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ABSTRACT

APERTURE: A SYSTEM FOR INTERACTIVE VISUALIZATION OF VOLUMINOUS

GEOSPATIAL DATA

The growth in observational data volumes over the past decade has occurred alongside a need

to make sense of the phenomena that underpin them. Visualization is a key component of the data

wrangling process that precedes the analyses that informs these insights. The crux of this study

is interactive visualizations of spatiotemporal phenomena from voluminous datasets. Spatiotem-

poral visualizations of voluminous datasets introduce challenges relating to interactivity, overlay-

ing multiple datasets and dynamic feature selection, resource capacity constraints, and scaling.

Our methodology to address these challenges relies on a novel mix of algorithms and systems

innovations working in concert to ensure effective apportioning and amortization of workloads

and enables interactivity during visualizations. In particular our research prototype, Aperture,

leverages sketching algorithms, effective query predicate generation and evaluation, avoids per-

formance hotspots, harnesses coprocessors for hardware acceleration, and convolutional neural

network based encoders to render visualizations while preserving responsiveness and interactivity.

Finally, we also explore issues in effective containerization to support visualization workloads.

We also report on several empirical benchmarks that profile and demonstrate the suitability of our

methodology to preserve interactivity while utilizing resources effectively to scale.
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Chapter 1

Introduction

The proliferation of observational devices, improvements in the resolution and frequency at

which measurements have been made, and falling costs for data storage have all contributed to

an increase in data volumes. These data volumes hold the potential to unlock insights via data

analytics. A key intermediate step in the data wrangling process that precedes the analyses is

visualization. Visualization allows scientists to quickly assess broad patterns in the data.

This study focuses on spatiotemporal data where data is tagged with spatial information repre-

senting the location being observed and the timestamp reflecting when these measurements were

made. These spatiotemporal data represent a substantial portion of the cumulative data volumes.

Such data occurs in social media, observational and telemetry settings, transportation networks,

simulations, and commerce among others. Spatiotemporal visualization allows us to identify spa-

tial extents, temporal segments, or some combination thereof — also referred to as the spatiotem-

poral scope of interest. Identifying such spatiotemporal scopes allows practitioners to target their

modeling efforts more precisely.

To maximize interoperability across different platforms we use the browser as the primary

gateway for visualizations. Unlike traditional client-server interactions our visualizations entail in-

teractions with a server-side that encompasses a distributed collection of machines. The distributed

server-side is responsible for managing requests from multiple, diverse clients concurrently. [1, 2]

1

1The majority of this work is the direct result of the following two papers:

Kevin Bruhwiler and Shrideep Pallickara. 2019. Aperture: Fast Visualizations Over Spatiotemporal Datasets. In

Proceedings of IEEE/ACM 12th International Conference on Utility and Cloud Computing, Auckland, New Zealand,

December 2–5, 2019 (UCC ’19),10 pages

Kevin Bruhwiler, Thilina Buddhika, Shrideep Pallickara, and Sangmi Lee Pallickara. 2020. Iris: Amortized, Re-

source Efficient Visualizations of Voluminous Spatiotemporal Datasets. In Proceedings of the IEEE/ACM 7th Interna-

tional Conference on Big Data Computing, Applications and Technologies (BDCAT’20) (Accepted)
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1.1 Challenges

There are several challenges in effective visualizations of voluminous, spatiotemporal datasets.

• Selective Overlays: Often patterns are easier to visualize when the analyses is supplemented

by auxiliary datasets. In particular, this involves allowing overlaying of features (also re-

ferred to as independent variables) from diverse datasets.

• Data Volumes: Visualization involves a mix of disk accesses, network transfers, computa-

tion of visual artifacts, and memory residency. Data volumes exacerbate these aforemen-

tioned challenges by exceeding resource utilization thresholds or capacities.

• Characteristics of the memory hierarchy: Datasets are resident on disk and portions

thereof must be memory-resident for visualization. However, access latencies, capacities,

and data transfer throughputs are steep across the memory hierarchy. For example, memory

accesses are 5-6 orders of magnitude faster than those to disk.

