THESIS

AUTOMATIC CREATION OE TILE SIZE SELECTION MODELS USING

NEURAL NETWORKS

Submitted by
Tomofiimi Yuki

Department of Computer Science

In partial fulfillment of the requirements
for the Degree of Master of Science
Colorado State University
Eort Collins, Colorado

Spring 2010

QA76.87
.Y955
2010

COLORADO STATE UNIVERSITY

December 07, 2009

WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER
OUR SUPERVISION BY TOMOFUMI YUKI ENTITLED AUTOMATIC CREA-
TION OF TILE SIZE SELECTION MODELS USING NEURAL NETWORKS
BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DE-

GREE OF MASTER OF SCIENCE.

Committee on Graduate Work

chfarles Anderson

GretAen Casterella N Cr-Ynrzr:
Michellerfitrout

w zZ ~ -
AdvisOT ; Sanjay Rajopadhye

I 't

Acting Department Chair : Adele Howe

t u,-.1vtKiiilV uBRARIES
COLORADO

ABSTRACT OF THESIS

AUTOMATIC CREATION OF TILE SIZE SELECTION MODELS USING
NEURAL NETWORKS

Tiling is a widely used loop transformation for exposing/exploiting parallelism and
data locality. Effective use of tiling requires selection and tuning of the tile sizes.
This is usually achieved by hand-crafting tile size selection (TSS) models that
characterize the performance of the tiled program as a function of tile sizes. The
best tile sizes are selected by either directly using the TSS model or by using the
TSS model together with an empirical search. Hand-crafting accurate TSS models
is hard, and adapting them to different architecture/compiler, or even keeping
them up-to-date with respect to the evolution of a single compiler is often just as
hard.

Instead of hand-crafting TSS models, can we automatically learn or create
them? In this paper, we show that for a specific class of programs fairly accurate
TSS models can be automatically created by using a combination of simple pro-
gram features, synthetic kernels, and standard machine learning techniques. The
automatic TSS model generation scheme can also be directly used for adapting
the model and/or keeping it up-to-date. We evaluate our scheme on six different
architecture-compiler combinations (chosen from three different architectures and

four different compilers). The models learned by our method have consistently

11

sliown near-optimal performance (within 5% of the optimal on average) across the

tested architecture-compiler combinations.

Tomofumi Yuki

Department of Computer Science
Colorado State University

Fort Collins, CO 80523

Spring 2010

ACKNOWLEDGEMENTS

1 am very fortunate to have Dr. Sanjay Rajopadhye as my advisor. I was
fascinated by parallel computing and optimizations through his class that I took
as an undergraduate student at CSU. Since then, I have learned so many things
from him. For a number of times, he resolved my confusion with one or two words,
which represented exactly what was missing in my understanding.

I would like to thank Dr. Charles Anderson and Gautam Gupta for their advice
I received while we worked on a project that eventually became the seed of my
thesis.

It was a wonderful experience working at IBM Research as an intern, where
the core of my thesis was developed. I enjoyed and learned a lot from discussions
I had with my mentor Dr. Lakshminarayanan Renganarayanan, other members of
the Advanced Compiler Technologies group, and other researchers/interns I met
during my internship.

I wonld like to thank Dr. Michelle Mills Strout and Dr. Gretchen Irwin not
only for inspiring me through their courses, but also for being on my committee.

I would like to thank all my friends at CSU for sharing and discussing ideas,
and also for distracting away from work when 1needed some break.

I would like to thank my parents for supporting my study in a very distant
place. I was very fortunate to have their understanding for studying in the other

side of the earth.

TABLE OF CONTENTS

1 Introduction

2 Background

2.1 T ILII g ettt ettt et ettt ettt et e e
2.1.1 Class of PrOogramscooooivviiiiiiiiiiiieee e eee e eeeetareee e
2.1.2 Simple EXampPle oo
2.1.3 Tilng for LioCality i
2.1.4 Tiling for ParalleliSmi.....cccccciiiiiiiiiiiiiiceeecieeee e
2.1.5 Cache Sizeand ASSOCIALIVILY ..ooooiiiiiiiiiiieiieiiieeeee e e e eeeeraeeeens
2.1.6 Tiling with Hardware Prefetching.....c...cccccoooiiiiiiiiiiiiiiiiiiiciieiiiieeeeeeeees
2.2 Neural N etWoTK S .o
2.2.1 Neural Network for Classification....c.cccoviiriiiiiiiieiniieiniieiiene e,
2.2.2 Neural Network Parameters......ccccoiiiiiiniiiiiiiniiiniiiicneccecee e

3 Related Work

3.1 Analytical MoOdels .o
3.1.1 Common Considerations ... ittt neees
3.1.2 Previous M 0d els oot
3.2 Model-Driven EmpiricalSearch ...ccooccciiiiiiiiiiiiiiiiee e
3.3 Machine Leaning Techniques in Com pilers.....ccccccoevvviveiiiieeiiiiieeeeeeeeennee,
Bid SUIM I BTV ettt ettt ettt ettt et e bt e et e bt et e bt et e e beebeenseeabeenteens

Vi

4 Creating TSS Models

4.1 Target TSS MOAEL oo e
4.1.1 Program Features ..ot
4.1.2 Importance of Simple Program Features......cccccccoiviiineeiiiieeiiieeeeeeeeenn,
4.1.3 Possible Predicted O UtP U tS .cooiiiiiiiiiiiiiiiieieeeeeeiiieeeee e e
4.1.4 Output of Our Model ..o
4.1.5 Using ANN to Learn TSS M odel...coooiiiiiiiiiiiiieieiieeeeeee e,
4.2 Learning TSS M odels ..ot

4.2.1 Synthetic Program Generation

4.2.2 Data Collection......ccccvvvveeennn..n.

4.2.3 Learning TSS Models Using AN N ...coooiiiiiiiiiiiieee e

4.2.4 Use of ANN Based TSS Model

5 Performance Evaluation

5.1 PerfOrmancCe.. .ottt
5.1.1 Program FeatUuresS.... ittt
5.1.2 Sensitivity to Change in Tile S1Ze .oocoiiiiiiiiiiiiiiiiiiieeeeeeeeeee e,
ST S T O B ¢ 3 7= o) o WU
B.1.4 POWETD oottt ettt e e st e e s aaees
B5.1.5 COTe2D U0 ittt et

5.2 Performance with Local Search

5.3 Performance of Stencil.................

5.4 Comparison with Hand-CraftedM odels......cccccceiiriiiiiiciiiiiiniiieceiieee e

5.4.1 Tailoring Hand-Crafted Models toModern Architectures........c............

5.4.2 Performance of Hand-Crafted Alodels.....ccooooueeiiiiiiieieieiiiiiiiiiiiiiiiiiiennnn,

6 Conclusions and Future Work

vn

29
29
29
30
31
32
33
33
34
36
36
38

39
40
41
42
43
44
44
45
47
48
49

50

52

Chapter 1

Introduction

The compute and data intensive kernels of several important applications are
loops. Tiling [22, 42, 28, 51| restructures loop computations to exploit paral-
lelism and/or data locality by matching the program characteristics (e.g., locality
and parallelism) to those of the execution environment (e.g., memory hierarchy,
registers, and number of processors). Effective use of tiling requires techniques for
tile shape/size selection and tiled code generation. In this thesis we focus on the
key step of tile size selection (TSS).

TSS is an important step in the effective use of tiling. The importance is evident
from the vast literature available on this topic, and is highlighted in Figure 1.1,
which illustrates a huge difference in performance between the best and worst tile
sizes (bx on Powerh and 2.5x on Opteron). The performance is relatively flat in
Powers, the performance of most kernels are close to the best between tile sizes 16
and 64. On the other hand, the performance varies at a much smaller change in
tile sizes with Opteron. A difference of only 5 to 10 can make a huge impact on
performance, and it is also visible in the figure that the optimal can be different
for different kernels. TSS involves the development of a (cost) model that is used
to characterize an analytical optimization problem to select the best tile sizes for

a given combination of program, architecture, and compiler.

Variation in performance of tiied code (powers) Variation in perfomance of tiiled code (opteron)

© MMM o SSYRK O STRMM
+ TMM a SSYR2K A STRSM b

5 10 15
Tile Size (cubic)

Figure 1.1: Variation in execution time of tiled code for six scientific kernels. The
execution time is normalized to the best (lowest) running time of the points shown
in the figure. Note that two processors show a very different, behavior, and scale
of x-axis is quite different in the two figures.

TSS solutions can be broadly classified into two categories, viz., purely models
based, where models directly outpiit estimated optimal [27, 42, 12, 21, 10, 41, 31,
52, 17, 39], and empirical search based [48, 15, 25, 11, 18, 36[. In the purely model
based airproach, the compiler uses a pre-designed TSS model to pick the best tile
sizes for a given program-architecture pair. In the model-driven empirical search
approach, the TSS model is used to characterize and prune the space of good
tile sizes. For each tile size in Uie pruned search space, a version of the program
is generated and run on the target architecture, and the tile sizes with the least
execution time is selected. Due to the large space of valid tile sizes an exhaustive
search, without using any TSS model to prune the space, is often not feasible.

Both the static model and model-driven empirical search approaches require a
well designed TSS model. Constructing a good TSS model is hard. The exten-
sive literature on the TSS problem is evidence of the importance as well as the
difhenlty of the problem. The problem of creating accurate TSS models is further
exacerbated by (i) the complexity of the memory hierarchy in multi-core processor
architectures, (i1) the highly intertwined optimization phases of a compiler and (iii)

rapidly changing architectures. For example, Yotov et al. [52, 53] show the level

of detailed understanding of the architecture and compiler optimization required
to construct effective TSS models.

In addition to the effort involved in creating a TSS model, adapting it to a
different architecture and/or compiler, requires significant effort. Further, keeping
a TSS model up-to-date with respect to the evolution of optimizations in a single
compiler is in itself a significant task. In fact, the recognition of this difficulty
in constructing and maintaining accurate TSS models led to the wide-spread use
of empirical search techniques. However, even empirical search techniques require
TSS models to be efficient and fast enough to (at least) prune the search space,
and these models themselves are also non-trivial to construct and adapt.

In summary, accurate TSS models are needed to select the best tile sizes and
constructing and adapting them is becoming more and more difficult due to in-
creasing complexity of modern hardware and software.

Previous approaches to T'SS have used hand-crafted TSS models to either di-
rectly select the tile sizes |27, 42, 12, 21, 10, 41, 31, 52] or as a part of an empirical
search to prune the search space [48, 15, 25, 11, 18, 36|. There are also approaches
to TSS where hand-crafted TSS models are used to define a space of valid/good
tile sizes and then machine learning techniques are used to efficiently search the
space for the best tile sizes [47, 29, 16, 35[. As discussed earlier, the hand-crafted
models used in these approaches are difficult to create, adapt, and maintain.

