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ABSTRACT 

INVESTIGATION OF CHIRAL PORPHYRIN AGGREGATES WITH HETERODYNE-

DETECTED VIBRATIONAL SUM FREQUENCY GENERATION SPECTROSCOPY 

  In nature, photosynthetic organisms harvest and transport solar energy through the finely-

tuned interplay between vibrational, electronic, and excitonic characteristics within 

photosynthetic reaction centers. These characteristics depend intimately on the precise 

arrangement of the reaction centers’ molecular building blocks. Further knowledge of the 

relationship between structure and function in these natural systems is key to advancing synthetic 

solar technologies like dye-sensitized solar cells and artificial photosynthesis. Photosynthetic 

pigments, such as chlorophyll and bacteriochlorophyll, are of particular interest since their 

absorptive role is the first step in the solar harvesting process. Porphyrins, a group of 

macrocyclic organic compounds closely related to these pigments, have gained attention as 

simpler models for their more complicated natural counterparts. Tetra(4-sulfonatophenyl) 

porphyrin (TSPP), which closely resembles bacteriochlorophyll, is particularly valuable because 

it forms molecular aggregates analogous to the highly quantum-efficient light-harvesting 

“antennae” present in green sulfur bacteria chlorosomes. Imaging and spectroscopic studies 

indicate that the helical nanotubular TSPP aggregates are chiral and have distinct exciton 

contributions along different axes. However, the precise arrangement of TSPP monomers within 

the aggregate walls is still debated, prompting further, more detailed studies. Heterodyne-

detected vibrational sum frequency generation (HD-VSFG) spectroscopy is a phase-sensitive, 

second-order nonlinear technique which probes the vibrational characteristics of 
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noncentrosymmetric molecular environments. HD-VSFG experiments can also probe excitonic 

and vibronic characteristics via experimental double resonance. By use of polarization 

conditions, theoretical modeling, and computational fitting, detailed information on the 

orientation of vibrational, vibronic, and excitonic transition dipoles can be extracted from HD-

VSFG spectra. This work presents doubly-resonant HD-VSFG spectra of TSPP thin films drop-

cast on gold, which demonstrates the technique’s sensitivity to the relationship between complex 

phase and excitonic versus monomeric characteristics. HD-VSFG is then used to compare 

spectra of TSPP thin films prepared from racemic and chiral aqueous solutions. This comparison 

includes a polarization condition sensitive to only chiral environments, further demonstrating 

HD-VSFG as a valuable tool in the structural investigation of TSPP aggregates. 
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DEFINITION OF TERMS

B-band: Strong ultraviolet-region absorption band characteristic of porphyrin spectra arising 
from the S0-S2 electronic transition. 

Blue shift: Change in an observed spectral feature towards shorter wavelengths (higher 
frequencies). 

Centrosymmetric: Environment which has an inversion center. 

Chiral: Molecule or aggregate which is non-superimposable on its mirror image. 

Diacid: Porphyrin with a fully-protonated, cationic core. 

Double resonance: HD-VSFG experiment in which incident electric fields are resonant with the 
energies of two separate vibrational or electronic excited states in the sample. 

Exciton: Delocalized electronic excitation across monomer units in an aggregate arising from 
transition dipole coupling. 

Fourier filtering: Data processing method for isolating sample signal from local oscillator 
contribution in HD-VSFG spectra. 

Free base: Porphyrin with a neutral core, having only two protonated nitrogens. 

Heterodyne detection: Method of spectral detection in which the sample HD-VSFG signal is 
detected collinearly with a time-delayed local oscillator. 

Isotropic distribution: Molecular environment with uniformity in all orientations. 

Local oscillator: Non-resonant sum frequency signal generated for heterodyne detection. 

P-polarized: Light which has been polarized parallel to the laser table surface. 

Porphyrin: Group of organic compounds with cores consisting of four pyrroles connected by 
methane bridges at their α carbons. 

Q-bands: Weak visible-region absorption bands characteristic of porphyrin spectra, arising from 
the electronically-forbidden, vibronically-allowed S0-S1 electronic transitions. 

Q-switched: Laser composed of pulses with higher peak power than a continuous wave laser and 
shorter duration than an ultrafast laser. 

Racemic: Containing equal amounts of dextro- and levo-enantiomers of a chiral molecule or 
aggregate. 
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Red shift: Change in an observed spectral feature towards longer wavelengths (lower 
frequencies). 

S-polarized: Light which has been polarized perpendicular to the laser table surface. 

Second-order nonlinear susceptibility, 𝝌(𝟐): Third-rank tensor describing the molecular 
response of a system in the x-, y-, and z-directions in an HD-VSFG experiment. 

Ti:Sapphire: Titanium-doped Sapphire (Ti:Al2O3) crystal. 

Vibronic: Interaction between electronic and nuclear vibrational motion. 

Zwitterion: Molecule with separate cationic and anionic locations. 
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Chapter 1: Introduction 

1.1 Reaction Centers and Pigments 

In nature, photosynthetic organisms harvest solar energy via complex photosynthetic 

reaction centers (PRCs).1 Pigments, molecules which begin the photosynthetic process by 

absorbing light from the sun, are an integral component of PRCs. The energy from the absorbed 

light is then transferred through intricate mechanisms in the PRC and ultimately converted into 

usable energy for the organism, completing the photosynthetic process. Further understanding of 

these highly efficient natural light-harvesting systems and their pigments directly benefits the 

continued development and improvement of synthetic solar technology.2,3 However, a thorough 

understanding of the structure and function of these natural systems can be hindered by their 

sheer variety and complexity. Thus, there is great interest in advancing scientific understanding 

of these systems through the application of advanced analytical techniques to suitable model 

systems.4,5 

Photosynthetic organisms such as plants, algae, and cyanobacteria employ a variety of 

different pigment molecules depending on the organism’s needs.6 Chlorophylls, 

bacteriochlorophylls, and carotenoids are examples of photosynthetic pigment families which 

absorb solar energy.7,8 Although these pigment families share a role in photosynthesis, their 

structure and characteristics have evolved in accordance with their organisms’ environments, 

resulting in a wide range of different molecular structures. The general structure of these natural 

pigments has been well documented.9,10 However, it is also important to understand their detailed 

vibrational characteristics and electronic structure. Transportation and conversion of absorbed 

solar energy into other usable energy forms is governed by the vibrational characteristics and 
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electronic structure of not only the photosynthetic pigment molecules, but also the arrangement 

of pigment molecules in the supramolecular aggregates that the molecules form in the 

PRCs.5,11,12 In these aggregates, pigment molecules are the building blocks for larger structures 

which enhance the PRC’s ability to capture and transfer solar energy. For example, in green 

sulfur bacteria (GSB), bacteriochlorophyll pigment molecules are found in nanoscopic 

aggregates in the PRC, which are dubbed “solar antennae” for their long, rod-like shape.13 The 

antennae are theorized to be a key reason behind GSB’s incredible solar efficiency. These 

structures are fined-tuned such that, upon absorption of a photon, the resulting vibrational and 

electronic responses in the aggregates can funnel the photon’s energy to the next step in the 

photosynthetic process. Thus, in the pursuit of more efficient synthetic solar technologies, it is 

important to understand the structure of light-harvesting molecules and their aggregates. 

As previously stated, photosynthetic pigments like bacteriochlorophylls are highly 

diverse and their structures are often very complex. While the diversity and complexity of each 

unique pigment no doubt serves an evolutionary advantage for each organism, it renders the 

molecules extremely difficult to study with techniques that could determine their detailed 

structure. Therefore, simpler model compounds that mimic the structure and function of their 

more complicated natural counterparts are extremely valuable for research purposes.2 One such 

model is tetra(4-sulfonatophenyl)porphyrin (henceforth referred to as TSPP), a member of the 

well-studied porphyrin family. Porphyrins resemble the molecular cores of their chlorophyll and 

bacteriochlorophyll cousins (Figure 1.1).2,14 TSPP bears a striking resemblance to 

bacteriochlorophyll a, a major absorptive pigment in GSB. In acidic conditions, TSPP molecules 

self-aggregate into nanotubular structures that closely resemble the solar “antennae” found in 

GSB PRCs.15 These TSPP nanotubes have been characterized extensively by imaging  
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Figure 1.1 Bacteriochlorophyll a (left, R = phytane), and tetra(4-sulfonatophenyl)porphyrin (TSPP, 
right). 

Figure 1.2 Scanning tunneling microscopy images of collapsed TSPP nanotubes on a gold surface.16  
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techniques. Scanning tunneling microscopy (STM, Figure 1.2)16 and atomic force microscopy 

(AFM)17 reveal that the aggregates have a highly consistent shape and width. The next step 

towards understanding the link between structure and function is to investigate the molecular-

level structure of the aggregates. How the molecules are arranged within the aggregate 

determines aggregate vibrational characteristics and electronic structure. Consequently, 

molecular arrangement directly impacts energy transport mechanisms. Therefore, it is necessary 

to continue the investigation with analytical techniques capable of discerning more detailed 

information. 

 

1.2 Light-Matter Interactions and Structure 

Spectroscopic techniques are capable of shedding light on detailed molecular structure. 

Spectroscopy is broadly defined as the study of the quantum-mechanical interactions between 

light and matter. Different wavelengths of light interact in different ways with molecules; 

analysis of how that light is changed by those interactions yields rich structural information. 

Infrared light, for example, is converted into vibrational energy when absorbed by a molecule. 

Molecular bonds of differing strength and atomic composition absorb different wavelengths of 

infrared light. Fourier-transform infrared (FTIR) spectroscopy is a common analytical technique 

that uses these vibrational properties to determine molecular composition of samples. Similarly, 

ultraviolet-visible (UV-Vis) spectroscopy probes electronic structural information because 

absorption of ultraviolet or visible light typically changes the way electron density on a molecule 

is arranged. 

Spectroscopic techniques like FTIR,18 Raman spectroscopy,19 and UV-Vis20 have been 

used extensively to study the TSPP aggregate system. Despite providing important 
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complimentary information to what has been established by imaging techniques, these 

spectroscopies still lack the ability to determine the exact molecular structure of the aggregates; 

thus, nonlinear spectroscopies have become the next step in the investigation. Nonlinear 

spectroscopies utilize multiple high-intensity electromagnetic fields, typically in the form of 

ultrafast pulsed lasers, to extract quantitative molecular-level information from chemical 

systems. The nonlinear technique used in this body of work is heterodyne-detected vibrational 

sum frequency generation spectroscopy (HD-VSFG).21 

HD-VSFG uses both visible and infrared (IR) laser pulses to probe specific structures in 

chemical samples.  “Heterodyne-detected” refers to the way signal is detected in the experiment. 

Instead of only detecting the signal generated by the sample, the signal is combined with a local 

oscillator (LO). The LO is an SFG signal generated in a nonlinear crystal; this signal is virtually 

identical no matter what wavelengths are used to produce it and is typically much stronger than 

the signal from the sample. The LO amplifies the signal from the sample, making it easier to 

detect. More importantly, the interference between signal and LO preserves valuable phase 

information which helps to determine the orientation of the sample molecules. “Vibrational” 

refers to the fact that the technique probes vibrational characteristics of the sample.  

“Sum frequency generation” refers to the way in which signal is generated in an HD-

VSFG experiment. The visible and IR pulses in the experiment are designed to encounter the 

sample in the same place and at the same time. Therefore, absorption of the visible and IR 

photons occurs simultaneously. The IR photon initiates an energy transition to a vibrationally-

excited state within the molecule. Then, the visible photon promotes the molecule to an excited 

electronic state, after which the molecule relaxes back to its ground electronic and vibrational 

states. This latter series of transitions is identical to an anti-Stokes Raman experiment. The 
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relaxation from high to low energy levels causes emission of a new photon (Figure 1.3). The 

frequency of the emitted photon is equal to the sum of the frequencies of the incident visible and 

IR photons. For example, in a VSFG experiment where 790 nm visible light and 6.5 µm IR light 

(frequencies of 12 660 cm-1 and 1540 cm-1, respectively) are used, a signal at 704 nm (14 200 

cm-1) is detected. 

Generation of HD-VSFG signal involves simultaneous IR and Raman vibrational 

transitions. Fourier-transform infrared (FTIR) spectroscopy and Raman spectroscopy encompass 

a majority of linear vibrational spectroscopic studies and are generally considered to be mutually 

exclusive due to vibrational symmetry-based transition rules.22 This holds true for 

centrosymmetric molecules and environments. A molecule is said to be centrosymmetric if it has 

a central point through which all other points in the molecule can be transcribed an equal 

distance to the other side and, in doing so, recreate an exact replica of the original molecule. This 

central point is called an inversion center. Bulk sample environments are centrosymmetric if the 

molecules in the bulk are isotropically distributed (Figure 1.4). In a centrosymmetric chemical 

system, IR-active vibrational modes are not Raman-active, and vice versa. Environments that do 

not have an inversion center are non-centrosymmetric and are the exception to this rule; in this 

case, both IR and Raman transitions are allowed. Therefore, SFG, which involves simultaneous 

IR and Raman transitions, can only occur in non-centrosymmetric environments. 