• Interactivity: To be useful, visualizations must be interactive, allowing practitioners to

maintain their chain-of-thought and enabling visualizations to inform their explorations. The

visualizations must preserve this interactivity during key explorative operations such as drill-

down, roll-up, and panning across spatiotemporal scopes.

• Scale: Visualization systems must scale with increases in the number of clients. This entails

minimizing interactions between the client and the server. Functionality must be effectively

apportioned so that the client-side takes on a large portion of the load.

1.2 Research Questions

The goal of this work is interactive visualization of voluminous spatiotemporal datasets. Spe-

cific research questions that we explore as part of this study include:

• How can we effectively harness available resources and amortize workloads (CPU, memory,

disk, and network I/O) to cope with data volumes and the speed differential of the memory

hierarchy? Effective amortization of workloads guides this investigation.
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• How can we leverage perceptual characteristics/limits of visualization to improve the time-

liness of rendering operations? This involves rendering coarser visual artifacts that are then

incrementally refined.

• How can we leverage learning during visualization? There are two aspects to this. The

first aspect involves predicting spatiotemporal paths during visualization. The second as-

pect involves leveraging deep learning to render the phenomena, rather than computing the

polygons comprising the visualization.

1.3 Approach Summary

Our methodology leverages a novel mix of sketching, construction of queries, visual artifacts,

orchestration of workloads, management of workloads, and caching, all of which work in concert

with each other to support effective visualizations.

To cope with data volume, we leverage the Synopsis sketching algorithm [3]. Synopsis is a

single-pass sketching algorithm which produces statistical sketches from the data. Once the sketch

is constructed it is the sketch and not the original data that is consulted during visualization oper-

ations. The sketch is a space-efficient data structure that serves as a surrogate for the voluminous

data that it sketches. In particular, the Synopsis algorithm extracts information from the data and

tracks distributional characteristics of the data, summary statistics, and cross-feature covariances.

We have extended the basic Synopsis algorithm to facilitate efficiency gains from a compaction

perspective. The sketch is broken up into a collection of space-efficient strands. Each strand

encapsulates information for a particular spatiotemporal scope. The strands are amenable to ag-

gregation and two strands can be combined to produce a single strand for the larger spatiotemporal

scope.

Visualization represents a sifting of the observational space to render items of interest. We

leverage specially calibrated queries to accomplish this. Our queries are aligned with the needs of

the visual artifacts that need to be constructed and rendered.
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Workloads for visualization includes a mix of client-side and server-side workloads that must

be effectively orchestrated.

Caching is utilized on both the client and the server to increase responsiveness and enable

interactivity. The server maintains a large LRU (least recently used) cache of data and image

rasters, which it uses to increase the interactivity of certain query types and allow users to quickly

return to previously queried data. The client maintains a much smaller LRU cache of query outputs

that it predicts the user will want to view in the near future.

The Synopsis sketch is parsed into data pairs consisting of a geohash and the corresponding

feature data. The geohash is then decoded into a latitude/longitude point and passed through a

Mercator projection so that it conforms to the tile-map we use as a background. The points are

projected a second time to center them within the queried bounds.

We support two different configurations: Server-side and client-side rendering. In server-side

rendering the Delaunay triangulation [4] of these points is computed and used to generate a Voronoi

diagram consisting of a set of tessellated polygons, each centered on one of the projected lati-

tude/longitude pairs. This set of polygons defines the regions of our choropleth map. The choro-

pleth map is rendered by filling in the regions with colors based on the feature data corresponding

to the point at the center of the polygon.

Our server-side is designed to enable high query throughputs while maintaining a lower query

latency. Storage nodes are arranged as a distributed hash table (DHT) to provide better scalability

and fault-tolerance. Our data dispersion criterion ensures both near-uniform distribution of data

across the DHT while preserving temporal locality, which reduces disk IO during query evaluation.

Data is indexed both spatially and temporally for faster lookups. Further, we leverage multi-core

architectures, disk caching, and fast data serialization schemes effectively for efficient query pro-

cessing.