The main question that we address in this thesis is the following. “Instead of
hand-crafting TSS models, can we automatically learn or create them?” If so, we
can use the same techniques to aiitornatically adapt or keep them up-to-date with
respect to changes in architectures and compilers. We show for a specific class
of programs, that by using a combination of simple program features, synthetic

kernels and standard machine learning techniques, highly effective and accurate

TSS models can be learned with little or no human involvement. The two key
ideas behind our approach are (i) the use of six simple program features that
capture the effects of spatial and temporal locality of tiled programs and (ii) the
use of synthetic and automatically generated programs to learn the T'SS models.

We consider the problem of selecting tile sizes for a single level of tiling for
caches. For validation, we use a class of scientific computations that are known
to benefit from cache tiling. We validate our scheme on three different architec-
tures (Intel Core2Duo, AMD Opteron, Power5) and four different compilers (gec,
IBM xlc, PathScale pathce, and Intel icc). We show that fairly accurate TSS
models can be automatically created on all the six different architecture-compiler
combinations. The tile sizes predicted by our machine-crafted models, trained sep-
arately for each architecture-compiler combination, consistently show near-optimal
performance on a variety of scientific kernels. The training of the machine-crafted
models requires a couple of days of data collection and very little effort to tune
the neural network parameters. The resulting TSS model can be directly used by
a compiler to compute the best tile sizes for a given program, or can be used by
an auto-tuner to guide a model-driven empirical search.

The key points in this thesis can be summarized as follows:

+ We identify a set of six simple program features that characterize the spatial

and temporal locality benefits of a riled program.

* We show that the simple structure of the program features can be exploited
to generate synthetic tiled programs which can be used for learning the TSS

models.

* We formulate a machine learning scheme which models the optimal tile sizes

as a continuous function of the program features.

* We rej)ort validation of our approach on six different compiler-architecture
combinations. We show that very effective TSS models that predict the near-

optimal tile sizes across all the six platforms can be automatically learned.

To the best of our knowledge, this work is the first one to use a combination of a
simple set of features and synthetic programs to automatically create T'SS models.

The remaining chapters are organized as follows. Chapter 2 introduces the
necessary background including loop tiling for caches and the architectural features
that affect the performance of tiled programs, and the neural network we used as
our method of machine learning. Chapter 3 covers the related work, including
previously presented TSS models and other instances of machine learning using
in compiler optimizations. Chapter 4 introduces the program features, predicted
outputs of our model and the different stages of our scheme. In Chapter 5 we
present the experimental evaluation. Chapter 6 presents some conclusions and

pointers to future work.

Chapter 2

Background

In this chapter, the necessary background for our work is introduced. Section 2.1
introduces loop tiling, and various aspects of programs and architectures that
influence performance of tiled code. Section 2.2 briefly introduces artificial neural

networks, a machine learning technique we use to learn TSS models.

2.1 Tiling

Tiling, also called blocking, transforms a set of loops into another set of loops,
which perform the same computation but in a different order so that the program
has better cache locality. Since it can be used to divide iteration space into smaller
chunks, it is also used to expose coarser grained parallelism. In this section, we
introduce tiling as well as the effects of some of the new hardware and compiler

features on the behavior of tiled codes.

2.1.1 Class of Programs

In this thesis, we focus on a class of scientific computations, such as linear algebra,
which are known to benefit from tiling. Although there are highly tuned libraries
available for common kernels like matrix multiplication, computations that are

not covered by the libraries may still come up by trying to use a specific loop

MMM Matrix Matrix Multiplication

T™MM Triangular MM {C = AB)
SSYRK Symmetric Rank K Update
SSYR2K Symmetric Rank 2K Update
STRMM In-place TMM {B = AB)
STRSM Solve Triangular Matrix {AX —aB)

TRISOLV Solve Triangles {Ax = h)

LUD LU Decomposition

SSYMM Symmetric MMM

Table 2.1: Nine real kernels used for validation

ordering or as a result of other transformations, such as fusing multiple kernel
computations. This class is called Affine Control Loops (ACLs). ACLs have the

following property;

* Loop bounds are defined as an affine function of surrounding loop indexes

and parameters.
* Variables are accessed using affine function of loop indexes and parameters.

The nine kernels we use in this thesis, summarized in Table 2.1, are all ACLs.
Several tools to generate tiled codes on this class of programs are available [37, 20,
5|, which makes it easier to both explore and benefit from tiling.

Among this class of programs, we further restricted the programs to a subset
that has three dimensional loops with two dimensional data. Many scientific ker-
nels, like matrix multiplication, fit in to this subset of programs. Also programs
with more than three dimensional loops can be still handled in our model by only
tiling the inner three dimensions.

We also limit our tiles to cubic tiles only to reduce data collection time. Al-
lowing all three dimensions to have different tile sizes significantly increases the
number of possible tile sizes. Our approach can be directly extended to predict

rectangular tile size. We do not consider data padding or copy optimization.

S « N® _y @ !

[T T s R T A T T R O R

//Original //Tiled

for (i=0; i<9; i++) for (Ti=0; Ti<9; Ti+=3)
for (3=0; 3j<9; J++) for (Tj=0; Tj<9; Tj+=3)

for (1=Ti; 1 < Ti+3; i++)
for (3=T3j; j < Tj+3; J++)

Figure 2.1: Simple tiling example. 9x9 iteration space is tiled into 3x3 tiles. Figure
generated by [40].

2,1.2 Simple Example

Figure 2.1 is an example of tiling, applied to a square iteration space. The original
code with two nested loops that both go from 0 to 8 can be viewed as a collection
of points in a 2D plane, where each point corresponds to an instance of some
statement in the body being executed. In the original loop nest, all points in a
column (points along the j-axis) are executed before the next column. In the tiled
code, an additional set of loops are introduced to iterate over the set of points
called tile origins (circled points in the figure). The inner loops now iterate over
the points in a tile (3x3 squares in the figure), using the original order of execution.
The legality of tiling itself and the legal execution order of tiles depends on the
statement in the original code. Since all points in a tile are executed before later
tiles, the order of execution is different. The size of the tile as well as the shape

alters the execution order, and influence the performance.

for (1=0; i<N; i++)
for (3=0; J<N; J++)
for (k=j; k<N; k++)
C[Jl[k] += A[i][J] * A[i][kl;

Figure 2.2: SSYRK

2.1.3 Tiling for Locality

Tiling can be used to maximize reuse and avoid costly accesses to higher levels in
the memory hierarchy. In the above simple example (Figure 2.1), if the statements
writes to a ID array, indexed by j, a tile only writes to 3 distinct memory loca-
tions, while the original computation writes to 9 locations when the same number
of computation is performed. Thus, tiling can be used to control the memory foot-
print, and hence fit required memory into the target memory sub-system, such as
cache or registers, to avoid high latency loads associated with storage.

Now we present an example from a dense linear algebra kernel, symmetric rank
k update (SSYRK), shown in Figure 2.2. If you consider the access to the C matrix,
the references do not change when i changes. If all elements of the C matrix remain
in the cache between successive iterations of i, the main memory needs to be only
accessed once for the entire duration of the program execution. With the original
code, we need enough cache to hold N” elements of the C array, and additional 2N
for the A array to maximize reuse. However, LI data caches of modern processors
are around 32KB to 128KB, and are often not enough to store the entire matrix
for large problem instances.

Tiling partitions the iteration space and changes the order of execution while
still performing the same computation, i.e. without changing the program seman-
tics. A possible application of tiling is shown in Figure 2.3. New loops with indexes
Tj and Tk control the memory requirement by the tile size parameter £Size so

that £Size” elements fit in the available cache.

for (T3 = 0; T3 < N; Tj+-tSize)
for (Tk = Tj; Tk < N; Tkt+=tSize)
for (1=0; 1i<N; i++)
for (3=T3; Jj<min(Tj+tsize,N); J++)
for (k=j; k<inin(Tkt+tsize ,N) ; kt++)
Cl3][k] += A[i][3] * A[i][K];

Figure 2.3: Tiled SSYRK

Tiling has been studied extensively since it has been proposed over 20 years ago,
and is used as one of the important optimizations in highly tuned linear algebra
libraries STidi as BLAS or ATLAS [49, 53]. The above example only shows the use
of tiling to maximize LI cache reuse, but tiling can be applied to other memory
hierarchies such as registers, and other levels of caches as well. In addition, it can

be applied multiple times to optimize for midtiple levels of the memory system.

2.1.4 Tiling for Parallelism

When the computation can be parallelized, tiling can be used to expose coarse
grained parallelism. Once again, in the simple example (Figure 2.1), if the only
dependence of a point in the iteration space was on the immediate south neighbor
to compute, each column can be computed in parallel. It is also legal to compute
each column of tiles in parallel, by letting a processor compute a tile instead of a
point in the iteration space. By using tiles as the unit of computation performed on
a processor, each processor has larger task, and hence coarser grained parallelism.

Coarser grained parallelism is often better when data transfer is involved. Com-
munication start up cost is usually high in computational grids that use some im-
plementation of the commonly used Message Passing Interface [44]. Thus, it makes
sense to reduce the number of communications, in exchange for an increase in the
volume. Tile size and shape influences the communication pattern, which in turn

has a large effect on parallel performance.

10

Multiple levels of tiling can be used to exjdoit different levels of parallelism.
Clusters of multi-core machines have parallelism both across machines and across
cores within a machine, which can be utilized with additional levels of tiling. In
addition, parallel programming for high performance would not make sense unless
the sequential portion is also optimized, and tiling for locality should be done as
another level of tiling.

In this thesis we restrict to sequential performance. Tile size selection models
discussed here do not take parallel performance into account when selecting tile
sizes. Extending this approach presented here to handle parallel performance is an

important direction of future work.

2.1.5 Cache Size and Associativity

Over the past decade, caches in general propose processors have significantly
changed. Caches have generally increased in size, and it is now common to have L2
caches that can store up to a few mega-bytes. Not only that, L2 or L3 caches are
typically shared among multiple cores on a processor, which requires some type of
cache coherency mechanism. Processors today do not have direct mapped caches
anymore, but instead they use set-associative caches. In addition, other factors
like the cache line size, cache evicting mechanism, or any other detailed design of
the hardware can influence program behavior. It is difficult to reason how each
one of these changes to the hardware affects programs, even more so when all of

them are combined.

2.1.6 Tiling with Hardware Prefetching

In addition to caches discussed above, many modern processors now have some
prefetching hardware to prefetch data from memory to caches. Prefetchers signif-

icantly change cache behavior. Hardware prefetchers keep track of memory access

11

patterns, and fetches cache lines that are likely to be accessed in the future based
orT'the pattern. For example, if cache line A, A-1-1 and A + 2 are accessed in this
order, a prefetcher can guess that yf + 3 is accessed next, and start fetching the
data. The patterns that can be recognized by the prefetcher, the number of ac-
cesses (that follows some pattern) required to trigger prefetching, and the number
of prefetching that can take place at a time depends on the hardware. The pat-
tern used in the example given above is called unit-stride access, where successive
cache lines are accessed with stride of one. Another pattern that are handled by
some of the prefetchers are called constant-stride, where the stride can be some
constant not necessary one. For example, given accesses to A, A+ 10 and A + 20,
constant-stride prefetcher can detect the pattern and start fetching A -I- 30.