SFG is often employed as an interface-selective nonlinear technique because it requires 

both IR and Raman activity in a vibrational mode.23,24 At an interface (liquid-liquid, air-solid, 

liquid-air, etc.), molecules can be arranged differently than in the bulk because of their 

interaction with the interface. The presence of an interface breaks the centrosymmetry seen in the 

bulk sample (Figure 1.4). However, SFG signal does not solely arise from interfaces. In some  
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Figure 1.3 Energy transitions in SFG. IR (red) and visible (green) promote system to a virtual or excited 
electronic state. SFG signal (blue) is emitted upon relaxation back to the ground state. 

Figure 1.4 Simplified depiction of isotropic molecular distribution in a bulk sample (top) compared to 
ordered orientation at a gold surface (bottom). 
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cases, SFG signal can be generated in the bulk. This occurs when the arrangement of molecules 

in the bulk does not create an overall centrosymmetric environment. Aggregation, like in a TSPP 

nanotube, creates order within the bulk. TSPP aggregate nanotubes do not possess an inversion 

center; therefore, SFG signal from bulk aggregates is allowed. Furthermore, TSPP nanotubes are 

chiral.19 That is, a mirror image of a TSPP nanotube cannot be superimposed in any way upon 

the original. As discussed in the next section, SFG is also particularly useful for probing chiral 

compounds and the unique properties associated with their chirality. 

 

1.3 Polarization Conditions in HD-VSFG 

 The usefulness of HD-VSFG goes far beyond its non-centrosymmetric-specific 

properties. At interfaces, the technique can determine the absolute orientation of molecules. For 

example, it has been used to determine the orientation of cis-bis(isothiocyanato) bis(2,2′-

bipyridyl-4,4′-dicarboxylato) ruthenium(II), or N3 dye, on gold and TiO2 surfaces.25 The results 

contribute information towards a better understanding of why N3 is an excellent dye for dye-

sensitized solar cells. HD-VSFG is also capable of probing structural information along different 

axes in the TSPP aggregate system. The technique employs polarization conditions to access this 

information. In spectroscopy, it is often advantageous to control the polarization of the light 

sources used in the experiment. On the HD-VSFG laser table, laser pulses are set to oscillate 

either parallel (P) or perpendicular (S) to the table surface. The polarization of the IR and visible 

laser pulses can be set independently. Likewise, while the VSFG signal can consist of both P and 

S polarized light, the detection scheme is set to receive only one or the other. 

 Structure and orientation information is gained by careful selection of different 

polarization combinations of the IR, visible, and VSFG signal pulses. The vibrational and 
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electronic responses of a molecule, or an aggregate as is the case with TSPP, directly correspond 

to the direction in which the incident IR and visible EM waves are oscillating. The second-order 

nonlinear susceptibility, 𝜒(2), of the aggregate is a three-dimensional matrix which describes the 

VSFG response in each x, y, and z direction that arises from incident IR and visible light in each 

direction.26 Different polarization combinations will probe different components of 𝜒(2). In an 

experiment where the IR and visible pulses are both P polarized, the experiment initiates 

vibrational and electronic responses in the same direction along the aggregate. Conversely, with 

P polarized IR light and S polarized visible light, the vibrational and electronic responses are 

perpendicular to each other. These two experiments probe different components of 𝜒(2). 
Furthermore, there are certain 𝜒(2) components which are only present in chiral systems. 

Specific chiral-only polarization conditions are used to probe these components in chiral 

molecules or aggregates like TSPP.27 Chiral VSFG experiments on chiral compounds provide 

even more detailed spectroscopic information to be used for structural determination. 

The components of the 𝜒(2) tensor are directly dependent on the vibrational 

characteristics and electronic structure of the sample. Calculated spectra based on theoretical 

aggregate exciton models are key to deciphering 𝜒(2) information from experimental HD-VSFG 

spectra.28 By finding the calculated structure which best replicates experimental signal strength, 

phase, peak location, and other characteristics resulting from different polarization combinations, 

it is possible to determine the structure of the real sample. In this work, FTIR, UV-Vis, and HD-

VSFG experiments were performed on thin film samples of TSPP aggregates with this goal in 

mind. 
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Chapter 2: Materials & Methods 

2.1 Chemical Sample Preparation 

Meso-tetra(4-sulfonatophenyl)porphine dihydrochloride (TSPP diacid salt) was acquired 

from Frontier Scientific. Aqueous TSPP diacid was prepared by dissolving the appropriate mass 

of TSPP diacid salt in deionized (DI) water for the desired concentration in a volumetric flask 

and inverting several times to ensure mixing. Samples were prepared in the 5-100 µM range. In 

this range, resulting aqueous diacid samples have a blue-green color and a pH of approximately 

4. At this pH the TSPP is assumed to be monomeric. 

Aqueous TSPP free base was prepared by addition of sodium hydroxide to the aqueous 

diacid until a pH of at least 6 was reached. Above pH 6, the blue-green color of the diacid 

changes to a deep red color, indicating conversion of the porphyrin to its free-base form. 

Racemic mixtures of aqueous TSPP aggregates were prepared by addition of concentrated 

hydrochloric acid to the aqueous diacid until the pH was below 1. Below pH 1, a subtle color 

change from blue-green to green-yellow is observed. At this pH, the porphyrin is assumed to be 

fully protonated and aggregated. Chiral aqueous TSPP aggregates were prepared by addition of 

the appropriate mass of TSPP diacid salt to DI water in a beaker on a stir plate kept at a constant 

700 rpm.1 The solution was continuously stirred while concentrated hydrochloric acid was added 

to bring the pH below 1. The solution was left to stir for approximately 24 hours before stirring 

was stopped. 

Liquid samples for ultraviolet-visible (UV-Vis) spectroscopy were prepared by the 

above-mentioned aqueous methods, then pipetted into plastic cuvettes for analysis. Thin film 

racemic and chiral aggregate samples for attenuated total reflection Fourier-transform infrared 



14 
 

(ATR-FTIR) spectroscopy and heterodyne-detected vibrational sum frequency generation (HD-

VSFG) spectroscopy were prepared by the drop-cast method.2,3 One to two pipette drops of 

aqueous racemic or chiral TSPP aggregate solutions were dropped onto the surface of a clean, 

unprotected gold mirror (ThorLabs PF10-03-M03). The droplets were left to air dry for 

approximately 24 hours with a large upturned beaker covering the mirror to prevent 

accumulation of dust on the surface. The resulting drop-cast films had an outer matte greenish 

“coffee ring” and a more reflective, greener inner area. 

 

2.2 Linear Spectral Data Acquisition & Processing 

UV-Vis spectra were acquired using a Thermo Scientific Evolution 300 UV-Vis 

spectrophotometer. Spectra were acquired with a 2 nm resolution in Absorbance mode. DI water 

was used as a blank before each sample measurement. Blank and samples were measured in 

plastic cuvettes. ATR-FTIR spectra were acquired using a Bruker FTIR spectrometer with an 

MCT detector and a Bruker ATR 20x objective at a resolution of 0.5 cm-1. Microscope images 

were acquired with a Bruker Hyperion 3000. Measurement locations on the aggregate drop-cast 

samples were selected to acquire a representative sample set from visually different sample 

areas. The bare gold surface of the gold mirror was used to measure reference spectra. Linear 

spectra were processed using a custom Python script (Appendix I) and were self-normalized. No 

significant differences were seen between spectra acquired at different locations on the thin film, 

which is shown in Figure 2.1. Spectra were acquired at the edge of the film (2.1A) and several 

points in the center of the film (2.1B-D). Fringes due to gaseous water absorption can be seen in 

the region above 1300 cm-1 because the ATR-FTIR experimental setup did not allow for purging. 
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Figure 2.1 20x microscope images marked with ATR-FTIR spectral acquisition locations (top) and 
corresponding spectra (bottom). A = red, B = blue, C = black, D = green. 
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2.3 Ultrafast Spectrometer Setup & Spectral Acquisition 

Heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectra were 

acquired with a home-built ultrafast spectrometer (Figure 2.2).4,5 A Ti:Sapphire Kerr-lens-

modelocked oscillator (Griffin-W, KM Labs) pumped by a 532 nm, 3.50 W, continuous-wave 

(CW) laser (Sprout-H, Lighthouse Photonics) produces pulses centered at 790 nm with an 

average power of 250 mW. A Ti:Sapph regenerative amplifier (Wyvern-1000, KM Labs) 

pumped by a Q-switched Lee Laser (Coherent) is then used to amplify the pulses to 3.50 W at a 

repetition rate of 1 kHz. The resulting pulses are 45 fs in duration. After the regenerative 

amplifier, the pulse train is split by an 80/20 beam splitter. 

The 80% leg is directed to a tunable optical parametric amplification system (TOPAS 

Prime, Light Conversion) which produces mid-infrared (IR) pulses centered at 6500 nm via 

difference frequency generation in a silver gallium selenide crystal. A computer-controlled 

precision translation stage is used to keep the timing of the IR pulses static. Next, the mid-IR 

passes through a half-waveplate and wire grid polarizer pair, which controls the polarization of 

the light. The last IR-only optic is an off-axis parabolic mirror with a focal length of 6 inches, 

which focuses the IR beam onto a 200 nm sputter-coated zinc oxide thin film on a 1 mm calcium 

fluoride window, where it meets with the visible line. 

The visible line begins with the 20% leg transmitted through the post-regenerative 

amplifier beam splitter. The visible beam is directed along a length of the table equivalent to the 

distance traveled by the IR leg in the TOPAS system. Accounting for distance traveled assures 

temporal alignment of the visible and IR pulses. The visible line is then retroreflected on a 

manually-controlled translational stage, which can be adjusted for fine-tuning of temporal 

overlap between the IR and visible pulses at the sample location. Next, an interference filter  
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Figure 2.2 HD-VSFG spectrometer schematic. Wavelengths: visible = green, IR = red, LO = blue, VSFG signal = purple. Optics: BS = beam 
splitter; IF = interference filter; HWP = half waveplate; WGP = wire grid polarizer; ZnO = 200 nm zinc oxide thin film on calcium fluoride; FS 
= fused silica; SPF = short pass filter. 
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converts the broadband, temporally short visible pulse into a narrowband, temporally long visible 

pulse with a spectral FWHM of 10 cm-1. The visible line then passes through a lens, a half-

waveplate and wire grid polarizer pair, and finally is overlapped with the IR at the zinc oxide 

thin film. Here, non-resonant sum frequency signal is generated by spatial and temporal overlap 

of the IR and visible pulses in the zinc oxide film; this signal is henceforth referred to as the local 

oscillator (LO).4,6  

The IR, visible, and LO are then reflected on to a 200 mm focal length curved mirror. 

Before the curved mirror, the LO passes through a 3 mm fused silica window which delays the 

LO pulses in time by 5 ps. The curved mirror focuses all three beams onto the sample surface, 

where SFG signal is generated collinearly with the temporally-delayed LO in a reflection 

geometry. The signal is then collimated and passed through a half waveplate and wire grid 

polarizer to control detected signal polarization and account for the monochromator (iHR550, 

Horiba) grating polarization bias. Residual visible line is blocked by a short-pass filter before the 

detector. Finally, the signal is spectrally resolved with either a 600 or 1200 line/mm grating by 

the monochromator and detected with a CCD camera (Synapse, Horiba). 

The detector is calibrated with a neon lamp and comparison to a known neon emission 

spectrum. The visible pulse is measured before each experiment to determine FWHM and center 

frequency. The center frequency is then used to calculate the relative IR frequency of the 

detected SFG signal. SFG signal is produced at approximately 700 nm in these experiments; 

however, because the spectral features of interest are vibrational, we want to know the IR 

wavelength dependence of the signal. Thus, the relative IR frequencies are calculated by 

subtracting the visible frequency from the detected SFG frequencies. 
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2.4 HD-VSFG Spectral Processing 

 Raw spectral intensities are recorded for relative IR frequencies as described previously. 

Raw data is in the form of a spectral interferogram because the non-resonant local oscillator 

(LO) and sample sum frequency signal are detected collinearly and the LO is delayed in time by 

5 ps. The raw spectra are processed with a custom Python code (Appendix I) using a Fourier 

Filtering process.4 First, the raw spectrum (Figure 2.3) is converted to a temporal interferogram 

via Fast Fourier Transform (FFT). The temporal interferogram has a large DC component at the 

origin and a pair of smaller features at ±5 ps arising from the LO and sample signal, respectively. 

Fourier filtering is performed to isolate the signal feature. First, a time window which 

encapsulates the feature (typically approximately 3 to 6.5 ps) is chosen (Figure 2.4). The filtered 

interferogram is then transformed back into the frequency domain via inverse FFT. The resulting 

filtered spectrum is complex, having both real and imaginary components (Figure 2.4). 

