
DISSERTATION

ENHANCING COLLABORATIVE PEER-TO-PEER SYSTEMS USING RESOURCE

AGGREGATION AND CACHING: A MULTI-ATTRIBUTE RESOURCE AND QUERY

AWARE APPROACH

Submitted by

H. M. N. Dilum Bandara

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2012

Doctoral Committee:

Advisor: Anura P. Jayasumana

V. Chandrasekar

Daniel F. Massey

Indrajit Ray

Copyright by H. M. N. Dilum Bandara 2012

All Rights Reserved

ii

ABSTRACT

ENHANCING COLLABORATIVE PEER-TO-PEER SYSTEMS USING RESOURCE

AGGREGATION AND CACHING: A MULTI-ATTRIBUTE RESOURCE AND QUERY AWARE

APPROACH

Resource-rich computing devices, decreasing communication costs, and Web 2.0 technologies are

fundamentally changing the way distributed applications communicate and collaborate. With these

changes, we envision Peer-to-Peer (P2P) systems that will allow for the integration and collaboration of

peers with diverse capabilities to a virtual community thereby empowering it to engage in greater tasks

beyond what can be accomplished by individual peers, yet are beneficial to all the peers. Collaborations

involving application-specific resources and dynamic quality of service goals will stress current P2P ar-

chitectures that are designed for best-effort environments with pair-wise interactions among nodes with

similar resources. These systems will share a variety of resources such as processor cycles, storage capac-

ity, network bandwidth, sensors/actuators, services, middleware, scientific algorithms, and data. However,

very little is known about the specific characteristics of real-world resources and queries as well as their

impact on resource aggregation in these collaborative P2P systems. We developed resource discovery,

caching, and distributed data fusion solutions that are more suitable for collaborative P2P systems while

characterizing real-world resource, query, and user behavior. The contributions of this research are: (1) a

detailed analysis of real-world resource, query, and user characteristics and their impact on resource dis-

covery solutions, (2) a tool to generate large synthetic traces of multi-attribute resources and range que-

ries, (3) resource and query aware P2P-based multi-attribute resource discovery solution that is both effi-

cient and load balanced, (4) a community-based caching solution that enhances both the communitywide

and system-wide lookup performance in large-scale P2P systems, and (5) demonstrated the applicability

of NDN (Named Data Networking) for DCAS (Distributed Collaborative Adaptive Sensing) systems by

developing a distributed multi-user, multi-application, and multi-sensor data fusion solution based on

iii

CASA (Collaborative Adaptive Sensing of the Atmosphere). Proposed solutions and the analysis are ap-

plicable to a wide variety of contexts such as DCAS systems, P2P clouds, grid/cloud computing, GENI

(Global Environment for Network Innovations), and mobile social networks. Next, each of the five con-

tributions is described briefly.

First, we derived an equation to capture the cost of multi-attribute resource advertising and query-

ing. The nature of parameters in the equation under different systems is determined by analyzing datasets

from PlanetLab, SETI@home, EGI grid, and a distributed campus computing facility. These datasets ex-

hibit several noteworthy features that affect the performance. The attributes of both the resources and que-

ries are highly skewed and correlated. Attribute values have different marginal distributions and change at

different rates. Queries are less specific where each query tends to specify only a small subset of the

available attributes and large ranges of attribute values. These properties of resources and queries are then

used to qualitatively and quantitatively evaluate the fundamental design choices for P2P-based multi-

attribute resource discovery. Design choices are evaluated based on the cost of advertising/querying, load

balancing, and routing table size. Compared to uniform queries, real-world queries are relatively easier to

resolve using unstructured, superpeer, and single-attribute-dominated-query-based structured P2P solu-

tions. However, they introduce significant load balancing issues to existing designs. Cost of RD in struc-

tured P2P systems is effectively O(N) (N is the number of nodes) as most range queries are less specific.

Second, a set of mechanisms is presented to generate realistic synthetic traces of multi-attribute

resources (with both static and dynamic attributes) and range queries using the statistical behavior learned

from real-world datasets. Such traces are useful in large-scale performance studies of resource discovery

solutions, job schedulers, etc., in collaborative P2P systems as well as grid, cloud, and volunteer compu-

ting. Random vectors of static attributes are generated using empirical copulas that capture the entire de-

pendence structure of multivariate distribution of attributes. Time series of dynamic attributes are ran-

domly drawn from a library of multivariate time-series segments extracted from the datasets. These

segments are identified by detecting the structural changes in time series corresponding to a selected at-

tribute. Time series corresponding to rest of the attributes are split at the same breakpoints and randomly

iv

drawn together to preserve their contemporaneous correlation. Correlation among static and dynamic at-

tributes is preserved by grouping the time-series segments based on their static attributes. Multi-attribute

range queries are generated using a probabilistic finite state machine that preserves the popularity of at-

tributes and correlations among attribute values. A tool is developed to automate the synthetic data gener-

ation process. It is independent of the dataset hence data from any other platform may be used as the basis

for trace statistics.

Third, a resource and query aware P2P-based multi-attribute resource discovery solution is pre-

sented that is both efficient and load balanced. The solution consists of five heuristics that can be execut-

ed independently and distributedly. The first heuristic tries to maintain a minimum number of nodes in the

overlay while pruning nodes that do not significantly contribute to the range-query resolution. Removing

nonproductive nodes reduces the cost (e.g., hops and latency) of advertising resources and resolving que-

ries. The second and third heuristics dynamically balance the key and query load distributions by transfer-

ring keys to neighbors as well as by adding new neighbors when existing ones are insufficient. The last

two heuristics, namely fragmentation and replication, form cliques of nodes that are placed orthogonal to

the overlay ring. Such a node placement dynamically balances the highly skewed key and query loads

while reducing the query cost. By applying these heuristics in the presented order, a resource discovery

solution that better responds to real-world resource and query characteristics is developed. Efficacy of the

solution is demonstrated using a simulation-based analysis under a variety of single and multi-attribute

resource and query distributions derived from real workloads.

Fourth, we developed a distributed caching solution that exploits P2P communities to improve the

communitywide and system-wide lookup performance. The solution consists of a sub-overlay formation

scheme and a Local-Knowledge-based Distributed Caching (LKDC) algorithm. Sub-overlays enable

communities to forward queries through their members. While queries are forwarded, LKDC algorithm

causes members to identify and cache resources of interests to them, resulting in faster resolution of que-

ries for popular resources within each community. Distributed local caching requires global information

(e.g., hop count and popularity of contents) that is difficult and costly to obtain. Moreover, the problem is

v

NP-complete when the size of contents/resources varies. However, by relaxing the content size constraint

(which is acceptable for the purpose of improving lookup performance), and by means of an analysis of

globally optimal behavior and structural properties of the overlay, we developed the LKDC algorithm that

not only relies on purely local information but also provides close-to-optimal caching performance. The

caching solution automatically adapts to changing popularity and user interests. It works with any skewed

distribution of queries in addition to introducing minimal modifications and overhead to the overlay net-

work. For example, simulations based on Chord overlay show a 40% reduction in average path length

using only 20 cache entries per node, and individual communities gained a 17-24% improvement com-

pared to system-wide caching.

Fifth, we present a proof of concept solution that demonstrates the applicability of NDN for mul-

ti-user, multi-application, and multi-sensor DCAS systems such as CASA. In this example, a network of

weather radars name data based on their geographic location and weather feature (e.g., reflectivity of

clouds or wind velocity) independent of the radar(s) that generated them. This enables end users to speci-

fy an area of interest for a particular weather feature while being oblivious to the placement of radars and

associated computing facilities. Conversely, the DCAS system can use its knowledge about the underly-

ing system to decide the best radar scanning and data processing strategies. Such sensor-independent

names also enhance resilience, enable processing data close to the source, and benefit from NDN features

such as in-network caching and duplicate query suppression consequently reducing the bandwidth re-

quirements of the DCAS system. We also present mechanisms to support sensor-specific and event-

specific names that are also important in DCAS systems. The solution is implemented as an overlaid

NDN enabling the benefits of both the NDN and overlay networks. Simulation-based analysis using re-

flectivity data from an actual weather event showed 87% reduction in average bandwidth consumption of

radars and 95% reduction in average query resolution latency.

vi

ACKNOWLEDGMENTS

I would like to acknowledge and extend my heartfelt gratitude to all of those who supported and

encouraged me in any aspect that has made this dissertation possible.

I am heartily thankful to my supervisor, Prof. Anura P. Jayasumana, for believing in my abilities,

inspiration, in-depth critique of the research, and patience with my occasional ignorance. Initially, it was

extremely challenging to find a new research problem. While the middle phase was technically and theo-

retically challenging, the final phase was even more challenging due to an inability to properly focus.

Prof. Jayasumana taught me how to find new research problems by discovering variations, generaliza-

tions, and observing emerging trends, to do fundamental research, as well as to keep going while realizing

research has both good and bad days. His encouragement, guidance, and support in every aspect of the

dissertation and beyond helped me conquer all these challenges while making it the most rewarding expe-

rience of my life.

Special thanks are also due to members of my graduate committee, Prof. V. Chandrasekar, Dr.

Daniel F. Massey, and Dr. Indrajit Ray for valuable suggestions and criticisms that drove me to give my

best throughout this research. Extensive support from Dr. Michael Zink (UMass), Dr. Panho Lee, and Dr.

Sanghun Lim was immensely helpful.

I am grateful to the Engineering Research Center (ERC) for Collaborative Adaptive Sensing of

the Atmosphere (CASA) for supporting part of my research under the ERC program of the National Sci-

ence Foundation (award number 0313747). CASA gave me once in a lifetime opportunity to be part of an

interdisciplinary and intercollegiate team that defines the state-of-the-art in weather research that has a

direct and greater impact to the society. Support from Dr. Paula S. Reese (UMass), and all the research

and administrative staff of CASA was extremely helpful.

I would like to thank Veeresh Rudrappa and Sudharshan Varadarajan for helping with data col-

lection and processing which have been immensely useful in my research. I would also like to thank Dr.

Jeannie Albrecht, Dr. Vivek Pai, and Grid Observatory team for providing the SWORD, CoMon, and grid

vii

datasets. System administrators from the Engineering Network Services (ENS) and the Dept. of Computer

Science were also helpful in collecting data within the campus. I am grateful to Vidarshana, Saket,

Dulanjalie, Pritam, and many other colleagues at the Computer Networking Research Laboratory

(CNRL), for their invaluable feedback, suggestions, support, and enduring hours and hours of presenta-

tions. I also would like to recognize the peers and every individual that helped me in any respect and may

not have been mentioned above.

Finally yet importantly, I am indebted to my parents and my loving wife for their unconditional

love, continuous support, and encouragement. I thank my son Manula, who gives me much joy and

strength. This dissertation is dedicated to them.

viii

To my parents, my loving wife Sudeshini, and son Manula

ix

TABLE OF CONTENTS

List of Tables .. xiv

List of Figures ... xvi

Chapter 1

Introduction... 1

1.1 Motivation .. 1

1.2 Contributions .. 7

1.3 Outline .. 11

Chapter 2

Background and Related Work .. 13

2.1 Overlay Topologies ... 13

2.1.1 Unstructured Peer-to-Peer Systems ... 14

2.1.2 Structured Peer-to-Peer Systems ... 18

2.2 Collaborative Peer-to-Peer Systems... 23

2.2.1 Collaborative Adaptive Sensing of the Atmosphere .. 23

2.2.2 Global Environment for Network Innovations .. 29

2.2.3 Peer-to-Peer Clouds .. 30

2.2.4 Mobile Social Networks ... 32

2.3 Peer-to-Peer-Based Resource Discovery.. 33

2.3.1 Unstructured Peer-to-Peer Solutions ... 33

2.3.2 Structured Peer-to-Peer Solutions ... 36

2.4 Peer-to-Peer Communities .. 43

2.5 Peer-to-Peer Caching .. 45

2.5.1 Unstructured Peer-to-Peer Solutions ... 45

2.5.2 Structured Peer-to-Peer Solutions ... 46

2.6 Named Data Networking ... 48

2.7 Summary .. 51

x

Chapter 3

Problem Statement ... 52

3.1 Motivation .. 53

3.2 Research Goals ... 56

3.3 Research Objectives .. 57

3.4 Solution Approach .. 59

Chapter 4

Multi-Attribute Resource and Query Characteristics of Real-World Systems and

Implications on P2P-Based Resource Discovery ... 63

4.1 Introduction .. 64

4.2 Cost of Advertising and Querying Resources .. 67

4.3 Datasets .. 71

4.3.1 Node Model ... 72

4.3.2 PlanetLab ... 73

4.3.3 SETI@home .. 74

4.3.4 EGI Grid .. 74

4.3.5 Campus Dataset.. 75

4.4 Resource and Query Characteristics .. 75

4.4.1 Resource Characteristics ... 75

4.4.2 Query Characteristics ... 87

4.4.3 Summary of Findings ... 90

4.5 Design Choices in P2P-Based Resource Discovery.. 91

4.5.1 Centralized Designs .. 92

4.5.2 Unstructured P2P-Based Designs.. 92

4.5.3 Structured P2P-Based Designs.. 94

4.6 Simulation Setup ... 97

4.7 Performance Analysis ... 99

4.8 Discussion .. 105

4.9 Summary .. 108

Chapter 5

ResQue: Multi-Attribute Resource and Range Query Generator .. 110

xi

5.1 Introduction .. 111

5.2 Characteristics of Resources and Queries .. 114

5.2 Generating Random Vectors of Static Attributes ... 118

5.3 Generating Dynamic Attributes ... 122

5.3.1 Splitting Time Series Based on Changes in Regression Coefficients 124

5.3.2 Splitting Time Series Using a Derivative Filter ... 125

5.3.3 Generating Dynamic Attributes Using the Library of Time-Series Segments 128

5.4 Generating Multi-Attribute Range Queries .. 129

5.5 ResQue – Resource and Query Generator .. 133

5.6 Validation ... 136

5.7 Summary .. 142

Chapter 6

Resource and Query Aware, Peer-to-Peer-Based Multi-Attribute Resource Discovery 143

6.1 Introduction .. 144

6.2 Problem Formulation .. 146

6.2.1 Load Balancing in Peer-to-Peer Systems... 147

6.2.2 Problem Statement ... 149

6.3 Handling Single-Attribute Resources .. 150

6.3.1 Heuristic 1 – Prune ... 151

6.3.2 Heuristic 2 – Key Transfer.. 153

6.3.3 Heuristic 3 – Add New Node and Key Transfer .. 155

6.3.4 Heuristic 4 – Add New Node and Replicate Index .. 156

6.3.5 Heuristic 5 – Add New Node and Fragment Index .. 157

6.4 Handling Multi-Attribute Resources .. 159

6.5 Simulation Setup ... 159

6.6 Performance Analysis ... 161

6.7 Summary .. 167

Chapter 7

Community-Based Caching for Enhanced Lookup Performance in P2P Systems 168

7.1 Introduction .. 169

7.2 Problem Formulation .. 172

xii

7.2.1 Motivation ... 172

7.2.2 Problem Statement ... 176

7.3 Caching Solution for Communities ... 178

7.3.1 Exploiting Community Members to Cache ... 179

7.3.2 Sub-Overlay Formation .. 180

7.3.3 Community-Influenced Caching ... 184

7.4 Distributed Caching .. 184

7.4.1 Distributed Local Caching .. 184

7.4.2 Global-Knowledge-Based Distributed Caching ... 188

7.4.3 Local-Knowledge-Based Distributed Caching .. 194

7.5 Simulation Setup ... 197

7.6 Performance Analysis ... 198

7.6.1 Local-Knowledge-Based Distributed Caching .. 198

7.6.2 Community-Based Caching .. 201

7.7 Summary .. 208

Chapter 8

Distributed Multi-Sensor Data Fusion Over Named Data Networks 209

8.1 Introduction .. 210

8.2 Multi-Sensor Data Fusion Over NDN.. 214

8.2.1 Naming Data .. 215

8.2.2 Overlay Construction and Query Resolution ... 218

8.2.3 Subscription Scheme for Periodic Queries .. 221

8.2.4 Caching Based on Data Generation Time.. 222

8.3 Supporting Sensor and Event Specific Queries .. 223

8.4 Simulation Setup ... 227

8.5 Performance Analysis ... 230

8.6 Summary .. 235

Chapter 9

Summary .. 237

9.1 Conclusions .. 237

9.2 Future Directions .. 240

xiii

References .. 246

Appendix I

Number of Bittorrent Communities Accessed by Users ... 262

I.1 Survey Questions .. 262

I.2 Survey Results .. 264

Appendix II

Simulators .. 270

II.1 Resource Discovery Simulators ... 270

II.2 ResQue – Resource and Query Generator .. 272

II.3 Resource and Query Aware Resource Discovery Simulator ... 273

II.4 Community-Based Caching... 274

II.4.1 Local-Knowledge-Based Distributed Caching and PoPCache Simulators 274

II.5.2 Community-Based Caching Simulator .. 274

II.5 Named Data Networking for Distributed Multi-Sensor Data Fusion .. 276

II.5.1 Multi-Sensor Data Fusion Simulator ... 276

II.5.2 Event-Specific Query Simulator ... 276

Abbreviations .. 279

xiv

LIST OF TABLES

Table 2.1 Summary of structured P2P solutions... 22

Table 2.2 Structured vs. unstructured P2P systems .. 23

Table 2.3 CASA applications .. 26

Table 2.4 CASA end users and their data access patterns. .. 27

Table 2.5 Summary of structured P2P solutions... 42

Table 2.6 Summary of all the P2P-based resource discovery solutions with respect key phases of

resource discovery ... 43

Table 4.1 List of symbols .. 68

Table 4.2 Summary of traces ... 73

Table 4.3 Distribution of attribute values ... 81

Table 4.4 Distribution of number of significant changes in attribute values within 24-hours 84

Table 4.5 Correlation among attributes of PlanetLab nodes ... 84

Table 4.6 Correlation among attributes of GCO nodes ... 85

Table 4.7 Correlation among attributes of SETI@home nodes ... 86

Table 4.8 Correlation among attributes of CSU nodes ... 88

Table 4.9 Composition of PlanetLab queries ... 88

Table 4.10 Summary of resource discovery architectures .. 98

Table 4.11 Query cost of ring-based designs under varying number of nodes 102

Table 4.12 Query cost, query load, and index size ... 102

Table 5.1 Normalized frequency of occurrence of attribute pairs in PlanetLab queries 117

Table 5.2 Windows sizes and thresholds used while splitting time series 127

Table 5.3 Normalized frequency of occurrence of attribute pairs in queries generated using ResQue

 .. 141

Table 6.1 List of symbols .. 146

Table 6.2 Workloads used in simulations .. 160

Table 7.1 Cosine similarity among different BitTorrent communities based on their search clouds 173

file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522934
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522935
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522936
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522937
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522938
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522939
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522939
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522940
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522941
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522942
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522943
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522944
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522945
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522946
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522947
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522948
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522949
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522950
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522951
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522952
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522953
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522954
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522954
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522955
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522956
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522957

xv

Table 7.2 Description of BitTorrent search terms datasets ... 175

Table 7.3 List of symbols .. 177

Table 7.4 Configuration of different communities ... 198

Table 7.5 Number of cache requests per node in community-based caching................................... 207

Table I.1 Summary of findings ... 265

Table I.2 Country of survey participants ... 267

Table II.1 Thresholds applied while advertising resource attributes .. 271

Table II.2 Domains of attribute values ... 272

Table II.3 Simulation parameters for community-based caching ... 275

Table II.4 Simulation parameters for NDN for DCAS simulators ... 277

Table II.5 Thresholds applied while advertising sensor readings .. 278

Table II.6 Domains of sensor readings ... 278

file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522958
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522959
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522960
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522961
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522964
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522965
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339522966

xvi

LIST OF FIGURES

Figure 2.1 Deterministic unstructured overlays ... 14

Figure 2.2 Interaction among different elements in BitTorrent .. 15

Figure 2.3 Evolution of BitTorrent communities ... 16

Figure 2.4 Nondeterministic unstructured P2P systems ... 17

Figure 2.5 Structured overlay designs ... 19

Figure 2.6 Evolution of weather radar networks .. 24

Figure 2.7 Major processing steps of the closed-loop MC&C software architecture 25

Figure 2.8 GENI resource aggregation framework .. 29

Figure 2.9 A user trying to locate an ATM using his/her mobile social network 33

Figure 2.10 Ring-based structured overlay designs ... 37

Figure 2.11 Hypercubes connected to form a backbone .. 39

Figure 2.12 2-dimensional torus ... 40

Figure 2.13 Caching in structured P2P systems ... 46

Figure 2.14 Forwarding tables and their interactions within an NDN node .. 50

Figure 3.1 Interaction among peers ... 53

Figure 3.2 Phases in resource collaboration .. 59

Figure 4.1 Range query resolution on a ring-like overlay network ... 71

Figure 4.2 Distribution of CPU speed ... 76

Figure 4.3 Distribution of number of CPU cores ... 77

Figure 4.4 Distribution of memory size .. 78

Figure 4.5 Average resource utilizations of all the nodes with time ... 79

Figure 4.6 Distribution of dynamic attributes during peak times ... 80

Figure 4.7 Distribution of transmission rate .. 81

Figure 4.8 Distribution of CPU architectures of SETI@home nodes ... 82

Figure 4.9 Distribution of operating systems of SETI@home nodes.. 82

Figure 4.10 Cumulative distribution of number of attribute value changes within 24-hours 83

Figure 4.11 Number of CPU cores of PlanetLab nodes vs.Free memory and memory size 86

Figure 4.12 Distribution of the number of distinct attributes specified in a query 87

file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523184
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523185
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523186
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523187
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523188
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523189
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523190
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523191
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523192
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523193
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523194
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523195
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523196
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523197
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523198
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523199
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523200
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523201
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523202
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523203
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523204
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523205
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523206
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523207
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523208
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523209
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523210
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523211

xvii

Figure 4.13 Popularity of attributes specified in ueries. Only the first 20 is shown 89

Figure 4.14 Popularity distribution of queries and attributes specified in queries 89

Figure 4.15 Range free CPU values specified in queries ... 90

Figure 4.16 Total cost of advertising and querying static attributes ... 100

Figure 4.17 Cost of ring-based architectures ... 101

Figure 4.18 Total cost (advertising and query) per query vs. number of attributes 102

Figure 4.19 Distribution of load.. 104

Figure 5.1 Cumulative distributions of dynamic attributes of PlanetLab nodes sampled at different

time instances. ... 114

Figure 5.2 Cumulative distributions of dynamic attributes of CSU nodes sampled at different time

instances .. 115

Figure 5.3 Cumulative distributions of dynamic attributes of GCO grid computing nodes sampled at

different time instances .. 116

Figure 5.4 Time series of dynamic attributes of a selected PlanetLab node 117

Figure 5.5 Time series of dynamic attributes of a selected GCO node ... 118

Figure 5.6 Time series of dynamic attributes of a selected CSU node .. 119

Figure 5.7 Number of CPU cores vs. memory size of 500 random nodes generated using empirical

copula ... 121

Figure 5.8 Number of CPU cores vs. memory size of 500 random nodes generated using empirical

copula and matrix of Pearson’s correlation coefficients .. 121

Figure 5.9 Number of CPU cores vs. memory size of 500 random nodes generated by applying

empirical copula .. 122

Figure 5.10 Autocorrelation of attributes of a selected node .. 123

Figure 5.11 Breakpoints identified for free memory time series of a node using the test for regression

coefficients .. 125

Figure 5.12 Breakpoints identification using the derivative filter .. 126

Figure 5.13 Breakpoints identified for memory free time series of a node using the proposed two-halve-

window-based derivative filter ... 127

Figure 5.14 Probabilistic finite state machine for queries Q1, Q2, and Q3 ... 131

Figure 5.15 Probabilistic finite state machine for queries when attributes in Q2 is swapped 131

Figure 5.16 Probabilistic finite state machine modified to avoid invalid query q6 in Fig. 5.15............ 132

Figure 5.17 Screenshot of ResQue’s multi-attribute resource generator ... 133

Figure 5.18 Flowchart of random resource generation .. 134

Figure 5.19 Screenshot of ResQue’s multi-attribute range query generator 135

file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523212
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523213
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523214
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523215
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523216
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523217
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523218
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523219
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523219
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523220
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523220
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523221
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523221
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523222
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523223
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523224
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523225
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523225
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523226
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523226
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523227
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523227
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523228
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523229
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523229
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523230
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523231
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523231
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523232
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523233
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523234
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523235
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523236
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523237

xviii

Figure 5.20 Comparison of attributes of PlanetLab nodes and nodes generated using ResQue 137

Figure 5.21 Comparison of dynamic attributes of PlanetLab nodes and nodes generated using the

derivative filter-based method .. 137

Figure 5.22 Comparison of attributes of CSU nodes and nodes generated using ResQue 138

Figure 5.23 Comparison of CPUSpeed of SETI@home nodes and nodes generated using ResQue 138

Figure 5.24 Comparison of dynamic attributes of GCO nodes and nodes generated using ResQue 139

Figure 5.25 Generation of resource traces with predefined idle and busy periods 139

Figure 5.26 Comparison of number attributes in a query under different coding conventions 140

Figure 5.27 Popularity of attributes generated using ResQue .. 140

Figure 6.1 Series of nodes on a ring-like overlay .. 151

Figure 6.2 Two example range-query distributions ... 152

Figure 6.3 Fragments and replicas placed orthogonal to the overlay ring ... 156

Figure 6.4 Flowdiagram of a node that implements all five heuristics ... 158

Figure 6.5 Load distribution of file sharing workloads at steady state .. 162

Figure 6.6 Cost of resolving queries at steady state ... 162

Figure 6.7 Load distribution of CPU speed workload at steady state ... 163

Figure 6.8 Load distribution of CPU free workload at steady state .. 163

Figure 6.9 Variation in Gini coefficient of index size distribution of CPU free workload with time . 164

Figure 6.10 Number of hop required to resolve queries in PlanetLab workload at steady state 165

Figure 6.11 Distribution of query cost in PlanetLab workload at steady state 166

Figure 6.12 Load distribution of PlanetLab workload at steady state ... 166

Figure 7.1 Popularity distribution of BitTorrent communities ... 173

Figure 7.2 Popularity distribution of Dataset2 (kat.ph) over different time scales 174

Figure 7.3 Aggregation of popularity distributions .. 176

Figure 7.4 Chord overlay network. ... 178

Figure 7.5 Finger entries in Chord .. 182

Figure 7.6 Chord overlay .. 189

Figure 7.7 Local knowledge-based distributed caching algorithm ... 196

Figure 7.8 Average hop count... 199

Figure 7.9 Validation of optimum hop count... 201

Figure 7.10 Average hop count vs. time.. 202

file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523238
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523239
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523239
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523240
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523241
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523242
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523243
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523244
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523245
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523246
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523247
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523248
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523249
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523250
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523251
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523252
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523253
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523254
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523255
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523256
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523257
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523258
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523259
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523260
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523261
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523262
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523263
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523264
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523265
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523266
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523267

xix

Figure 7.11 Average hop count observed by each community at the steady state. 202

Figure 7.12 Lookup performance under varying number of communities and community sizes obtained

by splitting community six... 204

Figure 7.13 Latency of geographic communities using community caching 205

Figure 7.14 Cumulative distribution of overlay hops required to resolve queries 205

Figure 7.15 Lookup performance under varying cache size ... 206

Figure 7.16 Caching threshold’s impact on convergence time in community caching 207

Figure 7.17 Convergence of network after popularity inversion in community caching 207

Figure 8.1 Overlapping areas of interests. ... 216

Figure 8.2 Radar data fusion network ... 218

Figure 8.3 Timing diagram of query arrival, radar data generation, and data processing at application ..

 .. 221

Figure 8.4 Use of 2D-torus to index sensor readings and resolve range queries 225

Figure 8.5 Data fusion groups for network of radars ... 228

Figure 8.6 Reflectivity data from a severe weather event over Oklahoma, U.S. 229

Figure 8.7 Use of reflectivity data to define AOIs ... 230

Figure 8.8 Data pulled from a radar while varying the cache size .. 231

Figure 8.9 Amount of data pulled from radars .. 232

Figure 8.10 Data pulled from.. 232

Figure 8.11 Time taken to resolve a query .. 233

Figure 8.12 Number of overlay hops travelled by interest packets ... 233

Figure 8.13 Staleness of received data .. 234

Figure 8.14 Query cost with varying attribute value ranges and increasing number of attributes 235

Figure 8.15 Per query cost with varying attribute value ranges and increasing number of attributes... 235

Figure I.1 Types of contents accessed by users ... 265

Figure I.2 Frequently used features provided by search engines ... 265

Figure I.3 Search engines known to users... 266

Figure I.4 Search engines used ... 266

Figure I.5 Cumulative distribution of number of communities accessed by a user and frequency that a

user revisits different communities .. 267

Figure I.6 Number of searches per search engine ... 268

file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523268
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523269
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523269
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523270
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523271
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523272
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523273
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523274
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523275
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523276
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523277
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523277
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523278
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523279
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523280
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523281
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523282
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523283
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523284
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523285
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523286
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523287
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523288
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523289

xx

Figure II.1 Architecture of the resource discovery simulators .. 270

Figure II.2 Architecture of community-based caching simulator .. 274

Figure II.3 Architectures of NDN for DCAS simulators .. 276

file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523296
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523297
file:///C:/Users/dilumb/Desktop/Dissertation%20v1.2.docx%23_Toc339523298

1

Chapter 1

INTRODUCTION

Decreasing communication costs and Web 2.0 technologies are fundamentally changing the way

we communicate, learn, socialize, and collaborate to create a better world while propelling us to a new era

of societal development [Az09]. Peer-to-Peer (P2P) computing is a natural fit to this new era because it is

user driven, autonomous, distributed, and utilizes resource-rich edge devices, as well as encourages shar-

ing and collaboration. P2P systems have tremendous scalability and are applicable in a wide variety of

application domains such as file sharing, VoIP (Voice over Internet Protocol), IPTV (Internet Protocol

Television), content delivery, distributed processing, multi-player gaming, and social networks. These

systems currently have a user base of several hundreds of millions. They contributed to more than 4.6

Exabytes of Internet traffic per month in 2011 [Ci12].

Section 1.1 presents the motivation. Summary of the contributions is presented in Section 1.2.

Section 1.3 presents the outline of the dissertation.

1.1 Motivation

Resource-rich computing devices, decreasing communication costs, and Web 2.0 technologies are

fundamentally changing the way distributed applications communicate and collaborate. With these

changes, we envision P2P systems that play an even greater role in collaborative applications. Such col-

laborative applications provide tremendous opportunities to create value by combining the societal trends

with P2P systems. Peer collaboration is expanding beyond its conventional applications wherein files or

processor cycles are shared by peers to perform similar tasks. Future collaborative P2P applications will

look for diverse peers that could bring in unique capabilities to a virtual community thereby empowering

it to engage in greater tasks beyond what can be accomplished by individual peers, yet are beneficial to all

the peers. This is similar to a modern team that thrives due to the diversity of members’ expertise. Thus, a

2

collaborative P2P system is a P2P system that aggregates a group(s) of diverse resources (e.g., hardware,

software, services, and data) to accomplish a greater task [Ba12b]. These systems will share a variety of

resources such as processor cycles, storage capacity, network bandwidth, sensors/actuators, special hard-

ware, middleware, scientific algorithms, application software, services (e.g., web services and spawning

nodes in a cloud), and data to not only consume a variety of contents but also to generate, modify, and

manage those contents. Such collaborations involving diverse and application-specific resources as well

as dynamic Quality of Service (QoS) goals will stress the current P2P architectures.

Collaborative P2P systems are applicable in a wide variety of contexts such as Distributed Col-

laborative Adaptive Sensing (DCAS) [Ku06, Le12, Mc05, Mc09], grid [Ca04, Sh07], cloud [Ar09], and

opportunistic [Co10] computing, Internet of Things [Pf11], social networks, and emergency management.

To illustrate the salient features and characteristics of collaborative P2P systems we use four representa-

tive collaborative applications.

First is Collaborative Adaptive Sensing of the Atmosphere (CASA) [Ku06, Mc05, Mc09], a

DCAS system based on a dense network of weather radars that collaborate and adapt in real time to detect

hazardous atmospheric conditions such as tornados and severe storms. Collaborative P2P data fusion pro-

vides an attractive implementation choice for real-time radar data fusion in CASA [Le12], wherein multi-

ple data volumes are constantly being generated, processed, and pushed and pulled among radars, storage,

and processing nodes. Radars, processing, and storage elements involved in tracking a particular weather

event may continue to change as the weather event migrates in both time and space. Thus, new groups of

resources may have to be aggregated and current resources are released as and when needed. Moreover,

certain rare but severe weather events require specific meteorological algorithms (e.g., signal processing

and forecasting) as well as more computing, storage, and bandwidth resources to track and fore-

cast/nowcast about the behavior of those events. It is neither feasible nor economical to provision re-

sources for such rare peak demands everywhere on the CASA system. Instead, a collaborative P2P system

can exploit the temporal and spatial diversity of weather events to aggregate underutilized resources from

anywhere in the system as far as the desired performance and QoS goals are satisfied. For example, radar

3

data related to a tornado in Oklahoma can be timely delivered and processed in Texas, if underutilized

resources are available in Texas due to calm weather. Therefore, a collaborative P2P system can satisfy

such rapid and high resource demands while enhancing the overall resource utilization of CASA. Moreo-

ver, P2P architectures are robust under random node failures; therefore, provides a best-effort data fusion

framework under hostile conditions. P2P architectures also reduce the risk of single point of failure. This

is desirable in CASA-like systems that have to perform critical functions under hazardous weather condi-

tions, which can potentially interfere with some of the system infrastructure. On the other end of the spec-

trum, we are also seeing the emergence of crowd sourced, community-based weather monitoring systems

[Sl11] that aggregate armature weather stations and community-based computing resources to provide

local/national weather forecasts. Collaborative P2P systems are a natural fit for such community driven

resource collaborations among the users.

Second, cloud computing is transforming the way we host and run applications because of its rap-

id scalability and pay-as-you-go economic model [Ar09]. Open cloud initiatives are pressing for interop-

erability among multiple cloud providers and sites of the same provider. Moreover, its centralized data

and proprietary application model contradicts with the Free and Open Source Software (FOSS) move-

ment; hence, considered a threat by users who want to be in control of their data and applications [Ar09].

Community cloud computing [Br09], based on underutilized computing resources in homes/businesses,

targets such issues including centralized data, privacy, proprietary applications, and cascading failures in

modern clouds. Certain applications also benefit from a mixture of dedicated and voluntary cloud re-

sources [An10, Fo09]. A collaborative P2P system is the core of such a multi-site or community-cloud

system that interconnects dedicated/voluntary resources while dealing with rapid scalability and resource

fluctuations. Such systems are referred to as P2P clouds.

The third application, Global Environment for Network Innovations (GENI), is a collaborative

and exploratory platform for discoveries and innovation [El09]. GENI allows users to aggregate diverse

resources (e.g., computing, networks, sensors, and software) from multiple administrative domains for a

4

common task. A collaborative P2P system meshes well with GENI because of its distributed, dynamic,

heterogeneous, and collaborative nature.

Fourth, the value of social networks can be enhanced by allowing users to share diverse resources

available in their mobile devices [Co10]. For example, a group sharing their holiday experiences in a cof-

fee shop could use one of their members’ projection phone to show pictures from others’ mobiles or tab-

lets, or stream videos from their home servers. Moreover, in large social gatherings such as carnivals,

sports events, or political rallies, users’ mobile devices can be used to share hot deals, comments, videos,

or vote for a certain proposition without relying on a network infrastructure. Such applications are already

emerging under the domain of opportunistic networking and computing [Co10]. These applications, here-

after referred to as mobile social networks, also benefit from collaborative mobile P2P technology.

We can further envision an agglomeration of many collaborative P2P systems into a single uni-

fied P2P framework wherein peers contribute and utilize diverse resources for both altruistic and com-

mercial purposes. For example, a cloud provider could contribute its processor cycles to the P2P commu-

nity hoping to gain monetary benefits whenever possible, and during periods of lower demand it could

provide similar or degraded services to gain nonmonetary benefits (e.g., to demonstrate its high availabil-

ity or gain reputation). Alternatively, an application provider that accesses free/unreliable resources for its

regular operations could tap into dedicated/reliable resources during periods of high demand [An10].

Such a framework could also enable resource-rich home users to earn virtual currency for their contribu-

tions that they can later use to access other services offered within the system [Ka11, Me10]. Such a

framework also enables a level playing field for both small-scale and large-scale contributors.

CASA, P2P clouds, GENI, mobile social networks, and aggregated P2P systems depend on some

form of collaboration among resources. These complex resources are characterized by multiple static and

dynamic attributes. For example, CPU speed, free CPU capacity, free memory, bandwidth, operating sys-

tem, and a list of installed applications/middleware may characterize a processing node in CASA, GENI,

grids, and clouds. These multi-attribute resources need to be combined in a timely manner to meet the

performance and QoS requirements of collaborative P2P applications. Yet, it is nontrivial to discover,

5

aggregate, as well as utilize heterogeneous and dynamic resources that are distributed. Moreover, while

some of the resources are volatile and voluntary (e.g., resources in P2P clouds) other resources are stable

and dedicated (e.g., resources in CASA). What resources are shared and to what extent they are shared

also depend on the behavior of peer communities that are formed according to semantic, geographic, and

organizational interests of users [Ba11c, Ba12e]. Thus, discovering and combining an optimum set of re-

sources is an extremely complex but fundamental requirement for collaborative P2P applications.

The overall process of advertising, discovering, and combining resources is referred to as re-

source aggregation. A good resource aggregation solution should efficiently advertise all the resources

and their current state, discover potentially useful resources, select resources that satisfy application re-

quirements, match resources and applications according to their constraints, as well as bind resources and

applications to ensure guaranteed service. Several solutions have been proposed to advertise, discover,

and select individual resources in a variety of P2P systems [Bh04, Ca04, Co09b, Kw10, Sh07, Ta08].

Even the solutions (e.g., [Al08] and [Ke06]) that provide some form of resource aggregation are primitive

in capturing inter-resource relationships, and are therefore unable to put together the best group of re-

sources [Ba12b]. They are not designed for latency sensitive collaborative P2P applications such as P2P

clouds or mission critical applications such as CASA. Moreover, in the absence of data and understanding

of the real-world resource and query characteristics, these systems relied on many simplifying assump-

tions. For example, independent and identically distributed (i.i.d.) attributes [Bh04, Co09b, Sh07], uni-

form/Zipf’s distribution of attribute values [Bh04, Co09b, Sh07], attributes having a large number of po-

tential values [Sh09], and queries specifying a large number of attributes and a small range of attribute

values [Al08, Bh04, Ca04, Co09b, Sh07]. Such assumptions affect both the designs and performance

analysis, and consequently the applicability of solutions under real workloads. Moreover, no single solu-

tion efficiently and scalably supports all the requirements of real-world collaborative P2P systems. There-

fore, more efficient and load balanced, resource aggregation solutions are needed.

Internet users value the ability to access content irrespective of its location, whereas the Internet

was designed to facilitate end-to-end resource access. Conflict between the usage and design objectives

6

has led to many issues such as location dependence, traffic aggregation, and security. Consequently, many

clean-state designs for the Internet propose to access/route data based on their application-layer content

names [Ja09a, Ko07, St02]. Named Data Networking (NDN) [Ja09a] (a.k.a. Content Centric Networking

(CCN)) is gaining traction as one of the viable clean-state designs particularly in the presence of CCNx

open source implementation [Palo]. NDN enables in-network caching, multicasting, duplicate message

suppression, and enhanced security and mobility. When data are not already dispersed within the network,

NDN delivers user queries to potential data sources enabling on-demand data generation. In contrast, the

majority of other content-naming solutions, e.g., [Ko07, St02], are based on distributed hash tables that

index only the pre-generated data. Moreover, NDN supports different levels of abstractions and incremen-

tal deployment ranging from overlay networks, content delivery networks, and small ISPs to eventual In-

ternet-wide deployment.

DCAS systems, including current CASA deployments [Li07a], typically bind data to the sensor(s)

that generated them by assigning data names based on the sensor identifier. Alternatively, end users in

many cases are interested in data related to a particular event in a given area of interests, and are not con-

cerned about which sensor(s) generated the data. Therefore, naming data based on the source/sensor cre-

ates a conflict similar to that in the current Internet. Consequently, it reduces the ability to utilize the spa-

tial and temporal locality in user interests and redundant sensors in DCAS systems to enhance the

performance of distributed sensing and data fusion. NDN enables DCAS systems to overcome these limi-

tations while benefiting from reduced bandwidth requirements of the data fusion system, enhanced re-

source utilization, resilience, security, and mobility. For example, a network of CASA weather radars

may name data based on their geographic location and weather feature (e.g., reflectivity of clouds or wind

velocity) independent of the radar(s) that generated them. This enables end users to specify an area of in-

terest for a particular weather feature while being oblivious to the placement of CASA radars and associ-

ated computing facilities. Such sensor-independent names also enable processing data close to the source.

Currently, NDN has to be deployed as an overlay network due to the absence of an Internet-wide deploy-

ment. However, use of overlay networks provides the added benefits such as the ability to deploy multiple

7

and application-specific naming conventions, application-specific routing mechanisms, fault tolerance,

better QoS, and in-network data fusion [Ba13, Le12]. Therefore, DCAS systems can be made more effi-

cient and robust by combining the benefits of NDN and overlay networks.

1.2 Contributions

The goal of this research is to develop better resource discovery and distributed data fusion solu-

tions and necessary tools that can aggregate groups of heterogeneous, dynamic, and multi-attribute re-

sources in collaborative P2P systems, while characterizing real-world resources, queries, and user behav-

ior. This dissertation spans three key areas of research related to multi-attribute Resource Discovery (RD),

single-attribute RD and distributed caching, and multi-sensor data fusion leading to five major contribu-

tions. First, a detailed analysis and characterization of real-world resources, queries, and content access

patterns of P2P users are presented. We then used the learned characteristics to qualitatively and quantita-

tively evaluate the fundamental design choices for P2P-based resource discovery. Second, a tool to gener-

ate realistic synthetic traces of multi-attribute resources and range queries for large-scale simulation stud-

ies is developed. Third, our findings were also used to develop a resource and query aware, P2P-based

RD solution that is both efficient and scalable. Fourth, we developed a P2P community-aware distributed

caching solution and demonstrated its applicability both analytically and empirically. Fifth, we demon-

strated the applicability of NDN for DCAS systems by developing a proof-of-concept multi-user, multi-

application, and multi-sensor data fusion solution based on CASA. Next, each of the five contributions is

described briefly.

We developed an equation to capture the overall cost of RD in terms of overlay messages in-

volved in advertising multi-attribute resources and querying them. The nature of parameters in the equa-

tion under different systems is determined by analyzing datasets from PlanetLab, SETI@home, EGI grid,

and a distributed campus computing facility. PlanetLab data are also used to analyze the multi-attribute

range query characteristics. A representative subset of design choices for P2P-based RD is then qualita-

tively and quantitatively evaluated using the learned characteristics. These design choices are evaluated

8

based on the cost of advertising and querying resources, routing table size, load balancing, and scalability.

These datasets exhibited several noteworthy features that affect the performance. The attributes of both

the resources and queries were highly skewed and correlated. While resources are characterized by many

attributes, most attributes had only a few distinct set of values. Attribute values had different marginal

distributions and change at different rates. Queries were less specific where they tended to specify only a

small subset of the available attributes and large ranges of attribute values. Therefore, real-world resource

and query characteristics diverge substantially from the conventional assumptions. Simulation-based

analysis indicated real-world queries are relatively easier to resolve using unstructured, superpeer, and

single-attribute-dominated-query-based structured P2P architectures compared to uniform queries used in

conventional studies. Cost of RD in ring-based structured P2P systems was effectively O(N), where N is

the number of nodes in the overlay, as most queries specified large ranges of attribute values. The cost of

advertising dynamic attributes was significant and increased with the number of attributes. Furthermore,

all the design choices were prone to significant load balancing issues where few nodes were mainly in-

volved in answering the majority of the queries and indexing resources. Therefore, existing design choic-

es are applicable only under very specific conditions and perform poorly under realistic workloads.

To evaluate the applications and protocols for scalability beyond what is available, it becomes

necessary to consider resource and query configurations with higher number of nodes and attributes.

However, it is impractical to gather traces with sufficient resolution and duration even for existing sys-

tems. Therefore, we developed a mechanism to gather representative statistical information about the real-

world traces and generate synthetic trace arrays of larger dimensionality in number and time. The present-

ed mechanism generates realistic synthetic traces of multi-attribute resources (with both static and dynam-

ic attributes) and range queries. Such traces are useful in evaluating the performance of large-scale RD

solutions and job schedules. The presented methodology is applicable to any multivariate resource and

query dataset. First, the vectors of static attributes are generated using empirical copulas that capture the

entire dependence structure of multivariate distribution of attributes. Second, time series of dynamic at-

tributes are randomly drawn from a library of multivariate-time-series segments extracted from datasets.

9

These segments are determined by identifying the structural changes in time series corresponding to a

selected attribute. Time series corresponding to rest of the attributes are split at the same structural break-

points and randomly drawn together to preserve their contemporaneous correlation. Third, multi-attribute

range queries are generated using a probabilistic finite state machine. Furthermore, a tool is developed to

automate the synthetic data generation process and its output is validated using statistical tests.

While taking into account the complex characteristics of real-world resources and queries, we

then developed a resource and query aware, P2P-based RD solution. The solution is based on five heuris-

tics that can be executed independently and distributedly on a ring-like overlay. The first heuristic tries to

maintain only a small subset of the nodes in the overlay as domain of resource attributes tend to be much

smaller than the number of nodes. It prunes nodes that do not significantly contribute to range query reso-

lution while reducing the cost (e.g., hops and latency) of resolving queries. The second and third heuris-

tics dynamically balance the key and query load distribution of nodes by transferring keys to neighbors

and by adding new neighbors when existing ones are insufficient. The last two heuristic, namely fragmen-

tation and replication, form cliques of nodes to dynamically balance the skewed key and query loads as-

sociated with few popular resources. In contrast to the common practice of replicating along the overlay

ring, cliques of fragments and replicas are placed orthogonal to the ring thereby providing lower query

cost and better load distribution. By applying these heuristics in the presented order, a RD solution that

better responds to real-world resource and query characteristics is developed. Simulation-based analysis is

used to evaluate the efficacy of the proposed solution under a variety of single and multi-attribute re-

source and query distributions derived from real workloads.

Large P2P systems exhibit the presence of virtual communities based on semantic, geographic, or

organizational interests of users. Resources commonly shared within individual communities are in gen-

eral relatively less popular and inconspicuous in the system-wide behavior. Hence, most communities are

unable to benefit significantly from performance enhancement schemes such as caching and replication

that focus only on the most dominant queries. We first analyzed the similarities among P2P communities

using the search clouds of several BitTorrent search engines. The analysis confirmed that user interests in

10

different communities overlap to some degree. Second, a survey was conducted to identify the number of

communities accessed by BitTorrent users and their frequencies. Our findings showed users prefer to ac-

cess contents from a few primary communities where 89% of the time they accessed at most two commu-

nities. Based on these findings, we then developed a community-based proactive caching solution for

structured P2P systems that can overcome the limitations in existing solutions. Our solution consists of a

sub-overlay formation scheme and a Local-Knowledge-based Distributed Caching (LKDC) algorithm.

First, we propose a method whereby sub-overlays are formed within the overlay network, enabling com-

munities to forward queries through their members. While the queries are forwarded, LKDC algorithm

causes the peers running it to identify and cache resources that are popular within their communities.

Therefore, lookup queries for popular resources within a community are resolved faster. Consequently,

both the community-level and the system-level lookup performance improve. Distributed local caching

requires global information such as hop count and content popularity that are difficult and costly to ob-

tain. Moreover, the problem is NP-complete when contents/resources have varying sizes. However, by

relaxing the content size constraint (which is acceptable for the purpose of improving lookup perfor-

mance), and by analyzing the globally optimal behavior and taking into account the structural properties

of the overlay, we show it is still possible to develop a close-to-optimal caching solution (namely LKDC)

that relies purely on local statistics. The proposed solution is independent of how the communities are

formed and adaptive to changing popularity and user interests. It works with any skewed distribution of

queries. Simulations show a 40% reduction in overall average path length with per node cache sizes as

low as 20. Less popular communities are able to reduce the path length by three times compared to sys-

tem-wide caching.

We present a proof of concept solution that demonstrates the applicability of NDN for multi-user,

multi-application, and multi-sensor DCAS systems. For example, a network of CASA weather radars may

name data based on their geographic location and weather feature (e.g., reflectivity of clouds or wind ve-

locity) independent of the radar(s) that generated them. Such sensor-independent names enable end users

to specify an area of interest for a particular weather feature, while being oblivious to the placement of

11

sensors and associated computing facilities. Conversely, the data fusion system can use its knowledge

about the underlying system to decide the best radar scanning and data processing strategies. Such sensor-

independent names also enhance the resilience and enable processing data close to the source, as well as

NDN benefits such as in-network caching and duplicate query suppression consequently reducing the

bandwidth requirements of the DCAS system. Our solution is implemented as an overlaid NDN network

enabling the benefits of both NDN and overlay networks. An extension is proposed for NDN to support

many-to-one data retrieval, as multi-sensor data fusion applications need the ability to retrieve data from

multiple sources that match a given name. We also propose novel mechanisms to support query subscrip-

tions, data-generation-time-aware caching, and sensor-specific and event-specific queries. The overlay

network enables geographic-name-based query routing. 2-dimensional version of CAN (Content Ad-

dressable Network) [Ra01] is used as the underlying overlay network, as it provides a direct mapping be-

tween the geographic space and overlay address space while preserving the locality. Simulation-based

analysis is used to evaluate the efficacy of the proposed solution using design parameters from the CASA

IP1 test bed [Br07, Mc09] and reflectivity data from an actual weather event. Simulation-based analysis

showed 87% reduction in average bandwidth consumption of radars and 95% reduction in average query

resolution latency.

1.3 Outline

The rest of the dissertation is organized as follows. The following chapter describes related work

on P2P topologies, resource discovery, P2P communities, and P2P caching. Detailed background on col-

laborative P2P applications (e.g., CASA, GENI, and P2P clouds) and NDN is also provided. Chapter 3

presents the problem statement. Research goals, objectives, key phases of resource aggregation, and solu-

tion approach are also discussed. Chapter 4 presents the characteristics of multi-attribute resources and

queries analyzed using four real-world datasets. Fundamental design choices for P2P-based RD are also

evaluated both qualitatively and quantitatively. A set of mechanisms to generate large synthetic traces of

multi-attribute resources with static/dynamic attributes and multi-attribute range queries is presented in

12

Chapter 5. Chapter 6 presents the resource and query aware RD solution and its performance analysis.

Proposed community-based caching solution is presented in Chapter 7. Analysis of search clouds from

several BitTorrent communities and users’ preference to access multiple communities are also presented.

Proof-of-concept solution that demonstrates the applicability of NDN for data fusion in multi-user, multi-

application, and multi-sensor DCAS systems is presented in Chapter 8. Finally, concluding remarks and

future work are presented in Chapter 9. The appendices provide details on survey findings and simulators.

13

Chapter 2

BACKGROUND AND RELATED WORK

Napster was the killer application that demonstrated the power of Peer-to-Peer (P2P) systems. It

paved the way to many successors that are highly scalable and applicable in a variety of application do-

mains. Overlay topology maintenance, Resource Discovery (RD), virtual communities, and caching are

among the key research areas in P2P systems. In contrast to current P2P systems that are dedicated to a

specific application and share similar resources (e.g., files), future collaborative P2P systems will look for

diverse peers that could bring in unique capabilities to a virtual community thereby empowering it to en-

gage in greater tasks. Such P2P systems will require both the adaptation of existing technologies and

those yet to be discovered.

This chapter provides a brief description on background and existing work that motivated and rel-

evant to the ideas presented in the dissertation. Section 2.1 describes the work related to overlay topology

formation and content/resource lookup. Several applications that can benefit from a collaborative P2P

approach are discussed in Section 2.2. Section 2.3 describes P2P-based RD solutions. Communities in

P2P systems and P2P caching solutions are presented in Sections 2.4 and 2.5, respectively. Named data

networking is presented in Section 2.6.

2.1 Overlay Topologies

P2P architectures can be broadly categorized as structured and unstructured based on the overlay

topology formation. We discuss several unstructured (Section 2.1.1) and structured (2.1.2) P2P solutions

that are relevant to the following discussion.

14

Resource
Index

1. F
in

d so
ng.m

p3

3. Download

Resource
Index

Torrent-site A Torrent-site B

Tracker
A-1

Tracker
A-2

Tracker
B-1

Resource
Index

1.
 F

in
d

 s
on

g.
m

p3

A

B C D

E

2. D
 has it

2.
 T

al
k

to
 A

-2

A
B C D E F

4. D
 h

as
 it

5. Download

3

(a) (b)

Figure 2.1 – Deterministic unstructured overlays: (a) Napster; (b) BitTorrent.

2.1.1 Unstructured Peer-to-Peer Systems

Overlay construction in unstructured P2P systems is highly flexible where peers join the network

according to some loose set of rules without any prior knowledge about the topology [Lu04]. These

topologies typically satisfy the properties of power-law random graph models [Ri02] hence are robust to

random node failures. Unstructured P2P architectures can be further categorized as deterministic and

nondeterministic [Ra08].

In 1999, Napster [Lu04] emerged as the killer application in P2P systems by enabling a user to

download a file from another randomly selected user having the file. It maintains the resource index in the

form of a centralized database (see Fig. 2.1(a)) which keeps track of the list of files in a peer and its IP

address and port number. Resource lookup, i.e., the process of searching for resources, is accomplished by

querying the database. Overlay connections are established based on the resource interests and peers con-

stantly establish and terminate connections forming an unstructured overlay. Such systems are called de-

terministic unstructured P2P systems because the resources in the database are guaranteed to be found.

However, a centralized database leads to a single point of failure and limits the scalability.

In 2001, BitTorrent [Lu04, Po05, Qi04] proposed a unified protocol to communicate across mul-

tiple distributed databases enabling users to look up resources from any of the resource indexes. Figure

2.1(b) illustrates the three-layer topology in BitTorrent and a more detailed illustration on interactions

15

Figure 2.2 – Interaction among different elements in BitTorrent.

among different elements of the system is given in Fig. 2.2. Resource indexes are typically accessed

through a website that is referred to as the torrent search engine, torrent site, or community (see Fig. 2.2).

A resource is advertised using a torrent file which stores the name of the file, its length, the number of

chunks (i.e., equal sized segments of a file), and a list of SHA1 hash values for each of the chunks. Tor-

rent file also contains a list of trackers (i.e., set of nodes that keeps track of the list of peers download-

ing/uploading the same file).

A user willing to share a file, first generates a torrent file and saves it in a torrent server (step a in

Fig. 2.2). Then its URL is advertised to one or more torrent search engines (step b). Trackers are also in-

formed of the existence of the file (step c). Another user interested in downloading that file has to query

one of the torrent search engines (step 1). If the query is successful, user’s peer first downloads the rele-

vant torrent file and then extracts the list of trackers (step 2). It then contacts one or more trackers and

request for a random list of peers sharing the same file (step 3). It then establishes separate connections to

a subset of those peers and tries to download the file (step 4). After downloading a chunk, peer advertises

itself to the tracker indicating it also has one of the chunks. Peer periodically contacts the tracker(s) to get

16

Figure 2.3 – Evolution of BitTorrent communities: (a) Islands of communities; (b) Islands of communi-

ties connected using a distributed hash table.

a new set of random peers for newer chunks that it wants to download or for the chunks for which it can-

not find a satisfactory uploading peer. BitTorrent enforces fairness by allowing a peer to upload only to

the peers that allow it to download. This fairness measure combined with the rarest-first chunk-scheduling

policy, enhances the system throughput by enabling bandwidth rich peers to download faster [Fa09]. Sim-

ilar to Napster, BitTorrent is also a deterministic unstructured P2P system, as resources indexed within a

torrent search engines are guaranteed to be found and the overlay topology depends on the resource inter-

ests. However, a peer can look up only the resources that are tracked by the trackers that it is aware of;

therefore, not all files in the system are guaranteed to be found. BitTorrent has tremendous scalability that

is proven by its user base of hundred million users. As BitTorrent grew, many torrent search engines with

specific interests on movies, games, software, etc., emerged in a top-down manner. Most search engines

deployed their own trackers leading to islands of BitTorrent deployments (see Fig. 2.3(a)). These isolated

search engines are referred to as BitTorrent communities. Isolation became a problem, as users with di-

verse interests had to search in many communities to find peers with better upload capacities. Conse-

quently, BitTorrent protocol version 4.2 enabled content lookup across multiple communities using a dis-

tributed hash table. Thus, the current BitTorrent system is a top-down aggregation of diverse communities

(Fig. 2.3(b)).

Gnutella is the first P2P system to completely distribute both the resource lookup and download-

ing [Lu04, St08]. A peer joins the overlay network by contacting one of the existing peers and gets a ran-

dom list of IP addresses of other peers in the network. It then establishes new connections to those peers.

17

Figure 2.4 – Nondeterministic unstructured P2P systems: (a) Gnutella; (b) Superpeer networks.

Find
song.mp3

A

B

C

D
E

F

G

H

D has it

Download
Find song.mp3

A

B

C

D

D has it

Download

(a) (b)

Neighbors constantly share information about other peers in the network, enabling new connections to be

established to those nodes once the existing neighbors leave the network. As seen in Fig. 2.4(a), this leads

to a random overlay that forms a power-law topology [Ri02] unless a specific Gnutella implementation

limits the number of concurrent connections [St08]. Power-law topologies are resilient and reduce the

diameter of a network. However, resource lookup is not straightforward as the topology and resource

placement are unrelated. Gnutella use flooding with a limited scope to lookup resources. As seen Fig.

2.4(a), each node floods a lookup query to its neighbors, which in turn floods to their neighbors, and the

process continues. Scope is defined by a Time To Live (TTL) value that limits the number of hops to for-

ward a query. If a query is successfully resolved, results are returned to the query source through the re-

verse path. Flooding is extremely costly and does not guarantee to find a resource due to its limited scope.

Consequently, some of the Gnutella variants, e.g., Freenet [Lu04], propose to use random walks with a

limited TTL. Though random walk reduces the overhead, resources are not guaranteed to be found due to

the limited TTL. Therefore, Gnutella is a nondeterministic unstructured overlay. Moreover, given an arbi-

trary network, it is not straightforward to determine the appropriate value of TTL for either flooding or

random walks.

Second generation Gnutella [Lu04, St08] and KaZaA [Lu04] proposed a two-layer overlay where

resource rich peers, namely superpeers, formed a separate overlay while acting as proxies for rest of the

peers (see Fig. 2.4(b)). A peer with high capacity in terms of bandwidth, processing power, and/or storage

18

is typically promoted as a superpeer. Each superpeer keeps track of the resources available in a subset of

peers. Superpeers issue lookup queries on behalf their peers, which are flooded to all the superpeers. This

increases the query-hit rate and reduces the lookup latency. Lookup overhead is also relatively low as

only the superpeers are involved in flooding. However, scalability is still limited due to the flooding.

Several Gnutella variants also propose to use gossiping or random walks among superpeers. Yet,

resources are not guaranteed to be found due to the limited scope in flooding and random walks, and

unpredictability of gossiping. Therefore, superpeers also belong to the category of nondeterministic

unstructured overlays.

2.1.2 Structured Peer-to-Peer Systems

Overlay topologies in structured P2P systems are tightly controlled and resources are indexed at

specific locations in such a manner that subsequent lookup queries can be resolved with a bounded over-

head [Lu04]. Each peer and a resource in these systems are assigned a unique identifier called a key. Each

key has a corresponding value that can be either the resource itself or a pointer to its location. These sys-

tems typically maintain the resource index, i.e., collection of (key, value) pairs, in the form of a Distribut-

ed Hash Table (DHT). A peer that participates in the DHT is called a node (not all peers in the system

need to be part of the DHT). Each (key, value) pair is indexed at a node having a close by key in the key

space. The resources are indexed and looked up using put(key, value) and get(key) messages that are for-

warded to appropriate nodes using a deterministic overlay. To facilitate such forwarding, each node keeps

a set of pointers to nodes that are spaced at exponentially increasing gaps in the key space. Such a deter-

ministic overlay and an exponentially increasing set of pointers enable messages to be routed with a

bounded path length of O(log N), where N is the number of nodes in the system. Therefore, structured

P2P systems are appropriate for large-scale implementations due to high scalability and some guarantees

on performance.

Chord [St03] is the most well-known, flexible, and robust structured P2P system [Gu03]. Figure

2.5(a) illustrates the ring-like overlay maintained by Chord. It maps both the nodes and resources into a

19

c

A B

C

E

D

I

H G

F

K

J

L

Key k

Successor
of k

(1, 0)

(0, 0)
(0, 1)

Zone
controller

(0.1,0.9)

(a) (b)

(0.3,0.4)

(0.4,0.8)

(0.75,0.2)(0.35,0.1)

(0.65,0.7)

(0.8,0.4)

(0.8,0.8)

(0-0.5, 0-0.5)

(0.5-1, 0-0.5)

(0-0.5, 0.5-1)

(0.5-1, 0.5-0.75)

(c) (d)

1 0

0

0

0

0

0

0

0

0 0

1

1

1

1

1

1 1
1

1

Figure 2.5 – Structured overlay designs: (a) Chord ring; (b) CAN d-dimensional torus; (c) Cycloid cube
connected cycle [Sh06]; (d) Kademlia binary tree (scattered lines show sub-trees in which

node 0110 must keep pointers to).

circular key space using consistent caching [Ka97]. A node is assigned to a random location within the

ring and a resource is indexed at the successor of its key, i.e., the closest node in the clockwise direction.

Each node n maintains a set if pointers, called fingers, to nodes that are at (n + 2
i – 1

) mod 2
b
, where b is

the key length in bits and 1 ≤ i ≤ b. For example, node E in Fig. 2.5(a) keeps fingers to nodes F, H, and J.

Routing table at a node consists of these fingers, and is called the finger table. The fingers are used to re-

cursively forward a message to a given key within a bounded path length of O(log N). For example, node

E can reach node L through the route E  J  L. A node may also identify redundant nodes for each of

the fingers to reduce the latency and enhance robustness, e.g., if E knows about K, a message may also

take the path E  K  L. Each node maintains O(log N) finger entries which are refreshed periodically.

20

The cost of adding a new node or removing an existing one from the overlay is O(log
2
 N). O(log N)

bound for path lengths is guaranteed only when predecessor and successor entries of nodes are valid.

Therefore, another periodic stabilization protocol is used to make sure that these entries are valid. Thus, it

is costly to maintain the Chord overlay on a dynamic network through messages can be routed efficiently.

Content Addressable Network (CAN) [Ra01] is based on a d-dimensional torus (d-torus). Figure

2.5(b) illustrates a 2-dimensional torus that is partitioned into a set of zones. Nodes are assigned random

identifiers in the d-dimensional space. Resources are assigned identifiers by hashing their unique names.

First node keeps track of the entire d-torus. When a new node is added, it is given a random key. It is then

routed to the zone that is responsible for indexing its key. The zone is then divided into two equal volume

zones and each zone is assigned to the new node and to the owner of the previous zone. Zones are further

divided or combined as nodes join and leave. A node is responsible for keeping track of (key, value) pairs

that maps to its zone. A resource is located by forwarding a query message to the zone responsible for

indexing the key specified in the query using greedy routing. CAN nodes maintain up to 2d routing en-

tries to their neighboring zones (two nodes are neighbors if their coordinate spans overlap along d – 1 di-

mensions and abut in the remaining dimension). These routing entries are used to route a message within

O(dN
1/d

) hops using greedy routing, where N is the number of nodes in the system. CAN’s routing scheme

alleviates the local minima problem that occurs in other greedy routing schemes such as geographic rout-

ing as it calculates the distance from a given identifiers to the edge of a zone instead of to a specific point.

