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ABSTRACT 

 

 

ANALYSIS OF WHEAT SPIKE CHARACTERISTICS USING IMAGE ANALYSIS, 

MACHINE LEARNING, AND GENOMICS 

 

Understanding genetics regulating yield component and spike traits can contribute to the 

development of new wheat cultivars. The flowering pathway in wheat is not entirely known, but spike 

architecture and its relationship with yield component traits could provide valuable information for crop 

improvement. Spikelets spike-1 (SPS) has previously been positively associated with kernel number spike 

(KNS) and negatively correlated with thousand kernel weight, meaning a further understanding of SPS 

could help unlock full yield potential.  

While genomics research has improved efficiency over time with the development of techniques 

such as genotyping by sequencing (GBS), phenotyping remains a labor and time intensive process, 

limiting the amount of phenomic data available for research. Recently, there has been more interest in 

generating high-throughput methods for collecting and analyzing phenotypic data. Imaging is a cheap and 

easily reproducible way to collect data at a specific maturity point or over time, and is a promising 

candidate for implementing deep learning algorithms to extract traits of interest.  

For this study, a population of 594 soft red winter wheat (SRWW) inbred lines were evaluated for 

wheat spike characteristics over two years. Images of wheat spikes were taken in a controlled 

environment and used to train deep learning algorithms to count SPS. A total of 12,717 images were 

prepared for analysis and used to train, test, and validate a basic classification and regression 

convolutional neural network (CNN), as well as a VGG16 and VGG19 regression model. Classification 

had a low accuracy and did not allow for an assessment of error margins. Regression models were more 

accurate. Of the regression models, VGG16 had the lowest mean absolute error (MAE) (MAE = 1.09) and 
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mean squared error (MSE) (MSE = 2.08), and the highest coefficient of determination (R2) (R2 = 0.53) 

meaning it had the best fit of all models. The basic CNN was the next well fit model (MAE = 1.27, MSE 

= 2.61, r = 0.48) followed by the VGG19 (MAE = 1.32, MSE = 2.98, r = 0.45). With an average error of 

just above one spikelet, it is possible that counting methods could provide enough data with an accuracy 

high enough for use in statistical analyses such as genome wide association studies (GWAS), or genomic 

selection (GS).  

A GWAS was used to identify markers associated with SPS and yield component traits, while 

demonstrating the use of genomic selection (GS) for prediction and screening of individuals across 

multiple breeding programs. The GWAS results indicated similar markers and genotypic regions 

underpinning both KNS and SPS on chromosome 6A and spike length and SPS on chromosome 7A. It 

was observed that favorable alleles at each locus were associated with higher KNS and SPS on 

chromosome 6A and longer wheat spikes with higher SPS on chromosome 7A. Significant markers on 7A 

were observed in the region near WAPO1, the causal gene for SPS on the long arm of chromosome 7A, 

indicating they could be associated with that gene. GS results showed promise for whole genome 

selection, with the lowest prediction accuracy observed for heading date (rgs = 0.30)  and the highest for 

spike area (rgs = 0.62). SPS showed prediction accuracies ranging from 0.33 to 0.42, high enough to aid in 

the selection process. These results indicate that knowledge of the flowering pathway and wheat spike 

architecture and how it relates to yield components could be beneficial for making selections and 

increasing grain yield. 
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CHAPTER I – LITERATURE REVIEW 

 

Origins and Production of Wheat 

Wheat is a cereal crop first cultivated about 10,000 years ago during the Neolithic 

Revolution, the period when society started settled agriculture instead of solely hunting and 

gathering. The forms of wheat cultivated at this time were the diploid einkorn (Triticum 

monococcum) and the tetraploid emmer (Triticum dicoccon) (P. R. Shewry, 2009), wild varieties 

hand-picked by farmers for their desirable traits. Domestication of wheat is associated with two 

main differentiated characteristics resulting from mutation in the wheat genome. The first 

mutation in the Br (brittle rachis) locus on chromosomes 3A and 3B, resulted in a loss of spike 

shattering at maturity (J. Dubcovsky & Dvorak, 2007). In the wild, the spike shattering trait 

would allow for wheat kernels and thus progeny to disperse and grow. For domesticated wheat, 

kernels must be retained by the plant to allow for efficient harvest and utilization. The second 

domestication characteristic results from a dominant mutation in the Q locus on chromosome 

5A(Luo, Yang, & Dvořák, 2000), which is controlled by Tg (tough glumes) loci. This mutation 

allows for free threshing of kernels from wheat heads as opposed to the hulled glumes present in 

early cultivated wheats (P. R. Shewry, 2009). Domesticated wheat has increased seed size, 

reduced tillers, reduced seed dormancy, and more erect growth compared to ancestor species (J. 

Dubcovsky & Dvorak, 2007).  

Common wheat (Triticum aestivum) is an allopolyploid, the result of hybridization of 

cultivated emmer and the diploid wild grass Triticum tauschii (J. Dubcovsky & Dvorak, 2007). 

Emmer is the source of the A and B genomes in common wheat, while T. tauschii is the source 

of the D genome (J. Dubcovsky & Dvorak, 2007; P. R. Shewry, 2009).  This most likely 

happened several times naturally and was selected by farmers for its superior grain yield (P. R. 



 2 

Shewry, 2009). The allopolyploid nature of hexaploid wheat gives it several advantages over 

tetraploid wheat such as a higher adaptability to photoperiods and vernalization, tolerance to soil 

factors such as salt and low pH, resistance to pests and disease, and greater production potential 

(J. Dubcovsky & Dvorak, 2007).  

Production 

 Wheat is one of the three most important cereal crops globally, with annual production 

exceeding 700 million tons (FAO, 2022). This is due in large part to its wide cultivation range, 

which spans from 67ºN to 45ºS (P. R. Shewry, 2009). Ninety-five percent of wheat grown is 

common wheat, which is used for breads, cookies, and pastries. The other 5% of wheat grown is 

durum wheat (Triticum durum), which is used for pasta, semolina products, and some flatbreads. 

A small amount of specialty wheats such as emmer and spelt are also grown (Allan, 1987). The 

five main wheat classes grown are hard red winter wheat, hard red spring wheat, soft red winter 

wheat, white wheat, and durum wheat. The type of wheat grown depends on environment, for 

example, spring wheats are adapted to cold, dry areas (Allan, 1987) or cultural and economic 

need for the crop. Wheat is also nutritionally valuable and provides beneficial dietary 

components such as protein, B vitamins, dietary fiber, and phytochemicals (Peter R. Shewry & 

Hey, 2015). 

Wheat Breeding and Characteristics of Interest 

Wheat Breeding 

As wheat is one of the most widely used and versatile crops, there are many breeding 

programs globally that are dedicated to cultivar improvement. Adaptation is key for a wheat 

cultivar to be productive and profitable. Field trials are generally done in sites that include a 
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variety of different soil types, season times and temperatures, and precipitation events, across a 

breeding program’s target production area (Allan, 1987). There are three main gene systems that 

influence adaptation, including the regulation of plant height (Rht), photoperiod response (Ppd) 

genes, and vernalization response (Vrn) (Blake et al., 2009). Collectively, these loci influence 

many quantitative traits that determine the ability of wheat to thrive in given environment.  

Another factor that varies between environments is pests and disease, and resistant 

varieties are the most cost-effective means of control. Genetic resistance reduces the need for 

application of fungicides and insecticides, reducing overall input cost for a given crop (Wiseman 

& Webster, 1999). Resistance refers to the slowed time of a disease development (Allan, 1987) 

or the ability of a cultivar to produce more high quality output compared to non-resistant 

cultivars at the same infestation or infection levels (Wiseman & Webster, 1999). If a crop is less 

susceptible, the producer will not need to spend as much on pesticides or fungicides to ensure a 

healthy and high yielding crop. Vertical resistance, or resistance to a single pathogen strain, is 

normally a short-term solution. There is a recent push towards long-term or general resistance, 

which normally requires a plant to be resistant to all strains of a pathogen.  

Breeding is necessary for both grain-yield and end-use quality. Enhancing the ability of 

wheat to tolerate extreme heat, drought, flooding, or nutrient deficiencies is vital to future wheat 

production under current and future climate variability and for more stable grain yield production 

against environmental elements that may not be consistent year to year (Allan, 1987). Arguably 

the most important characteristic to producers is the grain yield of a given cultivar. Breeding for 

grain yield is difficult due to the complexity of heritability.  Grain yield is determined by a 

multitude of components and has a low to moderate heritability and is also strongly affected by 

environment (Allan, 1987). Released cultivars that show improved traits must still have 
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comparable yields compared to competitors, making genetic improvement for yield a large focus. 

Grain quality will influence how a given cultivar performs in the market. It can range from 

factors such as protein or mineral content to how the wheat performs in its given end use. For 

example, kernel hardness will affect the ability of wheat to be milled into flour. The ease of 

milling grain to flour and the percentage of grain that can be milled to flour increases value to 

end-users.  

The development of stress tolerant and high yielding wheat cultivars is needed to meet 

future production requirements. The current global population of 7.7 billion people is projected 

to reach nearly 10 billion people by 2050 (UNIES, 2019). In order to meet growing caloric 

demands, it is estimated that the current annual yield improvement of 0.9 percent must increase 

to 2.4 percent annually to double wheat production by 2050 (Ray, Mueller, West, & Foley, 

2013). Therefore, significant genetic gains must be made for long term food security for the 

growing population (Foley et al., 2011) and for increased consumption of meat and dairy 

(Godfray et al., 2010). 

Adaptation Genes 

Variation in Ppd, Vrn, and Rht loci allow for wheat to be adapted to a wide range of 

growing regions while also impacting grain yield and yield component traits. Photoperiodism is a 

plant’s reaction to dark periods, resulting in flowering (Evans, 2016). Photoperiod allows plants 

to adapt to night length across a variety of latitudes (Allan, 1987), allowing for optimal flowering 

time based on geographical location (Shaw, Turner, & Laurie, 2012). Wild-type wheat is a long 

day (LD) plant, meaning it flowers more rapidly as day length increases (Shaw et al., 2012). 

Photoperiod is mainly controlled by the Ppd-1 locus, with homoeologous copies of the gene in 

the short arm of chromosomes 2A, 2B, and 2D (Law, Sutka, & Worland, 1978; Snape, 
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Butterworth, Whitechurch, & Worland, 2001). The three genome alleles each effect photoperiod 

sensitivity in varying degrees (Bentley et al., 2011). Ppd-D1 has the largest effect on photoperiod 

requirement, followed by Ppd-B1, and Ppd-A1, respectively (Chen et al., 2013; Worland, 1996). 

A photoperiod sensitive cultivar will require long day lengths to initiate flowering whereas a 

photoperiod insensitive (PI) cultivar reacts to temperature instead of day. (Shaw et al., 2012). 

Insensitive genotypes are represented by an “a” and are caused by deletions for both Ppd-D1a 

and Ppd-A1a (Beales, Turner, Griffiths, Snape, & Laurie, 2007; Wilhelm, Turner, & Laurie, 

2008). While mutations for PI alleles are not found in Ppd-B1a, PI can be caused by an increased 

number of copy number variations (CNV) (Díaz, Zikhali, Turner, Isaac, & Laurie, 2012). 

Insensitive alleles are associated with more rapid flowering, which is associated with earlier 

expression of the wheat flowering time locus (TaFT1). Sensitive allele Ppd-B1b was associated 

with higher grain yield (Addison et al., 2016). Photoperiod genes regulate flowering time by 

responding to environmental stimuli, but are not the only adaptation gene that fills this role 

(Kamran, Iqbal, & Spaner, 2014).  

The second major determinant of adaptation is vernalization requirement which is 

controlled in large part by the VRN1, VRN2, and VRN3 genes (Jorge Dubcovsky et al., 2006; Yan 

et al., 2006). Vernalization will prevent winter wheat from flowering too soon in the season, 

which would cause freeze damage to the meristem and flowers (Yan et al., 2003).  This 

adaptation alters the plants cold period requirements for flowering in different environments 

(Allan, 1987). 

The vernalization requirements for a plant are partially determined by VRN1 alleles in the 

5A, 5B, and 5D chromosomes (X. Zhang et al., 2008). The candidate gene for VRN1 is the 

MADS-box gene AP1 (APETALA1) (Yan et al., 2003). AP1 is a meristem identity gene in 
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Arabidopsis required for the transition from vegetative to reproductive growth. It was also found 

that at least two weeks of vernalization was required for AP1 transcription in winter wheat but 

not spring wheat (Yan et al., 2003). Transcripts were observed after a plant was moved from a 

cold room (4ºC) to room temperature, indicating that AP1 is not a cold stress gene. The second 

vernalization gene, VRN2, has been mapped to chromosome 5A (Yan, 2004). The candidate gene 

for VRN2 had similarities with CO-like proteins in Arabidopsis and was named ZCCT1. ZCCT1 

transcripts were present in the apices before vernalization but not after (Yan, 2004). The 

reduction of ZCCT1 transcripts and increase in AP1 transcripts is consistent with epistatic 

interactions between VRN1 and VRN2 (Yan, 2004; Yan et al., 2003). Allelic variation in ZCCT1 

was also associated with a spring growth habit, indicating the role of ZCCT1 in differentiating 

winter and spring classes (Yan, 2004). The third vernalization gene VRN3 was mapped to the 

short arm of chromosome 7B (Yan et al., 2006). VRN3 is in complete linkage with the 

orthologous Arabidopsis flowering time (FT) gene. There is also a relationship between 

polymorphisms in FT, transcript levels, and flowering time of the plant (Yan et al., 2006) 

VRN genes work together in a regulatory pathway based on temperature and photoperiod. 

Before vernalization requirements have been met, VRN2 is upregulated to suppress flowering 

while VRN1 and VRN3 are downregulated (Jorge Dubcovsky et al., 2006) VRN2 will be 

downregulated after vernalization requirements are reached and there is a transition from SD to 

LD, signaling the end of winter months (Yan et al., 2006). Once long days are reached, VRN3 

will be upregulated and will upregulate VRN1 in return, initiating flowering of the plant. 

Upregulation of VRN1 will in turn downregulate VRN2, completing the regulatory feedback loop 

(Yan et al., 2006). Wheat responds linearly to vernalization until its requirement is reached, and 

the vernalization requirement increases with copy number variation of the VRN genes (Díaz et 
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al., 2012). If a cultivar has a dominant Vrn1 and Vrn3 allele, it will not have a vernalization 

requirement and is a spring wheat. However, if a cultivar has a dominant Vrn2 allele it will be a 

winter wheat (Kamran et al., 2014). Varying alleles for these traits cause variance in growth 

stages and timing of flowering between cultivars and could potentially impact yield traits. 

The third growth determinant of adaptation is the effect of semi-dwarfing (Rht) genes that 

became popular after the Green Revolution (Lozada [Unpublished], Carter, & Mason). Rht genes 

improved wheat productivity by increasing resistance to lodging in combination with increased 

harvest index (Gale & Youssefian, 1985). Due to the shorter stature of modern cultivars, a larger 

number of assimilates produced by photosynthesis are available to supply the developing grains 

as opposed to the stems or vegetative tissue (Chapman, Mathews, Trethowan, & Singh, 2006). 

Dwarfing genes are identified as either gibberellin (GA) sensitive or GA-insensitive (Gale & 

Youssefian, 1985). They are categorized between sensitive and insensitive based on their 

response to applied GA phytohormones, a class of hormones characterized for controlling stem 

elongation (Pearce et al., 2011).  

A large number of Rht genes have been identified across the wheat genome, each with 

varying effects on plant height. Rht-B1 and Rht-D1 code for DELLA proteins, which are 

regulators that repress growth before an increase in GA causes targeted degradation (Pearce et 

al., 2011). Reduced GA sensitivity has been detected for mutations altering the function of 

DELLA proteins in Arabidopsis and rice, indicating a potential cause for dwarfism in wheat 

(Pearce et al., 2011). Further dwarfing alleles for Rht-B1 and Rht-D1 were identified, each 

having varying effects on plant height. A more severe dwarfing allele, Rht-B1c, is caused by a 

frame insertion causing an addition of amino acids to the coded DELLA protein (Pearce et al., 

2011). Markers developed for Rht-B1b on chromosome 4B and Rht-D1d on chromosome 4D are 
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“perfect”  markers representing the base pairs responsible for dwarfing and are associated with 

an increased yield (Ellis, Spielmeyer, Gale, Rebetzke, & Richards, 2002).   