If hardware prefetchers can prefetch all required data before it is needed, tiling
for locality is unnecessary. However, there are many cases where current hardware
prefetchers cannot be used. In the following, the effect of hardware prefetching
is discussed assuming a processor with hardware prefetchers that can only handle
unit-stride accesses like Power5 or Opteron. On such a processor, all the references
in Figure 2.2 can be prefetched, because all them are along the cache line (assuming
row-major layout). With hardware prefetching, the untiled code performs slightly
better than tiled code with best tile size, since it does not suffer from loop control
overhead associated with tiling.

However, not all programs have prefetcher-friendly structure. Consider matrix
multiplication shown in Figure 2.4. In the innermost loop, references CJ[i][j] and
A[i][k] are prefetcher friendly because successive references fit into the pattern of
unit-stride access, and thus can be detected by the hardware prefetcher. However,
reference B[Kk][j] is not prefetcher friendly because the first dimension of the refer-

ence changes before the second dimension. The access pattern would be B, D+ N,

12

for (i=0; i<N; i++)
for (3=0; J<W; J++)
for (k=0; k<N; kt+)

C[il[4] += A[i] K] * Bk][§];

Figure 2.4: Matrix Multiplication

B + 2N, and so on, which cannot be detected by unit-stride prefetcher. Also,
multiple computations may be fused in practice, which may residt in a prefetcher-
unfriendly code fragment. Again by loop fusion, the total number of references in
a loop nest may increase beyond the number of prefetching that can take place at
a time, which again limits the benefit of hardware prefetching.

We have assumed unit-stride prefetchers in the discussion above. There are
processors that can detect constant-stride accesses, which would make all of the
references in Figure 2.4 prefetcher friendly. However, recent Intel processor series,
which were the only processors with constant-stride hardware prefetchers, cannot,
prefetch if the stride crosses 4KB page boundaries [I]. Because of this constraint,
constant-stride prefetcher in the Intel processors cannot do any better than unit-
stride prefetchers when the problem instance is large enough so that each row is
more than 4KB (512 doubles).

Programs with the similar structure as shown above may still benefit of tiling
for better locality for those references that cannot be prefetched. In some cases,
simple loop permutation can be performed to make references prefetcher friendly.
In the above example with matrix multiplication, j and % loop can be interchanged
to make all references have unit-stride accesses. However, loop permutation cannot
be applied if there are more complex dependencies that make loop permutation
illegal. In addition, even for programs with loops that can be permuted, the loop
may not get permuted due to other reason because tiling is not only used for

localitv.

13

One such example is illustrated in SSYRK kernel shown in Figure 2.2. Both j
and k loops can be parallelized because the computation accumulates results using
distinct memory location for each j,k pair (C[j][k]) from input array A However,
simply marking j and k loops to be parallel using would result in an inefficient
parallel code. Because of the sequential outer loop i, synchronization is needed
after each iteration of i. The current parallelization compute one step of the
accumulation for all answers, before proceeding to the next step. Permuting the
loops to make the i loop innermost would change the execution order so that a
processor would complete the entire accumulation for an answer before moving on
to the next. Since there are no sequential loops surrounding the parallel loops, the
number of synchronization is now reduced from N to I. However, the new loop
ordering {j, k, i) makes the two references to array A prefetcher-unfriendly, and
tiling could be used for better locality.

We have discussed how tiling for locality can still 1)e beneficial even when
hardware prefetching is present. However, there is a class of scientific compu-
tations where hardware prefetching is sufficient. It has been recently shown by
Kamil et al. [23] that the traditional cache blocking may not be effective for stencil
computations with 2D data. Stencil computations have uniform accesses that can
be easily prefetched and combined with large on-chip memories available on mod-
ern hardware; the level of reuse already achieved without transforming the loop is
comparable with tiled code. We therefore exclude stencil computations, which is a
very important scientific computation, from the target class of programs. However,
stencil computations can still benefit from tiling through parallelism, 3D or higher

dimensional data, and by tiling for other memory hierarchy such as memory.

14

2.2 Neural Networks

We have used artificial neural networks (ANN) as the machine learning technique
for learning TSS models. ANN is a supervised learning method used to learn non-
linear functions. Supervised learning methods require pairs of input and desired
output, and learns some function that minimizes error between the output of the
function and the desired output. The neural network we used was back-propagation
nenral network with Scaled Conjugate Gradient method [32]. We used neural
networks with multiple layers, the first n — 1 layers being the hidden layers, and
the last one being the output layer. The number of nodes in the output layer
is equal to the number of outputs to be given from the neural network. Each
hidden layer can have any number of nodes. The inputs to the ANN are fed to
the first hidden layer, and outputs from each layer are fed to the next layer. The
outputs from hidden layers are nonlinear function (usually hyperbolic tangent)
of the weighted snm of the inputs to that layer. The output layer performs the
weighted sum of the outputs from the last hidden layer, but does not apply the
hyperbolic tangent function.

Figure 2.5 is an example configuration of a nenral network. Bias factor b
(constant 1) is given as an input to all nodes to allow each node to learn constant
offsets that are not related to any of the inputs. Each hidden and output node
has its own weight vector w. which is updated during the training. The following
is the equation for outputs of each hidden node, where w is the weight vector, i is
the input vector from the previous layer, and N is the number of inputs.

N
tanh (b -f N!v),¢er
n=l
The output layer calculated using the same ecpiation without the hyperbolic tan-

gent function. Given a layer with N inputs and M nodes, the computation of the

15

Input Layer |bli il i2 i3 i4 i5 16

1m

Hidden roem
Layer 1 |

b2 1,1 1.2 1.3, 1,4 1.5 1,6
Hidden
Layer 2 -

b3 2,1 2,2 2,3)
Output Layer ol 02

Figure 2.5: Diagram of a possible configuration of neural network with two hidden
layers. Each node takes all outputs from the previous layer as input. In addition,
bias factor bis given to all nodes. Outputs from a node is some form of weighted
sum, and outputs of the neural network is the outputs of the output layer nodes.

outputs can be viewed as a matrix vector product of a vector of size N and N x M
matrix. The error used for training E is computed using the following equation,
where (J and & are, respectively, the output of the output layer and desired output
for training data i, and 7T is the number of training data used. Error E is computed
for each output node separately.
T
E=E(. bFf
t=1
The neural network starts with random values as initial weights in each node,
and then iteratively updates the weights to minimize the error. Scaled conjugate
gradient method is a type of gradient method that approximates the second order
derivative to allow faster convergence to the local minimum, and hence accelerate

training of ANN compared to standard back-propagation with gradient descent.

16

2.2.1 Neural Network for Classification

The error function can be changed to make neural network learn different functions.
Neural networks can also be used for classification by adding another layer after the
output and changing the error function. In classification, inputs are classified into
one of the predefined classes. The additional layer is used to convert the output
of the normal neural network described above to probability of an input being in
each class. This is done through the following equation, where o is the outputs

from the output layer (in the original NN) and Y is the new output.

Yy =

j=i
The new output I'j is interpreted as the probability of input being in class i .
The learning now maximizes the likelihood of a given input classified to the correct

class.

2.2.2 Neural Network Parameters

There are many parameters used to configure neural networks. The number of
hidden layers, and the number of hidden nodes in each layer defines the size of
the neural network. Larger number of nodes tend to make the training faster,
because wider range of weights are covered when the weights are initialized. In-
creasing the number of hidden layers can also make the training faster because
more complex functions can be learned. The range of randomly initialized weights
may significantly impact the learning as well. Because of the gradient method used
in training, the weights will only be locally optimized, and if the initial values are
far from the true optimal, it can never reach the true optimal.

The number of iterations to train and the condition to terminate learning are

critical parameters to avoid over-fitting to the training data. Commonly used

17

terminating conditions terminate the training when the error E during the training
becomes lower than some threshold, and this threshold is the parameter.

In addition, we can train multiple neural networks individually for more stable
output. Averaging the output of multiple neural networks helps stabilize the out-
put, because neural networks learned are heavih” influenced by the initial weights.
The number of neural networks to be trained for averaging in the end is also a

parameter.

18

Chapter 3

Related Work

The problem of finding good tile sizes to benefit from tiling, and models to find
them have been studied extensively in the past. In this chapter, we cover such
methods categorized into purely analytical models that directly predict the op-
timal, and mode-driven approaches where models are used as a part of iterative
optimization. In addition, we cover another set of work that have used machine

learning techniques in the context of compiler optimization.

3.1 Analytical Models

Many analytical models have been proposed in the past for tile size selection
(TSS) |27, 42, 12, 21, 10, 41, 31, 17, 39]. These models are constructed by carefully
observing the performance of a small set of kernels and modeling the performance
using detailed hardware and software characteristics. Although developing analyt-
ical models can give greater insight to how the hardware and software interacts,
the cost of development is quite high. Our work focuses on creating good tile size

selection models with little human effort.

19

3.1.1 Common Considerations

11 the previous models, three types of cache misses are commonly considered.
When a cache line is accessed, it will not be in the cache (unless it was prefetched),
and results in an unavoidable cache miss called cold miss. The types of cache misses
that can be avoided are those that happen when an element in the cache is evicted
before the next access. One type of such cache miss, called capacity miss, is caused
by programs that require more data than what would fit into the cache, before any
reuse. Capacity misses are usually handled as an upper bound on the tile sizes so
that the working set size is less than the cache capacity.

N\nother type is called conflict misses, where some element of the cache is evicted
due to mapping conflicts. In a direct mapped cache, a cache line is mapped to a
slot in the cache, and if another cache line with the same slot assigned comes in,
the old cache line is evicted. Thus, in pathological cases, it is possible that a
program that only access two cache lines continuously suffer from cache miss. Set
associative caches assigns multiple slots to each cache line to remedy this problem,
but it comes with the price of increased complexity of the hardware and higher
latency to access caches.

In TSS models, conflict misses are further separated into self and cross inter-
ference. Self conflict misses are those conflicts that happen within an array. Cross
conflict is when multiple variables (arrays) are involved in the conflict. Assuming
each array is allocated contiguously in the memory, self conflict misses are easier
to handle than cross conflicts. Most of the analytical models proposed in the liter-
ature take conflict misses into account, and try to minimize conflict misses while

maximizing cache utilization.

20

3.1.2 Previous Models

Schreiber and Dongarra [42] presented algorithms to select tile shape as well as
tile size. In their tile size selection algorithm, the performance was modeled using
the ratio between computation and required memory. Using the amount of work
per iteration and increase in memory requirement for each dimension of the loop
nest, their model maximizes computation to memory reqiiirement. Tile sizes were
bounded by the amount of memory available. They considered capacity misses but
conflict misses were not considered.

Lam et al. |27 have studied the performance of tiled matrix multiplication, and
proposed an algorithm to find The optimal tile sizes for square tiles. They identified
that problem sizes highly influence the optimal tile size, and used problem size as
one of the inputs to the model. Their model considers utilization of cache as well
as avoiding self conflict misses. In addition, they showed that copying arrays so
that self conflict misses are avoided yields better and more stable performance.
However, copy optimization requires more change in the code, and cost at run
time to do the copying.