 Spectral acquisition is repeated on a bare gold surface to be used as a reference. The 

Fourier filtering process is repeated for the raw gold reference spectrum. To account for phase 

differences between the sample and the gold reference, the filtered sample and reference spectral 

interferograms are plotted together and compared. Either the real or imaginary spectra of the 

sample and reference can be plotted as long as it is the same for both. Then a phase factor is 

chosen and applied to the complex sample spectrum to align the phase of the sample spectrum to 

the reference spectrum: 𝜒𝑠(2) =  𝜒𝑠(2) ∙ 𝑒−𝑖𝜙𝑜𝑓𝑓𝑠𝑒𝑡  

(1) 
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Figure 2.3 Raw TSPP sample spectral interferogram (top) and corresponding Fourier-transformed 
temporal interferogram (bottom). Real component = red, imaginary component = blue, Fourier 
Filtering window = black. 
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where 𝜒𝑠(2)
 is the complex sample signal and 𝜙𝑜𝑓𝑓𝑠𝑒𝑡 is the observed phase offset between the 

filtered sample and reference spectra. Phase is compared in a spectral region where no sample 

features are present. 

 After the sample has been phased to the reference, the sample spectrum is normalized by 

dividing it by the reference spectrum. The resulting HD-VSFG spectrum (Figure 2.4) is 

representative of the complex χ(2) tensor; thus, it is necessary to plot both the real and imaginary 

components of the spectrum for analysis. HD-VSFG spectra are baseline-corrected by 

calculating a linear fit for two frequency values at which no vibrational features are observed. 

The linear fit is then subtracted from the processed HD-VSFG spectrum, resulting in a baseline-

corrected spectrum. Finally, the |χ(2)| spectrum is calculated by squaring the absolute value of the 

baseline-corrected spectrum. 
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Figure 2.4 Fourier-filtered spectral interferogram of a TSPP sample (top) and normalized, baseline-
corrected HD-VSFG spectrum (bottom). Real component = red, imaginary component = blue. 
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Chapter 3: Linear Spectroscopy of TSPP Aggregates 

Attenuated total reflection Fourier-transform infrared (ATR-FTIR) and ultraviolet-visible 

(UV-Vis) spectra of TSPP were obtained by the methods described in Chapter 2. These 

techniques were used to confirm linear electronic and vibrational properties of the TSPP system 

and to compare the results to those published in the literature. UV-Vis spectra were taken of 

TSPP at different pHs to observe spectral changes upon protonation and aggregation of the 

molecule. ATR-FTIR spectra were collected to observe TSPP infrared vibrational responses in 

the spectral region of interest. 

 

3.1 Electronic Structure of Porphyrin Aggregates 

 The electronic structure of porphyrins has been a subject of much interest for over half a 

century. Gouterman’s simple yet comprehensive 1961 review of porphyrin spectra established a 

model for porphyrin electronic structure that is still used to this day.1 The Gouterman model 

hypothesizes that the distinct pattern of features observed in different porphyrin spectra arises 

from transitions between the two HOMO and two LUMO states of the molecule. The 

electronically-allowed S0-S2 transition results in the observed B (or Soret) spectral bands. The 

porphyrin B-band is a strong feature seen in the ultraviolet region. The weaker set of Q-bands in 

the visible region arise from electronically-forbidden, vibronically-allowed S0-S1 transitions. The 

electronic and vibronic transitions occur in both the x- and y- directions, where the x-axis is 

defined as the axis intersecting the protonated nitrogens in a free-base porphyrin (Figure 3.1). 

Addition of substituents as well as changes in the protonation state of the porphyrin lead to  
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Figure 3.1 Free-base TSPP with corresponding Gouterman model x- and y-axes.  

Figure 3.2 Illustration of conformational change in a TSPP monomer upon protonation of the free 
base (left) to create the diacid (right). Steric hindrance between hydrogens causes the “saddling” shape 
change.  
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symmetry changes in the molecule and thus shifts in energy of the four molecular orbitals 

involved in the B and Q bands. Subsequently, the spectral bands will shift. The conformational 

change upon protonation of the TSPP monomer is shown in Figure 3.2 as an example. 

 Aggregation also has a significant effect on electronic structure. In an aggregate, 

molecules are close enough together for excitonic coupling to occur. Excitonic coupling is a 

result of individual molecular electronic transition dipoles interacting with each other along the 

aggregate, thus creating an exciton—an electronic state extending along the aggregate.2 The 

contributions of the excitons to aggregate spectra depend on the arrangement of its monomer 

components. In an aggregate with a purely H-aggregate conformation, where transition dipoles 

are arranged parallel to one another, the spectral feature of the resulting exciton will occur at a 

higher energy than that of the monomer. In a purely J-aggregate conformation, with transition 

dipoles arrange head-to-head, the excitonic feature will occur at a lower energy. Monomers in 

real aggregates are rarely, if ever, aligned perfectly parallel or head-to-head. Thus, both H- and J-

type features are typically present at different strengths depending on monomer orientation. 

 The presence of the discussed porphyrin and aggregate spectral features provide 

information on the symmetry, protonation, aggregation, and excitonic nature of TSPP 

aggregates. The observation of these contributions is discussed in the following section. 

 

3.2 pH-Dependence of TSPP UV-Vis Spectra  

UV-Vis spectra of aqueous TSPP were acquired at 25 different pH points, descending 

from 11.26 to 0.39. The purpose of this comparison was to observe the distinct spectral 

differences between the free base (only two protonated central nitrogens), diacid (fully 
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protonated central nitrogens), and aggregate forms of the TSPP molecule. Representative pH 

points are shown to best illustrate spectral changes. 

No change in absorption was observed from pH 11.26 to 6.70. In this range, the aqueous 

TSPP is present as a free base. In the ultraviolet region, the strong free base B-band arising from 

the allowed S0-S2 transition is present at 413 nm. In the visible region, four weaker free base Q-

bands appear at 516 nm, 550 nm, 583 nm, and 634 nm. These features are consistent with 

established literature results.3,4 

As the pH of the solution was lowered, features indicative of the TSPP diacid begin to 

appear, as shown in Figure 3.3. At pH 6.70, the solution displays only free-base (FB) features as 

described above. At pH 5.51, the FB B-band at 413 nm loses intensity and the diacid B-band 

appears at 434 nm. The FB Q-bands also lose intensity as the diacid Q-bands grow in at 543 nm, 

591 nm, and 644 nm. The shift from four FB to three diacid Q-bands is due to the molecular 

change in symmetry. As a free base, the x- and y-axes in the TSPP molecule are not equivalent 

due to the differing nitrogen protonation states. As a diacid, protonation of the second nitrogen 

pair increases the molecular symmetry and degeneracy in two of the vibronic transitions, 

reducing the number of Q-band features by one. Furthermore, it has been shown that upon diacid 

protonation of the TSPP core, steric hindrance causes the molecule to saddle. This 

conformational change leads to the observed spectral shifts. 

FB features continue to decrease and diacid features continue to grow as the pH is further 

lowered. The first sign of aggregate features appears at pH 4.48 with a small peak at 490 nm. 

The diacid B- and Q-bands are strongest at pH 3.00, but the aggregate features can also clearly 

be seen. The 490 nm peak arises from the B-band of the TSPP J-aggregate exciton. J-aggregates, 

as described in the previous section, will have spectral features at lower energies  
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Figure 3.3 pH-dependent UV-Vis spectra of aqueous TSPP. pH values: 6.70 = red, 5.50 = orange, 3.00 = green, 1.31 = blue, 0.39 = purple. 
Inset: Q-band porphyrin features in the visible region. 
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compared to the associated monomer. This is clearly shown in the aggregate B-band at 490 nm 

as compared to the non-aggregated diacid B-band at 434 nm. The same is shown in the Q-band. 

A lower energy Q-band feature begins to grow in at 707 nm as the aggregate is formed. At pH 

1.31, the diacid and FB features continue to lose strength in favor of the aggregate features. By 

pH 0.39, although FB and monomer diacid features are still present, the sharp 490 nm aggregate 

B-band and broad 707 nm Q-band have peaked in intensity. 

These spectral changes are indicative of the changes occurring at the molecular level. The 

decrease in FB features and increase in diacid features as the solution is made more acidic shows 

the increasing presence of fully-protonated TSPP molecules in the solution. Aggregate features 

appear almost immediately after the diacid is present.5 It has been shown that TSPP aggregates 

will continue to form in diacid solutions even at moderate pH levels when given enough time. In 

this experiment, spectra were obtained within one to two hours from titration of the solution, so 

aggregate formation due to time was assumed to be minimal. In increasingly acidic conditions, 

more FB is converted to diacid; the increased presence of the zwitterionic diacid species 

consequently results in an increase in aggregate presence. These observations are consistent with 

the observations reported in the literature.5–7  

 

3.3 ATR-FTIR Spectra of TSPP Thin Films 

 TSPP is highly Raman active and thus has been extensively studied with Raman 

spectroscopies in pursuit of vibrational information.8–13 While high Raman activity typically 

corresponds with low IR activity and vice versa, the HD-VSFG spectroscopy used in this study 

requires that the system possess modes with both Raman and IR activity; thus, it is important that 

IR activity is also investigated. 



30 
 

 Thin films of TSPP aggregates were prepared on a gold mirror as described in Chapter 2. 

The films were observed with the ATR 20x microscope objective to select spots for spectral 

acquisition. Although the films were visually different in the center versus at the edge, no 

significant differences were observed in the FTIR spectra; see Figure 2.1 for comparison of 

spectra. Figure 3.4 shows a representative ATR-FTIR spectrum of a TSPP thin film. Interference 

from atmospheric water absorption is observed in the higher-frequency region because the 

experimental setup did not allow for purging. The fingerprint region below 1300 cm-1 is densely 

populated with features; however, the region of interest in the nonlinear spectroscopic study 

described in the following chapters is approximately 1350 cm-1 to 1800 cm-1, where several 

smaller features can be seen. These features arise from macrocycle C=C vibrations with 

transition dipole moments oriented in the plane of the TSPP porphyrin core. Broad features at 

approximately 1445 cm-1, 1552 cm-1, and 1642 cm-1, as well as a sharper peak at 1490 cm-1, were 

observed consistently in spectra recorded in different areas on the thin film sample. These 

vibrational features can be seen in the HD-VSFG results discussed in the following chapters. 
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Figure 3.4 Representative ATR-FTIR spectrum of a TSPP aggregate thin film on a gold mirror substrate. Inset: 20x microscope image of the 
edge of the TSPP thin film including spectrum sample location (black dot). 
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Chapter 4: Phase Acrobatics: The Influence of Excitonic Resonance 
and Gold Nonresonant Background on Heterodyne-Detected 

Vibrational Sum Frequency Generation Emission 

Disclaimer 

This chapter is a reproduction of a previous publicationa of the same title authored by 

Christopher C. Rich, Kathryn A. Lindberg, and Amber T. Krummel. Kathryn Lindberg’s 

contributions to this publication were assistance with sample preparation, spectral acquisition, 

operating and maintaining the laser table, and building optical lines in the home-built 

spectrometer. 

 

4.1 Introduction 

Recently, heterodyne-detected vibrational sum frequency generation (HD-VSFG) 

spectroscopy has garnered much attention because of its utility in probing molecular properties at 

surfaces and interfaces.1−9 In general, sum frequency generation (SFG) spectroscopy techniques 

are nonlinear spectroscopic techniques sensitive to the macroscopic polarization formed in 

noncentrosymmetric media or at the interface between media under the electric dipole 

approximation. Double-resonance varieties of SFG spectroscopy (DRSFG), in particular when 

applied to VSFG, allow for the measurement of the vibrational, electronic, and vibronic coupling 

properties of interfacial molecular systems.10−14 The incorporation of heterodyne detection and 

phase sensitivity in recent implementations of the technique have given rise to new discoveries 

                                                 
a Rich, C., Lindberg, K., Krummel, A. Journal of Physical Chemistry Letters (2017) 8, 1331-1337 
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affiliated with absolute molecular orientation at complex molecular interfaces as well as debate 

on the characterization of the phase of the SFG emission.5,8,9,15−20 

The debate on phase characterization of SFG is warranted because proper description of 

the phase of the emission and contributions made to that phase is necessary for assigning the 

absolute orientation of vibrational and electronic transition dipole moments at interfaces and in 

inherently noncentrosymmetric materials. In this Letter, we will demonstrate the utility of 

combining double-resonance conditions and polarization schemes to reveal both excitonic and 

monomeric properties of porphyrin-based molecular aggregates. Moreover, the influence of gold 

nonresonant SFG and double resonance on the phase of HD-VSFG emission will be discussed. 

We will show how additive phase contributions can be detected and resolved in HD-VSFG and 

present a comprehensive description for handling phase contributions in HD-VSFG. When taken 

together, the experimental results and analysis in this work reveal the ability to probe both 

monomeric and excitonic properties of porphyrin-based molecular aggregates in a single set of 

experiments. 