CAN further proposes several enhancements to reduce the lookup overhead, e.g., increasing d, Round

Trip Time (RTT) based next hop selection, zone formation based on distance to known landmarks, and

large zones. A lower number of alternative paths and failure of neighbors reduce CAN’s resilience.

Pastry [Ro01] is a hypercube-based solution that represents keys using a string of digits where

each digit is in base 2
b
. Pastry routes messages using prefix-based routing, where it tries to reach the giv-

en key or a numerically closest node by correcting one digit at a time. Each node maintains a routing ta-

ble, neighborhood set, and leaf set. Routing table consists of a set of log 2b N rows each with 2
b
 – 1 entries,

which points to nodes that are spaced at different distances in the key space. For each raw i in the table, a

21

node tries to maintain 2
b
 – 1 pointers to nodes that have identical i prefixes to its key. A node also keeps a

set of pointers to neighbors in the key space (called the left set) and to physically close neighbors (called

the neighbor set). Pastry uses these two sets to enhance the routability and reduce the lookup latency by

forwarding messages to neighbors with the least RTT. Pastry routes messages within log 2b N unless sev-

eral nodes with adjacent keys fails simultaneously. To enhance the resiliency and load balancing, a (key,

value) pair is stored in multiple nodes that are closer to the given key. Pastry routing tables are relatively

large and contain O(b logb N) entries per node.

Cycloid [Sh06] extends the Pastry hypercube to form a cube connected cycle (see Fig. 2.5(c)).

Each key is represented using a pair of indices (k, ad-1ad-2…a0) where k is the cyclic index, d is the dimen-

sion of the hypercube, and ad-1ad-2…a0 is the cubical index represented as a string of digits. Such a design

limits the address space to d × 2
d
. (key, value) pairs are placed on the numerically closest node. Cycloid

maintains a fixed number of pointers (typically seven or eleven) to neighbors based on cyclic (to nodes in

the same cycle) and cubical index (to nodes in the hypercube). Cycloid also uses prefix-based routing and

routes message within O(d) hops. Though small routing table size is desirable, it could lead to lower resil-

ience as Cycloid has a limited number of alternative paths.

Kademlia [Ma02] uses a novel XOR metric for distance calculation. (key, value) pairs are indexed

at several nodes that are closest to the key. Each node maintains a k-bucket routing table where each

bucket i keeps track of k nodes that are within the distance [2
i
 , 2

i + 1
) (see Fig. 2.5(d)). In contrast to other

structured P2P systems that use a separate set of messages to maintain the overlay, Kademlia uses on go-

ing the lookup queries to identify new routing entries. This is enabled by the symmetric property of the

XOR metric, which allows a node to receive lookup queries from precisely the same distribution of nodes

contained in its routing table. A lookup query is resolved by sending a set of parallel queries to m nodes

selected from the k-buckets according to their closeness (measured using XOR) to the given key. Contact-

ed nodes may respond with a set of even-closer nodes. Another set of m nodes is then selected from those

reported nodes and another set of queries is sent. The process repeats until a node with even better dis-

tance cannot be found. Finally, the closest set of nodes is queried to locate the resource. These parallel

22

Table 2.1 – Summary of structured P2P solutions.

Scheme Architecture Routing Mechanism
Lookup

Overhead*
Routing Ta-

ble Size*
Join/Leave

Cost
Resilience

Chord Circular key space Successor & long dis-
tance links

O(log N) O(log N) O(log2 N) High

CAN d-torus Greedy routing through
neighbor zones

O(dN1/d) 2d 2d Moderate

Pastry Hypercube Correct one digit in key

at time

O(logB N) O(b logb N) O(logb N) Moderate

Tapestry Hypercube Correct one digit in key
at time

O(logB N) O(logb N) O(logb N) Moderate

Viceroy Butterfly network Predecessor & successor

links

O(log N) O(1) O(log N) Low

Kademlia Binary tree, XOR
distance metric

Iteratively find nodes
close to key

O(log N) O(log N) O(log N) High

Cycloid Cube connected
cycles

Links to cyclic & cubical
neighbors

O(d) O(1) O(d) Moderate

* N – number of nodes in overlay, d – number of dimensions b – base of a key identifier

and asynchronous queries reduce the delays due to failed nodes and increase the resilience. Kademlia also

routes messages within O(log N) hops. It is used in many production P2P systems such as BitTorrent and

eMule (to find resources that are indexed by other trackers) due to its ease of implementation and high

resilience.

Table 2.1 compares these solutions and several other structured P2P systems (refer [Lu04] for

more details). Though these solutions provide guaranteed RD and have a bounded lookup overhead, they

have several fundamental limitations. DHTs require all copies of the same key to be stored in the same

node or neighborhood. This leads to load imbalance when query popularity is skewed [Ba11e, Ba12a,

Kl04, Sr01]. Moreover, it leads to single points of failure. Many of the structured P2P solutions propose

to use replication to overcome this issue e.g., [Ma02] and [St03]. However, replication could lead to an

inconsistent or stale resource index when resources are highly dynamic or the resource owner leaves the

network. Moreover, the load balancing issue remains when multiple copies of a (key, value) pair need to

be checked for consistency. Furthermore, their performance bounds are guaranteed only if the overlay

network is consistent. Maintaining overlay consistency is costly (except in Kademlia) even in a network

with moderate churn. Moreover, average-case performance of these systems is too high for large-scale

latency sensitive systems such as CASA and P2P clouds. Therefore, we are still in the need for a truly

23

Table 2.2 – Structured vs. unstructured P2P systems.

 Unstructured P2P Structured P2P

Overlay construction High flexibility Low flexibility

Resources Indexed locally (typically) Indexed remotely on a distributed hash table

Query messages Broadcast or random walk Unicast

Content location Best effort Guaranteed

Performance Unpredictable Predictable bounds

Overhead High Relatively low

Object types Mutable, with many complex attributes Immutable, with few simple attributes

Peer churn & failure Supports high failure rates Supports moderate failure rates

Load balancing Relatively better load distribution The load is imbalanced when queries and/or
resources are skewed

Resilience High Single points of failure

Consistency of index High (nodes keep their resources) Low (indexed remotely)

Applicable environ-
ments

Small-scale or highly dynamic environments
with (im)mutable objects, e.g., mobile P2P

Large-scale & relatively stable environments
with immutable objects, e.g., desktop file sharing

Examples Gnutella, LimeWire, Kazaa, BitTorrent Chord, CAN, Pastry, Kademlia, BitTorrent

distributed P2P system that combines the desirable properties of both the structured and unstructured P2P

systems. Table 2.2 summarizes the properties of both types of P2P systems.

2.2 Collaborative Peer-to-Peer Systems

Collaborative P2P systems are applicable in a wide variety of contexts such as Distributed Col-

laborative Adaptive Sensing (DCAS) [Ku06, Le12, Mc05, Mc09], grid [Ca04, Sh07], cloud [Ar09], and

opportunistic [Co10] computing, Internet of Things [Pf11], social networks, and emergency management.

Next, we discuss several representative collaborative applications in detail.

2.2.1 Collaborative Adaptive Sensing of the Atmosphere

Current weather radar networks are typically comprised of physically large, high power, and

highly expensive radars spaced at several hundreds of kilometers apart. For example, WSR-88D Next

Generation Weather Radars (NEXRAD) in the U.S. are spaced at ~345 km apart in the western U.S.

[Mc09]. These widely spaced, long-range radars use high power transmitters to sense the atmosphere that

is 200-300 km away (see Fig. 2.6(a)). While these systems have led to significant improvements in

weather forecasting and warning, they are unable to see the lower 3 km of the atmosphere due to the

24

Figure 2.6 – Evolution of weather radar networks: (a) A long range and high-power radar; (b) Tracking

lower 3 km of the atmosphere using a network of radars.

Earth’s curvature and terrain blockage (Fig. 2.6(a)). Ability to sense the lower 3 km of the atmosphere is

important for accurate detection and forecasting of localized weather events such as tornados and flash

floods.

Collaborative Adaptive Sensing of the Atmosphere (CASA) is a DCAS system that is revolution-

izing how we observe, evaluate, understand, and predict hazardous weather events such as tornados and

flash floods. Figure 2.6(b) illustrates the simultaneous observation of a weather phenomenon by a net-

work of CASA radars. Central to the CASA research effort is the use of large numbers of low-cost small

radars, spaced close enough to see the lower 3 km of the atmosphere in spite of Earth’s curvature and to

avoid resolution degradation caused by radar beam spreading [Mc09]. Such a dense network of radars

enables the same weather event to be sensed from multiple angles consequently increasing the accuracy

of sensing, detection, and forcasting. CASA radars, processing nodes, and data-fusion algorithms com-

municate with each other to adjust their sensing and data processing strategies in direct response to the

evolving weather and to changing end user needs [Ku06, Mc09]. CASA also employs many small sensors

such as pressure sensors and micro-weather stations [Pe11a, Pe12] to further enhance the detectability and

forcasting accuracy.

25

Figure 2.7 – Major processing steps of the closed-loop MC&C software architecture [Mc09].

CASA IP1 test bed [Br07, Mc09] that was in Oklahoma consisted of four radars placed on a

rhombus with inter-node spacing of 30 km. IP1 is currently being relocated to Dallas, TX and will be ex-

panded into an eight-radar network. IP1 radars covered an area of ~7,000 km
2
 using a transmission range

of 40 km and were connected to the Internet. IP1 radars are controlled through the Meteorological Com-

mand and Control (MC&C) which closes the loop between sensing and radar tasking [Mc09]. Closed-

loop operation of MC&C is depicted in Fig. 2.7. MC&C ingests data from radars, identifies meteorologi-

cal features in data, reports features to end users, and determines future scan strategies of radars based on

the detected weather features and end users’ information needs. To satisfy the CASA’s goal of detecting

severe weather events within 60 seconds, closed loop is executed every 30 seconds [Zi05].

CASA supports a diverse set of meteorological algorithms (referred to as applications) and end

users. Table 2.3 lists a subset of the applications that are currently supported by CASA. Each application

pulls one or more types of data from one or more radars. For example, radar images that we see on TV

newscasts are drawn using reflectivity data from clouds that are typically generated by a radar. More ac-

curate reflectivity images can be generated using the Network-Based Reflectivity Retrieval (NBRR)

26

Table 2.3 – CASA applications. Adapted from [Ba13].

Application Description No of Radars Data Type(s)

Reflectivity Reflectivity of clouds 1 Reflectivity

Velocity Wind velocity 2-3 Doppler velocity, reflectivity

Network-Based Reflectivi-
ty Retrieval (NBRR)

Reflectivity of clouds detected using multiple
radars

3+ Reflectivity

Nowcasting Short term (10-30 min) high resolution fore-

casts of active weather events

1-3 Reflectivity

Quantitative Precipitation
Estimation (QPE)

Estimating current precipitation using inten-
sity of rain & water droplet size

1-3 Reflectivity, differential
phase, correlation coefficient

Tornado tracking Detect & track a tornado as it forms & moves 2+ Doppler velocity, reflectivity

Air surveillance Low-flyer surveillance for law enforcement 1-3 Doppler velocity, reflectivity

[Li07b] algorithm that pulls reflectivity data from three or more radars that sense the same region in at-

mosphere within an acceptable time window. Both Doppler velocity and reflectivity data from two to

three radars are needed to estimate the wind velocity accurately. The same data are useful in tornado-

tracking and low-flyer surveillance [Pe11b] applications. Therefore, multiple applications tend to access

subsets of the same data. Applications require different amounts of computational, storage, and bandwidth

resources as they use different types of data, volumes of data, and meteorological algorithms. Known

weather patterns, geography, cost, and availability of infrastructure determine where the applications are

deployed. For example, tornado-tracking applications are deployed only in areas that are likely to have

tornados.

These applications are accessed by a diverse set of end users (see Table 2.4) such as the National

Weather Service (NWS), Emergency Managers (EMs), scientists, media, and commercial entities. Users

may issue queries periodically for weather surveillance or when an interesting weather event is detected

within their Area Of Interest (AOI). For example, a NWS forecast office sends a separate query for each

of the applications listed in Table 2.3 (except for air surveillance) for counties under their jurisdiction. For

surveillance purposes, they may pull data from reflectivity and velocity applications every five minutes

regardless of the current weather conditions. However, when an active weather event is detected, reflec-

tivity, velocity, NBRR, nowcasting, and QPE applications are queried at a higher sampling rate. These

queries are periodically issued for the area of active weather (which may change with time) until the

weather event subsides or move out of their jurisdiction. A researcher trying to understand the physical

27

Table 2.4 – CASA end users and their data access patterns. Adapted from [Ba13, Ku06].

End User Description Applications Rule Trigger AOI
Sampling
Interval

National
Weather Ser-

vice (NWS)

Responsible for issu-
ing warnings

Reflectivity Periodic Counties under jurisdiction 1 min

Velocity

NBRR,
nowcasting, QPE

High reflectivity Area of active weather
(even if 30-80 km away)

Tornado tracking Rotating wind,
ground spotters

Emergency
Managers

(EMs)

Siren blowing, help-
ing first responders,

act as spotters

Reflectivity Periodic Counties under jurisdiction 1 min

Velocity

NBRR,
nowcasting, QPE

High reflectivity Area of active weather
(even if 30-80 km away)

2 min

Tornado tracking Rotating wind,
ground spotters

1 min

Researchers To understand physi-

cal properties of
weather events, test
new algorithms

Reflectivity Periodic Area of active weather 1 min

Velocity High wind 30 sec

NBRR,
nowcasting, QPE

High reflectivity 1 min

Tornado tracking Rotating wind 30 sec

Media Forecasting, public
warning

Reflectivity Periodic Counties/states under media
coverage

1 min

Velocity

NBRR,
nowcasting, QPE

High reflectivity Area of active weather
(even if 30-80 km away)

2-5 min

Tornado tracking Rotating wind,
ground spotters

Commercial

entities

Transportation agen-

cies, utilities, com-
mercial entities

Reflectivity Periodic Counties/states under inter-

est

5-60 min

Velocity

properties of a tornado may use velocity and tornado-tracking applications every 30 seconds to acquire

samples more frequently. Alternatively, commercial entities may sample their AOIs at a much lower

sampling rate, as they are interested in mid to long-term changes in weather. The public is not expected to

interact with CASA directly instead access data from media.

A potential nationwide CASA radar network deployment in the U.S. is estimated to require

10,000 radars [Mc09]. While such a dense network of radars can substantially improve the detection,

forecasting, and warning time, it creates many challenges due to the sheer number of sensors involved,

the heterogeneous network and communication infrastructure, and volume of data generated. CASA IP1

radars generate raw data at rates up to 800 Mbps, which reduces to 3.3 Mbps with preprocessing. In some

cases, e.g., to preserve the accuracy or for archiving purposes, it is preferable to transfer raw data. The

next generation of solid-state CASA radars is expected to generate raw data at several Gbps. Even though

28

the system is mission critical, CASA uses the Internet as the preferred medium of communication because

of its flexibility, global accessibility, and low cost. Therefore, new transport protocols, resource aggrega-

tion solutions, and multi-sensor Data Fusion (DF) solutions are needed to timely transmit and process

large volumes of radar data while overcoming dynamic network conditions. Real-time nature of CASA

also necessitates the radar data generation, transmission, processing, and re-tasking to be completed with-

in 30 seconds. However, most of this time is used to generate the data leaving a fraction of this time for

data transmission and fusion. Moreover, certain rare but severe weather events require specific algo-

rithms/applications and more computing, storage, and bandwidth resources to track and forecast/nowcast

about their behavior. Hence, the key design consideration of the radar network is its ability to meet the

application-specific real-time requirements while optimizing resource usage.

With each of the sensor nodes allowed to conduct in-network processing and provide computa-

tion and communication resources in response to user requests [Do05], the multi-radar DF can be per-

formed collaboratively and concurrently by different nodes. Multi-radar DF involves collecting data from

multiple remote radars and processor-intensive digital signal processing. The applications therefore place

unique weather event and context sensitive demands on the system infrastructure. In these circumstances,

a distributed, dynamic, and collaborative approach based on the P2P architecture is attractive to aggregate

underutilized resources from multiple sensors and processing nodes across the network. However, the

underlying network and processing infrastructure may be subjected to adverse conditions due to severe

weather, resource failure, link degradation, and variable cross-traffic along wired and wireless links. Giv-

en the importance of the application, P2P architecture should be robust enough to function under such

adverse conditions by automatically masking any inadequate resource using other resources. For example,

lack of bandwidth between a processing node and a storage node may be compensated by processing data

faster to accommodate the extra delay introduced while transferring data to the storage node. Though it is

mission-critical, provisioning a CASA radar network for rare peak demand is neither economically feasi-

ble nor practical due to the spatial and temporal locality of hazardous atmospheric events. Instead, the

available resources have to be dynamically managed to meet the requirements with an acceptably high

29

Figure 2.8 – GENI resource aggregation framework [El09].

probability. A collaborative P2P architecture provides many of the attributes needed for such resource

sharing. However, a simple resource aggregation approach is not sufficient for multi-sensor DF, as the

data need to be combined in such a manner that the real-time requirements and application-specific data

selection requirements are met. For example, to meet real-time bounds, we need to ensure that the nodes

selected for DF have the required processing capabilities (including computation capability, bandwidth,

and latency) and the appropriate selection of software/hardware for the specific type of processing. There

is thus a need for a framework capable of timely aggregating diverse set of resources in mission-critical

DCAS systems.

2.2.2 Global Environment for Network Innovations

The Global Environment for Network Innovations (GENI) is a collaborative and exploratory plat-

form for discoveries and innovation [El09]. It is a suite of research infrastructures rapidly put together to

explore the future Internet at scale. GENI allows users to aggregate resources (e.g., processing nodes,

storage, networks, sensors, and actuators) from multiple administrative domains for a common task. Fig-

ure 2.8 illustrates the GENI resource aggregation framework where a user requests to create a slice by

aggregating a given set of resources. The clearinghouse responds to the user request by aggregating a set

30

of resources that are spread across several administrative domains. In its current design, GENI clearing-

house passively sends a list of potentially useful recourses to the user hoping he/she has the skill to put

them into a workable system. In practice, a user will find it is extremely complex to build even a satisfac-

tory system for two reasons. First, a user tends to request an arbitrary set of resources relying on the in-

stincts or principle of least effort [Br05] rather than on specific requirements of the application. There-

fore, the user ends up requesting either insufficient or too many resources. Second, as the clearinghouse

focuses only on individual resources not all combinations of the selected resources may be suitable or

capable of working together. This degrades the QoS of the user’s application or in certain cases user may

not be able to build a workable solution at all. Ideally, the clearinghouse should take these complexities

away from the user and should be able to intelligently aggregate an optimum set of resources based on the

application requirements. To do so, it needs to take into account the entire group of resources and their

inter-resource relationships. A centralized clearinghouse will be insufficient as GENI continues to grow

attaching many users and resources that are geographically distributed. Therefore, a collaborative P2P

system is a good fit for GENI because of its distributed, dynamic, and collaborative nature.

2.2.3 Peer-to-Peer Clouds

Cloud computing is transforming the way we host and run applications because of its rapid scala-

bility and pay-as-you-go economic model. The datacenter hardware and associated software resources are

referred to as the cloud and the process of delivering services over the Internet through these hardware

and software is referred to as cloud computing [Ar09]. Thus, cloud computing is an abstract term that cap-

tures a variety of concepts that combine hardware, software, and networking resources to different ex-

tents. Cloud services can be broadly classified as [Fo09]:

1. Infrastructure as a Service (IaaS) – These services provide access to bare-bone hardware through

user configured Virtual Machines (VMs). Typically, these services are offered as bundles of re-

source instances with different capabilities. For example, Amazon EC2 name their computing re-

sources as standard, micro, high-memory, high-CPU, and cluster compute [Amaz].

31

2. Platform as a Service (PaaS) – Cloud providers offer middleware services enabling users to de-

velop applications rapidly. Complexity of these service platforms varies, e.g., from relatively

simple .NET common language runtime in Moorcroft Azure [Micr] to relatively advanced

Google App Engine.

3. Software as a Service (Saas) – At this level, an entire application or suite of applications is ex-

posed as a service. Google Docs, Office Live, and Salesforce.com are some of the well-known

examples.

With increased levels of integration, even the systems within and across cloud computing data-

centers exhibit attributes of distributed systems where groups of resources such as processing nodes, stor-

age, bandwidth, and special hardware (e.g., GUPs and FPGAs) may be grouped to execute complex col-

laborative applications. These applications even need to establish virtual networks within the datacenter to

isolate traffic and provide bandwidth guarantees. While the VMs increase the resource utilization of a

datacenter, they make it harder to provide QoS guarantees. For example, both Amazon EC2 and Mi-

crosoft Azure platforms run multiple VMs on the same physical node. Though VMs can be configured

not to exceed specific amounts of CPU utilizations, memory, and storage, their I/O performance cannot be

controlled. Thus, the overall performance received by an application running on a VM depends on the

behavior of other VMs on the same host. This could lead to unpredictable performance particularly in da-

ta intensive applications that are I/O intensive (e.g., CASA radar data fusion [Ir10] and high-energy phys-

ics applications [Ge11b]). Consequently, modern clouds are struggling to provide fine-grained Service

Level Agreements (SLAs) [Am08, Micr] due to the inherent complexity of describing resource capabili-

ties, inter-resource relationships, and application requirements. Cloud computing systems are scalable and

allow users to rapidly respond to increasing application demands by purchasing additional resources on

the on the fly, e.g., Amazon Auto Scaling. However, their response times are in minutes as it takes time to

transfer an operating system image to a node and boot-up a new VM. In its current state, these systems do

not provide the rapid scalability and adaptability that CASA-like systems require which have significantly

higher peak demands that last only for tens of minutes. However, with the advancement of hardware and

32

operating system technologies, future cloud computing systems will be able to support latency sensitive

and mission critical applications.

In spite of its distinct advantages, there are some criticisms on cloud computing. For example, its

centralized data and proprietary application model contradict with the Free and Open Source Software

(FOSS) movement; hence, considered a threat by users who want to be in control of their data and appli-

cations. One may even argue that it is a waste of resources in modern desktops, which are forced to act

like thin clients while the datacenter performs all the heavy lifting. Though FOSS applications can be

ported to run on a cloud, lack of free and open datacenters is an issue. This limitation can be overcome by

making the FOSS community become a distributed datacenter. We can combine the power of P2P sys-

tems and cohesiveness of the FOSS community to build a P2P cloud-computing infrastructure where us-

ers contribute resources to the cloud while staying in control of their data and applications. Such a com-

munity cloud computing system, based on underutilized computing resources in homes/businesses, can

overcome centralized data, privacy, proprietary applications, and cascading failures in modern clouds

[Br09]. A collaborative P2P system is the core of such a system that allows users to contribute their un-

derutilized resources while effectively dealing with rapid scalability and resource fluctuations.

2.2.4 Mobile Social Networks

The value of social networks can be enhanced by allowing users to share diverse resources avail-

able in their mobile devices. For example, as seen in Fig. 2.9, a person with a basic mobile phone could

connect to a friend’s smart-phone with GPS capability to locate a nearby ATM. In another example, a

group sharing their holiday experiences in a coffee shop could use one of the members’ projection phone

to show pictures from others’ mobiles or tablets, or videos streamed from their home servers. Such appli-

cations benefit from the diversity of resources in a community where members share resources with each

other. Depending on the situation, users may even establish transient connections to achieve a common

goal, e.g., during a conference or while responding to a disaster. For example, in large social gatherings

such as carnivals, sports events, or political rallies, users’ mobile devices can be used to share hot deals,

33

Figure 2.9 – A user trying to locate an ATM using his/her mobile social network.

comments, videos, or vote for a certain proposition without relying on a network infrastructure. Such ap-

plications are already emerging under the domain of opportunistic networking and computing [Co10].

Thus, social relationships among users have to be taken into account to find the willingness to share their

resources. These networks also need to ascertain whether the two resources are nearby to avoid a certain

service provider, minimize latency, or reduce packet loss. We refer to these applications as mobile social

networks. Collaborative P2P systems are a natural fit for these emerging networks that are distributed,

highly dynamic, and autonomous. Resource advertising, discovering, and matching based on inter-

resource relationships and user constraints are among the fundamental requirements of mobile social net-

works.

2.3 Peer-to-Peer-Based Resource Discovery

Below we discuss a representative subset of P2P solutions that either address or have the potential

to address requirements of collaborative P2P systems. Unstructured P2P-based solutions are discussed in

Section 2.3.1 and structured ones are discussed in Section 2.3.2.

2.3.1 Unstructured Peer-to-Peer Solutions

Unstructured P2P systems are based on random overlays where resources are advertised and/or

queried by sending messages through flooding or random walks. Flooding can be used either to advertise

Resource Specifications (RSs) (i.e., attributes of a resource and any constraints on usage of the resource)

or to select resources on the fly by sending multi-attribute range queries. In either way, all the nodes can

34

get to know about all the resources in the system thereby enable the best set of resources to collaborate. A

processor cycle sharing system that is capable of executing real-time jobs is presented in [Ya06]. It is

based on an analytical model that assumes the jobs are perfectly divisible and the job owner will execute,

at least, a small fraction of the job. Job owner first floods the neighborhood to identify computing power,

bandwidth, and reliability of its neighbors. The model then assigns different fractions of the job to neigh-

bors based on their capabilities. The analytical model fails when jobs are not perfectly divisible or the job

owner is unable to execute part of the job due to lack of resources. A simplified best-peer-selection algo-

rithm for CASA multi-sensor DF is presented in [Le12]. However, flooding is extremely costly thus suit-

able only for small-scale applications.

Gossiping [Je06] is another alternative to disseminate RSs where a software agent exchanges RSs

between two randomly selected nodes. Multiple concurrent agents are used to speed up the gossiping. A

node selects resources by querying the RSs that are gathered from gossiping. Efficient Resource Discov-

ery (ERD) [Th09] is a resource advertising and querying scheme for mobile ad-hoc networks. It prioritiz-

es messages based on their TTL and time they have spent in the system allowing rapid dissemination of

new messages. Though ERD is designed to advertise and select individual resources, it is possible to do

simple resource matching as a node gets to know about multiple resources. For example, it can answer a

query like “are resources x and y from my friends?”. Though this approach is simple to implement, there

is no guarantee that a node will get to know about any resource that it needs (even if it exists). Moreover,

states of know resources may be stale as gossip propagation is unpredictable and slow.

The majority of the unstructured P2P solutions is based on random walks where RS advertise-

ments and/or queries are forward through a series of nodes that are selected randomly. The random walk

is a more specific form of gossiping where an agent typically carries only a selected set of RSs or multi-

attribute range queries between two neighboring nodes. In [Ta08], a node sends out multiple agents to

advertise its RS(s) to other nodes along their path and to collect those nodes’ RSs. Multiple agents are

sent to different regions of the network to sample larger portion of the network and enhance the robust-

ness. Simple resource matching is also possible as agents collect RSs from multiple nodes. Though agents

35

advertise and discover resources, they do not provide guaranteed resource selection and even the state of

the selected resources may be stale. Alternatively, inspired by the second-generation Gnutella P2P sys-

tem, many solutions issue queries (using random walks) as and when they need to select resources. Each

query agent walks from one node to another looking for resources satisfying the multi-attribute range que-

ry [Xi08b]. If the relevant resources are found, the agent goes back to the query originator either through

the reverse path or directly. Agents have a limited lifetime, defined using a TTL, to prevent the accumula-

tion of unresolved query agents within the P2P system. To increase the probability of discovering re-

sources a node either sends several agents or sends an agent with a large TTL. However, it is nontrivial to

determine the required number of agents or their TTL to guarantee RD in an arbitrary network. Therefore,

such solutions can only provide a best-effort service. Nevertheless, query agents can identify the current

state of a resource and provide resource binding (i.e., a guarantee that the resource can be used by the ap-

plication for its intended purpose and time), as they reach individual nodes to check their resource availa-

bility. Resource matching can be also performed at the same time, if a node has multiple resources such as

processing capabilities and storage. Past query results can be used to bias the random walk towards poten-

tial resources while reducing the query overhead and latency [Xi08b]. Another alternative is to build a

hybrid system where one set of agents advertises the RSs while another set queries for the resources

[Ta08]. While this speeds up the query resolution, it may not reflect the correct state of resources and

eliminates the possibility of resource binding as queries are resolved by intermediate nodes.

Another alternative is a two-layer overlay (similar to KaZaa) where resource rich peers, namely

superpeers, form a separate overlay while acting as proxies for rest of the peers [Kw10, Su08b, Xi08b].

Each superpeer keeps track of RSs of a subset of peers. Superpeers advertise and/or query resources on

behalf of their peers by contacting other superpeers through flooding, gossiping, or random walks. A

superpeer-based task assignment mechanism for volunteer desktop grids is presented in [Kw10].

Superpeers reduce the overhead as only a subset of the peers is involved in advertising and querying re-

sources. Superpeers have the potential to act as matchmakers, if physically nearby peers or peers with

different resources are assigned to the same superpeer. They can also provide resource-binding services

36

on behalf of their peers. However, its applicability is limited as it focuses only on individual nodes and

assumes processing nodes and application requirements can be completely characterized by their MIPS

(Million Instructions Per Second) ratings.

In conclusion, unstructured P2P solutions provide a best-effort service (except when messages are

flooded) in selecting and binding dynamic resources. They are applicable in small to medium scale appli-

cations and highly dynamic environments such as ad-hoc and mobile social networks. Unstructured to-

pologies are also attractive as they better distribute the index size and query load due to random topolo-

gies. It is more useful to issue queries on the fly as complex queries, having multiple attributes and range

of attribute values, can be relatively easily resolved as agents reach individual nodes. This further simpli-

fies the binding between a resource and the application interested in using it. A restricted form of resource

matching is also possible. When a node cannot match all the relevant resources within itself, all the re-

sources that satisfy the resource query have to be informed to the node that initiates the application. The

application may then take the final decision on resource matching and binding. Nevertheless, random to-

pologies in unstructured P2P systems make it hard to keep track of inter-resource relationships. Therefore,

resource relationships have to be discovered on the fly. For example, after selecting potential resources an

application could then request nodes to verify whether they can reach each other, measure band-

width/latency between them, or evaluate their social relationships. However, discovering such relation-

ships on the fly takes time and increases the overhead, e.g., sufficient number of packets and time are

needed to estimate the bandwidth between two nodes. Superpeers provide a viable alternative where a

superpeer can at least keep track of the relationships among resources that are connected to it.

2.3.2 Structured Peer-to-Peer Solutions

Structured P2P solutions are appropriate for large-scale P2P applications due to their scalability

and some guarantees on performance. These systems typically index RSs in a DHT. DHTs are designed to

index resources that are characterized by a single attribute. Thus, they are not designed for simultaneous

37

?

CPUSpeed BandwidthMemory Query routing Peer originating query

??
(a) (c)(b)

Estimated query

selectivity

Pointers

Figure 2.10 – Ring-based structured overlay designs: (a) Multi-ring – a separate overlay is created for

each attribute type and queries are issued to the most selective attribute; (b) Partitioned-
ring – address pace of the overlay ring is partitioned and assigned to different attribute

types, and queries are resolved by issuing multiple sub-queries to each partition; (c) Over-

lapped ring – multiple addresses spaces are mapped to the same overlay ring and queries

are issued based on the most selective attribute.

selection of multiple and multi-attribute resources required by collaborative P2P applications. Next, we

discuss several solutions that extend structured P2P systems to support multi-attribute resources.

Figure 2.10 illustrates three design choices based on an overlay network with a circular address

space, also referred to as a ring. Mercury [Bh04] maintains a separate ring for each attribute type (see Fig.

2.10(a)). Each node advertises its RS(s) to the rings that corresponds to the attribute set of the resource(s).

Mercury utilizes Single Attribute Dominated Queries (SADQ) where a query is issued only to the ring

corresponding to the most selective attribute. For example, as seen in Fig. 2.10(a), the query travels 3-

hops in the CPUSpeed and bandwidth rings, and 2-hops in the Memory ring. Thus, it is more efficient to

resolve the query using the Memory ring. To enable SADQ, each node needs to keep track of all the at-

tributes of RSs that it indexes. Mercury uses a random-sampling algorithm to estimate the query selectivi-

ty within each ring. A range query is resolved by forwarding it to a series of nodes through their succes-

sors. As the query propagates, resources that satisfy all the attributes specified in the query are aggregated

and the last node returns the aggregated results to the application (i.e., query originator). The random

sampling algorithm is also used to estimate the query load within each ring. Based on the estimated load,

38

nodes are reorganized within each ring to balance the query load. New rings can be added to support addi-

tional attributes and each ring can be customized to specific characteristics of attributes. However, a large

number of routing entries associated with multiple overlay networks makes Mercury less useful for P2P

systems with resources that are characterized by many attributes (e.g., CASA and GENI). Moreover,

highly skewed resource and query loads cannot be balanced by adjusting the position of nodes on the ring.

Figure 2.10(b) illustrates an alternative design based on a partitioned ring. LORM (Low-

Overhead, Range-query, and Multi-attribute) [Sh07] assigns a separate segment of the ring to each attrib-

ute type. It is built on top of the Cycloid overlay [Sh06] (see Section 2.1.2). Attribute values are repre-

sented as a bit string where prefix bits represent the segment (indicate attribute type) and suffix bits repre-

sent the position within a segment (indicate attribute value). Suffix bits are generated by applying a

Locality Preserving Hash (LPH) function to the attribute value. A LPH function maps nearby attribute

values to neighboring nodes in the ring. This enables the resolution of range queries by forwarding to a

series of nodes. An application searching for resources issues a separate sub-query for each segment ac-

cording to the required set of attributes. Query results are later combined at the application using a join

operation like in databases.

MADPastry (Mobile AD-hoc Pastry) [Za05] proposes a similar scheme for large-scale mobile ad-

hoc networks. It partitions the Pastry hypercube [Ro01] (see Section 2.1.2) to preserve the physical locali-

ty of nodes, which is determined using a set of landmarks. A query is first sent to the local partition. If

required resources are not found locally, the query is then forwarded to other partitions one at a time. An-

other alternative is to build a set of hypercubes for each geographic region and then connect them to form

a backbone [De09]. As illustrated in Fig. 2.11, a subset of the peers that are in the same neighborhood

forms a hypercube while retaining their physical locality. A backbone is then formed by interconnecting

these hypercubes through gateway peers. Resources are advertised to both the local and remote

hypercubes through the backbone. Similar to MADPastry, resources are first queried within the local

hypercubes. Remote hypercubes are queried only when resources are not found locally. Dynamic load

balancing is achieved by adjusting dimensions of the hypercube according to the query load. For example,

39

00

1110

01

000
001

011010
100

110

111

101

?
Q = 011xx

Local query Remote query

1100

1110

0100

0110

0111

1111

0010

0110

Figure 2.11 – Hypercubes connected to form a backbone.

when average query load of a hypercube exceeds a given threshold, the dimensions of the hypercube are

increased and more neighboring peers are added to the hypercube to distribute the load. This approach is

counterproductive, as popular queries will experience high latency because of the increased path length

due to increase in hypercube dimensions.

LORM, MADPastry, and hypercube backbone maintain a much lower number of routing entries

compared to Mercury. MADPastry and hypercube backbone also provide resource matching based on

latency and hop count because of their ability to locate local resources. However, multiple sub-queries

and their tendency to return a large number of unusable resources increase the lookup overhead in all

three solutions.

MAAN (Multi-Attribute Addressable Network) [Ca04] proposes a SADQ mechanism for a ring

(Fig. 2.10(c)). It maps attribute value of a resource to the same identifier space (i.e., ring) using a separate

uniform LPH function for each attribute type. In addition to preserving the locality, uniform LPH func-

tions also uniformly distribute the hash values across the ring. Use of an overlapped ring reduces the rout-

ing state and query overhead. However, uniform LPH fails to balance the load when the popularity of re-

source queries is skewed or there are many identical resources.

Figure 2.12 illustrates another design where RSs are mapped to points in a d-torus similar to CAN

[Ra01]. Each dimension of the torus represents an attribute type. MURK (Multidimensional

Rectangulation with Kd-trees) [Ga04] is one such solution that dynamically partitions the d-torus to many

40

A

CPUSpeed

M
a

x
 B

a
n

d
w

id
th

CPUSpeed

B
a

n
d

w
id

th

Q1 Q

Q2

(a) (b)

l = 3

d = 0

l = 3

d = 1

l = 2

d = 0

l = 2

d = 1

l = 1

d = 1

Figure 2.12 – 2-dimensional torus: (a) Multi-attribute space partitioned into a set of zones, a query is

routed to all the zones that overlap with the query rectangle; (b) Multi-attribute space par-

titioned with respect to peer A, the query is routed to all the peers that overlap with the
query rectangle, l – level, d – dimension [Co09b].

zones. Each node indexes all the RSs that map to its zone. MURK keeps track of these zones by organiz-

ing them in the form of a k-dimensional tree (kd-tree). Dynamic load balancing is achieved by split-

ting/aggregating zones based on the query load. A multi-attribute range query encloses a hyperrectangle

(i.e., d-dimensional contiguous space) on the torus, e.g., Q1 in Fig. 2.12(a). Queries are resolved using

greedy forwarding. As a query propagates, each node reports matching resources to the application, as it

is not straightforward to aggregate resources from multiple zones. Alternatively, MURK uses space-

filling curves [Ja90, Or84] to map the d-torus to a ring by reducing its dimensionality. Though a ring ena-

bles a query to aggregate potential resources as it propagates, it introduces additional overhead as nearby

resources on the d-torus are no longer mapped to a contiguous region on the ring.

The solutions presented above provide only the advertisement and selection of individual re-

sources. SWORD [Al08] is a partitioned-ring-based architecture (see Fig. 2.10(b)) that also supports the

selection of multiple resources and resource matching. A SWORD query can define required groups of

resources, their inter-group and intra-group constraints, and penalties for not satisfying them. Because it is

impractical to keep track of all the inter-resource relationships, SWORD cluster nodes into equivalence

classes based on their Autonomous System (AS). A designated node from each AS keeps track of latency

41

and bandwidth relationships between two ASs. Resources are selected using either a SADQ (similar to

MAAN) or multiple sub-queries (similar to LORM). The selected resources are then used to form a set of

candidate groups based on the application requirements. Subsequently, resources in each candidate group

are matched based on their inter-AS relationships. The groups are then ranked according to the extent

they satisfy the application constraints and sent to the application enabling it to take the final decision on

what group(s) to use. Though AS-based measurements provide a reasonable estimation of latency, such

coarse-grained measurements do not work well for bandwidth and other complex inter-resource relation-

ships.

Solutions discussed so far are applicable in semi-dynamic environments where resources do not

change rapidly. Costa et al. argue that DHTs are inefficient and incapable of accurately maintaining the

state in dynamic environments such as P2P clouds [Co09b]. Therefore, the authors propose to construct a

resource-aware overlay in the form of a d-torus using only the static attributes that can be represented cor-

rectly (see Fig. 2.12(b)). The torus is recursively partitioned into a small set of hypercubes called cells.

Queries are routed using pointers that each node keeps to one of the nodes in each cell. Nodes in the low-

est-level cell are connected to each other. Gossiping is used to discover such nodes and their attribute val-

ues. A query is first routed to one of the lowest-level cells that overlap with the query hyperrectangle.

Other overlapping cells are then recursively traversed using depth-first search until all the potential or a

predefined number of resources are found. Dynamic attributes defined in a query are evaluated at individ-

ual peers. Therefore, [Co09b] can advertise, select, and bind resources. It also lessens load balancing and

single points of failure problems in DHTs as resources are connected to each other according to their at-

tribute values rather than indexed in a remote node. However, depth-first search increases the lookup

overhead and latency particularly if queries are less selective. Moreover, gossiping does not guarantee

discovery of a node in a sparse cell and all the nodes in the lowest-level cell.

Table 2.5 summarizes the different structured P2P solutions and all the solutions are compared in

Table 2.6. There is no universal solution and each has its own distinct advantages and limitations. SADQ-

based solutions have a low query resolution overhead. However, they could lead to unbalanced query load

42

Table 2.5 – Summary of structured P2P solutions.

Scheme Architecture Routing Mecha-
nism

Lookup Over-
head*

Routing Table
Size*

Load Bal-
ancing

Mercury Multiple rings Successor & long
distance links

O(1/k log2 N) k + 2 per ring Dynamic

LORM Partitioned ring Cycloid O(d) O(1) Static

MADPastry Partitioned ring
(based on locality)

Pastry O(log N) O(log l) Static

Hypercube back-
bone

Hypercube-based
backbone

Hypercube Local – O(d)

Remote – O(D)

Θ(d) Dynamic

MAAN Single ring Chord O(log N + N rmin) O(log N) Static

MURK d-torus CAN with long

distance links

O(log2 N) 2d + k Dynamic

SWORD Partitioned ring, re-
source matching

Chord O(log N + N rmin/d)) O(log N) Static

Resource-aware

d-torus

d-torus partitioned

into cells

Links to peers in

other cells

O(N) O(d) Static

* N – number of peers in overlay, k – number of long distance links, d – number of dimensions/attributes, D - network diame-
ter, rmin – minimum range selectivity, l – number of landmarks

and inaccurate representation of dynamic resources due to the large number of replicas. Mercury, MAAN,

LORM, and SWORD are extensible because they can add new attributes without requiring significant

changes to the existing overlay. Except for SWORD, MADPastry, and Hypercube backbone, other solu

tions do not support resource matching. Resource-aware d-torus is the only solution that supports resource

binding. Recently many other solutions have been proposed [Ra08] based on these alternative design

choices. However, they also do not support resource matching and binding. Certain applications are able

to compensate for lack of resources, e.g., distributed data fusion in CASA can compensate for lack of

bandwidth between a processing and a storage node by processing data faster to accommodate the extra

delay introduced while transferring data to the storage node. Such requirements can be represented by

complex queries that are mapped to a polygon on the attribute space, e.g., Q2 in Fig. 2.12(a). Resolving

such a mapping is not straightforward and requires tight coordination between resource selection and

matching. Given the limitations in existing solutions, there is still a need for a cohesive solution that can

efficiently advertise, select, match, and bind resources.

43

Table 2.6 – Summary of all the P2P-based resource discovery solutions with respect key phases of re-

source discovery.

Scheme Architecture Advertise Discover* Select Match* Bind*

Flooding Flood advertisements
or queries

Yes N/A Guaranteed When RSs
are flooded

When queries
are flooded

Gossiping Agents share resource

specifications they
know

Yes Yes Low proba-

bility of suc-
cess

Simple

matching

No

Random
walk

Agents carry resource
specifications & que-
ries

Yes Yes Moderate
probability of
success

Simple
matching

When query
agents are
used

Superpeer 2-layer unstructured
overlay

Yes Yes Guaranteed Simple
matching

Yes

Mercury Multiple rings Yes N/A Guaranteed No No

LORM Partitioned ring Yes N/A Guaranteed No No

MADPastry Partitioned ring (based
on locality)

To local & neigh-
bor partitions

N/A Guaranteed Latency &
hop count

No

Hypercube
backbone

Hypercube-based
backbone

To local & neigh-
bor hypercubes

N/A Guaranteed Latency &
hop count

No

MAAN Single ring Yes N/A Guaranteed No No

MURK d-torus Yes N/A Guaranteed No No

SWORD Partitioned ring, re-

source matching

Yes N/A Guaranteed Yes No

Resource-
aware d-torus

d-torus partitioned into
cells

Static attributes
only

N/A Guaranteed No Yes

* N/A – Not applicable

2.4 Peer-to-Peer Communities

Recent data indicate the emergence of many small communities within a P2P system, with each

community based on some common user interests [Zh10]. A community is a subset of peers that share

some similarity in terms of resource semantics, geography, or organizational boundaries. Members of a

community with common interests may or may not be aware of each other. It is known that peers have

semantic relationships based on the type of content they frequently access [Ha06, Zh10]. For example,

BitTorrent has many communities that are dedicated to music, movies, Linux distributions, games, etc.

Users from the same country tend to access similar resources as well [Ha06, Kl04]. For example, for 60%

of the files shared by eDonkey peers, more than 80% of their replicas were located in a single country

[Ha06]. It was also observed that semantic and geographic similarities are more prominent for moderately

popular files. Communities may also arise based on organizational boundaries, e.g., peers within an Au-

tonomous System (AS), members of a professional organization, or a group of universities often forms a

44

community to share resources and limit unrelated external traffic. For example, BitTorrent has many pri-

vate communities that users can only join through invitations [Me10]. We can further envision a distribut-

ed collection of large scientific databases such as Genome sequences, Geographic Information Systems

(GIS), weather, census, and economic data that are accessed by various communities of users from aca-

demic, research, and commercial institutions.

It is well known that content popularity in P2P systems follows a Zipf’s-like [Ad02] distribution

[Ba11c, Kl04, Ra04, Ra07, Sr01]. Zipf’s law says that the frequency of an event is inversely proportional

to its rank in popularity, more formally:





N

n
n

rNrf

1

1

1

),,(





 (2.1)

where r is the rank, α (α > 0) is the Zipf’s parameter, and N is the total number of distinct events. When α

= 1 the distribution is called a Zipf’s distribution otherwise it is called a Zipf’s-like distribution. Populari-

ty distribution is more skewed when α is large and/or N is small.

However, resources popularly shared within an individual community typically do not rank high

in popularity in the context of the overall P2P system [Ba12e, Ha06] and often are inconspicuous in the

system-wide behavior. Therefore, such communities are unable to benefit from various performance en-

hancements such as caching and replication that focus only on the most dominant or popular resources.

However, the emerging technological trends such as social networking indicate that we will continue to

see the emergence of a large number of small and diverse communities within large P2P systems. Future

P2P architectures therefore should support such communities by providing customized services based on

their distinct characteristics. Such architectures should allow the emergence, growth, existence, and dis-

appearance of communities on a continual basis, while enabling them to be a part of a global community

or a system. Conversely, the P2P system can significantly benefit by taking into account the characteris-

tics and requirements of these communities.

45

2.5 Peer-to-Peer Caching

Caching is the most popular mechanism used to improve the lookup performance in P2P systems.

Many structured and unstructured P2P systems (e.g., Freenet and CAN) utilize passive caching where

peers keep track of the responses to their own queries hoping that they will be able to respond to future

queries from others. Freenet caches query responses at the query initiator as well as at all the nodes along

the path that the random walk traveled before finding the required resource. Passive caching is not that

effective as the query responses are cached without considering their popularity or the overlay topology.

Alternatively, active caching keeps track of query popularities and proactively cache resources or their

contact details while taking into account how the queries are routed in a given overlay topology. Next, we

discuss several caching solutions for unstructured (Section 2.5.1) and structured (2.5.2) P2P systems.

2.5.1 Unstructured Peer-to-Peer Solutions

In [Co02], it is proven that the expected lookup overhead in unstructured P2P systems is mini-

mized when the number of cached copies of a resource is proportional to the square root of its popularity.

In [Co02] and [Lv02], authors demonstrated that the square root allocation could be achieved by creating

cache copies in proportion to the length of the random walk that was used to find the given resource.

However, the authors do not discuss where those cache entries should be placed. An implementable solu-

tion based on the same approach is presented in [Mo05]. This allocation is valid only when the cache en-

tries are automatically removed from the system due to constant peer churn and failure. In practice, how-

ever, some nodes tend to be active for a very long time [Ch02, Po05]. Therefore, some of the resources

may be cached too much while tying up the caches in nodes. Both [Co02] and [Mo05] assume that a node

can cache any number of resources and the query originator determines the resources to cache. In an al-

ternative design, intermediate peers determine what to cache based on the queries that they forwarded but

were not able to answer [So08]. Query success or failure is determined by forcing a query response to

follow the reverse path. However, this doubles the lookup overhead. After determining the relative popu-

larity of resources that a peer cannot answer, each peer tries to minimize the lookup cost by determining

46

c

M A

B

E

C

I

H G

F

K

J

L

D

(a) (b)

Figure 2.13 – Caching in structured P2P systems: (a) Beehive. Only three caching levels are shown
[Ra04]; (b) PoPCache.

the most suitable set of resources to maintain in its limited cache. This optimization problem is solved as

a distributed knapsack problem that tries to maximize the lookup performance while minimizing the

cache size. In spite of these efforts, even the most popular queries are unable to gain significant ad-

vantages from caching due to the randomness in unstructured overlay topologies and random walks.

2.5.2 Structured Peer-to-Peer Solutions

Beehive [Ra04] proposes an active caching/replication solution that achieves O(1) mean look per-

formance in structured P2P systems that utilize prefix-based routing (e.g., Pastry). A (key, value) pair is

cached at an increasing set of levels in the key space starting from the root node (i.e., node that is respon-

sible for indexing the key). Figure 2.13(a) illustrates a circular address space with three levels. Most popu-

lar resources are cached in all the nodes while moderately popular ones are cached at different levels in

proportion to their popularity. For example, 3-hops are required to resolve a lookup query for key 0121

originating at node Q (Fig. 2.13(a)). When the key is cached at levels 0, 1, and 2, the query can be re-

solved within 0, 1, and 2 hops, respectively. Beehive assumes a Zipf’s-like popularity distribution, and

the Zipf’s parameter and popularity of resources are determined using distributed statistics. Each node

along a query path collects the statistics and forwards them to the root node of the given key. Each root

node then solves an optimization problem to determine the caching level for each of the resources that

47

will result in a guaranteed mean lookup performance (for the entire P2P system) while minimizing the

number cache entries. For example, Beehive (implemented on top of Chord) places the most popular set

of resources on every node in the ring, second most popular set of resources on ½ of the nodes, third most

popular set on ¼ of the nodes, and so on.

Beehive works with only the Zipf’s-like popularity distributions and prefix-based routing.

PoPCache [Ra07, Ra10] overcomes these limitations by placing cache entries based on the structure of

the overlay topology (see Fig. 2.13(b)). When the popularity of a resource is relatively high, the root node

first place cache entries at its predecessors (i.e., nodes that forward messages to it). When the popularity

is even higher, cache entries are also placed at predecessors’ predecessors. Most popular resources are

cached at many nodes, but not necessarily in all the nodes, therefore PoPCache is more cache efficient

than Beehive. For example, node H first places cache entries in predecessors G and E. If the resource is

even more popular, cache entries are also placed at predecessors’ predecessors (e.g., node G places cache

entries at D and M). PoPCache also works with any DHT scheme and popularity distribution. It has been

shown that the minimum mean lookup cost can be achieved by allocating the cache entries in proportion

to the popularity of resources. Moreover, optimization problem can be also solved to minimize the num-

ber of cache entries.

Both Beehive and PoPCache force a large fraction of nodes to cache the globally popular re-

sources regardless of their individual or community interests. Though Zipf’s-like popularity distributions

enable significant performance gain by caching few highly popular resources, diminishing return is

gained with very large caches. This fact forces both the solutions to maintain a large number of cache en-

tries while trying to provide a guaranteed mean look performance. Moreover, a guaranteed mean may not

have much practical significance compared to a guaranteed distribution. Moreover, both solutions assume

nodes have unlimited cache capacity. In spite of requiring large caches, such solutions are also inconsid-

erate of moderately popular resources. Furthermore, global popularity estimation is costly and error

prone. Query arrivals in P2P systems show flash-crowd, diurnal, and seasonal effects [Ra04, Zh10].

48

Therefore, statistics such as periodic query counts or arrival rate estimates in Beehive and PoPCache are

also inadequate to effectively decide when and what resources to cache.

2.6 Named Data Networking

Modern Internet users value the ability to access contents irrespective of their locations whereas

the Internet was designed to facilitate end-to-end resource access. Conflict between the usage and design

objectives has led to many issues such as location dependence, traffic aggregation, and security. Conse-

quently, many clean-state designs for the Internet propose to access/route data based on their application-

layer content names [Ja09a, Ko07, St02]. Named Data Networking (NDN) [Ja09a] (a.k.a. Content Centric

Networking (CCN)) is gaining traction as one of the viable clean-state designs particularly in the presence

of CCNx open source implementation [Palo]. NDN enables in-network caching, multicasting, duplicate

message suppression, enhanced security, and mobility. When data are not already dispersed within the

network, NDN delivers user queries to potential data sources enabling on demand data generation. In con-

trast, the majority of other content-naming solutions, e.g., [Ko07, St02], are based on DHTs that index

only the pre-generated data. Moreover, NDN supports different levels of abstractions and incremental

deployments ranging from overlay networks, content delivery networks, and small ISPs to eventual Inter-

net-wide deployment.

Communication in NDN is receiver driven, i.e., the content consumer requests contents using

their names. Hierarchical names are recommended due their ability to capture semantic relationships in

data, aggregate names, and enforce security through the chain of trust. Typical hierarchical name could

look like the following:

/youtube.com/sports/videos/football_finals.mpg/

NDN names can also refer to attributes and segments of a file. For example, the third segment of High

Definition (HD) version of the same video can be named as:

/youtube.com/sports/videos/football_finals.mpg/HD/s3/

49

Names are also used to invoke remote methods and/or pass data. For example, following name may be

used to request a temperature sensor in the machine room to report temperature readings every five

minutes:

/machine_room/sensor123/temperature/sense/5min/

A consumer requests for contents by sending an interest packet with the name of the desired data. Interest

packet is then routed using the name looking for a node having a copy of the desired data or for a source

capable of generating that data. A node having the data or capable of generating them, responds with a

data packet. At most one data packet is transmitted in response to an interest packet hence provides flow

control and one-to-one delivery. A data packet is self-authenticating as the data generator signs it. Idem-

potent, self-identifying, and self-authenticating properties of NDN data packets enable the same packet to

be shared across many consumers hence also support one-to-many delivery without transmitting a new

data packet from the data source. Large data that do not fit into a single data packet are segmented and

each segment is retrieved by issuing a separate interest packet. The default size of a data packet in CCNx

is 4 KB.

Each NDN node uses three tables namely Content Store (CS), Pending Interest Table (PIT), and

Forwarding Information Base (FIB) (see Fig. 2.14). CS caches data packets that go through a node ena-

bling the node to locally respond to future interest packets with the same name. PIT keeps track of out-

standing interest packets that are waiting for a corresponding data packet and suppress duplicate interest

packets with the same name. PIT entries consist of a set of tuples (name, [face1, face2, …, facei]), where

facei is the NDN equivalent of a network interface that an interest packet arrived from. This also enables

multicasting. Typically, PIT entries timeout to keep the size of the table bounded. For example, CCNx

recommends a timeout of 4 seconds. FIB is a name-based forwarding table that is used to determine

where and how to forward an interest packet when it cannot be handled locally. FIB entries consist of a

set of tuples (name, [face1, face2, …, facei]), where facei is a face that an interest packet can be forwarded

to. An interest packet may be forwarded to multiple faces sequentially or simultaneously based on prede-

fined routing policies. Various name-based routing algorithms may be used to update the FIB entries.

50

Name Data

... ….

/youtube.com/videos/football.mpg/HD/s3/ 010100101010110101

... ….

Content Store (CS)

Name Face(s)

... ….

/youtube.com/videos/football.mpg/HD/s7/ 1

... ….

Pending Interest Table (PIT)

Prefix Face(s)

... ….

/youtube.com/videos/ 2

/youtube.com/ 2, 3

Forwarding Information Base (FIB)

Index

….

…. ….

…. ….

…. ….

…. ….

Fa
ce

 1
Fa

ce
 2

Fa
ce

 3

1

2

3

Figure 2.14 – Forwarding tables and their interactions within an NDN node.

When an interest packet arrives at an NDN node, first the CS is checked for a cached data packet

with the same name (see Fig. 2.14). If such a packet exists, node transmits the data packet and drops the

interest packet. If not, the node then checks the PIT for a pending interest with the same name. If such an

interest exists, node appends the ingress face to the PIT and then drops the packet. This suppresses dupli-

cate interest packets and reduces the bandwidth requirement by preventing multiple data packets from

being retrieved for the same name. If a PIT entry does not exist, a new tuple (name, [face]) is added to the

PIT. Interest packet is then forwarded to a face(s), found from the FIB, that might lead to a node with the

desired data. When the data are found or generated by the source, data packet is sent to the face that for-

warded the interest packet. Once a data packet arrives, intermediate nodes use the PIT entries to deter-

mine the faces that the packet needs to be forwarded back. Thus, PIT entries leave a trail of “bread

crumbs” that is used to forward the data back to the consumer(s) using the reverse path. A copy of the

data packet is also saved in the CS and subsequently the corresponding PIT entry is removed. A data

packet that does not have a corresponding PIT entry is dropped. This may happen when the PIT entry has

timed out or an attacker is trying to flood a node with data packets. Data consumers are expected to

resend interest packets, if the data do not arrive within the desired time. Main criticism for NDN is the

51

large number of names that needs to be maintained in all three tables as possible number of unique names

is in the order of trillions or more. These constraints are expected to be overcome with the advancement

of hardware and firmware technologies.

2.7 Summary

There is a gap between the existing solutions and the requirements of collaborative P2P systems.

The majority of existing resource discovery solutions focus on individual resources and even the ones that

support some form of resource aggregation are primitive. These solutions are not designed for latency

sensitive applications and do not support resource compensation. Thus, no single solution is capable of

providing all the desirable features of collaborative P2P systems. In addition, there is a tremendous oppor-

tunity to exploit the power of P2P communities not only by aggregating their resources but also by

providing a customized service to its members. NDN enables names-based access of contents while re-

ducing the bandwidth requirements and enhancing mobility, resilience, and security which are key re-

quirements of collaborative P2P systems. The goal of this research is to come up with a set of solutions

that address the inadequacies in existing solutions and to exploit emerging technologies to make collabo-

rative P2P systems a reality.

52

Chapter 3

PROBLEM STATEMENT

Future collaborative Peer-to-Peer (P2P) applications will look for diverse peers that could bring

in unique resources and capabilities to a virtual community thereby empowering it to engage in greater

tasks beyond what can be accomplished by individual peers, yet are beneficial to all of them. The ability

to aggregate an optimum set of resources is a fundamental requirement for collaborative P2P applications.

Yet, it is nontrivial to timely discover, group, and utilize heterogeneous and dynamic resources that are

distributed. The majority of existing solutions for resource discovery focus only on discovering individual

resources [Bh04, Ca04, Co09b, Kw10, Sh07, Ta08]. Even the solutions that support some form of re-

source grouping are primitive [Al08, Ke06]. However, to realize the true potential of collaborative P2P

systems, it becomes necessary to be able to aggregate a group(s) of heterogeneous, multi-attribute, dy-

namic, and distributed resources as and when needed. Moreover, in the absence of data and understanding

of the characteristics of real workloads, existing solutions are developed under many simplifying assump-

tions. Therefore, these solutions perform poorly when applied to real workloads that exhibit more com-

plex characteristics [Ba11e, Ba12a, Ba12f]. A better alternative would be to first understand the complex

characteristics of real workloads and then use the learned behavior to develop solutions that can better

match the requirements of real-world systems. The goal of this research is to develop better resource dis-

covery and distributed data fusion solutions and necessary tools that can aggregate groups of heterogene-

ous, dynamic, and multi-attribute resources in collaborative P2P systems, while bridging the gap by char-

acterizing real-world resources, queries, and user behavior.

Section 3.1 presents the motivation of this problem. Research goals and objectives are presented

in Sections 3.2 and 3.3, respectively. Solution approach is presented in Section 3.4.

53

(a) (b)

Download
song.mp3

Figure 3.1 – Interaction among peers: (a) Individual interactions between pairs of peers in file sharing;
(b) Interactions among a group of diverse peers in weather monitoring and forecasting.

3.1 Motivation

In contrast to conventional P2P systems that focus on pair-wise interactions among nodes with

similar resources (e.g., file sharing, see Fig. 3.1(a)), we envision the emergence of collaborative P2P ap-

plications that thrive on the interactions among groups of diverse and distributed resources (see Fig.

3.1(b)). Collaborative P2P systems are applicable in a wide variety of contexts such as Distributed Col-

laborative Adaptive Sensing (DCAS) [Ku06, Le12, Mc05, Mc09], grid [Ca04, Sh07], cloud [Ar09], and

opportunistic computing [Co10], Internet of Things [Pf11], mobile social networks (Section 2.2.4), and

emergency management. These systems are expected to share a variety of resources such as processor

cycles, storage capacity, network bandwidth, sensors/actuators, special hardware, middleware, scientific

algorithms, application software, services (e.g., web services and spawning nodes in a cloud), and data to

not only consume a variety of contents but also to generate, modify, and manage those contents.

We briefly discuss one representative application to illustrate the salient features and characteris-

tics of collaborative P2P systems. A more detailed discussion and additional examples are given in Sec-

tion 2.2. Collaborative Adaptive Sensing of the Atmosphere (CASA) [Mc05, Mc09] is a DCAS system

based on a dense network of weather radars that operate collaboratively and adaptively to detect hazard-

ous atmospheric conditions such as tornados and severe storms. Collaborative P2P data fusion provides a

scalable implementation choice for real-time radar data fusion in CASA, as multiple data volumes are

constantly being generated, processed, and pushed and pulled among groups of radars, processing, and

54

storage nodes (see Fig. 3.1(b)). Radars, weather stations, processing, and storage elements involved in

tracking a particular weather event continue to change as the weather event migrates in both time and

space. Thus, new groups of resources need to be aggregated as and when needed. Moreover, certain rare

but severe weather events require specific algorithms (e.g., signal processing and forecasting) and more

computing, storage, and bandwidth resources to track and forecast/nowcast about their behavior. It is nei-

ther feasible nor economical to provision resources for such rare peak demands everywhere in the CASA

system. Instead, a collaborative P2P system can exploit the temporal and spatial diversity of weather

events to aggregate underutilized resources from anywhere in the system. Therefore, a collaborative P2P

approach is appropriate for large-scale CASA deployments, as it can timely deliver and process radar data

while satisfying the dynamic resource demands and enhancing the overall resource utilization.

Collaborative P2P applications need to be able to group the resources in a timely manner to meet

the performance and Quality of Service (QoS) requirements. Thus, discovering and aggregating an opti-

mum set of resources is a fundamental requirement for collaborative P2P applications. Yet, it is nontrivial

to discover, group, and utilize heterogeneous and dynamic resources that are distributed. The majority of

existing solutions for resource discovery focus only on individual resources [Bh04, Ca04, Co09b, Kw10,

Sh07, Ta08]. Even the solutions that support some form of resource grouping are primitive [Al08, Ke06].

They are not designed for latency sensitive collaborative P2P applications such as CASA and P2P clouds

(Section 2.2.3). In the absence of data and understanding of the characteristics of real workloads, designs

and evaluations of these solutions have relied on many simplifying assumptions. For example, independ-

ent and identically distributed (i.i.d.) attributes [Bh04, Co09b, Sh07], uniform/Zipf’s distribution of at-

tribute values [Bh04, Co09b, Sh07], attributes having a large number of potential values [Sh09], and que-

ries specifying a large number of attributes and a small range of attribute values [Al08, Bh04, Ca04,

Co09b, Sh07]. Moreover, the cost of updating dynamic attributes is ignored. Such assumptions affect

both the designs and performance analysis, and consequently the applicability of solutions under real

workloads. Therefore, it is imperative to understand the resource and query characteristics of real-world

systems. Once the characteristics are known, it is useful to evaluate the fundamental design choices in

55

P2P-based resource discovery with respect to the learned characteristics. Such an analysis will not only

provide a better understanding of the applicability of existing solutions but also helps to identify the best

practices for resource aggregation in emerging collaborative P2P systems.

Large P2P systems exhibit the presence of communities based on semantic, geographic, or organ-

izational interests of users [Ha06, Zh10]. Resources commonly shared within individual communities are

in general relatively less popular and inconspicuous in the system-wide behavior [Ba12e]. Therefore,

most communities are unable to benefit significantly from performance enhancement schemes such as

caching and replication that focus only on the most dominant queries within the entire P2P system. Con-

versely, creating topologically isolated clusters of communities is also not desirable, as a substantial frac-

tion of queries in production systems tend to be for resources outside of a particular community [Ba11c,

Ba12e]. Emerging technological trends such as social networking indicate that we will continue to see the

emergence of a large number of small and diverse communities within large P2P systems. Future P2P

architectures therefore should support such communities by providing customized services based on their

distinct characteristics. Such architectures should allow the emergence, growth, existence, and disappear-

ance of communities on a continual basis, while enabling them to be a part of a global community or a

system. Conversely, the P2P system can significantly benefit by taking into account the characteristics

and requirements of these communities. Hence, it is important to develop resource discovery solutions

that are aware of communities’ interests, adaptive, as well as message and storage efficient.