Esseghir [17] presented algorithms to compute rectangular tile sizes for a loop
nest with one or more variables. In addition to capacity and self conflict misses
their algorithm tries to minimize conflicts across variables. Conservative choice of
relatively small self-conflict avoiding tiles are made while keeping all variables fit
within the capacity to avoid cross conflicts.

Coleman and McKinley [12] presented an algorithm that computes rectangular
tile sizes. They modeled cross interference rate (CIR) using memory footprints
of array accesses and tried to minimize CIR as well as self interference. Their
algorithm first tries if tile sizes with few columns of entire rows being a tile have

a good utilization. If not, the row size is decreased, and different column sizes are

21

explored. During the exploration, a new set of tile sizes is selected if the working
set size is larger (better utilization) and CIR is lower (less cross conflicts).

Mitchell et al. [311 showed that when multi-level tiling is applied, applying
TSS algorithm on each level independently may not be a good strategy. For an
architecture with hierarchical memory with cache and TLB, they showed that
optimizing for TLB and caches in concert yields better performance.

Chame and Moon [10] presented an algorithm that finds rectangular tiles that
avoid self-interference as the first objective. From the set of tiles with no self
conflicts, their algorithm minimizes the sum of capacity and cross interference
misses. Cross conflict misses were modeled probabilistically as the ratio of memory
footprint size and capacity.

Rivera and Tseng [38] showed padding and copy optimization can improve
and stabilize performance given by previous tile size selection algorithms. Their
approach manipulates data layout through padding and copying so that conflict
misses are avoided. Since conflict misses are affected by the problem size, padding
and copy optimization reduced the variation in performance with respect to the
problem size.

Sarkar and Megiddo [411presented a constant-time algorithm to find optimal
tile sizes for doubly nested loops. They formulated a cost function as a function
of problem size and effective cache size, and picked tile sizes with the lowest cost.
Because they formulated the cost function as a quadratic equation, they were able
to try all candidates for local minima in constant time.

The main weakness of these approaches is the static nature of analytical mod-
els. Analytical models are developed based on detailed analysis of the program
and architecture. When a new factor like hardware prefetching comes in, mod-

els need to be updated through careful analysis of the new factor. This is very

22

costly because it requires expert knowledge and detailed analysis. We address this

problem in our work by automating the process of adapting to new factors.

3.2 Model-Driven Empirical Search

Another class of tile size selection techniques is model-driven empirical search [48,
15, 25, 11, 18, 36, 24, 47, 35, 52]. Purely empirical tuning with global search may
be a feasible solution for optimizing libraries of commonly used kernels [48], but is
not feasible for optimization during compilation. Model-driven approaches share
the same motivation of achieving performance close to what can be obtained by
global empirical search, but with less overhead.

ATLAS]48] is a auto-tuner for linear algebra kernels, which performs a global
search over many different performance tuning parameters. The large cost associ-
ated with the search was accepted because the kernels were used in many programs.
Yotov et al. [52] later added heuristics to first prune the search space so that costly
global search is avoided. For tile size selection, their model assumes fully associa-
tive cache and tries to fit the working set size within the cache capacity. Since
ATLAS wuse square tile sizes, their model also predicts the best square tile sizes
according to their cost function. Epshteyn et al. [16] used curve regression to guide
the empirical search from a starting tile size selected by the model by Yotov et
al. [52]. The next tile size to try was decided based on how much information
would an experiment give to help the regression.

Kisuki et al. [24] present an iterative compilation strategy for optimizing both
tile size and unroll factors. They show that significant improvement can be
achieved, but getting maximum speedup requires around an hour of compilation
time. They have tried multiple searching methods including genetic algorithms

(GA) and stimulated annealing. No model was used to prune the search space in

23

their work.

Vera et al. |47| present a method to optimize tiled codes by selecting tile sizes
and by padding. They formulate a cost function of loops using Cache Miss Equa-
tions |19|. The cost function is then searched by GA for the optimal. Their work
is not an empirical search since they do not execute any program while searching
the cost function. However, we consider their work to be a model-driven search
for TSS, which is closely related to our work. Fraguela et al. [18] present a sim-
ilar method that use Probabilistic Miss Equations combined with GA to search
for the optimal without actually running any code. Roth of these methods have
significantly lower cost of searching, typically within several seconds. The primary
reason for The low cost is that their search involves evaluation of a function, not
compilation, execution, and timing of programs.

Parsa and Loth [35] presents a method to optimize tiled codes by selecting
tile shapes along with tile sizes. They also use GA to search a complex cost
function. The cost function consists of multiple sub functions, modeling 1/0,
loads to memory, communication costs, and memory requirements.

Knijnenburg et al. [25] have used the static model proposed by Coleman and
McKinley [12] as part of their model-driven search. They show that iterative opti-
mization can give significantly better performance compared to static approaches,
but the number of iterations can be reduced by using static models. Static mod-
els are used to rank candidate tile sizes and unroll factors, and then a number of
highly ranked candidates are actually executed to find the optimal.

Chen et al. [11] present a method for optimizing dense linear kernels to multiple
levels of tiling using model-driven search. They optimize each level independently,
carrying over decisions made in earlier levels. They prime the search space to tile

sizes that occupy a certain percentage of the cache (based on set associativity).

24

and empirically search the pruned search space.

Qasem and Kennedy [36] present an iterative compilation method for tiling
combined with loop fusion. They use a cost model to first find the starting point
for the search, and then the tolerance given to the cost model is increased until
the empirical performance given degrades. Tolerance is a parameter that changes
the behavior of the cost function, the estimated probability of conflict misses in
the case of tiling.

Model-driven empirical search gives good performance in exchange with longer
compilation time. These techniques cannot be used when long compilation times
are not desired. The models created by our work only takes fractions of a second

to use so that compilation time would not become an issue.

3.3 Machine Leaning Technignes in Compilers

Recently, machine learning techniques have been successfully used in compiler
optimization. Many of the applications were toward deriving models and heuristics
to accurately predict the performance of modern complex architectures. The wide
range of applications include branch prediction [6], instruction scheduling within
basic blocks [34, 30], and deciding if certain optimization should be applied [8, 9,
46, 33]. Some of the empirical search methods discussed above have used some
form of machine learning to gTiide the empirical search [47, 16, 35|. In this thesis,
we use machine learning techniques to automatically learn TSS models. There are
a few cases where machine learning techniques have been applied to TSS of some
form [47, 29, 16, 35, 45[.

Stephenson and Amarasinghe [45] used classifiers to predict best loop unroll fac-
tors. The classifiers were trained with two machine learning techniques; near neigh-

bor classification and support vector machines. Features extracted from the pro-

25

grams are classified into eight classes, corresponding to unroll factors one through
eight. We share many things in common with their work, and unroll and jam may
be considered as a level of tiling for the registers. However, one key difference be-
tween their work and ours is that they were able to use classifiers because possible
unroll factors are much smaller than possible tile sizes. The amount of data that
fits in registers are much fewer than that for the cache, resulting in much smaller
search space. As a result, this approach cannot be used for TSS.

Li and Garzaran [29] used learning classifier system (LCS) to construct models
for selecting tile sizes and number of tiling levels for matrix-matrix multiplication
(AIMM). LCS is a machine learning technique that combines genetic algorithms and
reinforcement learning for constructing rules. They trained the LCS by running
MAIM with different problem sizes and tile sizes, and the learned LCS was specific
to MAIAI. Our approach learns a model that can be used for a range of programs,
although we only consider one level of tiling.

Aloss et al. [34], used supervised learning methods, including neural networks,
to schedule instructions within basic blocks. Supervised learning methods were
able to schedule basic blocks well, but was limited by the number of instructions
that can be in a basic block. This limitation came from the use of supervised learn-
ing methods, because desired outputs to an input must be known for supervised
learning methods to be applied. McGovern and Moss [30] later used reinforcement
learning methods to overcome this limitation.

Calder et al. [6], used neural networks and decision trees for static branch
prediction. Static features associated with programs were mapped to prediction
of the branch. Their branch i)rediction performed better than previously known
heuristics,

Stephenson et al. [46], used genetic programming to create heuristics that are

26

used in compilers to decide what optimizations should be applied. They addressed
hyper block formation, data prefetching, and register allocation. The heuristics
they found were as good as or better than those designed by hand, but selecting
features from the program and genetic programming parameters still required some
human intervention.

Monsifrot et al. [33], used decision trees to determine whether a loop should
be unrolled or not. Unrolling based on decision trees with five features performed
better than compiler heuristics, but it is unclear how they chose the unroll factor
because their model can only tell if it is beneficial to unroll the loop or not.

Cavazos and Moss [8| used a supervised learning method called rule set induc-
tion, to decide if instruction scheduling should be performed based on features
of the basic block. They found that many blocks do not benefit from instruc-
tion scheduling, and avoiding unnecessary optimizations were important especially
in just-in-time compilers. Using their induced heuristics, the cost of instruction
scheduling was reduced to less than 25%, while maintaining most of the benefit
from scheduling all the blocks.

Cavazos and O’Boyle [9] also used machine learning methods in dynamic com-
pilation. They used logistic regression to train a heuristic that was then used to
select the best set of optimizations for each method in a program, based on fea-
tures of the method. With a trained heuristic, execution times for SPECjvm98
and DaCapo I benchmarks were reduced by 25% and 51% respectively.

Another set of applications is in the field of embedded systems, used to ef-
ficiently search for optimal order of optimizations [7, 3, 14, 26]. The order of
optimizations applied to a code fragment can largely affect code size and speed,
and embedded software designers are willing to tolerate longer compilation time,

since software for embedded systems is often used in large number of units with

27

severe constraints on space, speed and energy consumption. Even though longer
compilation times were acceptable, the search space of optimization sequences was
too large to search exhaustively, and machine learning methods and genetic algo-

rithms were used to reduce the search space.

3.4 Summary

Models for TSS model various causes for cache misses to predict optimal tile sizes.
Purely analytical models are developed through detailed study of hardware and
software that requires significant effort of experts. Empirical search methods exe-
cutes the program multiple times to find a good tile size, which often gives better
performance than simply using predicted tile sizes from a model. However, it takes
time at compile time since the program is actually executed. Many of the empir-
ical search methods use some kind of heuristic, analytical models in some cases,
to reduce the time it takes to empirically search for good tile sizes. Our approach
can be used to replace analytical models to adapt to changes to the hardware,

software, or other changes in the environment, without much human effort.

28

Chapter 4

Creating TSS Models

In this Chapter we describe our TSS models and our approach to automatically
generating such models for different environments. Section 4.1 describes our model,
and Section 4.2 describes our approach to create instances of our model for an

environment.

4.1 Target TSS Model

In this section we describe how we formulate the inputs and outputs for our TSS
model, and the range of programs targeted by our model. The class of programs

handled by our model was previously described in Section 2.1.1.

