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ABSTRACT 

 
 

ENHANCING COLLABORATIVE PEER-TO-PEER SYSTEMS USING RESOURCE 

AGGREGATION AND CACHING: A MULTI-ATTRIBUTE RESOURCE AND QUERY AWARE 

APPROACH 

 

Resource-rich computing devices, decreasing communication costs, and Web 2.0 technologies are 

fundamentally changing the way distributed applications communicate and collaborate. With these 

changes, we envision Peer-to-Peer (P2P) systems that will allow for the integration and collaboration of 

peers with diverse capabilities to a virtual community thereby empowering it to engage in greater tasks 

beyond what can be accomplished by individual peers, yet are beneficial to all the peers. Collaborations 

involving application-specific resources and dynamic quality of service goals will stress current P2P ar-

chitectures that are designed for best-effort environments with pair-wise interactions among nodes with 

similar resources. These systems will share a variety of resources such as processor cycles, storage capac-

ity, network bandwidth, sensors/actuators, services, middleware, scientific algorithms, and data. However, 

very little is known about the specific characteristics of real-world resources and queries as well as their 

impact on resource aggregation in these collaborative P2P systems. We developed resource discovery, 

caching, and distributed data fusion solutions that are more suitable for collaborative P2P systems while 

characterizing real-world resource, query, and user behavior. The contributions of this research are: (1) a 

detailed analysis of real-world resource, query, and user characteristics and their impact on resource dis-

covery solutions, (2) a tool to generate large synthetic traces of multi-attribute resources and range que-

ries, (3) resource and query aware P2P-based multi-attribute resource discovery solution that is both effi-

cient and load balanced, (4) a community-based caching solution that enhances both the communitywide 

and system-wide lookup performance in large-scale P2P systems, and (5) demonstrated the applicability 

of NDN (Named Data Networking) for DCAS (Distributed Collaborative Adaptive Sensing) systems by 

developing a distributed multi-user, multi-application, and multi-sensor data fusion solution based on 
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CASA (Collaborative Adaptive Sensing of the Atmosphere). Proposed solutions and the analysis are ap-

plicable to a wide variety of contexts such as DCAS systems, P2P clouds, grid/cloud computing, GENI 

(Global Environment for Network Innovations), and mobile social networks. Next, each of the five con-

tributions is described briefly. 

First, we derived an equation to capture the cost of multi-attribute resource advertising and query-

ing. The nature of parameters in the equation under different systems is determined by analyzing datasets 

from PlanetLab, SETI@home, EGI grid, and a distributed campus computing facility. These datasets ex-

hibit several noteworthy features that affect the performance. The attributes of both the resources and que-

ries are highly skewed and correlated. Attribute values have different marginal distributions and change at 

different rates. Queries are less specific where each query tends to specify only a small subset of the 

available attributes and large ranges of attribute values. These properties of resources and queries are then 

used to qualitatively and quantitatively evaluate the fundamental design choices for P2P-based multi-

attribute resource discovery. Design choices are evaluated based on the cost of advertising/querying, load 

balancing, and routing table size. Compared to uniform queries, real-world queries are relatively easier to 

resolve using unstructured, superpeer, and single-attribute-dominated-query-based structured P2P solu-

tions. However, they introduce significant load balancing issues to existing designs. Cost of RD in struc-

tured P2P systems is effectively O(N) (N is the number of nodes) as most range queries are less specific. 

Second, a set of mechanisms is presented to generate realistic synthetic traces of multi-attribute 

resources (with both static and dynamic attributes) and range queries using the statistical behavior learned 

from real-world datasets. Such traces are useful in large-scale performance studies of resource discovery 

solutions, job schedulers, etc., in collaborative P2P systems as well as grid, cloud, and volunteer compu-

ting. Random vectors of static attributes are generated using empirical copulas that capture the entire de-

pendence structure of multivariate distribution of attributes. Time series of dynamic attributes are ran-

domly drawn from a library of multivariate time-series segments extracted from the datasets. These 

segments are identified by detecting the structural changes in time series corresponding to a selected at-

tribute. Time series corresponding to rest of the attributes are split at the same breakpoints and randomly 
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drawn together to preserve their contemporaneous correlation. Correlation among static and dynamic at-

tributes is preserved by grouping the time-series segments based on their static attributes. Multi-attribute 

range queries are generated using a probabilistic finite state machine that preserves the popularity of at-

tributes and correlations among attribute values. A tool is developed to automate the synthetic data gener-

ation process. It is independent of the dataset hence data from any other platform may be used as the basis 

for trace statistics. 

Third, a resource and query aware P2P-based multi-attribute resource discovery solution is pre-

sented that is both efficient and load balanced. The solution consists of five heuristics that can be execut-

ed independently and distributedly. The first heuristic tries to maintain a minimum number of nodes in the 

overlay while pruning nodes that do not significantly contribute to the range-query resolution. Removing 

nonproductive nodes reduces the cost (e.g., hops and latency) of advertising resources and resolving que-

ries. The second and third heuristics dynamically balance the key and query load distributions by transfer-

ring keys to neighbors as well as by adding new neighbors when existing ones are insufficient. The last 

two heuristics, namely fragmentation and replication, form cliques of nodes that are placed orthogonal to 

the overlay ring. Such a node placement dynamically balances the highly skewed key and query loads 

while reducing the query cost. By applying these heuristics in the presented order, a resource discovery 

solution that better responds to real-world resource and query characteristics is developed. Efficacy of the 

solution is demonstrated using a simulation-based analysis under a variety of single and multi-attribute 

resource and query distributions derived from real workloads. 

Fourth, we developed a distributed caching solution that exploits P2P communities to improve the 

communitywide and system-wide lookup performance. The solution consists of a sub-overlay formation 

scheme and a Local-Knowledge-based Distributed Caching (LKDC) algorithm. Sub-overlays enable 

communities to forward queries through their members. While queries are forwarded, LKDC algorithm 

causes members to identify and cache resources of interests to them, resulting in faster resolution of que-

ries for popular resources within each community. Distributed local caching requires global information 

(e.g., hop count and popularity of contents) that is difficult and costly to obtain. Moreover, the problem is 
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NP-complete when the size of contents/resources varies. However, by relaxing the content size constraint 

(which is acceptable for the purpose of improving lookup performance), and by means of an analysis of 

globally optimal behavior and structural properties of the overlay, we developed the LKDC algorithm that 

not only relies on purely local information but also provides close-to-optimal caching performance. The 

caching solution automatically adapts to changing popularity and user interests. It works with any skewed 

distribution of queries in addition to introducing minimal modifications and overhead to the overlay net-

work. For example, simulations based on Chord overlay show a 40% reduction in average path length 

using only 20 cache entries per node, and individual communities gained a 17-24% improvement com-

pared to system-wide caching. 

Fifth, we present a proof of concept solution that demonstrates the applicability of NDN for mul-

ti-user, multi-application, and multi-sensor DCAS systems such as CASA. In this example, a network of 

weather radars name data based on their geographic location and weather feature (e.g., reflectivity of 

clouds or wind velocity) independent of the radar(s) that generated them. This enables end users to speci-

fy an area of interest for a particular weather feature while being oblivious to the placement of radars and 

associated computing facilities. Conversely, the DCAS system can use its knowledge about the underly-

ing system to decide the best radar scanning and data processing strategies. Such sensor-independent 

names also enhance resilience, enable processing data close to the source, and benefit from NDN features 

such as in-network caching and duplicate query suppression consequently reducing the bandwidth re-

quirements of the DCAS system. We also present mechanisms to support sensor-specific and event-

specific names that are also important in DCAS systems. The solution is implemented as an overlaid 

NDN enabling the benefits of both the NDN and overlay networks. Simulation-based analysis using re-

flectivity data from an actual weather event showed 87% reduction in average bandwidth consumption of 

radars and 95% reduction in average query resolution latency.  
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Chapter 1 

INTRODUCTION 

 

Decreasing communication costs and Web 2.0 technologies are fundamentally changing the way 

we communicate, learn, socialize, and collaborate to create a better world while propelling us to a new era 

of societal development [Az09]. Peer-to-Peer (P2P) computing is a natural fit to this new era because it is 

user driven, autonomous, distributed, and utilizes resource-rich edge devices, as well as encourages shar-

ing and collaboration. P2P systems have tremendous scalability and are applicable in a wide variety of 

application domains such as file sharing, VoIP (Voice over Internet Protocol), IPTV (Internet Protocol 

Television), content delivery, distributed processing, multi-player gaming, and social networks. These 

systems currently have a user base of several hundreds of millions. They contributed to more than 4.6 

Exabytes of Internet traffic per month in 2011 [Ci12]. 

Section 1.1 presents the motivation. Summary of the contributions is presented in Section 1.2. 

Section 1.3 presents the outline of the dissertation. 

  

1.1 Motivation 

Resource-rich computing devices, decreasing communication costs, and Web 2.0 technologies are 

fundamentally changing the way distributed applications communicate and collaborate. With these 

changes, we envision P2P systems that play an even greater role in collaborative applications. Such col-

laborative applications provide tremendous opportunities to create value by combining the societal trends 

with P2P systems. Peer collaboration is expanding beyond its conventional applications wherein files or 

processor cycles are shared by peers to perform similar tasks. Future collaborative P2P applications will 

look for diverse peers that could bring in unique capabilities to a virtual community thereby empowering 

it to engage in greater tasks beyond what can be accomplished by individual peers, yet are beneficial to all 

the peers. This is similar to a modern team that thrives due to the diversity of members’ expertise. Thus, a 



2 

 

collaborative P2P system is a P2P system that aggregates a group(s) of diverse resources (e.g., hardware, 

software, services, and data) to accomplish a greater task [Ba12b]. These systems will share a variety of 

resources such as processor cycles, storage capacity, network bandwidth, sensors/actuators, special hard-

ware, middleware, scientific algorithms, application software, services (e.g., web services and spawning 

nodes in a cloud), and data to not only consume a variety of contents but also to generate, modify, and 

manage those contents. Such collaborations involving diverse and application-specific resources as well 

as dynamic Quality of Service (QoS) goals will stress the current P2P architectures. 

Collaborative P2P systems are applicable in a wide variety of contexts such as Distributed Col-

laborative Adaptive Sensing (DCAS) [Ku06, Le12, Mc05, Mc09], grid [Ca04, Sh07], cloud [Ar09], and 

opportunistic [Co10] computing, Internet of Things [Pf11], social networks, and emergency management. 

To illustrate the salient features and characteristics of collaborative P2P systems we use four representa-

tive collaborative applications. 

First is Collaborative Adaptive Sensing of the Atmosphere (CASA) [Ku06, Mc05, Mc09], a 

DCAS system based on a dense network of weather radars that collaborate and adapt in real time to detect 

hazardous atmospheric conditions such as tornados and severe storms. Collaborative P2P data fusion pro-

vides an attractive implementation choice for real-time radar data fusion in CASA [Le12], wherein multi-

ple data volumes are constantly being generated, processed, and pushed and pulled among radars, storage, 

and processing nodes. Radars, processing, and storage elements involved in tracking a particular weather 

event may continue to change as the weather event migrates in both time and space. Thus, new groups of 

resources may have to be aggregated and current resources are released as and when needed. Moreover, 

certain rare but severe weather events require specific meteorological algorithms (e.g., signal processing 

and forecasting) as well as more computing, storage, and bandwidth resources to track and fore-

cast/nowcast about the behavior of those events. It is neither feasible nor economical to provision re-

sources for such rare peak demands everywhere on the CASA system. Instead, a collaborative P2P system 

can exploit the temporal and spatial diversity of weather events to aggregate underutilized resources from 

anywhere in the system as far as the desired performance and QoS goals are satisfied. For example, radar 
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data related to a tornado in Oklahoma can be timely delivered and processed in Texas, if underutilized 

resources are available in Texas due to calm weather. Therefore, a collaborative P2P system can satisfy 

such rapid and high resource demands while enhancing the overall resource utilization of CASA. Moreo-

ver, P2P architectures are robust under random node failures; therefore, provides a best-effort data fusion 

framework under hostile conditions. P2P architectures also reduce the risk of single point of failure. This 

is desirable in CASA-like systems that have to perform critical functions under hazardous weather condi-

tions, which can potentially interfere with some of the system infrastructure. On the other end of the spec-

trum, we are also seeing the emergence of crowd sourced, community-based weather monitoring systems 

[Sl11] that aggregate armature weather stations and community-based computing resources to provide 

local/national weather forecasts. Collaborative P2P systems are a natural fit for such community driven 

resource collaborations among the users. 

Second, cloud computing is transforming the way we host and run applications because of its rap-

id scalability and pay-as-you-go economic model [Ar09]. Open cloud initiatives are pressing for interop-

erability among multiple cloud providers and sites of the same provider. Moreover, its centralized data 

and proprietary application model contradicts with the Free and Open Source Software (FOSS) move-

ment; hence, considered a threat by users who want to be in control of their data and applications [Ar09]. 

Community cloud computing [Br09], based on underutilized computing resources in homes/businesses, 

targets such issues including centralized data, privacy, proprietary applications, and cascading failures in 

modern clouds. Certain applications also benefit from a mixture of dedicated and voluntary cloud re-

sources [An10, Fo09]. A collaborative P2P system is the core of such a multi-site or community-cloud 

system that interconnects dedicated/voluntary resources while dealing with rapid scalability and resource 

fluctuations. Such systems are referred to as P2P clouds. 

The third application, Global Environment for Network Innovations (GENI), is a collaborative 

and exploratory platform for discoveries and innovation [El09]. GENI allows users to aggregate diverse 

resources (e.g., computing, networks, sensors, and software) from multiple administrative domains for a 
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common task. A collaborative P2P system meshes well with GENI because of its distributed, dynamic, 

heterogeneous, and collaborative nature. 

Fourth, the value of social networks can be enhanced by allowing users to share diverse resources 

available in their mobile devices [Co10]. For example, a group sharing their holiday experiences in a cof-

fee shop could use one of their members’ projection phone to show pictures from others’ mobiles or tab-

lets, or stream videos from their home servers. Moreover, in large social gatherings such as carnivals, 

sports events, or political rallies, users’ mobile devices can be used to share hot deals, comments, videos, 

or vote for a certain proposition without relying on a network infrastructure. Such applications are already 

emerging under the domain of opportunistic networking and computing [Co10]. These applications, here-

after referred to as mobile social networks, also benefit from collaborative mobile P2P technology.  

We can further envision an agglomeration of many collaborative P2P systems into a single uni-

fied P2P framework wherein peers contribute and utilize diverse resources for both altruistic and com-

mercial purposes. For example, a cloud provider could contribute its processor cycles to the P2P commu-

nity hoping to gain monetary benefits whenever possible, and during periods of lower demand it could 

provide similar or degraded services to gain nonmonetary benefits (e.g., to demonstrate its high availabil-

ity or gain reputation). Alternatively, an application provider that accesses free/unreliable resources for its 

regular operations could tap into dedicated/reliable resources during periods of high demand [An10]. 

Such a framework could also enable resource-rich home users to earn virtual currency for their contribu-

tions that they can later use to access other services offered within the system [Ka11, Me10]. Such a 

framework also enables a level playing field for both small-scale and large-scale contributors. 

CASA, P2P clouds, GENI, mobile social networks, and aggregated P2P systems depend on some 

form of collaboration among resources. These complex resources are characterized by multiple static and 

dynamic attributes. For example, CPU speed, free CPU capacity, free memory, bandwidth, operating sys-

tem, and a list of installed applications/middleware may characterize a processing node in CASA, GENI, 

grids, and clouds. These multi-attribute resources need to be combined in a timely manner to meet the 

performance and QoS requirements of collaborative P2P applications. Yet, it is nontrivial to discover, 



5 

 

aggregate, as well as utilize heterogeneous and dynamic resources that are distributed. Moreover, while 

some of the resources are volatile and voluntary (e.g., resources in P2P clouds) other resources are stable 

and dedicated (e.g., resources in CASA). What resources are shared and to what extent they are shared 

also depend on the behavior of peer communities that are formed according to semantic, geographic, and 

organizational interests of users [Ba11c, Ba12e]. Thus, discovering and combining an optimum set of re-

sources is an extremely complex but fundamental requirement for collaborative P2P applications.  

The overall process of advertising, discovering, and combining resources is referred to as re-

source aggregation. A good resource aggregation solution should efficiently advertise all the resources 

and their current state, discover potentially useful resources, select resources that satisfy application re-

quirements, match resources and applications according to their constraints, as well as bind resources and 

applications to ensure guaranteed service. Several solutions have been proposed to advertise, discover, 

and select individual resources in a variety of P2P systems [Bh04, Ca04, Co09b, Kw10, Sh07, Ta08]. 

Even the solutions (e.g., [Al08] and [Ke06]) that provide some form of resource aggregation are primitive 

in capturing inter-resource relationships, and are therefore unable to put together the best group of re-

sources [Ba12b]. They are not designed for latency sensitive collaborative P2P applications such as P2P 

clouds or mission critical applications such as CASA. Moreover, in the absence of data and understanding 

of the real-world resource and query characteristics, these systems relied on many simplifying assump-

tions. For example, independent and identically distributed (i.i.d.) attributes [Bh04, Co09b, Sh07], uni-

form/Zipf’s distribution of attribute values [Bh04, Co09b, Sh07], attributes having a large number of po-

tential values [Sh09], and queries specifying a large number of attributes and a small range of attribute 

values [Al08, Bh04, Ca04, Co09b, Sh07]. Such assumptions affect both the designs and performance 

analysis, and consequently the applicability of solutions under real workloads. Moreover, no single solu-

tion efficiently and scalably supports all the requirements of real-world collaborative P2P systems. There-

fore, more efficient and load balanced, resource aggregation solutions are needed. 

Internet users value the ability to access content irrespective of its location, whereas the Internet 

was designed to facilitate end-to-end resource access. Conflict between the usage and design objectives 
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has led to many issues such as location dependence, traffic aggregation, and security. Consequently, many 

clean-state designs for the Internet propose to access/route data based on their application-layer content 

names [Ja09a, Ko07, St02]. Named Data Networking (NDN) [Ja09a] (a.k.a. Content Centric Networking 

(CCN)) is gaining traction as one of the viable clean-state designs particularly in the presence of CCNx 

open source implementation [Palo]. NDN enables in-network caching, multicasting, duplicate message 

suppression, and enhanced security and mobility. When data are not already dispersed within the network, 

NDN delivers user queries to potential data sources enabling on-demand data generation. In contrast, the 

majority of other content-naming solutions, e.g., [Ko07, St02], are based on distributed hash tables that 

index only the pre-generated data. Moreover, NDN supports different levels of abstractions and incremen-

tal deployment ranging from overlay networks, content delivery networks, and small ISPs to eventual In-

ternet-wide deployment. 

DCAS systems, including current CASA deployments [Li07a], typically bind data to the sensor(s) 

that generated them by assigning data names based on the sensor identifier. Alternatively, end users in 

many cases are interested in data related to a particular event in a given area of interests, and are not con-

cerned about which sensor(s) generated the data. Therefore, naming data based on the source/sensor cre-

ates a conflict similar to that in the current Internet. Consequently, it reduces the ability to utilize the spa-

tial and temporal locality in user interests and redundant sensors in DCAS systems to enhance the 

performance of distributed sensing and data fusion. NDN enables DCAS systems to overcome these limi-

tations while benefiting from reduced bandwidth requirements of the data fusion system, enhanced re-

source utilization, resilience, security, and mobility. For example, a network of CASA weather radars 

may name data based on their geographic location and weather feature (e.g., reflectivity of clouds or wind 

velocity) independent of the radar(s) that generated them. This enables end users to specify an area of in-

terest for a particular weather feature while being oblivious to the placement of CASA radars and associ-

ated computing facilities. Such sensor-independent names also enable processing data close to the source. 

Currently, NDN has to be deployed as an overlay network due to the absence of an Internet-wide deploy-

ment. However, use of overlay networks provides the added benefits such as the ability to deploy multiple 
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and application-specific naming conventions, application-specific routing mechanisms, fault tolerance, 

better QoS, and in-network data fusion [Ba13, Le12]. Therefore, DCAS systems can be made more effi-

cient and robust by combining the benefits of NDN and overlay networks. 

 

1.2 Contributions 

The goal of this research is to develop better resource discovery and distributed data fusion solu-

tions and necessary tools that can aggregate groups of heterogeneous, dynamic, and multi-attribute re-

sources in collaborative P2P systems, while characterizing real-world resources, queries, and user behav-

ior. This dissertation spans three key areas of research related to multi-attribute Resource Discovery (RD), 

single-attribute RD and distributed caching, and multi-sensor data fusion leading to five major contribu-

tions. First, a detailed analysis and characterization of real-world resources, queries, and content access 

patterns of P2P users are presented. We then used the learned characteristics to qualitatively and quantita-

tively evaluate the fundamental design choices for P2P-based resource discovery. Second, a tool to gener-

ate realistic synthetic traces of multi-attribute resources and range queries for large-scale simulation stud-

ies is developed. Third, our findings were also used to develop a resource and query aware, P2P-based 

RD solution that is both efficient and scalable. Fourth, we developed a P2P community-aware distributed 

caching solution and demonstrated its applicability both analytically and empirically. Fifth, we demon-

strated the applicability of NDN for DCAS systems by developing a proof-of-concept multi-user, multi-

application, and multi-sensor data fusion solution based on CASA. Next, each of the five contributions is 

described briefly. 

We developed an equation to capture the overall cost of RD in terms of overlay messages in-

volved in advertising multi-attribute resources and querying them. The nature of parameters in the equa-

tion under different systems is determined by analyzing datasets from PlanetLab, SETI@home, EGI grid, 

and a distributed campus computing facility. PlanetLab data are also used to analyze the multi-attribute 

range query characteristics. A representative subset of design choices for P2P-based RD is then qualita-

tively and quantitatively evaluated using the learned characteristics. These design choices are evaluated 
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based on the cost of advertising and querying resources, routing table size, load balancing, and scalability. 

These datasets exhibited several noteworthy features that affect the performance. The attributes of both 

the resources and queries were highly skewed and correlated. While resources are characterized by many 

attributes, most attributes had only a few distinct set of values. Attribute values had different marginal 

distributions and change at different rates. Queries were less specific where they tended to specify only a 

small subset of the available attributes and large ranges of attribute values. Therefore, real-world resource 

and query characteristics diverge substantially from the conventional assumptions. Simulation-based 

analysis indicated real-world queries are relatively easier to resolve using unstructured, superpeer, and 

single-attribute-dominated-query-based structured P2P architectures compared to uniform queries used in 

conventional studies. Cost of RD in ring-based structured P2P systems was effectively O(N), where N is 

the number of nodes in the overlay, as most queries specified large ranges of attribute values. The cost of 

advertising dynamic attributes was significant and increased with the number of attributes. Furthermore, 

all the design choices were prone to significant load balancing issues where few nodes were mainly in-

volved in answering the majority of the queries and indexing resources. Therefore, existing design choic-

es are applicable only under very specific conditions and perform poorly under realistic workloads. 

To evaluate the applications and protocols for scalability beyond what is available, it becomes 

necessary to consider resource and query configurations with higher number of nodes and attributes. 

However, it is impractical to gather traces with sufficient resolution and duration even for existing sys-

tems. Therefore, we developed a mechanism to gather representative statistical information about the real-

world traces and generate synthetic trace arrays of larger dimensionality in number and time. The present-

ed mechanism generates realistic synthetic traces of multi-attribute resources (with both static and dynam-

ic attributes) and range queries. Such traces are useful in evaluating the performance of large-scale RD 

solutions and job schedules. The presented methodology is applicable to any multivariate resource and 

query dataset. First, the vectors of static attributes are generated using empirical copulas that capture the 

entire dependence structure of multivariate distribution of attributes. Second, time series of dynamic at-

tributes are randomly drawn from a library of multivariate-time-series segments extracted from datasets. 
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These segments are determined by identifying the structural changes in time series corresponding to a 

selected attribute. Time series corresponding to rest of the attributes are split at the same structural break-

points and randomly drawn together to preserve their contemporaneous correlation. Third, multi-attribute 

range queries are generated using a probabilistic finite state machine. Furthermore, a tool is developed to 

automate the synthetic data generation process and its output is validated using statistical tests. 

While taking into account the complex characteristics of real-world resources and queries, we 

then developed a resource and query aware, P2P-based RD solution. The solution is based on five heuris-

tics that can be executed independently and distributedly on a ring-like overlay. The first heuristic tries to 

maintain only a small subset of the nodes in the overlay as domain of resource attributes tend to be much 

smaller than the number of nodes. It prunes nodes that do not significantly contribute to range query reso-

lution while reducing the cost (e.g., hops and latency) of resolving queries. The second and third heuris-

tics dynamically balance the key and query load distribution of nodes by transferring keys to neighbors 

and by adding new neighbors when existing ones are insufficient. The last two heuristic, namely fragmen-

tation and replication, form cliques of nodes to dynamically balance the skewed key and query loads as-

sociated with few popular resources. In contrast to the common practice of replicating along the overlay 

ring, cliques of fragments and replicas are placed orthogonal to the ring thereby providing lower query 

cost and better load distribution. By applying these heuristics in the presented order, a RD solution that 

better responds to real-world resource and query characteristics is developed. Simulation-based analysis is 

used to evaluate the efficacy of the proposed solution under a variety of single and multi-attribute re-

source and query distributions derived from real workloads. 

Large P2P systems exhibit the presence of virtual communities based on semantic, geographic, or 

organizational interests of users. Resources commonly shared within individual communities are in gen-

eral relatively less popular and inconspicuous in the system-wide behavior. Hence, most communities are 

unable to benefit significantly from performance enhancement schemes such as caching and replication 

that focus only on the most dominant queries. We first analyzed the similarities among P2P communities 

using the search clouds of several BitTorrent search engines. The analysis confirmed that user interests in 
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different communities overlap to some degree. Second, a survey was conducted to identify the number of 

communities accessed by BitTorrent users and their frequencies. Our findings showed users prefer to ac-

cess contents from a few primary communities where 89% of the time they accessed at most two commu-

nities. Based on these findings, we then developed a community-based proactive caching solution for 

structured P2P systems that can overcome the limitations in existing solutions. Our solution consists of a 

sub-overlay formation scheme and a Local-Knowledge-based Distributed Caching (LKDC) algorithm. 

First, we propose a method whereby sub-overlays are formed within the overlay network, enabling com-

munities to forward queries through their members. While the queries are forwarded, LKDC algorithm 

causes the peers running it to identify and cache resources that are popular within their communities. 

Therefore, lookup queries for popular resources within a community are resolved faster. Consequently, 

both the community-level and the system-level lookup performance improve. Distributed local caching 

requires global information such as hop count and content popularity that are difficult and costly to ob-

tain. Moreover, the problem is NP-complete when contents/resources have varying sizes. However, by 

relaxing the content size constraint (which is acceptable for the purpose of improving lookup perfor-

mance), and by analyzing the globally optimal behavior and taking into account the structural properties 

of the overlay, we show it is still possible to develop a close-to-optimal caching solution (namely LKDC) 

that relies purely on local statistics. The proposed solution is independent of how the communities are 

formed and adaptive to changing popularity and user interests. It works with any skewed distribution of 

queries. Simulations show a 40% reduction in overall average path length with per node cache sizes as 

low as 20. Less popular communities are able to reduce the path length by three times compared to sys-

tem-wide caching. 

We present a proof of concept solution that demonstrates the applicability of NDN for multi-user, 

multi-application, and multi-sensor DCAS systems. For example, a network of CASA weather radars may 

name data based on their geographic location and weather feature (e.g., reflectivity of clouds or wind ve-

locity) independent of the radar(s) that generated them. Such sensor-independent names enable end users 

to specify an area of interest for a particular weather feature, while being oblivious to the placement of 
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sensors and associated computing facilities. Conversely, the data fusion system can use its knowledge 

about the underlying system to decide the best radar scanning and data processing strategies. Such sensor-

independent names also enhance the resilience and enable processing data close to the source, as well as 

NDN benefits such as in-network caching and duplicate query suppression consequently reducing the 

bandwidth requirements of the DCAS system. Our solution is implemented as an overlaid NDN network 

enabling the benefits of both NDN and overlay networks. An extension is proposed for NDN to support 

many-to-one data retrieval, as multi-sensor data fusion applications need the ability to retrieve data from 

multiple sources that match a given name. We also propose novel mechanisms to support query subscrip-

tions, data-generation-time-aware caching, and sensor-specific and event-specific queries. The overlay 

network enables geographic-name-based query routing. 2-dimensional version of CAN (Content Ad-

dressable Network) [Ra01] is used as the underlying overlay network, as it provides a direct mapping be-

tween the geographic space and overlay address space while preserving the locality. Simulation-based 

analysis is used to evaluate the efficacy of the proposed solution using design parameters from the CASA 

IP1 test bed [Br07, Mc09] and reflectivity data from an actual weather event. Simulation-based analysis 

showed 87% reduction in average bandwidth consumption of radars and 95% reduction in average query 

resolution latency. 

 

1.3 Outline 

The rest of the dissertation is organized as follows. The following chapter describes related work 

on P2P topologies, resource discovery, P2P communities, and P2P caching. Detailed background on col-

laborative P2P applications (e.g., CASA, GENI, and P2P clouds) and NDN is also provided. Chapter 3 

presents the problem statement. Research goals, objectives, key phases of resource aggregation, and solu-

tion approach are also discussed. Chapter 4 presents the characteristics of multi-attribute resources and 

queries analyzed using four real-world datasets. Fundamental design choices for P2P-based RD are also 

evaluated both qualitatively and quantitatively. A set of mechanisms to generate large synthetic traces of 

multi-attribute resources with static/dynamic attributes and multi-attribute range queries is presented in 
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Chapter 5. Chapter 6 presents the resource and query aware RD solution and its performance analysis. 

Proposed community-based caching solution is presented in Chapter 7. Analysis of search clouds from 

several BitTorrent communities and users’ preference to access multiple communities are also presented. 

Proof-of-concept solution that demonstrates the applicability of NDN for data fusion in multi-user, multi-

application, and multi-sensor DCAS systems is presented in Chapter 8. Finally, concluding remarks and 

future work are presented in Chapter 9. The appendices provide details on survey findings and simulators. 
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Chapter 2 

BACKGROUND AND RELATED WORK 

 

Napster was the killer application that demonstrated the power of Peer-to-Peer (P2P) systems. It 

paved the way to many successors that are highly scalable and applicable in a variety of application do-

mains. Overlay topology maintenance, Resource Discovery (RD), virtual communities, and caching are 

among the key research areas in P2P systems. In contrast to current P2P systems that are dedicated to a 

specific application and share similar resources (e.g., files), future collaborative P2P systems will look for 

diverse peers that could bring in unique capabilities to a virtual community thereby empowering it to en-

gage in greater tasks. Such P2P systems will require both the adaptation of existing technologies and 

those yet to be discovered. 

This chapter provides a brief description on background and existing work that motivated and rel-

evant to the ideas presented in the dissertation. Section 2.1 describes the work related to overlay topology 

formation and content/resource lookup. Several applications that can benefit from a collaborative P2P 

approach are discussed in Section 2.2. Section 2.3 describes P2P-based RD solutions. Communities in 

P2P systems and P2P caching solutions are presented in Sections 2.4 and 2.5, respectively. Named data 

networking is presented in Section 2.6. 

 

2.1 Overlay Topologies 

P2P architectures can be broadly categorized as structured and unstructured based on the overlay 

topology formation. We discuss several unstructured (Section 2.1.1) and structured (2.1.2) P2P solutions 

that are relevant to the following discussion. 
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Figure 2.1 –  Deterministic unstructured overlays: (a) Napster; (b) BitTorrent. 

2.1.1 Unstructured Peer-to-Peer Systems 

Overlay construction in unstructured P2P systems is highly flexible where peers join the network 

according to some loose set of rules without any prior knowledge about the topology [Lu04]. These 

topologies typically satisfy the properties of power-law random graph models [Ri02] hence are robust to 

random node failures. Unstructured P2P architectures can be further categorized as deterministic and 

nondeterministic [Ra08].  

In 1999, Napster [Lu04] emerged as the killer application in P2P systems by enabling a user to 

download a file from another randomly selected user having the file. It maintains the resource index in the 

form of a centralized database (see Fig. 2.1(a)) which keeps track of the list of files in a peer and its IP 

address and port number. Resource lookup, i.e., the process of searching for resources, is accomplished by 

querying the database. Overlay connections are established based on the resource interests and peers con-

stantly establish and terminate connections forming an unstructured overlay. Such systems are called de-

terministic unstructured P2P systems because the resources in the database are guaranteed to be found. 

However, a centralized database leads to a single point of failure and limits the scalability. 

In 2001, BitTorrent [Lu04, Po05, Qi04] proposed a unified protocol to communicate across mul-

tiple distributed databases enabling users to look up resources from any of the resource indexes. Figure 

2.1(b) illustrates the three-layer topology in BitTorrent and a more detailed illustration on interactions 
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Figure 2.2 –  Interaction among different elements in BitTorrent.  

among different elements of the system is given in Fig. 2.2. Resource indexes are typically accessed 

through a website that is referred to as the torrent search engine, torrent site, or community (see Fig. 2.2). 

A resource is advertised using a torrent file which stores the name of the file, its length, the number of  

chunks (i.e., equal sized segments of a file), and a list of SHA1 hash values for each of the chunks. Tor-

rent file also contains a list of trackers (i.e., set of nodes that keeps track of the list of peers download-

ing/uploading the same file). 

A user willing to share a file, first generates a torrent file and saves it in a torrent server (step a in 

Fig. 2.2). Then its URL is advertised to one or more torrent search engines (step b). Trackers are also in-

formed of the existence of the file (step c). Another user interested in downloading that file has to query 

one of the torrent search engines (step 1). If the query is successful, user’s peer first downloads the rele-

vant torrent file and then extracts the list of trackers (step 2). It then contacts one or more trackers and 

request for a random list of peers sharing the same file (step 3). It then establishes separate connections to 

a subset of those peers and tries to download the file (step 4). After downloading a chunk, peer advertises 

itself to the tracker indicating it also has one of the chunks. Peer periodically contacts the tracker(s) to get 
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Figure 2.3 –  Evolution of BitTorrent communities: (a) Islands of communities; (b) Islands of communi-

ties connected using a distributed hash table. 

a new set of random peers for newer chunks that it wants to download or for the chunks for which it can-

not find a satisfactory uploading peer. BitTorrent enforces fairness by allowing a peer to upload only to 

the peers that allow it to download. This fairness measure combined with the rarest-first chunk-scheduling 

policy, enhances the system throughput by enabling bandwidth rich peers to download faster [Fa09]. Sim-

ilar to Napster, BitTorrent is also a deterministic unstructured P2P system, as resources indexed within a 

torrent search engines are guaranteed to be found and the overlay topology depends on the resource inter-

ests. However, a peer can look up only the resources that are tracked by the trackers that it is aware of; 

therefore, not all files in the system are guaranteed to be found. BitTorrent has tremendous scalability that 

is proven by its user base of hundred million users. As BitTorrent grew, many torrent search engines with 

specific interests on movies, games, software, etc., emerged in a top-down manner. Most search engines 

deployed their own trackers leading to islands of BitTorrent deployments (see Fig. 2.3(a)). These isolated 

search engines are referred to as BitTorrent communities. Isolation became a problem, as users with di-

verse interests had to search in many communities to find peers with better upload capacities. Conse-

quently, BitTorrent protocol version 4.2 enabled content lookup across multiple communities using a dis-

tributed hash table. Thus, the current BitTorrent system is a top-down aggregation of diverse communities 

(Fig. 2.3(b)). 

Gnutella is the first P2P system to completely distribute both the resource lookup and download-

ing [Lu04, St08]. A peer joins the overlay network by contacting one of the existing peers and gets a ran-

dom list of IP addresses of other peers in the network. It then establishes new connections to those peers. 
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Figure 2.4 –  Nondeterministic unstructured P2P systems: (a) Gnutella; (b) Superpeer networks. 
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Neighbors constantly share information about other peers in the network, enabling new connections to be 

established to those nodes once the existing neighbors leave the network. As seen in Fig. 2.4(a), this leads 

to a random overlay that forms a power-law topology [Ri02] unless a specific Gnutella implementation 

limits the number of concurrent connections [St08]. Power-law topologies are resilient and reduce the 

diameter of a network. However, resource lookup is not straightforward as the topology and resource 

placement are unrelated. Gnutella use flooding with a limited scope to lookup resources. As seen Fig. 

2.4(a), each node floods a lookup query to its neighbors, which in turn floods to their neighbors, and the 

process continues. Scope is defined by a Time To Live (TTL) value that limits the number of hops to for-

ward a query. If a query is successfully resolved, results are returned to the query source through the re-

verse path. Flooding is extremely costly and does not guarantee to find a resource due to its limited scope. 

Consequently, some of the Gnutella variants, e.g., Freenet [Lu04], propose to use random walks with a 

limited TTL. Though random walk reduces the overhead, resources are not guaranteed to be found due to 

the limited TTL. Therefore, Gnutella is a nondeterministic unstructured overlay. Moreover, given an arbi-

trary network, it is not straightforward to determine the appropriate value of TTL for either flooding or 

random walks. 

Second generation Gnutella [Lu04, St08] and KaZaA [Lu04] proposed a two-layer overlay where 

resource rich peers, namely superpeers, formed a separate overlay while acting as proxies for rest of the 

peers (see Fig. 2.4(b)). A peer with high capacity in terms of bandwidth, processing power, and/or storage 
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is typically promoted as a superpeer. Each superpeer keeps track of the resources available in a subset of 

peers. Superpeers issue lookup queries on behalf their peers, which are flooded to all the superpeers. This 

increases the query-hit rate and reduces the lookup latency. Lookup overhead is also relatively low as 

only the superpeers are involved in flooding. However, scalability is still limited due to the flooding. 

Several Gnutella variants also propose to use gossiping or random walks among superpeers. Yet, 

resources are not guaranteed to be found due to the limited scope in flooding and random walks, and 

unpredictability of gossiping. Therefore, superpeers also belong to the category of nondeterministic 

unstructured overlays. 

 

2.1.2 Structured Peer-to-Peer Systems 

Overlay topologies in structured P2P systems are tightly controlled and resources are indexed at 

specific locations in such a manner that subsequent lookup queries can be resolved with a bounded over-

head [Lu04]. Each peer and a resource in these systems are assigned a unique identifier called a key. Each 

key has a corresponding value that can be either the resource itself or a pointer to its location. These sys-

tems typically maintain the resource index, i.e., collection of (key, value) pairs, in the form of a Distribut-

ed Hash Table (DHT). A peer that participates in the DHT is called a node (not all peers in the system 

need to be part of the DHT). Each (key, value) pair is indexed at a node having a close by key in the key 

space. The resources are indexed and looked up using put(key, value) and get(key) messages that are for-

warded to appropriate nodes using a deterministic overlay. To facilitate such forwarding, each node keeps 

a set of pointers to nodes that are spaced at exponentially increasing gaps in the key space. Such a deter-

ministic overlay and an exponentially increasing set of pointers enable messages to be routed with a 

bounded path length of O(log N), where N is the number of nodes in the system. Therefore, structured 

P2P systems are appropriate for large-scale implementations due to high scalability and some guarantees 

on performance. 

Chord [St03] is the most well-known, flexible, and robust structured P2P system [Gu03]. Figure 

2.5(a) illustrates the ring-like overlay maintained by Chord. It maps both the nodes and resources into a 



19 

 

c

A B

C

E

D

I

H G

F

K

J

L

Key k

Successor 
of k

(1, 0)

(0, 0)
(0, 1)

Zone 
controller

(0.1,0.9)

(a) (b)

(0.3,0.4)

(0.4,0.8)

(0.75,0.2)(0.35,0.1)

(0.65,0.7)

(0.8,0.4)

(0.8,0.8)

(0-0.5, 0-0.5)

(0.5-1, 0-0.5)

(0-0.5, 0.5-1)

(0.5-1, 0.5-0.75)

(c) (d)

1 0

0

0

0

0

0

0

0

0 0

1

1

1

1

1

1 1
1

1

 

Figure 2.5 – Structured overlay designs: (a) Chord ring; (b) CAN d-dimensional torus; (c) Cycloid cube 
connected cycle [Sh06]; (d) Kademlia binary tree (scattered lines show sub-trees in which 

node 0110 must keep pointers to). 

circular key space using consistent caching [Ka97]. A node is assigned to a random location within the 

ring and a resource is indexed at the successor of its key, i.e., the closest node in the clockwise direction. 

Each node n maintains a set if pointers, called fingers, to nodes that are at (n + 2
i – 1

) mod 2
b
, where b is 

the key length in bits and 1 ≤ i ≤ b. For example, node E in Fig. 2.5(a) keeps fingers to nodes F, H, and J. 

Routing table at a node consists of these fingers, and is called the finger table. The fingers are used to re-

cursively forward a message to a given key within a bounded path length of O(log N). For example, node 

E can reach node L through the route E  J  L. A node may also identify redundant nodes for each of 

the fingers to reduce the latency and enhance robustness, e.g., if E knows about K, a message may also 

take the path E  K  L. Each node maintains O(log N) finger entries which are refreshed periodically. 
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The cost of adding a new node or removing an existing one from the overlay is O(log
2
 N). O(log N) 

bound for path lengths is guaranteed only when predecessor and successor entries of nodes are valid. 

Therefore, another periodic stabilization protocol is used to make sure that these entries are valid. Thus, it 

is costly to maintain the Chord overlay on a dynamic network through messages can be routed efficiently. 

Content Addressable Network (CAN) [Ra01] is based on a d-dimensional torus (d-torus). Figure 

2.5(b) illustrates a 2-dimensional torus that is partitioned into a set of zones. Nodes are assigned random 

identifiers in the d-dimensional space. Resources are assigned identifiers by hashing their unique names. 

First node keeps track of the entire d-torus. When a new node is added, it is given a random key. It is then 

routed to the zone that is responsible for indexing its key. The zone is then divided into two equal volume 

zones and each zone is assigned to the new node and to the owner of the previous zone. Zones are further 

divided or combined as nodes join and leave. A node is responsible for keeping track of (key, value) pairs 

that maps to its zone. A resource is located by forwarding a query message to the zone responsible for 

indexing the key specified in the query using greedy routing. CAN nodes maintain up to 2d routing en-

tries to their neighboring zones (two nodes are neighbors if their coordinate spans overlap along d – 1 di-

mensions and abut in the remaining dimension). These routing entries are used to route a message within 

O(dN
1/d

) hops using greedy routing, where N is the number of nodes in the system. CAN’s routing scheme 

alleviates the local minima problem that occurs in other greedy routing schemes such as geographic rout-

ing as it calculates the distance from a given identifiers to the edge of a zone instead of to a specific point. 

CAN further proposes several enhancements to reduce the lookup overhead, e.g., increasing d, Round 

Trip Time (RTT) based next hop selection, zone formation based on distance to known landmarks, and 

large zones. A lower number of alternative paths and failure of neighbors reduce CAN’s resilience. 

Pastry [Ro01] is a hypercube-based solution that represents keys using a string of digits where 

each digit is in base 2
b
. Pastry routes messages using prefix-based routing, where it tries to reach the giv-

en key or a numerically closest node by correcting one digit at a time. Each node maintains a routing ta-

ble, neighborhood set, and leaf set. Routing table consists of a set of log 2b N rows each with 2
b
 – 1 entries, 

which points to nodes that are spaced at different distances in the key space. For each raw i in the table, a 



21 

 

node tries to maintain 2
b
 – 1 pointers to nodes that have identical i prefixes to its key. A node also keeps a 

set of pointers to neighbors in the key space (called the left set) and to physically close neighbors (called 

the neighbor set). Pastry uses these two sets to enhance the routability and reduce the lookup latency by 

forwarding messages to neighbors with the least RTT. Pastry routes messages within log 2b N unless sev-

eral nodes with adjacent keys fails simultaneously. To enhance the resiliency and load balancing, a (key, 

value) pair is stored in multiple nodes that are closer to the given key. Pastry routing tables are relatively 

large and contain O(b logb N) entries per node. 

Cycloid [Sh06] extends the Pastry hypercube to form a cube connected cycle (see Fig. 2.5(c)). 

Each key is represented using a pair of indices (k, ad-1ad-2…a0) where k is the cyclic index, d is the dimen-

sion of the hypercube, and ad-1ad-2…a0 is the cubical index represented as a string of digits. Such a design 

limits the address space to d × 2
d
. (key, value) pairs are placed on the numerically closest node. Cycloid 

maintains a fixed number of pointers (typically seven or eleven) to neighbors based on cyclic (to nodes in 

the same cycle) and cubical index (to nodes in the hypercube). Cycloid also uses prefix-based routing and 

routes message within O(d) hops. Though small routing table size is desirable, it could lead to lower resil-

ience as Cycloid has a limited number of alternative paths. 

Kademlia [Ma02] uses a novel XOR metric for distance calculation. (key, value) pairs are indexed 

at several nodes that are closest to the key. Each node maintains a k-bucket routing table where each 

bucket i keeps track of k nodes that are within the distance [2
i
 , 2

i + 1
) (see Fig. 2.5(d)). In contrast to other 

structured P2P systems that use a separate set of messages to maintain the overlay, Kademlia uses on go-

ing the lookup queries to identify new routing entries. This is enabled by the symmetric property of the 

XOR metric, which allows a node to receive lookup queries from precisely the same distribution of nodes 

contained in its routing table. A lookup query is resolved by sending a set of parallel queries to m nodes 

selected from the k-buckets according to their closeness (measured using XOR) to the given key. Contact-

ed nodes may respond with a set of even-closer nodes. Another set of m nodes is then selected from those 

reported nodes and another set of queries is sent. The process repeats until a node with even better dis-

tance cannot be found. Finally, the closest set of nodes is queried to locate the resource. These parallel 
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Table 2.1 – Summary of structured P2P solutions. 

Scheme Architecture Routing Mechanism 
Lookup 

Overhead* 
Routing Ta-

ble Size* 
Join/Leave 

Cost 
Resilience 

Chord Circular key space Successor & long dis-
tance links 

O(log N) O(log N) O(log2 N) High 

CAN d-torus Greedy routing through 
neighbor zones 

O(dN1/d) 2d 2d Moderate 

Pastry Hypercube Correct one digit in key 

at time 

O(logB N) O(b logb N)  O(logb N) Moderate 

Tapestry Hypercube Correct one digit in key 
at time 

O(logB N) O(logb N) O(logb N) Moderate 

Viceroy Butterfly network Predecessor & successor 

links 

O(log N) O(1) O(log N) Low 

Kademlia Binary tree, XOR 
distance metric 

Iteratively find nodes 
close to key 

O(log N) O(log N) O(log N) High 

Cycloid Cube connected 
cycles 

Links to cyclic & cubical 
neighbors 

O(d) O(1) O(d) Moderate 

* N – number of nodes in overlay, d – number of dimensions b – base of a key identifier 

 

and asynchronous queries reduce the delays due to failed nodes and increase the resilience. Kademlia also 

routes messages within O(log N) hops. It is used in many production P2P systems such as BitTorrent and 

eMule (to find resources that are indexed by other trackers) due to its ease of implementation and high 

resilience. 

Table 2.1 compares these solutions and several other structured P2P systems (refer [Lu04] for 

more details). Though these solutions provide guaranteed RD and have a bounded lookup overhead, they 

have several fundamental limitations. DHTs require all copies of the same key to be stored in the same 

node or neighborhood. This leads to load imbalance when query popularity is skewed [Ba11e, Ba12a, 

Kl04, Sr01]. Moreover, it leads to single points of failure. Many of the structured P2P solutions propose 

to use replication to overcome this issue e.g., [Ma02] and [St03]. However, replication could lead to an 

inconsistent or stale resource index when resources are highly dynamic or the resource owner leaves the 

network. Moreover, the load balancing issue remains when multiple copies of a (key, value) pair need to 

be checked for consistency. Furthermore, their performance bounds are guaranteed only if the overlay 

network is consistent. Maintaining overlay consistency is costly (except in Kademlia) even in a network 

with moderate churn. Moreover, average-case performance of these systems is too high for large-scale 

latency sensitive systems such as CASA and P2P clouds. Therefore, we are still in the need for a truly 
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Table 2.2 – Structured vs. unstructured P2P systems. 

 Unstructured P2P Structured P2P 

Overlay construction High flexibility Low flexibility 

Resources Indexed locally (typically) Indexed remotely on a distributed hash table 

Query messages Broadcast or random walk Unicast  

Content location Best effort Guaranteed 

Performance Unpredictable Predictable bounds 

Overhead High Relatively low 

Object types Mutable, with many complex attributes  Immutable, with few simple attributes 

Peer churn & failure Supports high failure rates Supports moderate failure rates 

Load balancing Relatively better load distribution The load is imbalanced when queries and/or 
resources are skewed 

Resilience High Single points of failure 

Consistency of index High (nodes keep their resources) Low (indexed remotely) 

Applicable environ-
ments 

Small-scale or highly dynamic environments 
with (im)mutable objects, e.g., mobile P2P 

Large-scale & relatively stable environments 
with immutable objects, e.g., desktop file sharing 

Examples Gnutella, LimeWire, Kazaa, BitTorrent Chord, CAN, Pastry, Kademlia, BitTorrent 

 

distributed P2P system that combines the desirable properties of both the structured and unstructured P2P 

systems. Table 2.2 summarizes the properties of both types of P2P systems. 

 

2.2 Collaborative Peer-to-Peer Systems 

Collaborative P2P systems are applicable in a wide variety of contexts such as Distributed Col-

laborative Adaptive Sensing (DCAS) [Ku06, Le12, Mc05, Mc09], grid [Ca04, Sh07], cloud [Ar09], and 

opportunistic [Co10] computing, Internet of Things [Pf11], social networks, and emergency management. 

Next, we discuss several representative collaborative applications in detail. 

 

2.2.1 Collaborative Adaptive Sensing of the Atmosphere 

Current weather radar networks are typically comprised of physically large, high power, and 

highly expensive radars spaced at several hundreds of kilometers apart. For example, WSR-88D Next 

Generation Weather Radars (NEXRAD) in the U.S. are spaced at ~345 km apart in the western U.S. 

[Mc09]. These widely spaced, long-range radars use high power transmitters to sense the atmosphere that 

is 200-300 km away (see Fig. 2.6(a)). While these systems have led to significant improvements in 

weather forecasting and warning, they are unable to see the lower 3 km of the atmosphere due to the 
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Figure 2.6 – Evolution of weather radar networks: (a) A long range and high-power radar; (b) Tracking 

lower 3 km of the atmosphere using a network of radars. 

Earth’s curvature and terrain blockage (Fig. 2.6(a)). Ability to sense the lower 3 km of the atmosphere is 

important for accurate detection and forecasting of localized weather events such as tornados and flash 

floods. 

Collaborative Adaptive Sensing of the Atmosphere (CASA) is a DCAS system that is revolution-

izing how we observe, evaluate, understand, and predict hazardous weather events such as tornados and 

flash floods. Figure 2.6(b) illustrates the simultaneous observation of a weather phenomenon by a net-

work of CASA radars. Central to the CASA research effort is the use of large numbers of low-cost small 

radars, spaced close enough to see the lower 3 km of the atmosphere in spite of Earth’s curvature and to 

avoid resolution degradation caused by radar beam spreading [Mc09]. Such a dense network of radars 

enables the same weather event to be sensed from multiple angles consequently increasing the accuracy 

of sensing, detection, and forcasting. CASA radars, processing nodes, and data-fusion algorithms com-

municate with each other to adjust their sensing and data processing strategies in direct response to the 

evolving weather and to changing end user needs [Ku06, Mc09]. CASA also employs many small sensors 

such as pressure sensors and micro-weather stations [Pe11a, Pe12] to further enhance the detectability and 

forcasting accuracy. 
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Figure 2.7 –  Major processing steps of the closed-loop MC&C software architecture [Mc09]. 

CASA IP1 test bed [Br07, Mc09] that was in Oklahoma consisted of four radars placed on a 

rhombus with inter-node spacing of 30 km. IP1 is currently being relocated to Dallas, TX and will be ex-

panded into an eight-radar network. IP1 radars covered an area of ~7,000 km
2
 using a transmission range 

of 40 km and were connected to the Internet. IP1 radars are controlled through the Meteorological Com-

mand and Control (MC&C) which closes the loop between sensing and radar tasking [Mc09]. Closed-

loop operation of MC&C is depicted in Fig. 2.7. MC&C ingests data from radars, identifies meteorologi-

cal features in data, reports features to end users, and determines future scan strategies of radars based on 

the detected weather features and end users’ information needs. To satisfy the CASA’s goal of detecting 

severe weather events within 60 seconds, closed loop is executed every 30 seconds [Zi05]. 

CASA supports a diverse set of meteorological algorithms (referred to as applications) and end 

users. Table 2.3 lists a subset of the applications that are currently supported by CASA. Each application 

pulls one or more types of data from one or more radars. For example, radar images that we see on TV 

newscasts are drawn using reflectivity data from clouds that are typically generated by a radar. More ac-

curate reflectivity images can be generated using the Network-Based Reflectivity Retrieval (NBRR) 
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Table 2.3 – CASA applications. Adapted from [Ba13]. 

Application Description No of Radars Data Type(s) 

Reflectivity Reflectivity of clouds 1 Reflectivity 

Velocity Wind velocity 2-3 Doppler velocity, reflectivity 

Network-Based Reflectivi-
ty Retrieval (NBRR) 

Reflectivity of clouds detected using multiple 
radars 

3+ Reflectivity 

Nowcasting Short term (10-30 min) high resolution fore-

casts of active weather events 

1-3 Reflectivity 

Quantitative Precipitation 
Estimation (QPE) 

Estimating current precipitation using inten-
sity of rain & water droplet size 

1-3 Reflectivity, differential 
phase, correlation coefficient 

Tornado tracking Detect & track a tornado as it forms & moves 2+ Doppler velocity, reflectivity 

Air surveillance Low-flyer surveillance for law enforcement 1-3 Doppler velocity, reflectivity 

 

[Li07b] algorithm that pulls reflectivity data from three or more radars that sense the same region in at-

mosphere within an acceptable time window. Both Doppler velocity and reflectivity data from two to 

three radars are needed to estimate the wind velocity accurately. The same data are useful in tornado-

tracking and low-flyer surveillance [Pe11b] applications. Therefore, multiple applications tend to access 

subsets of the same data. Applications require different amounts of computational, storage, and bandwidth 

resources as they use different types of data, volumes of data, and meteorological algorithms. Known 

weather patterns, geography, cost, and availability of infrastructure determine where the applications are 

deployed. For example, tornado-tracking applications are deployed only in areas that are likely to have 

tornados. 

These applications are accessed by a diverse set of end users (see Table 2.4) such as the National 

Weather Service (NWS), Emergency Managers (EMs), scientists, media, and commercial entities. Users 

may issue queries periodically for weather surveillance or when an interesting weather event is detected 

within their Area Of Interest (AOI). For example, a NWS forecast office sends a separate query for each 

of the applications listed in Table 2.3 (except for air surveillance) for counties under their jurisdiction. For 

surveillance purposes, they may pull data from reflectivity and velocity applications every five minutes 

regardless of the current weather conditions. However, when an active weather event is detected, reflec-

tivity, velocity, NBRR, nowcasting, and QPE applications are queried at a higher sampling rate. These 

queries are periodically issued for the area of active weather (which may change with time) until the 

weather event subsides or move out of their jurisdiction. A researcher trying to understand the physical 



27 

 

Table 2.4 – CASA end users and their data access patterns. Adapted from [Ba13, Ku06]. 

End User Description Applications Rule Trigger AOI 
Sampling 
Interval 

National 
Weather Ser-

vice (NWS) 

Responsible for issu-
ing warnings 

Reflectivity Periodic Counties under jurisdiction 1 min 

Velocity 

NBRR, 
nowcasting, QPE 

High reflectivity Area of active weather 
(even if 30-80 km away) 

Tornado tracking Rotating wind, 
ground spotters 

Emergency 
Managers 

(EMs) 

Siren blowing, help-
ing first responders, 

act as spotters 

Reflectivity Periodic Counties under jurisdiction 1 min 

Velocity 

NBRR, 
nowcasting, QPE 

High reflectivity Area of active weather 
(even if 30-80 km away) 

2 min 

Tornado tracking Rotating wind, 
ground spotters 

1 min 

Researchers To understand physi-

cal properties of 
weather events, test 
new algorithms  

Reflectivity Periodic Area of active weather 1 min 

Velocity High wind 30 sec 

NBRR, 
nowcasting, QPE 

High reflectivity 1 min 

Tornado tracking Rotating wind 30 sec 

Media Forecasting, public 
warning 

Reflectivity Periodic Counties/states under media 
coverage 

1 min 

Velocity 

NBRR, 
nowcasting, QPE 

High reflectivity Area of active weather 
(even if 30-80 km away) 

2-5 min 

Tornado tracking Rotating wind, 
ground spotters 

Commercial 

entities 

Transportation agen-

cies, utilities, com-
mercial entities 

Reflectivity Periodic Counties/states under inter-

est 

5-60 min 

Velocity 

 

properties of a tornado may use velocity and tornado-tracking applications every 30 seconds to acquire 

samples more frequently. Alternatively, commercial entities may sample their AOIs at a much lower 

sampling rate, as they are interested in mid to long-term changes in weather. The public is not expected to 

interact with CASA directly instead access data from media. 