In client-side rendering, preserving responsiveness is the priority. Preserving responsiveness is

a key requirement during visualizations. Traditional batched visualizations are easy to implement

and reason about. However, batched visualizations have inefficiencies that stem from synchroniza-
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tion barriers that exist between each phase (query, retrieval, and rendering) of the visualization.

Batched visualizations introduce lag because each phase cannot start before the preceding one

fully completes, contributing to prolonged wait times. Furthermore, batched visualizations are

computationally expensive and require all data to be available before performing computations.

As a result, they suffer resource spikes that induce failures.

In Aperture, rather than retrieve results at all once, the results are streamed from the server to

the client. The rendering computations are aligned with this streaming. In particular, the query

retrievals and rendering operations are continually interleaved, relieving resource spikes. Further-

more, because our incremental rendering operations amortize the workloads associated with ren-

dering operations, responsiveness is preserved as well. This process is combined with quantization

(where we reduce the precision of features) when computing the visual artifacts and rendering.

These are incrementally refined as additional data become available.

We also leverage client-side deep learning for visualizations, which involves two key steps:

encoding and mapping. We use an encoder to first learn a compact, lower-dimensional encoding

of a given spatiotemporal range that can then be used to create a visualization with high fidelity.

The second step involves a mapping phase where the encoded feature space is combined with a

user query to produce the visualization. This approach replaces piece-wise calculation of visual

artifacts within an image with a series of matrix/tensor-based operations that are highly amenable to

acceleration on coprocessors at the client side. The computationally expensive operation of training

the encodings is performed on the server-side away from the critical path of client interactions.

Only trained models are installed on the client side. Besides reduction in memory and network

overheads, another benefit of our methodology is that, because geohashes are included as a feature

vector, we are able to reconcile spatial heterogeneity.

Additionally, we leverage a user’s navigational trajectory to ensure interactivity during visu-

alization operations. In particular, we speculate a user’s likely exploration trajectory (in the im-

mediate spatial or temporal vicinity of the current visualization) to launch speculative tasks that

precompute visual artifacts. Some of these speculative tasks may not materialize; however, our
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methodology frugally launches speculative tasks so that the number of materialized visualization

artifacts that must be discarded are kept at a minimum.

Our methodology makes effective use of resources at the client-side. In particular, we leverage

GPU libraries both during rendering operations and also during inferences performed by our deep

CNN (convolutional neural network) based encoder. Our systems benchmarks demonstrates the

suitability of our methodology to leverage hardware acceleration at the client side. The experiments

were performed with well-known voluminous, multidimensional datasets.

1.4 Contributions

Our methodology facilitates visualization of voluminous spatiotemporal datasets at scale. In

particular, our contributions include:

1. Effective distribution of visualization workloads to reduce strain on the server side, minimize

network communications, and alleviate memory pressure.

2. We leverage co-processors (GPU) to make effective use of client-side capabilities both dur-

ing calculation of visual artifacts and deep learning operations at the client side (inferences)

and server-side (model training).

3. A novel scheme to visualize datasets by leveraging sketches. To our knowledge, this is the

first attempt to leverage spatiotemporal sketches in support of real time visualizations.

4. Effective amortization of workloads by combining streaming of results with incremental re-

finement of the visualization to balance responsiveness. Does not introduce hotspots because

the computations are amortized.

5. A deep learning-based framework to generate visualizations on the fly. Our methodology

performs a novel mapping from the feature space to the latent encoding space to produce

these visualizations.

6. We can support animations of voluminous spatiotemporal phenomena at two frames/second.

6



7. We have designed a scheme to effectively containerize sketches. These distributed container-

ized sketches are in the critical path of an interactive visualization application with stringent

latency requirements.
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Chapter 2

Related Work

2.1 Visualization Tools

There are many tools for data visualization designed to function with a variety of data and stor-

age systems. Data Cubes [5] are a classic tool for visualizing multi-dimensional data in relational

databases and owe their popularity to both the prevalence of relational databases and their ability to

handle any data type. However, unlike Aperture, they don’t perform any data aggregation, making

them prohibitively expensive to compute and store for voluminous datasets. Data Cubes are also

confined to the relational database ecosystem, making them unsuitable for certain datasets.