4.1.1 Program Features

In order to use a model to predict optimal tile sizes for different programs, the
model needs to be provided with inputs that distinguish different programs. The
inputs to our model are features of the programs. Previous methods that use
machine learning techniques for compiler optimizations have often used syntactic
features such as the number of operands or the number of loop nests [45, 33, 9,
3]. After experimenting with a variety of features that capture the spatial and

temporal locality effects of loop tiling, we arrived at a simple set of six features.

29

The features we use are the number of references in the innermost statements,
classified into three different types of references, and each type of reference is
further classified into reads and writes. The three types of references are non-
prefetcheA references, prefetched references , and references that are constant in
the innermost loop {invariant). The invariant reference captures those references
that are reused for all the iterations of the innermost loop. The prefetched reference
captures references that enjoy spatial locality given by the prefetcher, and non-
prefetched references are those that need temporal locality for good performance.
Read and write references are distinguished because of the possible differences in
how they are treated especially in multi-core processors where the L2 cache is
commonly shared among the cores.

The following is an example using matrix multiplication show in in Figure 2.4,
assuming row-major layout and unit-stride prefetcher. The reference to array Cis
write-invariant (WI), because it is written to the same location by all iterations
of the innermost loop. Reference to array A is read,-prefetched, (RP), because the
innermost loop index k is used to index the columns of the array, and such accesses
are prefetched by unit-stride prefetcher. R,eference to array Bis read-non-prefetched
(R.NP), since k is used to index the rows. These features can be easily extracted by
looking at the loop orderings and indexes used to reference arrays. The compiler
needs to be aware of what type of hardware prefetcher is used on each architecture

to calculate these values, but we believe this is a simple requirement.

4.1.2 Importance of Simple Program Features

In previous work, it was common to use a large number of program features (some-
times up to 60). This was because it is relatively easy for a compiler to collect a
number of syntactic information from the code, if not already available. Many of

the features can be useless for prediction, and some effort has been made towards

20

selecting the useful features and reducing the total number of features used [13, 3|.
Large number of program features can cause the training to take longer than nec-
essary, and using the resulting model will also take longer.

We initially started with a large number of program features, but noticed that
some of the features were either not being tiseful or could be computed as some
combination of other program features. Because of the multi-layered neural net-
works, inputs that are simple combination of other inputs can be easily learned in

some form, and thus those inputs features turned out to be redundant.

4.1.3 Possible Predicted Outputs

There are multiple possible target outputs for a TSS model. The desired output
given to the neural network during training becomes the output from the model.
This makes it very easy to change the output if necessary.

The initial model we tried have used execution times of training program in-
stances as the desired output, using problem size and tile sizes as additional inputs
along with the program features described above. The trained model now predicts
the expected execution time for a set of program features. However, this approach
requires searching the function after modeling. We need to find the tile sizes that
minimize the function for a given program feature and problem size. Finding the
optimal of the function may be difficult depending on the type of function being
learned. In the case of analytical models, the function may be smooth and the
optimal is easy to find using some kind of optimization method. With functions
learned by neural networks, the function may not be smooth and optimization
methods can get trapped in one of many local minima. Finding global minima in
such functions is itself a separate and difficult problem, one that we would like to
avoid.

Another possible target is the optimal tile size itself. Directly predicting the

31

best unroll factor through classification has previously shown to be successful [45].
Classifying programs to optimal tile sizes allows skipping the step of searching the
function and directly gives tile size as an output. Classifiers can be also learned
by neural networks using a different formulation of error or other machine learn-
ing technicjues such as support vector machines. However, classification can only
partition the input into those classes that were observed during training. Thus, it
does not suit our goal of predicting optimal tile sizes of unseen programs, unless

we have enough training data to cover all possible tile sizes, which is unlikely.

4.1.4 Output of Our Model

We used a solution between the two ways described above. We use the optimal
tile size as the target, but we do not learn classifiers. Instead, we formulate the
TSS model to be learned as a continnous function from the six program features
(described earlier) to the optimal tile sizes. Learning as a function allows the model
to predict tile sizes that was not seen during training, and by directly predicting
the tile sizes, the potentially expensive search step is avoided.

The following example gives an intuitive motivation for formulating the TSS
model to be a continuous function. Consider three programs with identical pro-
gram features except for number of non-prefetched read references. Program A
has optimal tile size of 100 with one non-prefetched reference, program B has op-
timal tile size of 50 with three non-prefetched references. Since an increase in
non-prefetched references implies an increase in memory footprint, it is intuitive
that the optimal tile size is smaller. It is also reasonable to think that another
program C with two non-prefetched references (other features identical) to have
the optimal tile size between 100 and 50. With a classifier, the new program C
would be classified to have the optimal tile size 50 or 100, when programs A and

B were the only training data used. With a sirnj)le line fit, a function would say

32

75 is the predicted optimal for C, which is likely to be closer than both 50 or 100.
Functions learned by neural networks would behave similarly, but the function

would be much more complex than a simple linear line fit.

4.1.5 Using ANN to Learn TSS Model

We used artificial neural networks (ANN), a supervised learning method, to learn
tile size prediction model previously described in Section 2.2. Supervised learning
methods require pairs of input and desired output, and learn some function that
minimizes the error between the output of the function and the desired output.
Models learned using neural networks return real valued numbers as optimal tile
size. Since tile sizes are integers, we simply round the given value to an integer

and use that as the predicted optimal tile size.

4.2 Learning TSS Models

Given the target model described above, we use ANN to learn a function from

inputs to outputs. Our approach has the following four different stages
1. Synthetic program generation
2. Data Collection
3. Learning TSS models using ANN
4. Use of ANN based TSS model

Stages 1 through 3 are part of the T'SS model creation phase and are done offline.
Stage 4 represents the use of the learned TSS model and is done on-line during the

compilation of a program to select the tile sizes.

33

4.2.1 Synthetic Program Generation

We need to collect training data to train nenral networks. Data gathered from
real applications or kernels are commonly used as the training data for machine
learning based modeling. However, using real applications limits the training data
to the applications available at the time of training. The nenral network cannot
be expected to perform well on programs with program features that are largely
different from any program in the training data. With real applications as training
data, there is not much control over the range of programs that is covered by the
neural network. In addition, some of the real applications need to be separated
out from the training data for validation. Also, if multiple applications have the
same program feature, the neural networks may become over-trained to better suit
that program feature more than others.

We use synthetic programs to overcome these limitations. The synthetic pro-
grams we use are programs that fit in our class of interest (three dimensional loops
and two dimensional data), with statements in the innermost loop that are gen-
erated to have the specified number of references for each type. We exhaustively
search for optimal tile sizes of the generated programs to create the training data
set. We used the open source tiled code generator, HITLOG [ST], to generate codes
with all three dimensions tiled.

With synthetic programs, we have better control over training data, and the
ability to train using a large number of training data points. We believe these
benefits of synthetic programs are one of the main reasons that lead to good per-
formance of our models.

The use of synthetic programs was only possible because we have simple pro-
gram features. If a large number of program features were used, then it becomes

difficult to try a large range of possible programs with synthetic programs. Even

34

RP RNP RI' WP WNP WI
Range 0-8 1-5 08 01 0-1 0-1

Table 4.1: Bounds on feature space for the model as number of references of each
type

RP RNP R1 WP WNP WI
Range 0,2,4,8 1-5 0,2,4,8 0-1 0-1 0-1

Table 4.2: Data points used for training

if real programs were used, the coverage of programs that can be represented by
complex program features is going to be sparse.

We selected a range of programs that covers all the kernels we used, but also
includes many others so that the model is not specialized to just those kernels.
Table 4.1 shows the range of values we used to bound the feature space. Column
names represent the type of reference, prefetched (P), non-prefetched (NP), invari-
ant(I) for read (R) and (W). These bounds were constructed so that the space is
not too large, but still captures a wide variety of programs. The number of reads
are usually more than the writes, so we only have a small number of writes. RNP
is always greater than 0, to ensure the program stays in the class of interest (at
least one reference is not prefetched). There are 2835 program instances in this
space with at least one write.

From the bounded feature space, we collected optimal tile sizes for a number
of points in the feature space. Table 4.2 shows the points used for the training
data. We also exclude from the training data, programs with features identical
to features of real kernels, so that real kernels we used to test our model remain

unseen during the training.

35

4.2.2 Data Collection

Collecting training data is time consnming, but we do not need much human
effort for this. Analytical models require extensive case study to develop, and also
require large amount of experiment to be run. The use of parametrized tiled code
generator [3?1 helped our data collection by avoiding re-compilation for different
tile sizes of the same program. The data collection was done through a set of script
that generate synthetic programs, and measure their execution time with different
tile sizes.

Data collection took between 20-40 hours for each compiler-architecture com-
bination. We used problem sizes that take around 10 seconds of execution time for
each synthetic program instance. Since programs with more references also have
more operations, it generally takes longer to execute. Th order to avoid unneces-
sarily long execution times, a simple equation was used to adjust the problem size
based on number of references. The problem sizes were generated using the fol-
lowing equation with BASE configured differently for each architecture according
to their computational power. The function int in the equations is a function to

round down a given value to an integer.
BASE - 250(int(G?P + WP + 2/{RNP + WNP))/4))

Non-prefetched references are weighted more to account for increase in memory
loads. This equation does not give problem sizes that are precisely around the
target execution time, but all we wanted was a method to prevent data collection

to take too long or too short.

4.2.3 Learning TSS Models Using ANN

There are many parameters in the training process, including the range of programs

to target, the range of training data, and parameters of the neural network. The

36

former two can be made larger and larger if time permits, since we want the model
to cover larger range of programs, and having detailed training data only helps
learning.

The parameters of the neural network are not as simple as previously described
in 2.2.2. We do not try to optimize the neural network parameters. Instead we
manually tune the neural network parameters based on our intuition and testing
on small data sets. Future work includes developing an automated approach to
optimize neural network parameters in the future.

We used three-layered (two hidden layers) neural networks with 30 hidden nodes
per hidden layer, initial weights between 1 and -1. The termination condition was
slightly different for each architecture-compiler combination based on how easy it
was to fit the training data for a particular combination. These parameters are
picked by trying out multiple combinations of parameters and looking at the rate
of convergence and root mean square errors, a measure of how far the predicted
values are from the desired output.

It took about one to two hours of initial tuning to get a good basic design of t.he
neural network, and then the SAME basic neural network configuration was applied
to all architecture-compiler combinations. Note that this design time is a one-time
effort. After the basic design, for each architecture-compiler combination, a slight
tuning of the termination condition was needed. This tuning is pretty standard
and can be automated.

With the above configuration, training of each neural network completes within
a minute for a total of at most five minutes for five different neural networks trained

for each architecture-compiler combination.

