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ABSTRACT

TIME-FILTERED INVERSE MODELING OF LAND-ATMOSPHERE CARBON EXCHANGE

The sources and sinks of biospheric carbon dioxide represent one of the least understood and

most critical processes in carbon science. Since the 1990s, carbon dioxide inversion models have

estimated the magnitude, location, and uncertainty of carbon sources and sinks. These inversions

are underconstrained statistical problems that employ aggressive statistical regularizations in both

space and time to estimate quantities like net ecosystem exchange (NEE) on weekly timescales

over fine spatial scales. This study developed and tested a new regularization that leverages the

available observational information toward a small number of estimates associated with the longer-

lived slowly varying biospheric processes, which control time-averaged sources and sinks of CO2.

This approach multiplicatively adjusts the longer lived component fluxes, gross primary produc-

tion (GPP) and total respiration (RESP), using several timescale harmonics. This methodology was

tested by estimating adjustments to either net or component fluxes from Simple Biosphere Model

4 (SiB4) using observational data from 8 different eddy-covariance flux towers selected from the

North American Carbon Program (NACP) site synthesis dataset. The time-filtering methodology

was robustly capable of accurately estimating both net and component fluxes given high observa-

tional uncertainty. Furthermore, the methodology was flexible of correctly producing estimates of

all three fluxes when given a component flux as an additional observational constraint.
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CHAPTER 1

INTRODUCTION

In May 2014, carbon dioxide (CO2) measurements taken by the National Oceanic and Atmo-

spheric Administration (NOAA) indicated that atmospheric levels of CO2 had risen above 400 parts

per million (ppm) for the first time in recorded human history (ESRL 2014). This was determined

to be the result of human activities including increased global fossil fuel consumption, cement

production, and land-use change over the last 150 years (IPCC 2013; ESRL 2014). As seen in

Figure 1.1, the Intergovernmental Panel on Climate Change (IPCC) Assesment Report 5 (AR5) es-

timates that future anthropogenic emissions of CO2 may range between 6 to 25 PgC (1 PgC = 1015

gC) which would result in CO2 concentrations of between 400 and 950 parts per million (ppm)

by 2100(IPCC 2013). This concentration range infers that global climate models (GCMs) have

difficulty to match historical observations and converge toward similar climate predictions (IPCC

2013). The difficulty in GCM prediction is due to both uncertainty in how much CO2 humanity

will emit and how nature will react over this timeframe (IPCC 2013). This severely restricts the

ability of researchers to accurately measure the effects of policy on global warming. A large con-

tributor to the high levels of uncertainty in current estimates comes from a lack of understanding

about the location and magnitude of carbon cycle sinks from the atmosphere (Friedlingstein et al.

2006; Hoffman et al. 2014).

Determination of the atmospheric sources and sinks of CO2 is a fundamental goal of carbon

science for predicting future climate change. Earth’s carbon cycle is comprised of both inactive

and active pools of carbon. The inactive pool is carbon stored in sedimentary rock, while the

three active carbon pools consist of the atmosphere, ocean, and terrestrial biosphere (UNH 2014).

The estimates of the influence of CO2 on the atmospheric and ocean pools are well observed, but
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FIG. 1.1. Fossil fuel emissions scenarios from the IPCC AR5 and CMIP5 exper-

iments. Each line represents a different emission scenario civilization could take

in the future. The solid line represents the mean emissions and shaded represent

the variablility the scenario could take. The nested graph represents the equivalent

atmospheric concentration of CO2. The y-axis is the global emission rate in units

of PgC
yr

and the x-axis is time in units of years. Diagram courtesy of (IPCC 2013).

biospheric CO2 estimates need to be improved upon. Observational studies during the 1950s and

1960s suggested that in order to resolve the carbon budget there must exist a net sink of CO2 into

both the oceans and terrestrial biosphere (Bolin and Eriksson 1958; Bolin and Keeling 1963). Over

the next 50 years, observational estimates of this sink suggested that roughly 50% of anthropogenic

CO2 emissions remain in the atmosphere, while the other 50% are fluxed into the ocean and ter-

restrial biosphere pools (Bolin and Bischoff 1970; IPCC 2013). Oceans are well known chemistry

driven sinks of CO2 (Drever 1988; Sabine et al. 2004). The magnitude of the oceanic sink was

observed to be a quarter of anthropogenic CO2 emissions, while the other quarter is accounted for

by terrestrial biosphere to close the balance (Bolin and Bischoff 1970; Ciais et al. 1995; Sabine

et al. 2004). Recent estimates suggested that of the 555 PgC that humans have emitted into the

atmosphere since the 1800s, the oceans and biosphere were responsible for sinking 155 ± 30 PgC
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and 160 ± 90 PgC, respectively (IPCC 2013). The biosphere sink estimate has an uncertainty

estimate that is over half of the flux itself. Uncertainty associated with these recent estimates was

due to both the sparse number of observations available and the lack of understanding biological

processes involving carbon.

To understand the biological sink, it is important to accurately measure the locations and

strengths of sources and sinks of biospheric CO2. One of the difficulties in attaining an accu-

rate estimate of the biospheric sink is due to the fact that biology can adapt to different conditions

of CO2. Shown in Figure 1.2 are the IPCC’s estimates from the Coupled Model Intercompari-

son Project Phase 5 (CMIP5) experiment’s variations of the CO2 sink partition. These estimates

showed that the land portion of the sink varied between 1 GtC
yr

to -4 GtC
yr

since the 1800s. The IPCC

noted that in both the 4th and 5th assessment reports (AR4, AR5) a large source of this variation

occured because of the GCMs’ high sensitivity to the locations of carbon sources and sinks and

biological parameterizations (Friedlingstein et al. 2006; Hoffman et al. 2014). A way to determine

the magnitude and location of this sink is through inversion modeling.

1.1. INVERSION MODELING

Inversion modeling is a popular technique designed to infer the locations and strengths of the

sources and sinks of CO2. The inversion is a statistical model that allows an initial estimates

of CO2 fluxes, then uses an atmospheric transport model to estimate CO2 concentrations. The

inversion then uses observations to optimize biospheric fluxes in order to match CO2 concentra-

tions (Evensen 1994). In general, CO2 inversion models provide underconstrained flux estimates.

This means there are many more parameters to estimate than observations to constrain them. To

compensate for the lack of observations, inversion frameworks have been developed to introduce

aggressive regularizations to allow for more constrained estimates of CO2 fluxes.

3



FIG. 1.2. Estimations of how anthropogenic emissions of CO2 are being parti-

tioned and evolving by the land and ocean carbon pools over time. Diagram cour-

tesy of (IPCC 2013)

The creation of a large network of carbon flask observations and eddy-covariance towers made

it possible to use pre-aggregated observations and biological regions as early regularizations. Pre-

aggregation refers to using the coarse observational network of fluxes and concentrations to asso-

ciate basic flux patterns with particular regions of the world. In this manner, the number of esti-

mated flux parameters in the inversion framework is substantially reduced to compensate for the

relative concentrations of available CO2 observations. In the late 1980s, early inversion studies us-

ing spatial aggregation showed that a large Northern Hemispheric mid-latitude land CO2 sink of 2.0

to 3.4 PgC
yr

was responsible for closing the carbon budget. This early work was plagued with source-

sink errors in atmospheric transport and a sparse observational network over the whole globe (Tans

4



et al. 1990). In the 1990s and early 2000s, the experiments perfomed under the Atmospheric Tracer

Transport Model Intercomparison Project (TransCom) project resulted in an intercomparison study

used to determine the strength and causes of a bias between inversion frameworks and observa-

tions (Gurney and Denning 2007). The project found the Northern Hemipheric sink estimates that

generally agreed with estimates derived from eddy-covariance towers and historical carbon bud-

get studies, however the model fluxes were lacking in precision (Baldocchi and Coauthors 2001;

Baldocchi 2008; Houghton 1999). Flux estimate biases were noted to be caused by errors arising

from the combination of a sparse observing network, coarse spatial resolution, poor atmospheric

transport models, and poor land-model parameterizations. Improvements in spatial resolution of

the observations and the models themselves were suggested to help alleviate estimate biases (Law

et al. 1996; Denning et al. 1999; Gurney et al. 2002, 2004; Bakwin et al. 1998; Baker et al. 2006;

Kawa et al. 2004). In the mid-2000s, research was focused on addressing the observing network.

By the mid-2000s, advancements in computational resources and better models allowed for

studies of the regularizations associated with poor spatial resolution flux estimates. Studies during

this time focused on estimating the regional-scale fluxes scaled to the resolution of the atmospheric

transport model. This method assessed the aggregation of errors when prescribed fluxes are not

accurately assigned within spatial regions (Kaminski et al. 1999; Rödenbeck et al. 2003). These

studies showed that the sparse resolution of both observations and models can violate the Bayesian

assumptions associated with inversion models (Michalak et al. 2004). Efforts to alleviate this prob-

lem were accomplished by introducing pseudo-observations to fill in the observational gaps. Some

examples included incorporating either correlation length scales between similar ecosystems over

nearby grid-cells or geostatistical smoothing of flux strengths between grid-cells (Kaminski et al.

1999; Rödenbeck et al. 2003; Michalak et al. 2004; Michalak 2008). These studies reproduced
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similar magnitude fluxes to previous studies, but at a higher precision. While these methods to in-

crease resolution did work, these methods suffered from poor flux constraints to operate efficiently.

In the later 2000s, methods to increase the information associated with prior flux estimates

were used to address the issues associated with increased spatial resolution. Prior fluxes must be

measured at a regular frequency to constrain observational and modeled background fluxes. An

example inversion project being employed for CO2 inversions that uses continuous observations of

CO2 to make estimates of these prior fluxes is CarbonTracker (Chevallier et al. 2009; Peters et al.

2007). CarbonTracker is an inversion modeling system that makes weekly flux estimates of net

ecosystem exchange (NEE) of the entire globe on a 1◦ by 1◦ spatial grid. The inversion frame-

work of CarbonTracker makes use of a concept known as ecoregions to provide spatial regulariza-

tion. Ecoregions are large expanses of land that generalize ecosystems with similar characteristics,

which dramatically lowers the number of estimated parameters. The use ecoregions on the spatial

grid allows CarbonTracker to produce 6552 estimated parameters per year(CarbonTracker 2014).

Modeling via ecoregions coupled with higher resolution transport models, improved land models,

and eddy-covariance towers tightly constrained regional estimations of CO2 fluxes on a weekly

basis, but when downscaled to the spatial grid were not verified by flux observations (Peters et al.

2007, 2010; CarbonTracker 2014). With high resolution and temporally regular estimates of CO2

prior fluxes now available, it has been suggested that uncertainty studies should be focused on

making better biological process models (Peters et al. 2007; CarbonTracker 2014; Hurtt and Kang

2014).

Since improvement from observational platforms from carbon flasks, eddy-covariance tow-

ers, and satellites can provide reasonable and frequent flux observation records, the focus of im-

proved inversion estimates must shift toward development of more accurate flux estimates from
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land-atmosphere models. Land-atmosphere models can be improved through the estimation of bi-

ological flux biases incurred from spatio-temporal flux correlations, model mis-timing, and other

systematic model errors on several spatio-temporal scales. Inversion systems like CarbonTracker

can translate the estimated fluxes to provide flux bias corrections as seen in (1.1).

NEEobs(λ, φ, t) = (1 + βNEE(t))NEEmodel(λ, φ, t) (1.1)

Where λ is the longitude, φ is the latitude, and t is time. In this formulation, β is the time-dependent

bias correction of modeled NEE to observed NEE varying in time and space. Fundamentally, (1.1)

suggests that following the week-to-week variations in model to observation errors can better iden-

tify issues in land model fluxes. Chasing week-to-week will obtain some estimate of shorter scale

bias, but another school of thought was to extend this methodology toward longer scale biases.

Longer scale biases were obtained through the introduction of inversion variants like maximum

likelihood ensemble filter (MLEF) and ensemble Kalman filter to remove the adjoint model asso-

ciated with atmospheric CO2 transportation (Zupanski et al. 2007; Michalak et al. 2004). These

inversion frameworks used suites of Monty-Carlo ensembles of flux optimizations to provide bet-

ter constraint of posterior fluxes. These studies provided estimates of flux biases on regional and

global scales while using a modest number of ensemble members even with low observational

constraint (Zupanski et al. 2007; Lokupitiya et al. 2008). This was due to their fundamental as-

sumption that biases from modeled NEE fluxes were the result of persistant and long-lived errors

from the two contrasting component fluxes: gross primary production (GPP) and ecosystem res-

piration (RESP). Under this assumption, bias estimates only had to be updated every few months

rather than every week. These algorithims reduced the time dimensionality of the inversion prob-

lem at a grid-cell by reducing the number of parameters estimated from 52 to 6 per year. This
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lowers the computational requirements for the inversion, which could then allow for increased the

spatial resolution. In these frameworks rather than adjusting for the NEE biases themselves, GPP

and RESP are adjusted in the following manner:

NEEobs(λ, φ, t) = (1 + βRESP (t))RESPmodel(λ, φ, t)− (1 + βGPP (t))GPPmodel(λ, φ, t) (1.2)

Unlike in (1.1), this formulation of β is now the time-dependent bias correction of a particular com-

ponent flux varying in time and space. Using the gross component fluxes in this manner has two

advantages. The first is increased insight into the mechanisms causing the biases in GPP and RESP

separately. The second is the ability to capture the “slowly-varying” biases, since both opposing

gross fluxes have known time signals, unlike more noisy NEE measurements. This methodology

prevents “wasting” precious information content of the atmospheric observations on estimation of

well-known ecosystem properties by focusing the corrections on persistent, scientifically valuable

and statistically stable quantities with predictive power. The applications of this methodology have

been shown to substantially reduce large-scale carbon biases and variability and produce accurate

high-resolution flux estimates (Schuh et al. 2009, 2010, 2013). While isolating the biological bi-

ases improves inversion estimates, the usage of a single bias term does not identify the particular

slow processes in a model that make the bias. This does not provide information on where or how

to improve prior modeled flux estimates. This shortcoming must be addressed to provide additional

constraint on inversion estimates of biological souces and sinks of CO2.

1.2. PURPOSE

In each of the previously mentioned regularization methods, errors in estimated fluxes come

from one or more of the following problems:
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(1) Inability to isolate multiple slowly-varying biases in a continuous manner.

(2) Week-to-week assimilation updates with no a priori knowledge of previous CO2 fluxes.

(3) Inability to properly reconstruct the GPP and RESP CO2 fluxes.

(4) Necessity for decorrelation length scales in space.

(5) Inability to estimate bias due to poor observational constraints.

These issues are the focus of present day spatio-temporal methods, but with more observational

information available everyday a spatio-temporal method may not be most useful route for esti-

mating future biospheric flux locations and strength. This research presents an solution to these

problems by shifting the temporal aspect to a yearly temporal harmonic smoothing regularization.

This is accomplished by adapting the work of Zupanski et al. (2007), Schuh et al. (2009), and

Lokupitiya et al. (2008) to fit a harmonic smoother to isolate multiple long-term biases in flux

estimates.

A temporal smoothing regularization that is capable of assessing slowly-varying flux biases

in a continuous manner must be capable of assessing biases on several timescales and have the

ability to “learn” about the biases over time. Under the formulation presented in equation (1.2),

the bias coefficients are updated every few months using both accumulated observational data and

the previous assimilation cycle’s posterior estimates and uncertainties in the current assimilation

step (Zupanski et al. 2007; Lokupitiya et al. 2008). By doing this, the bias coefficient estimates

are updated and adjusted slowly in such a way that these estimates can “learn” about the bias

in order to adjust toward a stable solution as more data is assimilated in a non-isotropic way.

However, these formulations are only able to estimate biases on one timescale. A single bias

estimate is insufficient to fully describe the errors from the biological parameterizations in present

day land-models. For instance, errors from long-lived soil pool turnover times and shorter-lived
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biological Q10 temperature responses may result in an aliased persistent bias in respiration that is

not controlled by one variable on one timescale. This makes attribution of model parameter errors

more difficult to do in a temporal regularization. A more realistic formulation can be accomplished

by deconstructing the bias coefficient in equation (1.2) into several terms that are associated with

yearly, seasonal, and sub-seasonal timescale flux biases as seen equation (1.3).

βRESP,GPP = βRESP,GPP + βseasonal
RESP,GPP + βsub−seasonal

RESP,GPP (1.3)

Where βRESP,GPP quantifies biases of the annually average, βseasonal
RESP,GPP quantifies seasonal scale

biases, and βsub−seasonal
RESP,GPP quantifies subseasonal noise. Under this decomposition, flux biases can

be associated with the responsible mechanisms and parameterizations in models while retaining

the same ability to “learn” about the biases as more observations are assimilated. These bias

coefficients can be either discretely or continuously estimated. This research uses equation (1.3)

in a continuous formulation using harmonics, seen in (1.3), estimated every year as opposed to

present day week-to-week assimilation systems.

The bias coefficients of equation (1.3) should be updated annually rather than on week-to-week

or monthly timescales. This effectively retains the number of estimated parameters and spatial

improvements of the studies from Zupanski et al. (2007); Schuh et al. (2009); Lokupitiya et al.