A potential nationwide CASA radar network deployment in the U.S. is estimated to require 

10,000 radars [Mc09]. While such a dense network of radars can substantially improve the detection, 

forecasting, and warning time, it creates many challenges due to the sheer number of sensors involved, 

the heterogeneous network and communication infrastructure, and volume of data generated. CASA IP1 

radars generate raw data at rates up to 800 Mbps, which reduces to 3.3 Mbps with preprocessing. In some 

cases, e.g., to preserve the accuracy or for archiving purposes, it is preferable to transfer raw data. The 

next generation of solid-state CASA radars is expected to generate raw data at several Gbps. Even though 
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the system is mission critical, CASA uses the Internet as the preferred medium of communication because 

of its flexibility, global accessibility, and low cost. Therefore, new transport protocols, resource aggrega-

tion solutions, and multi-sensor Data Fusion (DF) solutions are needed to timely transmit and process 

large volumes of radar data while overcoming dynamic network conditions. Real-time nature of CASA 

also necessitates the radar data generation, transmission, processing, and re-tasking to be completed with-

in 30 seconds. However, most of this time is used to generate the data leaving a fraction of this time for 

data transmission and fusion. Moreover, certain rare but severe weather events require specific algo-

rithms/applications and more computing, storage, and bandwidth resources to track and forecast/nowcast 

about their behavior. Hence, the key design consideration of the radar network is its ability to meet the 

application-specific real-time requirements while optimizing resource usage. 

With each of the sensor nodes allowed to conduct in-network processing and provide computa-

tion and communication resources in response to user requests [Do05], the multi-radar DF can be per-

formed collaboratively and concurrently by different nodes. Multi-radar DF involves collecting data from 

multiple remote radars and processor-intensive digital signal processing. The applications therefore place 

unique weather event and context sensitive demands on the system infrastructure. In these circumstances, 

a distributed, dynamic, and collaborative approach based on the P2P architecture is attractive to aggregate 

underutilized resources from multiple sensors and processing nodes across the network. However, the 

underlying network and processing infrastructure may be subjected to adverse conditions due to severe 

weather, resource failure, link degradation, and variable cross-traffic along wired and wireless links. Giv-

en the importance of the application, P2P architecture should be robust enough to function under such 

adverse conditions by automatically masking any inadequate resource using other resources. For example, 

lack of bandwidth between a processing node and a storage node may be compensated by processing data 

faster to accommodate the extra delay introduced while transferring data to the storage node. Though it is 

mission-critical, provisioning a CASA radar network for rare peak demand is neither economically feasi-

ble nor practical due to the spatial and temporal locality of hazardous atmospheric events. Instead, the 

available resources have to be dynamically managed to meet the requirements with an acceptably high 
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Figure 2.8 –  GENI resource aggregation framework [El09]. 

probability. A collaborative P2P architecture provides many of the attributes needed for such resource 

sharing. However, a simple resource aggregation approach is not sufficient for multi-sensor DF, as the 

data need to be combined in such a manner that the real-time requirements and application-specific data 

selection requirements are met. For example, to meet real-time bounds, we need to ensure that the nodes 

selected for DF have the required processing capabilities (including computation capability, bandwidth, 

and latency) and the appropriate selection of software/hardware for the specific type of processing. There 

is thus a need for a framework capable of timely aggregating diverse set of resources in mission-critical 

DCAS systems. 

 

2.2.2 Global Environment for Network Innovations 

The Global Environment for Network Innovations (GENI) is a collaborative and exploratory plat-

form for discoveries and innovation [El09]. It is a suite of research infrastructures rapidly put together to 

explore the future Internet at scale. GENI allows users to aggregate resources (e.g., processing nodes, 

storage, networks, sensors, and actuators) from multiple administrative domains for a common task. Fig-

ure 2.8 illustrates the GENI resource aggregation framework where a user requests to create a slice by 

aggregating a given set of resources. The clearinghouse responds to the user request by aggregating a set 
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of resources that are spread across several administrative domains. In its current design, GENI clearing-

house passively sends a list of potentially useful recourses to the user hoping he/she has the skill to put 

them into a workable system. In practice, a user will find it is extremely complex to build even a satisfac-

tory system for two reasons. First, a user tends to request an arbitrary set of resources relying on the in-

stincts or principle of least effort [Br05] rather than on specific requirements of the application. There-

fore, the user ends up requesting either insufficient or too many resources. Second, as the clearinghouse 

focuses only on individual resources not all combinations of the selected resources may be suitable or 

capable of working together. This degrades the QoS of the user’s application or in certain cases user may 

not be able to build a workable solution at all. Ideally, the clearinghouse should take these complexities 

away from the user and should be able to intelligently aggregate an optimum set of resources based on the 

application requirements. To do so, it needs to take into account the entire group of resources and their 

inter-resource relationships. A centralized clearinghouse will be insufficient as GENI continues to grow 

attaching many users and resources that are geographically distributed. Therefore, a collaborative P2P 

system is a good fit for GENI because of its distributed, dynamic, and collaborative nature. 

 

2.2.3 Peer-to-Peer Clouds 

Cloud computing is transforming the way we host and run applications because of its rapid scala-

bility and pay-as-you-go economic model. The datacenter hardware and associated software resources are 

referred to as the cloud and the process of delivering services over the Internet through these hardware 

and software is referred to as cloud computing [Ar09]. Thus, cloud computing is an abstract term that cap-

tures a variety of concepts that combine hardware, software, and networking resources to different ex-

tents. Cloud services can be broadly classified as [Fo09]: 

1. Infrastructure as a Service (IaaS) – These services provide access to bare-bone hardware through 

user configured Virtual Machines (VMs). Typically, these services are offered as bundles of re-

source instances with different capabilities. For example, Amazon EC2 name their computing re-

sources as standard, micro, high-memory, high-CPU, and cluster compute [Amaz]. 
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2. Platform as a Service (PaaS) – Cloud providers offer middleware services enabling users to de-

velop applications rapidly. Complexity of these service platforms varies, e.g., from relatively 

simple .NET common language runtime in Moorcroft Azure [Micr] to relatively advanced 

Google App Engine. 

3. Software as a Service (Saas) – At this level, an entire application or suite of applications is ex-

posed as a service. Google Docs, Office Live, and Salesforce.com are some of the well-known 

examples. 

With increased levels of integration, even the systems within and across cloud computing data-

centers exhibit attributes of distributed systems where groups of resources such as processing nodes, stor-

age, bandwidth, and special hardware (e.g., GUPs and FPGAs) may be grouped to execute complex col-

laborative applications. These applications even need to establish virtual networks within the datacenter to 

isolate traffic and provide bandwidth guarantees. While the VMs increase the resource utilization of a 

datacenter, they make it harder to provide QoS guarantees. For example, both Amazon EC2 and Mi-

crosoft Azure platforms run multiple VMs on the same physical node. Though VMs can be configured 

not to exceed specific amounts of CPU utilizations, memory, and storage, their I/O performance cannot be 

controlled. Thus, the overall performance received by an application running on a VM depends on the 

behavior of other VMs on the same host. This could lead to unpredictable performance particularly in da-

ta intensive applications that are I/O intensive (e.g., CASA radar data fusion [Ir10] and high-energy phys-

ics applications [Ge11b]). Consequently, modern clouds are struggling to provide fine-grained Service 

Level Agreements (SLAs) [Am08, Micr] due to the inherent complexity of describing resource capabili-

ties, inter-resource relationships, and application requirements. Cloud computing systems are scalable and 

allow users to rapidly respond to increasing application demands by purchasing additional resources on 

the on the fly, e.g., Amazon Auto Scaling. However, their response times are in minutes as it takes time to 

transfer an operating system image to a node and boot-up a new VM. In its current state, these systems do 

not provide the rapid scalability and adaptability that CASA-like systems require which have significantly 

higher peak demands that last only for tens of minutes. However, with the advancement of hardware and 
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operating system technologies, future cloud computing systems will be able to support latency sensitive 

and mission critical applications. 

In spite of its distinct advantages, there are some criticisms on cloud computing. For example, its 

centralized data and proprietary application model contradict with the Free and Open Source Software 

(FOSS) movement; hence, considered a threat by users who want to be in control of their data and appli-

cations. One may even argue that it is a waste of resources in modern desktops, which are forced to act 

like thin clients while the datacenter performs all the heavy lifting. Though FOSS applications can be 

ported to run on a cloud, lack of free and open datacenters is an issue. This limitation can be overcome by 

making the FOSS community become a distributed datacenter. We can combine the power of P2P sys-

tems and cohesiveness of the FOSS community to build a P2P cloud-computing infrastructure where us-

ers contribute resources to the cloud while staying in control of their data and applications. Such a com-

munity cloud computing system, based on underutilized computing resources in homes/businesses, can 

overcome centralized data, privacy, proprietary applications, and cascading failures in modern clouds 

[Br09]. A collaborative P2P system is the core of such a system that allows users to contribute their un-

derutilized resources while effectively dealing with rapid scalability and resource fluctuations. 

 

2.2.4 Mobile Social Networks 

The value of social networks can be enhanced by allowing users to share diverse resources avail-

able in their mobile devices. For example, as seen in Fig. 2.9, a person with a basic mobile phone could 

connect to a friend’s smart-phone with GPS capability to locate a nearby ATM. In another example, a 

group sharing their holiday experiences in a coffee shop could use one of the members’ projection phone 

to show pictures from others’ mobiles or tablets, or videos streamed from their home servers. Such appli-

cations benefit from the diversity of resources in a community where members share resources with each 

other. Depending on the situation, users may even establish transient connections to achieve a common 

goal, e.g., during a conference or while responding to a disaster. For example, in large social gatherings 

such as carnivals, sports events, or political rallies, users’ mobile devices can be used to share hot deals, 
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Figure 2.9 –  A user trying to locate an ATM using his/her mobile social network. 

comments, videos, or vote for a certain proposition without relying on a network infrastructure. Such ap-

plications are already emerging under the domain of opportunistic networking and computing [Co10]. 

Thus, social relationships among users have to be taken into account to find the willingness to share their 

resources. These networks also need to ascertain whether the two resources are nearby to avoid a certain 

service provider, minimize latency, or reduce packet loss. We refer to these applications as mobile social 

networks. Collaborative P2P systems are a natural fit for these emerging networks that are distributed, 

highly dynamic, and autonomous. Resource advertising, discovering, and matching based on inter-

resource relationships and user constraints are among the fundamental requirements of mobile social net-

works. 

 

2.3 Peer-to-Peer-Based Resource Discovery 

Below we discuss a representative subset of P2P solutions that either address or have the potential 

to address requirements of collaborative P2P systems. Unstructured P2P-based solutions are discussed in 

Section 2.3.1 and structured ones are discussed in Section 2.3.2. 

 

2.3.1 Unstructured Peer-to-Peer Solutions 

Unstructured P2P systems are based on random overlays where resources are advertised and/or 

queried by sending messages through flooding or random walks. Flooding can be used either to advertise 

Resource Specifications (RSs) (i.e., attributes of a resource and any constraints on usage of the resource) 

or to select resources on the fly by sending multi-attribute range queries. In either way, all the nodes can 
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get to know about all the resources in the system thereby enable the best set of resources to collaborate. A 

processor cycle sharing system that is capable of executing real-time jobs is presented in [Ya06]. It is 

based on an analytical model that assumes the jobs are perfectly divisible and the job owner will execute, 

at least, a small fraction of the job. Job owner first floods the neighborhood to identify computing power, 

bandwidth, and reliability of its neighbors. The model then assigns different fractions of the job to neigh-

bors based on their capabilities. The analytical model fails when jobs are not perfectly divisible or the job 

owner is unable to execute part of the job due to lack of resources. A simplified best-peer-selection algo-

rithm for CASA multi-sensor DF is presented in [Le12]. However, flooding is extremely costly thus suit-

able only for small-scale applications. 

Gossiping [Je06] is another alternative to disseminate RSs where a software agent exchanges RSs 

between two randomly selected nodes. Multiple concurrent agents are used to speed up the gossiping. A 

node selects resources by querying the RSs that are gathered from gossiping. Efficient Resource Discov-

ery (ERD) [Th09] is a resource advertising and querying scheme for mobile ad-hoc networks. It prioritiz-

es messages based on their TTL and time they have spent in the system allowing rapid dissemination of 

new messages. Though ERD is designed to advertise and select individual resources, it is possible to do 

simple resource matching as a node gets to know about multiple resources. For example, it can answer a 

query like “are resources x and y from my friends?”. Though this approach is simple to implement, there 

is no guarantee that a node will get to know about any resource that it needs (even if it exists). Moreover, 

states of know resources may be stale as gossip propagation is unpredictable and slow. 

The majority of the unstructured P2P solutions is based on random walks where RS advertise-

ments and/or queries are forward through a series of nodes that are selected randomly. The random walk 

is a more specific form of gossiping where an agent typically carries only a selected set of RSs or multi-

attribute range queries between two neighboring nodes. In [Ta08], a node sends out multiple agents to 

advertise its RS(s) to other nodes along their path and to collect those nodes’ RSs. Multiple agents are 

sent to different regions of the network to sample larger portion of the network and enhance the robust-

ness. Simple resource matching is also possible as agents collect RSs from multiple nodes. Though agents 
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advertise and discover resources, they do not provide guaranteed resource selection and even the state of 

the selected resources may be stale. Alternatively, inspired by the second-generation Gnutella P2P sys-

tem, many solutions issue queries (using random walks) as and when they need to select resources. Each 

query agent walks from one node to another looking for resources satisfying the multi-attribute range que-

ry [Xi08b]. If the relevant resources are found, the agent goes back to the query originator either through 

the reverse path or directly. Agents have a limited lifetime, defined using a TTL, to prevent the accumula-

tion of unresolved query agents within the P2P system. To increase the probability of discovering re-

sources a node either sends several agents or sends an agent with a large TTL. However, it is nontrivial to 

determine the required number of agents or their TTL to guarantee RD in an arbitrary network. Therefore, 

such solutions can only provide a best-effort service. Nevertheless, query agents can identify the current 

state of a resource and provide resource binding (i.e., a guarantee that the resource can be used by the ap-

plication for its intended purpose and time), as they reach individual nodes to check their resource availa-

bility. Resource matching can be also performed at the same time, if a node has multiple resources such as 

processing capabilities and storage. Past query results can be used to bias the random walk towards poten-

tial resources while reducing the query overhead and latency [Xi08b]. Another alternative is to build a 

hybrid system where one set of agents advertises the RSs while another set queries for the resources 

[Ta08]. While this speeds up the query resolution, it may not reflect the correct state of resources and 

eliminates the possibility of resource binding as queries are resolved by intermediate nodes. 

Another alternative is a two-layer overlay (similar to KaZaa) where resource rich peers, namely 

superpeers, form a separate overlay while acting as proxies for rest of the peers [Kw10, Su08b, Xi08b]. 

Each superpeer keeps track of RSs of a subset of peers. Superpeers advertise and/or query resources on 

behalf of their peers by contacting other superpeers through flooding, gossiping, or random walks. A 

superpeer-based task assignment mechanism for volunteer desktop grids is presented in [Kw10]. 

Superpeers reduce the overhead as only a subset of the peers is involved in advertising and querying re-

sources. Superpeers have the potential to act as matchmakers, if physically nearby peers or peers with 

different resources are assigned to the same superpeer. They can also provide resource-binding services 
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on behalf of their peers. However, its applicability is limited as it focuses only on individual nodes and 

assumes processing nodes and application requirements can be completely characterized by their MIPS 

(Million Instructions Per Second) ratings. 

In conclusion, unstructured P2P solutions provide a best-effort service (except when messages are 

flooded) in selecting and binding dynamic resources. They are applicable in small to medium scale appli-

cations and highly dynamic environments such as ad-hoc and mobile social networks. Unstructured to-

pologies are also attractive as they better distribute the index size and query load due to random topolo-

gies. It is more useful to issue queries on the fly as complex queries, having multiple attributes and range 

of attribute values, can be relatively easily resolved as agents reach individual nodes. This further simpli-

fies the binding between a resource and the application interested in using it. A restricted form of resource 

matching is also possible. When a node cannot match all the relevant resources within itself, all the re-

sources that satisfy the resource query have to be informed to the node that initiates the application. The 

application may then take the final decision on resource matching and binding. Nevertheless, random to-

pologies in unstructured P2P systems make it hard to keep track of inter-resource relationships. Therefore, 

resource relationships have to be discovered on the fly. For example, after selecting potential resources an 

application could then request nodes to verify whether they can reach each other, measure band-

width/latency between them, or evaluate their social relationships. However, discovering such relation-

ships on the fly takes time and increases the overhead, e.g., sufficient number of packets and time are 

needed to estimate the bandwidth between two nodes. Superpeers provide a viable alternative where a 

superpeer can at least keep track of the relationships among resources that are connected to it. 

 

2.3.2 Structured Peer-to-Peer Solutions 

Structured P2P solutions are appropriate for large-scale P2P applications due to their scalability 

and some guarantees on performance. These systems typically index RSs in a DHT. DHTs are designed to 

index resources that are characterized by a single attribute. Thus, they are not designed for simultaneous 
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Figure 2.10 –  Ring-based structured overlay designs: (a) Multi-ring – a separate overlay is created for 

each attribute type and queries are issued to the most selective attribute; (b) Partitioned-
ring – address pace of the overlay ring is partitioned and assigned to different attribute 

types, and queries are resolved by issuing multiple sub-queries to each partition; (c) Over-

lapped ring – multiple addresses spaces are mapped to the same overlay ring and queries 

are issued based on the most selective attribute. 

selection of multiple and multi-attribute resources required by collaborative P2P applications. Next, we 

discuss several solutions that extend structured P2P systems to support multi-attribute resources.  

Figure 2.10 illustrates three design choices based on an overlay network with a circular address 

space, also referred to as a ring. Mercury [Bh04] maintains a separate ring for each attribute type (see Fig. 

2.10(a)). Each node advertises its RS(s) to the rings that corresponds to the attribute set of the resource(s). 

Mercury utilizes Single Attribute Dominated Queries (SADQ) where a query is issued only to the ring 

corresponding to the most selective attribute. For example, as seen in Fig. 2.10(a), the query travels 3-

hops in the CPUSpeed and bandwidth rings, and 2-hops in the Memory ring. Thus, it is more efficient to 

resolve the query using the Memory ring. To enable SADQ, each node needs to keep track of all the at-

tributes of RSs that it indexes. Mercury uses a random-sampling algorithm to estimate the query selectivi-

ty within each ring. A range query is resolved by forwarding it to a series of nodes through their succes-

sors. As the query propagates, resources that satisfy all the attributes specified in the query are aggregated 

and the last node returns the aggregated results to the application (i.e., query originator). The random 

sampling algorithm is also used to estimate the query load within each ring. Based on the estimated load, 
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nodes are reorganized within each ring to balance the query load. New rings can be added to support addi-

tional attributes and each ring can be customized to specific characteristics of attributes. However, a large 

number of routing entries associated with multiple overlay networks makes Mercury less useful for P2P 

systems with resources that are characterized by many attributes (e.g., CASA and GENI). Moreover, 

highly skewed resource and query loads cannot be balanced by adjusting the position of nodes on the ring. 

Figure 2.10(b) illustrates an alternative design based on a partitioned ring. LORM (Low-

Overhead, Range-query, and Multi-attribute) [Sh07] assigns a separate segment of the ring to each attrib-

ute type. It is built on top of the Cycloid overlay [Sh06] (see Section 2.1.2). Attribute values are repre-

sented as a bit string where prefix bits represent the segment (indicate attribute type) and suffix bits repre-

sent the position within a segment (indicate attribute value). Suffix bits are generated by applying a 

Locality Preserving Hash (LPH) function to the attribute value. A LPH function maps nearby attribute 

values to neighboring nodes in the ring. This enables the resolution of range queries by forwarding to a 

series of nodes. An application searching for resources issues a separate sub-query for each segment ac-

cording to the required set of attributes. Query results are later combined at the application using a join 

operation like in databases. 

MADPastry (Mobile AD-hoc Pastry) [Za05] proposes a similar scheme for large-scale mobile ad-

hoc networks. It partitions the Pastry hypercube [Ro01] (see Section 2.1.2) to preserve the physical locali-

ty of nodes, which is determined using a set of landmarks. A query is first sent to the local partition. If 

required resources are not found locally, the query is then forwarded to other partitions one at a time. An-

other alternative is to build a set of hypercubes for each geographic region and then connect them to form 

a backbone [De09]. As illustrated in Fig. 2.11, a subset of the peers that are in the same neighborhood 

forms a hypercube while retaining their physical locality. A backbone is then formed by interconnecting 

these hypercubes through gateway peers. Resources are advertised to both the local and remote 

hypercubes through the backbone. Similar to MADPastry, resources are first queried within the local 

hypercubes. Remote hypercubes are queried only when resources are not found locally. Dynamic load 

balancing is achieved by adjusting dimensions of the hypercube according to the query load. For example, 
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Figure 2.11 –  Hypercubes connected to form a backbone. 

when average query load of a hypercube exceeds a given threshold, the dimensions of the hypercube are 

increased and more neighboring peers are added to the hypercube to distribute the load. This approach is 

counterproductive, as popular queries will experience high latency because of the increased path length 

due to increase in hypercube dimensions. 

LORM, MADPastry, and hypercube backbone maintain a much lower number of routing entries 

compared to Mercury. MADPastry and hypercube backbone also provide resource matching based on 

latency and hop count because of their ability to locate local resources. However, multiple sub-queries 

and their tendency to return a large number of unusable resources increase the lookup overhead in all 

three solutions. 

MAAN (Multi-Attribute Addressable Network) [Ca04] proposes a SADQ mechanism for a ring 

(Fig. 2.10(c)). It maps attribute value of a resource to the same identifier space (i.e., ring) using a separate 

uniform LPH function for each attribute type. In addition to preserving the locality, uniform LPH func-

tions also uniformly distribute the hash values across the ring. Use of an overlapped ring reduces the rout-

ing state and query overhead. However, uniform LPH fails to balance the load when the popularity of re-

source queries is skewed or there are many identical resources. 

Figure 2.12 illustrates another design where RSs are mapped to points in a d-torus similar to CAN 

[Ra01]. Each dimension of the torus represents an attribute type. MURK (Multidimensional 

Rectangulation with Kd-trees) [Ga04] is one such solution that dynamically partitions the d-torus to many 
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Figure 2.12 – 2-dimensional torus: (a) Multi-attribute space partitioned into a set of zones, a query is 

routed to all the zones that overlap with the query rectangle; (b) Multi-attribute space par-

titioned with respect to peer A, the query is routed to all the peers that overlap with the 
query rectangle, l – level, d – dimension [Co09b]. 

zones. Each node indexes all the RSs that map to its zone. MURK keeps track of these zones by organiz-

ing them in the form of a k-dimensional tree (kd-tree). Dynamic load balancing is achieved by split-

ting/aggregating zones based on the query load. A multi-attribute range query encloses a hyperrectangle 

(i.e., d-dimensional contiguous space) on the torus, e.g., Q1 in Fig. 2.12(a). Queries are resolved using 

greedy forwarding. As a query propagates, each node reports matching resources to the application, as it 

is not straightforward to aggregate resources from multiple zones. Alternatively, MURK uses space-

filling curves [Ja90, Or84] to map the d-torus to a ring by reducing its dimensionality. Though a ring ena-

bles a query to aggregate potential resources as it propagates, it introduces additional overhead as nearby 

resources on the d-torus are no longer mapped to a contiguous region on the ring. 

The solutions presented above provide only the advertisement and selection of individual re-

sources. SWORD [Al08] is a partitioned-ring-based architecture (see Fig. 2.10(b)) that also supports the 

selection of multiple resources and resource matching. A SWORD query can define required groups of 

resources, their inter-group and intra-group constraints, and penalties for not satisfying them. Because it is 

impractical to keep track of all the inter-resource relationships, SWORD cluster nodes into equivalence 

classes based on their Autonomous System (AS). A designated node from each AS keeps track of latency 
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and bandwidth relationships between two ASs. Resources are selected using either a SADQ (similar to 

MAAN) or multiple sub-queries (similar to LORM). The selected resources are then used to form a set of 

candidate groups based on the application requirements. Subsequently, resources in each candidate group 

are matched based on their inter-AS relationships. The groups are then ranked according to the extent 

they satisfy the application constraints and sent to the application enabling it to take the final decision on 

what group(s) to use. Though AS-based measurements provide a reasonable estimation of latency, such 

coarse-grained measurements do not work well for bandwidth and other complex inter-resource relation-

ships. 

Solutions discussed so far are applicable in semi-dynamic environments where resources do not 

change rapidly. Costa et al. argue that DHTs are inefficient and incapable of accurately maintaining the 

state in dynamic environments such as P2P clouds [Co09b]. Therefore, the authors propose to construct a 

resource-aware overlay in the form of a d-torus using only the static attributes that can be represented cor-

rectly (see Fig. 2.12(b)). The torus is recursively partitioned into a small set of hypercubes called cells. 

Queries are routed using pointers that each node keeps to one of the nodes in each cell. Nodes in the low-

est-level cell are connected to each other. Gossiping is used to discover such nodes and their attribute val-

ues. A query is first routed to one of the lowest-level cells that overlap with the query hyperrectangle. 

Other overlapping cells are then recursively traversed using depth-first search until all the potential or a 

predefined number of resources are found. Dynamic attributes defined in a query are evaluated at individ-

ual peers. Therefore, [Co09b] can advertise, select, and bind resources. It also lessens load balancing and 

single points of failure problems in DHTs as resources are connected to each other according to their at-

tribute values rather than indexed in a remote node. However, depth-first search increases the lookup 

overhead and latency particularly if queries are less selective. Moreover, gossiping does not guarantee 

discovery of a node in a sparse cell and all the nodes in the lowest-level cell. 

Table 2.5 summarizes the different structured P2P solutions and all the solutions are compared in 

Table 2.6. There is no universal solution and each has its own distinct advantages and limitations. SADQ-

based solutions have a low query resolution overhead. However, they could lead to unbalanced query load 



42 

 

Table 2.5 – Summary of structured P2P solutions. 

Scheme Architecture Routing Mecha-
nism 

Lookup Over-
head* 

Routing Table 
Size* 

Load Bal-
ancing 

Mercury Multiple rings Successor & long 
distance links 

O(1/k log2 N) k + 2 per ring Dynamic 

LORM Partitioned ring Cycloid O(d) O(1) Static 

MADPastry Partitioned ring 
(based on locality) 

Pastry O(log N) O(log l)  Static 

Hypercube back-
bone 

Hypercube-based 
backbone 

Hypercube Local – O(d)  

Remote – O(D) 

Θ(d) Dynamic 

MAAN Single ring Chord O(log N + N rmin) O(log N) Static 

MURK d-torus CAN with long 

distance links 

O(log2 N) 2d + k Dynamic 

SWORD Partitioned ring, re-
source matching 

Chord O(log N + N rmin/d)) O(log N) Static 

Resource-aware 

d-torus 

d-torus partitioned 

into cells 

Links to peers in 

other cells 

O(N) O(d) Static 

* N – number of peers in overlay, k – number of long distance links, d – number of dimensions/attributes, D - network diame-
ter, rmin – minimum range selectivity, l – number of landmarks 

 

and inaccurate representation of dynamic resources due to the large number of replicas. Mercury, MAAN, 

LORM, and SWORD are extensible because they can add new attributes without requiring significant 

changes to the existing overlay. Except for SWORD, MADPastry, and Hypercube backbone, other solu 

tions do not support resource matching. Resource-aware d-torus is the only solution that supports resource 

binding. Recently many other solutions have been proposed [Ra08] based on these alternative design 

choices. However, they also do not support resource matching and binding. Certain applications are able 

to compensate for lack of resources, e.g., distributed data fusion in CASA can compensate for lack of 

bandwidth between a processing and a storage node by processing data faster to accommodate the extra 

delay introduced while transferring data to the storage node. Such requirements can be represented by 

complex queries that are mapped to a polygon on the attribute space, e.g., Q2 in Fig. 2.12(a). Resolving 

such a mapping is not straightforward and requires tight coordination between resource selection and 

matching. Given the limitations in existing solutions, there is still a need for a cohesive solution that can 

efficiently advertise, select, match, and bind resources. 

 



43 

 

Table 2.6 – Summary of all the P2P-based resource discovery solutions with respect key phases of re-

source discovery. 

Scheme Architecture Advertise Discover* Select Match* Bind* 

Flooding Flood advertisements 
or queries 

Yes N/A Guaranteed When RSs 
are flooded 

When queries 
are flooded 

Gossiping Agents share resource 

specifications they 
know 

Yes Yes Low proba-

bility of suc-
cess  

Simple 

matching 

No 

Random 
walk 

Agents carry resource 
specifications & que-
ries 

Yes Yes Moderate 
probability of 
success 

Simple 
matching 

When query 
agents are 
used 

Superpeer 2-layer unstructured 
overlay 

Yes Yes Guaranteed Simple 
matching 

Yes 

Mercury Multiple rings Yes N/A Guaranteed No No 

LORM Partitioned ring Yes N/A Guaranteed No No 

MADPastry Partitioned ring (based 
on locality) 

To local & neigh-
bor partitions 

N/A Guaranteed Latency & 
hop count 

No 

Hypercube 
backbone 

Hypercube-based 
backbone 

To local & neigh-
bor hypercubes 

N/A Guaranteed Latency & 
hop count 

No 

MAAN Single ring Yes N/A Guaranteed No No 

MURK d-torus Yes N/A Guaranteed No No 

SWORD Partitioned ring, re-

source matching 

Yes N/A Guaranteed Yes No 

Resource-
aware d-torus 

d-torus partitioned into 
cells 

Static attributes 
only 

N/A Guaranteed No Yes 

* N/A – Not applicable 

 

2.4 Peer-to-Peer Communities 

Recent data indicate the emergence of many small communities within a P2P system, with each 

community based on some common user interests [Zh10]. A community is a subset of peers that share 

some similarity in terms of resource semantics, geography, or organizational boundaries. Members of a 

community with common interests may or may not be aware of each other. It is known that peers have 

semantic relationships based on the type of content they frequently access [Ha06, Zh10]. For example, 

BitTorrent has many communities that are dedicated to music, movies, Linux distributions, games, etc. 

Users from the same country tend to access similar resources as well [Ha06, Kl04]. For example, for 60% 

of the files shared by eDonkey peers, more than 80% of their replicas were located in a single country 

[Ha06]. It was also observed that semantic and geographic similarities are more prominent for moderately 

popular files. Communities may also arise based on organizational boundaries, e.g., peers within an Au-

tonomous System (AS), members of a professional organization, or a group of universities often forms a 
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community to share resources and limit unrelated external traffic. For example, BitTorrent has many pri-

vate communities that users can only join through invitations [Me10]. We can further envision a distribut-

ed collection of large scientific databases such as Genome sequences, Geographic Information Systems 

(GIS), weather, census, and economic data that are accessed by various communities of users from aca-

demic, research, and commercial institutions. 

It is well known that content popularity in P2P systems follows a Zipf’s-like [Ad02] distribution 

[Ba11c, Kl04, Ra04, Ra07, Sr01]. Zipf’s law says that the frequency of an event is inversely proportional 

to its rank in popularity, more formally: 


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where r is the rank, α (α > 0) is the Zipf’s parameter, and N is the total number of distinct events. When α 

= 1 the distribution is called a Zipf’s distribution otherwise it is called a Zipf’s-like distribution. Populari-

ty distribution is more skewed when α is large and/or N is small. 

However, resources popularly shared within an individual community typically do not rank high 

in popularity in the context of the overall P2P system [Ba12e, Ha06] and often are inconspicuous in the 

system-wide behavior. Therefore, such communities are unable to benefit from various performance en-

hancements such as caching and replication that focus only on the most dominant or popular resources. 

However, the emerging technological trends such as social networking indicate that we will continue to 

see the emergence of a large number of small and diverse communities within large P2P systems. Future 

P2P architectures therefore should support such communities by providing customized services based on 

their distinct characteristics. Such architectures should allow the emergence, growth, existence, and dis-

appearance of communities on a continual basis, while enabling them to be a part of a global community 

or a system. Conversely, the P2P system can significantly benefit by taking into account the characteris-

tics and requirements of these communities. 
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2.5 Peer-to-Peer Caching 

Caching is the most popular mechanism used to improve the lookup performance in P2P systems. 

Many structured and unstructured P2P systems (e.g., Freenet and CAN) utilize passive caching where 

peers keep track of the responses to their own queries hoping that they will be able to respond to future 

queries from others. Freenet caches query responses at the query initiator as well as at all the nodes along 

the path that the random walk traveled before finding the required resource. Passive caching is not that 

effective as the query responses are cached without considering their popularity or the overlay topology. 

Alternatively, active caching keeps track of query popularities and proactively cache resources or their 

contact details while taking into account how the queries are routed in a given overlay topology. Next, we 

discuss several caching solutions for unstructured (Section 2.5.1) and structured (2.5.2) P2P systems. 

 

2.5.1 Unstructured Peer-to-Peer Solutions 

In [Co02], it is proven that the expected lookup overhead in unstructured P2P systems is mini-

mized when the number of cached copies of a resource is proportional to the square root of its popularity. 

In [Co02] and [Lv02], authors demonstrated that the square root allocation could be achieved by creating 

cache copies in proportion to the length of the random walk that was used to find the given resource. 

However, the authors do not discuss where those cache entries should be placed. An implementable solu-

tion based on the same approach is presented in [Mo05]. This allocation is valid only when the cache en-

tries are automatically removed from the system due to constant peer churn and failure. In practice, how-

ever, some nodes tend to be active for a very long time [Ch02, Po05]. Therefore, some of the resources 

may be cached too much while tying up the caches in nodes. Both [Co02] and [Mo05] assume that a node 

can cache any number of resources and the query originator determines the resources to cache. In an al-

ternative design, intermediate peers determine what to cache based on the queries that they forwarded but 

were not able to answer [So08]. Query success or failure is determined by forcing a query response to 

follow the reverse path. However, this doubles the lookup overhead. After determining the relative popu-

larity of resources that a peer cannot answer, each peer tries to minimize the lookup cost by determining 
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Figure 2.13 –  Caching in structured P2P systems: (a) Beehive. Only three caching levels are shown 
[Ra04]; (b) PoPCache. 

the most suitable set of resources to maintain in its limited cache. This optimization problem is solved as 

a distributed knapsack problem that tries to maximize the lookup performance while minimizing the 

cache size. In spite of these efforts, even the most popular queries are unable to gain significant ad-

vantages from caching due to the randomness in unstructured overlay topologies and random walks. 

 

2.5.2 Structured Peer-to-Peer Solutions 

Beehive [Ra04] proposes an active caching/replication solution that achieves O(1) mean look per-

formance in structured P2P systems that utilize prefix-based routing (e.g., Pastry). A (key, value) pair is 

cached at an increasing set of levels in the key space starting from the root node (i.e., node that is respon-

sible for indexing the key). Figure 2.13(a) illustrates a circular address space with three levels. Most popu-

lar resources are cached in all the nodes while moderately popular ones are cached at different levels in 

proportion to their popularity. For example, 3-hops are required to resolve a lookup query for key 0121 

originating at node Q (Fig. 2.13(a)). When the key is cached at levels 0, 1, and 2, the query can be re-

solved within 0, 1, and 2 hops, respectively. Beehive assumes a Zipf’s-like popularity distribution, and 

the Zipf’s parameter and popularity of resources are determined using distributed statistics. Each node 

along a query path collects the statistics and forwards them to the root node of the given key. Each root 

node then solves an optimization problem to determine the caching level for each of the resources that 



47 

 

will result in a guaranteed mean lookup performance (for the entire P2P system) while minimizing the 

number cache entries. For example, Beehive (implemented on top of Chord) places the most popular set 

of resources on every node in the ring, second most popular set of resources on ½ of the nodes, third most 

popular set on ¼ of the nodes, and so on. 

Beehive works with only the Zipf’s-like popularity distributions and prefix-based routing. 

PoPCache [Ra07, Ra10] overcomes these limitations by placing cache entries based on the structure of 

the overlay topology (see Fig. 2.13(b)). When the popularity of a resource is relatively high, the root node 

first place cache entries at its predecessors (i.e., nodes that forward messages to it). When the popularity 

is even higher, cache entries are also placed at predecessors’ predecessors. Most popular resources are 

cached at many nodes, but not necessarily in all the nodes, therefore PoPCache is more cache efficient 

than Beehive. For example, node H first places cache entries in predecessors G and E. If the resource is 

even more popular, cache entries are also placed at predecessors’ predecessors (e.g., node G places cache 

entries at D and M). PoPCache also works with any DHT scheme and popularity distribution. It has been 

shown that the minimum mean lookup cost can be achieved by allocating the cache entries in proportion 

to the popularity of resources. Moreover, optimization problem can be also solved to minimize the num-

ber of cache entries. 

Both Beehive and PoPCache force a large fraction of nodes to cache the globally popular re-

sources regardless of their individual or community interests. Though Zipf’s-like popularity distributions 

enable significant performance gain by caching few highly popular resources, diminishing return is 

gained with very large caches. This fact forces both the solutions to maintain a large number of cache en-

tries while trying to provide a guaranteed mean look performance. Moreover, a guaranteed mean may not 

have much practical significance compared to a guaranteed distribution. Moreover, both solutions assume 

nodes have unlimited cache capacity. In spite of requiring large caches, such solutions are also inconsid-

erate of moderately popular resources. Furthermore, global popularity estimation is costly and error 

prone. Query arrivals in P2P systems show flash-crowd, diurnal, and seasonal effects [Ra04, Zh10]. 
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Therefore, statistics such as periodic query counts or arrival rate estimates in Beehive and PoPCache are 

also inadequate to effectively decide when and what resources to cache. 

 

2.6 Named Data Networking 

Modern Internet users value the ability to access contents irrespective of their locations whereas 

the Internet was designed to facilitate end-to-end resource access. Conflict between the usage and design 

objectives has led to many issues such as location dependence, traffic aggregation, and security. Conse-

quently, many clean-state designs for the Internet propose to access/route data based on their application-

layer content names [Ja09a, Ko07, St02]. Named Data Networking (NDN) [Ja09a] (a.k.a. Content Centric 

Networking (CCN)) is gaining traction as one of the viable clean-state designs particularly in the presence 

of CCNx open source implementation [Palo]. NDN enables in-network caching, multicasting, duplicate 

message suppression, enhanced security, and mobility. When data are not already dispersed within the 

network, NDN delivers user queries to potential data sources enabling on demand data generation. In con-

trast, the majority of other content-naming solutions, e.g., [Ko07, St02], are based on DHTs that index 

only the pre-generated data. Moreover, NDN supports different levels of abstractions and incremental 

deployments ranging from overlay networks, content delivery networks, and small ISPs to eventual Inter-

net-wide deployment. 

Communication in NDN is receiver driven, i.e., the content consumer requests contents using 

their names. Hierarchical names are recommended due their ability to capture semantic relationships in 

data, aggregate names, and enforce security through the chain of trust. Typical hierarchical name could 

look like the following: 

/youtube.com/sports/videos/football_finals.mpg/ 

NDN names can also refer to attributes and segments of a file. For example, the third segment of High 

Definition (HD) version of the same video can be named as: 

/youtube.com/sports/videos/football_finals.mpg/HD/s3/ 
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Names are also used to invoke remote methods and/or pass data. For example, following name may be 

used to request a temperature sensor in the machine room to report temperature readings every five 

minutes: 

/machine_room/sensor123/temperature/sense/5min/ 

A consumer requests for contents by sending an interest packet with the name of the desired data. Interest 

packet is then routed using the name looking for a node having a copy of the desired data or for a source 

capable of generating that data. A node having the data or capable of generating them, responds with a 

data packet. At most one data packet is transmitted in response to an interest packet hence provides flow 

control and one-to-one delivery. A data packet is self-authenticating as the data generator signs it. Idem-

potent, self-identifying, and self-authenticating properties of NDN data packets enable the same packet to 

be shared across many consumers hence also support one-to-many delivery without transmitting a new 

data packet from the data source. Large data that do not fit into a single data packet are segmented and 

each segment is retrieved by issuing a separate interest packet. The default size of a data packet in CCNx 

is 4 KB.  

Each NDN node uses three tables namely Content Store (CS), Pending Interest Table (PIT), and 

Forwarding Information Base (FIB) (see Fig. 2.14). CS caches data packets that go through a node ena-

bling the node to locally respond to future interest packets with the same name. PIT keeps track of out-

standing interest packets that are waiting for a corresponding data packet and suppress duplicate interest 

packets with the same name. PIT entries consist of a set of tuples (name, [face1, face2, …, facei]), where 

facei is the NDN equivalent of a network interface that an interest packet arrived from. This also enables 

multicasting. Typically, PIT entries timeout to keep the size of the table bounded. For example, CCNx 

recommends a timeout of 4 seconds. FIB is a name-based forwarding table that is used to determine 

where and how to forward an interest packet when it cannot be handled locally. FIB entries consist of a 

set of tuples (name, [face1, face2, …, facei]), where facei is a face that an interest packet can be forwarded 

to. An interest packet may be forwarded to multiple faces sequentially or simultaneously based on prede-

fined routing policies. Various name-based routing algorithms may be used to update the FIB entries. 
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Figure 2.14 –  Forwarding tables and their interactions within an NDN node. 

When an interest packet arrives at an NDN node, first the CS is checked for a cached data packet 

with the same name (see Fig. 2.14). If such a packet exists, node transmits the data packet and drops the 

interest packet. If not, the node then checks the PIT for a pending interest with the same name. If such an 

interest exists, node appends the ingress face to the PIT and then drops the packet. This suppresses dupli-

cate interest packets and reduces the bandwidth requirement by preventing multiple data packets from 

being retrieved for the same name. If a PIT entry does not exist, a new tuple (name, [face]) is added to the 

PIT. Interest packet is then forwarded to a face(s), found from the FIB, that might lead to a node with the 

desired data. When the data are found or generated by the source, data packet is sent to the face that for-

warded the interest packet. Once a data packet arrives, intermediate nodes use the PIT entries to deter-

mine the faces that the packet needs to be forwarded back. Thus, PIT entries leave a trail of “bread 

crumbs” that is used to forward the data back to the consumer(s) using the reverse path. A copy of the 

data packet is also saved in the CS and subsequently the corresponding PIT entry is removed. A data 

packet that does not have a corresponding PIT entry is dropped. This may happen when the PIT entry has 

timed out or an attacker is trying to flood a node with data packets. Data consumers are expected to 

resend interest packets, if the data do not arrive within the desired time. Main criticism for NDN is the 
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large number of names that needs to be maintained in all three tables as possible number of unique names 

is in the order of trillions or more. These constraints are expected to be overcome with the advancement 

of hardware and firmware technologies. 

 

2.7 Summary 

There is a gap between the existing solutions and the requirements of collaborative P2P systems. 

The majority of existing resource discovery solutions focus on individual resources and even the ones that 

support some form of resource aggregation are primitive. These solutions are not designed for latency 

sensitive applications and do not support resource compensation. Thus, no single solution is capable of 

providing all the desirable features of collaborative P2P systems. In addition, there is a tremendous oppor-

tunity to exploit the power of P2P communities not only by aggregating their resources but also by 

providing a customized service to its members. NDN enables names-based access of contents while re-

ducing the bandwidth requirements and enhancing mobility, resilience, and security which are key re-

quirements of collaborative P2P systems. The goal of this research is to come up with a set of solutions 

that address the inadequacies in existing solutions and to exploit emerging technologies to make collabo-

rative P2P systems a reality. 
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Chapter 3 

PROBLEM STATEMENT 

 

Future collaborative Peer-to-Peer (P2P) applications will look for diverse peers that could bring 

in unique resources and capabilities to a virtual community thereby empowering it to engage in greater 

tasks beyond what can be accomplished by individual peers, yet are beneficial to all of them. The ability 

to aggregate an optimum set of resources is a fundamental requirement for collaborative P2P applications. 

Yet, it is nontrivial to timely discover, group, and utilize heterogeneous and dynamic resources that are 

distributed. The majority of existing solutions for resource discovery focus only on discovering individual 

resources [Bh04, Ca04, Co09b, Kw10, Sh07, Ta08]. Even the solutions that support some form of re-

source grouping are primitive [Al08, Ke06]. However, to realize the true potential of collaborative P2P 

systems, it becomes necessary to be able to aggregate a group(s) of heterogeneous, multi-attribute, dy-

namic, and distributed resources as and when needed. Moreover, in the absence of data and understanding 

of the characteristics of real workloads, existing solutions are developed under many simplifying assump-

tions. Therefore, these solutions perform poorly when applied to real workloads that exhibit more com-

plex characteristics [Ba11e, Ba12a, Ba12f]. A better alternative would be to first understand the complex 

characteristics of real workloads and then use the learned behavior to develop solutions that can better 

match the requirements of real-world systems. The goal of this research is to develop better resource dis-

covery and distributed data fusion solutions and necessary tools that can aggregate groups of heterogene-

ous, dynamic, and multi-attribute resources in collaborative P2P systems, while bridging the gap by char-

acterizing real-world resources, queries, and user behavior. 

Section 3.1 presents the motivation of this problem. Research goals and objectives are presented 

in Sections 3.2 and 3.3, respectively. Solution approach is presented in Section 3.4. 
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Figure 3.1 – Interaction among peers: (a) Individual interactions between pairs of peers in file sharing; 
(b) Interactions among a group of diverse peers in weather monitoring and forecasting. 

3.1 Motivation 

In contrast to conventional P2P systems that focus on pair-wise interactions among nodes with 

similar resources (e.g., file sharing, see Fig. 3.1(a)), we envision the emergence of collaborative P2P ap-

plications that thrive on the interactions among groups of diverse and distributed resources (see Fig. 

3.1(b)). Collaborative P2P systems are applicable in a wide variety of contexts such as Distributed Col-

laborative Adaptive Sensing (DCAS) [Ku06, Le12, Mc05, Mc09], grid [Ca04, Sh07], cloud [Ar09], and 

opportunistic computing [Co10], Internet of Things [Pf11], mobile social networks (Section 2.2.4), and 

emergency management. These systems are expected to share a variety of resources such as processor 

cycles, storage capacity, network bandwidth, sensors/actuators, special hardware, middleware, scientific 

algorithms, application software, services (e.g., web services and spawning nodes in a cloud), and data to 

not only consume a variety of contents but also to generate, modify, and manage those contents. 

We briefly discuss one representative application to illustrate the salient features and characteris-

tics of collaborative P2P systems. A more detailed discussion and additional examples are given in Sec-

tion 2.2. Collaborative Adaptive Sensing of the Atmosphere (CASA) [Mc05, Mc09] is a DCAS system 

based on a dense network of weather radars that operate collaboratively and adaptively to detect hazard-

ous atmospheric conditions such as tornados and severe storms. Collaborative P2P data fusion provides a 

scalable implementation choice for real-time radar data fusion in CASA, as multiple data volumes are 

constantly being generated, processed, and pushed and pulled among groups of radars, processing, and 
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storage nodes (see Fig. 3.1(b)). Radars, weather stations, processing, and storage elements involved in 

tracking a particular weather event continue to change as the weather event migrates in both time and 

space. Thus, new groups of resources need to be aggregated as and when needed. Moreover, certain rare 

but severe weather events require specific algorithms (e.g., signal processing and forecasting) and more 

computing, storage, and bandwidth resources to track and forecast/nowcast about their behavior. It is nei-

ther feasible nor economical to provision resources for such rare peak demands everywhere in the CASA 

system. Instead, a collaborative P2P system can exploit the temporal and spatial diversity of weather 

events to aggregate underutilized resources from anywhere in the system. Therefore, a collaborative P2P 

approach is appropriate for large-scale CASA deployments, as it can timely deliver and process radar data 

while satisfying the dynamic resource demands and enhancing the overall resource utilization. 

Collaborative P2P applications need to be able to group the resources in a timely manner to meet 

the performance and Quality of Service (QoS) requirements. Thus, discovering and aggregating an opti-

mum set of resources is a fundamental requirement for collaborative P2P applications. Yet, it is nontrivial 

to discover, group, and utilize heterogeneous and dynamic resources that are distributed. The majority of 

existing solutions for resource discovery focus only on individual resources [Bh04, Ca04, Co09b, Kw10, 

Sh07, Ta08]. Even the solutions that support some form of resource grouping are primitive [Al08, Ke06]. 

They are not designed for latency sensitive collaborative P2P applications such as CASA and P2P clouds 

(Section 2.2.3). In the absence of data and understanding of the characteristics of real workloads, designs 

and evaluations of these solutions have relied on many simplifying assumptions. For example, independ-

ent and identically distributed (i.i.d.) attributes [Bh04, Co09b, Sh07], uniform/Zipf’s distribution of at-

tribute values [Bh04, Co09b, Sh07], attributes having a large number of potential values [Sh09], and que-

ries specifying a large number of attributes and a small range of attribute values [Al08, Bh04, Ca04, 

Co09b, Sh07]. Moreover, the cost of updating dynamic attributes is ignored. Such assumptions affect 

both the designs and performance analysis, and consequently the applicability of solutions under real 

workloads. Therefore, it is imperative to understand the resource and query characteristics of real-world 

systems. Once the characteristics are known, it is useful to evaluate the fundamental design choices in 
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P2P-based resource discovery with respect to the learned characteristics. Such an analysis will not only 

provide a better understanding of the applicability of existing solutions but also helps to identify the best 

practices for resource aggregation in emerging collaborative P2P systems. 

Large P2P systems exhibit the presence of communities based on semantic, geographic, or organ-

izational interests of users [Ha06, Zh10]. Resources commonly shared within individual communities are 

in general relatively less popular and inconspicuous in the system-wide behavior [Ba12e]. Therefore, 

most communities are unable to benefit significantly from performance enhancement schemes such as 

caching and replication that focus only on the most dominant queries within the entire P2P system. Con-

versely, creating topologically isolated clusters of communities is also not desirable, as a substantial frac-

tion of queries in production systems tend to be for resources outside of a particular community [Ba11c, 

Ba12e]. Emerging technological trends such as social networking indicate that we will continue to see the 

emergence of a large number of small and diverse communities within large P2P systems. Future P2P 

architectures therefore should support such communities by providing customized services based on their 

distinct characteristics. Such architectures should allow the emergence, growth, existence, and disappear-

ance of communities on a continual basis, while enabling them to be a part of a global community or a 

system. Conversely, the P2P system can significantly benefit by taking into account the characteristics 

and requirements of these communities. Hence, it is important to develop resource discovery solutions 

that are aware of communities’ interests, adaptive, as well as message and storage efficient. 

Modern Internet users value the ability to access contents irrespective of its location, whereas the 

Internet was designed to facilitate end-to-end resource access. Conflict between the usage and design ob-

jectives has led to many issues such as location dependence, traffic aggregation, and security. Conse-

quently, many clean-state designs for the Internet propose to access/route data based on their content 

names [Ja09a, Ko07, St02]. DCAS systems, including current CASA deployments, typically bind data to 

the sensor(s) that generated them by assigning data names based on the sensor identifier. Alternatively, 

end users in many cases are interested in data related to a particular weather event in a given geographic 

area of interest, and are not concerned about which sensor(s) generated the data. Therefore, naming data 
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based on the source/sensor creates a conflict similar to that in the current Internet. It also limits the ability 

to utilize the spatial and temporal locality in user interests and redundant sensors in DCAS systems to 

enhance the performance and reduce the resource requirements of distributed data fusion. Emerging 

name-based content access solutions such as Named Data Networking (NDN) [Ja09a] can be exploited to 

reduce the bandwidth requirements, and to enhance the resource utilization, resilience, and security of 

DCAS systems. For example, a network of CASA radars may name the data based on their geographic 

location and weather feature (e.g., reflectivity of clouds or wind velocity) independent of the radar(s) that 

generated them. This enables the end users to specify an area of interest for a particular weather feature 

while being oblivious to the placement of CASA radars and associated computing facilities. Conversely, 

CASA can use its knowledge about the underlying system to decide the best radar scanning and data pro-

cessing strategies during times of heavy usage and partial system failures. Currently, NDN has to be de-

ployed as an overlay network due to the absence of an Internet-wide deployment. However, use of over-

lay networks provides added benefits such as the ability to deploy multiple and application-specific 

naming conventions, application-specific routing mechanisms, fault tolerance, better QoS, and in-network 

data fusion [Ba12h, Le12]. Therefore, it is important to explore the ways to make DCAS systems more 

efficient, scalable, and robust by benefiting from the advantages of both NDN and overlay networks. 

 

3.2 Research Goals 

The goal of this research is to develop scalable and efficient, resource discovery and distributed 

data fusion solutions and necessary tools that can timely aggregate groups of heterogeneous, dynamic, 

and multi-attribute resources in collaborative P2P systems, while characterizing real-world resources, 

queries, and user behavior. Such solutions will satisfy the need of collaborative P2P applications to ag-

gregate diverse and distributed groups of resources as and when needed. Moreover, they will empower 

peers/applications to engage in greater tasks beyond the capabilities of an individual peer. Consequently, 

collaborative applications will be able to achieve their performance and QoS requirements by identifying 
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the most appropriate groups of resources from a vast pool of underutilized/unused resources that are dis-

persed within the collaborative P2P system. 

The distributed, autonomous, and collaborative nature of peers and multifaceted scalability re-

quirements demand for a distributed solution. It should support the aggregation of diverse resources by: 

(1) efficiently advertising all the resources and their current state, (2) discovering potentially useful re-

sources, (3) selecting resources that satisfy application requirements, (4) matching applications and re-

sources according to their constraints, and (5) binding resources and applications to ensure guaranteed 

service. Implementation of these phases is nontrivial because heterogeneous, dynamic, and multi-attribute 

resources and their diverse resource relationships make collaboration complex. Overall solution needs to 

be resource and query aware, adaptive, fault tolerant, and need to satisfy multiple aspects of scalability 

such as query resolution latency, number of resource attributes, messages, and routing-table entries. 

Timely aggregation of complex resources is becoming increasingly necessary even in conventional grid, 

desktop grid, volunteer computing, and cloud computing as these systems continue to grow and users un-

derstand how to develop parallel applications that can work with multiple resources. Thus, intended solu-

tions are also applicable in grid and cloud computing which are special cases of the problem. 

 

3.3 Research Objectives 

The goals of this dissertation span three key areas of research related to multi-attribute resource 

discovery, single-attribute resource discovery and distributed caching, and demonstrating the applicability 

of NDN for distributed multi-sensor data fusion leading to five objectives as follows: 

1. Characterize real workloads and understand their implications on P2P-based resource discovery 

– Develop an analytical model to capture the overall cost of resource discovery/aggregation in 

terms of overlay messages involved in advertising multi-attribute resources and querying them. 

Determine the nature of model parameters under different real-world systems. Qualitatively and 

quantitatively evaluate the fundamental design choices for P2P-based resource discovery using 

the learned characteristics. 
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2. Develop related tools – Develop tools to collect the data necessary to achieve the first objective 

and to generate synthetic resource and query traces for large-scale performance studies. To evalu-

ate the applications and protocols for scalability beyond what is available, it becomes necessary 

to consider overlay network configurations with higher number of nodes and attributes. Yet, it is 

still necessary to adhere to the statistical characteristics, dependencies, and temporal patterns ex-

hibited by real-world systems. It is impractical to gather large traces with sufficient resolution and 

duration even for existing systems. Therefore, our objective is to gather representative infor-

mation about the traces collected under the first objective and then generate synthetic trace arrays 

of larger dimensionality in number and time.  

3. Resource and query aware algorithms – Overlay topology should be formed in such a manner 

that simplifies resource advertising, querying, matching, and binding. The majority of existing so-

lutions first form a topology and then index resources and issue queries. This creates a mismatch 

between the overlay, underlay, and resources being advertised and queried. Instead, we believe 

that better performance can be gained by building a novel topology that reflects the available re-

sources and their demands (i.e., queries). Therefore, resource and query aware, topology for-

mation and resource aggregation algorithms need to be developed. 

4. Provide customized services to P2P communities – Develop solutions that provide customized 

services to different P2P communities while enhancing both the communitywide and system-

wide performance. Such solutions can be used to enhance the P2P resource advertising, lookup 

performance, streaming, and service availability. New solutions need to be developed as prior 

work either focused on the system-wide behavior or clustered peers into communities according 

to a given similarity metric. Developing relevant analytical models is also of interest. 

5. Named data networking for distributed data fusion – Demonstrate the applicability of NDN for 

distributed data fusion in DCAS systems by developing a proof of concept, distributed, multi-

user, multi-application, and multi-sensor data fusion solution based on CASA. NDN needs to be 

deployed on top of an overlay network because of the lack of Internet-wide deployment. Extend 
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Figure 3.2 –  Phases in resource collaboration. 
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NDN to support multiple naming conventions, application-specific caching solutions, subscrip-

tion schemes, and data delivery mechanisms that are necessary for DCAS systems. 