Tableau [6] is a powerful data visualization tool specializing in business intelligence. Its use-

fulness derives from its ability to handle data from many different sources and its ease of use,

being accessible to non-programmers. Like Aperture, it contains tools for spatiotemporal aggre-

gations and visualizations. However, Tableau was not designed with interactive queries in mind

and the time required to query, format, and display large amounts of data makes animations and

interactivity over arbitrarily large datasets infeasible.

GeoLens [7] is a distributed geospatial data visualization tool designed to allow interactive

visualizations of aggregated spatiotemporal data and consequently shares many similarities with

Aperture. Both query data stored on a cluster of machines and aggregate spatiotemporal data us-

ing geohashes. However, GeoLens utilizes a sophisticated distributed query scheme to rapidly

aggregate data on each machine into tiles, combining the tiles to produce a fast, low-resolution

visualization. Aperture, alternatively, either performs individual queries on a single machine, al-

lowing it to produce much higher-resolution visualizations at a slower pace (compensated for with

speculative queries and a server-client caching scheme), or progressive client-side rendering which

enables much faster visualizations (see section 3.2.1).
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2.2 Incremental Visualization

Incremental visualization tools depend on data streams, in which the data being visualization

arrives continuously over time, rather than all at once. Creating visualizations with data streams

has been explored in previous works with specialized techniques for time-series data [8], creat-

ing visualizations in parallel using data streamed from simulations [9], and using kernel density

estimation functions with GPU support [10]. Aperture synthesizes several of these ideas, includ-

ing leveraging the horizontal scalability of distributed computing clusters to maximize bandwidth

and using client-side graphics processing units (GPUs) to improve rendering times. Aperture also

takes advantage of advances in computing technology, including efficient serialization with pro-

tocol buffers [11], browser-GPU inter-operation with WebGL [12], and HTML canvas [13], to

achieve improved performance.

Several methods of incremental visualization generation are able to provide visual analysis of

datasets that are prohibitively slow or expensive to visualize in full [14–18]. However, they all de-

pend on batched visualization (in which data is collected client-side and periodically re-rendered)

and suffer from one of its major drawbacks: a certain amount of data must be retrieved before visu-

alizations are recomputed and rendered, limiting interactivity. In Aperture we present an efficient

method for incrementally refining visualizations as individual data points arrive, preserving both

interactivity and resolution.

2.3 Data Sketching

Data sketching defines a set of techniques which are used to build a probabilistic approximation

of a dataset, reducing the dataset’s size at the cost of some precision. Such algorithms can dra-

matically reduce storage requirements and query time (essential for interactive visualizations) and

can even be used in conjunction with machine learning algorithms [19]. Aperture makes use of a

distributed sketching algorithm called Synopsis (see section 3.1) which is designed for geospatial

data. However, a number of alternatives exist, including algorithms which focus on processing

multiple input streams [20], anomaly detection [21], and threshold monitoring tasks [22].
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Sketch-based storage of spatiotemporal data has been explored before [3,23,24]. The Synopsis

sketching algorithm has been used previously to build a spatiotemporal data store. Its in-memory

storage model is in contrast to its on-disk storage model. On-disk storage improves the scalability

of the system due to the capacity differential of physical memory and disk space available in com-

modity hardware clusters. Aperture relies on various optimization techniques such as parallel disk

IO, parallel query execution, and disk caches to counter the IO speed differential between spin-

ning disks and memory. Aggregate RB trees (aRB trees) [23] are used to answer spatiotemporal

count queries. Aperture stores spatial regions in R-trees as bounding rectangles. Each bounding

rectangle points to a B-tree where historical aggregates of the feature values are stored. Tao et

al. [24] extends aRB trees with the FM sketching algorithm [25] to answer distinct count queries.

However, unlike Aperture, these systems are designed to work with a single feature stream and

support only count based queries.