(2008), but allows for full years to be assimilated at once rather than in increments. Modeling

efforts must be focused toward seasonal, interannual, and decadal timescales because these are the

timescales needed to properly characterize the mechanisms responsible for an ecosystem’s CO2

source and sink strength. Poorly understood ecological processes in models may not be able to

respond properly to long term ecosystem controls like disturbances, succession, and fertilization.

These processes would therefore produce which can produce long term errors in flux estimates that
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week-to-week bias corrections cannot properly characterize. Flux estimates from CarbonTracker

are generally good at correcting the week-to-week variations in NEE, but they are incapable of

properly characterizing the longer timescale processes that can systematically effects annual car-

bon budgets. Flux bias estimation could be much more efficient if the numerical power of the

observations were focused toward longer timescale variations rather than week-to-week variations

of model flux estimates.

There are two gains to the assimilation process when temporally smoothing to isolate long-

lived biases. First, the flux bias estimates are fundamentally better constrained with observations.

Since the bias coefficients of equation (1.3) require at least a year’s worth of data to be estimated,

they are inherently better constrained with more observations. This strengthens the Gaussian as-

sumptions in CO2 inversions over that of weekly updates. The second advantage is that there is

a computational gain by only estimating 3 to 11 bias coefficients rather than 52 bias coefficients.

As previously mentioned, spatial smoothing algorithms like CarbonTracker are able to estimate a

bias coefficient every week for each ecoregion. Placing this into a computational context, these

regularization algorithms can estimate 52 bias coefficients every year for each ecoregion over the

globe, which is both computationally straining and unneccessary. If the focus of the numerical

power of observations were focused toward long lived biases over a yearly assimilation cycle, then

the number of estimated parameters becomes 3 to 11 bias coefficients per ecoregion per year rather

than 52. This means temporal smoothing regularizations require a number of operations less than

or equal to that of spatial regularizations while retaining a similar spatial resolution. There is a

clear advantage in using temporal smoothing regularizations over that of current regularizations,

but this power is only gained once there are enough observations.
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Since equation (1.3) requires a sufficiently long time series of fluxes and uncertainties estimates

of those fluxes to resolve the longest timescale biases, there is an issue with obtaining a global time

series of fluxes. Spatial regularizations were originally designed to compensate statistically for the

lack of CO2 observations to constrain estimates. While useful, spatial methods suffer from biases

involving unequal sampling coverage and issues with decorrelation length scales. With the dawn

of new carbon observing satellites like OCO-2 in orbit, there now exists the possibility to glob-

ally quantify CO2 fluxes and their uncertainties down to about few kilometers with even temporal

frequency. This provides an opportunity to aggregate satellite data over a long enough time to

produce a time series of fluxes for each cell or ecoregion over the globe at the resolution of the

satellite. Given enough time to aggregate this data could, in principle, eliminates the unequal sam-

pling coverage problem and the need for decorrelation length scales. Unfortunately, these satellite

products have not been aggregated for long enough to provide sufficient amounts of data for this

study. Instead, this reasearch is developed as a site-level prototype of the temporal smoothing reg-

ularization. This approach uses eddy covariance towers from the FLUXNET network to provide

hourly and half hourly observations of fluxes and the daily flux uncertainty estimates from (Barr

et al. 2013) as the observational constraints over a variety of years. The usage of this data provides

this study with an overconstrained inversion problem for the bias coefficients in equation (1.3),

which serves as a test bed for examining the limits of observational constraints and uncertainty for

both week-to-week and temporal smoothing regularizations.

In summary, this thesis presents a technique to isolate the longer lived biases of land-atmosphere

model fluxes by temporally smoothing modeled fluxes to remove shorter timescale variations.

This can more appropriately address the biases associated with poorly understood slowly vary-

ing processes, which should produce a much better estimate of seasonal, interannual, and decadal
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timescale CO2 fluxes. Through the use yearly time series of daily averaged GPP, RESP, and NEE

observed and modeled fluxes as well as their uncertainties at an eddy covariance tower, there will

be enough data to overconstrain the inversion problem and test the limits of a control algorithm

mimicking week-to-week assimilation cycles and a continuous harmonic formulation of equation

(1.3).

To further understand the biospheric sink, this thesis addresses the following hypotheses tested

across many ecosystems and uncertainty scenarios:

(1) A time smoothing regularization provides a better a posteriori average estimate of the in-

terannual NEE flux than an estimate produced using a current week-to-week assimilation

algorithms.

(2) A time smoothing regularization provides a better a posteriori estimate of the seasonal cy-

cle of the NEE flux than an estimate produced using a current week-to-week assimilation

algorithms.

(3) A time smoothing regularization provides a better a posteriori average estimate of the in-

terannual NEE flux than an estimate produced using a current week-to-week assimilation

algorithms when using NEE as the only constraining observational flux.

(4) A time smoothing regularization provides a better a posteriori estimate of the seasonal cy-

cle of the NEE flux than an estimate produced using a current week-to-week assimilation

algorithms when using NEE as the only constraining observational flux.

(5) A time smoothing regularization accurately estimates the seasonal cycle and interannual

average of GPP and RESP when using NEE as the only constraining observational flux.
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(6) A time smoothing regularization provides a better a posteriori average estimate of the in-

terannual NEE flux than an estimate produced using a current week-to-week assimilation

algorithms when using NEE and a component flux as the constraining observations.

(7) A time smoothing regularization provides a better a posteriori estimate of the seasonal

cycle of the NEE flux than that of current week-to-week assimilation algorithms when

using NEE and a component flux as the constraining observations.

(8) A time smoothing regularization accurately estimates the seasonal cycle and interannual

average of GPP and RESP when using NEE and a component flux as the constraining

observations.
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CHAPTER 2

METHODS

2.1. BIAS CORRECTION FACTORS

As seen in equation (1.3), the time smoothing algorithm was conceived by separating faster

more well-understood processes like radiation and temperature from slower less-understood pro-

cesses like biogeochemistry and phenological triggers. The mapping of modeled to observed gross

fluxes at any point in time for NEE, GPP, and RESP are given by

NEEobs(t) = [1 + βRESP (t)]RESPmodel(t)− [1 + βGPP (t)]GPPmodel(t) + ǫ

= [1 + βNEE(t)]NEEmodel(t) + ǫ

(2.1)

GPPobs(t) = [1 + βGPP (t)]GPPmodel(t) + ǫ

RESPobs(t) = [1 + βRESP (t)]RESPmodel(t) + ǫ

(2.2)

here t indicates time, β is the bias correction and ǫ is an error term between the observed and

modeled fluxes. The GPP and RESP fluxes can be optimized as a standalone fluxes ((2.2)) or

simultaneously using NEE ((2.1)). In these equations, β represents a multiplicative correction term

to map the two vectors of fluxes on the measurement timescale. This method allows for the fluxes

to vary from hourly to decadal timescales, but assumes flux biases persist on timescales longer

than that of the fluxes. A single bias coefficient used in this form gives little suggestion for what

could be responsible for the errors in models. This is because bias coefficients used in this manner

misuse the statistical strength of the observations to correct for well-known ecosystem properties.

To overcome this, β can be decomposed into three terms to separate the unknown and well-known

biases, as suggested in equation (1.3). Studies have shown that the biases in our land-atmosphere
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model, SiB4, are associated with various phenological, physiological, location based biases. As

seen in Table 2.1, these example parameters are mechanistic. This indicates that application of

the bias corrections should be multiplicative rather additive when applied to the gross fluxes. By

decomposing β in this way, the statistical power and stability of the observational information is

used toward estimating the biases in slowly-varying processes only.

A continuous slowly-varying time series of the bias coefficients is preferable to discrete esti-

mates at each time and location. In a discrete estimation framework using (1.3), there are physical

and mathematical possibilities which can cause misrepresentative values or discontinuities in the

estimate. This is alleviated by using a continuous estimate of the bias coefficients. Equation (2.3)

is used to introduce a harmonic and continuous time series of the bias coefficients.

βGPP/RESP = βGPP/RESP +
L
∑

k=1

(βA,k cosωki+ βB,k sinωki) + β′′
GPP/RESP (2.3)

1 < L ≤ N

2
(2.4)

ωk =
2πk∆t

N

where L is the number of total number of harmonics, k is the wavenumber of a harmonic, i is the

ith day of year, and N is the number of days in a year. In this formulation, the annual average

correction (βGPP/RESP ) and subseasonal noise (β′′
GPP/RESP ) were retained, but β′

GPP/RESP is

decomposed into component bias harmonics over a yearly timescales (i.e. N=365). As seen in

equation (2.4), the bias coefficients from equation (2.3) are limited to the Nyquist frequency of the

time series. The Nyquist frequency theorem states that to prevent aliasing in a signal, the signal

can only be resolved to N
2

of the sampling rate. In this study, the lowest resolvable frequency is the
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180th harmonic. Since many biospheric mechanisms are cyclical over interannual, seasonal, and

subseasonal timescales, harmonics are a natural fit for continuous bias estimation.

2.2. KALMAN FILTER FOR HARMONIC βS

The Kalman filter was the optimization algorithm used in this study to estimate the bias co-

efficients. The choice of the Kalman filter over the more advanced methods, like a 4DVar or an

Ensemble Kalman filter, was because the length of the observational record being used was much

larger than number of estimated parameters. This study, by design, was an overconstrained prob-

lem. This meant that a Kalman filter can be used without issue. The full derivation of the Kalman

filter equations used in this study are presented in appendix A, however the important points are

presented here.

The cost function for the Kalman filter used in this study is given by

Ψ =
[

(~mupd
t − ~mpre

t )TC−1
β (~mupd

t − ~mpre
t ) + (dt −Gt ~m

upd
t )TC−1

d,t (dt −Gt ~m
upd
t )
]

(2.5)

Following some matrix identities and algebra, the Kalman filter equations can be derived for use.

The equations used in this study with respect to the bias coefficients, β, are given as

~mpre
t = At−1 ~m

upd
t−1 + µt (2.6)

C
pre
β,t = AT

t−1C
upd
β,t−1At−1 +Qt−1 (2.7)

Kt =
C

pre
β,tG

T
t

Cd,t +GT
t C

pre
β,tGt

(2.8)

~mupd
t = ~mpre

t +Kt(dt −Gt ~m
pre
t ) (2.9)

C
upd,∗
β,t = (I−KtGt)

TC
pre
β,t (I−KtGt) +KT

t Cd,tKt (2.10)
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C
upd
β,t = C

upd,∗
β,t (w) +C

pre
β,t (1− w) (2.11)

where the definition of all of these terms seen above are given in table 2.2.

Equation (2.10) for C
upd,∗
β,t is known as the “Joesph’s Form” of the state covariance matrix

update equation. This form is not typically seen in many studies because it is usually more com-

putationally inefficient than an optimal Kalman Gain solution to the same equation. This form is

being used because the state covariance update step can be vulnerable to round off errors, which

breaks a symmetry assumption underlying the Kalman Gain. If this occurs, then the a posteriori

state covariance matrix will become negative. This will cause the algorithm to become become in-

validated. Additionally, equation (2.11) presents a new term, w. W is a tuning parameter between

0 and 1 that artificially inflates the a posteriori state covariance matrix (Zhang et al. 2004). This

is done because there lies another mathematical possibility that the filter will become too certain

of the state estimates, which will lead to the state covariance matrix to converge to zero. If this

occurs, it is impossible to update the state estimates. This would lead toward infinite solutions.

The initialization of ~mupd
t−1 in equation (2.6) was prescribed as

~mt=0 = R
M×1 =















































1

β

βA,j=1

βB,j=1

...

βA,j=L

βB,j=L















































=

























1

0

...

0

























(2.12)
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where M is the number of bias coefficients to be estimated and j is the harmonic number from 1

to the maximum harmonic number, L. J is currently designed to be manually assigned by the user,

but can be assigned in three ways. The first is to simply assign an arbitrary number of harmonics

(e.g. L=3 harmonics). The second approach is to use known harmonics in the flux cycle (e.g.

seasonal (k=1), diurnal (k=365), etc). The final approach is to use a Fourier transform to obtain

the wavenumbers associated with a particular percent of the variance with the errors between the

observations and the model.

The Jacobian matrix to map from state space to observational space, Gt, is assigned as

Gt = R
N×M (2.13)

=

















SiB1 SiB1 SiB1 cos(ω11) SiB1 sin(ω11) · · · SiB1 cos(ωj1) SiB1 sin(ωj1)

...
...

...
...

...
...

...

SiBN SiBN SiBN cos(ω1N) SiBN sin(ω1N) · · · SiBN cos(ωjN) SiBN sin(ωjN)

















ωj =
2πj

N
, where j = 1, L

Where N is the number of data points. For each harmonic or the mean, two corresponding time

series of modeled gross flux values are multiplied by the corresponding harmonic. This allows

isolation of just the mean and selected harmonic coefficients for β.

The observation vector and state covariance matrix are assigned as given by

dt = R
N×1 =

















d1

...

dN

















(2.14)
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Cβ = R
M×M =

































σ2
1 0 · · · · · · 0

0 σ2
β

0 · · · ...

... 0 σ2
βA,1

0
...

...
... 0

. . . 0

0 · · · · · · · · · σ2
βB,L

































(2.15)

Cd,t = R
N×N =

































σ2
d1

0 · · · · · · 0

0 σ2
d2

0 · · · ...

... 0 σ2
d3

0
...

...
... 0

. . . 0

0 · · · · · · · · · σ2
dN

































(2.16)

The off-diagonal terms in the observational covariance matrix are assumed to be zero for a 1

flux observation filter (a 2-flux filter is later described). As will be explained later, this is because

the individual flux uncertainty estimates used in this study were assumed to be independent of one

another (Barr et al. 2013). The filter should be implemented in an algorithm summarized by the

flow chart presented in Figure 2.1.

2.3. CARBON FLUX TOWER NETWORK

This study used flux records from 8 different eddy covariance (EC) towers from the FLUXNET

network to comprise the observational data used in equation (2.14) of the Kalman filter. The usage

of the flux tower data allowed this study to use high quality direct measurements of the component

and net fluxes to well-constrain the inversion to test the hypotheses. Figure 2.2 shows the location

of all the EC towers we used. A brief site summary and references to more indepth EC tower site

descriptions and methods are given in Table 2.3. When choosing these sites, it was important to

select towers that had complete or very near-complete (>99%) data records of NEE, RESP, and
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GPP. At the lowest level of quality control, most sites have long “missing data” gaps for various

reasons that make conventional statistical methods difficult to interpret with strong confidence.

This study used data from the the North American Carbon Program (NACP) Site Synthesis dataset

to avoid this problem.

The NACP site synthesis was a multiyear integrated research program supported designed to

understand, predict, and quantify the budgets and fluxes of carbon dioxide, carbon monoxide, and

methane over North America. The site synthesis was an intercomparison of 39 EC towers from

the FLUXNET network simulated by 24 different land-atmosphere models from the beginning of

a EC tower’s flux record until 2006, if capable.

NACP NEE, RESP, and GPP fluxes are derived from eddy covariance tower measurements us-

ing the modified FLUXNET-Canada decomposition techniques. Measured NEE was the result of

summing eddy covariance and air-column storage fluxes of CO2 integrated from 10 Hz measure-

ments of eddy covariance measurements every 30 minutes. NEE measurements were adjusted for

known energy closure issues using the Bowen Ratio and filtered for low nighttime friction veloc-

ity measurements. NEE was then regressed with temperature to derive an emperical exponential

relationship applied to obtain respiration each year. When photosynthesis was possible, GPP was

estimated as the difference between measured respiration and NEE, otherwise it was assumed to

be zero. Missing GPP or RESP data gaps were filled by using the linear regression coefficient of

a 100 point moving window between modeled and observed measurements. Please see Barr et al.

(2004) for a more indepth analysis of the data preparation.

Sources of uncertainty accounted for in this dataset are from the gap-filling algorithm, ran-

dom variations, threshold friction velocity and partitioning uncertainties (Schaefer et al. 2012).

Random and threshold friction velocity uncertainties were estimated using the 95% confidence
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interval from 1000 Monte Carlo realizations of RESP, NEE, and GPP flux estimates (Barr et al.

2013; Richardson and Hollinger 2007). The gap filling uncertainty was formulated from the stan-

dard deviation between 15 different methodolgies and the fraction of filled gaps per day (Moffat

et al. 2007). Partitioning uncertainty was derived from the standard deviation of 23 different parti-

tioning methodologies and observed values (Desai et al. 2008). These uncertainties are summed in

quadrature and are assumed to be uncorrelated (Schaefer et al. 2012). The estimates were provided

on several timescales from half-hourly to annual estimates (Barr et al. 2013). These uncertainty

estimates are used for the observational covariance matrix seen in equation (2.16).

2.4. SIMPLE BIOSPHERE MODEL 4

The land-atmosphere model fluxes were generated by the Simple Biosphere Model 4 (SiB4).