Modern Internet users value the ability to access contents irrespective of its location, whereas the

Internet was designed to facilitate end-to-end resource access. Conflict between the usage and design ob-

jectives has led to many issues such as location dependence, traffic aggregation, and security. Conse-

quently, many clean-state designs for the Internet propose to access/route data based on their content

names [Ja09a, Ko07, St02]. DCAS systems, including current CASA deployments, typically bind data to

the sensor(s) that generated them by assigning data names based on the sensor identifier. Alternatively,

end users in many cases are interested in data related to a particular weather event in a given geographic

area of interest, and are not concerned about which sensor(s) generated the data. Therefore, naming data

56

based on the source/sensor creates a conflict similar to that in the current Internet. It also limits the ability

to utilize the spatial and temporal locality in user interests and redundant sensors in DCAS systems to

enhance the performance and reduce the resource requirements of distributed data fusion. Emerging

name-based content access solutions such as Named Data Networking (NDN) [Ja09a] can be exploited to

reduce the bandwidth requirements, and to enhance the resource utilization, resilience, and security of

DCAS systems. For example, a network of CASA radars may name the data based on their geographic

location and weather feature (e.g., reflectivity of clouds or wind velocity) independent of the radar(s) that

generated them. This enables the end users to specify an area of interest for a particular weather feature

while being oblivious to the placement of CASA radars and associated computing facilities. Conversely,

CASA can use its knowledge about the underlying system to decide the best radar scanning and data pro-

cessing strategies during times of heavy usage and partial system failures. Currently, NDN has to be de-

ployed as an overlay network due to the absence of an Internet-wide deployment. However, use of over-

lay networks provides added benefits such as the ability to deploy multiple and application-specific

naming conventions, application-specific routing mechanisms, fault tolerance, better QoS, and in-network

data fusion [Ba12h, Le12]. Therefore, it is important to explore the ways to make DCAS systems more

efficient, scalable, and robust by benefiting from the advantages of both NDN and overlay networks.

3.2 Research Goals

The goal of this research is to develop scalable and efficient, resource discovery and distributed

data fusion solutions and necessary tools that can timely aggregate groups of heterogeneous, dynamic,

and multi-attribute resources in collaborative P2P systems, while characterizing real-world resources,

queries, and user behavior. Such solutions will satisfy the need of collaborative P2P applications to ag-

gregate diverse and distributed groups of resources as and when needed. Moreover, they will empower

peers/applications to engage in greater tasks beyond the capabilities of an individual peer. Consequently,

collaborative applications will be able to achieve their performance and QoS requirements by identifying

57

the most appropriate groups of resources from a vast pool of underutilized/unused resources that are dis-

persed within the collaborative P2P system.

The distributed, autonomous, and collaborative nature of peers and multifaceted scalability re-

quirements demand for a distributed solution. It should support the aggregation of diverse resources by:

(1) efficiently advertising all the resources and their current state, (2) discovering potentially useful re-

sources, (3) selecting resources that satisfy application requirements, (4) matching applications and re-

sources according to their constraints, and (5) binding resources and applications to ensure guaranteed

service. Implementation of these phases is nontrivial because heterogeneous, dynamic, and multi-attribute

resources and their diverse resource relationships make collaboration complex. Overall solution needs to

be resource and query aware, adaptive, fault tolerant, and need to satisfy multiple aspects of scalability

such as query resolution latency, number of resource attributes, messages, and routing-table entries.

Timely aggregation of complex resources is becoming increasingly necessary even in conventional grid,

desktop grid, volunteer computing, and cloud computing as these systems continue to grow and users un-

derstand how to develop parallel applications that can work with multiple resources. Thus, intended solu-

tions are also applicable in grid and cloud computing which are special cases of the problem.

3.3 Research Objectives

The goals of this dissertation span three key areas of research related to multi-attribute resource

discovery, single-attribute resource discovery and distributed caching, and demonstrating the applicability

of NDN for distributed multi-sensor data fusion leading to five objectives as follows:

1. Characterize real workloads and understand their implications on P2P-based resource discovery

– Develop an analytical model to capture the overall cost of resource discovery/aggregation in

terms of overlay messages involved in advertising multi-attribute resources and querying them.

Determine the nature of model parameters under different real-world systems. Qualitatively and

quantitatively evaluate the fundamental design choices for P2P-based resource discovery using

the learned characteristics.

58

2. Develop related tools – Develop tools to collect the data necessary to achieve the first objective

and to generate synthetic resource and query traces for large-scale performance studies. To evalu-

ate the applications and protocols for scalability beyond what is available, it becomes necessary

to consider overlay network configurations with higher number of nodes and attributes. Yet, it is

still necessary to adhere to the statistical characteristics, dependencies, and temporal patterns ex-

hibited by real-world systems. It is impractical to gather large traces with sufficient resolution and

duration even for existing systems. Therefore, our objective is to gather representative infor-

mation about the traces collected under the first objective and then generate synthetic trace arrays

of larger dimensionality in number and time.

3. Resource and query aware algorithms – Overlay topology should be formed in such a manner

that simplifies resource advertising, querying, matching, and binding. The majority of existing so-

lutions first form a topology and then index resources and issue queries. This creates a mismatch

between the overlay, underlay, and resources being advertised and queried. Instead, we believe

that better performance can be gained by building a novel topology that reflects the available re-

sources and their demands (i.e., queries). Therefore, resource and query aware, topology for-

mation and resource aggregation algorithms need to be developed.

4. Provide customized services to P2P communities – Develop solutions that provide customized

services to different P2P communities while enhancing both the communitywide and system-

wide performance. Such solutions can be used to enhance the P2P resource advertising, lookup

performance, streaming, and service availability. New solutions need to be developed as prior

work either focused on the system-wide behavior or clustered peers into communities according

to a given similarity metric. Developing relevant analytical models is also of interest.

5. Named data networking for distributed data fusion – Demonstrate the applicability of NDN for

distributed data fusion in DCAS systems by developing a proof of concept, distributed, multi-

user, multi-application, and multi-sensor data fusion solution based on CASA. NDN needs to be

deployed on top of an overlay network because of the lack of Internet-wide deployment. Extend

59

Figure 3.2 – Phases in resource collaboration.

Advertise

Discover

Select

Match Bind

Use

Release

NDN to support multiple naming conventions, application-specific caching solutions, subscrip-

tion schemes, and data delivery mechanisms that are necessary for DCAS systems.

3.4 Solution Approach

We first identify seven phases of resource collaboration that future collaborative P2P systems

need to satisfy, which are depicted in Fig. 3.2 [Ba12b]. These separate phases are identified for the sake

of conceptual understanding while an actual implementation may combine multiple phases together. Spe-

cific systems may skip some of them depending on the application requirements. Thus, complexities and

implementation details on each of these phases significantly vary. The seven phases are as follows:

1. Advertise – Each node/peer advertises its resources, their capabilities, and usage constraints using

one or more resource specifications (RSs) (see Section 4.2). An example multi-attribute RS of a

computing node may look like the following:























2 = ,"" =

 %, 60 , 00:6- 00:12= _2.6.31, =

, 1071 = %, 53 = 86, = , 2.0 =

LicensesFriendsUseBy

tionCPUUtilizaamamAvailableLinuxOS

MBMemoryFreeCPUFreereArchitectuGHzCPUSpeed

RS

60

Similar RSs can be given for other resources such as storage nodes and sensors. A node may either

hold on to its RSs hoping others will discover its resources by sending probe messages, or explicitly

send/advertise its specifications to a central database, neighboring nodes, or nodes in Distributed

Hash Tables (DHTs).

2. Discover – Nodes may send probing messages to proactively discover and build a local repository

of useful RSs, particularly if specifications are unadvertised. Such a collection of RSs can speed

up the query resolution and may be used to keep track of inter-resource relationships such as la-

tency, bandwidth, and trust.

3. Select – Select a group(s) of resources that satisfies the given application requirements. The ap-

plication requirements are typically specified using multi-attribute range queries that list the re-

quired number of resources, one or more attributes, and ranges of attribute values. An example

query searching for six computing nodes may look like the following (see Section 4.2):















"12.11_"OR"32.6.2_"86,

],512,[256],,[2.06,

UNIXLinuxOSreArchitectu

MBMBMemoryFreeMAXGHzCPUSpeedResources
Q

4. Match – Not all the combinations of resources satisfying a resource query may be suitable or ca-

pable of working together. It is important to take into account how two resources relate and inter-

act with each other (e.g., bandwidth/latency between different pairs of peers), to ensure that they

can satisfy the resource and application constraints. For example, data processing in CASA,

GENI, or P2P clouds (Section 2.2.3) may not only require processing nodes and storage nodes but

also require certain latency/bandwidth bounds among different pairs of such resources. For in-

stance, a node with somewhat limited processing and storage capabilities may be a better match

for a certain application than two nodes (one with high processing capabilities and the other with

large storage), if they are separated by a low-bandwidth or a heavily loaded interconnect. Similar-

ly, mobile P2P (Section 2.2.4) and ad-hoc networks may need to ascertain whether two resources

are nearby to avoid a certain service provider, minimize latency, or reduce packet loss. Moreover,

social relationships between users may affect the willingness to share their resources.

61

5. Bind – Once a subset of resources that match the application requirements are identified, it is nec-

essary to ensure that the selected resources are available for use. Due to churn or failures, the re-

sources found may not be available by the time the application is ready to utilize them. The same

resource may also be under consideration by other applications. Hence, a binding has to be estab-

lished between the resources and the application trying to use them. Binding is particularly im-

portant in guaranteed service environments like CASA and GENI to achieve the desired QoS and

real-time requirements.

6. Use – Utilize the best subset of available resources that satisfy the application requirements and

constraints to carry out the application tasks for which resources were acquired. Resource usage

and interaction patterns are application specific.

7. Release – Release resources when application demand decreases, the task is completed, or bind-

ing expires, whichever occurs first. The resource release patterns are also application dependent.

Applications may cycle through these phases as and when they need additional resources to fulfill

increased/varying application demands, to take advantage of new resources, or to overcome limitations

caused by resources that fail or leave the P2P network. It is possible for different applications and multi-

ple instances of an application to be in different phases at any given time. Thus, the P2P resource alloca-

tion solutions have to continually adapt and evolve based on the changing resource availability and dy-

namic application demands in a robust and scalable manner. The term resource discovery typically refers

to the first three phases [Al08, Bh04, Ca04, Co09b, Ga04a, Sh07, Su08b, Ta08] whereas the term re-

source aggregation refers to the overall process of advertising, discovering, selecting, matching, and

binding resources. Our goal is to characterize the real-world resources and queries, evaluate the funda-

mental design choices for resource discovery using the learned behavior, and develop new resource and

query aware resource aggregation solutions in line with these key phases.

We use existing datasets and collect our own ones to understand the resource and query charac-

teristics (e.g., distributions, correlations, popularities, and temporal evolutions), application requirements,

62

similarities among P2P communities, and content access patterns of P2P users. Findings from these da-

tasets are used as the basis while evaluating the existing resource discovery solutions, developing tools to

generate large synthetic traces of resources and queries, and designing and evaluating new solutions.

When applicable, a combination of analytical models and simulation-based studies are used to evaluate

the proposed solutions. CASA is the primary application that motivated the proposed research hence algo-

rithms will be mainly designed, developed, and validated in the context of large-scale CASA networks.

63

Chapter 4

MULTI-ATTRIBUTE RESOURCE AND QUERY

CHARACTERISTICS OF REAL-WORLD SYSTEMS AND

IMPLICATIONS ON P2P-BASED RESOURCE DISCOVERY

Collaborative Peer-to-Peer (P2P), grid, and cloud computing systems rely on Resource Discovery

(RD) solutions to aggregate groups of heterogeneous, multi-attribute, and dynamic resources that are dis-

tributed. However, very little is known about the specific characteristics of real-world resources and que-

ries, and their impact on P2P-based RD. We analyze the characteristics of real-world resources and que-

ries, and then use the learned characteristics to evaluate the fundamental design choices for P2P-based

RD. First, an equation for the cost of multi-attribute resource advertising and querying is derived. Second,

the nature of parameters in the equation under different systems is determined by analyzing datasets from

PlanetLab, SETI@home, EGI grid, and a distributed campus computing facility. These datasets exhibit

several noteworthy features that affect the performance. These findings are then used to qualitatively and

quantitatively evaluate the fundamental design choices for multi-attribute RD based on the cost of adver-

tising/querying, load balancing, and routing table size. Compared to uniform queries, real-world queries

are relatively easier to resolve using unstructured, superpeer, and single-attribute-dominated-query-based

structured P2P solutions (Section 2.3). However, they introduce significant load balancing issues in all the

designs. Cost of RD in structured P2P systems is effectively O(N) as most range queries are less specific.

The implications of our findings for improving P2P-based RD solutions are also discussed.

Section 4.1 presents the introduction and motivation. The equation for the cost of RD is derived

in Section 4.2. Four datasets are described in Section 4.3 and their characteristics are analyzed in Section

4.4. Different resource advertising and querying options are qualitatively evaluated in Section 4.5. Sec-

tions 4.6 and 4.7 present the simulation setup and performance analysis, respectively. Implications and

64

best practices for future RD solutions are discussed in Section 4.8. Concluding remarks are presented in

Section 4.9.

4.1 Introduction

Collaborative Adaptive Sensing of the Atmosphere (CASA), Global Environment for Network

Innovations (GENI), P2P clouds, and mobile social networks (see Sections 2.2 and 3.1) depend on some

form of collaboration among resources. Therefore, these applications need the ability to locate and aggre-

gate groups of complex resources as and when needed to meet the performance and Quality of Service

(QoS) requirements. P2P-based distributed RD is a natural fit for collaborative applications and further

enhances their scalability, load balancing, and robustness. Many P2P-based RD solutions are also pro-

posed for conventional applications such as grid, desktop grid, and cloud computing [Ca04, Co09b,

Kw10, Sh07], as timely aggregation of complex and distributed resources is becoming increasingly nec-

essary due to the proliferation of parallel applications that utilize multiple and distributed resources. Yet it

is nontrivial to discover and utilize heterogeneous, multi-attribute, and dynamic resources that are distrib-

uted. Nevertheless, a good RD solution should satisfy several key phases (Fig. 3.2) where they (1) effi-

ciently advertise all the resources and their state, (2) query to find resources that satisfy application re-

quirements, (3) match resources according to application and resource constraints, and (4) bind resources

and applications to ensure guaranteed service [Ba12b]. Moreover, solutions need to be adaptive, fault tol-

erant, and should satisfy multiple aspects of scalability such as query resolution latency, number of attrib-

utes, number of messages, and routing state. The focus of this chapter is on the first two phases namely

advertising and querying.

Significant progress has been made in multi-attribute RD in grid computing [Ca04, Sh07] and

P2P [Al08, Bh04, Co09b, Kw10, Ta08]. However, compared to single-attribute P2P systems such as file

sharing, formal characterization of real world, multi-attribute resources and queries received attention

only recently [Ba11e, Ba12f, He12]. Characteristics of static attributes of nodes from a set of volunteer

computing systems (e.g., SETI@home, Einstein@home, and World Community Grid) are presented in

65

[He12]. Our preliminary work in [Ba11e] presented both the static and dynamic resource and query char-

acteristics of PlanetLab [Ki11, Pa06] and SETI@home [An06] nodes. In the absence of information, data,

and understanding of real life, multi-attribute resource and query characteristics, designs and evaluations

of existing RD solutions have relied on many simplifying assumptions. For example, they assume inde-

pendent and identically distributed (i.i.d.) attributes, uniform or Zipf’s distribution of all the re-

sources/queries [Co09b, Sh07, Sh09], and queries specifying a large number of attributes and a small

range of attribute values [Ca04, Sh07]. Moreover, the cost of updating dynamic attributes is ignored

[Al08, Bh04, Ca04, Sh07, Sh09]. Such assumptions affect both the designs and performance analyses of

RD solutions, and consequently their applicability under real workloads [Ba12a]. For example, perfor-

mance analysis in [Sh09] is limited to point queries in structured P2P systems and extensively relied on

the aforementioned assumptions. Furthermore, direct comparison of these solutions is impractical due to

the diversity of designs. Therefore, a formal and detailed comparison of fundamental design choices for

P2P-based RD with respect to the behavior learned from actual systems is needed. Such an analysis will

not only provide a better understanding of the applicability of different design choices but also helps to

identify the best practices for resource aggregation in emerging collaborative P2P systems.

We qualitatively and quantitatively evaluate the fundamental design choices for P2P-based, mul-

ti-attribute RD using the characteristics learned from real-world systems. Our main contributions are:

 Development of an approximate equation that captures the overall cost of RD in terms of overlay

messages. Such an equation helps to identify important parameters that affect the cost of RD and

performance bounds for specific RD solutions.

 Characteristics of multi-attribute resources from PlanetLab, SETI@home, EGI grid, and a cam-

pus network are then analyzed to determine the nature of parameters that affect the cost of RD in

different systems. PlanetLab data are also used to analyze the multi-attribute query characteris-

tics. Such an understanding is useful in designing and evaluating RD solutions and job sched-

ulers.

66

 A representative subset of design choices based on centralized, unstructured, superpeer, and

structured P2P architectures is then qualitatively and quantitatively evaluated using the learned

characteristics. Seven design choices are evaluated based on the cost of advertising and querying

resources, routing table size, load balancing, and scalability. Simulation-based study using a node

and query trace from PlanetLab is used for the quantitative evaluation. These findings help to

identify the best practices for resource aggregation.

 The implications of our findings for improving and developing new P2P-based RD solutions are

also discussed.

Our findings show attributes of most resources are highly skewed and correlated. Attribute values have

different marginal distributions and most of them are too complex/skewed to be described using any of

the standard probability distributions. Ones that fit a known distribution satisfy Gaussian, generalized ex-

treme value, and generalized Pareto distributions. While resources are characterized by many attributes,

most attributes have only a few distinct set of values. Attribute values changed at different rates and few

attributes changed rapidly. Attribute values specified in queries are skewed however do not satisfy a

Zipf’s-like distribution. Queries are less specific where each query tends to specify only a small subset of

the available attributes and large ranges of attribute values. Simulation-based analysis indicates that real-

world queries are relatively easier to resolve using unstructured, superpeer, and single-attribute-

dominated-query-based structured P2P architectures compared to uniform queries used in conventional

studies. Cost of RD in ring-based structured P2P systems is effectively O(N), where N is the number of

nodes in the overlay, as most range queries specify large ranges of attribute values. This also increases the

overhead of sub-query-based structured P2P solutions by an order of magnitude. The cost of advertising

dynamic attributes is significant and increases with the number of attributes hence should not be ignored

in performance studies. Furthermore, all the design choices are prone to significant load balancing issues

where few nodes are mainly involved in answering the majority of queries and indexing resources. There-

fore, existing design choices are applicable only under very specific conditions and perform poorly under

realistic workloads. Our work differs from [He12] in several aspects. In [He12], the evolution of static

67

attributes of multiple volunteer computing systems over five years is analyzed and a model is presented to

forecast how the composition of hardware resources will evolve in the future. Conversely, we analyze

both the static and dynamic attributes and short-term (ranging from a few minutes to days) changes in

dynamic attributes. We also consider four different computing environments. Multi-attribute query char-

acteristics are also analyzed using PlanetLab data. Several other attempts to model grid computing re-

sources are presented in [Ke04, Lu03, Su08a]; however, they also do not capture the dynamic attributes.

Understanding the characteristics of dynamic resources and queries across different systems is needed for

the design, validation, and performance analysis of RD solutions and job schedulers as their performance

is impacted by short-term changes in resources. Our analysis of PlanetLab resources and queries are com-

plementary to the work in [Ki11], which analyzes the behavior of workloads in PlanetLab.

4.2 Cost of Advertising and Querying Resources

We consider the resources that are characterized by multiple attributes, e.g., a computing node is

characterized by its CPU speed, memory, operating system, etc. Similar to advertising file names in file

sharing, these attributes are advertised to a central database, neighboring nodes, or nodes in Distributed

Hash Tables (DHTs). All the attributes of a resource may be advertised together as a vector or separately

as a set of scalar values. We analyze the cost of RD in terms of the number of overlay messages involved

in advertising such resources and querying them. Our objective is to develop a relatively simple equation

to capture the cost of RD. In this process, we identify a set of parameters and their relationship to the cost

of advertising and querying. In Section 4.4, we determine the nature of these parameters in real-world

systems. Then in Section 4.5, the equation is extended to represent the cost of RD in centralized, unstruc-

tured, and structured P2P-based architectures and their performance bounds.

Consider a P2P overlay used to index (i.e., keep track of) resources, where resources are adver-

tised to a distributed set of nodes and queries are resolved by contacting those nodes. Let R be the set of

resources in the system and A be the set of attributes used to describe those resources. We use bold face

68

Table 4.1 – List of symbols.

Symbol Name

ar Attribute set of resource r

s
ra /

d
ra Set of static/dynamic attributes in resource r

aq Attribute set of query q

A/A Set/number of distinct attributes in the system

A
s / Ad Set of static/dynamic attributes in the system

i
rc Number of copies of i-th attribute of resource r

Di Domain of i-th attribute

i
Advertiseh /

i
Queryh Hops to advertise/query i-th attribute

li Lower bound of i-th attribute

mq Desired number of resources in query q

N Number of nodes in system

Q(t) Set of queries issued in time interval t

R/R Set/number of resources in the system

t Time

ui Upper bound of i-th attribute

vi Value of i-th attribute

i
r Rate of change of i-th attribute in resource r

symbols to refer to a set and the corresponding italic symbol to refers to its cardinality, e.g., R = |R|. List

of symbols is given in Table 4.1. Each resource r  R is defined as follows:

 ii vavavar  ,...,, 2211 (4.1)

Each attribute ai  A has a corresponding value vi  Di that belongs to a given domain Di. Di‘s are typi-

cally bounded, may be continuous or discrete, or correspond to a set of categories/names. For example,

free CPU is continuous, number of CPU cores is discrete, operating system is a category, and a file is rep-

resented by a name. A multi-attribute Resource Specification (RS) of a computing node with such a set of

attributes may look like the following:








 


_2.6.31= , 1071 =

 %, 53 = 2, , 2.4 =

LinuxOSMBMemoryFree

CPUFreeNumCoresGHzCPUSpeed
RS

Similarly, a radar may be described by its sensing capabilities (e.g., Doppler radar), location, sensor

range, and sensing frequency.

Attribute values are classified as static (e.g., CPU speed, total memory, operating system, and

sensor location) and dynamic (e.g., free CPU, memory, bandwidth, and sensing frequency). Let ar  A be

69

the collection of ai’s that is used to describe r. Let A
s
 and A

d
 be the set of static and dynamic attributes in

the system, respectively. A = A
s
 ∪ A

d
. Similarly, let

s
ra and

d
ra be the subsets of static and dynamic attrib-

utes of ar. Dynamic attributes need to be re-advertised whenever their values/states change. Let
i
r be the

rate at which the change in i-th attribute of ar occurs. The cost of advertising dynamic attributes is propor-

tional to their rate of change. In some cases, multiple copies of ai are placed in different databases, neigh-

boring nodes, or DHTs. Let
i
rc be the number of copies of i-th attribute of ar.

We are interested in the number of messages that is either sent or forwarded within the overlay

network to advertise and query resources. Cost of acknowledgement messages is ignored. Typically, the

time required to resolve a query within a node is lower compared to the inter-node communication time.

Therefore, if we assume that each overlay link has approximately the same latency, then the query resolu-

tion latency can be also represented using the number of overlay hops. Assuming each attribute ai is ad-

vertised separately, the total cost of advertising r is:

 thcthchcC i
r

i

i
Advertise

i
r

j

j
r

j
Advertise

j
r

i

i
Advertise

i
r

r
Advertise   



1

rrr aaa

 (4.2)

where
i
Advertiseh is the number of overlay hops that the advertising message corresponding to the i-th at-

tribute travels. First summation captures the initial cost of advertising all the attributes. Second summa-

tion captures the recurrent cost of advertising dynamic attributes within time t. Resources need to reenter

the system after churn or failure. Moreover, resources indexed in unstructured P2P systems and DHTs

typically expire after a predefined timeout. In either case, resource attributes need to be re-advertised.

Therefore, even the static attributes can be interpreted as behaving like dynamic attributes, but with much

lower turnover. Hence,
i
r should be defined considering the rate of change and both the available and

unavailable time of r.
i
r is lower for static attributes compared to that for dynamic attributes.

Let Q(t) be the set of all the queries issued within the time interval t. A multi-attribute range que-

ry q  Q(t) is defined as follows:

70

 ],[,...],,[],,[, 222111 iiiq ulaulaulamq  (4.3)

where, mq 


specifies the required number of resources and ai  [li, ui] specifies the desired range of

attribute values (li and ui are lower and upper bounds, respectively). A query that requests for five compu-

ting nodes with a given CPU speed, free memory, and operating system may look like the following:

 "32.6.2_"],512,[256],,[2.05, LinuxOSMBMBMemoryFreeMAXGHzCPUSpeedmq q 

where MAXi is the upper bound of the domain Di. Similarly, a query for a set of radar may look like the

following:




















Doppler""ype],51,[26

],12,[6], 05,[20ange3,

TWWngiLocationLo

NNtiLocationLakmkmRm
q

q

The set of attributes specified in a query (aq) may contain only a subset of the attributes that are used to

describe resources (i.e., aq  A). When li = ui, ai  aq, q is referred to as a point query. In practice, at-

tributes in a query may specify a mixture of point and range values. Unspecified attributes are considered

as “don’t care”. q is referred to as a single-attribute query when aq = 1 and it is referred to as a multi-

attribute query when aq > 1. In practice, it may be necessary to find/discover more than mq resources, as

some of the selected resources may not be available by the time they are required for use due to resource

churn/failure. Moreover, RD systems may not index all the attributes used to describe a resource, e.g.,

only the static attributes are indexed in [Co09b]. In such cases, unadvertised attributes have to be validat-

ed by directly contacting the resources. Contacting the resource is also important when a binding has to be

established between the resource and the application planning to use it (see Section 3.4). Let f(mq, R,

AIndex) indicates the cost associated with these complex scenarios. AIndex  A is the subset of attributes

indexed in the P2P overlay. Then the cost of a point query can be given as:

 Index

a

ΑR

q

,,q

i

i
Query

q
PointQuery mfhC 




 (4.4)

i
Queryh is the number of overlay hops required to reach the node that indexes the value of i-th attribute de-

fined in q. f(.) captures the cost of directly contacting resources to either validate the attributes that are not

71

li

ui

q

li’s successor

ui’s successor

i

i - 1

i + 1

Figure 4.1 – Range query resolution on a ring-like overlay network.

advertised or establish a binding between a resource and the application. After reaching the first node,

queries that specify a range of attribute values need to be forwarded further. For example, Fig. 4.1 illus-

trates how a query will be initially forwarded to the node that indexes the lower bound li on a ring-like

overlay network. It will then be forwarded to the node responsible for indexing the upper bound ui

through a series of successors (see Fig. 4.1). As in [Al08, Ca04, Sh07], we initially assume the range of

attribute values [li, ui] to be uniformly distributed within the overlay. Therefore, the number of additional

nodes visited by a range query is proportional to the range (ui – li) and number of nodes (N) in the over-

lay, and is inversely proportional to the size of domain Di (i.e., range or number of all possible attribute

values). Then (4.4) can be extended to indicate the overall cost of a range query as follows:

   Index

a

AR

q

,,1 q

i i

iii
Query

q
Query mfN

D

lu
hC 






















 




 (4.5)

Then the overall cost of RD is:





Q(t)R q

q
Query

r

r
AdvertiseTotal CCC (4.6)

4.3 Datasets

We use four datasets from PlanetLab, SETI@home, EGI grid, and our campus to identify the na-

ture of parameters that affect the cost of RD. The set of resource attributes that are used in the analysis are

described first. Then details on traces used in this study are presented.

72

4.3.1 Node Model

Though resources are characterized by many static, dynamic, and categorical attributes only a

subset of them are essential in RD. Therefore, we consider 11 representative attributes that are essential to

characterize a typical node useful in collaborative P2P, grid, and cloud computing systems.

1. CPUSpeed – Processor clock speed in GHz. Provides insight on the relative computing power of

a node.

2. CPUArchi – CPU architecture, e.g., ×86 and SPARC.

3. NumCores – Number of processor cores in a node. Indicates how much parallelism in processing

is possible. Some processors may count hardware-level threads as separate cores.

4. CPUFree – (100% – CPU utilization). Indicates to what extent the CPU(s) is available for pro-

cessing. When multiple cores are available, the average value is given.

5. CPULoad – Number of active processes competing or waiting for CPU. It is typically represented

as one minute (1MinLoad), five minute (5MinLoad), and 15 minute (15MinLoad) exponentially

weighted moving averages of the number of competing processes. CPULoad indicates how long a

user process has to wait for CPU. Both CPUFree and CPULoad are complementary to each oth-

er, as a large CPULoad does not necessarily mean high CPU utilization (e.g., processes could be

blocked for I/O).

6. MemSize – Size of volatile memory in GB.

7. MemFree – Free user-level memory as a percentage (MemFree%) or in GB (MemFree). Indicates

how much memory is available for user processes. Linux ignores the amount of memory con-

sumed by the operating system when determining MemFree. Therefore, MemSize × MemFree%

does not indicate the actual amount of free memory in GB. Thus, some systems track both param-

eters.

8. DiskFree – Free disk space in GB.

73

Table 4.2 – Summary of traces.

CoMon SETI@home GCO CSU SWORD

No of nodes/queries ~650 234,421 205 387 915

Total no of attributes 64 34 87 27 49

Attributes useful in RD 46 25 17 17 49

Static attributes 12 21 6 8 8

Dynamic attributes 34 4 11 9 41

Sampling interval 5 min Vary (hours to days) 1 min 1 min Not tracked

Date(s)
2011/2/1 –

2011/2/14

Active as of

2012/4/30

2012/4/23

– 2012/5/6

2011/12/1 –

2011/12/14

2010/3/12 – 2010/7/20 &

2010/10/2 – 2012/6/5

9. TxRate – Average transmission rate in Kbps. In conjunction with the bandwidth limit specified by

most nodes, it provides insight on the amount of available bandwidth. It may also give insight on

how much bandwidth will be available if an application uses the node exclusively.

10. RxRate – Average receive rate in Kbps.

11. OS – Type of operating system and version.

CPUSpeed, NumCores, and MemSize are static, CPUArchi and OS are categorical, and rest of the

attributes is dynamic. RD solutions and job scheduling algorithms for latency sensitive applications are

typically interested only in short-term trends. Therefore, we capture statistical characteristics that are val-

id for several minutes to few weeks.

4.3.2 PlanetLab

PlanetLab [Ki11, Pa06] is a global research network that supports the development of new net-

work services. It provides a versatile platform for testing distributed applications and protocols by aggre-

gating a globally distributed set of nodes. PlanetLab reflects many characteristics of Internet-based dis-

tributed systems such as heterogeneity, multiple end users, dynamic nodes, and global presence. Hence, it

is being used to evaluate many preliminary P2P protocols and applications. We analyzed data from two

PlanetLab tools, CoMon [Ki11, Pa06] and SWORD [Al08], to determine multi-attribute resource and

query characteristics. CoMon is a node and slice monitoring system that provides a snapshot of static and

dynamic attributes of all the nodes every five minutes. Table 4.2 summarizes the traces used in this study.

SWORD is a multi-attribute RD tool for PlanetLab. It enables users to query for multiple groups of nodes

74

while specifying inter-group and intra-group latency and bandwidth constraints. Though it was originally

designed as a P2P solution, its current deployment is centralized and does not support latency and band-

width constraints due lack of such data from PlanetLab nodes. Though we were able to collect only 915

queries over the last two years (Table 4.2) due to the light usage and server failure, the dataset provides a

unique insight into real world, multi-attribute, and multi-resource queries that are unknown.

4.3.3 SETI@home

BOINC [An09] is a volunteer computing platform (a.k.a. desktop grid) that remotely executes

jobs using idle computing resources. SETI@home is one of the largest BOINC deployments and it utiliz-

es a much larger and diverse set of nodes compared to other datasets. While a detailed presentation of at-

tribute values of SETI nodes is given in [An06, He12], their characteristics are not analyzed in the context

of RD systems. Therefore, we briefly analyze the distribution of resource attributes collected from

SETI@home website [An09]. Except for DiskFree, BOINC collects only the static attributes of a node.

Attribute values are collected only when a node contacts a BOINC server therefore time between two

samples vary from several hours to a few days. Hence, DiskFree is not sampled periodically. BOINC also

collects CPU performance in terms of Dhrystone (integer) and Whetstone (floating-point) benchmarks.

BOINC is a pull-based system where nodes request jobs based on their hardware resources hence do not

support a resource query mechanism.

4.3.4 EGI Grid

European Grid Infrastructure (EGI) aggregates multiple grid computing sites across Europe

[Ne11]. Data related to job submission, workloads, and computing and storage nodes from EGI sites are

collected and published through the Grid Observatory [Ge11a]. We use node traces from Green Compu-

ting Observatory (GCO) [Ge11b], a recently launched sub-project within the Grid Observatory, that cur-

rently collects static and dynamic attributes of ~200 computing nodes with over 1,000 CPU cores at every

one minute. Though the number of nodes in the dataset is much smaller compared to the size of the EGI

75

grid, GCO dataset provides a unique view of grid computing resources due to its high-resolution sampling

in both time and number of attributes. No data are available on specific queries that may have been used

to select those nodes for processing.

4.3.5 Campus Dataset

We also collected a dataset within our campus, Colorado State University (CSU). Subset of PCs

and servers within the Department of Computer Science and Engineering Faculty was sampled every one

minute. The dataset includes both Linux and Windows nodes and reflects an enterprise computing envi-

ronment. Resource characteristics of such environments are becoming important as we are seeing the

emergence of applications such as P2P clouds that aggregate residual computing resources from enter-

prise environments and homes [Br09]. No explicit query mechanism is provided and users are free to use

any unoccupied PC in a lab. Server CPULoads are published on the web enabling students and research-

ers to pick unloaded servers manually.

4.4 Resource and Query Characteristics

We now describe the characteristic of resources and queries, and observed behavior of varia-

bles/parameters identified in Section 4.2. Our discussion is primarily based on the characteristics of

PlanetLab as we have both the resource and query datasets. Specific characteristics of other datasets are

presented to illustrate the commonalities and differences across different systems.

4.4.1 Resource Characteristics

Figures 4.2 (a) and (b) show the distribution of CPUSpeed of PlanetLab and SETI@home nodes.

Both distributions can be approximated using Gaussian distributions. Due to many identical nodes,

CPUSpeed of GCO (Fig. 4.2(c)) and CSU (Fig. 4.2(d)) nodes were highly skewed and did not fit a stand-

ard distribution. 68 (11%) PlanetLab nodes had identical static attributes such as CPUSpeed, NumCores,

MemSize, and DiskSize. This may have been caused by a donation of a set of similar machines to multiple

76

(a) (b)

(c) (d)

Figure 4.2 – Distribution of CPU speed: (a) PlanetLab; (b) SETI@home; (c) GCO; (d) CSU.

sites. Most sites also had few identical hosts. This is the case even in grid, cloud, and enterprise compu-

ting environments where sites may simultaneously deploy or upgrade to a similar set of machines. For

example, the largest set of identical nodes in CSU and GCO datasets corresponded to 14% and 95% of the

nodes, respectively. Nodes in student labs are typically homogeneous. For example, the four largest sets

of identical nodes corresponded to 45% of the nodes in the CSU dataset. Due to such large sets of homo-

geneous nodes and discrete nature of attribute values, NumCores (see Fig. 4.3) and MemSize (see Fig. 4.4)

of nodes in all the systems do not fit standard distributions. One may argue that we can still attempt to fit

data to a set of well-known distributions by applying more complex sub-sampling techniques, rounding

attribute values (e.g., rounding MemSize to the nearest power of two), or discarding some values (e.g.,

discarding NumCores values that are not powers of two). While we do discard outliers, other techniques

77

(a) (b)

(c) (d)

Figure 4.3 – Distribution of number of CPU cores: (a) PlanetLab; (b) SETI@home; (c) GCO; (d) CSU.

are of little value as our objective is to understand the true distributions and behavior of attributes but not

to generate synthetic data using them. Such techniques are applied in [He12] for SETI nodes, which are

more heterogeneous, as the authors’ objective was to generate synthetic data. However, these techniques

do not apply well to PlanetLab, GCO, and CSU datasets as they consist of multiple sets of homogeneous

nodes. If the objective is to generate synthetic data, in Chapter 5 we demonstrate that it is more accurate

to summarize the data using tables of empirical cumulative distributions (ECDF) and then use empirical

copulas to generate synthetic data as copulas preserve the complex multivariate distributions and correla-

tions among attributes.

Figure 4.5 shows the variation in average CPUFree and MemFree values of all the nodes with

time. It can be seen that both PlanetLab and GCO experience idle and busy periods. Average resource

utilization of GCO nodes (lower average CPUFree and MemFree) is higher than the other two systems.

78

(a) (b)

(c) (d)

Figure 4.4 – Distribution of memory size: (a) PlanetLab; (b) SETI@home; (c) GCO; (d) CSU.

For example, Fig. 4.6 illustrates the distribution of CPUFree and MemFree during the peak time of each

system. Large fractions of PlanetLab and CSU nodes were idle (high CPUFree) even during the peak

time whereas GCO nodes were heavily utilized throughout the day. For example, 37% and 71% of the

PlanetLab nodes had over 95% of CPUFree and 2 GB of MemFree, respectively. Similarly, 92% and

97% of the CSU nodes had the same amounts of CPUFree and MemFree. Even though students used the

nodes during peak hours, their workloads do not fully utilize the capabilities of the nodes. However, only

0.5% and 46% of the GCO nodes had similar amounts of CPUFree and MemFree. Due to the highly

skewed distributions, instantaneous values (at a given time t) of dynamic attributes do not fit standard dis-

tributions. Except for SETI nodes, DiskFree also had a similar behavior in other three datasets. SETI

nodes had a skewed but monotonically decreasing distribution that can be approximated by a Generalized

Pareto Distribution (GPD). Attributes that satisfy known probability distributions are listed in Table 4.3.

79

(a)

(b)

(c)

Figure 4.5 – Average resource utilizations of all the nodes with time: (a) PlanetLab; (b) GCO; (c) CSU.

Figure 4.7 shows the distribution of TxRate of PlanetLab and SETI nodes, which can be approxi-

mated using the Generalized Extreme Value (GEV) distribution. RxRate of those nodes can be also ap-

proximated using the GEV distribution. Average TxRate of SETI nodes is an order of magnitude lower

than the average RxRate (see Table 4.3). This may be a consequence of the asymmetric bandwidth availa-

bility in volunteer nodes. TxRate and RxRate of GCO nodes did not fit standard distributions as they were

skewed. While it was possible to approximate the distribution of 1MinLoad using GPD, other datasets and

5MinLoad and 15MinLoad do not fit standard distributions. It was also observed that integer and floating-

point performance of SETI nodes could be approximated by a Weibull distribution. We further observed

80

(a)

(b)

Figure 4.6 – Distribution of dynamic attributes during peak times: (a) Free CPU; (b) Free memory.

few SETI nodes with very large NumCores, MemSize, DiskSize, TxRate, and RxRate. However, these

nodes were active only for a few weeks. These could be high-performance machines that utilize SETI as a

workload to test and measure their performance. Nevertheless, these nodes provide a significant amount

of computing, storage, and networking resources for a short time span.

Distribution of categorical attributes was extremely skewed and had only a few distinct attribute

values. For example, CPUArchi of all the PlanetLab, GCO, and CSU nodes and 99% of the SETI nodes

were ×86. Remaining 1% of the SETI nodes corresponded to PowerPC, SPARC, and IA-64 architectures

(see Fig. 4.8). All PlanetLab and GCO nodes were Linux but nodes had several different kernel versions.

76% of the CSU nodes ran a Linux variant with different kernel versions. 82.2% of the SETI nodes had a

81

Table 4.3 – Distribution of attribute values.

Distribution of Attribute Values PlanetLab* SETI@home*

CPUSpeed (GHz) N(2.63, 0.43) N(2.53, 0.51)

DiskFree (GB) No fit GPD(0, 104.9, 0.51)

1MinLoad GPD(0, 6.82, 0.38) N/A

TxRate (Kbps) GEV(0.51, 0.57, 0.54) GEV(12.9, 9.8, 0.34)

RxRate (Kbps) GEV(0.49, 0.54, 0.54) GEV(111.4, 122.8, 0.84)

Integer performance (MIPS) N/A Weibull(6,498, 2.2)

Floating-point performance (MIPS) N/A Weibull(2,507, 3.4)

* GEV(μ , σ, k), GPD(μ, σ, k), N(μ , σ2), Weibull(λ, k), N/A – Not available

(a) (b)

Figure 4.7 – Distribution of transmission rate: (a) PlanetLab; (b) SETI@home. While fitting the curve
for SETI@home only the nodes with bandwidth utilization up to 1 Mbps is considered.

Windows variant (44% of them were Windows 7) and 10.6% and 7% of the nodes had variants of MacOS

and Linux, respectively (see Fig. 4.9). Remaining 0.2% corresponds to BSD, SunOS, OS/2, AIX, HP-UX,

and IRIX. Therefore, categorical attributes are highly skewed and their domains have only a few valid

attribute values.

There is a wide variation in how frequently the attribute values change. The number of changes in

dynamic attributes over a 24-hour period is observed for two weeks. Figure 4.10 shows the CDF of num-

ber of significant changes in several selected attribute values. A fixed threshold is applied to ignore minor

variations. MemFree in PlanetLab and GCO nodes changed frequently. For example, 54% of the

PlanetLab nodes changed MemFree by at least 100 MB in every sample taken at 5-minute intervals. 50%

of the GCO nodes changed MemFree at least 123 times within 24 hours (out of 288 samples taken at 5-

minute intervals). While the number of changes in DiskFree was insignificant in PlanetLab and CSU, it

82

Figure 4.8 – Distribution of CPU architectures of SETI@home nodes.

Figure 4.9 – Distribution of operating systems of SETI@home nodes.

moderately changed in GCO dataset. This may be due to the data incentive, high-energy-Physics applica-

tions that frequently run on those nodes [Ge11b]. A relatively high rate of change was observed for

1MinLoad in PlanetLab and CSU datasets and TxRate and RxRate in GCO dataset. These indicate that the

number of processes running on PlanetLab nodes shows a rapid variation with time, which could be either

due to the variability in applications’ resource usage or execution of small jobs. The number of changes in

1MinLoad of CSU nodes was moderate; however, 15MinLoad changed infrequently indicating most pro-

cesses are short lived. Surprisingly, TxRate and RxRate do not change rapidly in PlanetLab however aver-

age bandwidth consumption of nodes remained relatively high. CPUFree moderately changed in GCO

dataset, as nodes were mostly busy. The number of process running on nodes was stable with time hence

83

(a) (b)

(c)

Figure 4.10 – Cumulative distribution of number of attribute value changes within 24-hours: (a)

PlanetLab; (b) GCO; (c) CSU. Thresholds: CPUFree = ± 10%, MemFree = ± 100 MB,

DiskFree = ± 5 GB, 1MinLoad = 15MinLoad = ± 2, TxRate = RxRate = ± 10 Kbps.

CPULoad changed infrequently. It was observed that the rate of change of some of the attributes could be

approximated by several probability distributions such as GPD, GEV, Negative Binomial (NB), and T

Location-Scale (TLS) and are listed in Table 4.4. In summary, rate of change
i
r depends on the attribute

and system.

We further observed the linear and ranked correlation among attributes. Table 4.5(a) lists the lin-

ear (Pearson’s) correlation among PlanetLab nodes. For the dynamic attributes, we first calculated the

correlation among all nodes in a given sample (taken at a given time instance) and then calculated their

average across all the samples (taken at every 5 minutes, over two weeks). Correlation values of most of

the attribute pairs in different samples had a standard deviation of ≤ 0.1 confirming correlation does not

84

Table 4.4 – Distribution of number of significant changes in attribute values within 24-hours.

No of Changes in Attribute Values PlanetLab* GCO

CPUFree No fit GPD(0, 34.4, -0.45)

MemFree No fit TLS(124, 23, 2.7)

DiskFree No fit TLS(14.2, 6.86, 3.84)

1MinLoad No fit GEV(11.2, 7.99, 0.06)

15MinLoad No fit GEV(2.57, 2.93, 0.31)

TxRate NB(0.08, 0.19) TLS(79.7, 22.9, 4.18)

RxRate NB(0.09, 0.19) TLS(142.9, 51.6, 13.7)

* GEV(μ , σ, k), GPD(μ, σ, k), NB(r, p), TLS(μ, σ, ν)

Table 4.5 – Correlation among attributes of PlanetLab nodes:

(a) Pearson’s correlation coefficient.

Index* 1 2 3 4 5 6 7 8 9 10

2 -0.10

3 -0.01 0.46

4 -0.03 -0.03 -0.16

5 -0.03 -0.02 -0.15 0.98

6 0.02 0.43 0.30 -0.03 -0.03

7 0.06 0.25 0.35 -0.12 -0.11 0.36

8 -0.11 0.54 0.37 -0.09 -0.08 0.59 0.30

9 -0.11 0.56 0.41 -0.09 -0.09 0.58 0.30 0.99

10 0.06 -0.06 -0.12 -0.04 -0.04 0.00 0.01 0.00 -0.03

11 0.05 -0.05 -0.11 -0.03 -0.03 0.00 0.01 0.00 -0.03 0.87

(b) Spearman’s ranked correlation coefficient.

Index* 1 2 3 4 5 6 7 8 9 10

2 0.06

3 -0.09 0.68

4 0.08 -0.20 -0.62

5 0.08 -0.18 -0.62 0.94

6 -0.01 0.45 0.35 -0.34 -0.35

7 0.20 0.61 0.51 -0.03 -0.03 0.69

8 -0.22 0.62 0.49 -0.30 -0.29 0.49 0.63

9 -0.21 0.66 0.56 -0.42 -0.42 0.44 0.60 0.95

10 0.03 0.00 -0.21 0.10 0.10 0.10 0.28 0.04 -0.09

11 0.02 0.02 -0.21 0.11 0.11 0.11 0.29 0.07 -0.07 0.95

* 1 – CPUSpeed, 2 – NumCores, 3 – CPUFree, 4 – 1MinLoad, 5 – 15MinLoad, 6 – MemSize, 7 –
MemFree%, 8 – DiskSize, 9 – DiskFree, 10 – TxRate, 11 – RxRate

significantly change with time. It can be seen that (15MinLoad, 1MinLoad), (DiskFree, NumCores),

(DiskFree, MemSize), and (RxRate, TxRate) are positively correlated. 1MinLoad and 15MinLoad are cor-

related because they are the one-minute and 15-minute averages of CPULoad. It seems that a node with a

85

Table 4.6 – Correlation among attributes of GCO nodes:

(a) Pearson’s correlation coefficient.

Index* 1 2 3 4 5 6 7 8 9 10

2 1.00

3 0.26 0.26

4 0.40 0.40 -0.68

5 0.42 0.42 -0.67 0.96

6 1.00 1.00 0.26 0.40 0.42

7 0.42 0.42 0.61 -0.31 -0.30 0.42

8 0.97 097 0.26 0.38 0.40 0.97 0.41

9 0.96 0.96 0.29 0.34 0.35 0.95 0.48 0.99

10 0.03 0.03 0.01 0.04 0.04 0.03 -0.01 0.03 0.03

11 0.12 0.12 0.03 0.08 0.07 0.12 -0.06 0.11 0.10 0.25

(b) Spearman’s ranked correlation coefficient.

Index* 1 2 3 4 5 6 7 8 9 10

2 1.00

3 0.34 0.34

4 0.21 0.21 -0.50

5 0.22 0.22 -0.48 0.80

6 0.88 0.88 0.30 0.19 0.19

7 0.20 0.20 0.27 -0.21 -0.19 0.20

8 0.94 0.94 0.32 0.19 0.20 0.83 0.19

9 0.32 0.32 0.18 -0.10 -0.10 0.28 0.64 0.31

10 0.05 0.05 0.26 -0.06 -0.06 0.03 -0.05 0.06 -0.10

11 0.07 0.07 0.27 -0.06 -0.09 0.06 -0.08 0.08 -0.11 0.82

* 1 – CPUSpeed, 2 – NumCores, 3 – CPUFree, 4 – 1MinLoad, 5 – 15MinLoad, 6 – MemSize, 7 –
MemFree, 8 – DiskSize, 9 – DiskFree, 10 – TxRate, 11 – RxRate

large disk space also tends to have a large number of CPU cores and memory (correlation between

NumCores and MemSize is 0.43). Time series of TxRate and RxRate are highly correlated as PlanetLab

nodes tend to simultaneously transmit and receive data. Spearman’s ranked correlation ρ among attributes

is listed in Table 4.5(b). Spearman’s ρ measures how well the correlation between two attributes can be

described using a monotonic function. The correlation between (CPUFree, NumCores), (MemFree,

NumCores), and (MemFree, MemSize) have increased. This indicates that when a node has a large

NumCores, CPUFree tends to increase (see Fig. 4.11(a)) as it is the average of all the CPUs and some of

them may be idle. Figure 4.11(b) also shows that when nodes have more CPU cores their memory capaci-

ty also tends to increase. (1MinLoad, CPUFree) and (15MinLoad, CPUFree) are negatively correlated as

86

Table 4.7 – Correlation among attributes of SETI@home nodes:

(a) Pearson’s correlation coefficient.

Index* 1 2 3 4 5 6 7 8

2 0.27

3 0.25 0.59

4 0.28 0.31 0.26

5 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00

7 -0.01 0.00 0.00 0.00 0.00 0.00

8 0.51 0.42 0.39 0.34 0.00 0.00 0.00

9 0.60 0.34 031 0.35 -0.01 0.00 -0.01 0.79

(b) Spearman’s ranked correlation coefficient.

Index* 1 2 3 4 5 6 7 8

2 0.36

3 0.37 0.71

4 0.26 0.44 0.51

5 0.24 0.36 0.38 0.85

6 0.15 0.22 0.26 0.18 0.17

7 0.06 0.10 0.22 0.14 0.12 0.51

8 0.51 0.62 0.68 0.42 0.36 0.22 0.16

9 0.61 0.48 0.56 0.43 0.35 0.19 0.17 0.80

* 1 – CPUSpeed, 2 – NumCores, 3 – MemSize, 4 – DiskSize, 5 – DiskFree, 6 – TxRate,
7 – RxRate, 8 – Integer performance (MIPS), 9 – Floating-point performance (MIPS)

(a) (b)

Figure 4.11 – Number of CPU cores of PlanetLab nodes vs.: (a) Free memory; (b) Memory size.

CPUFree reduces when the number of processes using the CPU increases. Increased Spearman’s ρ values

show that more complex correlation patterns exist among attributes that are not necessarily linear (Fig.

4.11). Linear and ranked correlations of GCO nodes are listed in Table 4.6 where many attributes were

87

Figure 4.12 – Distribution of the number of distinct attributes specified in a query.

correlated due to homogeneous nodes and heavy utilization of nodes (when a node is heavily utilized,

CPUFree and MemFree reduce while CPULoad increases). Analysis of Spearman’s ρ also indicates

TxRate and RxRate are positively correlated with a coefficient of 0.82. Similar behavior is also observed

for SETI (Table 4.7) and CSU (Table 4.8) nodes.

4.4.2 Query Characteristics

Table 4.9 summarizes the number of attributes (aq), resources (mq), and groups of resources speci-

fied in PlanetLab queries. 2% queries requested for several resources without specifying any attribute.

Figure 4.12 shows the distribution of number of attributes specified in a query. 78% queries specified at

most two attributes while 0.4% queries specified up to 10 attributes. Thus, queries tend to specify a lower

number of attribute values (small aq). 30% queries requested ten resources while 52% requested 50 or

more resources. 19% queries requested all the resources in the system. Thus, there is a tendency to request

a large number of resources (i.e., large mq). Figure 4.13 shows the popularity of attributes specified in the

queries. Dynamic attributes are the most popular. 26 attributes (out of 49) were never queried. Many que

ries requested both CPUFree and CPUSpeed (or MemFree and MemSize). This may have been because

the percentage values (PlanetLab represents both CPUFree and MemFree as percentages) are inadequate

to represent the actual availability of resources. We observed the query popularity by clustering identical

88

Table 4.8 – Correlation among attributes of CSU nodes:

(a) Pearson’s correlation coefficient.

Index* 1 2 3 4 5 6 7 8

2 0.10

3 -0.08 0.01

4 0.07 0.05 -0.54

5 0.07 0.06 -0.56 0.97

6 -0.22 0.51 -0.05 0.07 0.07

7 -0.27 0.42 -0.06 0.07 0.07 0.99

8 0.38 0.14 0.07 0.25 0.26 -0.47 -0.60

9 0.38 0.14 0.07 -0.11 -0.11 -0.47 -0.60 1.00

(b) Spearman’s ranked correlation coefficient.

Index* 1 2 3 4 5 6 7 8

2 0.15

3 0.00 0.09

4 0.09 0.06 -0.37

5 0.09 0.07 -0.39 0.73

6 -0.34 0.45 -0.29 0.06 0.06

7 -0.35 0.47 -0.30 0.07 0.07 0.98

8 0.52 0.05 0.24 0.03 0.04 -0.47 -0.49

9 0.22 0.06 0.53 -0.21 -0.21 -0.49 -0.51 0.70

* 1 – CPUSpeed, 2 – NumCores, 3 – CPUFree, 4 – 1MinLoad, 5 – 15MinLoad, 6

– MemSize, 7 – MemFree, 8 – DiskSize, 9 – DiskFree

Table 4.9 – Composition of PlanetLab queries.

Attributes (aq) Resources (mq) Groups

Average 2.13 63.66 1.09

Minimum 0 1 1

Maximum 10 All 3

Median 2 65 1

Mode 1 All 1

Standard deviation 1.62 380 0.3

queries together. Similarly, we clustered attributes with the same range of values. 24% of the queries and

13% of the attributes specified in queries appeared only once. Figure 4.14 shows the distribution of clus-

ter size. Number of identical queries in the largest query cluster was 31 and the largest attribute cluster

had 117 queries. Though the popularity distribution is skewed, it does not satisfy a Pareto (or Zipf’s-like)

distribution as some of the queries are equally popular (the lines are not straight). It was further observed

that the ranges of attribute values [li, ui] specified in queries are somewhat large. As seen in Fig. 4.15,

89

Figure 4.13 – Popularity of attributes specified in ueries. Only the first 20 is shown.

Figure 4.14 – Popularity distribution of queries and attributes specified in queries.

89% of the queries that specified CPUFree requested values of 40-100%. Similarly, 86% queries request-

ed DiskFree values of 5-1000 GB. Therefore, most queries are less specific as they specify lower aq and

large [li, ui]. This could be due to several reasons: (1) the nature of applications that run on PlanetLab that

may not require fine-grained resource selection, (2) users’ inability to identify detailed resource require-

ments, or (3) principle of least effort [Br05] where users are willing to specify only the simplest queries

that satisfy their resource requirements.

90

Figure 4.15 – Range free CPU values specified in queries.

4.4.3 Summary of Findings

Analysis of four datasets confirms that attribute values are correlated, their marginals satisfy dif-

ferent probability distributions, and in most cases are highly skewed and too complex to be represented

using well-known probability distributions. Queries are skewed and less specific, as they specify small aq,

large [li, ui], and large mq. These trends are likely to remain valid even in collaborative applications where

users may not be informed enough to issue very-specific queries or due to the principle of least effort.

Iosup and Epema [Io10] also observed that while most of the jobs in grids use a single CPU, few jobs

tend to use a large number of CPUs (128 CPUs or more) hence mq tends to be large even in grids. These

findings invalidate the commonly used assumptions such as i.i.d. attributes, uniform/Zipf’s distribution of

all the attributes [Bh04, Ca04, Sh07], and queries specifying a large number of attributes and small ranges

of attribute values [Ca04, Sh07]. Correlations between attribute pairs indicate that resources are not uni-

formly distributed throughout the multi-attribute space (domain of all Dis). Domain Di of categorical at-

tributes such as CPUArchi and OS are small as they have only a few distinct attribute values. Various

hardware constraints favor having NumCores and MemSizes that are powers of two. Therefore, these at-

tributes occupy only a small fraction of their domain Di. Moreover, large numbers of identical resources

in PlanetLab, Grid, Cloud, and enterprise computing environments appear as sets of clusters within the

multi-attribute space. Therefore, non-uniform and clustered distribution of attribute values force nodes to

91

index and/or answer a disproportionate number of resources and queries leading to load balancing issues.

For example, DHTs that assume uniform distribution of resources [Lu04] will fail to provide static load

balancing in these systems.

Both ar and A are large, as the resources are described using tens of attributes (see Table 4.2).

Dynamic attributes change at different rates and some of them change frequently (high
i
r). A user can

decide when to run a BOINC client. Hence, SETI nodes are active only 81% of the time on average

[An06]. Even though a node may be active, it does not execute jobs unless idle/residual computing re-

sources are available. Thus, average job execution time was only 84% of the active time (overall availa-

bility of 68%). Nodes were reachable through the network 83% of the active time [An06]. Another study

[He09] observed that 50% of the nodes have effective job execution time of less than 40% and only 5% of

the nodes are available for job execution over 80% of the time. Alternatively, most nodes in PlanetLab,

GCO, and CSU datasets were avaialable throught the two-week period. Thus, availability of nodes in vol-

unteer-computing environments is significantly lower compared to more stable environments like

PlanetLab, grids, and clouds. Consequently,
i
r increases further due to frequent arrival and departure of

nodes. It is also observed that grids tend to experience sudden arrivals of a set of jobs (a.k.a. bag of tasks)

[Io10]. Such arrivals suddenly change the dynamic attributes of many resources (e.g., Fig. 4.5(b)). Higher

i
r values and sudden changes in system resources significantly increase the advertising cost of RD solu-

tions hence should not be ignored.

4.5 Design Choices in P2P-Based Resource Discovery

To ease the RD, resources are typically advertised and indexed at specific or random locations

within the RD system. Resources are then located using various querying mechanisms. Resource advertis-

ing and querying options of centralized, unstructured P2P, and structured P2P solutions are analyzed us-

ing the characteristics learned in the previous section. Equation (4.6) is also extended to reflect the specif-

ic behavior of each solution.

92

4.5.1 Centralized Designs

Resources can be advertised and indexed at a well-known central location. Centralized indexes

are utilized in PlanetLab, GENI, and grid and cloud computing. Latency and cost of resource advertising

and querying are minimum as nodes can directly communicate with the central node. Hence, the cost per

message is O(1). Resolving queries with large [li, ui] and mq do not introduce additional routing overhead.

Thus, the RD cost depends on the initial advertisement cost, recurrent cost of advertising static and dy-

namic attributes, and query cost. Then (4.6) can be modified as:

)(1 tQtC
r j

j
rTotal 













 

 R ar

  

i
rc = 1, as resources are advertised only to the central location. If the query arrival rate is constant, total

cost of RD is bounded by O(RA
i
r). In the worst case, all the resources may have all the attributes. There-

fore, cost of indexing resources at the central node is O(RA). This approach is not scalable (in terms of

both the number of messages and index size) as A, R, and
i
r are typically large in production systems. It

also leads to a single point of failure.

Hierarchical indexes are proposed to overcome these limitations where separate indexing nodes

are assigned to different geographic regions, sites, or organizations [El09]. Then a higher-level node(s) is

assigned to keep track of aggregated resources from these nodes. This approach could lead to conflicts

while querying and binding resources. Partial failures in sub-regions of the system are also problematic.

Moreover, aggregation along the hierarchy reduces the resolution at which resources are advertised. Such

hierarchies are not desirable while indexing highly dynamic attributes such as MemFree and bandwidth.

4.5.2 Unstructured P2P-Based Designs

Unstructured P2P systems [Lu04] are attractive as they distribute the resource information across

many nodes in the system while providing resilience and load balancing. They are utilized in file sharing,

mobile social networks, and ad-hoc networks. These systems use either flooding or random walks [Ta08]

93

to disseminate information about resources and/or resolve queries. Though resources are guaranteed to be

found with flooding, it is extremely costly. Random-walk-based solutions use agents for advertising

and/or querying. Agent lifetime is controlled using a Time To Live (TTL) value that tries to balance the

cost of advertising/querying and query success rate. As queries are forwarded to individual nodes, their

availability is known. Hence, no additional overhead is introduced. Assuming a new agent is generated

for each change in attribute value or query, RD cost is:

 
 

















Q(t)R aa rr q

q
Query

r j

j
r

i

TOTAL htTTLTTLC   

q
Queryh is typically O(TTL). Therefore, the total cost is bounded by O(RA

i
r TTL). However, random walks

are not guaranteed to find resources, and it will become even harder if one reduces TTL with the intention

of reducing the cost of RD. It has been shown that the hitting time (i.e., expected number of hops to reach

any node staring at any node) of a random walk on an arbitrary finite graph is O(N
3
) [Ik09]. Hence, TTL

has to scale with N
3
 to increase the success rate of queries. Therefore, unstructured P2P systems are suita-

ble only for moderate scale, best effort, and highly dynamic environments that can tolerate large delays.

Resource indexing cost per node is O(RA) as all the nodes can eventually get to know about all the re-

sources in the system. Though advertising resources to other nodes speeds up the query resolution, state

of the selected resources may be stale.

More-scalable version of this approach uses a two-layer overlay where resource rich nodes,

namely superpeers, form a separate overlay while acting as proxies for rest of the nodes. Similar to hier-

archical solutions, superpeers manage multiple resources. Resources can communicate with their

superpeers using one overlap hop. When local resources are insufficient to resolve a query, superpeers

may query other superpeers using flooding or random walks. Therefore, q
Queryh = O(NSuperpeer) or q

Queryh =

O(TTL), where NSuperpeer is the number of superpeers in the system. Cost of RD is:

 
 

















Q(t)R ar q

q
Query

r i

i
rTOTAL htC 1  

94

As NSuperpeer ≪ N, TTL can be set to a relatively lower value than in unstructured P2P systems. However,

superpeers are also not guaranteed to find resources with random walks. Indexing load on a superpeer is

proportional to A and the number of resources assigned/connected to it. If resources are uniformly as-

signed to superpeers, index size is O(RA/NSuperpeer).

4.5.3 Structured P2P-Based Designs

Structured P2P systems are appropriate for large-scale implementations due to high scalability

and some guarantees on performance [Lu04]. These systems use a DHT to index resources. Each DHT

node or a resource has a unique identifier called a key. Each resource’s contact information is indexed

(i.e., stored) at a node having a close by key in the key space. Resources are advertised and queried using

messages that are forwarded to appropriate nodes using a deterministic overlay network. Chord,

Kademlia, CAN, and Pastry (see Section 2.1) are some of the well-known solutions that are used to build

such an overlay. These solutions typically keep pointers to nodes that are spaced at exponentially increas-

ing gaps in the key space enabling messages to be routed with a bounded path length of O(log N). DHTs

are designed to index resources that are characterized by a single attribute. As it is, they are not efficient

for simultaneous selection of multiple and multi-attribute resources. A representative subset of solutions

that extend DHTs to support multi-attribute resources and queries are discussed next.

Multiple Address Spaces

One of the simplest solutions is to maintain a separate DHT for each attribute in A [Bh04]. Figure

2.10 illustrates a design based on three DHTs with a circular address space, also referred to as a ring.