 

3.4 Solution Approach 

We first identify seven phases of resource collaboration that future collaborative P2P systems 

need to satisfy, which are depicted in Fig. 3.2 [Ba12b]. These separate phases are identified for the sake 

of conceptual understanding while an actual implementation may combine multiple phases together. Spe-

cific systems may skip some of them depending on the application requirements. Thus, complexities and 

implementation details on each of these phases significantly vary. The seven phases are as follows: 

1. Advertise – Each node/peer advertises its resources, their capabilities, and usage constraints using 

one or more resource specifications (RSs) (see Section 4.2). An example multi-attribute RS of a 

computing node may look like the following: 
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Similar RSs can be given for other resources such as storage nodes and sensors. A node may either 

hold on to its RSs hoping others will discover its resources by sending probe messages, or explicitly 

send/advertise its specifications to a central database, neighboring nodes, or nodes in Distributed 

Hash Tables (DHTs). 

2. Discover – Nodes may send probing messages to proactively discover and build a local repository 

of useful RSs, particularly if specifications are unadvertised. Such a collection of RSs can speed 

up the query resolution and may be used to keep track of inter-resource relationships such as la-

tency, bandwidth, and trust. 

3. Select – Select a group(s) of resources that satisfies the given application requirements. The ap-

plication requirements are typically specified using multi-attribute range queries that list the re-

quired number of resources, one or more attributes, and ranges of attribute values. An example 

query searching for six computing nodes may look like the following (see Section 4.2): 
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4. Match – Not all the combinations of resources satisfying a resource query may be suitable or ca-

pable of working together. It is important to take into account how two resources relate and inter-

act with each other (e.g., bandwidth/latency between different pairs of peers), to ensure that they 

can satisfy the resource and application constraints. For example, data processing in CASA, 

GENI, or P2P clouds (Section 2.2.3) may not only require processing nodes and storage nodes but 

also require certain latency/bandwidth bounds among different pairs of such resources. For in-

stance, a node with somewhat limited processing and storage capabilities may be a better match 

for a certain application than two nodes (one with high processing capabilities and the other with 

large storage), if they are separated by a low-bandwidth or a heavily loaded interconnect. Similar-

ly, mobile P2P (Section 2.2.4) and ad-hoc networks may need to ascertain whether two resources 

are nearby to avoid a certain service provider, minimize latency, or reduce packet loss. Moreover, 

social relationships between users may affect the willingness to share their resources. 
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5. Bind – Once a subset of resources that match the application requirements are identified, it is nec-

essary to ensure that the selected resources are available for use. Due to churn or failures, the re-

sources found may not be available by the time the application is ready to utilize them. The same 

resource may also be under consideration by other applications. Hence, a binding has to be estab-

lished between the resources and the application trying to use them. Binding is particularly im-

portant in guaranteed service environments like CASA and GENI to achieve the desired QoS and 

real-time requirements.  

6. Use – Utilize the best subset of available resources that satisfy the application requirements and 

constraints to carry out the application tasks for which resources were acquired. Resource usage 

and interaction patterns are application specific. 

7. Release – Release resources when application demand decreases, the task is completed, or bind-

ing expires, whichever occurs first. The resource release patterns are also application dependent. 

 

Applications may cycle through these phases as and when they need additional resources to fulfill 

increased/varying application demands, to take advantage of new resources, or to overcome limitations 

caused by resources that fail or leave the P2P network. It is possible for different applications and multi-

ple instances of an application to be in different phases at any given time. Thus, the P2P resource alloca-

tion solutions have to continually adapt and evolve based on the changing resource availability and dy-

namic application demands in a robust and scalable manner. The term resource discovery typically refers 

to the first three phases [Al08, Bh04, Ca04, Co09b, Ga04a, Sh07, Su08b, Ta08] whereas the term re-

source aggregation refers to the overall process of advertising, discovering, selecting, matching, and 

binding resources. Our goal is to characterize the real-world resources and queries, evaluate the funda-

mental design choices for resource discovery using the learned behavior, and develop new resource and 

query aware resource aggregation solutions in line with these key phases. 

We use existing datasets and collect our own ones to understand the resource and query charac-

teristics (e.g., distributions, correlations, popularities, and temporal evolutions), application requirements, 
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similarities among P2P communities, and content access patterns of P2P users. Findings from these da-

tasets are used as the basis while evaluating the existing resource discovery solutions, developing tools to 

generate large synthetic traces of resources and queries, and designing and evaluating new solutions. 

When applicable, a combination of analytical models and simulation-based studies are used to evaluate 

the proposed solutions. CASA is the primary application that motivated the proposed research hence algo-

rithms will be mainly designed, developed, and validated in the context of large-scale CASA networks. 
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Chapter 4 

MULTI-ATTRIBUTE RESOURCE AND QUERY 

CHARACTERISTICS OF REAL-WORLD SYSTEMS AND 

IMPLICATIONS ON P2P-BASED RESOURCE DISCOVERY 

 

Collaborative Peer-to-Peer (P2P), grid, and cloud computing systems rely on Resource Discovery 

(RD) solutions to aggregate groups of heterogeneous, multi-attribute, and dynamic resources that are dis-

tributed. However, very little is known about the specific characteristics of real-world resources and que-

ries, and their impact on P2P-based RD. We analyze the characteristics of real-world resources and que-

ries, and then use the learned characteristics to evaluate the fundamental design choices for P2P-based 

RD. First, an equation for the cost of multi-attribute resource advertising and querying is derived. Second, 

the nature of parameters in the equation under different systems is determined by analyzing datasets from 

PlanetLab, SETI@home, EGI grid, and a distributed campus computing facility. These datasets exhibit 

several noteworthy features that affect the performance. These findings are then used to qualitatively and 

quantitatively evaluate the fundamental design choices for multi-attribute RD based on the cost of adver-

tising/querying, load balancing, and routing table size. Compared to uniform queries, real-world queries 

are relatively easier to resolve using unstructured, superpeer, and single-attribute-dominated-query-based 

structured P2P solutions (Section 2.3). However, they introduce significant load balancing issues in all the 

designs. Cost of RD in structured P2P systems is effectively O(N) as most range queries are less specific. 

The implications of our findings for improving P2P-based RD solutions are also discussed. 

Section 4.1 presents the introduction and motivation. The equation for the cost of RD is derived 

in Section 4.2. Four datasets are described in Section 4.3 and their characteristics are analyzed in Section 

4.4. Different resource advertising and querying options are qualitatively evaluated in Section 4.5. Sec-

tions 4.6 and 4.7 present the simulation setup and performance analysis, respectively. Implications and 
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best practices for future RD solutions are discussed in Section 4.8. Concluding remarks are presented in 

Section 4.9.  

 

4.1 Introduction 

Collaborative Adaptive Sensing of the Atmosphere (CASA), Global Environment for Network 

Innovations (GENI), P2P clouds, and mobile social networks (see Sections 2.2 and 3.1) depend on some 

form of collaboration among resources. Therefore, these applications need the ability to locate and aggre-

gate groups of complex resources as and when needed to meet the performance and Quality of Service 

(QoS) requirements. P2P-based distributed RD is a natural fit for collaborative applications and further 

enhances their scalability, load balancing, and robustness. Many P2P-based RD solutions are also pro-

posed for conventional applications such as grid, desktop grid, and cloud computing [Ca04, Co09b, 

Kw10, Sh07], as timely aggregation of complex and distributed resources is becoming increasingly nec-

essary due to the proliferation of parallel applications that utilize multiple and distributed resources. Yet it 

is nontrivial to discover and utilize heterogeneous, multi-attribute, and dynamic resources that are distrib-

uted. Nevertheless, a good RD solution should satisfy several key phases (Fig. 3.2) where they (1) effi-

ciently advertise all the resources and their state, (2) query to find resources that satisfy application re-

quirements, (3) match resources according to application and resource constraints, and (4) bind resources 

and applications to ensure guaranteed service [Ba12b]. Moreover, solutions need to be adaptive, fault tol-

erant, and should satisfy multiple aspects of scalability such as query resolution latency, number of attrib-

utes, number of messages, and routing state. The focus of this chapter is on the first two phases namely 

advertising and querying. 

Significant progress has been made in multi-attribute RD in grid computing [Ca04, Sh07] and 

P2P [Al08, Bh04, Co09b, Kw10, Ta08]. However, compared to single-attribute P2P systems such as file 

sharing, formal characterization of real world, multi-attribute resources and queries received attention 

only recently [Ba11e, Ba12f, He12]. Characteristics of static attributes of nodes from a set of volunteer 

computing systems (e.g., SETI@home, Einstein@home, and World Community Grid) are presented in 
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[He12]. Our preliminary work in [Ba11e] presented both the static and dynamic resource and query char-

acteristics of PlanetLab [Ki11, Pa06] and SETI@home [An06] nodes. In the absence of information, data, 

and understanding of real life, multi-attribute resource and query characteristics, designs and evaluations 

of existing RD solutions have relied on many simplifying assumptions. For example, they assume inde-

pendent and identically distributed (i.i.d.) attributes, uniform or Zipf’s distribution of all the re-

sources/queries [Co09b, Sh07, Sh09], and queries specifying a large number of attributes and a small 

range of attribute values [Ca04, Sh07]. Moreover, the cost of updating dynamic attributes is ignored 

[Al08, Bh04, Ca04, Sh07, Sh09]. Such assumptions affect both the designs and performance analyses of 

RD solutions, and consequently their applicability under real workloads [Ba12a]. For example, perfor-

mance analysis in [Sh09] is limited to point queries in structured P2P systems and extensively relied on 

the aforementioned assumptions. Furthermore, direct comparison of these solutions is impractical due to 

the diversity of designs. Therefore, a formal and detailed comparison of fundamental design choices for 

P2P-based RD with respect to the behavior learned from actual systems is needed. Such an analysis will 

not only provide a better understanding of the applicability of different design choices but also helps to 

identify the best practices for resource aggregation in emerging collaborative P2P systems. 

We qualitatively and quantitatively evaluate the fundamental design choices for P2P-based, mul-

ti-attribute RD using the characteristics learned from real-world systems. Our main contributions are: 

 Development of an approximate equation that captures the overall cost of RD in terms of overlay 

messages. Such an equation helps to identify important parameters that affect the cost of RD and 

performance bounds for specific RD solutions. 

 Characteristics of multi-attribute resources from PlanetLab, SETI@home, EGI grid, and a cam-

pus network are then analyzed to determine the nature of parameters that affect the cost of RD in 

different systems. PlanetLab data are also used to analyze the multi-attribute query characteris-

tics. Such an understanding is useful in designing and evaluating RD solutions and job sched-

ulers. 
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 A representative subset of design choices based on centralized, unstructured, superpeer, and 

structured P2P architectures is then qualitatively and quantitatively evaluated using the learned 

characteristics. Seven design choices are evaluated based on the cost of advertising and querying 

resources, routing table size, load balancing, and scalability. Simulation-based study using a node 

and query trace from PlanetLab is used for the quantitative evaluation. These findings help to 

identify the best practices for resource aggregation. 

 The implications of our findings for improving and developing new P2P-based RD solutions are 

also discussed. 

Our findings show attributes of most resources are highly skewed and correlated. Attribute values have 

different marginal distributions and most of them are too complex/skewed to be described using any of 

the standard probability distributions. Ones that fit a known distribution satisfy Gaussian, generalized ex-

treme value, and generalized Pareto distributions. While resources are characterized by many attributes, 

most attributes have only a few distinct set of values. Attribute values changed at different rates and few 

attributes changed rapidly. Attribute values specified in queries are skewed however do not satisfy a 

Zipf’s-like distribution. Queries are less specific where each query tends to specify only a small subset of 

the available attributes and large ranges of attribute values. Simulation-based analysis indicates that real-

world queries are relatively easier to resolve using unstructured, superpeer, and single-attribute-

dominated-query-based structured P2P architectures compared to uniform queries used in conventional 

studies. Cost of RD in ring-based structured P2P systems is effectively O(N), where N is the number of 

nodes in the overlay, as most range queries specify large ranges of attribute values. This also increases the 

overhead of sub-query-based structured P2P solutions by an order of magnitude. The cost of advertising 

dynamic attributes is significant and increases with the number of attributes hence should not be ignored 

in performance studies. Furthermore, all the design choices are prone to significant load balancing issues 

where few nodes are mainly involved in answering the majority of queries and indexing resources. There-

fore, existing design choices are applicable only under very specific conditions and perform poorly under 

realistic workloads. Our work differs from [He12] in several aspects. In [He12], the evolution of static 
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attributes of multiple volunteer computing systems over five years is analyzed and a model is presented to 

forecast how the composition of hardware resources will evolve in the future. Conversely, we analyze 

both the static and dynamic attributes and short-term (ranging from a few minutes to days) changes in 

dynamic attributes. We also consider four different computing environments. Multi-attribute query char-

acteristics are also analyzed using PlanetLab data. Several other attempts to model grid computing re-

sources are presented in [Ke04, Lu03, Su08a]; however, they also do not capture the dynamic attributes. 

Understanding the characteristics of dynamic resources and queries across different systems is needed for 

the design, validation, and performance analysis of RD solutions and job schedulers as their performance 

is impacted by short-term changes in resources. Our analysis of PlanetLab resources and queries are com-

plementary to the work in [Ki11], which analyzes the behavior of workloads in PlanetLab. 

 

4.2 Cost of Advertising and Querying Resources 

We consider the resources that are characterized by multiple attributes, e.g., a computing node is 

characterized by its CPU speed, memory, operating system, etc. Similar to advertising file names in file 

sharing, these attributes are advertised to a central database, neighboring nodes, or nodes in Distributed 

Hash Tables (DHTs). All the attributes of a resource may be advertised together as a vector or separately 

as a set of scalar values. We analyze the cost of RD in terms of the number of overlay messages involved 

in advertising such resources and querying them. Our objective is to develop a relatively simple equation 

to capture the cost of RD. In this process, we identify a set of parameters and their relationship to the cost 

of advertising and querying. In Section 4.4, we determine the nature of these parameters in real-world 

systems. Then in Section 4.5, the equation is extended to represent the cost of RD in centralized, unstruc-

tured, and structured P2P-based architectures and their performance bounds. 

Consider a P2P overlay used to index (i.e., keep track of) resources, where resources are adver-

tised to a distributed set of nodes and queries are resolved by contacting those nodes. Let R be the set of 

resources in the system and A be the set of attributes used to describe those resources. We use bold face 
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Table 4.1 – List of symbols. 

Symbol Name 

ar Attribute set of resource r 

s
ra /

d
ra  Set of static/dynamic attributes in resource r 

aq Attribute set of query q 

A/A Set/number of distinct attributes in the system 

A
s / Ad Set of static/dynamic attributes in the system 

i
rc  Number of copies of i-th attribute of resource r 

Di Domain of i-th attribute 

i
Advertiseh /

i
Queryh  Hops to advertise/query i-th attribute 

li Lower bound of i-th attribute 

mq Desired number of resources in query q 

N Number of nodes in system 

Q(t) Set of queries issued in time interval t 

R/R Set/number of resources in the system 

t Time 

ui Upper bound of i-th attribute 

vi Value of i-th attribute 

i
r  Rate of change of i-th attribute in resource r 

 

symbols to refer to a set and the corresponding italic symbol to refers to its cardinality, e.g., R = |R|. List 

of symbols is given in Table 4.1. Each resource r  R is defined as follows: 

 ii vavavar  ,...,, 2211  (4.1) 

Each attribute ai  A has a corresponding value vi  Di that belongs to a given domain Di. Di‘s are typi-

cally bounded, may be continuous or discrete, or correspond to a set of categories/names. For example, 

free CPU is continuous, number of CPU cores is discrete, operating system is a category, and a file is rep-

resented by a name. A multi-attribute Resource Specification (RS) of a computing node with such a set of 

attributes may look like the following: 








 


_2.6.31=  , 1071 = 

 %, 53 =  2,   , 2.4 = 

LinuxOSMBMemoryFree

CPUFreeNumCoresGHzCPUSpeed
RS  

Similarly, a radar may be described by its sensing capabilities (e.g., Doppler radar), location, sensor 

range, and sensing frequency. 

Attribute values are classified as static (e.g., CPU speed, total memory, operating system, and 

sensor location) and dynamic (e.g., free CPU, memory, bandwidth, and sensing frequency). Let ar  A be 
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the collection of ai’s that is used to describe r. Let A
s
 and A

d
 be the set of static and dynamic attributes in 

the system, respectively. A = A
s
 ∪ A

d
. Similarly, let 

s
ra and 

d
ra be the subsets of static and dynamic attrib-

utes of ar. Dynamic attributes need to be re-advertised whenever their values/states change. Let 
i
r  be the 

rate at which the change in i-th attribute of ar occurs. The cost of advertising dynamic attributes is propor-

tional to their rate of change. In some cases, multiple copies of ai are placed in different databases, neigh-

boring nodes, or DHTs. Let 
i
rc  be the number of copies of i-th attribute of ar. 

We are interested in the number of messages that is either sent or forwarded within the overlay 

network to advertise and query resources. Cost of acknowledgement messages is ignored. Typically, the 

time required to resolve a query within a node is lower compared to the inter-node communication time. 

Therefore, if we assume that each overlay link has approximately the same latency, then the query resolu-

tion latency can be also represented using the number of overlay hops. Assuming each attribute ai is ad-

vertised separately, the total cost of advertising r is: 

 thcthchcC i
r

i

i
Advertise

i
r

j

j
r

j
Advertise

j
r

i

i
Advertise

i
r

r
Advertise   



1

rrr aaa

 (4.2) 

where 
i
Advertiseh  is the number of overlay hops that the advertising message corresponding to the i-th at-

tribute travels. First summation captures the initial cost of advertising all the attributes. Second summa-

tion captures the recurrent cost of advertising dynamic attributes within time t. Resources need to reenter 

the system after churn or failure. Moreover, resources indexed in unstructured P2P systems and DHTs 

typically expire after a predefined timeout. In either case, resource attributes need to be re-advertised. 

Therefore, even the static attributes can be interpreted as behaving like dynamic attributes, but with much 

lower turnover. Hence, 
i
r should be defined considering the rate of change and both the available and 

unavailable time of r. 
i
r  is lower for static attributes compared to that for dynamic attributes. 

Let Q(t) be the set of all the queries issued within the time interval t. A multi-attribute range que-

ry q  Q(t) is defined as follows: 
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 ],[,...],,[],,[, 222111 iiiq ulaulaulamq   (4.3) 

where, mq 


specifies the required number of resources and ai  [li, ui] specifies the desired range of 

attribute values (li and ui are lower and upper bounds, respectively). A query that requests for five compu-

ting nodes with a given CPU speed, free memory, and operating system may look like the following: 

 "32.6.2_" ],512,[256],,[2.05, LinuxOSMBMBMemoryFreeMAXGHzCPUSpeedmq q   

where MAXi is the upper bound of the domain Di. Similarly, a query for a set of radar may look like the 

following: 




















Doppler""ype],51,[26

 ],12,[6], 05,[20ange3,

TWWngiLocationLo

NNtiLocationLakmkmRm
q

q
 

The set of attributes specified in a query (aq) may contain only a subset of the attributes that are used to 

describe resources (i.e., aq  A). When li = ui,   ai  aq, q is referred to as a point query. In practice, at-

tributes in a query may specify a mixture of point and range values. Unspecified attributes are considered 

as “don’t care”. q is referred to as a single-attribute query when aq = 1 and it is referred to as a multi-

attribute query when aq > 1. In practice, it may be necessary to find/discover more than mq resources, as 

some of the selected resources may not be available by the time they are required for use due to resource 

churn/failure. Moreover, RD systems may not index all the attributes used to describe a resource, e.g., 

only the static attributes are indexed in [Co09b]. In such cases, unadvertised attributes have to be validat-

ed by directly contacting the resources. Contacting the resource is also important when a binding has to be 

established between the resource and the application planning to use it (see Section 3.4). Let f(mq, R, 

AIndex) indicates the cost associated with these complex scenarios. AIndex  A is the subset of attributes 

indexed in the P2P overlay. Then the cost of a point query can be given as: 

 Index

a

ΑR

q

,,q

i

i
Query

q
PointQuery mfhC 




 (4.4) 

i
Queryh  is the number of overlay hops required to reach the node that indexes the value of i-th attribute de-

fined in q. f(.) captures the cost of directly contacting resources to either validate the attributes that are not 
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i

i - 1
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Figure 4.1 –  Range query resolution on a ring-like overlay network. 

advertised or establish a binding between a resource and the application. After reaching the first node, 

queries that specify a range of attribute values need to be forwarded further. For example, Fig. 4.1 illus-

trates how a query will be initially forwarded to the node that indexes the lower bound li on a ring-like 

overlay network. It will then be forwarded to the node responsible for indexing the upper bound ui 

through a series of successors (see Fig. 4.1). As in [Al08, Ca04, Sh07], we initially assume the range of 

attribute values [li, ui] to be uniformly distributed within the overlay. Therefore, the number of additional 

nodes visited by a range query is proportional to the range (ui – li) and number of nodes (N) in the over-

lay, and is inversely proportional to the size of domain Di (i.e., range or number of all possible attribute 

values). Then (4.4) can be extended to indicate the overall cost of a range query as follows: 

   Index

a

AR

q

,,1 q

i i

iii
Query

q
Query mfN

D

lu
hC 






















 




 (4.5) 

Then the overall cost of RD is: 





Q(t)R q

q
Query

r

r
AdvertiseTotal CCC   (4.6) 

 

4.3 Datasets 

We use four datasets from PlanetLab, SETI@home, EGI grid, and our campus to identify the na-

ture of parameters that affect the cost of RD. The set of resource attributes that are used in the analysis are 

described first. Then details on traces used in this study are presented.  



72 
 

4.3.1 Node Model 

Though resources are characterized by many static, dynamic, and categorical attributes only a 

subset of them are essential in RD. Therefore, we consider 11 representative attributes that are essential to 

characterize a typical node useful in collaborative P2P, grid, and cloud computing systems. 

1. CPUSpeed – Processor clock speed in GHz. Provides insight on the relative computing power of 

a node. 

2. CPUArchi – CPU architecture, e.g., ×86 and SPARC. 

3. NumCores – Number of processor cores in a node. Indicates how much parallelism in processing 

is possible. Some processors may count hardware-level threads as separate cores. 

4. CPUFree – (100% – CPU utilization). Indicates to what extent the CPU(s) is available for pro-

cessing. When multiple cores are available, the average value is given. 

5. CPULoad – Number of active processes competing or waiting for CPU. It is typically represented 

as one minute (1MinLoad), five minute (5MinLoad), and 15 minute (15MinLoad) exponentially 

weighted moving averages of the number of competing processes. CPULoad indicates how long a 

user process has to wait for CPU. Both CPUFree and CPULoad are complementary to each oth-

er, as a large CPULoad does not necessarily mean high CPU utilization (e.g., processes could be 

blocked for I/O). 

6. MemSize – Size of volatile memory in GB. 

7. MemFree – Free user-level memory as a percentage (MemFree%) or in GB (MemFree). Indicates 

how much memory is available for user processes. Linux ignores the amount of memory con-

sumed by the operating system when determining MemFree. Therefore, MemSize × MemFree% 

does not indicate the actual amount of free memory in GB. Thus, some systems track both param-

eters. 

8. DiskFree – Free disk space in GB. 
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Table 4.2 – Summary of traces. 

 
CoMon SETI@home GCO CSU SWORD 

No of nodes/queries ~650 234,421 205 387 915 

Total no of attributes 64 34 87 27 49 

Attributes useful in RD 46 25 17 17 49 

Static attributes 12 21 6 8 8 

Dynamic attributes 34 4 11 9 41 

Sampling interval 5 min Vary (hours to days) 1 min 1 min Not tracked 

Date(s) 
2011/2/1 – 

2011/2/14 

Active as of 

2012/4/30 

2012/4/23 

– 2012/5/6 

2011/12/1 – 

2011/12/14 

2010/3/12 – 2010/7/20 & 

2010/10/2 – 2012/6/5 
 

9. TxRate – Average transmission rate in Kbps. In conjunction with the bandwidth limit specified by 

most nodes, it provides insight on the amount of available bandwidth. It may also give insight on 

how much bandwidth will be available if an application uses the node exclusively. 

10. RxRate – Average receive rate in Kbps. 

11. OS – Type of operating system and version. 

CPUSpeed, NumCores, and MemSize are static, CPUArchi and OS are categorical, and rest of the 

attributes is dynamic. RD solutions and job scheduling algorithms for latency sensitive applications are 

typically interested only in short-term trends. Therefore, we capture statistical characteristics that are val-

id for several minutes to few weeks. 

 

4.3.2 PlanetLab 

PlanetLab [Ki11, Pa06] is a global research network that supports the development of new net-

work services. It provides a versatile platform for testing distributed applications and protocols by aggre-

gating a globally distributed set of nodes. PlanetLab reflects many characteristics of Internet-based dis-

tributed systems such as heterogeneity, multiple end users, dynamic nodes, and global presence. Hence, it 

is being used to evaluate many preliminary P2P protocols and applications. We analyzed data from two 

PlanetLab tools, CoMon [Ki11, Pa06] and SWORD [Al08], to determine multi-attribute resource and 

query characteristics. CoMon is a node and slice monitoring system that provides a snapshot of static and 

dynamic attributes of all the nodes every five minutes. Table 4.2 summarizes the traces used in this study. 

SWORD is a multi-attribute RD tool for PlanetLab. It enables users to query for multiple groups of nodes 
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while specifying inter-group and intra-group latency and bandwidth constraints. Though it was originally 

designed as a P2P solution, its current deployment is centralized and does not support latency and band-

width constraints due lack of such data from PlanetLab nodes. Though we were able to collect only 915 

queries over the last two years (Table 4.2) due to the light usage and server failure, the dataset provides a 

unique insight into real world, multi-attribute, and multi-resource queries that are unknown. 

 

4.3.3 SETI@home 

BOINC [An09] is a volunteer computing platform (a.k.a. desktop grid) that remotely executes 

jobs using idle computing resources. SETI@home is one of the largest BOINC deployments and it utiliz-

es a much larger and diverse set of nodes compared to other datasets. While a detailed presentation of at-

tribute values of SETI nodes is given in [An06, He12], their characteristics are not analyzed in the context 

of RD systems. Therefore, we briefly analyze the distribution of resource attributes collected from 

SETI@home website [An09]. Except for DiskFree, BOINC collects only the static attributes of a node. 

Attribute values are collected only when a node contacts a BOINC server therefore time between two 

samples vary from several hours to a few days. Hence, DiskFree is not sampled periodically. BOINC also 

collects CPU performance in terms of Dhrystone (integer) and Whetstone (floating-point) benchmarks. 

BOINC is a pull-based system where nodes request jobs based on their hardware resources hence do not 

support a resource query mechanism. 

 

4.3.4 EGI Grid 

European Grid Infrastructure (EGI) aggregates multiple grid computing sites across Europe 

[Ne11]. Data related to job submission, workloads, and computing and storage nodes from EGI sites are 

collected and published through the Grid Observatory [Ge11a]. We use node traces from Green Compu-

ting Observatory (GCO) [Ge11b], a recently launched sub-project within the Grid Observatory, that cur-

rently collects static and dynamic attributes of ~200 computing nodes with over 1,000 CPU cores at every 

one minute. Though the number of nodes in the dataset is much smaller compared to the size of the EGI 
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grid, GCO dataset provides a unique view of grid computing resources due to its high-resolution sampling 

in both time and number of attributes. No data are available on specific queries that may have been used 

to select those nodes for processing. 

 

4.3.5 Campus Dataset 

We also collected a dataset within our campus, Colorado State University (CSU). Subset of PCs 

and servers within the Department of Computer Science and Engineering Faculty was sampled every one 

minute. The dataset includes both Linux and Windows nodes and reflects an enterprise computing envi-

ronment. Resource characteristics of such environments are becoming important as we are seeing the 

emergence of applications such as P2P clouds that aggregate residual computing resources from enter-

prise environments and homes [Br09]. No explicit query mechanism is provided and users are free to use 

any unoccupied PC in a lab. Server CPULoads are published on the web enabling students and research-

ers to pick unloaded servers manually. 

 

4.4 Resource and Query Characteristics 

We now describe the characteristic of resources and queries, and observed behavior of varia-

bles/parameters identified in Section 4.2. Our discussion is primarily based on the characteristics of 

PlanetLab as we have both the resource and query datasets. Specific characteristics of other datasets are 

presented to illustrate the commonalities and differences across different systems. 

 

4.4.1 Resource Characteristics 

Figures 4.2 (a) and (b) show the distribution of CPUSpeed of PlanetLab and SETI@home nodes. 

Both distributions can be approximated using Gaussian distributions. Due to many identical nodes, 

CPUSpeed of GCO (Fig. 4.2(c)) and CSU (Fig. 4.2(d)) nodes were highly skewed and did not fit a stand-

ard distribution. 68 (11%) PlanetLab nodes had identical static attributes such as CPUSpeed, NumCores, 

MemSize, and DiskSize. This may have been caused by a donation of a set of similar machines to multiple 



76 
 

  
(a) (b) 

  
(c) (d) 

Figure 4.2 –  Distribution of CPU speed: (a) PlanetLab; (b) SETI@home; (c) GCO; (d) CSU. 

sites. Most sites also had few identical hosts. This is the case even in grid, cloud, and enterprise compu-

ting environments where sites may simultaneously deploy or upgrade to a similar set of machines. For 

example, the largest set of identical nodes in CSU and GCO datasets corresponded to 14% and 95% of the 

nodes, respectively. Nodes in student labs are typically homogeneous. For example, the four largest sets 

of identical nodes corresponded to 45% of the nodes in the CSU dataset. Due to such large sets of homo-

geneous nodes and discrete nature of attribute values, NumCores (see Fig. 4.3) and MemSize (see Fig. 4.4) 

of nodes in all the systems do not fit standard distributions. One may argue that we can still attempt to fit 

data to a set of well-known distributions by applying more complex sub-sampling techniques, rounding 

attribute values (e.g., rounding MemSize to the nearest power of two), or discarding some values (e.g., 

discarding NumCores values that are not powers of two). While we do discard outliers, other techniques 
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(a) (b) 

  
(c) (d) 

Figure 4.3 –  Distribution of number of CPU cores: (a) PlanetLab; (b) SETI@home; (c) GCO; (d) CSU. 

are of little value as our objective is to understand the true distributions and behavior of attributes but not 

to generate synthetic data using them. Such techniques are applied in [He12] for SETI nodes, which are 

more heterogeneous, as the authors’ objective was to generate synthetic data. However, these techniques 

do not apply well to PlanetLab, GCO, and CSU datasets as they consist of multiple sets of homogeneous 

nodes. If the objective is to generate synthetic data, in Chapter 5 we demonstrate that it is more accurate 

to summarize the data using tables of empirical cumulative distributions (ECDF) and then use empirical 

copulas to generate synthetic data as copulas preserve the complex multivariate distributions and correla-

tions among attributes.  

Figure 4.5 shows the variation in average CPUFree and MemFree values of all the nodes with 

time. It can be seen that both PlanetLab and GCO experience idle and busy periods. Average resource 

utilization of GCO nodes (lower average CPUFree and MemFree) is higher than the other two systems. 
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(a) (b) 

  
(c) (d) 

Figure 4.4 –  Distribution of memory size: (a) PlanetLab; (b) SETI@home; (c) GCO; (d) CSU. 

For example, Fig. 4.6 illustrates the distribution of CPUFree and MemFree during the peak time of each 

system. Large fractions of PlanetLab and CSU nodes were idle (high CPUFree) even during the peak 

time whereas GCO nodes were heavily utilized throughout the day. For example, 37% and 71% of the 

PlanetLab nodes had over 95% of CPUFree and 2 GB of MemFree, respectively. Similarly, 92% and 

97% of the CSU nodes had the same amounts of CPUFree and MemFree. Even though students used the 

nodes during peak hours, their workloads do not fully utilize the capabilities of the nodes. However, only 

0.5% and 46% of the GCO nodes had similar amounts of CPUFree and MemFree. Due to the highly 

skewed distributions, instantaneous values (at a given time t) of dynamic attributes do not fit standard dis-

tributions. Except for SETI nodes, DiskFree also had a similar behavior in other three datasets. SETI 

nodes had a skewed but monotonically decreasing distribution that can be approximated by a Generalized 

Pareto Distribution (GPD). Attributes that satisfy known probability distributions are listed in Table 4.3.  
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(a) 

 
(b) 

 
(c) 

Figure 4.5 –  Average resource utilizations of all the nodes with time: (a) PlanetLab; (b) GCO; (c) CSU. 

Figure 4.7 shows the distribution of TxRate of PlanetLab and SETI nodes, which can be approxi-

mated using the Generalized Extreme Value (GEV) distribution. RxRate of those nodes can be also ap-

proximated using the GEV distribution. Average TxRate of SETI nodes is an order of magnitude lower 

than the average RxRate (see Table 4.3). This may be a consequence of the asymmetric bandwidth availa-

bility in volunteer nodes. TxRate and RxRate of GCO nodes did not fit standard distributions as they were 

skewed. While it was possible to approximate the distribution of 1MinLoad using GPD, other datasets and 

5MinLoad and 15MinLoad do not fit standard distributions. It was also observed that integer and floating-

point performance of SETI nodes could be approximated by a Weibull distribution. We further observed 
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(a)  

 
(b) 

Figure 4.6 –  Distribution of dynamic attributes during peak times: (a) Free CPU; (b) Free memory. 

few SETI nodes with very large NumCores, MemSize, DiskSize, TxRate, and RxRate. However, these 

nodes were active only for a few weeks. These could be high-performance machines that utilize SETI as a 

workload to test and measure their performance. Nevertheless, these nodes provide a significant amount 

of computing, storage, and networking resources for a short time span. 

Distribution of categorical attributes was extremely skewed and had only a few distinct attribute 

values. For example, CPUArchi of all the PlanetLab, GCO, and CSU nodes and 99% of the SETI nodes 

were ×86. Remaining 1% of the SETI nodes corresponded to PowerPC, SPARC, and IA-64 architectures 

(see Fig. 4.8). All PlanetLab and GCO nodes were Linux but nodes had several different kernel versions. 

76% of the CSU nodes ran a Linux variant with different kernel versions. 82.2% of the SETI nodes had a 
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Table 4.3 – Distribution of attribute values. 

Distribution of Attribute Values PlanetLab* SETI@home* 

CPUSpeed (GHz) N(2.63, 0.43) N(2.53, 0.51) 

DiskFree (GB) No fit GPD(0, 104.9, 0.51) 

1MinLoad GPD(0, 6.82, 0.38) N/A 

TxRate (Kbps) GEV(0.51, 0.57, 0.54) GEV(12.9, 9.8, 0.34) 

RxRate (Kbps) GEV(0.49, 0.54, 0.54) GEV(111.4, 122.8, 0.84) 

Integer performance (MIPS) N/A Weibull(6,498, 2.2) 

Floating-point performance (MIPS) N/A Weibull(2,507, 3.4) 

* GEV(μ , σ, k), GPD(μ, σ, k), N(μ , σ2), Weibull(λ, k), N/A – Not available 

 

  
(a) (b) 

Figure 4.7 –  Distribution of transmission rate: (a) PlanetLab; (b) SETI@home. While fitting the curve 
for SETI@home only the nodes with bandwidth utilization up to 1 Mbps is considered. 

Windows variant (44% of them were Windows 7) and 10.6% and 7% of the nodes had variants of MacOS 

and Linux, respectively (see Fig. 4.9). Remaining 0.2% corresponds to BSD, SunOS, OS/2, AIX, HP-UX, 

and IRIX. Therefore, categorical attributes are highly skewed and their domains have only a few valid 

attribute values. 

There is a wide variation in how frequently the attribute values change. The number of changes in 

dynamic attributes over a 24-hour period is observed for two weeks. Figure 4.10 shows the CDF of num-

ber of significant changes in several selected attribute values. A fixed threshold is applied to ignore minor 

variations. MemFree in PlanetLab and GCO nodes changed frequently. For example, 54% of the 

PlanetLab nodes changed MemFree by at least 100 MB in every sample taken at 5-minute intervals. 50% 

of the GCO nodes changed MemFree at least 123 times within 24 hours (out of 288 samples taken at 5-

minute intervals). While the number of changes in DiskFree was insignificant in PlanetLab and CSU, it 
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Figure 4.8 –  Distribution of CPU architectures of SETI@home nodes. 

 

Figure 4.9 –  Distribution of operating systems of SETI@home nodes. 

moderately changed in GCO dataset. This may be due to the data incentive, high-energy-Physics applica-

tions that frequently run on those nodes [Ge11b]. A relatively high rate of change was observed for 

1MinLoad in PlanetLab and CSU datasets and TxRate and RxRate in GCO dataset. These indicate that the  

number of processes running on PlanetLab nodes shows a rapid variation with time, which could be either 

due to the variability in applications’ resource usage or execution of small jobs. The number of changes in 

1MinLoad of CSU nodes was moderate; however, 15MinLoad changed infrequently indicating most pro-

cesses are short lived. Surprisingly, TxRate and RxRate do not change rapidly in PlanetLab however aver-

age bandwidth consumption of nodes remained relatively high. CPUFree moderately changed in GCO 

dataset, as nodes were mostly busy. The number of process running on nodes was stable with time hence 
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(a) (b) 

 
(c) 

Figure 4.10 –  Cumulative distribution of number of attribute value changes within 24-hours: (a) 

PlanetLab; (b) GCO; (c) CSU. Thresholds: CPUFree = ± 10%, MemFree = ± 100 MB, 

DiskFree = ± 5 GB, 1MinLoad = 15MinLoad = ± 2, TxRate = RxRate = ± 10 Kbps. 

CPULoad changed infrequently. It was observed that the rate of change of some of the attributes could be 

approximated by several probability distributions such as GPD, GEV, Negative Binomial (NB), and T 

Location-Scale (TLS) and are listed in Table 4.4. In summary, rate of change 
i
r  depends on the attribute 

and system. 

We further observed the linear and ranked correlation among attributes. Table 4.5(a) lists the lin-

ear (Pearson’s) correlation among PlanetLab nodes. For the dynamic attributes, we first calculated the 

correlation among all nodes in a given sample (taken at a given time instance) and then calculated their 

average across all the samples (taken at every 5 minutes, over two weeks). Correlation values of most of 

the attribute pairs in different samples had a standard deviation of ≤ 0.1 confirming correlation does not  
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Table 4.4 – Distribution of number of significant changes in attribute values within 24-hours. 

No of Changes in Attribute Values PlanetLab* GCO 

CPUFree No fit GPD(0, 34.4, -0.45) 

MemFree No fit TLS(124, 23, 2.7) 

DiskFree No fit TLS(14.2, 6.86, 3.84) 

1MinLoad No fit GEV(11.2, 7.99, 0.06) 

15MinLoad No fit GEV(2.57, 2.93, 0.31) 

TxRate NB(0.08, 0.19) TLS(79.7, 22.9, 4.18) 

RxRate NB(0.09, 0.19) TLS(142.9, 51.6, 13.7) 

* GEV(μ , σ, k), GPD(μ, σ, k), NB(r, p), TLS(μ, σ, ν) 

Table 4.5 – Correlation among attributes of PlanetLab nodes: 

(a) Pearson’s correlation coefficient. 

Index* 1 2 3 4 5 6 7 8 9 10 

2 -0.10 
       

  

3 -0.01 0.46 
      

  

4 -0.03 -0.03 -0.16 
     

  

5 -0.03 -0.02 -0.15 0.98 
    

  

6 0.02 0.43 0.30 -0.03 -0.03 
   

  

7 0.06 0.25 0.35 -0.12 -0.11 0.36 
  

  

8 -0.11 0.54 0.37 -0.09 -0.08 0.59 0.30    

9 -0.11 0.56 0.41 -0.09 -0.09 0.58 0.30 0.99   

10 0.06 -0.06 -0.12 -0.04 -0.04 0.00 0.01 0.00 -0.03  

11 0.05 -0.05 -0.11 -0.03 -0.03 0.00 0.01 0.00 -0.03 0.87 

(b) Spearman’s ranked correlation coefficient. 

Index* 1 2 3 4 5 6 7 8 9 10 

2 0.06 
       

  

3 -0.09 0.68 
      

  

4 0.08 -0.20 -0.62 
     

  

5 0.08 -0.18 -0.62 0.94 
    

  

6 -0.01 0.45 0.35 -0.34 -0.35 
   

  

7 0.20 0.61 0.51 -0.03 -0.03 0.69 
  

  

8 -0.22 0.62 0.49 -0.30 -0.29 0.49 0.63    

9 -0.21 0.66 0.56 -0.42 -0.42 0.44 0.60 0.95   

10 0.03 0.00 -0.21 0.10 0.10 0.10 0.28 0.04 -0.09  

11 0.02 0.02 -0.21 0.11 0.11 0.11 0.29 0.07 -0.07 0.95 

* 1 – CPUSpeed, 2 – NumCores, 3 – CPUFree, 4 – 1MinLoad, 5 – 15MinLoad, 6 – MemSize, 7 – 
MemFree%, 8 – DiskSize, 9 – DiskFree, 10 – TxRate, 11 – RxRate 

 

 

significantly change with time. It can be seen that (15MinLoad, 1MinLoad), (DiskFree, NumCores),  

(DiskFree, MemSize), and (RxRate, TxRate) are positively correlated. 1MinLoad and 15MinLoad are cor-

related because they are the one-minute and 15-minute averages of CPULoad. It seems that a node with a  
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Table 4.6 – Correlation among attributes of GCO nodes: 

(a) Pearson’s correlation coefficient. 

Index* 1 2 3 4 5 6 7 8 9 10 

2 1.00 
       

  

3 0.26 0.26 
      

  

4 0.40 0.40 -0.68 
     

  

5 0.42 0.42 -0.67 0.96 
    

  

6 1.00 1.00 0.26 0.40 0.42 
   

  

7 0.42 0.42 0.61 -0.31 -0.30 0.42 
  

  

8 0.97 097 0.26 0.38 0.40 0.97 0.41 
 

  

9 0.96 0.96 0.29 0.34 0.35 0.95 0.48 0.99   

10 0.03 0.03 0.01 0.04 0.04 0.03 -0.01 0.03 0.03  

11 0.12 0.12 0.03 0.08 0.07 0.12 -0.06 0.11 0.10 0.25 

(b) Spearman’s ranked correlation coefficient. 

Index* 1 2 3 4 5 6 7 8 9 10 

2 1.00 
       

  

3 0.34 0.34 
      

  

4 0.21 0.21 -0.50 
     

  

5 0.22 0.22 -0.48 0.80 
    

  

6 0.88 0.88 0.30 0.19 0.19 
   

  

7 0.20 0.20 0.27 -0.21 -0.19 0.20 
  

  

8 0.94 0.94 0.32 0.19 0.20 0.83 0.19 
 

  

9 0.32 0.32 0.18 -0.10 -0.10 0.28 0.64 0.31   

10 0.05 0.05 0.26 -0.06 -0.06 0.03 -0.05 0.06 -0.10  

11 0.07 0.07 0.27 -0.06 -0.09 0.06 -0.08 0.08 -0.11 0.82 

* 1 – CPUSpeed, 2 – NumCores, 3 – CPUFree, 4 – 1MinLoad, 5 – 15MinLoad, 6 – MemSize, 7 – 
MemFree, 8 – DiskSize, 9 – DiskFree, 10 – TxRate, 11 – RxRate 

 

large disk space also tends to have a large number of CPU cores and memory (correlation between 

NumCores and MemSize is 0.43). Time series of TxRate and RxRate are highly correlated as PlanetLab 

nodes tend to simultaneously transmit and receive data. Spearman’s ranked correlation ρ among attributes 

is listed in Table 4.5(b). Spearman’s ρ measures how well the correlation between two attributes can be 

described using a monotonic function. The correlation between (CPUFree, NumCores), (MemFree, 

NumCores), and (MemFree, MemSize) have increased. This indicates that when a node has a large 

NumCores, CPUFree tends to increase (see Fig. 4.11(a)) as it is the average of all the CPUs and some of 

them may be idle. Figure 4.11(b) also shows that when nodes have more CPU cores their memory capaci-

ty also tends to increase. (1MinLoad, CPUFree) and (15MinLoad, CPUFree) are negatively correlated as  
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Table 4.7 – Correlation among attributes of SETI@home nodes: 

(a) Pearson’s correlation coefficient. 

Index* 1 2 3 4 5 6 7 8 

2 0.27 
       

3 0.25 0.59 
      

4 0.28 0.31 0.26 
     

5 0.00 0.00 0.00 0.00 
    

6 0.00 0.00 0.00 0.00 0.00 
   

7 -0.01 0.00 0.00 0.00 0.00 0.00 
  

8 0.51 0.42 0.39 0.34 0.00 0.00 0.00 
 

9 0.60 0.34 031 0.35 -0.01 0.00 -0.01 0.79 

(b) Spearman’s ranked correlation coefficient. 

Index* 1 2 3 4 5 6 7 8 

2 0.36 
       

3 0.37 0.71 
      

4 0.26 0.44 0.51 
     

5 0.24 0.36 0.38 0.85 
    

6 0.15 0.22 0.26 0.18 0.17 
   

7 0.06 0.10 0.22 0.14 0.12 0.51 
  

8 0.51 0.62 0.68 0.42 0.36 0.22 0.16 
 

9 0.61 0.48 0.56 0.43 0.35 0.19 0.17 0.80 

* 1 – CPUSpeed, 2 – NumCores, 3 – MemSize, 4 – DiskSize, 5 – DiskFree, 6 – TxRate, 
7 – RxRate, 8 – Integer performance (MIPS), 9 – Floating-point performance (MIPS) 

 

  
(a) (b) 

Figure 4.11 –  Number of CPU cores of PlanetLab nodes vs.: (a) Free memory; (b) Memory size. 

CPUFree reduces when the number of processes using the CPU increases. Increased Spearman’s ρ values 

show that more complex correlation patterns exist among attributes that are not necessarily linear (Fig. 

4.11). Linear and ranked correlations of GCO nodes are listed in Table 4.6 where many attributes were 



87 
 

 

Figure 4.12 –  Distribution of the number of distinct attributes specified in a query. 

correlated due to homogeneous nodes and heavy utilization of nodes (when a node is heavily utilized, 

CPUFree and MemFree reduce while CPULoad increases). Analysis of Spearman’s ρ also indicates 

TxRate and RxRate are positively correlated with a coefficient of 0.82. Similar behavior is also observed 

for SETI (Table 4.7) and CSU (Table 4.8) nodes. 

 

4.4.2 Query Characteristics 

Table 4.9 summarizes the number of attributes (aq), resources (mq), and groups of resources speci-

fied in PlanetLab queries. 2% queries requested for several resources without specifying any attribute. 

Figure 4.12 shows the distribution of number of attributes specified in a query. 78% queries specified at 

most two attributes while 0.4% queries specified up to 10 attributes. Thus, queries tend to specify a lower 

number of attribute values (small aq). 30% queries requested ten resources while 52% requested 50 or 

more resources. 19% queries requested all the resources in the system. Thus, there is a tendency to request 

a large number of resources (i.e., large mq). Figure 4.13 shows the popularity of attributes specified in the 

queries. Dynamic attributes are the most popular. 26 attributes (out of 49) were never queried. Many que 

ries requested both CPUFree and CPUSpeed (or MemFree and MemSize). This may have been because 

the percentage values (PlanetLab represents both CPUFree and MemFree as percentages) are inadequate 

to represent the actual availability of resources. We observed the query popularity by clustering identical  
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Table 4.8 – Correlation among attributes of CSU nodes: 

(a) Pearson’s correlation coefficient. 

Index* 1 2 3 4 5 6 7 8 

2 0.10 
       

3 -0.08 0.01 
      

4 0.07 0.05 -0.54 
     

5 0.07 0.06 -0.56 0.97 
    

6 -0.22 0.51 -0.05 0.07 0.07 
   

7 -0.27 0.42 -0.06 0.07 0.07 0.99 
  

8 0.38 0.14 0.07 0.25 0.26 -0.47 -0.60 
 

9 0.38 0.14 0.07 -0.11 -0.11 -0.47 -0.60 1.00 

(b) Spearman’s ranked correlation coefficient. 

Index* 1 2 3 4 5 6 7 8 

2 0.15 
       

3 0.00 0.09 
      

4 0.09 0.06 -0.37 
     

5 0.09 0.07 -0.39 0.73 
    

6 -0.34 0.45 -0.29 0.06 0.06 
   

7 -0.35 0.47 -0.30 0.07 0.07 0.98 
  

8 0.52 0.05 0.24 0.03 0.04 -0.47 -0.49 
 

9 0.22 0.06 0.53 -0.21 -0.21 -0.49 -0.51 0.70 

* 1 – CPUSpeed, 2 – NumCores, 3 – CPUFree, 4 – 1MinLoad, 5 – 15MinLoad, 6 

– MemSize, 7 – MemFree, 8 – DiskSize, 9 – DiskFree 

 

Table 4.9 – Composition of PlanetLab queries. 

 
Attributes (aq) Resources (mq) Groups 

Average 2.13 63.66 1.09 

Minimum 0 1 1 

Maximum 10 All 3 

Median 2 65 1 

Mode 1 All 1 

Standard deviation 1.62 380 0.3 

 

queries together. Similarly, we clustered attributes with the same range of values. 24% of the queries and 

13% of the attributes specified in queries appeared only once. Figure 4.14 shows the distribution of clus-

ter size. Number of identical queries in the  largest query cluster was 31 and the largest attribute cluster 

had 117 queries. Though the popularity distribution is skewed, it does not satisfy a Pareto (or Zipf’s-like) 

distribution as some of the queries are equally popular (the lines are not straight). It was further observed 

that the ranges of attribute values [li, ui] specified in queries are somewhat large. As seen in Fig. 4.15, 
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Figure 4.13 –  Popularity of attributes specified in ueries. Only the first 20 is shown. 

 

Figure 4.14 – Popularity distribution of queries and attributes specified in queries. 

89% of the queries that specified CPUFree requested values of 40-100%. Similarly, 86% queries request-

ed DiskFree values of 5-1000 GB. Therefore, most queries are less specific as they specify lower aq and 

large [li, ui]. This could be due to several reasons: (1) the nature of applications that run on PlanetLab that 

may not require fine-grained resource selection, (2) users’ inability to identify detailed resource require-

ments, or (3) principle of least effort [Br05] where users are willing to specify only the simplest queries 

that satisfy their resource requirements. 
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Figure 4.15 –  Range free CPU values specified in queries. 

 

 

4.4.3 Summary of Findings 

Analysis of four datasets confirms that attribute values are correlated, their marginals satisfy dif-

ferent probability distributions, and in most cases are highly skewed and too complex to be represented 

using well-known probability distributions. Queries are skewed and less specific, as they specify small aq, 

large [li, ui], and large mq. These trends are likely to remain valid even in collaborative applications where 

users may not be informed enough to issue very-specific queries or due to the principle of least effort. 

Iosup and Epema [Io10] also observed that while most of the jobs in grids use a single CPU, few jobs 

tend to use a large number of CPUs (128 CPUs or more) hence mq tends to be large even in grids. These 

findings invalidate the commonly used assumptions such as i.i.d. attributes, uniform/Zipf’s distribution of 

all the attributes [Bh04, Ca04, Sh07], and queries specifying a large number of attributes and small ranges 

of attribute values [Ca04, Sh07]. Correlations between attribute pairs indicate that resources are not uni-

formly distributed throughout the multi-attribute space (domain of all Dis). Domain Di of categorical at-

tributes such as CPUArchi and OS are small as they have only a few distinct attribute values. Various 

hardware constraints favor having NumCores and MemSizes that are powers of two. Therefore, these at-

tributes occupy only a small fraction of their domain Di. Moreover, large numbers of identical resources 

in PlanetLab, Grid, Cloud, and enterprise computing environments appear as sets of clusters within the 

multi-attribute space. Therefore, non-uniform and clustered distribution of attribute values force nodes to 
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index and/or answer a disproportionate number of resources and queries leading to load balancing issues. 

For example, DHTs that assume uniform distribution of resources [Lu04] will fail to provide static load 

balancing in these systems. 

Both ar and A are large, as the resources are described using tens of attributes (see Table 4.2). 

Dynamic attributes change at different rates and some of them change frequently (high 
i
r ). A user can 

decide when to run a BOINC client. Hence, SETI nodes are active only 81% of the time on average 

[An06]. Even though a node may be active, it does not execute jobs unless idle/residual computing re-

sources are available. Thus, average job execution time was only 84% of the active time (overall availa-

bility of 68%). Nodes were reachable through the network 83% of the active time [An06]. Another study 

[He09] observed that 50% of the nodes have effective job execution time of less than 40% and only 5% of 

the nodes are available for job execution over 80% of the time. Alternatively, most nodes in PlanetLab, 

GCO, and CSU datasets were avaialable throught the two-week period. Thus, availability of nodes in vol-

unteer-computing environments is significantly lower compared to more stable environments like 

PlanetLab, grids, and clouds. Consequently, 
i
r  increases further due to frequent arrival and departure of 

nodes. It is also observed that grids tend to experience sudden arrivals of a set of jobs (a.k.a. bag of tasks) 

[Io10]. Such arrivals suddenly change the dynamic attributes of many resources (e.g., Fig. 4.5(b)). Higher 

i
r  values and sudden changes in system resources significantly increase the advertising cost of RD solu-

tions hence should not be ignored. 

 

4.5 Design Choices in P2P-Based Resource Discovery 

To ease the RD, resources are typically advertised and indexed at specific or random locations 

within the RD system. Resources are then located using various querying mechanisms. Resource advertis-

ing and querying options of centralized, unstructured P2P, and structured P2P solutions are analyzed us-

ing the characteristics learned in the previous section. Equation (4.6) is also extended to reflect the specif-

ic behavior of each solution. 
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4.5.1 Centralized Designs 

Resources can be advertised and indexed at a well-known central location. Centralized indexes 

are utilized in PlanetLab, GENI, and grid and cloud computing. Latency and cost of resource advertising 

and querying are minimum as nodes can directly communicate with the central node. Hence, the cost per 

message is O(1). Resolving queries with large [li, ui] and mq do not introduce additional routing overhead. 

Thus, the RD cost depends on the initial advertisement cost, recurrent cost of advertising static and dy-

namic attributes, and query cost. Then (4.6) can be modified as: 
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i
rc  = 1, as resources are advertised only to the central location. If the query arrival rate is constant, total 

cost of RD is bounded by O(RA
i
r ). In the worst case, all the resources may have all the attributes. There-

fore, cost of indexing resources at the central node is O(RA). This approach is not scalable (in terms of 

both the number of messages and index size) as A, R, and 
i
r  are typically large in production systems. It 

also leads to a single point of failure. 

Hierarchical indexes are proposed to overcome these limitations where separate indexing nodes 

are assigned to different geographic regions, sites, or organizations [El09]. Then a higher-level node(s) is 

assigned to keep track of aggregated resources from these nodes. This approach could lead to conflicts 

while querying and binding resources. Partial failures in sub-regions of the system are also problematic. 

Moreover, aggregation along the hierarchy reduces the resolution at which resources are advertised. Such 

hierarchies are not desirable while indexing highly dynamic attributes such as MemFree and bandwidth. 

 

4.5.2 Unstructured P2P-Based Designs 

Unstructured P2P systems [Lu04] are attractive as they distribute the resource information across 

many nodes in the system while providing resilience and load balancing. They are utilized in file sharing, 

mobile social networks, and ad-hoc networks. These systems use either flooding or random walks [Ta08] 
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to disseminate information about resources and/or resolve queries. Though resources are guaranteed to be 

found with flooding, it is extremely costly. Random-walk-based solutions use agents for advertising 

and/or querying. Agent lifetime is controlled using a Time To Live (TTL) value that tries to balance the 

cost of advertising/querying and query success rate. As queries are forwarded to individual nodes, their 

availability is known. Hence, no additional overhead is introduced. Assuming a new agent is generated 

for each change in attribute value or query, RD cost is: 
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q
Queryh  is typically O(TTL). Therefore, the total cost is bounded by O(RA

i
r TTL). However, random walks 

are not guaranteed to find resources, and it will become even harder if one reduces TTL with the intention 

of reducing the cost of RD. It has been shown that the hitting time (i.e., expected number of hops to reach 

any node staring at any node) of a random walk on an arbitrary finite graph is O(N
3
) [Ik09]. Hence, TTL 

has to scale with N
3
 to increase the success rate of queries. Therefore, unstructured P2P systems are suita-

ble only for moderate scale, best effort, and highly dynamic environments that can tolerate large delays. 

Resource indexing cost per node is O(RA) as all the nodes can eventually get to know about all the re-

sources in the system. Though advertising resources to other nodes speeds up the query resolution, state 

of the selected resources may be stale. 