SiB4 is the fourth and most advanced implementation of the biological enzyme kinetic equations

originally proposed by Sellers et al. (1986). The underlying framework for SiB4 originated in

second version of SiB, known as SiB2. SiB2 used the original SiB equations, but introduced new

C4 photosynthesis parameterizations, improved stomatal conductance parameterizations, satellite

based vegetation phenology and annual carbon flux balancing (Collatz et al. 1992; Sellers et al.

1996a, 1992; Denning et al. 1996). SiB3 updated the SiB2 framework for more modern hydrology

and energy exchange parameterizations between the land surface and the atmosphere (Baker et al.

2008). The advancements from SiB3 to SiB4 presented a new framework that combined the usage

of prognostic phenology, crop, and terrestrial carbon pool models to grow, senesce and turnover

several flows of carbon throughout the biosphere. Figure 2.3 summarizes how SiB4 operates.

Important model highlights are presented below, but refer to Haynes et al. (2013) for more technical

specifics.
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2.4.1. SIB4: PROGNOSTIC PHENOLOGY, CARBON POOLS, AND PLANT FUNCTIONAL TYPES

SiB4 has the capability to prognostically derive phenological quantities for vegetation in its

“Prognostic Phenology” module. The framework intakes empirically derived temperature, light,

and moisture factors as well as carbon stock data to diagnose both leaf area index (LAI) and the

fraction of photosynthetically active radiation (fPAR) as prognostic variables. By using LAI, fPAR

and other environmental stressors, SiB4 determines the magnitude of photosynthesis (Stöckli et al.

2008; Jolly et al. 2005; Stöckli et al. 2011).

Leaf-scale photosynthesis is based upon the stomatal conductance work of Collatz et al. (1992);

Ball (1988) and is limited by the carboxylation enzyme kinetics of rubisco (Farquhar et al. 1980;

Collatz et al. 1991). This is integrated to a bulk canopy photosynthesis flux and is regulated by

the canopy air space parameterizations for ecosystem-scale balancing (Sellers et al. 1996b; Baker

et al. 2008).

SiB4 operates with 11 carbon pools to simulate the cycling of carbon through the biosphere.

There are 5 living carbon pools and 6 inactive carbon pools which are updated daily in the model.

As SiB4 photosynthesizes, the vegetation will either respire carbon via autotrophic respiration or

allocate it into the living pools for building new biomass or maintainence. The magnitude of what

is allocated into a living pool depends upon the ecosystem’s phenological state and vegetation

composition. Once introduced into the ecosystem as living biomass, SiB4 uses a cascading series

of carbon pools each with their own turnover times and controls to limit the amount of carbon

being passed through to the next stage in the series until it is released via heterotrophic respiration

(Denning et al. 1996; Lokupitiya et al. 2009; Haynes et al. 2013).

Total respiration in SiB4 is formulated from autotrophic and heterotrophic respiration between

the plant and surface carbon pools (Denning et al. 1996). Respiration in SiB4 is a function of soil

23



moisture, soil temperature, and carbon pool size. The autotrophic respiration parameterizations are

applied to the live carbon pools. The heterotrophic respiration parameterizations are applied to the

surface and soil pools. Every year the gross annual photosyntheic production is balanced by the

total respiration for a net-zero annual carbon flux budget.

SiB4 uses 25 plant functional types (PFT) unlike prevous versions used that 15 IGPB Biome

classifications of ecosystems. As seen in Table 2.4, SiB4 implements 1 desert, 8 forest, 3 shrub-

lands, 5 grasslands, and 7 crops PFT types. These are distinguished by vegetation characteristics

and climate regimes. Using PFTs over Biomes allows SiB4 to more accurately describe the phe-

nological characteristics of an ecosystem. Beyond this, SiB4 also has the capability of making a

multi-PFT grid cell that can represent a mosaic of land heterogeneity, which is more representative

of real vegetation cover (Bonan et al. 2002).

SiB4 was run as a single point centered directly over a selected EC tower’s location. SiB4

requires look-up tables for vegetation phenology, physiology, and carbon pool to initialize and

calculate various biological quantities. The driver meteorology supplied to SiB4 was from the

MERRA .5◦ by .5◦ gridded reanalysis dataset over the observed record. Additionally, a spin-up

model run was required to bring the carbon pools to equilibrium before a forward simulation. The

spin-up model run was no more than 7 iterations of the observed length of record. Once the carbon

pools reached equilibrium, SiB4 was run forward over the observed record. Model flux output was

then stored the for analysis.

2.5. EXPERIMENTAL DESIGN

The hypotheses are tested by means of three by means of three different experiments involving

both the time smoothing and a control algorithm. These experiments were designed to evaluate

the time smoothing algorithm in ways that mimic past, present, and future applications of bias
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estimates. As shown in Table 2.5, the estimates created from these experiments are used to address

the hypotheses outlined in section 1.2. Furthermore, a summary of the experimental set-ups and

tests between the control and time smoothing algorithms are seen in Table 2.6.

The control algorithm used in all three experiments to estimate NEE is analgous to an inversion

algorithm that is currently employed by modern inversion models. The control algorithm updates

a single bias coefficient estimates of NEE every week. The a posteriori bias coefficients and

state covariance matrix are estimated once and are not used as a priori information for future

assimilation cycles. That is, the control algorithm used new initializations of the bias coefficients

and state covariance matrix every assimilation cycle. Thus, the control algorithm estimates 52

separate and independent single bias coefficients of NEE in a year. A control algorithm formulated

in this manner has been shown to be highly useful for estimating week-to-week variations in CO2,

but may be unable to properly match the yearly and annual cycles of CO2 (CarbonTracker 2014).

2.5.1. EXPERIMENT 1: NEE OPTIMIZED FROM NEE

The first experiment is an “apples-to-apples” comparison of the estimation of the mean and sea-

sonal errors of modeled NEE given direct measurements of NEE. This is analagous to estimating

NEE from CO2 in a conventional atmospheric inversion because only NEE changes the concen-

trations of atmospheric CO2. The equations used by the control and time-smoothing algorithms in

Experiment 1 are given by

NEEobs,control(t) = [1 + βNEE(t)]NEEmodel(t) + ǫ (2.17)

NEEobs,TS(t) =

[

1 + β +
L
∑

k=1

(βA,k cosωki+ βB,k sinωki)

]

NEEmodel(t) + ǫ (2.18)
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Both algorithms used the same initial conditions and Kalman filter equations. The initial bias

uncertainty was set to .9 for all parameters (σβ = .9) and was inflated during the update step with

a weighting factor of 0.4 (w = 0.4). The observational uncertainty was prescribed from Barr et al.

(2013) and updated for each assimilation cycle.

Once each algorithm was applied using the prescribed condition, additional tests were run using

various amounts of uncertainty in both β and the observations. Since atmospheric inversions have

problems with dilution and wind advection of the NEE signal, flux towers provide much stronger

observational constraint. It is reasonable to assume that if the findings of this study were applied

to a full scale atmospheric inversion, then the tests of the observational certainty must be done

to extrapolate observational uncertainty estimates toward global scale uncertainty values. To do

this, this experiment applied increased observational uncertainties of 2, 5, and 10 times the given

observational uncertainty estimates from Barr et al. (2013).

2.5.2. EXPERIMENT 2: GPP AND RESP OPTIMIZED FROM NEE

The second experiment attempts to use the GPP and RESP fluxes to formulate a NEE estimate,

which is then optimized by observed NEE. This experiment is similar to previous studies by Zu-

panski et al. (2007), Lokupitiya et al. (2008), and Schuh et al. (2009, 2010, 2013). Like the first

experiment, NEE is still being optimized by observed NEE, however the bias coefficient estimates

are now representative of the adjustments for flux patterns in GPP and RESP, not NEE. The con-

trol algorithm remained composed from equation (2.17), but the time smoothing algorithm was

updated to optimize equation (2.19).

NEEobs,TS(t) =

[

1 + βRE +
L
∑

k=1

(βRE,A,k cosωki+ βRE,B,k sinωki)

]

RESPmodel(t)
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−
[

1 + βGPP +
L
∑

k=1

(βGPP,A,k cosωki+ βGPP,B,k sinωki)

]

GPPmodel(t) + ǫ (2.19)

When solving for both βGPP and βRESP at the same time using NEE state estimation, reformula-

tion of the Gt, ~mt=0, and Cβ matrices was needed. These vectors and matrices are changed via

equations (2.20) through (2.22) and were substituted into the Kalman filter accordingly.

~mt=0 = R
2M×1 =





































































































1

βRESP

βRESP,A,1

βRESP,B,1

...

βRESP,A,L

βRESP,B,L

1

βGPP

βGPP,A,1

βGPP,B,1

...

βGPP,A,L

βGPP,B,L





































































































=























































1

0

...

0

1

0

...

0























































(2.20)

Gt = R
N×2M
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=















SiBR,1 . . . SiBR,1 sin(ωk1) −SiBG,1 . . . −SiBG,1 sin(ωk1)

...
...

...
...

...
...

SiBR,N . . . SiBR,N sin(ωkN) −SiBG,N . . . −SiBG,N sin(ωkN)















(2.21)

Cβ = R
2M×2M

=























































σ2
1,RESP 0 · · · · · · · · · · · · · · · 0

0 σ2
βRESP

0 · · · · · · · · · · · · ...

... 0 σ2
βRESP,A,1

0 · · · · · · · · · ...

...
... 0

. . . · · · · · · · · · ...

... · · · · · · 0 σ2
βRESP,B,L

0 · · · ...

... · · · · · · · · · 0 σ2
1,GPP 0

...

... · · · · · · · · · · · · 0
. . . 0

0 · · · · · · · · · · · · · · · 0 σ2
βGPP,B,L























































(2.22)

The initial bias coefficient uncertainty was set to .9 for all parameters (σβ = .9) and was inflated

during the update step with a weighting factor of 0.4 (w=0.4). After optimization, GPP and RESP

fluxes were reconstructed for hypothesis and significance testing given by

RESPest,TS(t) =

[

1 + βRE +
L
∑

k=1

(βRE,A,k cosωki+ βRE,B,k sinωki)

]

RESPmodel(t) + ǫ

(2.23)

GPPest,TS(t) =

[

1 + βGPP +
L
∑

k=1

(βGPP,A,k cosωki+ βGPP,B,k sinωki)

]

GPPmodel(t) + ǫ

(2.24)
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Like Experiment 1, once each algorithm was tested using the prescribed conditions, increased

observational uncertainties of 2, 5, and 10 times the given the uncertainty estimates from Barr

et al. (2013) were used to test limits of each algorithm’s performance.

2.5.3. EXPERIMENT 3: RESP AND GPP OPTIMIZED FROM NEE AND GPP

The third experiment is analgous to an inversion where additional observational data such as

GPP or RESP are able to constrain one of the two component fluxes. With the advent of more

advanced carbon observing satellites like GOSAT and OCO-2, these satellite products are more

likely to be used in the future to help constrain inversion estimates. This experiment replicates the

uncertainty tests of the first two experiment, but this time uses both observed NEE and GPP fluxes

to estimate the bias coefficients of modeled GPP and NEE. The control algorithm remained com-

posed from equation (2.17). The time smoothing algorithm was updated to use equations (2.24)

and (2.18) in tandem for prior estimates of GPP and NEE. Since the three fluxes are intimately

connected, this experiment should not only optimize NEE and GPP, but also optimize RESP. The

Kalman filter algorithm was updated with ~mt=0 and Cβ matrices from equations (2.20) and (2.22).

The vectors and matrices dt, Gt, and Cd,t are updated to equations (2.25) through (2.27).

dt = R
2N×1 =







































dNEE,1

...

dNEE,N

dGPP,1

...

dGPP,N







































(2.25)
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Gt = R
2N×2M =







































SiBR,1 . . . SiBR,1 sin(ωk1) −SiBG,1 . . . −SiBG,1 sin(ωk1)

...
...

...
...

...
...

SiBR,N . . . SiBR,N sin(ωkN) −SiBG,N . . . −SiBG,N sin(ωkN)

0 0 0 SiBG,1 . . . SiBG,1 sin(ωk1)

...
...

...
...

...
...

0 0 0 SiBG,N . . . SiBG,N sin(ωkN)







































(2.26)

Cd,t = R
2N×2N =







































σ2
dNEE,1

0 · · · σ2
dNEE,GPP,1

· · · 0

0
. . . 0 · · · · · · ...

... 0 σ2
dNEE,N

0 · · · σ2
dNEE,GPP,N

σ2
dGPP,NEE,1

· · · 0 σ2
dGPP,1

0
...

... · · · · · · 0
. . . 0

0 · · · σ2
dGPP,NEE,N

· · · 0 σ2
dGPP,N







































(2.27)

As can be seen in equation (2.27), the observational covariance matrix now has off-diagonal el-

ements to communcate covarying uncertainty between day-to-day uncertainty estimates between

GPP and NEE. This was not part of the original uncertainty estimates provided, but it was found

that there are issues when assuming zero value off-diagonal covariances in this version of the as-

similation algorithm. Since the observational uncertainty estimates were assumped to be indepen-

dent and uncorrelated on a day-to-day basis of a singular flux, it can be assumed that there is still
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some covariance between the net and component fluxes. Therefore, the estimate the daily obser-

vational covariance uncertainty between net and the component flux can be found by summing the

corresponding flux uncertainty estimates in quadrature. The uncertainty covariance (σ2
NEE,GPP,obs)

for any particular day was given by

σ2
NEE,GPP,obs =

σ2
NEE,obs − σ2

GPP,obs

2
(2.28)

2.6. HYPOTHESES TESTING AND SIGNIFICANCE

As stated in section 1.2, there are eight hypotheses being tested by the time smoothing algo-

rithm in this study. Once the data was prepared in one of the experiments in section 2.5, this study

then administered a possible five step evaluation to provide visual, qualitative, and quantitative ev-

idence of the time smoothing algorithms fit. NEE estimates were evaluated against the control and

time smoothing algorithms. The component fluxes were solely evaluated against observations as

the control algorithm did not provide component flux estimates. The suite of tests run on various

hypotheses are outlined in table 2.7. Full elaboration of these methods are explained in this section.

2.6.1. ANNUAL AVERAGES

This study employed equations (2.29) and (2.30) from the update step of the optimization as

both a visual and qualitative evaluation the annual average, interannual pattern, and associated

uncertainty in a particular year.

NEEposterior = ~kmGt ~m
upd
t (2.29)

σ2
NEEposterior

= ~kT
mG

T
t C

upd
β,t Gt

~km (2.30)

~km = R
1×N =

(

1
365

1
365

· · · 1
365

)

(2.31)
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These are applied to the observational, time smoothing and control algorithms, if applicable.

2.6.2. FRACTIONAL ROOT MEAN SQUARE ERROR REDUCTION

Another visual, but more quantitative test to suggest whether the mean and variance of the

error between the observations and model flux estimate has been lowered was a fractional root

mean square error (RMSE) reduction test. This test is similar to the one used in Schuh et al. (2009)

and follows equation (2.32).

Fractional Reduction of RMSE = 1− RMSEposterior

RMSEprior

(2.32)

Here the RMSE is determined on an annual basis between the observations and the pre-assimilation

flux estimate or the post-assimilation flux estimate. The conclusions are given by

Conclusion =







































RMSEposterior < RMSEprior, if 0 < Fractional Reduction of RMSE ≤ 1

RMSEposterior = RMSEprior, if Fractional Reduction of RMSE = 0

RMSEposterior > RMSEprior, if Fractional Reduction of RMSE < 0

(2.33)

This test can be used as an indication that the post-assimilation flux estimates are better than that

of the pre-assimilation, control or other algorithm variant’s flux estimates. However, this method

does not give statistical confidence and was for qualitative use.

2.6.3. ERROR AUTOCORRELATION AND CROSS-CORRELATION

A more rigorous statistical test of the interannual mean and seasonal cycles was administered

according to the reduction of the error between the observed flux and the corresponding optimized
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fit. Given below are examples of the difference in a posteriori estimates of NEE from the control

or time smoothing algorithms and the observations.

∆NEEObs−TF (t) = NEEObs(t)−NEETF,est(t) (2.34)

∆NEEObs−Control(t) = NEEObs(t)−NEEControl,est(t) (2.35)

The first evaluation was to see if these two error time series are correlated or independent and

identically distributed (IID). This was evaluated by the cross-correlation across a number of lags

(τ ). An example of the cross-correlation function when ∆NEEObs−Control lags ∆NEEObs−TF is

given by

r∆NEEObs−Control,∆NEEObs−TF
(τ) =

∑N
i=1+τ [(∆NEEObs−Control(i)

′∆NEEObs−TF (i− τ)′)]

σ∆NEEObs−Control
σ∆NEEObs−TF

(2.36)

∆NEEObs−Control(i)
′ = ∆NEEObs−Control(i)−∆NEEObs−Control(i) (2.37)

∆NEEObs−TF (i− τ)′ = ∆NEEObs−TF (i− τ)−∆NEEObs−TF (i) (2.38)

An example of the null and alternative hypotheses for the cross-correlation function in (2.36) are

given by

Ho : r∆NEEObs−Control,∆NEEObs−TF
(τ) = 0 (2.39)

Ha : r∆NEEObs−Control,∆NEEObs−TF
(τ) 6= 0 (2.40)

If the errors of the fits are correlated in some way, the correlation coefficient of a particular lag will

exceed a critical certainty bounds defined by a critical t-statistic at the 95th percentile adjusted by
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the Bonferroni correction as defined below

Cbound = ±
tcrit, α

2N√
N

(2.41)

α = 0.05

In equation (2.42), the autocorrelation function of the error time series was used to detect white

noise as the remaining signal of the error time series.

r∆NEE,∆NEE(τ) =

∑N
i=1+τ [(∆NEE(i)′∆NEE(i− τ)′)]

σ2
∆NEE

(2.42)

Example residuals, ∆NEE(i)′ and ∆NEE(i− τ)′, are defined in equations (2.37) and (2.38).