Flowering Pathways- Comparing Wheat to Arabidopsis 

Flowering pathways have been extensively studied in Arabidopsis thaliana. Like winter 

wheat, Arabidopsis also has a vernalization requirement, meaning it could be useful in the 

understanding of the wheat flowering pathway. Arabidopsis has four major pathways involved in 

flowering; these include vernalization and photoperiod pathways, which respond to 

environmental stimuli, and autonomous and gibberellin (GA) pathways which function 

independently. These pathways are defined as regulating repressors that activate flowering 

(Boss, Bastow, Mylne, & Dean, 2004). Vernalization and the autonomous pathway downregulate 

FLOWERING LOCUS C (FLC), a MADS-box gene involved in flowering repression, to help 

initiate flowering (Searle et al., 2006). Arabidopsis follows a circadian clock pattern by using 

photoreceptors to regulate flowering (Carré, 2001). The photoperiod pathway responds to long 

days to initiate floral transition by increasing CONSTANS (CO) expression which activates FT 

expression (Thomas, 2006). Once FT has been activated it interacts with the bZIP transcription 

factor FD and activates meristem identity genes APETALA1 (AP1) and LEAFY (LFY) (Abe, 

2005). FT and the GA pathway increase expression of SUPPRESSOR OF OVEREXPRESSION 

OF CO1(SOC1), which in turn activates LFY expression through AGAMOUS-LIKE 24(AGL24), 

a MADS-box transcription factor (Moon, Lee, Kim, & Lee, 2005). These mechanisms allow for 

optimal flowering time in Arabidopsis. For reproduction, the genetics of the flowering cycle 

passed on in the gametes will allow the new plant to flower in the appropriate time for their 

environment (Boss et al., 2004) 
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The main photoperiod and autonomous pathways are conserved between Arabidopsis and 

wheat, with earliness per se (Eps) in wheat being the equivalent of the autonomous pathway in 

Arabidopsis (Shitsukawa et al., 2007), with potential evolutionary differences between species in 

flowering time (FT) (Higgins, Bailey, & Laurie, 2010). While FLC is the main flowering 

repressor in Arabidopsis, it is absent in cereals where VRN2 acts largely as a repressor (Yan, 

2004). FLC, SOC1, AP1, AGL24 and other MADS-box genes in Arabidopsis play an important 

role in the transition to flowering, indicating similar genes may be important in other species. 

Unlike wheat AP1, wheat SOC1 (WSOC1) expression was not effected by photoperiod or 

vernalization and was upregulated by application of gibberellin A3 (GA3) (Shitsukawa et al., 

2007). This indicated that WSOC1 could be part of a GA pathway in wheat, as SOC1 is part of 

the GA pathway in Arabidopsis. While the flowering pathways of wheat and Arabidopsis are not 

identical, understanding the pathways for Arabidopsis could allow us to better understand the 

underlying mechanisms in other species. 

Yield Components and Total Grain Yield 

Grain yield in wheat is quantitatively inherited.  However, according to heritability 

estimates, morphological traits that affect grain yield may be more heritable than yield itself. 

(Erkul, Unay, & Konak, 2010) Narrow-sense heritability estimates, denoted by h2 (Bernardo, 

2020), indicate the magnitude of genetic gain transmitted from the parents to the progeny (Erkul 

et al., 2010). Narrow-sense heritability is the amount of allelic variation as a proportion of total 

expressed phenotypic variation (Bernardo, 2020) Higher heritability estimates help the breeder 

know what traits will likely pass on to progeny (Khan, Salim, & Ali, 2003). Total grain yield is 

the combination of each yield component trait. Since many yield component traits have negative 
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correlations, it can become difficult to increase yield in newer cultivars and current research 

focuses on looking for the genetic components of individual traits. 

The three major adaptation gene systems not only determine growth and development in 

a variety of environments, they also play a role in the expression of yield components. 

Photoperiod sensitivity, vernalization, and plant height underpin spike development and have 

been linked to yield component traits (Cao et al., 2019). The quantitative trait loci (QTL) Vrn-A1 

on the long arm of chromosome 5A has been associated with yield components such as spikelet 

spike-1(SPS), number of tillers, and 50 grain weight (K. Kato, Miura, & Sawada, 2000). Ppd-D1 

and Rht-B1 genes have also been identified as candidate genes for QTL rich clusters for thousand 

kernel weight (TKW), number of kernels spike-1, and spike number (Cao et al., 2019), indicating 

the pleiotropic effects of these loci.  

 While there are genetic components associated with individual yield components, the 

phenotypic traits are also correlated with each other. Spike length is positively correlated with 

both SPS and grain number (Cao et al., 2019) as well as heading date and flowering time 

(Alqudah et al., 2020). Spikelet number and grain number are also positively correlated; 

however, spikelet spike-1 and thousand kernel weight are negatively correlated (Cao et al., 2019). 

Grain number is also negatively correlated with TKW and grain size, indicating if a plant spends 

more energy producing more kernels, it may have less energy and assimilate to produce larger 

sized kernels. 

Spikelets Spike-1 

As wheat spikes (Fig. 1.1) are the flower of the plant, there are multiple physiological and 

environmental factors that affect their formation. Spikelets spike-1 (SPS) can be defined as the 



 11 

groups of florets positioned at each rachis node with an alternating pattern up the spike (Koppolu 

& Schnurbusch, 2019). SPS is positively correlated with yield and is potentially an important 

morphological trait for increasing total yield (Chen, X. Cheng, et al., 2020) with a linear 

relationship with total grain yield up to 32 spikelets (Rawson, 1970).  

 

Figure 1.1. A wheat spike showing the alternating pattern of wheat spikelets on the rachis. 

 

Vrn, Ppd, and earliness per se (Eps) gene systems control most aspects of pre-anthesis 

growth phases in wheat (Herndl, White, Graeff, & Claupein, 2008). Each gene system 

contributes to variation of heading time with 70 to 75% coming from Vrn, 20 to 25% from Ppd, 

and approximately 5% coming from Eps (Stelmakh, 1998). Vernalization is the main 
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determinant of heading date and is a regulatory factor in the transition from vegetative growth to 

reproductive growth. The Vrn-A1 gene has pleiotropic effects on total yield, tiller number, grain 

weight, and spikelet number, indicating the importance of flowering time (K. Kato et al., 2000). 

Photoperiod alleles also affect flowering, meaning they also play a role in SPS (Chen, Cheng, et 

al., 2020). The Ppd-1(Ppd-1a) insensitive allele accelerates the spikelet initiation rate, thus 

decreasing SPS (Z. Chen et al., 2020; Zhaoyan Chen et al., 2020; Wurchum, Leiser, Langer, 

Tucker, & Longin, 2018). Ppd-1 and vernalization alleles are responsible for regulating 

FLOWERING LOCUS T (FT) expression, a heading date gene. FT can manipulate SPS by 

altering the duration of the spikelet initiation phase, which may also be influenced by Eps. 

Unlike Ppd and Vrn, Eps genes respond independently of environmental stimuli (Worland, 1996) 

and make up variation that occurs after Ppd and Vrn requirements have been fulfilled (H. Kato, 

Taketa, Ban, Iriki, & Murai, 2001). Since Eps has such a small effect on FT, it is usually mapped 

using QTLs rather than major genes (K. Kato, Miura, & Sawada, 1999). There is evidence 

supporting the influence of heading date on SPS and spikelet differentiation (Z. Chen et al., 

2020; Miura & Worland, 1994). A study using near isogenic lines (NILs) showed that plants 

with the late Eps allele Eps-Am 1-l produced 8.7 more SPS than plants with the early allele 

(Lewis, Faricelli, Appendino, Valárik, & Dubcovsky, 2008). The complete flowering pathway of 

wheat is unknown, however, information from other species and homologs aid in the 

understanding.  

Once the plant is at an appropriate time to flower, other genes play a role in determining 

inflorescence architecture. Once flowering has been initiated, the shoot apical meristem (SAM) 

transitions into an inflorescence meristem (IM)(Boss et al., 2004). The IM in grasses initiates 

floral meristems (FMs) where the florets are formed. Florets contain the reproductive organs of 
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flowers. A set of multiple florets occur at each rachis node are surrounded by leaf-like bracts 

called glumes and make up one spikelet (Koppolu & Schnurbusch, 2019; Sakuma, Salomon, & 

Komatsuda, 2011). The IM is determinate and becomes the terminal spike meristem (Koppolu & 

Schnurbusch, 2019). There are several genes involved in spike morphology, potentially having 

an impact on yield components. 

Adaptation genes related to flowering are known to have pleiotropic effects on spike 

morphology, however, a variety of candidate genes have also been discovered.  One cloned gene 

identified by multiple studies is the Q gene, a domestication gene coding for an 

APETALA2(AP2) family transcription factor (Z. Chen et al., 2020). The Q gene has been linked 

to ear morphology and was identified as a QTL for grain yield and ear grain weight (K. Kato et 

al., 2000). Cultivars containing mutations resulting in loss of Q function exhibit reduced spikelet 

numbers and increased florets spikelet-1 (Z. Chen et al., 2020). TaMOC1, the wheat ortholog of 

rice MOC1 regulates auxiliary stem initiation and has been linked to an increased number of SPS 

in several environments (B. Zhang et al., 2015). TaMOC1-7a HapH has been identified as 

haplotype of the gene with positive contributions to SPS. TaAPO-A1 is another candidate gene 

that is an ortholog from rice ABERRANT PANICLE ORGANIZATION (APO). TaAPO-A1 was 

identified as a candidate gene for several yield component traits including TKW, kernel spike-1, 

and SPS (Cao et al., 2019). One spikelet rachis node-1 is standard in wheat, although 

supernumerary spikelets still occur on some heads (Dobrovolskaya et al., 2015) While multiple 

QTL studies have been done for SPS, there are a lacking number of major QTL as well as 

limited research of introgression of candidate genes. 

 Number of SPS is significantly positively correlated with number of kernels spike-1, 

however, kernels spike-1 is negatively correlated with TKW (Cao et al., 2019). With more 
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assimilate being put towards creating a larger number of kernels, there is less available to 

increase the size of the kernels. In general, cultivars that produce a higher number of kernels will 

have a lower TWK. Since TKW is an economically important trait, a higher value cultivar would 

increase SPS while maintaining or increasing TKW. It has been indicated that this may be 

possible through gene pyramiding (B. Zhang et al., 2015). Sucrose non-fermenting1-related 

protein kinase (SnRK) is a serine/threonine specific protein kinase involved in signal 

transduction pathways of plants. SnRK can also affect carbon metabolism, thus increasing TKW. 

Gene pyramiding TaSnRK2.10-C and TaMOC1-7A (HapH) resulted in an increase for both SPS 

and TKW in eight out of 10 environments. The combination of both favorable alleles may allow 

for the improvement of both yield component traits instead of having the typical negative 

relationship (B. Zhang et al., 2015). 

Tools and Strategies for Breeding 

QTLs and QTL Mapping 

Breeders use different methods to aid the selection of parental lines for new populations 

or for gene introgression through marker assisted backcrossing. The first step in many genetic 

studies is to identify quantitative trait loci (QTL) associated with a trait of interest, utilizing DNA 

markers, usually single nucleotide polymorphisms (SNPs) (Collard, Jahufer, Brouwer, & Pang, 

2005), to construct a linkage map of the genome (M. E. Goddard & Hayes, 2007). Linkage maps 

help identify chromosome regions that have QTL for quantitative traits or find regions 

controlling simple traits (Collard et al., 2005). The presence or absence of these markers and 

their effect on phenotypic measurements can be used to locate QTL associations with 

quantitative traits. A QTL can be considered either major or minor depending on its estimated 

effect on the phenotype (Collard et al., 2005). While major QTLs are generally considered QTLs 



 15 

explaining 10% or more of the phenotypic variation, they are less common. Most variation is 

explained by the combination of several minor QTL. Markers that are positionally close to the 

gene of interest have high linkage disequilibrium (LD) and have lower recombination 

frequencies, meaning they are more likely to be inherited together. Recombination frequencies 

greater than 0.5 indicate that the trait and gene region are unlinked. They are either far apart on 

the same chromosome or located on a separate chromosome. QTLs that are closely linked can be 

utilized for marker assisted selection.  

Once a QTL is located, high resolution mapping may be performed by adding more 

markers in the QTL region to locate the specific gene or genes associated with the traits. 

Significant markers must also be validated across different cultivars and populations with 

differing parental lines to ensures their efficacy to predict the phenotypic outcome. As gene 

markers are identified, they can determine parental combinations that are more likely to have 

desired traits (Collard et al., 2005). MAS can be twice as affective as phenotypic selection and 

provides several advantages (Larkin, Lozada, & Mason, 2019). MAS allows you to select for 

traits that are difficult to phenotype due to expense or low expression, trait selection that relies 

on phenotyping in certain environments or growth stages and allows selection of either 

monogenic traits or quantitative traits. However, it is difficult to validate QTLs across different 

environments and breeding programs, meaning multiple mapping populations would need to be 

developed by breeding programs in differing regions for selection to be accurate. Phenotyping a 

multitude of lines is time consuming for breeders and comes at a large cost. Because of these 

short comings, other methods are preferable for the targeted selection of quantitative traits. 
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Genome-Wide Association Studies 

Another mapping method used for identifying marker trait associations is genome wide 

association studies (GWAS). A GWAS detects associations between genotypes and phenotypes 

within a population (Visscher et al., 2017). Instead of measuring the contribution of QTL on the 

phenotype, a GWAS allows genes associated with a phenotype to be located by whole genome 

genotyping using single nucleotide polymorphisms (SNPs). Marker trait associations (MTA) can 

be identified using GWAS with diverse germplasm, which differs from the biparental 

populations used for locating QTLs (Hamblin, Buckler, & Jannink, 2011). A GWAS relies on 

linkage disequilibrium between SNPs and an association with a measured phenotype (Visscher et 

al., 2017). 

One study conducted a GWAS for 22 traits using 10,653 significant SNPs from 96 wheat 

lines (Alqudah et al., 2020). Three of these traits were related to spike morphology. Flowering 

time and spike length each had 5 MTAs detected while spikelets spike-1 (SPS) had less than 5. 

Twenty-four SNPs in the study had intra-chromosomal interactions that controlled most of the 

agronomic traits phenotyped. Of the three spike morphology traits, flowering time was the only 

trait associated with these 24 SNPs, three of which occurred on chromosome 2A while the fourth 

occurred on chromosome 7A. A genotype-phenotype network showed relationships between 

SPS, spike length, grain number, and flowering time. Spike length was also related to spike 

weight and flowering time was also related to plant height and heading date. Another study 

conducted a GWAS for five spike morphology traits using a population of 25 synthetic 

hexaploidy wheat lines, 80 landraces, and 87 cultivars. One hundred and eighty-four significant 

SNPs were detected, with 51 and 28 related to spike length and SPS respectively (Liu et al., 

2018). SNP clustering from this study identified two haplotypes for spike length on 
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chromosomes 2A, 2B, and 2D. Haplotypes Hsl-2A-2 and Hsl-2B-2 had significantly longer 

spikes than their counterparts, Hsl-2A-1 and Hasl-2B-1. However, there was no significant 

difference in spike length between the Hsl-2D-1 and Hsl-2D-2 haplotypes (Liu et al., 2018). A 

spike length SNP cluster on 6A contained four associated haplotypes, where haplotype Hsl-6A-4 

displayed significantly longer spike than haplotypes Hsl-6A-1~3. A kernel spike-1 and SPS 

cluster on 7B included two associated haplotypes. Hkps/sn-7B-2 was found to be the advantage 

haplotype over Hkps/sn-7B-1, but was only identified in landraces and none of the cultivars 

examined (Liu et al., 2018). These studies indicate the success of utilizing GWAS for identifying 

genetic regions associated with spike traits, which could allow breeders to further understand the 

genetic background of spike morphology. 