 

4.2 HD-VSFG Experimental Setup and TSPP Sample System 

In VSFG spectroscopy, specifically in frequency-domain applications, short pulse 

duration, broad bandwidth, mid-IR pulses are overlapped spatially and temporally with long 

pulse duration and narrow bandwidth visible pulses at the sample. In samples which do not 

exhibit inversion symmetry (i.e., noncentrosymmetric), sum frequency generation can occur, and 

the emitted light is the sum of the visible pulse frequencies and the mid-infrared (mid-IR) pulse 

frequencies which are resonant with a simultaneously IR- and Raman-active vibrational 

transition. In these experiments, the visible pulses are 5 ps in duration, generating a narrow 
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bandwidth [10 cm−1 full width at half-maximum (fwhm)] with a center wavelength of 787.75 

nm, and the mid-IR pulses are <50 fs in duration with a center frequency of 1540 cm−1; the mid-

IR has 230 cm−1 fwhm bandwidth as estimated from the fwhm of the SFG spectrum (see Figure 

4.5 in the Supporting Information). The combination of these visible and mid-IR wavelengths are 

useful for probing the macrocycle vibrations of TSPP (tetra(4- sulfonatophenyl)porphyrin) 

aggregates. To accomplish heterodyne detection, a so-called “LO-first”, passively phase-

stabilized geometry is implemented.2,7,8,21,22 The design of the HD-VSFG spectrometer used in 

this work is fully described in the Supporting Information (see Figure 4.6). Briefly, prior to the 

sample, the mid-IR and visible pulses are focused into a 150 μm thick ZnO film supported on a 1 

mm thick CaF2 window, which produces a nonresonant SFG emission used as the local oscillator 

(LO). Using common reflective optics, all three pulses (mid-IR, visible, and LO) are refocused 

onto the sample while delaying the LO pulse by passing it through 3 mm of fused silica. As a 

result, the SFG emission of the sample and the LO are spatially overlapped and exhibit a 5 ps 

delay between each other that, when measured on a spectrometer, produces a spectrum with 

fringes that are indicative of interference. Fourier filtering is employed to extract phase-sensitive 

SFG spectra and is described in detail in the Supporting Information (see Figure 4.7). 

Polarization of the visible pulses is controlled using a half waveplate and wire grid polarizer. 

Consequently, this allows for tuning the energy of the visible pulses, which is critical in the 

doubly resonant regime. Collecting a specific polarization of the SFG emission and LO is 

achieved with a wire grid polarizer. In this study, we measure PPP (P-polarized SFG, P-polarized 

visible, P-polarized mid-IR) and SSP (S-polarized SFG, S- polarized visible, and P-polarized 

mid-IR) polarization configurations. 
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TSPP molecular aggregates are a water-soluble model system that are analogous to 

chlorophyll aggregates found in the chlorosomes of photosynthetic green sulfur bacteria, thus 

generating interest for their potential in photochemical applications.23−25 These aggregates have 

been determined to take on a nanotubular structure by a wide variety of experiments; the 

nanotubular structures have exhibited chiral signatures indicative of a helical internal 

structure.26−31 The chiral, nanotube structure of these assemblies, as well as the similarity 

between the molecular geometry and electronic properties of porphyrin and chlorophyll, make 

this model system an interesting platform to examine the utility of HD-VSFG spectroscopy and 

doubly resonant conditions to reveal the interplay between vibrational, electronic, and vibronic 

coupling in interfacial systems. The TSPP aggregates were prepared by dissolving solid TSPP 

diacid salt in 0.75 M hydrochloric acid solution, thus producing a cloudy green solution. The 

TSPP molecular aggregates were then drop-cast on gold substrates. A precise molecular level 

description of the internal structure of TSPP aggregates has been debated in the 

literature.13,26,28,32,33 The experiments presented here demonstrate the ability to probe both the 

monomeric and excitonic properties in a single experimental platform. However, the structural 

details of the TSPP aggregates are beyond the scope of this Letter and will be presented in depth 

in a subsequent publication. 

Information on the aggregation and molecular structure of porphyrin can be extracted 

from their ultraviolet−visible (UV−vis) absorption spectra. Shown in Figure 4.1 are the UV−vis 

absorption spectra of the Q-band region for monomeric diacid TSPP dissolved in water and 

TSPP aggregates. Briefly, for porphyrin there are two primary electronic transitions observed in 

the UV−vis spectrum: the B-band in the blue part of the spectrum and the Q-band in the red-part 

of the spectrum. In an idealized porphyrin, which are 4-fold symmetric and planar, the B-band  
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Figure 4.1 Normalized UV–vis absorption spectra of the diacid form of TSPP (red) and the TSPP 
aggregate (blue) in the Q-band region. To the left of the diacid Q-band is a drawing of the TSPP diacid 
monomer. To the right of the aggregate Q-band is a postulated aggregate structure, where each green 
circle represents a monomer and each monomer has corresponding transition dipole moments that lie 
parallel (red arrows) and perpendicular (blue arrows) with respect to the nanotube wall. 
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carries the majority of the oscillator strength while the Q-band is only weakly allowed primarily 

through vibronic sideband transitions. As the symmetry of the porphyrin is perturbed, either by 

breaking of the 4-fold symmetry or through out-of-plane distortions, intensity borrowing 

between the Q-band and the B-band takes place and the 0−0 transition in the Q-band takes on 

more oscillator strength at the expense of the B-band. Of note for this study in particular is the 

spectral red shift the Q-band transition between the spectra of the TSPP diacid monomer and that 

of the aggregate (see Figure 4.1). The spectral shift is typically indicative of J-type aggregation 

and potential molecular deformation which leads to intensity borrowing from the B-band to the 

Q-band.34,35 As a consequence of this red shift, both vibrational resonance and electronic 

resonance in this VSFG experiment may be attainable, as the SFG frequency [12 694 cm−1 

(visible frequency) + 1540 cm−1 (center IR frequency) = 14 234 cm−1 or 702.5 nm] is now 

resonant with the center wavelength of the Q-band at 707 nm. If double-resonance conditions are 

met, both the vibrational properties of these aggregates and their coupling to electronic excitonic 

properties may be examined in these HD-VSFG experiments. 

 

4.3 Theory on Resonance and Phase in HD-VSFG 

An important component of the discussion of the HD-VSFG spectra is the influence of 

gold on the phase of the VSFG emission. Often the SFG emission associated with gold is labeled 

as a nonresonant SFG. However, this is not always true in many VSFG experiments where the 

SFG wavelength is visible, allowing for access of the d band to s band transition in gold.15,36 In 

this study, the SF frequency is significantly preresonant of this transition, which occurs at 480 

nm; thus, the SFG emission of gold in these experiments is a nonresonant emission that will 

impart close to a 𝜋 2⁄  phase shift in the emitted field. Although chemisorption to the gold surface 
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can cause deviations in this phase, the deviations are not so substantial as to drastically change 

the lineshapes of real and imaginary second-order susceptibility (𝜒(2)) spectra.9,15 As a result, the 

gold SFG emission from the sample can be used as an internal phase reference. The signal of a 

singly resonant VSFG field from a molecule interfering with the SFG field from gold can be 

generally expressed by the following equation: |𝐸𝑡𝑜𝑡|2 = |𝐸𝑠 + 𝐸𝐴𝑢|2 = |𝐸𝑠|2 + |𝐸𝐴𝑢|2 + 𝐸𝑠𝐸𝐴𝑢∗ + 𝐸𝐴𝑢𝐸𝑠∗ 

(1) 

where 𝐸𝑡𝑜𝑡, 𝐸𝑠, and 𝐸𝐴𝑢 represent the electric fields of the total, sample, and gold SFG emission, 

respectively. Each field is proportional to the magnitude of the second-order susceptibility, 

which will be denoted as 𝜒(2), and its associated phase: 

|𝐸𝑠|2 + |𝐸𝐴𝑢|2 + 𝐸𝑠𝐸𝐴𝑢∗ + 𝐸𝑠∗𝐸𝐴𝑢 ∝ |𝜒𝑠(2)|2 + |𝜒𝐴𝑢(2)|2 + (𝜒𝑠,𝑅𝑒(2) + 𝑖𝜒𝑠,𝐼𝑚(2) )(−𝑖𝜒𝐴𝑢(2)) + 

(𝜒𝑠,𝑅𝑒(2) − 𝑖𝜒𝑠,𝐼𝑚(2) )𝑖𝜒𝐴𝑢(2) = |𝜒𝑠(2)|2 + |𝜒𝐴𝑢(2)|2 + 2𝜒𝑠,𝐼𝑚(2) 𝜒𝐴𝑢(2)
 

(2) 

Removing the small contribution of the sample and subtracting the spectrum of gold from eq 2 

produces the cross term 2𝜒𝑠,𝐼𝑚(2) 𝜒𝐴𝑢(2)
. Dividing the cross term by 2𝜒𝐴𝑢(2)

 produces a spectrum which 

is directly proportional to the imaginary part of the second-order susceptibility. Kramers−Kronig 

transformation of 𝜒𝑠,𝐼𝑚(2)
 produces the real part of the susceptibility. If the VSFG emission of the 

sample is doubly resonant such that the sum frequency of the mid-IR and visible pulses are 

resonant with an electronic transition, a sum frequency-dependent phase, 𝜙𝑒𝑙, is applied to 𝜒𝑠(2)
. 

When close to resonance with the Q-band, the SF frequencies involved in this phase term can be 

simplified to a constant phase of 𝜋 2⁄ , which we justify in the Supporting Information: (𝜒𝑠,𝑅𝑒(2) + 𝑖𝜒𝑠,𝐼𝑚(2) )𝑒𝑖𝜙𝑒𝑙 ≈ (𝜒𝑠,𝑅𝑒(2) + 𝑖𝜒𝑠,𝐼𝑚(2) )𝑒𝑖𝜋 2⁄ = 𝑖(𝜒𝑠,𝑅𝑒(2) + 𝜒𝑠,𝐼𝑚(2) ) = 𝑖𝜒𝑠,𝑅𝑒(2) − 𝜒𝑠,𝐼𝑚(2)
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(3) 

As a result, eq 2 would be rewritten as 

|𝐸𝑠|2 + |𝐸𝐴𝑢|2 + 𝐸𝑠𝐸𝐴𝑢∗ + 𝐸𝑠∗𝐸𝐴𝑢 ∝ |𝜒𝑠(2)|2 + |𝜒𝐴𝑢(2)|2 + (𝑖𝜒𝑠,𝑅𝑒(2) − 𝜒𝑠,𝐼𝑚(2) )(−𝑖𝜒𝐴𝑢(2)) + 

(−𝑖𝜒𝑠,𝑅𝑒(2) − 𝜒𝑠,𝐼𝑚(2) )𝑖𝜒𝐴𝑢(2) = |𝜒𝑠(2)|2 + |𝜒𝐴𝑢(2)|2 + 2𝜒𝑠,𝑅𝑒(2) 𝜒𝐴𝑢(2)
 

(4) 

Thus, as a result of double resonance in the VSFG experiment, a 90° phase flip in the spectra of 𝜒𝑠(2)
 should be observed. However, it should be made clear that this 90° flip is applicable only 

when the SF frequency is as close to resonance as the vibrational frequencies are in this study. 

Further from resonance and this approximation could not be made. 

The previous discussion details how an internal LO derived from the SFG emission of 

gold can produce phase-sensitive HD-VSFG spectra. However, this method can be used only in 

the PPP polarization configuration. For other polarization configurations like SSP, no second-

order polarization is generated from gold; thus, the internal LO method cannot be performed. For 

the SSP experiment, an external LO HD-VSFG spectroscopy variation described above is used to 

generate phase-sensitive spectra. Similar to the internal LO heterodyne detection methodology, 

the interference between the sample SFG and LO is measured while incorporating a time delay, 

T, between the two fields in the cross terms: |𝐸𝑠 + 𝐸𝐿𝑂𝑒𝑖𝜔𝑇|2 = |𝐸𝑠|2 + |𝐸𝐿𝑂|2 + 𝐸𝑠𝐸𝐿𝑂∗ 𝑒−𝑖𝜔𝑇 + 𝐸𝑠∗𝐸𝐿𝑂𝑒𝑖𝜔𝑇 

∝ |𝜒𝑠(2)|2 + |𝜒𝐴𝑢(2)|2 + (𝜒𝑠,𝑅𝑒(2) + 𝑖𝜒𝑠,𝐼𝑚(2) )𝜒𝐿𝑂(2)𝑒−𝑖𝜙𝐿𝑂𝑒−𝑖𝜔𝑇 + (𝜒𝑠,𝑅𝑒(2) − 𝑖𝜒𝑠,𝐼𝑚(2) )𝜒𝐿𝑂(2)𝑒𝑖𝜙𝐿𝑂𝑒𝑖𝜔𝑇 

(5) 

Equation 5 is valid for a singly resonant transition. For a doubly resonant transition, this equation 

changes to 
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|𝐸𝑠 + 𝐸𝐿𝑂𝑒𝑖𝜔𝑇|2 = |𝐸𝑠|2 + |𝐸𝐿𝑂|2 + 𝐸𝑠𝐸𝐿𝑂∗ 𝑒−𝑖𝜔𝑇 + 𝐸𝑠∗𝐸𝐿𝑂𝑒𝑖𝜔𝑇 

∝ |𝜒𝑠(2)|2 + |𝜒𝐴𝑢(2)|2 + (𝑖𝜒𝑠,𝑅𝑒(2) − 𝜒𝑠,𝐼𝑚(2) )𝜒𝐿𝑂(2)𝑒−𝑖𝜙𝐿𝑂𝑒−𝑖𝜔𝑇 + (−𝑖𝜒𝑠,𝑅𝑒(2) − 𝜒𝑠,𝐼𝑚(2) )𝜒𝐿𝑂(2)𝑒𝑖𝜙𝐿𝑂𝑒𝑖𝜔𝑇 