If the autocorrelation function is approximately 0 across all lags, then it can be assumed the

error time series is white noise. Therefore, the autocorrelation functions of the error time series

were evaluated by the example hypothesis tests given below

Ho : r∆NEE,∆NEE(τ) = 0 (2.43)

Ha : r∆NEE,∆NEE(τ) 6= 0 (2.44)

These hypotheses were evaluated against the same certainty bounds in equation (2.41).

2.6.4. PAIRED T-TEST

The direct evaluation of the annual averages was based on the results of a the paired T-test.

In the event that the cross-correlation suggested that the error time series of NEE may be slightly

correlated above the confidence bound, the assumption of normality of the annual averages still

seems reasonable as the length of the time series is always much greater than 30. An example of
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the paired T-test for NEE is seen below

tscore =
1
N

∑N
t=1 (∆NEEObs−TF (t)−∆NEEObs−Control(t))

√

σ2
TF−Control

NTF−Control

(2.45)

|tscore| > |tcrit,1−α,NTF−Control−1|

pvalue < α, α = 0.05

Example null and alternative hypotheses being tested for NEE in this step are given below

Ho : ∆NEEObs−TF ≥ ∆NEEObs−Control (2.46)

Ha : ∆NEEObs−TF < ∆NEEObs−Control (2.47)

The T-test and hypotheses being tested for GPP and RESP in this step are given by

Ho : (GPP/RESP )TF = (GPP/RESP )Control (2.48)

Ha : (GPP/RESP )TF 6= (GPP/RESP )Control (2.49)

tscore =
1
N

∑N
t=1 ((GPP/RESP )TF (t)− (GPP/RESP )Obs(t))

√

σ2
TF−Obs

NTF−Obs

(2.50)

|tscore| > |tcrit,1−α
2
,NTF−Control−1|

pvalue <
α

2
, α = 0.05

If the paired T-test was able to reject the null hypothesis, then it can be assumed that the mean error

between the time smoothing algorithm and the observations was equal or lower than the mean error

between the control algorithm and observations.
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2.6.5. LJUNG-BOX TEST

If the autocorrelation function of an error time series was found to be within the bounds to

suggest the presence of white noise, then a Ljung-Box test was used to confirm or deny only

white noise remains in the error time series (Ljung and Box 1978). The Ljung-Box test of the

autocorrelation function is given as

Q = N(N + 2)
H
∑

τ=1

rτ
N − τ

(2.51)

Q > χ2
1−α,H

pvalue < α, α = 0.05

where H is the number of lags, Q is the Q-score, and χ2
1−α,H is the χ2 value at the α-quantile of H

number of lags. The hypothesis test being evaluated of the Ljung-Box test at the 95th quantile is

shown below

Ho :The data are independent as a result of white noise (2.52)

Ha :The data are not independent and display some sort of correlation (2.53)

If the null hypotheses of this test was retained then it can be assumed that both the annual mean

and seasonal cycle were well-fitted.

2.6.6. MEAN POWER SPECTRUM

If both the autocorrelation and Ljung-Box tests suggest there was the presence of some cor-

relation in the error time series, then the conclusions of a well-fitted seasonal cycle may not be

dismissed as other unresolved biases may still exist. A mean power spectrum was used to identify
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which parts of the error time series signal were being unresolved. The number of spectral estimates

that formulated the mean power spectrum are given by

Mch = 2Nyears − 1 (2.54)

where Nyears is the number of year in the time series and Mch is the number of spectral estimates.

Furthermore, a Kaiser window filter was applied to the time series over a window length of 365

days to provide one spectral estimate. The usage of a Kaiser window was preferred since it can

mimic the spectral qualities many other window filters, but gives the utility of manual window

shape parameter adjustment, γ. The Kaiser window is given by

w(t) =


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0 t >
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2

(2.55)

γ = 14, Ndays = 365

where I0 is the zeroth order Modified Bessel Function. Since the window tapers off giving only

maximum representation to a minimal number of actual points in the power spectrum, every spec-

tral estimate began at every half year. This means the final year of a time series will only have

half of its data fully represented. This should not cause any misinterpretation given a substantial

number of spectral estimates to statistically make a claim about the hypotheses.
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The power spectrum of each estimate was then computed and averaged together to make the

mean power spectrum using the equation below

φ(ω) =

∑Mch

i=1 φi(ω)

Mch

(2.56)

where ω is a particular frequency and i is the ith spectral estimate. The mean power spectrum

is then evaluated against the corresponding red noise spectrum and critical red noise spectrum in

given below

φred(ω) =
2T

1 + T 2ω2
(2.57)

φred,crit(ω) = Fcrit,α,2Nyears,Ndays
φred (2.58)

T = − 1

ln(rτ=1)

α = 0.05

where T is the e-folding timescale of the red noise spectrum based on the lag-1 autocorrelation of

the error time series. If the particular power of a wavenumber, k, is greater than the critical red

noise time series, then this particular harmonic indicates an important signal unresolved by the

optimization. The seasonal signal was be evaluated against the hypotheses below

Ho : φ(ω)k=1 ≥ φ(ω)red,crit,k=1 (2.59)

Ha : φ(ω)k=1 < φ(ω)red,crit,k=1 (2.60)
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If the first wavenumber is less than the critical red noise spectrum, then the assumption can be

made that there was modest fit of the seasonal cycle from either a variant of the time smoothing

algorithm or the control algorithm.
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TABLE 2.1. Possible sources of bias in SiB4

GPP RESP

β fPAR or Vmax Soil Pool Turnover Times (τsoil pools)
β′ Growing Degree Days or Soil Moisture Temperature Sensitivity (Q10)

TABLE 2.2. Variables present in equations (2.6) through (2.11). All variables are

given at a current assimilation time (t).

Variable Name Definition

~mpre
t Predicted state estimate

~mtrue
t True value of state

~mupd
t A posteriori state estimate

dt Vector of observations

At−1 State transition matrix

µt White noise error in the state between assimilation times

C
pre
β,t Predicted state covariance matrix

C
upd
β,t A posteriori state covariance matrix

Kt Kalman Gain matrix

Gt State to observational space Jacobian at current assimilation time

I Identity matrix

w Inflation parameter to prevent state covariance collapse
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TABLE 2.3. Observational Site Descriptions

Site Name Latitude PFT Type Years Used PI Site References

(Site Code) Longitude

Lethbridge 49.709 C3 grass 2000-2006 Lawrence Flanagan (Flanagan and Adkinson 2011)

(CA-Let) -112.940

Campbell River 49.867 ENF 1998-2006 Andrew T. Black (Krishnan et al. 2009)

(CA-Ca1) -125.333

U. of Mich. Biolo. Station 45.559 DBF 2004-2006 Gil Bohrer (Gough et al. 2008)

(US-UMB) -84.713

Vaira Ranch 38.406 C3 grass 2001-2007 Dennis Baldocchi (Ma et al. 2007)

(US-Var) -120.950

Mead-Irrigated 41.165 Maize/Soy 2002-2012 Andrew E. Suyker (Verma et al. 2005)

(US-Ne1) -96.476 Wheat (Suyker and Verma 2010)

Harvard Forest 42.537 DBF 1997-2004 Bill Munger (Urbanski et al. 2007)

(US-Ha1) -72.171

ARM-Oklahoma SGP Main 36.605/ Maize/Soy 2003-2006 Marc Fischer (Fischer et al. 2007)

(US-ARM) -97.488 Wheat

Old Black Spruce 53.987 ENF 2000-2006 Andrew T. Black (Krishnan et al. 2008)

(CA-Obs) -105.118 (Kljun et al. 2006)

TABLE 2.4. Description of PFTs present in SiB4

PFT Number PFT Code PFT Description

1 des all Desert

2 enf tem Temperate Evergreen Needleleaf Forest

3 enf bor Boreal Evergreen Needleleaf Forest

4 dnf bor Boreal Deciduous Needleleaf Forest

5 ebf tro Tropical Evergreen Broadleaf Forest

6 ebf tem Temperate Evergreen Broadleaf Forest

7 dbf tro Tropical Deciduous Broadleaf Forest

8 dbf tem Temperate Deciduous Broadleaf Forest

9 dbf bor Boreal Deciduous Broadleaf Forest

10 ebs tro Tropical Evergreen Broadleaf Shrub

11 dbs tem Temperate Deciduous Broadleaf Shrub

12 dbs bor Boreal Deciduous Broadleaf Shrub

13 c3g tro Tropical C3 Grass

14 c3g tem Temperate C3 Grass

15 c3g bor Boreal C3 Grass

16 c4g tro Tropical C4 Grass

17 c4g tem Temperate C4 Grass

18 cro tro Tropical Generic Crop

19 cro tem Temperate Generic Crop

20 mze tro Tropical Maize Crop

21 mze tem Temperate Maize Crop

22 soy tro Tropical Soy Crop

23 soy tem Temperate Soy Crop

24 wwt tem Temperate Winter Wheat Crop

25 misc tem Temperate Miscanthus
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TABLE 2.5. Experiments used to explore the hypotheses outlined in section 1.2

Experiment 1 Experiment 2 Experiment 3

Hypothesis 1 - -

Hypothesis 2 - -

Hypothesis 3 - -

Hypothesis 4 - -

Hypothesis 5 - -

Hypothesis 6 - -

Hypothesis 7 - -

Hypothesis 8 - -
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TABLE 2.6. Set-up of variables and tests for Experiment 1, 2, and 3

Time Smoothing Control

Experiment 1: Variable(s) Optimized NEE NEE

Experiment 2: Variable(s) Optimized NEE NEE

Experiment 3: Variable(s) Optimized NEE and GPP NEE

Experiment 1: Variable(s) Used NEE NEE

Experiment 2: Variable(s) Used GPP and RESP NEE

Experiment 3: Variable(s) Used GPP and RESP NEE

Number of harmonics (L) 5 N/A

Experiment 1: Number of Parameters Optimized 11 52

Experiment 2: Number of Parameters Optimized 22 52

Experiment 3: Number of Parameters Optimized 22 52

Observational Uncertainty (Barr et al. 2013) (Barr et al. 2013)

Observational Uncertainty Tests 2x, 5x, 10x 2x, 5x, 10x

Initial β Uncertainty .9 .9

Tuning Parameter (w) 0.4 0

TABLE 2.7. The methods that will be employed to statistically verify the hypothe-

ses outlined in section 1.2

Annual Mean RMSE Test Paired T-test Cross/Autocor Ljung-Box Test Φ Spectrum

NEETF ≤ NEEControl - - -

GPPTF = GPPObs - -

RESPTF = RESPObs - -

NEETF,seas = NEEControl,seas - - -

GPPTF,seas = GPPObs,seas - - -

RESPTF,seas = RESPObs,seas - - -

Observational Uncertainty Tests - - - - -
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Land Model

(φ,λ,t,GPP or

RESP)

Kalman Filter

Estimation:

βA,k

βB,k

Obs (φ,λ,t,GPP or

RESP)

Construction of β
timeseries

Obs

uncertainty

(φ,λ,t,GPP or

RESP)

Line Color Definitions

: β destination for next SiB4 run

: Raw data input

FIG. 2.1. Kalman Filter estimation procedure. Shown is one assimilation cycle.

FIG. 2.2. Map of tower sites used in this study. Created using Google Maps.
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FIG. 2.3. Shown is a representation of how SiB4 treats the cycling of carbon. Fig-

ure is courtesy of Haynes et al. (2013).
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CHAPTER 3

RESULTS

3.1. HOW MANY HARMONICS ARE NECESSARY?

Shown in Figure 3.1 is the percent variance explained by harmonics from the averaged power

spectrum of the normalized flux errors at three different ecosystems and climate regimes. The

three ecosystems show that at least 60% of the error variance explained is between the first 3

to 6 harmonics of any gross flux and decreases to 0 to 2% for the remaining harmonics. This

suggests that the errors between the model and observations are the most persistant for the slowest

of timescales.

It is worth mentioning that there should be a discrepancy between the realistic number of

harmonics needed to optimize for just NEE alone and the number of harmonics needed to optimize

for NEE when using the component fluxes. This is because when optimizing using two contrasting

component fluxes that vary differently than the net flux, the result will be short rapid variations in

the net flux. As a general rule for this methodology, use the number significant harmonics to resolve

the largest variance explained without being too computationally expensive. If the algorithm is

optimizing NEE using RESP and GPP, then the highest number of significant harmonics between

GPP and RESP should be used. An example of this would be in the deciduous broadleaf forest

where only need 3 harmonics to optimize for NEE alone, but 6 harmonics to optimize NEE using

GPP and RESP. As a result, Figure 3.1 shows that the choice of 3 to 6 harmonics is justified for the

optimization process.
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3.2. EXPERIMENT 1

The purpose of the first experiment was to evaulate the time smoothing algorithm against the

control algorithm using only observed the NEE flux to optimize for the modeled NEE flux. As

stated in the methods, the algorithm optimizes for 12 bias coefficients and uses a portion of both

the posterior and prior bias coefficient covariance matrix estimates rather than the 52 independent

weekly bias coefficients. Table 3.1 shows the results of all statistical significance tests done to

the optimizations of the first experiment and whether or not the statistical hypothesis tests were

confirmed or denied.

3.2.1. EXPERIMENT 1: NEE ESTIMATES AND RMSE REDUCTION

The first experiment only produced estimates of the NEE model bias from assimilated NEE

observations. Figure 3.2 shows the daily estimations of NEE from both the control and the time

smoothing algorithms. These algorithms both show good estimation of both the seasonal and

annual cycles of NEE for both Harvard Forest and Vaira Ranch across all years. Closer examination

of the visual fits show that the control algorithm appears to be better at estimating the faster time

variations and the time smoothing algorithm is better at obtaining the slower time variations of

the observations. This same result was seen across all 8 sites. The goodness of these estimations

is incapable of being diagnosed just from this visual comparison and so more rigorous testing is

needed.

The first test was the reduction of the RMSE between the prior and posterior estimates of

NEE. The top panel of Figure 3.3 shows the annual RMSE reduction between the control and

time smoothing algorithms across all 8 sites. Visually, this test demonstrates that in most circum-

stances the reduction of RMSE of NEE for the time smoothing algorithm is as good or worse

than the control. An example of the control algorithm outperformance over the time smoothing
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algorithm is seen at Harvard Forest. This site only experienced a reduction between .19 and .2 for

the time smoothing algorithm, while the control demonstrated a reduction between .22 and .32.

These results suggest that either the annual means or variance may be underestimated by the time

smoothing algorithm.

3.2.2. EXPERIMENT 1: ANNUAL SOURCES AND SINKS

Examination of the annual mean estimates gives way to supporting the results of the RMSE re-

ductions and the overarching hypotheses. Example annual CO2 sources and sinks under increasing

amounts of observational uncertainty from the first experiment are seen in Figure 3.5 for Harvard

Forest and Vaira Ranch. In the top left panel of these figures, the standard optimization using no

variations in observational uncertainty are observed. Under the prescribed conditions, both algo-

rithms estimate basically the same annual average and interannual variations at both sites. This

was observed at the other 6 sites as well. Thus, a definitive result about the performance of the

time smoothing algorithm compared the control is difficult to deduce from the annual means alone.

Quantitative evidence of both the cross-correlation function and paired T-test of the error means

show that the error time series of both algorithms are statistically different but nearly indistinguish-

able from one another. Beginning with the cross-correlation, Figure 3.7 shows the cross-correlation

functions for the error time series at Harvard Forest and Vaira Ranch. The cross-correlation func-

tions at both sites suggests that when either error time series lags the other, there is some periodicity

and correlation between the two time series that exceeds the 95th percentile certainty bounds. The

maximum exceedence of the confidence interval is at lag-0, but the general exceedence is on the

order of .05 which is within the relative certainty of the significance bounds given the sample size.

This is true across all sites. This result indicates that the two optimizations cannot be seen as IID

from one another in this test. However, since the violation of the certainty bounds is small and
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the sample size much larger in comparison to the statistical test requirements of the paired T-test

can still be used. The paired T-test results demonstrate that the interannual source or sink estimate

from the time smoothing algorithm was equal to or greater than the control algorithm for 6 of the

8 sites estimated to within the 95th percentile. Campbell River and Vaira Ranch both resulted in

statistically significant better annual estimates than the control algorithm. Consequently, these two

statistical tests verify the qualtitative results of the annual NEE averages and RMSE reductions.