Genomic Selection 

 Genomic selection (GS) is a modified form of MAS in which markers across the genome 

are used to identify breeding values based on genotypes (Ganal, Plieske, Hohmeyer, Polley, & 

Order, 2019). The first step in genomic selection is developing a training population. This is 

created using a panel of genotyped and phenotyped developed using genome wide markers 

(Larkin et al., 2019). The training population is then used to train a model that calculates 

genomic estimated breeding values (GEBVs). GEBVs account for all markers within the 

genotype, allowing for a larger amount of variation to be captured in GS compared to MAS 

(Newell & Jannink, 2014). The GEBVs are then used to make selections from a validation 

population which has been genotyped but not phenotyped. The more closely related the training 

population is to the validation population, the more accurate GS will be (Spindel et al., 2015). 

This method allows for progeny with promising genetics to be retained prior to phenotyping each 

line (Ganal et al., 2019). 
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 Genomic selection (GS) first gained traction in animal breeding programs (Meuwissen, 

Hayes, & Goddard, 2001) until high-throughput genotyping allowed for better implementation in 

plant breeding programs. It is more cost effective to implement GS in earlier generations, making 

the accuracy of prediction important (Bassi, Bentley, Charmet, Ortiz, & Crossa, 2016). For 

success in any given crop, the model, training population, linkage disequilibrium, and selection 

candidates need to be adjusted for the highest accuracy (Goddard, 2009). Selection response 

depends on training population size and relatedness of the training population to the validation 

population (Lozada, Mason, Sarinelli, & Brown-Guedira, 2019). When the markers and QTL are 

closely linked, the size of the training population will determine accuracy (Goddard, 2009). 

However, if they are not closely linked, accuracy needs to be improved by having a training 

population more closely related to the selection candidates. GS has been successfully 

implemented for quantitative traits in wheat, each with varying results. Multi-environment and 

multi-trait analysis GS models have been generated for selection of wheat characteristics (Ward 

et al., 2019). A genomic best linear unbiased prediction (GBLUP) multi-environment model was 

tested against one cross validation set that would test accuracy under addition of new genotypes 

(CV1) and a second cross validation set that would test accuracy is phenotypes for some 

genotypes were not collected across all environments in a given year (CV2). The GBLUP 

models using CV1 and CV2 had coefficients of determination of 0.42 and 0.87 respectively. The 

model using CV1 had a mean predication ability of 0.37 for grain yield across environments 

while the model using CV2 were greater than 0.90 (Ward et al., 2019). Even though grain yield 

prediction was lower using the CV1, the model still had prediction abilities of 0.55 or higher for 

other characteristics such as plant height, grain test weight, and thousand kernel weight (TKW) 

(Ward et al., 2019). These higher prediction abilities still demonstrate the potential of using GS 
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for yield related traits. While these results show promise for using GS as a genomic prediction 

method for complex traits in crops, accurate phenotypic data for training populations remains 

key for increased model accuracy (Bhat et al., 2016).  

High Throughput Phenotyping Using Image Analysis 

A phenotype is the resulting characteristic of a genotype and is needed to observe genetic 

associations with physiological outcome. The development of next-generation sequencing has 

greatly increased the efficiency of genomics and accuracy of analysis for plant breeding 

(Koboldt, Steinberg, Larson, Wilson, & Mardis, 2013). While the increased number of 

sequenced genomes is a large advancement for the genomics side of research, phenotyping still 

lags behind (Houle, Govindaraju, & Omholt, 2010). Since phenotypic information is needed to 

discover marker-tra  it associations, GWAS and MAS methods in breeding are negatively 

affected by the phenotyping bottleneck (Furbank & Tester, 2011; Minervini, Scharr, & Tsaftaris, 

2015). There has recently been a push to create high-throughput phenotyping techniques to 

increase the rate at which we can understand phenotypes or pleiotropy, a single gene producing 

several unrelated effects, responsible for complex traits in plants such as yield (Houle et al., 

2010). Advancements in phenotyping technology can also help increase the amount of data used 

to help us understand complex traits such as yield. 

Using imaging as a tool for high-throughput phenotyping has become more accessible 

due to the lower cost of cameras and open-source coding and tools for required analysis (Gehan 

& Kellogg, 2017). Imaging can be used at macroscopic and microscopic level and with regular 

cameras or infra-red cameras depending on the scientific question being answered (Noah 

Fahlgren Maximilian Feldman Malia, 2015). Images can be taken at a single maturity point or 

may utilize time lapse imaging for things such as color, growth, or leaf shape using a Raspberry 
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Pi, a credit card sized computer that can streamline collection and analysis of image data 

(Minervini, Giuffrida, Perata, & Tsaftaris, 2017; Tovar et al., 2018). Depending on funding and 

ingenuity, phenotyping devices can be generated in lab by researchers for little to no cost 

compared to paying private companies for phenotyping services, making phenotyping using 

imaging accessible (Gehan & Kellogg, 2017). 

While adequate and appropriate imaging techniques are crucial, data analysis is the more 

difficult aspect of high-throughput phenotyping. Like most genomics work, a small background 

in basic computing is beneficial. The first step is to be able to differentiate the relevant aspects of 

the image, such as leaves of spikelets, from the background (Gehan & Kellogg, 2017). This can 

be done using open source programs such as ImageJ, an imaging platform that can be customized 

using macros (Caroline, Wayne, & Kevin, 2012; Hartmann, Czauderna, Hoffmann, Stein, & 

Schreiber, 2011), or PlantCV, and imaging platform customized using basic Python (Noah 

Fahlgren Maximilian Feldman Malia, 2015). The type of data needed from the images will 

dictate if imaging platform tools are capable of carrying out the data analysis, or if more 

computer science-based automation such as machine learning could be trained to extract 

information from the images (Gehan & Kellogg, 2017). The most important aspect is ensuring 

the analysis is reproducible, precise, and accurate to ensure reliable data and results. With a 

higher demand for new varieties, it is critical to implement high-throughput phenotyping 

capabilities to improve the breeding process. 

Machine Learning 

 Taking time to generate images is considered low-throughput (Gehan & Kellogg, 2017), 

and analyzing images manually is tedious, more prone to error, and time consuming (Stuart et 

al., 2019). Machine learning (ML) algorithms can increase efficiency by automating the analysis 
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portion of imaging (Gehan & Kellogg, 2017; Tsaftaris, Minervini, & Scharr, 2016), especially 

with large datasets (Rousseau, Dee, & Pridmore, 2015). ML is a computerized model that can 

learn patterns from data and can make decisions (Singh, Ganapathysubramanian, Singh, & 

Sarkar, 2016). There are several methods for generating a ML model depending on the task 

(Pridmore, French, & Pound, 2012). However, the main idea behind each method is the ability to 

find generalized trends or similarities and dissimilarities between images provided (Singh et al., 

2016). 

 The first step of generating a ML model is preparing the training dataset. The data must 

be presented to the ML algorithm in a way it may be understood and used, known as feature 

extraction (Tsaftaris et al., 2016). Preparing the images could include minor changes such as 

cropping images, increasing contrast, or removing the background (Singh et al., 2016). This 

removes noise from the images, allowing more reliable data to be obtained (Tsaftaris et al., 

2016). To finish preparing the dataset, a learning process must be chosen. ML algorithms can be 

trained using supervised or unsupervised training methods. For supervised learning, images are 

labeled in a way that helps the computer identify information in the image (LeCun, Bengio, & 

Hinton, 2015). The model will map output labels to the input image it receives (Singh et al., 

2016). In unsupervised learning, the training data remains unlabeled before going through the 

learning process. In this method the model will identify structures in the image. Allowing the 

model to select what information it finds meaningful to use without input from the user. Finally, 

a semi-supervised model can be used. This means that parts of the training dataset images are 

labeled and part of it remains unlabeled (Singh et al., 2016) 

 A modeling objective must also be chosen for the ML method (Singh et al., 2016). A 

discriminative model is trained to discriminate between two different data patterns, many of 
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which are taught using supervised learning (Singh et al., 2016). Since these models are built for a 

predetermined task, they do not learn the features of objects in the image. A generative model is 

able to take the data pattern from the input dataset and generate synthetic images, allowing the 

model to perform several decision tasks simultaneously (Singh et al., 2016). Discriminative 

models usually perform better than generative models when larger amounts of training data are 

available, especially for classification tasks (Singh et al., 2016). 

 After a ML model is trained, a new dataset must be used to validate the algorithm. This 

dataset is known as the validation dataset and can be part of the population used in the training 

dataset or may come from a different population entirely (Singh et al., 2016). This tests the 

consistency and reliability of the model. Once accuracy of the model is deemed to be high 

enough, it may be regularly used for analysis (Tsaftaris et al., 2016). 

Deep Learning 

 Deep learning(DL) is an emerging sub-section of ML where the features are not designed 

by human engineers, but instead learned from data using a general purpose learning procedure 

(LeCun et al., 2015). DL is able to perform image-based tasks such as segmentation, detection, 

localization, and classification (LeCun et al., 2015). While it is not commonly found in plant 

phenotyping literature, it excels at tackling large datasets with more complex data analytics 

questions (Ubbens & Stavness, 2017). DL is an example of the representation method, a method 

in which raw data can be fed to the model and have the representations required for detection or 

classification discovered automatically (LeCun et al., 2015). DL has multiple different layers of 

non-linear modules that start with raw data and transform the representation at each level until 

the output layer is reached. Convolutional neural networks (CNNs) are a class of deep learning 

methods composed of several different layers of connected processors called neurons 
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(Schmidhuber, 2015). The convolutional layer and pooling layers apply filters to the input data 

and represents the presence or absence of edges at particular orientations of the image and detect 

motifs in these arrangements, despite slight differences in edge positions (LeCun et al., 2015; 

Ubbens & Stavness, 2017). The third layer type is the fully connected layer. These final 

connected layers receive the output data from the convolutional and pooling layers, reshaped into 

a feature vector, as their input. The output layer is activated according to the type of analysis 

being performed, such as classification or regression (Ubbens & Stavness, 2017). DL does not 

require the preprocessing of images like traditional ML and has been able to outperform 

traditional ML techniques for tasks such as detection and segmentation (Girshick, 2015). Due to 

its ability to handle large datasets and complex analysis, DL is a proposed candidate for plant 

phenotyping (Tsaftaris et al., 2016). DL has been shown to greatly improve tasks such as leaf 

counting from images taken in controlled environments (Ubbens & Stavness, 2017). While hand 

created pipelines can be used for leaf counting, CNNs are able to account for varying factors of 

objects it is counting such as varying shapes or overlapping, making it optimal for analysis of 

different individual plants (Ubbens & Stavness, 2017).  
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CHAPTER II: PHENOTYPING AND PREDICTING WHEAT SPIKE 

CHARACTERISTICS USING IMAGE ANALYSIS AND MACHINE LEARNING  

 

INTRODUCTION 

 

Phenotypes are the resulting characteristics of a genotype and genotype by environment 

interaction. Accurate phenotyping is vital to genetic improvement through breeding and for 

discovery of marker-trait associations, genome-wide association studies, marker-assisted 

selection, and genomic selection (Furbank and Tester 2011, Minervini, Scharr and Tsaftaris 

2015). While advancements in technology for generating high-density genotypic data have 

increased the efficiency of genomic analysis (Koboldt et al. 2013), phenotyping methods are still 

lagging (Houle, Govindaraju and Omholt 2010). There has recently been a push to create high-

throughput phenotyping (HTP) techniques to increase the rate at which we can understand and 

predict complex traits such as grain yield. Multiple HTP approaches are now being evaluated and 

deployed in plant science research, including sensors, unoccupied ariel vehicles (UAVs), and 

imaging.  

Recently UAVs have gained popularity for in-field phenotyping as remote sensing 

capabilities improve (Araus et al. 2018). UAVs allow for images or videos of large areas of land 

to be taken in short periods of time, allowing for several field trials to be phenotyped in a single 

day. UAVs are highly customizable given the ability to choose sensors and cameras attached. 

Using this remote sensing technique allows for the observation of physiological and spectral 

traits while also limiting the amount of labor, time, and cost associated (Krause et al. 2020). 

Sensors on drones can generate heat map and reflectance data which can be used for vegetative 

indices or chlorophyll content to predict plant health (Huete et al. 2002, Condorelli et al. 2018). 
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While UAVs allow efficient in-field data collection, they have a high entry cost and do not allow 

for highly detailed images of individual plants.  

Images taken in controlled settings take more time and labor to collect, but require lower-

cost equipment and can provide varying images ranging from a microscopic to macroscopic 

level. Imaging techniques are highly reproducible and cover a variety of applications ranging 

from microscopic to macroscopic subjects (Furbank & Tester, 2011; Minervini et al. 2015), 

capturing a single maturity point in time, or creating time-lapse data throughout a field season 

(Fahlgren and Maximilian Feldman Malia 2015, Gehan and Kellogg 2017). While the collection 

of image data is important, an efficient analysis pipeline is also critical to maximize output and 

not just input of data. 

 Machine Learning (ML) is a computerized model that can learn patterns from data and 

make decisions (Singh et al. 2016) While there are multiple types of models used for machine 

learning, the main idea behind computer vision is the detection of similarities and dissimilarities 

between the images provided. ML has gained popularity for use in HTP in plant breeding 

programs due to the ability to automate the analysis process and increase efficiency (Gehan and 

Kellogg 2017, Tsaftaris, Minervini and Scharr 2016). Models can be trained using supervised 

methods, with labels for images during the time of training, or unsupervised methods, which 

allows the model to decide the most meaningful features of an image (Singh et al. 2016). 

Training an ML model requires your dataset to be divided into three different parts 

including: 1) a training set where the model will learn how to identify relevant aspects based on 

its task, 2) a validation set for testing the accuracy of the model, and 3) a test set. The validation 

set allows for fine-tuning of the model’s hyperparameters to increase accuracy to the desired 

level before the test set is used. The test set is part of the dataset that the model has never seen 



 38 

and was not used for training (Singh et al. 2016). For supervised learning, training sets labeled 

with the correct information are an input to the model so that it can learn the associations 

between the provided image and the associated label. Unsupervised learning does not provide 

any labels with the validation set and allows the algorithm to make its own conclusions.  

 A subset of ML, called deep learning, uses feature vectors not designed by human 

engineers (LeCun, Bengio and Hinton 2015). Deep learning models have different layers of 

nonlinear modules that can transform data into different representations at each layer until an 

output is reached. This structure allows deep learning models to excel with large datasets and 

more complex data analytics and is commonly found in plant phenotyping literature (Ubbens and 

Stavness 2017). Convolutional neural networks (CNNs) are a class of deep learning methods 

where the processing layers are convolutional layers and pooling layers (LeCun et al. 2015). The 

final layer of a CNN is the fully connected layer, which takes the output from the processing 

layers and reshapes them back into a single column for processing based on the type of model 

being used, such as classification or regression (Ubbens and Stavness 2017). CNNs have the 

ability to find edges and motifs in images that improve their ability for image analysis for certain 

plant phenotyping tasks (Tsaftaris et al. 2016) such as counting (Ubbens and Stavness 2017). 

Deep learning can be used for several image-based tasks including segmentation, regression, 

classification, and detection (LeCun et al. 2015). Regression can be used for counting tasks over 

other methods, such as classification, to have a better understanding of how close the predicted 

values are to the true values of an image, providing an error rate that can help assess model 

accuracy.  

 Increasing the amount of phenotypic data available for wheat spike characteristics within 

populations would allow for further genetic analysis of the flowering pathway, which is not fully 
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understood in wheat. The use of imaging and image analysis for plant phenotyping is also 

transferable to other crop species, making it a useful area of research and improvement. The 

objective of this study was to evaluate soft red winter wheat (SRWW) genotypes using imaging 

techniques to phenotype spikelets spike-1 and develop a deep learning model for high-throughput 

analysis of wheat spike images.  

MATERIALS AND METHODS 

Plant Materials 

             The genetic material used in this study was the Historic Gulf Atlantic Nursery 

(HGAWN), a population consisting of 594 soft red winter wheat lines from public breeding 

institutions located in the southeastern United States. The HGAWN included varieties from the 

University of Arkansas (n=103), Louisiana State University (n=109), University of Georgia 

(n=105), North Carolina State University (n=104), Texas A&M University (n=60), Virginia 

Polytechnic Institute (n=44), Clemson University (n=19), and the United States Department of 

Agriculture Agricultural Research Service (USDA-ARS, n=9).  