37

4.2.4 Use of ANN Based TSS Model

Once we have the trained TSS model, it can be used as a part of the compiler
to predict optimal tile sizes, or as a part of a model-driven search method to find
the optimal tile size. The first step is to extract the program features discussed
previously. This step should not take much time due to the simplicity of our
program features. Then the program features are used as an input to the learned
model to produce output, which can be directly used as the tile size selected for
that program. When the model is used as a part of a model-driven search method,
neighboring tile sizes can be empirically tested for the best performance. It is also
possible to alter the neural network to output expected performance of a program
with a given tile size, which may be a better strategy for mode-driven search.
The use of neural networks is computationally close to two matrix-vector prod-
ucts of size 31 X 6, which is trivial with modern compute power. The only on-line
cost associated with the use of our model in a compiler is the use of the neural

network and extraction of the six program features.

38

Chapter 5

Performance Evaluation

We have used our approach to learn tile size selection models on six architecture-
compiler combinations summarized in Table 5.1.

Feature extraction was done manually, but it can be easily automated by a
compiler. The compiler needs to know if the target architecture has a hardware
prefetcher, and look at the order of surrounding loop indexes to figure out the
tvpe of reference for each array access. The list of features extracted from the
kernels are shown in Table 5.2. We nsed the same set of program features on all
architectures, because references that can be prefetched were the same across all
processors (recall discussion in Section 2.1.6).

The problem sizes were selected to run for about 60 seconds to make sure the
program runs long enough, and to ensure that the problem sizes are sufficiently

different from training inns, which targeted around 10 seconds of execution.

Architecture Compilers LI Cache Options HW Prefetcher

Opteron PSC, GCC 64KB 2-way -03, -03 unit-stride
Powerb XLC, GCC 32KB 4-way -05, -03 unit-stride
Core2Duo ICC, GCC 32KB 8-way -03, -03 constant-stride

Table 5.1; Architecture and compilers used

39

RP RNP RI WP WNPO WI
MMM 1
TMM 1
SSYRK 0
SSYR2K 0
STRMM 0
0
0
0
1

—
o

STRSM
LUD
SSYMM
TRISOLV

e N e e
O N = == O O O
O OO O O O o oo
O R = HO O OO

O R H R OO OO

Table 5.2: Program features of kernels used for evaluation.
5.1 Performance

For each architecture-compiler combination, we compared the execution time of
kernels with the true optimal, using cubic tile sizes, found by exhaustive search.
Figure 5.1 shows the normalized execution time of nine kernels for tile sizes selected
by machine-crafted models learned for each architecture-compiler combination.
The performance for tile sizes predicted by our models is consistently near the
optimal. The performance is only 20% off the optimal even in the worst case, which
is significantly small compared to the slowdown one would get with a poor tile size
(recall Figure 1.1). This supports our claim that T'SS models that perform well
can be learned from simple features and training data collected through synthetic
programs for different architecture and compilers. We have shown that our model
can adapt to different compilers, which is just as hard if not harder compared
to different versions of the same compiler. This indicates that the learned TSS
models can be easily updated (re-trained) with respect to the evolution of a single
compiler.

In the remainder of this section, we discuss the possible causes of inaccuracies

and counter intuitive behaviors that lead to slowdowns shown in the figure.

40

Execution time using machine-crafted models, normalized to the true optimal

Q Opteron/PSC Q Power5/XLC \n Core2Duo/ICC
Q Opteron/GCC S3 Power5/GCC Q Core2Duo/GCC

| | .
l i t o EivH
S I M/ ¥ 1

d A 1 1
0 M caoa 65 m m

MMM T™MM SSYRK SSYR2K STRMM STRSM LUD SSYMM TRISOLV

Figure 5.1: Execution times, normalized to the best tile size determined through
exhaustive search, of kernels with tile sizes selected by machine-crafted models for
each combination of architecture-comjulers.

5.1.1 Program Features

Since MMM and TMM have the same statement with different bounds on the
loops, the program features are identical, and thus the predicted tile sizes are the
same. However, the optimal tile sizes found for MMM and TMM were different.
STRVIM, STRSM and LUD have identical program features, but their iteration
space is also different. In addition, these programs have statements in loops that
are not innermost, which is ignored when extracting program features. All of the
above are possible sources of miss prediction, but trying to capture all of them
would result in large number of program features. We made the decision to have
a small number of program features for other advantages discussed previously in

Section 4.1.

41

5.1.2 Sensitivity to Change in Tile Size

Through the exhaustive search process, we observed that PowerS and Core2Duo are
significantly less sensitive to changes in tile size. As previously seen in Figure 1.1,
performance on Opteron significantly varies in a relatively small changes in tile sizes
compared to Powerfi. Core2Duo and PowerS shared the similar pattern of having
a relatively wide range of good tile sizes, and the performance start, degrading at
a mucli larger tile compared to Opteron. Since Core2Duo had wider range of good
tile sizes compared to PowerS, we consider Core2Duo to be least sensitive, and
Opteron to be the most sensitive to changes in tile sizes among the processors
we used. We suspect that the set associativity is one of the reasons for PowerS
and Core2Duo being less sensitive to changes in tile size. Higher set associativity
reduces the probability of conflict misses that has been known to be one of many
factors that complicates tile size selection.

ft is easier to get good performance when it is not sensitive to changes in
tile size. However, low sensitivity can lead to seemingly inaccurate predictions.
During the automatoxl data collection, the optimal tile size for each synthetic
program instance is collected. When the performance is very flat, the optimal found
through this process can significantly vary due to some noise during execution. We
believe that this noise can be suppressed by increasing the problem size and/or
running each instance of synthetic programs used for training a number of times
and taking the minimal (or mean) execution time. Some way of detecting flatness
in the performance may helj;) avoiding this behavior. However, we have not used
any of the above since the performance was still close to the optimal without such

extension.

42

PSC-Optimal PSC-Predicted GCC-Optimal GCC-Predicted

MMM 8 8 8 8
TMM 10 8 8 8
SSYRK 9 9 8 7
SSYR2K 6 6 6 9
STRMM 13 11 8 11
STRSM 17 11 8 1
LUD 11 11 8 11
SSYMM 10 8 8 8
TR.ISOLV 8 8 8 8

Table 5.3: Predicted and optimal tile sizes for Opteron

5.1.3 Opteron

The AMD Opteron has the largest cache size, but smallest set associativity among
the three processors we used. The optimal tile sizes found for this processor is
relatively small, and small changes in tile sizes can have large effect on performance
(recall Figure 1.1). Table 5.3 shows the optimal and predicted tile sizes for both
Path Scale Compiler (PSC) and GCC for Opteron.

With PSC, we see that MMM and TMM that have identical program features
have different optimal tile sizes. Similar behavior is observed for STRMM, STRSM,
and LUD that have identical features. This is due to our program features being
incomplete as discussed previously in Section 5.1.1. Small miss prediction that may
have been caused due to incomplete program features have resulted in slowdowns
of around 10%.

The optimal tile sizes given by GCC is surprisingly flat at 8, except for TMM.
Miss predictions on LUD had shown the most slowdown among all architectures
(20%). STRMM, STRSM and LUD have statements in the second loop, which
could make the program behave differently from other programs with identical
features, but with perfectly nested loops. We suspect this to be due to GCC

behaving differently when imperfectly nested loops are present, but we are not

43

XLC-Optirnal XLC-Predicted GCC-Optimal GCC-Predicted

MMM 113 105 108 105

TMM 109 105 106 105
SSYRK 49 56 58 51
SSYR2K 26 25 29 25
STRMM 49 52 48 54
STRSM 57 52 57 54
LUD 45 52 47 54
SSYMM 36 24 41 26
TRISOLV 105 105 108 105

Table 5.4: Predicted and optimal tile sizes for Power5
sure about the exact cause.

5.1.4 PowerH

The IBM Powers is the processor has smaller cache and medium set associativity
among the three processors we used. The optimal and predicted tile sizes found
for Powers are shown in Table 5.4. The optimal tile sizes found are much larger
compared to that of the Opteron. The predicted tile sizes are 5 to 10 away from
the optimal. Despite this, the actual performance hit was not much, since the
performance is less sensitive to smaller changes. For PowerS, both XLC and GCC

produced similar results.

5.1.5 Core2Duo

L1 cache of the Intel Core2Duo has the same size but higher set associativity
compared to PowerS. Core2Duo is also the only processor with constant stride
prefetching among the three processors. The optimal and predicted tile sizes for
Core2Duo are shown in Table 5.5. The predicted tile sizes are actually significantly
off from what was found to be the optimal. Again, as seen in Figure 5.1, the
performance given by predicted tiles are close to the optimal. This is because the

Core2Duo is even less sensitive to changes in tile sizes as discussed above.

44

ICC-Optirnal ICC-Predicted GCC-Optimal GCC-Predicted

MMM 137 95 16 61
TMM 145 95 16 61
SSYRK 48 76 20 44
SSYR2K 32 24 48 32
STRMM 40 63 48 78
STRSM 40 63 52 78
LUD 56 63 64 78
SSYMM 48 23 48 23
TRISOLV 44 95 42 61

Table 5.5: Predicted and optimal tile sizes for Core2Duo

GCC showed counter-intuitive behavior on Core2Duo. The optimal tile sizes for
MMM and TMM is considerably smaller than other programs with larger memory
footprint. We have tried multiple problem sizes, but the result was similar. We do
not have a good explanation for this behavior. One conjecture we can make is that,
since matrix multiplication is a very well studied program, GCC may have applied
more aggressive optimization and changed its program behavior. The conjecture
was strengthened by experimenting with the optimization level. Changing the
compiler option from -03 to -02 caused the tile size predicted by our model to

show identical performance as the true optimal.

5.2 Performance with Local Search

The focus of this thesis is learning TSS models that can predict good tile sizes for
different architectures and compilers without much human effort. In this section
we quantify its potential when used as a part of model-driven empirical search
approaches. We show how close the predicted tile sizes is to the optimal by simply
looking at neighboring tile sizes within a certain distance.

Figure 5.2 shows the normalized execution time of each kernel using the best tile

size within a certain distance of the predicted tile size. Table 5.6 shows the mean

45

Execution time using local best, normalized to the true optimal (diet 10) Execution time using locai best, normalized to the true optimal (dist. 20)

a Opteron/PSC a Powers/XLC <0 Core20uo/ICC
s Opteron/GCC 53 POwefS/GCC 0) Core2Duo/GCC

MMM TMM SSYRK SSYR2K STFWM STRSM LUD SSYMM TRISOLV MMM TMM SSYRK SSYR2K STRMM STRSM LUD SSYMM TRISOLV

Figure 5.2: Normalized execution time using the best tile sizes found within dis-

tance 10 and 20.

Predicted Distance 10 Distance 20

Opteron/PSC 4.3% 0% 0%
Opteron/GCC 6.3% 0% 0%

Power5/XLC 4.6% 0.4% 0%

Power5/GCC 1.7% 0.2% 0%
Core2Duo/ICC 7.8% 4.0% 1.9%
Core2Duo/GCC 5.1% 4.0% 1.9%

Table 5.6: Mean slowdown over all kernels when the best tile size within some
distance from the predicted tile size is used.

slowdown over all nine kernels when the best tile size within a certain distance
of the predicted tile size were used. By searching immediate neighborhood of
distance ten, the model can give the exact optimal performance for all kernels
on Opteron, and for eight out of the nine kernels for Power5. The performance
improvement on Core2Duo is relatively small compared to other architectures, but
notable improvement can be observed.