More-scalable version of this approach uses a two-layer overlay where resource rich nodes, 

namely superpeers, form a separate overlay while acting as proxies for rest of the nodes. Similar to hier-

archical solutions, superpeers manage multiple resources. Resources can communicate with their 

superpeers using one overlap hop. When local resources are insufficient to resolve a query, superpeers 

may query other superpeers using flooding or random walks. Therefore, q
Queryh = O(NSuperpeer) or q

Queryh = 

O(TTL), where NSuperpeer is the number of superpeers in the system. Cost of RD is: 
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As NSuperpeer ≪ N, TTL can be set to a relatively lower value than in unstructured P2P systems. However, 

superpeers are also not guaranteed to find resources with random walks. Indexing load on a superpeer is 

proportional to A and the number of resources assigned/connected to it. If resources are uniformly as-

signed to superpeers, index size is O(RA/NSuperpeer). 

 

4.5.3 Structured P2P-Based Designs 

Structured P2P systems are appropriate for large-scale implementations due to high scalability 

and some guarantees on performance [Lu04]. These systems use a DHT to index resources. Each DHT 

node or a resource has a unique identifier called a key. Each resource’s contact information is indexed 

(i.e., stored) at a node having a close by key in the key space. Resources are advertised and queried using 

messages that are forwarded to appropriate nodes using a deterministic overlay network. Chord, 

Kademlia, CAN, and Pastry (see Section 2.1) are some of the well-known solutions that are used to build 

such an overlay. These solutions typically keep pointers to nodes that are spaced at exponentially increas-

ing gaps in the key space enabling messages to be routed with a bounded path length of O(log N). DHTs 

are designed to index resources that are characterized by a single attribute. As it is, they are not efficient 

for simultaneous selection of multiple and multi-attribute resources. A representative subset of solutions 

that extend DHTs to support multi-attribute resources and queries are discussed next. 

Multiple Address Spaces 

One of the simplest solutions is to maintain a separate DHT for each attribute in A [Bh04]. Figure 

2.10 illustrates a design based on three DHTs with a circular address space, also referred to as a ring. 

Each resource r advertises either each attribute value to the corresponding ring or all the attribute values 

to all the rings responsible for ar. In the former case, a multi-attribute query q is first split into a set of 

sub-queries where each sub-query searches for one of the attributes in aq. Sub-queries are then simultane-

ously forwarded to appropriate rings. Query results have to be then combined at the application using a 

join operation like in databases. A range query is resolved by forwarding each sub-query to a series of 

nodes responsible for indexing attribute values in the range [li, ui] (see Fig. 4.1). Thus, RD cost is: 
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Each advertising message can be sent in O(log N) hops thus advertising cost is O(RA
i
r log N). Worst-

case query cost is O(N) as i
Queryh = O(log N). Even the average cost is large, as queries tend to specify 

large [li, ui]. Indexing cost of all the rings is O(RA) or O(R) per ring. 

In the latter case, q can be resolved using one of the rings, as each ring is aware of all the attribute 

values of a resource. This also enables queries to be terminated as soon as the desired number of re-

sources is found. Query resolution cost can be further reduced by forwarding q to the ring corresponding 

to the most selective attribute (i.e., attribute with the lowest (ui – li)/Di). For example, as seen in Fig. 

2.10(a), the query travels 3-hops in CPUSpeed and bandwidth rings while it travels only 2-hops in the 

MemSize ring. Thus, q is issued only to the MemSize ring. This approach is called Single-Attribute Domi-

nated Querying (SADQ) and is used in [Al08, Bh04, Ca04]. Total RD cost is: 
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where k  aq is the most selective attribute. In the worst case, each change in attribute values has to be 

advertised to all the rings hence advertising cost is O(RA
2 i

r log N). Worst-case query cost is still O(N). 

Real-world queries specify only a few attributes hence not many options are available while choosing the 

more selective attribute. Therefore, even the average query cost is relatively high. Indexing cost of all the 

rings is O(RA
2
) or O(RA) per ring. This approach has a lower query cost than using multiple sub-queries. 

However, it has a higher advertising cost due to multiple copies where 
i
rc  = ar (recall ar tends to be large). 

Therefore, it is suitable only if the query rate is higher than 
i
r . New rings can be added to support addi-

tional attributes. However, excessive routing entries associated with multiple rings (typically O(A log N) 

make it less scalable. Some rings experience higher load due to skewed distribution of resources and que-

ries. This is particularly a problem in SADQ where highly selective and skewed attributes such as 

CPUArchi, NumCores, and OS may get a large number of queries overloading the nodes that index them. 
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Moreover, domain Di of these attributes is small, and hence may not be suitable to be placed on a separate 

ring/overlay. 

Partitioned Address Space 

Figure 2.10(b) shows a ring that is partitioned into several segments where each segment corre-

sponds to a separate range of attribute values. Prefix bits of the overlay key are used to represent the at-

tribute type and suffix bits represent the attribute value. A Locality Preserving Hash (LPH) [Al08, Ca04, 

Sh07] function is used to assign the suffix bits, which preserves the locality of attribute values. Advertis-

ing and querying schemes are similar to the case of multiple address spaces. However, each partition has 

approximately N/A nodes therefore worst-case query cost is O(N/A). Moreover, these solutions maintain a 

much lower number of routing entries, typically O(log N). Some partitions experience higher load due to 

skewed distribution of resources and queries while most of the remaining partitions are rarely utilized. 

Overlapped Address Space 

Another alternative is to map all the attribute values to the same ring (see Fig. 2.10(c)) using a 

separate LPH function for each attribute type [Ca04]. Cost of RD and indexing is same as multiple ad-

dress spaces because the same advertising and querying mechanisms are applicable here. Some nodes ex-

perience higher load due to skewness in resources and queries. However, routing state is O(log N) as only 

a single ring is used. 

d-torus 

Figure 2.12(b) illustrates an alternative design where each dimension of a d-torus represents an 

attribute (i.e., d = A). Resources are mapped to the torus according to their attribute values. A multi-

attribute range query q encloses a hyper-box on the torus. This approach is used in [Co09b] where dimen-

sions of the torus reflect only the static attributes (i.e., d = A
s
). For routing, d-torus is logically partitioned 

into an increasing set of levels and each level is further partitioned along each dimension d forming a set 

of cells. Each node keeps a set of pointers to all the other nodes in the same cell and to a node in each par-

tition at level l and dimension d. In contrast to prior architectures, resources are not explicitly advertised. 

Instead, a gossip scheme is used to identify a random node in each (l , d) pair. These pointers are used to 
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route q to the desired query region on the torus using depth-first search (see Fig. 2.12(b)). Then neighbor-

ing nodes are used to traverse from one node to another during which dynamic attributes in q may be 

evaluated. RD cost is: 

1 
Q(t)q

q
q
QueryTOTAL mhC   

It can be shown that q
Queryh  is O(ln 2

d
 / ln d). After reaching the first node that satisfies q, remaining mq – 1 

resources need to be found. Hence, worst-case query cost is  1ln2ln  q
d mdO , ignoring the overlay 

maintenance cost. As the propagation of q is based on depth-first search and query visit individual nodes 

(one at a time), query resolution latency is much higher. This routing scheme is inefficient when queries 

are less specific, which significantly increases the volume of the hyper-box to query. Moreover, it cannot 

route queries with only the dynamic attributes, which accounts for a large fraction of queries in real-world 

systems (see Fig. 4.13). Summary of all the solutions are listed in Table 4.10. 

 

4.6 Simulation Setup 

Next, we quantitatively evaluate the fundamental design choices for P2P-based RD. We simulat-

ed seven representative architectures for RD (listed in Table 4.10) against the same set of resources and 

queries derived from PlanetLab. Use of realistic data preserves the complex distribution of attributes, dy-

namic and correlated changes in attribute values, and users’ interest in resources. To simplify the perfor-

mance analysis and eliminate any bias due to node failure, we replayed a trace with only the PlanetLab 

nodes that were continuously available for three days starting 2010/11/08. There were 527 such nodes. As 

our query dataset was small, a large number of synthetic queries were generated using the empirical dis-

tributions of aq, popularity of attributes, [li, ui], and mq. To capture the correlation among attributes and 

attribute value ranges, conditional probabilities of attribute occurrences are also taken into account. The 

query generation solution presented in Chapter 5 was not used, as it was not designed by the time of these 

simulations. Queries were issued only after the network was stabilized. Performance of ring-based struc-

tured P2P solutions were also evaluated under different numbers of nodes ranging from 250 to 1,000. 
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Table 4.10 – Summary of resource discovery architectures. 

Architecture 
Routing 

Mechanism 

Advertising Querying Indexing 

Mechanism Cost Mechanism Cost Mechanism Cost 

1. Centralized Direct To central 

node 

O(1) Query central 

node 

O(1) At central 

node 

O(RA) 

2. Unstructured – 

Random overlay 

[Ta08] 

Random walk Optional O(TTL) Query random 

nodes 

O(TTL) Index locally O(A) or 

O(RA) if 

advertised 

3. Superpeer – Ran-

dom overlay among 

superpeers 

Random walk 

among 

superpeers 

To 

superpeer 

O(1) Query 

superpeers 

O(TTL) At superpeer O(RA/ 

NSuperpeer) 

4. Multi-ring 

[Bh04] – Separate 

ring-like overlay for 

each attribute type 

Chord To relevant 

ring(s) 

based on 

attributes 

O(log N) 1. Multiple sub-

queries 

2. Single attrib-

ute dominated 

query 

O(N) 1. At rele-

vant rings 

2. At all 

rings 

1. O(RA) 

2. O(RA2) 

5. Partitioned-ring 

[Al08, Sh07] – Each 

attribute type is 

assigned a different 

segment of overlay 

ring 

Chord or 

Cycloid 

To relevant 

partition(s) 

based on 

attributes 

O(log N) 1. Multiple sub-

queries 

2. Single attrib-

ute dominated 

query 

O(N/A) 1. At rele-

vant parti-

tions 

2. At all 

partitions 

1. O(RA) 

2. O(RA2) 

6. Overlapped-ring 

[Ca04] – All attrib-

ute types are 

mapped to same 

ring-like overlay 

Chord To relevant 

nodes in the 

ring 

O(log N) Single attribute 

dominated query 

O(N) At relevant 

nodes 

O(RA2) 

7. d-Torus [Co09b] 

– d-torus partitioned 

into a set of cells 

Depth-first 

search 

Not re-

quired 

– Visit cells that 

overlap with 

query hyper-box 


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
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
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
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d
O

d
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2ln  
Index locally O(A) 

 

Large number of nodes beyond 527 was generated using our correlation persevering, multi-attribute re-

source generation tool presented in Chapter 5. 

Both the unstructured and superpeer-based networks were generated using the B-A scale-free 

network generator [Ge07] with a minimum node degree of two. Advertising dynamic attributes is not that 

useful in unstructured P2P and superpeer (from one superpeer to another) architectures, as state of re-

sources may be different by the time they are queried. Therefore, only the query agents are used in these 

two solutions. The number of superpeers is set to 20. Maximum number of hops to forward a random 

walk (i.e., TTL) is set to 100 and 10 hops in unstructured and superpeer architectures, respectively. Those 

TTL values were sufficient to achieve ~70% query hit rate with different number of attributes. Multi-ring, 
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partitioned-ring, and overlapped-ring architectures are based on the Chord overlay [St03]. According to 

[Co09b], number of cell levels of the d-Torus is set to three. Minimum update interval for resource attrib-

utes is 5 minutes, which is the sampling interval of PlanetLab nodes. A fixed threshold is applied to ig-

nore minor variations. Each node issued queries based on a Poisson distribution with a mean inter-arrival 

time of 2.5 minutes (i.e., two queries per sampling interval per node). Results are based on eight samples 

with different random seeds. Additional details on simulators are given in Appendix II.1. 

 

4.7 Performance Analysis 

Figure 4.16 shows the total cost of advertising and querying resources using only the 12 static at-

tributes of PlanetLab nodes. This enables us to validate the performance of different architectures against 

their prior performance studies (when such a study exists), which did not consider the cost of advertising 

dynamic attributes. As expected, centralized architecture has the lowest overall cost while unstructured 

P2P architecture has the highest cost. Superpeer-based architecture has the second lowest cost. Less spe-

cific queries (large [li, ui] and small aq) make it easier to find required resources by visiting a few 

superpeers that index multiple resources. For example, though random walks are not granted to find all 

the resources, superpeer architecture was able to resolve 96% of the queries. Therefore, most of the ran-

dom walks were terminated within a few hops while reducing the overall cost. However, the unstructured 

P2P solution was able to resolve only 73% of the queries as they visit one node at a time. Partitioned-

ring-based architecture has the third lowest cost as query cost is O(N/A). Cost of multi-ring and over-

lapped-ring-based architectures are higher compared to the partitioned-ring, as their query cost is O(N). d-

torus has the second largest overall cost due to less-specific queries that dramatically increase the volume 

of the query hyper-box. It is not considered for rest of the discussion, as it cannot route queries with only 

the dynamic attributes, which are the most popular types of attributes defined in real-world multi-attribute 

queries. 
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Figure 4.16 –  Total cost of advertising and querying static attributes. N = 527. 

We analyze ring-based architectures in detail, as they are considered applicable in large-scale ap-

plications due to scalability and some guarantees on performance. Figure 5.17(a) shows the per-node ad-

vertising cost of ring-based architectures while varying the number of attributes. Advertising cost increas-

es as the dynamic attributes are introduced (first 12 attributes are static). Resources need to be re-

advertised whenever their attribute values change significantly. It is typically assumed that DHT entries 

will expire after a predefined timeout. However, our analysis shows that it is nontrivial to determine an 

appropriate timeout given the diversity of attributes and their rate of change 
i
r . Therefore, the old attrib-

ute values need to be explicitly removed from the DHT to maintain a consistent resource index. We con-

sidered the cost of removing those old indexes as part of the advertising cost. Both advertise and remove 

messages can be delivered within O(log N) as they are sent to specific nodes. SADQ requires all the at-

tributes of a resource to be advertised to each ring/partition corresponding to each attribute a ar. There-

fore, resources need to be re-advertised to all the rings/partitions even when a single attribute is changed. 

Figure 5.17(a) confirms this behavior where advertising cost of architectures that utilize SADQ is signifi-

cantly higher and increases linearly with the number of attributes. We introduced dynamic attributes ac-

cording to their popularity where attribute 13 is the most popular, 14 is the second most popular, and so 

on. Attributes 13-15 that correspond to response time of a node (RespTime), 1MinLoad, and MemFree are 
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(a) (b) 

Figure 4.17 –  Cost of ring-based architectures: (a) Advertising cost; (b) Query cost. N = 527. 

updated frequently. This is the reason for the significant increase in advertising cost between attributes 12 

and 15. The rate of update 
i
r  of rest of the dynamic attributes was relatively lower. 

Figure 4.17(b) shows the cost per query. Architectures based on SADQ have much lower query 

cost, as they use only the most selective attribute and queries are terminated as soon as mq resources are 

found. However, overall cost (advertising and querying) of SADQ-based architectures will be acceptable 

only if queries are more frequent than advertisements. Alternatively, sub-queries need to search in multi-

ple rings/partitions and have to search the entire range of attribute values specified in each sub-query 

hence have a higher cost. Queries that specified attributes 13-14 (RespTime and 1MinLoad) tend to be 

more specific (i.e., small (ui – li)/Di); therefore, can be resolved by forwarding to a lesser number of 

nodes. Furthermore, these were the two most popular attributes hence appeared in many queries conse-

quently reducing the overall query cost. Therefore, query cost drops when the number of attributes is 15. 

Query distribution and range of attribute values get balanced as rest of the dynamic attributes are intro-

duced. Consequently, query cost tends to stabilize. Though new attributes were introduced, PlanetLab 

queries specified only 1-10 attributes and one or two attributes were specified 78% of the time. This ex-

plains why the query cost seems to be independent of the number of attributes in the system. 
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Figure 4.18 –  Total cost (advertising and query) per query vs. number of attributes. N = 527. 

Table 4.11 – Query cost of ring-based designs under varying number of nodes (A = 24). 

N 
Multi-Ring + SADQ Partitioned-Ring + SADQ Overlapped-Ring + SADQ 

Min Ave Max Min Ave Max Min Ave Max 

250 0 9.2 239.1 0 3.7 19.4 0 9.1 238.4 

527 0 13.7 509.0 0 4.6 27.6 0 13.5 506.0 

750 0 16.2 719.1 0 4.9 36.6 0 16.5 719.9 

1000 0 19.8 975.5 0 5.3 45.3 0 20.4 963.8 

Table 4.12 – Query cost, query load, and index size (N = 527, A = 24). 

Architecture 

Total Cost per 

Query 

Query Load Index Size 

Min Max 
Min Max 

SWORD Uniform SWORD Uniform SWORD Uniform 

Centralized 2.03 2.03 950,000 950,000 950,000 950,000 527 527 

Unstructured 69.5 94.8 4,859 1,272 268,497 37,824 1 1 

Superpeer 6.5 9.5 81,021 22,390 289,626 87,209 17 36 

Multi-ring + SADQ 48.3 69.0 0 0 178,492 22,943 0 527 

Multi-ring + Sub-queries 398.8 120.8 0 0 624,837 57,518 0 230 

Partitioned-ring + SADQ 36.6 37.0 0 0 185,972 15,840 0 527 

Partitioned-ring + Sub-queries 40.7 16.4 0 0 432,859 46,946 0 527 

Overlapped-ring + SADQ 46.0 67.2 0 0 391,738 57,524 0 527 
 

The best design choice from each of the architectures is compared in Fig. 4.18. Unstructured-

P2P-based architecture, which has the highest cost per query, is not shown to simplify the graph. Increase 

in advertising cost of centralized and superpeer architectures due to dynamic attributes is insignificant, as 

the cost is O(1). Moreover, their query cost is independent of aq, [li, ui], and mq. Therefore, they have the 

lowest cost per query. Cost of ring-based architectures tends to increase linearly. In Table 4.11, we com-

pare the three best ring-based designs with varying number of nodes N. Both the average cost per query 
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and maximum query cost tend to increase linearly with N confirming the analysis in Section 4.5.3. There-

fore, query cost is bounded by O(N). Cost of partitioned-ring-based architecture is lower as it is bounded 

by O(N/A). 

Table 4.12 presents the query cost as well as per node query load and index size. For comparison, 

according to [Ca04], we also generated range queries based on the uniform distribution of attributes and 

attribute values where each attribute in a query specified 10% of the possible range of attribute values 

(i.e., (ui – li) = 0.1 Di). Resource attributes were not changed. Performance of RD architectures is different 

when queries are formulated by selecting attributes and ranges of attribute values uniformly at random 

(irrespective of the actual resources). Not all random queries match resources in the system. Therefore, 

both the unstructured and superpeer architectures have to keep forwarding the queries until the TTL ex-

pires. Consequently, the overall cost of RD increases. Furthermore, uniform queries cannot significantly 

benefit from SADQ, as the minimum range of any attribute is always 10% of the domain. Whereas in re-

al-queries (collected from SWORD), at least few attributes tend to be very specific (e.g., RespTime, 

1MinLoad, and NumCores). Therefore, real-world queries can be resolved more efficiently using SADQ. 

Alternatively, given that the range of most of the attribute values in real-world queries tend to be large, 

aggregated query cost significantly increases when multiple sub-queries are used. 

 

Centralized solution had to index all the resources and answer all the queries issued within the 

system (950,000 queries were issued during the simulation). Unstructured and superpeer architectures 

have a smaller index size as either resources index themselves or superpeers index only a subset of the 

resources in the system. Furthermore, their query load is relatively balanced due to the use of random 

walks. Uniform queries are issued to different overlay rings/partitions with the same probability hence 

distribute the query load among many nodes. Alternatively, due to the skewed distribution of attributes 

and attribute values in PlanetLab queries, a few rings/partitions and subset of the nodes within those 

rings/partitions are used to answer most of the queries. This is the reason that maximum number of 

SWORD queries answered by a node is 3.3 to 11.7 times higher than when answering uniform queries. 

The query load on a node that supports SADQ is relatively low, as the queries are resolved using the most 
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Figure 4.19 –  Distribution of load: (a) Query load; (b) Index size. N = 527. 

selective attribute. Moreover, queries also terminate as soon as the desired number of resources is found. 

Hence, each node has to handle a relatively smaller number of queries. Figures 4.16-4.18 confirm that 

partitioned-ring with SADQ outperform all other design choices. Figure 4.19(a) illustrates the query load 

distribution of architectures supporting SADQ. It can be seen that load distribution is skewed and few 

nodes had to answer majority of the queries. It is particularly worse in the partitioned-ring where 74% of 

the nodes did not answer any query and one of the nodes answered ~20% of all the queries. Such an im-

balanced load distribution is not acceptable when the query rate is higher. 

Because of the correlation and skewed distribution, resources are not uniformly spread across the 

attribute space. Therefore, resources are indexed in only a small subset of the nodes in the ring while a 

large fraction of nodes does not index any resources. Multiple indexing used with SADQ and overlapped-

ring also force nodes to index many resources corresponding to different attributes. Moreover, some of 

the attributes have only a few valid attribute values and they are highly skewed, e.g., CPUArchi and 

NumCores. Such attribute values are indexed in a few nodes and some of those nodes have to index a 

large fractions of resources with the same attribute value. Index size distribution of solutions supporting 

SADQ is shown in Fig. 4.19(b). In the partitioned-ring architecture, nodes that were mapped to less popu-

lar or unused partitions were never utilized. Therefore, it suffers from significant load balancing issues, 

though it has the lowest RD cost among structured P2P architectures. In conclusion, load balancing is a 

critical issue in all the designs, as popularity of resources/queries is skewed and queries are less specific. 
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4.8 Discussion 

None of the design current choices for RD simultaneously provide efficiency, scalability, and 

load balancing under real workloads. Centralized architecture has the lowest cost per advertisement and 

query. A single message can be used to either advertise or query for a resource(s) irrespective of ar, aq, [li, 

ui], and mq. Lower advertising costs enable dynamic attributes to be advertised whenever their attribute 

values change while increasing the accuracy of indexed resources. As the central node is aware of all the 

resources in the system, it is also suitable for complex tasks such as matching multiple resources (for in-

ter-resource bandwidth and latency), establishing a binding between a resource and an application that is 

interested in using it, and enforcing various incentives, trust, and security policies. However, a single 

node may not be able to handle all these messages. It also leads to a single point of failure and privacy 

issues, as the central node can monitor usage patterns of resources. Nevertheless, centralized solutions are 

becoming more feasible, affordable, and reliable due to the recent advancements in distributed datacenter 

technologies. Therefore, when applicable/feasible, centralized solution is still a desirable option. 

Superpeer architecture is relatively efficient in resolving real-world queries that are less specific. 

Moreover, both the query load and index size are well balanced and independent of ar, aq, and [li, ui]. Re-

sources can afford to advertise dynamic attributes whenever they change as the superpeer can be reached 

within one overlap hop. However, it does not provide a best-fit type solution, where select resources fit 

the minimum requirements of a query. Hence, applications that actually require a large number of high-

capacity resources may not be able to find them, as they have been already allocated to applications with 

much lower resource demand. Trying to enforce best-fit type matching will increase the query cost. 

Therefore, superpeer architecture is more suitable for dynamic, best-effort environments such as mobile 

social networks and ad-hoc networks. Due to high query cost and relatively low query hit rate, unstruc-

tured P2P architecture is not suitable for most applications. However, its high resilience to random node 

failures makes it suitable for highly dynamic environments such as mobile social networks. Advertising 

agents are of little use, as some dynamic attributes change very frequently making the indexed resources 
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stale. While it has been proposed to use aggressive timeouts to invalidate resources after a while, given 

the diversity in attributes and their rate of range it is nontrivial to set a timeout. 

While less-specific queries do not affect the centralized architecture and increase the hit rate of 

superpeer architecture, they increase the overhead of structured P2P architectures. Though SADQ reduces 

the query cost, it significantly increases the advertising cost. Advertising cost is effectively doubled as old 

attribute values need to be removed from the rings to maintain consistency, as it is nontrivial to set a 

timeout. All the structured P2P architectures are prone to significant load balancing issues due to the 

small number of valid attribute values and their skewed distributions. Dynamic attributes are more im-

portant while predicting the performance of latency-sensitive applications (e.g., CASA and mobile social 

networks) and when resources are shared across multiple applications (e.g., CASA, GENI, grids, and 

clouds). Therefore, applicability of d-Torus is limited, as it cannot resolve queries with only the dynamic 

attributes. Though it seems most of the benefits of DHTs are lost under real workloads, they can still pro-

vide guaranteed RD, bounded performance, and are distributed. Moreover, as the locality of attribute val-

ues is preserved they can also find resources that fit the minimum requirements of a query. Hence, it is 

important to overcome their deficiencies to gain their benefits.  

DHT designs typically assume that domain of attributes is much larger than the number of nodes 

in the DHT (i.e., Di ≫ N) and resources are uniformly spread within Di. Therefore, it is preferable to add 

all the nodes to the DHT(s) hoping each node will index ~R/N resources. However, attributes such as 

CPUArchi, OS, and NumCores are not only skewed but also their domain sizes (i.e., number of distinct 

values in the domain) are much smaller (i.e., Di ≪ N). Even though the domain size of attributes such as 

CPUFree, 1MinLoad, DiskFree, and TxRate are infinite, it is not useful to advertise them at a very high 

resolution, as users are not interested in finding very specific values. For example, advertising DiskFree at 

the granualarity of few Megabytes is not suitable as 86% queries requested DiskFree values of 5-

1000 GB. Similarly, advertising TxRate at bps resolution is not useful as users are likely to query attribute 

ranges in tens to thousands of Kbps. Specifying attributes at a relatively low resolution is desirable (as far 

as it satisfies a query with the lowest (ui – li)), as advertising cost can be reduced by ignoring minor 
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changes in attribute values. It was observed that highly dynamic attributes that are queried using moderate 

to large ranges of attribute values contributed to more than 90% of the advertising cost in SADQ based 

designs. Therefore, it is desirable to advertise attributes at a lower resolution (by applying a fixed or dy-

namic threshold) while reducing the effective domain sizes (i.e., Di ≪ N). Consequently, many nodes in 

the ring will not be able to index resources or answer queries. Moreover, adding all the nodes to a ring 

will unnecessarily increase the query cost, as both the average and worst-case query costs are proportional 

to N. Instead, it is desirable to prune nodes that do not index any resources or answer any queries (see 

Chapter 6) [Ba12c]. However, this does not solve the problem of few nodes having to index a large num-

ber of resources due to skewed distributions (e.g., when CPUArchi of 99% nodes are ×86). One alterna-

tive is to append few random bits to a key (i.e., hash of an attribute value) such that identical resources 

will be mapped to different but adjacent nodes in the ring [Al08]. While this helps to distribute the index 

size better, it increases the query cost and does not balance the query load, as queries have to always start 

from the node corresponding to li. In Chapter 6, we present an alternative design where large indexes are 

split across multiple nodes that are added orthogonal to the ring. Adding nodes orthogonal to the rings 

does not increase the average and worst-case path length along the ring hence the query cost is also re-

duced. The same concept can be also used to balance the query load distribution (see Chapter 6). Another 

alternative is to explore hybrid designs where desirable properties such as lower advertising cost and load 

distribution in centralized and superpeer architectures are coupled with rings e.g., ring of superpeers. Per-

formance of ring-based architectures can be approximated to O(log N) by using queries that are more spe-

cific. However, in practice, it is hard to determine specific resource requirements of an application. By 

specifying very specific queries, users also run into the risk of not finding any useful resource. For exam-

ple, a user may need only 500 MB of disk space. If his/her query specified DiskFree  [500 MB, 

1000 MB], the query is very likely to fail as modern machines have much higher free disk space. There-

fore, users are compelled to specify a large range of attribute values. It may be possible to achieve close 

to O(log N) query performance, if such complexities could be incorporated into the RD solution while 

enabling users to provide only the abstract details about their application requirements. 
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As the number of attributes increases, performance of all the solutions degrade due to additional 

memory/storage requirements and increase in advertising cost. This is a concern in heterogeneous systems 

like CASA and GENI, which aggregate multitude of diverse resources. One alternative is to represent 

multi-attribute resources using a few composite attributes. For example, BOINC uses micro-benchmark to 

rate nodes based on their integer and floating-point performance [An09]. Cloud computing nodes are typ-

ically rated as high-memory, high-CPU, and cluster instances. Few attributes are attractive as they simpli-

fy and reduce the cost of RD. However, it is not good at predicting performance of arbitrary applications 

and is too abstract to be used in latency sensitive applications such as CASA. Alternatively, applications 

that depend on more than one attribute cloud pick a minimum set of primary attributes that can accurately 

represent a resource. Dimension reduction techniques are also of interest. However, it would be challeng-

ing to resolve real-world queries that specify only a few attributes, as dimension reduction techniques are 

typically designed for queries that specify all the attributes. Less informative attributes such as percentage 

of CPUFree and MemFree may be avoided. 

As the existing solutions are applicable under very specific scenarios, novel RD solutions are 

needed to overcome the performance and QoS issues posed by real workloads. Hybrid approaches that 

combine the desirable features of centralized, superpeer, and ring-based architectures while taking into 

account the complex resource and query characteristic have the potential to provide better solutions. It is 

also important to evaluate their performance using real or synthetic traces that are derived using the real-

world resources and queries (see Chapter 5). 

 

4.9 Summary 

Fundamental design choices for resource discovery are evaluated using the characteristics learned 

from four different real-world systems. Findings show that real world, multi-attribute resource and query 

characteristics diverge substantially from conventional assumptions. While real world, less-specific que-

ries are relatively easier to resolve, they introduce significant load balancing issues due to skewed re-

sources and queries. Dynamic attributes contribute to high resource advertising cost, and their behavior is 
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attribute-type and system specific hence should not be ignored in performance studies. These findings 

indicate the need for more efficient, scalable, and robust resource discovery solutions and the importance 

of taking into account the specific characteristics of real-world resources and queries while designing and 

analyzing such solutions. Hybrid approaches that combine the desirable features of centralized, superpeer, 

and ring-based architectures have the potential to provide better solutions. 
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Chapter 5 

RESQUE: MULTI-ATTRIBUTE RESOURCE AND RANGE 

QUERY GENERATOR 

 

Modeling and simulation of multi-attribute resources and range queries are essential in applica-

tion design, validation, and performance analysis of many distributed application domains. Novel mecha-

nisms are presented to generate realistic synthetic traces of multivariate static and dynamic attributes of 

computing resources and multi-attribute range queries. The methodology is demonstrated using the re-

source and query traces from PlanetLab, SETI@home, EGI grid, and a distributed campus computing 

facility. First, random vectors of static attributes are generated using empirical copulas that capture the 

entire dependence structure of multivariate distribution of attributes. Second, time series of dynamic at-

tributes are randomly drawn from a library of multivariate time-series segments extracted from the node 

traces. These segments are identified by detecting the structural changes in time series corresponding to a 

selected attribute. Time series corresponding to rest of the attributes are split at the same breakpoints to 

preserve their contemporaneous correlation. Finally, multi-attribute range queries are generated using a 

Probabilistic Finite State Machine (PFSM) that preserves the popularity of attributes and correlations 

among attribute values. Furthermore, a tool is developed to automate the synthetic resource and query 

generation process and its output is validated using statistical tests. 

Section 5.1 presents the introduction and motivation. Temporal behavior and correlation of re-

sources and queries are further analyzed in Section 5.2. Static attribute generation is presented in Section 

5.3 while the dynamic attribute generation is presented in Section 5.4. Section 5.5 presents the multi-

attribute, range query generation. The design of the tool that generates synthetic traces of resources and 

queries and its validation are presented in Section 5.6. Section 5.7 presents concluding remarks. 
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5.1 Introduction 

Models characterizing resources, resource attributes, and demand on resources at compu-

ting/storage nodes and end hosts are vital for the design, validation, and performance analysis of many 

distributed application domains. Such analysis is of particular interest in collaborative Peer-to-Peer (P2P) 

systems [Ba12b], volunteer computing [He12], and grid [El11] and cloud computing [La12] that utilize 

large numbers of heterogeneous, distributed, and dedicated/voluntary resources. For example, BOINC 

[An09] is a volunteer computing platform that remotely executes jobs using idle computing resources. 

BOINC schedules jobs based on the static attributes (e.g., CPU speed, total memory, and presence of 

hardware accelerators and Graphic Processing Units (GPUs)) of nodes, as the jobs are expected to run for 

several hours and the system is optimized for throughput. In contrast, performance, Quality of Service 

(QoS), and Quality of Experience (QoE) of latency sensitive applications such as Collaborative Adaptive 

Sensing of the Atmosphere (CASA) [Mc09] and community cloud computing [Br09] also depend on the 

dynamic attributes (e.g., CPU utilization, free memory, and bandwidth). Collaborative P2P data fusion 

provides an attractive implementation choice for real-time radar data fusion, weather monitoring, and 

hazard prediction in CASA, as multiple data volumes are constantly being generated, processed, and 

pushed and pulled among groups of radars, storage, and processing nodes. CASA depends on efficient 

discovery and utilization of heterogeneous, dynamic, and distributed resources that are characterized by 

multiple attributes. Therefore, its resource discovery and scheduling algorithms must take into account 

both the static and dynamic attributes of resources to ensure that data are generated, processed, and deliv-

ered to end users within 30 seconds. Dynamic attributes are also becoming important in cloud computing 

while scheduling a Virtual Machine (VM) based on the resources utilized by other VMs running on a giv-

en physical node. For example, current service-level agreements in Infrastructure-as-a-Service (IaaS) 

cloud computing environments are typically based on the static attributes such as the number of allocated 

CPU cores and memory. However, QoS perceived by a VM is affected by the behavior of other VMs run-

ning on the same node. For example, because of the shared I/O busses, disk access and bursty traffic pat-

terns of VMs affect each other’s QoS. Hence, it is becoming important to take into account such dynamic 
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attributes to take better scheduling decisions. Community cloud computing [Br09] aggregates residual 

computing resources in Internet end hosts to build virtual cloud systems. Given that such systems rely on 

residual resources, respective resource discovery systems and job schedulers must take into account the 

dynamic attributes of hosts while scheduling latency sensitive, cloud-based applications (e.g., collabora-

tion tools, multimedia applications, and scientific algorithms) to enhance both the QoS and QoE. There-

fore, understanding the characteristics and modeling of large-scale computing platforms and nodes are 

essential to correctly design, validate, and analyze the performance of resource discovery solutions, job 

schedulers, and distributed applications.  

Formal characterization of nodes and queries has received attention only recently [Ba11e, Ba12f, 

He12]. Characteristics of static attributes of nodes from several BOINC deployments are presented in 

[He12]. In Chapter 4, we presented the characteristics of both the static and dynamic resources and que-

ries from four real-world systems. It was observed that the attributes of both the resources and queries are 

highly skewed [Ba11d, Ba12d] and correlated [Ba11e, Ba12f, He12]. Attribute values have different mar-

ginal distributions and change at different rates [Ba11e, Ba12f]. Queries are less specific where each que-

ry tends to specify only a small subset of the available attributes and large ranges of attribute values 

[Ba11e, Ba12f]. Based on the analysis of static attributes, [He12] developed a forecasting model for In-

ternet hosts while taking into account their marginal distributions, linear correlations, and long-term evo-

lution of static attributes (e.g., how the ratio between single-core to multi-core processors changes with 

time). While the static attributes are useful in evaluating systems such as BOINC, they are insufficient for 

evaluating latency sensitive systems that are affected by dynamic attributes and their temporal changes. 

Several other attempts to model computing resources are presented in [Ke04, Lu03, Su08a]; however, 

they also do not capture the behavior of dynamic attributes. In the absence of real-world traces and tools 

to generate large synthetic resource and query datasets, existing performance studies have relied on many 

simplifying assumptions such as independent and identically distributed (i.i.d.) attributes, uniform or 

Zipf’s distribution of all the resources/queries, and queries specifying a large number of attributes and a 

small range of attribute values. For example, [Bh04, Co09b] generated static attribute values based on a 
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set of independent uniform distributions while [Sh07] used a set of independent bounded Pareto distribu-

tions. Moreover, [Al08, Ca04] generated a large set of nodes by replicating small datasets from compu-

ting clusters. Furthermore, multi-attribute range queries were formulated under the assumption that a que-

ry must specify all or a large subset of attributes used to describe a resource. Moreover, both the queries 

and attribute value ranges specified in a query were generated based on independent uniform [Ca04, 

Co09b, Sh07] or Zipf’s distributions [Al08, Bh04]. Therefore, it is important to develop new tools to gen-

erate large synthetic datasets while preserving the statistical properties of real-world systems. 

To evaluate applications and protocols for scalability beyond what is available, it becomes neces-

sary to consider node configurations with higher number of nodes and attributes. Yet, it is still necessary 

to adhere to the statistical characteristics, dependencies, and temporal patterns exhibited by real-world 

systems. It is impractical to gather large traces with sufficient resolution and duration even for existing 

systems. Therefore, our idea is to gather representative information about the available traces and gener-

ate synthetic trace arrays of larger dimensionality in number and time, to meet the required goals. 

We present novel mechanisms to generate random traces of nodes with both static and dynamic 

attributes and multi-attribute range queries. Such traces are useful in evaluating the performance of large-

scale resource discovery solutions [Ba12a, Ba12c], job schedules, and distributed applications. The pre-

sented methodology is applicable to any multivariate resource and/or query dataset, and the four real-

world traces used in Chapter 4 are utilized as examples. First, temporal behavior and correlation of nodes 

and queries are further analyzed. Our findings show that attributes of resources exhibit complex correla-

tion patterns and time series of dynamic attributes are nonstationary. These characteristics make it non-

trivial to generate random node and query traces with multiple attributes. Second, vectors of static attrib-

utes are generated using empirical copulas that capture the entire dependence structure of multivariate 

distribution of attributes. Third, time series of dynamic attributes are randomly drawn from a library of 

multivariate-time-series segments extracted from node traces. These segments are determined by identify-

ing the structural changes in time series corresponding to a selected attribute. We present two mechanisms 

to identify structural changes in time series. Time series corresponding to rest of the attributes are split at 
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(a) (b) 

  
(c) (d) 

Figure 5.1 –  Cumulative distributions of dynamic attributes of PlanetLab nodes sampled at different 

time instances: (a) Free CPU; (b) Free memory; (c) One minute CPU load; (d) Transmis-

sion rate. Starting time t0 = 2011/02/01 5:00 UTC. 

the same breakpoints and randomly drawn together to preserve their contemporaneous correlation. Final-

ly, multi-attribute range queries are generated using a PFSM that preserves the popularity of attributes and 

correlations among attribute values. Furthermore, a tool is developed to automate the synthetic data gen-

eration process and its output is validated using statistical tests. Both the tool and preprocessed datasets 

are publicly available at [CNRL]. As the tool is independent of the set of attributes and datasets, users 

may also use their own datasets as the basis to generate synthetic traces. 

  

5.2 Characteristics of Resources and Queries 

We extend the analysis in Chapter 4 by further analyzing several characteristics of resources and 

queries that are important while generating synthetic traces. Figure 5.1 shows the cumulative distributions  
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(a) (b) 

 
(c) 

Figure 5.2 –  Cumulative distributions of dynamic attributes of CSU nodes sampled at different time 

instances: (a) Free CPU; (b) Free memory; (c) One minute CPU load. Starting time t0 = 

2011/12/01 7:00 UTC. 

(CDFs) of four dynamic attributes of PlanetLab nodes at different time instances. It can be seen that CDFs 

of different samples (taken at different time instances relative to a given starting time t0) are somewhat 

similar. Similar behavior is also observed (see Fig. 5.2) for the nodes within our campus (CSU dataset). 

Therefore, distributions derived from a particular sample of PlanetLab and CSU nodes remain valid for 

several days to weeks. However, as seen in Fig. 5.3, distributions of grid computing nodes (GCO dataset) 

show a much wider variation across samples. This could be due to the recurring busy and idle periods that 

are known to occur in grid computing systems [Io10]. Our goal is to generate nodes with similar overall 

characteristics to evaluate the impact of dynamic attributes over a moderate time span ranging from sev-

eral minutes to a few weeks. Therefore, long-term trends (ranging from weeks to years) are not consid-

ered.  
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(a) (b) 

  
(c) (d) 

Figure 5.3 –  Cumulative distributions of dynamic attributes of GCO grid computing nodes sampled at 

different time instances: (a) Free CPU; (b) Free memory; (c) One minute CPU load; (d) 

Transmission rate. Starting time t0 = 2012/04/23 00:00 UTC. 

Figure 5.4 shows time series corresponding to dynamic attributes of a selected PlanetLab node. It 

can be seen that the attribute values tend to change together with time, e.g., CPUFree reduces while 

1MinLoad increases, and TxRate and RxRate change together. This behavior is called contemporaneous 

correlation [Wo04] where observations of one time series are correlated with the observations of another 

time series during the same time interval. Similar behavior is also observed for dynamic attributes of 

GCO and CSU nodes (see Fig. 5.5 and 5.6). Note the distinct pattern in memory free (MemFree) time 

series of PlanetLab node and its structural changes. Similar patterns were observed in more than 30% of 

the PlanetLab nodes. GCO node in Fig. 5.5 also shows periods of high and moderate memory consump-

tion. Nodes in CSU dataset were mostly idle (Section 4.4.1) and did not exhibit specific temporal patterns 
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Figure 5.4 –  Time series of dynamic attributes of a selected PlanetLab node. Starting time t0 = 
2011/02/01 5:00 UTC. 

Table 5.1 – Normalized frequency of occurrence of attribute pairs in PlanetLab queries.  

 
CPUSpeed CPUFree MemSize MemFree DiskFree 1MinLoad 

CPUFree 0.061 
    

 

MemSize 0.058 0.053 
   

 

MemFree 0.059 0.080 0.030 
  

 

DiskFree 0.060 0.098 0.058 0.099 
 

 

1MinLoad 0 0 0 0.003 0.027  

TxRate 0.059 0.085 0.053 0.075 0.084 0 
 

except for some occasional variability in MemFree. Such temporal patterns in attributes also need to be 

preserved to accurately represent the behavior of a node. 

Table 5.1 lists the frequency of occurrences of attribute pairs in PlanetLab queries. Attribute pairs 

such as (MemFree, CPUFree), (DiskFree, CPUFree), (DiskFree, MemFree), (TxRate, CPUFree), and 

(TxRate, DiskFree) appear more frequently than other possible attribute pairs. This is not surprising as 

these attribute pairs tend to characterize the performance and free resources of a node. Similarly, certain 
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Figure 5.5 –  Time series of dynamic attributes of a selected GCO node. Starting time t0 = 2012/04/23 
0:00 UTC. 

combinations of three, four, five, and six attributes appeared frequently. For example, (CPUSpeed, 

CPUFree, MemSize, MemFree, DiskFree, and TxRate) appeared in 6% of the queries. Therefore, while 

generating multi-attribute range queries, we need to take into account the popularity of individual attrib-

utes (Fig. 4.13), attribute value ranges (Fig. 4.15), number of resources requested by a query (Fig. 4.12), 

and attributes that frequently appear together.  

 

5.2 Generating Random Vectors of Static Attributes 

Because of the strong correlation between some of the attribute pairs and specific structure in 

time series, attribute values of random nodes cannot be drawn from independent distributions. Therefore, 

we have to rely on the joint distribution of attributes. Static and dynamic attributes are handled separately, 
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Figure 5.6 –  Time series of dynamic attributes of a selected CSU node. Starting time t0 = 2011/12/01 

7:00 UTC. 

as the time series of dynamic attributes are nonstationary and have specific temporal structures, as exem-

plified by Figures 5.4 and 5.5. 

As the correlation between attribute pairs is nonlinear (see Tables 4.5 to 4.8) and complex (see 

Fig. 4.11), it is insufficient to use the matrix of Pearson’s correlation coefficients to establish the depend-

ence among random variables. Alternatively, copulas [Ne06] can be used to capture the entire dependence 

structure of multivariate distributions. Copulas are functions that couple the multivariate distribution 

functions to their marginal distributions. A copula C(u) is a multivariate joint distribution defined on the 

d-dimensional unit cube [0, 1]
d
, (u1, …, un)  [0, 1]

d
, such that every marginal distribution ui is uniform 

on the interval [0, 1]. Let F denote the d-dimensional distribution function (CDF) with marginals F1, …, 

Fd. Then a copula C exist such that for all real u = (u1, …, ud): 

 )(,),()( 11 dd uFuFCuF   (5.1) 

Several well-known copula families are available, e.g., Gaussian and Archimedean copulas 

[Ne06]. However, these copulas tend to be symmetric along the axis of correlation. Alternatively, empiri-

cal copulas are useful while analyzing data with complex and/or unknown underlying distributions [Ne06, 
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St09]. Empirical copula also supports any number of dimensions and its bivariate frequency function is 

given by: 

n

yyxxyx

n

j

n

i
C

ji

n

)()(  and s.t.),( pairs of No
,











 (5.2) 

where 1 ≤ i, j ≤ n, x(i) is the ordered statistics of x, and n is the number of data points. It is proven that the 

empirical copula converges uniformly to the underlying copula [De78]. After deriving the copula, de-

pendent random numbers can be generated. Those numbers can be transformed into original marginal dis-

tributions using inverse transforms. 

We use empirical copulas to generate vectors of static attributes, as the joint distribution is un-

known and complex. Use of empirical copulas enables us to use the empirical data directly while general-

izing our approach to any multivariate dataset regardless of its dependence structure. In contrast, [He12] 

manually fitted probability distributions to attributes in each dataset and used the matrix of Pearson’s cor-

relation coefficients to establish the dependency between them. Moreover, [He12] had to sub-sample data, 

round attribute values (e.g., rounding MemSize to the nearest power of two), and discard samples (e.g., 

discarding NumCores values that are not powers of two) to obtain a good fit to a known probability dis-

tribution.  

First, all the active nodes at a given time instance is sampled for their static attributes. Second, 

marginal distribution of each attribute is then transformed to a uniform random variable ~U(0, 1), e.g., 

using Kernel smoothing density estimation. Third, empirical copula is calculated using the multivariate 

version of (5.2). Fourth, dependent random numbers are then generated from the multivariate copula. Fi-

nally, random numbers are transformed back to desired marginal distributions using inverse transfor-

mation techniques, e.g., using estimated empirical distribution functions. See [St09] for additional details. 

If the attribute value is continuous, linear interpolation can be used to generate in-between values while 

performing the inverse transformation. Empirical distribution functions can be used for discrete valued 

attributes (e.g., NumCores). Figures 5.7 and 5.8(a) show the actual and generated data for PlanetLab 

nodes obtained using the pwlCopula [St09] MATLAB tool. As a comparison, data generated using the 
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Figure 5.7 –  Number of CPU cores vs. memory size of 500 random nodes generated using empirical 

copula. Original data based on a random sample of 100 PlanetLab nodes. 

  
(a) (b) 

Figure 5.8 –  Number of CPU cores vs. memory size of 500 random nodes generated using: (a) Empiri-

cal copula; (b) Matrix of Pearson’s correlation coefficients. Data in unit scale. Original da-

ta based on a random sample of 100 PlanetLab nodes. Circles indicate the actual data 
while crosses indicate the generated data. 

matrix of Pearson’s correlation coefficients is also shown in Fig. 5.8(b). It can be seen that data generated 

using copula closely match the actual data. Figure 5.9 also shows the generated and actual data are also in 

good agreement for GCO and CSU datasets. We will statistically quantify the similarity between actual  

and generated attributes in Section 5.5. If only the instantaneous values of dynamic attributes are of inter-

est, empirical copula can be simultaneously applied to both static and dynamic attributes sampled at a 

given time instance. 
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(a) (b) 

Figure 5.9 –  Number of CPU cores vs. memory size of 500 random nodes generated by applying em-
pirical copula to: (a) GCO dataset; (b) CSU dataset. 

5.3 Generating Dynamic Attributes 

Time varying dynamic attribute values cannot be drawn randomly from marginal distributions as 

the time series of some of the dynamic attributes have a specific structure (e.g., MemFree in Fig. 5.4 and 

5.5). Failing to capture such behavior could result in over or underestimating the number of changes in 

attribute values over a given period. Moreover, the contemporaneous correlation between two time series 

needs to be preserved. Therefore, a time series of a dynamic attribute cannot be generated independently 

from time series of rest of the attributes. Furthermore, many structural changes in these multivariate time 

series make it nontrivial to model them using regression. Though it may be possible to fit a model for 

piecewise stationary time series (e.g., [El11] presented a method for a single time series), such an ap-

proach provides only a minor enhancement as our goal is not to predict the future behavior of nodes but to 

generate nodes with similar overall characteristics. Moreover, the model will not be valid over long time 

durations and will be specific to the mixture of applications executed in that node. Instead, it is more use-

ful to come up with a general mechanism that can be applied across multiple computing systems and dif-

ferent mixtures of applications and hardware resources. Therefore, we build a library of time-series seg-

ments by identifying specific temporal patterns exhibited by dynamic attributes. This is sufficient, as our 

goal is to preserve the temporal variation of an attribute and its contemporaneous correlation.  
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(a) 

 
(b) 

 
(c) 

Figure 5.10 –  Autocorrelation of attributes of a selected node: (a) PlanetLab; (b) GCO; (c) CSU. 

We pick one of the time series to identify the structural changes, as it is nontrivial to use all the 

attributes simultaneously to identify structural changes. To determine a time series to use as the basis for 

identifying the structural changes we analyzed their autocorrelations. Figure 5.10 shows the autocorrela-

tion of dynamic attributes of a selected node. MemFree and DiskFree time series show a much higher 

autocorrelation. High autocorrelation in MemFree is due to its specific structure. Moreover, some periodic 

behavior can be observed in Fig. 5.10 (a) and (b). DiskFree does not change drastically within a moderate 
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time span, and consequently the autocorrelation tends to be high. Autocorrelation of other attributes is 

lower as they exhibit random variations. Therefore, we selected MemFree as the attribute based on which 

to partition the time series due to its distinguishable pattern. Next, we present two mechanisms to split a 

time series based on its structural changes. In the first approach, we check for the changes in regression 

coefficients while the second approach uses a derivative filter. 

 

5.3.1 Splitting Time Series Based on Changes in Regression Coefficients 

Consider the standard linear regression model: 

niuxy ii
T
ii ,,1   (5.3) 

where at time i, yi is the dependent variable, xi is the vector of regressors, i is the vector of regression 

coefficients, and ui is an i.i.d. error term. We assume that the time series has m ≥ 0 structural changes 

where the regression coefficients change from one stable segment/region to another. Then (5.3) can be 

rewritten as: 

1,,.1,,,11   mjiiiuxy jjij
T
ii   (5.4) 

where j is the segment number (there are m + 1 segments) and i is the sample index within the j-th seg-

ment. Then j ≠ j+1, when j ≤ m. We determine the structural changes by testing the null hypothesis that 

regression coefficients remain constant over a given segment (i.e., 10 1
: 


jj iiH  ). Optimum number 

of structural changes m and their positions (a.k.a. breakpoints) can be determined using the strucchange 

package for R [Ze03], which uses a dynamic programming algorithm to compute the breakpoint estimates 

that are global minimizers of the residual sum of squares. Figure 5.11 illustrates the breakpoints obtained 

for the MemFree time series of PlanetLab, GCO, and CSU nodes. While the structural changes of the 

GCO and CSU nodes are properly captured, structural changes of the PlanetLab node is not so accurate. 

The regression coefficients are sensitive to gradual changes in the time series, as the method is designed 

to capture level shifts (also called steps and edges) in the time series. Consequently, this method captures 
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(a) 

 
(b) 

 
(c) 

Figure 5.11 – Breakpoints identified for free memory time series of a node using the test for regression 
coefficients: (a) PlanetLab; (b) GCO; (c) CSU. Scattered lines indicate the breakpoints. 

both gradual (e.g., the second breakpoint in Fig. 5.11(a)) and sharp (breakpoints in Fig. 5.11 (b) and (c)) 

level shifts in a time series. Next, we present a derivative filter that overcomes this problem. 

 

5.3.2 Splitting Time Series Using a Derivative Filter 

Derivative filters [Ma01] can be used to detect rapid changes in a time series. However, they are 

highly sensitivity to noise. Therefore, we first smooth the MemFree time series by applying a Finite Im-

pulse Response (FIR) filter (see Fig. 5.12(b)). Coefficients of the FIR filter are set using a Hamming win-

dow [Bl58] because of its ability to minimize the maximum (nearest) side lobe and its high resolution. 

Then the derivative filter is applied. The absolute values of the resulting time series are shown in Fig. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.12 – Breakpoints identification using the derivative filter: (a) Original time series; (b) Time se-
ries after applying the FIR filter (window size 20); (c) After applying the derivative filter 

to time series in (b); (d) Time series after applying two sides of the FIR filter window sep-

arately and then taking the difference between the resulting time series. Scattered line in-
dicates the threshold. 

5.12(c). While the peaks are prominent, their positions are somewhat shifted from the original time series 

due to smoothing. This problem can be overcome by first applying the two-halves of the Hamming 

window separately and then taking the difference between the two smoothed time series. Figure 12(d) 

shows the resulting time series, where peaks align with the major structural changes in the original time 

series and are much sharper than the peaks in Fig. 12(c). Major structural changes in the time series can 

be then detected by applying a suitable threshold as shown in Fig. 5.12 (d). We empirically determined 

the window size and threshold for each dataset and the values are listed in Table 5.2. Structural changes 

detected by applying the two-halve-window-based derivative filter are shown in Fig. 5.13. It can be seen 

that the filter was able to capture the structural changes in PlanetLab and CSU datasets better than the 
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(a) 

 
(b) 

 
(c) 

Figure 5.13 –  Breakpoints identified for memory free time series of a node using the proposed two-
halve-window-based derivative filter: (a) PlanetLab; (b) GCO; (c) CSU. 

Table 5.2 – Windows sizes and thresholds used while splitting time series. 

 PlanetLab GCO CSU 

Window size (no samples) 19 19 19 

Threshold 20% 1 GB 20% 

Minimum gap between two breakpoints 12 hours 12 hours 12 hours 

 

regression-coefficients-based method, which was more suitable for the time series from the GCO dataset 

(Fig. 5.11(b)). However, filter-based method requires manually determining a suitable window size and a 

threshold, while the solution based on the regression coefficients can calculate the optimum number of 

breakpoints m automatically. Therefore, depending on the structural properties of a time series and appli-

cation requirements different methods may be used to capture their structural changes. 

 



128 
 

5.3.3 Generating Dynamic Attributes Using the Library of Time Series Segments 

Once the structural changes in the MemFree time series are identified, time series corresponding 

to rest of the dynamic attributes are split at the same breakpoints. Resulting multivariate time-series seg-

ments are then collected to form a library. If desired, a stationary time series can also be split after a spe-

cific duration to increase the number of segments in the library. However, one needs to be careful not to 

introduce unnecessary variability by splitting the time series after a short duration as time series are con-

catenated randomly during the time series generation. 

Dynamic attribute values are generated by randomly drawing multivariate time-series segments 

from the library. Longer sequences are generated by concatenating one randomly drawn segment to an-

other. Breaking all the time series of a node at the same point and replaying them together preserve the 

contemporaneous correlation among attributes. Randomly mixing time-series segments corresponding to 

busy and idle periods is acceptable in systems such as PlanetLab and CSU where distribution of attributes 

tend to be stable over several hours to a few weeks. However, such random mixing is not suitable in grid 

and cloud computing where the entire system or a large fraction of it oscillates between busy and idle pe-

riods (Fig. 4.5). In practice, one may want to build a synthetic trace where the system is busy during given 

time ranges, moderately busy in another set of time ranges, and idle in the remaining times. For example, 

one may want to build a traces where the system is idle within the first 6 hours, it then remain busy during 

the next 12 hours (e.g., due to arrival of a bag of tasks), and then becomes moderately busy for another 6 

hours. Such traces are useful in determining the adaptability of resource discovery solutions [Ba12c]. 

Such constraints can be accomplished by grouping the time-series segments in the library according to a 

given attribute. For example, based on the average CPUFree, MemFree, and/or TxRate values time-series 

segments can be labeled as idle or busy. Depending on the user requirements, time segments can be ran-

domly drawn from only the subset of segments that are labeled as idle or busy. Moderate loads can be 

generated by randomly drawing time-series segments marked as idle or busy (if the number of idle and 

busy samples is similar, otherwise weights may be adjusted to get a similar number of samples from each 

group). 
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As the static and dynamic attributes are correlated, it is essential to establish the dependency be-

tween them. For example, a node with a large NumCores typically has higher CPUFree values (Fig. 

4.11). Therefore, time-series segments in the library are grouped according to the NumCores of the corre-

sponding node. Consequently, given the NumCores generated from empirical copula, the dependency be-

tween static and dynamic attributes can be established by randomly drawing time-series segments from 

the corresponding group. This is sufficient to establish the correlation, as correlations between other static 

and dynamic attributes are not strong (e.g., between CPUSpeed and MemFree, see Table 4.5). 

 

5.4 Generating Multi-Attribute Range Queries 

We use the query model described in Section 4.2 (Eq. 4.3). No noticeable correlation was ob-

served between the number of resources (mq) requested by a query and attributes or ranges of attribute 

values [li, ui] specified in a query. This enables us to independently generate mq and the attributes in a 

query. Therefore, mq is generated using the empirical distribution derived from PlanetLab (SWORD) que-

ries. However, it is not straightforward to generate the attributes and ranges of attribute values in a query. 