Experimental design  

 For this study, the HGAWN was evaluated during the 2019 and 2020 growing seasons at 

the Milo J. Shult Agricultural Research & Extension Center in Fayetteville, Arkansas. Plots were 

drill seeded at a rate of 250 seed m-2 in a randomized complete block design with two 

replications. Each plot consisted of a single 1.20 m long row with 0.38 m horizontally between 

rows and 0.60 vertically between each range of plots. During both seasons, pre-plant 

recommendations were followed for phosphorus and potassium and 100 kg hectare-1 of nitrogen 

in the form of urea was applied in a split application in the spring (February and March). 
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Applications of Harmony® Extra (0.28 kg Ha-1) and Axial® (0.6 kg Ha-1) were applied for control 

of annual ryegrass (Lolium multiflorum L.) and other weed species. 

Imaging 

 An imaging device developed by l, was used to achieve consistent lighting and camera 

height across wheat spike image capture (Figure 2.1A). The imaging device was designed for a 

Canon® Powershot G1 X Mark II camera. A 4.5 cm circular hole was drilled into the bottom of a 

0.46-liter bucket using a 4.5 cm drill bit on an electric drill. The hole was drilled into the center 

of the bottom of the bucket with the mouth of the bucket facing downward. After drilling, the 

edges were filed down to protect the camera lens from scratches. A 2 cm hole was then drilled 

into the side of the bucket approximately 10 cm above the base of the mouth while the mouth of 

the bucket faced downwards. 

 The inside of the bucket was painted by spraying with RUST-OLEUM® Camouflage 

Ultra Flat Black so that the interior was fully coated. The paint was cured for five minutes and 

was coated until exterior light was no longer visible through the walls of the bucket. After the 

final coat of paint had cured, tape lights from a 1.8 m GoodEarth® Self-Adhesive Tape Lighting 

Kit were cut to fit the circumference of the bucket. The protective paper strip was removed from 

the back of the lights, allowing it to be directly applied to the inside of the bucket. The lights 

were adhered to the interior of the bucket starting at the 2 cm hole, making sure they remained 

parallel to the mouth of the bucket. Any necessary paint touch ups were performed using an 

artistic brush. 

 For an imaging surface, a 1.29 m by 0.81 m maker board with a smooth particle board 

back was used. The board was painted red using Classic Red Valspar Ultra® Interior Flat Paint 
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until the color was opaque and texture was gone. The red background was chosen for visibility of 

the heads during imaging. Each image was taken on the marker board surface using the imaging 

cap and the Canon® Powershot G1 X Mark II camera. Each of the images were 20.1 megapixels 

and had a focal length of 9 millimeters, and F-stop of f/4.0, and a shutter speed of 1/60 seconds 

at an ISO of 200 with a white balance of 3000 Kelvin. This allowed for clarity in the images and 

definition of the spike for analysis. 

Image Analysis – Image J 

For determination spikelets spike-1 (SPS), six heads were collected from each plot at 30 

to 33 days after the plot was fully headed but before the onset of senescence. All images were 

taken the same day as sampling. The peduncle of all six heads was inserted into a piece of red 

Van Aken® Plastalina Modeling Clay, ensuring visibility of the heads in the image. Each head 

was placed in the clay in a uniform manner so that the rachis faced upwards towards the lens to 

ensure each individual spikelet could be observed (Figure 2.1B). SPS was manually measured 

using ImageJ version 1.52o (Caroline, Wayne and Kevin 2012).  

For SPS counting, each visible spikelet was counted manually starting from the base of 

the spike and counting the alternating spikes as they go up the rachis using the multi-point tool in 

ImageJ. The total number of spikelets in each image was then downloaded to a CSV file. The 

number of times an image name occurred in the CSV file corresponded with the number of 

selections that had been made on the image. This number was then divided by the number of 

heads in the image to obtain the average SPS for that genotype. 
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Figure 2.1. A Phenotyping device allowed for a controlled environment and consistency for photos of 

wheat spikes. (A) A camera rests on top of the device, which was used on the same red background for 

each photo. The black interior of the cover and attached light strip create uniform lighting and minimal 

reflection from camera flash while taking pictures. (B) Controlled environment images of six wheat 

spikes from each plot. Each spike was inserted into clay by the peduncle, rachis side up. Spikelets were 

fully visible for each spike to allow for phenotyping. (C) Example input image for specified deep learning 

algorithms. Each image of six spikes was cropped down to images of individual spikes before having 

their size reduced and padding the images to ensure identical sizing. 

 

Image Analysis – Deep Learning 

For optimal use in a deep learning algorithm, the images needed to be prepared and 

simplified. First, each image of six wheat heads was repeatedly cropped to create six separate 

photos of individual spikes. The cropped photos were padded to the same size of 140 by 600 

pixels (Figure 2.1C). The number of spikelets in each image was counted using the multitool on 

ImageJ, recorded in a CSV file, and used as the associated label for the image. After preparation, 

(A) 

(B) 

(C) 
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12,717 total images were used for model development. The mean spikelets per image was 17.5 

with a range of 11 to 32 spikelets (Table 2.1). Summary statistics for spikelets for prepared 

images are shown in table 1. 

Table 2.1. Mean, standard deviation, and range for all 12,717 images prepared for use in the 

deep learning algorithm. 

 Mean Standard Deviation Range 

Spikelets per Image 17.5 2.02 11 - 32 

 

Four different CNNs were trained for this study, one classification CNN and three 

regression CNNs were trained in this study: The classification model and one of the regression 

models had five alternating sets of convolutional and max-pooling layers The last two regression 

models were a pre-trained Visual Geometry Group (VGG)16 application, and a pre-trained 

VGG19 application (Simonyan and Zisserman 2014). VGG16 and VGG19 models have been 

utilized in several image counting studies (Khaki et al., 2020) (Ubbens and Stavness 2017) with 

the VGG19 model having a larger initial layer size, three additional convolutional layers, and 

two additional filter sizes. The loss function for each model evaluates differences between values 

predicted by the model and their true value. Each of the models was trained using the python 

tensorflow package (Abadi et al. 2016) through the Google Colab application (Bisong 2019). 

Both the VGG16 and VGG19 models were trained using the 1,000 class ImageNet dataset of 

over one million images (Russakovsky et al. 2015) and made available through Keras (Chollet 

2015). Image arrays for the first model were normalized by dividing them by 255 to put vector 

values between 0 and 1, while images for the VGG16 and VGG19 models were preprocessed 

using their respective TensorFlow Keras preprocessing functions. Images were randomly divided 

into three different groups, 70% were used in a training set while 20% were used for the test set 
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and the remaining 10% was reserved as a validation set. Sparse categorical crossentropy was 

used as the loss function for the classification model and is given by  

𝐽(𝑤) = 	− 1
𝑁+[𝑦! log(𝑦.!) + (1 −	𝑦!) log(1 − 𝑦.!)]

"

!#$

 

Where w is the model parameters, 𝑦! is the true label, and 𝑦.! is the predicted label. Spare 

categorical cross entropy was used over cross entropy since there are a large amount of label 

values, all of which are integers. The MSE was used as the loss function for all three regression 

models and is given by  

𝑀𝑆𝐸 = 	 1𝑁+(𝑦! − 𝑦.!)%
"

!#$

 

Where N is the number of samples, 𝑦! is the true value of the label, and 𝑦.! is the predicted label.. 

Mean absolute error (MAE) was the second metric used as to evaluate model performance and 

each model was run for 10 epochs. MSE was used to evaluate model fit and MAE was used to 

evaluate the average deviation of the estimated values for spikelets from the true value in the 

image. The mean and standard deviation for each metric was calculated from 10 iterations of the 

model. 

RESULTS 

While classification models show how well a model can accurately categorize an image, 

regression models demonstrate the error in estimation. In this study, three different regression 

CNNs were trained to predict the number of spikelets on a single spike in an image. The three 

models included a basic CNN with five sets of a convolutional layer followed by a max-pooling 

layer, a pretrained VGG16 model, and a pretrained VGG19 model. The models were then run for 
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20 iterations for robustness and variability, each model was trained using the same training and 

test sets. Mean average error (MAE) and mean squared error (MSE) were used for the evaluation 

of average error in spikelet estimation and fit of the model, respectively. Results for each of the 

models is presented in table 1.  

Classification model 

 The classification model had a mean accuracy of 0.27 with a standard deviation of 0.02 

and a loss of 1.79 with a standard deviation of 0.05. On average, under 30% of images presented 

to the model receive an accurately predicted label, however, the model had consistent accuracy 

across iterations. Accuracy measures for classification models do not represent an error rate to 

understand the difference in predicted values and true values. The accuracy of the model can 

give misleading information about the usefulness of the model because it fails to communicate 

the difference between the true value and predicted values. Because of this, the regression 

models were evaluated for error and fit.  

Regression model 

 For the regression models, the basic CNN model had a mean MAE for the model was 

1.27 with a standard deviation of 0.30 and an MSE of 2.61 with a standard deviation of 1.12. The 

VGG16 model had an average MAE of 1.09 and a standard deviation 0.35 and an MSE of 2.08 

with a standard deviation of 1.26 (Table 2.2). The VGG19 model had an average MAE of the 

model was 1.32 with a standard deviation of 0.38 and an MSE of 2.98 with a standard deviation 

of 1.49. The MAEs indicate that the VGG16 model had the lowest error between the true value 

of spikelets in an image and the value the model estimated, being an average of 1.09 spikelets off 

from the true value. For five of the ten iterations the model was run, the MAE of the VGG16 
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model was less than one with the lowest being 0.65. The standard deviation of MAE was nearly 

equal for all three models with 0.30 for the basic model, 0.35 for VGG16, and 0.36 for VGG19. 

Because the standard deviations were so similar, yet VGG16 had a much lower MAE, VGG16 is 

the most robust model and has the best chance of having a consistently lower error over time 

than the other two models presented. The mean squared error (MSE) allows for comparison of 

the fit of the models, with the VGG16 having the lowest MAE and MSE of all models, showing 

it had the best fit (R2 = 0.53) comparatively as well as the lowest error. VGG19 had both the 

highest MAE and MSE, indicating it is the least successful of the three models. While VGG16 

did not have the lowest standard deviations for all model MSEs, it still has the most consistently 

low MSE across iterations. Figure 2 depicts the MAE and MSE for all models across the ten 

iterations they were run to show an error comparison over time. VGG19 also showed exceptional 

variation across the 10 epochs of each iteration and varied at which epoch optimal training 

occurred. VGG19 was the least optimal of all three models (R2 = 0.45), the basic regression CNN 

had the second best fit (R2 = 0.48). Regressions comparing predicted values to true values of 

spikelets are shown in figure 3. 

 

Table 2.2. The mean and standard deviation of accuracy and loss for the classification model and 

mean absolute error (MAE) and mean squared error (MSE) means and standard deviations for 

each of the three regression models.  

Model Accuracy Loss 

Classification   

   Basic Model 0.27 ± 0.02 1.79 ± 0.05 

Model MAE MSE 

Regression   

   Basic Model 1.27 ± 0.30 2.61 ± 1.12 

   VGG16 1.09 ± 0.35 2.08 ± 1.26 

   VGG19 1.32 ± 0.36 2.98 ± 1.49 
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Figure 2.2. Comparisons of the accuracy and loss across iterations for the classification model and the the 
(B) MAE and (C) MSE between the basic, VGG16, and VGG19 regression models over 10 iterations. 

The performance of each model varies over each iteration where no model was the best model for all ten 
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iterations. VGG16 had the lowest MAE and MSE compared to the basic model and VGG19 model for 

more iterations than any other regression model. 

 

 

 

 

Figure 2.3. Regressions of predicted spikelet numbers versus true spikelet values in each image for the 
basic regression CNN, VGG16 regression, and VGG19 regression models. The x-axis is the true values of 

spikelets present in each image and the y-axis is the value of spikelets predicted by each respective model 

for each image. Displayed within each graph is the equation of the regression line and the coefficient of 

determination (R2). 

 

DISCUSSION 

Phenotyping through imaging promises a cheap, accurate, and easily reproducible means 

of collecting data from lines in a plant breeding program. Developing means of phenotyping that 

allow for a larger amount of data collection is crucial to improving the efficiency and accuracy of 
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a breeding pipeline. The use of deep learning for high throughput phenotyping in plant breeding 

is promising, but further development and fine-tuning of hyperparameters is needed to generate 

optimal models. The objective of this study was to demonstrate the capabilities of imaging for 

the high-throughput phenotyping of wheat heads using deep learning models to analyze spikelets 

spike-1. Moving forward with current research, models should be evaluated using validation data 

and tested in analyses that can be compared to previously performed research. Regression 

models showed more potential than classification models for counting algorithms based on the 

inability of classification models to take error into account. It has been shown that the amount of 

data produced is more important than the accuracy of the data (Lane and Murray 2021), but the 

acceptable threshold for analyses in plant breeding programs must be discovered prior to 

implementation. 

Counting has several uses in agriculture and is commonly seen in ML models designed in 

other studies such as counting leaves (Ubbens and Stavness 2017, Miao et al. 2021) and corn 

stalks in fields (Khaki et al. 2020). Counting is often used for features such as leaf number due to 

its correlations with various traits depending on the species. Generating a model for SPS not only 

provides a resource for phenotyping wheat spike characteristics but can also contribute to the 

development of models designed for similar tasks in agriculture. Both regression (Miao et al. 

2021, Ubbens and Stavness 2017) and detection-based methods (Khaki et al. 2020) have been 

implemented using sets of annotated images.  Miao et al., 2021 had an agreement rate ranging 

from 0.33 to 0.45, which is the proportion of perfect predictions, and MSEs ranging from 0.92 to 

1.72. This is most comparable to the basic classification model used for counting spikelets, 

which had an average accuracy rate of 0.27 and an MSE of 1.79. Ubbens and Stavness, 2017 

used regression to count Arabidopsis leaves with MAEs of 0.41 and 0.61 as well as tobacco 
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leaves with an MAE of 0.61. Similar structure to the basic CNNs performed in this study allowed 

for a prediction value less than one leaf away from the true value. This indicates that more 

complex models may be necessary to increase accuracy for wheat spikes since there is more 

room for obstruction in the wheat spike images.  

While an error rate just over one spikelet is still fair, additional error in the model could 

be due to spikelets being more difficult to differentiate in some images. Spikelets get smaller as 

they reach the top of the spike, and are often partially obscured if awned. These differences in 

the spikes within each image could have hindered the ability of the model to learn certain 

patterns of the spikes. An increasing the number of counting models generated increases the 

number of annotated images available for training, making the use of pre-trained models or 

transfer learning more accessible for counting algorithms (Wang, Sun and Wang 2017). Use of 

these methods could help further improve the accuracy of the models, allowing for the efficient 

and reliable use of ML models for high-throughput phenotyping. 

 Another method commonly used for crowd counting, density mapping, could also 

be used for counting objects in an image (Gao et al. 2020). Density mapping works for counting 

tasks by identifying everywhere in an image it detects the object it has been trained to recognize, 

and has been used in agricultural settings for phenotyping using images in field Fields(Khaki et 

al. 2020). The number of annotation points on the density maps are able to be counted, giving the 

number of times an object of interest appears in the image. The ability for a model to be trained 

where the objects of interest are annotated could increase the accuracy of detection. Khaki et al. 

2020, was able to overcome error caused by overlapping by using crowd counting methods with 

manually annotated images. Accuracies of corn stalk counting were measured across several 

different growth stages. Accuracies were highest between growth stages V2 and V4, which is 
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when each plant has emerged and has about three leaves. For the six models tested, MAEs 

ranged from 1.39 to 4.43 and MSEs ranged from 3.57 to 24.4. Even once plants and leave were 

overlapping in stages V5 and V6, MAEs still ranged from 1.91 to 6.24 with MSEs ranging from 

5.38 to 47.61. While accuracies decreased with an increase of overlapping, the comparable 

average errors indicate the robustness of this model, even with images not taken in a controlled 

setting. Density mapping could be useful in our study by training a density mapping model to 

detect spikelets on a wheat spike, which could potentially improve the accuracy of counting 

spikelets. 