We think that the cause of relatively small improvement on Core2Duo is due to
the very high set-associativity (8-way). As discussed previously in Section 5.1.2,
there is a very wide range of good tile sizes, and the automated training data
collection is likely to have more noise compared to others. The optimal on a flat
surface can be easily affected by small noises from the operating system or other
environment not necessarily connected to the program being executed.

Even a naive local search around the tile sizes predicted by the machine-crafted

46

Performance of Jacobi Stencil (5pt)

o]
o S+ Opteron/PSC o Power5/XLC o Core2Duo/ICC
e . + Opteron/GCC o Power5/GCC A Core2Duo/GCC
« 12
e,
c. H
‘0
@D
N
"cO
E o
0
d

50 100 150 200

Tile Size (cubic)

Figure 5.3: Performance of Jacobi Stencil on each architecture-compiler combina-
tion. The performance is flat except for very small tile sizes.

models show significant improvements. This demonstrates the potential of our
method to perform better when combined with the more sophisticated search meth-

ods proposed in the literature.

5.3 Performance of Stencil

It has been previously discussed in Section 2.1.6 that stencil computations with
2D data may not benefit from tiling for LI cache. We briefly show that, it is
true on all architecture-compiler combinations we use for evaluation. Figure 5.3
shows the performance of 5 point Jacobi stencil on the six architecture-compiler
combinations. The performance is flat except for very small tile sizes and very
large tile sizes.

The performance of other kernels on Opteron is a strong evidence that these

47

performance drops are not due to LI cache misses. Recall Figure 1.1 and the
discussion in Section 5.1.3 about the performance of Opteron. The optimal tile
sizes were around 5 to 15, and the performance significantly degraded if the tile sizes
used were more than a few tile sizes away from the optimal. The performance of
Jacobi on Opteron is flat like the other two architectures, illustrating the difference
between Jacobi and other kernels.

The performance drop with small tile sizes can be explained by the loop over-
head of tiling. When tile sizes are small, the number of tiles increase, and thus
increasing the loop overhead of tile loops. Looj) overhead has much less effect
on tile size compared to cache misses, but when all references are prefetched, it
becomes the main source of performance hit.

The performance drop with large tile sizes comes from other memory hierarchy
such as L2 cache or main memory. Jacobi stencil requires 2D data array of size tile
size squared, and 150" doubles or 176 KB of data largely exceeds the cache capacity
of any of the architecture. The memory requirement, is actually twice because
Jacobi uses two copies of the array since the result of the previous iteration is used
to compute the current. Thus the performance drop cannot be due to LI cache
misses.

We have confirmed that stencil computations do not benefit from tiling for
LI cache. However, we would like to emphasize that tiling can still improve the

performance of stencils by tiling for other memory hierarchy or for parallelism.

5.4 Comparison with Hand-Crafted Models

Many static models previously developed to maximize performance of tiled code
are analyzed in detail by Hsu and Kremer [21]. We have taken two of those

models that were reported to perform well and compared the performance given

48

by these models and our rnachine-crafted models. Although these two models are
from 1991 and 1995, these models are still commonly used for tiling without copy
optimization or data padding. We first briefly describe the logic behind the two
models, LRW [27] and EUC I12].

LRW is an analytical model developed by closely studying the performance of
tiled matrix multiplication. It chooses square tiles for a given program using an
estimate of cache misses based on memory footprint and self-interference. Their
algorithm finds the largest square tile that avoids self conflicts. EUC is also an
analytical model with similar considerations used as in LRW, but it predicts rect-
angular tile sizes instead of square. EUC uses Euclidean algorithm [2] to compute
candidate heights of tiles. EUC takes cross-interference into account by estimat-
ing Cross Inference Rate (CIR) from the memory footprint. In each iteration of
their algorithm, a new tile size is selected over the previous one when it has better
cache utilization (larger working set) and smaller CIR. Both of these models take

problem sizes as an input, whereas our model does not.

5.4.1 Tailoring Hand-Crafted Models to Modern Architec-
tures

We made a small but necessary modification to the hand-crafted models to adapt
to the current architecture. Since hand-crafted models were developed when hard-
ware prefetchers were not commonly available, they treat all references as non-
prefetched. However, it is obvious that prefetched references do not need to stay
in the cache, and they can be excluded when calculating the tile size so that the
cache is utilized well. Because it is straight-forward and it woidd not take much
effort to modify the model to take the prefetch into account, we modified their
models so that prefetched references are excluded from calculation. Further, for

programs that has more than one non-prefetched references, we give smaller cache

49

Execution time using LRW2, normalized to the true optimal Execution time using EUC, normalized to the true optimai

0 Opteron/PSC ta PowerSIGCC Q Optensn/PSC a PowefSIGCC
a Opteton/GCC U Core20uoliCC IS Opteren/aCC D Core2DuolICC
D Power5/XLC Core20u0/GCC a PowefSIXLC ~ a Coro2Duo/GCC

MMM TMM SSYRK 8SYF=12K STRMM STRSM Luo SSYMM TRISOLV MMM TMM SSYRK SSYR2K STRMM STRSM Lo SSYMM TRiSOLV

Figure 5.4: Execution time of kernels with tile sizes selected by hand-crafted models
for each combination of architecture-compilers, normalized to the optimal.

sizes to the model. We also incorporated into LRW the extensions described by
the authors to handle set-associativity [27|. This extension will select larger tile

sizes for set-associative caches when compared to assuming direct mapped cache.

5.4.2 Performance of Hand-Crafted Models

Figure 5.4 shows the normalized execution time of nine kernels using tile sizes
given by hand-crafted static models. The same problem sizes used for measuring
execution time using machine-crafted models were used.

Although the hand-crafted models predicted near optimal tile sizes for some
of the kernels, the performance is not as consistent as what was observed with
our machine-crafted models. Performance of tile sizes given by LRW is relatively
worse on Opteron compared to the other architectures. Opteron is more sensitive
to small changes in tile size, as discussed previously in Section 5.1.2, which makes
predicting the optimal more difficult. LRW performs more than 2x slower on
Opteron with matrix multiplication that was used to develop the model.

EUC was unable to give good tile sizes for some kernels across all architecture-
compiler combinations, ft is interesting to note that because EUC is not restricted
to square/cubic tile sizes, it predicted a tile size that performs better than the
optimal cubic tile found for SSYR2K on Opteron with PSC. The optimal cubic tile

size found for SSYR.2K was 6x6x6, but it was not the optimal wdien rectangular

50

Machine-Crafted LRW EUC

Opteron/PSC 4% 178% 217%
Opteron/gce 6% 100% 147%
Power5/XLC 5% 168% 268%
Powerb/gcc 2% 7% 133%
Core2Duo/ICC 8% 6% 246%
Core2Duo/gcc 5% 3% 128%

Table 5.7: Mean of slowdowns with tile sizes predicted by each model over all nine
kernels on each architecture-compiler combination

tiles were considered. EUC was able to find a very thin tile with better cache
utilization for this case.

Table 5.7 summarizes the effectiveness of eacli model by showing the percent-
age of slowdown when compared to the optimal using cubic tile sizes. TRW shows
comparable performance on Core2Dno, but overall the machine-crafted model pro-
vides consistently near-optimal performance across all architectures. We believe
the reason for LRW showing comparable performance on Core2Duo is also due
to the fact that Core2Duo has a very wide range of good tile sizes, as previously

discussed in section 5.2.

51

Chapter 6

Conclusions and Future Work

Tile size selection is an important step in the profitable use of loop tiling. Hand-
crafting effective TSS models is hard and adapting or maintaining them is often
harder. We have shown that highly effective TSS models can be automatically
created using a small set of program features, synthetic programs and standard
machine learning techniques. We have shown that the machine-crafted TSS models
consistently predict near-optimal (on the average, within 5% of optimal) tile sizes
across six different compiler-architecture combinations. We have also shown that,
a naive search within a small neighborhood of the predicted tile sizes can find the
true optimal tile sizes in some cases, and in other cases find tile sizes that are very
close to the optimal. This clearly indicates the strong potential of machine-crafted
TSS models in a model-driven empirical search scheme.

Several directions of future work are promising. The proposed approach can
be directly extended to construct TSS models for multiple levels (cache and reg-
ister) tiling. Another direct extension is to construct TSS models where tiling
is used to exjjose coarse-grain parallelism [5]. Another promising direction is the
use of machine-crafted T'SS models together with sophisticated search techniques
to develop an efficient model-driven empirical search technique for use in auto-

tuners. Our approach in itself is quite flexible and with appropriate interpretation

52

of program features, it can be extended to other class of programs. Extending to
programs with irregular array references is an interesting direction of future work.

The use of synthetic programs for data collection is a strength in our approach.
However, it may become a limitation when our approach is extended to more
general models. If it takes large number of features to capture the performance
characteristics of programs with respect to optimization parameters, the space of
possible program instances also increases. This may become a challenge when
applying our approach to other optimizations or more complex tiling.

Tuning of the neural network parameters is the only part of our approach that
is not automated. Even though the tuning did not take very long in our case,
we would like to automate this process if possible. Since finding optimal neu-
ral network parameters is an important, sub-problem when using neural networks,
methods for finding optimal configurations has been extensively studied [50]. Inte-
grating such method to our approach would make the model creation completely
automated.

Although we have shown that we can create models that predict near-optimal
tile sizes, one may criticize our work for not providing any feedback about the
underlining architecture. Models learned by neural network cannot easily provide
the insight about the architecture. Alany statistical learning techniques suffer from
the same problem, and are sometimes referred to as ‘black boxes' [43]. Because
artificial neural networks were often criticized for its black box nature, significant
effort has been put towards understanding and extracting what ANN has learned
during training [4]. Appropriate use of these techniques to extract more informa-
tion about the underlining architecture is another important direction of future

work.

53

REFERENCES

14

Intel 64 and IA-32 Architectures Optimization Reference Manual.

Neal Kohlitz. Graduate Texts in Mathematics. Springer-Verlag, New York,
1987.

F. Agakov, E. Bonilla, J. Cavazos, B. Franke, Fiirsin G., M. F. P. O’Boyle,
J. Thomson, M. Tonssaint, and C. K. F Williams. Using machine learning to
focus iterative optimization, pages 295-305, 2006.

R. Andrews, J. Diederich, and AB Tickle. Survey and critique of techniques
for extracting rules from trained artificial neural networks. Knowledge-Based
Systems., 8(6):373-389, 1995.

Uday Bondhugula, Albert Hartono, J. Ramanujarn, and P. Sadayappan. A
practical automatic polyhedral program optimization system. In ACM SIG-
PLAN Conference on Programming Language Design and Implementation
(PLDI), June 2008.