(6) 

In the temporal interferogram of the SSP HD-VSFG spectrum, which is produced through 

Fourier transform of the frequency domain spectrum, three features are observed (see Figure 

4.7c). The DC component contains information related to the first two terms of eqs 5 and 6. The 

other two features occur at time delays +T and −T between the LO and sample SFG emission and 

correspond to each of the cross terms in eqs 5 and 6. By isolating one of these features by Fourier 

filtering, we can produce the spectral interferogram of one of the cross terms. To extract the 

spectrum of the complex susceptibility of the sample, the spectral interferogram is normalized by 

that of a chosen phase reference; for these experiments, the phase reference is the PPP 

polarization HD-SFG spectrum of a gold mirror. Taking into account the 𝜋 2⁄  phase shift of the 

gold SFG emission, the terms in eq 5 which correspond to +T can be normalized: (𝜒𝑠,𝑅𝑒(2) − 𝑖𝜒𝑠,𝐼𝑚(2) )𝜒𝐿𝑂(2)𝑒𝑖𝜙𝐿𝑂𝑒𝑖𝜔𝑇−𝑖𝜒𝐴𝑢(2)𝜒𝐿𝑂(2)𝑒𝑖𝜙𝐿𝑂𝑒𝑖𝜔𝑇 = 𝑖(𝜒𝑠,𝑅𝑒(2) − 𝑖𝜒𝑠,𝐼𝑚(2) )𝜒𝐴𝑢(2) = 𝑖𝜒𝑠,𝑅𝑒(2) + 𝜒𝑠,𝐼𝑚(2)𝜒𝐴𝑢(2)  

(7) 

For doubly resonant SFG, normalization of the same term in eq 6 takes on the form (−𝑖𝜒𝑠,𝑅𝑒(2) − 𝜒𝑠,𝐼𝑚(2) )𝜒𝐿𝑂(2)𝑒𝑖𝜙𝐿𝑂𝑒𝑖𝜔𝑇−𝑖𝜒𝐴𝑢(2)𝜒𝐿𝑂(2)𝑒𝑖𝜙𝐿𝑂𝑒𝑖𝜔𝑇 = 𝑖(−𝑖𝜒𝑠,𝑅𝑒(2) − 𝜒𝑠,𝐼𝑚(2) )𝜒𝐴𝑢(2) = 𝜒𝑠,𝑅𝑒(2) − 𝑖𝜒𝑠,𝐼𝑚(2)𝜒𝐴𝑢(2)  

(8) 

In both cases, we note that direct normalization to the spectral interferogram of gold results in 

cancelation of the LO contribution as well as a 𝜋 2⁄  phase flip of the signal. The contribution of 

gold is removed from these expressions by multiplying the Fourier filtered HD-VSFG spectra by 
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the square root of the amplitude of the homodyne-detected gold SFG spectrum. From eqs 7 and 

8, one of two conclusions can be made from the SSP-polarized VSFG spectrum: (1) The 

imaginary part of the spectrum reports on the imaginary part of the susceptibility under doubly 

resonant conditions. (2) The real part of the spectrum reports on the imaginary part of the 

susceptibility under singly resonant conditions. 

 

4.4 HD-VSFG Results and Discussion 

Figure 4.2 shows the resulting complex HD-VSFG spectra of TSPP aggregates on gold 

for PPP and SSP polarization configurations. The PPP spectrum was produced via internal LO 

heterodyne detection, and the SSP spectrum was produced via external LO heterodyne detection. 

As Fourier filtering removes a considerable amount of noise from the spectrum, the SSP spectra 

appear smoother than that of the PPP spectrum. Both PPP and SSP spectra are normalized to a 

PPP homodyne-detected VSFG spectrum of gold exposed to the same mid-IR and visible pulse 

energies. The |𝜒𝑠(2)|2
 spectra (Figure 4.2c) of both polarization configurations are determined 

directly by the absolute square of the complex spectra. The component of the HD-VSFG 

spectrum which carries information related to the imaginary part of the second-order 

susceptibility should contain peaks which appear in the corresponding |𝜒𝑠(2)|2
 spectrum. On the 

basis of this observation, 𝜒𝑠,𝐼𝑚(2)
 is represented in both the PPP HD-VSFG spectrum and the SSP 

HD-VSFG spectrum by the real spectrum. This implies that the PPP polarization configuration 

produces a spectrum which reflects doubly resonant VSFG, whereas the SSP polarization 

configuration produces a spectrum which reflects only resonance with the vibrational transition. 

Remarkably, this suggests that VSFG spectroscopy can relay aspects of the electronic exciton of  
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Figure 4.2 (a) Real (red) and imaginary (blue) HD-VSFG spectra of the TSPP aggregates on gold 
using the PPP polarization configuration. (b) Same as in panel a for the SSP configuration. (c) The 
|χs

(2)|2 spectra for the PPP (red) and SSP (blue) polarization configurations. 
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these molecular aggregates in one polarization scheme and the molecular geometry of the 

monomeric species in the assembly in another polarization scheme. Thus, we have shown that 

phase-sensitive VSFG can uniquely provide excitonic, vibronic, and structural information on 

molecular assemblies. The fascinating revelations associated with these spectra require in-depth 

discussions which will be addressed in a subsequent article. However, these VSFG 

measurements effectively establish the vibrational modes associated with delocalized molecular  

excitons and the molecular geometry associated with the internal structure of the molecular 

aggregate. 

Figures 4.3 and 4.4 show the “phase acrobatics” which must be applied to the HD-VSFG 

spectra for the PPP and SSP polarization configurations, respectively, to produce spectra directly 

related to the complex second-order susceptibility of the molecular system. For PPP polarization, 

multiplying the complex HD-VSFG spectrum by −i negates the phase shift due to the resonance 

of the sum frequency with the transition to the Q-band electronic state. This 90° phase flip 

produces the complex phase-sensitive VSFG spectrum which reflects the second-order 

susceptibility derived solely from the molecular vibrations. For SSP polarization, the complex 

second-order susceptibility spectra is derived by taking the HD-VSFG spectra and compensating 

for the phase of the gold SFG phase reference and the change in the sign of the imaginary part of 

the susceptibility. 

For chiral nanotube aggregates such as TSPP aggregates, three excitonic states, 

neglecting nonadiabatic phenomena, should arise from degenerate monomeric electronic or 

vibrational states through excitonic coupling: a nondegerate exciton state, whose transition 

dipole is oriented along the nanotube long axis, and a doubly degenerate pair of exciton states, 

whose transition dipoles are oriented along x- and y- short axes of the nanotube. The vibrations  
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Figure 4.3 (Top) Original PPP HD-VSFG spectra of TSPP aggregates deposited on gold (left) and the 
phase shift to compensate for resonance with the electronic excited state (right). (Bottom) Schematic 
representation of the Argand plot associated with a single vibrational mode (right) and the π/2 phase 
shift associated with electronic resonance (left). 
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Figure 4.4 (Left) Original SSP HD-VSFG spectra of TSPP aggregates deposited on gold (top) and the 
phase shifts to compensate for the influence gold phase reference (middle) and with the negative sign 
of χs,Im(2) (bottom). To the right of each set of spectra are representative schematics of the Argand 
plot of a single vibrational mode reflecting the effect of each phase flip. 
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of concern in this work are associated with macrocycle C=C vibrations whose transition dipole 

moments lie within the plane of the porphyrin ring. If these transition dipoles are oriented 

parallel (or near parallel) to the transition dipoles associated with one of the excitonic transition 

dipole moments, the PPP-polarized spectra, where the polarization of the IR and visible fields are 

identical, should be sensitive to doubly resonant effects. However, for SSP-polarized spectra, 

where the polarization of the IR and visible fields are perpendicular, the observed vibrational and 

electronic dipole moments are orthogonal, which would result in singly resonant spectra which 

reflect only vibrational excitation. 

A considerable number of vibrational resonances are apparent in both sets of spectra, but 

this discussion will be confined to the two most prominent features in each spectrum: the high-

frequency peak at 1542 cm−1 (1553 cm−1) and the low-frequency mode at 1497 cm−1 (1493 cm−1) 

for the PPP (SSP) polarization configuration. Three main differences are observed between the 

PPP and SSP 𝜒𝑠,𝐼𝑚(2)
 spectra: (1) The high (low) frequency peaks blue (red) shifts between the PPP 

and SSP 𝜒𝑠,𝐼𝑚(2)
 spectra. (2) The low-frequency peak flips sign between the PPP and SSP 𝜒𝑠,𝐼𝑚(2)

 

spectra. (3) The low-frequency mode in the SSP 𝜒𝑠,𝐼𝑚(2)
 spectrum is about 1.4 times more intense 

(based on integrated intensity) than that in the PPP 𝜒𝑠,𝐼𝑚(2)
 spectrum, while the high-frequency 

mode in the SSP 𝜒𝑠,𝐼𝑚(2)
 spectrum is about 3/4 times weaker than that in the PPP 𝜒𝑠,𝐼𝑚(2)

 spectrum. 

Shifts in the frequency of these vibrations have been shown to occur in resonance Raman spectra 

of TSPP upon aggregation; therefore, induced frequency shifts due to coupling to the resonant 

exciton state may be possible. The low-frequency mode sign flip in the PPP spectrum with 

respect to the SSP low-frequency mode reveals an interesting consequence of coupling to the 

resonant exciton state and may reflect the relative orientation between the transition dipole 

moment of the vibration and that of the exciton. 
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The analysis described above of the phase of the SFG emission for the PPP and SSP 

spectra reflect double resonance in the former and single resonance in the latter, which one 

would expect to result in considerable intensity disparity between the PPP and SSP spectral 

features as observed in resonance Raman spectra. However, no such resonance enhancement is 

apparent. We postulate two possible reasons for this observation. First, the macrocycle vibrations 

associated with these spectral features may not be totally symmetric vibrations; thus, resonance 

enhancement is not observed because of the lack of displacement between the electronic 

potential surfaces of the ground and excited exciton states along those normal coordinates. These 

modes would be identified as Franck−Condon inactive but can be observed under a few 

conditions: (1) a substantial frequency shift in the vibrational frequency between the ground- and 

excited-state frequencies; (2) a change in the symmetry, i.e., the point group, between the ground 

and excited states upon excitation, which can arise via Duschinsky rotation; (3) vibronic 

coupling, particularly between bright and dark exciton states, which results in the mixing of 

Born−Oppenheimer states via nontotally symmetric vibrations. A second plausible reason for the 

differences in intensity and frequency between the PPP and SSP spectra is the nature of the 

delocalization of the exciton. With the PPP spectrum probing the excitonic nature of the 

aggregate, rather than the porphyrin monomer in the SSP, the delocalization of the electronic 

wavefuction may reduce the oscillator strength of the probed molecular vibration which may not 

be as delocalized. This electronic delocalization could also change the force constant associated 

with the molecular vibration and thus change the vibrational frequency. However, it is important 

to note that whether these vibrations are localized to individual porphyrin or are delocalized over 

several porphyrin is not necessarily understood. Clearly, HD-VSFG spectroscopy has the 

capacity to reveal considerable information about molecular excitonics. 
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4.5 Conclusion 

To conclude this Letter, we have discovered that HD-VSFG spectroscopy combined with 

utilization of double-resonance conditions and various polarization schemes can reveal both 

excitonic and monomeric properties in molecular aggregates. By carefully keeping track of the 

phase of the resulting HD- VSFG emission of TSPP aggregates under different polarization 

conditions, we have determined that the PPP spectrum measures a doubly resonant VSFG 

phenomenon which exhibits coupling of the molecular vibrations to the delocalized molecular 

exciton, whereas the SSP spectrum measures a singly resonant VSFG phenomenon which does 

not. For the field of molecular aggregates, this is an important discovery because it demonstrates 

that phase-sensitive vibrational sum frequency generation is sensitive to the delocalized nature of 

the exciton, the geometry of the monomers of which the aggregate is composed, and the vibronic 

coupling which can give rise to nonadiabatic phenomena. In a forthcoming contribution, we 

delve deeper into the molecular details unveiled by these results as well as the structure of the 

exciton. 

 

4.7 Supporting Information 

A diagram of our home-built HD-VSFG spectrometer is illustrated in Figure 4.6. To 

generate our mid-IR and visible pulses for this spectrometer we use a Ti:Sapphire based 

regenerative amplifier (Wyvern 1000, KM Labs) which produces 45 fs duration pulses at a 1 

kHz repetition rate centered at 790 nm. Using a beamsplitter, 80% of this output is directed to a 

two stage collinear optical parametric amplifier (OPA, TOPAS Prime, Light Conversion), from 

which the signal and idler are collinearly combined in a silver gallium selenide (AgGaSe2) 

crystal. The angle of the AgGaSe2 crystal and the BBO crystal angles in the OPA tuned to 
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produce mid-IR pulses with a center frequency of 1540 cm-1 (center wavelength 6493.5 nm). The 

transmitting 20% of the Ti:Sapphire output is used for the visible light in this experiment and is 

sent through an interference filter (Andover Corp) in order to frequency narrow the pulses to a 

FWHM of 10 cm-1 (0.5 nm).  

