward, requiring only the tracking a® , which can be ef- approach a noise floor induced by the finite sample estimation
ficiently updated using the rank-one update of a matrix invergg the correlation matrix.

(the Woodbury identity, [14, A.21])

-1

R (¢+1)
. R_l( o 1 ( 1)R_1( ) Xl. CONCLUSION
o1 + Dy* (g +
= (R () - VI yAg g ) The contributions of this paper are threefold. First, we re-
2 Ty (e + DR (gy(g+1) viewed the theory of generalized maximum-likelihood detectors

(69) for multiple-access communication with nonlinear signaling
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Fig. 4. Probability of a symbol error versus the output SNR per bit for the Rayleigh fading example of Section X-A. Each point is generated from 50 000
measurement realizations.

for both the coherent and the noncoherent frequency-nonBeiit of the MMSE detector for NMM signaling, an issue which
lective fading channel and for the frequency-selective fading further explored in [31].
channel with a short coherence time. These detectors were
posed in their most general form (without any requirements APPENDIX A
on the invertibility of the joint user signal correlation matrix PROOF OFTHEOREM 1.1
E[H(1).--H(K)IH(1)--- H(K)]"). Geometrical interpre- Following a method similar to that used in [8] we may first
tations of these detectors were presented and the relev&‘é‘éomposdf’s as
restrictions on the signal sets were derived.
~ We next developed a technique for determining an unknownp, — 5, 5, ... 5,]($*8)"1S"
mterfgrence_subspace from c_hanngl me:_asurements ina muIt|Q|- — s O)(S7S)"'S"+[0 s O[(S"S)"S" +---
mensional signal plus multidimensional interference plus addi-
tive noise problem. This is useful not only for multiple-access +[0 s 0)(S"S)7'S"+--
communication, but for many statistical sighal processing prob- +[0 sy](8*S) 18",
lems, including sensor array processing and Gauss—Gauss de-
tection. The estimate is shown to be strongly consistent througt us now writeS asS = [Sy 1, sk, Sk 2], whereS; =
a perturbation analysis and an asymptotic expression for fi4e 82 - 8x—1] andSy 2 = [sx+1 --- su]. Then expand the
subspace fitting error was derived. kth term of Ps as follows:

We applied these results to find blind detectors for multiuser,

* —1 v
fading communication channels. The detectors are compdpa‘?k 0|(5"5)~"8 .
tionally efficient and hence feasible for high-speed data com- Si1Sk1 Skisk SiiSke
munication. These detectors build upon and generalize the re- [0 s, 0] 8.8k 1 878y, 8.8k
cent blind decorrelating detector of Wang and Poor [7] for linear SyoSk1 Syposk SioSio
modulation. (S,
Finally, the MMSE detectors for NMM signaling were pre- si

sented. The MMSE detectors require knowledge of either the st
channel gains (for the coherent channel) or their statistics (for N 1
the noncoherent channel), which place them in a different cat-= (5:5%) [t 0]

—1 —1
egory from the GML detectors which were designed to be in- 14+ (S*_lsk)sz ( szk Sk) Sy | s (szpjk Sk)
variant to these gains. In the case of the noncoherent detector,* -

however, it was noted that a blind implementation of the MMSE L X ‘ Z

detector is possible which does not require such knowledge. It s}
was also shown that the GML it generally the high SNR S7
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(permuting each term and applying the Matrix
Inversion Lemma [12])

-1
-P, <I ~ 5, (S“;ij sk) S; Pt )
— B, s, O

APPENDIX B
PrROOF OFTHEOREM VII.1

Let Rye = RYZRY? andRgs = R},;fR;;f, a permis-

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 3, MAY 2000

So(@) C (PgH), butrank (G) = rank (P3 H) and the sub-
space spanned by a ranknatrix is identical to that spanned by
anyr linearly independent vectors in the subspace. Hence

(@) = <P§H> and Pg =Pp_y. O

APPENDIX C
PROOF OFLEMMA VII.2

By the Hoffman-Wielandt theorem [32] we hajfA.||> <
26, so the difficulty comes in boundingl/ A ||2-

sible factorization for any positive definite matrix. Define e pegin by stating a lemma on eigenvalue sensitivity [9

F = HRY/? andW = SR;%Q and rewriteR as

R=FF tWW*+ 2l =TT+ %I (72

whereT = [F W]. ThenT has the singular value decompo-

sitionT = UpI'V}, whereUr = Ugs andl’ = Ags. The
pseudo-inverse dF is given byT" = VTA,}%UBS and from

the definitions ofG andZ” we see tha@ = (T"")*T'T H. Since
T has full column rank, it is clear that
—1/2
TTH=[F W|*FR])> = [Raéx }

and so

G = (T {R%/Q} .