3.2.3. EXPERIMENT 1: INCREASING OBSERVATIONAL UNCERTAINTY

When exposed to increasing amounts of observational uncertainty, the time smoothing algo-

rithm was more resilient to observational uncertainty changes than the control. The other three

panels of Figures 3.5 and 3.6 show the effects of 2, 5, and 10 times increases in observational

uncertainty estimates for Harvard Forest and Vaira Ranch. Both algorithms revert toward the prior

estimate of NEE before receeding toward the original estimations of SiB4 flux. At all sites, it was

evident that the control algorithm regresses toward the prior estimate much sooner than the time

smoothing algorithm. The effect of this increase is moderated by how much original certainty the

observations had. Therefore, a well-observed flux was good for both algorithm’s resulting esti-

mates, but only the time smoothing algorithm showed robustness to more poorly-observed fluxes.

3.2.4. EXPERIMENT 1: SEASONALITY

When seasonality was examined, the time smoothing and control algorithms showed that nei-

ther algorithm was particularly skilled at estimating the seasonal cycle. Figure 3.7 shows the

autocovariance functions of the NEE error time series for both algorithms. The autocorrelation

functions for Harvard Forest indicates that on a yearly basis, both algorithms are correlated with
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themselves outside of the 95th percentile certainty bounds. The location of this error was repre-

sentative of a fall or spring mismatch where NEE crosses zero. This pattern was observed at all

sites except for ARM-SGP and Vaira Ranch. The general correlation exceedence of the confidence

bounds at these sites was about .06 and .11 for the control and time smoothing algorithms. The

autocorrelation function at Vaira Ranch indicated the presence of white noise. When this result

was tested on the Ljung-Box test, Vaira Ranch was shown to still have some correlation remaining

in the error at the 99th confidence level. In general, the magnitude and timing of error varied from

site-to-site, but these results suggest there was still some residual of seasonality to be estimated.

The mean power spectra for the first 20 harmonics for both Harvard Forest and Vaira Ranch

are seen in Figure 3.8. These two sites suggested that there was still statistically significant power

within at least the first 5 harmonics for both algorithms. The zeroth and seasonal harmonic (k=0

and 1) suggested that neither the general mean or seasonal cycle were fully resolved in either time

series. These power spectra results are not generalized to all sites. The other 6 sites were able to

fully resolve both the mean and seasonality of the NEE signal to within red noise spectrum of 95th

percentile, but not the normal red noise spectrum.

3.3. EXPERIMENT 2

The purpose of the second experiment was to evaulate the time smoothing algorithm against the

control algorithm when using modeled GPP and RESP fluxes to formulate an NEE estimate which

was optimized by observed the NEE flux. As stated in the methods, this version of the algorithm

optimizes for 24 bias coefficients rather than the 52 independent weekly bias coefficients and uses

a portion of both the posterior and prior model covariance estimates. Table 3.2 shows the results

of all statistical significance tests done to the optimizations of the second experiment and whether

or not the statistical hypothesis tests were met.
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3.3.1. EXPERIMENT 2: FLUX ESTIMATES AND RMSE REDUCTION

The flux estimates from the second experiment indicated that while NEE is well-estimated, it

achieved at the cost of the GPP and RESP signals. Example component flux estimates for Harvard

Forest and Vaira Ranch from the second experiment are shown in Figure 3.9. As can be seen at

both sites, the second experiment was capable of making excellent estimates for any year of the

NEE signal. The RESP and GPP estimates do not resemble the observations or prior estimates

and are physically unrealistic. These results were seen across all sites. These visual results are

supported by the fractional RMSE reduction.

In the middle panel of Figure 3.3, the RMSE reduction of NEE shows that the second exper-

iment was skilled at making a better prediction than that of the prior flux estimate and control

estimate. For example, the RMSE reduction of NEE at Harvard Forest for Experiment 2 is on the

order of .25 to .45, which is nearly a .2 better than the control algorithm. All sites showed im-

provement and better performance in the fractional RMSE reduction of NEE, however this came

at the cost of an increase in RMSE for the component fluxes. In Figure 3.4, the fractional RMSE

reduction for the component fluxes are seen for the second and third experiments. Across 7 sites

for both GPP and RESP, the second experiment resulted in negative RMSE reductions upwards of

-.1 to -3. This suggests that both component fluxes lost estimation skill upwards of 300% in some

circumstances. Vaira Ranch was the only site to have both positive fractional RMSE reductions for

both the net and component fluxes as consequences of this result.

3.3.2. EXPERIMENT 2: ANNUAL SOURCES AND SINKS AND UNCERTAINTY INCREASES

The annual NEE mean estimate gave way to supporting the results of the RMSE of NEE re-

ductions. Like the first experiment, example annual NEE averages from Harvard Forest and Vaira

Ranch under increasing amounts of observational uncertainty for the second experiment are seen
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in Figures 3.10 and 3.11. In the top left panel of these figures, the second experiment shows near

better estimation of the annual NEE average over the control to within error estimates of observed

NEE average. The interannual pattern is well-estimated. In the other three panels of both figures,

there is virtually no change to the algorithm’s performance except with larger uncertainty bounds.

This indicates that this version of the time smoothing algorith has robust estimation skill with up-

wards of 100 times more observational uncertainty. These same results were observed at the other

6 sites as well. This qualitative evidence is supported by both the cross-correlation functions and

paired T-test for the original uncertainty estimation.

Quantitative evidence of both the cross-correlation function and paired T-test of the error means

show that the error time series of both algorithms are statistically different but more distinguishable

from one another than the first experiment. The cross-correlation functions of Harvard Forest and

Vaira Ranch in Figure 3.12 show that the correlation between the time series is lower than the

first experiment. As demonstrated at Harvard Forest, 5 of the 8 sites exhibited some periodicity in

the correlation on a yearly basis, but the only substantial maximum exceedence of the confidence

interval is at lag-0 and in the final lag. The general exceedence is on the order of .07 which

is within the relative certainty of the significance bounds given the sample size N. Vaira Ranch

demonstrated how the other 3 sites produced cross-correlation functions that resemble nearly pure

noise. These result suggest the error time series can be interpreted as IID from one another in this

test, thus violation of the T-test’s assumptions is kept to a minimum. The application the paired

T-test demonstrated that at every site the time smoothing algorithm produced better estimates of

the interannual source or sink over the control algorithm to within the 95th confidence level. These

two statistical tests verified the results the annual NEE averages and RMSE of NEE reductions.
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3.3.3. EXPERIMENT 2: ANNUALLY AVERAGED COMPONENT FLUXES

The evidence presented by the time series plots of GPP and RESP indicated that there would

be little information about the plots of the annual average of GPP and RESP for any site, however

a discription of this error can still be seen by the cross-correlation and paired T-test between the

observations and the component fluxes. Figures 3.13 and 3.14 show the cross-correlation functions

between the observations and the component fluxes. At both sites, it is visually evident that there

is a sinusoidal pattern that follows a biannual statistically significant pattern of correlation and

anti-correlation. There are 5 superimposed harmonics within these cross-correlation functions that

are representative of the 5 harmonics used for the time smoothing algorithm estimate. The general

exceedence of the certainty bounds is on the average order of .2 for RESP and .3 for GPP. This

result suggests the component fluxes at Harvard Forest sites are not IID from the observations,

but this result does not necessarily hold true for all sites. Campbell River, Lethbridge, UMBS, and

ARM-SGP all showed similar behaviors with respect to the harmonic structure, but indicated noise

from the cross-correlation functions. These 4 sites were assumed to be IID and evaluated using

the paired T-test. When applied to the paired T-test, only 1 of the 4 IID sites showed the annual

average of GPP for the time smoothing algorithm is equal to annual average of the observations

within the 95th confidence level. Additionally, the paired T-test demonstrated that all four IID sites

have annual average of RESP estimations that are equal to the annual average of the observations

within the 95th confidence level.

3.3.4. EXPERIMENT 2: NEE SEASONALITY

The second experiment was exceptional in obtaining the NEE seasonality while not skilled in

obtaining the component flux seasonality. Figure 3.12 visually show that the error autocorrelation

functions of NEE for the time smoothing algorithm is noise. There is only minor periodicity that
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is substantially suppressed from the first experiment and with the exception of the first couple

lags, the autocovariance functions do not surpass the 95th percentile certainty bounds. This was

true across all 6 other sites. When the autocorrelation functions were applied to the Ljung-Box

Test, it was found that none of the 8 sites only had white noise composing the error. The mean

power spectra of NEE error analysis in Figure 3.8 showed that the error time series of the second

experiment does not have significant power above the red noise spectrum at the 95th certainty level

for either the mean or the seasonal harmonics. In general, these results suggested the error between

the observations and time smoothing algorithm at the mean and seasonal cycles are red noise at

best, but there does exist some residual subseasonal signal in the error.

3.3.5. EXPERIMENT 2: COMPONENT FLUX SEASONALITY

As opposed to the successful results of the NEE seasonality analysis, the second experiment

was not skilled in obtaining the component flux seasonality. Both example sites in Figures 3.13 and

3.14 show that the autocorrelation functions of the component flux error time series are virtually

noise except for the first 20 lags. At these lags for both component fluxes, the correlation is on

the average about .3 above the 95th percentile certainty bounds. This was seen at 7 of the 8 flux

towers with the exception of UMBS. Given the white noise nature of the remaining signal for the

component fluxes, the Ljung-Box test revealed that white noise was not present in either error

time series at any site. The mean power spectra of RESP flux error analysis in Figure 3.15 that

for both example sites the second experiment does not produce significant power above the red

noise spectrum at the 95th confidence level for either the mean or the seasonal harmonics. This

was true for all 8 sites. Futhermore, the mean power spectra of the GPP flux error analysis in

Figure 3.15 showed mixed results concerning the annual and seasonal error power. For 7 of the 8

sites, the spectral power produced by GPP error time series was between the red noise time series
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and red noise spectrum at the 95th confidence level for both the mean or the seasonal harmonics.

Harvard Forest was the only site that produced significant power at mean and seasonal harmonics,

but in all first 10 harmonics, which could be an outlier result. In general, the combination of the

visual, qualitative, and quantitative tests done on the time smoothing time series suggested poor

and unrealistic estimation of the component fluxes.

3.4. EXPERIMENT 3

The purpose of the third experiment was to evaulate the time smoothing algorithm against the

control algorithm using only observed the NEE and GPP fluxes to optimize for the modeled GPP

and RESP fluxes. As stated in the methods, this version of the algorithm optimizes for 24 bias

coefficients and uses a portion of both the posterior and prior model covariance estimates rather

than the 52 independent weekly bias coefficients. Table 3.3 shows the results of all statistical

significance tests done to the optimizations of the third experiment and whether or not the statistical

hypothesis tests were met.

3.4.1. EXPERIMENT 3: FLUX ESTIMATES AND RMSE REDUCTION

The flux estimates from the third experiment resulted in all three fluxes being well-estimated.

Example component flux estimates for Harvard Forest and Vaira Ranch from the third experiment

are shown in Figure 3.16. From these figures, the third experiment is capable of recovering all

observed fluxes for any year of the flux signal at Vaira Ranch and for most years at Harvard Forest.

Like the second experiment, the NEE signal is well fitted. Unlike the second experiment, the RESP

and GPP estimates now fit the observations, which is much more physically realistic. These results

were seen across all sites except for Mead-Irrigated. At this site, the estimates resembled the
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second experiment. The visual results of these time series are supported by the fractional RMSE

reduction.

In the bottom panel of Figure 3.3, the RMSE reduction of NEE shows that the third experiment

is skilled at making a similar NEE estimate to that of the second experiment. For example, the

RMSE reduction of NEE at UMBS for experiment 3 is on the order of .3 to .5, which is identical to

that of the second experiment and about .2 better than the control. 6 of the 8 towers showed similar

results. Old Black Spruce and Harvard Forest showed increased performance when compared the

first experiment and control, but decreased performance when compared to the second experiment.

In Figure 3.4, the fractional RMSE reduction across all 8 sites showed that for both GPP, the third

experiment resulted in RMSE reductions upwards of .05 to .7. This was also true for RESP, but

Mead-Irrigated was the only site to produce a negative RMSE reduction. This suggests that both

component fluxes gained estimation skill upwards of 70% in some years. As a result of these tests,

the other statistical tests were able to be used to statistically reinforce these results.

3.4.2. EXPERIMENT 3: ANNUAL SOURCES AND SINKS AND UNCERTAINTY INCREASES

Like the second experiment, the annual NEE mean estimates supported the results of the RMSE

of NEE reductions. Example annual NEE averages from Harvard Forest and Vaira Ranch under

increasing amounts of observational uncertainty for the third experiment are seen in Figures 3.17

and 3.18. The annual NEE average estimated by the time smoothing algorithm over Vaira Ranch

shows better estimates than the control to within error estimates of observed NEE average. This

result was seen in all sites except for Harvard Forest. Harvard Forest resulted in better estimates of

the annually averaged NEE than the control, but does not replicate the observational record over

most years. The interannual pattern is well-estimated to within error estimate at all sites except

for Harvard Forest. Under increasing uncertainty, Vaira Ranch and the other 6 sites show virtually
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no change to the algorithm’s performance except with larger uncertainty bounds. Harvard Forest

showed increased performance under a doubling of observational uncertainty, similar to the initial

estimation of Harvard Forest under the second experiment. This result was constant under the 5

and 10 times simulations for Harvard Forest as well. Qualitatively, this algorithm estimates NEE

sources and sinks comparable to the second experiment. This evidence is further supported by both

the cross-correlation functions and paired T-test.

The cross-correlation functions and paired T-test of the error means showed that the error time

series of the third experiment’s time smoothing algorithm is statistically different from the control.

In Figure 3.19, the cross-correlation functions of NEE at Harvard Forest and Vaira Ranch showed

that the correlation between the two error time series was comparable to the results of the second

experiment. The estimation at Harvard Forest demonstrated that when the control lags the time

smoothing algorithm there is evidence of periodicity in the correlation on a yearly basis, but not

vice versa. When the time smoothing algorithm lags the control, there is evidence of only minor

periodicity and noise to within the 95th percentile certainty bounds. This result was seen at 5 of

the 8 sites, with the exceptions being of Vaira Ranch, ARM-SGP, and UMBS. At these 5 sites, the

maximum location and mean exceedence of the confidence bound was at lag-0 and .07. Therefore,

across most sites these results were not conisdered only noise. The cross-correlation function at

Vaira Ranch, ARM-SGP, and UMBS resemble noise and can be considered IID.

Since, the general of the exceedence of the cross-correlation function of NEE is on the order

of .07, the paired T-test was applied to all sites. The paired T-tests demonstrated that at every

site the time smoothing algorithm produced better estimates of the interannual source or sink over

the control algorithm to within the 95th confidence level. Thus, these two statistical tests of NEE

verified the results seen in the annual NEE averages and RMSE of NEE reductions.
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3.4.3. EXPERIMENT 3: ANNUALLY AVERAGED COMPONENT FLUXES

The time series plots of GPP and RESP indicated that there is strong evidence that annual

average of GPP and RESP for any site may be well-estimated. Figures 3.20 and 3.21 show the

cross-correlation functions between the observations and the component fluxes. These two sites

display nearly identical patterns on both wings of the cross-correlation function. Furthermore, it

is visually evident that there is a sinusoidal pattern that follows an biannual statistically significant

pattern of correlation and anti-correlation similar to that of the second experiment. The general

exceedence of the certainty bounds is on the order of .4 for both RESP and GPP. This is result was

seen for all sites. From this, these sites are not IID and are assumed to be indistinguishable from

one another.

3.4.4. EXPERIMENT 3: NEE SEASONALITY

Like the second experiment, the third experiment was skilled in estimating the NEE seasonality.

In Figure 3.19 for both example sites visually show that the error autocorrelation functions of

the time smoothing algorithm is basically noise. These autocovariance functions for NEE do not

surpass the 95th percentile certainty bounds with the exception of the first couple of lags. This

was true across all other sites. When the autocorrelation functions were applied to the Ljung-Box

Test, it was found that none of the 8 sites only had white noise composing the error, much like the

second experiment.

The mean power spectra of NEE error analysis in Figure 3.8 showed that for both example

sites the error time series of the third experiment did not have significant power above the red noise

spectrum at the 95th certainty level for any tested harmonics. This was seen for all sites. Harvard

Forest, Lethbridge, UMBS, and Mead-Irrigated produced an NEE error mean power spectrum that

was above the normal red noise spectrum, but not above the critical certainty level. In general,
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these results suggested the error between the observations and time smoothing algorithm at the

mean and seasonal cycles are red noise at best, but there is a presence of unresolved subseasonal

error.