2.4 Data Storage

Aperture relies on Synopsis to store geospatial data and process spatiotemporal queries, but

there are a number of other systems that provide similar functionality. These systems could con-

ceivably replace Synopsis as a geospatial data store for Aperture. However, since Synopsis is a

primarily in-memory storage system, it’s also sensible to view alternatives as stable storage sys-

tems which Synopsis itself could query data from to create a sketch for Aperture. A survey of

data management challenges in cloud-scale settings can be found in [26]; our methodology targets

addressing data volumes by leveraging sketches of the data.

MongoDB [27] is a very popular database with geospatial storage capabilities. It supports

querying ranges of latitude and longitude, as well as queries that calculate geometries on an earth-

like sphere. <latitude, longitude> coordinate data can be easily converted into a sketch by Synopsis,

making MongoDB a natural choice for an underlying database.

Galileo [28] is a distributed data storage system designed with geospatial data in mind. It

is organized as a distributed hash table (DHT) using a geohash-based hashing scheme. It also
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implements zero-hop indexing, ensuring that retrieving data for a specific region is very fast. The

Galileo system incorporates support for approximate [29], analytic [30], and polygon-constrained

[31] queries over spatiotemporal datasets. Converting data stored by Galileo into a Synopsis sketch

is trivial, making Galileo another good choice for an underlying database.

Stash [32] is a system which operates on on-disk data and supports selective caching and

memory-evictions during explorations. In particular, freshness scores are used to inform cache

evictions. The system relies on re-replications and migrations to cope with hotspots introduced

by disk accesses. Unlike Stash, we support multilinked views, leverage sketches, and perform

speculative queries in support of interactive visualizations.

Efforts have also been made to optimize queries over stored geospatial data. Geometry con-

strained query evaluations have been explored in the context of disk resident data [33]. This work

targets query evaluations over sketches.

Aperture owes some of its speed to the in-memory nature of Synopsis. There are, however, a

number of other in-memory data storage systems that could potentially replace Synopsis in Aper-

ture.

Redis [34] is an in-memory distributed data store which supports most data types, many pro-

gramming languages, and a number of typical database properties, including replication and atomic

operations. It also supports indexes and even allows querying by geohash. However, Redis does not

aggregate geospatial data. This would force Aperture to do the aggregation itself and significantly

reduce the amount of data that could be stored in-memory and quickly visualized.

Apache Ignite [35], an in-memory distributed data store, shares many features with Redis.

It comes with a geospatial library which allows for sophisticated queries on points, lines, and

polygons. Unfortunately, Ignite also does not natively support spatial data aggregation and conse-

quently shares Redis’ limitations. The lack of spatial data aggregation in Redis and Apache Ignite

could conceivably be addressed by pre-sketching the data before loading it into the data store, but

this would require the development of a new system which can aggregate spatiotemporal data in a

manner easily understood by Ignite or Redis.
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Nanocubes [36] are a modification to the Data Cube system which dramatically reduce the

amount of data that needs to be visualized using aggregation. This allows Nanocubes to be

memory-resident, enabling them to evaluate queries at exceptional speeds. However, unlike Syn-

opsis, Nanocubes cannot be distributed across multiple machines, limiting the amount of data that

they can use to construct visualizations to what can be stored in a single machine’s memory. This

issue could be dealt with by maintaining many separate Nanocubes on different machines, similar

to what we do with Synopsis and Docker [37] in section 3.5.
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Chapter 3

Methodology

3.1 Sketches

Visualization of spatiotemporal datasets is I/O bound. As data volumes increase the I/O over-

heads preclude interactivity. To address these data and I/O challenges, we leverage the Synopsis

algorithm to sketch voluminous geospatial data. The Synopsis systems relies on Neptune [38, 39]

for the ingestion and routing of spatiotemporal streams. Synopsis makes a single pass through all

records within a dataset (either streaming or on-disk) to produce a distributed, space-efficient rep-

resentation of the spatiotemporal data. Once the sketch is constructed, it is the sketch rather than

the data that is consulted. Synopsis makes use of the geohash algorithm (Figure 3.1) to partition

and agglomerate spatiotemporal observations.