CONCLUSION 

This study used imaging techniques to analyze wheat spike characteristics and developed 

deep learning models for high-throughput analysis of wheat spike images. A comparison of 

classification and regression deep learning methods found that regression is more beneficial for 

observing error rates. CNN regression models were able to obtain an average error of 1.09 

spikelets in the best fit model with spikelet values in analyzed images ranging from 11 spikelets 

to 32 spikelets. The use of detection-based methods could further improve this accuracy, 

increasing the utility of ML models as a means of HTP within breeding programs. Many 

methods are implemented by plant breeders for phenotyping crop traits, with little currently 

existing for wheat spike characteristics. Improving the efficiency of analyzing these traits will 

improve breeders’ ability to discover and understand genetic components behind wheat spike 

architecture and their relationship to yield component traits. This will allow for the development 

of more environmentally efficient and higher-yielding cultivars to meet future demands.  
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CHAPTER III: GENOME-WIDE ASSOCIATION STUDY OF WHEAT SPIKE 

CHARACTERISTICS PHENOTYPED VIA IMAGING 

 

INTRODUCTION 

 

The Flowering Pathway in Wheat 

Flowering in plants is a regulated system controlled by several signaling pathways. In wheat 

(Triticum aestivum L.) these pathways determine flowering time, flower formation, and anthesis, which 

factor into the development of kernels and final grain yield (Mouradov, Cremer, & Coupland, 2002). 

While flowering pathways have been extensively studied in model systems such as Arabidopsis thaliana, 

they are not yet fully characterized in crops, including wheat. Gene families in wheat that contribute to 

variation in the timing of head emergence include the Vrn (70 to 75%), Ppd (20 to 25%), and Eps (5%) 

loci (Stelmakh, 1998). These gene families impact important traits in wheat, most notably flowering time, 

but can also be seen in the morphology of the spike including the SW, length, area, and number of 

spikelets.  

Vernalization is the main determinant of heading date and is a regulatory factor in the transition from 

vegetative to reproductive growth. Wheat has three vernalization genes: VRN1, VRN2, VRN3 (Dubcovsky 

et al., 2006; Yan, 2004). VRN1 has three homoleogous copies Vrn-A1, Vrn-B1, and Vrn-D1 on 

chromosomes 5A, 5B, and 5D, respectively.  VRN2 on chromosome 4A (Yan, 2004) and VRN3 on 

chromosome 7B (Yan et al., 2006) have a smaller effect on vernalization than VRN1 (Goncharov, 2004). 

The Vrn-A1 gene has pleiotropic effects on total yield, tiller number, grain weight, and spikelet number, 

indicating the importance of flowering time (K. Kato, Miura, & Sawada, 2000). Homoeologous copies of 

the Ppd gene, Ppd-A1, Ppd-B1, and Ppd-D1 are located on chromosomes 2A, 2B, and 2D, respectively 

(Scarth & Law, 1983; Snape, Butterworth, Whitechurch, & Worland, 2001) with Ppd-D1 having the 

largest effect on photoperiod sensitivity followed by Ppd-B1 and Ppd-A1 (Worland, 1996). Photoperiod 
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alleles also affect flowering and play a role in spikelets spike-1 (SPS) (Chen, Cheng, et al., 2020). The 

Ppd-1(Ppd-A1a) insensitive allele accelerates the spikelet initiation rate, thus decreasing SPS (Z. Chen et 

al., 2020; Zhaoyan Chen et al., 2020; Wurchum, Leiser, Langer, Tucker, & Longin, 2018). Ppd-1 and 

vernalization loci are responsible for regulating FLOWERING LOCUS T (FT) expression, a heading date 

gene. FT can manipulate SPS by altering the duration of the spikelet initiation phase, which may also be 

influenced by Eps. Unlike Ppd and Vrn, Eps genes respond independently of environmental stimuli 

(Worland, 1996) and make up variation that occurs after Ppd and Vrn requirements have been fulfilled 

(H. Kato, Taketa, Ban, Iriki, & Murai, 2001). Since Eps have such a small effect on FT, they are usually 

mapped as quantitative trait loci (QTLs) rather than major genes (K. Kato, Miura, & Sawada, 1999). 

There is evidence supporting the influence of heading date on SPS and spikelet differentiation (Z. Chen et 

al., 2020; Miura & Worland, 1994). A study using near isogenic lines (NILs) showed that plants with the 

late Eps allele Eps-Am 1-l produced 8.7 more SPS than plants with the early allele (Lewis, Faricelli, 

Appendino, Valárik, & Dubcovsky, 2008). While the complete flowering pathway of wheat is unknown, 

information from other species and homologs aid in the understanding, allowing us to make more 

informed breeding decisions that affect economic traits of interest. To determine the remaining genetic 

components of the flowering pathway, additional phenotyping of wheat spikes is needed. 

Spikelets Spike-1 

As wheat spikes are the flower of the plant, there are multiple physiological and environmental 

factors that affect their formation. Spikelets spike-1 (SPS) can be defined as the groups of florets 

positioned at each rachis node with an alternating pattern up the spike (Koppolu & Schnurbusch, 2019). 

Inflorescence architecture is determined by inflorescence meristems and floral meristems (Boss, Bastow, 

Mylne, & Dean, 2004), which form the reproductive organs of the spike (Koppolu & Schnurbusch, 2019; 

Sakuma, Salomon, & Komatsuda, 2011). These morphological traits are of interest because of their 

relationship to grain yield. Spikelets contain several individual florets and produce from two to four 

kernels per spikelet. Dimensional traits are important as the length of the rachis influences the number of 
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spikelets that can develop. SPS is positively correlated with grain number and is potentially an important 

morphological trait for increasing total grain yield (Chen, X. Cheng, et al., 2020) with a linear 

relationship with total grain yield up to 32 spikelets (Rawson, 1970).  

In soft red winter wheat (SRWW), previous research showed a significant variety effect for the spike 

morphology traits spike area (F0.05,48,48 = 2.90, p = 0.0002), spikelets spike-1 (F0.05,48,48 = 2.06, p = 0.0069), 

and spike SW (F0.05,48,48 = 1.98, p = 0.0096) (Winn, Larkin, Murry, Moon, & Mason, 2021). Each of these 

traits regressed against area per spike also showed significant regressions for spike length (F0.05,1,48 = 

15.25, R2 = 0.2450, p = 0.0003), spike width (F0.05,1,48 = 6.72, R2 = 0.1251, p = 0.0127), and approximate 

area per spike (F0.05,1,48 = 22.87, R2 = 0.3273, p < 0.0001). These results indicate that spike dimensions, 

area, and spikelets spike-1 are beneficial traits to research in SRWW 

        Genome-wide association studies (GWAS) is a method used for identifying association between a 

molecular marker and a phenotype of interest general utilizing single nucleotide polymorphisms (SNPs) 

across the entire genome (Visscher et al. 2017). Using genome wide SNPs is useful for identifying small 

effect markers for traits. Genomic selection (GS) utilizes both genotypes and phenotypes to estimate 

breeding values within a population (Ganal et al., 2019). GS uses markers from across the genome, 

allowing for the use of small effect alleles for estimations. GS can increase the rate of genetic gain by 

allowing for the selection of traits earlier in a breeding cycle (Jannick et al. 2010). GWAS and GS are 

beneficial tools for the identification of genetic components related to flowering and yield component 

traits and the selection of these favorable traits within a program. 

To better understand the genetics of wheat spike morphology, a panel of 594 diverse soft red 

winter wheat lines adapted to the southeastern United States was phenotyped using image analysis for 

spike width, spike length area spike-1 (APS), and spikelets spike-1(SPS). Phenotypic data and genotyping-

by-sequencing (GBS) data were used to perform GWAS to find significant marker-trait associations 

(MTA) related to spike width, length, APS, and SPS; The MTAs drawn from the GWAS will be used to 

inform selections of parental lines via genomic selection. 
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MATERIALS AND METHODS 

Plant Materials            

             The Historic Gulf Atlantic Wheat Nursery (HGAWN) is a population consisting of 594 soft red 

winter wheat lines from public breeding institutions in the southeastern United States. Of these, 103 were 

developed by the University of Arkansas, 109 from Louisiana State University, 105 from the University 

of Georgia, 104 from North Carolina State University, 60 from Texas A&M University, 44 from Virginia 

Polytechnic Institute and State University, 19 from Clemson University, and 9 from the United States 

Department of Agriculture Agricultural Research Service (USDA-ARS) in Raleigh, North Carolina.  

              The HGAWN was planted during the 2018-2019 and 2019-2020 growing seasons in October of 

the previous year in a randomized complete block design with two replications in Fayetteville, Arkansas 

at the Milo J. Shult Agricultural Research and Extension Center. Each experimental unit (plot) consisted 

of a single row measuring 1.20 m in length with 0.38 m between adjacent plots.  Nutrient management 

was determined by soil sampling. For 2019, 67 kilograms of urea and 0.28 kilograms per hectare of 

Harmony® Extra were applied in late February. In early March, Axial® was applied at a rate of 0.6 

kilograms per hectare to control for ryegrass. Urea was applied again in late March at a rate of 33 

kilograms per hectare. 

 

Trait phenotyping 

 Heading date (HD) was collected as the date on which half the spikes on the primary tiller of each 

plot had emerged from the boot during flowering. Yield components were determined from a sample of 

10 spike-bearing culms collected from each plot after physiological maturity. Each sample was threshed 

and kernels counted using a DATA Count Jr. seed counter (DATA technologies). Kernels were weighed 
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to determine kernel weight spike-1 and a 1000 kernel weight (TKW). The number of kernels was divided 

by number of spikes threshed to get average kernel number spike-1 (KNS). Total kernels harvested was 

weighed for total kernel weight measurements. Imaging of wheat spikes and the analysis of traits follow 

methods detailed in chapter 2 of this thesis and by (Winn et al., 2021). Briefly, spike characteristics were 

measured from images taken 30 to 33 days after heading with a Canon® Powershot G1 X Mark II 

camera. Six spikes were harvested from each plot for imaging. Each spike was imaged rachis side up and 

ImageJ version 1.52o (Schneider, Rasband, & Eliceiri, 2012) was used to collect spike width (SW), spike 

length (SL), spike area (SA), and spikelets spike-1 (SPS).  

Genotyping 

 All varieties in the HGAWN population were genotyped using a genotyping-by-sequencing 

(GBS) approach.  Library prep was done in Raleigh, North Carolina by the USDA Eastern Regional 

Small Grains Genotyping Lab and sequencing was done at the sequencing lab at North Carolina State 

University. Deoxyribonucleic nucleic acid (DNA) was extracted using a Mag-Bind® Plus kit from Omega 

Bio-tek using the instructions included by the manufacturer. DNA was quantified using Quant-iTTM 

PicoGreen® dsDNA Assay Kits and standardized to 20 nanograms per microliter concentrations. GBS 

libraries were prepared using the Pst1-Msp1 or the Pst1-Mse1 restriction enzymes. Adapters were ligated 

to each line and multiplexed at 192-plex to create libraries, which were then sequenced on a lane of an 

Illumina Hi-Seq 2500 sequencer. Detected single nucleotide polymorphisms (SNPs) were aligned to the 

RefSeq v1.0 wheat reference genome using the trait analysis by association, evolution, and linkage 

(TASSEL) GBS v2 pipeline with a 64 base kmer length and a minimum kmer count of 5 (Bradbury et al., 

2007) . 

Statistical Analysis 

All analysis were performed in R version 4.1.1. Individual site-year and multi-site-year BLUPs 

were calculated using ASReml-R version 4.1.0.160 (Gilmour, Gogel, Cullis, Welham, & Thompson, 
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2015). For individual site-years, data were analyzed using 10 spatial models with the best fit model 

ultimately being an anisotropic exponential variance model. This was modeled using the equation: 

𝑦 = 𝑋𝛽 + 𝑍𝜇 + 	𝜀 

 

Where X is the design matrix for fixed effects and b  is a vector of coefficients for fixed effects, Z 

is a design matrix for random effects and µ is a vector of coefficients for random effects, and  e  is a 

vector of errors with an anisotropic exponential variance model with the structure: 

 

𝐶!" =	𝜙#
|%!&%"|𝜙

'

|(!&("|
 

 

Where x and y are vectors of coordinates and |f1| < 1 and |f2| < 1. The mean of each trait was used 

as a fixed effects and the genotypes were used as random effects (Gilmour et al., 2015).  

Multi-site-year analysis treated pairs of years and locations as individual environments and was modeled 

using the equation: 

𝑦 = 𝑋𝛽 + 𝑍𝜇 + 	𝜀 

 

Where X is the design matrix for fixed effects and b  is a vector of coefficients for fixed effects, Z 

is a design matrix of coefficients for random effects and µ is a vector of random effects, and  e  is a vector 

of errors. The mean of each trait and the environment were treated as fixed effects in the model, and 

genotype by year interaction where constant correlation between pairs of environments was assumed was 

treated as the random effect.  
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Correlations were calculated using functions in base R. Heritability (or repeatability) within each 

site-year was determined using the general broad-sense heritability equation: 

 

𝐻)*+,-+.- =
𝜎/'

𝜎/' +	𝜎.'	 

Where 𝜎/' is the genetic variance and 𝜎.'	is the residual variance. Due to unbalanced sampling 

across years, multi-site-year heritability was estimated using the method proposed by Cullis, Smith, and 

Coombes, 2006 in the lme4 version 1.1-28 package (Bates, Mächler, Bolker, & Walker, 2015). The 

following formula was used: 

 

𝐻10122!3' = 	1 −	 𝜐̅4
5678

2𝜎/'  

 

Where s2g is the genotypic variance and 𝜐̅45678 is the mean variance of a difference of two genotypic best 

linear unbiased predictions (BLUPs). 

GWAS and GS 

The BLUPs generated for yield components and spike morphological traits were used in the 

genome wide association studies (GWAS). GWAS were performed using multi-locus models from the 

mrMLM and mrMLM.GUI version 4.0.2 packages (Y.-W. Zhang et al., 2020).  A principal component 

analysis (PCA) was used to account for population structure using the LEA R package version 3.6.0 

(Frichot, François, & O'Meara, 2015) and a kinship matrix was generated through mrMLM.GUI to 

account for relatedness. A mixed linear model (MLM) approach allowed for the replacement of the 

typical Bonferroni correction to create a less stringent selection criterion. This was done by replacing it 
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with other techniques for Bayesian LASSO or empirical Bayes method, or only implementing it using the 

effective markers for base MLMs (Wang et al., 2016). Six different models were employed in the 

mrMLM package. Additive effects were calculated by fitting a regression model with the marker as the 

independent variable and the phenotype of interest as the dependent variable where the slope of the model 

describes the additive effect.  

 

Random MLMs (RMLMs) follow the basic model   

 

𝑦 = 𝑋𝛼 + 𝑍9:# + 	𝜉 + 	𝜀 

 

Where y is a vector of phenotypic values for all individuals, X is an incident matrix for non-

genetic fixed effects, a is a vector of coefficients for fixed effects, 𝑍9 is a vector of individuals with the 

kth SNP, 𝛾9 is the marker effect of the marker, 𝑘, 𝜉 is a vector of polygenic effects for each genotype 

(𝜉	~	𝑁(0, 𝐾;') with a normal distribution of mean zero and variance 𝐾;', and 𝜀 is residual error (Wang et 

al., 2016). 

 

Multi-Locus Random-SNP-Effect Mixed Linear Model (mrMLM) is based on the random effect 

mixed linear model (RMLM)(Wang et al., 2016), which used a modified Bonferroni adjustment by 

dividing the significance value by an effective value of SNPs instead of using all SNPs. The RMLM is 

used like a first stage screening analysis in the mrMLM model to obtain all markers that have a P-value 

less than 0.01, and eliminate any consecutive makers to eliminate collinearity. Of all remaining markers, 

those that pass the modified Bonferroni adjustment are used to conduct a likelihood ratio test (LRT). Any 

markers that do not pass the Bonferroni adjustment or have a LOD score higher than 1.5 for the LRT are 



 63 

treated as fixed in the model while all other markers are treated as random. FAST multi-locus random-

SNP-effect Mixed Linear (FASTmrMLM), proposed by Tamba and Zhang, 2018, uses a different model 

transformation and least angle regression methods for identifying potentially associated SNPs, reducing 

the runtime of the mrMLM method. 