Each resource r advertises either each attribute value to the corresponding ring or all the attribute values

to all the rings responsible for ar. In the former case, a multi-attribute query q is first split into a set of

sub-queries where each sub-query searches for one of the attributes in aq. Sub-queries are then simultane-

ously forwarded to appropriate rings. Query results have to be then combined at the application using a

join operation like in databases. A range query is resolved by forwarding each sub-query to a series of

nodes responsible for indexing attribute values in the range [li, ui] (see Fig. 4.1). Thus, RD cost is:

95

 
  
   
































 

















Q(t) aR aa qrr q i i

iii
Query

r

j
r

j

j
Advertise

i

i
AdvertiseTOTAL N

D

lu
hthhC 1  

Each advertising message can be sent in O(log N) hops thus advertising cost is O(RA
i
r log N). Worst-

case query cost is O(N) as i
Queryh = O(log N). Even the average cost is large, as queries tend to specify

large [li, ui]. Indexing cost of all the rings is O(RA) or O(R) per ring.

In the latter case, q can be resolved using one of the rings, as each ring is aware of all the attribute

values of a resource. This also enables queries to be terminated as soon as the desired number of re-

sources is found. Query resolution cost can be further reduced by forwarding q to the ring corresponding

to the most selective attribute (i.e., attribute with the lowest (ui – li)/Di). For example, as seen in Fig.

2.10(a), the query travels 3-hops in CPUSpeed and bandwidth rings while it travels only 2-hops in the

MemSize ring. Thus, q is issued only to the MemSize ring. This approach is called Single-Attribute Domi-

nated Querying (SADQ) and is used in [Al08, Bh04, Ca04]. Total RD cost is:

 
 
 






















 

















Q(t)R aa rr q k

kkk
Query

r j

j
r

j
Advertiser

i

i
AdvertiseTOTAL N

D

lu
hthahC 1  

where k  aq is the most selective attribute. In the worst case, each change in attribute values has to be

advertised to all the rings hence advertising cost is O(RA
2 i

r log N). Worst-case query cost is still O(N).

Real-world queries specify only a few attributes hence not many options are available while choosing the

more selective attribute. Therefore, even the average query cost is relatively high. Indexing cost of all the

rings is O(RA
2
) or O(RA) per ring. This approach has a lower query cost than using multiple sub-queries.

However, it has a higher advertising cost due to multiple copies where
i
rc = ar (recall ar tends to be large).

Therefore, it is suitable only if the query rate is higher than
i
r . New rings can be added to support addi-

tional attributes. However, excessive routing entries associated with multiple rings (typically O(A log N)

make it less scalable. Some rings experience higher load due to skewed distribution of resources and que-

ries. This is particularly a problem in SADQ where highly selective and skewed attributes such as

CPUArchi, NumCores, and OS may get a large number of queries overloading the nodes that index them.

96

Moreover, domain Di of these attributes is small, and hence may not be suitable to be placed on a separate

ring/overlay.

Partitioned Address Space

Figure 2.10(b) shows a ring that is partitioned into several segments where each segment corre-

sponds to a separate range of attribute values. Prefix bits of the overlay key are used to represent the at-

tribute type and suffix bits represent the attribute value. A Locality Preserving Hash (LPH) [Al08, Ca04,

Sh07] function is used to assign the suffix bits, which preserves the locality of attribute values. Advertis-

ing and querying schemes are similar to the case of multiple address spaces. However, each partition has

approximately N/A nodes therefore worst-case query cost is O(N/A). Moreover, these solutions maintain a

much lower number of routing entries, typically O(log N). Some partitions experience higher load due to

skewed distribution of resources and queries while most of the remaining partitions are rarely utilized.

Overlapped Address Space

Another alternative is to map all the attribute values to the same ring (see Fig. 2.10(c)) using a

separate LPH function for each attribute type [Ca04]. Cost of RD and indexing is same as multiple ad-

dress spaces because the same advertising and querying mechanisms are applicable here. Some nodes ex-

perience higher load due to skewness in resources and queries. However, routing state is O(log N) as only

a single ring is used.

d-torus

Figure 2.12(b) illustrates an alternative design where each dimension of a d-torus represents an

attribute (i.e., d = A). Resources are mapped to the torus according to their attribute values. A multi-

attribute range query q encloses a hyper-box on the torus. This approach is used in [Co09b] where dimen-

sions of the torus reflect only the static attributes (i.e., d = A
s
). For routing, d-torus is logically partitioned

into an increasing set of levels and each level is further partitioned along each dimension d forming a set

of cells. Each node keeps a set of pointers to all the other nodes in the same cell and to a node in each par-

tition at level l and dimension d. In contrast to prior architectures, resources are not explicitly advertised.

Instead, a gossip scheme is used to identify a random node in each (l , d) pair. These pointers are used to

97

route q to the desired query region on the torus using depth-first search (see Fig. 2.12(b)). Then neighbor-

ing nodes are used to traverse from one node to another during which dynamic attributes in q may be

evaluated. RD cost is:

1 
Q(t)q

q
q
QueryTOTAL mhC  

It can be shown that q
Queryh is O(ln 2

d
 / ln d). After reaching the first node that satisfies q, remaining mq – 1

resources need to be found. Hence, worst-case query cost is  1ln2ln  q
d mdO , ignoring the overlay

maintenance cost. As the propagation of q is based on depth-first search and query visit individual nodes

(one at a time), query resolution latency is much higher. This routing scheme is inefficient when queries

are less specific, which significantly increases the volume of the hyper-box to query. Moreover, it cannot

route queries with only the dynamic attributes, which accounts for a large fraction of queries in real-world

systems (see Fig. 4.13). Summary of all the solutions are listed in Table 4.10.

4.6 Simulation Setup

Next, we quantitatively evaluate the fundamental design choices for P2P-based RD. We simulat-

ed seven representative architectures for RD (listed in Table 4.10) against the same set of resources and

queries derived from PlanetLab. Use of realistic data preserves the complex distribution of attributes, dy-

namic and correlated changes in attribute values, and users’ interest in resources. To simplify the perfor-

mance analysis and eliminate any bias due to node failure, we replayed a trace with only the PlanetLab

nodes that were continuously available for three days starting 2010/11/08. There were 527 such nodes. As

our query dataset was small, a large number of synthetic queries were generated using the empirical dis-

tributions of aq, popularity of attributes, [li, ui], and mq. To capture the correlation among attributes and

attribute value ranges, conditional probabilities of attribute occurrences are also taken into account. The

query generation solution presented in Chapter 5 was not used, as it was not designed by the time of these

simulations. Queries were issued only after the network was stabilized. Performance of ring-based struc-

tured P2P solutions were also evaluated under different numbers of nodes ranging from 250 to 1,000.

98

Table 4.10 – Summary of resource discovery architectures.

Architecture
Routing

Mechanism

Advertising Querying Indexing

Mechanism Cost Mechanism Cost Mechanism Cost

1. Centralized Direct To central

node

O(1) Query central

node

O(1) At central

node

O(RA)

2. Unstructured –

Random overlay

[Ta08]

Random walk Optional O(TTL) Query random

nodes

O(TTL) Index locally O(A) or

O(RA) if

advertised

3. Superpeer – Ran-

dom overlay among

superpeers

Random walk

among

superpeers

To

superpeer

O(1) Query

superpeers

O(TTL) At superpeer O(RA/

NSuperpeer)

4. Multi-ring

[Bh04] – Separate

ring-like overlay for

each attribute type

Chord To relevant

ring(s)

based on

attributes

O(log N) 1. Multiple sub-

queries

2. Single attrib-

ute dominated

query

O(N) 1. At rele-

vant rings

2. At all

rings

1. O(RA)

2. O(RA2)

5. Partitioned-ring

[Al08, Sh07] – Each

attribute type is

assigned a different

segment of overlay

ring

Chord or

Cycloid

To relevant

partition(s)

based on

attributes

O(log N) 1. Multiple sub-

queries

2. Single attrib-

ute dominated

query

O(N/A) 1. At rele-

vant parti-

tions

2. At all

partitions

1. O(RA)

2. O(RA2)

6. Overlapped-ring

[Ca04] – All attrib-

ute types are

mapped to same

ring-like overlay

Chord To relevant

nodes in the

ring

O(log N) Single attribute

dominated query

O(N) At relevant

nodes

O(RA2)

7. d-Torus [Co09b]

– d-torus partitioned

into a set of cells

Depth-first

search

Not re-

quired

– Visit cells that

overlap with

query hyper-box















d
O

d

ln

2ln
Index locally O(A)

Large number of nodes beyond 527 was generated using our correlation persevering, multi-attribute re-

source generation tool presented in Chapter 5.

Both the unstructured and superpeer-based networks were generated using the B-A scale-free

network generator [Ge07] with a minimum node degree of two. Advertising dynamic attributes is not that

useful in unstructured P2P and superpeer (from one superpeer to another) architectures, as state of re-

sources may be different by the time they are queried. Therefore, only the query agents are used in these

two solutions. The number of superpeers is set to 20. Maximum number of hops to forward a random

walk (i.e., TTL) is set to 100 and 10 hops in unstructured and superpeer architectures, respectively. Those

TTL values were sufficient to achieve ~70% query hit rate with different number of attributes. Multi-ring,

99

partitioned-ring, and overlapped-ring architectures are based on the Chord overlay [St03]. According to

[Co09b], number of cell levels of the d-Torus is set to three. Minimum update interval for resource attrib-

utes is 5 minutes, which is the sampling interval of PlanetLab nodes. A fixed threshold is applied to ig-

nore minor variations. Each node issued queries based on a Poisson distribution with a mean inter-arrival

time of 2.5 minutes (i.e., two queries per sampling interval per node). Results are based on eight samples

with different random seeds. Additional details on simulators are given in Appendix II.1.

4.7 Performance Analysis

Figure 4.16 shows the total cost of advertising and querying resources using only the 12 static at-

tributes of PlanetLab nodes. This enables us to validate the performance of different architectures against

their prior performance studies (when such a study exists), which did not consider the cost of advertising

dynamic attributes. As expected, centralized architecture has the lowest overall cost while unstructured

P2P architecture has the highest cost. Superpeer-based architecture has the second lowest cost. Less spe-

cific queries (large [li, ui] and small aq) make it easier to find required resources by visiting a few

superpeers that index multiple resources. For example, though random walks are not granted to find all

the resources, superpeer architecture was able to resolve 96% of the queries. Therefore, most of the ran-

dom walks were terminated within a few hops while reducing the overall cost. However, the unstructured

P2P solution was able to resolve only 73% of the queries as they visit one node at a time. Partitioned-

ring-based architecture has the third lowest cost as query cost is O(N/A). Cost of multi-ring and over-

lapped-ring-based architectures are higher compared to the partitioned-ring, as their query cost is O(N). d-

torus has the second largest overall cost due to less-specific queries that dramatically increase the volume

of the query hyper-box. It is not considered for rest of the discussion, as it cannot route queries with only

the dynamic attributes, which are the most popular types of attributes defined in real-world multi-attribute

queries.

100

Figure 4.16 – Total cost of advertising and querying static attributes. N = 527.

We analyze ring-based architectures in detail, as they are considered applicable in large-scale ap-

plications due to scalability and some guarantees on performance. Figure 5.17(a) shows the per-node ad-

vertising cost of ring-based architectures while varying the number of attributes. Advertising cost increas-

es as the dynamic attributes are introduced (first 12 attributes are static). Resources need to be re-

advertised whenever their attribute values change significantly. It is typically assumed that DHT entries

will expire after a predefined timeout. However, our analysis shows that it is nontrivial to determine an

appropriate timeout given the diversity of attributes and their rate of change
i
r . Therefore, the old attrib-

ute values need to be explicitly removed from the DHT to maintain a consistent resource index. We con-

sidered the cost of removing those old indexes as part of the advertising cost. Both advertise and remove

messages can be delivered within O(log N) as they are sent to specific nodes. SADQ requires all the at-

tributes of a resource to be advertised to each ring/partition corresponding to each attribute a ar. There-

fore, resources need to be re-advertised to all the rings/partitions even when a single attribute is changed.

Figure 5.17(a) confirms this behavior where advertising cost of architectures that utilize SADQ is signifi-

cantly higher and increases linearly with the number of attributes. We introduced dynamic attributes ac-

cording to their popularity where attribute 13 is the most popular, 14 is the second most popular, and so

on. Attributes 13-15 that correspond to response time of a node (RespTime), 1MinLoad, and MemFree are

101

(a) (b)

Figure 4.17 – Cost of ring-based architectures: (a) Advertising cost; (b) Query cost. N = 527.

updated frequently. This is the reason for the significant increase in advertising cost between attributes 12

and 15. The rate of update
i
r of rest of the dynamic attributes was relatively lower.

Figure 4.17(b) shows the cost per query. Architectures based on SADQ have much lower query

cost, as they use only the most selective attribute and queries are terminated as soon as mq resources are

found. However, overall cost (advertising and querying) of SADQ-based architectures will be acceptable

only if queries are more frequent than advertisements. Alternatively, sub-queries need to search in multi-

ple rings/partitions and have to search the entire range of attribute values specified in each sub-query

hence have a higher cost. Queries that specified attributes 13-14 (RespTime and 1MinLoad) tend to be

more specific (i.e., small (ui – li)/Di); therefore, can be resolved by forwarding to a lesser number of

nodes. Furthermore, these were the two most popular attributes hence appeared in many queries conse-

quently reducing the overall query cost. Therefore, query cost drops when the number of attributes is 15.

Query distribution and range of attribute values get balanced as rest of the dynamic attributes are intro-

duced. Consequently, query cost tends to stabilize. Though new attributes were introduced, PlanetLab

queries specified only 1-10 attributes and one or two attributes were specified 78% of the time. This ex-

plains why the query cost seems to be independent of the number of attributes in the system.

102

Figure 4.18 – Total cost (advertising and query) per query vs. number of attributes. N = 527.

Table 4.11 – Query cost of ring-based designs under varying number of nodes (A = 24).

N
Multi-Ring + SADQ Partitioned-Ring + SADQ Overlapped-Ring + SADQ

Min Ave Max Min Ave Max Min Ave Max

250 0 9.2 239.1 0 3.7 19.4 0 9.1 238.4

527 0 13.7 509.0 0 4.6 27.6 0 13.5 506.0

750 0 16.2 719.1 0 4.9 36.6 0 16.5 719.9

1000 0 19.8 975.5 0 5.3 45.3 0 20.4 963.8

Table 4.12 – Query cost, query load, and index size (N = 527, A = 24).

Architecture

Total Cost per

Query

Query Load Index Size

Min Max
Min Max

SWORD Uniform SWORD Uniform SWORD Uniform

Centralized 2.03 2.03 950,000 950,000 950,000 950,000 527 527

Unstructured 69.5 94.8 4,859 1,272 268,497 37,824 1 1

Superpeer 6.5 9.5 81,021 22,390 289,626 87,209 17 36

Multi-ring + SADQ 48.3 69.0 0 0 178,492 22,943 0 527

Multi-ring + Sub-queries 398.8 120.8 0 0 624,837 57,518 0 230

Partitioned-ring + SADQ 36.6 37.0 0 0 185,972 15,840 0 527

Partitioned-ring + Sub-queries 40.7 16.4 0 0 432,859 46,946 0 527

Overlapped-ring + SADQ 46.0 67.2 0 0 391,738 57,524 0 527

The best design choice from each of the architectures is compared in Fig. 4.18. Unstructured-

P2P-based architecture, which has the highest cost per query, is not shown to simplify the graph. Increase

in advertising cost of centralized and superpeer architectures due to dynamic attributes is insignificant, as

the cost is O(1). Moreover, their query cost is independent of aq, [li, ui], and mq. Therefore, they have the

lowest cost per query. Cost of ring-based architectures tends to increase linearly. In Table 4.11, we com-

pare the three best ring-based designs with varying number of nodes N. Both the average cost per query

103

and maximum query cost tend to increase linearly with N confirming the analysis in Section 4.5.3. There-

fore, query cost is bounded by O(N). Cost of partitioned-ring-based architecture is lower as it is bounded

by O(N/A).

Table 4.12 presents the query cost as well as per node query load and index size. For comparison,

according to [Ca04], we also generated range queries based on the uniform distribution of attributes and

attribute values where each attribute in a query specified 10% of the possible range of attribute values

(i.e., (ui – li) = 0.1 Di). Resource attributes were not changed. Performance of RD architectures is different

when queries are formulated by selecting attributes and ranges of attribute values uniformly at random

(irrespective of the actual resources). Not all random queries match resources in the system. Therefore,

both the unstructured and superpeer architectures have to keep forwarding the queries until the TTL ex-

pires. Consequently, the overall cost of RD increases. Furthermore, uniform queries cannot significantly

benefit from SADQ, as the minimum range of any attribute is always 10% of the domain. Whereas in re-

al-queries (collected from SWORD), at least few attributes tend to be very specific (e.g., RespTime,

1MinLoad, and NumCores). Therefore, real-world queries can be resolved more efficiently using SADQ.

Alternatively, given that the range of most of the attribute values in real-world queries tend to be large,

aggregated query cost significantly increases when multiple sub-queries are used.

Centralized solution had to index all the resources and answer all the queries issued within the

system (950,000 queries were issued during the simulation). Unstructured and superpeer architectures

have a smaller index size as either resources index themselves or superpeers index only a subset of the

resources in the system. Furthermore, their query load is relatively balanced due to the use of random

walks. Uniform queries are issued to different overlay rings/partitions with the same probability hence

distribute the query load among many nodes. Alternatively, due to the skewed distribution of attributes

and attribute values in PlanetLab queries, a few rings/partitions and subset of the nodes within those

rings/partitions are used to answer most of the queries. This is the reason that maximum number of

SWORD queries answered by a node is 3.3 to 11.7 times higher than when answering uniform queries.

The query load on a node that supports SADQ is relatively low, as the queries are resolved using the most

104

(a) (b)

Figure 4.19 – Distribution of load: (a) Query load; (b) Index size. N = 527.

selective attribute. Moreover, queries also terminate as soon as the desired number of resources is found.

Hence, each node has to handle a relatively smaller number of queries. Figures 4.16-4.18 confirm that

partitioned-ring with SADQ outperform all other design choices. Figure 4.19(a) illustrates the query load

distribution of architectures supporting SADQ. It can be seen that load distribution is skewed and few

nodes had to answer majority of the queries. It is particularly worse in the partitioned-ring where 74% of

the nodes did not answer any query and one of the nodes answered ~20% of all the queries. Such an im-

balanced load distribution is not acceptable when the query rate is higher.

Because of the correlation and skewed distribution, resources are not uniformly spread across the

attribute space. Therefore, resources are indexed in only a small subset of the nodes in the ring while a

large fraction of nodes does not index any resources. Multiple indexing used with SADQ and overlapped-

ring also force nodes to index many resources corresponding to different attributes. Moreover, some of

the attributes have only a few valid attribute values and they are highly skewed, e.g., CPUArchi and

NumCores. Such attribute values are indexed in a few nodes and some of those nodes have to index a

large fractions of resources with the same attribute value. Index size distribution of solutions supporting

SADQ is shown in Fig. 4.19(b). In the partitioned-ring architecture, nodes that were mapped to less popu-

lar or unused partitions were never utilized. Therefore, it suffers from significant load balancing issues,

though it has the lowest RD cost among structured P2P architectures. In conclusion, load balancing is a

critical issue in all the designs, as popularity of resources/queries is skewed and queries are less specific.

105

4.8 Discussion

None of the design current choices for RD simultaneously provide efficiency, scalability, and

load balancing under real workloads. Centralized architecture has the lowest cost per advertisement and

query. A single message can be used to either advertise or query for a resource(s) irrespective of ar, aq, [li,

ui], and mq. Lower advertising costs enable dynamic attributes to be advertised whenever their attribute

values change while increasing the accuracy of indexed resources. As the central node is aware of all the

resources in the system, it is also suitable for complex tasks such as matching multiple resources (for in-

ter-resource bandwidth and latency), establishing a binding between a resource and an application that is

interested in using it, and enforcing various incentives, trust, and security policies. However, a single

node may not be able to handle all these messages. It also leads to a single point of failure and privacy

issues, as the central node can monitor usage patterns of resources. Nevertheless, centralized solutions are

becoming more feasible, affordable, and reliable due to the recent advancements in distributed datacenter

technologies. Therefore, when applicable/feasible, centralized solution is still a desirable option.

Superpeer architecture is relatively efficient in resolving real-world queries that are less specific.

Moreover, both the query load and index size are well balanced and independent of ar, aq, and [li, ui]. Re-

sources can afford to advertise dynamic attributes whenever they change as the superpeer can be reached

within one overlap hop. However, it does not provide a best-fit type solution, where select resources fit

the minimum requirements of a query. Hence, applications that actually require a large number of high-

capacity resources may not be able to find them, as they have been already allocated to applications with

much lower resource demand. Trying to enforce best-fit type matching will increase the query cost.

Therefore, superpeer architecture is more suitable for dynamic, best-effort environments such as mobile

social networks and ad-hoc networks. Due to high query cost and relatively low query hit rate, unstruc-

tured P2P architecture is not suitable for most applications. However, its high resilience to random node

failures makes it suitable for highly dynamic environments such as mobile social networks. Advertising

agents are of little use, as some dynamic attributes change very frequently making the indexed resources

106

stale. While it has been proposed to use aggressive timeouts to invalidate resources after a while, given

the diversity in attributes and their rate of range it is nontrivial to set a timeout.

While less-specific queries do not affect the centralized architecture and increase the hit rate of

superpeer architecture, they increase the overhead of structured P2P architectures. Though SADQ reduces

the query cost, it significantly increases the advertising cost. Advertising cost is effectively doubled as old

attribute values need to be removed from the rings to maintain consistency, as it is nontrivial to set a

timeout. All the structured P2P architectures are prone to significant load balancing issues due to the

small number of valid attribute values and their skewed distributions. Dynamic attributes are more im-

portant while predicting the performance of latency-sensitive applications (e.g., CASA and mobile social

networks) and when resources are shared across multiple applications (e.g., CASA, GENI, grids, and

clouds). Therefore, applicability of d-Torus is limited, as it cannot resolve queries with only the dynamic

attributes. Though it seems most of the benefits of DHTs are lost under real workloads, they can still pro-

vide guaranteed RD, bounded performance, and are distributed. Moreover, as the locality of attribute val-

ues is preserved they can also find resources that fit the minimum requirements of a query. Hence, it is

important to overcome their deficiencies to gain their benefits.

DHT designs typically assume that domain of attributes is much larger than the number of nodes

in the DHT (i.e., Di ≫ N) and resources are uniformly spread within Di. Therefore, it is preferable to add

all the nodes to the DHT(s) hoping each node will index ~R/N resources. However, attributes such as

CPUArchi, OS, and NumCores are not only skewed but also their domain sizes (i.e., number of distinct

values in the domain) are much smaller (i.e., Di ≪ N). Even though the domain size of attributes such as

CPUFree, 1MinLoad, DiskFree, and TxRate are infinite, it is not useful to advertise them at a very high

resolution, as users are not interested in finding very specific values. For example, advertising DiskFree at

the granualarity of few Megabytes is not suitable as 86% queries requested DiskFree values of 5-

1000 GB. Similarly, advertising TxRate at bps resolution is not useful as users are likely to query attribute

ranges in tens to thousands of Kbps. Specifying attributes at a relatively low resolution is desirable (as far

as it satisfies a query with the lowest (ui – li)), as advertising cost can be reduced by ignoring minor

107

changes in attribute values. It was observed that highly dynamic attributes that are queried using moderate

to large ranges of attribute values contributed to more than 90% of the advertising cost in SADQ based

designs. Therefore, it is desirable to advertise attributes at a lower resolution (by applying a fixed or dy-

namic threshold) while reducing the effective domain sizes (i.e., Di ≪ N). Consequently, many nodes in

the ring will not be able to index resources or answer queries. Moreover, adding all the nodes to a ring

will unnecessarily increase the query cost, as both the average and worst-case query costs are proportional

to N. Instead, it is desirable to prune nodes that do not index any resources or answer any queries (see

Chapter 6) [Ba12c]. However, this does not solve the problem of few nodes having to index a large num-

ber of resources due to skewed distributions (e.g., when CPUArchi of 99% nodes are ×86). One alterna-

tive is to append few random bits to a key (i.e., hash of an attribute value) such that identical resources

will be mapped to different but adjacent nodes in the ring [Al08]. While this helps to distribute the index

size better, it increases the query cost and does not balance the query load, as queries have to always start

from the node corresponding to li. In Chapter 6, we present an alternative design where large indexes are

split across multiple nodes that are added orthogonal to the ring. Adding nodes orthogonal to the rings

does not increase the average and worst-case path length along the ring hence the query cost is also re-

duced. The same concept can be also used to balance the query load distribution (see Chapter 6). Another

alternative is to explore hybrid designs where desirable properties such as lower advertising cost and load

distribution in centralized and superpeer architectures are coupled with rings e.g., ring of superpeers. Per-

formance of ring-based architectures can be approximated to O(log N) by using queries that are more spe-

cific. However, in practice, it is hard to determine specific resource requirements of an application. By

specifying very specific queries, users also run into the risk of not finding any useful resource. For exam-

ple, a user may need only 500 MB of disk space. If his/her query specified DiskFree  [500 MB,

1000 MB], the query is very likely to fail as modern machines have much higher free disk space. There-

fore, users are compelled to specify a large range of attribute values. It may be possible to achieve close

to O(log N) query performance, if such complexities could be incorporated into the RD solution while

enabling users to provide only the abstract details about their application requirements.

108

As the number of attributes increases, performance of all the solutions degrade due to additional

memory/storage requirements and increase in advertising cost. This is a concern in heterogeneous systems

like CASA and GENI, which aggregate multitude of diverse resources. One alternative is to represent

multi-attribute resources using a few composite attributes. For example, BOINC uses micro-benchmark to

rate nodes based on their integer and floating-point performance [An09]. Cloud computing nodes are typ-

ically rated as high-memory, high-CPU, and cluster instances. Few attributes are attractive as they simpli-

fy and reduce the cost of RD. However, it is not good at predicting performance of arbitrary applications

and is too abstract to be used in latency sensitive applications such as CASA. Alternatively, applications

that depend on more than one attribute cloud pick a minimum set of primary attributes that can accurately

represent a resource. Dimension reduction techniques are also of interest. However, it would be challeng-

ing to resolve real-world queries that specify only a few attributes, as dimension reduction techniques are

typically designed for queries that specify all the attributes. Less informative attributes such as percentage

of CPUFree and MemFree may be avoided.

As the existing solutions are applicable under very specific scenarios, novel RD solutions are

needed to overcome the performance and QoS issues posed by real workloads. Hybrid approaches that

combine the desirable features of centralized, superpeer, and ring-based architectures while taking into

account the complex resource and query characteristic have the potential to provide better solutions. It is

also important to evaluate their performance using real or synthetic traces that are derived using the real-

world resources and queries (see Chapter 5).

4.9 Summary

Fundamental design choices for resource discovery are evaluated using the characteristics learned

from four different real-world systems. Findings show that real world, multi-attribute resource and query

characteristics diverge substantially from conventional assumptions. While real world, less-specific que-

ries are relatively easier to resolve, they introduce significant load balancing issues due to skewed re-

sources and queries. Dynamic attributes contribute to high resource advertising cost, and their behavior is

109

attribute-type and system specific hence should not be ignored in performance studies. These findings

indicate the need for more efficient, scalable, and robust resource discovery solutions and the importance

of taking into account the specific characteristics of real-world resources and queries while designing and

analyzing such solutions. Hybrid approaches that combine the desirable features of centralized, superpeer,

and ring-based architectures have the potential to provide better solutions.

110

Chapter 5

RESQUE: MULTI-ATTRIBUTE RESOURCE AND RANGE

QUERY GENERATOR

Modeling and simulation of multi-attribute resources and range queries are essential in applica-

tion design, validation, and performance analysis of many distributed application domains. Novel mecha-

nisms are presented to generate realistic synthetic traces of multivariate static and dynamic attributes of

computing resources and multi-attribute range queries. The methodology is demonstrated using the re-

source and query traces from PlanetLab, SETI@home, EGI grid, and a distributed campus computing

facility. First, random vectors of static attributes are generated using empirical copulas that capture the

entire dependence structure of multivariate distribution of attributes. Second, time series of dynamic at-

tributes are randomly drawn from a library of multivariate time-series segments extracted from the node

traces. These segments are identified by detecting the structural changes in time series corresponding to a

selected attribute. Time series corresponding to rest of the attributes are split at the same breakpoints to

preserve their contemporaneous correlation. Finally, multi-attribute range queries are generated using a

Probabilistic Finite State Machine (PFSM) that preserves the popularity of attributes and correlations

among attribute values. Furthermore, a tool is developed to automate the synthetic resource and query

generation process and its output is validated using statistical tests.

Section 5.1 presents the introduction and motivation. Temporal behavior and correlation of re-

sources and queries are further analyzed in Section 5.2. Static attribute generation is presented in Section

5.3 while the dynamic attribute generation is presented in Section 5.4. Section 5.5 presents the multi-

attribute, range query generation. The design of the tool that generates synthetic traces of resources and

queries and its validation are presented in Section 5.6. Section 5.7 presents concluding remarks.

111

5.1 Introduction

Models characterizing resources, resource attributes, and demand on resources at compu-

ting/storage nodes and end hosts are vital for the design, validation, and performance analysis of many

distributed application domains. Such analysis is of particular interest in collaborative Peer-to-Peer (P2P)

systems [Ba12b], volunteer computing [He12], and grid [El11] and cloud computing [La12] that utilize

large numbers of heterogeneous, distributed, and dedicated/voluntary resources. For example, BOINC

[An09] is a volunteer computing platform that remotely executes jobs using idle computing resources.

BOINC schedules jobs based on the static attributes (e.g., CPU speed, total memory, and presence of

hardware accelerators and Graphic Processing Units (GPUs)) of nodes, as the jobs are expected to run for

several hours and the system is optimized for throughput. In contrast, performance, Quality of Service

(QoS), and Quality of Experience (QoE) of latency sensitive applications such as Collaborative Adaptive

Sensing of the Atmosphere (CASA) [Mc09] and community cloud computing [Br09] also depend on the

dynamic attributes (e.g., CPU utilization, free memory, and bandwidth). Collaborative P2P data fusion

provides an attractive implementation choice for real-time radar data fusion, weather monitoring, and

hazard prediction in CASA, as multiple data volumes are constantly being generated, processed, and

pushed and pulled among groups of radars, storage, and processing nodes. CASA depends on efficient

discovery and utilization of heterogeneous, dynamic, and distributed resources that are characterized by

multiple attributes. Therefore, its resource discovery and scheduling algorithms must take into account

both the static and dynamic attributes of resources to ensure that data are generated, processed, and deliv-

ered to end users within 30 seconds. Dynamic attributes are also becoming important in cloud computing

while scheduling a Virtual Machine (VM) based on the resources utilized by other VMs running on a giv-

en physical node. For example, current service-level agreements in Infrastructure-as-a-Service (IaaS)

cloud computing environments are typically based on the static attributes such as the number of allocated

CPU cores and memory. However, QoS perceived by a VM is affected by the behavior of other VMs run-

ning on the same node. For example, because of the shared I/O busses, disk access and bursty traffic pat-

terns of VMs affect each other’s QoS. Hence, it is becoming important to take into account such dynamic

112

attributes to take better scheduling decisions. Community cloud computing [Br09] aggregates residual

computing resources in Internet end hosts to build virtual cloud systems. Given that such systems rely on

residual resources, respective resource discovery systems and job schedulers must take into account the

dynamic attributes of hosts while scheduling latency sensitive, cloud-based applications (e.g., collabora-

tion tools, multimedia applications, and scientific algorithms) to enhance both the QoS and QoE. There-

fore, understanding the characteristics and modeling of large-scale computing platforms and nodes are

essential to correctly design, validate, and analyze the performance of resource discovery solutions, job

schedulers, and distributed applications.

Formal characterization of nodes and queries has received attention only recently [Ba11e, Ba12f,

He12]. Characteristics of static attributes of nodes from several BOINC deployments are presented in

[He12]. In Chapter 4, we presented the characteristics of both the static and dynamic resources and que-

ries from four real-world systems. It was observed that the attributes of both the resources and queries are

highly skewed [Ba11d, Ba12d] and correlated [Ba11e, Ba12f, He12]. Attribute values have different mar-

ginal distributions and change at different rates [Ba11e, Ba12f]. Queries are less specific where each que-

ry tends to specify only a small subset of the available attributes and large ranges of attribute values

[Ba11e, Ba12f]. Based on the analysis of static attributes, [He12] developed a forecasting model for In-

ternet hosts while taking into account their marginal distributions, linear correlations, and long-term evo-

lution of static attributes (e.g., how the ratio between single-core to multi-core processors changes with

time). While the static attributes are useful in evaluating systems such as BOINC, they are insufficient for

evaluating latency sensitive systems that are affected by dynamic attributes and their temporal changes.

Several other attempts to model computing resources are presented in [Ke04, Lu03, Su08a]; however,

they also do not capture the behavior of dynamic attributes. In the absence of real-world traces and tools

to generate large synthetic resource and query datasets, existing performance studies have relied on many

simplifying assumptions such as independent and identically distributed (i.i.d.) attributes, uniform or

Zipf’s distribution of all the resources/queries, and queries specifying a large number of attributes and a

small range of attribute values. For example, [Bh04, Co09b] generated static attribute values based on a

113

set of independent uniform distributions while [Sh07] used a set of independent bounded Pareto distribu-

tions. Moreover, [Al08, Ca04] generated a large set of nodes by replicating small datasets from compu-

ting clusters. Furthermore, multi-attribute range queries were formulated under the assumption that a que-

ry must specify all or a large subset of attributes used to describe a resource. Moreover, both the queries

and attribute value ranges specified in a query were generated based on independent uniform [Ca04,

Co09b, Sh07] or Zipf’s distributions [Al08, Bh04]. Therefore, it is important to develop new tools to gen-

erate large synthetic datasets while preserving the statistical properties of real-world systems.

To evaluate applications and protocols for scalability beyond what is available, it becomes neces-

sary to consider node configurations with higher number of nodes and attributes. Yet, it is still necessary

to adhere to the statistical characteristics, dependencies, and temporal patterns exhibited by real-world

systems. It is impractical to gather large traces with sufficient resolution and duration even for existing

systems. Therefore, our idea is to gather representative information about the available traces and gener-

ate synthetic trace arrays of larger dimensionality in number and time, to meet the required goals.

We present novel mechanisms to generate random traces of nodes with both static and dynamic

attributes and multi-attribute range queries. Such traces are useful in evaluating the performance of large-

scale resource discovery solutions [Ba12a, Ba12c], job schedules, and distributed applications. The pre-

sented methodology is applicable to any multivariate resource and/or query dataset, and the four real-

world traces used in Chapter 4 are utilized as examples. First, temporal behavior and correlation of nodes

and queries are further analyzed. Our findings show that attributes of resources exhibit complex correla-

tion patterns and time series of dynamic attributes are nonstationary. These characteristics make it non-

trivial to generate random node and query traces with multiple attributes. Second, vectors of static attrib-

utes are generated using empirical copulas that capture the entire dependence structure of multivariate

distribution of attributes. Third, time series of dynamic attributes are randomly drawn from a library of

multivariate-time-series segments extracted from node traces. These segments are determined by identify-

ing the structural changes in time series corresponding to a selected attribute. We present two mechanisms

to identify structural changes in time series. Time series corresponding to rest of the attributes are split at

114

(a) (b)

(c) (d)

Figure 5.1 – Cumulative distributions of dynamic attributes of PlanetLab nodes sampled at different

time instances: (a) Free CPU; (b) Free memory; (c) One minute CPU load; (d) Transmis-

sion rate. Starting time t0 = 2011/02/01 5:00 UTC.

the same breakpoints and randomly drawn together to preserve their contemporaneous correlation. Final-

ly, multi-attribute range queries are generated using a PFSM that preserves the popularity of attributes and

correlations among attribute values. Furthermore, a tool is developed to automate the synthetic data gen-

eration process and its output is validated using statistical tests. Both the tool and preprocessed datasets

are publicly available at [CNRL]. As the tool is independent of the set of attributes and datasets, users

may also use their own datasets as the basis to generate synthetic traces.

5.2 Characteristics of Resources and Queries

We extend the analysis in Chapter 4 by further analyzing several characteristics of resources and

queries that are important while generating synthetic traces. Figure 5.1 shows the cumulative distributions

115

(a) (b)

(c)

Figure 5.2 – Cumulative distributions of dynamic attributes of CSU nodes sampled at different time

instances: (a) Free CPU; (b) Free memory; (c) One minute CPU load. Starting time t0 =

2011/12/01 7:00 UTC.

(CDFs) of four dynamic attributes of PlanetLab nodes at different time instances. It can be seen that CDFs

of different samples (taken at different time instances relative to a given starting time t0) are somewhat

similar. Similar behavior is also observed (see Fig. 5.2) for the nodes within our campus (CSU dataset).

Therefore, distributions derived from a particular sample of PlanetLab and CSU nodes remain valid for

several days to weeks. However, as seen in Fig. 5.3, distributions of grid computing nodes (GCO dataset)

show a much wider variation across samples. This could be due to the recurring busy and idle periods that

are known to occur in grid computing systems [Io10]. Our goal is to generate nodes with similar overall

characteristics to evaluate the impact of dynamic attributes over a moderate time span ranging from sev-

eral minutes to a few weeks. Therefore, long-term trends (ranging from weeks to years) are not consid-

ered.

116

(a) (b)

(c) (d)

Figure 5.3 – Cumulative distributions of dynamic attributes of GCO grid computing nodes sampled at

different time instances: (a) Free CPU; (b) Free memory; (c) One minute CPU load; (d)

Transmission rate. Starting time t0 = 2012/04/23 00:00 UTC.

Figure 5.4 shows time series corresponding to dynamic attributes of a selected PlanetLab node. It

can be seen that the attribute values tend to change together with time, e.g., CPUFree reduces while

1MinLoad increases, and TxRate and RxRate change together. This behavior is called contemporaneous

correlation [Wo04] where observations of one time series are correlated with the observations of another

time series during the same time interval. Similar behavior is also observed for dynamic attributes of

GCO and CSU nodes (see Fig. 5.5 and 5.6). Note the distinct pattern in memory free (MemFree) time

series of PlanetLab node and its structural changes. Similar patterns were observed in more than 30% of

the PlanetLab nodes. GCO node in Fig. 5.5 also shows periods of high and moderate memory consump-

tion. Nodes in CSU dataset were mostly idle (Section 4.4.1) and did not exhibit specific temporal patterns

117

Figure 5.4 – Time series of dynamic attributes of a selected PlanetLab node. Starting time t0 =
2011/02/01 5:00 UTC.

Table 5.1 – Normalized frequency of occurrence of attribute pairs in PlanetLab queries.

CPUSpeed CPUFree MemSize MemFree DiskFree 1MinLoad

CPUFree 0.061

MemSize 0.058 0.053

MemFree 0.059 0.080 0.030

DiskFree 0.060 0.098 0.058 0.099

1MinLoad 0 0 0 0.003 0.027

TxRate 0.059 0.085 0.053 0.075 0.084 0

except for some occasional variability in MemFree. Such temporal patterns in attributes also need to be

preserved to accurately represent the behavior of a node.

Table 5.1 lists the frequency of occurrences of attribute pairs in PlanetLab queries. Attribute pairs

such as (MemFree, CPUFree), (DiskFree, CPUFree), (DiskFree, MemFree), (TxRate, CPUFree), and

(TxRate, DiskFree) appear more frequently than other possible attribute pairs. This is not surprising as

these attribute pairs tend to characterize the performance and free resources of a node. Similarly, certain

118

Figure 5.5 – Time series of dynamic attributes of a selected GCO node. Starting time t0 = 2012/04/23
0:00 UTC.

combinations of three, four, five, and six attributes appeared frequently. For example, (CPUSpeed,

CPUFree, MemSize, MemFree, DiskFree, and TxRate) appeared in 6% of the queries. Therefore, while

generating multi-attribute range queries, we need to take into account the popularity of individual attrib-

utes (Fig. 4.13), attribute value ranges (Fig. 4.15), number of resources requested by a query (Fig. 4.12),

and attributes that frequently appear together.

5.2 Generating Random Vectors of Static Attributes

Because of the strong correlation between some of the attribute pairs and specific structure in

time series, attribute values of random nodes cannot be drawn from independent distributions. Therefore,

we have to rely on the joint distribution of attributes. Static and dynamic attributes are handled separately,

119

Figure 5.6 – Time series of dynamic attributes of a selected CSU node. Starting time t0 = 2011/12/01

7:00 UTC.

as the time series of dynamic attributes are nonstationary and have specific temporal structures, as exem-

plified by Figures 5.4 and 5.5.

As the correlation between attribute pairs is nonlinear (see Tables 4.5 to 4.8) and complex (see

Fig. 4.11), it is insufficient to use the matrix of Pearson’s correlation coefficients to establish the depend-

ence among random variables. Alternatively, copulas [Ne06] can be used to capture the entire dependence

structure of multivariate distributions. Copulas are functions that couple the multivariate distribution

functions to their marginal distributions. A copula C(u) is a multivariate joint distribution defined on the

d-dimensional unit cube [0, 1]
d
, (u1, …, un)  [0, 1]

d
, such that every marginal distribution ui is uniform

on the interval [0, 1]. Let F denote the d-dimensional distribution function (CDF) with marginals F1, …,

Fd. Then a copula C exist such that for all real u = (u1, …, ud):

 )(,),()(11 dd uFuFCuF  (5.1)

Several well-known copula families are available, e.g., Gaussian and Archimedean copulas

[Ne06]. However, these copulas tend to be symmetric along the axis of correlation. Alternatively, empiri-

cal copulas are useful while analyzing data with complex and/or unknown underlying distributions [Ne06,

120

St09]. Empirical copula also supports any number of dimensions and its bivariate frequency function is

given by:

n

yyxxyx

n

j

n

i
C

ji

n

)()(and s.t.),(pairs of No
,











 (5.2)

where 1 ≤ i, j ≤ n, x(i) is the ordered statistics of x, and n is the number of data points. It is proven that the

empirical copula converges uniformly to the underlying copula [De78]. After deriving the copula, de-

pendent random numbers can be generated. Those numbers can be transformed into original marginal dis-

tributions using inverse transforms.

We use empirical copulas to generate vectors of static attributes, as the joint distribution is un-

known and complex. Use of empirical copulas enables us to use the empirical data directly while general-

izing our approach to any multivariate dataset regardless of its dependence structure. In contrast, [He12]

manually fitted probability distributions to attributes in each dataset and used the matrix of Pearson’s cor-

relation coefficients to establish the dependency between them. Moreover, [He12] had to sub-sample data,

round attribute values (e.g., rounding MemSize to the nearest power of two), and discard samples (e.g.,

discarding NumCores values that are not powers of two) to obtain a good fit to a known probability dis-

tribution.

First, all the active nodes at a given time instance is sampled for their static attributes. Second,

marginal distribution of each attribute is then transformed to a uniform random variable ~U(0, 1), e.g.,

using Kernel smoothing density estimation. Third, empirical copula is calculated using the multivariate

version of (5.2). Fourth, dependent random numbers are then generated from the multivariate copula. Fi-

nally, random numbers are transformed back to desired marginal distributions using inverse transfor-

mation techniques, e.g., using estimated empirical distribution functions. See [St09] for additional details.

If the attribute value is continuous, linear interpolation can be used to generate in-between values while

performing the inverse transformation. Empirical distribution functions can be used for discrete valued

attributes (e.g., NumCores). Figures 5.7 and 5.8(a) show the actual and generated data for PlanetLab

nodes obtained using the pwlCopula [St09] MATLAB tool. As a comparison, data generated using the

121

Figure 5.7 – Number of CPU cores vs. memory size of 500 random nodes generated using empirical

copula. Original data based on a random sample of 100 PlanetLab nodes.

(a) (b)

Figure 5.8 – Number of CPU cores vs. memory size of 500 random nodes generated using: (a) Empiri-

cal copula; (b) Matrix of Pearson’s correlation coefficients. Data in unit scale. Original da-

ta based on a random sample of 100 PlanetLab nodes. Circles indicate the actual data
while crosses indicate the generated data.

matrix of Pearson’s correlation coefficients is also shown in Fig. 5.8(b). It can be seen that data generated

using copula closely match the actual data. Figure 5.9 also shows the generated and actual data are also in

good agreement for GCO and CSU datasets. We will statistically quantify the similarity between actual

and generated attributes in Section 5.5. If only the instantaneous values of dynamic attributes are of inter-

est, empirical copula can be simultaneously applied to both static and dynamic attributes sampled at a

given time instance.

122

(a) (b)

Figure 5.9 – Number of CPU cores vs. memory size of 500 random nodes generated by applying em-
pirical copula to: (a) GCO dataset; (b) CSU dataset.

5.3 Generating Dynamic Attributes

Time varying dynamic attribute values cannot be drawn randomly from marginal distributions as

the time series of some of the dynamic attributes have a specific structure (e.g., MemFree in Fig. 5.4 and

5.5). Failing to capture such behavior could result in over or underestimating the number of changes in

attribute values over a given period. Moreover, the contemporaneous correlation between two time series

needs to be preserved. Therefore, a time series of a dynamic attribute cannot be generated independently

from time series of rest of the attributes. Furthermore, many structural changes in these multivariate time

series make it nontrivial to model them using regression. Though it may be possible to fit a model for

piecewise stationary time series (e.g., [El11] presented a method for a single time series), such an ap-

proach provides only a minor enhancement as our goal is not to predict the future behavior of nodes but to

generate nodes with similar overall characteristics. Moreover, the model will not be valid over long time

durations and will be specific to the mixture of applications executed in that node. Instead, it is more use-

ful to come up with a general mechanism that can be applied across multiple computing systems and dif-

ferent mixtures of applications and hardware resources. Therefore, we build a library of time-series seg-

ments by identifying specific temporal patterns exhibited by dynamic attributes. This is sufficient, as our

goal is to preserve the temporal variation of an attribute and its contemporaneous correlation.

123

(a)

(b)

(c)

Figure 5.10 – Autocorrelation of attributes of a selected node: (a) PlanetLab; (b) GCO; (c) CSU.

We pick one of the time series to identify the structural changes, as it is nontrivial to use all the

attributes simultaneously to identify structural changes. To determine a time series to use as the basis for

identifying the structural changes we analyzed their autocorrelations. Figure 5.10 shows the autocorrela-

tion of dynamic attributes of a selected node. MemFree and DiskFree time series show a much higher

autocorrelation. High autocorrelation in MemFree is due to its specific structure. Moreover, some periodic

behavior can be observed in Fig. 5.10 (a) and (b). DiskFree does not change drastically within a moderate

124

time span, and consequently the autocorrelation tends to be high. Autocorrelation of other attributes is

lower as they exhibit random variations. Therefore, we selected MemFree as the attribute based on which

to partition the time series due to its distinguishable pattern. Next, we present two mechanisms to split a

time series based on its structural changes. In the first approach, we check for the changes in regression

coefficients while the second approach uses a derivative filter.

5.3.1 Splitting Time Series Based on Changes in Regression Coefficients

Consider the standard linear regression model:

niuxy ii
T
ii ,,1  (5.3)

where at time i, yi is the dependent variable, xi is the vector of regressors, i is the vector of regression

coefficients, and ui is an i.i.d. error term. We assume that the time series has m ≥ 0 structural changes

where the regression coefficients change from one stable segment/region to another. Then (5.3) can be

rewritten as:

1,,.1,,,11   mjiiiuxy jjij
T
ii  (5.4)

where j is the segment number (there are m + 1 segments) and i is the sample index within the j-th seg-

ment. Then j ≠ j+1, when j ≤ m. We determine the structural changes by testing the null hypothesis that

regression coefficients remain constant over a given segment (i.e., 10 1
: 


jj iiH ). Optimum number

of structural changes m and their positions (a.k.a. breakpoints) can be determined using the strucchange

package for R [Ze03], which uses a dynamic programming algorithm to compute the breakpoint estimates

that are global minimizers of the residual sum of squares. Figure 5.11 illustrates the breakpoints obtained

for the MemFree time series of PlanetLab, GCO, and CSU nodes. While the structural changes of the

GCO and CSU nodes are properly captured, structural changes of the PlanetLab node is not so accurate.

The regression coefficients are sensitive to gradual changes in the time series, as the method is designed

to capture level shifts (also called steps and edges) in the time series. Consequently, this method captures

125

(a)

(b)

(c)

Figure 5.11 – Breakpoints identified for free memory time series of a node using the test for regression
coefficients: (a) PlanetLab; (b) GCO; (c) CSU. Scattered lines indicate the breakpoints.

both gradual (e.g., the second breakpoint in Fig. 5.11(a)) and sharp (breakpoints in Fig. 5.11 (b) and (c))

level shifts in a time series. Next, we present a derivative filter that overcomes this problem.

5.3.2 Splitting Time Series Using a Derivative Filter

Derivative filters [Ma01] can be used to detect rapid changes in a time series. However, they are

highly sensitivity to noise. Therefore, we first smooth the MemFree time series by applying a Finite Im-

pulse Response (FIR) filter (see Fig. 5.12(b)). Coefficients of the FIR filter are set using a Hamming win-

dow [Bl58] because of its ability to minimize the maximum (nearest) side lobe and its high resolution.

Then the derivative filter is applied. The absolute values of the resulting time series are shown in Fig.

126

(a)

(b)

(c)

(d)

Figure 5.12 – Breakpoints identification using the derivative filter: (a) Original time series; (b) Time se-
ries after applying the FIR filter (window size 20); (c) After applying the derivative filter

to time series in (b); (d) Time series after applying two sides of the FIR filter window sep-

arately and then taking the difference between the resulting time series. Scattered line in-
dicates the threshold.

5.12(c). While the peaks are prominent, their positions are somewhat shifted from the original time series

due to smoothing. This problem can be overcome by first applying the two-halves of the Hamming

window separately and then taking the difference between the two smoothed time series. Figure 12(d)

shows the resulting time series, where peaks align with the major structural changes in the original time

series and are much sharper than the peaks in Fig. 12(c). Major structural changes in the time series can

be then detected by applying a suitable threshold as shown in Fig. 5.12 (d). We empirically determined

the window size and threshold for each dataset and the values are listed in Table 5.2. Structural changes

detected by applying the two-halve-window-based derivative filter are shown in Fig. 5.13. It can be seen

that the filter was able to capture the structural changes in PlanetLab and CSU datasets better than the

127

(a)

(b)

(c)

Figure 5.13 – Breakpoints identified for memory free time series of a node using the proposed two-
halve-window-based derivative filter: (a) PlanetLab; (b) GCO; (c) CSU.

Table 5.2 – Windows sizes and thresholds used while splitting time series.

 PlanetLab GCO CSU

Window size (no samples) 19 19 19

Threshold 20% 1 GB 20%

Minimum gap between two breakpoints 12 hours 12 hours 12 hours

regression-coefficients-based method, which was more suitable for the time series from the GCO dataset

(Fig. 5.11(b)). However, filter-based method requires manually determining a suitable window size and a

threshold, while the solution based on the regression coefficients can calculate the optimum number of

breakpoints m automatically. Therefore, depending on the structural properties of a time series and appli-

cation requirements different methods may be used to capture their structural changes.

128

5.3.3 Generating Dynamic Attributes Using the Library of Time Series Segments

Once the structural changes in the MemFree time series are identified, time series corresponding

to rest of the dynamic attributes are split at the same breakpoints. Resulting multivariate time-series seg-

ments are then collected to form a library. If desired, a stationary time series can also be split after a spe-

cific duration to increase the number of segments in the library. However, one needs to be careful not to

introduce unnecessary variability by splitting the time series after a short duration as time series are con-

catenated randomly during the time series generation.

Dynamic attribute values are generated by randomly drawing multivariate time-series segments

from the library. Longer sequences are generated by concatenating one randomly drawn segment to an-

other. Breaking all the time series of a node at the same point and replaying them together preserve the

contemporaneous correlation among attributes. Randomly mixing time-series segments corresponding to

busy and idle periods is acceptable in systems such as PlanetLab and CSU where distribution of attributes

tend to be stable over several hours to a few weeks. However, such random mixing is not suitable in grid

and cloud computing where the entire system or a large fraction of it oscillates between busy and idle pe-

riods (Fig. 4.5). In practice, one may want to build a synthetic trace where the system is busy during given

time ranges, moderately busy in another set of time ranges, and idle in the remaining times. For example,

one may want to build a traces where the system is idle within the first 6 hours, it then remain busy during

the next 12 hours (e.g., due to arrival of a bag of tasks), and then becomes moderately busy for another 6

hours. Such traces are useful in determining the adaptability of resource discovery solutions [Ba12c].

Such constraints can be accomplished by grouping the time-series segments in the library according to a

given attribute. For example, based on the average CPUFree, MemFree, and/or TxRate values time-series

segments can be labeled as idle or busy. Depending on the user requirements, time segments can be ran-

domly drawn from only the subset of segments that are labeled as idle or busy. Moderate loads can be

generated by randomly drawing time-series segments marked as idle or busy (if the number of idle and

busy samples is similar, otherwise weights may be adjusted to get a similar number of samples from each

group).

129

As the static and dynamic attributes are correlated, it is essential to establish the dependency be-

tween them. For example, a node with a large NumCores typically has higher CPUFree values (Fig.

4.11). Therefore, time-series segments in the library are grouped according to the NumCores of the corre-

sponding node. Consequently, given the NumCores generated from empirical copula, the dependency be-

tween static and dynamic attributes can be established by randomly drawing time-series segments from

the corresponding group. This is sufficient to establish the correlation, as correlations between other static

and dynamic attributes are not strong (e.g., between CPUSpeed and MemFree, see Table 4.5).

5.4 Generating Multi-Attribute Range Queries

We use the query model described in Section 4.2 (Eq. 4.3). No noticeable correlation was ob-

served between the number of resources (mq) requested by a query and attributes or ranges of attribute

values [li, ui] specified in a query. This enables us to independently generate mq and the attributes in a

query. Therefore, mq is generated using the empirical distribution derived from PlanetLab (SWORD) que-

ries. However, it is not straightforward to generate the attributes and ranges of attribute values in a query.

Suppose following three multi-attribute queries are given as the basis to generate synthetic queries (attrib-

ute values are ignored to simplify the discussion):

Q1 = {CPUSpeed}

Q2 = {MemFree, 1MinLoad}

Q3 = {MemFree, CPUSpeed, TxRate}

Suppose Q2 appeared twice and Q1 and Q3 each appeared once. Large synthetic query traces can be gen-

erated using the empirical distributions derived from the number of attributes in a query and popularity of

attributes, and conditional probabilities of attribute co-occurrences. It is relatively straightforward to de-

rive the empirical distributions for the number of attributes in a query (e.g., single-attribute queries occurs

with probability ¼, two-attribute queries with probability ½, and so on) and popularity of attributes (e.g.,

MemFree occur in 75% of the queries). Moreover, it is necessary to capture conditional probabilities such

as P(1MinLoad | MemFree) and P(TxRate | MemFree, CPUSpeed). However, capturing the conditional

130

probabilities of co-occurrence of attributes becomes difficult as the number of attributes in a query and

possible ranges of attribute values increase. For example, 7% of the PlanetLab queries specified more

than five attributes, see Fig. 4.12. We overcome these issues by building a Probabilistic Finite State Ma-

chine (PFSM) while interpreting attributes as a set of states and attribute co-occurrences as state transi-

tions weighted by their frequency of occurrences.

 We selected a PFSM because of its ability to capture the structure in a given set of queries and

assign probabilities to that structure. It is also proven that a PFSM can represent the same distributions as

those modeled by the hidden Markov model [Vi05]. Thus, a PFSM can capture the distributions of num-

ber of attributes in a query and popularity of attributes, as well as conditional probabilities of attributes

co-occurrences. Probabilities assigned to state transitions allow us to describe the behavior of a PFSM as

a random process, which can be used to generate a random query. PFSMs have been applied to generate

random workloads in web-based applications [Ba11b] where the user behavior is modeled as transitions

among a set of states such as login into a web page, viewing the calendar, adding a new entry to the cal-

endar, and logout. Similarly, attributes in a query can be represented as a set of states and their co-

occurrences can be modeled as state transitions. However, multi-attribute queries do not have well de-

fined START and END states as web-based applications (e.g., login and logout). Therefore, we assumed

virtual START and END states, and then interpreted the first attribute specified in a query as a transition

from the START state and the last attribute in the query as a transition into the END state. Figure 5.14 de-

picts the corresponding PFSM for the above three queries. Following distinct queries can be generated

using this PFSM:

q1 = {CPUSpeed} 1/8

q2 = {CPUSpeed, TxRate} 1/8

q3 = {MemFree, 1MinLoad} 1/2

q4 = {MemFree, CPUSpeed} 1/8

q5 = {MemFree, CPUSpeed, TxRate} 1/8

131

START END

CPUSpeed TxRate

MemFree 1MinLoad
3 2

2

1

1

1

1
1

Figure 5.14 – Probabilistic finite state machine for queries Q1, Q2, and Q3.

2

1

END

CPUSpeed TxRate

MemFree

1MinLoad

START

1

1

2

2

1

1

1

Figure 5.15 – Probabilistic finite state machine for queries when attributes in Q2 is swapped.

Their probability of occurrences are indicated on the right. PFSM generates two queries q2 and q4 that

were not among the original queries. There queries are also valid as there is a possibility of specifying

CPUSpeed with TxRate and MemFree. Therefore, by applying a PFSM we can also generate many que-

ries that are likely to occur in practice. Ranges of attribute values defined in queries can be represented as

a set of sub-states. For example, two queries with CPUSpeed ∈ [1.5, 3.0] and CPUSpeed ∈ [2.0, MAX]

can be defined as two sub-states within the main state CPUSpeed.

Suppose the attributes in the original query Q2 is swapped as Q2 = {1MinLoad, MemFree}. This

is possible as it is not necessary to specify attributes in a particular order. Then the corresponding PFSM

is given in Fig. 5.15. This PFSM is slightly different from Fig. 5.14 and produces the following set of dis-

tinct queries:

q1 = {CPUSpeed} 1/8

q2 = {CPUSpeed, TxRate} 1/8

q3 = {MemFree, 1MinLoad} 1/3

q4 = {MemFree, CPUSpeed} 1/24

q5 = {MemFree, CPUSpeed, TxRate} 1/24

132

2

1

END

CPUSpeed TxRate

MemFree/

1MinLoad

START

1

1

2
2

1

1

1

MemFree

Figure 5.16 – Probabilistic finite state machine modified to avoid invalid query q6 in Fig. 5.15.

q6 = {MemFree} 1/6

q7 = {1MinLoad, MemFree, CPUSpeed} 1/12

q8 = {1MinLoad, MemFree, CPUSpeed, TxRate} 1/12

It produces three more queries q6 to q8 in addition to the ones generated by the PFSM in Fig. 5.14. This is

a consequence of not having well defined START and END states in queries. Therefore, resulting PFSM is

sensitive to how the states are coded. While this could result in generation of queries with invalid combi-

nations of attributes, it also offers the opportunity to generate different mixtures of queries by using dif-

ferent coding conventions. For example, in addition to coding attributes based on the order they appear in

queries, attributes in a query may be shuffled randomly or sorted in the ascending or descending order

before building the PFSM. The problem of generating invalid queries can be handled by either ignoring

those queries ones they are generated or modifying the PFSM to prevent the generation of such queries.

Standard practice of preventing such illegal states is to break a conflicting state(s) into multiple states.

Suppose it is invalid to generate q6 with only MemFree. Then the state transition from MemFree to END

can be removed by representing MemFree as two different states (one that has a transition from

1MinLoad and another from START). Then the updated PFSM based on Fig. 5.15 is given in Fig. 5.16

where MemFree is broken into two states as MemFree and MemFree
/
. Similarly, suppose q8 is invalid.

Even then, MemFree is the common state in original queries Q2 and Q3 that lead to the generation of q8.

Hence, by breaking MemFree into two states as in Fig. 5.16 q8 can be also avoided. We may prevent the

generation of new query combinations (which are valid) while trying to avoid one of the invalid queries

(e.g., while trying to avoid q6 we also prevent the generation of q8). This can be overcome by reorganizing

133

Figure 5.17 – Screenshot of ResQue’s multi-attribute resource generator.

the state diagram such that only the invalid state is removed while preserving other potential states. How-

ever, in practice, it would be difficult to modify a large state diagram manually and identify all possible

valid state transitions. Hence, for practical reasons, it may be easier to discard invalid queries after they

are generated.

5.5 ResQue – Resource and Query Generator

A tool named ResQue (Resource and Query generator) has been developed to automate the syn-

thetic resource and query generation process. ResQue can generate a set of random nodes/resources with a

subset of static and dynamic attributes (see Fig. 5.17). Dynamic attribute values can be generated up to a

given time (typically between a few minutes to weeks), and the sampling interval must be an integer mul-

tiply of sampling interval of data used as the basis. Moreover, if desired, users can also specify during

which time intervals the generated traces should reflect a system that is busy, moderately busy, or idle.

Figure 5.18 illustrates the process of generating resources by combining the empirical-copula-based static

134

Transform to uniform CDF

Calculate empirical copula

Generate random numbers

Inverse CDF transformation

Build library of time
series segments

Library of
time series

Select attributes

Node data

C
o

p
u

la
 g

en
er

at
io

n

Draw random
samples

Static & instantaneous
dynamic attributes

Time series of dynamic
attributes

Time series of
dynamic attributes

Random vectors

NumCores

Figure 5.18 – Flowchart of random resource generation.

attribute generation and time-series-library-based dynamic attribute generation. First, all the active nodes

at a given time instance is sampled for their static and instantaneous values of dynamic attributes (option-

al). The instantaneous values of dynamic attributes are supported as they are useful in evaluating certain

scheduling algorithms. Second, marginal distribution of each attribute is then transformed to a uniform

random variable ~U(0, 1), e.g., using Kernel smoothing density estimation. Third, empirical copula is cal-

culated. Fourth, dependent random numbers are then generated from the multivariate copula. Finally, ran-

dom numbers are transformed back to desired marginal distributions using inverse transformation tech-

niques, e.g., using estimated empirical distribution functions. If the attribute value is continuous, linear

interpolation may be used to generate in-between values while performing the inverse transformation.

Empirical distribution functions may be used for discrete valued attributes. NumCores from copula is feed

to the random sampling module to establish the dependence between static and dynamic attributes as the

correlation between NumCores and MemFree was high (ResQue also supports other attributes such as

CPUSpeed and MemSize).

Screenshot of the query generator is shown in Fig. 5.19. Number of resources requested by a que-

ry mq (see Section 4.2) are generated independent of the attributes in a query as they are not correlated. mq

135

Figure 5.19 – Screenshot of ResQue’s multi-attribute range query generator.

can be generated based on the empirical distribution extracted from an actual query dataset or using a set

of random number generators, e.g., uniform, Gaussian, exponential, etc. Multi-attribute range queries are

generated using the PFSM, which takes a set of state transitions and their frequencies as the input. Users

may select which subset of the states to use while generating the queries. Both ResQue and the four pre-

processed datasets that are fed into the tool as the basis to generate data are publicly available at [CNRL].

These datasets include additional attributes such as 5MinLoad, 15MinLoad, and response time. As our

approach is independent of the dataset, users may use more recent datasets or use their own datasets ex-

tracted from other systems. Multi-attribute time series library may be built using the two methods de-

scribed in Section 5.3 or users may use their own techniques. Several utilities are also provided to simpli-

fy the pre-processing of new datasets.

136

5.6 Validation

Statistical properties of synthetic data generated by ResQue are validated as follows. Attribute

values of PlanetLab, GCO, and CSU nodes that were active over a week is used as the input to the tool.

We generated 5,000 random nodes with static and dynamic attributes over a two-week period. While

transforming the random numbers generated using copula to original distributions, linear interpolation

was used for CPUSpeed and MemSize, and empirical distribution was used for NumCores. Stationary

time series are split every 24 hours to create more segments. However, it did not significantly vary the

distribution of number of attribute changes over a given time interval. To prevent the addition of many

small segments to the time-series library, gap between two structural changes is set to at least 6 hours

while using both the regression-coefficients-based (strucchange package) and derivative-filter-based

methods.