3.4.5. EXPERIMENT 3: COMPONENT FLUX SEASONALITY

Unlike the the second experiment, the third experient was skilled in obtaining the component

flux seasonality. Both example sites in Figures 3.20 and 3.21 show that the autocorrelation func-

tions of the component flux error time series represent the most resemblence to white noise of any

experiment. There are no lags that exceed the 95th percentile certainty bounds beyond the first 10

lags. This was found at all sites as well. The Ljung-Box test discredited the presence of only white

noise in any component flux error time series. The mean power spectra of RESP flux error analysis

suggested that there was no significant unresolved power present within any harmonic in the first

20 harmonics. In Figure 3.15, both example sites showed the third experiment does not produce

significant power above the red noise spectrum at the 95th confidence level for RESP. This was

found for the other 6 sites. At all sites, the mean power spectra of GPP flux error analysis sug-

gested that there was significant power present within in the first 20 harmonics, especially within

the first 5 harmonics. The mean power spectra of GPP flux error analysis in Figure 3.15 exceeded

the baseline red noise spectrum all sites. Furthermore, the power spectrum for 5 of the 8 sites ex-

ceeded the red noise spectrum at the 95th confidence level. In general, these results, with all other

tests taken into account, suggests that these are just the minor differences between the observations

and very similar component fluxes.
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FIG. 3.1. Spectral plots of the percent of variance explained in the errors between

the observed flux and the SiB4 flux. The blue curve is the percent of variance

explained per wavenumber. The red curve is the partial integral of the blue curve

signifying the sum of the variance explained. Upper Left: Harvard Forest, MA.

Upper Right: KM67, Tapajos, Brazil. Bottom Center: Lethbridge, Canada
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FIG. 3.2. Time evolution of the daily component fluxes at Harvard Forest and Vaira

Ranch for the control and time smoothing estimates for Experiment 1. The blue

lines are the observations. The red lines are the posterior estimates of a particular

algorithm.
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FIG. 3.3. Box-and-whiskers plots of the fractional reduction of RMSE of NEE

estimations between the control and the three time smoothing algorithm variants

across all sites. Blue and red boxes represent the control and time smoothing algo-

rithm results. ”+” signs represent outliers.
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ponent fluxes between the time smoothing algorithm of the 2nd and 3rd experiments.
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ponent flux. ”+” signs represent outliers.
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FIG. 3.5. Time evolution of the annually averaged NEE flux at Harvard Forest un-

der varying amounts of observational uncertainty. Blue and cyan lines are the obser-

vations and control simulation. Purple lines are SiB4’s simulation pre-assimilation.

Red lines are the posterior estimates of SiB4 during assimilation. Error bars repre-

sent the 1 standard deviation uncertainty in the flux.
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FIG. 3.6. Time evolution of the annually averaged NEE flux at Vaira Ranch under

varying amounts of observational uncertainty. Blue and cyan lines are the observa-

tions and control simulation. Purple lines are SiB4’s simulation pre-assimilation.

Red lines are the posterior estimates of SiB4 during assimilation. Error bars repre-

sent the 1 standard deviation uncertainty in the flux.
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FIG. 3.7. Cross-correlation and Autocorrelation functions between the error time

series of the control and time smoothing algorithm used in Experiment 1 Harvard

Forest and Vaira Ranch. Top Left: Autocorrelation function of control fit error.

Top Right: cross-correlation function when control lags time smoothing. Bottom

Left: cross-correlation function when time smoothing lags control. Bottom Right:

Autocorrelation function of error time smoothing fit time series.
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FIG. 3.8. Mean power spectrums for NEE error for all time smoothing variants

and control at Harvard Forest and Vaira Ranch. Black lines are power. Red solid

line line is the red noise power spectrum of the datum, and the dashed red line is

the red noise spectrum at the 95th percentile. Top Left: Control. Top Right: Time

smoothing algorithm for Experiment 1. Bottom Left: Time smoothing algorithm

for Experiment 2. Bottom Right: Time smoothing algorithm for Experiment 3
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FIG. 3.9. Time evolution of the daily component fluxes of both Harvard Forest and

Vaira Ranch as a result of the second experiment. The blue lines are the observa-

tions. The red lines are the posterior estimates.
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FIG. 3.10. Time evolution of the annually averaged NEE flux at Harvard Forest un-

der varying amounts of observational uncertainty. Blue and cyan lines are the obser-

vations and control simulation. Purple lines are SiB4’s simulation pre-assimilation.

Red lines are the posterior estimates of SiB4 during assimilation. Error bars repre-

sent the 1 standard deviation uncertainty in the flux.
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FIG. 3.11. Time evolution of the annually averaged NEE flux at Vaira Ranch under

varying amounts of observational uncertainty. Blue and cyan lines are the observa-

tions and control simulation. Purple lines are SiB4’s simulation pre-assimilation.

Red lines are the posterior estimates of SiB4 during assimilation. Error bars repre-

sent the 1 standard deviation uncertainty in the flux.
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FIG. 3.12. Cross-correlation and Autocorrelation functions between the error time

series of the control and time smoothing algorithm used in Experiment 2 Harvard

Forest and Vaira Ranch. Top Left: Autocorrelation function of control fit error.

Top Right: cross-correlation function when control lags time smoothing. Bottom

Left: cross-correlation function when time smoothing lags control. Bottom Right:

Autocorrelation function of error time smoothing fit time series.
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FIG. 3.13. Cross-correlation and Autocorrelation functions between the error time

series of the control and time smoothing algorithm used in Experiment 2 for Har-

vard Forest. Top: GPP. Bottom: RESP. First Panel: Autocorrelation function of

error time series. Middle Panel: Observations lag Time Smoothing Algorithm
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(B) Vaira Ranch: RESP

FIG. 3.14. Cross-correlation and Autocorrelation functions between observation

and time smoothing estimation time series used in Experiment 2 for Vaira Ranch.

Top: GPP. Bottom: RESP. First Panel: Autocorrelation function of error time series.

Middle Panel: Observations lag Time Smoothing Algorithm
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FIG. 3.15. Mean power spectrums of the component flux error for the second and

third experiments at Harvard Forest and Vaira Ranch. Black lines are power. Red

solid line is the red noise power spectrum of the datum, and the dashed red line is

the red noise spectrum at the 95th percentile. Top Left: GPP Experiment 2. Top

Right: RESP Experiment 2. Bottom Left: GPP Experiment 3. Bottom Right: RESP

Experiment 3.
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FIG. 3.16. Time evolution of the daily component fluxes of both Harvard Forest

and Vaira Ranch as a result of the third experiment. The blue lines are the observa-

tions. The red lines are the posterior estimates.
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FIG. 3.17. Time evolution of the annually averaged NEE flux at Harvard Forest un-

der varying amounts of observational uncertainty. Blue and cyan lines are the obser-

vations and control simulation. Purple lines are SiB4’s simulation pre-assimilation.

Red lines are the posterior estimates of SiB4 during assimilation. Error bars repre-

sent the 1 standard deviation uncertainty in the flux.
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FIG. 3.18. Time evolution of the annually averaged NEE flux at Vaira Ranch under

varying amounts of observational uncertainty. Blue and cyan lines are the observa-

tions and control simulation. Purple lines are SiB4’s simulation pre-assimilation.

Red lines are the posterior estimates of SiB4 during assimilation. Error bars repre-

sent the 1 standard deviation uncertainty in the flux.
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(A) Harvard Forest

0 500 1000 1500 2000 2500
Lag (Days)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

ti
on

Autocorrelation ∆(Obs,Control)

0 500 1000 1500 2000 2500
Lag (Days)

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

C
or

re
la

ti
on

Cross Correlation ∆(Obs,Control),∆(Obs,TS3)

0 500 1000 1500 2000 2500
Lag (Days)

1.0

0.5

0.0

0.5

1.0

C
or

re
la

ti
on

Cross Correlation ∆(Obs,TS3),∆(Obs,Control)

0 500 1000 1500 2000 2500
Lag (Days)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

ti
on

Autocorrelation ∆(Obs,TS3)

(B) Vaira Ranch

FIG. 3.19. cross-correlation and Autocorrelation functions between the error time

series of the control and time smoothing algorithm used in Experiment 3 Harvard

Forest and Vaira Ranch. Top Left: Autocorrelation function of control fit error.

Top Right: cross-correlation function when control lags time smoothing. Bottom

Left: cross-correlation function when time smoothing lags control. Bottom Right:

Autocorrelation function of error time smoothing fit time series.
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(B) Harvard Forest: RESP

FIG. 3.20. cross-correlation and Autocorrelation functions between the error time

series of the control and time smoothing algorithm used in Experiment 3 for Har-

vard Forest. Top: GPP. Bottom: RESP. First Panel: Autocorrelation function of

error time series. Middle Panel: Observations lag Time Smoothing Algorithm
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(A) Vaira Ranch: GPP
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(B) Vaira Ranch: RESP

FIG. 3.21. cross-correlation and Autocorrelation functions between observation

and time smoothing estimation time series used in Experiment 3 for Vaira Ranch.

Top: GPP. Bottom: RESP. First Panel: Autocorrelation function of error time series.

Middle Panel: Observations lag Time Smoothing Algorithm
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TABLE 3.1. Results of the suite of statistical tests performed on the data generated

from Experiment 1. P means the statistical test rejected the null hypothesis and F

means the statistical test failed to rejected the null hypothesis

(A) NEE

Site Name

Paired T-Test X-Corr (Control/TS) X-Corr (TS/Control) Autocorr (TS) Ljung-Box Test Mean Φ

P-value ∆Zcrit ∆Zcrit ∆Zcrit P-value (Φ k=1)

(Max, Mean, Min) (Max, Mean, Min) (Max, Mean, Min)

Harvard Forest
F F F F P F

0.22 <0.01, 0.03, 0.87 < 0.01, 0.04, 0.87 < 0.01, 0.05, 0.91 < 0.01 1.45, 1.36

U. of Mich. Biol. Stat.
F F F F P P

0.15 < 0.01, 0.08, 0.81 < 0.01, 0.07, 0.81 < 0.01, 0.08, 0.86 < 0.01 1.67, 1.78

Old Black Spruce
F F F P P P

0.39 < 0.01, 0.05, 0.88 < 0.01, 0.06, 0.88 < 0.01, 0.11, 0.89 < 0.01 1.36, 1.96

Campbell River
P F F P P P

< 0.01 < 0.01, 0.05, 0.87 < 0.01, 0.03, 0.87 < 0.01, 0.12, 0.91 < 0.01 0.42, 1.51

ARM-SGP
F P P P P P

0.99 0.02, 0.38, 0.73 0.01, 0.37, 0.73 < 0.01, 0.19, 0.85 < 0.01 1.35, 2.14

Mead-Irrigated
F F F F P P

0.94 < 0.01, 0.08, 0.81 < 0.01, 0.09, 0.81 < 0.01, 0.10, 0.86 < 0.01 0.57, 2.07

Vaira Ranch
P F F F P F

0.05 < 0.01, 0.06, 0.58 < 0.01, 0.05, 0.72 < 0.01, 0.17, 0.86 < 0.01 3.74, 3.18

Lethbridge
F F F P P P

0.63 < 0.01, 0.07, 0.81 < 0.01, 0.10, 0.81 < 0.01, 0.10, 0.87 < 0.01 2.59, 2.76
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TABLE 3.2. Results of the suite of statistical tests performed on the data generated

from Experiment 2. P means the statistical test rejected the null hypothesis and F

means the statistical test failed to rejected the null hypothesis

(A) GPP

Site Name

Paired T-Test X-Corr (Obs/TS) X-Corr (TS/Obs) Autocorr (TS) Ljung-Box Test Mean Φ

P-value ∆Zcrit ∆Zcrit ∆Zcrit P-value (Φ k=1)

(Max, Mean, Min) (Max, Mean, Min) (Max, Mean, Min)

Harvard Forest
P F F F P F

< 0.01 < 0.01, 0.39, 0.82 < 0.01, 0.29, 0.82 < 0.01, 0.12, 0.82 < 0.01 14.97, 8.71

U. of Mich. Biol. Stat.
P F F P P P

0.02 < 0.01, 0.22, 0.62 < 0.01, 0.23, 0.62 0.01, 0.31, 0.62 < 0.01 8.47, 14.85

Old Black Spruce
F F F F P P

0.14 < 0.01, 0.33, 0.68 < 0.01, 0.31, 0.68 < 0.01, 0.15, 0.68 < 0.01 15.93, 23.36

Campbell River
P F F P P F

< 0.01 < 0.01, 0.37, 0.80 < 0.01, 0.35, 0.83 < 0.01, 0.15, 0.83 < 0.01 21.38, 11.59

ARM-SGP
P F F P P P

0.03 < 0.01, 0.19, 0.39 < 0.01, 0.18, 0.57 < 0.01, 0.32, 0.64 < 0.01 5.44, 12.71

Mead-Irrigated
P F F P P P

< 0.01 < 0.01, 0.29, 0.67 < 0.01, 0.28, 0.67 < 0.01, 0.19, 0.67 < 0.01 10.72, 14.32

Vaira Ranch
P F F P P P

< 0.01 < 0.01, 0.40, 0.73 < 0.01, 0.38, 0.70 < 0.01, 0.22, 0.73 < 0.01 12.28, 17.81

Lethbridge
P F F P P P

< 0.01 < 0.01, 0.18, 0.76 < 0.01, 0.25, 0.76 0.02, 0.36, 0.76 < 0.01 8.81, 9.49

(B) RESP

Site Name

Paired T-Test X-Corr (Obs/TS) X-Corr (TS/Obs) Autocorr (TS) Ljung-Box Test Mean Φ

P-value ∆Zcrit ∆Zcrit ∆Zcrit P-value (Φ k=1)

(Max, Mean, Min) (Max, Mean, Min) (Max, Mean, Min)

Harvard Forest
P F P P P P

< 0.01 < 0.01, 0.14, 0.56 < 0.01, 0.19, 0.39 0.01, 0.29, 0.56 < 0.01 12.63, 49.46

U. of Mich. Biol. Stat.
F P P P P P

0.20 < 0.01, < 0.01, < 0.01 < 0.01, < 0.01, < 0.01 < 0.01, < 0.01, < 0.01 < 0.01 7.46, 68.68

Old Black Spruce
F F F F P P

0.14 < 0.01, 0.18, 0.46 < 0.01, 0.18, 0.46 0.01, 0.24, 0.46 < 0.01 14.12, 65.95

Campbell River
P F F P P P

< 0.01 < 0.01, 0.28, 0.56 < 0.01, 0.32, 0.70 < 0.01, 0.17, 0.70 < 0.01 21.70, 34.19

ARM-SGP
F P P P P P

0.09 < 0.01, 0.07, 0.11 < 0.01, 0.07, 0.15 < 0.01, 0.22, 0.40 < 0.01 5.39, 32.69

Mead-Irrigated
P F F P P P

< 0.01 < 0.01, 0.15, 0.31 < 0.01, 0.14, 0.31 0.01, 0.18, 0.34 < 0.01 9.05, 54.54

Vaira Ranch
P F F P P P

< 0.01 < 0.01, 0.28, 0.58 < 0.01, 0.26, 0.51 0.02, 0.30, 0.58 < 0.01 12.59, 41.98

Lethbridge
F P F P P P

0.38 < 0.01, 0.09, 0.32 < 0.01, 0.16, 0.32 0.03, 0.19, 0.32 < 0.01 5.22, 68.65

(C) NEE

Site Name

Paired T-Test X-Corr (Control/TS) X-Corr (TS/Control) Autocorr (TS) Ljung-Box Test Mean Φ

P-value ∆Zcrit ∆Zcrit ∆Zcrit P-value (Φ k=1)

(Max, Mean, Min) (Max, Mean, Min) (Max, Mean, Min)

Harvard Forest
P P P P P P

< 0.01 < 0.01, 0.04, 0.88 < 0.01, 0.05, 0.88 0.12, 0.52, 0.92 < 0.01 0.40, 0.95

U. of Mich. Biol. Stat.
P P P P P P

0.02 0.01, 0.13, 0.75 0.75, 0.75, 0.75 < 0.01, 0.20, 0.87 < 0.01 0.47, 1.21

Old Black Spruce
P P P P P P

< 0.01 < 0.01, 0.05, 0.88 < 0.01, 0.06, 0.88 < 0.01, 0.11, 0.89 < 0.01 0.87, 1.58

Campbell River
P P P P P P

< 0.01 < 0.01, 0.17, 0.84 0.01, 0.14, 0.84 0.07, 0.41, 0.92 < 0.01 0.02, 1.21

ARM-SGP
P P P P P P

< 0.01 0.78, 0.78, 0.78 0.78, 0.78, 0.78 0.01, 0.32, 0.87 < 0.01 0.16, 1.24

Mead-Irrigated
P F F P P P

< 0.01 < 0.01, 0.07, 0.84 < 0.01, 0.08, 0.84 0.12, 0.50, 0.88 < 0.01 0.13, 1.20

Vaira Ranch
P P P P P P

< 0.01 0.29, 0.29, 0.29 0.01, 0.25, 0.72 0.06, 0.29, 0.89 < 0.01 0.43, 1.73

Lethbridge
P P P P P F

< 0.01 0.05, 0.40, 0.76 < 0.01, 0.10, 0.76 < 0.01, 0.27, 0.90 < 0.01 1.79, 1.41
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TABLE 3.3. Results of the suite of statistical tests performed on the data generated

from Experiment 3. P means the statistical test rejected the null hypothesis and F

means the statistical test failed to rejected the null hypothesis

(A) GPP

Site Name

Paired T-Test X-Corr (Obs/TS) X-Corr (TS/Obs) Autocorr (TS) Ljung-Box Test Mean Φ