Suppose following three multi-attribute queries are given as the basis to generate synthetic queries (attrib-

ute values are ignored to simplify the discussion): 

Q1 = {CPUSpeed} 

Q2 = {MemFree, 1MinLoad} 

Q3 = {MemFree, CPUSpeed, TxRate} 

Suppose Q2 appeared twice and Q1 and Q3 each appeared once. Large synthetic query traces can be gen-

erated using the empirical distributions derived from the number of attributes in a query and popularity of 

attributes, and conditional probabilities of attribute co-occurrences. It is relatively straightforward to de-

rive the empirical distributions for the number of attributes in a query (e.g., single-attribute queries occurs 

with probability ¼, two-attribute queries with probability ½, and so on) and popularity of attributes (e.g., 

MemFree occur in 75% of the queries). Moreover, it is necessary to capture conditional probabilities such 

as P(1MinLoad | MemFree) and P(TxRate | MemFree, CPUSpeed). However, capturing the conditional 
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probabilities of co-occurrence of attributes becomes difficult as the number of attributes in a query and 

possible ranges of attribute values increase. For example, 7% of the PlanetLab queries specified more 

than five attributes, see Fig. 4.12. We overcome these issues by building a Probabilistic Finite State Ma-

chine (PFSM) while interpreting attributes as a set of states and attribute co-occurrences as state transi-

tions weighted by their frequency of occurrences. 

 We selected a PFSM because of its ability to capture the structure in a given set of queries and 

assign probabilities to that structure. It is also proven that a PFSM can represent the same distributions as 

those modeled by the hidden Markov model [Vi05]. Thus, a PFSM can capture the distributions of num-

ber of attributes in a query and popularity of attributes, as well as conditional probabilities of attributes 

co-occurrences. Probabilities assigned to state transitions allow us to describe the behavior of a PFSM as 

a random process, which can be used to generate a random query. PFSMs have been applied to generate 

random workloads in web-based applications [Ba11b] where the user behavior is modeled as transitions 

among a set of states such as login into a web page, viewing the calendar, adding a new entry to the cal-

endar, and logout. Similarly, attributes in a query can be represented as a set of states and their co-

occurrences can be modeled as state transitions. However, multi-attribute queries do not have well de-

fined START and END states as web-based applications (e.g., login and logout). Therefore, we assumed 

virtual START and END states, and then interpreted the first attribute specified in a query as a transition 

from the START state and the last attribute in the query as a transition into the END state. Figure 5.14 de-

picts the corresponding PFSM for the above three queries. Following distinct queries can be generated 

using this PFSM: 

q1 = {CPUSpeed}     1/8 

q2 = {CPUSpeed, TxRate}    1/8 

q3 = {MemFree, 1MinLoad}    1/2 

q4 = {MemFree, CPUSpeed}    1/8 

q5 = {MemFree, CPUSpeed, TxRate}   1/8 
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Figure 5.14 –  Probabilistic finite state machine for queries Q1, Q2, and Q3. 
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Figure 5.15 –  Probabilistic finite state machine for queries when attributes in Q2 is swapped. 

Their probability of occurrences are indicated on the right. PFSM generates two queries q2 and q4 that 

were not among the original queries. There queries are also valid as there is a possibility of specifying 

CPUSpeed with TxRate and MemFree. Therefore, by applying a PFSM we can also generate many que-

ries that are likely to occur in practice. Ranges of attribute values defined in queries can be represented as 

a set of sub-states. For example, two queries with CPUSpeed ∈ [1.5, 3.0] and CPUSpeed ∈ [2.0, MAX] 

can be defined as two sub-states within the main state CPUSpeed.  

Suppose the attributes in the original query Q2 is swapped as Q2 = {1MinLoad, MemFree}. This 

is possible as it is not necessary to specify attributes in a particular order. Then the corresponding PFSM 

is given in Fig. 5.15. This PFSM is slightly different from Fig. 5.14 and produces the following set of dis-

tinct queries:  

q1 = {CPUSpeed}     1/8 

q2 = {CPUSpeed, TxRate}    1/8 

q3 = {MemFree, 1MinLoad}    1/3 

q4 = {MemFree, CPUSpeed}    1/24 

q5 = {MemFree, CPUSpeed, TxRate}   1/24 
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Figure 5.16 – Probabilistic finite state machine modified to avoid invalid query q6 in Fig. 5.15. 

q6 = {MemFree}     1/6 

q7 = {1MinLoad, MemFree, CPUSpeed}   1/12 

q8 = {1MinLoad, MemFree, CPUSpeed, TxRate}  1/12 

It produces three more queries q6 to q8 in addition to the ones generated by the PFSM in Fig. 5.14. This is 

a consequence of not having well defined START and END states in queries. Therefore, resulting PFSM is 

sensitive to how the states are coded. While this could result in generation of queries with invalid combi-

nations of attributes, it also offers the opportunity to generate different mixtures of queries by using dif-

ferent coding conventions. For example, in addition to coding attributes based on the order they appear in 

queries, attributes in a query may be shuffled randomly or sorted in the ascending or descending order 

before building the PFSM. The problem of generating invalid queries can be handled by either ignoring 

those queries ones they are generated or modifying the PFSM to prevent the generation of such queries. 

Standard practice of preventing such illegal states is to break a conflicting state(s) into multiple states. 

Suppose it is invalid to generate q6 with only MemFree. Then the state transition from MemFree to END 

can be removed by representing MemFree as two different states (one that has a transition from 

1MinLoad and another from START). Then the updated PFSM based on Fig. 5.15 is given in Fig. 5.16 

where MemFree is broken into two states as MemFree and MemFree
/
. Similarly, suppose q8 is invalid. 

Even then, MemFree is the common state in original queries Q2 and Q3 that lead to the generation of q8. 

Hence, by breaking MemFree into two states as in Fig. 5.16 q8 can be also avoided. We may prevent the 

generation of new query combinations (which are valid) while trying to avoid one of the invalid queries 

(e.g., while trying to avoid q6 we also prevent the generation of q8). This can be overcome by reorganizing 
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Figure 5.17 –  Screenshot of ResQue’s multi-attribute resource generator. 

the state diagram such that only the invalid state is removed while preserving other potential states. How-

ever, in practice, it would be difficult to modify a large state diagram manually and identify all possible 

valid state transitions. Hence, for practical reasons, it may be easier to discard invalid queries after they 

are generated. 

  

5.5 ResQue – Resource and Query Generator 

A tool named ResQue (Resource and Query generator) has been developed to automate the syn-

thetic resource and query generation process. ResQue can generate a set of random nodes/resources with a 

subset of static and dynamic attributes (see Fig. 5.17). Dynamic attribute values can be generated up to a 

given time (typically between a few minutes to weeks), and the sampling interval must be an integer mul-

tiply of sampling interval of data used as the basis. Moreover, if desired, users can also specify during 

which time intervals the generated traces should reflect a system that is busy, moderately busy, or idle. 

Figure 5.18 illustrates the process of generating resources by combining the empirical-copula-based static 
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Figure 5.18 –  Flowchart of random resource generation. 

attribute generation and time-series-library-based dynamic attribute generation. First, all the active nodes 

at a given time instance is sampled for their static and instantaneous values of dynamic attributes (option-

al). The instantaneous values of dynamic attributes are supported as they are useful in evaluating certain 

scheduling algorithms. Second, marginal distribution of each attribute is then transformed to a uniform 

random variable ~U(0, 1), e.g., using Kernel smoothing density estimation. Third, empirical copula is cal-

culated. Fourth, dependent random numbers are then generated from the multivariate copula. Finally, ran-

dom numbers are transformed back to desired marginal distributions using inverse transformation tech-

niques, e.g., using estimated empirical distribution functions. If the attribute value is continuous, linear 

interpolation may be used to generate in-between values while performing the inverse transformation. 

Empirical distribution functions may be used for discrete valued attributes. NumCores from copula is feed 

to the random sampling module to establish the dependence between static and dynamic attributes as the 

correlation between NumCores and MemFree was high (ResQue also supports other attributes such as 

CPUSpeed and MemSize). 

Screenshot of the query generator is shown in Fig. 5.19. Number of resources requested by a que-

ry mq (see Section 4.2) are generated independent of the attributes in a query as they are not correlated. mq 
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Figure 5.19 –  Screenshot of ResQue’s multi-attribute range query generator. 

can be generated based on the empirical distribution extracted from an actual query dataset or using a set 

of random number generators, e.g., uniform, Gaussian, exponential, etc. Multi-attribute range queries are 

generated using the PFSM, which takes a set of state transitions and their frequencies as the input. Users 

may select which subset of the states to use while generating the queries. Both ResQue and the four pre-

processed datasets that are fed into the tool as the basis to generate data are publicly available at [CNRL]. 

These datasets include additional attributes such as 5MinLoad, 15MinLoad, and response time. As our 

approach is independent of the dataset, users may use more recent datasets or use their own datasets ex-

tracted from other systems. Multi-attribute time series library may be built using the two methods de-

scribed in Section 5.3 or users may use their own techniques. Several utilities are also provided to simpli-

fy the pre-processing of new datasets. 
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5.6 Validation 

Statistical properties of synthetic data generated by ResQue are validated as follows. Attribute 

values of PlanetLab, GCO, and CSU nodes that were active over a week is used as the input to the tool. 

We generated 5,000 random nodes with static and dynamic attributes over a two-week period. While 

transforming the random numbers generated using copula to original distributions, linear interpolation 

was used for CPUSpeed and MemSize, and empirical distribution was used for NumCores. Stationary 

time series are split every 24 hours to create more segments. However, it did not significantly vary the 

distribution of number of attribute changes over a given time interval. To prevent the addition of many 

small segments to the time-series library, gap between two structural changes is set to at least 6 hours 

while using both the regression-coefficients-based (strucchange package) and derivative-filter-based 

methods.  

Figure 5.20 plots the distribution of a selected set of attributes from PlanetLab nodes and the at-

tributes generated using ResQue. It can be seen that the attributes of generated nodes closely match the 

distributions observed in Section 5.2. Mean () and standard deviation () of CPUSpeed (included in the 

figure) derived using copula is similar to the actual data. Even for the CPUFree, MemFree, and TxRate 

error in  is 3-18% which is expected as the distribution of time series varies between samples as seen in 

Fig. 5.1. The Kolmogorov-Smirnov test (KS-test) with a significance level of 0.05 further confirmed that 

the synthetic data satisfy the distributions of original data. In addition to meeting  and , synthetic traces 

also mimic the true variations/patterns inherent in time series. While the derivative-filter-based method 

was more accurate in capturing the structural changes in PlanetLab nodes than the regression-coefficients-

based method, no significant difference was observed between the distributions of instantaneous attribute 

values (see Fig. 5.20 and 5.21). Figure 5.22 shows a similar behavior for CSU dataset. CPUSpeed of gen-

erated SETI@home nodes is shown in Fig. 5.23. 

Though GCO nodes were mostly busy, Fig. 4.5(b) and 5.3 also show a wide variation in attribute 

values with time. Therefore, attribute value distributions that are consistent with the actual data cannot be 
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(a) (b) 

  
(c) (d) 

Figure 5.20 –  Comparison of attributes of PlanetLab nodes and nodes generated using ResQue: (a) CPU 

speed; (b) Free CPU; (C) Free memory; (d) Transmission rate. Time series split using the 

regression-coefficients-based method. Starting time t0 = 2011/02/01 5:00 UTC. H – Hours 

and D – Days. 

  
(a) (b) 

Figure 5.21 –  Comparison of dynamic attributes of PlanetLab nodes and nodes generated using the de-

rivative filter-based method: (a) Free CPU; (b) Free memory. Starting time t0 = 
2011/02/01 5:00 UTC. 
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(a) (b) 

 
(c) 

Figure 5.22 –  Comparison of attributes of CSU nodes and nodes generated using ResQue: (a) CPU 

speed; (b) Free CPU; (C) Free memory. Time series split using the regression-coefficients-

based method. Starting time t0 = 2011/12/01 7:00 UTC.  

 

Figure 5.23 –  Comparison of CPUSpeed of SETI@home nodes and nodes generated using ResQue. 
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(a) (b) 

Figure 5.24 – Comparison of dynamic attributes of GCO nodes and nodes generated using ResQue: (a) 
Free CPU; (b) Free memory. Time series split using the regression-coefficients-based 

method. Starting time t0 = 2012/04/23 00:00 UTC.  

 

Figure 5.25 – Generation of resource traces with predefined idle and busy periods. 0-12 hours – idle, 12-

36 hours – busy, and 36-48 hours – moderately busy. 

generated by randomly mixing time-series segments (see Fig. 5.24). As the nodes were mostly busy, 

CDFs of generated dynamic attributes (sampled at different time instances) were somewhat similar to the 

actual attribute distributions sampled at busy times, e.g., after 12 hours. This problem can be overcome by 

explicitly defining busy, moderately busy, and idle periods. For example, Fig. 5.25 shows the average 

CPUFree of a system that is defined to be idle within the first 12 hours, busy during next 24 hours, and 

moderately busy during the remaining 12 hours. For comparison, results from random mixing of time-

series segments are also presented. Therefore, ResQue can also generate node traces with different load 

distributions. 

 Using PlanetLab query data as the basis 100,000 multi-attribute range queries were also generat-

ed. In addition to coding attributes based on the order they appear in queries, attributes in a query were 
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Figure 5.26 – Comparison of number attributes in a query under different coding conventions. 

 

Figure 5.27 – Popularity of attributes generated using ResQue.  

also shuffled randomly or sorted in the ascending or descending order before building the PFSM. Figures 

5.26 and 5.27 show that the distribution of number of attributes in a query and popularity of attributes 

also are in good agreement with the original queries. Distributions of number of attributes in a query satis-

fied the KS-test with a significance level of 0.05. Table 5.3 shows that the frequency of occurrences of 

attribute pairs is similar to the original queries in Table 5.1 (differences between normalized frequencies 

of attribute pairs range from 0.0 to 0.023). Differences between normalized frequencies among different 

coding conventions range from 0.0 to 0.019. Therefore, different coding conventions generate somewhat 

different query combinations. These findings indicate ResQue can generate static and dynamic attributes  
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Table 5.3 – Normalized frequency of occurrence of attribute pairs in queries generated using ResQue. 

(a) – Order in attributes is same as they appear in queries. 

 
CPUSpeed CPUFree MemSize MemFree DiskFree 1MinLoad 

CPUFree 0.062 
    

 

MemSize 0.052 0.054 
   

 

MemFree 0.044 0.064 0.038 
  

 

DiskFree 0.061 0.098 0.058 0.084 
 

 

1MinLoad 0.008 0.008 0.009 0.004 0.036  

TxRate 0.057 0.087 0.054 0.056 0.085 0.007 

(b) – Attributes in queries are sorted ascendingly. 

 
CPUSpeed CPUFree MemSize MemFree DiskFree 1MinLoad 

CPUFree 0.063 
    

 

MemSize 0.043 0.047 
   

 

MemFree 0.055 0.083 0.053 
  

 

DiskFree 0.059 0.097 0.060 0.102 
 

 

1MinLoad 0 0 0 0.003 0.027  

TxRate 0.038 0.064 0.041 0.058 0.071 0.010 

(c) – Attributes in queries are sorted descendingly. 

 
CPUSpeed CPUFree MemSize MemFree DiskFree 1MinLoad 

CPUFree 0.063 
    

 

MemSize 0.043 0.046 
   

 

MemFree 0.055 0.082 0.051 
  

 

DiskFree 0.059 0.097 0.059 0.101 
 

 

1MinLoad 0 0 0 0.004 0.027  

TxRate 0.036 0.063 0.039 0.056 0.070 0.010 

(d) – Attributes in queries are shuffled randomly.  

 
CPUSpeed CPUFree MemSize MemFree DiskFree 1MinLoad 

CPUFree 0.063 
    

 

MemSize 0.052 0.053 
   

 

MemFree 0.061 0.082 0.055 
  

 

DiskFree 0.061 0.096 0.060 0.102 
 

 

1MinLoad 0 0 0 0.017 0.021  

TxRate 0.058 0.089 0.049 0.072 0.084 0 

 

of resources and multi-attribute range queries while preserving the statistical properties of real-world sys-

tems. In [Ba12a, Ba12f] we use the data from ResQue to compare the performance of existing P2P-based 

resource discovery solutions. Data are also used in [Ba12c] to evaluate the performance of a novel re-

source and query aware P2P-based resource discovery system and its adaptability. 
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5.7 Summary 

A set of techniques is presented to generate random vectors of static attributes, multivariate time 

series of dynamic attributes, and multi-attribute range queries while preserving the statistical properties 

observed in operational systems. A tool is developed to automate the synthetic resource and query genera-

tion process and its output is validated using statistical tests. As the proposed mechanism is independent 

of the dataset, data from any other platform may be used as the basis for trace statistics. Resources and 

queries generated using the tool are useful in P2P, grid, and cloud computing for evaluating the scalability 

of applications, resource discovery solutions, and job schedulers, far beyond that is possible with existing 

test beds.  
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Chapter 6 

RESOURCE AND QUERY AWARE, PEER-TO-PEER-BASED 

MULTI-ATTRIBUTE RESOURCE DISCOVERY 

 

Distributed, multi-attribute Resource Discovery (RD) is a fundamental requirement in collabora-

tive P2P systems, grid computing, and cloud computing. We present an efficient and load balanced, P2P-

based multi-attribute RD solution that consists of five heuristics, which can be executed independently 

and distributedly. The first heuristic tries to reduce the cost of RD by maintaining a minimum number of 

nodes in the overlay while pruning nodes that do not significantly contribute to the range query resolu-

tion. Nodes deploying the second and third heuristics dynamically balance the key and query load distri-

butions by transferring some of the keys to their neighbors or by adding new neighbors to handle the 

transferred keys when existing neighbors are insufficient. The last two heuristics, namely fragmentation 

and replication, form cliques of nodes to dynamically balance the skewed key and query loads associated 

with highly popular keys/resources. By applying these heuristics in the presented order, a RD solution 

that better responds to real-world resource and query characteristics is developed. Our solution overcomes 

several limitations in existing RD solutions, and its efficacy is demonstrated under a variety of real world, 

single and multi attribute resource and query distributions. 

Section 6.1 presents the introduction and motivation. The problem statement is presented in Sec-

tion 6.2. Five heuristics and their application to single-attribute resources and queries are presented in 

Section 6.3. How the heuristics are extended to support multi-attribute resources is discussed in Section 

6.4. Simulation setup and performance analysis are presented in Sections 6.5 and 6.6, respectively. Sec-

tion 6.7 presents the concluding remarks. 

  



144 
 

6.1 Introduction 

Collaborative P2P systems require the ability to discover and aggregate group(s) of heterogene-

ous, distributed, and dynamic resources as and when needed. P2P-based distributed RD is a natural fit for 

collaborative applications and further enhances their scalability and robustness. P2P-based RD has also 

been proposed for conventional applications such as grid, desktop grid, and cloud computing, as timely 

aggregation of complex resources is becoming increasingly necessary due to the proliferation of parallel 

applications that utilize multiple and distributed resources. 

Many P2P-based solutions have been proposed to discover multi-attribute, dynamic, and distrib-

uted resources [Al08, Bh04, Ca04, Co09b, Sh07, Sh09]. However, compared to single-attribute P2P sys-

tems such as file sharing, formal characterization of real world, multi-attribute resources and queries re-

ceived attention only recently [Ba11e, Ba12f, He12]. In the absence of data and understanding of the 

characteristics, designs and evaluations of existing RD solutions have relied on many simplifying as-

sumptions such as independent and identically distributed (i.i.d.) attributes, large domains for attribute 

values (i.e., number of distinct attribute values D ≫ number of nodes N), uniform or Zipf’s distributions 

of all the resources/queries, and queries with a large number of attributes and a small range of attribute 

values. However, as observed in Chapter 4, the characteristics of real-world systems diverge drastically 

with attributes of resources being correlated and characterized by different marginal distributions, re-

sources and queries being highly skewed, domains of most attributes being much smaller (D ≪ N), and 

queries tending to request a small number of attributes and large ranges of attribute values. Analysis in 

Chapter 4 also shows that existing solutions have a high resource advertise and query cost (approximating 

O(N)) as attribute values change frequently and queries are less specific. Moreover, they are prone to sig-

nificant load balancing issues because D ≪ N, as well as resources and queries are highly skewed. While 

many solutions are proposed to balance the key and query load in P2P systems [Al08, Bh04, Ga04b, 

Go04, St03], they also rely on the aforementioned assumptions. Such assumptions affect both the designs 
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and performance analysis, and consequently the applicability of solutions under real workloads. There-

fore, more efficient and load balanced, RD solutions are needed to support real workloads. 

We present an efficient and load balanced, resource and query aware multi-attribute RD solution. 

The solution is based on five heuristics that can be executed independently and distributedly on a ring-like 

overlay. Ring-like overlay is selected as it turns out to be a relatively more efficient and scalable design 

choice compared to other solutions (see Sections 4.5.3 and 4.7). The first heuristic tries to maintain only a 

small subset of the nodes in the overlay as D ≪ N. It prunes nodes that do not significantly contribute to 

the range query resolution while reducing the cost (e.g., hops and latency) of resolving queries. The se-

cond and third heuristics dynamically balance the key and query load distributions of nodes by transfer-

ring part of the keys to their neighbors and by adding new neighbors to handle the transferred keys when 

existing neighbors are insufficient, respectively. The last two heuristic, namely fragmentation and replica-

tion, form cliques of nodes to dynamically balance the skewed key and query loads associated with highly 

popular resources. In contrast to the common practice of replicating along the overlay ring, cliques of 

fragments and replicas are placed orthogonal to the overlay ring thereby maintaining lower query cost and 

better load distribution. By applying these heuristics in the presented order, a RD solution that better re-

sponds to the complex characteristics of real-world resources and queries is developed. Our key contribu-

tions are the development of a novel heuristic to prune nodes that do not significantly contribute to the 

range query resolution, placing replicas and fragments orthogonal to the overlay ring, and extending other 

heuristics to support real workloads while overcoming their deficiencies. While heuristic two is presented 

in [Ko11] and three is presented in [Ko11, Vu09], we utilize them more efficiently in our solution while 

being aware of the capacities of nodes and eliminating the need to collect distributed statistics. The fourth 

and fifth heuristics are introduced in [Ga04b]. However, the solution presented in [Ga04b] is applicable 

only for relatively stable networks with immutable resources, as the proposed hash function dynamically 

changes with the load and it needs to be explicitly informed to all the nodes in the system. Our implemen-

tation in contrast supports dynamic networks with mutable resources while using a fixed hash function. 
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Table 6.1 – List of symbols. 

Symbol Description 

aq Set of attributes specified in query q 

A Set of attributes used to characterize resources 

Di Domain of attribute i 

i
Queryh  No of hops to required by a query to reach the node indexing lower bound li 

I
i, 

i
CapI  Resource index and index capacity of node i 

ki, kl, ku Key of node i, lower bound li, and upper bound ui 

i
InK , 

i
OutK  Set of keys corresponding to IN and OUT queries 

li Lower bound of i-th attribute specified in a range query 

m Required no of resources specified in a query 

N No of nodes in the overlay 

Q Set of queries issues to the RD system 

i
CapQ  Query capacity of node/resource i 

R Set of resources in the system 

ui Upper bound of i-th attribute specified in a range query 

vi Value of i-th attribute 
 

Simulation-based analysis is used to evaluate the efficacy of the proposed solution under a variety of sin-

gle and multi-attribute resource and query distributions derived from real workloads. 

 

6.2 Problem Formulation 

We focus on Distributed Hash Table (DHT) based RD solutions due to their scalability and some 

guarantees on performance [Gu03]. Analysis in Chapter 4 showed that a DHT built on top of a ring-like 

overlay is relatively efficient and scalable than other available design choices for multi-attribute RD. Let 

R be the set of resources in the system and A be the set of attributes used to characterize those resources. 

We use bold face symbols to refer to a set and the corresponding italic symbol to refer to its cardinality, 

e.g., R = |R|. List of symbols is given in Table 6.1. A resource r  R is defined as follows (see Section 4.2 

for further details): 

 ii vavavar  ,...,, 2211  (6.1) 

Each attribute ai  A has a corresponding value vi  Di that belongs to a given domain Di. Di’s are typi-

cally bounded, may be continuous or discrete, or correspond to a set of categories or names. A multi-
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attribute, range query q is defined as follows (see Section 4.2): 

 ],[,...],,[],,[, 222111 iii ulaulaulamq   (6.2) 

where, m  Z+ specifies the required number of resources and ai  [li, ui] specifies the desired range of 

attribute values (li and ui are lower and upper bounds, respectively). In practice, attributes in a query may 

specify a mixture of point (li = ui) and range (li < ui) of values. Let the set of attributes specified in a query 

be aq (aq ⊆ A) and Q be the set of queries issued within the system. 

 

6.2.1 Load Balancing in Peer-to-Peer Systems 

Load on a DHT node can be defined in terms of index size, advertise and query messages re-

ceived, and overlay messages forwarded. Index size is measured using the number of resources/keys or 

memory/storage required to store those resources or their contact information. Advertise, query, and for-

ward loads are measured using the number of messages or bandwidth consumed. Existing solutions as-

sume all the nodes should be added to the overlay as it helps to balance the load by each node indexing 

approximately R/N resources or answering Q/N queries. For example, Chord proposed to balance the in-

dex size distribution by having N log N virtual nodes in the overlay [St03] under the assumption that re-

sources are uniformly distributed and Di ≫ N. Godfrey et al. [Go04] extended the concept of virtual nodes 

to balance the query load by moving virtual nodes from highly loaded physical nodes to lightly loaded 

ones. These solutions are not suitable for real-world RD as the query cost is O(N log N), resources and 

queries are highly skewed, and most of the nodes will not index resources or answer queries as Di ≪ N 

(Chapter 4). SWORD [Al08] proposed to expand the domain size Di by appending few random bits to the 

hash values of vi such that identical resources will be mapped to different DHT nodes. While this helps to 

distribute the index size, it does not balance the query load, as queries have to start always from the node 

corresponding to li or its hash value. One may argue that attributes such as bandwidth and disk space have 

a much larger domain; hence, this problem is unrealistic. However, it is not useful to advertise resources 

at a very high resolution as it significantly increases the advertising cost and users are not interested in 
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fine-grained queries (Section 4.4.2). Moreover, as real-world systems tend to oscillate between idle and 

busy periods [Ba12f, Io10] (Section 4.4.1), and their attribute values are not uniformly distributed through 

Di. Therefore, it is not useful to explicitly expand Di. Key transfer is another approach where an overload-

ed node transfers part of its index (i.e., (key, value) pairs) to its neighbor(s) [Ko11, Vu09]. This approach 

is somewhat effective and has a lower overhead. However, when range queries are less specific series of 

nodes tends to be overloaded, e.g., 89% of the queries specifying free CPU requested a range of [40%, 

100%]. Therefore, a node may not be able to transfer its load without making its neighbors even more 

overloaded. While wave-like load transfer proposed in [Ko11] is useful in such cases, length of the wave 

needs to be large as query ranges tend to be large in practice. Longer waves are less desirable due to the 

increase in overhead, as all the nodes along the wave need to coordinate on transferring keys. Alternative-

ly, when a range of nodes is overloaded, it is proposed to migrate nodes in unloaded regions of the over-

lay to overloaded ones and then transfer the keys [Ko11, Vu09]. This is possible only if the key space is 

further divisible and distributed statistics are collected to keep track of lists of loaded and unloaded nodes. 

In practice, it is possible to have a very large number of identical resources. For example, 99% of the 

nodes in SETI@home were x86 (Section 4.4.1). Moreover, large datacenters tend to simultaneously de-

ploy or upgrade to identical set of nodes. Similarly, a node may receive a very large number of queries 

due to skewed distributions and large range of attribute values. For example, 89% of the queries that spec-

ified the free CPU range of [40%, 100%] have to start the query resolution at the node responsible for 

indexing the lower bound. Such large indexes and query loads need to be split across multiple nodes us-

ing replication and/or fragmentation. In [Ga04b], it proposed to arrange resource attributes on a logical 

Range Search Tree (RST) that is mapped to a DHT. Each node in the RST is represented as a load-

balancing matrix that is expanded and contracted as the load changes. When the index is too large, the 

number of columns in the matrix (i.e., fragments) is increased. The number of rows (i.e., replicas) is in-

creased when the query load is too high. Each fragment and replica is mapped to the DHT based on its 

position in the load-balancing matrix. A dynamic hash function is proposed to determine which fragment 

or replica to query. However, as the size of the load-balancing matrix changes hash function also changes. 
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An explicit mechanism is needed to inform theses changes all the nodes. Hence, this solution is more 

suitable for relatively stable networks with immutable resources. Moreover, locality of attribute values is 

lost when the RST is mapped to the DHT consequently increasing the query cost to O(N log N). There-

fore, existing load balancing solutions do not work efficiently under real workloads. 

 

6.2.2 Problem Statement 

We believe that future RD solutions are likely to apply a fixed or dynamic threshold while adver-

tising resources as it reduces the advertising cost and users do not define very specific queries. Applying 

such a threshold will lead an unbalanced distribution of index size as Di ≪ N. Conversely, this can be 

used to reduce the query cost, as the number of nodes along the ring does not need to exceed the largest 

Di (i.e., N = max(Di)). Then by adding fragments and replicas orthogonal to the ring (contrary to the 

common practice of adding along the ring), we can balance the index size and query load without increas-

ing the query cost. 

Consider a ring-like overlay with a set of N nodes indexing R resources. Each resource r ∈ R is 

willing to contribute some index capacity r
CapI  and query capacity r

CapQ . These capacities are typically 

determined using several factors such as the computing power, memory, bandwidth, or energy of a re-

source/node, or amount of resources that a user is willing to contribute to the P2P system. We assume 

r
CapI  and r

CapQ  are measured in terms of the number of resources and messages, respectively. Our goal is 

to find a solution that minimizes the query resolution latency on a ring-like overlay while satisfying the 

node capacity constraints. If we assume that the time required to resolve a query within a DHT node is 

small compared to the network latency and each overlay link has approximately the same latency, then 

the problem can be restated as minimizing the number of hops required to resolve queries which is given 

by (see Section 4.2 for the derivation): 
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Users determine (ui – li) and aq, whereas Di is fixed. i
Queryh  depends on N, e.g., for Chord overlay 

)(logNOhi
Query  . Therefore, the problem further reduces to minimizing N, as it is the only system-level 

parameter. Our objective is to minimize N subject to the index and query capacity constraints of 

nodes/resources. More formally: 

r
Cap

r
Cap QI

N

,subject to

minimize
 (6.4) 

 

6.3 Handling Single-Attribute Resources 

Figure 6.1 illustrates three consecutive nodes (i – 1, i, i + 1) on the overlay ring illustrated in Fig. 

4.1. Let ki be the key of i-th node. Histograms indicate the keys that are indexed at the node and their 

heights represent the number of identical resources mapped to that key. Let I
i
 be the set of resources in-

dexed at i. Five range queries q1 to q5 are indicated as scatted lines. For example, q1 starts at node i and 

ends at i + 1. While q4 starts at i – 1 and suppose to end at i + 1, it terminates at i as the required number 

of resources are found. As a query q moves from one node to another it appends matching resources to the 

query. Let kl represents the key generated by applying a Locality Preserving Hash (LPH) [Ca04] function 

to the lower bound li of a range query. Similarly, let ku be the hash value of the upper bound ui. Query 

resolution starts at the successor node of kl (see Fig. 4.1). For example, q1 and q2 can be considered as 

coming directly into node i from the overlay network. Set of such queries 
i
InQ  is defined as IN queries 

where q  
i
InQ  when kl  (ki – 1, ki]. A query that is answered or reache ku goes out of the node and the 

answer is sent to the query originator. For example, q2, q3, and q4 go out from i. Set of such queries 
i
OutQ  

is defined as OUT queries, i.e., q ∈ 
i
OutQ  when ku  (ki – 1, ki] or q is resolved by i. Some queries are for-

warded by the predecessor, e.g., q3 to q5 are forwarded from node i – 1 to i. The set of queries forward 

from i – 1 to i is defined as forward (FWD) queries 
1i

FwdQ


, i.e., q  
i
FwdQ when [kl, ku]∩(ki – 1, ki] ≠ and 

kl ≤ ki – 1. Therefore, the query load on a node is the sum of IN and FWD queries received within a given 
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Figure 6.1 –  Series of nodes on a ring-like overlay. 

time interval t. Our objective is to maintain the index size and query load on a node i within its bounds, 

i.e., i
Cap

i II   and i
Cap

i
Fwd

i
In QQQ  1 . We first discuss the heuristics in the context of single-attribute 

range query resolution. Then in the following selection how the heuristics can be extended to support 

multi-attribute range queries is discussed.  

 

6.3.1 Heuristic 1 – Prune 

Consider the query distribution illustrated in Fig. 6.2(a), which is derived from range queries for 

free CPU and disk space in PlanetLab (see Fig. 4.15). Such a distribution arises when users specify a 

large (ui – li)/Di and m. Suppose this range is covered by four nodes a, b, c, and d and queries start either 

at a or b (mostly at b) and terminate at d. c is not answering any queries ( 0i
OutQ ) and merely forwards 

them to its successor d (
c
Fwd

b
Fwd QQ  ). This occurs when a node does not index any resources or indexed 

resources are insufficient to answer a given query (either attributes do not match or m is too large). It is 

desirable to remove c from the ring as it helps to reduce the number of hops a range query has to travel. If 

c indexes any resources, they have to be moved to b or d before leaving. A node i may pick its successor 

(i + 1) to move keys when 11   i
Cap

ii III  or may pick the predecessor (i – 1) when 11   i
Cap

ii III . 

However, removing c does not increase the query load on either b or d. Moving index to the successor is 

preferred as it reduces the changes to the overlay. For example, d’s key will not change when c moves its 



152 
 

keys

N
o

 o
f 

q
u
er

ie
s 

(Q
In

+
 Q

F
w

d
)

a b c d

keys

N
o

 o
f 

q
u
er

ie
s 

(Q
In

+
 Q

F
w

d
)

a b c d

(a) (b)
 

Figure 6.2 –  Two example range-query distributions. Scattered lines indicate the range of keys handled 
by nodes. 

index while b’s key need to be changed when c’s index is moved to b. Moreover, following lemma also 

shows that the query bandwidth requirement of the successor reduces when the predecessor is removed. 

Lemma 6.1. Successor’s bandwidth requirement reduces when the predecessor is removed by moving its 

index to the successor. 

Proof.  Suppose node c receives a set of queries 
b
FwdQ  from b (Fig. 6.2(a)). Let the size of those queries 

be sb (in bytes). Suppose c appends several matching resources to the queries though it does not 

completely answer them ( c
OutQ ). Let the number of bytes required to append those resources 

or their contact information to 
b
FwdQ  be sc. Then the total number of bytes transferred to d is sb + 

sc. Similarly, d appends a set of resources to the queries with size sd. Then the total bandwidth re-

quirement of d due to the queries that arrives from c and queries that leave d is (sb + sc) + (sb + sc 

+ sd) = 2sb + 2sc + sd. When the predecessor c leaves the network, d will directly receive the set of 

queries from b with size sb. As d now has c’s index, it will append the same set of resources. 

Hence, the size of queries that leave d is sb + sc + sd. Therefore, the total bandwidth requirement 

of d is sb + (sb + sc + sd) = 2sb + sc + sd. Thus, the bandwidth saving compared to having c is sc. 

Using a similar argument, it can be also shown that the bandwidth requirement of the predecessor 

increases when the successor’s index is transferred to it. Hence, it is more efficient to move the 

index to the successor. □ 

Let us now consider the query distribution in Fig 6.2(b). Such a distribution arises when interme-

diate nodes are able to answer some of the queries completely (e.g., q2 and q4 in Fig. 6.1) or ku is reached 
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(e.g., q3). It is still useful to remove nodes that do not answer many queries to reduce the query cost fur-

ther. For example, nodes a, b, and d are good candidates as they do not answer many queries. Hence, we 

remove a node from the ring when the number of OUT queries is below a given threshold 
i
ThrQ  (i.e., 

when 
i
Thr

i
Out QQ  ). However, we now need to be aware of both the index size and query load transferred 

to a node’s successor/predecessor to prevent it from being overloaded. For example, if node i is removed, 

its successor i + 1 will receive three additional queries q2, q3, and q4 which belongs to 
i
OutQ .Thus, i + 1 

can handle i-th node’s load only if 11   i
Cap

ii III  and 
11   i

Cap
i
Out

i
Fwd

i
In QQQQ . If the index is moved 

to the predecessor, i – 1 will receive two additional queries q1 and q2 as its key will change to ki. There-

fore, keys can be moved to i – 1 only when 11   i
Cap

ii III and 112   i
Cap

i
In

i
In

i
Fwd QQQQ . By keeping 

track of 
i
OutQ , a node can decide by itself whether it is not contributing to the system by answering a suf-

ficient number of queries. However, if it indexes any resources or answer any queries, it needs to check 

with the predecessor/successor before leaving. A node has to continue to remain in the ring, if both the 

successor and predecessor are not willing to accept its index and/or query load. More nodes can be re-

moved by tightening the threshold 
i
ThrQ . However, if it is too tight, nodes may need to be frequently re-

moved and then added later using heuristics three to five when the system load fluctuates. When a node is 

removed from the ring, it will connect to one of the nodes in the ring and use it as a proxy to issue queries 

and advertise resources (similar to that in a superpeer-based P2P system). 

 

6.3.2 Heuristic 2 – Key Transfer 

Suppose c in Fig. 6.2(b) is overloaded, i.e., c
Cap

c II   and/or c
Cap

b
Fwd

c
In QQQ  . c can reduce the 

load by moving some of its keys to b or d (d is preferred as it requires minimum changes to the overlay 

and reduces the bandwidth requirement of d). For example, one of the queries at i can be reduced if key ki 

(Fig. 6.1) is moved before the start of query q1. Two queries can be reduced, if it is moved even further 

towards ki–1. Similarly, by reducing ki index size can be also reduced. Let excess query load at node i be 
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i
Cap

i
In

i
Fwd

i
Excess QQQQ  1 and index size be i

Cap
ii

Excess III  . Only 
i
InQ can be reduced as 

1i
FwdQ  is fixed 

and dependent on the key range of the predecessor. Therefore, it will be useful for a node to transfer its 

query load to its success only when 
i
Excess

i
In QQ  . To decide which keys to transfer to i + 1, we need to 

keep track of kl (corresponds to the lower bound l) specified in each query q. Let 
i
InK  be the set of kls col-

lected from each q  i
InQ (same key may appear multiple times). Then we can find the largest key k  

i
InK  such that the reduced query load 

i
Excess

i
Reduce Qk""countIFQ  ),( i

InK . countIF is a function that 

counts the number of keys in 
i
InK that satisfies the given condition, e.g., “≥ k”. Similarly, index size re-

duced at i should satisfy 
i
Excess

i
Reduce IkcountIFI  )"",( i

I . When ki is moved towards ki – 1 some of the 

queries that are being currently answered by i will be forwarded to i + 1. For example, when ki is moved 

up to kl of q1, q2 and q3 will be forwarded to i + 1. Thus, the successor’s query load will be increased by

),(1 k""countIFQi
Transfer  i

OutK . Where 
i
OutK  is the set of keys that queries terminate at (these include 

kus collected from each q  i
OutK  or the keys that queries like q2 terminated). The index size of i + 1 will 

also increase by
i
ReduceI . Therefore, a subset of the keys can be transferred to the successor i + 1 only when 

111   i
Cap

i
Transfer

i
In

i
Fwd QQQQ  and 111   i

Cap
i
Transfer

i III . If successful, after transferring the keys i-th 

node’s key is set to ki = k – 1. 

If the successor is unable to accept the load, the predecessor can be tried. However, the process is 

reversed where load reduced on i is determined by 
i
OutQ  and load transferred to i – 1 is determined by 

i
InQ . To decide which keys to transfer, we need to find the smallest key 

i
OutKk  such that n

ReduceQ
 

)"",( kcountIF i
OutK

i
ExcessQ . Therefore, the transfer is useful only if 

i
Excess

i
Out QQ  . Index size reduc-

tion at i should also satisfy 
i
Excess

i
Reduce IkcountIFI  )"",( i

I . Transferring keys will increase the query 

load on i – 1 by )"",(1 kcountIFQi
Transfer  i

InK  and the index size will be increased by 
i

duceIRe . Before 
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transferring the keys, node i should also check whether i – 1 can handle the transferred loads. If the trans-

fer is successful, predecessor will be pulled towards ki and its new key is set to ki–1 = k. 

 

6.3.3 Heuristic 3 – Add New Node and Key Transfer 

In range query systems, it is possible for a range of nodes to be overloaded. Therefore, transfer-

ring keys to both the predecessor and successor may not be possible. Given that a node is aware of IN, 

OUT, and FWD loads, it can determine whether it would be useful to add a new node between its current 

successor or predecessor. Adding a successor is possible and useful when 
i
Excess

i
In QQ  and there is 

enough key space between i – 1 and i (i.e., k – ki-1 > 1, where k is determined from heuristic two). Query 

load transferred to the new successor is i
Fwd

new
Transfer Qk""countIFQ  ),( i

OutK
 
and its index size is 

),( k""countIFI new
Transfer  i

I . New successor’s key knew = ki and current node’s new key need to be 

changed to k – 1. Similarly, a predecessor can be added when 
i
Excess

i
Out QQ 

 
and k < ki. Query load trans-

ferred to the new predecessor is 1),(  i
Fwd

new
Transfer Qk""countIFQ i

InK
 
and the index size is 

),( k""countIFI new
Transfer  i

I . Key of the new predecessor will be knew = k. If the transferred load is too 

much to be handled by a single node (i.e., new
Cap

new
Transfer QQ   or new

Cap
new
Transfer II  ), a series of succes-

sors/predecessors may be added given that there is sufficient key space.  

As the first heuristic removes unnecessary nodes, many nodes are not part of the ring. One or 

more of these nodes can be added as the successor(s) or predecessor(s) when necessary. Nodes that are 

not in the ring can be found by randomly selecting from the nodes that are connected to a node in the ring, 

issuing a multi-attribute query to the RD system, or querying a special node that may keep track of those 

nodes. Therefore, in contrast to [Go04, Ko11, Vu09] our approach does not require an explicit mechanism 

to track and locate loaded and unloaded nodes in the overlay.  

 



156 
 

Clique with 
replicas

Clique with fragments 
& replicas

Clique with 
fragments

Replica

Fragment

 

Figure 6.3 –  Fragments and replicas placed orthogonal to the overlay ring. 

6.3.4 Heuristic 4 – Add New Node and Replicate Index 

While the second and third heuristics are effective in distributing some of the load with minor 

overhead and modifications to the ring, they rely on the assumption that key space is divisible. However, 

due to skewed resource and query distributions key space is not perfectly divisible, and number of identi-

cal copies of a resource or queries for a given range can easily surpass the capacity of even the most re-

sourceful node. Such cases can be detected using I
i
, 

i
InK , and 

i
OutK . Query load can be split across mul-

tiple nodes by replicating resources as shown in Fig. 6.3. Such a collection of nodes is called a clique. 

Then a range query needs to visit only one of the replicas along the path consequently splitting the load. 

To split the load across multiple nodes, predecessor(s) needs to be informed about the existence of multi-

ple successors, which is allowed in many structured P2P solutions such as Chord, Kademlia, and Pastry. 

While forwarding queries, predecessor(s) may pick one of the successors using round robin or random 

load balancing policies. When a resource is advertised, it needs to be informed to all the replicas. In prac-

tice, a node can handle relatively large number of queries, as most query messages will fit into a single 

packet and require a sequential search on the resource index. Therefore, a few replicas will be sufficient 

to handle the most popular queries. A clique may be fully connected to reduce the cost of replication (Fig. 

6.3). In contrast to [Ga04b], placing replicas orthogonal to the ring does not require changing the hash 

function and informing it to all the nodes in the system. 
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6.3.5 Heuristic 5 – Add New Node and Fragment Index 

Heuristic four can be applied only if the number of identical resources is within a node’s index 

capacity. If the number of identical resources is very large, resource index needs to be fragmented across 

multiple nodes, where each node keeps track of only a subset of the resources. Similar to replicas, frag-

ments are also placed orthogonal to the ring (Fig. 6.3). However, if resources in one fragment are insuffi-

cient to resolve a query, other fragments need to be searched before forwarding the query to the succes-

sor. Most queries are unlikely to be forwarded to the other fragments, as resource indexes tend to be 

relatively large in practice. For example, over 10,000 resources each with 20 attributes can be indexed 

using 1 MB of memory (assuming four bytes per each attribute value vi). 

Heuristics are triggered based on the local statistics collected by a node hence have a lower over-

head, and can be executed independently and distributedly. However, it is desirable to deploy all the heu-

ristics within a node as each heuristic addresses a specific concern. Moreover, by applying them in the 

presented order, an efficient and scalable RD solution can be developed. For example, heuristic one tries 

to maintain a minimum number of nodes in the overlay while reducing the cost of resolving range queries. 

A node may have a large index and/or query load regardless of whether it is answering more than 
i
ThrQ  

queries. Hence, it is desirable to evaluate rest of the heuristics when a node has to remain in the ring, as its 

neighbors are not willing to accept the load. The second heuristic tries to balance the load by moving the 

keys while introducing minimum disruption to the ring. The third heuristic is useful when nodes on the 

ring are not sufficient to handle the load. However, there is some cost in adding a new node to the overlay 

as the topology needs to be updated. Fragmentation and replication handle cases of extreme loads but in-

troduce even more changes to the overlay. Thus, by applying the heuristics in the presented order query 

performance can be improved while reducing the cost of overlay maintenance and key movement. Figure 

6.4 illustrates the flow diagram of a node that combines all the heuristics. Histograms can be used to keep 

track of I
i
, 

i
InK , and 

i
OutK . Histograms consume only a small amount of memory, as the expected num-

ber of distinct attribute values Di is relatively small. 
i
InQ  and 

i
OutQ

 
may be calculated from the histograms 
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Figure 6.4 –  Flowdiagram of a node that implements all five heuristics. 
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or separate counters may be used. Another two counters are required to keep track of 
1i

FwdQ  and 
i
FwdQ . 

Therefore, heuristics are triggered based on the local statistics and only the overloaded nodes communi-

cate with their neighbors. Heuristics may be executed periodically or when a counter reaches the capacity 

of a node. A clique may include both fragments and replicas (Fig. 6.3). If the existence of the fragments 

and replicas are informed to predecessors, 
i
InQ  can be equally distributed across nodes in a clique. There-

fore, notification messages can be sent to all the potential predecessors similar to that in Chord. However, 

in practice, only the close by predecessors need to be notified as they forward most of the overlay mes-

sages [Ba12e]. We do not anticipate a large increase in overlay routing entries, as cliques are small.  
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6.4 Handling Multi-Attribute Resources 

Five heuristics are directly applicable when multiple rings (e.g., Mercury [Bh04]) or a partitioned 

ring (e.g., LORM [Sh07] and SWORD [Al08]) are used to index different attributes. Multiple-ring-based 

solutions maintain a separate overlay ring for each attribute type (see Section 2.3.2) where as partitioned-

ring-based solutions assign different segments of the address space to different attributes. These solutions 

maintain a separate resource index for each attribute type similar to single-attribute solutions. Therefore, 

proposed heuristics are directly applicable. When multiple virtual rings corresponding to different attrib-

utes are mapped to the same overlay ring as in MAAN [Ca04] (see Section 2.3.2), a node may have to 

index the same resource multiple times under different attribute types. In such cases, a resource index 

may be compressed by removing duplicates entries of the same resource, as it reduces the 

memory/storage consumption and speed up the query resolution. Therefore, moving a key may not really 

move an indexed resource as others keys used to index the resource may be still within the range of the 

node. This problem can be overcome by modifying the countIF function to take into account the multiple 

keys used to index the same resource. 

 

6.5 Simulation Setup 

A discrete-event simulator is developed to demonstrate the effectiveness of the proposed heuris-

tics. Chord [St03] is used as the underlying overlay, as it supports maintaining multiple fingers to succes-

sors. For multi-attribute resources, similar to MAAN [Ca04], we assume multiple virtual rings are 

mapped to the same address space and queries are issued only to the most selective attribute (i.e., attribute 

with the smallest (ui – li)/Di). Four single and multi-attribute workloads are derived using real data from 

P2P file sharing, PlanetLab, and SETI@home and described in Table 6.2. It is known that both the num-

ber of queries for a file and copies of a file follow a Zipf’s-like distribution [Ha06]. Hence, with the first 

workload we attempt to demonstrate the applicability of heuristic under skewed resources and point que-

ries. For these workloads, capacities are set as follows: iICap  = 500 entries, iQCap = 10 queries/second, and 
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Table 6.2 – Workloads used in simulations. 

Workload Resources Queries 

File sharing 100,000 copies of 10,000 distinct files generated 
using ~Zipf’s(0.7) [Ha06] 

Popularity – Case 1 – ~Zipf’s(0.5), Case 2 – ~Zipf’s(1.0).  

Query arrival – 100,000 nodes issue queries with inter-

arrival times based on a ~exponential(2 min). 

CPU speed CPU speed of 100,000 nodes randomly sampled 
from SETI@home. Can be approximated by 
~N(2.36, 0.28). 

Pulse-like queries derived from PlanetLab query traces. 
Used empirical CDF to generate ranges of attribute values.  

Query arrival – 100,000 nodes issue queries with inter-

arrival times based on a ~exponential(2 min). 

CPU free Case 1 – Synthetic dataset of 100,000 CPU free 
values derived using linearly-interpolated empir-
ical CDF of PlanetLab nodes. 

Case 2 – Case 1 dataset inverted as x(t) = 100% 
– x(t0) at 600 s 

Pulse-like queries derived from PlanetLab. Used empirical 
CDF to generate ranges of attribute values.  

Query arrival – 100,000 nodes issue queries with inter-

arrival times based on a ~exponential(2 min). 

PlanetLab 527-node PlanetLab trace with 12 static & 12 
dynamic attributes. 

Also consider 250, 750, 1000 node traces gener-
ated using ResQue (Chapter 5). 

PlanetLab – Synthetic trace generated using empirical 
CDFs derived from aq, popularity of attributes, [li, ui], and 
m (see Section 4.6).  

Query arrival – all the nodes issue queries with inter-
arrival times based on ~exponential(10 sec). 

 

i
Cap

i QQ 1.0Thr  . CPU speed and CPU free workloads assume iQCap  = 50 queries/second, as range queries 

tend to visit many nodes consequently increasing the query load on a node. Such conservative capacities 

were selected to demonstrate a large enough network under a reasonable simulation time. CPU speed da-

taset can be approximated by a Gaussian distribution (see Section 4.1). CPU free dataset of PlanetLab 

nodes is skewed and most nodes were idle (see Fig. 4.6(a)). A node trace from PlanetLab is used as the 

multi-attribute dataset. As the nodes are described by 24 attributes, in the worst case they may map to 24R 

nodes. However, this is still smaller than the other three workloads hence for this workload iICap  = 100. 

As the number of nodes is small, we also set iQCap  = 25 queries/second. Each simulation is started with an 

overlay ring having R/ iICap  nodes, as the network needs to have at least this many nodes to balanced the 

index size. Predecessors select fragments or replicas using round robin scheduling. Heuristics are evaluat-

ed every 30 seconds. To prevent the heuristics from responding to minor variations in index size and que-

ry load, Exponentially Weight Moving Average (EWMA) values of counters are used to trigger a heuris-

tic. Results are based on ten samples with different random seeds. Additional details on the simulator are 

given in Appendix II.3. 
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6.6 Performance Analysis 

We first analyze the single-attribute workloads in detail and then present the results for multi-

attribute workload. As our solution with all five heuristics (Heu 1-5) will be better than any solution that 

adds all the nodes to the overlay ring (as N is reduced), we compare our results with a Chord overlay with 

the same number of nodes. We also compare the results with the second heuristic (Heu 2) as it can be 

readily implemented on top of Chord. Heuristics three to five in their original forms (as in [Ko11, Vu09, 

Ga04b]) are not directly comparable, as they need specific mechanisms such as special nodes to track 

loads and dynamic hash functions.  

The average query cost of all three solutions under the file sharing workloads was approximately 

5.8-hops. When the Zipf’s parameter α = 0.5 (moderately skewed queries), Heu 1-5 added 267 nodes to 

the overlay ring. 304 nodes were added to the ring when α = 1.0, as more nodes are needed to handle the 

increased load due to highly skewed queries and moderately skewed replicas of files. Among the 304 

nodes, 257 of them were placed along the overlay ring and the rest were placed orthogonal to the ring. 

However, no noticeable reduction in query cost was observed for Hue 1-5, compared to Chord and Heu 2, 

as the cost of point queries is proportional to log N. Figure 6.5(a) shows the distribution of query load. It 

can be seen that when all five heuristics are combined, almost all the nodes in the ring were able to stay 

within the allocated query capacity of 10 queries/second (indicated by the vertical scattered line). While 

distribution of query load under Heu 2 is marginally better than having only the Chord ring, one of the 

nodes still had to handle the query load for the most popular file. When α = 1.0, peak load on Chord and 

Heu 2 was 77.6 and it was reduced to 28.1 by Heu 1-5 (2.7 times lower). Similarly, Fig. 6.5(b) shows that 

Heu 1-5 were able to maintain the index size of all the node within their capacity where as one of the 

nodes in Chord and Heu 2 indexed 3,278 files. Hence, our solution is able to achieve comparable perfor-

mance for point queries while balancing both the index size and query load. 
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(a) (b) 

Figure 6.5 –  Load distribution of file sharing workloads at steady state: (a) Query load; (b) Index size. 
Vertical scattered line indicates the node capacity. 

  
(a) (b) 

Figure 6.6 –  Cost of resolving queries at steady state: (a) CPU speed workload; (b) CPU free workload. 

Figure 6.6 compares the query cost under the CPU speed (CPUSpeed) and CPU free (CPUFree) 

workloads with increasing m (m is the number of resources requested by a query). When m = 20, Heu 1-5 

reduced the query cost of CPUSpeed dataset by 37% and CPUFree dataset by 23% compared to a Chord 

overlay with the same number of nodes. Query cost of the CPUSpeed dataset increases linearly under 

Chord and Heu2, as the attribute values are spread around following a Gaussian distribution. However, no 

such increase is observed for Heu 1-5, as the placement of nodes are automatically rearranged based on 

the query loads and size of indexes. Because the CPUFree dataset is highly skewed and most nodes were 

idle, large number of free resources can be found by visiting few nodes. Hence, query cost does not 

change noticeably with increasing m. 
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(a) (b) 

Figure 6.7 –  Load distribution of CPU speed workload at steady state: (a) Query load; (b) Index size. 

m = 20. 

  
(a) (b) 

Figure 6.8 –  Load distribution of CPU free workload at steady state: (a) Query load; (b) Index size. m = 
20. 

Figure 6.7 shows the query load and index size distribution for the CPUSpeed workload. It can be 

seen that 99% and 91% of the nodes were able to stay within the allocated query and index capacity using 

Heu 1-5, respectively. Largest index under Heu 1-5 had 556 entries while the other two solutions had 

23,733 entries each (42.7 times higher than Heu 1-5). Similarly, 92% and 100% of the nodes in the 

CPUFree dataset were able to stay within the allocated index and query capacity (see Fig. 6.8). 

Heuristics are triggered when EWMA values of counters exceed the given thresholds. However, 

the weighting factor β used to calculate the EWMA determines how fast the system gets stabilized and its 

overhead. We measure the inequality of load distribution among nodes using the Gini coefficient, which 

has been proposed as a suitable metric to quantify load distribution in P2P systems [Pi06] and many 
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Figure 6.9 –  Variation in Gini coefficient of index size distribution of CPU free workload with time. 

CPU free values were inverted at 600 seconds as explained in Table 6.2. m = 20. 

networking solutions. Gini coefficient G  [0, 1], where zero corresponds to perfect equality and one cor-

responds to the theoretic case of an infinite population with only one individual having a nonzero value. 

Figure 6.9 illustrates the inequality among index sizes of nodes measured using the Gini coefficient (cal-

culated using the algorithm in [Ro11]). When the weighting factor β = 0.1 system is biased towards long-

term trends hence retain the system in a stabilized state. Large β values quickly respond to short-term 

trends while constantly moving keys around and modifying the overlay ring. Such frequent changes are 

not desirable as they increase the cost of load balancing. For example, some oscillations can be seen when 

β = 0.4 and β = 0.5. Moreover, by 570 seconds, 1.6% more messages related to load balancing were gen-

erated when β = 0.5 compared when β = 0.1. However, while β = 0.1 quickly reduces the Gini coefficient, 

with the time Gini coefficient for other β values tend to be even lower. It is known that production sys-

tems experience sudden changes in availability of resources [Ba12f, Io10] (also see Section 4.4.1). There-

fore, we invert the CPUFree value of resources at 600 seconds (as explained in Table 6.2) to measure the 

responsiveness of heuristics to such rapid changes. Query distribution was not changed, as it is not known 

whether user queries change in response to such rapid changes in resources. Figure 6.9 shows that system 

goes back to the original state within ~240 seconds when β = 0.3. Thus, the five heuristics are also adapt-

able to rapid changes in attribute values. β = 0.3 generated 7% less messages related to load balancing 
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(a) (b) 

Figure 6.10 –  Number of hop required to resolve queries in PlanetLab workload at steady state: (a) Av-
erage query cost; (b) Maximum query cost. 

compared to when β = 0.1 (by 900 seconds). Therefore, we use β = 0.3 for rest of the performance analy-

sis, as it has a balanced load distribution, lower response time, and lower cost. 