The spectrometer in this study utilizes a passively phase stabilized sample geometry in 

which the LO is generated prior to the sample and the mid-IR, visible, and LO pulses reflect off 

common optics following LO generation. Using a silver 6 inch focal length off axis parabolic 

mirror and 750 mm focal length fused silica lens, the mid-IR and visible pulses, respectively, are 

focused and overlapped in space and time on a 150 µm thick film of ZnO deposited on a 1 mm 

thick CaF2 window to produce an SFG emission which is used as the local oscillator. All three 

beams, mid-IR, visible, and LO, are reflected by a common silver mirror towards a 200 mm 

focal length concave silver mirror. The LO is delayed by 5 ps with respect to the IR and visible 

pulses with a 3 mm thick fused silica window. The mid-IR, visible, and LO are then focused on 

the sample by the concave mirror at 60.7°, 66.2°, and 65.6° with respect to the sample surface 

normal. The sample is mounted on a translation stage which can translate in X, Y, and Z 

directions. A half waveplate and wire grid polarizer in the visible beam path control the 

polarization and energy of the visible pulses. The energies of the mid-IR and visible pulses at the 

sample are maintained at 5 µJ and 900 nJ, respectively. The emitted SFG from the sample and 

collinear delayed LO are directed through a wire grid polarizer to collect a specific polarization 

of SFG and LO, followed a waveplate to orient the polarization of the light into the P 

polarization to account for the polarization bias of the grating in the monochromator. The light is 

dispersed with an iHR550 monochromator (Horiba) and detected with a back illuminated TEC 

CCD detector (Synapse, Horiba). Polarization configurations used in this study are labeled in  
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Figure 4.5 SFG spectrum of bare gold using 600 lines/mm grating. 

Figure 4.6 Diagram of the HD-VSFG spectrometer. BS = 80/20 beamsplitter; IF = interference filter; 
L1 = 750 mm focal length lens; l/2 = half waveplate; WGP = wire grid polarizer; OAP = 6 inch focal 
length 90° off axis parabolic silver mirror; ZnO = 150 µm thin film deposited on a CaF2 window; FS 
= 3 mm thick fused silica window; CM = 200 mm silver concave mirror; S = sample; L2, L3 = 200 
mm focal length lenses; SPF = 750 nm cut-off wavelength shortpass filter; red line = mid-IR beam 
path; green line = visible beam path; blue line = LO beam path; purple dashed line = sample SFG 
path. 
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order of descending frequency (SFG, visible, mid-IR). In this study, PPP and SSP polarization 

schemes are used. For experiments where gold in the sample is used to produce an internal LO, 

the nonresonant SFG produced from the ZnO is blocked. To ensure a consistent phase 

relationship between the sample and reference for both internal and external LO 

implementations, samples were prepared such that the TSPP aggregate and gold reference 

spectra could be collected on the same substrate. To this end samples were prepared by drop-

casting the TSPP aggregate solution on to a small portion of the gold surface, leaving a 

considerable amount of the surface bare. Switching between measurements of the sample and 

reference HD-VSFG spectra was then accomplished by laterally translating the sample stage to 

assure consistent phase relationship between measurements. 

Figure 4.7 presents the Fourier filtering process for producing external LO HD-VSFG 

spectra. The measured raw spectrum (a) is first Fourier transformed into the time domain (c). 

Three features are observed in temporal interferogram: an intense DC component at 0 fs, which 

contains information on the amplitude of the sample VSFG and the LO SFG emission, and two 

features at +𝑇 and −𝑇 where 𝑇 is the delay between the VSFG from the sample and the LO. 

Applying a filter function window to select one of the latter features (as shown by the red plot in 

Fig. 4.7c) which correspond to the interference between the VSFG emission from the sample 

and the LO. Fourier transformation of the filtered temporal interferogram produces the spectral 

interferogram in Fig. 4.7e. To obtain the phase-sensitive HD-VSFG spectrum, the spectral 

interferogram of the sample must be normalized with the spectral interferogram of a phase 

reference, which in this case is the PPP HD-VSFG spectrum of bare gold (see Figs. 4.7b, 4.7d, 

and 4.7f).  
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Figure 4.7 Spectra corresponding to the steps involved in Fourier filtering. a) The raw SSP HD-VSFG 
spectrum of TSPP aggregates on gold. b) The raw PPP HD-VSFG spectrum of bare gold. c) The 
Fourier transformed time domain spectrum of a with the Fourier filtering function. d) The Fourier 
transformed time domain spectrum of b with the Fourier filtering function. e) Resulting real (blue) and 
imaginary (green) spectral interferograms from Fourier filtering the spectra in c. f) Resulting real 
(blue) and imaginary (green) spectral interferograms from Fourier filtering the spectra in d. 
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Within a reasonable approximation, the UV-Vis absorption spectrum of the TSPP 

aggregates can be related to the imaginary part of the complex refractive index:  

𝜅(𝜆) = 2.303 𝐴(𝜆)𝜆4𝜋𝑥  

Here, 𝜅(𝜆) is the imaginary part of the refractive index, 𝐴(𝜆)is the absorption spectrum, 𝜆 is the 

wavelength, and 𝑥 is the path length. The real part of the refractive index can be determined via 

Kramers-Kronig transformation. The phase can then be determined and we have plotted in 

Figure 4.8. This frequency dependent electronic phase can then be applied to the HD-VSFG 

spectrum. In Figure 4.9 we plot the resonant electronic phase in the SFG frequency range, 

which shows that for the vibrations we are concerned with, an applied phase between 90° and 

100°. In Figure 4.10 we show the VSFG spectrum with the frequency-dependent phase applied 

and the VSFG spectrum with a constant 90° phase applied. 

Comparison of the complex spectra show that either treatment of the electronic 

resonance phase effectively produces similar real and imaginary χ(1) spectra.  Determination of 

the electronic phase contribution using the UV-vis spectrum of the TSPP aggregate solution 

(Figure 4.8); the electronic phase contribution determined from the UV-vis spectrum plotted in 

the HD-VSFG spectral range (Figure 4.9); comparison of the PPP polarized HD-VSFG spectra 

determined from the electronic phase contribution derived from the UV-vis spectrum and from a 

constant 90° phase shift.  
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Figure 4.8 Real (blue) and imaginary (green) refractive index spectra of TSPP aggregates in water 
with corresponding phase (red). 

Figure 4.9 Electronic resonance phase spectrum for the frequency range examined in the VSFG 
spectra in this study. 
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Figure 4.10 Complex 𝜒(2) spectra determined with the frequency dependent electronic phase 
determined from the UV-vis absorption spectrum (red and blue for real and imaginary 𝜒(2), 
respectively) and with a constant electronic phase of 90° (black and green for real and imaginary 𝜒(2), 
respectively). 
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Chapter 5: HD-VSFG Comparison of Racemic- and Chiral-
Prepared TSPP Thin Films 

5.1 Introduction 

 The previous chapter discussed in detail the experimental results which demonstrate that 

HD-VSFG is a highly useful tool for investigation of the TSPP aggregate system. Briefly, 

heterodyne detection is advantageous because it preserves the complex phase information 

present in the VSFG signal, which is proportional to the second-order nonlinear susceptibility 

(𝜒(2)) of the system. Using these phase relationships and the known phase contributions of gold 

non-resonant SFG and of double resonance, it was shown that PPP polarization measures 

vibrational modes coupled with a delocalized TSPP aggregate exciton, whereas SSP polarization 

measures vibrations indicative of the TSPP monomer (Chapter 4). These observations were made 

by comparing the phase relationship between the complex real and imaginary components of the 

experimental HD-VSFG spectra.  

 

5.2 Absorptive and Dispersive Features 

Shown in Figure 5.1 is a simplified HD-VSFG spectrum of a single resonant mode at 

1550 cm-1 as well as the manner in which the real and imaginary components change when phase 

offsets are applied. Corresponding Argand diagrams are included with each simple spectrum, 

where plotting the intensities of the real and imaginary components on the x- and y-axes, 

respectively, illustrates the connection between phase offsets and the resulting features.  

In a spectrum where no experimental phase offset has contributed, as depicted in Figure 

5.1 (left), the imaginary component of 𝜒(2) is absorptive; that is, it peaks at the frequency of  
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Figure 5.1 Simple HD-VSFG spectra (top) of a single vibrational mode at 1550 cm-1 with 0o and 90o phase offsets applied, with corresponding 
Argand diagrams (bottom). Real = red, blue = imaginary, black dashed =IR wavenumber. 
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vibrational resonance. In this manner, the imaginary component resembles a linear absorption 

spectrum. The real component is dispersive; it has a positive peak pre-resonant of the frequency 

of the vibrational mode, crosses zero at the resonance frequency, and peaks negatively in post-

resonance frequencies. The complex features change upon a phase offset of 90o, as shown in 

Figure 5.1 (right). The real component is now absorptive and identical to the 0o-offset imaginary 

component. The imaginary component is now the inverse of the dispersive 0o-offset real 

component; features with this description will henceforth be referred to as inverse-dispersive. 

Phase offsets of 180o and 270o are shown in Figure 5.2. At 180o, the imaginary component is 

once again absorptive, but in the negative direction; features with this characteristic will 

henceforth be referred to as negatively-absorptive. The real component is again dispersive. At 

270o, the imaginary component is dispersive and the real component is negatively-absorptive. 

These terms will be used to describe the complex features present in the following experimental 

HD-VSFG spectra. 

 

5.3 Comparison of Racemic and Chiral Thin Films 

 This chapter presents further HD-VSFG results on the TSPP aggregate system. In this 

study, two TSPP thin films were studied: one prepared in the same way as previously studied 

films, and one prepared to be chiral. TSPP aggregates, due to their helical nature, are inherently 

chiral.2,3 There is no preference for dextro- or levo-aggregates when they are prepared in the 

typical fashion.4 However, it has been shown that stirring of the sample while aggregates form 

induces a reproducible handedness in the overall sample.5 Thus, the two films were prepared to 

investigate potential differences between HD-VSFG spectra of racemic and chiral mixtures of  
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Figure 5.2 Simple HD-VSFG spectra (top) of a single vibrational mode at 1550 cm-1 with 180o and 270o phase offsets applied, with 
corresponding Argand diagrams (bottom). Real = red, blue = imaginary, black dashed =IR wavenumber. 
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the TSPP aggregates. In addition to the PPP and SSP polarizations used in the previous study, 

PSP polarization was also used. PSP is a chiral polarization scheme; it probes components of the 𝜒(2) tensor present only in chiral systems.6 

 Sample preparation for the thin films is detailed in Chapter 2. Both films were drop-cast 

onto the same gold mirror; a sample-free spot on the mirror was used as a reference. 

Experimental changes between spectral acquisitions were limited to moving the sample stage 

between the two films, and all spectra were acquired in succession to minimize outside 

contribution to differences in the spectra. All spectra were processed via the Fourier filtering 

method described in Chapter 2 using the custom Python code in Appendix A.  

 The resulting complex PPP, SSP, and PSP 𝜒(2) spectra of the racemic and chiral thin 

films are presented in Figures 5.3-5. For all 𝜒(2) spectra: 𝜒𝑅𝑒(2)
 components are in red, 𝜒𝐼𝑚(2)

 

components are in blue, and |𝜒(2)|2
 are in dashed black. The spectra have multiple vibrational 

features, each of which can have a different phase and several of which overlap with each other. 

The resulting spectra are complicated and will require computational fitting to extract 

quantitative 𝜒(2) information. The spectra do, however, have distinct differences obvious by 

simple qualitative analysis. The |𝜒(2)|2
 spectra, which visually resemble more familiar linear 

absorption spectra, are included with their complex counterparts. While they do not have 

complex phase information, the peak locations in the |𝜒(2)|2
 spectra are helpful for analyzing 

each peak’s behavior in the corresponding complex spectrum. Qualitative analysis was generally 

restricted to the most prominent features in each spectrum. While some smaller features are also 

included, it is worth noting that, even though many of the smaller features are visually obscured 

by neighboring stronger features, they are undoubtedly worth investigation with a more rigorous 

quantitative approach as they still contain valuable information on the system. 
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5.4 HD-VSFG Results & Discussion 

 In the complex TSPP PPP spectra (Figure 5.3), the 1551 cm-1 and 1567 cm-1 peaks in the 

racemic and chiral films, respectively, both display absorptive imaginary (Im) features and 

dispersive real (Re) features, suggesting that the phase of this vibrational mode is not affected by 

the sample chirality. The racemic film 1530 cm-1 mode appears to have a negatively-absorptive 

Im feature and an inversely-dispersive Re feature. The chiral film, on the other hand, has an 

approximately 1530 cm-1 shoulder with an absorptive Im feature and dispersive Re feature; at 

this mode, the two films are offset by a phase of 180o. The same is true for the racemic 1506 cm-1 

and the chiral 1505 cm-1 modes. Finally, a strong 1487 cm-1 mode is seen in the chiral film with 

an absorptive Re feature and an inversely-dispersive Im feature. Unlike in the chiral film, the 

racemic counterpart mode at approximately 1483 cm-1 appears as a weak shoulder, but it does 

share the same apparent complex phase pattern. While this mode in the racemic sample is much 

weaker, its phase does not appear to differ from that seen in the chiral mode. 