We now employ Theorem I1.2 to expaffd
fiPrw [(£iPrwf.)

fiPrw/ (:f;fP#TWf,,)
’”TP#W1 /(’U’TP;—‘W1 ’wl)

« pl « pl
| Wy Prw, . / (wp_,,PFWpiTwp_,,)

where F’; denotes the matrid' with its :th column removed.

Lety; = 1/(f; Pr.wf;) anda; = v, Py wfifori=1,--,r,
Then we can writd? in the form
as - a R
It is clear thatrank (G) = r and that
« Pg = P, .., (sinceR,./* has full rank);
« Py, = P3 (sincve SR} anLdel,éf > 0); X
» for eachi, a; = v.Py.sf; € (PsF) (sincePy of; =
P&f, — Ppoy fi, each in(PsF));

- and(P&F) = (PsH) sinceF = HRY/? andRY? has
full rank by assumption.

Corollary 7.2.6].

Lemma C.1: SupposeR, N € CN¥*N and thal/ = [u, U]
is unitary withu; € C~. Assume

A0

URU :[0 D

} and U'NU = [’“

75}
2 W

whereD is diagonal. If

o(A) =min{D - Al};; >0

and||[N||2 < /5, then there exists p € C¥ with [|p]l2 <
4(||lv2]l2/= (X)) such thate; = (u; + Usp)/+/1 + p*pis a unit
2-norm eigenvector foR + N.

For our problem we see tha{ \) defined in the preceding
lemma is nonzero for each of the unique eigenvaluebAzs.
In fact, for each); associated wittA;5 we see that(\;,) =
minj¢k |)\k — )\J| We note further thaM’}/QHQ < ||N||2 by the
properties of th@-norm. Letay, = 4||vz||2/o (%), then we find
that

llur — ]| = [Juer — 2|2
= [Ju(1 - 1/v/1+p*p) — Uap/\/1 +p*p||
<|IV1-pp— 1+ [[Up/\/1+p*pl

<y/1l4op — 14 .

SinceUys are the eigenvectors associated with ghenique
eigenvalues ofR corresponding thHs we may bound the
Frobenius norm o/ gs — Ugs by

\Uas — Unsllr

» 1/2
- <Z | Unsl - [UHs]z‘||2>
=1

< vp max ||[Unsli - [Uasli|

N>\ V1]
<4 a T4+ (2 ) —14 22
< \/z_ﬂl?%x<\/ +<|)\i_)\j| +|)\i_)\j|

Since

|Uns — Unslls < |{Uns — Unsl|r

the lemma follows. O



McCLOUD AND SCHARF: INTERFERENCE ESTIMATION WITH APPLICATIONS TO BLIND MULTIPLE-ACCESS COMMUNICATION

(1]

(2]

(3]

(4]

(5]
(6]

(71
(8]

[9]
[10]

(11]
[12]
[13]
[14]
[15]

[16]

REFERENCES [17]
[18]
R. Lupas and S. Verdu , “Linear multiuser detectors for synchronous
code-division multiple-access channell£EE Trans. Inform. Theory

vol. 35, pp. 123-136, Jan. 1989. [19]
A. Russ, “Noncoherent Detection for Nonlinear Binary Modulation in [20]
Gaussian CDMA Channels,” M.S. Thesis, Friedrich Alexander Univ.,
Erlangen-Nuremberg, Germany, Sept. 1996.

M. McCloud, L. L. Scharf, and L. T. McWhorter, “Subspace coherence [21]
for detection in multiuser additive noise channels,Pioc. SPAWC'97

Paris, France, Apr. 1997, pp. 225-228.

M. Varanasi and A. Russ, “Noncoherent decorrelative multiuser detec{22]
tion for nonlinear nonorthogonal modulation,”froc. 1.C.C.'97 Mon-

treal, Canada, June 1997.

M. McCloud and L. L. Scharf, “Generalized likelihood detection on mul- [23]
tiple access channels,” Proc. Asilomar'97Monterey, CA, Nov. 1997.

M. Varanasi and A. Russ, “Noncoherent decorrelative detection for
nonorthogonal multipulse modulation over the multiuser Gaussian24]
channel,”IEEE Trans. Communvol. 46, pp. 1675-1684, Dec. 1998.