We now analyze the multi-attribute workload from PlanetLab, which exhibits the characteristics 

discussed in Chapter 4. Figure 6.10(a) shows that the average query cost linearly increases with the in-

creasing number of nodes. As the number of nodes in the system increases, both the number of resources 

to index and queries to answer increase (because the query rate of each node is fixed). Moreover, as the 

number of attributes increases, the same resource is mapped to many overlay keys hence resources are 

spread over a large address space. Furthermore, queries for different attributes are issued to different 

ranges in the address space. For example, queries for CPUFree are biased towards the higher value while 

queries for CPU load are biased towards the lower value. Therefore, more nodes are added to different 

address ranges in the ring to balance the load. Consequently, query cost increases, as is it proportional to 

the number of nodes along the ring. Alternatively, though Chord and Heu 2 have the same number of 

nodes in the ring, they are uniformly spread around the ring consequently reducing the number of nodes 

that an average query needs to go through. This is the reason that the cost of resolving multi-attribute re-

sources using Heu 1-5 is higher than Chord and Heu 2 with a similar number of nodes. However, worst-

case path length of Chord and Heu 2 is higher than Heu 1-5 (see Fig. 6.10(b) and Fig. 6.11), as all the 

nodes are placed along the ring compared to the fourth and fifth heuristics which place some of the nodes 
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Figure 6.11 – Distribution of query cost in PlanetLab workload at steady state. R = 527. 

  
(a) (b) 

Figure 6.12 – Load distribution of PlanetLab workload at steady state. R = 1,000. 

orthogonal to the ring. Distribution of query cost in Fig. 6.11 confirms this behavior. Moreover, both the 

average and worst-case query cost is still significantly lower than adding all the nodes to the ring (Fig. 

6.10) . For e.g., average and worst-case query cost of Heu 1-5 is 59.5% and 77.5% lower than adding all 

the 527 nodes to the Chord ring. 

Figure 6.12 illustrates that Heu 1-5 can effectively balance the index size and query load under 

multiple attributes as well. It can be seen that 100% and 95% of the nodes were able to stay within the 

allocated query and index capacity using Heu 1-5, respectively. One of the nodes indexed 507 resources 

under Heu 1-5 while other two solutions indexed all the 1,000 resources. Therefore, proposed heuristics 

enable discovery of real-world resources with lower overhead while balancing the index size and query 
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load. Moreover, they rely on local statistics, local communication among members of a clique, predeces-

sors, and successors, as well as do not require dynamic hash functions. 

 

6.7 Summary 

Five heuristics for efficient P2P-based multi-attribute RD that alleviates the load-balancing prob-

lem were presented. Heuristics rely on local statistics to capture the complex characteristics of real-world 

resources and queries and try to retain only the nodes that answer a sufficient number of queries in the 

overlay. Resource index is transferred among existing and new nodes are added to maintain the index size 

and query load of a node within its capacity. By applying these heuristics in the presented order, a RD 

solution that better responds to real-workloads was developed. Simulation-based analysis demonstrated 

their ability to reduce the query cost, balance the load, and adapt to rapid changes in attribute values.  
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Chapter 7 

COMMUNITY-BASED CACHING FOR ENHANCED LOOKUP 

PERFORMANCE IN P2P SYSTEMS 

 

Large Peer-to-Peer (P2P) systems for file transfer exhibit the presence of virtual communities 

based on semantic, geographic, or organizational interests of users. Resources commonly shared within 

individual communities are in general relatively less popular and inconspicuous in the system-wide be-

havior. Hence, most communities are unable to benefit significantly from performance enhancement 

schemes such as caching and replication that focus only on the most dominant queries. We propose a dis-

tributed Community-Based Caching (CBC) solution that enhances both the communitywide and system-

wide lookup performance. CBC consists of a sub-overlay formation scheme and a Local-Knowledge-

based Distributed Caching (LKDC) algorithm. Sub-overlays enable communities to forward queries 

through their members. While queries are forwarded, the LKDC algorithm causes members to identify 

and cache resources of interests to them, resulting in faster resolution of queries for popular resources 

within each community. Distributed Local Caching (DLC) requires global information (e.g., hop count 

and content popularity) that is difficult and costly to obtain. However, by means of an analysis of globally 

optimal behavior and structural properties of the overlay, we develop the heuristic-based LKDC algorithm 

that not only relies on purely local information but also provides close-to-optimal caching performance. 

Simulation-based analysis is used to demonstrate the utility of the analytical model and CBC. 

Section 7.1 presents the introduction and contributions. Problem formulation is presented in Sec-

tion 7.2. Sub-overlay formation and distributed caching requirements are presented in Section 7.3. In Sec-

tion 7.4, DLC problem, relaxed-DLC problem, and the proposed LKDC algorithm are presented. Simula-

tion setup and performance analysis are presented in Sections 7.5 and 7.6, respectively. Section 7.7 

presents the concluding remarks.  
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7.1 Introduction 

P2P systems are continuing to grow, attracting millions of users and expanding into many appli-

cation domains beyond conventional file sharing. Modern P2P systems share a variety of resources such 

as files, processor cycles, storage capacity, and sensors. Current systems are designed based on either the 

system-wide behavior, attempting to provide everyone an equal level of service (e.g., average 

search/download time), or optimized for more dominant users’ requirements. In either case, the perfor-

mance of lookup (i.e., the process of searching for resources) degrades as the system sizes continue to 

grow. 

Recent studies [Zh10] show that P2P systems in fact consist of many smaller virtual communi-

ties. A community is a subset of peers that share some similarity in terms of resource semantics, geogra-

phy, or organizational boundaries (see Section 2.4). Peers have semantic relationships based on the type 

of resources they frequently access [Zh10, Ha06]. For example, BitTorrent has many communities dedi-

cated to music, movies, Linux distributions, and games (Section 2.1.1). Users from the same country tend 

to access similar resources as well. For example, for 60% of the files shared by eDonkey peers, more than 

80% of their replicas were located in a single country [Ha06]. Moreover, semantic and geographic simi-

larities are more prominent for moderately popular files. Communities may also arise based on organiza-

tional boundaries, e.g., members of a professional organization or a group of universities often forms their 

own community to share resources and limit unrelated external traffic. CASA (Section 2.2.1) is one such 

application where diverse communities of end users (e.g., emergency managers, National Weather Ser-

vice, scientists, media, and transportation agencies) access/share different subsets of data generated by a 

distributed set of radars. We can further envision distributed collections of large scientific databases such 

as Genome sequences, Geographic Information Systems (GIS), weather, census, and economic data that 

are accessed by various communities of users from academic, research, and commercial institutions. 

Emerging technological trends such as social networking indicate that we will continue to see the 

emergence of a large number of small and diverse communities within large P2P systems. Future P2P 

architectures therefore should support such communities by providing customized services based on their 
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distinct characteristics. Such architectures should allow the emergence, growth, existence, and disappear-

ance of communities on a continual basis, while enabling them to be a part of a global community or a 

system. Conversely, the P2P system can significantly benefit by taking into account the characteristics 

and requirements of these communities. 

Content popularity profiles in P2P systems follow a Zipf’s-like distribution [Ra04, Ra07, Sr01]. 

However, resources popularly shared within an individual community typically do not rank high in popu-

larity in the context of the overall P2P system [Ba12e, Ha06] and often are inconspicuous in the system-

wide behavior. Therefore, such communities are unable to benefit from performance enhancements such 

as caching and replication that focus only on the most popular resources. For example, Beehive [Ra04] 

and PoPCache [Ra07, Ra10] (see Section 2.5.2) force a large fraction of peers (in structured P2P systems) 

to cache the most popular resources regardless of their interests. In spite of requiring large caches and 

many probing messages to estimate the global popularity, such solutions are inconsiderate of moderately 

popular resources. Several caching solutions are also proposed for unstructured P2P systems [Co02, 

Th04] (see Section 2.5.1). However, due to the random overlay topologies in unstructured P2P systems, 

even the most popular queries are unable to benefit significantly from caching. Instead, several solutions 

propose to restructure the overlay topology based on users’ interests [Be10, Li09a, Xu10, Ze11]. These 

solutions provide better performance when a user’s interests match those of the overall community. How-

ever, community membership is not rigid. A user, for example, may belong to multiple communities or 

switch from a geography-based community to a semantic-based one. Moreover, a community of research-

ers analyzing the spread of epidemics may access multiple scientific databases such as Genome sequenc-

es, GIS, census, and weather data. Our analysis of search clouds from several BitTorrent communities 

(discussed in Section 7.2) confirms that user interests in different communities overlap to some degree. 

As the communities do not exist in isolation, it is desirable to form one large overlay by combining peers 

from all the communities such that resources can be efficiently accessed across all the communities. 

However, existing solutions cannot provide optimum performance under shared communities, and they 

are not designed to build communities based on incomparable similarity measures such as semantics and 
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geography. Alternatively, mixing of resources from multiple communities is not desirable, as the popular-

ity of individual resources typically subside due to the mixing of many unshared/unrelated resources (Sec-

tion 7.2). Therefore, it is important to not only maintain all the communities within a single overlay but 

also cater to their popularities. Moreover, it is necessary to develop proactive caching solutions that are 

aware of communities’ interests, adaptive, as well as message and storage efficient. 

We propose a proactive Community-Based Caching (CBC) solution for structured P2P systems 

where individual communities form seamlessly and cache resources of interest to them while being in a 

larger overlay. CBC consists of a sub-overlay formation scheme and a Local-Knowledge-based Distribut-

ed Caching (LKDC) algorithm. We first propose a method whereby sub-overlays are formed within the 

overlay network, enabling communities to forward queries through their members. While the queries are 

forwarded, LKDC algorithm causes the peers running it to identify and cache resources that are popular 

within their communities. Therefore, lookup queries for popular resources within a community are re-

solved faster. Consequently, both the community-level and the system-level lookup performance improve. 

Distributed Local Caching (DLC) requires global information such as hop count and content popularity 

that are difficult and costly to obtain. However, by analyzing the globally optimal behavior and taking 

into account the structural properties of the overlay, we show that it is still possible to develop a close-to-

optimal caching solution (namely LKDC) that relies purely on local statistics. CBC is independent of how 

the communities are formed, adaptive to changing popularity and user interests, and works with any 

skewed distribution of queries. It is more suitable when users primarily access resources from few com-

munities and when the size of a community is moderate to large with respect to the size of the overall P2P 

system. Furthermore, it introduces minimal modifications and overhead to the overlay network. Com-

pared to Beehive and PoPCache, which utilize large caches and distributed statistics, CBC caches more 

distinct resources using smaller caches and utilizes only the local statistics. Simulations based on Chord 

[St03] overlay, for example, show a 40% reduction in overall average path length with per-node cache 

sizes as low as 20. Less popular communities are able to reduce the path length by three times compared 

to system-wide caching. 
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7.2 Problem Formulation 

Communities tend to emerge naturally in P2P systems with a large pool of resources and users. 

For example, as BitTorrent grew, many web-based torrent search engines with specific interests on mov-

ies, songs, games, and software emerged in a top-down manner. Most search engines deployed their own 

trackers leading to islands of BitTorrent deployments (see Fig. 2.3). These isolated search engines are 

referred to as BitTorrent communities. Isolation became a problem, as users with diverse interests had to 

search in many communities to find peers with better upload capacities. Consequently, BitTorrent proto-

col version 4.2 enabled content look up across multiple communities using a Distributed Hash Table 

(DHT). Thus, the current BitTorrent system is a top-down aggregation of diverse communities. However, 

resource popularity subsides when multiple communities are aggregated. Section 7.2.1 first provides evi-

dence for these characteristics and discusses their implications on lookup performance. Next, the research 

problem is formulated in Section 7.2.2. 

 

7.2.1 Motivation 

As community membership is not rigid, P2P communities do not typically exist in isolation. For 

example, a user may belong to multiple communities, switch from a geography-based community to a 

semantic-based one, or belong to a geography-based community in a different country. We analyzed the 

search clouds from several BitTorrent communities to determine to what extent the communities tend to 

access the same content. Table 7.1 summarizes the similarities among communities, which were obtained 

by calculating the Cosine similarity [Sa68] among the lists of file names that appeared in search clouds of 

eight BitTorrent communities. User interests in most communities overlap to varying degrees. Few com-

munities are independent, e.g., seedpeer.com. Figure 7.1 illustrates the distribution of query popularity for 

three of the communities. Summary of those three datasets is given in Table 7.2. Ranked popularity dis-

tribution can be approximated by a linear function and its gradient determines the Pareto index k. Zipf’s 

parameter α can be estimated from this distribution as α = 1/k [Ad00]. Therefore, Zipf’s parameters of the 

three communities (including two datasets for kat.ph) are 0.53, 0.66, 0.79, and 0.98. This further confirms 
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Table 7.1 – Cosine similarity among different BitTorrent communities based on their search clouds. Date 

– 24/07/2010 ~04:55 GMT. 

Community
*
 EX FE SP TB TS TE TR 

FE 0.38 
      

SP 0.00 0.00 
     

TB 0.40 0.29 0.00 
    

TS 0.48 0.33 0.00 0.48 
   

TE 0.53 0.23 0.00 0.31 0.25 
  

TR 0.10 0.08 0.00 0.06 0.09 0.06 
 

YB 0.36 0.35 0.00 0.29 0.42 0.20 0.04 

* EX – extratorrent.com, FE – fenopy.com, SP – seedpeer.com, TB – torrentbit.net, TS – 
torrentscan.com, TE – torrentsection.com, TR – torrentreactor.net, YB – youbittorrent.com.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7.1 –  Popularity distribution of BitTorrent communities: (a) fenopy.com. α = 0.976; (b) 
youbittorrent.com. α = 0.53; (c) Dataset1 – kat.ph. α = 0.66; (d) Dataset2 – kat.ph, α = 

0.79. 

that communities have different popularity distributions. Rapid decline in cumulative distribution in Fig. 

7.1 (c) and (d) indicates that there are several highly popular queries. The same behavior is also observed 

when the popularity distribution is analyzed under different time scales (see Fig. 7.2).  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7.2 –  Popularity distribution of Dataset2 (kat.ph) over different time scales starting at 

2010/07/06 15:00 UTC: (a) 7 days. α = 0.76; (b) 1 day. α = 0.74; (c) 12 hours. α = 0.74; 

(d) 6 hours. α = 0.7. 

As the communities are not completely isolated, it is necessary and desirable to form one large 

overlay (by combining peers from all the communities) to efficiently access resources across all the 

communities. Several P2P solutions (e.g., SWOP [Hu04], SWAN [Li07c], ESLP [Li09b], Gossple 

[Be10], and Tribler [Ze11]) accommodate communities by restructuring the overlay topology to form 

clusters of community members. Such clusters provide better lookup performance when users’ interests 

match those of the overall cluster. However, lookup performance degrades when communities are partial-

ly isolated (due to inter-cluster lookup queries) where substantial fraction of queries is for resources out-

side of a particular cluster. For example, Tribler cannot search for contents beyond a node’s cluster (i.e., 

set of directly connected nodes) [Ze11]. A Gossple node cannot search for contents beyond what it has 

already received/heard from similar neighbors as it utilizes a gossip scheme [Be10]. Therefore, contents 
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Table 7.2 – Description of BitTorrent search terms datasets. 

Dataset fenopy.com youbittorrent.com Dataset1 – kat.ph Dataset2 – kat.ph 

Date 2010/07/24 04:37 
UTC. 

2010/07/24 04:43 
UTC. 

2010/06/09 00:00 to 
2010/06/27 15:41 UTC  

2010/07/06 15:00 to 
2010/08/10 09:44 UTC  

No of queries 200 150 9,669,034 18,891,335 

No of distinct queries 195 150 1,349,976 2,091,699 

Zipf’s parameter (α) 0.98 0.53 0.66 0.79 

 
are not guaranteed to be found. Though SWOP [Hu04] provides guaranteed content discovery, it utilizes a 

two-step lookup process within the DHT. Contents are first searched in the local index of cluster members 

regardless of whether the contents are indexed in them or not. When a look up within the cluster fails, it 

searches the global index. This two-step process increases the worst-case lookup cost compared to search-

ing only within the cluster. Moreover, these solutions are not designed to build communities based on 

incomparable similarity measures such as semantics and geography. Whereas, a good lookup solution 

should provide efficient inter and intra-community lookup and support communities based on different 

similarity measures. 

Resource popularity subsides when multiple communities are aggregated together unless all the 

communities access the same set of resources. For example, aggregation of two communities with Zipf’s-

like distributions does not necessarily result in a Zipf’s-like distribution unless they have an identical set 

of resources and popularity distributions. As an example, consider two communities with the same Zipf’s 

parameter  = 1.0 (see Fig. 7.3). Suppose resources 1, 3, and 4 in community one are same as the re-

sources 2, 5, and 6 in community two, respectively. Figure 7.3(c) depicts the corresponding aggregated 

frequency distribution. The frequency of all the resources has reduced and popularity distribution is no 

longer Zipf’s-like as multiple resources have the same frequency. This behavior is more prominent when 

multiple partially overlapped communities are aggregated. Therefore, even the most popular resources 

within a community can be inconspicuous in the system-wide behavior. Consequently, communities are 

unable to benefit significantly from caching solutions such as Beehive [Ra04] and PoPCache [Ra07] (re-

named as PCache in [Ra10]), that focus only on the most dominant resources within the entire P2P sys-

tem. Moreover, both Beehive and PoPCache collect distributed statistics to estimate the global popularity 
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(a) (b) (c) 

Figure 7.3 –  Aggregation of popularity distributions: (a) Community 1; (b) Community 2; (c) Aggre-

gated popularity distribution. 10 keys, α = 1.0. 

of resources. To provide a guaranteed mean path length, an optimization problem is then solved to deter-

mine how many cache entries to create and where to place them. For example, Beehive (implemented on 

top of Chord) places the most popular set of resources on every node in the system, second most popular 

set of resources on ½ of the nodes, third most popular set on ¼ of the nodes, and so on. Alternatively, 

PoPCache utilizes the structure of the Overlay Routing Tree (ORT) to place cache entries more efficient-

ly. The number of cache entries allocated to a particular resource is proportional to its global popularity 

and cache entries are placed along the ORT starting from the root node (i.e., node responsible for index-

ing a given resource). These solutions force a large fraction of nodes to cache the globally popular re-

sources regardless of their individual or community interests. Moreover, global popularity estimation is 

costly and error prone. Furthermore, the solution obtained by PoPCache is suboptimal as the actual ORT 

is asymmetric and nodes have limited cache capacity (see Section 7.4.2). In some cases, a resource that is 

not so popular within individual communities may still become popular in the system-wide behavior if 

many communities access it. Therefore, it is necessary to develop a proactive caching solution that is 

aware of communities and their interests, preserves the popularity distribution of individual communities 

and the overall system, adapts to varying user interests, and message and storage efficient. 

 

7.2.2 Problem Statement 

Future P2P architectures need to support a large number of communities while providing services 

based on their distinct characteristics. However, sharing among P2P communities suggests that communi-

ties should not be isolated, and conversely combining multiple communities together subside relative 
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Table 7.3 – List of symbols. 

Symbol Description 

b Key length in bits 

B Total cache budget 

ck Cache capacity allocated to key k 

Cn Cache capacity of node n 

Cave Average cache capacity of a node 

fk Normalized frequency/popularity of key k 

g(ck) Number of hops reduced by caching ck entries 

Have/have Average hops in a network with/without caching  

n
k

h
 

Number of hops required to resolve query for key k starting at node n 

hopmax Number of hops to forward a community-member-discovery message 

ki i-th key 

K, K Number/set of keys 

mi i-th community 

ni i-th node 

N, Nm, N Number/set of overlay nodes, Nm – in community m 

Sk Size of key k 

Tcache Caching threshold 

Tremove Remove threshold for entries in lookup table  

n
k

v
 

Value of caching key k at node n 

n
k

x
 

Whether key k is cached at node n. 1 if cached, otherwise 0. 

 Zipf’s parameter 

β Parameter use to approximate g(ck) 

θ Weighting factor for query demand 

, μk KKT multipliers 

n
k


 

Demand for key k at node n 
 

popularities of contents. Existing solutions are inadequate as they are limited to either isolating communi-

ties or combining all the communities together. Alternatively, better lookup performance can be gained by 

catering to the popularity of individual communities while being members of a larger P2P system. 

Consider a P2P system with a set of M communities, with community m  M consisting of a set 

of Nm nodes interested in a set of Km resources with normalized popularity fk, where k  Km. Node n  

Nm has a cache capacity Cn. List of symbols is given in Table 7.3. Our goal is to find a feasible assign-

ment of cache entries to peers that minimizes the average hop count of each community m  M. The de-

sired distributed solution should support communities based on multiple similarity measures, be adaptive 

to varying user interests, work with any skewed distribution of queries, introduce minimum modifications 

to the overlay topology, and be efficient with respect to cache storage and overlay messages exchanged. 
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Figure 7.4 –  Chord overlay network: (a) Node connectivity in Chord; (b) Two communities formed on 

top of the Chord overlay. 

7.3 Caching Solution for Communities 

We focus on structured P2P systems, as they are appropriate for large-scale implementations due 

to high scalability and some guarantees on performance [Gu03]. Let us discuss a specific example using 

Chord (Section 2.1.2), which is considered the most flexible and robust structured P2P system [Gu03]. 

The discussion is applicable in general to other structured P2P systems as well. Chord maps both nodes 

and resources into a circular key space (see Fig. 7.4(a)) using consistent hashing. However, Chord as-

sumes all nodes to be equal partners and does not support any community formation. A node is assigned 

to a random location within the ring. Based on the key, a resource is indexed at its successor, i.e., the 

closest node in the clockwise direction. Each node n maintains a set of pointers, called fingers, to nodes 

that are at (n + 2
i – 1

) mod 2
b
, where 1 ≤ i ≤ b and b is the key length in bits. For example, node nE in Fig. 

7.4(a) keeps fingers to nodes nF, nG, nH, and nJ. Routing table at a node consists of these fingers and it is 

called the finger table. The fingers are used to recursively forward a message to a given key within O(log 

N) hops. For example, nE can reach nL through the route nE  nJ  nL. A node may also identify redun-

dant fingers (to additional nodes) to reduce the latency and enhance robustness, e.g., if nE knows about nK, 

a message may also take the path nE  nK  nL. Nodes can get to know about the demand for different 

keys by observing the get(key) messages that are forwarded through them. Accordingly, they can either 

cache the resources corresponding to those keys or their location. For example, if some of nL’s contents is 

cached at nJ, it can respond to a query from nE to nL within one hop. 
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Section 7.3.1 presents how community members can be used to cache resources popular within a 

community. A mechanism to identify community members is presented in Section 7.3.2. Then require-

ments of community-influenced caching are discussed in Section 7.3.3. 

 

7.3.1 Exploiting Community Members to Cache 

A community is a subset of peers with common interests. However, members of a community 

may or may not be aware of each other. Figure 7.4(b) illustrates an overlay network having two commu-

nities. One of the communities, for example, may be based on semantics while the other may be based on 

geography. When communities are based on geography or organizational boundaries, nodes can be con-

figured with their unique Community Identifiers (CIDs). However, some of the peers may not know their 

CIDs, may not be aware of the existence of a community with similar interests, or may not even belong to 

any of the communities. For such cases, solutions such as [Li09a, Gi10] may be extended to assign CIDs 

to nodes based on their similarity. Dissimilar metrics may be used to group the peers into communities. 

The only constraint is that each community needs to be identified using a unique CID. For rest of the dis-

cussion, we assume such decisions are taken at the application layer [Da03], outside of the overlay or 

caching solution. Assuming that each peer knows its CID, our goal is to facilitate routing of overlay mes-

sages related to a community via its members (by forming a sub-overlay) thus eliminating the inefficiency 

due to being in a common overlay. During the first couple of hops, the overlay messages tend to hop long 

distances in the key space and take alternative routes within overlay [Gu03, Ra10]. Messages converge in 

the last couple of hops as they approach the destination. Such behavior provides an opportunity for a node 

to reach its own community members in the first few hops, and then resolve queries using their caches. 

For example, suppose key kL indexed at node nL is popular within Community 1 (Fig. 7.4(b)). nk is likely 

to cache kL as it forwards many queries from its community members to nL. Consequently, future queries 

for kL can be answered at nk reducing one-hop. This enables the communities to identify and cache re-

sources of interest to them while enhancing the overall lookup performance. The destination node of a 

query may or may not belong to the same community as the query-originator, e.g., nE and nL belong to 
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two different communities. A querying node n forwards a query through members of its community m 

(regardless of destination node’s community) under the assumption that “a resource important to n is also 

important to other members of m and they may have queried it before n did. Therefore, the resource is 

likely to have been cached in one of the community members along the path”. This assumption and the 

flexibility of using alternative routes are exploited next to design the CBC solution for large-scale P2P 

systems with multiple communities. Our goal is to combine desirable features of structured P2P systems 

and caching in such a manner that multiple communities can coexist and benefit while being in a large 

P2P system. In doing so, we first propose a mechanism to form sub-overlays by identifying community 

members and then propose an algorithm to decide what resources to cache. 

 

7.3.2 Sub-Overlay Formation 

Suppose each community has a unique CID. Each node indicates its communities using one or 

more CIDs or uses a predefined identifier to indicate that it is not in a community. Therefore, our solution 

supports communities based on different similarity measures or allows exceptions based on users’ inter-

est, e.g., a node in the U.S. may connect to a community in India just to access Hindi movies. Based on 

CIDs, nodes try to establish stronger connections among community members allowing them to forward 

queries through sub-overlays. 

To build a sub-overlay, each node needs to identify other community members that are at approx-

imately exponential distances in the key space. For example, it is useful for nE (Fig. 7.4) to keep pointers 

to nG, nI, and nK instead of nF, nH, and nJ. To take advantage of alternative routes, we need to identify 

members only for the higher-order pointers/fingers, i.e., ones that point to faraway nodes. To ease the 

identification process, each node advertises its CIDs to its successor, predecessor, and other nodes that 

keep pointers to it. Such advertisements can be piggybacked onto overlay maintenance messages. How-

ever, given a large number of communities, it is unlikely that a node will identify members using only the 

advertisements that are sent to specific nodes. Nevertheless, if nodes receiving such advertisements are 

willing to track those CIDs within their routing tables, other nodes may query them to find community 
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members. For example, if nE queries nJ’s routing table, it may get to know about nK. The majority of the 

structured P2P systems such as Chord, Pastry, and Kademlia (Section 2.1.2) maintain many pointers. 

Therefore, nodes are likely to figure out at least one member for most of the higher-order pointers by 

sampling a few nodes. 

Following mechanism is proposed to discover community members in Chord. Each node in 

Chord maintains at least 2 log2 N fingers. i-th finger (b – 2 log2 N ≤ i ≤ b) points to a key space of size 2
i – 

1
, i.e., i-th finger can be used to reach any key within a distance of [2

i – 1
, 2

i
). Following lemma shows that 

both the node pointed to by the i-th finger and its successor each has a maximum of i + 2 log2 N – b fin-

gers, within this range. 

Lemma 7.1. By probing the finger tables of nodes pointed by the i-th finger and its successor 2(i + 

2 log2 N – b) – 1 distinct nodes can be identified. 

Proof.  Consider the i-th finger of node A in Fig. 7.5. A maintains this finger to the successor B of key 2
i –

 1
. Then, j-th finger of B points to the address 2

i – 1
 + 2

j – 1
 (let C be the successor of this address). (j 

+ 1)-th finger of B points to the address 2
i – 1

 + 2
j
 (let D be the successor of this address). Similar-

ly, (j + x)-th finger of B points to the address 2
i – 1

 + 2
j + x – 1

. As the (i + 1)-th finger of A has to be 

greater than the last finger x of B, 2
i
 > 2

i – 1
 + 2

j + x – 1
. After some simplifications we get x < i – j. 

Though fingers in Chord span (1 ≤ i ≤ b), in practice minimum finger of a node starts at b – 

2 log2 N [St03]. Then j = b – 2 log2 N. Therefore, 

0 ≤ x < i – b + 2 log2 N  (7.1) 

 Similarly, k-th finger of C points to D which is the successor of address 2
i – 1

 + 2
j – 1

 + 2
k – 1

. (k + 

1)-th finger of C points to address 2
i – 1

 + 2
j – 1 

+ 2
k
. Similarly, (k + y)-th finger of C points to 2

i – 1
 

+ 2
j – 1 

+ 2
k + y - 1

. As the (i + 1)-th finger of A has to be still greater than the last finger y, 2
i
 > 2

i – 1
 + 

2
j – 1

+ 2
k + y – 1

. Using the same argument as (7.1), we get 

0 ≤ y < i – b + 2log2 N (7.2) 

  Therefore, B pointed to by the i-th finger and its successor C each has (i + 2 log2 N – b) fingers, 

within the range 2
i – 1

. Furthermore, C points to (i + 2 log2 N – b – 1) distinct nodes compared to 
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Figure 7.5 –  Finger entries in Chord. 

B. Thus, by probing the finger tables of those two nodes we can identify 2(i + 2 log2 N – b) – 1 

distinct nodes. □ 

Thus, by probing the finger tables of successor of the i-th finger and its successor, we can identify 2(i + 

2 log2 N – b) – 1 distinct nodes. If desired, the finger table of successor’s successor may also be probed. 

Moreover, it can be proven that the probability of finding a community member increases with i: 

Lemma 7.2. Community members are more likely to be found for higher-order fingers using the proposed 

community-member identification scheme. 

Proof. Consider a community m with Nm nodes. Chord maps node to uniformly random locations in the 

ring using consistent hashing. Therefore, probability of sampling a community member anywhere 

in the ring is Nm/N. According to Lemma 7.1, when the finger number i increases (i.e., higher-

order fingers), number of distinct nodes that can be found by sampling the finger tables of node 

pointed by the i-th finger and its successor increases. Let ε be the number of distinct nodes found 

by probing the finger table of the node pointed by the i-th finger and its successors. The probabil-

ity that at least one of those ε nodes belongs to community m is: 

 












N

N
P m11membercommunity  a Finding  (7.3) 
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 ε increases with i and the number of successors’ finger tables sampled. Consequently, the proba-

bility of finding a community member for higher-order fingers increases.  □ 

For example, if the nodes are uniformly distributed in the key space, more community members are likely 

to be available between pointers to nH and nJ than between nG and nH. Chord periodically refreshes finger 

table entries by sending maintenance messages to identify/validate nodes pointed by fingers. We can get 

those messages to probe the finger tables for community members. If a member is not found, the message 

is forwarded to the successor and its finger table is checked. It will be further forwarded to the successor’s 

successor, if a member is still not found. Maintenance message of i-the finger should not be forwarded to 

the node pointed by the (i + 1)-the finger. We limit the number of hops to forward a maintenance message 

using the parameter hopmax. If a member is found, its contact details can be piggybacked onto the response 

to the maintenance message. If finger tables have limited capacity, nodes may replace the original Chord 

fingers with the fingers to community members. Otherwise, both fingers may be maintained for resili-

ence. 

If a node changes its community, members of the new community can be identified by refreshing 

the finger table either immediately or during the next cycle of overlay maintenance messages. Hence, 

nodes can identify relevant community members with minor overhead, and any structured P2P system 

that provides alternative routers can be used to relay messages through them. Furthermore, worst-case 

path length bound is still maintained as we preserve the properties of the overlay routing protocol. Our 

survey of BitTorrent users shows that though users are likely to access contents from multiple communi-

ties (e.g., 90% of the users accessed up to six communities), 89% of the time they access content from 

only one or two communities. Therefore, to improve the lookup performance a node needs to maintain 

fingers only for its primary set of communities. Details on survey questions and results are given in Ap-

pendix I. Overlay messages may be tagged with the CID of the source node so that intermediate nodes 

can use the suitable set of fingers while forwarding a message. 
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7.3.3 Community-Influenced Caching 

As the messages are forwarded through sub-overlays, nodes are able to identify and cache re-

sources that are relevant to their communities. Because we focus on communities’ interests and preserve 

the overlay routing properties, local estimation of relative popularities is adequate to decide what a node 

should cache. For example, consider a node n with cache capacity Cn = 1. If messages mostly come from 

community members, and key ka is requested more frequently than kb, n will cache ka. Sometimes n may 

observe even more requests for a kc that is not accessed by its community. This occurs if n is along the 

path to an overlay neighbor (in ORT) that indexes a globally popular key (recall that different overlay 

routes converge as a message reaches its destination). In such a case, it is useful for n to cache kc to im-

prove overall lookup performance of the entire P2P system. When members of the community interested 

in kc (if there is such a community) realize that it is a popular resource, they will add kc to their own cach-

es. Consequently, n will observe a lower demand for kc, giving it the opportunity to cache ka. Therefore, 

in contrast to previous solutions [Co02, Ra04, Ra07, Ra10], local statistics are adequate to provide a cus-

tomized service to each of the communities. Next, we discuss how to distributedly allocate the limited 

cache capacity of each node optimally based on the local statistics and structure of overlay topology. 

 

7.4 Distributed Caching 

In Section 7.4.1 we first formulate the Distributed Local Caching (DLC) problem. DLC problem 

requires global information that is difficult to obtain. Hence, a relaxed version of the problem is formulat-

ed in Section 7.4.2 based on the overlay properties to answer the two key questions: where to place cache 

entries? and how many cache entries to create?. Based on this formulation, a heuristic-based caching algo-

rithm is proposed in Section 7.4.3. 

 

7.4.1 Distributed Local Caching 

In DLC, each overlay node independently decides what keys to cache based on the get(key) mes-

sages that it forwards. For example, suppose nJ in Fig. 7.4 can cache only one key and each node indexes 
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only one key. If key kL (indexed at node L) is requested more frequently than kK, nJ should cache kL and its 

corresponding value. Therefore, in contrast to previous solutions [Co02, Ra04, Ra07, Ra10], local statis-

tics are adequate to determine what keys to cache at a node. Query arrivals in P2P systems show flash-

crowds, as well as diurnal and seasonal effects [Ra04, Zh10]. Therefore, statistics such as periodic, net-

work-wide query counts or arrival rate estimates, used in [Co02, De10, Ra04, Ra07, Ra10], are inade-

quate to decide effectively when and what to cache. Moreover, such distributed sampling messages intro-

duce a significant overhead. Instead, nodes can still be made adaptive, if local statistics are collected at 

different granularities such that long-term and/or short-term popularity changes are properly captured. 

However, to design an effective solution both the local statistics and overlay topology must be taken into 

account. For example, suppose nE forwards five messages to nF and three messages to nL through nJ. 

Based on local statistics nE will cache nF’s resources. Therefore, nE can answer five queries in the future 

(assuming same query characteristics) and reduce the total hop count by five-hops. However, if nE caches 

nL’s resources, it can answer three queries while reducing the overall hop count by six-hops. Therefore, it 

is desirable to cache nL’s resources at nE, instead of nF’s resources, as the objective of DLC is to improve 

the lookup performance at a node by reducing the path length of all queries that it forwards. However, 

reduction in path length cannot be accurately estimated unless topology information is available. Moreo-

ver, path length varies when nodes join and leave the network frequently. Such tradeoffs also need to be 

made when cache capacities of nodes are different (e.g., heterogeneous servers, desktops, and mobile de-

vices) and size of resources varies (e.g., file size and a list of IP addresses of a domain name). Hence, 

overlay topology, cache capacity, size of resources, and their popularity need to be taken into account 

while determining where to place cache entries and how many cache entries to create. 

Consider a P2P system with sets of N nodes and K keys, and let N and K represent the respective 

set sizes. Each node is selfish where a node tries to maximize the number of queries it can answer (irre-

spective of other nodes) by caching a subset of the (key, value) pairs. Let Sk  Z
+
 be the size of key k  K. 

Let Cn  Z
+
 be the cache capacity of node n  N. At each node n  N, there is a demand 

Zn
k  for 
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Κk (e.g., number of queries received over a given period t). Assuming demand for k does not change 

in the near future, value of caching k depends on its demand (i.e., same number of queries can be an-

swered locally) and the number of hops that will be reduced due to caching. Therefore, value of caching k 

at n is 
 n

k
n
k

n
k hv   for Κk , where 

n
kh  is the number of hops required to resolve a query for 

k starting at n. Our goal is to minimize the average hop count at a node, given by: 
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where }1,0{n
kx  determines whether k is cached at node n ( 1n

kx ) or not ( 0n
kx ). This can also be 

interpreted as maximizing the hop count reduction while satisfying the node’s cache-capacity constraint. 

Then the DLC problem can be formulated as an optimization problem: 
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 (7.5) 

Theorem 7.1. DLC problem in (7.5) is NP-complete. 

Proof.  We consider the decision problem of (7.5) as it simplifies the proof. The equivalent decision prob-

lem can be stated as follows: 

Let x
n
 be a binary K-vector where  n

K
nnnn xxxxx ,,,, 321  . Given a network instance with no cache 

entries and an integer T, is there an assignment of (0, 1) values to x
n
 such that R ≥ T and capacity 

constraint is satisfied? 

To show the NP-completeness, we need to first show that the problem belongs to NP and then 

prove the problem is NP-hard by reducing a known NP-complete problem to our decision prob-

lem [Co09a].  

An algorithm which chooses (0, 1) values for elements of x
n
, and then check the cache-capacity 

constraint can decide the problem in polynomial time O(K). Therefore, decision problem belongs 
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to NP [Co09a]. Next, consider the following instance of the 0/1 Knapsack problem, which is 

known to be NP-complete [Ga78]: 

Instance: A finite set U, for Uu  let 
)(us  be the size and 

)(uv be the value, let 

S  be the size constraint, and 
V  be the value goal. 

Question: Is there a subset UU   such that Sus
Uu


 /

)(  and Vuv
Uu


 /

)(  ?  

 0/1 Knapsack problem has a one-to-one mapping to our decision problem where cache capacity 

of a node Cn = S, set of keys K = U, size of a key Sk = s(u), value achieved by caching k at node n 

)(uvhv n
k

n
k

n
k   , value goal T = V, and subset UΚ nx . This mapping can be done in poly-

nomial time. Therefore, for every Knapsack instance we can construct a DLC problem. Hence, 

the 0/1 Knapsack problem reduces to the DLC problem. Therefore, the 0/1 Knapsack problem can 

be solved by solving the DLC problem. However, it is known that the 0/1 Knapsack problem is 

NP-complete [Ga78]. Therefore, DLC problem is also NP-complete. □ 

While the optimization problem is NP-complete when the content sizes (Sks) are different, for the purpose 

of enhancing the lookup performance it is sufficient to assume Sks are small and of similar size. For ex-

ample, when resources are small (e.g., domain names), a cache entry can be a replica of the resource. 

When resources are large (e.g., files), then a cache entry can point to the location(s) of the resource. 

Therefore, for practical purposes, we can assume Sk = 1 for k  K. Then the DLC problem for the pur-

pose of content lookup can be formulated as follows: 

n
n
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 (7.6) 

This problem can be solved using a greedy algorithm [Ga78] that caches the set of resources with the 

highest value n
kv . However, to calculate 

n

kv  we still need 
n

kh , which is difficult to obtain in practice. 
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Next, by analyzing the globally optimal behavior and taking into account the structural properties of the 

ORT, we show that it is possible to develop a close-to-optimal caching solution without finding n
kh . 

 

7.4.2 Global-Knowledge-Based Distributed Caching 

We formulate a relaxed version of the DLC problem in (7.6) that yields an analytical approxima-

tion to determine a suitable cache placement strategy. We consider the structure of ORT, as the topology 

is important in determining where and how much to cache. Figure 7.6(a) illustrates a Chord ring with 32 

nodes occupying the entire address space (b = 5, address range [0, 31]). Figure 7.6(b) illustrates the 

asymmetric ORT corresponding to key seven (k7) for the general case where each node sends one get(k7) 

message. Branch weights indicate the number of messages forwarded from each node to its parent. A 

Chord ring with all the nodes is considered to simplify the following discussion. It was also confirmed 

(through simulations) that such an asymmetric tree exists even when only a small number of nodes are 

randomly mapped to the Chord ring (i.e., N ≪ 2
b
). Asymmetric ORT explains why the path length in 

Chord is bounded by O(log2 N), average path length is ½log2 N, and bell shaped distribution of path 

lengths (e.g., see the number of branches at each level of the tree listed on the right of Fig. 7.6(b)). To our 

knowledge, the relationship between asymmetric the ORT and above three properties was not observed in 

prior studies. Similar ORTs can be formulated for other structured P2P systems as well. 

Next, we determine the best cache placement strategy given the asymmetric ORT. Node six (n6) 

forwards the largest number of messages to n7. Hence, if there is only one cache entry, it should be placed 

at n6 such that all 16 lookup messages can be answered while reducing the number of hops by 16. Sup-

pose there are two cache entries. First entry should be placed at n6 and the remaining entry can be placed 

at either n5 or n4. If the second cache entry is placed at n5, it reduces eight-hops and the total reduction is 

16 + 8 = 24-hops. Instead, if the second cache entry is placed at n4, it reduces two-hops for eight messages 

(between n4 and n6) and one-hop for remaining eight messages (between n6 and n7). Still the total reduc-

tion is 24-hops. If there are three cache entries, they should be placed at nodes n6, n5, and n4, and the total 
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Figure 7.6 –  Chord overlay: (a) Ring with 32 nodes. Only the predecessors of node 7 and the longest 
path is shown; (b) Overlay routing tree of node 7.  

reduction is 32-hops. Similarly, if there is a fourth cache entry, it can be placed at n3, n2, n1, or n0, and 4-

hops will be reduced. Following lemma determines the number of hops reduced by allocating ck cache 

entries to k. 

Lemma 7.3. If ck ≥ 1 cache entries are allocated to key k, the number of hops reduced is 

 



kc

i

ik

N
cg

1

log22
1

2
)(

 

Proof.  When cache entries are placed according to the structure of the ORT, the reduction in the number 

of hops due to addition of each cache entry follows the sequence 16 + 8 + 8 + 4 + 4 + 4 + 4 + 2 

+ …. When there are N nodes in the network, the height of the ORT is log2 N. Then the number 

of messages forward by the predecessor (node that forwards the most number of messages) can 

be given by (assuming each node sends one message): 

2/2
1log2 N

N



 (7.7) 

 Thus, by placing the first cache entry at the predecessor same number of hops can be reduced. 

Each node where second and third cache entries are placed help to reduce the number of hops by 

½ of (7.7). Similarly, each node where fourth to seventh cache entries are placed help to reduce 
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the number of hops by ¼ of (7.7). Each of the next eight cache entries will reduce the hop count 

by 
1
/8 of (7.7). Therefore, the total number of hops reduced can be given by the sequence: 









 

8

1

8

1

8

1

8

1

8

1

4

1

4

1

4

1

4

1

2

1

2

1
1

2

N
 (7.8) 

 As ck is finite, the total number of hops reduced g(ck) can be rewritten as: 

  



kc

i

ik

N
cg

1

log22
1

2
)(  (7.9) 

 This completes the proof.  □ 

When ck = 0, g(0) = 0. The average reduction in hop count is given by g(ck)/N, assuming each node sends 

a single message. Given that the ORT is asymmetric, this is the best cache placement strategy. PoPCache 

assumed that the ORT is symmetric, and hence cache entries were placed at level 2 nodes only after plac-

ing them at all the level 1 nodes. For example, a cache entry was placed at n4 only after n6, n5, n3, n31, and 

n23. Therefore, PoPCache did not effectively utilize the ORT to place cache entries. 

Given the ORT-based cache placement strategy, we now determine how many cache entries to 

create for each key k (ck  Z
+
) based on its popularity. Each key has a corresponding ORT and each over-

lay node belongs to multiple ORTs. Depending on a node’s position in different ORTs and popularity of 

keys, it may have to cache multiple (key, value) pairs. However, how much a node can cache depends on 

its cache capacity Cn. We relax the per node cache-capacity constraint in (7.6), such that caching behavior 

with respect to each key can be examined separately. However, we still assume a fixed global cache 

budget B. B = NCave ≪ NK, where Cave is the average cache capacity of a node. Furthermore, assume the 

global popularity of keys is known and the normalized popularity of k is fk (0 < fk ≤ 1). Keys are ordered 

according to their popularity f1 ≥ f2 ≥ f3 ≥…≥ fK. Further assume each resource is of unit size (e.g., address 

of a node that indexes a resource). We name this scheme as Global-Knowledge-based Distributed Cach-

ing (GKDC). The corresponding relaxed GKDC-optimization problem is given in Lemma 7.4. 

Lemma 7.4. Relaxed GKDC-optimization problem can be formulated as: 
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Proof.  Average number of hops reduced by placing ck cache entries of k can be given by g(ck)/N. Aver-

age number of hops have required to find a key without caching is typically known for a given 

structured P2P system, e.g., in Chord have = ½ log2 N. Therefore, the average number of hops to 

find k with caching is given by: 

 
N

cg
hh k

ave
caching
k

)(
  (7.10) 

 Then the average hop count Have of the entire P2P system can be found by weighting the hop 

count of keys under caching by their normalized popularity. Therefore, 









 

 N

cg
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 After some simplifications following can be obtained (as 1 Κk kf ): 





Κk

kkaveave cgf
N

hH )(
1

 (7.12) 

 Our goal is to minimize Have. As KN ≫ B we should utilize the total cache budget B to minimize 

Have. However, it is not useful to cache the same key multiple times on a node. Therefore, ck 

should not exceed N – 1 (ignoring the root node, which already has a copy of the resource). Thus, 

(7.12) should satisfy the following constraints on ck:   

Κ
Κ




kNcBc k

k

k 1and  (7.13) 

 Together (7.12) and (7.13) complete the proof. □ 

The summation term in the objective function indicates the number of hops reduced due to caching. First 

constraint captures the global cache-capacity constraint. The second constraint bounds ck, as it is not use-

ful to cache the same key multiple times at a node. While formulating the optimization problem, 

PoPCache used the upper bound O(log N) instead of have, did not bound ck, and assumed that the ORT is 
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symmetric. Therefore, it provides a loose upper bound to Have (demonstrated in Section 7.6.1) and is una-

ble to fully utilize B. Beehive does not consider a bounded B, structure of the ORT, and support only a 

Zipf’s-like popularity distribution. Optimization problem can be restated as maximizing the hop count 

reduction: 

Κ
Κ

Κ









kNcBc

cgf

k

k

k

k kk

1,subject to

)( maximize

 (7.14) 

Theorem 7.2. Have is minimized when 

 

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otherwise
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where P(l, K, ) is the sum of popularity of last K – l keys and l is the smallest key identifier that 

satisfies 

 
1

),,(

)1(1 
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KlP

NlBf l


 

Proof. This is a NonLinear-Integer-Programming (NLIP) problem hence cannot be solved analytically as 

it does not have a known structure [Li06]. Numerical solutions also fail even under moderately 

large N and K, which dramatically increase the search space of the NLIP problem. Therefore, we 

consider the corresponding relaxed NLIP problem, where ck  R
+
, as it provides a useful lower 

bound [Li06] to the objective function in Lemma 7.4.  i2log
2  in g(ck) can be approximated as 

i2log
2 .  is a parameter that is used to indicate the upper bound ( = 0), lower bound ( = 1, 

when ck ≥ 2), and average value ( = log2 1.5) of  i2log
2 . Then g(ck) can be rewritten as: 

)ln(2
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 where  = 0.5772156649 is the Euler’s constant. Then the objective function is: 




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 (7.16) 
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 We only need to focus on the summation term in (7.16) and the constraints in (7.14), as rest of the 

parameters are constant for a given network. This is a global optimization problem, as (7.16) is 

concave [Bo04] and the corresponding minimization problem is convex. Karush–Kuhn–Tucker 

(KKT) conditions [Bo04] can be used to solve the minimization problem of (7.16). Then (7.16) 

should satisfy the following (using formula for corresponding minimization problem): 

  01ln 





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


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 

NcBccf k

k k

kkk 
K K

 (7.17) 

From stationarity and dual feasibility: 

 Κ kcf kkkk 0,0   (7.18) 

 From the complementary slackness: 

   Κ kNckk 01  (7.19) 

 There are 2K + 1 unknowns and same number of equations. However, complementary slackness 

provides only a check. Hence, we need to substitute values for  and k, and then check the feasi-

bility. Suppose k = 0 Κk . Then by substituting  = fk/ck (from (7.18)) to the budget con-

straint, 1/ = B. Therefore, ck = fkB. As ck ≤ N – 1, ck = fkB ≤ N – 1. Then fk ≤ (N – 1)/NCave ≈ 

1/Cave. This implies that fk cannot be large (e.g., if Cave = 20, fk ≤ 0.05). However, in practice, the 

most popular key k1 may contribute to a large fraction of the queries, if the popularity distribution 

is skewed. For example, f1 = 0.092 for a Zipf’s distribution with  = 1.0 and K = 30,000. There-

fore, the solution is not optimum. Suppose  = 0. Then k = fk/ck suggests k > 0. From (7.19), 

ck = N – 1 Κk . This cannot be true as B ≪ NK. Suppose ck < N – 1 for some of the keys. For 

those keys k = 0 (from (7.19)). Suppose the most popular l keys are cached in all N – 1 nodes. 

Then from the budget constraint: 
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194 
 

 where P(l, K, ) is the sum of popularity of last K – l keys.  is a parameter that captures the 

popularity distribution of keys (e.g., Zipf’s parameter). By substituting 1/ from (7.20) in 

 = fk/ck: 

 
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
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



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else
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KlP

NlBf

lkN

c kk  (7.21) 

 and l is the smallest key that satisfies cl + 1 < N – 1. □ 

Equation (7.21) suggests that the most popular keys should be cached in all the nodes, and the 

remaining cache capacity B – l(N – 1) should be allocated in proportion to the popularity of rest of the 

keys. This is the best cache-capacity-allocation strategy given that the ORT is asymmetric. Therefore, in 

contrast to PoPCache, we are able to fully utilize the available cache capacity B and provide a tight bound 

to Have. Moreover, (7.21) is valid for any popularity distribution. Have can be determined by substituting 

(7.21) in Lemma 7.4. It is also possible to solve the optimization problem to determine the required cache 

budget B given a target Have. The optimum value of the objective function provides a lower bound to the 

original NLIP problem as the optimization problem is convex [Li06]. It was observed that the numerical 

solution to the relaxed-NLIP problem (i.e., ck  R
+
) is identical to our analytical solution. Correctness of 

the analytical solution and comparison with PoPCache are presented in Section 7.6.1. While these bounds 

are valid for Chord, we believe a similar approach will yield the bounds for other structured overlays by tak-

ing into account the structure of their ORTs. 

 

7.4.3 Local-Knowledge-Based Distributed Caching 

Cache placement and capacity allocation strategies obtained using the analysis of GKDC can be 

used to develop a heuristic-based algorithm for the DLC problem. Asymmetric ORT indicates that a key 

should be cached first at the node that forwards the largest number of messages. Then at one of the nodes 

that forwards the second largest number of messages, and so on. This will result in a consistent reduction 

in path length of messages. Theorem 7.2 says that the cache capacity should be allocated in proportion to 
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the global popularity of keys. In DLC, nodes are not aware of the global popularity of keys. However, 

most popular keys are evident throughout corresponding ORTs while moderately popular ones are evident 

at lower levels of the ORTs. Therefore, a good approximation to the proportional allocation can be ob-

tained using a heuristic that captures the relative popularity of keys at a node. For example, if a node with 

cache capacity Cn = 1 forwards messages of ka more frequently than messages of kb, it should cache ka. 

Moreover, such a heuristic enables the enforcement of per node capacity constraint where a node will 

cache locally most popular Cn keys. Furthermore, local statistics can be collected at different granularities 

such that long-term and/or short-term popularity changes are properly captured. We propose a caching 

algorithm based on the perfect Least Frequently Used (LFU) algorithm to reduce the caches from being 

thrashed while ensuring overlay dynamics are sufficiently captured. 

Figure 7.7 illustrates the proposed caching algorithm described using the common API in [Da03]. 

Each node n has a cache, which can store up to Cn (key, value) pairs. Each overlay message (msg) has a 

source node, message type (put or get), and a key. For each get(key) message that a node receives, we 

track key’s demand  R
+ 
using a (key, demand) pair which is stored in the lookup table LT. get() messages 

also maintain a list of nodes (cList) that have decided to cache the resource. forward is an upcall, to the 

DHT layer, invoked at each node that forwards a message. It enables intermediate nodes to cache, collect 

statistics, or drop messages. put(key, value) messages are handled as usual. When a get(key) message is 

received, each node keeps track of the demand for the corresponding key regardless of whether it is al-

ready cached or not (line 4 in Fig. 7.7). The local cache is then checked to see whether the msg can be 

answered. If so, replies are directly sent to the source node and to the list of nodes in the cList that are 

interested in caching the resource (lines 5-8). msg is then dropped (line 9). If the key is not in the cache, 

the node tries to determine whether it is useful to get a copy of the resource. If the cache is already full, it 

checks whether the given key has a higher demand than the LFU cache entry (lines 12-13). A node may 

also request a copy of the resource, if the cache is not fully occupied and the demand is above the caching 

threshold Tcache (lines 17-18). In either case, the node appends (piggyback) its identifier to the cList in the 

msg. The msg is then forwarded to the next node. Intermediate nodes may also append their identifiers to 
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void forward(key, msg, nextHop*) 

1 
2 

3 
4 
5 
6 
7 
8 
9 
10 

11 
12 
13 
14 
15 
16 
17 
18 
 

If msg.type = PUT   //put message 

 return 

If msg.type = GET  //get message 
 addLookup(key)  //Track demand 

 If key  cache  //In cache 

 sendDirect(msg.source, key, cache[key]) 
 For each i in msg.cList[ ] //Send to each cache requester 
 sendDirect(msg.cList[i], key, cache[key]) 
 nextHop  NULL //Drop original get message 
 Else   //Not in cache 
 If cache.size( ) = Cn //Cache already full 
 key_lowest  getCachedKeyWithLowestDemand(LT[ ] ) 

 If LT[key] > LT[key_lowest] //Higher demand 

 msg.cList[ ]  myNodeID //Request a copy 
  delete cache[key_lowest] //Remove lowest 

 Else 
  If LT[key] > Tcache  // Higher demand 
 msg.cList[ ]  myNodeID //Request a copy 

void addLookup(key) 

19 
20 
21 
22 
23 
24 

25 
26 
27 

For each i in LT[ ] 
 If i = key  //Increase demand for key 
 LT[i] = (1 + θ) × LT[i] 
 Else   //Decrease demand for others 
 LT[i] = (1 – θ) × LT[i] 
 If LT[i] < Tremove //Very low demand 

 delete LT[i]  //Remove key 
If key not in LT 
 LT[key]  θ 

Figure 7.7 –  Local knowledge-based distributed caching algorithm. 

the msg, if they also decide to cache the resource. The threshold Tcache reduces the caching overhead and 

cache thrashing. 

If resources are small and relatively static (e.g., domain names), then a cache entry can be a repli-

ca of the resource. If resources are large, mutable, or the set of peers having a resource is dynamic (e.g., 

files and processor cycles), then the cache entries can point to sources of the resources. Therefore, our 

caching scheme can locate all copies of small and relatively stable resources, or point to a subset of large, 

mutable, or dynamic resources. The caching algorithm works with any distribution of queries and gain 

better performance when queries are highly skewed. 

Using the addLookup function, a node also tracks the demand for keys that are not in the cache 

but forwards messages through it. Thus, LKDC algorithm is a perfect LFU algorithm. It enables the nodes 

to rapidly adapt to varying popularity and arrival patterns. However, it is important to properly balance 
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the past and new information to reduce the caching overhead. Therefore, whenever a new message ar-

rives, a node multiplies the current demand of the key by a weighting factor (1 + θ), 0 ≤ θ ≤ 1. demand of 

all other keys in the LT is multiplied by (1 – θ). If a key appears for the first time its demand is set to θ 

(lines 26-27). When θ is close to zero, the algorithm is biased towards the past thus effectively responding 

to long-term trends. When θ is closer to unity, bias is towards the current information, thus a node re-

sponds to rapid changes. θ and Tcache control the adaptability of the caching solution while minimizing 

unnecessary cache requests. It is recommended to set Tcache > θ to reduce cache thrashing. When the cach-

ing scheme is applied to multiple communities, each community may use a different θ based on its per-

ceived behavior. Though perfect LFU algorithms are known to take better caching decisions, they have a 

higher overhead as the LT can grow arbitrarily large. A threshold (Tremove) is used to remove keys without 

sufficient demand thereby limiting the size of LT. The computational cost of the algorithm is O(size(LT)). 