Model FAST multi-locus random-SNP-effect EMMA (FASTmrEMMA), proposed by Wen et al., 

2017, is also a two-stage GWAS with three alterations in the first stage to enable a faster runtime. A new 

matrix transformation was implemented to multiply the original MLM to whiten the covariance matrix of 

the polygenic matrix and environmental noise, a polygenic to residual variance ratio was fixed to all 

single marker genome tests, and all non-zero eigenvalue vectors were specified to one. In the second 

stage, all SNPs selected in the first stage are placed into an MLM and estimated using expectation and 

maximization empirical Bayes (EMEB) for quantitative trait nucleotide (QTN) identification.  

Iterative Sure Independence Screening EM-Bayesian least absolute shrinkage and selection 

operator (EM-BLASSO), proposed by Tamba, Ni, and Zhang, 2017,  is based on the linear mixed model 

 

𝑌 = 	B𝑋"
<

"=#

𝛽" +	B𝑍9
>

9=#

𝛾9 + 	𝜀 

 

Where 𝑋" is the design matrix and 𝛽" is the 𝑗*? non-QTN effect, 𝑍9 is the corresponding incidence matrix 

determined by genotypes for the locus 𝑘, 𝛾9 is the vector of SNP effects for locus 𝑘, and 𝜀 is the residual 

error term. The first stage of EM-BLASSO screens SNPs using correlations between predictors and 

responses. Kinship and population structure are treated as fixed effects in the model to correct 

phenotypes. A modified version of sure independence screening smoothly clipped absolute deviation 

(SIS-SCAD) is used to select models based on the order of their significant marginal correlation. In the 
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second stage, the estimation stage, the EM-Bayesian LASSO algorithm is used to filter and estimate true 

effects using  

 

𝑌 = 𝑋𝛽 +	B𝑍9𝛾9 + 	𝜀
@

9=#

 

 

Where uncorrected phenotype values are used and denoted by 𝑌, meaning 𝑍9 denotes the kth SNP value 

and 𝑋 is the overall mean and population structure. The variance components and residual variance 

estimator are designed so that at convergence 𝛾D9 = 𝐸(𝛾9) and the prediction error for 𝛾9 is 𝑉𝑎𝑟(𝛾9).  

Polygene-Background-Control-Based Least Angle Regression plus Emperial Bayes (pLARmEB), 

proposed by J. Zhang et al., 2017, uses least angle regression and empirical Bayes for GWAS. The 

genotypic model is expressed by  

 

𝑦 = 1𝜇 +𝑊𝛼 + 𝑍𝛾 + 𝑢 + 	𝜀 

 

Where 𝑦 is the phenotypic value of the 𝑖*? individual from sample size 𝑛, 1 is a n x 1 vector, µ is the total 

average, W is the design matrix for a and a is the fixed effect population structure, Z is the design matrix 

for g and g is random QTN effects, u is polygenic effects, and e is the residual error term. LARS was used 

for selecting SNPs that were most likely associated with traits of interest. Estimations are then made using 

the empirical Bayes reduced model, which is expressed by 

 

𝑦 = 𝑋𝛽 + 𝑍𝛾 + 	𝜀 
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Where y is the phenotypic value, X is the design matrix for fixed effects, b is the vector of fixed effects, Z 

is the design matrix for random effects, g is the vector of random effects, and e is the residual error term. 

The variable selection. By LARS allows the number of variables in the model to be few enough for 

estimation using empirical Bayes. 

Kruskal-Wallis test with Emperical Bayes (PKWmEB), proposed by Ren, Wen, Dunwell, and 

Zhang, 2018, follows the same genetic model as pLARmEB, but also contains a polygenic background 

correction. Based on the polygenic background model, the Kruskal-Wallis test is used to detect if a SNP 

is associated with the trait of interest. Empirical Bayes and the likelihood ratio test are then used for 

marker effect estimation.  

 

For genomic selection, version 4.6.1 of the R package rrBLUP (Endelman, 2011) was used to 

calculate genomic estimated breeding values (GEBVs) using the mixed linear model: 

 

𝑦 = 𝑋𝛽 + [𝑍	0]𝑔 + 	𝜀 

 

Where b is a vector of fixed effects, 𝑔	is a vector of random genotypic values with covariance structure 

𝐺 = 𝑉𝑎𝑟[𝑔]. Residuals follow the structure 𝑉𝑎𝑟[𝜀!] = 𝑅!𝜎A' with Ri = 1 as the default. The population 

mean was included as the fixed effect. Model accuracy was assessed using fivefold cross-validation, 

where genotypes are assigned to one of five folds. The four remaining folds train the model and attempt 

to predict the GEBVs of the fifth fold. The predicted GEBVs and observed BLUPs are then plotted 

against each other to find the prediction accuracy of the model. Cross-validation was run for 20 cycles. 
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RESULTS 

Analysis of phenotypic data 

Summary statistics for individual and multi-site-year analyses are shown in Table 3.1 and Figure 3.1. 

Trait heritability ranged from 0.52 to 0.90, 0.64 to 0.84 and 0.49 to 0.85 for the 2019, 2020, and 

combined analyses, respectively.  

 

Table 3.1. Summary statistics and heritability of traits measured on the 

Historical Gulf Atlantic Wheat Nursery in Fayetteville, Arkansas for the 

2019 and 2020 seasons and combined across years.  

  

Trait Mean Range Heritability √𝑯 rgs 

2019      

Heading (Julian days) 117.9 113 - 125 0.79 0.89 0.31 

1000 kernel weight (g) 36.1 29.1 - 113.1 0.52 0.72 0.38 

Kernels spike-1 45.4 24.4 - 81.2 0.58 0.76 0.25 

Spikelets spike-1 18.25 12.8 - 21.2 0.62 0.79 0.33 

Spike width (mm) 9.9 8.8  - 13.5 0.62 0.79 0.38 

Spike length (mm) 86.3 65.4 - 131.4 0.90 0.95 0.33 

Spike area (mm2) 1073 584 - 2321 0.62 0.79 0.56 

2020      

Heading (Julian days) 105.934 111 - 123 0.84 0.92 0.35 

1000 kernel weight (g) 45.767 18.1 - 51.1 0.64 0.80 0.54 

Kernels spike-1 47.437 16.6 - 77.4 0.80 0.89 0.51 

Spikelets spike-1 17.002 13.3 - 23.2 0.69 0.83 0.35 

Spike width (mm) 10.439 7 - 13.2 0.69 0.83 0.40 

Spike length (mm) 87.505 57.8 - 127.6 0.79 0.89 0.50 

Spike area (mm2) 1079.201 448 - 2537 0.64 0.80 0.60 

Combined analysis      

Heading (Julian days) 111.9 97 - 125 0.49 0.70 0.30 

1000 kernel weight (g) 40.9 18.1 - 60.6 0.85 0.92 0.53 

Kernels spike-1 46.3 19.5 - 81.2 0.73 0.85 0.43 

Spikelets spike-1 17.6 12.8 - 23.3 0.78 0.88 0.42 
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Spike width (mm) 10.1 7 - 13.5 0.63 0.79 0.46 

Spike length (mm) 86.9 59.3 - 131.4 0.76 0.87 0.50 

Spike area (mm2) 1075 448 - 2537 0.85 0.92 0.62 

H = Heritability 

√𝐻 = Square root of heritability 

rgs = Genomic selection accuracy 

 

 

 

 

 

(A) (B) 

(C)  (D) 
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Figure 3.1. Distribution of best linear unbiased predictors (BLUPs) for (A) heading date (Julian 

days)(HD), (B) 1000 kernel weight (g)(TKW), (C) kernels spike-1 (KNS), (D) spikelets spike-1 (SPS), (E) 

spike width (mm)(SW), (F) spike length (mm) (SL), and (G) spike area (mm2) (SA) from the Historic 

Gulf Atlantic Wheat Nursery (HGAWN) for 2019, 2020, and the combined years. 

 

Phenotypic correlations were generally consisted across seasons. In 2019,  TKW was negatively 

correlated with SPS (r = -0.11, p < 0.01) and KNS (r=-0.096, p < 0.05). KNS was positively correlated 

with SPS (r=0.37, p < 0.0001), spike width (SW) (r=0.14, p < 0.001) and spike length (SL) (r=0.49, p < 

0.001) and was negatively correlated with TKW (r=-0.09, p < 0.05). SL and SPS had the highest 

correlation of (r=0.49, p <0.0001). SA was not significantly correlated with any traits. (Figure 3.2A). 

In 2020, TKW was again negatively correlated with SPS (r = -0.14, p < 0.007) and KNS (r = -

0.24, p < 0.0001). KNS was positively correlated with SPS (r = 0.47, p < 0.0001) and SL (r = 0.25, p < 

(E) 
(F) 

(G) 
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0.0001). KNS and SW had the highest correlation (r = 0.459, p <0.0001), and SL and SPS had the second 

highest correlation (r = 0.45, p < 0.0001). All yield component traits had a significant relationship with 

other yield component traits (Figure 3.2B). 

When combined across years, TKW was negatively correlated with SPS (r = -0.15, p < 0.001) 

and KNS (r = -0.19, p < 0.0001). KNS was positively correlated with SPS (r = 0.49, p < 0.0001) and with 

SL (r = 0.27, p < 0.0001). SPS and KNS had the highest correlation and each had a significant 

relationship with all yield component traits (Figure 3.2C). 
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Figure 3.2. Heatmaps of best linear unbiased prediction (BLUP) correlations between heading date (HD), 

spike area (SA), spike length (SL), spike width (SW), spikelets spike-1 (SPS), kernels spike-1 (KNS), and 

1000 kernel weight (TKW) for the Historic Gulf Atlantic Wheat Nursery (HGAWN) for the (A) 2019, (B) 

2020, and (C) combined years.  

 

Summary of Marker Trait Associations  

 For the combined analysis, 32 MTA were identified for HD, 33 for TKW, 19 for KNS, 38 for 

SPS, 26 for SA, 19 for SW, and 26 for SL. All seven traits had MTA identified by all six models except 

for HD and SW, where no MTA were identified by FASTmrEMMA. The least stringent models were 

pLARmEB and ISIS EM-BLASSO, which identified 47 and 53 MTA across all traits, respectively. 

FASTmrEMMA was the most stringent of the models with only 10 MTA being identified between all 

seven traits. While the results presented herein will focus on SPS and related MTA, the full results for 

significant MTAs are in Supplemental Table 1.  

 

 

MTA for Spikelets Spike-1 and Related Traits 

 SPS had a large number of MTA identified, with several part of a large peak on chromosome 7A. 

SNP S7A_672854561 was the only SNP in the peak to be identified by multiple models and had an LOD 

ranging from 6.69 to 7.16 and the minor allele had an additive effect of -0.77 spikelets. S7A_672045448 

and S7A_672148737 were the most significant SNPs in the peak with LOD of 11.65 and 10.31 and minor 

allele additive effects of 0.65 and 0.68 spikelets, respectively. Significant markers on 7A generally 

explained less than R2 < 10%, except for S7A_673066304 which had an R2 = 11.1% and a minor allele 

additive effect of -0.74.  One SNP on chromosome 5A, S5B_590471022, was identified by all six models 

and had LOD ranging from 4.35 to 7.51 and had and the minor allele had an additive effect of 0.21 

spikelets. All identified MTA on chromosome 5B were small-effect and each had an R2 < 5%. 
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 SNP S7A_672045448 was significant for both SL and SPS and was identified for SL by four of 

the six models. LOD ranged from 4.94 to 6.97 with a minor allele additive effect of 1.2 mm for SL with a 

LOD of 11.65. S6A_614663910 on chromosome 6A was identified for both KNS and SPS with LODs of 

6.1 and 5.87, respectively. S6A_614663910 had a minor allele additive effect of 3.82 kernels for KNS 

and an additive effect of 0.44 spikelets for SPS. Differences in phenotypes between allelic classes for SPS 

and KNS with marker S6A_614663910 and SPS and SL for marker S7A_672045448 are shown in figure 

4. An analysis of variance (ANOVA) test showed that the BLUPs were significantly different between 

allelic classes. For S7A_672045448, SL had the lowest significant difference (p < 0.05) while SPS for 

both markers and KNS for S7A_672045448 all had p values less than 0.0001. This indicates that a T 

allele at S6A_614663910 confers higher SPS and KNS while an A allele at S7A_672045448 increases SL 

and SPS. QTLs S5B_590471022 and S7A_673066304 were also identified in the 2019 and combined 

analyses and QTLs S7A_672148737 and S7A_672854561 were identified in the 2020 and combined 

analyses. 

 

Candidate genes underlying identified MTA 

 SNPs were searched in the International Wheat Genome Sequencing Consortium (IWGSC) 

Chinese Spring wheat RefSeq v2.1 (Zhu et al., 2021) to look for potential candidate genes. SNP 

S7A_672045448 was the only marker location associated with a gene, TraesCS7A03G1143700. The gene 

is a reverse strand that is 1,161 base pairs long and encodes for an F-box like domain superfamily protein, 

meaning it governs protein to protein interactions. All other significant markers on 7A were not 

associated with candidate genes, but were located before the promotor region of WAPO1, a gene 

influencing spikelet number. 
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Figure 3.3. (A) SPS across the population by allelic classes of S6A_614663910, (B) KNS across the 

population by allelic classes of S6A_614663910, (C) SPS across the population by allelic classes of 

S7A_672045448, (D) SL across the population by allelic classes of S7A_672045448. Comparisons of 

phenotypes to alleles do not show large difference in phenotypes based on genetics. 

 

Genomic Prediction of Spike Characteristics 

GS accuracies (Table 3.1) were lower in 2019 compared to 2020 and the combined analyses. SA 

had the highest prediction accuracies, ranging from 0.56 to 0.62. HD had the lowest average accuracy 

with the highest being 0.35 for 2020 and the lowest being 0.30 for combined years. SPS had moderate 

A B 

C D 
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prediction accuracy ranging from 0.33 in 2019 to 0.42 for combined years. Moderately high accuracies 

were expected due to the highly quantitative nature of yield component traits. While these traits are 

complexly related, these results indicate the use of genomic selection for spike architecture traits such as 

SPS, SW, SL, and SA. For all three analyses, the square root of heritability (√𝐻 ) was higher than rgs for 

all traits, indicating heritability indices may provide a higher selection accuracy for these traits.  

DISCUSSION 

Trait correlations were similar to those previously reported (K. Kato et al., 2000). TKW was 

negatively correlated with KNS, SPS, and HD for both years. However, KNS and SPS are positively 

correlated with each other. This is consistent with the idea that for a spike to produce more kernels, less 

assimilate is available to have larger size and weight for kernels produced by the spike (Mangini et al., 

2018). While yield component traits are complexly inherited, understanding the relationships between 

them helps aid in breeding decisions. 

This region on chromosome 7A has been linked to SPS in previous studies (Wurchum et al., 

2018; Xu et al., 2013; Zhai et al., 2016) and was cloned as WAPO-A1 (Kuzay et al., 2022). WAPO1 is 

expressed in the inflorescence, spikelet, and floral meristems, and allelic variation was found to influence 

SPS. Loss of function in WAPO-A1 results in abnormal spike morphology. WAPO1 was mapped between 

flanking markers AX-109397893 and IWA5913 at 673,854,124 bp and 674,276,906 bp, respectively 

(Kuzay et al., 2019) with the promotor region beginning at 674,080,862 bp (Kuzay et al., 2022). This puts 

all three markers on chromosome 7A for this study, within the range of 672,045,448 bp to 673,066,304 

bp, before the promoter region of the gene. This could be due to recombination effects, or gene clustering 

of new candidate genes of interest not discovered with the initial WAPO-A1 QTL region (Kuzay et al., 

2019) which has been observed in similar studies (Xu et al., 2013). One marker (S7A_672045448) had an 

underlying protein-coding reverse sequence gene, while no other markers were located close to any exons 

included in the v2.1 reference sequence (Alaux et al., 2018). Aside from markers on chromosome 7A, 
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studies identified QTL and markers of interest for spikelets per spike and chromosome 5B as well (Cao et 

al., 2019). Studies identifying significant QTL and MTA for SPS commonly find only large associations 

with markers near WAPO-1A (Kuzay et al., 2022; Kuzay et al., 2019). Use of the gene as a fixed effect 

may allow for the emergence of other markers across multiple studies.  

The goal of this study was to improve understanding of the flowering pathway of wheat by 

identifying underlying genomic regions associated with wheat spike characteristics. The use of mixed 

linear models enabled more significant regions in the genome to be identified, including two markers 

associated with both SPS and other spike architecture and yield component traits.  