Brad Calder, Dirk Grunwald, Michael Jones, Donald Lindsay, James Martin,
Michael Mozer, and Benjamin Zoren. Evidence-based static branch prediction
using machine learning. ACM Transactions on Programming Languages and
System,s, 19(1):188-222, January 1997.

d. Cavazos, C. Dubach, F. Agakov, E. Bonilla, M.F.P. O’Boyle, G. Fursin, and
0. Temam. .Automatic performance model construction for the fast software
exploration of new hardware designs. Proceedings of the 2006 interna,tiona.l
conference on Compilers, architecture and synthesis for embedded systems,
pages 24-34, 2006.

dJ. Cavazos and J.E.B. Moss. Inducing heuristics to decide whether to schedule.
Proceedings of the ACM SIGPLAN 2004 conference on Program,ming language
design and, implementation, pages 183-194, 2004.

J. Cavazos and M.F.P. O’Boyle. Method-specific dynamic compilation using
logistic regression. Proceedings of the 21st annual ACM SIGPLAN conference

54

(10]

[12]

[13]

[14]

[15]

116]

[17]

(18]

on Object-oriented programming languages, system.s, and applications, pages
229-240, 2006.

Jacqueline Chame and Sungdo Moon. A tile selection algorithm for data
locality and cache interference. In In 1999 ACM International Conference on
Supercom.puting, pages 492-499. ACM Press, 1999.

Chun Chen, Jacqueline Chame, and Mary Hall. Combining models and guided
empirical search to optimize for multiple levels of the memory hierarchy. In
CGO °05: Proceedings of the international symposium on Code generation and
optimization, pages 111-122, Washington, DC, USA, 2005. IEEE Computer
Society.

S. Coleman and K.S. McKinley. Tile size selection using cache organization
and data layout. In Proceedings of the ACM SIGPLAN 1995 conference on
Programming language d,esign and implementation, pages 279-290. ACM New
York, NY, USA, 1995.

Katherine E. Coons, Behnani Robatmili, Ylatthew E. Taylor, Bertrand A.
Maher, Doug Burger, and Kathryn S. McKinley. Feature selection and policy
optimization for distributed instruction placement using reinforcement learn-
ing. In PACT °08: Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, pages 32-42, New York, NY, USA,
2008. ACM.

Keith D. Cooper, Philip J. Schielke, and Dcvika Subramanian. Optimizing
for reduced code space using genetic algorithms, pages 1-9, 1999.

J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, R.C.
Whaley, and K. Yelick. Self-Adapting Linear Algebra Algorithms and Soft-
ware. Proceedings of the IEEE, 93(2):293, 2005.

Arkady Epshteyn, Maria Jesus Garzaran, Gerald Dedong, David A. Padua,
Gang Ren, Xiaoming Li, Kamen Yotov, and Keshav Pingali. Analytic models
and empirical search: A hybrid approach to code optimization. In In Proceed-
ings of the International Workshop on Languages and Compilers for Parallel
Computing, pages 259-273, 2005.

K. Esseghir. Improving data locality for caches. Ylaster’s thesis. Rice Univer-
sity, 1993.

Basilio B. Fraguela, M. G. Carmueja, and Diego Andrade. Optimal tile size
selection guided by analytical models. In PAR.CO, pages 565-572, 2005.

55

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(28]

Sornnath Ghosh, Margaret Martonosi, and Sharad Malik. Cache miss equa-
tions: A compiler framework for analyzing and tuning memory behavior.
ACM Ti'ansacUons on Programming Languages and Systems, 21:703-746,
1998.

A. Hartono, M.M. Baskaran, C. Bastoul, A. Cohen, S. Krishnamoorthy,
B. Norris, ,T Ramanujam, and P. Sadayappan. Parametric multi-level tiling
of imperfectly nested loops. In Proceedings of the 23rd international confer-
ence on Conference on Supercornputing, pages 147-157. ACM New York, NY,
USA, 2009. '

Chung-Hsing Hsu and Ulrich Krerner. A quantitative analysis of tile size
selection algorithms. <. Supercornput., 27(3):279-294, 2004.

F. Irigoin and R. Triolet. Supernode partitioning. In 15th ACM Symposium
on Principles of Programming Languages, pages 319-328. ACM, Jan 1988.

Shoaib Kamil, Parry Husbands, Leonid Oliker, John Shall, and Katherine
Yelick. Impact of modern memory subsystems on cache optimizations for
stencil computations. In Proceedings of the Workshop on Memory System
Performance, pages 36 43, New York, NY, USA, 2005. ACM Press.

T. Kisuki, P.M.W. Knijnenburg, and MFP O’ Boyle. Combined selection
of tile sizes and unroll factors using iterative compilation. In Proceedings of
the 2000 International Conference on Parallel Architectures and Compilation
Techniques, page 237. Citeseer, 2000.

P. M. W. Knijnenburg, T. Kisuki, K. Gallivan, and M. F. P. O’Boyle. The ef-
fect of cache models on iterative compilation for combined tiling and unrolling.
Concurr. Comput. : Pract. Exper., 16(2-3):247-270, 2004.

P. Kulkarni, W. Zhao, H. Moon, K. Cho, D. Whalley, J. Davidson, M. Bailey,
Y. Paek, and K. Gallivan. Finding effective optimization phase sequences.
Proceedings of the 2003 ACM SIGPLAN conference on Language, compiler,
and tool for embedded systems, pages 12-23, 2003.

M.D. Lam, E.E. Rothberg, and M.E. Wolf. The cache performance and opti-
mizations of blocked algorithms. Proceedings of the fth international confer-

ence on architectural support for programming languages and operating sys-
tem,s, 25:63-74, 1991.

Monica S. Lam and Michael E. WLIf. A data locality optimizing algorithm
(with retrospective). In Best of PLDI, pages 442-459, 1991.

56

[29]

[37]

[38]

[39]

Xiaoming Li and Maria Jesua Garzaran. Optimizing matrix multiijlication
with a classifier learning system. In Workshop on Languages and Compilers
for Parallel Com,pelting, pages 121-135, 2005.

A. McGovern, E. Moss, and A. Barto. Scheduling straight-line code using
reinforcement learning and rollouts. (UM-CS-1999-023), , 1999.

N. Mitchell, N. Hogstedt, L. Carter, and J. Ferrante. Quantifying the multi-
level nature of tiling interactions. International Journal of Para,llel Program-
ming, 26(6);641 670, 1998.

Martin F. Mpller. A scaled conjugate gradient algorithm for fast supervised
learning. Neural Networks, 6:525-533, 1993.

A. Monsifrot, F. Bodin, and R. Quiniou. A machine learning approach to au-
tomatic production of compiler heuristics. Lecture notes in com,puter science,
pages 41-50, 2002.

Eliot Moss, Paul Utgoff, John Cavazos, Doina Precup, Darko Stefanovic,
Carla Brodley, and David Scheeff. Learning to schedule straight-line code.
In In Proceed,ings of Neural Information Processing Sym,posium, pages 929-
935. MIT Press, 1997.

Saeed Parsa and Shahriar Lotfi. A new genetic algorithm for loop tiling. The
Journal of Supercomputing, 37(3):249-269, 2006.

Apan Qasem and Ken Kennedy. Profitable loop fusion and tiling using model-
driven empirical search. In ICS °’06: Proceed,ings of the 20t,h annual interna-
tional conference on Supercom,puting, pages 249-258, New York, NY, USA,
2006. ACM.

Lakshminarayanan Renganarayanan, DaeGon Kim, Sanjay Rajopadhye, and
Michelle Mills Strout. Parameterized tiled loops for free. In PLDI 07: Pro-
ceedings of the 2007 ACM SICPLAN conference on Programming language
design and im.plementation, pages 405-414, New York, NY, USA, 2007. ACM.

Gabriel Rivera and Chau-Wen Tseng. Locality optimizations for multi-level
caches. In Supercomputing ’99: Proceedings of the 1999 ACM/IEEE con-
ference on Supercomputing (CDROM), page 2, New' York, NY, USA, 1999.
ACM. A

Gabriel Rivera and Chau wen Tseng. A cornpari.son of compiler tiling algo-
rithms. In In Proceedings of the Sth International Conference on Compiler
Construction (CC’99, pages 168-182, 1999.

57

[40]

[41]

Jonathan Roelofs. Tiling visualizer. http://www.cs.colostate.edu/ roelofs/,
Nov. 2008.

V. Sarkar, N. Megiddo, I.B.M.T.J.W.R. Center, and Y. Heights. An analytical
model for loop tiling and its solution. Performance Analysis of Systems and
Software, 2000. ISPASS. 2000 IEEE International Symposium on, pages 146-
153, 2000.

[421 R. Schreiber and J. Dongarra. Automatic blocking of nested loops. Technical

[43]

[44]

[46]

Report 90.38, RIACS, NASA Ames Research Center, Aug 1990.

Jonas Sjoberg, Qinghua Zhang, Lennart LJung, Albert Benveniste, Bernard
Deylon, Pierre yves Glorennec, Hakan Hjalrnarsson, and Anatoli Juditsky.
Nonlinear black-box modeling in system identification: a unified overview.
Autornatica, 31:1691-1724, 1995.

M. Snir, S.W. Otto, D.W. Walker, J. Dongarra, and S. Huss-Lederman. MPI:
The Complete Reference. MIT Press Cambridge, MA, USA, 1995.

M. Stephenson and S. Amarasinghe. Predicting unroll factors using supervised
classification. In Proceedings of International Symposium on Code Generation
and Optimization (CGO), pages 123-134, 2005.

Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May
O’Reilly. Meta optimization: Improving compiler heuristics with machine
learning. In In Proceedings of the AGM SIGPLAN ‘03 Conference on Pro-
gramming Language Design and Implementation, pages 77-90. ACM Press,
2002.

Xavier Vera, Jaume Abella, Antonio Gonzalez, and Josep Llosa. Optimiz-
ing program locality through ernes and gas. In PACT °03: Proceedings of
the 12th International Conference on Parallel Architectures and Compilation
Technigues, page 68, Washington, DC, USA, 2003. IEEE Computer Society.

R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra
software. In Proceedings of the 1998 ACM/IEEE conference on Supercompuit-
ing (CDROM), pages 1-27. IEEE Computer Society, 1998.

R. Clint Whaley and Antoine Petitet. Minimizing development and mainte-
nance costs in supporting persistently optimized BLAS. Software: Practice
and Experience, 35(2):101-121, February 2005.

D. Whitley. Genetic algorithms and neural networks. Genetic Algorithms in
Engineering and Computer Science, pages 203-216, 1995.

58

http://www.cs.colostate.edu/

[51]

[52]

[53]

Jingling Xtie. Loop Tiling For Parallelism. Klnwer Academic Publishers,
2000.

K. Yotov, Xiaoming Li, Gang Ren, M. J. S. Garzaran, D. Padua, K. Pingali,
and P. Stodghill. Is search really necessary to generate high-performance
BLAS? Proceedings of the IEEE, 93:358-386, 2005.

Kamen Yotov, Keshav Pingali, and Paul Stodghill. Think globally, search
locally. In ICS °05: Proceedings of the 19th annual international conference
on Supercomputing, pages 141-150, New York, NY, USA, 2005. AGM.

59