Figure 5.20 plots the distribution of a selected set of attributes from PlanetLab nodes and the at-

tributes generated using ResQue. It can be seen that the attributes of generated nodes closely match the

distributions observed in Section 5.2. Mean () and standard deviation () of CPUSpeed (included in the

figure) derived using copula is similar to the actual data. Even for the CPUFree, MemFree, and TxRate

error in  is 3-18% which is expected as the distribution of time series varies between samples as seen in

Fig. 5.1. The Kolmogorov-Smirnov test (KS-test) with a significance level of 0.05 further confirmed that

the synthetic data satisfy the distributions of original data. In addition to meeting  and , synthetic traces

also mimic the true variations/patterns inherent in time series. While the derivative-filter-based method

was more accurate in capturing the structural changes in PlanetLab nodes than the regression-coefficients-

based method, no significant difference was observed between the distributions of instantaneous attribute

values (see Fig. 5.20 and 5.21). Figure 5.22 shows a similar behavior for CSU dataset. CPUSpeed of gen-

erated SETI@home nodes is shown in Fig. 5.23.

Though GCO nodes were mostly busy, Fig. 4.5(b) and 5.3 also show a wide variation in attribute

values with time. Therefore, attribute value distributions that are consistent with the actual data cannot be

137

(a) (b)

(c) (d)

Figure 5.20 – Comparison of attributes of PlanetLab nodes and nodes generated using ResQue: (a) CPU

speed; (b) Free CPU; (C) Free memory; (d) Transmission rate. Time series split using the

regression-coefficients-based method. Starting time t0 = 2011/02/01 5:00 UTC. H – Hours

and D – Days.

(a) (b)

Figure 5.21 – Comparison of dynamic attributes of PlanetLab nodes and nodes generated using the de-

rivative filter-based method: (a) Free CPU; (b) Free memory. Starting time t0 =
2011/02/01 5:00 UTC.

138

(a) (b)

(c)

Figure 5.22 – Comparison of attributes of CSU nodes and nodes generated using ResQue: (a) CPU

speed; (b) Free CPU; (C) Free memory. Time series split using the regression-coefficients-

based method. Starting time t0 = 2011/12/01 7:00 UTC.

Figure 5.23 – Comparison of CPUSpeed of SETI@home nodes and nodes generated using ResQue.

139

(a) (b)

Figure 5.24 – Comparison of dynamic attributes of GCO nodes and nodes generated using ResQue: (a)
Free CPU; (b) Free memory. Time series split using the regression-coefficients-based

method. Starting time t0 = 2012/04/23 00:00 UTC.

Figure 5.25 – Generation of resource traces with predefined idle and busy periods. 0-12 hours – idle, 12-

36 hours – busy, and 36-48 hours – moderately busy.

generated by randomly mixing time-series segments (see Fig. 5.24). As the nodes were mostly busy,

CDFs of generated dynamic attributes (sampled at different time instances) were somewhat similar to the

actual attribute distributions sampled at busy times, e.g., after 12 hours. This problem can be overcome by

explicitly defining busy, moderately busy, and idle periods. For example, Fig. 5.25 shows the average

CPUFree of a system that is defined to be idle within the first 12 hours, busy during next 24 hours, and

moderately busy during the remaining 12 hours. For comparison, results from random mixing of time-

series segments are also presented. Therefore, ResQue can also generate node traces with different load

distributions.

 Using PlanetLab query data as the basis 100,000 multi-attribute range queries were also generat-

ed. In addition to coding attributes based on the order they appear in queries, attributes in a query were

140

Figure 5.26 – Comparison of number attributes in a query under different coding conventions.

Figure 5.27 – Popularity of attributes generated using ResQue.

also shuffled randomly or sorted in the ascending or descending order before building the PFSM. Figures

5.26 and 5.27 show that the distribution of number of attributes in a query and popularity of attributes

also are in good agreement with the original queries. Distributions of number of attributes in a query satis-

fied the KS-test with a significance level of 0.05. Table 5.3 shows that the frequency of occurrences of

attribute pairs is similar to the original queries in Table 5.1 (differences between normalized frequencies

of attribute pairs range from 0.0 to 0.023). Differences between normalized frequencies among different

coding conventions range from 0.0 to 0.019. Therefore, different coding conventions generate somewhat

different query combinations. These findings indicate ResQue can generate static and dynamic attributes

141

Table 5.3 – Normalized frequency of occurrence of attribute pairs in queries generated using ResQue.

(a) – Order in attributes is same as they appear in queries.

CPUSpeed CPUFree MemSize MemFree DiskFree 1MinLoad

CPUFree 0.062

MemSize 0.052 0.054

MemFree 0.044 0.064 0.038

DiskFree 0.061 0.098 0.058 0.084

1MinLoad 0.008 0.008 0.009 0.004 0.036

TxRate 0.057 0.087 0.054 0.056 0.085 0.007

(b) – Attributes in queries are sorted ascendingly.

CPUSpeed CPUFree MemSize MemFree DiskFree 1MinLoad

CPUFree 0.063

MemSize 0.043 0.047

MemFree 0.055 0.083 0.053

DiskFree 0.059 0.097 0.060 0.102

1MinLoad 0 0 0 0.003 0.027

TxRate 0.038 0.064 0.041 0.058 0.071 0.010

(c) – Attributes in queries are sorted descendingly.

CPUSpeed CPUFree MemSize MemFree DiskFree 1MinLoad

CPUFree 0.063

MemSize 0.043 0.046

MemFree 0.055 0.082 0.051

DiskFree 0.059 0.097 0.059 0.101

1MinLoad 0 0 0 0.004 0.027

TxRate 0.036 0.063 0.039 0.056 0.070 0.010

(d) – Attributes in queries are shuffled randomly.

CPUSpeed CPUFree MemSize MemFree DiskFree 1MinLoad

CPUFree 0.063

MemSize 0.052 0.053

MemFree 0.061 0.082 0.055

DiskFree 0.061 0.096 0.060 0.102

1MinLoad 0 0 0 0.017 0.021

TxRate 0.058 0.089 0.049 0.072 0.084 0

of resources and multi-attribute range queries while preserving the statistical properties of real-world sys-

tems. In [Ba12a, Ba12f] we use the data from ResQue to compare the performance of existing P2P-based

resource discovery solutions. Data are also used in [Ba12c] to evaluate the performance of a novel re-

source and query aware P2P-based resource discovery system and its adaptability.

142

5.7 Summary

A set of techniques is presented to generate random vectors of static attributes, multivariate time

series of dynamic attributes, and multi-attribute range queries while preserving the statistical properties

observed in operational systems. A tool is developed to automate the synthetic resource and query genera-

tion process and its output is validated using statistical tests. As the proposed mechanism is independent

of the dataset, data from any other platform may be used as the basis for trace statistics. Resources and

queries generated using the tool are useful in P2P, grid, and cloud computing for evaluating the scalability

of applications, resource discovery solutions, and job schedulers, far beyond that is possible with existing

test beds.

143

Chapter 6

RESOURCE AND QUERY AWARE, PEER-TO-PEER-BASED

MULTI-ATTRIBUTE RESOURCE DISCOVERY

Distributed, multi-attribute Resource Discovery (RD) is a fundamental requirement in collabora-

tive P2P systems, grid computing, and cloud computing. We present an efficient and load balanced, P2P-

based multi-attribute RD solution that consists of five heuristics, which can be executed independently

and distributedly. The first heuristic tries to reduce the cost of RD by maintaining a minimum number of

nodes in the overlay while pruning nodes that do not significantly contribute to the range query resolu-

tion. Nodes deploying the second and third heuristics dynamically balance the key and query load distri-

butions by transferring some of the keys to their neighbors or by adding new neighbors to handle the

transferred keys when existing neighbors are insufficient. The last two heuristics, namely fragmentation

and replication, form cliques of nodes to dynamically balance the skewed key and query loads associated

with highly popular keys/resources. By applying these heuristics in the presented order, a RD solution

that better responds to real-world resource and query characteristics is developed. Our solution overcomes

several limitations in existing RD solutions, and its efficacy is demonstrated under a variety of real world,

single and multi attribute resource and query distributions.

Section 6.1 presents the introduction and motivation. The problem statement is presented in Sec-

tion 6.2. Five heuristics and their application to single-attribute resources and queries are presented in

Section 6.3. How the heuristics are extended to support multi-attribute resources is discussed in Section

6.4. Simulation setup and performance analysis are presented in Sections 6.5 and 6.6, respectively. Sec-

tion 6.7 presents the concluding remarks.

144

6.1 Introduction

Collaborative P2P systems require the ability to discover and aggregate group(s) of heterogene-

ous, distributed, and dynamic resources as and when needed. P2P-based distributed RD is a natural fit for

collaborative applications and further enhances their scalability and robustness. P2P-based RD has also

been proposed for conventional applications such as grid, desktop grid, and cloud computing, as timely

aggregation of complex resources is becoming increasingly necessary due to the proliferation of parallel

applications that utilize multiple and distributed resources.

Many P2P-based solutions have been proposed to discover multi-attribute, dynamic, and distrib-

uted resources [Al08, Bh04, Ca04, Co09b, Sh07, Sh09]. However, compared to single-attribute P2P sys-

tems such as file sharing, formal characterization of real world, multi-attribute resources and queries re-

ceived attention only recently [Ba11e, Ba12f, He12]. In the absence of data and understanding of the

characteristics, designs and evaluations of existing RD solutions have relied on many simplifying as-

sumptions such as independent and identically distributed (i.i.d.) attributes, large domains for attribute

values (i.e., number of distinct attribute values D ≫ number of nodes N), uniform or Zipf’s distributions

of all the resources/queries, and queries with a large number of attributes and a small range of attribute

values. However, as observed in Chapter 4, the characteristics of real-world systems diverge drastically

with attributes of resources being correlated and characterized by different marginal distributions, re-

sources and queries being highly skewed, domains of most attributes being much smaller (D ≪ N), and

queries tending to request a small number of attributes and large ranges of attribute values. Analysis in

Chapter 4 also shows that existing solutions have a high resource advertise and query cost (approximating

O(N)) as attribute values change frequently and queries are less specific. Moreover, they are prone to sig-

nificant load balancing issues because D ≪ N, as well as resources and queries are highly skewed. While

many solutions are proposed to balance the key and query load in P2P systems [Al08, Bh04, Ga04b,

Go04, St03], they also rely on the aforementioned assumptions. Such assumptions affect both the designs

145

and performance analysis, and consequently the applicability of solutions under real workloads. There-

fore, more efficient and load balanced, RD solutions are needed to support real workloads.

We present an efficient and load balanced, resource and query aware multi-attribute RD solution.

The solution is based on five heuristics that can be executed independently and distributedly on a ring-like

overlay. Ring-like overlay is selected as it turns out to be a relatively more efficient and scalable design

choice compared to other solutions (see Sections 4.5.3 and 4.7). The first heuristic tries to maintain only a

small subset of the nodes in the overlay as D ≪ N. It prunes nodes that do not significantly contribute to

the range query resolution while reducing the cost (e.g., hops and latency) of resolving queries. The se-

cond and third heuristics dynamically balance the key and query load distributions of nodes by transfer-

ring part of the keys to their neighbors and by adding new neighbors to handle the transferred keys when

existing neighbors are insufficient, respectively. The last two heuristic, namely fragmentation and replica-

tion, form cliques of nodes to dynamically balance the skewed key and query loads associated with highly

popular resources. In contrast to the common practice of replicating along the overlay ring, cliques of

fragments and replicas are placed orthogonal to the overlay ring thereby maintaining lower query cost and

better load distribution. By applying these heuristics in the presented order, a RD solution that better re-

sponds to the complex characteristics of real-world resources and queries is developed. Our key contribu-

tions are the development of a novel heuristic to prune nodes that do not significantly contribute to the

range query resolution, placing replicas and fragments orthogonal to the overlay ring, and extending other

heuristics to support real workloads while overcoming their deficiencies. While heuristic two is presented

in [Ko11] and three is presented in [Ko11, Vu09], we utilize them more efficiently in our solution while

being aware of the capacities of nodes and eliminating the need to collect distributed statistics. The fourth

and fifth heuristics are introduced in [Ga04b]. However, the solution presented in [Ga04b] is applicable

only for relatively stable networks with immutable resources, as the proposed hash function dynamically

changes with the load and it needs to be explicitly informed to all the nodes in the system. Our implemen-

tation in contrast supports dynamic networks with mutable resources while using a fixed hash function.

146

Table 6.1 – List of symbols.

Symbol Description

aq Set of attributes specified in query q

A Set of attributes used to characterize resources

Di Domain of attribute i

i
Queryh No of hops to required by a query to reach the node indexing lower bound li

I
i,

i
CapI Resource index and index capacity of node i

ki, kl, ku Key of node i, lower bound li, and upper bound ui

i
InK ,

i
OutK Set of keys corresponding to IN and OUT queries

li Lower bound of i-th attribute specified in a range query

m Required no of resources specified in a query

N No of nodes in the overlay

Q Set of queries issues to the RD system

i
CapQ Query capacity of node/resource i

R Set of resources in the system

ui Upper bound of i-th attribute specified in a range query

vi Value of i-th attribute

Simulation-based analysis is used to evaluate the efficacy of the proposed solution under a variety of sin-

gle and multi-attribute resource and query distributions derived from real workloads.

6.2 Problem Formulation

We focus on Distributed Hash Table (DHT) based RD solutions due to their scalability and some

guarantees on performance [Gu03]. Analysis in Chapter 4 showed that a DHT built on top of a ring-like

overlay is relatively efficient and scalable than other available design choices for multi-attribute RD. Let

R be the set of resources in the system and A be the set of attributes used to characterize those resources.

We use bold face symbols to refer to a set and the corresponding italic symbol to refer to its cardinality,

e.g., R = |R|. List of symbols is given in Table 6.1. A resource r  R is defined as follows (see Section 4.2

for further details):

 ii vavavar  ,...,, 2211 (6.1)

Each attribute ai  A has a corresponding value vi  Di that belongs to a given domain Di. Di’s are typi-

cally bounded, may be continuous or discrete, or correspond to a set of categories or names. A multi-

147

attribute, range query q is defined as follows (see Section 4.2):

 ],[,...],,[],,[, 222111 iii ulaulaulamq  (6.2)

where, m  Z+ specifies the required number of resources and ai  [li, ui] specifies the desired range of

attribute values (li and ui are lower and upper bounds, respectively). In practice, attributes in a query may

specify a mixture of point (li = ui) and range (li < ui) of values. Let the set of attributes specified in a query

be aq (aq ⊆ A) and Q be the set of queries issued within the system.

6.2.1 Load Balancing in Peer-to-Peer Systems

Load on a DHT node can be defined in terms of index size, advertise and query messages re-

ceived, and overlay messages forwarded. Index size is measured using the number of resources/keys or

memory/storage required to store those resources or their contact information. Advertise, query, and for-

ward loads are measured using the number of messages or bandwidth consumed. Existing solutions as-

sume all the nodes should be added to the overlay as it helps to balance the load by each node indexing

approximately R/N resources or answering Q/N queries. For example, Chord proposed to balance the in-

dex size distribution by having N log N virtual nodes in the overlay [St03] under the assumption that re-

sources are uniformly distributed and Di ≫ N. Godfrey et al. [Go04] extended the concept of virtual nodes

to balance the query load by moving virtual nodes from highly loaded physical nodes to lightly loaded

ones. These solutions are not suitable for real-world RD as the query cost is O(N log N), resources and

queries are highly skewed, and most of the nodes will not index resources or answer queries as Di ≪ N

(Chapter 4). SWORD [Al08] proposed to expand the domain size Di by appending few random bits to the

hash values of vi such that identical resources will be mapped to different DHT nodes. While this helps to

distribute the index size, it does not balance the query load, as queries have to start always from the node

corresponding to li or its hash value. One may argue that attributes such as bandwidth and disk space have

a much larger domain; hence, this problem is unrealistic. However, it is not useful to advertise resources

at a very high resolution as it significantly increases the advertising cost and users are not interested in

148

fine-grained queries (Section 4.4.2). Moreover, as real-world systems tend to oscillate between idle and

busy periods [Ba12f, Io10] (Section 4.4.1), and their attribute values are not uniformly distributed through

Di. Therefore, it is not useful to explicitly expand Di. Key transfer is another approach where an overload-

ed node transfers part of its index (i.e., (key, value) pairs) to its neighbor(s) [Ko11, Vu09]. This approach

is somewhat effective and has a lower overhead. However, when range queries are less specific series of

nodes tends to be overloaded, e.g., 89% of the queries specifying free CPU requested a range of [40%,

100%]. Therefore, a node may not be able to transfer its load without making its neighbors even more

overloaded. While wave-like load transfer proposed in [Ko11] is useful in such cases, length of the wave

needs to be large as query ranges tend to be large in practice. Longer waves are less desirable due to the

increase in overhead, as all the nodes along the wave need to coordinate on transferring keys. Alternative-

ly, when a range of nodes is overloaded, it is proposed to migrate nodes in unloaded regions of the over-

lay to overloaded ones and then transfer the keys [Ko11, Vu09]. This is possible only if the key space is

further divisible and distributed statistics are collected to keep track of lists of loaded and unloaded nodes.

In practice, it is possible to have a very large number of identical resources. For example, 99% of the

nodes in SETI@home were x86 (Section 4.4.1). Moreover, large datacenters tend to simultaneously de-

ploy or upgrade to identical set of nodes. Similarly, a node may receive a very large number of queries

due to skewed distributions and large range of attribute values. For example, 89% of the queries that spec-

ified the free CPU range of [40%, 100%] have to start the query resolution at the node responsible for

indexing the lower bound. Such large indexes and query loads need to be split across multiple nodes us-

ing replication and/or fragmentation. In [Ga04b], it proposed to arrange resource attributes on a logical

Range Search Tree (RST) that is mapped to a DHT. Each node in the RST is represented as a load-

balancing matrix that is expanded and contracted as the load changes. When the index is too large, the

number of columns in the matrix (i.e., fragments) is increased. The number of rows (i.e., replicas) is in-

creased when the query load is too high. Each fragment and replica is mapped to the DHT based on its

position in the load-balancing matrix. A dynamic hash function is proposed to determine which fragment

or replica to query. However, as the size of the load-balancing matrix changes hash function also changes.

149

An explicit mechanism is needed to inform theses changes all the nodes. Hence, this solution is more

suitable for relatively stable networks with immutable resources. Moreover, locality of attribute values is

lost when the RST is mapped to the DHT consequently increasing the query cost to O(N log N). There-

fore, existing load balancing solutions do not work efficiently under real workloads.

6.2.2 Problem Statement

We believe that future RD solutions are likely to apply a fixed or dynamic threshold while adver-

tising resources as it reduces the advertising cost and users do not define very specific queries. Applying

such a threshold will lead an unbalanced distribution of index size as Di ≪ N. Conversely, this can be

used to reduce the query cost, as the number of nodes along the ring does not need to exceed the largest

Di (i.e., N = max(Di)). Then by adding fragments and replicas orthogonal to the ring (contrary to the

common practice of adding along the ring), we can balance the index size and query load without increas-

ing the query cost.

Consider a ring-like overlay with a set of N nodes indexing R resources. Each resource r ∈ R is

willing to contribute some index capacity r
CapI and query capacity r

CapQ . These capacities are typically

determined using several factors such as the computing power, memory, bandwidth, or energy of a re-

source/node, or amount of resources that a user is willing to contribute to the P2P system. We assume

r
CapI and r

CapQ are measured in terms of the number of resources and messages, respectively. Our goal is

to find a solution that minimizes the query resolution latency on a ring-like overlay while satisfying the

node capacity constraints. If we assume that the time required to resolve a query within a DHT node is

small compared to the network latency and each overlay link has approximately the same latency, then

the problem can be restated as minimizing the number of hops required to resolve queries which is given

by (see Section 4.2 for the derivation):

 
























 


qai i

iii
Query

q
Query N

D

lu
hC 1 (6.3)

150

Users determine (ui – li) and aq, whereas Di is fixed. i
Queryh depends on N, e.g., for Chord overlay

)(logNOhi
Query  . Therefore, the problem further reduces to minimizing N, as it is the only system-level

parameter. Our objective is to minimize N subject to the index and query capacity constraints of

nodes/resources. More formally:

r
Cap

r
Cap QI

N

,subject to

minimize
 (6.4)

6.3 Handling Single-Attribute Resources

Figure 6.1 illustrates three consecutive nodes (i – 1, i, i + 1) on the overlay ring illustrated in Fig.

4.1. Let ki be the key of i-th node. Histograms indicate the keys that are indexed at the node and their

heights represent the number of identical resources mapped to that key. Let I
i
 be the set of resources in-

dexed at i. Five range queries q1 to q5 are indicated as scatted lines. For example, q1 starts at node i and

ends at i + 1. While q4 starts at i – 1 and suppose to end at i + 1, it terminates at i as the required number

of resources are found. As a query q moves from one node to another it appends matching resources to the

query. Let kl represents the key generated by applying a Locality Preserving Hash (LPH) [Ca04] function

to the lower bound li of a range query. Similarly, let ku be the hash value of the upper bound ui. Query

resolution starts at the successor node of kl (see Fig. 4.1). For example, q1 and q2 can be considered as

coming directly into node i from the overlay network. Set of such queries
i
InQ is defined as IN queries

where q 
i
InQ when kl  (ki – 1, ki]. A query that is answered or reache ku goes out of the node and the

answer is sent to the query originator. For example, q2, q3, and q4 go out from i. Set of such queries
i
OutQ

is defined as OUT queries, i.e., q ∈
i
OutQ when ku  (ki – 1, ki] or q is resolved by i. Some queries are for-

warded by the predecessor, e.g., q3 to q5 are forwarded from node i – 1 to i. The set of queries forward

from i – 1 to i is defined as forward (FWD) queries
1i

FwdQ


, i.e., q 
i
FwdQ when [kl, ku]∩(ki – 1, ki] ≠ and

kl ≤ ki – 1. Therefore, the query load on a node is the sum of IN and FWD queries received within a given

151

ii – 1 i + 1

`

Qi

InQi-1

Fwd

Qi

Out

Qi

Fwd

q1q2
q3

q4

q5

keyski – 1 ki

Figure 6.1 – Series of nodes on a ring-like overlay.

time interval t. Our objective is to maintain the index size and query load on a node i within its bounds,

i.e., i
Cap

i II  and i
Cap

i
Fwd

i
In QQQ  1 . We first discuss the heuristics in the context of single-attribute

range query resolution. Then in the following selection how the heuristics can be extended to support

multi-attribute range queries is discussed.

6.3.1 Heuristic 1 – Prune

Consider the query distribution illustrated in Fig. 6.2(a), which is derived from range queries for

free CPU and disk space in PlanetLab (see Fig. 4.15). Such a distribution arises when users specify a

large (ui – li)/Di and m. Suppose this range is covered by four nodes a, b, c, and d and queries start either

at a or b (mostly at b) and terminate at d. c is not answering any queries (0i
OutQ) and merely forwards

them to its successor d (
c
Fwd

b
Fwd QQ ). This occurs when a node does not index any resources or indexed

resources are insufficient to answer a given query (either attributes do not match or m is too large). It is

desirable to remove c from the ring as it helps to reduce the number of hops a range query has to travel. If

c indexes any resources, they have to be moved to b or d before leaving. A node i may pick its successor

(i + 1) to move keys when 11   i
Cap

ii III or may pick the predecessor (i – 1) when 11   i
Cap

ii III .

However, removing c does not increase the query load on either b or d. Moving index to the successor is

preferred as it reduces the changes to the overlay. For example, d’s key will not change when c moves its

152

keys

N
o

 o
f

q
u
er

ie
s

(Q
In

+
 Q

F
w

d
)

a b c d

keys

N
o

 o
f

q
u
er

ie
s

(Q
In

+
 Q

F
w

d
)

a b c d

(a) (b)

Figure 6.2 – Two example range-query distributions. Scattered lines indicate the range of keys handled
by nodes.

index while b’s key need to be changed when c’s index is moved to b. Moreover, following lemma also

shows that the query bandwidth requirement of the successor reduces when the predecessor is removed.

Lemma 6.1. Successor’s bandwidth requirement reduces when the predecessor is removed by moving its

index to the successor.

Proof. Suppose node c receives a set of queries
b
FwdQ from b (Fig. 6.2(a)). Let the size of those queries

be sb (in bytes). Suppose c appends several matching resources to the queries though it does not

completely answer them (c
OutQ). Let the number of bytes required to append those resources

or their contact information to
b
FwdQ be sc. Then the total number of bytes transferred to d is sb +

sc. Similarly, d appends a set of resources to the queries with size sd. Then the total bandwidth re-

quirement of d due to the queries that arrives from c and queries that leave d is (sb + sc) + (sb + sc

+ sd) = 2sb + 2sc + sd. When the predecessor c leaves the network, d will directly receive the set of

queries from b with size sb. As d now has c’s index, it will append the same set of resources.

Hence, the size of queries that leave d is sb + sc + sd. Therefore, the total bandwidth requirement

of d is sb + (sb + sc + sd) = 2sb + sc + sd. Thus, the bandwidth saving compared to having c is sc.

Using a similar argument, it can be also shown that the bandwidth requirement of the predecessor

increases when the successor’s index is transferred to it. Hence, it is more efficient to move the

index to the successor. □

Let us now consider the query distribution in Fig 6.2(b). Such a distribution arises when interme-

diate nodes are able to answer some of the queries completely (e.g., q2 and q4 in Fig. 6.1) or ku is reached

153

(e.g., q3). It is still useful to remove nodes that do not answer many queries to reduce the query cost fur-

ther. For example, nodes a, b, and d are good candidates as they do not answer many queries. Hence, we

remove a node from the ring when the number of OUT queries is below a given threshold
i
ThrQ (i.e.,

when
i
Thr

i
Out QQ ). However, we now need to be aware of both the index size and query load transferred

to a node’s successor/predecessor to prevent it from being overloaded. For example, if node i is removed,

its successor i + 1 will receive three additional queries q2, q3, and q4 which belongs to
i
OutQ .Thus, i + 1

can handle i-th node’s load only if 11   i
Cap

ii III and
11   i

Cap
i
Out

i
Fwd

i
In QQQQ . If the index is moved

to the predecessor, i – 1 will receive two additional queries q1 and q2 as its key will change to ki. There-

fore, keys can be moved to i – 1 only when 11   i
Cap

ii III and 112   i
Cap

i
In

i
In

i
Fwd QQQQ . By keeping

track of
i
OutQ , a node can decide by itself whether it is not contributing to the system by answering a suf-

ficient number of queries. However, if it indexes any resources or answer any queries, it needs to check

with the predecessor/successor before leaving. A node has to continue to remain in the ring, if both the

successor and predecessor are not willing to accept its index and/or query load. More nodes can be re-

moved by tightening the threshold
i
ThrQ . However, if it is too tight, nodes may need to be frequently re-

moved and then added later using heuristics three to five when the system load fluctuates. When a node is

removed from the ring, it will connect to one of the nodes in the ring and use it as a proxy to issue queries

and advertise resources (similar to that in a superpeer-based P2P system).

6.3.2 Heuristic 2 – Key Transfer

Suppose c in Fig. 6.2(b) is overloaded, i.e., c
Cap

c II  and/or c
Cap

b
Fwd

c
In QQQ  . c can reduce the

load by moving some of its keys to b or d (d is preferred as it requires minimum changes to the overlay

and reduces the bandwidth requirement of d). For example, one of the queries at i can be reduced if key ki

(Fig. 6.1) is moved before the start of query q1. Two queries can be reduced, if it is moved even further

towards ki–1. Similarly, by reducing ki index size can be also reduced. Let excess query load at node i be

154

i
Cap

i
In

i
Fwd

i
Excess QQQQ  1 and index size be i

Cap
ii

Excess III  . Only
i
InQ can be reduced as

1i
FwdQ is fixed

and dependent on the key range of the predecessor. Therefore, it will be useful for a node to transfer its

query load to its success only when
i
Excess

i
In QQ  . To decide which keys to transfer to i + 1, we need to

keep track of kl (corresponds to the lower bound l) specified in each query q. Let
i
InK be the set of kls col-

lected from each q  i
InQ (same key may appear multiple times). Then we can find the largest key k 

i
InK such that the reduced query load

i
Excess

i
Reduce Qk""countIFQ ),(i

InK . countIF is a function that

counts the number of keys in
i
InK that satisfies the given condition, e.g., “≥ k”. Similarly, index size re-

duced at i should satisfy
i
Excess

i
Reduce IkcountIFI )"",(i

I . When ki is moved towards ki – 1 some of the

queries that are being currently answered by i will be forwarded to i + 1. For example, when ki is moved

up to kl of q1, q2 and q3 will be forwarded to i + 1. Thus, the successor’s query load will be increased by

),(1 k""countIFQi
Transfer  i

OutK . Where
i
OutK is the set of keys that queries terminate at (these include

kus collected from each q  i
OutK or the keys that queries like q2 terminated). The index size of i + 1 will

also increase by
i
ReduceI . Therefore, a subset of the keys can be transferred to the successor i + 1 only when

111   i
Cap

i
Transfer

i
In

i
Fwd QQQQ and 111   i

Cap
i
Transfer

i III . If successful, after transferring the keys i-th

node’s key is set to ki = k – 1.

If the successor is unable to accept the load, the predecessor can be tried. However, the process is

reversed where load reduced on i is determined by
i
OutQ and load transferred to i – 1 is determined by

i
InQ . To decide which keys to transfer, we need to find the smallest key

i
OutKk such that n

ReduceQ

)"",(kcountIF i
OutK

i
ExcessQ . Therefore, the transfer is useful only if

i
Excess

i
Out QQ  . Index size reduc-

tion at i should also satisfy
i
Excess

i
Reduce IkcountIFI )"",(i

I . Transferring keys will increase the query

load on i – 1 by)"",(1 kcountIFQi
Transfer  i

InK and the index size will be increased by
i

duceIRe . Before

155

transferring the keys, node i should also check whether i – 1 can handle the transferred loads. If the trans-

fer is successful, predecessor will be pulled towards ki and its new key is set to ki–1 = k.

6.3.3 Heuristic 3 – Add New Node and Key Transfer

In range query systems, it is possible for a range of nodes to be overloaded. Therefore, transfer-

ring keys to both the predecessor and successor may not be possible. Given that a node is aware of IN,

OUT, and FWD loads, it can determine whether it would be useful to add a new node between its current

successor or predecessor. Adding a successor is possible and useful when
i
Excess

i
In QQ  and there is

enough key space between i – 1 and i (i.e., k – ki-1 > 1, where k is determined from heuristic two). Query

load transferred to the new successor is i
Fwd

new
Transfer Qk""countIFQ ),(i

OutK

and its index size is

),(k""countIFI new
Transfer  i

I . New successor’s key knew = ki and current node’s new key need to be

changed to k – 1. Similarly, a predecessor can be added when
i
Excess

i
Out QQ 

and k < ki. Query load trans-

ferred to the new predecessor is 1),( i
Fwd

new
Transfer Qk""countIFQ i

InK

and the index size is

),(k""countIFI new
Transfer  i

I . Key of the new predecessor will be knew = k. If the transferred load is too

much to be handled by a single node (i.e., new
Cap

new
Transfer QQ  or new

Cap
new
Transfer II ), a series of succes-

sors/predecessors may be added given that there is sufficient key space.

As the first heuristic removes unnecessary nodes, many nodes are not part of the ring. One or

more of these nodes can be added as the successor(s) or predecessor(s) when necessary. Nodes that are

not in the ring can be found by randomly selecting from the nodes that are connected to a node in the ring,

issuing a multi-attribute query to the RD system, or querying a special node that may keep track of those

nodes. Therefore, in contrast to [Go04, Ko11, Vu09] our approach does not require an explicit mechanism

to track and locate loaded and unloaded nodes in the overlay.

156

Clique with
replicas

Clique with fragments
& replicas

Clique with
fragments

Replica

Fragment

Figure 6.3 – Fragments and replicas placed orthogonal to the overlay ring.

6.3.4 Heuristic 4 – Add New Node and Replicate Index

While the second and third heuristics are effective in distributing some of the load with minor

overhead and modifications to the ring, they rely on the assumption that key space is divisible. However,

due to skewed resource and query distributions key space is not perfectly divisible, and number of identi-

cal copies of a resource or queries for a given range can easily surpass the capacity of even the most re-

sourceful node. Such cases can be detected using I
i
,

i
InK , and

i
OutK . Query load can be split across mul-

tiple nodes by replicating resources as shown in Fig. 6.3. Such a collection of nodes is called a clique.

Then a range query needs to visit only one of the replicas along the path consequently splitting the load.

To split the load across multiple nodes, predecessor(s) needs to be informed about the existence of multi-

ple successors, which is allowed in many structured P2P solutions such as Chord, Kademlia, and Pastry.

While forwarding queries, predecessor(s) may pick one of the successors using round robin or random

load balancing policies. When a resource is advertised, it needs to be informed to all the replicas. In prac-

tice, a node can handle relatively large number of queries, as most query messages will fit into a single

packet and require a sequential search on the resource index. Therefore, a few replicas will be sufficient

to handle the most popular queries. A clique may be fully connected to reduce the cost of replication (Fig.

6.3). In contrast to [Ga04b], placing replicas orthogonal to the ring does not require changing the hash

function and informing it to all the nodes in the system.

157

6.3.5 Heuristic 5 – Add New Node and Fragment Index

Heuristic four can be applied only if the number of identical resources is within a node’s index

capacity. If the number of identical resources is very large, resource index needs to be fragmented across

multiple nodes, where each node keeps track of only a subset of the resources. Similar to replicas, frag-

ments are also placed orthogonal to the ring (Fig. 6.3). However, if resources in one fragment are insuffi-

cient to resolve a query, other fragments need to be searched before forwarding the query to the succes-

sor. Most queries are unlikely to be forwarded to the other fragments, as resource indexes tend to be

relatively large in practice. For example, over 10,000 resources each with 20 attributes can be indexed

using 1 MB of memory (assuming four bytes per each attribute value vi).

Heuristics are triggered based on the local statistics collected by a node hence have a lower over-

head, and can be executed independently and distributedly. However, it is desirable to deploy all the heu-

ristics within a node as each heuristic addresses a specific concern. Moreover, by applying them in the

presented order, an efficient and scalable RD solution can be developed. For example, heuristic one tries

to maintain a minimum number of nodes in the overlay while reducing the cost of resolving range queries.

A node may have a large index and/or query load regardless of whether it is answering more than
i
ThrQ

queries. Hence, it is desirable to evaluate rest of the heuristics when a node has to remain in the ring, as its

neighbors are not willing to accept the load. The second heuristic tries to balance the load by moving the

keys while introducing minimum disruption to the ring. The third heuristic is useful when nodes on the

ring are not sufficient to handle the load. However, there is some cost in adding a new node to the overlay

as the topology needs to be updated. Fragmentation and replication handle cases of extreme loads but in-

troduce even more changes to the overlay. Thus, by applying the heuristics in the presented order query

performance can be improved while reducing the cost of overlay maintenance and key movement. Figure

6.4 illustrates the flow diagram of a node that combines all the heuristics. Histograms can be used to keep

track of I
i
,

i
InK , and

i
OutK . Histograms consume only a small amount of memory, as the expected num-

ber of distinct attribute values Di is relatively small.
i
InQ and

i
OutQ

may be calculated from the histograms

158

Figure 6.4 – Flowdiagram of a node that implements all five heuristics.

Timer at node i

i+1 can handle
&

Move part of index

Add new node
between i & i + 1

Add new node &
fragment index

Yes

No

Yes

Yes

No

No
No

Yes

No

No

Yes

k – ki-1 > 1

No

No

Can a new
successor handle

load

Yes

Yes

Find keys to
send to i +1

Yes

i
Thr

i
Out QQ  i

OutQiI

i-1 can handle
& i

InQ
iI

Yes

Yes

i
Cap

i
Fwd

i
In QQQ  1

i
Cap

i II 

i
Excess

i
In QQ  Found key?

i+1 can handle
&

i
OutQiI

Find keys to
send to i -1

Found key?
i-1 can handle

& i
InQiI

Yes

Yes

i
Cap

i II 

Add new node &
replicate index

ki- k >0

No
No

No

Can a new
predecessor handle

load

Add new node
between i – 1 & i

YesNo

Yes

Move index &
leave overlay

No

i
Excess

i
Out QQ 

Yes

No

No

Yes

or separate counters may be used. Another two counters are required to keep track of
1i

FwdQ and
i
FwdQ .

Therefore, heuristics are triggered based on the local statistics and only the overloaded nodes communi-

cate with their neighbors. Heuristics may be executed periodically or when a counter reaches the capacity

of a node. A clique may include both fragments and replicas (Fig. 6.3). If the existence of the fragments

and replicas are informed to predecessors,
i
InQ can be equally distributed across nodes in a clique. There-

fore, notification messages can be sent to all the potential predecessors similar to that in Chord. However,

in practice, only the close by predecessors need to be notified as they forward most of the overlay mes-

sages [Ba12e]. We do not anticipate a large increase in overlay routing entries, as cliques are small.

159

6.4 Handling Multi-Attribute Resources

Five heuristics are directly applicable when multiple rings (e.g., Mercury [Bh04]) or a partitioned

ring (e.g., LORM [Sh07] and SWORD [Al08]) are used to index different attributes. Multiple-ring-based

solutions maintain a separate overlay ring for each attribute type (see Section 2.3.2) where as partitioned-

ring-based solutions assign different segments of the address space to different attributes. These solutions

maintain a separate resource index for each attribute type similar to single-attribute solutions. Therefore,

proposed heuristics are directly applicable. When multiple virtual rings corresponding to different attrib-

utes are mapped to the same overlay ring as in MAAN [Ca04] (see Section 2.3.2), a node may have to

index the same resource multiple times under different attribute types. In such cases, a resource index

may be compressed by removing duplicates entries of the same resource, as it reduces the

memory/storage consumption and speed up the query resolution. Therefore, moving a key may not really

move an indexed resource as others keys used to index the resource may be still within the range of the

node. This problem can be overcome by modifying the countIF function to take into account the multiple

keys used to index the same resource.

6.5 Simulation Setup

A discrete-event simulator is developed to demonstrate the effectiveness of the proposed heuris-

tics. Chord [St03] is used as the underlying overlay, as it supports maintaining multiple fingers to succes-

sors. For multi-attribute resources, similar to MAAN [Ca04], we assume multiple virtual rings are

mapped to the same address space and queries are issued only to the most selective attribute (i.e., attribute

with the smallest (ui – li)/Di). Four single and multi-attribute workloads are derived using real data from

P2P file sharing, PlanetLab, and SETI@home and described in Table 6.2. It is known that both the num-

ber of queries for a file and copies of a file follow a Zipf’s-like distribution [Ha06]. Hence, with the first

workload we attempt to demonstrate the applicability of heuristic under skewed resources and point que-

ries. For these workloads, capacities are set as follows: iICap = 500 entries, iQCap = 10 queries/second, and

160

Table 6.2 – Workloads used in simulations.

Workload Resources Queries

File sharing 100,000 copies of 10,000 distinct files generated
using ~Zipf’s(0.7) [Ha06]

Popularity – Case 1 – ~Zipf’s(0.5), Case 2 – ~Zipf’s(1.0).

Query arrival – 100,000 nodes issue queries with inter-

arrival times based on a ~exponential(2 min).

CPU speed CPU speed of 100,000 nodes randomly sampled
from SETI@home. Can be approximated by
~N(2.36, 0.28).

Pulse-like queries derived from PlanetLab query traces.
Used empirical CDF to generate ranges of attribute values.

Query arrival – 100,000 nodes issue queries with inter-

arrival times based on a ~exponential(2 min).

CPU free Case 1 – Synthetic dataset of 100,000 CPU free
values derived using linearly-interpolated empir-
ical CDF of PlanetLab nodes.

Case 2 – Case 1 dataset inverted as x(t) = 100%
– x(t0) at 600 s

Pulse-like queries derived from PlanetLab. Used empirical
CDF to generate ranges of attribute values.

Query arrival – 100,000 nodes issue queries with inter-

arrival times based on a ~exponential(2 min).

PlanetLab 527-node PlanetLab trace with 12 static & 12
dynamic attributes.

Also consider 250, 750, 1000 node traces gener-
ated using ResQue (Chapter 5).

PlanetLab – Synthetic trace generated using empirical
CDFs derived from aq, popularity of attributes, [li, ui], and
m (see Section 4.6).

Query arrival – all the nodes issue queries with inter-
arrival times based on ~exponential(10 sec).

i
Cap

i QQ 1.0Thr  . CPU speed and CPU free workloads assume iQCap = 50 queries/second, as range queries

tend to visit many nodes consequently increasing the query load on a node. Such conservative capacities

were selected to demonstrate a large enough network under a reasonable simulation time. CPU speed da-

taset can be approximated by a Gaussian distribution (see Section 4.1). CPU free dataset of PlanetLab

nodes is skewed and most nodes were idle (see Fig. 4.6(a)). A node trace from PlanetLab is used as the

multi-attribute dataset. As the nodes are described by 24 attributes, in the worst case they may map to 24R

nodes. However, this is still smaller than the other three workloads hence for this workload iICap = 100.

As the number of nodes is small, we also set iQCap = 25 queries/second. Each simulation is started with an

overlay ring having R/ iICap nodes, as the network needs to have at least this many nodes to balanced the

index size. Predecessors select fragments or replicas using round robin scheduling. Heuristics are evaluat-

ed every 30 seconds. To prevent the heuristics from responding to minor variations in index size and que-

ry load, Exponentially Weight Moving Average (EWMA) values of counters are used to trigger a heuris-

tic. Results are based on ten samples with different random seeds. Additional details on the simulator are

given in Appendix II.3.

161

6.6 Performance Analysis

We first analyze the single-attribute workloads in detail and then present the results for multi-

attribute workload. As our solution with all five heuristics (Heu 1-5) will be better than any solution that

adds all the nodes to the overlay ring (as N is reduced), we compare our results with a Chord overlay with

the same number of nodes. We also compare the results with the second heuristic (Heu 2) as it can be

readily implemented on top of Chord. Heuristics three to five in their original forms (as in [Ko11, Vu09,

Ga04b]) are not directly comparable, as they need specific mechanisms such as special nodes to track

loads and dynamic hash functions.

The average query cost of all three solutions under the file sharing workloads was approximately

5.8-hops. When the Zipf’s parameter α = 0.5 (moderately skewed queries), Heu 1-5 added 267 nodes to

the overlay ring. 304 nodes were added to the ring when α = 1.0, as more nodes are needed to handle the

increased load due to highly skewed queries and moderately skewed replicas of files. Among the 304

nodes, 257 of them were placed along the overlay ring and the rest were placed orthogonal to the ring.

However, no noticeable reduction in query cost was observed for Hue 1-5, compared to Chord and Heu 2,

as the cost of point queries is proportional to log N. Figure 6.5(a) shows the distribution of query load. It

can be seen that when all five heuristics are combined, almost all the nodes in the ring were able to stay

within the allocated query capacity of 10 queries/second (indicated by the vertical scattered line). While

distribution of query load under Heu 2 is marginally better than having only the Chord ring, one of the

nodes still had to handle the query load for the most popular file. When α = 1.0, peak load on Chord and

Heu 2 was 77.6 and it was reduced to 28.1 by Heu 1-5 (2.7 times lower). Similarly, Fig. 6.5(b) shows that

Heu 1-5 were able to maintain the index size of all the node within their capacity where as one of the

nodes in Chord and Heu 2 indexed 3,278 files. Hence, our solution is able to achieve comparable perfor-

mance for point queries while balancing both the index size and query load.

162

(a) (b)

Figure 6.5 – Load distribution of file sharing workloads at steady state: (a) Query load; (b) Index size.
Vertical scattered line indicates the node capacity.

(a) (b)

Figure 6.6 – Cost of resolving queries at steady state: (a) CPU speed workload; (b) CPU free workload.

Figure 6.6 compares the query cost under the CPU speed (CPUSpeed) and CPU free (CPUFree)

workloads with increasing m (m is the number of resources requested by a query). When m = 20, Heu 1-5

reduced the query cost of CPUSpeed dataset by 37% and CPUFree dataset by 23% compared to a Chord

overlay with the same number of nodes. Query cost of the CPUSpeed dataset increases linearly under

Chord and Heu2, as the attribute values are spread around following a Gaussian distribution. However, no

such increase is observed for Heu 1-5, as the placement of nodes are automatically rearranged based on

the query loads and size of indexes. Because the CPUFree dataset is highly skewed and most nodes were

idle, large number of free resources can be found by visiting few nodes. Hence, query cost does not

change noticeably with increasing m.

163

(a) (b)

Figure 6.7 – Load distribution of CPU speed workload at steady state: (a) Query load; (b) Index size.

m = 20.

(a) (b)

Figure 6.8 – Load distribution of CPU free workload at steady state: (a) Query load; (b) Index size. m =
20.

Figure 6.7 shows the query load and index size distribution for the CPUSpeed workload. It can be

seen that 99% and 91% of the nodes were able to stay within the allocated query and index capacity using

Heu 1-5, respectively. Largest index under Heu 1-5 had 556 entries while the other two solutions had

23,733 entries each (42.7 times higher than Heu 1-5). Similarly, 92% and 100% of the nodes in the

CPUFree dataset were able to stay within the allocated index and query capacity (see Fig. 6.8).

Heuristics are triggered when EWMA values of counters exceed the given thresholds. However,

the weighting factor β used to calculate the EWMA determines how fast the system gets stabilized and its

overhead. We measure the inequality of load distribution among nodes using the Gini coefficient, which

has been proposed as a suitable metric to quantify load distribution in P2P systems [Pi06] and many

164

Figure 6.9 – Variation in Gini coefficient of index size distribution of CPU free workload with time.

CPU free values were inverted at 600 seconds as explained in Table 6.2. m = 20.

networking solutions. Gini coefficient G  [0, 1], where zero corresponds to perfect equality and one cor-

responds to the theoretic case of an infinite population with only one individual having a nonzero value.

Figure 6.9 illustrates the inequality among index sizes of nodes measured using the Gini coefficient (cal-

culated using the algorithm in [Ro11]). When the weighting factor β = 0.1 system is biased towards long-

term trends hence retain the system in a stabilized state. Large β values quickly respond to short-term

trends while constantly moving keys around and modifying the overlay ring. Such frequent changes are

not desirable as they increase the cost of load balancing. For example, some oscillations can be seen when

β = 0.4 and β = 0.5. Moreover, by 570 seconds, 1.6% more messages related to load balancing were gen-

erated when β = 0.5 compared when β = 0.1. However, while β = 0.1 quickly reduces the Gini coefficient,

with the time Gini coefficient for other β values tend to be even lower. It is known that production sys-

tems experience sudden changes in availability of resources [Ba12f, Io10] (also see Section 4.4.1). There-

fore, we invert the CPUFree value of resources at 600 seconds (as explained in Table 6.2) to measure the

responsiveness of heuristics to such rapid changes. Query distribution was not changed, as it is not known

whether user queries change in response to such rapid changes in resources. Figure 6.9 shows that system

goes back to the original state within ~240 seconds when β = 0.3. Thus, the five heuristics are also adapt-

able to rapid changes in attribute values. β = 0.3 generated 7% less messages related to load balancing

165

(a) (b)

Figure 6.10 – Number of hop required to resolve queries in PlanetLab workload at steady state: (a) Av-
erage query cost; (b) Maximum query cost.

compared to when β = 0.1 (by 900 seconds). Therefore, we use β = 0.3 for rest of the performance analy-

sis, as it has a balanced load distribution, lower response time, and lower cost.

We now analyze the multi-attribute workload from PlanetLab, which exhibits the characteristics

discussed in Chapter 4. Figure 6.10(a) shows that the average query cost linearly increases with the in-

creasing number of nodes. As the number of nodes in the system increases, both the number of resources

to index and queries to answer increase (because the query rate of each node is fixed). Moreover, as the

number of attributes increases, the same resource is mapped to many overlay keys hence resources are

spread over a large address space. Furthermore, queries for different attributes are issued to different

ranges in the address space. For example, queries for CPUFree are biased towards the higher value while

queries for CPU load are biased towards the lower value. Therefore, more nodes are added to different

address ranges in the ring to balance the load. Consequently, query cost increases, as is it proportional to

the number of nodes along the ring. Alternatively, though Chord and Heu 2 have the same number of

nodes in the ring, they are uniformly spread around the ring consequently reducing the number of nodes

that an average query needs to go through. This is the reason that the cost of resolving multi-attribute re-

sources using Heu 1-5 is higher than Chord and Heu 2 with a similar number of nodes. However, worst-

case path length of Chord and Heu 2 is higher than Heu 1-5 (see Fig. 6.10(b) and Fig. 6.11), as all the

nodes are placed along the ring compared to the fourth and fifth heuristics which place some of the nodes

166

Figure 6.11 – Distribution of query cost in PlanetLab workload at steady state. R = 527.

(a) (b)

Figure 6.12 – Load distribution of PlanetLab workload at steady state. R = 1,000.

orthogonal to the ring. Distribution of query cost in Fig. 6.11 confirms this behavior. Moreover, both the

average and worst-case query cost is still significantly lower than adding all the nodes to the ring (Fig.

6.10) . For e.g., average and worst-case query cost of Heu 1-5 is 59.5% and 77.5% lower than adding all

the 527 nodes to the Chord ring.

Figure 6.12 illustrates that Heu 1-5 can effectively balance the index size and query load under

multiple attributes as well. It can be seen that 100% and 95% of the nodes were able to stay within the

allocated query and index capacity using Heu 1-5, respectively. One of the nodes indexed 507 resources

under Heu 1-5 while other two solutions indexed all the 1,000 resources. Therefore, proposed heuristics

enable discovery of real-world resources with lower overhead while balancing the index size and query

167

load. Moreover, they rely on local statistics, local communication among members of a clique, predeces-

sors, and successors, as well as do not require dynamic hash functions.

6.7 Summary

Five heuristics for efficient P2P-based multi-attribute RD that alleviates the load-balancing prob-

lem were presented. Heuristics rely on local statistics to capture the complex characteristics of real-world

resources and queries and try to retain only the nodes that answer a sufficient number of queries in the

overlay. Resource index is transferred among existing and new nodes are added to maintain the index size

and query load of a node within its capacity. By applying these heuristics in the presented order, a RD

solution that better responds to real-workloads was developed. Simulation-based analysis demonstrated

their ability to reduce the query cost, balance the load, and adapt to rapid changes in attribute values.

168

Chapter 7

COMMUNITY-BASED CACHING FOR ENHANCED LOOKUP

PERFORMANCE IN P2P SYSTEMS

Large Peer-to-Peer (P2P) systems for file transfer exhibit the presence of virtual communities

based on semantic, geographic, or organizational interests of users. Resources commonly shared within

individual communities are in general relatively less popular and inconspicuous in the system-wide be-

havior. Hence, most communities are unable to benefit significantly from performance enhancement

schemes such as caching and replication that focus only on the most dominant queries. We propose a dis-

tributed Community-Based Caching (CBC) solution that enhances both the communitywide and system-

wide lookup performance. CBC consists of a sub-overlay formation scheme and a Local-Knowledge-

based Distributed Caching (LKDC) algorithm. Sub-overlays enable communities to forward queries

through their members. While queries are forwarded, the LKDC algorithm causes members to identify

and cache resources of interests to them, resulting in faster resolution of queries for popular resources

within each community. Distributed Local Caching (DLC) requires global information (e.g., hop count

and content popularity) that is difficult and costly to obtain. However, by means of an analysis of globally

optimal behavior and structural properties of the overlay, we develop the heuristic-based LKDC algorithm

that not only relies on purely local information but also provides close-to-optimal caching performance.

Simulation-based analysis is used to demonstrate the utility of the analytical model and CBC.

Section 7.1 presents the introduction and contributions. Problem formulation is presented in Sec-

tion 7.2. Sub-overlay formation and distributed caching requirements are presented in Section 7.3. In Sec-

tion 7.4, DLC problem, relaxed-DLC problem, and the proposed LKDC algorithm are presented. Simula-

tion setup and performance analysis are presented in Sections 7.5 and 7.6, respectively. Section 7.7

presents the concluding remarks.

169

7.1 Introduction

P2P systems are continuing to grow, attracting millions of users and expanding into many appli-

cation domains beyond conventional file sharing. Modern P2P systems share a variety of resources such

as files, processor cycles, storage capacity, and sensors. Current systems are designed based on either the

system-wide behavior, attempting to provide everyone an equal level of service (e.g., average

search/download time), or optimized for more dominant users’ requirements. In either case, the perfor-

mance of lookup (i.e., the process of searching for resources) degrades as the system sizes continue to

grow.

Recent studies [Zh10] show that P2P systems in fact consist of many smaller virtual communi-

ties. A community is a subset of peers that share some similarity in terms of resource semantics, geogra-

phy, or organizational boundaries (see Section 2.4). Peers have semantic relationships based on the type

of resources they frequently access [Zh10, Ha06]. For example, BitTorrent has many communities dedi-

cated to music, movies, Linux distributions, and games (Section 2.1.1). Users from the same country tend

to access similar resources as well. For example, for 60% of the files shared by eDonkey peers, more than

80% of their replicas were located in a single country [Ha06]. Moreover, semantic and geographic simi-

larities are more prominent for moderately popular files. Communities may also arise based on organiza-

tional boundaries, e.g., members of a professional organization or a group of universities often forms their

own community to share resources and limit unrelated external traffic. CASA (Section 2.2.1) is one such

application where diverse communities of end users (e.g., emergency managers, National Weather Ser-

vice, scientists, media, and transportation agencies) access/share different subsets of data generated by a

distributed set of radars. We can further envision distributed collections of large scientific databases such

as Genome sequences, Geographic Information Systems (GIS), weather, census, and economic data that

are accessed by various communities of users from academic, research, and commercial institutions.

Emerging technological trends such as social networking indicate that we will continue to see the

emergence of a large number of small and diverse communities within large P2P systems. Future P2P

architectures therefore should support such communities by providing customized services based on their

170

distinct characteristics. Such architectures should allow the emergence, growth, existence, and disappear-

ance of communities on a continual basis, while enabling them to be a part of a global community or a

system. Conversely, the P2P system can significantly benefit by taking into account the characteristics

and requirements of these communities.

Content popularity profiles in P2P systems follow a Zipf’s-like distribution [Ra04, Ra07, Sr01].

However, resources popularly shared within an individual community typically do not rank high in popu-

larity in the context of the overall P2P system [Ba12e, Ha06] and often are inconspicuous in the system-

wide behavior. Therefore, such communities are unable to benefit from performance enhancements such

as caching and replication that focus only on the most popular resources. For example, Beehive [Ra04]

and PoPCache [Ra07, Ra10] (see Section 2.5.2) force a large fraction of peers (in structured P2P systems)

to cache the most popular resources regardless of their interests. In spite of requiring large caches and

many probing messages to estimate the global popularity, such solutions are inconsiderate of moderately

popular resources. Several caching solutions are also proposed for unstructured P2P systems [Co02,

Th04] (see Section 2.5.1). However, due to the random overlay topologies in unstructured P2P systems,

even the most popular queries are unable to benefit significantly from caching. Instead, several solutions

propose to restructure the overlay topology based on users’ interests [Be10, Li09a, Xu10, Ze11]. These

solutions provide better performance when a user’s interests match those of the overall community. How-

ever, community membership is not rigid. A user, for example, may belong to multiple communities or

switch from a geography-based community to a semantic-based one. Moreover, a community of research-

ers analyzing the spread of epidemics may access multiple scientific databases such as Genome sequenc-

es, GIS, census, and weather data. Our analysis of search clouds from several BitTorrent communities

(discussed in Section 7.2) confirms that user interests in different communities overlap to some degree.

As the communities do not exist in isolation, it is desirable to form one large overlay by combining peers

from all the communities such that resources can be efficiently accessed across all the communities.

However, existing solutions cannot provide optimum performance under shared communities, and they

are not designed to build communities based on incomparable similarity measures such as semantics and

171

geography. Alternatively, mixing of resources from multiple communities is not desirable, as the popular-

ity of individual resources typically subside due to the mixing of many unshared/unrelated resources (Sec-

tion 7.2). Therefore, it is important to not only maintain all the communities within a single overlay but

also cater to their popularities. Moreover, it is necessary to develop proactive caching solutions that are

aware of communities’ interests, adaptive, as well as message and storage efficient.

We propose a proactive Community-Based Caching (CBC) solution for structured P2P systems

where individual communities form seamlessly and cache resources of interest to them while being in a

larger overlay. CBC consists of a sub-overlay formation scheme and a Local-Knowledge-based Distribut-

ed Caching (LKDC) algorithm. We first propose a method whereby sub-overlays are formed within the

overlay network, enabling communities to forward queries through their members. While the queries are

forwarded, LKDC algorithm causes the peers running it to identify and cache resources that are popular

within their communities. Therefore, lookup queries for popular resources within a community are re-

solved faster. Consequently, both the community-level and the system-level lookup performance improve.

Distributed Local Caching (DLC) requires global information such as hop count and content popularity

that are difficult and costly to obtain. However, by analyzing the globally optimal behavior and taking

into account the structural properties of the overlay, we show that it is still possible to develop a close-to-

optimal caching solution (namely LKDC) that relies purely on local statistics. CBC is independent of how

the communities are formed, adaptive to changing popularity and user interests, and works with any

skewed distribution of queries. It is more suitable when users primarily access resources from few com-

munities and when the size of a community is moderate to large with respect to the size of the overall P2P

system. Furthermore, it introduces minimal modifications and overhead to the overlay network. Com-

pared to Beehive and PoPCache, which utilize large caches and distributed statistics, CBC caches more

distinct resources using smaller caches and utilizes only the local statistics. Simulations based on Chord

[St03] overlay, for example, show a 40% reduction in overall average path length with per-node cache

sizes as low as 20. Less popular communities are able to reduce the path length by three times compared

to system-wide caching.

172

7.2 Problem Formulation

Communities tend to emerge naturally in P2P systems with a large pool of resources and users.

For example, as BitTorrent grew, many web-based torrent search engines with specific interests on mov-

ies, songs, games, and software emerged in a top-down manner. Most search engines deployed their own

trackers leading to islands of BitTorrent deployments (see Fig. 2.3). These isolated search engines are

referred to as BitTorrent communities. Isolation became a problem, as users with diverse interests had to

search in many communities to find peers with better upload capacities. Consequently, BitTorrent proto-

col version 4.2 enabled content look up across multiple communities using a Distributed Hash Table

(DHT). Thus, the current BitTorrent system is a top-down aggregation of diverse communities. However,

resource popularity subsides when multiple communities are aggregated. Section 7.2.1 first provides evi-

dence for these characteristics and discusses their implications on lookup performance. Next, the research

problem is formulated in Section 7.2.2.

7.2.1 Motivation

As community membership is not rigid, P2P communities do not typically exist in isolation. For

example, a user may belong to multiple communities, switch from a geography-based community to a

semantic-based one, or belong to a geography-based community in a different country. We analyzed the

search clouds from several BitTorrent communities to determine to what extent the communities tend to

access the same content. Table 7.1 summarizes the similarities among communities, which were obtained

by calculating the Cosine similarity [Sa68] among the lists of file names that appeared in search clouds of

eight BitTorrent communities. User interests in most communities overlap to varying degrees. Few com-

munities are independent, e.g., seedpeer.com. Figure 7.1 illustrates the distribution of query popularity for

three of the communities. Summary of those three datasets is given in Table 7.2. Ranked popularity dis-

tribution can be approximated by a linear function and its gradient determines the Pareto index k. Zipf’s

parameter α can be estimated from this distribution as α = 1/k [Ad00]. Therefore, Zipf’s parameters of the

three communities (including two datasets for kat.ph) are 0.53, 0.66, 0.79, and 0.98. This further confirms

173

Table 7.1 – Cosine similarity among different BitTorrent communities based on their search clouds. Date

– 24/07/2010 ~04:55 GMT.

Community
*
 EX FE SP TB TS TE TR

FE 0.38

SP 0.00 0.00

TB 0.40 0.29 0.00

TS 0.48 0.33 0.00 0.48

TE 0.53 0.23 0.00 0.31 0.25

TR 0.10 0.08 0.00 0.06 0.09 0.06

YB 0.36 0.35 0.00 0.29 0.42 0.20 0.04

* EX – extratorrent.com, FE – fenopy.com, SP – seedpeer.com, TB – torrentbit.net, TS –
torrentscan.com, TE – torrentsection.com, TR – torrentreactor.net, YB – youbittorrent.com.

(a)

(b)

(c)

(d)

Figure 7.1 – Popularity distribution of BitTorrent communities: (a) fenopy.com. α = 0.976; (b)
youbittorrent.com. α = 0.53; (c) Dataset1 – kat.ph. α = 0.66; (d) Dataset2 – kat.ph, α =

0.79.

that communities have different popularity distributions. Rapid decline in cumulative distribution in Fig.

7.1 (c) and (d) indicates that there are several highly popular queries. The same behavior is also observed

when the popularity distribution is analyzed under different time scales (see Fig. 7.2).

174

(a)

(b)

(c)

(d)

Figure 7.2 – Popularity distribution of Dataset2 (kat.ph) over different time scales starting at

2010/07/06 15:00 UTC: (a) 7 days. α = 0.76; (b) 1 day. α = 0.74; (c) 12 hours. α = 0.74;

(d) 6 hours. α = 0.7.

As the communities are not completely isolated, it is necessary and desirable to form one large

overlay (by combining peers from all the communities) to efficiently access resources across all the

communities. Several P2P solutions (e.g., SWOP [Hu04], SWAN [Li07c], ESLP [Li09b], Gossple

[Be10], and Tribler [Ze11]) accommodate communities by restructuring the overlay topology to form

clusters of community members. Such clusters provide better lookup performance when users’ interests

match those of the overall cluster. However, lookup performance degrades when communities are partial-

ly isolated (due to inter-cluster lookup queries) where substantial fraction of queries is for resources out-

side of a particular cluster. For example, Tribler cannot search for contents beyond a node’s cluster (i.e.,

set of directly connected nodes) [Ze11]. A Gossple node cannot search for contents beyond what it has

already received/heard from similar neighbors as it utilizes a gossip scheme [Be10]. Therefore, contents

175

Table 7.2 – Description of BitTorrent search terms datasets.

Dataset fenopy.com youbittorrent.com Dataset1 – kat.ph Dataset2 – kat.ph

Date 2010/07/24 04:37
UTC.

2010/07/24 04:43
UTC.

2010/06/09 00:00 to
2010/06/27 15:41 UTC

2010/07/06 15:00 to
2010/08/10 09:44 UTC

No of queries 200 150 9,669,034 18,891,335

No of distinct queries 195 150 1,349,976 2,091,699

Zipf’s parameter (α) 0.98 0.53 0.66 0.79

are not guaranteed to be found. Though SWOP [Hu04] provides guaranteed content discovery, it utilizes a

two-step lookup process within the DHT. Contents are first searched in the local index of cluster members

regardless of whether the contents are indexed in them or not. When a look up within the cluster fails, it

searches the global index. This two-step process increases the worst-case lookup cost compared to search-

ing only within the cluster. Moreover, these solutions are not designed to build communities based on

incomparable similarity measures such as semantics and geography. Whereas, a good lookup solution

should provide efficient inter and intra-community lookup and support communities based on different

similarity measures.