 Grain yield component traits and spike architecture traits are complexly inherited and are more 

difficult to predict. Comparisons of GS accuracy and √𝐻 indicated that heritability is a better prediction 

index for all traits in this study. However, GS accuracy was still moderately high for these traits, 

providing it with some value. Accuracies for GS could potentially be improved by using large effect 

markers and fixed effects in the model, and can still serve as a selection criterion for unphenotyped 

material. 

A major limitation to this study and others involving phenotyping wheat spikes is the large amount of 

time and labor required to phenotype wheat spikes. There are currently no automated methods available, 

leaving the manual phenotyping of spikes or images of spikes as the only methods of data collection. This 

hinders the power of analysis by limiting the amount of phenotypic data available. 

CONCLUSION 

 The results support that the WAPO1 gene influences SPS in SRWW within the HGAWN 

population. While showing the correlations between traits such as SL and KNS on SPS, it also showed 

influence from markers that were significantly related to SPS and SL or SPS and KNS. Development of 

MTAs behind spike architecture and yield component traits will help further understanding of the 

relationship between the two. Knowledge of the spike architecture and its effects on yield could aid in 
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breeding endeavors. Phenotyping wheat spikes in the field takes extensive time and labor, making it 

difficult to perform at a large scale. However, GS can be used as a method for the prediction of 

individuals in SRWW germplasm. The understanding of genetic controls for flowering and spike 

development, as well as their predictions, could benefit plant breeders seeking ways to maintain or 

increase yield as other traits diminish it. 
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Supplementary Figure 1. Accuracy performance across all 10 iterations for 10 epochs of the basic five-

layer classification CNN where the blue line is the performance of the training dataset and the orange line 

shows the performance of the test dataset. Lower accuracies indicate a lower estimation error from the 

true value. 
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Supplementary Figure 2. MAE performance across all 10 iterations for 10 epochs of the basic five-layer 

regression CNN where the blue line is the performance of the training dataset and the orange line shows 

the performance of the test dataset. Lower MAEs indicate a lower estimation error from the true value. 
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Supplementary Figure 3. MAE performance across all 10 iterations for 10 epochs of the regression 

VGG16 pre-trained model where the blue line is the performance of the training dataset and the orange 

line shows the performance of the test dataset. Lower MAEs indicate a lower estimation error from the 

true value. 
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Supplementary Figure 4. MAE performance across all 10 iterations for 10 epochs of the regression 

VGG19 pre-trained model where the blue line is the performance of the training dataset and the orange 

line shows the performance of the test dataset. Lower MAEs indicate a lower estimation error from the 

true value. 
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Chapter III Supplemental 

Supplemental Table 1. MrMLM results for all six models for 2019, 2020, and combined analysis. 

Trait Method RS# Chr. Position QTN effect 

LOD 

score r2 (%) 

2019               

HD mrMLM S1B_62023056 1B 62023056 -0.5999 4.9811 6.2503 

    S1B_242040871 1B 242040871 0.2558 4.0442 2.0554 

    S7A_675198728 7A 675198728 0.293 4.3895 2.1549 

  FASTmrMLM S6A_567013715 6A 567013715 -0.2517 4.1522 1.91 

    S6B_497933658 6B 497933658 0.5917 4.7815 3.9831 

  pLARmEB S6D_9137410 6D 9137410 0.644 6.0808 2.2858 

TKW mrMLM S5A_38118471 5A 38118471 -0.7461 5.1006 2.9353 

    S7A_3322031 7A 3322031 -1.7441 4.1028 6.9544 

  FASTmrEMMA S5A_41964608 5A 41964608 -1.4187 4.6255 2.5812 

    S5A_698528417 5A 698528417 -1.7742 5.3768 3.6293 

  pLARmEB S5A_698528417 5A 698528417 -0.7821 4.735 2.8643 

  pKWmEB S3B_249632650 3B 249632650 0.9115 5.5598 2.2991 

    S3B_115807544 3B 115807544 -1.1107 4.216 2.3243 

    S4A_194433192 4A 194433192 0.5334 4.2096 2.258 

    S7B_14167976 7B 14167976 -1.2652 4.7648 3.2796 

  

ISIS EM-

BLASSO S4B_657290599 4B 657290599 0.6291 4.1385 1.8995 

    S5A_698528417 5A 698528417 -0.826 4.8652 3.1952 

KNS mrMLM S2D_55057832 2D 55057832 3.4813 4.5764 5.5962 

  pLARmEB S1A_335036539 1A 335036539 1.853 4.0422 2.0961 

  pKWmEB S1B_53645659 1B 53645659 -3.0624 5.581 3.5863 
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    S1A_335036539 1A 335036539 1.5911 4.5077 2.9358 

  

ISIS EM-

BLASSO S1B_53645659 1B 53645659 -2.8466 4.9941 3.1148 

SPS mrMLM S2B_403704287 2B 403704287 0.3214 4.7337 3.4241 

    S5B_590471022 5B 590471022 -0.3162 4.4739 3.7282 

    S7A_672854561 7A 672854561 -0.455 7.7904 6.4215 

  FASTmrMLM S7A_672854561 7A 672854561 -0.4291 8.3764 5.7184 

  FASTmrEMMA S1A_531926715 1A 531926715 0.5229 4.483 2.1076 

    S2B_403704287 2B 403704287 0.5183 4.0659 1.9143 

    S6D_464495312 6D 464495312 -0.4964 5.1558 2.2607 

    S7A_672854561 7A 672854561 -0.8078 6.9994 5.0206 

  pLARmEB S1A_531721876 1A 531721876 0.2558 4.6836 1.9815 

    S2B_403704287 2B 403704287 0.2958 6.1403 2.8651 

    S4A_722318181 4A 722318181 -0.2867 4.9304 2.4995 

    S5B_590471022 5B 590471022 -0.2754 5.4851 2.7939 

    S7A_672854561 7A 672854561 -0.4528 11.5502 6.2831 

  pKWmEB S1D_58005554 1D 58005554 0.3222 5.7392 3.0413 

    S1A_531721876 1A 531721876 0.2553 6.0553 2.5136 

    S2B_403704287 2B 403704287 0.2432 4.5255 3.3019 

    S7A_672854561 7A 672854561 -0.4523 12.1018 6.742 

  

ISIS EM-

BLASSO S2B_403704273 2B 403704273 0.2616 4.3352 2.2579 

    S6D_464495312 6D 464495312 -0.2438 4.9205 2.1812 

    S7A_673030388 7A 673030388 -0.4208 9.399 5.6197 

W pLARmEB S7A_696981995 7A 696981995 -0.2022 4.527 2.6518 

  pKWmEB S3B_829382536 3B 829382536 -0.1669 4.5216 2.4518 
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    S7A_696981995 7A 696981995 -0.2053 5.5167 4.3557 

    S7A_51647371 7A 51647371 -0.1146 4.2112 1.6267 

  

ISIS EM-

BLASSO S2A_697000089 2A 697000089 -0.2825 5.1383 4.1738 

    S6B_675985723 6B 675985723 0.1518 4.0805 1.6893 

    S7A_696981995 7A 696981995 -0.1961 4.2207 2.4942 

L mrMLM S2B_403704287 2B 403704287 1.979 4.4784 2.8316 

    S2B_655107436 2B 655107436 1.7289 4.1767 2.4546 

    S4A_733713873 4A 733713873 -2.3384 4.844 4.5088 

    S4B_619080071 4B 619080071 -1.8975 5.2939 2.9904 

    S5B_20131242 5B 20131242 -2.103 4.436 2.5879 

    S7A_681913871 7A 681913871 2.01 4.5466 3.0406 

    S7A_710959180 7A 710959180 -2.2521 4.3923 2.7494 

  FASTmrMLM S4A_733713873 4A 733713873 -1.8627 4.7584 2.921 

  pLARmEB S4A_733713873 4A 733713873 -1.8796 5.0939 2.9742 

  pKWmEB S5B_433023852 5B 433023852 -1.9149 4.8848 2.3481 

    S7A_16975061 7A 16975061 1.5023 4.1663 2.8909 

    S7B_459605010 7B 459605010 2.5726 5.3457 3.2813 

  

ISIS EM-

BLASSO S3A_118997578 3A 118997578 1.7419 4.0343 1.0809 

    S5B_433023852 5B 433023852 -1.9087 4.3811 1.8845 

    S7B_459605010 7B 459605010 2.3006 4.2884 2.0276 

SA mrMLM S5A_698528417 5A 698528417 -145.8025 29.6291 21.748 

    S7A_644620616 7A 644620616 -42.9281 5.917 2.1144 

  FASTmrMLM S5A_698528417 5A 698528417 -141.1526 27.0107 20.3829 

    S5B_6538709 5B 6538709 -50.5694 4.188 1.6683 
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    S7A_644620616 7A 644620616 -44.128 5.6553 2.2343 

  FASTmrEMMA S5A_698528417 5A 698528417 -292.045 26.9098 21.4833 

  pLARmEB S5A_698528417 5A 698528417 -151.7601 33.0397 23.5615 

    S7A_644620616 7A 644620616 -37.8072 4.4733 1.6401 

  pKWmEB S4A_631950295 4A 631950295 -37.7737 4.2174 3.0676 

    S5A_698528417 5A 698528417 -112.755 26.3209 24.7161 

    S5B_419518823 5B 419518823 -35.2717 4.2263 1.2937 

    S7A_644620616 7A 644620616 -40.2479 5.1144 2.4666 

  

ISIS EM-

BLASSO S5A_698528417 5A 698528417 -146.0814 31.5905 21.8312 

    S7A_616750641 7A 616750641 57.9699 4.3581 2.0286 

    S7A_644620616 7A 644620616 -48.318 6.7193 2.6787 

2020               

HD mrMLM S3B_610036538 3B 610036538 1.2657 5.6884 5.2968 

    S5A_585018041 5A 585018041 -1.154 6.1012 4.3979 

    S5B_531530727 5B 531530727 0.979 4.992 3.1597 

    S7B_486028824 7B 486028824 1.236 5.9785 4.3462 

  FASTmrMLM S3B_610036538 3B 610036538 0.9245 4.0431 2.826 

    S5A_585018041 5A 585018041 -0.8756 4.284 2.5322 

  FASTmrEMMA S1B_563444512 1B 563444512 -1.7785 4.0043 1.7564 

    S3B_610036538 3B 610036538 2.149 5.0819 3.4937 

    S5A_585018041 5A 585018041 -1.8442 4.702 2.6656 

    S5B_531530727 5B 531530727 1.6529 4.307 2.1215 

  pLARmEB S2D_29715360 2D 29715360 -0.765 4.7041 1.6197 

    S3B_610036538 3B 610036538 1.1129 6.3932 3.4103 
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    S3D_596661381 3D 596661381 0.7155 4.5629 1.245 

    S5A_585018041 5A 585018041 -1.0936 6.5929 3.2895 

    S6D_15344114 6D 15344114 1.6866 4.2289 1.9268 

    S7B_2327298 7B 2327298 -0.6844 4.3991 1.2411 

    S7B_486028824 7B 486028824 1.1765 7.1098 3.2794 

  pKWmEB S3B_610036538 3B 610036538 0.7514 4.6138 4.605 

    S5A_577963056 5A 577963056 1.2668 5.8836 5.7357 

    S6D_15344114 6D 15344114 2.201 7.0225 5.709 

    S6A_13672088 6A 13672088 0.9448 4.3535 2.9192 

  

ISIS EM-

BLASSO S2A_38307973 2A 38307973 0.8002 4.8534 2.1266 

    S3B_820145958 3B 820145958 -1.0199 4.7112 1.3567 

    S3D_596661381 3D 596661381 0.7505 4.5841 1.6448 

    S5A_585018041 5A 585018041 -1.2109 9.1722 4.8423 

    S5A_693604905 5A 693604905 -1.3413 4.3153 1.2824 

    S5B_531530727 5B 531530727 0.7529 4.552 1.8685 

    S6A_13672088 6A 13672088 0.9166 4.0057 1.6797 

    S7A_82951751 7A 82951751 0.7254 4.2622 1.0895 

    S7B_486028824 7B 486028824 1.1137 6.3719 3.5291 

TKW mrMLM S2B_527875976 2B 527875976 -4.2051 6.5459 45.2997 

    S2A_739309428 2A 739309428 0.9275 4.3202 1.9182 

    S5A_48763086 5A 48763086 -1.0823 4.2633 1.4872 

    S6B_680795066 6B 680795066 1.2299 5.458 1.6489 

  FASTmrMLM S6B_680795066 6B 680795066 1.1881 5.3914 2.0603 

  FASTmrEMMA S3B_52721463 3B 52721463 1.716 5.2346 2.7052 
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    S4A_639027818 4A 639027818 1.8074 4.0281 1.5417 

  pLARmEB S2A_733652274 2A 733652274 -0.5407 4.0853 1.0817 

    S2A_739309428 2A 739309428 0.7944 4.558 1.8837 

    S3B_52721463 3B 52721463 0.8013 5.0941 2.5744 

    S4A_639027818 4A 639027818 1.0873 6.4054 2.4906 

    S6B_102070407 6B 102070407 -0.7654 4.7997 1.8223 

    S6B_662504589 6B 662504589 -1.2999 4.8669 2.6898 

    S7A_76114512 7A 76114512 -0.6449 4.0908 1.4398 

  pKWmEB S2A_759456102 2A 759456102 -0.5276 4.3101 2.1319 

    S3B_52721463 3B 52721463 0.7915 5.3538 4.5207 

    S4A_639027818 4A 639027818 0.9596 5.428 3.542 

    S4B_650666864 4B 650666864 0.4909 4.7003 2.632 

    S5A_546396965 5A 546396965 -0.5078 4.4008 1.3913 

    S6B_82524150 6B 82524150 1.0401 4.387 4.159 

    S6B_198500379 6B 198500379 -0.6213 5.1158 3.0067 

  

ISIS EM-

BLASSO S2A_739309428 2A 739309428 0.7121 4.1595 1.5137 

    S3A_303372474 3A 303372474 -0.5236 4.2562 1.0025 

    S5A_698528417 5A 698528417 -0.7774 4.7981 2.1832 

    S6B_532043730 6B 532043730 0.8309 6.2902 2.4333 

    S6B_680795066 6B 680795066 1.2682 6.8103 2.3471 

KNS mrMLM S1A_293734546 1A 293734546 -3.3099 5.8999 6.28 

    S1D_420960639 1D 420960639 1.5375 4.458 3.4465 

    S3A_187004480 3A 187004480 2.2659 5.0378 3.2131 

    S3B_820862429 3B 820862429 2.1093 5.2923 2.6913 



 96 

    S5A_692194752 5A 692194752 2.1497 5.1458 3.3164 

    S5A_51560475 5A 51560475 1.9073 4.6835 2.5373 

    S6D_4032694 6D 4032694 1.6488 6.2038 3.6727 

    S7A_12454707 7A 12454707 -1.3864 5.6129 3.003 

    S7D_73368696 7D 73368696 -2.3328 6.395 3.7409 

  FASTmrMLM S1D_420960639 1D 420960639 1.1228 4.7245 1.8379 

    S3A_187004480 3A 187004480 2.1514 6.324 2.8964 

    S5B_559044987 5B 559044987 1.202 4.6714 2.2274 

    S6A_499197587 6A 499197587 -1.218 4.6999 2.753 

    S6A_609285176 6A 609285176 1.0197 4.544 1.7465 

    S6A_614663595 6A 614663595 1.1635 5.0279 2.0358 

    S6D_354074 6D 354074 -1.55 5.7543 2.6406 

    S7D_73368696 7D 73368696 -1.7408 4.9567 2.0831 

  pLARmEB S1D_428666044 1D 428666044 -1.5889 4.6205 1.7261 

    S3A_187004480 3A 187004480 2.0383 5.6668 2.1801 

    S5B_559044987 5B 559044987 1.1764 4.5379 1.789 

    S6A_499197587 6A 499197587 -1.331 6.2124 2.7566 

    S6A_610127009 6A 610127009 1.2459 5.7029 2.3938 

    S6A_614663910 6A 614663910 1.4562 4.5061 1.4668 

  pKWmEB S2D_591603483 2D 591603483 0.8207 4.2219 1.6588 

    S5A_692194752 5A 692194752 1.6376 5.0066 3.653 

    S6A_499197587 6A 499197587 -1.112 5.7268 5.1321 

    S6A_580586410 6A 580586410 1.1732 5.6962 4.0344 

    S6D_354074 6D 354074 -1.4502 5.562 3.3529 

    S6A_609285176 6A 609285176 1.0174 4.5011 4.0916 
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    S6A_614523454 6A 614523454 1.3499 4.7935 3.0708 