 The complex SSP spectra are shown in Figure 5.4. In the SSP polarization, the 

vibrational features in the two |𝜒(2)|2
 spectra are very similar; the corresponding complex 

features, however, are not. Both the racemic and chiral films have a small peak at 1554 cm-1, a 

peak which was also noted in the SSP spectrum in Chapter 4 as indicating a more monomer-like 

vibrational signature. While present in both films here, the complex 1554 cm-1 features differ: 

racemic shows an absorptive Im feature and a dispersive Re feature, while chiral shows a more 

obscured negatively-absorptive Re feature and inversely-dispersive Im feature, indicating a 180o 

phase difference between the two films. At 1525 cm-1, the racemic peak corresponds to an 

absorptive Re feature and, though difficult to discern visually, likely a dispersive Im feature. The 

same mode in the chiral spectrum appears to have an absorptive Im feature and a dispersive Re  
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Figure 5.3 Complex PPP-polarized χ(2) spectra of TSPP racemic (top) and chiral (bottom) thin films.  
Real component (red), imaginary component (blue). | χ(2)|2 spectra are in black dashed lines and 
multiplied by a factor of 5 (top) and 4 (bottom) for clarity. 
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Figure 5.4 Complex SSP-polarized χ(2) spectra of TSPP racemic (top) and chiral (bottom) thin films. 
Real component (red), imaginary component (blue). | χ(2)|2 spectra are in black dashed lines and 
multiplied by a factor of 10 (top) and 2.5 (bottom) for clarity. 
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feature; this suggests that the 1525 cm-1 modes are offset 90o from each other in the racemic and 

chiral films. The 1493 cm-1 mode, which was also noted as vibrationally monomer-like in the 

previous chapter, is a weak shoulder in the racemic spectrum; its complex features are difficult to 

discern but are likely a negatively-absorptive Im feature and an inversely-dispersive Re feature. 

This mode is either not present in the chiral film or is hidden beneath a stronger neighboring 

mode. Lastly, the racemic and chiral spectra have modes at 1484 cm-1 and 1480 cm-1, 

respectively. In this case, both modes appear to have negatively-absorptive Im features and 

inversely-dispersive Re features, indicating that the same phase offset contributes to this mode in 

both samples. 

 The complex PSP spectra are presented in Figure 5.5. Uniquely, there is a small peak in 

the chiral PSP spectrum at 1628 cm-1 which is not present in any other spectrum in this 

experiment, including in the PSP racemic spectrum. It shows a negatively-absorptive Im feature 

and a dispersive Re feature. There is IR vibrational activity in this region as shown in the ATR-

FTIR in Chapter 3; this region is not, however, commonly investigated in Raman experiments, 

making it difficult to determine if there is a Raman-active mode at this frequency. This peak is 

worth further investigation to determine if it arises from error or artifacts in the data or if it is, in 

fact, genuine. Beyond this peak, the racemic and chiral PSP spectra are very similar. Both the 

racemic peak at 1570 cm-1 and the chiral peak at 1569 cm-1 display absorptive Re features and 

inversely-dispersive Im features. The middle prominent modes are the most different in terms of 

frequency: in the racemic sample there is a 1514 cm-1 peak while the chiral sample has a 1528 

cm-1 peak. Upon closer inspection of the complex spectral features, additional modes obscured 

by these peaks can be discerned in both spectra. The racemic complex spectrum appears to have 

a contribution very close to 1528 cm-1, the same frequency as the more  
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Figure 5.5 Complex PSP-polarized χ(2) spectra of TSPP racemic (top) and chiral (bottom) thin films. 
Real component (red), imaginary component (blue). | χ(2)|2 spectra are in black dashed lines and 
multiplied by a factor of 8 (top) and 10 (bottom) for clarity. 
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prominent peak in the chiral sample. Similarly, the complex chiral spectrum has a notable 

contribution at approximately 1512 cm-1, comparable to the racemic 1514 cm-1 mode. Due to the 

closely-overlapping and relatively weak modes, it is impossible to determine with complete 

confidence the behavior of the complex components in these cases without quantitative analysis, 

but an attempt has been made by visual analysis. In both films, the 1528 cm-1 mode seems to 

have a negatively-absorptive Im feature and a dispersive Re feature. Likewise, the complex 

features seen in the 1512 cm-1 and 1514 cm-1 modes have absorptive Re features and dispersive 

Im features. Finally, the 1477 cm-1 racemic mode and the 1480 cm-1 chiral mode both have 

negatively-absorptive Re features and likely inversely-dispersive Im features, though the latter is 

difficult to discern. 

 In summary, the HD-VSFG spectra discussed here display notable differences in both 

vibrational mode location and complex phase. Aside from the highest-frequency modes, the PPP 

spectra appear to have similar vibrational modes, though they do vary in intensity. The phase of 

the lowest-frequency mode is the same in both the racemic and chiral films; the others, however, 

are offset by 180o from each other. The SSP spectra have very similarly-located vibrational 

modes which also have similar intensities and resemble the monomer-like vibrational modes 

shown in the previous chapter. Between the two films, the lowest-frequency modes have the 

same phase while the others are all offset from each other. The PSP spectra are the most similar; 

each mode (apart from the unique 1628 cm-1 mode seen only in the chiral PSP spectrum) has a 

close counterpart in the opposing spectrum, and each pair seem to share the same phase. 
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5.5 Conclusion 

 These results indicate that PPP and SSP polarization schemes both report distinct 

differences between the phases of the vibrational modes in racemic- versus chiral-prepared thin 

films, whereas the PSP polarization scheme reports the same complex phases in the spectra of 

both films. In terms of vibrational mode location, best seen by comparison of the |𝜒(2)|2
 spectra 

in Figure 5.6 (racemic film spectra in black and chiral in red), the SSP spectra are most like one 

another in comparison to other polarization schemes. The PSP spectra are also similar in the 

frequencies of their modes, although the two central modes differ significantly in intensity. The 

modes in the PPP spectra are the most different by visual analysis, particularly at the high- and 

low-frequency ends of the spectra. 

It is not necessarily surprising that there should be differences between the HD-VSFG 

spectra of racemic- and chiral-prepared thin films of TSPP. Chiral HD-VSFG has been shown to 

detect a 180o phase difference between the Im components observed in R- and S-BINOL 𝜒(2) 
spectra.7 Furthermore, homodyne-detected chiral SFG has been used to distinguish between 

dextro- and levo-TSPP chirality in thin films prepared by addition of chiral tartaric acids, another 

method for producing aqueous chiral TSPP solutions.8 These methods have not, however, 

reported a difference in vibrational mode frequencies or complex phases of individual modes 

between dextro and levo samples. To our knowledge, this is the first report of chiral HD-VSFG 

on TSPP aggregate thin films and presents new insights into the phase and structural sensitivity 

of this nonlinear technique. The 𝜒(2) tensor information present in these spectra will need to be 

extracted with a more rigorous computational fitting approach;9 quantitative values for 𝜒(2), 
combined with aggregate modeling techniques, are the next step in deciphering the molecular 

structure of these aggregates and how phase is dependent on that structure. It will also be  
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Figure 5.6 |χ(2)|2 spectra of TSPP racemic (black) and chiral (red) thin films. SSP racemic spectrum multiplied by a factor of 15 for clarity. 
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important to repeat and expand this experiment. Stirring in the opposite direction has been shown 

to induce the opposite chirality in TSPP samples;5 HD-VSFG of an oppositely-stirred chiral thin 

film should help to further the analysis started here. Further experimentation, modeling, and 

analysis is necessary to fully glean the useful information from these data; nevertheless, this 

study presents novel information on the sensitivity of HD-VSFG to chirality in TSPP thin films. 
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Appendix: Python Scripts 

 Codes used for processing linear and nonlinear spectral data were written in Python 3.6 

using the Spyder integrated development environment (IDE) within Anaconda Navigator.  

 

ATR-FTIR & UV-Vis Spectral Processing 

Description: The linear processing code is used for simple linear spectroscopy data processing. 

Numpy and Pyplot (matplotlib.pyplot) Python libraries are required.  

User specifies: linear spectroscopic technique, either ‘IR’ (FTIR) or ‘UV’ (UV-Vis); directory 

where sample file is located; name, including extension, of sample data file; and sample name to 

be used in figure title. Data is self-normalized and plotted with the appropriate units, “Frequency 

(cm-1)” for FTIR and “Wavelength (nm)” for UV-Vis. 

FTIR data is assumed to have a comma delimiter; UV-Vis data is assumed to have four leading 

lines of experimental information that does not need to be loaded. 

Linear processing code: 

import numpy as np 
import matplotlib.pyplot as plt 
 
spec = 'UV' # Specify linear spectroscopy used to acquire data;  'IR' for FTIR or 'UV' for UV-Vis 
 
directory = 'C:\\DataFolder\\' # Specify location of folder containing sample files 
 
file = 'data.txt' # File name of sample txt file located in directory specified above, ex. 'data.txt' 
 
name = ‘Sample Name’ # Name of sample for figure title, ex. 'TSPP pH 0.39' 
 
def linear(spec, directory, file, name): # Define function to load and plot either FTIR or UV-Vis 
data 
    if spec == 'IR':  
        data = np.loadtxt(directory + file, delimiter = ',') # Load FTIR data 
        data[:, 1] = data[:, 1] / max(data[: ,1]) # Normalize FTIR data 
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        plt.figure() # Plot normalized FTIR data 
        plt.title(name + ' FTIR') 
        plt.plot(data[:, 0], data[:, 1], 'k', linewidth = 1) 
        plt.xlabel('Frequency $(cm^{-1})$') 
        plt.ylabel('Normalized Absorbance') 
        plt.minorticks_on() 
        plt.show() 
         
        return data 
     
    if spec == 'UV': 
        data = np.loadtxt(directory + file, skiprows=4) # Load UV-Vis data 
        data[:, 1] = data[:, 1] / max(data[: ,1]) # Normalize UV-Vis data 
         
        plt.figure() # Plot normalized UV-Vis data 
        plt.title(name + ' UV-Vis') 
        plt.plot(data[:, 0], data[:, 1], 'k', linewidth = 1) 
        plt.xlabel('Wavelength (nm)') 
        plt.ylabel('Normalized Absorbance') 
        plt.minorticks_on() 
        plt.show() 
         
        return data 
 
data = linear(spec, directory, file, name) # Run linear processing function according to 
parameters set in first section 
 

HD-VSFG Fourier Filtering 

Description: The Fourier filtering code takes a raw HD-VSFG spectrum and returns a Fourier-

filtered, reference-normalized, baseline-corrected complex 𝜒2 spectrum. Numpy and Pyplot 

Python libraries are required.  

User specifies: directory where sample and reference data files are located; name, including 

extension, of sample and reference data files; sample and reference names to be used in figure 

titles; tmin and tmax for the Fourier filtering window; phase, 𝜙𝑜𝑓𝑓𝑠𝑒𝑡, to account for sample and 

reference phase offset; whether to display only sample figures or both sample and reference 

figures; and indices of the frequency points at which the spectrum is to be baseline corrected.  
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The Fourier filtering function plots: raw frequency-domain spectra; temporal interferograms 

with Fourier filtering windows; Fourier-filtered frequency-domain spectra; real components of 

the Fourier-filtered reference and sample spectra for visual phase comparison; pre-normalization 

absolute-square (|𝜒(2)|2
) spectra; normalized sample 𝜒(2) complex spectrum components; and 

normalized sample |𝜒(2)|2
 spectrum.  

Spectra are typically first processed with a 𝜙𝑜𝑓𝑓𝑠𝑒𝑡 of 0o; the appropriate 𝜙𝑜𝑓𝑓𝑠𝑒𝑡 is determined 

by visual comparison of the filtered reference and sample spectra and re-processing of the data 

with adjusted values for 𝜙𝑜𝑓𝑓𝑠𝑒𝑡 until phase alignment is reached. Baseline correction points are 

selected by inspecting the normalized spectra for two frequency points devoid of absorption 

features, then finding the corresponding indices in the x-axis array. 