Resource popularity subsides when multiple communities are aggregated together unless all the

communities access the same set of resources. For example, aggregation of two communities with Zipf’s-

like distributions does not necessarily result in a Zipf’s-like distribution unless they have an identical set

of resources and popularity distributions. As an example, consider two communities with the same Zipf’s

parameter  = 1.0 (see Fig. 7.3). Suppose resources 1, 3, and 4 in community one are same as the re-

sources 2, 5, and 6 in community two, respectively. Figure 7.3(c) depicts the corresponding aggregated

frequency distribution. The frequency of all the resources has reduced and popularity distribution is no

longer Zipf’s-like as multiple resources have the same frequency. This behavior is more prominent when

multiple partially overlapped communities are aggregated. Therefore, even the most popular resources

within a community can be inconspicuous in the system-wide behavior. Consequently, communities are

unable to benefit significantly from caching solutions such as Beehive [Ra04] and PoPCache [Ra07] (re-

named as PCache in [Ra10]), that focus only on the most dominant resources within the entire P2P sys-

tem. Moreover, both Beehive and PoPCache collect distributed statistics to estimate the global popularity

176

(a) (b) (c)

Figure 7.3 – Aggregation of popularity distributions: (a) Community 1; (b) Community 2; (c) Aggre-

gated popularity distribution. 10 keys, α = 1.0.

of resources. To provide a guaranteed mean path length, an optimization problem is then solved to deter-

mine how many cache entries to create and where to place them. For example, Beehive (implemented on

top of Chord) places the most popular set of resources on every node in the system, second most popular

set of resources on ½ of the nodes, third most popular set on ¼ of the nodes, and so on. Alternatively,

PoPCache utilizes the structure of the Overlay Routing Tree (ORT) to place cache entries more efficient-

ly. The number of cache entries allocated to a particular resource is proportional to its global popularity

and cache entries are placed along the ORT starting from the root node (i.e., node responsible for index-

ing a given resource). These solutions force a large fraction of nodes to cache the globally popular re-

sources regardless of their individual or community interests. Moreover, global popularity estimation is

costly and error prone. Furthermore, the solution obtained by PoPCache is suboptimal as the actual ORT

is asymmetric and nodes have limited cache capacity (see Section 7.4.2). In some cases, a resource that is

not so popular within individual communities may still become popular in the system-wide behavior if

many communities access it. Therefore, it is necessary to develop a proactive caching solution that is

aware of communities and their interests, preserves the popularity distribution of individual communities

and the overall system, adapts to varying user interests, and message and storage efficient.

7.2.2 Problem Statement

Future P2P architectures need to support a large number of communities while providing services

based on their distinct characteristics. However, sharing among P2P communities suggests that communi-

ties should not be isolated, and conversely combining multiple communities together subside relative

177

Table 7.3 – List of symbols.

Symbol Description

b Key length in bits

B Total cache budget

ck Cache capacity allocated to key k

Cn Cache capacity of node n

Cave Average cache capacity of a node

fk Normalized frequency/popularity of key k

g(ck) Number of hops reduced by caching ck entries

Have/have Average hops in a network with/without caching

n
k

h

Number of hops required to resolve query for key k starting at node n

hopmax Number of hops to forward a community-member-discovery message

ki i-th key

K, K Number/set of keys

mi i-th community

ni i-th node

N, Nm, N Number/set of overlay nodes, Nm – in community m

Sk Size of key k

Tcache Caching threshold

Tremove Remove threshold for entries in lookup table

n
k

v

Value of caching key k at node n

n
k

x

Whether key k is cached at node n. 1 if cached, otherwise 0.

 Zipf’s parameter

β Parameter use to approximate g(ck)

θ Weighting factor for query demand

, μk KKT multipliers

n
k



Demand for key k at node n

popularities of contents. Existing solutions are inadequate as they are limited to either isolating communi-

ties or combining all the communities together. Alternatively, better lookup performance can be gained by

catering to the popularity of individual communities while being members of a larger P2P system.

Consider a P2P system with a set of M communities, with community m  M consisting of a set

of Nm nodes interested in a set of Km resources with normalized popularity fk, where k  Km. Node n 

Nm has a cache capacity Cn. List of symbols is given in Table 7.3. Our goal is to find a feasible assign-

ment of cache entries to peers that minimizes the average hop count of each community m  M. The de-

sired distributed solution should support communities based on multiple similarity measures, be adaptive

to varying user interests, work with any skewed distribution of queries, introduce minimum modifications

to the overlay topology, and be efficient with respect to cache storage and overlay messages exchanged.

178

A B

C

E

D

I

H G

F

K

J

L

Nodes

Fingers

A B

C

E

D

I

H G

F

K

J

L

Community 1

Community 2

No community

Fingers

Sub-overlay

Com
m

unity 1

Sub-overlay
Community 2

(a) (b)

Figure 7.4 – Chord overlay network: (a) Node connectivity in Chord; (b) Two communities formed on

top of the Chord overlay.

7.3 Caching Solution for Communities

We focus on structured P2P systems, as they are appropriate for large-scale implementations due

to high scalability and some guarantees on performance [Gu03]. Let us discuss a specific example using

Chord (Section 2.1.2), which is considered the most flexible and robust structured P2P system [Gu03].

The discussion is applicable in general to other structured P2P systems as well. Chord maps both nodes

and resources into a circular key space (see Fig. 7.4(a)) using consistent hashing. However, Chord as-

sumes all nodes to be equal partners and does not support any community formation. A node is assigned

to a random location within the ring. Based on the key, a resource is indexed at its successor, i.e., the

closest node in the clockwise direction. Each node n maintains a set of pointers, called fingers, to nodes

that are at (n + 2
i – 1

) mod 2
b
, where 1 ≤ i ≤ b and b is the key length in bits. For example, node nE in Fig.

7.4(a) keeps fingers to nodes nF, nG, nH, and nJ. Routing table at a node consists of these fingers and it is

called the finger table. The fingers are used to recursively forward a message to a given key within O(log

N) hops. For example, nE can reach nL through the route nE  nJ  nL. A node may also identify redun-

dant fingers (to additional nodes) to reduce the latency and enhance robustness, e.g., if nE knows about nK,

a message may also take the path nE  nK  nL. Nodes can get to know about the demand for different

keys by observing the get(key) messages that are forwarded through them. Accordingly, they can either

cache the resources corresponding to those keys or their location. For example, if some of nL’s contents is

cached at nJ, it can respond to a query from nE to nL within one hop.

179

Section 7.3.1 presents how community members can be used to cache resources popular within a

community. A mechanism to identify community members is presented in Section 7.3.2. Then require-

ments of community-influenced caching are discussed in Section 7.3.3.

7.3.1 Exploiting Community Members to Cache

A community is a subset of peers with common interests. However, members of a community

may or may not be aware of each other. Figure 7.4(b) illustrates an overlay network having two commu-

nities. One of the communities, for example, may be based on semantics while the other may be based on

geography. When communities are based on geography or organizational boundaries, nodes can be con-

figured with their unique Community Identifiers (CIDs). However, some of the peers may not know their

CIDs, may not be aware of the existence of a community with similar interests, or may not even belong to

any of the communities. For such cases, solutions such as [Li09a, Gi10] may be extended to assign CIDs

to nodes based on their similarity. Dissimilar metrics may be used to group the peers into communities.

The only constraint is that each community needs to be identified using a unique CID. For rest of the dis-

cussion, we assume such decisions are taken at the application layer [Da03], outside of the overlay or

caching solution. Assuming that each peer knows its CID, our goal is to facilitate routing of overlay mes-

sages related to a community via its members (by forming a sub-overlay) thus eliminating the inefficiency

due to being in a common overlay. During the first couple of hops, the overlay messages tend to hop long

distances in the key space and take alternative routes within overlay [Gu03, Ra10]. Messages converge in

the last couple of hops as they approach the destination. Such behavior provides an opportunity for a node

to reach its own community members in the first few hops, and then resolve queries using their caches.

For example, suppose key kL indexed at node nL is popular within Community 1 (Fig. 7.4(b)). nk is likely

to cache kL as it forwards many queries from its community members to nL. Consequently, future queries

for kL can be answered at nk reducing one-hop. This enables the communities to identify and cache re-

sources of interest to them while enhancing the overall lookup performance. The destination node of a

query may or may not belong to the same community as the query-originator, e.g., nE and nL belong to

180

two different communities. A querying node n forwards a query through members of its community m

(regardless of destination node’s community) under the assumption that “a resource important to n is also

important to other members of m and they may have queried it before n did. Therefore, the resource is

likely to have been cached in one of the community members along the path”. This assumption and the

flexibility of using alternative routes are exploited next to design the CBC solution for large-scale P2P

systems with multiple communities. Our goal is to combine desirable features of structured P2P systems

and caching in such a manner that multiple communities can coexist and benefit while being in a large

P2P system. In doing so, we first propose a mechanism to form sub-overlays by identifying community

members and then propose an algorithm to decide what resources to cache.

7.3.2 Sub-Overlay Formation

Suppose each community has a unique CID. Each node indicates its communities using one or

more CIDs or uses a predefined identifier to indicate that it is not in a community. Therefore, our solution

supports communities based on different similarity measures or allows exceptions based on users’ inter-

est, e.g., a node in the U.S. may connect to a community in India just to access Hindi movies. Based on

CIDs, nodes try to establish stronger connections among community members allowing them to forward

queries through sub-overlays.

To build a sub-overlay, each node needs to identify other community members that are at approx-

imately exponential distances in the key space. For example, it is useful for nE (Fig. 7.4) to keep pointers

to nG, nI, and nK instead of nF, nH, and nJ. To take advantage of alternative routes, we need to identify

members only for the higher-order pointers/fingers, i.e., ones that point to faraway nodes. To ease the

identification process, each node advertises its CIDs to its successor, predecessor, and other nodes that

keep pointers to it. Such advertisements can be piggybacked onto overlay maintenance messages. How-

ever, given a large number of communities, it is unlikely that a node will identify members using only the

advertisements that are sent to specific nodes. Nevertheless, if nodes receiving such advertisements are

willing to track those CIDs within their routing tables, other nodes may query them to find community

181

members. For example, if nE queries nJ’s routing table, it may get to know about nK. The majority of the

structured P2P systems such as Chord, Pastry, and Kademlia (Section 2.1.2) maintain many pointers.

Therefore, nodes are likely to figure out at least one member for most of the higher-order pointers by

sampling a few nodes.

Following mechanism is proposed to discover community members in Chord. Each node in

Chord maintains at least 2 log2 N fingers. i-th finger (b – 2 log2 N ≤ i ≤ b) points to a key space of size 2
i –

1
, i.e., i-th finger can be used to reach any key within a distance of [2

i – 1
, 2

i
). Following lemma shows that

both the node pointed to by the i-th finger and its successor each has a maximum of i + 2 log2 N – b fin-

gers, within this range.

Lemma 7.1. By probing the finger tables of nodes pointed by the i-th finger and its successor 2(i +

2 log2 N – b) – 1 distinct nodes can be identified.

Proof. Consider the i-th finger of node A in Fig. 7.5. A maintains this finger to the successor B of key 2
i –

 1
. Then, j-th finger of B points to the address 2

i – 1
 + 2

j – 1
 (let C be the successor of this address). (j

+ 1)-th finger of B points to the address 2
i – 1

 + 2
j
 (let D be the successor of this address). Similar-

ly, (j + x)-th finger of B points to the address 2
i – 1

 + 2
j + x – 1

. As the (i + 1)-th finger of A has to be

greater than the last finger x of B, 2
i
 > 2

i – 1
 + 2

j + x – 1
. After some simplifications we get x < i – j.

Though fingers in Chord span (1 ≤ i ≤ b), in practice minimum finger of a node starts at b –

2 log2 N [St03]. Then j = b – 2 log2 N. Therefore,

0 ≤ x < i – b + 2 log2 N (7.1)

 Similarly, k-th finger of C points to D which is the successor of address 2
i – 1

 + 2
j – 1

 + 2
k – 1

. (k +

1)-th finger of C points to address 2
i – 1

 + 2
j – 1

+ 2
k
. Similarly, (k + y)-th finger of C points to 2

i – 1

+ 2
j – 1

+ 2
k + y - 1

. As the (i + 1)-th finger of A has to be still greater than the last finger y, 2
i
 > 2

i – 1
 +

2
j – 1

+ 2
k + y – 1

. Using the same argument as (7.1), we get

0 ≤ y < i – b + 2log2 N (7.2)

 Therefore, B pointed to by the i-th finger and its successor C each has (i + 2 log2 N – b) fingers,

within the range 2
i – 1

. Furthermore, C points to (i + 2 log2 N – b – 1) distinct nodes compared to

182

i + 1

i

2i - 1

2i

j

j+1

j+2

k

k+1

k+2

2i - 1
B

A

e

D

C

Figure 7.5 – Finger entries in Chord.

B. Thus, by probing the finger tables of those two nodes we can identify 2(i + 2 log2 N – b) – 1

distinct nodes. □

Thus, by probing the finger tables of successor of the i-th finger and its successor, we can identify 2(i +

2 log2 N – b) – 1 distinct nodes. If desired, the finger table of successor’s successor may also be probed.

Moreover, it can be proven that the probability of finding a community member increases with i:

Lemma 7.2. Community members are more likely to be found for higher-order fingers using the proposed

community-member identification scheme.

Proof. Consider a community m with Nm nodes. Chord maps node to uniformly random locations in the

ring using consistent hashing. Therefore, probability of sampling a community member anywhere

in the ring is Nm/N. According to Lemma 7.1, when the finger number i increases (i.e., higher-

order fingers), number of distinct nodes that can be found by sampling the finger tables of node

pointed by the i-th finger and its successor increases. Let ε be the number of distinct nodes found

by probing the finger table of the node pointed by the i-th finger and its successors. The probabil-

ity that at least one of those ε nodes belongs to community m is:

 












N

N
P m11membercommunity a Finding (7.3)

183

 ε increases with i and the number of successors’ finger tables sampled. Consequently, the proba-

bility of finding a community member for higher-order fingers increases. □

For example, if the nodes are uniformly distributed in the key space, more community members are likely

to be available between pointers to nH and nJ than between nG and nH. Chord periodically refreshes finger

table entries by sending maintenance messages to identify/validate nodes pointed by fingers. We can get

those messages to probe the finger tables for community members. If a member is not found, the message

is forwarded to the successor and its finger table is checked. It will be further forwarded to the successor’s

successor, if a member is still not found. Maintenance message of i-the finger should not be forwarded to

the node pointed by the (i + 1)-the finger. We limit the number of hops to forward a maintenance message

using the parameter hopmax. If a member is found, its contact details can be piggybacked onto the response

to the maintenance message. If finger tables have limited capacity, nodes may replace the original Chord

fingers with the fingers to community members. Otherwise, both fingers may be maintained for resili-

ence.

If a node changes its community, members of the new community can be identified by refreshing

the finger table either immediately or during the next cycle of overlay maintenance messages. Hence,

nodes can identify relevant community members with minor overhead, and any structured P2P system

that provides alternative routers can be used to relay messages through them. Furthermore, worst-case

path length bound is still maintained as we preserve the properties of the overlay routing protocol. Our

survey of BitTorrent users shows that though users are likely to access contents from multiple communi-

ties (e.g., 90% of the users accessed up to six communities), 89% of the time they access content from

only one or two communities. Therefore, to improve the lookup performance a node needs to maintain

fingers only for its primary set of communities. Details on survey questions and results are given in Ap-

pendix I. Overlay messages may be tagged with the CID of the source node so that intermediate nodes

can use the suitable set of fingers while forwarding a message.

184

7.3.3 Community-Influenced Caching

As the messages are forwarded through sub-overlays, nodes are able to identify and cache re-

sources that are relevant to their communities. Because we focus on communities’ interests and preserve

the overlay routing properties, local estimation of relative popularities is adequate to decide what a node

should cache. For example, consider a node n with cache capacity Cn = 1. If messages mostly come from

community members, and key ka is requested more frequently than kb, n will cache ka. Sometimes n may

observe even more requests for a kc that is not accessed by its community. This occurs if n is along the

path to an overlay neighbor (in ORT) that indexes a globally popular key (recall that different overlay

routes converge as a message reaches its destination). In such a case, it is useful for n to cache kc to im-

prove overall lookup performance of the entire P2P system. When members of the community interested

in kc (if there is such a community) realize that it is a popular resource, they will add kc to their own cach-

es. Consequently, n will observe a lower demand for kc, giving it the opportunity to cache ka. Therefore,

in contrast to previous solutions [Co02, Ra04, Ra07, Ra10], local statistics are adequate to provide a cus-

tomized service to each of the communities. Next, we discuss how to distributedly allocate the limited

cache capacity of each node optimally based on the local statistics and structure of overlay topology.

7.4 Distributed Caching

In Section 7.4.1 we first formulate the Distributed Local Caching (DLC) problem. DLC problem

requires global information that is difficult to obtain. Hence, a relaxed version of the problem is formulat-

ed in Section 7.4.2 based on the overlay properties to answer the two key questions: where to place cache

entries? and how many cache entries to create?. Based on this formulation, a heuristic-based caching algo-

rithm is proposed in Section 7.4.3.

7.4.1 Distributed Local Caching

In DLC, each overlay node independently decides what keys to cache based on the get(key) mes-

sages that it forwards. For example, suppose nJ in Fig. 7.4 can cache only one key and each node indexes

185

only one key. If key kL (indexed at node L) is requested more frequently than kK, nJ should cache kL and its

corresponding value. Therefore, in contrast to previous solutions [Co02, Ra04, Ra07, Ra10], local statis-

tics are adequate to determine what keys to cache at a node. Query arrivals in P2P systems show flash-

crowds, as well as diurnal and seasonal effects [Ra04, Zh10]. Therefore, statistics such as periodic, net-

work-wide query counts or arrival rate estimates, used in [Co02, De10, Ra04, Ra07, Ra10], are inade-

quate to decide effectively when and what to cache. Moreover, such distributed sampling messages intro-

duce a significant overhead. Instead, nodes can still be made adaptive, if local statistics are collected at

different granularities such that long-term and/or short-term popularity changes are properly captured.

However, to design an effective solution both the local statistics and overlay topology must be taken into

account. For example, suppose nE forwards five messages to nF and three messages to nL through nJ.

Based on local statistics nE will cache nF’s resources. Therefore, nE can answer five queries in the future

(assuming same query characteristics) and reduce the total hop count by five-hops. However, if nE caches

nL’s resources, it can answer three queries while reducing the overall hop count by six-hops. Therefore, it

is desirable to cache nL’s resources at nE, instead of nF’s resources, as the objective of DLC is to improve

the lookup performance at a node by reducing the path length of all queries that it forwards. However,

reduction in path length cannot be accurately estimated unless topology information is available. Moreo-

ver, path length varies when nodes join and leave the network frequently. Such tradeoffs also need to be

made when cache capacities of nodes are different (e.g., heterogeneous servers, desktops, and mobile de-

vices) and size of resources varies (e.g., file size and a list of IP addresses of a domain name). Hence,

overlay topology, cache capacity, size of resources, and their popularity need to be taken into account

while determining where to place cache entries and how many cache entries to create.

Consider a P2P system with sets of N nodes and K keys, and let N and K represent the respective

set sizes. Each node is selfish where a node tries to maximize the number of queries it can answer (irre-

spective of other nodes) by caching a subset of the (key, value) pairs. Let Sk  Z
+
 be the size of key k  K.

Let Cn  Z
+
 be the cache capacity of node n  N. At each node n  N, there is a demand

Zn
k for

186

Κk (e.g., number of queries received over a given period t). Assuming demand for k does not change

in the near future, value of caching k depends on its demand (i.e., same number of queries can be an-

swered locally) and the number of hops that will be reduced due to caching. Therefore, value of caching k

at n is
 n

k
n
k

n
k hv  for Κk , where

n
kh is the number of hops required to resolve a query for

k starting at n. Our goal is to minimize the average hop count at a node, given by:

 













Κ

Κ

k

n
k

n
k

k

n
k

n
k

n
ave

xh

h


 1

queries Total

hops Total
 (7.4)

where }1,0{n
kx determines whether k is cached at node n (1n

kx) or not (0n
kx). This can also be

interpreted as maximizing the hop count reduction while satisfying the node’s cache-capacity constraint.

Then the DLC problem can be formulated as an optimization problem:

 

n
n
k

k

k

k

n
k

n
k

k

n
k

n
k

k

n
k

n
k

k

n
k

n
k

k

n
k

k

n
k

n
k

CxS

xhxhh

R





































Κ

Κ

Κ

Κ

Κ

Κ

Κ

subject to

1

maximize












 (7.5)

Theorem 7.1. DLC problem in (7.5) is NP-complete.

Proof. We consider the decision problem of (7.5) as it simplifies the proof. The equivalent decision prob-

lem can be stated as follows:

Let x
n
 be a binary K-vector where  n

K
nnnn xxxxx ,,,, 321  . Given a network instance with no cache

entries and an integer T, is there an assignment of (0, 1) values to x
n
 such that R ≥ T and capacity

constraint is satisfied?

To show the NP-completeness, we need to first show that the problem belongs to NP and then

prove the problem is NP-hard by reducing a known NP-complete problem to our decision prob-

lem [Co09a].

An algorithm which chooses (0, 1) values for elements of x
n
, and then check the cache-capacity

constraint can decide the problem in polynomial time O(K). Therefore, decision problem belongs

187

to NP [Co09a]. Next, consider the following instance of the 0/1 Knapsack problem, which is

known to be NP-complete [Ga78]:

Instance: A finite set U, for Uu let
)(us be the size and

)(uv be the value, let

S be the size constraint, and
V be the value goal.

Question: Is there a subset UU  such that Sus
Uu


 /

)(and Vuv
Uu


 /

)(?

 0/1 Knapsack problem has a one-to-one mapping to our decision problem where cache capacity

of a node Cn = S, set of keys K = U, size of a key Sk = s(u), value achieved by caching k at node n

)(uvhv n
k

n
k

n
k   , value goal T = V, and subset UΚ nx . This mapping can be done in poly-

nomial time. Therefore, for every Knapsack instance we can construct a DLC problem. Hence,

the 0/1 Knapsack problem reduces to the DLC problem. Therefore, the 0/1 Knapsack problem can

be solved by solving the DLC problem. However, it is known that the 0/1 Knapsack problem is

NP-complete [Ga78]. Therefore, DLC problem is also NP-complete. □

While the optimization problem is NP-complete when the content sizes (Sks) are different, for the purpose

of enhancing the lookup performance it is sufficient to assume Sks are small and of similar size. For ex-

ample, when resources are small (e.g., domain names), a cache entry can be a replica of the resource.

When resources are large (e.g., files), then a cache entry can point to the location(s) of the resource.

Therefore, for practical purposes, we can assume Sk = 1 for k  K. Then the DLC problem for the pur-

pose of content lookup can be formulated as follows:

n
n
k

k

k

n
k

n
k

k

n
k

n
k

Cx

xh

R

















Κ

Κ

Κ

subject to

maximize




 (7.6)

This problem can be solved using a greedy algorithm [Ga78] that caches the set of resources with the

highest value n
kv . However, to calculate

n

kv we still need
n

kh , which is difficult to obtain in practice.

188

Next, by analyzing the globally optimal behavior and taking into account the structural properties of the

ORT, we show that it is possible to develop a close-to-optimal caching solution without finding n
kh .

7.4.2 Global-Knowledge-Based Distributed Caching

We formulate a relaxed version of the DLC problem in (7.6) that yields an analytical approxima-

tion to determine a suitable cache placement strategy. We consider the structure of ORT, as the topology

is important in determining where and how much to cache. Figure 7.6(a) illustrates a Chord ring with 32

nodes occupying the entire address space (b = 5, address range [0, 31]). Figure 7.6(b) illustrates the

asymmetric ORT corresponding to key seven (k7) for the general case where each node sends one get(k7)

message. Branch weights indicate the number of messages forwarded from each node to its parent. A

Chord ring with all the nodes is considered to simplify the following discussion. It was also confirmed

(through simulations) that such an asymmetric tree exists even when only a small number of nodes are

randomly mapped to the Chord ring (i.e., N ≪ 2
b
). Asymmetric ORT explains why the path length in

Chord is bounded by O(log2 N), average path length is ½log2 N, and bell shaped distribution of path

lengths (e.g., see the number of branches at each level of the tree listed on the right of Fig. 7.6(b)). To our

knowledge, the relationship between asymmetric the ORT and above three properties was not observed in

prior studies. Similar ORTs can be formulated for other structured P2P systems as well.

Next, we determine the best cache placement strategy given the asymmetric ORT. Node six (n6)

forwards the largest number of messages to n7. Hence, if there is only one cache entry, it should be placed

at n6 such that all 16 lookup messages can be answered while reducing the number of hops by 16. Sup-

pose there are two cache entries. First entry should be placed at n6 and the remaining entry can be placed

at either n5 or n4. If the second cache entry is placed at n5, it reduces eight-hops and the total reduction is

16 + 8 = 24-hops. Instead, if the second cache entry is placed at n4, it reduces two-hops for eight messages

(between n4 and n6) and one-hop for remaining eight messages (between n6 and n7). Still the total reduc-

tion is 24-hops. If there are three cache entries, they should be placed at nodes n6, n5, and n4, and the total

189

0

16

24 8

2

4

6

7

10

12

1418

26

22

20

28

30

6 5 31

7

3 23

4 2 30 22

0 28 20

24

8

16 12

26 18 14

1 29 21

25 17

10 9

13

27 19

11

15

16 4 28
1

4 28 1 4 2 1 2 1 1

112 112

1

4 2 1

12 1

1

1

1

1

5

10

10

5

1

(a) (b)

Fingers
Longest path

Figure 7.6 – Chord overlay: (a) Ring with 32 nodes. Only the predecessors of node 7 and the longest
path is shown; (b) Overlay routing tree of node 7.

reduction is 32-hops. Similarly, if there is a fourth cache entry, it can be placed at n3, n2, n1, or n0, and 4-

hops will be reduced. Following lemma determines the number of hops reduced by allocating ck cache

entries to k.

Lemma 7.3. If ck ≥ 1 cache entries are allocated to key k, the number of hops reduced is

 



kc

i

ik

N
cg

1

log22
1

2
)(

Proof. When cache entries are placed according to the structure of the ORT, the reduction in the number

of hops due to addition of each cache entry follows the sequence 16 + 8 + 8 + 4 + 4 + 4 + 4 + 2

+ …. When there are N nodes in the network, the height of the ORT is log2 N. Then the number

of messages forward by the predecessor (node that forwards the most number of messages) can

be given by (assuming each node sends one message):

2/2
1log2 N

N



 (7.7)

 Thus, by placing the first cache entry at the predecessor same number of hops can be reduced.

Each node where second and third cache entries are placed help to reduce the number of hops by

½ of (7.7). Similarly, each node where fourth to seventh cache entries are placed help to reduce

190

the number of hops by ¼ of (7.7). Each of the next eight cache entries will reduce the hop count

by
1
/8 of (7.7). Therefore, the total number of hops reduced can be given by the sequence:









 

8

1

8

1

8

1

8

1

8

1

4

1

4

1

4

1

4

1

2

1

2

1
1

2

N
 (7.8)

 As ck is finite, the total number of hops reduced g(ck) can be rewritten as:

  



kc

i

ik

N
cg

1

log22
1

2
)((7.9)

 This completes the proof. □

When ck = 0, g(0) = 0. The average reduction in hop count is given by g(ck)/N, assuming each node sends

a single message. Given that the ORT is asymmetric, this is the best cache placement strategy. PoPCache

assumed that the ORT is symmetric, and hence cache entries were placed at level 2 nodes only after plac-

ing them at all the level 1 nodes. For example, a cache entry was placed at n4 only after n6, n5, n3, n31, and

n23. Therefore, PoPCache did not effectively utilize the ORT to place cache entries.

Given the ORT-based cache placement strategy, we now determine how many cache entries to

create for each key k (ck  Z
+
) based on its popularity. Each key has a corresponding ORT and each over-

lay node belongs to multiple ORTs. Depending on a node’s position in different ORTs and popularity of

keys, it may have to cache multiple (key, value) pairs. However, how much a node can cache depends on

its cache capacity Cn. We relax the per node cache-capacity constraint in (7.6), such that caching behavior

with respect to each key can be examined separately. However, we still assume a fixed global cache

budget B. B = NCave ≪ NK, where Cave is the average cache capacity of a node. Furthermore, assume the

global popularity of keys is known and the normalized popularity of k is fk (0 < fk ≤ 1). Keys are ordered

according to their popularity f1 ≥ f2 ≥ f3 ≥…≥ fK. Further assume each resource is of unit size (e.g., address

of a node that indexes a resource). We name this scheme as Global-Knowledge-based Distributed Cach-

ing (GKDC). The corresponding relaxed GKDC-optimization problem is given in Lemma 7.4.

Lemma 7.4. Relaxed GKDC-optimization problem can be formulated as:

191

Κ
Κ

Κ













kNcBc

cgf
N

hH

k

k

k

k

kkaveave

1,subject to

)(
1

minimize

Proof. Average number of hops reduced by placing ck cache entries of k can be given by g(ck)/N. Aver-

age number of hops have required to find a key without caching is typically known for a given

structured P2P system, e.g., in Chord have = ½ log2 N. Therefore, the average number of hops to

find k with caching is given by:

N

cg
hh k

ave
caching
k

)(
 (7.10)

 Then the average hop count Have of the entire P2P system can be found by weighting the hop

count of keys under caching by their normalized popularity. Therefore,









 

 N

cg
hfhfH k

ave

k

k
caching
k

k

kave

)(

ΚΚ

 (7.11)

 After some simplifications following can be obtained (as 1 Κk kf):





Κk

kkaveave cgf
N

hH)(
1

 (7.12)

 Our goal is to minimize Have. As KN ≫ B we should utilize the total cache budget B to minimize

Have. However, it is not useful to cache the same key multiple times on a node. Therefore, ck

should not exceed N – 1 (ignoring the root node, which already has a copy of the resource). Thus,

(7.12) should satisfy the following constraints on ck:

Κ
Κ




kNcBc k

k

k 1and (7.13)

 Together (7.12) and (7.13) complete the proof. □

The summation term in the objective function indicates the number of hops reduced due to caching. First

constraint captures the global cache-capacity constraint. The second constraint bounds ck, as it is not use-

ful to cache the same key multiple times at a node. While formulating the optimization problem,

PoPCache used the upper bound O(log N) instead of have, did not bound ck, and assumed that the ORT is

192

symmetric. Therefore, it provides a loose upper bound to Have (demonstrated in Section 7.6.1) and is una-

ble to fully utilize B. Beehive does not consider a bounded B, structure of the ORT, and support only a

Zipf’s-like popularity distribution. Optimization problem can be restated as maximizing the hop count

reduction:

Κ
Κ

Κ









kNcBc

cgf

k

k

k

k kk

1,subject to

)(maximize

 (7.14)

Theorem 7.2. Have is minimized when

 











otherwise

),,(

)1(

if1

KlP

NlBf

lkN

c kk

where P(l, K, ) is the sum of popularity of last K – l keys and l is the smallest key identifier that

satisfies

 
1

),,(

)1(1 
 N

KlP

NlBf l



Proof. This is a NonLinear-Integer-Programming (NLIP) problem hence cannot be solved analytically as

it does not have a known structure [Li06]. Numerical solutions also fail even under moderately

large N and K, which dramatically increase the search space of the NLIP problem. Therefore, we

consider the corresponding relaxed NLIP problem, where ck  R
+
, as it provides a useful lower

bound [Li06] to the objective function in Lemma 7.4.  i2log
2 in g(ck) can be approximated as

i2log
2 .  is a parameter that is used to indicate the upper bound ( = 0), lower bound ( = 1,

when ck ≥ 2), and average value ( = log2 1.5) of  i2log
2 . Then g(ck) can be rewritten as:

)ln(2
1

2)(1

1

1
k

c

i

k cN
i

Ncg
k

 



  
 (7.15)

 where  = 0.5772156649 is the Euler’s constant. Then the objective function is:











 









ΚΚ k

kk

k

kk cfNcfN ln2)ln(2 11  
 (7.16)

193

 We only need to focus on the summation term in (7.16) and the constraints in (7.14), as rest of the

parameters are constant for a given network. This is a global optimization problem, as (7.16) is

concave [Bo04] and the corresponding minimization problem is convex. Karush–Kuhn–Tucker

(KKT) conditions [Bo04] can be used to solve the minimization problem of (7.16). Then (7.16)

should satisfy the following (using formula for corresponding minimization problem):

  01ln 









  

 

NcBccf k

k k

kkk 
K K

 (7.17)

From stationarity and dual feasibility:

 Κ kcf kkkk 0,0  (7.18)

 From the complementary slackness:

   Κ kNckk 01 (7.19)

 There are 2K + 1 unknowns and same number of equations. However, complementary slackness

provides only a check. Hence, we need to substitute values for  and k, and then check the feasi-

bility. Suppose k = 0 Κk . Then by substituting  = fk/ck (from (7.18)) to the budget con-

straint, 1/ = B. Therefore, ck = fkB. As ck ≤ N – 1, ck = fkB ≤ N – 1. Then fk ≤ (N – 1)/NCave ≈

1/Cave. This implies that fk cannot be large (e.g., if Cave = 20, fk ≤ 0.05). However, in practice, the

most popular key k1 may contribute to a large fraction of the queries, if the popularity distribution

is skewed. For example, f1 = 0.092 for a Zipf’s distribution with  = 1.0 and K = 30,000. There-

fore, the solution is not optimum. Suppose  = 0. Then k = fk/ck suggests k > 0. From (7.19),

ck = N – 1 Κk . This cannot be true as B ≪ NK. Suppose ck < N – 1 for some of the keys. For

those keys k = 0 (from (7.19)). Suppose the most popular l keys are cached in all N – 1 nodes.

Then from the budget constraint:

)1(),,(
11

)1()1(

1

11













NlBKlPf

B
f

NlcNl

K

lk

k

K

lk

k
K

lk

k





 (7.20)

194

 where P(l, K, ) is the sum of popularity of last K – l keys.  is a parameter that captures the

popularity distribution of keys (e.g., Zipf’s parameter). By substituting 1/ from (7.20) in

 = fk/ck:

 











else

),,(

)1(

if1

KlP

NlBf

lkN

c kk (7.21)

 and l is the smallest key that satisfies cl + 1 < N – 1. □

Equation (7.21) suggests that the most popular keys should be cached in all the nodes, and the

remaining cache capacity B – l(N – 1) should be allocated in proportion to the popularity of rest of the

keys. This is the best cache-capacity-allocation strategy given that the ORT is asymmetric. Therefore, in

contrast to PoPCache, we are able to fully utilize the available cache capacity B and provide a tight bound

to Have. Moreover, (7.21) is valid for any popularity distribution. Have can be determined by substituting

(7.21) in Lemma 7.4. It is also possible to solve the optimization problem to determine the required cache

budget B given a target Have. The optimum value of the objective function provides a lower bound to the

original NLIP problem as the optimization problem is convex [Li06]. It was observed that the numerical

solution to the relaxed-NLIP problem (i.e., ck  R
+
) is identical to our analytical solution. Correctness of

the analytical solution and comparison with PoPCache are presented in Section 7.6.1. While these bounds

are valid for Chord, we believe a similar approach will yield the bounds for other structured overlays by tak-

ing into account the structure of their ORTs.

7.4.3 Local-Knowledge-Based Distributed Caching

Cache placement and capacity allocation strategies obtained using the analysis of GKDC can be

used to develop a heuristic-based algorithm for the DLC problem. Asymmetric ORT indicates that a key

should be cached first at the node that forwards the largest number of messages. Then at one of the nodes

that forwards the second largest number of messages, and so on. This will result in a consistent reduction

in path length of messages. Theorem 7.2 says that the cache capacity should be allocated in proportion to

195

the global popularity of keys. In DLC, nodes are not aware of the global popularity of keys. However,

most popular keys are evident throughout corresponding ORTs while moderately popular ones are evident

at lower levels of the ORTs. Therefore, a good approximation to the proportional allocation can be ob-

tained using a heuristic that captures the relative popularity of keys at a node. For example, if a node with

cache capacity Cn = 1 forwards messages of ka more frequently than messages of kb, it should cache ka.

Moreover, such a heuristic enables the enforcement of per node capacity constraint where a node will

cache locally most popular Cn keys. Furthermore, local statistics can be collected at different granularities

such that long-term and/or short-term popularity changes are properly captured. We propose a caching

algorithm based on the perfect Least Frequently Used (LFU) algorithm to reduce the caches from being

thrashed while ensuring overlay dynamics are sufficiently captured.

Figure 7.7 illustrates the proposed caching algorithm described using the common API in [Da03].

Each node n has a cache, which can store up to Cn (key, value) pairs. Each overlay message (msg) has a

source node, message type (put or get), and a key. For each get(key) message that a node receives, we

track key’s demand  R
+
using a (key, demand) pair which is stored in the lookup table LT. get() messages

also maintain a list of nodes (cList) that have decided to cache the resource. forward is an upcall, to the

DHT layer, invoked at each node that forwards a message. It enables intermediate nodes to cache, collect

statistics, or drop messages. put(key, value) messages are handled as usual. When a get(key) message is

received, each node keeps track of the demand for the corresponding key regardless of whether it is al-

ready cached or not (line 4 in Fig. 7.7). The local cache is then checked to see whether the msg can be

answered. If so, replies are directly sent to the source node and to the list of nodes in the cList that are

interested in caching the resource (lines 5-8). msg is then dropped (line 9). If the key is not in the cache,

the node tries to determine whether it is useful to get a copy of the resource. If the cache is already full, it

checks whether the given key has a higher demand than the LFU cache entry (lines 12-13). A node may

also request a copy of the resource, if the cache is not fully occupied and the demand is above the caching

threshold Tcache (lines 17-18). In either case, the node appends (piggyback) its identifier to the cList in the

msg. The msg is then forwarded to the next node. Intermediate nodes may also append their identifiers to

196

void forward(key, msg, nextHop*)

1
2

3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18

If msg.type = PUT //put message

 return

If msg.type = GET //get message
 addLookup(key) //Track demand

 If key  cache //In cache

 sendDirect(msg.source, key, cache[key])
 For each i in msg.cList[] //Send to each cache requester
 sendDirect(msg.cList[i], key, cache[key])
 nextHop  NULL //Drop original get message
 Else //Not in cache
 If cache.size() = Cn //Cache already full
 key_lowest  getCachedKeyWithLowestDemand(LT[])

 If LT[key] > LT[key_lowest] //Higher demand

 msg.cList[]  myNodeID //Request a copy
 delete cache[key_lowest] //Remove lowest

 Else
 If LT[key] > Tcache // Higher demand
 msg.cList[]  myNodeID //Request a copy

void addLookup(key)

19
20
21
22
23
24

25
26
27

For each i in LT[]
 If i = key //Increase demand for key
 LT[i] = (1 + θ) × LT[i]
 Else //Decrease demand for others
 LT[i] = (1 – θ) × LT[i]
 If LT[i] < Tremove //Very low demand

 delete LT[i] //Remove key
If key not in LT
 LT[key]  θ

Figure 7.7 – Local knowledge-based distributed caching algorithm.

the msg, if they also decide to cache the resource. The threshold Tcache reduces the caching overhead and

cache thrashing.

If resources are small and relatively static (e.g., domain names), then a cache entry can be a repli-

ca of the resource. If resources are large, mutable, or the set of peers having a resource is dynamic (e.g.,

files and processor cycles), then the cache entries can point to sources of the resources. Therefore, our

caching scheme can locate all copies of small and relatively stable resources, or point to a subset of large,

mutable, or dynamic resources. The caching algorithm works with any distribution of queries and gain

better performance when queries are highly skewed.

Using the addLookup function, a node also tracks the demand for keys that are not in the cache

but forwards messages through it. Thus, LKDC algorithm is a perfect LFU algorithm. It enables the nodes

to rapidly adapt to varying popularity and arrival patterns. However, it is important to properly balance

197

the past and new information to reduce the caching overhead. Therefore, whenever a new message ar-

rives, a node multiplies the current demand of the key by a weighting factor (1 + θ), 0 ≤ θ ≤ 1. demand of

all other keys in the LT is multiplied by (1 – θ). If a key appears for the first time its demand is set to θ

(lines 26-27). When θ is close to zero, the algorithm is biased towards the past thus effectively responding

to long-term trends. When θ is closer to unity, bias is towards the current information, thus a node re-

sponds to rapid changes. θ and Tcache control the adaptability of the caching solution while minimizing

unnecessary cache requests. It is recommended to set Tcache > θ to reduce cache thrashing. When the cach-

ing scheme is applied to multiple communities, each community may use a different θ based on its per-

ceived behavior. Though perfect LFU algorithms are known to take better caching decisions, they have a

higher overhead as the LT can grow arbitrarily large. A threshold (Tremove) is used to remove keys without

sufficient demand thereby limiting the size of LT. The computational cost of the algorithm is O(size(LT)).

As LT is not large with respect to K, we can afford to execute the algorithm every time a get(key) message

arrives. Therefore, it can rapidly adapt to changing popularity, message arrival patterns, and piggyback

cache requests on get(key) messages while incurring minimum overhead.

7.5 Simulation Setup

To validate the analysis in Section 7.4, we first simulated an overlay network with 1,000-5,000

nodes using the OverSim P2P simulator [Ba07b]. Caching algorithms were implemented on top of Chord,

and the Zipf’s parameter  was varied from 0.5 to 1.5. For comparison, PoPCache was also simulated

with accurate global popularity of keys. CBC is simulated using a 15,000-node network with ten commu-

nities. Though hardware limitations prevented us from simulating a much larger network, the size of our

network is either comparable or larger than prior studies such as [Ra04] and [Ra07]. Nodes were assigned

to different communities as shown in Table 7.4. Parameters for each community were selected to observe

the behavior under different scenarios. Zipf’s and similarity parameters were selected based on our own

observations in Table 7.1, Table 7.2, and [Ra04, Sr01]. To simplify the performance analysis, a static

198

Table 7.4 – Configuration of different communities.

Community m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

No of nodes (apx.) 600 600 600 1,200 1,200 1,200 1,200 1,200 2,400 4,800

Zipf’s parameter 0.85 0.95 1.10 0.5 0.80 0.80 1.0 0.90 0.90 0.75

No of keys 40,000 30,000 30,000 40,000 40,000 40,000 50,000 50,000 50,000 50,000

Similarity with

community (x)

0.2
(m8)

0
0.1
(m7)

0.2 (m9)
0.3 (m8)
0.5 (m7)

0
0.1 (m3)
0.5 (m5)

0.3 (m5)
0.2 (m1)

0.4 (m1)

0.2 (m4)

0.3 (m10)

0.3
(m9)

Queries for k1 4,516 8,535 17,100 603 6,454 6,454 21,059 11,956 23,911 17,030

network is assumed and queries were issued only after the network was stabilized (around 2,000 s). Each

node issued queries based on a Poisson distribution with a mean inter-arrival time of 15 seconds. Based

on the simulations, we observed that it is sufficient to set Tremove = θ
10

 (as query demands are weighted) to

gain good performance while limiting the lookup table size to 50-80 entries. To measure the ability of

geographic communities to improve the latency, transit-stub networks with 10 ASs and 750 routers were

generated using BRITE [Me01] while using GT-ITM [Ze96] as the underlying topology generator. Nodes

in the same community are assigned to the same AS. Based on [Ca02], overlay node to router delay is set

to 1 ms and the average delay of the core network links is set to 40 ms. Results are based on ten samples,

which were sufficient to attain average number of hops within ±5% accuracy and 95% confidence level.

Additional details on the simulator are given in Appendix II.4.

7.6 Performance Analysis

We first validate the analytical results obtained in Section 7.4 using a network with a single

community. Then performance of CBC is evaluated under different , cn, Tcache, geographic communities,

and sudden popularity inversion.

7.6.1 Local-Knowledge-Based Distributed Caching

Figure 7.8(a) compares the analytical and simulation results while varying N. Our analytical solu-

tion using discrete g(ck) from Lemma 7.3 and its continuous approximation using  = log2 1.5 closely

199

(a) (b)

Figure 7.8 – Average hop count: (a) While varying number of nodes. K = 30N, α = 1.0, Cn = 20, Tcache =
0.12, (b) While varying Zipf’s parameter. N = 1,000, K = 30,000, Cn = 20, Tcache = 0.12.

match the simulation results. g(ck)-based model provides an upper bound to all the simulation results. Dif-

ference between LKDC algorithm (LKDC-Sim) and GKDC (GKDC-Sim) is ~0.4-hops. Therefore, LKDC

provides a desirable caching solution without the cost of estimating global popularity, structure of the

ORT, or relaxing the per node cache-capacity constraint. The PoPCache analytical model is derived using

the upper bound O(log N) for path length. Therefore, the resulting average hop count (Have) is very high,

e.g., Have = 8.82 for setup in Fig. 7.8(a). Hence, as a simple correction, we replaced the upper bound with

have. Still, corrected PoPCache analytical model overestimates Have by 1.1-1.4-hops (see Fig. 7.8(a)). Per-

formance of PoPCache-Sim (with accurate global popularity information) and LKDC-Sim is similar.

However, PoPCache-Sim placed 258 keys in one of the nodes whereas LKDC-Sim placed only 20 keys in

a node (reduce largest index size by 12.9 times). Therefore, our algorithm is more useful as it does not

require relaxing the cache-capacity constraint or sampling messages to estimate the popularity. Moreover,

PoPCache performance could degrade in real deployments where popularity estimation is susceptible to

sampling errors. GKDC-Sim has the lowest Have. It was realized that, though the ORTs in our simulations

were asymmetric, branch weights were somewhat off from Fig. 7.6(b). For example, the most popular

path was carrying 55-65% of the queries though our model assumed 50%. Therefore, the most popular

path answers more quires (this is particularly useful for moderately popular keys) consequently reducing

Have of the overall network. This explains why the analytical model provides a useful upper bound. It was

200

observed that LKDC-Sim naturally arranges cache entries among nodes reflecting the structure of the

ORT, while it has to be explicitly defined in [Ra04, Ra07, Ra10]. When many nodes at higher levels of

the ORT start caching popular keys, they do not forward messages to lower-level nodes. Therefore, the

relative popularity of keys cached at lower-level nodes reduces. Consequently, cache storage allocated to

those keys is reallocated to less popular keys. This is not possible in PoPCache and Beehive, as they force

all the nodes along the ORT or within a specific address range to cache keys.

Analytical and simulation results with varying Zipf’s parameters () are shown in Fig. 7.8(b).

Performance trends are same for  ≤ 1.0. However, when  > 1.0, analytical solution tends to underesti-

mate Have compared to the simulation results. This is also a consequence of slight differences in branch

weights of ORTs. When the popularity distribution is highly skewed (e.g.,  > 1.0), only the most popular

keys are cached. These keys will place more and more cache entries at higher levels of the ORT assuming

branches other than the most popular one will get ~50% of the queries. However, in practice they get only

35-45% of the queries. Therefore, our analytical model underestimates Have. Alternatively, many keys are

cached when the popularity distribution is less skewed. These moderately popular keys can benefit from

the large fraction of queries (> 50%) that goes through the most popular branch in the ORT. Therefore,

actual Have is below the theoretical value. Hence, our analytical model provides an upper bound to Have

when  ≤ 1.0 and a lower bound when  > 1.0. Production P2P systems are known to have  ≤ 1.0 [Ra04,

Ra07, Sr01] hence our analytical solution is also useful for production systems.

Mixed Integer NonLinear Programming (MINLP) solution provides a lower bound for the NLIP

problem [Li06]. As we were unable to solve the NLIP problems neither analytically nor numerically (for

large N and K), we compare the performance against the following family of allocations:

 

 




Κk

r

k

r

k
k

f

Bf
c (7.22)

where r  R
+
. r = 1 for PoPCache and r = 0.5 for unstructured P2P [Co02]. Figure 7.9 shows Have against

r. MINLP-based solution provides the lower bound while g(ck)-based discrete solution provides the upper

201

Figure 7.9 – Validation of optimum hop count. N = 1,000, K = 30,000, α = 1.2, Cn = 20, Tcache = 0.12.

bound. Minimum value for (7.22) is obtained when r ≈ 0.95, and it is higher than both LKDC-Sim and

GKDC-Sim. r < 1.0 suggests that slightly more cache capacity should be allocated for less popular keys

(when the distribution is highly skewed), which justifies the allocation in Theorem 7.2. Optimum r varies

with N, K, and . Therefore, (7.21) provides a consistent cache capacity allocation mechanism under a

range of K, N, and  values while providing better lookup performance. Impact of parameters such as Cn

and Tcache are discussed in the next section.

7.6.2 Community-Based Caching

Figure 7.10 compares Have of the entire system under Chord, passive caching (i.e., nodes cache

responses to their own queries), caching (i.e., LKDC algorithm without sub-overlays), and the overall

community-caching solution (i.e., LKDC deployed on top of sub-overlays). Lookup performance con-

verges with all the caching schemes as the query distribution is steady. Passive caching reduces the Have

from 7.79-hops to 7.32-hops and it is further reduced to 5.88 and 4.64 hops by caching and community

caching, respectively. Thus, our caching solution reduces Have by 40.5%.

Have observed by each community is shown in Fig. 7.11. Communities with highly skewed query

distributions (i.e., large ) and/or lower number of distinct keys gained significant performance im-

provement. For example, Have of communities m3, m7, and m9 is reduced by 53%, 48%, and 48%, respec-

tively. Moderately popular communities m1, m2, m5, m6, m8, and m10 gained 31-42% improvement based

202

Figure 7.10 – Average hop count vs. time. Bucket size = 30 s, Cn = 20, θ = 0.1, Tcache = 0.12, hopmax = 4.

Figure 7.11 – Average hop count observed by each community at the steady state. Cn = 20, θ = 0.1, Tcache

= 0.12, and hopmax = 4.

on their specific distributions. The most popular query in m4 had a global rank of 285 (Table 7.4). There-

fore, it gained only 7.4% improvement with caching. However, community caching was able to reduce

the hop count by 23% (3.1 times improvement over caching). Performance gain by each community was

dependent only on its popularity distribution, and both large and small communities benefited equally,

e.g., {m1, m5 and m6}, and {m7 and m9}. No correlation between performance and similarities among

communities was observed.

 Next, we measure the impact of number of communities in the system and their relative sizes on

lookup performance. When the number of communities M = 1, it is not necessary to run the sub-overlay

formation scheme as fingers already point to community members. However, LKDC can still be used to

203

identify and cache popular resources using only the local statistics. If M = N, each node is in its own

community. Therefore, sub-overlay formation scheme is not useful as there are no other community

members. If users are completely independent and access random contents, caching is not useful either.

However, it has been shown in [Ba11a] that even for seemingly unrelated events, if there is some prefer-

ence it could lead to a skewed distribution. For example, independent users downloading a song that they

learned from an external source such as media. As far as there is some skewness in resource access,

LKDC algorithm can be used to improve the lookup performance and the performance gain will depend

on the skewness of the popularity distribution and cache capacity.

To analyze the performance under a different number of communities and their relative sizes, we

split community 6 (m6 in Table 7.4) into a set of small communities. m6 was selected as it is independent

from rest of the communities; therefore, its size can be varied without affecting other communities. m6

was split into 600×2 (two communities each with 600 nodes), 300×4 (four communities each with 300

nodes), 150×8, and 75×16 communities while keeping the total number of nodes as constant (N =

15,000). This resulted in a set of networks with 10, 11, 13, 17, and 25 communities respectively. Figure

7.12(a) shows the lookup performance while varying the number of nodes in communities. Have increased

by 0.53-hops (10% increase) when the community size is reduced from 1,200 nodes to 75 (16 times

smaller than original m6 and 0.5% of the overall network). However, the formation of sub-overlays still

provides much better lookup performance (at least 16% improvement) than applying only the proposed

caching algorithm. Thus, the proposed sub-overlay formation scheme is effective in finding some of the

community members for higher-order fingers even when the size of a community is relatively small. Fig-

ure 7.12(b) illustrates that Have of rest of the communities were not significantly impacted while m6 was

split into smaller and smaller sized communities. Therefore, relative size among different communities

(or their ratios) does not affect the lookup performance gained by a community. Hence, performance

mainly depends on the skewness of resource popularity, cache capacity, and relative size of a community

with respect to the size of the overall network. However, if the community size is very small compared to

N (e.g., in decentralized social networks with few members), it may not be possible to find a community

204

(a) (b)

Figure 7.12 – Lookup performance under varying number of communities and community sizes ob-
tained by splitting community six: (a) Average hop count while varying the number of

nodes in a community; (b) Average hop count of all the communities. Cn = 20, α = 0.1,

Tcache = 0.12, and hopmax = 4.

member even for higher order fingers. In such cases, explicit community tracking schemes such as [Gi10]

may be extended to identify community members.

Figure 7.13 shows 33-50% reduction in latency when communities are based on geography.

When communities are large, a node can find community members for most of the overlay point-

ers/fingers. Such communities appear as a sub-overlay sustained using only its members. Consequently,

popularities are preserved, overlay traffic is localized within the community, and the effective size of the

sub-overlay is equal to the number of nodes in the community (e.g., m9 and m10 appear as two sub-

overlays with 2,400 and 4,800 nodes, respectively). As the traffic is mostly local, m9 and m10 gained 45%

and 50% reduction in latency. We use the continuous approximation of Theorem 7.2 (when  = log2 1.5)

to estimate the lower bound of Have for each community and the overall system. Corresponding have is

used for m9 and m10. For the overall system, the model predicts Have = 4.53 and according to the simula-

tions Have = 4.63. Thus, the model can also be used to obtain a useful lower bound for a large P2P system

with multiple communities.

Figure 7.14 plots the cumulative distribution of hops. As expected, community caching was able

to respond to most of the queries within the first few hops. Chord resolved 65% of the queries within 8-

hops while community caching was able to resolve 96% of the queries by then. Passive caching initially

205

Figure 7.13 – Latency of geographic communities using community caching. Cn= 20, θ = 0.1, Tcache =

0.12, and hopmax = 4.

Figure 7.14 – Cumulative distribution of overlay hops required to resolve queries. Cn = 20, θ = 0.1, Tcache

= 0.12, and hopmax = 4.

has a higher hit rate as some nodes respond to their own queries based on the past results. Figures 7.10 to

7.14 confirm that by focusing on individual communities, it is possible to improve both the communi-

tywide and system-wide lookup performance.

Performance gain with increasing Cn is shown in Fig. 7.15. Though Have rapidly reduces with in-

creasing Cn, it tends to saturate after a while. This is an artifact of the Zipf’s-like popularity distribution

where significant performance can be gained by caching a few highly popular resources. Yet, diminishing

return is gained with very large caches. Therefore, while trying to provide a guaranteed mean, both Bee-

hive and PoPCache had to force the nodes to cache several hundreds of resources on average and several

206

Figure 7.15 – Lookup performance under varying cache size (Cn). Steady state results with θ = 0.1, Tcache

= 0.12, and hopmax = 4.

thousands in the worst case, regardless of nodes’ capabilities or interests. In contrast, our caching scheme

provides comparable lookup performance using small caches. We also compared the lookup performance

against heterogeneous cache capacities where Cn is set to ~U(10, 30) and ~U(0, 40) (still Cave = 20). Have

= 4.63 when Cn = 20 and it increases to 4.77 and 4.88 when Cn is ~ U(10, 30) and ~U(0, 40), respectively.

This confirms that our solution can effectively adapt to varying Cn as Have is increased by only 0.25-hops

(5.4% increase).

Network converges faster and attains minimum Have when the weighting factor θ = 0.1. Such a

low value of θ stabilizes the network based on long-term trends in popularity. Impact of caching threshold

Tcache on the convergence time is shown in Fig. 7.16. Higher Tcache values increase the convergence time

but reduce the caching overhead (see Table 7.5). Alternatively, lower thresholds (e.g., Tcache = 0.1) rapidly

respond to popular queries consequently improving the lookup performance. This trend continues until

caches get full. When a cache is full and Tcache is lower, even a key with a marginally higher demand than

θ forces one of the cached keys to be flushed. When a query for the flushed key appears again, its demand

increases forcing another key to be flushed. Repetition of this process results in cache thrashing and in-

creased path length due to higher miss rate. For the given setup, θ = 0.1 and Tcache = 0.12 balance both the

convergence time and caching overhead.

207

Figure 7.17 – Convergence of network after popularity inversion in community caching. Bucket size =

30 s, Cn = 20, θ = 0.1, hopmax = 4.

Figure 7.16 – Caching threshold’s impact on convergence time in community caching. Bucket size = 30

s, Cn = 20, θ = 0.1, and hopmax = 4.

Table 7.5 – Number of cache requests per node in community-based caching.

Tcache 0.1 0.11 0.12 0.13 0.14 0.15

Average 281.4 34.9 25.8 20.3 16.2 13.5

Minimum 0 0 0 0 0 0

Maximum 1,611.7 233.5 159.2 122.1 83.9 65.3

To observe the adaptability of CBC to rapid popularity changes, we invert the popularities of que-

ries, where the least popular query suddenly becomes the most popular and vice versa. This is a worst-

case scenario. Figure 7.17 shows the convergence of the network after popularly inversion around

4,000 seconds. Have increased only by 0.5-hops and the network stabilized following the same conver-

gence pattern. It is sufficient to select hopmax = 4. We do not expect a significant increase in hopmax, even

for a very large network, as it is inversely proportional to community size Nm. Our solution introduces

minimum overhead as cache and community-member-discovery requests are piggybacked on get() and

overlay maintenance messages, respectively. Caching also alleviates hot spots within an overlay network

because many nodes can answer popular queries. CBC solution was able to reduce the maximum number

of queries answered by a Chord node from 25,151 to 1,677 (15 times reduction). Similarly, the peak

number of queries forwarded by a node was reduced from 27,574 to 5,191 (5.3 times reduction). Thus, the

proposed solution also provides good load balancing properties.

208

7.7 Summary

A sub-overlay formation and a distributed caching solution that adapts according to interest pat-

terns of explicit P2P communities are proposed. It allows queries to be forwarded to community members

while enabling them to cache resources that are of interest to their community. An analytical solution is

used to determine the best cache placement and capacity allocation strategies and to provide useful

bounds on performance. The proposed caching algorithm that utilizes only the local statistics is independ-

ent of how the communities are formed and works with any skewed distribution of queries. Overall solu-

tion enhances both the communitywide and systems-wide lookup performance, and introduces minimum

storage, network, and computational overhead.

209

Chapter 8

DISTRIBUTED MULTI-SENSOR DATA FUSION OVER NAMED

DATA NETWORKS

Named Data Networking (NDN) routes data based on their application-layer content names ena-

bling location independence, in-network caching, multicasting, and enhanced security. We present a proof

of concept solution that demonstrates the applicability of NDN for data fusion in Distributed Collabora-

tive Adaptive Sensing (DCAS) systems with multiple end users, applications, and sensors. In this exam-

ple, a network of weather radars name data based on their geographic location and weather feature (e.g.,

reflectivity of clouds or wind velocity) independent of the radar(s) that generated them. This enables end

users to specify an area of interest for a particular weather feature while being oblivious to the placement

of radars and associated computing facilities. Conversely, the DCAS system can use its knowledge about

the underlying system to decide the best radar scanning and data processing strategies. Sensor-

independent names also enhance the resilience, enable processing data close to the source, and benefit

from NDN features such as in-network caching and duplicate query suppression consequently reducing

the bandwidth requirements of the DCAS system. The solution is implemented as an overlaid NDN ena-

bling the benefits of both the NDN and overlay networks. Simulation-based analysis using reflectivity

data from an actual weather event showed 87% reduction in average bandwidth consumption of radars

and 95% reduction in query resolution latency.

Section 8.1 presents the introduction and contribution. Proposed naming convention, overlay con-

struction, query-subscription scheme, and data-generation-time-aware caching policy are presented in

Section 8.2. Extensions of the solution to support sensor and event specific queries are discussed in Sec-

tion 8.3. Simulation setup and performance analysis are presented in Sections 8.4 and 8.5, respectively.

Section 8.6 presents the concluding remarks.

210

8.1 Introduction

Modern Internet users value the ability to access contents irrespective of their locations, whereas

the Internet was designed to facilitate end-to-end resource access. Conflict between the usage and design

objectives has led to many issues such as location dependence, traffic aggregation, and security. Conse-

quently, many clean-state designs for the Internet propose to access/route data based on their content

names [Ja09a, Ko07, St02]. Named Data Networking (NDN) [Ja09a] (a.k.a. Content Centric Networking

(CCN)) is gaining traction as one of the viable clean-state designs particularly in the presence of CCNx

open source implementation [Palo]. NDN enables in-network caching, multicasting, duplicate message

suppression, enhanced security, and mobility. When data are not already dispersed within the network,

NDN delivers user queries to potential data sources enabling on demand data generation. In contrast, the

majority of other content-naming solutions, e.g., [Ko07, St02], are based on Distributed Hash Tables

(DHTs) that index only the pre-generated data. Moreover, NDN supports different levels of abstractions

and incremental deployments ranging from overlay networks, content delivery networks, and small ISPs

to eventual Internet-wide deployment.

Emerging DCAS systems [Ku06, Le12, Mc05, Mc09] sense the physical world at a far greater

spatial and temporal resolution that has not been hitherto possible. These systems rely on a multitude of

heterogeneous and distributed sensors ranging from mote based, resource limited, low power, and task-

specific wireless sensor nodes to resource rich, high power, and multipurpose sensors such as radars. Typ-

ically, DCAS systems deploy redundant sensors to increase the accuracy and resilience. Data generated

by these sensors are distributedly fused/processed using groups of computational, storage, and bandwidth

resources [Le12]. A key defining characteristic of DCAS systems is the data pull where end-user infor-

mation needs determine how and what group(s) of system resources are utilized to generate the required

data [Ku06, Le12]. Thus, DCAS systems have to operate the sensors and computing resources collabora-

tively, and adapt them to changing conditions in a manner that meets the competing end-user needs.

Collaborative Adaptive Sensing of the Atmosphere (CASA) [Ku06, Mc05, Mc09] is a DCAS sys-

tem based on a network of weather radars that collaborates and adapt in real time to detect, track, and

211

forecast hazardous, localized weather phenomena such as tornados and flash floods (see Section 2.2.1).

The CASA network consists of a heterogeneous set of weather radars, processing nodes, and data-fusion

algorithms that operates collaboratively to detect hazardous atmospheric conditions while satisfying many

diverse and conflicting end-user requirements. Distributed and collaborative data fusion provides an at-

tractive implementation choice for real-time radar data fusion in CASA, wherein multiple data volumes

are constantly being generated, processed, pushed and pulled among groups of radars, storage, and pro-

cessing nodes. CASA supports a diverse set of meteorological algorithms (referred to as applications) and

end users. Table 2.3 lists a subset of the applications that are currently supported by CASA. Each applica-

tion pulls one or more types of data from one or more radars. For example, radar images that we see on

TV newscasts are drawn using reflectivity data from clouds that are typically generated by a radar. More

accurate reflectivity images can be generated using the Network-Based Reflectivity Retrieval (NBRR)

algorithm that pulls reflectivity data from three or more radars that sense the same region in atmosphere

within an acceptable time window [Li07b]. Both Doppler velocity and reflectivity data from two to three

radars are needed to estimate the wind velocity accurately. The same data are used for tornado-tracking

applications. Therefore, the same data type may be accessed by multiple applications. Applications re-

quire different amounts of computational, storage, and bandwidth resources as they use different data

types, amounts of data, and meteorological algorithms. Known weather patterns, geography, cost, and

availability of the infrastructure determine where the applications are deployed. For example, tornado-

tracking applications are deployed only in areas that are likely to have tornados. These applications are

accessed by a diverse set of end users (see Table 2.4) such as the National Weather Service (NWS),

Emergency Managers (EMs), scientists, media, and commercial entities. Users may issue queries periodi-

cally for surveillance purposes or when an interesting weather event is detected within their Area Of In-

terest (AOI). For example, a NWS forecast office sends a separate query for each of the applications

listed in Table 2.3 for counties under their jurisdiction (except for air surveillance). For surveillance pur-

poses, they may pull data from reflectivity and velocity applications every five minutes regardless of the

current weather conditions. However, when an active weather event is detected, reflectivity, velocity,

212

NBRR, nowcasting, and QPE (Quantitative Precipitation Estimation) applications are queried at a higher

sampling rate. These queries are periodically issued for the area of active weather (which may change

with time) until the weather event subsides or move out of their jurisdiction. A researcher trying to under-

stand the physical properties of a tornado may use velocity and tornado-tracking applications every

30 seconds to acquire samples more frequently. Alternatively, commercial entities may sample their AOIs

at a much lower sampling rate, as they are interested in mid to long-term changes in weather. Each CASA

radar generates raw data at rates up to 800 Mbps, which reduces to 3.3 Mbps with preprocessing. In some

cases, e.g., to preserve the accuracy or for archiving purposes, it is preferable to transfer raw data. The

next generation of solid-state CASA radars is expected to generate raw data at several Gbps. Moreover,

due to the spatial and temporal locality in weather events, corresponding end-user queries also exhibit

high spatial and temporal locality. Therefore, even more bandwidth is needed to handle concurrent que-

ries without increasing the latency. Furthermore, a nationwide CASA radar network deployment in the

U.S., a strong possibility given the many advantages of the CASA paradigm, is estimated to require

10,000 radars [Mc09]. These radar nodes are to be interconnected via a combination of wired and wireless

networks. However, though the system is mission critical, it is neither economical nor feasible to maintain

a separate network or allocate very large bandwidth to radars and processing nodes. Hence, existing net-

working infrastructure and resources have to be utilized efficiently to achieve the system objectives of

maximizing the detection and warning accuracy while reducing the cost.