    S7B_14167976 7B 14167976 2.1123 4.5619 3.2382 

  

ISIS EM-

BLASSO S1A_293734546 1A 293734546 -2.7976 6.34 4.4866 

    S1D_420960639 1D 420960639 1.0486 4.5079 1.603 

    S2B_769071732 2B 769071732 1.5785 5.5065 2.219 

    S2D_399428380 2D 399428380 1.2774 7.0707 1.859 

    S3A_70711463 3A 70711463 -1.5628 5.2213 2.1752 

    S3A_187004480 3A 187004480 1.9382 5.9654 2.3509 

    S3B_562731470 3B 562731470 1.3751 6.2545 2.2283 

    S3B_578814680 3B 578814680 -1.0495 4.8333 1.8044 

    S3B_820862429 3B 820862429 1.5844 4.4684 1.5184 

    S5A_51560475 5A 51560475 1.3117 4.7051 1.2001 

    S5A_692194752 5A 692194752 1.3307 4.1585 1.2707 

    S5B_244411156 5B 244411156 -0.9989 5.6223 1.8489 

    S6A_499197587 6A 499197587 -1.4407 8.3435 3.8515 

    S6A_614663910 6A 614663910 1.0954 4.0389 0.9899 

    S6B_118986455 6B 118986455 1.2938 4.0941 0.9239 

    S6D_354074 6D 354074 -1.4724 5.5945 2.3827 

SPS mrMLM S3A_642554084 3A 642554084 -0.1998 4.0483 2.0937 

    S7B_11292130 7B 11292130 -0.3209 4.0414 2.8591 

    S7A_672148737 7A 672148737 -0.3252 4.3991 4.9229 

  FASTmrMLM S7A_672148737 7A 672148737 -0.2696 5.0492 3.383 

  FASTmrEMMA S7A_672148737 7A 672148737 -0.5228 4.4937 2.9645 

  pKWmEB S7A_672148737 7A 672148737 -0.2327 4.4889 5.566 
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ISIS EM-

BLASSO S7A_672045448 7A 672045448 -0.2298 4.1605 2.4571 

    S7B_11292130 7B 11292130 -0.3082 5.0252 2.6369 

W mrMLM S1A_535482663 1A 535482663 0.1849 5.6117 2.814 

    S2B_107791597 2B 107791597 0.6238 4.0768 33.5524 

    S3D_524111395 3D 524111395 0.2509 5.7894 1.7516 

    S5A_621281176 5A 621281176 0.3907 5.906 5.8619 

    S5B_581759220 5B 581759220 0.1757 5.1998 2.6632 

    S5B_8087033 5B 8087033 0.1905 4.3308 1.5936 

  FASTmrMLM S1A_535482663 1A 535482663 0.1335 4.3686 2.1616 

    S3D_524111395 3D 524111395 0.1778 4.1311 1.2959 

    S5A_621281176 5A 621281176 0.3474 5.6603 6.8304 

    S5B_8087033 5B 8087033 0.1885 5.1592 2.2992 

  FASTmrEMMA S5B_572818242 5B 572818242 0.244 4.0409 2.2289 

  pLARmEB S1A_535482663 1A 535482663 0.1274 4.2121 1.5755 

    S5A_621281176 5A 621281176 0.3138 4.8701 4.4621 

  pKWmEB S1A_535482663 1A 535482663 0.1191 4.8379 2.8288 

    S5A_621281176 5A 621281176 0.3195 5.4774 8.7047 

    S5B_8087033 5B 8087033 0.1307 4.0092 2.4998 

    S6A_337042184 6A 337042184 0.1261 4.0925 2.9341 

  

ISIS EM-

BLASSO S1A_535482663 1A 535482663 0.1398 4.7176 2.3707 

    S3D_524111395 3D 524111395 0.1801 4.2835 1.3298 

    S5A_621281176 5A 621281176 0.3619 7.2939 7.4112 

    S6A_12344581 6A 12344581 -0.1596 4.8662 2.7016 

L mrMLM S2A_708760295 2A 708760295 3.7123 4.4185 6.6197 
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    S5B_572342929 5B 572342929 1.6995 5.0338 3.2914 

    S5A_577963056 5A 577963056 -2.5704 4.6216 4.144 

    S6B_670729335 6B 670729335 -2.8647 5.0136 3.1493 

    S6A_271232270 6A 271232270 2.7042 4.8281 3.4669 

  FASTmrMLM S2A_708760295 2A 708760295 2.7848 4.3048 3.7251 

    S6B_332505436 6B 332505436 1.9096 7.1988 4.2489 

    S6B_670729335 6B 670729335 -2.244 4.4541 1.9324 

    S7B_646206252 7B 646206252 2.1419 5.2081 4.2525 

  FASTmrEMMA S6B_670729335 6B 670729335 -4.6376 4.1831 2.0634 

  pLARmEB S2A_708760295 2A 708760295 2.811 4.4881 3.7535 

    S2B_5017296 2B 5017296 -2.3691 5.7409 2.7006 

    S5B_584851722 5B 584851722 -1.781 5.6741 3.3476 

    S6B_332505436 6B 332505436 1.8814 6.9981 4.0787 

    S7B_646206252 7B 646206252 1.9852 4.3579 3.6127 

  pKWmEB S2A_744704521 2A 744704521 -1.1498 4.446 2.5124 

    S3B_407018291 3B 407018291 -1.3243 5.0934 2.1181 

    S6B_454837017 6B 454837017 1.3592 5.2157 4.7747 

    S7B_482072315 7B 482072315 -1.7097 4.2495 3.6343 

  

ISIS EM-

BLASSO S2A_708760295 2A 708760295 2.5813 4.0028 3.2004 

    S2B_5017296 2B 5017296 -1.9319 4.4632 1.8159 

    S3B_533976494 3B 533976494 1.4585 5.1494 2.0026 

    S6B_226747335 6B 226747335 1.4059 4.8691 2.2041 

    S6B_670729335 6B 670729335 -2.3762 5.1777 2.1669 

SA mrMLM S2B_11178813 2B 11178813 -88.1999 4.1941 2.7909 
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    S5A_698528417 5A 698528417 -157.6733 32.0164 24.7734 

    S6A_429672320 6A 429672320 -44.4955 4.4776 2.2113 

  FASTmrMLM S5A_698528417 5A 698528417 -146.5784 28.9123 21.4097 

    S6A_429672320 6A 429672320 -41.7427 4.8355 1.9461 

    S6B_351590979 6B 351590979 -48.0378 5.1842 2.441 

  FASTmrEMMA S5A_698528417 5A 698528417 -285.2209 24.0239 19.9601 

    S6A_429672320 6A 429672320 -79.369 4.2386 1.7488 

  pLARmEB S5A_698528417 5A 698528417 -148.3453 31.7035 21.9289 

    S5B_390903560 5B 390903560 45.8989 4.0595 1.28 

    S6A_429672320 6A 429672320 -40.6648 4.9004 1.8469 

    S6B_158085055 6B 158085055 -40.5402 4.4033 1.7444 

    S7A_634332221 7A 634332221 39.7617 4.5225 1.4244 

  pKWmEB S4A_7176912 4A 7176912 36.0962 4.3402 2.2782 

    S5A_698528417 5A 698528417 -116.3646 26.1496 27.789 

  

ISIS EM-

BLASSO S5A_698528417 5A 698528417 -142.7534 25.8412 20.3069 

Combined analysis             

HD mrMLM S1B_580449038 1B 580449038 0.994 5.3386 0.2911 

    S2B_717098094 2B 717098094 4.1229 6.5765 51.6939 

    S6B_497933658 6B 497933658 1.3893 7.8669 2.4099 

    S6A_305876358 6A 305876358 -0.6308 5.3118 0.8653 

    S7B_596398733 7B 596398733 -2.8699 10.3944 23.3079 

  FASTmrMLM S2B_31382110 2B 31382110 -0.3702 4.6182 1.7641 

    S6B_497933658 6B 497933658 1.381 9.0144 8.4792 

  pLARmEB S1A_124476146 1A 124476146 0.5366 5.078 1.8432 
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    S1B_580449038 1B 580449038 0.8893 4.9865 0.4887 

    S2A_738040009 2A 738040009 0.9781 5.3699 1.9178 

    S4B_219107827 4B 219107827 0.4136 4.6024 1.2648 

    S5B_422697466 5B 422697466 -0.5869 4.1661 1.2503 

    S5D_549874452 5D 549874452 0.4069 4.488 1.1505 

    S6B_497933658 6B 497933658 1.4045 9.7122 5.1676 

    S7B_83669403 7B 83669403 0.6847 4.2906 1.1679 

  pKWmEB S1A_11066883 1A 11066883 -0.3691 4.3723 2.045 

    S2A_738040009 2A 738040009 0.7892 5.8355 3.667 

    S3A_9082226 3A 9082226 0.4205 4.3958 2.0548 

    S6B_497933658 6B 497933658 1.203 7.3503 10.2859 

  

ISIS EM-

BLASSO S1B_580449038 1B 580449038 0.8934 4.6925 0.8189 

    S2A_738040009 2A 738040009 0.9393 5.5175 2.9359 

    S3A_9082226 3A 9082226 0.5016 4.3964 1.849 

    S5D_549874452 5D 549874452 0.5135 6.8105 3.0413 

    S6B_497933658 6B 497933658 1.429 10.5641 8.8805 

    S7A_116544032 7A 116544032 0.7488 5.4599 2.4387 

    S7B_83669403 7B 83669403 0.7621 4.6159 2.4014 

TKW mrMLM S5A_698528417 5A 698528417 -1.0413 5.6996 4.8436 

    S5A_38118471 5A 38118471 -0.9612 5.282 4.6153 

  FASTmrMLM S5A_698528417 5A 698528417 -0.7561 4.1805 2.5539 

  pLARmEB S5A_698528417 5A 698528417 -0.7381 4.3351 2.4335 

  pKWmEB S4A_194433192 4A 194433192 0.5997 4.207 3.0019 

    S5A_698528417 5A 698528417 -0.7247 5.5298 5.5402 
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    S5A_38118471 5A 38118471 -0.6439 4.5059 4.1348 

  

ISIS EM-

BLASSO S5A_38118471 5A 38118471 -0.8366 6.6258 3.4965 

    S5A_698528417 5A 698528417 -0.911 5.892 3.7067 

    S7B_14167976 7B 14167976 -1.2796 4.0168 1.8924 

KNS pKWmEB S1A_335036539 1A 335036539 1.4849 4.2329 3.1173 

    S1B_93946603 1B 93946603 1.1839 4.0514 2.3498 

  

ISIS EM-

BLASSO S1B_93946603 1B 93946603 1.2784 4.1294 1.7089 

    S5A_596027539 5A 596027539 1.9547 4.6195 2.6064 

SPS mrMLM S1A_531721876 1A 531721876 0.3375 4.406 3.3537 

    S2B_403704287 2B 403704287 0.3161 4.2838 3.1912 

    S5B_590471022 5B 590471022 -0.3322 4.7057 3.9814 

    S6D_464495312 6D 464495312 -0.3048 5.0121 3.3027 

    S7A_672854561 7A 672854561 -0.4507 7.8421 6.0929 

  FASTmrMLM S5B_590471022 5B 590471022 -0.2618 4.2993 2.5196 

    S6D_464495312 6D 464495312 -0.2259 4.2508 1.8471 

    S7A_672854561 7A 672854561 -0.4092 8.2858 5.1176 

  FASTmrEMMA S6D_464495312 6D 464495312 -0.5284 5.0936 2.5275 

    S7A_672854561 7A 672854561 -0.8126 6.9802 5.0001 

  pLARmEB S1A_531721876 1A 531721876 0.2913 5.2363 2.5306 

    S2B_403704287 2B 403704287 0.2739 4.808 2.4265 

    S4A_722318181 4A 722318181 -0.2927 5.443 2.5745 

    S5B_590471022 5B 590471022 -0.2748 4.8311 2.7592 

    S6D_464495312 6D 464495312 -0.2564 5.3622 2.3657 

    S7A_672854561 7A 672854561 -0.429 9.1713 5.5934 
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  pKWmEB S2B_403704287 2B 403704287 0.2198 4.4812 2.7467 

    S7A_672854561 7A 672854561 -0.4362 10.7186 6.333 

  

ISIS EM-

BLASSO S1A_531721876 1A 531721876 0.2756 4.2402 2.2785 

    S5B_590471022 5B 590471022 -0.2693 4.0392 2.6661 

    S6D_464495312 6D 464495312 -0.2519 5.1507 2.297 

    S7A_672854561 7A 672854561 -0.4527 10.1841 6.2647 

W mrMLM S1A_21719710 1A 21719710 0.1458 4.4106 2.6642 

    S3D_260727860 3D 260727860 0.2248 4.7129 4.1162 

    S6A_89170732 6A 89170732 -0.1722 5.0107 3.6907 

  FASTmrMLM S6A_89170732 6A 89170732 -0.1265 4.1086 1.9913 

  pLARmEB S3D_260727860 3D 260727860 0.1732 4.2908 2.4422 

  pKWmEB S7A_696981995 7A 696981995 -0.1984 5.024 4.1558 

  

ISIS EM-

BLASSO S2A_697000089 2A 697000089 -0.2603 4.4115 3.4247 

    S3D_260727860 3D 260727860 0.1962 5.7957 3.1351 

    S6A_89170732 6A 89170732 -0.1382 4.9192 2.375 

L mrMLM S4A_733713873 4A 733713873 -2.1206 4.219 3.8171 

  pLARmEB S2D_399428380 2D 399428380 -1.8788 4.5229 1.8819 

    S4A_733713873 4A 733713873 -1.7411 4.2532 2.5734 

  pKWmEB S4A_733713873 4A 733713873 -1.7729 4.8435 4.4664 

    S5B_433023852 5B 433023852 -1.7426 4.745 2.5037 

    S7B_459605010 7B 459605010 2.097 4.1829 3.1116 

  

ISIS EM-

BLASSO S2B_17144240 2B 17144240 1.7 4.848 1.8379 

    S2D_32455414 2D 32455414 1.3809 4.1418 1.0839 
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    S2D_399428380 2D 399428380 -2.0728 5.8494 2.2904 

    S4A_733713873 4A 733713873 -1.8096 4.7114 2.7796 

    S5B_45705998 5B 45705998 -1.8157 4.0594 1.6219 

    S5B_455689900 5B 455689900 -1.3308 4.5096 1.4912 

    S7A_466127003 7A 466127003 -1.1669 4.0086 1.1584 

    S7B_459605010 7B 459605010 2.2121 4.1829 1.9052 

SA mrMLM S5A_698528417 5A 698528417 -145.6928 29.7843 21.9901 

    S7A_644620616 7A 644620616 -42.5442 5.5646 2.09 

  FASTmrMLM S5A_698528417 5A 698528417 -138.4548 26.3815 19.8594 

    S7A_644620616 7A 644620616 -42.8039 5.2469 2.1156 

  FASTmrEMMA S5A_698528417 5A 698528417 -284.3217 25.2849 20.6124 

  pLARmEB S2B_455867951 2B 455867951 -49.3791 4.5016 2.6909 

    S3B_562274249 3B 562274249 -41.1567 4.176 1.3272 

    S5A_698528417 5A 698528417 -150.2117 32.4273 22.7134 

    S7A_644620616 7A 644620616 -41.0424 5.2674 1.89 

  pKWmEB S4A_575936480 4A 575936480 -43.222 4.7996 1.6573 

    S5A_698528417 5A 698528417 -111.7406 27.9114 24.5734 

    S7A_153804344 7A 153804344 -62.888 4.6109 2.775 

    S7A_644620616 7A 644620616 -37.6489 4.6794 2.4553 

  

ISIS EM-

BLASSO S5A_698528417 5A 698528417 -143.115 29.1987 21.2188 

    S7A_644620616 7A 644620616 -47.0522 6.4016 2.5564 

 

 

 