P-value ∆Zcrit ∆Zcrit ∆Zcrit P-value (Φ k=1)

(Max, Mean, Min) (Max, Mean, Min) (Max, Mean, Min)

Harvard Forest
P F F P P F

< 0.01 < 0.01, 0.46, 0.89 < 0.01, 0.47, 0.88 < 0.01, 0.11, 0.89 < 0.01 9.31, 2.63

U. of Mich. Biol. Stat.
P F F P P F

< 0.01 < 0.01, 0.44, 0.85 < 0.01, 0.46, 0.85 0.01, 0.12, 0.85 < 0.01 6.02, 2.27

Old Black Spruce
P F F F P F

< 0.01 < 0.01, 0.51, 0.90 < 0.01, 0.50, 0.87 < 0.01, 0.06, 0.90 < 0.01 3.86, 1.56

Campbell River
P F F P P F

< 0.01 < 0.01, 0.35, 0.92 < 0.01, 0.31, 0.92 0.02, 0.29, 0.92 < 0.01 4.40, 1.13

ARM-SGP
P F F F P P

< 0.01 < 0.01, 0.37, 0.82 < 0.01, 0.36, 0.82 0.01, 0.21, 0.82 < 0.01 2.17, 3.28

Mead-Irrigated
P F F F P P

< 0.01 < 0.01, 0.33, 0.78 < 0.01, 0.33, 0.78 < 0.01, 0.16, 0.78 < 0.01 5.53, 6.32

Vaira Ranch
P F F P P P

< 0.01 < 0.01, 0.45, 0.89 < 0.01, 0.45, 0.89 0.01, 0.20, 0.89 < 0.01 1.31, 1.83

Lethbridge
P F F P P F

< 0.01 < 0.01, 0.26, 0.89 < 0.01, 0.26, 0.89 < 0.01, 0.12, 0.89 < 0.01 6.68, 2.05

(B) RESP

Site Name

Paired T-Test X-Corr (Obs/TS) X-Corr (TS/Obs) Autocorr (TS) Ljung-Box Test Mean Φ

P-value ∆Zcrit ∆Zcrit ∆Zcrit P-value (Φ k=1)

(Max, Mean, Min) (Max, Mean, Min) (Max, Mean, Min)

Harvard Forest
P F F P P P

< 0.01 < 0.01, 0.21, 0.68 < 0.01, 0.18, 0.68 0.01, 0.33, 0.68 < 0.01 8.97, 20.64

U. of Mich. Biol. Stat.
P F F P P P

< 0.01 < 0.01, 0.30, 0.66 < 0.01, 0.39, 0.66 0.01, 0.18, 0.66 < 0.01 6.05, 12.58

Old Black Spruce
P F F P P P

< 0.01 < 0.01, 0.48, 0.84 < 0.01, 0.47, 0.84 < 0.01, 0.10, 0.84 < 0.01 4.14, 4.67

Campbell River
P F F P P F

< 0.01 < 0.01, 0.42, 0.87 < 0.01, 0.39, 0.87 0.01, 0.26, 0.87 < 0.01 6.28, 3.90

ARM-SGP
P F F P P P

< 0.01 < 0.01, 0.30, 0.76 < 0.01, 0.18, 0.76 < 0.01, 0.27, 0.76 < 0.01 2.24, 5.77

Mead-Irrigated
P F F P P P

< 0.01 < 0.01, 0.22, 0.54 < 0.01, 0.20, 0.54 < 0.01, 0.15, 0.54 < 0.01 5.99, 27.24

Vaira Ranch
P F F P P P

< 0.01 < 0.01, 0.34, 0.82 < 0.01, 0.36, 0.82 0.01, 0.34, 0.82 < 0.01 2.28, 5.51

Lethbridge
P F F P P P

< 0.01 < 0.01, 0.28, 0.78 < 0.01, 0.28, 0.78 < 0.01, 0.33, 0.78 < 0.01 4.21, 8.63

(C) NEE

Site Name

Paired T-Test X-Corr (Control/TS) X-Corr (TS/Control) Autocorr (TS) Ljung-Box Test Mean Φ

P-value ∆Zcrit ∆Zcrit ∆Zcrit P-value (Φ k=1)

(Max, Mean, Min) (Max, Mean, Min) (Max, Mean, Min)

Harvard Forest
P P P P P P

< 0.01 < 0.01, 0.06, 0.82 0.01, 0.19, 0.82 < 0.01, 0.15, 0.91 < 0.01 1.23, 1.39

U. of Mich. Biol. Stat.
P P P P P P

0.02 < 0.01, 0.38, 0.75 0.01, 0.38, 0.75 0.01, 0.23, 0.87 < 0.01 0.56, 1.13

Old Black Spruce
F F P P P P

0.14 < 0.01, 0.05, 0.91 < 0.01, 0.04, 0.91 < 0.01, 0.27, 0.91 < 0.01 0.30, 1.02

Campbell River
P P P P P P

< 0.01 < 0.01, 0.11, 0.86 < 0.01, 0.11, 0.86 0.06, 0.40, 0.92 < 0.01 0.09, 1.14

ARM-SGP
P P P P P P

0.03 < 0.01, 0.07, 0.79 < 0.01, 0.09, 0.79 0.01, 0.15, 0.87 < 0.01 0.21, 1.66

Mead-Irrigated
P F F P P P

< 0.01 < 0.01, 0.07, 0.84 < 0.01, 0.08, 0.84 0.12, 0.50, 0.88 < 0.01 0.13, 1.58

Vaira Ranch
P P P P P P

< 0.01 0.23, 0.23, 0.23 0.01, 0.21, 0.72 0.03, 0.26, 0.89 < 0.01 0.46, 1.91

Lethbridge
P P P P P P

< 0.01 < 0.01, 0.37, 0.73 0.01, 0.12, 0.73 < 0.01, 0.23, 0.90 < 0.01 1.42, 1.57
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CHAPTER 4

DISCUSSION

This section contains a discussion, interpretations, and conclusions regarding the time smooth-

ing algorithm and the overarching hypotheses that the three experiments were designed to address.

Table 4.1 shows a summary of the hypothesis conclusions from this and the results section.

4.1. EXPERIMENT 1 INTERPRETATIONS

The first experiment was an “apples-to-apples” comparison of the time smoothing algorithm

and control algorithm on level terms. The visual results of the average annual source and sink plots

gave the indication that this version of the time smoothing algorithm was capable of making an es-

timate of the annual and seasonal NEE signals as good or better than the control. Furthermore, the

similar reduction of the RMSE of NEE time series suggested that the two time series were similarly

fitted and could have similar source and sink fitting capabilities. However, this was not the case

because the paired T-tests suggested that the interannual mean of the errors for this version of the

time smoothing algorithm were greater than the control to within the 95th confidence bounds. The

qualitative and quantitative evidence from experiment 1 suggests that a time smoothing algorithm

is not capable of producing better estimates of interannual and annual NEE estimates than a present

day algorithm. Thus, hypothesis 1 is rejected. Despite this finding, the seasonality was suggested

to be well recovered.

From the seasonality analysis in the first experiment, the time smoothing algorithm was sug-

gested to be capable of properly estimating the seasonal NEE signal at 6 of the 8 sites. While

these were all below the 95th confidence interval, the estimates might not be truly robust as the

statistics would require them to be. The four sites shown to contain only relative noise when
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from the autocorrelation analysis all showed that the seasonal cycle was estimated by the time

smoothing algorithm. This was not seen in the control algorithm for these sites. The inability to

properly estimate the seasonal cycle across all sites was due to the fact that some of the NEE signals

crossed zero suddenly and formulated shorter timescale harmonics than the were assumed. These

are caused because of seasonal mismatches between the model and observations, which were not

completely accounted for in the bias coefficient uncertainty. However, the general pattern of the

sites with good estimates showed that given reasonable uncertainty estimates, the time smoothing

algorithm could outperform the control algorithm at estimating the seasonality of NEE. Therefore,

these results indicated that hypothesis 2 was either plausible or confirmed for any site given the

optimization conditions and constraints.

The observational uncertainty analysis showed that the time smoothing algorithm was more

robust than the control under increased uncertainty. As previously mentioned, the pattern from the

results showed that the estimate would revert to the prior and progress toward the pre-assimilation

model estimate as uncertainty increased. The time smoothing algorithm was more robust because

of the “learning” nature inherent in the time smoothing algorithm. The design of the algorithm

was such that if one year is much more certain than another, then an estimation of the bias coeffi-

cients could still be made under a large uncertainty. This cannot happen with the control because

the posterior bias coefficient covariance matrix is not carried over between assimilation cycles.

As a result, this evidence and the results of Experiment 1 validates the uncertainty criterion for

hypotheses 1 and 2.

4.2. EXPERIMENT 2 INTERPRETATIONS

The second experiment showed the impact that the time smoothing algorithm using NEE to

optimize for NEE estimates from GPP and RESP. Unlike the first experiment, using the time
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smoothing algorithm in this manner demonstrated nearly exact recovery of the observed annually

averaged and interannual patterns of NEE at every site to within error estimates of the observa-

tions. This result indicated the benefit of using the component fluxes over a standalone NEE flux

estimate in the time smoothing algorithm. By using the slowly-varying component fluxes to for-

mulate an NEE estimate, the smaller variations of NEE can still be present in the estimate. The

sudden crosses between a source and a sink in the NEE signal can be accounted for by the two

constantly non-negative component fluxes. The suite of statistical tests showed that NEE estimates

optimized in this manner produced lower RMSE and achieved statistically better estimations of

the annual NEE sources and sinks over the control algorithm across all sites. Furthermore, the

mean power spectrum of NEE revealed that the seasonality is also confidently estimated by the

algorithm. Therefore, the second experiment was able to confirm hypotheses 3 and 4.

The same conclusions for NEE are true for the estimation of the GPP and RESP fluxes from

the second experiment, but are misleading. The second experiment showed that the cost to a highly

accurate NEE signal was the warping of the two component fluxes. It was apparent from the spec-

tral analysis that the harmonics were not indicative of the seasonal or mean harmonics, but rather

the other optimized waves (k = 2, 3, 4, and 5). While this may seem like poor behavior, this

is the mathematical result of using the Kalman filter. The methodology is designed to make the

best possible estimate with the information it was given. In the second experiment, the underly-

ing mathematical principals are only concerned with fitting the NEE flux by optimizing the bias

coefficients to make the best fit of NEE. Starting with the shortest harmonics, the optimization’s

methodology warps the the information in the modeled GPP and RESP fluxes in order to make

an more accurate estimation of NEE. The presence of low seasonal and annual power in the error
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confirms hypothesis 5. When summarized with the all estimates this confirmation is misleading

because of a completely unrealistic estimate for either GPP or RESP.

The results of robustness tests for the second experiment indicated that this version of the time

smoothing algorithm is very robust to changes in uncertainty over all sites. This is because the

time smoothing algorithm is still able to capture the observed NEE flux by consistently warping

the GPP and RESP fluxes in different manners to fit NEE, depending on the scenario. By examining

the evolving time series, it was apparent that while some portions of component fluxes are being

pulled toward the prior, others are being pulled toward the observations. This was caused by the

mathematical balance between the confidence of the prior and observations during each assimilated

year. This suggests that the bias coefficients are consistently changing over each assimilation cycle

to compensate for individual mismatches in the GPP and RESP patterns. Since NEE is very robust

over the all uncertainty increases and over all sites, the uncertainty criterion of hypotheses 3 and

4 is satisfied. Since GPP and RESP are almost constantly changing under various uncertainty

scenarios, these estimates are not robust. Therefore, the uncertainty criterion for hypothesis 5 is

not satisfied.

4.3. EXPERIMENT 3 INTERPRETATIONS

The third experiment demonstrated that it was possible to estimate all three fluxes given that

observed NEE and a component flux are used as the constraining observational measurements.

When using these two quantites, the time smoothing algorithm takes advantage of the optimization

methodology wanting to make the best possible estimate with information it was given. In this

case, the filter optimized for NEE and GPP fluxes. By design, this experiment was capable of

recovering all three fluxes due to the intimate nature of the net and component fluxes.
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The conclusions for NEE are similar to that of the second experiment. The slightly worse

NEE RMSE was caused by the addition of the observed GPP as an additional constraint. The

annual averages, fractional RMSE reduction, and the paired T-test for the NEE estimates revealed

that this version of the optimization produced better annual NEE averages than the control and

comparable values to that of the second experiment. The issues found at Old Black Spruce were

due to numerical instability of the bias coefficient covariance matrix and not the design of the

theory itself. Therefore, the third experiment was able to confirm hypothesis 6. Additionally,

the mean spectral and autocorrelation analyses suggested that the residual error term of the time

smoothing estimate was completely red noise for all sites. This means that both the mean and

seasonal cycles were well-estimated. Thus, the third experiment was able to confirm hypotheis 7.

The addition of an extra observational constraint allowed for GPP and RESP to be properly

estimated for most sites. Visually, the time series estimates showed that GPP and RESP are well

fit from the third experiment. The presence of a reduction in RMSE across most sites showed im-

provement from the pre-assimilation flux estimates. Furthermore, the nearly indistinguishable flux

time series from the autocorrelation functions indicated that the observations and the component

flux estimates were nearly identical. The mean spectral analysis of RESP proved that across all

sites both the mean and seasonal cycles of RESP were well resolved. The spectral analysis of GPP

showed that some of the sites were incapable of sub-red noise estimation. While statistically sig-

nificant, this may be irrelavant because the power retreived by mean spectrum is very low across

all sites. The spectral power of GPP is only about a quarter to a half of that produced by the second

experiment. From these results, it was seen that GPP and RESP were both well-estimated by the

third experiment. Therefore, the third experiment confirmed hypothesis 8.
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Like the second experiment, this version of time smoothing algorithm showed a robust retrieval

of annually averaged and daily NEE fluxes under increases in uncertainty estimates across a variety

of PFTs. The rate at which the fluxes revert to the prior fluxes occurs sooner for some sites than

others. Like the first experiment, this is because the initial observational uncertainty for some sites

is greater than it is for others. This experiment was able to produce more robust estimates than

the control algorithm and reverted toward the pre-assimilation flux only slightly sooner than the

second experiment. When applied to the GPP and RESP signals, the increasing uncertainty did

not produce the same results as the second experiment. As the observational uncertainty increased,

GPP tended to revert toward the prior estimate, but RESP was still able to be well-estimated. This

pattern kept the NEE estimate relatively well constrained and robust. In summary, this suggested

that the uncertainty criterion for GPP, RESP, and NEE in hypotheses 6, 7, and 8 were all met.
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TABLE 4.1. A summary of the conclusions about whether the hypotheses were

accepted (A) or rejected (R). The uncertainty criteria conclusions were denoted as

satisfied (S) or unsatisfied (U)

(A) Experiment 1

Hypothesis 1 Hypothesis 2 Uncertainty Criteria NEE

R C S

(B) Experiment 2

Hypothesis 3 Hypothesis 4 Hypothesis 5 Uncertainty Criteria NEE Uncertainty Criteria GPP/RESP

C C C S U

(C) Experiment 3

Hypothesis 6 Hypothesis 7 Hypothesis 8 Uncertainty Criteria NEE Uncertainty Criteria GPP/RESP

C C C S S
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The purpose of this study was to create a new inversion framework capable of characterizing

and adapting to the long-lived biases between land-atmosphere model gross CO2 fluxes and obser-

vations. This study has shown that in order to do this both the Kalman filter and harmonics can

be used to smooth the modeled flux estimates in time to diagnose these long-lived biases. Several

PFTs over a range of climate regimes showed that the largest sources of error between model sim-

ulations and observations were attributed to low wavenumbers that consist of discrepancies in the

“slow-varying” model variables. These results were applied to the time smoothing algorithm with

a yearly assimilation cycles through three different experiments.

These experiments demonstrated that using a small number of harmonics with greater obser-

vational data constraints can produce as good or better estimates of net sources and sinks of CO2

than a comparable weekly assimilation algorithms. The first experiment produced NEE estimates

that were unable to be more accurate annual source and sink estimates over a control algorithm

when using observed NEE to optimize estimated NEE. However, this experiment showed the time

smoothing algorithm was capable of being more robust to increased observational uncertainty es-

timates and produced good seasonality estimates of NEE. The second experiment concluded that

when using the component fluxes to make an estimate of NEE that is optimized by NEE observa-

tions, there is a dramatic increase in the accuracy of both the magnitude and interannual/seasonal

cycles of NEE over just using modeled NEE itself. This accuracy came at the price of a poor

recovery of the two component fluxes for sub-seasonal harmonics, but the NEE estimate was very

robust over several observational uncertainty increases. The third experiment found that when an

observed component flux is used to further constrain the time smoothing algorithm, all three fluxes
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are well fit on all timescales over a variety observational uncertainty increases. For all variants of

the time smoothing algorithm, the posterior estimation was able to overcome seasonal phase shifts,

crop and harvest mistimings, and flux magnitude errors present in the prior model fluxes. Given

there are improvements with better observations and uncertainty estimates, this algorithm could

one day serve to understand the errors and biases present in land-atmosphere model estimates and

how ecosystems behave under different biological circumstances.