X. Wang and H. V. Poor, “Blind multiuser detection: A subspace ap-
proach,”IEEE Trans. Inform. Theoryol. 44, pp. 677-689, Mar. 1998.
R. T. Behrens and L. L. Scharf, “Signal processing applications of
oblique projection operators|EEE Trans. Signal Processingol. 42,

pp. 1413-1423, June 1994.

G. Golub and C. Van Loanatrix Computations Baltimore, MD:
Johns Hopkins Univ. Press, 1996.

M. Varanasi and T. Guess, “Achieving vertices of the capacity region[27]
of the Gaussian correlated-waveform multiple-access channel with de-
cision feedback receivers,” Proc. 1997 Int. Symp. Information Theory  [28]
Ulm, Germany, June—July 1997, p. 270.

L. L. Scharf and B. Friedlander, “Matched subspace detecttEEE
Trans. Signal Processingol. 42, pp. 2146-2157, Aug. 1994.

L. L. Scharf, Statistical Signal Processing Reading, MA: Addison-
Wesley, 1991.

M. Varanasi, “Noncoherent detection in asynchronous multiuser chan{30]
nels,”|IEEE Trans. Inform. Theorwol. 39, pp. 157-176, Jan. 1993.

T. Kailath,Linear Systems Englewood Cliffs, NJ: Prentice-Hall, 1980.

A. Bjorck and G. Golub, “Numerical methods for computing angles be-[31]
tween linear subspacesyiath. Comput.vol. 27, no. 123, pp. 579-594,
July 1973.

M. Schwartz, W. Bennet, and S. Stel@pmmunication Systems and
TechniquesNew York: IEEE Press, 1996.

[25]

(26]

[29]

(32]

961

J. ProakisDigital CommunicationsNew York: McGraw-Hill, 1995.

R. Pawula, “Relations between the Rice le-function and the Marcum
@-function with applications to error rate calculationgJéctron. Lett,

vol. 31, no. 24, pp. 2078-2080, Nov. 1995.

M. Loeve,Probability Theory New York: Springer-Verlag, 1977.

M. Viberg and B. Ottersten, “Sensor array processing based on subspace
fitting,” IEEE Trans. Signal Processingol. 39, pp. 1110-1121, May
1991.

L. Zhao, P. Krishnaiah, and Z. Bai, “On detection of the number of sig-
nals in presence of white noisel” Mult. Anal, vol. 20, pp. 1-25, Oct.
1986.

J. Bunch, C. Nielson, and D. Sorensen, “Rank-one modification of the
symmetric eigenproblem,Numer. Math. vol. 31, no. 1, pp. 31-48,
1978.

|. Karasalo, “Estimating the covariance matrix by signal subspace av-
eraging,”|EEE Trans. Acoust., Speech, Signal Processiog 34, pp.
8-12, Jan. 1986.

R. DeGroat and R. Roberts, “Efficient, numerically stabilized rank-one
eigenstructure updating/EEE Trans. Acoust., Speech, Signal Pro-
cessingvol. 38, pp. 301-316, Feb. 1990.

P. Comon and G. Colub, “Tracking a few extreme singular values and
vectors in signal processing?toc. IEEE vol. 78, pp. 1327-1343, Aug.
1990.

B. Champagne, “Adaptive eigendecomposition of data covariance
matrices based on first-order perturbation$ZEE Trans. Signal
Processingvol. 42, pp. 2758-2770, Oct. 1994.

B. Yang, “Projection approximation subspace trackingEE Trans.
Signal Processingvol. 43, no. 1, pp. 95-107, Jan. 1995.

B. Yang, “An extension of the PASTD algorithm to both rank and sub-
space tracking,/EEE Signal Processing Lettiol. 2, no. 9, pp. 179-182,
1995.

M. Wax and T. Kailath, “Detection of signals by information theoretic
criteria,” IEEE Trans. Acoust., Speech, Signal Processing 33, pp.
387-392, Apr. 1985.

U. Madhow and M. Honig, “MMSE interference suppression for direct-
sequence spread-spectrum CDMIEEE Trans. Communvol. 42, pp.
3178-3188, Dec. 1994.

M. McCloud and L. L. Scharf, Asymptotic analysis of the MMSE mul-
tiuser detector for nonorthogonal multipulse modulatiiEE Trans.
Commun,. Sept. 1999, submitted for publication.

R. Horn and C. JohnsoMatrix Analysis New York: Cambridge Univ.
Press, 1985.