As LT is not large with respect to K, we can afford to execute the algorithm every time a get(key) message 

arrives. Therefore, it can rapidly adapt to changing popularity, message arrival patterns, and piggyback 

cache requests on get(key) messages while incurring minimum overhead. 

 

7.5 Simulation Setup 

To validate the analysis in Section 7.4, we first simulated an overlay network with 1,000-5,000 

nodes using the OverSim P2P simulator [Ba07b]. Caching algorithms were implemented on top of Chord, 

and the Zipf’s parameter  was varied from 0.5 to 1.5. For comparison, PoPCache was also simulated 

with accurate global popularity of keys. CBC is simulated using a 15,000-node network with ten commu-

nities. Though hardware limitations prevented us from simulating a much larger network, the size of our 

network is either comparable or larger than prior studies such as [Ra04] and [Ra07]. Nodes were assigned 

to different communities as shown in Table 7.4. Parameters for each community were selected to observe 

the behavior under different scenarios. Zipf’s and similarity parameters were selected based on our own 

observations in Table 7.1, Table 7.2, and [Ra04, Sr01]. To simplify the performance analysis, a static 
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Table 7.4 – Configuration of different communities. 

Community m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 

No of nodes (apx.) 600 600 600 1,200 1,200 1,200 1,200 1,200 2,400 4,800 

Zipf’s parameter 0.85 0.95 1.10 0.5 0.80 0.80 1.0 0.90 0.90 0.75 

No of keys 40,000 30,000 30,000 40,000 40,000 40,000 50,000 50,000 50,000 50,000 

Similarity with 

community (x) 

0.2 
(m8) 

0 
0.1 
(m7) 

0.2 (m9) 
0.3 (m8) 
0.5 (m7) 

0 
0.1 (m3) 
0.5 (m5) 

0.3 (m5) 
0.2 (m1) 

0.4 (m1) 

0.2 (m4) 

0.3 (m10) 

0.3 
(m9) 

Queries for k1 4,516 8,535 17,100 603 6,454 6,454 21,059 11,956 23,911 17,030 

 
network is assumed and queries were issued only after the network was stabilized (around 2,000 s). Each 

node issued queries based on a Poisson distribution with a mean inter-arrival time of 15 seconds. Based 

on the simulations, we observed that it is sufficient to set Tremove = θ
10

 (as query demands are weighted) to 

gain good performance while limiting the lookup table size to 50-80 entries. To measure the ability of 

geographic communities to improve the latency, transit-stub networks with 10 ASs and 750 routers were 

generated using BRITE [Me01] while using GT-ITM [Ze96] as the underlying topology generator. Nodes 

in the same community are assigned to the same AS. Based on [Ca02], overlay node to router delay is set 

to 1 ms and the average delay of the core network links is set to 40 ms. Results are based on ten samples, 

which were sufficient to attain average number of hops within ±5% accuracy and 95% confidence level. 

Additional details on the simulator are given in Appendix II.4. 

 

7.6 Performance Analysis 

We first validate the analytical results obtained in Section 7.4 using a network with a single 

community. Then performance of CBC is evaluated under different , cn, Tcache, geographic communities, 

and sudden popularity inversion. 

 

7.6.1 Local-Knowledge-Based Distributed Caching 

Figure 7.8(a) compares the analytical and simulation results while varying N. Our analytical solu-

tion using discrete g(ck) from Lemma 7.3 and its continuous approximation using  = log2 1.5 closely 
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(a) (b) 

Figure 7.8 –  Average hop count: (a) While varying number of nodes. K = 30N, α = 1.0, Cn = 20, Tcache = 
0.12, (b) While varying Zipf’s parameter. N = 1,000, K = 30,000, Cn = 20, Tcache = 0.12. 

match the simulation results. g(ck)-based model provides an upper bound to all the simulation results. Dif-

ference between LKDC algorithm (LKDC-Sim) and GKDC (GKDC-Sim) is ~0.4-hops. Therefore, LKDC 

provides a desirable caching solution without the cost of estimating global popularity, structure of the 

ORT, or relaxing the per node cache-capacity constraint. The PoPCache analytical model is derived using 

the upper bound O(log N) for path length. Therefore, the resulting average hop count (Have) is very high, 

e.g., Have = 8.82 for setup in Fig. 7.8(a). Hence, as a simple correction, we replaced the upper bound with 

have. Still, corrected PoPCache analytical model overestimates Have by 1.1-1.4-hops (see Fig. 7.8(a)). Per-

formance of PoPCache-Sim (with accurate global popularity information) and LKDC-Sim is similar. 

However, PoPCache-Sim placed 258 keys in one of the nodes whereas LKDC-Sim placed only 20 keys in 

a node (reduce largest index size by 12.9 times). Therefore, our algorithm is more useful as it does not 

require relaxing the cache-capacity constraint or sampling messages to estimate the popularity. Moreover, 

PoPCache performance could degrade in real deployments where popularity estimation is susceptible to 

sampling errors. GKDC-Sim has the lowest Have. It was realized that, though the ORTs in our simulations 

were asymmetric, branch weights were somewhat off from Fig. 7.6(b). For example, the most popular 

path was carrying 55-65% of the queries though our model assumed 50%. Therefore, the most popular 

path answers more quires (this is particularly useful for moderately popular keys) consequently reducing 

Have of the overall network. This explains why the analytical model provides a useful upper bound. It was 
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observed that LKDC-Sim naturally arranges cache entries among nodes reflecting the structure of the 

ORT, while it has to be explicitly defined in [Ra04, Ra07, Ra10]. When many nodes at higher levels of 

the ORT start caching popular keys, they do not forward messages to lower-level nodes. Therefore, the 

relative popularity of keys cached at lower-level nodes reduces. Consequently, cache storage allocated to 

those keys is reallocated to less popular keys. This is not possible in PoPCache and Beehive, as they force 

all the nodes along the ORT or within a specific address range to cache keys. 

Analytical and simulation results with varying Zipf’s parameters () are shown in Fig. 7.8(b). 

Performance trends are same for  ≤ 1.0. However, when  > 1.0, analytical solution tends to underesti-

mate Have compared to the simulation results. This is also a consequence of slight differences in branch 

weights of ORTs. When the popularity distribution is highly skewed (e.g.,  > 1.0), only the most popular 

keys are cached. These keys will place more and more cache entries at higher levels of the ORT assuming 

branches other than the most popular one will get ~50% of the queries. However, in practice they get only 

35-45% of the queries. Therefore, our analytical model underestimates Have. Alternatively, many keys are 

cached when the popularity distribution is less skewed. These moderately popular keys can benefit from 

the large fraction of queries (> 50%) that goes through the most popular branch in the ORT. Therefore, 

actual Have is below the theoretical value. Hence, our analytical model provides an upper bound to Have 

when  ≤ 1.0 and a lower bound when  > 1.0. Production P2P systems are known to have  ≤ 1.0 [Ra04, 

Ra07, Sr01] hence our analytical solution is also useful for production systems. 

Mixed Integer NonLinear Programming (MINLP) solution provides a lower bound for the NLIP 

problem [Li06]. As we were unable to solve the NLIP problems neither analytically nor numerically (for 

large N and K), we compare the performance against the following family of allocations: 

 

 
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
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Bf
c  (7.22) 

where r  R
+
. r = 1 for PoPCache and r = 0.5 for unstructured P2P [Co02]. Figure 7.9 shows Have against 

r. MINLP-based solution provides the lower bound while g(ck)-based discrete solution provides the upper 
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Figure 7.9 –  Validation of optimum hop count. N = 1,000, K = 30,000, α = 1.2, Cn = 20, Tcache = 0.12. 

bound. Minimum value for (7.22) is obtained when r ≈ 0.95, and it is higher than both LKDC-Sim and 

GKDC-Sim. r < 1.0 suggests that slightly more cache capacity should be allocated for less popular keys 

(when the distribution is highly skewed), which justifies the allocation in Theorem 7.2. Optimum r varies 

with N, K, and . Therefore, (7.21) provides a consistent cache capacity allocation mechanism under a 

range of K, N, and  values while providing better lookup performance. Impact of parameters such as Cn 

and Tcache are discussed in the next section. 

 

7.6.2 Community-Based Caching 

Figure 7.10 compares Have of the entire system under Chord, passive caching (i.e., nodes cache 

responses to their own queries), caching (i.e., LKDC algorithm without sub-overlays), and the overall 

community-caching solution (i.e., LKDC deployed on top of sub-overlays). Lookup performance con-

verges with all the caching schemes as the query distribution is steady. Passive caching reduces the Have 

from 7.79-hops to 7.32-hops and it is further reduced to 5.88 and 4.64 hops by caching and community 

caching, respectively. Thus, our caching solution reduces Have by 40.5%. 

Have observed by each community is shown in Fig. 7.11. Communities with highly skewed query 

distributions (i.e., large ) and/or lower number of distinct keys gained significant performance im-

provement. For example, Have of communities m3, m7, and m9 is reduced by 53%, 48%, and 48%, respec-

tively. Moderately popular communities m1, m2, m5, m6, m8, and m10 gained 31-42% improvement based 
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Figure 7.10 –  Average hop count vs. time. Bucket size = 30 s, Cn = 20, θ = 0.1, Tcache = 0.12, hopmax = 4. 

 

Figure 7.11 –  Average hop count observed by each community at the steady state. Cn = 20, θ = 0.1, Tcache 

= 0.12, and hopmax = 4. 

on their specific distributions. The most popular query in m4 had a global rank of 285 (Table 7.4). There-

fore, it gained only 7.4% improvement with caching. However, community caching was able to reduce 

the hop count by 23% (3.1 times improvement over caching). Performance gain by each community was 

dependent only on its popularity distribution, and both large and small communities benefited equally, 

e.g., {m1, m5 and m6}, and {m7 and m9}. No correlation between performance and similarities among 

communities was observed. 

 Next, we measure the impact of number of communities in the system and their relative sizes on 

lookup performance. When the number of communities M = 1, it is not necessary to run the sub-overlay 

formation scheme as fingers already point to community members. However, LKDC can still be used to 
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identify and cache popular resources using only the local statistics. If M = N, each node is in its own 

community. Therefore, sub-overlay formation scheme is not useful as there are no other community 

members. If users are completely independent and access random contents, caching is not useful either. 

However, it has been shown in [Ba11a] that even for seemingly unrelated events, if there is some prefer-

ence it could lead to a skewed distribution. For example, independent users downloading a song that they 

learned from an external source such as media. As far as there is some skewness in resource access, 

LKDC algorithm can be used to improve the lookup performance and the performance gain will depend 

on the skewness of the popularity distribution and cache capacity. 

To analyze the performance under a different number of communities and their relative sizes, we 

split community 6 (m6 in Table 7.4) into a set of small communities. m6 was selected as it is independent 

from rest of the communities; therefore, its size can be varied without affecting other communities. m6 

was split into 600×2 (two communities each with 600 nodes), 300×4 (four communities each with 300 

nodes), 150×8, and 75×16 communities while keeping the total number of nodes as constant (N = 

15,000). This resulted in a set of networks with 10, 11, 13, 17, and 25 communities respectively. Figure 

7.12(a) shows the lookup performance while varying the number of nodes in communities. Have increased 

by 0.53-hops (10% increase) when the community size is reduced from 1,200 nodes to 75 (16 times 

smaller than original m6 and 0.5% of the overall network). However, the formation of sub-overlays still 

provides much better lookup performance (at least 16% improvement) than applying only the proposed 

caching algorithm. Thus, the proposed sub-overlay formation scheme is effective in finding some of the 

community members for higher-order fingers even when the size of a community is relatively small. Fig-

ure 7.12(b) illustrates that Have of rest of the communities were not significantly impacted while m6 was 

split into smaller and smaller sized communities. Therefore, relative size among different communities 

(or their ratios) does not affect the lookup performance gained by a community. Hence, performance 

mainly depends on the skewness of resource popularity, cache capacity, and relative size of a community 

with respect to the size of the overall network. However, if the community size is very small compared to 

N (e.g., in decentralized social networks with few members), it may not be possible to find a community 
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(a) (b) 

Figure 7.12 –  Lookup performance under varying number of communities and community sizes ob-
tained by splitting community six: (a) Average hop count while varying the number of 

nodes in a community; (b) Average hop count of all the communities. Cn = 20, α = 0.1, 

Tcache = 0.12, and hopmax = 4. 

member even for higher order fingers. In such cases, explicit community tracking schemes such as [Gi10] 

may be extended to identify community members. 

Figure 7.13 shows 33-50% reduction in latency when communities are based on geography. 

When communities are large, a node can find community members for most of the overlay point-

ers/fingers. Such communities appear as a sub-overlay sustained using only its members. Consequently, 

popularities are preserved, overlay traffic is localized within the community, and the effective size of the 

sub-overlay is equal to the number of nodes in the community (e.g., m9 and m10 appear as two sub-

overlays with 2,400 and 4,800 nodes, respectively). As the traffic is mostly local, m9 and m10 gained 45% 

and 50% reduction in latency. We use the continuous approximation of Theorem 7.2 (when  = log2 1.5) 

to estimate the lower bound of Have for each community and the overall system. Corresponding have is 

used for m9 and m10. For the overall system, the model predicts Have = 4.53 and according to the simula-

tions Have = 4.63. Thus, the model can also be used to obtain a useful lower bound for a large P2P system 

with multiple communities. 

Figure 7.14 plots the cumulative distribution of hops. As expected, community caching was able 

to respond to most of the queries within the first few hops. Chord resolved 65% of the queries within 8-

hops while community caching was able to resolve 96% of the queries by then. Passive caching initially 
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Figure 7.13 –  Latency of geographic communities using community caching. Cn= 20, θ = 0.1, Tcache = 

0.12, and hopmax = 4. 

 

Figure 7.14 –  Cumulative distribution of overlay hops required to resolve queries. Cn = 20, θ = 0.1, Tcache 

= 0.12, and hopmax = 4. 

has a higher hit rate as some nodes respond to their own queries based on the past results. Figures 7.10 to 

7.14 confirm that by focusing on individual communities, it is possible to improve both the communi-

tywide and system-wide lookup performance. 

Performance gain with increasing Cn is shown in Fig. 7.15. Though Have rapidly reduces with in-

creasing Cn, it tends to saturate after a while. This is an artifact of the Zipf’s-like popularity distribution 

where significant performance can be gained by caching a few highly popular resources. Yet, diminishing 

return is gained with very large caches. Therefore, while trying to provide a guaranteed mean, both Bee-

hive and PoPCache had to force the nodes to cache several hundreds of resources on average and several 
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Figure 7.15 –  Lookup performance under varying cache size (Cn). Steady state results with θ = 0.1, Tcache 

= 0.12, and hopmax = 4.  

thousands in the worst case, regardless of nodes’ capabilities or interests. In contrast, our caching scheme 

provides comparable lookup performance using small caches. We also compared the lookup performance 

against heterogeneous cache capacities where Cn is set to ~U(10, 30) and ~U(0, 40) (still Cave = 20). Have 

= 4.63 when Cn = 20 and it increases to 4.77 and 4.88 when Cn is ~ U(10, 30) and ~U(0, 40), respectively. 

This confirms that our solution can effectively adapt to varying Cn as Have is increased by only 0.25-hops 

(5.4% increase). 

Network converges faster and attains minimum Have when the weighting factor θ = 0.1. Such a 

low value of θ stabilizes the network based on long-term trends in popularity. Impact of caching threshold 

Tcache on the convergence time is shown in Fig. 7.16. Higher Tcache values increase the convergence time 

but reduce the caching overhead (see Table 7.5). Alternatively, lower thresholds (e.g., Tcache = 0.1) rapidly 

respond to popular queries consequently improving the lookup performance. This trend continues until 

caches get full. When a cache is full and Tcache is lower, even a key with a marginally higher demand than 

θ forces one of the cached keys to be flushed. When a query for the flushed key appears again, its demand 

increases forcing another key to be flushed. Repetition of this process results in cache thrashing and in-

creased path length due to higher miss rate. For the given setup, θ = 0.1 and Tcache = 0.12 balance both the 

convergence time and caching overhead. 
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Figure 7.17 –  Convergence of network after popularity inversion in community caching. Bucket size = 

30 s, Cn = 20, θ = 0.1, hopmax = 4. 

 

Figure 7.16 –  Caching threshold’s impact on convergence time in community caching. Bucket size = 30 

s, Cn = 20, θ = 0.1, and hopmax = 4. 

Table 7.5 – Number of cache requests per node in community-based caching. 

Tcache 0.1 0.11 0.12 0.13 0.14 0.15 

Average 281.4 34.9 25.8 20.3 16.2 13.5 

Minimum 0 0 0 0 0 0 

Maximum 1,611.7 233.5 159.2 122.1 83.9 65.3 

 

To observe the adaptability of CBC to rapid popularity changes, we invert the popularities of que-

ries, where the least popular query suddenly becomes the most popular and vice versa. This is a worst-

case scenario. Figure 7.17 shows the convergence of the network after popularly inversion around 

4,000 seconds. Have increased only by 0.5-hops and the network stabilized following the same conver-

gence pattern. It is sufficient to select hopmax = 4. We do not expect a significant increase in hopmax, even 

for a very large network, as it is inversely proportional to community size Nm. Our solution introduces 

minimum overhead as cache and community-member-discovery requests are piggybacked on get() and 

overlay maintenance messages, respectively. Caching also alleviates hot spots within an overlay network 

because many nodes can answer popular queries. CBC solution was able to reduce the maximum number 

of queries answered by a Chord node from 25,151 to 1,677 (15 times reduction). Similarly, the peak 

number of queries forwarded by a node was reduced from 27,574 to 5,191 (5.3 times reduction). Thus, the 

proposed solution also provides good load balancing properties. 
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7.7 Summary 

A sub-overlay formation and a distributed caching solution that adapts according to interest pat-

terns of explicit P2P communities are proposed. It allows queries to be forwarded to community members 

while enabling them to cache resources that are of interest to their community. An analytical solution is 

used to determine the best cache placement and capacity allocation strategies and to provide useful 

bounds on performance. The proposed caching algorithm that utilizes only the local statistics is independ-

ent of how the communities are formed and works with any skewed distribution of queries. Overall solu-

tion enhances both the communitywide and systems-wide lookup performance, and introduces minimum 

storage, network, and computational overhead. 
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Chapter 8 

DISTRIBUTED MULTI-SENSOR DATA FUSION OVER NAMED 

DATA NETWORKS 

 

Named Data Networking (NDN) routes data based on their application-layer content names ena-

bling location independence, in-network caching, multicasting, and enhanced security. We present a proof 

of concept solution that demonstrates the applicability of NDN for data fusion in Distributed Collabora-

tive Adaptive Sensing (DCAS) systems with multiple end users, applications, and sensors. In this exam-

ple, a network of weather radars name data based on their geographic location and weather feature (e.g., 

reflectivity of clouds or wind velocity) independent of the radar(s) that generated them. This enables end 

users to specify an area of interest for a particular weather feature while being oblivious to the placement 

of radars and associated computing facilities. Conversely, the DCAS system can use its knowledge about 

the underlying system to decide the best radar scanning and data processing strategies. Sensor-

independent names also enhance the resilience, enable processing data close to the source, and benefit 

from NDN features such as in-network caching and duplicate query suppression consequently reducing 

the bandwidth requirements of the DCAS system. The solution is implemented as an overlaid NDN ena-

bling the benefits of both the NDN and overlay networks. Simulation-based analysis using reflectivity 

data from an actual weather event showed 87% reduction in average bandwidth consumption of radars 

and 95% reduction in query resolution latency. 

Section 8.1 presents the introduction and contribution. Proposed naming convention, overlay con-

struction, query-subscription scheme, and data-generation-time-aware caching policy are presented in 

Section 8.2. Extensions of the solution to support sensor and event specific queries are discussed in Sec-

tion 8.3. Simulation setup and performance analysis are presented in Sections 8.4 and 8.5, respectively. 

Section 8.6 presents the concluding remarks. 
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8.1 Introduction 

Modern Internet users value the ability to access contents irrespective of their locations, whereas 

the Internet was designed to facilitate end-to-end resource access. Conflict between the usage and design 

objectives has led to many issues such as location dependence, traffic aggregation, and security. Conse-

quently, many clean-state designs for the Internet propose to access/route data based on their content 

names [Ja09a, Ko07, St02]. Named Data Networking (NDN) [Ja09a] (a.k.a. Content Centric Networking 

(CCN)) is gaining traction as one of the viable clean-state designs particularly in the presence of CCNx 

open source implementation [Palo]. NDN enables in-network caching, multicasting, duplicate message 

suppression, enhanced security, and mobility. When data are not already dispersed within the network, 

NDN delivers user queries to potential data sources enabling on demand data generation. In contrast, the 

majority of other content-naming solutions, e.g., [Ko07, St02], are based on Distributed Hash Tables 

(DHTs) that index only the pre-generated data. Moreover, NDN supports different levels of abstractions 

and incremental deployments ranging from overlay networks, content delivery networks, and small ISPs 

to eventual Internet-wide deployment. 

Emerging DCAS systems [Ku06, Le12, Mc05, Mc09] sense the physical world at a far greater 

spatial and temporal resolution that has not been hitherto possible. These systems rely on a multitude of 

heterogeneous and distributed sensors ranging from mote based, resource limited, low power, and task-

specific wireless sensor nodes to resource rich, high power, and multipurpose sensors such as radars. Typ-

ically, DCAS systems deploy redundant sensors to increase the accuracy and resilience. Data generated 

by these sensors are distributedly fused/processed using groups of computational, storage, and bandwidth 

resources [Le12]. A key defining characteristic of DCAS systems is the data pull where end-user infor-

mation needs determine how and what group(s) of system resources are utilized to generate the required 

data [Ku06, Le12]. Thus, DCAS systems have to operate the sensors and computing resources collabora-

tively, and adapt them to changing conditions in a manner that meets the competing end-user needs.  

Collaborative Adaptive Sensing of the Atmosphere (CASA) [Ku06, Mc05, Mc09] is a DCAS sys-

tem based on a network of weather radars that collaborates and adapt in real time to detect, track, and 
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forecast hazardous, localized weather phenomena such as tornados and flash floods (see Section 2.2.1). 

The CASA network consists of a heterogeneous set of weather radars, processing nodes, and data-fusion 

algorithms that operates collaboratively to detect hazardous atmospheric conditions while satisfying many 

diverse and conflicting end-user requirements. Distributed and collaborative data fusion provides an at-

tractive implementation choice for real-time radar data fusion in CASA, wherein multiple data volumes 

are constantly being generated, processed, pushed and pulled among groups of radars, storage, and pro-

cessing nodes. CASA supports a diverse set of meteorological algorithms (referred to as applications) and 

end users. Table 2.3 lists a subset of the applications that are currently supported by CASA. Each applica-

tion pulls one or more types of data from one or more radars. For example, radar images that we see on 

TV newscasts are drawn using reflectivity data from clouds that are typically generated by a radar. More 

accurate reflectivity images can be generated using the Network-Based Reflectivity Retrieval (NBRR) 

algorithm that pulls reflectivity data from three or more radars that sense the same region in atmosphere 

within an acceptable time window [Li07b]. Both Doppler velocity and reflectivity data from two to three 

radars are needed to estimate the wind velocity accurately. The same data are used for tornado-tracking 

applications. Therefore, the same data type may be accessed by multiple applications. Applications re-

quire different amounts of computational, storage, and bandwidth resources as they use different data 

types, amounts of data, and meteorological algorithms. Known weather patterns, geography, cost, and 

availability of the infrastructure determine where the applications are deployed. For example, tornado-

tracking applications are deployed only in areas that are likely to have tornados. These applications are 

accessed by a diverse set of end users (see Table 2.4) such as the National Weather Service (NWS), 

Emergency Managers (EMs), scientists, media, and commercial entities. Users may issue queries periodi-

cally for surveillance purposes or when an interesting weather event is detected within their Area Of In-

terest (AOI). For example, a NWS forecast office sends a separate query for each of the applications 

listed in Table 2.3 for counties under their jurisdiction (except for air surveillance). For surveillance pur-

poses, they may pull data from reflectivity and velocity applications every five minutes regardless of the 

current weather conditions. However, when an active weather event is detected, reflectivity, velocity, 
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NBRR, nowcasting, and QPE (Quantitative Precipitation Estimation) applications are queried at a higher 

sampling rate. These queries are periodically issued for the area of active weather (which may change 

with time) until the weather event subsides or move out of their jurisdiction. A researcher trying to under-

stand the physical properties of a tornado may use velocity and tornado-tracking applications every 

30 seconds to acquire samples more frequently. Alternatively, commercial entities may sample their AOIs 

at a much lower sampling rate, as they are interested in mid to long-term changes in weather. Each CASA 

radar generates raw data at rates up to 800 Mbps, which reduces to 3.3 Mbps with preprocessing. In some 

cases, e.g., to preserve the accuracy or for archiving purposes, it is preferable to transfer raw data. The 

next generation of solid-state CASA radars is expected to generate raw data at several Gbps. Moreover, 

due to the spatial and temporal locality in weather events, corresponding end-user queries also exhibit 

high spatial and temporal locality. Therefore, even more bandwidth is needed to handle concurrent que-

ries without increasing the latency. Furthermore, a nationwide CASA radar network deployment in the 

U.S., a strong possibility given the many advantages of the CASA paradigm, is estimated to require 

10,000 radars [Mc09]. These radar nodes are to be interconnected via a combination of wired and wireless 

networks. However, though the system is mission critical, it is neither economical nor feasible to maintain 

a separate network or allocate very large bandwidth to radars and processing nodes. Hence, existing net-

working infrastructure and resources have to be utilized efficiently to achieve the system objectives of 

maximizing the detection and warning accuracy while reducing the cost. 

DCAS systems, including current CASA deployments [Li07a], typically bind data to the sensor(s) 

that generated them by assigning data names based on the sensor identifier. Conversely, end users in 

many cases are interested in data related to a particular weather event in a given AOI, and are not con-

cerned with which sensor(s) generated the data. Therefore, naming data based on the sensor creates a con-

flict similar to that in the current Internet, and reduces the ability to utilize the spatial and temporal locali-

ty in user interests and redundant sensors to enhance the performance of the DCAS system.  

By naming data based on their geographic location of the weather event or atmospheric condition, 

data type (e.g., wind velocity and temperature), and/or event name (e.g., hail and tornado), DCAS systems 
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can gain the benefits of NDN. For example, a CASA end user may specify the query “get current wind 

conditions in southwestern Oklahoma” while being oblivious to the placement of radars and associated 

computing resources. Such sensor-independent names enable NDN benefits such as in-network caching, 

duplicate query suppression, on-demand data generation, security, and mobility. Hence, DCAS systems 

are even better applications for NDN compared to web access, streaming, VoIP [Ja09b], and text-based 

chat [Palo] that utilize only a subset of the NDN features. Occasionally users may still want to access the 

sensors using their unique names (e.g., because a radar has a specific capability or a user wants to cali-

brate/validate a radar). Therefore, it is important to support both the sensor independent and dependent 

naming conventions within a DCAS system. Currently, NDN has to be deployed as an overlay network 

due to the absence of an Internet-wide deployment. However, use of overlay networks provides the added 

benefits such as the ability to deploy application-specific routing mechanisms [Ba13], fault tolerance, bet-

ter QoS, and in-network data fusion [Ba07a]. Therefore, DCAS systems can be made more efficient and 

robust by combining the benefits of NDN and overlay networks. 

We present a proof of concept multi-user, multi-application, and multi-sensor DCAS system 

based on CASA that is implemented on an overlaid NDN. A hierarchical naming convention that names 

the data based on their geographic location and type independent of the sensor(s) that generated them is 

proposed. Such sensor-independent names enable end users to specify an AOI for a particular event or 

data type(s), while being oblivious to the placement of sensors and associated computing facilities. Con-

versely, the DCAS system can use its knowledge about the underlying system to decide the best radar 

scanning and data processing strategies. Such a design also enhance the resilience, enable processing data 

close to the source, and NDN benefits such as in-network caching and duplicate query suppression conse-

quently reducing the bandwidth requirements of the DCAS system. An extension is proposed for NDN to 

support many-to-one data retrieval, as multi-sensor data fusion applications need the ability to retrieve 

data from multiple sources that match a given name. The overlay network enables geographic-name-

based query routing. 2-dimensional version of Content Addressable Network (2D-CAN) (see Section 

2.1.2 and [Ra01]) is used as the underlying overlay network, as it provides a direct mapping between the 
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geographic space and overlay address space while preserving the locality. A subscription mechanism for 

periodic queries and a caching policy based on the data generation time that is more suitable for DCAS 

systems are also presented. How the proposed solution can be extended to support sensor and event spe-

cific queries is also discussed. Simulation-based analysis is used to evaluate the efficacy of the proposed 

solution using design parameters from the CASA IP1 test bed [Br07, Mc09] and reflectivity data from an 

actual weather event. Simulation results show 87% and 95% reduction in average bandwidth consumption 

of radars and query resolution latency, respectively. 

 

8.2 Multi-Sensor Data Fusion Over NDN 

CASA end users typically specify an AOI for a particular weather feature, and are less concerned 

about the placement of radars and associated computing resources. Hence, it is beneficial to decouple the 

data, security, and access from the sensors. Such decoupling enables data to be pulled from any available 

sensor covering the given AOI, and to be processed using any computing node(s) with the desired appli-

cation. Moreover, such flexibility enables load balancing and resilience, which is essential in mission crit-

ical DCAS systems like CASA. Thus, NDN is a good fit for data delivery in DCAS systems as it decou-

ples the identity, security, and access from the end node/sensor while accessing data using content and 

context aware names. High spatial and temporal locality exhibited by end-user queries can be used to re-

duce the bandwidth requirements of the overall DCAS system seamlessly by benefiting from caching and 

duplicate message suppression in NDN. Moreover, receiver-driven communication and on-demand data 

generation features of NDN are essential in CASA-like systems that dynamically allocate system re-

sources in response to end-user information needs. We have demonstrated overlay networks and peer-to-

peer-based distributed data fusion [Le12] are attractive implementation choices for large-scale CASA de-

ployments due to their scalability, flexibility, and reliability. Therefore, by implementing NDN on top of 

overlay networks, more efficient and robust DCAS systems can be developed. 2D version of CAN pro-

vides a direct mapping between the geographic space and overlay address space, and hence can be used to 

preserve the locality among radars, computing resources, and end users. Moreover, it can forward packets 
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even in the presence of voids in the physical space (radars and computing resources are not placed uni-

formly due to terrain conditions and variability in population distribution) while alleviating local minima 

problem in other greedy routing schemes. It is not necessary for each dimension of the CAN’s d-

dimensional torus (d-torus) to be of equal length. We first present the proposed naming convention. Then 

discuss how the overlay is constructed using CAN and NDN is used to resolve queries. Finally, a sub-

scription scheme for periodic queries and a data-generation-time-aware caching policy are presented. 

 

8.2.1 Naming Data 

A query specifies a desired AOI and application. Queries are typically issued periodically, as end 

users are interested in the most recent data. Therefore, a name in an interest packet sent from an end user 

to an application needs to include at least the AOI, application, and time. time is used to indicate that the 

user is looking for the most recent data. Based on the hierarchical naming convention recommended by 

NDN, one of the following formats can be used to specify a name: 

1. /application/AOI/time 

2. /AOI/application/time 

The first format gives preference to the application and forwards an interest packet looking for an applica-

tion that can process data for the given AOI. This enables processing data close to the end user as an in-

terest packet stops as soon as a node with the desired application is found. It can be also used when a user 

is looking for specific radar (by replacing the application name with the radar/sensor name). The second 

format gives preference to the AOI and forwards an interest packet looking for an application near the 

given AOI. This enables processing data close to the source. It is more suitable for CASA-like systems as 

it is desirable to process large volumes of data close to the source and send the fused data across the net-

work, than carrying the data across the network and fusing it at or closer to the destination. For example, a 

velocity application pulls Doppler velocity and reflectivity data from at least two radars, and hence pulls 

at least four (2×2) distinct data items for each point in AOI. However, after processing the data, only a 

single value is sent to the user (for each point in AOI) resulting in at least 4:1 bandwidth reduction. Even 
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Figure 8.1 –  Overlapping areas of interests. R– radar, r – transmission range of the radar. 

the second name format can locate a specific radar, by replacing the AOI with the radar location and set-

ting application type as radar. Given these benefits, we use the second name format for the proposed so-

lution. 

AOI is typically specified as a rectangular area (see Fig. 8.1) covering few tens to thousands of 

square kilometers, depending on the end users’ role. As seen in Fig. 8.1, AOI can be specified using the 

coordinates of the lower-left and upper-right corners. However, a single data packet may not be able to 

carry the data for a very large AOI. Therefore, AOI needs to be split into a set of smaller tiles (see Fig. 

8.1). The smallest tile currently supported by CASA radars is ~100×100 m
2
. However, it is not useful to 

send a separate interest packet for each tile as users are not interested in weather at a very specific point in 

space and the overhead is high as weather features are typically represented using a four-byte number per 

tile (e.g., reflectivity in dBz or wind speed in km/hour). Hence, it is desirable to request multiple tiles 

within an interest packet. For example, a data sample with one data type from a 3×3 km
2
 area fits into a 

4 KB packet recommended by CCNx [Palo]. Therefore, we format the second name as follows: 

/x1/y1/x2/y2/application/time 

where (x1, y1) and (x2, y2) are the lower-left and upper-right corners of the set of tiles. These coordinates 

are typically specified using latitudes and longitudes. Moreover, breaking a large AOI into multiple 

smaller AOIs also enables better utilization of cached data. For example, though AOI1 and AOI2 in Fig. 

8.1 do not overlap completely, the subset of tiles that overlap needs to be pulled from radar R only once. 

Once the interest packet reaches an application, application then needs to find one or more radars 

that cover the given AOI and capable of producing the desired data types. While multiple radars cover a 
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given area, some of the radars may be busy scanning different areas requested by other applications. 

Some radars may not be functional or available at the time for some reason (e.g., radar failure due to se-

vere weather). Therefore, the application needs to identify a subset of the radars that can provide the de-

sired data. CASA radars use a distributed task negotiation mechanism to determine the scan strategy of 

each radar while increasing the utility of the overall system [An11]. Hence, it is useful to send a subscrip-

tion message to all the radars covering the given AOI enabling them to negotiate among themselves on 

which radars will provide the data to the application. Subscription messages can be supported by extend-

ing the name format as follows: 

/x1/y1/x2/y2/radar/time/subscription/n/dataType 

It enables the network to forward an interest packet to all the radars covering the given AOI. Suffix of the 

name indicates this is a subscription request for data from n radars for the given dataType (e.g., reflectivi-

ty or Doppler velocity). Radars that already have the desired data or are willing to generate the data will 

respond with a data packet indicating their location and a list of tiles that data can be provided for. A ra-

dar may not be able to provide data for all the tiles of a given AOI, as its range r may not cover the entire 

AOI (e.g., as in Fig. 8.1) or it may have already committed to generate data for other areas. Instead of 

passing a list of tile locations to the application, packet sizes can be reduced by sending a bitmap indicat-

ing for which tiles the data are or will be available. After receiving data packets from radars, application 

then sends a separate interest packet to pull the data from each selected radar. To reduce the latency, ap-

plications may pull data for different tiles from different radars as soon as it receives a data packet from a 

radar. Following name format is proposed for those interest packets: 

/xR/yR/xR/yR/radar/time/x1/y1/x2/y2/bitmap/dataType 

Now the location of radar (xR, yR) takes precedence, as we are pulling data from a specific radar. xR and yR 

are indicated in the data packet from the radar. They are repeated to comply with the name format. 

/x1/y1/x2/y2/ indicates the AOI and bitmap indicates the required list of tiles from the given radar. 
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Figure 8.2 –  Radar data fusion network: (a) 2D CAN overlay; (b) Interest packet routing. Nodes with 
the same color belong to the same application type.  

8.2.2 Overlay Construction and Query Resolution 

CASA end users interact with the radar and data fusion network using a set of proxies [Li07d]. 

Proxies are desirable as not all end users can be part of the overlay due to lack of resources, e.g., mobile 

devices used by EMs deployed in the field. Proxies can also split a large AOI into multiple smaller AOIs, 

map a city/county name to its latitudes and longitudes, map a radar name to its location, provide access 

control, and priority enforcement of end users [Li07a]. While it is not necessary for end users to use NDN 

to communicate with a proxy, mobile end users such as EMs may use NDN-enabled devices to benefit 

from mobility features in NDN. 

Figure 8.2(a) depicts a 2D CAN overlay formed using a set of radars, applications, and proxies. 

Scattered lines indicate the zone boundaries and circles with stars indicate the Zone Controllers (ZCs), 

i.e., nodes responsible for indexing resources that map to their zones. Radars and applications (deployed 

on computing nodes) are uniquely identified using their geographic location and node type (e.g., radar 

and reflectivity application), and indexed at the respective ZC. Therefore, a ZC also maintains a resource 

index (hash table) in addition to the Content Store (CS,) Pending Interest Table (PIT), and Forwarding 

Information Base (FIB) maintained by all the nodes. A ZC’s FIB is populated with the information about 

the neighboring zones enabling greedy routing over the 2D-CAN torus. FIBs in other nodes are populated 

with a default route to their ZC. As the applications and proxies are deployed based on known weather 

patterns, frequency of use, availability of infrastructure, and cost, they are not uniformly distributed 
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throughout the sensor field. Therefore, each application may not be deployed in each zone. However, 

once an interest packet arrives for a given AOI that overlaps with the zone, the ZC should be able to lo-

cate the given application. Hence, neighboring ZCs are configured to share information about the applica-

tions that are within their zones. Each ZC needs to know k ≥ 1 computing nodes (preferably the nearest 

ones, as it helps to reduce latency) for each application type. Resiliency can be improved when k > 1. 

Sharing information among ZCs does not introduce high overhead as the network is mostly static except 

for occasional failures in computing nodes. The size of the resource index at a ZC increases with the 

number of application types, k, and density of radars. However, it will not be very large as there are only a 

few tens of application types, k does not need to be large, and inter-radar distance is typically 30 km. 

Figure 8.2(b) illustrates the forwarding of a set of interest packets from users searching data for 

application type A5 and AOI1. First, user U1 sends its query to proxy P1. P1 then creates an interest packet 

with a name indicating AOI1 and A5 using the second name format. If AOI1 is very large, it will be split 

into a smaller set of AOIs and multiple interest packets will be issued. CAN supports routing packets only 

to a given point within the torus. Therefore, at the overlay level, an interest packet is routed based on the 

center of the specified AOI. Using CAN’s greedy routing scheme the packet is then forward towards the 

zone covering the center of AOI1. After reaching the desired zone, ZC’s resource index is searched for a 

computing node(s) capable of running A5. For example, U1’s interest packet is forwarded from P1’s zone 

to A5’s zone, which has the application A5. Similarly, U2’s interest packet follows the path P2  A3  P1 

 A5. U3’s interest packet is first forwarded from P3 to its ZC A6 and then from A6 to A5 (path is P3  A6 

 A5). As the paths from U1 and U2 overlap at P1, NDN will suppress one of the interest packets if they 

are concurrent or will respond to the second interest using P1’s cache (if data are more recent than the 

given time). Therefore, only two interest packets are delivered to the node running A5. 

Once the interest packet reaches A5, it needs to find a set of radars that cover AOI1. Only local ra-

dars are indexed at the ZC. Therefore, A5 sends a message to the ZC (in Fig. 8.2 A5 is a ZC) searching for 

a radar covering the given AOI. Once a radar is found, a subscription interest packet is sent to that radar. 

It then broadcasts the interest packet to all the other radars responsible for covering the given AOI. This is 
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possible because radars already know their neighbors irrespective of the zones they belong to, as it is nec-

essary for the distributed task negotiation mechanism [An11]. We believe this will be the case even in 

other DCAS systems, as sensors need to know their neighborhood to collaborate. If not, ZCs can be used 

to keep track of sensors/nodes in the same neighborhood (similar to applications). Routing policies asso-

ciated with FIB entries are used to indicate that the subscription messages need to be broadcast to all the 

relevant radars [Ja09a]. Once a subscription interest is received, a radar first checks it CS for the request-

ed data generated after the given time. If matching cache entries are not found for one or more tiles in 

AOI1, it negotiates with other radars to decide what areas to scan based on the given AOI, data type(s), 

and required number of radars n. If data are already available for a subset of the tiles and/or the radar de-

cides to generate data for the remaining subset of the tiles, it then responds with a data packet indicating 

the list of tiles (using a bitmap) for which the data will be available, data generation time, and its location. 

Though multiple radars may respond to the subscription interest with a data packet, the current NDN pro-

posal [Ja09a] allows only the first data packet to be delivered to the receiver. However, applications typi-

cally need data from n ≥ 1 distinct radars for each tile in the AOI. Therefore, an array of counters (one for 

each tile in the AOI) is added to the PIT entries corresponding to subscription interests, enabling a node to 

accept up to n data packets for each tile. This modification does not hinder NDN’s ability to overcome 

denial of service attacks, as n is typically small. For example, CASA applications typically do not require 

data from more than three radars per tile (i.e., n ≤ 3). Such modifications are easier to integrate into NDN 

when it is implemented as an overlaid network. Once a data packet with a list of tiles arrives from a radar, 

application then sends another interest packet to pull data for the tiles that have not already received data 

from other radars. Another bitmap may be used to indicate the required list of tiles. This interest packet is 

forwarded using the location of the radar, which was indicated in the received data packet. Once data for 

all the tiles are received from n radars, the application processes the data. The processed data are then sent 

to the user(s) through the reverse path created by PIT entries. The data processing time of an application 

depends on the complexity of the algorithm and the data types. For example, reflectivity data for different 
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Figure 8.3 – Timing diagram of query arrival (Q), radar data generation (R), and data processing at ap-

plication (A): (a) Query from a user; (b) Queries from two users. 

tiles can be processed independently and concurrently as soon as data arrive whereas NBRR requires data 

for multiple tiles before processing can begin. 

 

8.2.3 Subscription Scheme for Periodic Queries 

End user queries are issued periodically both in the surveillance mode and when an active weath-

er event is detected. Figure 8.3(a) illustrates the query arrival times from a user. As some weather features 

do not change very rapidly (e.g., reflectivity of clouds and temperature), users are willing to accept data 

generated few seconds to minutes in the past (denoted by δ) than waiting for the latest data to be generat-

ed. δ depends on the weather feature being monitored, end user’s role, and time interval γ (> δ) between 

two successive queries. For example, a scientist querying for wind velocity may set δ = 15 seconds while 

a user from the media may set δ = 60 seconds. Therefore, a query arriving at time t is willing to accept 

data generated after t – δ. Hence, time in the name of an interest packet is set to t – δ. After the query is 

issued, the user has to wait some time before the desired data are either pulled from a CS or generated by 

a radar(s). Let ε denote the waiting time which depends on the data generation time from radars, data pro-

cessing time, network delay, and whether data are already cached. Ideally, t + ε < t + γ, as otherwise the 

next query will arrive before the current query is answered. 

However, differences in t, γ, and δ among users connected to the same proxy and access the same 

data reduce the possibility of benefiting from cached data. Figure 8.3(b) illustrates the query arrival time 

of two users. Query Q1 arrives at t1 and requests data for application type A1. Suppose application A1 had 

to wait until radar R generates the data at t2. At t3, A1 finishes processing the data and sends the results to 
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the user by t1 + ε. Another query Q2 arrives at t4 looking for the same data generated after t4 – δ2. Howev-

er, Q2 cannot benefit from already cached data, as the data generation time t2 < t4 – δ2. This problem per-

sists even in future rounds of queries. Given both the users’ objective is to get data that are more recent 

for the desired AOI every γ1 and γ2 intervals, the problem can be overcome by developing a subscription 

scheme that can provide data periodically to users without issuing multiple interest packets for the same 

data at a proxy. A user i subscribes to a proxy indicating the desired AOIi, Ai, γi and δi. During the first 

round, if the cached data are too stale a new interest packet will be issued and new data will be pulled 

from a radar(s). Then, from the second round onwards a proxy issues only one interest packet for a given 

application type and AOI. Time to issue the next interest packet tnext can be calculated using the current 

tnext (for the first subscription tnext = t1 + γ1) and the arrival time ti of a new subscription from user i with 

period γi. Then tnext = min(tnext, ti + γi). Once the corresponding data packet arrives, it is forwarded to the 

relevant end users according to their γi and δi. This makes sure that no user will receive data any later than 

they are supposed to receive without the subscription scheme. However, some users may receive data ear-

lier than their next period (ti + αγi, α ≥ 1), but they still get a consistent view of the weather event(s) as γis 

are preserved. As the subscription scheme reduces the duplicate interest packets, bandwidth requirement 

of all the nodes involved in providing data for the given AOI and application is reduced. 

 

8.2.4 Caching Based on Data Generation Time 

NDN caching exploits the spatial and temporal locality of user interests to reduce the bandwidth 

requirements of the network. However, as users are most interested in recent data, data becomes less im-

portant with time irrespective of its popularity when it was just generated. Therefore, traditional caching 

policies such as Least Frequently Used (LFU) and Least Recently Used (LRU) are not effective in decid-

ing what entries to remove from a CS when it is full. Instead, it is beneficial to remove the cache entry 

corresponding to the oldest data, i.e., one with the earliest data-generation time. We name this caching 

policy as Oldest First Caching (OFC). As the data packets are already tagged with the data-generation 

time, no additional counters are needed as in LFU and LRU caching. OFC is different from First In First 



223 
 

Out (FIFO) caching as the cached data/entries depend on queries and the oldest data item may not be the 

first entry to be stored in the CS. For example, because δi varies with the application type, user, and γi, it 

is possible for a new query to pull data for a different AOI that is older than the entries already in the CS. 

 

8.3 Supporting Sensor and Event Specific Queries 

While queries that specify an AOI are the most common and resource (both bandwidth and com-

putation) consuming types of queries in CASA, end users are also interested in sensor and event specific 

queries. For example, a user may request data from a specific radar because it may have special sensing 

capabilities or for calibrating the radar. Event-specific queries look for locations/sensors where a particu-

lar weather event is detected, e.g., “find all locations where hail is detected” and “find all locations within 

my jurisdiction where wind speed is 60 km/h or higher”. Such event-specific queries are typically issued 

to identify AOIs for developing weather events. For example, locations with rotating wind may be an in-

dication of a developing tornado, and hence could be useful in identifying areas to scan at high frequency 

and locations to deploy EMs/spotters. While sensor and event specific queries are relatively infrequent in 

CASA, other DCAS systems may use them in different proportions. Hence, it is important to support mul-

tiple query types and naming conventions within the same NDN network. Next, we discuss how the over-

laid NDN network in Section 8.2 can be extended to support sensor and event specific queries. 

Second name format proposed in Section 8.2.1 can be used to resolve sensor-specific queries by 

mapping the sensor name to its geographic location and setting the sensor type as the application type. 

Then the queries can be resolved using CAN’s greedy routing, as the radars/sensors are already indexed 

in the 2D-torus according to their geographic locations. However, a mechanism is needed to map the sen-

sor names to their geographic locations. Such mapping is typically accomplished through a lookup table 

or a database, as the names typically do not reflect their exact geographic locations, e.g., name of a city or 

codes assigned to weather stations and radars [Mc09]. Therefore, such mapping can be facilitated by 

maintaining a copy of the lookup table or database at each proxy node. If it is costly to maintain a sepa-

rate copy at each proxy, the CAN DHT formed in Section 8.2 can be used to index the sensor names and 
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their locations. A distributed index in the form of a DHT is more suitable as it enhances the scalability 

and provides a consistent view of both the static and mobile sensors, and their locations. Mobile sensors 

may be indexed in the DHT without making them ZCs to prevent their movement from disrupting the 

overlay topology. Proposed 2D-torus can provide name-to-location mapping within )( NO  hops [Ra01], 

where N is the number of nodes/zones in the overlay. 

Event-specific queries are typically expressed as multi-attribute range queries, for example: 














MAX] kPa, [100   MAX], kmph, [60  

  W],103  W,[100   N], 32 N, [30  

PressureWindSpeed

LongitudesLatitudes
Q  

where MAX indicates the maximum possible attribute value. Multi-attribute range queries are typically 

resolved by first indexing the attribute values (i.e., sensor readings) in a centralized database, random set 

of overlay nodes, or DHT, and then issuing queries to those nodes (Chapter 4). DHT-based solutions are 

more appropriate for CASA-like systems because of their scalability and some guarantees in performance. 

DHT-based solutions use either one or more overlay rings or a d-torus to index attributes (Sections 2.3.2 

and 4.5.3). Adopting a ring-like overlay requires building another overlay within the CASA network 

while a d-torus requires extending the proposed 2D-torus to multiple dimensions. Moreover, ring-like 

overlays have a much higher advertising cost when attribute values (i.e., sensor readings) change fre-

quently (see Sections 4.5.3 and 4.7). d-torus has a much higher query cost when applied to real-world 

queries, as they tend to specify only a subset of the attributes and large ranges of attribute values (Section 

4.7). For example, resolving query Q on a d-torus that indexes readings from d > 4 sensor types will re-

quire searching a very large volume of the torus. Moreover, in practice, multi-attribute range queries are 

resolved by either mapping the d-torus to a ring or by visiting each zone that overlaps with the query vol-

ume in parallel and then sending separate answers to the query originator (Section 2.3). Mapping the d-

torus to an overlay ring not only requires another overlay but it also breaks the locality of sensor reading 

as d increases. Consequently, the query cost increases. Separate answers have to be sent to the query orig-

inator, as it is not straightforward to aggregate answers from zones of neighbors and neighbors of neigh-

bors on a d-torus. This is not possible in NDN as an interest packet is expected to receive only one data 
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Figure 8.4 –  Use of 2D-torus to index sensor readings and resolve range queries: (a) Indexing sensor 
readings and query areas; (b) Query resolution using a space-filling curve. 

packet. The mechanism proposed to extend PIT entries to support retrieving data from n radars (in Sec-

tion 8.2.2) cannot be applied, as the number of query responses tend to be very large (because the search 

volume is large) and cannot be known a priory (as ZCs know only their neighbors). Next, we propose a 

mechanism to index sensor readings using the proposed 2D-torus. 

Suppose sensor readings are specified using a set of attributes A = {a1, a2, a3, …, am}. We index 

sensor readings in the 2D-torus by applying Locality Preserving Hash (LPH) functions [Ca04] to each 

pair of attributes (a1, a2), (a3, a4), …, (am-1, am) such that the m-dimensional space is mapped to at most 

 2m  points in the 2D-torus. This is more efficient than mapping attribute values to m points in an over-

lay ring (see Sections 4.5.3 and 4.7). LPH hash functions are used as they preserve the locality along each 

pair of dimensions. For example, consider a sensor node s that may have readings for only a subset of the 

attributes in A, e.g., s = (a1 = v1, a2 = v2, ak = vk), where a1, a2, ak ∈ A. Then its readings are indexed in the 

2D-torus based on LPH values of (a1, a2) = p1 and (ak, arnd) = p2 (see Fig. 8.4(a)). arnd is a random or a 

fixed value added to make a pair of attributes. Depending on the application, a random value may be used 

to spread the points on the 2D-torus providing load balancing while a fixed value may be used to indicate 

that no such sensor exists. Similar to [Ca04], all the sensor readings of s are advertised to each point such 



226 
 

that a query can be resolved by searching only one of the points. Sensor readings are re-advertised when 

their values change (a fixed or dynamic threshold may be applied to reduce the number of advertise-

ments). 

Suppose we are given an event query q = {a2 ∈ [l2, u2], a3 ∈ [l3, u3], a4∈ [l4, u4]}, where li and ui 

are lower and upper bounds of the desired attribute values. Similar to the sensor readings, LPH functions 

can be applied to each pair of attribute value ranges to determine the search areas (see A1 or A2 in Fig. 

8.4(a)). The range of attribute values for the unspecified attribute a1 have to be set as a1 ∈ [MIN1, MAX1], 

where MINi and MAXi are minimum and maximum values of ai. We now need to search only one of the 

two areas (A1 or A2) as the sensor readings are mapped to a 2D-torus. We issue query q (as an interest 

packet) to the smallest area A2 as it reduces the search space and consequently the cost of resolving the 

query. Therefore, search space of our solution is much smaller than the search space/volume in a d-torus, 

which dramatically increases due to unspecified attributes. To overcome the problem of having to forward 

an interest packet to all the neighboring zones that overlap with the query area and generating separate 

data packets, we use a Space-Filling Curve (SFC) to determine the order to visit the overlapping zones in 

the 2D-torus. In [Ba82], it is shown that SFCs can be used to find a computationally efficient, close-to-

optimal shortest path route for a given set of points on a 2D area. We use a Hilbert SFC because of its 

ability to maintain the best locality in a 2D area [Mo01]. Given the number of attributes/dimensions, 

MINi and MAXi, and resolution along a dimension, any node can calculate the set of points along the SFC 

that needs to be visited to search the query area. Then the event-specific queries are resolved as follows. 

The query initiator first identifies the smallest area to query. It then uses the SFC to identify the first point 

to visit on the 2D-torus that overlaps with the minimum query area. Then an interest packet is generated 

using the second name format proposed in Section 8.2.2 with the AOI set to the location of the first point. 

Actual query is appended to the end of the name. Interest packet is then forwarded to the ZC that covers 

the first point using CAN’s greedy routing. For example, in Fig. 8.4(b), the interest packet is forwarded 

from user U to ZC1. Once it reaches the first point, ZC calculates the second point to visit and forwards 

the packet towards that point. A ZC needs to be visited only once even though it may cover multiple 
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points to be visited (e.g., ZC3 in Fig. 8.4(b)). Once the interest packet reaches the ZC that covers the last 

point (e.g., ZC4 in Fig. 8.4(b)), the query is resolved by searching the ZC’s index for matching sensor 

readings. Then a data packet is generated and the results are forwarded through the reverse path (e.g., ZC4 

 ZC3  ZC2  ZC1  U). While the data packet is being forwarded towards the query originator, in-

termediate ZCs are also queried and matching sensor readings are appended to the data packet. Therefore, 

only one data packet will be received for an interest packet. Therefore, we can also support event-specific 

queries within the same solution without creating another overlay while overcoming issues in the ring and 

d-torus based designs. 

 

8.4 Simulation Setup 

CASA IP1 test bed [Br07, Mc09] in Oklahoma had only four radars. Radars are currently being 

relocated to Dallas, TX where it will be expanded into an eight-radar network. Therefore, to demonstrate 

a much larger radar network, a discrete-event simulator is developed using parameters from the IP1 test 

bed to reflect real-world deployment scenarios. We consider a sensor field covered by 121 radars placed 

on an 11×11 grid with an inter-radar distance of 30 km. This enables us to focus on the inner 

300×300 km
2
 area that is covered by multiple radars while discarding the border effects. Sensing range r 

of a radar is set to 40 km. The size of a tile is set to 100×100 m
2
 and four bytes of data were generated per 

data type per tile (after preprocessing). Largest AOI specified in an interest packet is set to 6×6 km
2
 as 

end users are not interested in weather related to a very small area and it reduces the overhead per interest 

packet. Radars are unsynchronized and generate data for a 360
o
 scan every 30 seconds. Radars know oth-

er radars that have overlapping coverage (within 2r of each other). For management and administrative 

purposes, radars are grouped into a set of Data Fusion Groups (DFG) (see Fig. 8.5). A DFG typically con-

tains nine (3×3) radars hence the given sensor field has 16 DFGs. Reflectivity and velocity applications 

are deployed randomly within each DFG (one per DFG) as they are frequently used. NBRR, nowcasting, 

and QPE applications are deployed only in four randomly selected DFGs, as they are used only when an 

active weather event is detected and deployed based on known weather and usage patterns. Applications 
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Figure 8.5 –  Data fusion groups for network of radars. d – inter-radar distance, r – transmission range. 

are deployed randomly within each selected DFG. Altogether 44 computing nodes (16×2 for reflectivity 

and velocity, and 4×3 for NBRR, nowcasting, and QPE) are deployed within the sensor field. Five prox-

ies are placed randomly within the sensor field. The overlay network consists of these 49 (44 + 5) nodes. 

Radars are not used to forward overlay messages as they may have limited bandwidth due to deployments 

in areas without well-established infrastructure. However, they are indexed at respective ZCs enabling 

subscription interest packets to find them. ZCs share information about applications and each ZC knows 

one node for each application type (i.e., k = 1). Link bandwidth is set to 1 Gbps. Size of CS is varied from 

zero to 100 MB in 25 MB increments. PIT entries expire after 120 seconds to prevent the PIT from be-

coming arbitrarily large.  