Fourier filtering code: 

import numpy as np 
import matplotlib.pyplot as plt 
from numpy import pi 
 
directory = 'C:\\DataFolder\\' # Specify location of folder containing sample and reference files 
 
samplefile = 'Data.txt' # File name of sample txt file located in directory specified above, ex. 
'data.txt' 
 
samplename = 'Name of Sample' # Name of sample for figure titles, ex. 'TSPP PPP' or 'N3 on 
Gold' 
 
reffile = 'Reference.txt' # File name of reference txt file located in directory specified above, ex. 
'ref.txt' 
 
refname = 'Reference Name' # Name of reference for figure titles, ex. 'Gold' or 'Quartz' 
 
tmin = 3400 # Beginning of Fourier Filtering window in femtoseconds 
 
tmax = 7200 # End of Fourier Filtering window in femtoseconds 
 
phi = np.radians(0) # Phase (in degrees) for adjustment of offset between sample and reference 
filtered spectra 
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showref = 0 # Set as 0 to only plot figures for the sample; set as 1 to plot figures for both sample 
and reference 
 
ilo = 951 # x-axis index for high-frequency baseline correction point 
 
ihi = 93 # x-axis index for low-frequency baseline correction point 
 
#%% Define Fourier filtering function 
 
def rawFF(directory, samplefile, samplename, reffile, refname, tmin, tmax, phi, showref): 
     
    spath = directory + samplefile # Set path for sample .txt data file 
     
    sraw = np.loadtxt(spath, skiprows = 1) # Extract data from .txt file, excluding header row 
    Nr1 = sraw.shape[0] 
    Nc1 = sraw.shape[1] 
    wn = np.zeros(shape = (Nr1, 1)) 
    wn = sraw[:, 0] # Set first column from raw data as wavenumber array 
     
    if Nc1 % 2 == 0: # For data with an even number of rows 
        sint = np.zeros(shape = (Nr1, int(Nc1 / 2)))  
        sint = sraw[:, 1:Nc1:2] # Extract intensity columns from raw data 
         
        sample = np.zeros(shape=(Nr1, )) 
        sample = np.mean(sint, axis = 1) # Average sample intensity columns 
         
    elif Nc1 % 2 == 1: # For data with an odd number of rows 
        sint = np.zeros(shape = (Nr1, int(Nc1 - 1)))  
        sint = sraw[:, 1:Nc1] # Extract intensity columns from raw data 
         
        sample = np.zeros(shape = (Nr1,)) 
        sample = np.mean(sint, axis = 1) # Average sample intensity columns 
     
    rpath = directory + reffile # Set path name for reference .txt data file 
     
    rraw = np.loadtxt(rpath, skiprows = 1) # Extract data from .txt file, excluding headers 
    Nr2 = rraw.shape[0] 
    Nc2 = rraw.shape[1] 
     
    if Nc2 % 2 == 0: # For data with an even number of rows 
        rint = np.zeros(shape = (Nr2, int(Nc2 / 2))) 
        rint = rraw[:, 1:Nc2:2] # Extract intensity columns from raw data 
         
        ref = np.zeros(shape = (Nr2,)) 
        ref = np.mean(rint, axis = 1) # Average reference intensity columns 
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    elif Nc2 % 2 == 1: # For data with an odd number of rows 
        rint = np.zeros(shape = (Nr2, int(Nc2 - 1)))  
        rint = rraw[:, 1:Nc2] # Extract intensity columns from raw data 
         
        ref = np.zeros(shape = (Nr2,)) 
        ref = np.mean(rint, axis= 1 ) # Average sample intensity columns 
     
    plt.figure(samplename + ' 01') # Figure 1: Raw sample spectrum 
    plt.title(samplename + ', Raw Spectrum') 
    plt.plot(wn, sample, 'k', linewidth = 1) 
    plt.xlabel('Frequency $(cm^{-1})$') 
    plt.ylabel('Intensity') 
    plt.minorticks_on() 
    plt.show() 
     
    if showref == 1: # Figure 2: Raw reference spectrum 
        plt.figure(samplename + ' 02') 
        plt.title(refname + ', Raw Spectrum') 
        plt.plot(wn, ref, linewidth = 1) 
        plt.xlabel('Frequency $(cm^{-1})$') 
        plt.ylabel('Intensity') 
        plt.minorticks_on() 
        plt.show() 
 
    # Compute time axis and FFT of sample and reference; return sample and reference temporal 
interferograms 
     
    dt = 1 / (((wn[0] - wn[1]) * 2.998e10) * (Nr1 - 1)) # Calculate spacing between time points 
     
    t = np.zeros(Nr1,) # Generate time axis in femtoseconds according to number of sample points 
    for n in range(0, Nr1): 
            if Nr1 == 1024: 
                t[n] = ((-511 * dt) + (n - 1) * dt) * (10**15) 
            elif Nr1 == 1023: 
                t[n] = ((-512 * dt) + (n - 1) * dt) * (10**15) 
     
    sti = np.zeros(Nr1,) 
    rti = np.zeros(Nr1,) 
    sti = np.fft.fftshift(np.fft.fft(np.fft.ifftshift(sample))) # FFT sample data into time domain 
    rti = np.fft.fftshift(np.fft.fft(np.fft.ifftshift(ref))) # FFT reference data into time domain 
 
    #Set Fourier Filtering window, apply window to sample and reference time domain arrays, 
IFFT filtered arrays back to frequency domain; return spectral interferogram and absolute square 
plots 
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    ff = np.zeros(Nr1,) # Create array of ones between tmin and tmax and all else zeros 
    for n in range(0, Nr1): 
        if t[n] < tmin: 
            ff[n] = 0 
        elif t[n] > tmax: 
            ff[n] = 0 
        else: 
            ff[n] = 1 
     
    sff = np.zeros(Nr1,) # Apply Fourier Filtering window to sample and reference time domain 
data 
    rff = np.zeros(Nr1,) 
    sff = sti * ff 
    rff = rti * ff 
     
    plt.figure(samplename + ' 03') # Figure 3: Plot sample temporal interferogram 
    plt.title(samplename + ', Temporal Interferogram') 
    plt.plot(t, ff * 30000, 'k', label = 'Filter Function') 
    plt.plot(t, np.real(sti), 'r', label = 'Real') 
    plt.plot(t, np.imag(sti), 'b', label='Imag') 
    plt.xlabel('Time (fs)') 
    plt.ylabel('Intensity') 
    plt.legend() 
    plt.minorticks_on() 
    plt.show() 
     
    if showref==1: 
        plt.figure(samplename + ' 04') #Figure 4: Plot reference temporal interferogram 
        plt.title(refname + ', Temporal Interferogram') 
        plt.plot(t, ff * 150000, 'k', label = 'Filter Function') 
        plt.plot(t, np.real(rti), 'r', label = 'Real') 
        plt.plot(t, np.imag(rti), 'b', label = 'Imag') 
        plt.xlabel('Time (fs)') 
        plt.ylabel('Intensity') 
        plt.legend() 
        plt.minorticks_on() 
        plt.show() 
     
    sfilt = np.zeros(Nr1,) #Inverse FFT filtered sample and reference time domain data back to 
frequency domain 
    rfilt = np.zeros(Nr1,) 
    sfilt = np.fft.ifftshift(np.fft.ifft(np.fft.fftshift(sff))) 
    rfilt = np.fft.ifftshift(np.fft.ifft(np.fft.fftshift(rff))) 
 
    plt.figure(samplename + ' 05') #Figure 5: Plot sample filtered spectral interferogram 
    plt.title(samplename + ', Filtered') 
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    plt.plot(wn, np.real(sfilt), 'r', label = 'Real') 
    plt.plot(wn, np.imag(sfilt), 'b', label = 'Imag') 
    plt.xlabel('Frequency $(cm^{-1})$') 
    plt.ylabel('Intensity') 
    plt.legend() 
    plt.minorticks_on() 
    plt.show() 
     
    if showref == 1: 
        plt.figure(samplename + ' 06') # Figure 6: Plot reference filtered spectral interferogram 
        plt.title(refname + ', Filtered') 
        plt.plot(wn, np.real(rfilt), 'r', label = 'Real') 
        plt.plot(wn, np.imag(rfilt), 'b', label = 'Imag') 
        plt.xlabel('Frequency $(cm^{-1})$') 
        plt.ylabel('Intensity') 
        plt.legend() 
        plt.minorticks_on() 
        plt.show() 
     
    sfilt = sfilt * np.exp(1j * phi) # Apply phase to account for ref and sample offset 
     
    plt.figure(samplename + ' 07') # Figure 7: Plot Real Ref and Real Sample filtered spectra for 
phase offset comparison 
    plt.title(samplename + ', Ref and Sample Real phase comparison') 
    plt.plot(wn, (np.real(rfilt) / max(abs(np.real(rfilt)))), 'k', label = 'Reference', linewidth = 0.75) 
    plt.plot(wn, (np.real(sfilt) / max(abs(np.real(sfilt)))), 'g', label = 'Sample', linewidth = 0.75) 
    plt.xlabel('Frequency $(cm^{-1})$') 
    plt.ylabel('Intensity') 
    plt.legend() 
    plt.minorticks_on() 
    plt.show() 
     
    plt.figure(samplename + ' 08') # Figure 8: Plot sample absolute square spectrum 
    plt.title(samplename + ', Absolute Square') 
    plt.plot(wn, sfilt * np.conj(sfilt), 'k') 
    plt.xlabel('Frequency $(cm^{-1})$') 
    plt.ylabel('Intensity') 
    plt.title(samplename + ', Absolute Square') 
    plt.minorticks_on() 
    plt.show() 
     
    if showref == 1: 
        plt.figure(samplename + ' 09') # Figure 9: Plot reference absolute square spectrum 
        plt.title(refname + ', Absolute Square') 
        plt.plot(wn, rfilt * np.conj(rfilt), 'k') 
        plt.xlabel('Frequency $(cm^{-1})$') 
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        plt.ylabel('Intensity') 
        plt.minorticks_on() 
        plt.show() 
 
    # Normalize sample spectrum to reference spectrum; return HDVSFG and Chi2^2 spectra 
     
    norm = np.zeros(Nr1,) # Divide filtered sample spectrum by filtered reference spectrum 
    norm = sfilt / rfilt 
     
    plt.figure(samplename + ' 10') # Figure 10: Plot real and imaginary normalized HD-VSFG 
spectrum components 
    plt.title(samplename + ', HD-VSFG') 
    plt.plot(wn, np.real(norm), 'r', label = 'Real') 
    plt.plot(wn, np.imag(norm), 'b', label = 'Imag') 
    plt.xlabel('Frequency $(cm^{-1})$') 
    plt.ylabel('$\chi^{(2)}$') 
    plt.legend() 
    plt.minorticks_on() 
    plt.show() 
     
    plt.figure(samplename + ' 11') # Figure 11: Plot Chi2^2 spectrum 
    plt.title(samplename + ', $|\chi^{(2)}|^2$') 
    plt.plot(wn, abs(norm)**2, 'k', linewidth = 1) 
    plt.xlabel('Frequency $(cm^{-1})$') 
    plt.ylabel('$|\chi^{(2)}|^2$') 
    plt.minorticks_on() 
    plt.show() 
     
    return wn, norm 
 
def bascor(x, y, ilo, ihi): # Define baseline correction function. Input: x = x-axis array; y = 
Fourier Filtered sample y-axis array; ilo = index in x array of low-frequency baseline correction 
point; ihi = index in x array of high-frequency baseline correction point 
    yr = np.real(y) # Separate y-array real and imaginary components 
    yi = np.imag(y) 
     
    mr = (yr[ihi]-yr[ilo])/(x[ihi]-x[ilo]) # Calculate slope of real linear fit 
    mi = (yi[ihi]-yi[ilo])/(x[ihi]-x[ilo]) # Calculate slope of imaginary linear fit 
     
    br = yr[ihi] - mr * x[ihi] # Calculate y-intercept of real linear fit 
    bi = yi[ihi] - mi * x[ihi] # Calculate y-intercept of imaginary linear fit 
     
    linr = mr * x + br # Calculate real linear fit 
    lini = mi * x + bi # Calculate imaginary linear fit 
     
    yr2 = yr - linr # Subtract real linear fit from real data 
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    yi2 = yi - lini # Subtract imaginary linear fit from imaginary data 
     
    y2 = yr2 + 1j * yi2 # Recombine real and imaginary baseline-corrected data 
     
    plt.figure() 
    plt.title(samplename + ', Baseline Corrected HD-VSFG') 
    plt.plot(x, np.real(y2), 'r', label = 'Real') 
    plt.plot(x, np.imag(y2), 'b', label = 'Imag.') 
    plt.xlabel('Frequency $(cm^{-1})$') 
    plt.ylabel('$\chi^{(2)}$') 
    plt.legend() 
    plt.minorticks_on() 
    plt.show() 
     
    return y2 
 
#%% Run Fourier filter function using parameters set in first section 
x, y = rawFF(directory, samplefile, samplename, reffile, refname, tmin, tmax, phi, showref) 
 
y = bascor(x, y, 951, 93) # Baseline correct using ihi and ilo parameters set in first section 



 

85 
 

List of Selected Abbreviations 

AFM – atomic force microscopy 

BBO – beta barium borate (BaB2O2) 

CCD – charge-coupled device 

CW – continuous wave 

FFT – fast Fourier transform 

FTIR – Fourier-transform infrared (spectroscopy) 

FWHM – full width at half maximum 

HD-VSFG – heterodyne-detected vibrational sum frequency generation (spectroscopy) 

HOMO – highest occupied molecular orbital 

LUMO – lowest unoccupied molecular orbital 

MCT – mercury cadmium telluride (HgCdTe) 

OPA – optical parametric amplifier/amplification 

PPP – P-polarized SFG, P-polarized visible, P-polarized infrared  

PSP – P-polarized SFG, S-polarized visible, P-polarized infrared 

PRC – photosynthetic reaction center 

SSP – S-polarized SFG, S-polarized visible, P-polarized infrared 

STM – scanning tunneling microscopy 

TEC – thermoelectric cooler 

TSPP – tetra(4-sulfonatophenyl)porphyrin 

UV-Vis – ultraviolet-visible (spectroscopy) 