DCAS systems, including current CASA deployments [Li07a], typically bind data to the sensor(s)

that generated them by assigning data names based on the sensor identifier. Conversely, end users in

many cases are interested in data related to a particular weather event in a given AOI, and are not con-

cerned with which sensor(s) generated the data. Therefore, naming data based on the sensor creates a con-

flict similar to that in the current Internet, and reduces the ability to utilize the spatial and temporal locali-

ty in user interests and redundant sensors to enhance the performance of the DCAS system.

By naming data based on their geographic location of the weather event or atmospheric condition,

data type (e.g., wind velocity and temperature), and/or event name (e.g., hail and tornado), DCAS systems

213

can gain the benefits of NDN. For example, a CASA end user may specify the query “get current wind

conditions in southwestern Oklahoma” while being oblivious to the placement of radars and associated

computing resources. Such sensor-independent names enable NDN benefits such as in-network caching,

duplicate query suppression, on-demand data generation, security, and mobility. Hence, DCAS systems

are even better applications for NDN compared to web access, streaming, VoIP [Ja09b], and text-based

chat [Palo] that utilize only a subset of the NDN features. Occasionally users may still want to access the

sensors using their unique names (e.g., because a radar has a specific capability or a user wants to cali-

brate/validate a radar). Therefore, it is important to support both the sensor independent and dependent

naming conventions within a DCAS system. Currently, NDN has to be deployed as an overlay network

due to the absence of an Internet-wide deployment. However, use of overlay networks provides the added

benefits such as the ability to deploy application-specific routing mechanisms [Ba13], fault tolerance, bet-

ter QoS, and in-network data fusion [Ba07a]. Therefore, DCAS systems can be made more efficient and

robust by combining the benefits of NDN and overlay networks.

We present a proof of concept multi-user, multi-application, and multi-sensor DCAS system

based on CASA that is implemented on an overlaid NDN. A hierarchical naming convention that names

the data based on their geographic location and type independent of the sensor(s) that generated them is

proposed. Such sensor-independent names enable end users to specify an AOI for a particular event or

data type(s), while being oblivious to the placement of sensors and associated computing facilities. Con-

versely, the DCAS system can use its knowledge about the underlying system to decide the best radar

scanning and data processing strategies. Such a design also enhance the resilience, enable processing data

close to the source, and NDN benefits such as in-network caching and duplicate query suppression conse-

quently reducing the bandwidth requirements of the DCAS system. An extension is proposed for NDN to

support many-to-one data retrieval, as multi-sensor data fusion applications need the ability to retrieve

data from multiple sources that match a given name. The overlay network enables geographic-name-

based query routing. 2-dimensional version of Content Addressable Network (2D-CAN) (see Section

2.1.2 and [Ra01]) is used as the underlying overlay network, as it provides a direct mapping between the

214

geographic space and overlay address space while preserving the locality. A subscription mechanism for

periodic queries and a caching policy based on the data generation time that is more suitable for DCAS

systems are also presented. How the proposed solution can be extended to support sensor and event spe-

cific queries is also discussed. Simulation-based analysis is used to evaluate the efficacy of the proposed

solution using design parameters from the CASA IP1 test bed [Br07, Mc09] and reflectivity data from an

actual weather event. Simulation results show 87% and 95% reduction in average bandwidth consumption

of radars and query resolution latency, respectively.

8.2 Multi-Sensor Data Fusion Over NDN

CASA end users typically specify an AOI for a particular weather feature, and are less concerned

about the placement of radars and associated computing resources. Hence, it is beneficial to decouple the

data, security, and access from the sensors. Such decoupling enables data to be pulled from any available

sensor covering the given AOI, and to be processed using any computing node(s) with the desired appli-

cation. Moreover, such flexibility enables load balancing and resilience, which is essential in mission crit-

ical DCAS systems like CASA. Thus, NDN is a good fit for data delivery in DCAS systems as it decou-

ples the identity, security, and access from the end node/sensor while accessing data using content and

context aware names. High spatial and temporal locality exhibited by end-user queries can be used to re-

duce the bandwidth requirements of the overall DCAS system seamlessly by benefiting from caching and

duplicate message suppression in NDN. Moreover, receiver-driven communication and on-demand data

generation features of NDN are essential in CASA-like systems that dynamically allocate system re-

sources in response to end-user information needs. We have demonstrated overlay networks and peer-to-

peer-based distributed data fusion [Le12] are attractive implementation choices for large-scale CASA de-

ployments due to their scalability, flexibility, and reliability. Therefore, by implementing NDN on top of

overlay networks, more efficient and robust DCAS systems can be developed. 2D version of CAN pro-

vides a direct mapping between the geographic space and overlay address space, and hence can be used to

preserve the locality among radars, computing resources, and end users. Moreover, it can forward packets

215

even in the presence of voids in the physical space (radars and computing resources are not placed uni-

formly due to terrain conditions and variability in population distribution) while alleviating local minima

problem in other greedy routing schemes. It is not necessary for each dimension of the CAN’s d-

dimensional torus (d-torus) to be of equal length. We first present the proposed naming convention. Then

discuss how the overlay is constructed using CAN and NDN is used to resolve queries. Finally, a sub-

scription scheme for periodic queries and a data-generation-time-aware caching policy are presented.

8.2.1 Naming Data

A query specifies a desired AOI and application. Queries are typically issued periodically, as end

users are interested in the most recent data. Therefore, a name in an interest packet sent from an end user

to an application needs to include at least the AOI, application, and time. time is used to indicate that the

user is looking for the most recent data. Based on the hierarchical naming convention recommended by

NDN, one of the following formats can be used to specify a name:

1. /application/AOI/time

2. /AOI/application/time

The first format gives preference to the application and forwards an interest packet looking for an applica-

tion that can process data for the given AOI. This enables processing data close to the end user as an in-

terest packet stops as soon as a node with the desired application is found. It can be also used when a user

is looking for specific radar (by replacing the application name with the radar/sensor name). The second

format gives preference to the AOI and forwards an interest packet looking for an application near the

given AOI. This enables processing data close to the source. It is more suitable for CASA-like systems as

it is desirable to process large volumes of data close to the source and send the fused data across the net-

work, than carrying the data across the network and fusing it at or closer to the destination. For example, a

velocity application pulls Doppler velocity and reflectivity data from at least two radars, and hence pulls

at least four (2×2) distinct data items for each point in AOI. However, after processing the data, only a

single value is sent to the user (for each point in AOI) resulting in at least 4:1 bandwidth reduction. Even

216

AOI1
AOI2

(x1, y1)

(x2, y2)

Tiles

r

R

Figure 8.1 – Overlapping areas of interests. R– radar, r – transmission range of the radar.

the second name format can locate a specific radar, by replacing the AOI with the radar location and set-

ting application type as radar. Given these benefits, we use the second name format for the proposed so-

lution.

AOI is typically specified as a rectangular area (see Fig. 8.1) covering few tens to thousands of

square kilometers, depending on the end users’ role. As seen in Fig. 8.1, AOI can be specified using the

coordinates of the lower-left and upper-right corners. However, a single data packet may not be able to

carry the data for a very large AOI. Therefore, AOI needs to be split into a set of smaller tiles (see Fig.

8.1). The smallest tile currently supported by CASA radars is ~100×100 m
2
. However, it is not useful to

send a separate interest packet for each tile as users are not interested in weather at a very specific point in

space and the overhead is high as weather features are typically represented using a four-byte number per

tile (e.g., reflectivity in dBz or wind speed in km/hour). Hence, it is desirable to request multiple tiles

within an interest packet. For example, a data sample with one data type from a 3×3 km
2
 area fits into a

4 KB packet recommended by CCNx [Palo]. Therefore, we format the second name as follows:

/x1/y1/x2/y2/application/time

where (x1, y1) and (x2, y2) are the lower-left and upper-right corners of the set of tiles. These coordinates

are typically specified using latitudes and longitudes. Moreover, breaking a large AOI into multiple

smaller AOIs also enables better utilization of cached data. For example, though AOI1 and AOI2 in Fig.

8.1 do not overlap completely, the subset of tiles that overlap needs to be pulled from radar R only once.

Once the interest packet reaches an application, application then needs to find one or more radars

that cover the given AOI and capable of producing the desired data types. While multiple radars cover a

217

given area, some of the radars may be busy scanning different areas requested by other applications.

Some radars may not be functional or available at the time for some reason (e.g., radar failure due to se-

vere weather). Therefore, the application needs to identify a subset of the radars that can provide the de-

sired data. CASA radars use a distributed task negotiation mechanism to determine the scan strategy of

each radar while increasing the utility of the overall system [An11]. Hence, it is useful to send a subscrip-

tion message to all the radars covering the given AOI enabling them to negotiate among themselves on

which radars will provide the data to the application. Subscription messages can be supported by extend-

ing the name format as follows:

/x1/y1/x2/y2/radar/time/subscription/n/dataType

It enables the network to forward an interest packet to all the radars covering the given AOI. Suffix of the

name indicates this is a subscription request for data from n radars for the given dataType (e.g., reflectivi-

ty or Doppler velocity). Radars that already have the desired data or are willing to generate the data will

respond with a data packet indicating their location and a list of tiles that data can be provided for. A ra-

dar may not be able to provide data for all the tiles of a given AOI, as its range r may not cover the entire

AOI (e.g., as in Fig. 8.1) or it may have already committed to generate data for other areas. Instead of

passing a list of tile locations to the application, packet sizes can be reduced by sending a bitmap indicat-

ing for which tiles the data are or will be available. After receiving data packets from radars, application

then sends a separate interest packet to pull the data from each selected radar. To reduce the latency, ap-

plications may pull data for different tiles from different radars as soon as it receives a data packet from a

radar. Following name format is proposed for those interest packets:

/xR/yR/xR/yR/radar/time/x1/y1/x2/y2/bitmap/dataType

Now the location of radar (xR, yR) takes precedence, as we are pulling data from a specific radar. xR and yR

are indicated in the data packet from the radar. They are repeated to comply with the name format.

/x1/y1/x2/y2/ indicates the AOI and bitmap indicates the required list of tiles from the given radar.

218

A5

A3

A1

A8

A2

A4

AOI1

AOI2

A7A6 A6

A5

A3

A1

A8

A2

A4

AOI1

A7

(a) (b)

U1

U2

U3

P2

P1

P3

P1

P2

P3

Zone controller

Ai Applications

ProxyPi

Radar

Figure 8.2 – Radar data fusion network: (a) 2D CAN overlay; (b) Interest packet routing. Nodes with
the same color belong to the same application type.

8.2.2 Overlay Construction and Query Resolution

CASA end users interact with the radar and data fusion network using a set of proxies [Li07d].

Proxies are desirable as not all end users can be part of the overlay due to lack of resources, e.g., mobile

devices used by EMs deployed in the field. Proxies can also split a large AOI into multiple smaller AOIs,

map a city/county name to its latitudes and longitudes, map a radar name to its location, provide access

control, and priority enforcement of end users [Li07a]. While it is not necessary for end users to use NDN

to communicate with a proxy, mobile end users such as EMs may use NDN-enabled devices to benefit

from mobility features in NDN.

Figure 8.2(a) depicts a 2D CAN overlay formed using a set of radars, applications, and proxies.

Scattered lines indicate the zone boundaries and circles with stars indicate the Zone Controllers (ZCs),

i.e., nodes responsible for indexing resources that map to their zones. Radars and applications (deployed

on computing nodes) are uniquely identified using their geographic location and node type (e.g., radar

and reflectivity application), and indexed at the respective ZC. Therefore, a ZC also maintains a resource

index (hash table) in addition to the Content Store (CS,) Pending Interest Table (PIT), and Forwarding

Information Base (FIB) maintained by all the nodes. A ZC’s FIB is populated with the information about

the neighboring zones enabling greedy routing over the 2D-CAN torus. FIBs in other nodes are populated

with a default route to their ZC. As the applications and proxies are deployed based on known weather

patterns, frequency of use, availability of infrastructure, and cost, they are not uniformly distributed

219

throughout the sensor field. Therefore, each application may not be deployed in each zone. However,

once an interest packet arrives for a given AOI that overlaps with the zone, the ZC should be able to lo-

cate the given application. Hence, neighboring ZCs are configured to share information about the applica-

tions that are within their zones. Each ZC needs to know k ≥ 1 computing nodes (preferably the nearest

ones, as it helps to reduce latency) for each application type. Resiliency can be improved when k > 1.

Sharing information among ZCs does not introduce high overhead as the network is mostly static except

for occasional failures in computing nodes. The size of the resource index at a ZC increases with the

number of application types, k, and density of radars. However, it will not be very large as there are only a

few tens of application types, k does not need to be large, and inter-radar distance is typically 30 km.

Figure 8.2(b) illustrates the forwarding of a set of interest packets from users searching data for

application type A5 and AOI1. First, user U1 sends its query to proxy P1. P1 then creates an interest packet

with a name indicating AOI1 and A5 using the second name format. If AOI1 is very large, it will be split

into a smaller set of AOIs and multiple interest packets will be issued. CAN supports routing packets only

to a given point within the torus. Therefore, at the overlay level, an interest packet is routed based on the

center of the specified AOI. Using CAN’s greedy routing scheme the packet is then forward towards the

zone covering the center of AOI1. After reaching the desired zone, ZC’s resource index is searched for a

computing node(s) capable of running A5. For example, U1’s interest packet is forwarded from P1’s zone

to A5’s zone, which has the application A5. Similarly, U2’s interest packet follows the path P2  A3  P1

 A5. U3’s interest packet is first forwarded from P3 to its ZC A6 and then from A6 to A5 (path is P3  A6

 A5). As the paths from U1 and U2 overlap at P1, NDN will suppress one of the interest packets if they

are concurrent or will respond to the second interest using P1’s cache (if data are more recent than the

given time). Therefore, only two interest packets are delivered to the node running A5.

Once the interest packet reaches A5, it needs to find a set of radars that cover AOI1. Only local ra-

dars are indexed at the ZC. Therefore, A5 sends a message to the ZC (in Fig. 8.2 A5 is a ZC) searching for

a radar covering the given AOI. Once a radar is found, a subscription interest packet is sent to that radar.

It then broadcasts the interest packet to all the other radars responsible for covering the given AOI. This is

220

possible because radars already know their neighbors irrespective of the zones they belong to, as it is nec-

essary for the distributed task negotiation mechanism [An11]. We believe this will be the case even in

other DCAS systems, as sensors need to know their neighborhood to collaborate. If not, ZCs can be used

to keep track of sensors/nodes in the same neighborhood (similar to applications). Routing policies asso-

ciated with FIB entries are used to indicate that the subscription messages need to be broadcast to all the

relevant radars [Ja09a]. Once a subscription interest is received, a radar first checks it CS for the request-

ed data generated after the given time. If matching cache entries are not found for one or more tiles in

AOI1, it negotiates with other radars to decide what areas to scan based on the given AOI, data type(s),

and required number of radars n. If data are already available for a subset of the tiles and/or the radar de-

cides to generate data for the remaining subset of the tiles, it then responds with a data packet indicating

the list of tiles (using a bitmap) for which the data will be available, data generation time, and its location.

Though multiple radars may respond to the subscription interest with a data packet, the current NDN pro-

posal [Ja09a] allows only the first data packet to be delivered to the receiver. However, applications typi-

cally need data from n ≥ 1 distinct radars for each tile in the AOI. Therefore, an array of counters (one for

each tile in the AOI) is added to the PIT entries corresponding to subscription interests, enabling a node to

accept up to n data packets for each tile. This modification does not hinder NDN’s ability to overcome

denial of service attacks, as n is typically small. For example, CASA applications typically do not require

data from more than three radars per tile (i.e., n ≤ 3). Such modifications are easier to integrate into NDN

when it is implemented as an overlaid network. Once a data packet with a list of tiles arrives from a radar,

application then sends another interest packet to pull data for the tiles that have not already received data

from other radars. Another bitmap may be used to indicate the required list of tiles. This interest packet is

forwarded using the location of the radar, which was indicated in the received data packet. Once data for

all the tiles are received from n radars, the application processes the data. The processed data are then sent

to the user(s) through the reverse path created by PIT entries. The data processing time of an application

depends on the complexity of the algorithm and the data types. For example, reflectivity data for different

221

δ γ

Q A

t Time

R Q

ε

δ1

Q1 A1

t1 Time

R Q2

ε δ2

t2 t3 t4

(a) (b)

Figure 8.3 – Timing diagram of query arrival (Q), radar data generation (R), and data processing at ap-

plication (A): (a) Query from a user; (b) Queries from two users.

tiles can be processed independently and concurrently as soon as data arrive whereas NBRR requires data

for multiple tiles before processing can begin.

8.2.3 Subscription Scheme for Periodic Queries

End user queries are issued periodically both in the surveillance mode and when an active weath-

er event is detected. Figure 8.3(a) illustrates the query arrival times from a user. As some weather features

do not change very rapidly (e.g., reflectivity of clouds and temperature), users are willing to accept data

generated few seconds to minutes in the past (denoted by δ) than waiting for the latest data to be generat-

ed. δ depends on the weather feature being monitored, end user’s role, and time interval γ (> δ) between

two successive queries. For example, a scientist querying for wind velocity may set δ = 15 seconds while

a user from the media may set δ = 60 seconds. Therefore, a query arriving at time t is willing to accept

data generated after t – δ. Hence, time in the name of an interest packet is set to t – δ. After the query is

issued, the user has to wait some time before the desired data are either pulled from a CS or generated by

a radar(s). Let ε denote the waiting time which depends on the data generation time from radars, data pro-

cessing time, network delay, and whether data are already cached. Ideally, t + ε < t + γ, as otherwise the

next query will arrive before the current query is answered.

However, differences in t, γ, and δ among users connected to the same proxy and access the same

data reduce the possibility of benefiting from cached data. Figure 8.3(b) illustrates the query arrival time

of two users. Query Q1 arrives at t1 and requests data for application type A1. Suppose application A1 had

to wait until radar R generates the data at t2. At t3, A1 finishes processing the data and sends the results to

222

the user by t1 + ε. Another query Q2 arrives at t4 looking for the same data generated after t4 – δ2. Howev-

er, Q2 cannot benefit from already cached data, as the data generation time t2 < t4 – δ2. This problem per-

sists even in future rounds of queries. Given both the users’ objective is to get data that are more recent

for the desired AOI every γ1 and γ2 intervals, the problem can be overcome by developing a subscription

scheme that can provide data periodically to users without issuing multiple interest packets for the same

data at a proxy. A user i subscribes to a proxy indicating the desired AOIi, Ai, γi and δi. During the first

round, if the cached data are too stale a new interest packet will be issued and new data will be pulled

from a radar(s). Then, from the second round onwards a proxy issues only one interest packet for a given

application type and AOI. Time to issue the next interest packet tnext can be calculated using the current

tnext (for the first subscription tnext = t1 + γ1) and the arrival time ti of a new subscription from user i with

period γi. Then tnext = min(tnext, ti + γi). Once the corresponding data packet arrives, it is forwarded to the

relevant end users according to their γi and δi. This makes sure that no user will receive data any later than

they are supposed to receive without the subscription scheme. However, some users may receive data ear-

lier than their next period (ti + αγi, α ≥ 1), but they still get a consistent view of the weather event(s) as γis

are preserved. As the subscription scheme reduces the duplicate interest packets, bandwidth requirement

of all the nodes involved in providing data for the given AOI and application is reduced.

8.2.4 Caching Based on Data Generation Time

NDN caching exploits the spatial and temporal locality of user interests to reduce the bandwidth

requirements of the network. However, as users are most interested in recent data, data becomes less im-

portant with time irrespective of its popularity when it was just generated. Therefore, traditional caching

policies such as Least Frequently Used (LFU) and Least Recently Used (LRU) are not effective in decid-

ing what entries to remove from a CS when it is full. Instead, it is beneficial to remove the cache entry

corresponding to the oldest data, i.e., one with the earliest data-generation time. We name this caching

policy as Oldest First Caching (OFC). As the data packets are already tagged with the data-generation

time, no additional counters are needed as in LFU and LRU caching. OFC is different from First In First

223

Out (FIFO) caching as the cached data/entries depend on queries and the oldest data item may not be the

first entry to be stored in the CS. For example, because δi varies with the application type, user, and γi, it

is possible for a new query to pull data for a different AOI that is older than the entries already in the CS.

8.3 Supporting Sensor and Event Specific Queries

While queries that specify an AOI are the most common and resource (both bandwidth and com-

putation) consuming types of queries in CASA, end users are also interested in sensor and event specific

queries. For example, a user may request data from a specific radar because it may have special sensing

capabilities or for calibrating the radar. Event-specific queries look for locations/sensors where a particu-

lar weather event is detected, e.g., “find all locations where hail is detected” and “find all locations within

my jurisdiction where wind speed is 60 km/h or higher”. Such event-specific queries are typically issued

to identify AOIs for developing weather events. For example, locations with rotating wind may be an in-

dication of a developing tornado, and hence could be useful in identifying areas to scan at high frequency

and locations to deploy EMs/spotters. While sensor and event specific queries are relatively infrequent in

CASA, other DCAS systems may use them in different proportions. Hence, it is important to support mul-

tiple query types and naming conventions within the same NDN network. Next, we discuss how the over-

laid NDN network in Section 8.2 can be extended to support sensor and event specific queries.

Second name format proposed in Section 8.2.1 can be used to resolve sensor-specific queries by

mapping the sensor name to its geographic location and setting the sensor type as the application type.

Then the queries can be resolved using CAN’s greedy routing, as the radars/sensors are already indexed

in the 2D-torus according to their geographic locations. However, a mechanism is needed to map the sen-

sor names to their geographic locations. Such mapping is typically accomplished through a lookup table

or a database, as the names typically do not reflect their exact geographic locations, e.g., name of a city or

codes assigned to weather stations and radars [Mc09]. Therefore, such mapping can be facilitated by

maintaining a copy of the lookup table or database at each proxy node. If it is costly to maintain a sepa-

rate copy at each proxy, the CAN DHT formed in Section 8.2 can be used to index the sensor names and

224

their locations. A distributed index in the form of a DHT is more suitable as it enhances the scalability

and provides a consistent view of both the static and mobile sensors, and their locations. Mobile sensors

may be indexed in the DHT without making them ZCs to prevent their movement from disrupting the

overlay topology. Proposed 2D-torus can provide name-to-location mapping within)(NO hops [Ra01],

where N is the number of nodes/zones in the overlay.

Event-specific queries are typically expressed as multi-attribute range queries, for example:














MAX] kPa, [100 MAX], kmph, [60

 W],103 W,[100 N], 32 N, [30

PressureWindSpeed

LongitudesLatitudes
Q

where MAX indicates the maximum possible attribute value. Multi-attribute range queries are typically

resolved by first indexing the attribute values (i.e., sensor readings) in a centralized database, random set

of overlay nodes, or DHT, and then issuing queries to those nodes (Chapter 4). DHT-based solutions are

more appropriate for CASA-like systems because of their scalability and some guarantees in performance.

DHT-based solutions use either one or more overlay rings or a d-torus to index attributes (Sections 2.3.2

and 4.5.3). Adopting a ring-like overlay requires building another overlay within the CASA network

while a d-torus requires extending the proposed 2D-torus to multiple dimensions. Moreover, ring-like

overlays have a much higher advertising cost when attribute values (i.e., sensor readings) change fre-

quently (see Sections 4.5.3 and 4.7). d-torus has a much higher query cost when applied to real-world

queries, as they tend to specify only a subset of the attributes and large ranges of attribute values (Section

4.7). For example, resolving query Q on a d-torus that indexes readings from d > 4 sensor types will re-

quire searching a very large volume of the torus. Moreover, in practice, multi-attribute range queries are

resolved by either mapping the d-torus to a ring or by visiting each zone that overlaps with the query vol-

ume in parallel and then sending separate answers to the query originator (Section 2.3). Mapping the d-

torus to an overlay ring not only requires another overlay but it also breaks the locality of sensor reading

as d increases. Consequently, the query cost increases. Separate answers have to be sent to the query orig-

inator, as it is not straightforward to aggregate answers from zones of neighbors and neighbors of neigh-

bors on a d-torus. This is not possible in NDN as an interest packet is expected to receive only one data

225

a1, a3, ...

a 2
, a

4
, .

..

A1

(ak, arnd)

l2

u2

(a1, a2)

l3 u3

l4

u4

A2

a1, a3, ...

a 2
, a

4
, .

..

u4

l3 u3

l4

A2

0 1

23

4

5 6

7 8

9 10

11

1213

14 15

p2

p1

p2

p1

ZC1

ZC2

ZC3

ZC4

(a) (b)

U

Figure 8.4 – Use of 2D-torus to index sensor readings and resolve range queries: (a) Indexing sensor
readings and query areas; (b) Query resolution using a space-filling curve.

packet. The mechanism proposed to extend PIT entries to support retrieving data from n radars (in Sec-

tion 8.2.2) cannot be applied, as the number of query responses tend to be very large (because the search

volume is large) and cannot be known a priory (as ZCs know only their neighbors). Next, we propose a

mechanism to index sensor readings using the proposed 2D-torus.

Suppose sensor readings are specified using a set of attributes A = {a1, a2, a3, …, am}. We index

sensor readings in the 2D-torus by applying Locality Preserving Hash (LPH) functions [Ca04] to each

pair of attributes (a1, a2), (a3, a4), …, (am-1, am) such that the m-dimensional space is mapped to at most

 2m points in the 2D-torus. This is more efficient than mapping attribute values to m points in an over-

lay ring (see Sections 4.5.3 and 4.7). LPH hash functions are used as they preserve the locality along each

pair of dimensions. For example, consider a sensor node s that may have readings for only a subset of the

attributes in A, e.g., s = (a1 = v1, a2 = v2, ak = vk), where a1, a2, ak ∈ A. Then its readings are indexed in the

2D-torus based on LPH values of (a1, a2) = p1 and (ak, arnd) = p2 (see Fig. 8.4(a)). arnd is a random or a

fixed value added to make a pair of attributes. Depending on the application, a random value may be used

to spread the points on the 2D-torus providing load balancing while a fixed value may be used to indicate

that no such sensor exists. Similar to [Ca04], all the sensor readings of s are advertised to each point such

226

that a query can be resolved by searching only one of the points. Sensor readings are re-advertised when

their values change (a fixed or dynamic threshold may be applied to reduce the number of advertise-

ments).

Suppose we are given an event query q = {a2 ∈ [l2, u2], a3 ∈ [l3, u3], a4∈ [l4, u4]}, where li and ui

are lower and upper bounds of the desired attribute values. Similar to the sensor readings, LPH functions

can be applied to each pair of attribute value ranges to determine the search areas (see A1 or A2 in Fig.

8.4(a)). The range of attribute values for the unspecified attribute a1 have to be set as a1 ∈ [MIN1, MAX1],

where MINi and MAXi are minimum and maximum values of ai. We now need to search only one of the

two areas (A1 or A2) as the sensor readings are mapped to a 2D-torus. We issue query q (as an interest

packet) to the smallest area A2 as it reduces the search space and consequently the cost of resolving the

query. Therefore, search space of our solution is much smaller than the search space/volume in a d-torus,

which dramatically increases due to unspecified attributes. To overcome the problem of having to forward

an interest packet to all the neighboring zones that overlap with the query area and generating separate

data packets, we use a Space-Filling Curve (SFC) to determine the order to visit the overlapping zones in

the 2D-torus. In [Ba82], it is shown that SFCs can be used to find a computationally efficient, close-to-

optimal shortest path route for a given set of points on a 2D area. We use a Hilbert SFC because of its

ability to maintain the best locality in a 2D area [Mo01]. Given the number of attributes/dimensions,

MINi and MAXi, and resolution along a dimension, any node can calculate the set of points along the SFC

that needs to be visited to search the query area. Then the event-specific queries are resolved as follows.

The query initiator first identifies the smallest area to query. It then uses the SFC to identify the first point

to visit on the 2D-torus that overlaps with the minimum query area. Then an interest packet is generated

using the second name format proposed in Section 8.2.2 with the AOI set to the location of the first point.

Actual query is appended to the end of the name. Interest packet is then forwarded to the ZC that covers

the first point using CAN’s greedy routing. For example, in Fig. 8.4(b), the interest packet is forwarded

from user U to ZC1. Once it reaches the first point, ZC calculates the second point to visit and forwards

the packet towards that point. A ZC needs to be visited only once even though it may cover multiple

227

points to be visited (e.g., ZC3 in Fig. 8.4(b)). Once the interest packet reaches the ZC that covers the last

point (e.g., ZC4 in Fig. 8.4(b)), the query is resolved by searching the ZC’s index for matching sensor

readings. Then a data packet is generated and the results are forwarded through the reverse path (e.g., ZC4

 ZC3  ZC2  ZC1  U). While the data packet is being forwarded towards the query originator, in-

termediate ZCs are also queried and matching sensor readings are appended to the data packet. Therefore,

only one data packet will be received for an interest packet. Therefore, we can also support event-specific

queries within the same solution without creating another overlay while overcoming issues in the ring and

d-torus based designs.

8.4 Simulation Setup

CASA IP1 test bed [Br07, Mc09] in Oklahoma had only four radars. Radars are currently being

relocated to Dallas, TX where it will be expanded into an eight-radar network. Therefore, to demonstrate

a much larger radar network, a discrete-event simulator is developed using parameters from the IP1 test

bed to reflect real-world deployment scenarios. We consider a sensor field covered by 121 radars placed

on an 11×11 grid with an inter-radar distance of 30 km. This enables us to focus on the inner

300×300 km
2
 area that is covered by multiple radars while discarding the border effects. Sensing range r

of a radar is set to 40 km. The size of a tile is set to 100×100 m
2
 and four bytes of data were generated per

data type per tile (after preprocessing). Largest AOI specified in an interest packet is set to 6×6 km
2
 as

end users are not interested in weather related to a very small area and it reduces the overhead per interest

packet. Radars are unsynchronized and generate data for a 360
o
 scan every 30 seconds. Radars know oth-

er radars that have overlapping coverage (within 2r of each other). For management and administrative

purposes, radars are grouped into a set of Data Fusion Groups (DFG) (see Fig. 8.5). A DFG typically con-

tains nine (3×3) radars hence the given sensor field has 16 DFGs. Reflectivity and velocity applications

are deployed randomly within each DFG (one per DFG) as they are frequently used. NBRR, nowcasting,

and QPE applications are deployed only in four randomly selected DFGs, as they are used only when an

active weather event is detected and deployed based on known weather and usage patterns. Applications

228

Figure 8.5 – Data fusion groups for network of radars. d – inter-radar distance, r – transmission range.

are deployed randomly within each selected DFG. Altogether 44 computing nodes (16×2 for reflectivity

and velocity, and 4×3 for NBRR, nowcasting, and QPE) are deployed within the sensor field. Five prox-

ies are placed randomly within the sensor field. The overlay network consists of these 49 (44 + 5) nodes.

Radars are not used to forward overlay messages as they may have limited bandwidth due to deployments

in areas without well-established infrastructure. However, they are indexed at respective ZCs enabling

subscription interest packets to find them. ZCs share information about applications and each ZC knows

one node for each application type (i.e., k = 1). Link bandwidth is set to 1 Gbps. Size of CS is varied from

zero to 100 MB in 25 MB increments. PIT entries expire after 120 seconds to prevent the PIT from be-

coming arbitrarily large.

An area of 300×300 km
2
 is typically covered by two NWS forecast offices and 30 EMs, these

numbers are derived using the number of NWS forecast offices in the U.S. [NWS] and EMs deployed in a

county/state. We assume each user is responsible for a distinct fragment of the sensor field (i.e., AOI),

and therefore assigned ½ (2x1) of the sensor field to each NWS office and
1
/30 (6×5) of the sensor field to

each EM. We further assume eight scientists and 20 users from the media are also interested in retrieving

data from the entire sensor field in the surveillance mode as described in Table 2.4. Altogether, there are

60 users. Queries for NBRR, nowcasting, and QPE are issued only when an active weather event is de-

tected. Therefore, to determine AOI to specify for those queries, we use reflectivity data from an actual

229

Figure 8.6 – Reflectivity data from a severe weather event over Oklahoma, U.S. on 24/05/2011 at
00:08 UTC [NOAAa].

weather event over Oklahoma between 23/05/2011 20:00 UTC and 24/05/2011 02:00 UTC (see Fig. 8.6,

data obtained from [NOAAa]). This weather event led to several violent (EF4) tornadoes within the

IP1test bed. Minimum bounding rectangles covering areas with reflectivity over 25 dBz are considered of

interest and the AOIs are updated as the weather event migrated. Reflectivity images from [NOAAa] were

available only every one hour. Hence, midpoints between two successive samples were used to adjust the

AOIs every half an hour as shown in Fig. 8.7.

To evaluate the solution for event-specific queries, we considered a 1,000×1,000 km
2
 area cover-

ing parts of Arkansas, Kansas, Missouri, Oklahoma, and Texas (between latitudes 32
0
 N and 41

0
 N and

longitudes 92.38
0
 W and 103

0
 W). We used data from 1,081 weather stations within this area that reported

humidity, pressure, temperature, wind direction, and/or wind speed. A three-day trace of sensor readings

starting from 2012/06/29 00:00 GMT was collected from [NOAAb]. Sampling interval of weather sta-

tions varied between five minutes to one hour. Fixed thresholds were applied to sensor readings to reduce

the advertisements due to minor variations in sensor readings (see Appendix II.5). However, at least one

advertisement/update was sent every 30 minutes or one hour depending on the sampling interval of the

weather station. 10% of the weather stations were randomly added to the CAN overlay as ZCs and other

230

22:00 UTC 23:00 UTC 00:00 UTC 01:00 UTC 02:00 UTC

(a)

(b)

Figure 8.7 – Use of reflectivity data to define AOIs: (a) Change in reflectivity with time; (b) Use of

midpoints to define AOIs.

stations were directly connected to them. We simulated 500 users (30 NSW, 320 EMs, 30 scientists, and

120 media) where each issued queries based on an exponential distribution with an inter-arrival time of

300 seconds. As the composition of queries is unknown, we generated random queries by selecting one or

more attributes and range of attribute values as specified in [Ca04]. Each query also specified end user’s

AOI. Hilbert SFC was generated using the algorithm in [Moor]. Results are based on five samples with

different random seeds. Additional details on simulators are given in Appendix II.5.

8.5 Performance Analysis

Sensors in a DCAS system are typically the bottleneck in terms of the bandwidth, as they may not

be connected by high-bandwidth links due to lack of infrastructure in places where they are deployed.

Therefore, in Fig. 8.8, we analyze the amount of data pulled from a radar within a given time period under

different cache capacities and policies. Error bars indicate 1
th
 and 99

th
 percentile. Due to the periodic but

asynchronous arrival of queries from different end users, it is more appropriate to evaluate the aggregated

amount of data pulled within a time window than instantaneous values. Proposed subscription scheme for

231

Figure 8.8 – Data pulled from a radar while varying the cache size.

queries reduce the peak and average load on a radar by 61% and 72%, respectively, even without any

caching (size of CS CSsize = 0). Peak and average loads further reduced to 87% and 86% with CSsize =

25 MB and diminishing return is gained with increasing CSsize (e.g., load reduced by another 1% when

CSsize = 75 MB). Among the three caching polices considered, OFC outperformed LFU and LRU. For ex-

ample, when CSsize = 100 MB OFC reduced the peak load by 85% (without the subscription scheme)

while LFU and LRU reduce it by 76% and 82%, respectively. Load reduction due to both the OFC and

LRU caching policies indicates that data generation and access times are better predictors of future data-

access patterns when users are interested in more recent data. However, compared to LFU and LRU, OFC

caching has the added benefit of not requiring any counters as the data packets are already tagged with the

data-generation time. Figure 8.9 shows the cumulative distribution of load on radars. Without any caching

or subscription scheme, large volumes of data have to be pulled from the radars that are responsible for

covering the area of active weather. While caching reduces the load on radars, a more balanced distribu-

tion of load can be achieved when the subscription scheme is combined with caching. It was also ob-

served that the total load on radars could be reduced by 28% by applying only the duplicate messages

suppression feature in the PIT. Figure 8.10 also shows similar load reductions for applications and prox-

ies.

232

Figure 8.9 – Amount of data pulled from radars. Cache size 75 MB.

(a) (b)

Figure 8.10 – Data pulled from: (a) Applications; (b) Proxies.

Alternatively, end users are concerned about the quality of the received data. Figure 8.11 shows

the waiting time ε under different caching policies and CSsize. When CSsize = 0 multiple interest packets go

all the way up to the radars while aggregating traffic along the path. This behavior is confirmed by Fig.

8.12 which shows that the number of overlay hops traveled by an interest packet without caching is 73%

higher than when CSsize = 100 MB. Consequently, ε increases, as more time is required to send the corre-

sponding data packets back to the end users over multiple hops under a bounded link bandwidth. It was

also observed that 3% of the queries got lost due to PIT timeout as some data packets were significantly

delayed. The subscription scheme reduced average ε by 72% without caching. Even though it pulls the

latest data from radars, packets are not significantly delayed as the links are less congested. When caching

233

Figure 8.11 – Time taken to resolve a query (waiting time ε).

Figure 8.12 – Number of overlay hops travelled by interest packets.

is employed, only the interest packets looking for the latest data are forwarded to the radars while other

interest packets are answered from CSs along the path. Therefore, most users receive data within a short

time consequently reducing ε. For example, when CSsize = 75 MB peak and average ε reduce by 88% and

95% using both OFC and LRU caching. As the subscription scheme is looking for recent data, it cannot

significantly benefit from caching. Hence, ε did not reduce with increasing CSsize. Staleness (i.e., the time

between the data generation and delivery to users) is another metric of quality as end users are interested

in getting more recent data. Figure 8.13 shows the staleness. Subscription scheme and caching reduce the

duplicate interest packets in the network while making overlay links less congested. Hence, data packets

can be delivered with a lower delay consequently reducing the staleness. Therefore, by combing DCAS

234

Figure 8.13 – Staleness of received data.

systems with NDN and overlay networks, the bandwidth requirements of the sensors and DCAS system

can be reduced while increasing the quality of data delivered to end users.

Next, we analyze the performance of event-specific query resolution using the 2D-torus. Perfor-

mance is also compared against an 8D-torus (five dimensions for sensor readings and three dimensions

for latitude, longitude, and elevation of a weather station) and a ring-like overlay based on [Ca04]. Figure

8.14(a) shows the average number of hops required to resolve a query while increasing the range/fraction

of attribute values specified in a query. While the query cost increases with the increasing range of attrib-

ute values (as the search space increases), the cost of our solution is 56-65% lower than the 8D-torus and

45-48% lower than the ring. Query cost with increasing number of attributes is shown in Fig. 8.14(b).

Query cost of 2D-torus and 8D-torus decreases as the area/volume to search gets smaller when the queries

specify more and more attributes. The performance of the ring does not change as the fraction of attribute

value range specified in a query was fixed. While the query cost of 8D-torus is gradually approaching our

solution, our solution is still 34% lower than the 8D-torus even when five attributes are specified. Figure

8.15 shows the total cost per query (considering both the cost of advertising sensor readings and queries).

It can be seen that the 2D-torus is 38-42% and 55-60% more efficient than the 8D-torus and ring, respec-

tively. In practice, queries are more likely to specify a small number of attributes and large range of at-

tribute values (Section 4.4.2). Therefore, the proposed solution is more suitable as it has the lowest cost.

235

(a) (b)

Figure 8.14 – Query cost with: (a) Varying attribute value ranges. No of attributes = 1; (b) Increasing
number of attributes. Fraction of range = 0.3.

(a) (b)

Figure 8.15 – Per query cost with: (a) Varying attribute value ranges. No of attributes = 1; and (b) In-

creasing number of attributes. Fraction of range = 0.3.

8.6 Summary

A multi-user, multi-application, and multi-sensor DCAS system implemented on top of an over-

laid NDN was presented. Ability to name the data based on the geographic location and data type, inde-

pendent of the sensors that generate them, enables not only bandwidth reduction and load balancing but

also increases the quality of data delivered to the end users by reducing the response time and staleness.

Proposed subscription scheme and data-generation-time-aware caching policy further reduced the band-

width requirements, waiting time, and staleness of received data. Resolving event-specific queries using

236

the proposed 2D-torus is more efficient than building a separate ring-like overlay or a multidimensional

torus. While the performance gain is specific to the simulated CASA network, we believe these perfor-

mance gains are significant enough to justify the applicability of NDN for other DCAS systems.

237

Chapter 9

SUMMARY

We envision collaborative Peer-to-Peer (P2P) applications that will look for groups of diverse

peers that could bring in unique resources and capabilities to a virtual community thereby empowering it

to engage in greater tasks beyond what can be accomplished by individual peers. The majority of existing

solutions focuses only on discovering individual resources. Moreover, all the solutions rely on many sim-

plifying assumptions due to the absence of data and understanding of the characteristics of real work-

loads. We bridged this gap by presenting a characterization of real-world resources and queries, and then

used the learned behavior to develop a synthetic resource and query generation tool, resource and query

aware Resource Discovery (RD) solution, community-aware distributed caching solution, and demon-

strated the applicability of Named Data Networking (NDN) for Distributed Collaborative Adaptive Sens-

ing (DCAS) systems. This chapter provides a concluding summary of work presented (Section 9.1) and

future directions (Section 9.2).

9.1 Conclusions

In Chapter 4, we analyzed the resource and query characteristics from four different real-world

computing environments (1) PlanetLab networking test bed, (2) SETI@home volunteer-computing sys-

tem, (3) EGI grid computing nodes, and (4) a distributed campus computing facility. Fundamental design

choices for P2P-based RD were then qualitatively and quantitatively evaluated using the learned behavior.

To our knowledge, this is the first such evaluation using real-life workloads. Findings show real world,

multi-attribute resource and query characteristics diverge substantially from conventional assumptions.

While real world, less-specific queries are relatively easier to resolve, they introduce significant load bal-

ancing issues due to skewed resources and queries. Dynamic attributes contribute to high advertising cost,

238

and their behavior is attribute-type and system specific hence should not be ignored in performance stud-

ies. These findings indicate the need for more efficient, scalable, and robust RD solutions as well as the

importance of taking into account the specific characteristics of real-world resources/queries while de-

signing and analyzing such solutions. Hybrid approaches that combine the desirable features of central-

ized, superpeer, and ring-based architectures have the potential to provide better solutions.

A technique to generate vectors of static attributes and multivariate time series of dynamic attrib-

utes while preserving the correlations and temporal patterns observed in operational systems was present-

ed in Chapter 5. A probabilistic finite state machine based technique was also presented to generate multi-

attribute range queries. Such synthetic traces of multi-attribute resources and range queries are useful in

collaborative P2P and grid/cloud computing for evaluating the scalability of applications, RD solutions,

and job schedulers, far beyond that is possible with existing test beds. Its applicability to the four datasets

collected in Chapter 4 was demonstrated using statistical tests. Data from any other platform may be used

as the basis for trace statistics. A tool is developed to automate the process of data generation and it is

made public with the four datasets [CNRL] enabling users to generate synthetic traces using existing da-

tasets or their own ones. Synthetic data from the tool were used to evaluate the fundamental design choic-

es for P2P-based RD in Chapter 4 and the performance of resource and query aware RD solution in Chap-

ter 6.

In Chapter 6, we presented five heuristics to discover multi-attribute resources within a P2P sys-

tem while alleviating the load-balancing problem identified in Chapter 4. These heuristics were derived

based on the properties of resources and queries learned in Chapter 4. Heuristics rely on local statistics to

capture the complex characteristics of real-world resources and queries, and try to retain only the nodes

that answer queries in the overlay. It is the first RD solution to explicitly take into account the characteris-

tics of real-world resources and queries during the design, runtime, and performance analysis. Resource

index is transferred among existing and new nodes to maintain the index size and query load of a node

within its capacity. While the heuristics can be executed independently, much better performance can be

gained when all five heuristics are executed in the given order. Simulation-based analysis demonstrated

239

their ability to reduce the query cost, balance the load, and adapt to rapid changes in attribute values. This

solution is useful for many systems such as CASA, P2P Clouds, GENI, as well as grid and cloud compu-

ting.

Analysis of search clouds from several BitTorrent communities showed P2P communities tend to

access the same content hence communities are partially isolated. Furthermore, a survey was conducted to

find out the number of communities accessed by BitTorrent users and their frequencies. Our findings

show users prefer to access contents from a few primary communities where 89% of the time they ac-

cessed at most two communities. These findings were utilized in Chapter 7 to develop a community-

aware sub-overlay formation and a distributed caching solution that adapts according to the interest pat-

terns of explicit P2P communities. An analytical model is derived to determine the best cache placement

and capacity allocation strategies as well as to provide useful bounds on performance. The proposed cach-

ing algorithm is independent of how the communities are formed, utilizes only the local statistics, and

works with any skewed distribution of queries. Moreover, the overall solution is adaptive and introduces

minimum storage, network, and computational overhead. It is more suitable when users primarily access

resources from few communities and when the size of a community is moderate to large with respect to

the size of the overall P2P system. Simulations based on Chord overlay, for example, showed 40% reduc-

tion in overall query cost (i.e., average path length) with per node cache sizes as low as 20. Less popular

communities were able to reduce the query cost by three times compared to system-wide caching. To our

knowledge, this is the first caching solution for structured P2P systems that exploits communities to pro-

vide better communitywide and system-wide lookup performance. We also demonstrated that query-path-

length information is not essential to develop a close to optimal, local-knowledge-based distributed cach-

ing solution. The relationships between the asymmetric overlay routing tree and Chord’s path length

bounded of O(log2 N), average path length of ½ log2 N, and bell-shaped distribution of path lengths were

also demonstrated.

A proof-of-concept multi-user, multi-application, and multi-sensor DCAS system implemented

on top of an overlaid NDN was presented in Chapter 8. A subscription mechanism for periodic queries

240

and a caching policy based on data generation time that is more suitable for DCAS systems are also pre-

sented. The proposed solution also supports sensor-specific and event-specific queries. The ability to

name the data based on the geographic location and data type, independent of sensor(s) that generate

them, enabled not only bandwidth reduction and load balancing but also increased the quality of data de-

livered to end users by reducing the response time and staleness. For example, simulation-based analysis

using design parameters from the CASA IP1 test bed and reflectivity data from an actual weather event

showed 87% and 95% reduction in average bandwidth consumption of radars and latency, respectively.

While the performance gain is specific to the simulated CASA network, we believe these performance

gains are significant enough to justify the applicability of NDN for other DCAS systems. Moreover,

DCAS systems can benefit from multiple features of NDN such as caching, multicasting, duplicate mes-

sage suppression, ability to deliver interest messages to potential data sources, and enhanced security and

mobility hence are even better applications for NDN compared to applications such as web access,

streaming, VoIP (Voice over IP) [Ja09b], and text-based chat [Palo] that utilize only a subset of the NDN

features. To our knowledge, this is the first demonstration of the applicability of NDN for DCAS systems.

9.2 Future Directions

Presented work can be extended along several directions to further enhance and realize the true

potential of collaborative P2P systems, community caching, and multi-sensor data fusion in DCAS sys-

tems using NDN. Below we discuss some of the possible future research directions.

Extend resource and query aware resource discovery solution to support all key phases of resource ag-

gregation

Our resource and query aware RD solution (Chapter 6) currently supports only the resource ad-

vertising and selecting phases hence needs to be extended to support resource matching and binding phas-

es (Section 3.4). It makes use of a hybrid design that combines a ring-based Distributed Hash Table

(DHT) and a superpeer-like two-layer overlay where nodes that are not in the overlay ring advertise and

query for resources through the nodes that are in the ring. Superpeers are more suitable for keeping track

241

of inter-resource relationships of multiple nodes/resources that are directly connected to them (Section

4.5.3, [Ba12b]). They can also provide resource binding on behalf of those connected nodes/resources.

Therefore, our hybrid design enables resource matching and binding. However, it is challenging to cap-

ture complex inter-resource relationships accurately while introducing low overhead. Constraints such as

latency and bandwidth may need to be satisfied among the selected resources as well as between the set of

selected resources and the node that is trying to deploy the collaborative application. Satisfying such con-

straints is nontrivial in superpeer and DHT-based solutions as third-party nodes resolve the queries. La-

tency or bandwidth measured to a third-party node is not transitive to the selected resources or to the node

trying to deploy the application. However, it has been demonstrated that network coordinates [Da04,

Le07], measuring performance to a set of landmarks [Za05], and random IP address sampling [Be06]

could be used to estimate inter-resource latency without involving the third-party node. However, further

research efforts are needed to enhance their accuracy, reduce overhead, as well as to support other inter-

resource relationships such as bandwidth, packet loss, and connectivity. Solutions such as P4P [Xi08a]

and ALTO [Se09] could be useful in inferring the physical topology and connectivity. Another important

extension is to support resource compensation [Ba12b]. For example, distributed data fusion in CASA

can compensate for lack of bandwidth between a processing and a storage node by processing data faster

(due to inherent parallelism in data fusion) to accommodate the extra delay introduced while transferring

data to the storage node. It is useful to identify and support such application-specific compensations with-

in the resource aggregation solution as they can enhance the performance, quality of service, and reliabil-

ity. Furthermore, solutions designed to support matching and binding phases should take into account the

complex characteristics of real-world resources/queries. It is also important to develop analytical models

to predict the performance of these solutions. A solution that supports all key phases of resource collabo-

ration can harness the collective power of P2P communities and their underutilized/unused resources to

build a globally distributed, virtual datacenter (with computing, storage, and sensing resources) that are

useful for limitless number of applications that can yield grater benefits to its contributors/users.

242

Identify semantic communities and extended performance analysis of community-based caching

Our sub-overlay formation scheme in Chapter 7 directly supports communities based on geo-

graphic and organizational interests. It is also important to develop mechanisms to identify communities

exhibiting semantic relationships within the P2P system. Our Community-Based Caching (CBC) solution

is designed based on the observation in Table 7.1 where real-world P2P communities are neither highly

correlated nor completely independent. It is important to investigate the range of correlations for which

our solution outperforms other solutions such as clustering which assumes communities are highly corre-

lated and almost all the queries stays within a cluster. For such a comparison, it is important to first ex-

tend solutions such as Magnet [Gi10] and/or developing new mechanisms to group nodes into communi-

ties based on their semantic relationships. Magnet clusters similar peers to adjacent addresses in the

overlay ring and dissimilar peers tend to be well separated. Therefore, prefix bits of the overlay addresses

could be used to represent the community identifiers, as nodes mapped to nearby locations tend have the

same prefix bits. Once such a mechanism is developed, performance of our CBC solution need be com-

pared against existing semantic-based clustering solutions to determine the applicability of each solution

under varying levels of correlations among P2P communities. Once the sub-overlays are created, it may

not be necessary to run the same greedy algorithms used by structured P2P systems to forward messages

between two community members. Therefore, it is useful to evaluate the possibility of using alternative

and/or multiple routing mechanisms within sub-overlays that are more efficient and less complicated.

While our solution supports nodes that belong to multiple communities (Section 7.6), our analysis was

limited to a single community per node. Therefore, an extensive performance analysis in the presence of

multiple communities per node is also necessary. When a node belongs to multiple communities, it may

receive a disproportionate number of queries for each of its communities. Thus, it is important to balance

the query load while making sure less-dominant communities do not starve due to the dominant ones.

While our results show caching also enhances load balancing, further analysis is needed to determine the

best cache-capacity allocation strategy within a node when it belongs to multiple communities. It is also

of interest to analyze the performance when members of a community have heterogeneous content access

243

and popularity patterns. Performance of the current solution and all the enhancements need to be evaluat-

ed under peer churn as well. The concept of exploiting specific characteristics of communities can be ap-

plied to many aspects of collaborative P2P systems including resource aggregation.

Aggregating data from multiple and heterogeneous sensors in named data networking

Distributed and collaborative data fusion provides an attractive implementation choice for CASA

real-time weather monitoring because data are constantly being generated, processed, pushed and pulled

among groups of radars, storage, and processing nodes. While we demonstrated the suitability of NDN

and overlay network based data fusion for DCAS systems (Chapter 8), a lot more work is needed to ag-

gregate groups of heterogeneous, distributed, dynamic, and multi-attribute resources as and when needed

[Ba12h]. While the solution proposed to resolve event-specific queries using the 2D-torus outperformed

the ring and multi-dimensional-torus based designs, it was not able to benefit entirely from NDN features

such as caching and duplicate message suppression. An interest message corresponding to an event-

specific query had to first go through a series of zones that overlapped with the query region, based on the

order given by the points on the space-filling curve. Once the query reached the last zone, it was resolved

by searching the sensor readings stored in the zone controller. Sensor readings stored in the intermediate

zones were checked only during the reverse path and matching sensor readings were appended to the data

packet. The solution was designed this was as NDN do not allow multiple data packets to be received for

the same interest packet and the number of data packets to be generated cannot be determined a priory.

However, this also hinders the possibility of benefiting from cached query responses for some of the

zones that need to be visited. As a query cannot be resolved until it reaches the last zone (unless an exact

match is found in a cache), our solution cannot benefit from cached query results that may be available

for a subset of the zones to be visited. The ability to aggregate data from multiple data sources for the

same interest packet is also important in many other applications including P2P-based RD and distributed

databases. Hence, it is important to develop solutions that can aggregate data from multiple sources (for

the same interest packet) while benefiting from multiple features in NDN. Our proof-of-concept solution

considered radars and weather stations separately. Hence, it is also important to extend the NDN-based

244

data fusion solution to integrate multiple heterogeneous sensors with diverse data types, rates, and genera-

tion patterns. For example, CASA utilizes pressure sensors and micro-weather stations to increase the

accuracy of detecting, tracking, and forecasting tornados [Ba12h, Pe11a, Pe12]. Moreover, integration of

mobile sensors is also important, e.g., radars mounted on vehicles that may be deployed during anticipat-

ed severe weather events. Building an actual data fusion system using CCNx [Palo] that can be readily

deployed on DCAS systems is also of interest.

Supporting incentives, trust, security, and privacy

Solutions designed to support incentives, trust, privacy, and security in conventional P2P systems

need to be extended to support interactions among multiple groups of heterogeneous resources in collabo-

rative P2P systems [Ba12b]. Multi-attribute resource discovery/aggregation solutions may treat incentives

and reputation values/scores of resources/users as another set of attributes. Incentives and reputation val-

ues need to be preserved even after a resource leaves the system (due to failure or churn), as it is costly

and time consuming to regain those values when the resource rejoins. Furthermore, security, integrity, and

accountability of the nodes as well as maintaining the incentives and trust values are of utmost im-

portance, as they can become easy targets for attacks. Guidelines need to be identified for determining

credits/payments and reputation scores for heterogeneous resources. For example, while both a radar and

a set of rain gauges are important for weather monitoring, formally evaluating the cost and perceived val-

ue of such systems in a consistent manner is difficult. Moreover, while a computed result must be always

accurate, accuracy of sensor data is dependent on many dynamic parameters. Formal analysis of incentive

schemes such as [Zh12] need to be extended to understand under what conditions a collaborative P2P sys-

tem will be robust and when will it collapse. Anonymity is in conflict with the incentives, trust, and secu-

rity; hence, it is important to look for distributed solutions that overcome this limitation. Because the key

phases of resource collaboration as well as incentives, trust, privacy and security are essential elements of

a collaborative P2P system, their designs and performance should also be evaluated in the context of the

overall system. Issues related to incentives, trust, privacy, and security might seem to be overweighting

245

the benefits of collaborative P2P systems. However, with the right tools and incentives in place, it will be

more useful, efficient, and rewarding to accomplish a greater task through the collaboration.

246

REFERENCES

[Ad00] L. A. Adamic, “Zipf, power-laws, and Pareto – A ranking tutorial,” Apr. 2000, Available:

http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html

[Ad02] L. A. Adamic and B. A. Huberman, “Zipf’s law and the Internet,” Glottometrics, vol. 3, 2002,

pp. 143–150.

[Al08] J. Albrecht, D. Oppenheimer, D. Patterson, and A. Vahdat, “Design and implementation

tradeoffs for wide-area resource discovery,” ACM Transactions on Internet Technology, vol. 8,

no. 4, Sep. 2008.

[Am08] Amazon Web Services LLC, “Amazon EC2 service level agreement,” Oct. 2008, Available:

http://aws.amazon.com/ec2-sla/

[Amaz] Amazon Web Services LLC, “Amazon EC2 instance types,” Available:

http://aws.amazon.com/ec2/instance-types/

[An06] D. P. Anderson and G. Fedak, “The computational and storage potential of volunteer compu-

ting,” In Proc. Int. Symp. on Cluster Computing and the Grid, May 2006.

[An09] D. P. Anderson and K. Reed, “Celebrating diversity in volunteer computing,” In Proc. Hawaii

Int. Conf. on System Sciences, Jan. 2009.

[An10] A. Andrzejak, D. Kondo, and D. P. Anderson, “Exploiting non-dedicated resources for cloud

computing,” In Proc. 12
th
 IEEE/IFIP Network Operations and Management Symposium

(NOMS ‘10), Apr. 2010.

[An11] B. An, V. Lesser, D. Westbrook, and M. Zink. “Agent-mediated multi-step optimization for

resource allocation in distributed sensor networks,” In. Proc. Autonomous Agents and Multi-

Agent Systems, May 2011.

[Ar09] M. Armbrust et al., “Above the clouds: A Berkeley view of cloud,” Technical Report, No.

UCB/EECS-2009-28, Feb. 2009.

247

[Az09] M. Azua, “The social factor,” IBM Press, Aug. 2009.

`

[Ba07a] T. Banka, P. Lee, A. P. Jayasumana, and J. Kurose, “An architecture and a programming inter-

face for application-aware data dissemination using overlay networks,” In Proc. 2
nd

IEEE/Create-Net/ICST COMSWARE ‘07, Jan. 2007.

[Ba07b] I. Baumgart, B. Heep, and S. Krause, “OverSim: A flexible overlay network simulation frame-

work,” In Proc. 10
th

IEEE Global Internet Symposium, May 2007, pp. 79–84.

[Ba11a] S. K. Baek, S. Bernhardsson, and P. Minnhagen, “Zipf's law unzipped,” New Journal of Phys-

ics, vol. 13, Apr. 2011.

[Ba11b] A. Bahga and V. K. Madisetti, “Synthetic workload generation for cloud computing applica-

tions,” Journal of Software Engineering Applications, vol. 4, 2011, pp. 396–410.

[Ba11c] H. M. N. D. Bandara and A. P. Jayasumana, “Exploiting communities for enhancing lookup

performance in structured P2P systems,” In Proc. IEEE Int. Conf. on Communications (ICC

‘11), June 2011.

[Ba11d] H. M. N. D. Bandara and A. P. Jayasumana, “On characteristics and modeling of P2P resources

with correlated static and dynamic attributes,” In Proc. IEEE Global Communications Confer-

ence (GLOBECOM ‘11), Dec. 2011.

[Ba11e] H. M. N. D. Bandara and A. P. Jayasumana, “Characteristics of multi-attribute re-

sources/queries and implications on P2P resource discovery,” In Proc. Int. Conf. on Computer

Systems and Applications (AICCSA ‘11), Dec. 2011.

[Ba12a] H. M. N. D. Bandara and A. P. Jayasumana, “Evaluation of P2P resource discovery architec-

tures using real-life multi-attribute resource and query characteristics,” In Proc. IEEE Consum-

er Communications and Networking Conf. (CCNC ‘12), Jan. 2012.

[Ba12b] H. M. N. D. Bandara and A. P. Jayasumana, “Collaborative applications over peer-to-peer sys-

tems – Challenges and solutions,” Peer-to-Peer Networking and Applications, Springer, 2012,

DOI: 10.1007/s12083-012-0157-3.

248

[Ba12c] H. M. N. D. Bandara and A. P. Jayasumana, “Resource and query aware, peer-to-peer-based

multi-attribute resource discovery,” In Proc. 37
th
 IEEE Conf. on Local Computer Networks

(LCN ‘12), Oct. 2012.

[Ba12d] H. M. N. D. Bandara, A. P. Jayasumana, and M. Zink, “Radar networking in collaborative

adaptive sensing of atmosphere: State of the art and research challenges,” In Proc. IEEE

Globecom Workshop on Radar and Sonar Networks (RSN ‘12), Dec. 2012.

[Ba12e] H. M. N. D. Bandara and A. P. Jayasumana, “Community-based caching for enhanced lookup

performance in P2P systems,” IEEE Transactions on Parallel and Distributed Systems, 2012,

DOI: 10.1109/TPDS.2012.270.

[Ba12f] H. M. N. D. Bandara and A. P. Jayasumana, “Multi-attribute resource and query characteristics

of real-world systems and implications on peer-to-peer-based resource discovery,” To be sub-

mitted to ACM Transactions on Internet Technology.

[Ba12g] H. M. N. D. Bandara and A. P. Jayasumana, “On characteristics and generation of multi-

attribute resources and queries with correlated attributes,” To be submitted to IEEE Transac-

tions on Parallel and Distributed Systems.

[Ba13] H. M. N. D. Bandara and A. P. Jayasumana, “Distributed multi-sensor data fusion over named

data networks,” Submitted to 5
th

 Int. Conf. on Communication Systems and Networks

(COMSNETS ‘13), Jan. 2013.

[Ba82] J. J. Bartholdi III and L.K. Platzman, “An O(N log N) planar travelling salesman heuristic

based on spacefilling curves,” Operations Research Letters, vol. 1, no. 4, Sep. 1982, pp. 121–

125.

[Be06] R. Beverly, K. Sollins, and A. Berger, “SVM learning of IP address structure for latency pre-

diction,” In Proc. ACM SIGCOMM Workshop on Mining Network Data, Sep. 2006, pp. 299–

304.

[Be10] M. Bertier, D. Frey, R. Guerraoui, A. Kermarrec, and V. Leroy, “The Gossple anonymous so-

cial network,” In Proc. ACM/ IFIP/USENIX 11
th
 Middleware Conf., Dec. 2010, pp. 191–211.

[Bh04] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting scalable multi-attribute

range queries,” In Proc. ACM Special Interest Group on Data Communication (SIGCOMM

‘04), Aug./Sep. 2004.

249

[Bl58] R. B. Blackman and J. W. Tukey, “The measurement of power spectra, from the point of view

of communications engineering,” New York: Dover, 1958, pp. 95–100.

[Bo04] S. Boyd and L. Vandenberghe, “Convex optimization,” Cambridge University Press, 2004, pp.

71 and 243.

[Br05] J. Brophy and D. Bawden, “Is Google enough? Comparison of an internet search engine with

academic library resources,” Aslib Proceedings, vol. 57, no. 6, 2005, pp. 498–512.

[Br07] J. Brotzge et al., “CASA IP1: Network operations and initial data,” In Proc. 23
rd

 Conf. on Inter-

active Information Processing Systems for Meteorology, Oceanography, and Hydrology, Amer-

ican Meteorological Society, vol. 8A.6, 2007.

[Br09] G. Briscoe and A. Marinos, “Digital ecosystems in the clouds: Towards community cloud

computing,” In Proc. 3
rd

 IEEE Int. Conf. on Digital Ecosystems and Technologies, June 2009,

pp. 103–108.

[Ca02] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “SCRIBE: A large-scale and de-

centralized application-level multicast infrastructure,” IEEE Journal on Selected Areas in

Communications, vol. 20, no. 8, Oct. 2002, pp. 100–110.

[Ca04] M. Cai, M. Frank, J. Chen, and P. Szekely, “MAAN: A multi-attribute addressable network for

grid information services,” Journal of Grid Computing, Jan. 2004.