An area of 300×300 km
2
 is typically covered by two NWS forecast offices and 30 EMs, these 

numbers are derived using the number of NWS forecast offices in the U.S. [NWS] and EMs deployed in a 

county/state. We assume each user is responsible for a distinct fragment of the sensor field (i.e., AOI), 

and therefore assigned ½ (2x1) of the sensor field to each NWS office and 
1
/30 (6×5) of the sensor field to 

each EM. We further assume eight scientists and 20 users from the media are also interested in retrieving 

data from the entire sensor field in the surveillance mode as described in Table 2.4. Altogether, there are 

60 users. Queries for NBRR, nowcasting, and QPE are issued only when an active weather event is de-

tected. Therefore, to determine AOI to specify for those queries, we use reflectivity data from an actual 
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Figure 8.6 –  Reflectivity data from a severe weather event over Oklahoma, U.S. on 24/05/2011 at 
00:08 UTC [NOAAa]. 

weather event over Oklahoma between 23/05/2011 20:00 UTC and 24/05/2011 02:00 UTC (see Fig. 8.6, 

data obtained from [NOAAa]). This weather event led to several violent (EF4) tornadoes within the 

IP1test bed. Minimum bounding rectangles covering areas with reflectivity over 25 dBz are considered of 

interest and the AOIs are updated as the weather event migrated. Reflectivity images from [NOAAa] were 

available only every one hour. Hence, midpoints between two successive samples were used to adjust the 

AOIs every half an hour as shown in Fig. 8.7. 

To evaluate the solution for event-specific queries, we considered a 1,000×1,000 km
2
 area cover-

ing parts of Arkansas, Kansas, Missouri, Oklahoma, and Texas (between latitudes 32
0
 N and 41

0
 N and 

longitudes 92.38
0
 W and 103

0
 W). We used data from 1,081 weather stations within this area that reported 

humidity, pressure, temperature, wind direction, and/or wind speed. A three-day trace of sensor readings 

starting from 2012/06/29 00:00 GMT was collected from [NOAAb]. Sampling interval of weather sta-

tions varied between five minutes to one hour. Fixed thresholds were applied to sensor readings to reduce 

the advertisements due to minor variations in sensor readings (see Appendix II.5). However, at least one 

advertisement/update was sent every 30 minutes or one hour depending on the sampling interval of the 

weather station. 10% of the weather stations were randomly added to the CAN overlay as ZCs and other 
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Figure 8.7 –  Use of reflectivity data to define AOIs: (a) Change in reflectivity with time; (b) Use of 

midpoints to define AOIs. 

stations were directly connected to them. We simulated 500 users (30 NSW, 320 EMs, 30 scientists, and 

120 media) where each issued queries based on an exponential distribution with an inter-arrival time of 

300 seconds. As the composition of queries is unknown, we generated random queries by selecting one or 

more attributes and range of attribute values as specified in [Ca04]. Each query also specified end user’s 

AOI. Hilbert SFC was generated using the algorithm in [Moor]. Results are based on five samples with 

different random seeds. Additional details on simulators are given in Appendix II.5. 

 

8.5 Performance Analysis 

Sensors in a DCAS system are typically the bottleneck in terms of the bandwidth, as they may not 

be connected by high-bandwidth links due to lack of infrastructure in places where they are deployed. 

Therefore, in Fig. 8.8, we analyze the amount of data pulled from a radar within a given time period under 

different cache capacities and policies. Error bars indicate 1
th
 and 99

th
 percentile. Due to the periodic but 

asynchronous arrival of queries from different end users, it is more appropriate to evaluate the aggregated 

amount of data pulled within a time window than instantaneous values. Proposed subscription scheme for 
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Figure 8.8 –  Data pulled from a radar while varying the cache size. 

queries reduce the peak and average load on a radar by 61% and 72%, respectively, even without any 

caching (size of CS CSsize = 0). Peak and average loads further reduced to 87% and 86% with CSsize = 

25 MB and diminishing return is gained with increasing CSsize (e.g., load reduced by another 1% when 

CSsize = 75 MB). Among the three caching polices considered, OFC outperformed LFU and LRU. For ex-

ample, when CSsize = 100 MB OFC reduced the peak load by 85% (without the subscription scheme) 

while LFU and LRU reduce it by 76% and 82%, respectively. Load reduction due to both the OFC and 

LRU caching policies indicates that data generation and access times are better predictors of future data-

access patterns when users are interested in more recent data. However, compared to LFU and LRU, OFC 

caching has the added benefit of not requiring any counters as the data packets are already tagged with the 

data-generation time. Figure 8.9 shows the cumulative distribution of load on radars. Without any caching 

or subscription scheme, large volumes of data have to be pulled from the radars that are responsible for 

covering the area of active weather. While caching reduces the load on radars, a more balanced distribu-

tion of load can be achieved when the subscription scheme is combined with caching. It was also ob-

served that the total load on radars could be reduced by 28% by applying only the duplicate messages 

suppression feature in the PIT. Figure 8.10 also shows similar load reductions for applications and prox-

ies. 
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Figure 8.9 –  Amount of data pulled from radars. Cache size 75 MB. 

  
(a) (b) 

Figure 8.10 –  Data pulled from: (a) Applications; (b) Proxies. 

Alternatively, end users are concerned about the quality of the received data. Figure 8.11 shows 

the waiting time ε under different caching policies and CSsize. When CSsize = 0 multiple interest packets go 

all the way up to the radars while aggregating traffic along the path. This behavior is confirmed by Fig. 

8.12 which shows that the number of overlay hops traveled by an interest packet without caching is 73% 

higher than when CSsize = 100 MB. Consequently, ε increases, as more time is required to send the corre-

sponding data packets back to the end users over multiple hops under a bounded link bandwidth. It was 

also observed that 3% of the queries got lost due to PIT timeout as some data packets were significantly 

delayed. The subscription scheme reduced average ε by 72% without caching. Even though it pulls the 

latest data from radars, packets are not significantly delayed as the links are less congested. When caching 
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Figure 8.11 –  Time taken to resolve a query (waiting time ε). 

 

Figure 8.12 –  Number of overlay hops travelled by interest packets. 

is employed, only the interest packets looking for the latest data are forwarded to the radars while other 

interest packets are answered from CSs along the path. Therefore, most users receive data within a short 

time consequently reducing ε. For example, when CSsize = 75 MB peak and average ε reduce by 88% and 

95% using both OFC and LRU caching. As the subscription scheme is looking for recent data, it cannot 

significantly benefit from caching. Hence, ε did not reduce with increasing CSsize. Staleness (i.e., the time 

between the data generation and delivery to users) is another metric of quality as end users are interested 

in getting more recent data. Figure 8.13 shows the staleness. Subscription scheme and caching reduce the 

duplicate interest packets in the network while making overlay links less congested. Hence, data packets 

can be delivered with a lower delay consequently reducing the staleness. Therefore, by combing DCAS 
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Figure 8.13 –  Staleness of received data. 

systems with NDN and overlay networks, the bandwidth requirements of the sensors and DCAS system 

can be reduced while increasing the quality of data delivered to end users. 

Next, we analyze the performance of event-specific query resolution using the 2D-torus. Perfor-

mance is also compared against an 8D-torus (five dimensions for sensor readings and three dimensions 

for latitude, longitude, and elevation of a weather station) and a ring-like overlay based on [Ca04]. Figure 

8.14(a) shows the average number of hops required to resolve a query while increasing the range/fraction 

of attribute values specified in a query. While the query cost increases with the increasing range of attrib-

ute values (as the search space increases), the cost of our solution is 56-65% lower than the 8D-torus and 

45-48% lower than the ring. Query cost with increasing number of attributes is shown in Fig. 8.14(b). 

Query cost of 2D-torus and 8D-torus decreases as the area/volume to search gets smaller when the queries 

specify more and more attributes. The performance of the ring does not change as the fraction of attribute 

value range specified in a query was fixed. While the query cost of 8D-torus is gradually approaching our 

solution, our solution is still 34% lower than the 8D-torus even when five attributes are specified. Figure 

8.15 shows the total cost per query (considering both the cost of advertising sensor readings and queries). 

It can be seen that the 2D-torus is 38-42% and 55-60% more efficient than the 8D-torus and ring, respec-

tively. In practice, queries are more likely to specify a small number of attributes and large range of at-

tribute values (Section 4.4.2). Therefore, the proposed solution is more suitable as it has the lowest cost. 
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(a) (b) 

Figure 8.14 –  Query cost with: (a) Varying attribute value ranges. No of attributes = 1; (b) Increasing 
number of attributes. Fraction of range = 0.3. 

  
(a) (b) 

Figure 8.15 –  Per query cost with: (a) Varying attribute value ranges. No of attributes = 1; and (b) In-

creasing number of attributes. Fraction of range = 0.3. 

 

8.6 Summary 

A multi-user, multi-application, and multi-sensor DCAS system implemented on top of an over-

laid NDN was presented. Ability to name the data based on the geographic location and data type, inde-

pendent of the sensors that generate them, enables not only bandwidth reduction and load balancing but 

also increases the quality of data delivered to the end users by reducing the response time and staleness. 

Proposed subscription scheme and data-generation-time-aware caching policy further reduced the band-

width requirements, waiting time, and staleness of received data. Resolving event-specific queries using 
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the proposed 2D-torus is more efficient than building a separate ring-like overlay or a multidimensional 

torus. While the performance gain is specific to the simulated CASA network, we believe these perfor-

mance gains are significant enough to justify the applicability of NDN for other DCAS systems. 
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Chapter 9 

SUMMARY 

 

 

We envision collaborative Peer-to-Peer (P2P) applications that will look for groups of diverse 

peers that could bring in unique resources and capabilities to a virtual community thereby empowering it 

to engage in greater tasks beyond what can be accomplished by individual peers. The majority of existing 

solutions focuses only on discovering individual resources. Moreover, all the solutions rely on many sim-

plifying assumptions due to the absence of data and understanding of the characteristics of real work-

loads. We bridged this gap by presenting a characterization of real-world resources and queries, and then 

used the learned behavior to develop a synthetic resource and query generation tool, resource and query 

aware Resource Discovery (RD) solution, community-aware distributed caching solution, and demon-

strated the applicability of Named Data Networking (NDN) for Distributed Collaborative Adaptive Sens-

ing (DCAS) systems. This chapter provides a concluding summary of work presented (Section 9.1) and 

future directions (Section 9.2). 

 

9.1 Conclusions 

In Chapter 4, we analyzed the resource and query characteristics from four different real-world 

computing environments (1) PlanetLab networking test bed, (2) SETI@home volunteer-computing sys-

tem, (3) EGI grid computing nodes, and (4) a distributed campus computing facility. Fundamental design 

choices for P2P-based RD were then qualitatively and quantitatively evaluated using the learned behavior. 

To our knowledge, this is the first such evaluation using real-life workloads. Findings show real world, 

multi-attribute resource and query characteristics diverge substantially from conventional assumptions. 

While real world, less-specific queries are relatively easier to resolve, they introduce significant load bal-

ancing issues due to skewed resources and queries. Dynamic attributes contribute to high advertising cost, 
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and their behavior is attribute-type and system specific hence should not be ignored in performance stud-

ies. These findings indicate the need for more efficient, scalable, and robust RD solutions as well as the 

importance of taking into account the specific characteristics of real-world resources/queries while de-

signing and analyzing such solutions. Hybrid approaches that combine the desirable features of central-

ized, superpeer, and ring-based architectures have the potential to provide better solutions. 

A technique to generate vectors of static attributes and multivariate time series of dynamic attrib-

utes while preserving the correlations and temporal patterns observed in operational systems was present-

ed in Chapter 5. A probabilistic finite state machine based technique was also presented to generate multi-

attribute range queries. Such synthetic traces of multi-attribute resources and range queries are useful in 

collaborative P2P and grid/cloud computing for evaluating the scalability of applications, RD solutions, 

and job schedulers, far beyond that is possible with existing test beds. Its applicability to the four datasets 

collected in Chapter 4 was demonstrated using statistical tests. Data from any other platform may be used 

as the basis for trace statistics. A tool is developed to automate the process of data generation and it is 

made public with the four datasets [CNRL] enabling users to generate synthetic traces using existing da-

tasets or their own ones. Synthetic data from the tool were used to evaluate the fundamental design choic-

es for P2P-based RD in Chapter 4 and the performance of resource and query aware RD solution in Chap-

ter 6.  

In Chapter 6, we presented five heuristics to discover multi-attribute resources within a P2P sys-

tem while alleviating the load-balancing problem identified in Chapter 4. These heuristics were derived 

based on the properties of resources and queries learned in Chapter 4. Heuristics rely on local statistics to 

capture the complex characteristics of real-world resources and queries, and try to retain only the nodes 

that answer queries in the overlay. It is the first RD solution to explicitly take into account the characteris-

tics of real-world resources and queries during the design, runtime, and performance analysis. Resource 

index is transferred among existing and new nodes to maintain the index size and query load of a node 

within its capacity. While the heuristics can be executed independently, much better performance can be 

gained when all five heuristics are executed in the given order. Simulation-based analysis demonstrated 
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their ability to reduce the query cost, balance the load, and adapt to rapid changes in attribute values. This 

solution is useful for many systems such as CASA, P2P Clouds, GENI, as well as grid and cloud compu-

ting. 

Analysis of search clouds from several BitTorrent communities showed P2P communities tend to 

access the same content hence communities are partially isolated. Furthermore, a survey was conducted to 

find out the number of communities accessed by BitTorrent users and their frequencies. Our findings 

show users prefer to access contents from a few primary communities where 89% of the time they ac-

cessed at most two communities. These findings were utilized in Chapter 7 to develop a community-

aware sub-overlay formation and a distributed caching solution that adapts according to the interest pat-

terns of explicit P2P communities. An analytical model is derived to determine the best cache placement 

and capacity allocation strategies as well as to provide useful bounds on performance. The proposed cach-

ing algorithm is independent of how the communities are formed, utilizes only the local statistics, and 

works with any skewed distribution of queries. Moreover, the overall solution is adaptive and introduces 

minimum storage, network, and computational overhead. It is more suitable when users primarily access 

resources from few communities and when the size of a community is moderate to large with respect to 

the size of the overall P2P system. Simulations based on Chord overlay, for example, showed 40% reduc-

tion in overall query cost (i.e., average path length) with per node cache sizes as low as 20. Less popular 

communities were able to reduce the query cost by three times compared to system-wide caching. To our 

knowledge, this is the first caching solution for structured P2P systems that exploits communities to pro-

vide better communitywide and system-wide lookup performance. We also demonstrated that query-path-

length information is not essential to develop a close to optimal, local-knowledge-based distributed cach-

ing solution. The relationships between the asymmetric overlay routing tree and Chord’s path length 

bounded of O(log2 N), average path length of ½ log2 N, and bell-shaped distribution of path lengths were 

also demonstrated. 

A proof-of-concept multi-user, multi-application, and multi-sensor DCAS system implemented 

on top of an overlaid NDN was presented in Chapter 8. A subscription mechanism for periodic queries 
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and a caching policy based on data generation time that is more suitable for DCAS systems are also pre-

sented. The proposed solution also supports sensor-specific and event-specific queries. The ability to 

name the data based on the geographic location and data type, independent of sensor(s) that generate 

them, enabled not only bandwidth reduction and load balancing but also increased the quality of data de-

livered to end users by reducing the response time and staleness. For example, simulation-based analysis 

using design parameters from the CASA IP1 test bed and reflectivity data from an actual weather event 

showed 87% and 95% reduction in average bandwidth consumption of radars and latency, respectively. 

While the performance gain is specific to the simulated CASA network, we believe these performance 

gains are significant enough to justify the applicability of NDN for other DCAS systems. Moreover, 

DCAS systems can benefit from multiple features of NDN such as caching, multicasting, duplicate mes-

sage suppression, ability to deliver interest messages to potential data sources, and enhanced security and 

mobility hence are even better applications for NDN compared to applications such as web access, 

streaming, VoIP (Voice over IP) [Ja09b], and text-based chat [Palo] that utilize only a subset of the NDN 

features. To our knowledge, this is the first demonstration of the applicability of NDN for DCAS systems. 

 

9.2 Future Directions 

Presented work can be extended along several directions to further enhance and realize the true 

potential of collaborative P2P systems, community caching, and multi-sensor data fusion in DCAS sys-

tems using NDN. Below we discuss some of the possible future research directions. 

Extend resource and query aware resource discovery solution to support all key phases of resource ag-

gregation 

Our resource and query aware RD solution (Chapter 6) currently supports only the resource ad-

vertising and selecting phases hence needs to be extended to support resource matching and binding phas-

es (Section 3.4). It makes use of a hybrid design that combines a ring-based Distributed Hash Table 

(DHT) and a superpeer-like two-layer overlay where nodes that are not in the overlay ring advertise and 

query for resources through the nodes that are in the ring. Superpeers are more suitable for keeping track 
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of inter-resource relationships of multiple nodes/resources that are directly connected to them (Section 

4.5.3, [Ba12b]). They can also provide resource binding on behalf of those connected nodes/resources. 

Therefore, our hybrid design enables resource matching and binding. However, it is challenging to cap-

ture complex inter-resource relationships accurately while introducing low overhead. Constraints such as 

latency and bandwidth may need to be satisfied among the selected resources as well as between the set of 

selected resources and the node that is trying to deploy the collaborative application. Satisfying such con-

straints is nontrivial in superpeer and DHT-based solutions as third-party nodes resolve the queries. La-

tency or bandwidth measured to a third-party node is not transitive to the selected resources or to the node 

trying to deploy the application. However, it has been demonstrated that network coordinates [Da04, 

Le07], measuring performance to a set of landmarks [Za05], and random IP address sampling [Be06] 

could be used to estimate inter-resource latency without involving the third-party node. However, further 

research efforts are needed to enhance their accuracy, reduce overhead, as well as to support other inter-

resource relationships such as bandwidth, packet loss, and connectivity. Solutions such as P4P [Xi08a] 

and ALTO [Se09] could be useful in inferring the physical topology and connectivity. Another important 

extension is to support resource compensation [Ba12b]. For example, distributed data fusion in CASA 

can compensate for lack of bandwidth between a processing and a storage node by processing data faster 

(due to inherent parallelism in data fusion) to accommodate the extra delay introduced while transferring 

data to the storage node. It is useful to identify and support such application-specific compensations with-

in the resource aggregation solution as they can enhance the performance, quality of service, and reliabil-

ity. Furthermore, solutions designed to support matching and binding phases should take into account the 

complex characteristics of real-world resources/queries. It is also important to develop analytical models 

to predict the performance of these solutions. A solution that supports all key phases of resource collabo-

ration can harness the collective power of P2P communities and their underutilized/unused resources to 

build a globally distributed, virtual datacenter (with computing, storage, and sensing resources) that are 

useful for limitless number of applications that can yield grater benefits to its contributors/users. 
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Identify semantic communities and extended performance analysis of community-based caching 

Our sub-overlay formation scheme in Chapter 7 directly supports communities based on geo-

graphic and organizational interests. It is also important to develop mechanisms to identify communities 

exhibiting semantic relationships within the P2P system. Our Community-Based Caching (CBC) solution 

is designed based on the observation in Table 7.1 where real-world P2P communities are neither highly 

correlated nor completely independent. It is important to investigate the range of correlations for which 

our solution outperforms other solutions such as clustering which assumes communities are highly corre-

lated and almost all the queries stays within a cluster. For such a comparison, it is important to first ex-

tend solutions such as Magnet [Gi10] and/or developing new mechanisms to group nodes into communi-

ties based on their semantic relationships. Magnet clusters similar peers to adjacent addresses in the 

overlay ring and dissimilar peers tend to be well separated. Therefore, prefix bits of the overlay addresses 

could be used to represent the community identifiers, as nodes mapped to nearby locations tend have the 

same prefix bits. Once such a mechanism is developed, performance of our CBC solution need be com-

pared against existing semantic-based clustering solutions to determine the applicability of each solution 

under varying levels of correlations among P2P communities. Once the sub-overlays are created, it may 

not be necessary to run the same greedy algorithms used by structured P2P systems to forward messages 

between two community members. Therefore, it is useful to evaluate the possibility of using alternative 

and/or multiple routing mechanisms within sub-overlays that are more efficient and less complicated. 

While our solution supports nodes that belong to multiple communities (Section 7.6), our analysis was 

limited to a single community per node. Therefore, an extensive performance analysis in the presence of 

multiple communities per node is also necessary. When a node belongs to multiple communities, it may 

receive a disproportionate number of queries for each of its communities. Thus, it is important to balance 

the query load while making sure less-dominant communities do not starve due to the dominant ones. 

While our results show caching also enhances load balancing, further analysis is needed to determine the 

best cache-capacity allocation strategy within a node when it belongs to multiple communities. It is also 

of interest to analyze the performance when members of a community have heterogeneous content access 
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and popularity patterns. Performance of the current solution and all the enhancements need to be evaluat-

ed under peer churn as well. The concept of exploiting specific characteristics of communities can be ap-

plied to many aspects of collaborative P2P systems including resource aggregation. 

Aggregating data from multiple and heterogeneous sensors in named data networking 

Distributed and collaborative data fusion provides an attractive implementation choice for CASA 

real-time weather monitoring because data are constantly being generated, processed, pushed and pulled 

among groups of radars, storage, and processing nodes. While we demonstrated the suitability of NDN 

and overlay network based data fusion for DCAS systems (Chapter 8), a lot more work is needed to ag-

gregate groups of heterogeneous, distributed, dynamic, and multi-attribute resources as and when needed 

[Ba12h]. While the solution proposed to resolve event-specific queries using the 2D-torus outperformed 

the ring and multi-dimensional-torus based designs, it was not able to benefit entirely from NDN features 

such as caching and duplicate message suppression. An interest message corresponding to an event-

specific query had to first go through a series of zones that overlapped with the query region, based on the 

order given by the points on the space-filling curve. Once the query reached the last zone, it was resolved 

by searching the sensor readings stored in the zone controller. Sensor readings stored in the intermediate 

zones were checked only during the reverse path and matching sensor readings were appended to the data 

packet. The solution was designed this was as NDN do not allow multiple data packets to be received for 

the same interest packet and the number of data packets to be generated cannot be determined a priory. 

However, this also hinders the possibility of benefiting from cached query responses for some of the 

zones that need to be visited. As a query cannot be resolved until it reaches the last zone (unless an exact 

match is found in a cache), our solution cannot benefit from cached query results that may be available 

for a subset of the zones to be visited. The ability to aggregate data from multiple data sources for the 

same interest packet is also important in many other applications including P2P-based RD and distributed 

databases. Hence, it is important to develop solutions that can aggregate data from multiple sources (for 

the same interest packet) while benefiting from multiple features in NDN. Our proof-of-concept solution 

considered radars and weather stations separately. Hence, it is also important to extend the NDN-based 
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data fusion solution to integrate multiple heterogeneous sensors with diverse data types, rates, and genera-

tion patterns. For example, CASA utilizes pressure sensors and micro-weather stations to increase the 

accuracy of detecting, tracking, and forecasting tornados [Ba12h, Pe11a, Pe12]. Moreover, integration of 

mobile sensors is also important, e.g., radars mounted on vehicles that may be deployed during anticipat-

ed severe weather events. Building an actual data fusion system using CCNx [Palo] that can be readily 

deployed on DCAS systems is also of interest. 

Supporting incentives, trust, security, and privacy 

Solutions designed to support incentives, trust, privacy, and security in conventional P2P systems 

need to be extended to support interactions among multiple groups of heterogeneous resources in collabo-

rative P2P systems [Ba12b]. Multi-attribute resource discovery/aggregation solutions may treat incentives 

and reputation values/scores of resources/users as another set of attributes. Incentives and reputation val-

ues need to be preserved even after a resource leaves the system (due to failure or churn), as it is costly 

and time consuming to regain those values when the resource rejoins. Furthermore, security, integrity, and 

accountability of the nodes as well as maintaining the incentives and trust values are of utmost im-

portance, as they can become easy targets for attacks. Guidelines need to be identified for determining 

credits/payments and reputation scores for heterogeneous resources. For example, while both a radar and 

a set of rain gauges are important for weather monitoring, formally evaluating the cost and perceived val-

ue of such systems in a consistent manner is difficult. Moreover, while a computed result must be always 

accurate, accuracy of sensor data is dependent on many dynamic parameters. Formal analysis of incentive 

schemes such as [Zh12] need to be extended to understand under what conditions a collaborative P2P sys-

tem will be robust and when will it collapse. Anonymity is in conflict with the incentives, trust, and secu-

rity; hence, it is important to look for distributed solutions that overcome this limitation. Because the key 

phases of resource collaboration as well as incentives, trust, privacy and security are essential elements of 

a collaborative P2P system, their designs and performance should also be evaluated in the context of the 

overall system. Issues related to incentives, trust, privacy, and security might seem to be overweighting 
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the benefits of collaborative P2P systems. However, with the right tools and incentives in place, it will be 

more useful, efficient, and rewarding to accomplish a greater task through the collaboration.
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Appendix I 

NUMBER OF BITTORRENT COMMUNITIES ACCESSED BY 

USERS 

 

No measurements are available on the number of communities accessed by P2P users. It is not 

straightforward to measure such behavior accurately without probing all the possible communities (or a 

large representative subset of them) and all the resources shared by each of them as BitTorrent-like sys-

tems track their users based on the files they access. Moreover, the rate limiting adopted by BitTorrent 

trackers and use of anonymizing services further impact such a measurement process. Instead, we con-

ducted an online survey to find out the number of communities accessed by BitTorrent users and their 

frequencies. Survey link was posted on user communities of www.kat.ph, www.forum.suprbay.org, and 

www.fenopy.eu, and e-mailed to friends between 11/03/2012 and 14/04/2012. We received 238 positive 

responses (332 attempted the survey) from 42 countries as of 09/05/2012. Survey questions are given in 

Section I.1 and survey results are given in Section I.2. Survey data are available in [CNRL]. 

 

I.1 Survey Questions 

Question 1 

Do you use BitTorrent, µTorrent, Xunlei, Vuze, etc. to download Videos, Music, Games, Software, e-Books, 
etc.? 

○ Yes 

○ No 

Question 2 

What types of content do you search/download (select all that apply)? 

□ Movies 

□ TV shows or documentaries 

□ Music Video 

□ Anime 

□ Porn 

□ Music 
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□ Audio Books 

□ Games 

□ Software 

□ e-Books 

□ Pictures 

□ Other – please specify ______________ 

Question 3 

Which of the following features on a BitTorrent search engine do you use (select all that apply)? 

□ Search 

□ Search Cloud 

□ Top or most popular torrents 

□ Browse torrents 

□ Recent/latest Torrents 

□ Other – please specify ______________ 

Question 4 

Which of the following BitTorrent sites (search engines) are you aware of (select all that apply)? 

□  1337x □ Bing 

□ BitGamer.su □ BitSnoop 

□ BitTorrent.com (or search box in client) □ BitTorrent Search Engine 

□ BitToxic.com □ Blues Brothers 

□ BTscene □ Bush Torrent 

□ ClearBits □ Demonoid.me 

□ Entertane.com □ Extra Torrent 

□ EZ-TV □ fenopy 

□ GamesTorrents □ gameupdates.org 

□ Google □ jamendo 

□ Kickass Torrents (KAT) □ isoHunt 

□ LINUX23 □ linux TRACKER 

□ Mininova □ NowTorrents 

□ Scrape Torrent □ Seedpeer 

□ SUMO TORRENT □ The Pirate Bay 

□ ThunderBytes □ Torlock 

□ Toorgle □ Torrentbit 

□ TorrentCafe □ Torrent Download 

□ Torrent Downloads □ Torrent Funk 

□ torrentGamez □ Torrent Root 

□ torrents.to □ TORRENTScan 

□ Torrentz □ Torrent Reactor 

□ torrentzap □ Underground-Gamer 

□ uTorrent (or search box in client) □ VODO 

□ YouTorrent □ YourBittorrent 

□ Vertor □ WiiTorrents 

□ Xunlei (or search box in client) □ Yahoo 

□ Other – please specify ______________ 
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Question 5 

List of options depends on the answers to question four. For example, suppose user selected Bing, 

BitTorrent.com, fenopy, The Pirate Bay, uTorrent, YouTorrent, YourBittorrent, and Yahoo. 

Which of the following BitTorrent sites (search engines) do you use (select all that apply)? 

□  Bing 

□ BitTorrent.com 

□ fenopy 

□ The Pirate Bay 

□ uTorrent 

□ YouTorrent 

□ YourBittorrent 

□ Yahoo 

Question 6 

List of options depends on answers to question five. For example, suppose user selected Bing, 

fenopy, The Pirate Bay, and YourBittorrent. 

If you were to perform 20 searches for files, how many of them would go to each of the following sites 
(total should be 20)? 

Bing _________ 

fenopy _________ 

The Pirate Bay _________ 

YourBittorrent _________ 

  

Total 
========  

 

Question 7 

In what country do you live (for classification only)? 

______________________________________________ 

Comments - anything that you would like to share about use of BitTorrent search engines 

______________________________________________ 

 

I.2 Survey Results 

Figure I.1 shows the types of contents accessed by users. As expected, users seem to be accessing 

a variety of contents. Movies and software are the most popular types of contents. Summary of data is 

listed in Table I.1. 
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Figure I.1 –  Types of contents accessed by users. 

Table I.1 – Summary of findings. 

 Min Max Average Std. Mode 

Types of content accessed by a user 1 12 4.6 2.3 4 

Search engine features 1 6 2.1 1.1 1 

No of search engines known to a user 1 36 7.8 6.4 1 

No of search engines used 1 19 3.4 2.8 1 

 

Figure I.2 shows what features provided by search engines are frequently used. Majority of the 

users relies on search and browse options. However, their content access choices seem to be also influ-

enced by what is popular (e.g., Top 50/100 and recent searches lists). Thus, there is a tendency for a popu-

lar content to become even more popular. Search clouds are infrequently used when deciding what to ac-

cess/download however they reflect what is being searched. 

 

Figure I.2 –  Frequently used features provided by search engines. 
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Search engines (communities) known to users are shown in Fig. I.3 and the ones that are actually 

used are shown in Fig. I.4. Only the most popular 25 search engines are shown as our focus was on distri-

bution of search engine usage than relative popularity among them. Though users are aware of many 

search engines, they seem to be using only a small subset of those (average number of search engines 

used drop from 7.8 to 3.4). 

 
Figure I.3 –  Search engines known to users. 

 

 
Figure I.4 –  Search engines used. 
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Distribution of the number of communities accessed by a user is shown in Fig. I.5(a). 84% of the 

time users access up to five search engines. Distribution of the number of searches per search engine 

when a user performs 20 searches for files is shown in Fig. I.5(b). 73% of the time users prefer to use a 

single search engine and one to two search engines are accessed 89% of the time. Therefore, though the 

users tend to access contents from multiple communities (Fig. I.5(a)), they frequently revisit only one or 

two communities. Consequently, by catering to few most preferred communities of a given user P2P per-

formance and quality enhancement solutions can gain better results. Figure I.6 shows the number of 

searches per search engine. Country of survey participants is listed in Table I.2. 

  
(a) (b) 

Figure I.5 –  Cumulative distribution of: (a) Number of communities accessed by a user; (b) Frequency 

that a user revisits different communities. 

Table I.2 – Country of survey participants. 

Country No Country No Country No 

Sri Lanka 97 Ireland 2 Poland 1 

United States 32 Greece 1 Finland 1 

United Kingdom 15 Japan 1 Bosnia and Herzegovina 1 

India 13 Cyprus 1 Bulgaria 1 

Singapore 12 Trinidad 1 New Zealand 1 

Australia 10 Italy 1 Bangladesh 1 

Canada 7 South Africa 1 Pakistan 1 

United Arab Emirates 4 Nepal 1 Romania 1 

Norway 3 France 1 Mexico 1 

Sweden 4 North Cyprus 1 Egypt 1 

Malaysia 2 Ghana 1 Uganda 1 

Hungary 2 Brazil 1 China 1 

Iran 2 Georgia 1 Netherlands 1 

Belgium 2 Spain 1   
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Figure I.6 –  Number of searches per search engine (out of 20 searches). Only the first 25 search en-

gines are shown. 

 

Selected Comments 

Below is a selected set of comments from survey participants. 

1. Used these sites in India frequently not in the US 

2. Please make sure they don't ask us to register to be able to download! 

3. There aren't many seeders around. People fear using torrent clients, as 95% of downloads are illegal. 

4. When I have a torrent that is working, I search other instances of that torrent by hash and add track-

ers. Additionally, I maintain a list of generic trackers. 

5. It is unjustifiable to stop torrents as people in 3rd world countries heavily depend on torrents 

6. Help torrent search engine from going down due to government rules. like btjunkie 

7. Nice idea to connect the world. It's actually a social network. everyone will benefit from this 

8. I didn't aware about such a number of torrent search engines 

9. It would be great if possible to seach torrents using a single site. In future using anonymizing tech-
nologies like Freenet and GNUNet there will be much pirate stuff can be found in Internet if special 

laws against such technologies will come into play. 

10. I rarely use BitTorrent search function as I use RSS to auto download my torrents. 

11. Mostly I use google to search for torrent files 

12. They should be made more safe and free from malwares, rootkits and backdoor trojans 
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13. IF there is a global bittorrent downloader engine which perform global serach on user defined bit-

torrent sites & retirves torrents on highest seeds priority level, that would replace searching torrent 
sites & timing. 

14. Indexing is not a crime. 

15. Need more reliable torrent uploaders without fakers 

16. I don‘t just use the all of the above; there are a few more that are not listed. 

17. Regarding question 6: I always start with The Pirate Bay, but if TPB doesn‘t have what I am looking 

for I move on to other torrent indexes. 

18. Most are crap. Some are great! 

19. Torrent contents are really useful. We don't need to shut them down due to copy rights violations. 

20. prefer private sites (needs login & maintain seed/leech ratio ) 

21. I use BitTorrent primarily for TV Shows, and I use RSS feeds for automatically download them. 

22. It’s just a technology (Peer to peer is awesome). The legal or illegal debate depend on the content we 

share. That’s it :) 

23. Survey does not list many private trackers (though doing such would probably be impractical) 

24. in UAE they have blocked KickAss torentz.Before that I have used it most of the time.Then I moved 
to bit torrent.After using few months I search which is the most populalar torrent client from 

wikipedea. 

25. At the moment my ISP has banned accessing The Pirate Bay. So I have to use proxy to access it. 

26. Since North Cyprus is not recognized as a country, it's very easy to pirate, as there are no official 

rules for online media distribution. 

27. Bittorrent search engines are useless and inefficient 

28. They're awesome, they're a great way to share so many things, and restrictive bills like SOPA, PIPA, 

and their counterparts throughout the world, as well as all of the billionaire bullies that support them 

need to be stopped! 

29. Many things that I download are (if they are good) purchased at a later date. 

30. Bittorent is good to check if stuff has quality. If it's good it's worth buying. 

31. bittorrent is great,it's the perception of a person that matters the most 

32. I usually search for things on Demonoid, but then go to The Pirate Bay to actually download them. If 
I find that a torrent is going slow, I'll search it's hash on Torrenz and add the trackers listed on that 

site to the tracker list in the torrent. 
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Figure II.1 –  Architecture of the resource discovery simulators. 

Appendix II 

SIMULATORS 

 

Following is a brief description of simulator designs and configuration parameters. The source 

code is available in supplementary material. 

 

II.1 Resource Discovery Simulators 

Seven discrete-event simulators were developed using Python to demonstrate the architectures 

listed in Table 4.10. Figure II.1 illustrates the architecture of the simulators. A set of multi-attribute re-

source and query traces was generated using the method described in Section 4.6 and the same datasets 

were used with all the simulators. Resources/nodes were sampled every 5 minutes and advertisements 

were sent to the resource index layer, if the value of at least one attribute was significantly different from 

the previous advertised value. Thresholds listed in Table II.1 were applied to determine whether attribute 

values changed significantly. Domain of each attribute is listed in Table II.2. Each resource/node issued 

queries based on a Poisson distribution with a mean inter-arrival time of 2.5 minutes (i.e., two queries per 
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Table II.1 – Thresholds applied while advertising resource attributes. 

Attribute Name Description (Units) Threshold 

1_MIN_LOAD 1-minute EWMA of CPU load 2.0 

5_MIN_LOAD 5-minute EWMA of CPU load 2.0 

15_MIN_LOAD 15-minute EWMA of CPU load 2.0 

CPU_FREE Free CPU (%) 10.0 

DISK_IN Disk in (GB) 1.0 

DISK_FREE Free disk space (GB) 5.0 

DISK_OUT Disk out (GB) 1.0 

DISK_SVC Disk svc (GB) 1.0 

DISK_USED Disk used (%) 2.0 

DISK_UTIL Disk utilization (%) 2.0 

DRIFT Clock drift (sec) 1.0 

MEM_ACTIVE Memory active (%) 10.0 

MEM_FREE Free memory (%) 10.0 

SWAP_IN Disk swap in (GB) 1.0 

SWAP_OUT Disk swap out (GB) 1.0 

SWAP_USED Disk swap used (%) 5.0 

RESP_TIME Response time (sec) 0.15 

RX_RATE Transmission rate (bps) 1,000 

TIMER_AVE Timer average (milliseconds) 100.0 

TIMER_MAX Timer maximum (milliseconds) 100.0 

TX_RATE Receive rate (bps) 1,000 

UPTIME Uptime of node (sec) 21600.0 
 

sampling interval per node). Resource index and overlay layers were modified to reflect the appropriate 

sampling interval per node). Resource index and overlay layers were modified to reflect the appropriate 

resource discovery solution. A set of topologies were generated a priory and used with appropriate simu-

lators. Both the unstructured and superpeer-based networks were generated using the B-A scale-free net-

work generator [Ge07] with a minimum node degree of two. Structured overlay networks were generated 

 using the Chord [St03] implementation in OverSim [Ba07b], and overlay keys of nodes and the number 

of hops to send a message from one node to all the other nodes were extracted (this creates the overlay 

distances dataset). Building the overlay topology outside of the simulator simplified the simulator design, 

speed up the simulator, and allowed the same topology to be used across different structured P2P-based 

resource discovery solutions. According to [Co09b], number of cell levels of the d-Torus is set to three 

and nodes in each cell were identified using random sampling. For DHT-based solutions, the overlay key 

length is set to 160-bits. Attribute values were hashed using the locality preserving hash function pro-

posed in [Ca04]. Queries were issued only after the network was stabilized. 
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Table II.2 – Domains of attribute values. 

Attribute Name Description (Units) Minimum Maximum 

1_MIN_LOAD 1-minute EWMA of CPU load 0.0 1000.0 

5_MIN_LOAD 5-minute EWMA of CPU load 0.0 1000.0 

15_MIN_LOAD 15-minute EWMA of CPU load 0.0 1000.0 

BOOT Boot state 0 6 

BW_LIMIT Bandwidth limit (bps) 0 1,000,000 

CORES_PER_CPU No of cores per CPU 0 8.0 

CPU_FREE Free CPU (%) 0.0 100.0 

CPU_SPEED CPU speed (GHz) 0.0 6.0 

DISK_IN Disk in (GB) 0.0 50,000.0 

DISK_FREE Free disk space (GB) 0.0 10,000.0 

DISK_OUT Disk out (GB) 0.0 50,000.0 

DISK_SIZE Disk size (GB) 0.0 10,000.0 

DISK_SVC Disk svc (GB) 0.0 10,000.0 

DISK_USED Disk used (%) 0.0 100.0 

DISK_UTIL Disk utilization (%) 0.0 100.0 

DRIFT Clock drift (sec) 21,600.0 21,600.0 

FC_NAMEX OS (Fedora core) name 0 4 

KERN_VER Kernel version 0 4 

LATITUDE Latitude of node location (degrees) -90.0 90.0 

LOCATION Location of node (categorical) 1 5 

LONGITUDE Longitude of node location (degrees) -180.0 180.0 

MEM_ACTIVE Memory active (%) 0.0 100.0 

MEM_FREE Free memory (%) 0.0 100.0 

MEM_SIZE Memory size (GB) 0.0 32.0 

NODE_TYPE Node type (categorical) 0 2 

NUM_CORES No of CPU cores 0 32.0 

SWAP_IN Disk swap in (GB) 0.0 2500.0 

SWAP_OUT Disk swap out (GB) 0.0 2500.0 

SWAP_USED Disk swap used (%) 0.0 100.0 

RESP_TIME Response time (sec) 0.0 100.0 

RX_RATE Transmission rate (bps) 0 100,000 

TIMER_AVE Timer average (milliseconds) 0.0 25,000.0 

TIMER_MAX Timer maximum (milliseconds) 0.0 25,000.0 

TX_RATE Receive rate (bps) 0 100,000 

UPTIME Uptime of node (sec) 0.0 6,3072,000.0 

 

 

II.2 ResQue – Resource and Query Generator 

ResQue is developed using MATLAB. Figure 5.18 illustrates the process of generating multi-

attribute resources by combining the empirical-copula-based static attribute generation and time-series-

library-based dynamic attribute generation. pwlCopula [St09] MATLAB tool is extended to run in the 

background (without user interaction) and integrated into ResQue. Time series libraries are built using the 
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strucchange package for R and two-halve-window-based derivative filter. Minimal segment size (i.e., 

minimum gap between two structural changes) is set to 6 hours. PlanetLab queries were preprocessed first 

to identify the state transitions. These state transitions were used to build the probabilistic finite state ma-

chine. See ResQue user guide [CNRL] for more details on data formats and configuration parameters. 

 

II.3 Resource and Query Aware Resource Discovery Simulator 

A discrete-event simulator was developed using Python. The architecture of the simulator was 

same as Fig. II.1. However, the overlay network was built within the simulator, as it needs to be adaptable 

to the resource and query distributions. Workloads with 100,000 resources were simulated by represent-

ing a node in the system as 20 virtual nodes (altogether 5,000 nodes were used) with different identifiers. 

This was acceptable, as only a few hundred nodes were added to the overlay based on the resource and 

query distributions. Nodes in the overlay rings acted as a set of proxies for rest of the nodes. A node con-

nected to a randomly selected proxy every 3 minutes or after removing a node from the overlay. Finger 

tables were updated every 3 minutes to maintain a stable Chord overlay. The length of an overlay key is 

set to 32-bits, as only a few hundred nodes are added to the overlay ring. Attribute values were hashed 

using the locality preserving hash function proposed in [Ca04]. The resources were mapped to a node 

within a clique based on the hash value of resource identifier (SAH1 was used as the hash algorithm). 

When a node is added/removed to/from a clique, resource index was rearranged within the clique by split-

ting the address space uniformly among all the nodes in the clique. Packet sizes were calculated based on 

the size of an IPv4 address and a port number (6 bits), and the number of (attribute, value) pairs (4 bytes 

per pair) it carries. The maximum packet size was set to 1,500 bytes. Workloads and node capacities are 

described in Table 6.2 and Section 6.5. Queries were issued only after the network was initially stabilized. 

Once the resources are indexed and queries are issued network may change in response to their loads.  
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Figure II.2 –  Architecture of community-based caching simulator. 

II.4 Community-Based Caching 

II.4.1 Local-Knowledge-Based Distributed Caching and PoPCache Simulators 

First, a set of lookup query traces was extracted using the Chord [Sa03] implementation in 

OverSim [Ba07b] version 20100526 under different random seeds. A python-based simulator was then 

developed to replay the query traces while assigning cache entries to nodes based on the proposed LKDC 

algorithm (Fig. 7.7) and PoPCache [Ra07]. Number of nodes in the overlay network, the cache capacity 

of a node, and Zipf’s parameters were varied as discussed in Sections 7.5 and 7.6.1. 

 

II.5.2 Community-Based Caching Simulator 

We simulated the community-based caching solution using a 15,000-node network with ten 

communities using OverSim [Ba07b] version 20100526. The architecture of the solution is illustrated in 

Fig. II.2. Lists of keys of resources and queries for those keys were generated outside of the simulator. A 

separate query file was generated for each community as described in Table 7.4. Such a design simplified 

the implementation while enabling us to reuse the same key and query traces under different simulation 
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Table II.3 – Simulation parameters for community-based caching. 

Parameter Description (Units) Value 

**.measurementTime Simulation time (sec) 6,000 

**.delayToStart Delay before keys are indexed (sec) 1,000 

**.overlay*.myChord.joinDelay Delay before joining overlay (sec) 10 

**.overlay*.myChord.stabilizeDelay 
How frequently to issue overlay stabilize messages 
(sec) 

30 

**.overlay*.myChord.fixfingersDelay How frequently to issue fix finger messages (sec) 150 

**.overlay*.myChord.checkPredecessorDelay How frequently to check the predecessor (sec) 10 

**.overlay*.myChord.successorListSize Type of successor list 1 

**.overlay*.myChord.aggressiveJoinMode Join overlay aggressively true 

**.overlay*.myChord.extendedFingerTable Use extended finger table true 

**.overlay*.myChord.numFingerCandidates No of candidates for each finger 1 

**.overlay*.myChord.findGroupMembers Find community members true 

**.overlay*.myChord.givePriorityToGroup 
Give priority to community members while finding 

the next hop to forward a message 
false 

**.overlay*.myChord.maxFindGroupMemberHops 
No of hops to forward a community member discov-
ery message 

4 

**.overlay*.myChord.proximityRouting Route based on latency to next hop false 

**.routingType Routing type semi-recursive 

**.tier2.myDhtTestApp.testInterval Inter arrival time for queries (sec) 15 

**.tier2.myDhtTestApp.maxGroupId Number of groups/communities 10 

**.tier1*.myDht.numReplica No of replicas in DHT 1 

**.tier1*.myDht.numGetRequests No of get() requests/messages per query 1 

**.tier1*.myDht.cacheRefreshTime 

 
Gap between two cache clean ups 0 (no cleaning) 

**.tier1*.myDht.maxCacheSize Cache size 0-28 

**.tier1*.myDht.useMsgGroupId Indicate community ID in get() messages false 

**.tier1*.myDht.alpha 
Caching weight (θ) used in LKDC algorithm. In the 
simulators it is called α. 

0.1-0.5 

**.tier1*.myDht.cachingThreshold Caching threshold α + 0.02 

**.tier1*.myDht.removeLookupThreshold Cache entry remove threshold (1 - α)10 

**.targetOverlayTerminalNum No of nodes 1,000-15,000 

**.initPhaseCreationInterval Time delay between addition of two nodes (sec) 0.1 
 

parameters. 

Multiple key and query traces were generated using different random seeds. Similarity among queries 

issued by communities was enforced by sharing a subset of the queries (size of the subsets depends on the 

cosine similarity between the two communities) issued by one community with another. To measure the 

ability of geographic communities to improve the latency, transit-stub networks with 10 Autonomous 

Systems (ASs) and 750 routers were generated using BRITE [Me01] while using GT-ITM [Ze96] as the 

underlying topology generator. Based on [Ca02], overlay node-to-router delay is set to 1 ms and the aver-

age delay of the core network links is set to 40 ms. First, the shorted path from each router to all the other 
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Figure II.3 –  Architectures of NDN for DCAS simulators: (a) Multi-sensor data fusion; (b) Event-
specific query resolution. 

routers and the latency of each route was calculated and dumped to a file. Second, a set of lookup query 

traces (including the entire path taken by a query), nodes, and their community IDentifiers (IDs) were 

then extracted while simulating community-based caching. Third, overlay nodes were randomly mapped 

to the underlay topology generated using BRITE based on their community ID such that nodes in the 

same community are assigned to the same AS. Finally, the latency for each lookup query was calculated 

by aggregating the underlay latency for each hop along the overlay. Simulation parameters are listed in 

Table II.3. 

 

II.5 Named Data Networking for Distributed Multi-Sensor Data Fusion 

II.5.1 Multi-Sensor Data Fusion Simulator 

A discrete-event simulator is developed in Python and its architecture is depicted in Fig. II.3(a). 

Section 8.4 explains how the radars, applications, proxies, and end users are placed within the 2D CAN 

overlay, and queries are generated. Simulation parameters are listed in Table II.4. 

 

II.5.2 Event-Specific Query Simulator 

A discrete-event simulator is developed in Python and its architecture is depicted in Fig. II.3(b). 
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Section 8.4 explains how the sensor readings are collected from weather stations and placement of end 

users. While advertising sensor readings, thresholds listed in Table II.5 are applied to reduce the number 

of advertisements due to minor changes in sensor readings. However, sensor readings were advertised at 

least every 30 or 60 minutes (depending on the sampling interval) even if their values do not change sig-

nificantly. Domains of sensor readings are listed in Table II.6. Simulation parameters are listed in Table 

II.4. 

Table II.4 – Simulation parameters for NDN for DCAS simulators. 

Parameter Name Description (Units) Value 

CACHING_POLICY Caching policy 
Oldest, LRU, 

LFU 

PIT_TIMEOUT PIT entry timeout (sec) 120 

SIZE_CS Content store capacity (bytes) 0-100 MB 

SIZE_PIT PIT capacity (bytes) Unlimited (0) 

SIZE_FIB FIB capacity (bytes) Unlimited (0) 

NUM_DIMENSIONS No of dimensions of the torus 2, 8 

SIZE_TORUS[ ] Size of each dimension (m) 1,000 km 

NUM_BITS 
Resolution of an axis on torus. Determine no of segments the 
torus is split into while using space-filling curves. (bits) 

4 

NUM_RADARS_X No of radars along X-axis 11 

NUM_RADARS_Y No of radars along Y-axis 11 

RADAR_RANGE Range of a radar (m) 40,000.0 

INTER_RADAR_DIST Gap between 2 radars (along X & Y arises) (m) 30,000.0 

RADAR_SKEW 

 

Maximum time difference between 2 radars’ data generation 

time (sec) 
30 

RADAR_HEARTBEAT Heartbeat interval of a radar (sec) 30 

NUM_APP_IN_SUB_DFS No of apps in subset of the data fusion groups 4 

NUM_APP_PROXIES No of proxies 5 

APPS_IN_ALL_DFS 
Applications in all the data fusion groups. REFL – reflectivity, 

DDOP – dual Doppler 

[‘REFL’, 

‘DDOP’] 

APPS_IN_SUB_DFS 

 

Applications in subset of the data fusion groups. QPE - Quantita-
tive precipitation estimation, NBRR – network-based reflectivity 
retrieval, NCAS – nowcasting 

[‘QPE’, 
‘NBRR’, 
‘NCAS’] 

TILE_X_PROXY Length of the smallest area of interest along x-axis (at proxy) (m) 6,000 

TILE_Y_PROXY Length of the smallest area of interest along y-axis (at proxy) (m) 6,000 

TILE_X_RADAR Length of the smallest area of interest along x-axis (at radar) (m) 500 

TILE_Y_RADAR Length of the smallest area of interest along y-axis (at radar) (m) 500 

JOIN_DELAY Delay between 2 nodes that join the network (sec) 0.5 

ADD_RADAR_TO_OVERLAY Are radars part of the overlay network False 

PIXEL_DATA_SIZE 
Number of bytes generated for the smallest tile at a radar. 4 × no 

tiles along x-axis × no tiles along y-axis. (bytes) 
100 

USE_SUBSCRIPTIONS Use query subscriptions True/False 

FIRST_QUERY When to issue first query (sec) 300 

SUB_EXPIRE_TIME  Subscriptions expire after this time (sec) 720 

NUM_W_STATIONS No of weather stations 1,081 

FRACTION_IN_OVERLAY Fraction of weather stations in overlay 0.1 
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Parameter Name Description (Units) Value 

SENSOR_NAMES 
List of names assigned to sensors. X – longitudes, Y – latitudes, 

DD – wind direction, ELEV – elevation, FF – wind speed, P – 
pressure, RH – relative humidity, and T – temperature. 

'X', 'Y', 'DD', 

'ELEV', 'FF', 'P', 
'RH', 'T 

MIN_VALID_TIME Sensor data should at least expire after this time (sec) 1,800 

USE_THRESHOLDS 
Apply thresholds to prevent advertising of minor changes in 

sensor readings 
True 

SIZE_SENSOR_READINGS 
No of bytes required to represent sensor readings. 1 byte for 
sensor name & 4 bytes for sensor reading.  

5 × no of sensor 
names. 

USERS 
End user placement within sensor field. Total users of given type 
= i * j (if [i, j]) or i if ([i]). NWS – national weather service, EM 

– emergency managers, RES – researchers, and MED – media. 

['NWS', [6, 5]], 
['EM', [20, 16]], 
['RES', [30]], 
['MED', [120]] 

JOIN_DELAY Delay between 2 nodes that join (sec) 0.1 

SIM_TIME_AFTER_LAST_QUERY Simulation time after last query. Defines the simulation end time. 150 

BANDWIDTH Bandwidth (bps) 1 Gbps 

PREFETCH_TIME Time to pre-fetch weather station data & queries (sec) 180 

PREFETCH_INTERVAL How frequently to pre-fetch (sec) 120 

SPEED_LIGHT 
Speed of light. Use to calculate latency while transferring pack-
ets. (m/sec) 

299,792,458 

FIX_FINGER_INTERVAL When to fix fingers (sec). Used only for Chord ring. 120 

KEY_LENGTH Overlay key length. Used only for Chord ring. 32 

Table II.5 – Thresholds applied while advertising sensor readings. 

Attribute Name Description (Units) Threshold 

DD Wind direction (deg) 5.0 

FF Wind speed (m/s) 1.5 

ELEV Elevation. Threshold is used as ELEV is a float value 0.0001 

P Station pressure (Pa) 1,000.0 

T Air temperature (K) 1.0 

RH Relative humidity (%) 5.0 

X X coordinate. Threshold is used as X is a float value 0.0001 

Y Y coordinate. Threshold is used as Y is a float value 0.0001 

Table II.6 – Domains of sensor readings. 

Attribute Name Description (Units) Minimum Maximum 

DD Wind direction (deg) 0.0 360.0 

ELEV Elevation (m) 0.0 2,000.0 

FF Wind speed (m/s) 0.0 25.0 

FFGUST Wind gust (m/s) 0.0 90.0 

P Station pressure (Pa) 25,000.0 110,000.0 

T Air temperature (K) 243.0 320.0 

RH Relative humidity (%) 0.0 100.0 

X X coordinate. Threshold is used as X is a float value 0 1,000 km 

Y Y coordinate. Threshold is used as Y is a float value 0 1,000 km 
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ABBREVIATIONS 

 

 

AOI Area Of Interest 

API Application Programming Interface 

AS Autonomous System 

ATM Automated Teller Machine 

CAN Content Addressable Network 

CASA Collaborative Adaptive Sensing of the Atmosphere 

CBC Community-Based Caching 

CCN Content Centric Networking 

CDF Cumulative Distribution Function 

CID Community IDentifier 

CPU Central Processing Unit 

CS Content Store 

CSU Colorado State University 

DCAS Distributed Collaborative Adaptive Sensing 

DF Data Fusion 

DFG Data Fusion Group 

DHT Distributed Hash Table 

DLC Distributed Local Caching 

EGI European Grid Infrastructure 

EM Emergency Managers 

ERD Efficient Resource Discovery 

EWMA Exponentially Weight Moving Average 

FIB Forwarding Information Base 
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FIFO First In First Out 

FIR Finite Impulse Response 

FOSS Free and Open Source Software 

FPGA Field-Programmable Gate Array 

GCO Green Computing Observatory  

GEV Generalized Extreme Value distribution 

GENI Global Environment for Network Innovations 

GIS Geographic Information Systems 

GKDC Global-Knowledge-based Distributed Caching 

GPD Generalized Pareto Distribution 

GPS Global Positioning System 

GPU Graphic Processing Unit 

IaaS Infrastructure as a Service 

i.i.d. Independent and identically distributed 

I/O Input/Output 

IP Internet Protocol 

IPTV Internet Protocol television 

ISP Internet Service Provider 

KKT Karush–Kuhn–Tucker 

KS Kolmogorov-Smirnov 

LFU Least Frequently Used 

LKDC Local-Knowledge-based Distributed Caching 

LORM Low-Overhead, Range-query, and Multi-attribute 

LPH Locality Preserving Hash 

LRU Least Recently Used 

MAAN Multi-Attribute Addressable Network 
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MC&C Meteorological Command and Control 

MINLP Mixed Integer NonLinear Programming 

MIPS Million Instructions Per Second 

MURK MUlti-dimensional Rectangulation with Kd-trees 

NB Negative Binomial distributions 

NBRR Network-Based Reflectivity Retrieval 

NDN Named Data Networking 

NEXRAD Next Generation Weather Radar 

NLIP NonLinear Integer Programming 

NP Nondeterministic Polynomial time 

NWS National Weather Service 

OFC Oldest First Caching 

ORT Overlay Routing Tree 

P2P Peer-to-Peer 

PaaS Platform as a Service 

PFSM Probabilistic Finite State Machine 

PIT Pending Interest Table 

QoE Quality of Experience 

QoS Quality of Service 

QPE Quantitative Precipitation Estimation 

RD Resource Discovery 

RS Resource Specification 

RST Range Search Tree 

RTT Round Trip Time 

SaaS Software as a Service 

SADQ  Single-Attribute Dominated Querying 
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SETI Search for Extraterrestrial Intelligence 

SHA Secure Hash Algorithm 

SLA Service Level Agreement 

SFC Space-Filling Curve 

TLS T Location-Scale distributions 

TTL Time To Live 

URL Uniform Resource Locator 

VM Virtual Machine 

VoIP Voice over Internet Protocol 

ZC Zone Controller 
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