There will be several imporvements to this work in future studies. One way will be to both

improve this assimilation algorithm and to apply it in a more general sense. This can be done

by incorporating more eddy-covariance data over an even wider assortment of climates to truly

obtain the strengths and weaknesses of this algorithm. One adjustment to the algorithm should

include a consistent way of estimating the number of harmonics needed for optimization. An ex-

ample to estimate this number of harmonics required may be the usage of variance explained by

the observation-model errors to set a parameter as a cut off point between slow and fast harmonics.

This would keep the number of resolved harmonics to minimum number of slow processes. An-

other adjustment would be a better way to estimate the uncertainty of the land model. Since this

study revolved around an assumption that modeled RESP and GPP did not covary with one an-

other, future studies must make a more realistic assumption and relate these two quanities. A third

update would be to address the observational uncertainty matrix. Introduction of a more thorough

covariance matrix where the proper relations between NEE and the component flux would dramat-

ically increase the robustness and accuracy of this algorithm beyond its tested capabilities. A final

update would be to design an algorithm to adjust the tuning parameter of the covariance update

step in such a way so that the model uncertainty matrix does not converge and skew or break the

bias coefficient adjustments. A robust way is to use some sort normalized difference between the
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model and observations to give a general idea of how uncertain the model is to begin with and how

our initial conditions should be shaped.

Future applications of this algorithm should be to apply it to multiple land-atmosphere models

to see how and where these biases exist. Traditionally, these models are balanced on an annual

basis, which makes the three gross fluxes all interconnected within the theory and application.

Isolation of a variety of slowly-varying and poorly understood parameters should be chosen as the

implementation points for this algorithm’s influence. Improvements in land-atmosphere models

are always happening and with these improvments land-atmosphere models can hopefully produce

better a priori flux estimates for future inversion model simulations of regional and global sources

and sinks of CO2.
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APPENDIX A

KALMAN FILTER DERIVATION

The inversion method used for this study of the Kalman filter. The equations used the bias

coefficient estimates in this study are as follows

~βpre
t = At−1

~βupd
t−1 + µt (A.1)

C
pre
β,t = AT

t−1C
upd
β,t−1At−1 +Qt−1 (A.2)

Kt =
C

pre
β,tG

T
t

Cd,t +GT
t C

pre
β,tGt

(A.3)

~βupd
t = ~βpre

t +Kt(dt −Gt
~βpre
t ) (A.4)

C
upd,∗
β,t = (I−KtGt)

TC
pre
β,t (I−KtGt) +KT

t Cd,tKt (A.5)

C
upd,∗
β,t = C

upd,∗
β,t (w) +C

pre
β,t (1− w) (A.6)

This appendix will present a discussion of the derivation of all equations presented above. The

derivation presented here follows the work of Evensen (2009), Welch and Bishop (2006) and Port-

land State Aerospace Society (2011). All variables and their meaning will be presented in text and

in Table A.1 for reference.

A.1. BAYES THEOREM AND ASSUMPTIONS

At its core, the Kalman filter is a recursive linear Gauss-Markov least-squares unbiased estima-

tor of a state parameter given some observations. A state parameter is a variable that a system of

equations is dependent upon and can be used to predict the future behavior of the system (Evensen
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2009). In this study, the state parameters are the bias coefficients (β) between the observed and

modeled fluxes.

The Kalman filter derived in this study begins by stating Bayes Theorem given as

P (~β|d) = P (~β)P (d|~β)
P (d)

(A.7)

P (~β|d) ∝ P (~β)P (d|~β) (A.8)

where ~β is a vector of bias coefficient estimates and d is a matrix of flux observations. In this study,

Bayes Theorem states that the a posteriori cummulative proababilty distrubtion, or likelihood, of

the bias coefficients estimates given a set of flux observations (P (~β|d)) is proportional to the a

priori probability distribution of the bias coefficient estimates (P (~β)) and the likelihood of the

flux observations given the a priori bias coefficient estimates (P (d|~β)) (Evensen 2009; Welch and

Bishop 2006).

From Bayes Theorem, the first two assumptions are that the estimate is linear and a Markovian

process. This means that that the new state estimate at the current assimilation time, t, is a linear

transition solely dependent upon the most recent state estimate at assimilation time, t-1. Further-

more, the observations at the concurrent assimilatin time, t, are a linear function of the true state

and a Jacobian matrix, which maps the state from state to observational space with some error. For

this study, these assumptions are given by

~βpre
t = At−1

~βupd
t−1 + µt (A.9)

dt = Gt
~βtrue
t + νt (A.10)
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where ~βpre
t is the predicted bias coefficient estimates at the current assimilation time, ~βupd

t−1 is the

updated, or a posteriori, bias coefficient estimates from the previous assimilation time, ~βtrue
t is

the true value of the bias coefficients at the current assimilation time, At−1 is the transition matrix

to map the bias coefficients from the previous assimilation time to the current time, µt is some

white noise error in the bias coefficient estimates between assimilation times, Gt is the Jacobian

matrix that maps the bias coefficient estimates to the flux observations and νt is the error in the flux

observations at the current assimilation time. As can be seen, equation is equivalent to equation

(A.1), which is the state prediction equation of the Kalman filter for the bias coefficients.

The third assumption is that the probability density functions of both the state estimates and the

observations are Gaussian and the errors between them are uncorrelated. Under this assumption,

the expectation of the errors in the bias coefficient estimates, noise terms, and flux observations are

the following

E[(~βtrue
t − ~βt)

2] = Cβ,t (A.11)

E[(µt)
2] = Qt (A.12)

E[ν2
t ] = Cd,t (A.13)

E[µν] = E[µ] = E[ν] = 0 (A.14)

Here “E” indicates the expectation of a variable, Qt is the transition noise covariance matrix of

bias coefficient estimates, Cd,t is the observational covariance matrix and Cβ is the covariance

matrix of the bias coefficient estimates. From these assumptions, the next step is use the equations

above to define the probability of the bias coefficient estimates from the proportionality statement

equation (A.8). As previously stated, the probability density functions of all terms are Gaussian.
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Therefore, the three terms in equation (A.8) are defined as follows

P (~βupd
t |~βpre

t ) ≡ N (~βpre
t ,Cβ) (A.15)

=
1

√

(2π)k|Cβ|
e−

1
2
(~βupd

t −~βpre
t )TC

−1
β

(~βupd
t −~βpre

t )

P (dt|Gt
~βupd
t ,Cd,t) ≡ N (Gt

~βupd
t ,Cd,t) (A.16)

=
1

√

(2π)k|Cd,t|
e−

1
2
(dt−Gt

~βupd
t )T (Cd,t)

−1(dt−Gt
~βupd
t )

P (~βupd
t |dt,Cd,t) ∝ P (~βupd

t |~βpre
t )P (dt|Gt

~βt) (A.17)

P (~βupd
t |dt,Cd,t) ∝ e−

1
2 [(~β

upd
t −~βpre

t )TC
−1
β

(~βupd
t −~βpre

t )+(dt−Gt
~βupd
t )T (Cd,t)

−1(dt−Gt
~βupd
t )] (A.18)

From equation (A.18), the a posteriori likelihood of the bias coefficient estimates given flux obser-

vations is determined by a term in the exponential known as the cost function. The cost function

is a balance between the deviation of the updated estimate from the predicted state given some un-

certainty estimate and the deviation of the observational estimate from the real observations given

some uncertainty in the real observations. The cost function is given as

Ψ =
[

(~βupd
t − ~βpre

t )TC−1
β (~βupd

t − ~βpre
t ) + (dt −Gt

~βupd
t )TC−1

d,t (dt −Gt
~βupd
t )

]

(A.19)

In the context of this study, the cost function is a balance between the deviation between the

predicted and updated bias coefficient estimates and deviation between real flux observations and

posterior flux estimates.
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A.2. KALMAN FILTER EQUATIONS: STATE ESTIMATE UPDATE EQUATION

The state estimate update equation can be formulated by first redefining the cost function in

equation (A.19) in terms of more general matrices. Terms that are not the a posteriori state estimate

of the bias coefficients are placed into three general matrices (H, P, and X) given as

H =









I

Gt









, P =









C
pre
β,t 0

0 Cd,t









−1

, X =









~βpre
t

dt









Substituting these matrices into equation (A.19) gives a much simpler cost function of the form

Ψ = (X−H~βupd
t )TP(X−H~βupd

t ) (A.20)

Next, expand the the terms in (A.20) to get the following

Ψ = XTPX−XTPH~βupd
t −HT ~βT,upd

t PX+HT ~βT,upd
t PH~βupd

t (A.21)

The best a posteriori estimate of the bias coefficients is achieved through the minimzation of

the cost function. This is done by taking the derivative of (A.21) with respect to the updated

bias coefficient estimates (~βupd
t ), setting the resultant equation to 0, and solving for ~βupd

t . It is

important to note that to obtain equation (A.22) both the bias coefficient covariance matrix and the

observational covariance matrix (C
pre
β,t and Cd,t) must be symmetric matrices.

dΨ

dmt

= −2HTPX+ 2HTPH~βupd
t (A.22)

~βupd
t =

HTP

HTPH
X (A.23)

104



Equation (A.23) is known as the least-squares optimization solution. When the general matrices

H, P, and X are expanded into equation (A.23) the state estimate update equation for the bias

coefficients is obtained.

~βupd
t =

(

~βpre
t C

pre,−1
β,t +GT

t C
−1
d,tdt

)

(

C
pre,−1
β,t +GT

t C
−1
d,tGt

) (A.24)

Equation (A.24) is a mathematically sound state estimate update equation for the Kalman filter,

but not the one used in equation (A.4). Equation (A.4) is obtained by using the matrix inversion

lemma seen below on the denominator term of equation (A.24).

(A− BDC)−1 = (A−1 + A−1B(D−1 − CA−1B)−1CA−1) (A.25)

(

C
pre,−1
β,t −GT

t (−C−1
d,t )Gt

)−1

=

(

C
pre
β,t −

C
pre
β,tG

T
t GtC

pre
β,t

(Cd,t +GT
t C

pre
β,tGt)

)

(A.26)

Substituing equation (A.26) into equation (A.24), and rearranging the resultant terms gives the

state update equation for the bias coefficient estimates as seen in equation (A.4).

~βupd
t =

(

C
pre
β,t −

C
pre
β,tG

T
t GtC

pre
β,t

(Cd,t +GT
t C

pre
β,tGt)

)

(~βpre
t C

pre,−1
β,t +GT

t C
−1
d,tdt)

= ~βpre
t +C

pre
β,tG

T
t C

−1
d,tdt −

C
pre
β,tG

T
t Gt

~βpre
t

Cd,t +GT
t C

pre
β,tGt

−
C

pre
β,tG

T
t GtC

pre
β,tG

T
t C

−1
d,tdt

Cd,t +GT
t C

pre
β,tGt

= ~βpre
t +C

pre
β,tG

T
t C

−1
d,tdt(I−

C
pre
β,tG

T
t Gt

Cd,t +GT
t C

pre
β,tGt

)−
C

pre
β,tG

T
t Gt

~βpre
t

Cd,t +GT
t C

pre
β,tGt

= ~βpre
t +

C
pre
β,tG

T
t C

−1
d,tdt

Cd,t +GT
t C

pre
β,tGt

(Cd,t +GT
t C

pre
β,tGt −C

pre
β,tG

T
t Gt)−

C
pre
β,tG

T
t Gt

~βpre
t

Cd,t +GT
t C

pre
β,tGt

= ~βpre
t +

C
pre
β,tG

T
t dt

Cd,t +GT
t C

pre
β,tGt

−
C

pre
β,tG

T
t Gt

~βpre
t

Cd,t +GT
t C

pre
β,tGt
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= ~βpre
t +

C
pre
β,tG

T
t

Cd,t +GT
t C

pre
β,tGt

(dt −Gt
~βpre
t )

= ~βpre
t +Kt(dt −Gt

~βpre
t ) (A.27)

Here I is the identity matrix and Kt is known as the “Kalman Gain” matrix. As defined in equations

(A.3) and (A.28), the Kalman Gain moderates the updated state estimates of the bias coefficients

by balancing the uncertainty in the observations and predicted bias coefficient estimates.

Kt =
C

pre
β,tG

T
t

Cd,t +GT
t C

pre
β,tGt

(A.28)

A.3. KALMAN FILTER EQUATIONS: STATE COVARIANCE MATRIX

Fundamentally, when the cost function is minimized the state covariance matrix is minimzed as

well. That is, the more accurate the data that the Kalman filter assimilates for an estimate, the more

confident filter becomes about the state estimate. Mathematically, this results in the minimization

of the state covariance matrix.

The covariance prediction equation of the bias coefficients estimates is derived from equation

(A.11)

C
pre
β,t = E[(~βpre

t − ~βtrue
t )2]

= E[(~βpre
t − ~βtrue

t )T (~βpre
t − ~βtrue

t )] (A.29)

Using the linear state transition assumption, equation (A.31) becomes the following

C
pre
β,t = E[(At−1

~βupd
t−1 + µt −At−1

~βtrue
t−1 )

T (At−1
~βupd
t−1 + µt −At−1

~βtrue
t−1 )]

= E[(At−1(~β
upd
t−1 − ~βtrue

t−1 ) + µt)
T (At−1(~β

upd
t−1 − ~βtrue

t−1 ) + µt)]
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= E[AT
t−1(

~βupd
t−1 − ~βtrue

t−1 )
TAt−1(~β

upd
t−1 − ~βtrue

t−1 ) + 2AT
t−1(

~βupd
t−1 − ~βtrue

t−1 )
Tµt + µT

t µt] (A.30)

Finally, take the expectation of equation (A.30) and apply the assumptions in equation (A.14) as

follows

C
pre
β,t = AT

t−1C
upd
β,t−1At−1 +Qt−1 (A.31)

This is the covariance prediction equation of the bias coefficients estimates as seen in equation

(A.2).

Derivation of the a posteriori state covariance matrix begins by assuming that this is the co-

variance between the true and a posteriori state estimates at the current time. In this study, this

matrix is the covariance between the true and a posteriori bias coefficient estimates.

C
upd
β = E[(~βtrue

t − ~βupd
t )2]

= E[(~βtrue
t − ~βupd

t )T (~βtrue
t − ~βupd

t )] (A.32)

Next, substitute ~βupd
t with equation (A.27) and dt with equation (A.10) in equation (A.32) and

collect terms. Finally, expand the two polynomial terms in equation (A.33) and evaluate the ex-

pectation using equations (A.11) and (A.13).

C
upd
β = E[(~βtrue

t − (~βpre
t +Kt(dt −Gt

~βpre
t )))T (~βtrue

t − (~βpre
t +Kt(dt −Gt

~βpre
t )))]

= E[((I−KtGt)(~β
true
t − ~βpre

t )−Ktνt)
T ((I−KtGt)(~β

true
t − ~βpre

t )−Ktνt)] (A.33)

= E[(I−KtGt)
T (~βtrue

t − ~βpre
t )T (I−KtGt)(~β

true
t − ~βpre

t ) +KT
t ν

T
t Ktνt]

= (I−KtGt)
TC

pre
β,t (I−KtGt) +KT

t Cd,tKt (A.34)
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Equation (A.34) is known as the “Joesph’s Form” of the bias coefficient estimate covariance update

equation.

Finally, equation (A.6) is an inflation equation of the a posteriori bias coefficient estimate

covariance matrix. This adjustment prevents a zero or a negative probability density function. It is

presented in Zhang et al. (2004) and is defined as follows

C
upd
β,t = C

upd,∗
β,t (w) +C

pre
β,t (1− w) (A.35)

where C
upd,∗
β,t is the a posteriori bias coefficient estimate covariance matrix from equation (A.34),

C
pre
β,t is the predicted bias coefficient estimate covariance matrix and “w” is a weighting factor

between 0 and 1 used for the inflation magnitude.
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TABLE A.1. Variables present in equations (2.6) through (2.11). All variables are

given at a current assimilation time (t).

Variable Definition
~βpre
t Predicted bias coefficient estimates (state estimate)

~βtrue
t True value of bias coefficients
~βupd
t A posteriori or updated bias coefficient estimates

dt Vector of flux observations

At−1 Transition matrix of bias coefficient estimates between assimilation times

µt White noise error in the bias coefficient estimates between assimilation times

νt Error in the flux observations at the current assimilation time

Qt Transition noise covariance matrix of bias coefficient estimates

C
pre
β,t Predicted bias coefficient estimates covariance matrix

C
upd
β,t A posteriori or updated bias coefficient estimates covariance matrix

Kt Kalman Gain matrix

Gt Bias coefficient estimates space to flux space Jacobian at current assimilation time

I Identity matrix

w Inflation parameter to prevent bias coefficient estimates covariance collapse

E Expectation of a variable
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