[Ch02] J. Chu, K. Labonte, and B. N. Levine, “Availability and locality measurements of peer-to-peer

file systems,” In Proc. ITCom: Scalability and Traffic Control in IP Networks II, July 2002, pp.

310–321.

[Ci12] Cisco Systems Inc., “Cisco visual networking index: Forecast and methodology, 2011–2016,”

May 2012.

[CNRL] Computer Networking Research Laboratory (CNRL), “Collaborative peer-to-peer (P2P) sys-

tems,” Available: http://www.cnrl.colostate.edu/Projects/CP2P/

[Co02] E. Cohen and S. Shenker, “Replication strategies in unstructured peer-to-peer networks,” In

Proc. ACM Special Interest Group on Data Communication (SIGCOMM ‘02), Aug. 2002.

250

[Co09a] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction to algorithms,” 3
rd
 edi-

tion, MIT Press, 2009, pp. 1078.

[Co09b] P. Costa, J. Napper, G. Pierre, and M. Steen, “Autonomous resource selection for decentralized

utility computing,” In Proc. 29
th

 Int. Conf. on Distributed Computing Systems, June 2009.

[Co10] M. Conti, S. Giordano, M. May, and A. Passarella, “From opportunistic networks to opportun-

istic computing,” IEEE Communications Magazine, vol. 48, no. 9, 2010, pp. 126–139.

[Da03] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica, “Towards a common API for

structured peer-to-peer overlays,” In Proc. Int. Workshop on Peer-To-Peer Systems, 2003.

[Da04] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized network coordinate

system,” In Proc. ACM Special Interest Group on Data Communication (SIGCOMM ‘04), Aug.

2004.

[De09] L. Dekar and H. Kheddouci, “A resource discovery scheme for large scale ad hoc networks us-

ing a hypercube-based backbone,” In Proc. Int. Conf. on Advanced Information Networking and

Applications, 2009, pp. 293–300.

[De10] Z. Despotovic, Q. Hofstätter, M. Michel, and W. Kellerer,, “An operator approach to populari-

ty-based caching in DHTs,” In Proc. Int. Conf. on Communications (ICC ‘10), May 2010.

[De78] P. Deheuvels, “Caractérisation complète des lois extrèmes multivariées et de la Convergence

des types extrèmes,” Institute of Statistics of the University of Paris, vol. 23, 1978, pp. 1–36.

[Do05] B. Donovan, D. McLaughlin, J. Kurose, and V. Chandrasekar, “Principles and design consider-

ations for short-range energy balanced radar networks,” In Proc. Int. Geoscience and Remote

Sensing Symposium (IGARSS ‘05), 2005, pp. 2058–2061.

[El09] C. Elliott, “GENI: exploring networks of the future,” Mar. 2009, Available:

http://www.geni.net

[El11] T. Elteto, C. Germain-Renaud, P. Bondon, and M. Sebag, “Towards non-stationary grid mod-

els,” Journal of Grid Computing, vol. 9, no. 4, Dec. 2011, pp. 423–440.

251

[Fa09] B. Fan, J. C. S. Lui, and D. Chiu, “The design trade-offs of BitTorrent-like file sharing proto-

cols,” IEEE/ACM Transactions on Networking, vol. 17, no. 2, Apr. 2009, pp. 365–376.

[Fo09] M. Fouquet, H. Niedermayer, and G. Carle, “Cloud computing for the masses,” In Proc. 1
st

ACM workshop on User-provided networking: challenges and opportunities (U-NET ‘09), Dec.

2009, pp. 31–36.

[Ga04a] P. Ganesan, B. Yang, and H. Garcia-Molina, “One torus to rule them all: Multi-dimensional

queries in P2P systems,” In Proc. 7
th
 Int. Workshop on the Web and Databases (WebDB ‘04),

June 2004.

[Ga04b] J. Gao and P. Steenkiste, “An adaptive protocol for efficient support of range queries in DHT-

based systems,” In Proc. 12
th

 IEEE Int. Conf. on Network Protocols (ICNP ‘04), 2004.

[Ga78] M. R. Garey and D. S. Johnson, “Computers and intractability: A guide to the theory of NP-

completeness,” Freeman, San Francisco, 1978, pp. 65.

[Ge07] M. N. George, “B-A scale-free network generation and visualization,” Apr. 2007, Available:

www.mathworks.com/matlabcentral/ fileexchange/11947

[Ge11a] C. Germain-Renaud et al., “The grid observatory,” In Proc. 11
th
 IEEE Int. Symposium on Clus-

ter, Cloud and Grid Computing, May 2011.

[Ge11b] C. Germain-Renaud, F. Furst, M. Jouvin, G. Kassel, J. Nauroy, and G. Philippon, “The green

computing observatory: A data curation approach for green IT,” In Proc. 9
th
 IEEE Int. Conf. on

Dependable, Autonomic and Secure Computing, Dec. 2011.

[Gi10] S. Girdzijauskas, G. Chockler, Y. Vigfusson, Y. Tock, and R. Melamed, “Magnet: Practical

subscription clustering for Internet-scale publish/subscribe,” In Proc. 4
th

 ACM Int. Conf. on

Distributed Event-Based Systems, July 2010.

[Go04] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load balancing in dy-

namic structured P2P systems,” In Proc. IEEE Int. Conf. on Computer Communications

(INFOCOM ‘04), 2004, pp. 2253–2262.

252

[Gu03] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica, “The impact of

DHT routing geometry on resilience and proximity,” In Proc. ACM Special Interest Group on

Data Communication (SIGCOMM ‘03), Aug. 2003, pp. 381–394.

[Ha06] S. B. Handurukande, A. M. Kermarrec, F. Le Fessant, L. Massoulié, and S. Patarin, “Peer shar-

ing behaviour in the eDonkey network, and implications for the design of server-less file shar-

ing systems,” In Proc. EuroSys ‘06, vol. 40, no. 2, Apr. 2006, pp. 359–371.

[He09] E. M. Heien, D. P. Anderson, and K. Hagihara, “Computing low latency batches with unrelia-

ble workers in volunteer computing environments,” Journal of Grid Computing, Aug. 2009.

[He12] E. M. Heien, D. Kondo, and D. P. Anderson, “A correlated resource models of Internet end

hosts,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 6, 2012, pp. 977–

984.

[Hu04] K. Y. K. Hui, J. C. S. Lui, and D. K. Y. Yau, “Small world overlay P2P networks,” In Proc. Int.

Workshop on Quality of Service, June 2004.

[Ik09] S. Ikeda, I. Kubo, and M. Yamashita, “The hitting and cover times of random walks on finite

graphs using local degree information,” Theoretical Computer Science, vol. 410, no. 1, 2009,

pp. 94–100.

[Io10] A. Iosup and D. Epema, “Grid computing workloads: Bags of tasks, workflows, pilots, and oth-

ers,” IEEE Internet Computing, vol. 99, 2010.

[Ir10] D. Irwin, P. Shenoy, E. Cecchet, and M. Zink, “Resource management in data-intensive clouds:

Opportunities and challenges,” In Proc. 17
th
 IEEE Work. on Local and Metropolitan Area Net-

works (LANMAN ‘10), May 2010.

[Ja09a] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N. Briggs, and R. L. Braynard, “Net-

working named content,” In Proc. 5
th
 ACM Int. Conf. on Emerging Networking Experiments

and Technologies (CoNEXT ‘09), Dec. 2009, pp. 1–12.

[Ja09b] V. Jacobson et al., “VoCCN: Voice over content-centric networks,” In Proc. ACM Workshop

on Re-architecting the Internet (ReArch ‘09), Dec. 2009.

253

[Ja90] H. V. Jagadish, “Linear clustering of objects with multiple attributes,” ACM SIGMOD Record,

vol. 19, no. 2, June 1990, pp. 332–342.

[Je06] M. Jelasity and A. Kermarrec, “Ordered slicing of very large-scale overlay networks,” In Proc.

6
th
 IEEE Int. Conf. on Peer-to-Peer Computing, 2006, pp. 117–124.

[Ka11] I. A. Kash, J. K. Lai, H. Zhang, and A. Zohar, “Economics of BitTorrent communities,” In

Proc. 6
th
 Work. on Economics of Networks, Systems, and Computation (NetEcon ‘11), June

2011.

[Ka97] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and R. Panigrahy, “Consistent hash-

ing and random trees: Distributed caching protocols for relieving hot spots on the World Wide

Web,” In Proc. 29
th
 Annual ACM Symposium on Theory of Computing, May 1997, pp. 654–

663.

[Ke04] Y. S. Kee, H. Casanova, and A. Chien, “Realistic modeling and synthesis of resources for com-

putational grids,” In Proc. ACM/IEEE Conf. on Supercomputing, Nov 2004.

[Ke06] Y. Kee, K. Yocum, A. A. Chien, and H. Casanova, “Improving grid resource allocation via in-

tegrated selection and binding,” In Proc. ACM/IEEE Conf. on Supercomputing, Nov. 2006.

[Ki11] W. Kim, A. Roopakalu, K. Y. Li, and V. S. Pai, “Understanding and characterizing PlanetLab

resource usage for federated network testbeds,” In Proc. 2011 Internet Measurement Confer-

ence (IMC ‘11). Nov. 2011.

[Kl04] A. Klemm, C. Lindemann, M. K. Vernon, and O. P. Waldhorst, “Characterizing the query be-

havior in peer-to-peer file sharing systems,” In Proc. 4
th
 ACM SIGCOMM Conf. on Internet

Measurement, 2004.

[Ko07] T. Koponen et al., “A data-oriented (and beyond) network architecture,” In Proc. ACM Special

Interest Group on Data Communication (SIGCOMM ‘07), Aug. 2007.

[Ko11] I. Konstantinou, D. Tsoumakos, and N. Koziris, “Fast and cost-effective online load-balancing

in distributed range-queriable systems,” IEEE Transactions on Parallel and Distributed Sys-

tems, vol. 22, no. 8, Aug. 2011.

254

[Ku06] J. Kurose et al., “An end-user-responsive sensor network architecture for hazardous weather

detection, prediction, and response,” In Proc. Asian Internet Conference (AINTEC), Nov. 2006.

[Kw10] S. Kwan and J. K. Muppala, “Bag-of-tasks applications scheduling on volunteer desktop grids

with adaptive information dissemination,” In Proc. 35
th
 IEEE Conf. on Local Computer Net-

works (LCN ‘10), Oct. 2010, pp. 560–567.

[La12] G. V. Laszewski et al., “Design of a dynamic provisioning system for a federated cloud and

bare-metal environment,” In Proc. Workshop on Cloud Services, Federation, and the 8
th
 Open

Cirrus Summit, Sep. 2012.

[Le07] J. Ledlie, P. Gardner, and M. Seltzer, “Network coordinates in the wild,” In Proc. USENIX

NSDI ‘07, Apr. 2007.

[Le12] P. Lee, A. P. Jayasumana, H. M. N. D. Bandara, S. Lim, and V. Chandrasekar, “A peer-to-peer

collaboration framework for multi-sensor data fusion,” Journal of Network and Computer Ap-

plications, vol. 35, no. 3, May 2012, pp. 1052–1066.

[Li06] D. Li and X. Sun, “Nonlinear integer programming,” Springer, New York, 2006.

[Li07a] M. Li et al., “Multi-user data sharing in radar sensor networks,” In Proc. 5
th
 ACM Conf. on Em-

bedded Networked Sensor Systems (Sensys ‘07), Nov. 2007.

[Li07b] S. Lim, V. Chandrasekar, P. Lee, and A. P. Jayasumana, “Reflectivity retrieval in a networked

radar environment: Demonstration from the CASA IP-1 radar network,” In Proc. Int. Geosci-

ence and Remote Sensing Symposium (IGARSS ‘07), July 2007.

[Li07c] L. Liu, N. Antonopoulos, and S. Mackin, “Fault-tolerant peer-to-peer search on small-world

networks,” Future Generation Computer Systems, vol. 23, 2007, pp. 921–931.

[Li09a] L. Liu, J. Xu, D. Russell, and Z. Luo, “Evolution of social models in peer-to-peer networking:

Towards self-organising networks,” In Proc. 6
th

 Int. Conf. on Fuzzy Systems and Knowledge

Discovery, 2009.

[Li09b] L. Liu, N. Antonopoulos, S. Mackin, J. Xu, and D. Russell, “Efficient resource discovery in

self-organized unstructured peer-to-peer networks,” Concurrency and Computation: Practice

and Experience, vol. 21, 2009, pp. 159–183.

255

[Lu03] D. Lu and P. A. Dinda, “Synthesizing realistic computational grids,” In Proc. ACM/IEEE Conf.

on Supercomputing, Nov. 2003.

[Lu04] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and comparison of peer-to-

peer overlay network schemes,” IEEE Communications Surveys and Tutorials, vol. 7, Mar

2004, pp. 72–99.

[Lv02] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication in unstructured peer-

to-peer networks,” In Proc. 16
th
 Int. Conf. on Supercomputing (ICS ‘02), June 2002, pp. 84–95.

[Ma01] D. Matthys, “Spatial filters,” Feb. 2001, Available:

http://academic.mu.edu/phys/matthysd/web226/L0205.htm

[Ma02] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer information system based on the

XOR metric,” In Proc. 1
st
 Int. Workshop on Peer-to-peer Systems (IPTPS '02), Feb. 2002, pp.

53–65.

[Mc05] D. J. McLaughlin et al., “Distributed collaborative adaptive sensing (DCAS) for improved de-

tection, understanding, and prediction of atmospheric hazards,” In Proc. AMS IIPS for Meteor-

ology, Oceanography, and Hydrology, American Meteorological Society, 11.3, 2005.

[Mc09] D. McLaughlin et al., “Short-wavelength technology and the potential for distributed networks

of small radar systems,” Bulletin of the American Meteorological Society, vol. 90, Dec. 2009,

pp. 1797–1817.

[Me01] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An approach to universal topology

generation,” In Proc. Int. Workshop on Modeling, Analysis and Simulation of Computer and

Telecommunications Systems (MASCOTS ‘01), Aug. 2001.

[Me10] M. Meulpolder et al., “Public and private BitTorrent communities: A measurement study,” In

Proc. 9
th
 Int. Conf. on Peer-to-Peer Systems, Apr. 2010.

[Micr] Microsoft, “Windows Azure platform introductory special,” Available:

http://www.microsoft.com/windowsazure/offers/popup/popup.aspx?lang=en&locale=en-

US&offer=MS-AZR-0001P

256

[Moor] D. Moore, “Fast Hilbert curve generation, sorting, and range queries,” Available:

http://www.tiac.net/~sw/2008/10/Hilbert/moore/index.html

[Mo01] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis of the clustering properties of

the Hilbert space-filling curve,” IEEE Transactions on Knowledge and Data Engineering,

vol.13, no.1, Jan/Feb. 2001, pp. 124–141.

[Mo05] R. Morselli, B. Bhattacharjee, A. Srinivasan, and M. A. Marsh, “Efficient lookup on unstruc-

tured topologies,” In Proc. 24
th
 ACM Symposium on Principles of Distributed Computing

(PODC ‘05), July 2005.

[Ne06] R. B. Nelsen, “An introduction to copulas,” 2
nd

 edition, New York: Springer, 2006, DOI:

10.1007/0-387-28678-0.

[Ne11] S. Newhouse, “European grid infrastructure – An integrated sustainable pan-European infra-

structure for researchers in Europe (EGI-InSPIRE),” Technical report EGI-doc-201-v6, Apr.

2011, Available: http://go.egi.eu/pdnon

[NOAAa] National Oceanic and Atmospheric Administration, “Hourly/sub-hourly observational data,”

Available: http://gis.ncdc.noaa.gov/map/cdo/

[NOAAb] National Oceanic and Atmospheric Administration, “Meteorological assimilation data ingest

system (MADIS),” Available: http://madis.noaa.gov/index.html

[NWS] National Weather Service, “National weather service organization,” Available:

http://www.weather.gov/organization

[Or84] J. A. Orenstein and T. H. Merrett, “A class of data structures for associative searching,” In

Proc. 3
rd

 ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, 1984, pp.

181–190.

[Palo] Palo Alto Research Center, “CCNx,” Available: http://www.ccnx.org/

[Pa06] K. Park and V. S. Pai, “CoMon: A mostly-scalable monitoring system for PlanetLab,” ACM

SIGOPS Operating Systems Review, vol. 40, no. 1, 2006.

257

[Pe11a] D. Pepyne et al., “An integrated radar-infrasound network for meteorological infrasound detec-

tion and analysis,” In Proc. 91
st
 American Meteorological Society Annual Meeting, Jan. 2011.

[Pe11b] D. Pepyne et al., “Dense radar networks for low-flyer surveillance,” In Proc. IEEE Conf. on

Technologies for Homeland Security, Nov. 2011.

[Pe12] D. Pepyne and S. Klaiber, “Highlights from the 2011 CASA Infrasound field experiment,” In

Proc. 92
nd

 American Meteorological Society Annual Meeting, Jan. 2012.

[Pf11] D. Pfisterer et al.,“SPITFIRE: Toward a semantic web of things,” IEEE Communications Mag-

azine, vol. 49, no. 11, 2011, pp. 40–48.

[Pi06] T. Pitoura, N. Ntarmos, and P. Triantafillou, “Replication, load balancing and efficient range

query processing in DHTs,” In Proc. 10
th
 Int. Conf. Extending Database Technology (EDBT),

2006, pp. 131–148.

[Plan] PlanetLab, Available: http://www.planet-lab.org/

[Po05] J. A. Pouwelse, P. Garbacki, D. H. J. Epema, and H. J. Sips, “The Bittorrent P2P file-sharing

system: Measurements and analysis,” In Proc. 4
th

 Int. Workshop on Peer-to-Peer Systems

(IPTPS), 2005.

[Qi04] D. Qiu and R. Srikant, “Modeling and performance analysis of BitTorrent-like peer-to-peer

networks,” In Proc. Conf. on Applications, Technologies, Architectures, and Protocols for

Computer Communications, Aug.–Sep. 2004, pp. 367–378.

[Ra01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content-

addressable network,” In Proc. ACM Special Interest Group on Data Communication

(SIGCOMM ‘01), Aug. 2001.

[Ra04] V. Ramasubramanian and E. G. Sirer, “Beehive: O(1) lookup performance for power-law query

distributions in peer-to-peer overlays,” In Proc. USENIX NSDI ‘04, vol. 1, 2004, pp. 99–112.

[Ra07] W. Rao, L. Chen, A. W. Fu, and Y. Bu, “Optimal proactive caching in peer-to-peer network:

Analysis and application,” In Proc. 6
th
 ACM Conf. on Information and Knowledge Manage-

ment, Nov. 2007, pp. 663–672.

258

[Ra08] R. Ranjan, A. Harwood, and R. Buyya, “Peer-to-peer based resource discovery in global grids:

A tutorial,” IEEE Communication Surveys, vol. 10, no. 2, 2008.

[Ra10] W. Rao, L. Chen, A. W. -C. Fu, and G. Wang, “Optimal resource placement in structured peer-

to-peer networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 7, July

2010.

[Ri02] M. Ripeanu and I. Foster, “Mapping the Gnutella network: Macroscopic properties of large-

scale peer-to-peer systems.” In Proc. 1
st
 Int. Workshop on Peer-to-Peer Systems (IPTPS ‘02).

2002, pp. 85–93.

[Ro01] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location, and routing

for large-scale peer-to-peer systems,” In Proc. IFIP/ACM Int. Conf. on Distributed Systems

Platforms, Nov. 2001, pp. 329–350.

[Ro11] P. Rosenmai, “Lorenz curve graphing tool & Gini coefficient calculator,” May 2011, Available:

http://www.peterrosenmai.com/lorenz-curve-graphing-tool-and-gini-coefficient-calculator

[Sa68] G. Salton and M. E. Lesk, “Computer evaluation of indexing and text processing,” Association

for Computing Machinery, vol. 15, no. 1, 1968, pp. 8–36.

[Se09] J. Seedorf, S. Kiesel, and M. Stiemerling, “Traffic localization for P2P-applications: The

ALTO approach,” In Proc. 9
th

 IEEE Int. Conf. on Peer-to-Peer Computing (P2P ‘09), Sep.

2009, pp.171–177.

[SETI] Search for Extraterrestrial Intelligence (SETI@home) Statistics, Available:

http://setiathome.berkeley.edu/stats/

[Sh06] H. Shen, C. Xu, and G. Chen, “Cycloid: A constant-degree and lookup-efficient P2P overlay

network,” Performance Evaluation, vol. 63, no. 3, Mar. 2006, pp. 195–216.

[Sh07] H. Shen, A. Apon, and C. Xu, “LORM: Supporting low-overhead P2P-based range-query and

multi-attribute resource management in grids,” In Proc. 13
th
 Int. Conf. on Parallel and Distrib-

uted Systems, Dec. 2007.

259

[Sh09] H. Shen and C. Xu, “Performance analysis of DHT algorithms for range-query and multi-

attribute resource discovery in grids,” In Proc. Int. Conf. on Parallel Processing, Sep. 2009. pp.

246–253.

[Sl11] D. E. Slotnik, “Users help a weather site hone its forecasts,” The New York Times, Mar. 21,

2011.

[So08] M. Sozio, T. Neumann, and G. Weikum, “Near-optimal dynamic replication in unstructured

peer-to-peer networks,” In Proc. 27
th
 ACM symposium on Principles of Database Systems

(PODS ‘08), June 2008, pp. 281–290.

[Sr01] K. Sripanidkulchai, “The popularity of Gnutella queries and its implications on scalability,”

Feb. 2001, Available: www.cs.cmu.edu/~kunwadee/research/p2p/gnutella.html

[St02] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet indirection infrastructure,”

In Proc. ACM Special Interest Group on Data Communication (SIGCOMM ‘02), Aug. 2002.

[St03] I. Stoica et al., “Chord: a scalable peer-to-peer protocol for internet applications,” IEEE/ACM

Transactions on Networking, vol. 11, no. 1, Feb. 2003, pp. 17–32.

[St08] D. Stutzbach, R. Rejaie, and S. Sen, “Characterizing unstructured overlay topologies in modern

P2P file-sharing systems,” IEEE/ACM Transactions on Networking, vol. 16, no. 2, Apr. 2008,

pp. 267–280.

[St09] J. C. Strelen, “Tools for dependent simulation input with copulas,” In Proc. 2
nd

 Int. Conf. on

Simulation Tools and Techniques, Mar. 2009.

[Su08a] A. Sulistio, U. Cibej, S. Venugopal, B. Robic, and R. Buyya “A toolkit for modelling and simu-

lating data grids: An extension to gridsim,” Concurrency and Computation: Practice & Experi-

ence, vol. 20, no. 13, Sep. 2008, pp. 1591–1609.

[Su08b] X. Sun, Y. Tian, Y. Liu, and Y. He, “An unstructured P2P network model for efficient resource

discovery,” In Proc. Int. Conf. on Applications of Digital Information and Web Technologies,

Aug. 2008, pp. 156–161.

260

[Ta08] Y. Tan, J. Han, and Y. Lu, “Agent-based intelligent resource discovery scheme in P2P net-

works,” In Proc. Pacific-Asia Workshop on Computational Intelligence and Industrial Applica-

tion, Dec. 2008, pp. 752–756.

[Th04] S. A. Theotokis and D. Spinellis, “A survey of peer-to-peer content distribution technologies,”

ACM Computing Surveys, vol. 36, no. 4, Dec. 2004, pp. 335–371.

[Th09] R. Thanawala, J. Wu, and A. Srinivasan, “Efficient resource discovery in mobile ad hoc net-

works,” In Proc. IEEE Int. Conf. on Communications (ICC ‘09), June 2009.

[Vi05] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C. Carrasco, “Probabilistic fi-

nite-state machines – Part I,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol.27, no.7, July 2005, pp.1013–1025.

[Vu09] Q. H. Vu, B. C. Ooi, M. Rinard, and K. -L. Tan, “Histogram-based global load balancing in

structured peer-to-peer systems,” IEEE Transactions on Knowledge and Data Engineering, vol.

21, no. 4, Apr. 2009.

[Wo04] J. L. Worrall and T. C. Pratt, “Estimation issues associated with time-Series – Cross-section

analysis in criminology,” Western Criminology Review, vol. 5, no. 1, 2004, pp. 35–49.

[Xi08a] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. G. Liu, and A. Silberschatz, “P4P: Provider portal

for applications,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 4, Oct.

2008, pp. 351–362.

[Xi08b] Z. Xiong, Y. Yang, X. Zhang, M. Zeng, and L. Liu, “A grid resource discovery model using

P2P technology,” In Proc. Int. Conf. on Intelligent Information Hiding and Multimedia Signal

Processing, Aug. 2008, pp. 1553–1556.

[Xu10] F. Xue, G. Feng, and Y. Zhang, “CommuSearch: Small-world based semantic search architec-

ture in P2P networks,” In Proc. IEEE Global Communications Conference (GLOBECOM ‘10),

Dec. 2010.

[Ya06] J. Yao, J. Zhou, and L. Bhuyan, “Computing real time jobs in P2P networks,” In Proc. 31
st

IEEE Conf. on Local Computer Networks (LCN ’06), Nov. 2006, pp. 107–114.

261

[Za05] T. Zahn and J. Schiller, “MADPastry: A DHT substrate for practicably sized MANETs,” In

Proc. 5
th
 Workshop on Applications and Services in Wireless Networks, June/July 2005.

[Ze03] A. Zeileis, C. Kleiber, W. Krämer, and K. Hornik, “Testing and dating of structural changes in

practice,” Journal of Computational Statistics and Data Analysis, vol. 44, no. 1-2, Oct. 2003,

pp. 109–123.

[Ze11] N. Zeilemaker, M. Capotă, A. Bakker, and J. Pouwelse, “Tribler: P2P media search and shar-

ing,” In Proc. 19
th
 ACM Int. conf. on Multimedia, Nov.-Dec. 2011, pp. 739–742.

[Ze96] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an internetwork,” In Proc.

IEEE Int. Conf. on Computer Communications (INFOCOM ‘96). Mar. 1996, pp. 594–602.

[Zh10] B. Zhang, A. Iosup, J. Pouwelse, D. Epema, and H. Sips, “Sampling bias in BitTorrent meas-

urements,” In Proc. Euro-Par 2010, Aug.-Sep., 2010.

[Zh12] B. Q. Zhao, J. C. S. Lui, and D-M. Chiu, “A mathematical framework for analyzing adaptive

incentive protocols in P2P networks,” IEEE/ACM Transactions on Networking, vol. 20, no. 2,

Apr. 2012, pp. 367–380.

[Zi05] M. Zink et al., “Meteorological command and control: An end-to-end architecture for a hazard-

ous weather detection sensor network,” In Proc. ACM Mobisys Workshop on End-to-End,

Sense-and-Respond Systems, Applications, and Services, June 2005, pp. 37–42.

262

Appendix I

NUMBER OF BITTORRENT COMMUNITIES ACCESSED BY

USERS

No measurements are available on the number of communities accessed by P2P users. It is not

straightforward to measure such behavior accurately without probing all the possible communities (or a

large representative subset of them) and all the resources shared by each of them as BitTorrent-like sys-

tems track their users based on the files they access. Moreover, the rate limiting adopted by BitTorrent

trackers and use of anonymizing services further impact such a measurement process. Instead, we con-

ducted an online survey to find out the number of communities accessed by BitTorrent users and their

frequencies. Survey link was posted on user communities of www.kat.ph, www.forum.suprbay.org, and

www.fenopy.eu, and e-mailed to friends between 11/03/2012 and 14/04/2012. We received 238 positive

responses (332 attempted the survey) from 42 countries as of 09/05/2012. Survey questions are given in

Section I.1 and survey results are given in Section I.2. Survey data are available in [CNRL].

I.1 Survey Questions

Question 1

Do you use BitTorrent, µTorrent, Xunlei, Vuze, etc. to download Videos, Music, Games, Software, e-Books,
etc.?

○ Yes

○ No

Question 2

What types of content do you search/download (select all that apply)?

□ Movies

□ TV shows or documentaries

□ Music Video

□ Anime

□ Porn

□ Music

263

□ Audio Books

□ Games

□ Software

□ e-Books

□ Pictures

□ Other – please specify ______________

Question 3

Which of the following features on a BitTorrent search engine do you use (select all that apply)?

□ Search

□ Search Cloud

□ Top or most popular torrents

□ Browse torrents

□ Recent/latest Torrents

□ Other – please specify ______________

Question 4

Which of the following BitTorrent sites (search engines) are you aware of (select all that apply)?

□ 1337x □ Bing

□ BitGamer.su □ BitSnoop

□ BitTorrent.com (or search box in client) □ BitTorrent Search Engine

□ BitToxic.com □ Blues Brothers

□ BTscene □ Bush Torrent

□ ClearBits □ Demonoid.me

□ Entertane.com □ Extra Torrent

□ EZ-TV □ fenopy

□ GamesTorrents □ gameupdates.org

□ Google □ jamendo

□ Kickass Torrents (KAT) □ isoHunt

□ LINUX23 □ linux TRACKER

□ Mininova □ NowTorrents

□ Scrape Torrent □ Seedpeer

□ SUMO TORRENT □ The Pirate Bay

□ ThunderBytes □ Torlock

□ Toorgle □ Torrentbit

□ TorrentCafe □ Torrent Download

□ Torrent Downloads □ Torrent Funk

□ torrentGamez □ Torrent Root

□ torrents.to □ TORRENTScan

□ Torrentz □ Torrent Reactor

□ torrentzap □ Underground-Gamer

□ uTorrent (or search box in client) □ VODO

□ YouTorrent □ YourBittorrent

□ Vertor □ WiiTorrents

□ Xunlei (or search box in client) □ Yahoo

□ Other – please specify ______________

264

Question 5

List of options depends on the answers to question four. For example, suppose user selected Bing,

BitTorrent.com, fenopy, The Pirate Bay, uTorrent, YouTorrent, YourBittorrent, and Yahoo.

Which of the following BitTorrent sites (search engines) do you use (select all that apply)?

□ Bing

□ BitTorrent.com

□ fenopy

□ The Pirate Bay

□ uTorrent

□ YouTorrent

□ YourBittorrent

□ Yahoo

Question 6

List of options depends on answers to question five. For example, suppose user selected Bing,

fenopy, The Pirate Bay, and YourBittorrent.

If you were to perform 20 searches for files, how many of them would go to each of the following sites
(total should be 20)?

Bing _________

fenopy _________

The Pirate Bay _________

YourBittorrent _________

Total
========

Question 7

In what country do you live (for classification only)?

__

Comments - anything that you would like to share about use of BitTorrent search engines

__

I.2 Survey Results

Figure I.1 shows the types of contents accessed by users. As expected, users seem to be accessing

a variety of contents. Movies and software are the most popular types of contents. Summary of data is

listed in Table I.1.

265

Figure I.1 – Types of contents accessed by users.

Table I.1 – Summary of findings.

 Min Max Average Std. Mode

Types of content accessed by a user 1 12 4.6 2.3 4

Search engine features 1 6 2.1 1.1 1

No of search engines known to a user 1 36 7.8 6.4 1

No of search engines used 1 19 3.4 2.8 1

Figure I.2 shows what features provided by search engines are frequently used. Majority of the

users relies on search and browse options. However, their content access choices seem to be also influ-

enced by what is popular (e.g., Top 50/100 and recent searches lists). Thus, there is a tendency for a popu-

lar content to become even more popular. Search clouds are infrequently used when deciding what to ac-

cess/download however they reflect what is being searched.

Figure I.2 – Frequently used features provided by search engines.

266

Search engines (communities) known to users are shown in Fig. I.3 and the ones that are actually

used are shown in Fig. I.4. Only the most popular 25 search engines are shown as our focus was on distri-

bution of search engine usage than relative popularity among them. Though users are aware of many

search engines, they seem to be using only a small subset of those (average number of search engines

used drop from 7.8 to 3.4).

Figure I.3 – Search engines known to users.

Figure I.4 – Search engines used.

267

Distribution of the number of communities accessed by a user is shown in Fig. I.5(a). 84% of the

time users access up to five search engines. Distribution of the number of searches per search engine

when a user performs 20 searches for files is shown in Fig. I.5(b). 73% of the time users prefer to use a

single search engine and one to two search engines are accessed 89% of the time. Therefore, though the

users tend to access contents from multiple communities (Fig. I.5(a)), they frequently revisit only one or

two communities. Consequently, by catering to few most preferred communities of a given user P2P per-

formance and quality enhancement solutions can gain better results. Figure I.6 shows the number of

searches per search engine. Country of survey participants is listed in Table I.2.

(a) (b)

Figure I.5 – Cumulative distribution of: (a) Number of communities accessed by a user; (b) Frequency

that a user revisits different communities.

Table I.2 – Country of survey participants.

Country No Country No Country No

Sri Lanka 97 Ireland 2 Poland 1

United States 32 Greece 1 Finland 1

United Kingdom 15 Japan 1 Bosnia and Herzegovina 1

India 13 Cyprus 1 Bulgaria 1

Singapore 12 Trinidad 1 New Zealand 1

Australia 10 Italy 1 Bangladesh 1

Canada 7 South Africa 1 Pakistan 1

United Arab Emirates 4 Nepal 1 Romania 1

Norway 3 France 1 Mexico 1

Sweden 4 North Cyprus 1 Egypt 1

Malaysia 2 Ghana 1 Uganda 1

Hungary 2 Brazil 1 China 1

Iran 2 Georgia 1 Netherlands 1

Belgium 2 Spain 1

268

Figure I.6 – Number of searches per search engine (out of 20 searches). Only the first 25 search en-

gines are shown.

Selected Comments

Below is a selected set of comments from survey participants.

1. Used these sites in India frequently not in the US

2. Please make sure they don't ask us to register to be able to download!

3. There aren't many seeders around. People fear using torrent clients, as 95% of downloads are illegal.

4. When I have a torrent that is working, I search other instances of that torrent by hash and add track-

ers. Additionally, I maintain a list of generic trackers.

5. It is unjustifiable to stop torrents as people in 3rd world countries heavily depend on torrents

6. Help torrent search engine from going down due to government rules. like btjunkie

7. Nice idea to connect the world. It's actually a social network. everyone will benefit from this

8. I didn't aware about such a number of torrent search engines

9. It would be great if possible to seach torrents using a single site. In future using anonymizing tech-
nologies like Freenet and GNUNet there will be much pirate stuff can be found in Internet if special

laws against such technologies will come into play.

10. I rarely use BitTorrent search function as I use RSS to auto download my torrents.

11. Mostly I use google to search for torrent files

12. They should be made more safe and free from malwares, rootkits and backdoor trojans

269

13. IF there is a global bittorrent downloader engine which perform global serach on user defined bit-

torrent sites & retirves torrents on highest seeds priority level, that would replace searching torrent
sites & timing.

14. Indexing is not a crime.

15. Need more reliable torrent uploaders without fakers

16. I don‘t just use the all of the above; there are a few more that are not listed.

17. Regarding question 6: I always start with The Pirate Bay, but if TPB doesn‘t have what I am looking

for I move on to other torrent indexes.

18. Most are crap. Some are great!

19. Torrent contents are really useful. We don't need to shut them down due to copy rights violations.

20. prefer private sites (needs login & maintain seed/leech ratio)

21. I use BitTorrent primarily for TV Shows, and I use RSS feeds for automatically download them.

22. It’s just a technology (Peer to peer is awesome). The legal or illegal debate depend on the content we

share. That’s it :)

23. Survey does not list many private trackers (though doing such would probably be impractical)

24. in UAE they have blocked KickAss torentz.Before that I have used it most of the time.Then I moved
to bit torrent.After using few months I search which is the most populalar torrent client from

wikipedea.

25. At the moment my ISP has banned accessing The Pirate Bay. So I have to use proxy to access it.

26. Since North Cyprus is not recognized as a country, it's very easy to pirate, as there are no official

rules for online media distribution.

27. Bittorrent search engines are useless and inefficient

28. They're awesome, they're a great way to share so many things, and restrictive bills like SOPA, PIPA,

and their counterparts throughout the world, as well as all of the billionaire bullies that support them

need to be stopped!

29. Many things that I download are (if they are good) purchased at a later date.

30. Bittorent is good to check if stuff has quality. If it's good it's worth buying.

31. bittorrent is great,it's the perception of a person that matters the most

32. I usually search for things on Demonoid, but then go to The Pirate Bay to actually download them. If
I find that a torrent is going slow, I'll search it's hash on Torrenz and add the trackers listed on that

site to the tracker list in the torrent.

270

Resource index
Central database, superpeers, DHT

Overlay

Resources

Resources Queries

Overlay
keys

Overlay
distances

Figure II.1 – Architecture of the resource discovery simulators.

Appendix II

SIMULATORS

Following is a brief description of simulator designs and configuration parameters. The source

code is available in supplementary material.

II.1 Resource Discovery Simulators

Seven discrete-event simulators were developed using Python to demonstrate the architectures

listed in Table 4.10. Figure II.1 illustrates the architecture of the simulators. A set of multi-attribute re-

source and query traces was generated using the method described in Section 4.6 and the same datasets

were used with all the simulators. Resources/nodes were sampled every 5 minutes and advertisements

were sent to the resource index layer, if the value of at least one attribute was significantly different from

the previous advertised value. Thresholds listed in Table II.1 were applied to determine whether attribute

values changed significantly. Domain of each attribute is listed in Table II.2. Each resource/node issued

queries based on a Poisson distribution with a mean inter-arrival time of 2.5 minutes (i.e., two queries per

271

Table II.1 – Thresholds applied while advertising resource attributes.

Attribute Name Description (Units) Threshold

1_MIN_LOAD 1-minute EWMA of CPU load 2.0

5_MIN_LOAD 5-minute EWMA of CPU load 2.0

15_MIN_LOAD 15-minute EWMA of CPU load 2.0

CPU_FREE Free CPU (%) 10.0

DISK_IN Disk in (GB) 1.0

DISK_FREE Free disk space (GB) 5.0

DISK_OUT Disk out (GB) 1.0

DISK_SVC Disk svc (GB) 1.0

DISK_USED Disk used (%) 2.0

DISK_UTIL Disk utilization (%) 2.0

DRIFT Clock drift (sec) 1.0

MEM_ACTIVE Memory active (%) 10.0

MEM_FREE Free memory (%) 10.0

SWAP_IN Disk swap in (GB) 1.0

SWAP_OUT Disk swap out (GB) 1.0

SWAP_USED Disk swap used (%) 5.0

RESP_TIME Response time (sec) 0.15

RX_RATE Transmission rate (bps) 1,000

TIMER_AVE Timer average (milliseconds) 100.0

TIMER_MAX Timer maximum (milliseconds) 100.0

TX_RATE Receive rate (bps) 1,000

UPTIME Uptime of node (sec) 21600.0

sampling interval per node). Resource index and overlay layers were modified to reflect the appropriate

sampling interval per node). Resource index and overlay layers were modified to reflect the appropriate

resource discovery solution. A set of topologies were generated a priory and used with appropriate simu-

lators. Both the unstructured and superpeer-based networks were generated using the B-A scale-free net-

work generator [Ge07] with a minimum node degree of two. Structured overlay networks were generated

 using the Chord [St03] implementation in OverSim [Ba07b], and overlay keys of nodes and the number

of hops to send a message from one node to all the other nodes were extracted (this creates the overlay

distances dataset). Building the overlay topology outside of the simulator simplified the simulator design,

speed up the simulator, and allowed the same topology to be used across different structured P2P-based

resource discovery solutions. According to [Co09b], number of cell levels of the d-Torus is set to three

and nodes in each cell were identified using random sampling. For DHT-based solutions, the overlay key

length is set to 160-bits. Attribute values were hashed using the locality preserving hash function pro-

posed in [Ca04]. Queries were issued only after the network was stabilized.

272

Table II.2 – Domains of attribute values.

Attribute Name Description (Units) Minimum Maximum

1_MIN_LOAD 1-minute EWMA of CPU load 0.0 1000.0

5_MIN_LOAD 5-minute EWMA of CPU load 0.0 1000.0

15_MIN_LOAD 15-minute EWMA of CPU load 0.0 1000.0

BOOT Boot state 0 6

BW_LIMIT Bandwidth limit (bps) 0 1,000,000

CORES_PER_CPU No of cores per CPU 0 8.0

CPU_FREE Free CPU (%) 0.0 100.0

CPU_SPEED CPU speed (GHz) 0.0 6.0

DISK_IN Disk in (GB) 0.0 50,000.0

DISK_FREE Free disk space (GB) 0.0 10,000.0

DISK_OUT Disk out (GB) 0.0 50,000.0

DISK_SIZE Disk size (GB) 0.0 10,000.0

DISK_SVC Disk svc (GB) 0.0 10,000.0

DISK_USED Disk used (%) 0.0 100.0

DISK_UTIL Disk utilization (%) 0.0 100.0

DRIFT Clock drift (sec) 21,600.0 21,600.0

FC_NAMEX OS (Fedora core) name 0 4

KERN_VER Kernel version 0 4

LATITUDE Latitude of node location (degrees) -90.0 90.0

LOCATION Location of node (categorical) 1 5

LONGITUDE Longitude of node location (degrees) -180.0 180.0

MEM_ACTIVE Memory active (%) 0.0 100.0

MEM_FREE Free memory (%) 0.0 100.0

MEM_SIZE Memory size (GB) 0.0 32.0

NODE_TYPE Node type (categorical) 0 2

NUM_CORES No of CPU cores 0 32.0

SWAP_IN Disk swap in (GB) 0.0 2500.0

SWAP_OUT Disk swap out (GB) 0.0 2500.0

SWAP_USED Disk swap used (%) 0.0 100.0

RESP_TIME Response time (sec) 0.0 100.0

RX_RATE Transmission rate (bps) 0 100,000

TIMER_AVE Timer average (milliseconds) 0.0 25,000.0

TIMER_MAX Timer maximum (milliseconds) 0.0 25,000.0

TX_RATE Receive rate (bps) 0 100,000

UPTIME Uptime of node (sec) 0.0 6,3072,000.0

II.2 ResQue – Resource and Query Generator

ResQue is developed using MATLAB. Figure 5.18 illustrates the process of generating multi-

attribute resources by combining the empirical-copula-based static attribute generation and time-series-

library-based dynamic attribute generation. pwlCopula [St09] MATLAB tool is extended to run in the

background (without user interaction) and integrated into ResQue. Time series libraries are built using the

273

strucchange package for R and two-halve-window-based derivative filter. Minimal segment size (i.e.,

minimum gap between two structural changes) is set to 6 hours. PlanetLab queries were preprocessed first

to identify the state transitions. These state transitions were used to build the probabilistic finite state ma-

chine. See ResQue user guide [CNRL] for more details on data formats and configuration parameters.

II.3 Resource and Query Aware Resource Discovery Simulator

A discrete-event simulator was developed using Python. The architecture of the simulator was

same as Fig. II.1. However, the overlay network was built within the simulator, as it needs to be adaptable

to the resource and query distributions. Workloads with 100,000 resources were simulated by represent-

ing a node in the system as 20 virtual nodes (altogether 5,000 nodes were used) with different identifiers.

This was acceptable, as only a few hundred nodes were added to the overlay based on the resource and

query distributions. Nodes in the overlay rings acted as a set of proxies for rest of the nodes. A node con-

nected to a randomly selected proxy every 3 minutes or after removing a node from the overlay. Finger

tables were updated every 3 minutes to maintain a stable Chord overlay. The length of an overlay key is

set to 32-bits, as only a few hundred nodes are added to the overlay ring. Attribute values were hashed

using the locality preserving hash function proposed in [Ca04]. The resources were mapped to a node

within a clique based on the hash value of resource identifier (SAH1 was used as the hash algorithm).

When a node is added/removed to/from a clique, resource index was rearranged within the clique by split-

ting the address space uniformly among all the nodes in the clique. Packet sizes were calculated based on

the size of an IPv4 address and a port number (6 bits), and the number of (attribute, value) pairs (4 bytes

per pair) it carries. The maximum packet size was set to 1,500 bytes. Workloads and node capacities are

described in Table 6.2 and Section 6.5. Queries were issued only after the network was initially stabilized.

Once the resources are indexed and queries are issued network may change in response to their loads.

274

DHT & Caching
Resource index, caching based on

community interest

Overlay
Chord, community member identification

Resources
Keys & queries

Keys Queries n

Topology

Underlay
Simple underlay or transit-stub topology

Queries 1 Queries 2 ...

Figure II.2 – Architecture of community-based caching simulator.

II.4 Community-Based Caching

II.4.1 Local-Knowledge-Based Distributed Caching and PoPCache Simulators

First, a set of lookup query traces was extracted using the Chord [Sa03] implementation in

OverSim [Ba07b] version 20100526 under different random seeds. A python-based simulator was then

developed to replay the query traces while assigning cache entries to nodes based on the proposed LKDC

algorithm (Fig. 7.7) and PoPCache [Ra07]. Number of nodes in the overlay network, the cache capacity

of a node, and Zipf’s parameters were varied as discussed in Sections 7.5 and 7.6.1.

II.5.2 Community-Based Caching Simulator

We simulated the community-based caching solution using a 15,000-node network with ten

communities using OverSim [Ba07b] version 20100526. The architecture of the solution is illustrated in

Fig. II.2. Lists of keys of resources and queries for those keys were generated outside of the simulator. A

separate query file was generated for each community as described in Table 7.4. Such a design simplified

the implementation while enabling us to reuse the same key and query traces under different simulation

275

Table II.3 – Simulation parameters for community-based caching.

Parameter Description (Units) Value

**.measurementTime Simulation time (sec) 6,000

**.delayToStart Delay before keys are indexed (sec) 1,000

**.overlay*.myChord.joinDelay Delay before joining overlay (sec) 10

**.overlay*.myChord.stabilizeDelay
How frequently to issue overlay stabilize messages
(sec)

30

**.overlay*.myChord.fixfingersDelay How frequently to issue fix finger messages (sec) 150

**.overlay*.myChord.checkPredecessorDelay How frequently to check the predecessor (sec) 10

**.overlay*.myChord.successorListSize Type of successor list 1

**.overlay*.myChord.aggressiveJoinMode Join overlay aggressively true

**.overlay*.myChord.extendedFingerTable Use extended finger table true

**.overlay*.myChord.numFingerCandidates No of candidates for each finger 1

**.overlay*.myChord.findGroupMembers Find community members true

**.overlay*.myChord.givePriorityToGroup
Give priority to community members while finding

the next hop to forward a message
false

**.overlay*.myChord.maxFindGroupMemberHops
No of hops to forward a community member discov-
ery message

4

**.overlay*.myChord.proximityRouting Route based on latency to next hop false

**.routingType Routing type semi-recursive

**.tier2.myDhtTestApp.testInterval Inter arrival time for queries (sec) 15

**.tier2.myDhtTestApp.maxGroupId Number of groups/communities 10

**.tier1*.myDht.numReplica No of replicas in DHT 1

**.tier1*.myDht.numGetRequests No of get() requests/messages per query 1

**.tier1*.myDht.cacheRefreshTime

Gap between two cache clean ups 0 (no cleaning)

**.tier1*.myDht.maxCacheSize Cache size 0-28

**.tier1*.myDht.useMsgGroupId Indicate community ID in get() messages false

**.tier1*.myDht.alpha
Caching weight (θ) used in LKDC algorithm. In the
simulators it is called α.

0.1-0.5

**.tier1*.myDht.cachingThreshold Caching threshold α + 0.02

**.tier1*.myDht.removeLookupThreshold Cache entry remove threshold (1 - α)10

**.targetOverlayTerminalNum No of nodes 1,000-15,000

**.initPhaseCreationInterval Time delay between addition of two nodes (sec) 0.1

parameters.

Multiple key and query traces were generated using different random seeds. Similarity among queries

issued by communities was enforced by sharing a subset of the queries (size of the subsets depends on the

cosine similarity between the two communities) issued by one community with another. To measure the

ability of geographic communities to improve the latency, transit-stub networks with 10 Autonomous

Systems (ASs) and 750 routers were generated using BRITE [Me01] while using GT-ITM [Ze96] as the

underlying topology generator. Based on [Ca02], overlay node-to-router delay is set to 1 ms and the aver-

age delay of the core network links is set to 40 ms. First, the shorted path from each router to all the other

276

NDN
CS, PIT, & FIB

Overlay
CAN 2D-torus

Underlay
Simple underlay

Queries

NDN & DHT
CS, PIT, FIB, & index of sensor readings

Overlay
2D-torus, 8D-torus, or Chord ring

Underlay
Simple underlay

Weather Stations

Sensor
readings

Queries

(a) (b)

Radars, Applications, & Proxies

Figure II.3 – Architectures of NDN for DCAS simulators: (a) Multi-sensor data fusion; (b) Event-
specific query resolution.

routers and the latency of each route was calculated and dumped to a file. Second, a set of lookup query

traces (including the entire path taken by a query), nodes, and their community IDentifiers (IDs) were

then extracted while simulating community-based caching. Third, overlay nodes were randomly mapped

to the underlay topology generated using BRITE based on their community ID such that nodes in the

same community are assigned to the same AS. Finally, the latency for each lookup query was calculated

by aggregating the underlay latency for each hop along the overlay. Simulation parameters are listed in

Table II.3.

II.5 Named Data Networking for Distributed Multi-Sensor Data Fusion

II.5.1 Multi-Sensor Data Fusion Simulator

A discrete-event simulator is developed in Python and its architecture is depicted in Fig. II.3(a).

Section 8.4 explains how the radars, applications, proxies, and end users are placed within the 2D CAN

overlay, and queries are generated. Simulation parameters are listed in Table II.4.

II.5.2 Event-Specific Query Simulator

A discrete-event simulator is developed in Python and its architecture is depicted in Fig. II.3(b).

277

Section 8.4 explains how the sensor readings are collected from weather stations and placement of end

users. While advertising sensor readings, thresholds listed in Table II.5 are applied to reduce the number

of advertisements due to minor changes in sensor readings. However, sensor readings were advertised at

least every 30 or 60 minutes (depending on the sampling interval) even if their values do not change sig-

nificantly. Domains of sensor readings are listed in Table II.6. Simulation parameters are listed in Table

II.4.

Table II.4 – Simulation parameters for NDN for DCAS simulators.

Parameter Name Description (Units) Value

CACHING_POLICY Caching policy
Oldest, LRU,

LFU

PIT_TIMEOUT PIT entry timeout (sec) 120

SIZE_CS Content store capacity (bytes) 0-100 MB

SIZE_PIT PIT capacity (bytes) Unlimited (0)

SIZE_FIB FIB capacity (bytes) Unlimited (0)

NUM_DIMENSIONS No of dimensions of the torus 2, 8

SIZE_TORUS[] Size of each dimension (m) 1,000 km

NUM_BITS
Resolution of an axis on torus. Determine no of segments the
torus is split into while using space-filling curves. (bits)

4

NUM_RADARS_X No of radars along X-axis 11

NUM_RADARS_Y No of radars along Y-axis 11

RADAR_RANGE Range of a radar (m) 40,000.0

INTER_RADAR_DIST Gap between 2 radars (along X & Y arises) (m) 30,000.0

RADAR_SKEW

Maximum time difference between 2 radars’ data generation

time (sec)
30

RADAR_HEARTBEAT Heartbeat interval of a radar (sec) 30

NUM_APP_IN_SUB_DFS No of apps in subset of the data fusion groups 4

NUM_APP_PROXIES No of proxies 5

APPS_IN_ALL_DFS
Applications in all the data fusion groups. REFL – reflectivity,

DDOP – dual Doppler

[‘REFL’,

‘DDOP’]

APPS_IN_SUB_DFS

Applications in subset of the data fusion groups. QPE - Quantita-
tive precipitation estimation, NBRR – network-based reflectivity
retrieval, NCAS – nowcasting

[‘QPE’,
‘NBRR’,
‘NCAS’]

TILE_X_PROXY Length of the smallest area of interest along x-axis (at proxy) (m) 6,000

TILE_Y_PROXY Length of the smallest area of interest along y-axis (at proxy) (m) 6,000

TILE_X_RADAR Length of the smallest area of interest along x-axis (at radar) (m) 500

TILE_Y_RADAR Length of the smallest area of interest along y-axis (at radar) (m) 500

JOIN_DELAY Delay between 2 nodes that join the network (sec) 0.5

ADD_RADAR_TO_OVERLAY Are radars part of the overlay network False

PIXEL_DATA_SIZE
Number of bytes generated for the smallest tile at a radar. 4 × no

tiles along x-axis × no tiles along y-axis. (bytes)
100

USE_SUBSCRIPTIONS Use query subscriptions True/False

FIRST_QUERY When to issue first query (sec) 300

SUB_EXPIRE_TIME Subscriptions expire after this time (sec) 720

NUM_W_STATIONS No of weather stations 1,081

FRACTION_IN_OVERLAY Fraction of weather stations in overlay 0.1

278

Parameter Name Description (Units) Value

SENSOR_NAMES
List of names assigned to sensors. X – longitudes, Y – latitudes,

DD – wind direction, ELEV – elevation, FF – wind speed, P –
pressure, RH – relative humidity, and T – temperature.

'X', 'Y', 'DD',

'ELEV', 'FF', 'P',
'RH', 'T

MIN_VALID_TIME Sensor data should at least expire after this time (sec) 1,800

USE_THRESHOLDS
Apply thresholds to prevent advertising of minor changes in

sensor readings
True

SIZE_SENSOR_READINGS
No of bytes required to represent sensor readings. 1 byte for
sensor name & 4 bytes for sensor reading.

5 × no of sensor
names.

USERS
End user placement within sensor field. Total users of given type
= i * j (if [i, j]) or i if ([i]). NWS – national weather service, EM

– emergency managers, RES – researchers, and MED – media.

['NWS', [6, 5]],
['EM', [20, 16]],
['RES', [30]],
['MED', [120]]

JOIN_DELAY Delay between 2 nodes that join (sec) 0.1

SIM_TIME_AFTER_LAST_QUERY Simulation time after last query. Defines the simulation end time. 150

BANDWIDTH Bandwidth (bps) 1 Gbps

PREFETCH_TIME Time to pre-fetch weather station data & queries (sec) 180

PREFETCH_INTERVAL How frequently to pre-fetch (sec) 120

SPEED_LIGHT
Speed of light. Use to calculate latency while transferring pack-
ets. (m/sec)

299,792,458

FIX_FINGER_INTERVAL When to fix fingers (sec). Used only for Chord ring. 120

KEY_LENGTH Overlay key length. Used only for Chord ring. 32

Table II.5 – Thresholds applied while advertising sensor readings.

Attribute Name Description (Units) Threshold

DD Wind direction (deg) 5.0

FF Wind speed (m/s) 1.5

ELEV Elevation. Threshold is used as ELEV is a float value 0.0001

P Station pressure (Pa) 1,000.0

T Air temperature (K) 1.0

RH Relative humidity (%) 5.0

X X coordinate. Threshold is used as X is a float value 0.0001

Y Y coordinate. Threshold is used as Y is a float value 0.0001

Table II.6 – Domains of sensor readings.

Attribute Name Description (Units) Minimum Maximum

DD Wind direction (deg) 0.0 360.0

ELEV Elevation (m) 0.0 2,000.0

FF Wind speed (m/s) 0.0 25.0

FFGUST Wind gust (m/s) 0.0 90.0

P Station pressure (Pa) 25,000.0 110,000.0

T Air temperature (K) 243.0 320.0

RH Relative humidity (%) 0.0 100.0

X X coordinate. Threshold is used as X is a float value 0 1,000 km

Y Y coordinate. Threshold is used as Y is a float value 0 1,000 km

279

ABBREVIATIONS

AOI Area Of Interest

API Application Programming Interface

AS Autonomous System

ATM Automated Teller Machine

CAN Content Addressable Network

CASA Collaborative Adaptive Sensing of the Atmosphere

CBC Community-Based Caching

CCN Content Centric Networking

CDF Cumulative Distribution Function

CID Community IDentifier

CPU Central Processing Unit

CS Content Store

CSU Colorado State University

DCAS Distributed Collaborative Adaptive Sensing

DF Data Fusion

DFG Data Fusion Group

DHT Distributed Hash Table

DLC Distributed Local Caching

EGI European Grid Infrastructure

EM Emergency Managers

ERD Efficient Resource Discovery

EWMA Exponentially Weight Moving Average

FIB Forwarding Information Base

280

FIFO First In First Out

FIR Finite Impulse Response

FOSS Free and Open Source Software

FPGA Field-Programmable Gate Array

GCO Green Computing Observatory

GEV Generalized Extreme Value distribution

GENI Global Environment for Network Innovations

GIS Geographic Information Systems

GKDC Global-Knowledge-based Distributed Caching

GPD Generalized Pareto Distribution

GPS Global Positioning System

GPU Graphic Processing Unit

IaaS Infrastructure as a Service

i.i.d. Independent and identically distributed

I/O Input/Output

IP Internet Protocol

IPTV Internet Protocol television

ISP Internet Service Provider

KKT Karush–Kuhn–Tucker

KS Kolmogorov-Smirnov

LFU Least Frequently Used

LKDC Local-Knowledge-based Distributed Caching

LORM Low-Overhead, Range-query, and Multi-attribute

LPH Locality Preserving Hash

LRU Least Recently Used

MAAN Multi-Attribute Addressable Network

281

MC&C Meteorological Command and Control

MINLP Mixed Integer NonLinear Programming

MIPS Million Instructions Per Second

MURK MUlti-dimensional Rectangulation with Kd-trees

NB Negative Binomial distributions

NBRR Network-Based Reflectivity Retrieval

NDN Named Data Networking

NEXRAD Next Generation Weather Radar

NLIP NonLinear Integer Programming

NP Nondeterministic Polynomial time

NWS National Weather Service

OFC Oldest First Caching

ORT Overlay Routing Tree

P2P Peer-to-Peer

PaaS Platform as a Service

PFSM Probabilistic Finite State Machine

PIT Pending Interest Table

QoE Quality of Experience

QoS Quality of Service

QPE Quantitative Precipitation Estimation

RD Resource Discovery

RS Resource Specification

RST Range Search Tree

RTT Round Trip Time

SaaS Software as a Service

SADQ Single-Attribute Dominated Querying

282

SETI Search for Extraterrestrial Intelligence

SHA Secure Hash Algorithm

SLA Service Level Agreement

SFC Space-Filling Curve

TLS T Location-Scale distributions

TTL Time To Live

URL Uniform Resource Locator

VM Virtual Machine

VoIP Voice over Internet Protocol

ZC Zone Controller

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1
	INTRODUCTION
	1.1 Motivation
	1.2 Contributions
	1.3 Outline
	Chapter 2
	BACKGROUND AND RELATED WORK
	2.1 Overlay Topologies
	2.1.1 Unstructured Peer-to-Peer Systems
	2.1.2 Structured Peer-to-Peer Systems

	2.2 Collaborative Peer-to-Peer Systems
	2.2.1 Collaborative Adaptive Sensing of the Atmosphere
	2.2.2 Global Environment for Network Innovations
	2.2.3 Peer-to-Peer Clouds
	2.2.4 Mobile Social Networks

	2.3 Peer-to-Peer-Based Resource Discovery
	2.3.1 Unstructured Peer-to-Peer Solutions
	2.3.2 Structured Peer-to-Peer Solutions

	2.4 Peer-to-Peer Communities
	2.5 Peer-to-Peer Caching
	2.5.1 Unstructured Peer-to-Peer Solutions
	2.5.2 Structured Peer-to-Peer Solutions

	2.6 Named Data Networking
	2.7 Summary
	Chapter 3
	PROBLEM STATEMENT
	3.1 Motivation
	3.2 Research Goals
	3.3 Research Objectives
	3.4 Solution Approach
	Chapter 4
	MULTI-ATTRIBUTE RESOURCE AND QUERY CHARACTERISTICS OF REAL-WORLD SYSTEMS AND IMPLICATIONS ON P2P-BASED RESOURCE DISCOVERY
	4.1 Introduction
	4.2 Cost of Advertising and Querying Resources
	4.3 Datasets
	4.3.1 Node Model
	4.3.2 PlanetLab
	4.3.3 SETI@home
	4.3.4 EGI Grid
	4.3.5 Campus Dataset

	4.4 Resource and Query Characteristics
	4.4.1 Resource Characteristics
	4.4.2 Query Characteristics
	4.4.3 Summary of Findings

	4.5 Design Choices in P2P-Based Resource Discovery
	4.5.1 Centralized Designs
	4.5.2 Unstructured P2P-Based Designs
	4.5.3 Structured P2P-Based Designs

	4.6 Simulation Setup
	4.7 Performance Analysis
	4.8 Discussion
	4.9 Summary
	Chapter 5
	RESQUE: MULTI-ATTRIBUTE RESOURCE AND RANGE QUERY GENERATOR
	5.1 Introduction
	5.2 Characteristics of Resources and Queries
	5.2 Generating Random Vectors of Static Attributes
	5.3 Generating Dynamic Attributes
	5.3.1 Splitting Time Series Based on Changes in Regression Coefficients
	5.3.2 Splitting Time Series Using a Derivative Filter
	5.3.3 Generating Dynamic Attributes Using the Library of Time Series Segments

	5.4 Generating Multi-Attribute Range Queries
	5.5 ResQue – Resource and Query Generator
	5.6 Validation
	5.7 Summary
	Chapter 6
	RESOURCE AND QUERY AWARE, PEER-TO-PEER-BASED MULTI-ATTRIBUTE RESOURCE DISCOVERY
	6.1 Introduction
	6.2 Problem Formulation
	6.2.1 Load Balancing in Peer-to-Peer Systems
	6.2.2 Problem Statement

	6.3 Handling Single-Attribute Resources
	6.3.1 Heuristic 1 – Prune
	6.3.2 Heuristic 2 – Key Transfer
	6.3.3 Heuristic 3 – Add New Node and Key Transfer
	6.3.4 Heuristic 4 – Add New Node and Replicate Index
	6.3.5 Heuristic 5 – Add New Node and Fragment Index

	6.4 Handling Multi-Attribute Resources
	6.5 Simulation Setup
	6.6 Performance Analysis
	6.7 Summary
	Chapter 7
	COMMUNITY-BASED CACHING FOR ENHANCED LOOKUP PERFORMANCE IN P2P SYSTEMS
	7.1 Introduction
	7.2 Problem Formulation
	7.2.1 Motivation
	7.2.2 Problem Statement

	7.3 Caching Solution for Communities
	7.3.1 Exploiting Community Members to Cache
	7.3.2 Sub-Overlay Formation
	7.3.3 Community-Influenced Caching

	7.4 Distributed Caching
	7.4.1 Distributed Local Caching
	7.4.2 Global-Knowledge-Based Distributed Caching
	7.4.3 Local-Knowledge-Based Distributed Caching

	7.5 Simulation Setup
	7.6 Performance Analysis
	7.6.1 Local-Knowledge-Based Distributed Caching
	7.6.2 Community-Based Caching

	7.7 Summary
	Chapter 8
	DISTRIBUTED MULTI-SENSOR DATA FUSION OVER NAMED DATA NETWORKS
	8.1 Introduction
	8.2 Multi-Sensor Data Fusion Over NDN
	8.2.1 Naming Data
	8.2.2 Overlay Construction and Query Resolution
	8.2.3 Subscription Scheme for Periodic Queries
	8.2.4 Caching Based on Data Generation Time

	8.3 Supporting Sensor and Event Specific Queries
	8.4 Simulation Setup
	8.5 Performance Analysis
	8.6 Summary
	Chapter 9
	SUMMARY
	9.1 Conclusions
	9.2 Future Directions
	REFERENCES
	Appendix I
	NUMBER OF BITTORRENT COMMUNITIES ACCESSED BY USERS
	I.1 Survey Questions
	I.2 Survey Results
	Appendix II
	SIMULATORS
	II.1 Resource Discovery Simulators
	II.2 ResQue – Resource and Query Generator
	II.3 Resource and Query Aware Resource Discovery Simulator
	II.4 Community-Based Caching
	II.4.1 Local-Knowledge-Based Distributed Caching and PoPCache Simulators
	II.5.2 Community-Based Caching Simulator

	II.5 Named Data Networking for Distributed Multi-Sensor Data Fusion
	II.5.1 Multi-Sensor Data Fusion Simulator
	II.5.2 Event-Specific Query Simulator

	ABBREVIATIONS