The Synopsis sketch is organized as a forest of trees (called strands, see section 3.1.2), which

maintain summary information and distributional characteristics that are updated in an online fash-

ion. Synopsis maintains its underlying representation as a distributed, memory-resident tree, scal-

ing it across machines as necessary. The organizational structure of the sketch allows for rapid

geospatial queries and aggregation. Synopsis is crucial to Aperture’s interactive nature as it allows

the user to perform aggregate queries with sub-second latencies and dramatically reduces the scale

of the data the client must load and store.

3.1.1 Geohashes

The geohash algorithm (Figure 3.1) encodes geospatial coordinates into a bit array, which is

then represented as a string. A geohash string represents a spatial bounding box encompassing

a unique geographical extent - all coordinates within that extent share the same geohash. The

geohash string has the configurable precision property: reducing the length of the string increases

the spatial area of the region identified, analogous to "zooming-out". Conversely, increasing the
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number of characters in the string can be thought of as "zooming-in" to an increasingly precise

location.

Table 3.1 shows the geographical extent of different geohash precisions for locations near the

equator, as well as a heuristic for the region that the extent covers

Table 3.1: Geographical extent of different geohash precisions, measured in number of characters, located

near the equator.

Geohash Precision Geographical Extent Scale

1 5,009.4km x 4,992.6km Continent

2 1,252.3km x 624.1km State

3 156.5km x 156km County

4 39.1km x 19.5km City

5 4.9km x 4.9km Neighborhood

DJ

DN

DH

9V

9Y

DJ

DN

DH

9V

9Y

DJB DJC DJF DJG DJU DJV DJY DJZ

DJ8 DJ9 DJD DJE DJS DJT DJW DJX

DJ2 DJ3 DJ6 DJ7 DJK DJM DJRDJQ

DJ0 DJ1 DJ4 DJ5 DJH DJJ DJN DJP

DJB DJC DJF DJG DJU DJV DJY DJZ

DJ8 DJ9 DJD DJE DJS DJT DJW DJX

DJ2 DJ3 DJ6 DJ7 DJK DJM DJRDJQ

DJ0 DJ1 DJ4 DJ5 DJH DJJ DJN DJP

Figure 3.1: The geohash algorithm. Adding characters to the right side of the string reduces the area covered

by the geohash and represents a more precise location.
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Figure 3.2: An example of strand construction using Synopsis sketching algorithm. Spatio-temporal com-

ponents and individual features are represented in coarser-grained resolutions to reduce the storage foot-

prints. In this example, the subtree rooted at the vertex for temporal component summarizes all the records

occurring in an area of 4.9 × 4.9km
2 represented by the geohash 9y8b9 for the 15 minute time interval

starting at 13:00:00 on 05/01/2015.

3.1.2 Strands

The design premise of the Synopsis sketching algorithm [3] is based on representing individual

feature values at a coarser-grained resolution while preserving inter-feature relationships in order

to reduce data size. This process is called discretization. Discretization represents each feature

value as a record using a bin based on a predetermined bin configuration. A bin configuration
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comprises a set of non-overlapping intervals that collectively construct the range for a particular

feature.

For instance, suppose the bin configuration for surface temperature (in Kelvin) is [217.9,

256.7), [256.7, 285.8), [285.8, 305.2), [305.2, 334.3). If the surface temper-

ature is 220.31 of a particular record, then it falls within the range of the first bin, [217.9,

256.7), therefore represented using the first bin. Similarly, if the temperature slightly increases

to 220.32 in the next record, the updated feature value still gets mapped to the same bin.

In real settings, bin configurations are more dense — most bin configurations contain around

30-50 bins. Bin configurations are calculated using a kernel density estimation based method such

that the overall error due to discretization is maintained below a given threshold. We use the

normalized root mean square error (NRMSE) of 2.5% as our error threshold for the benchmarks.

Further, our storage framework supports the evolution of bin configurations over time to capture

concept drifts (e.g., different bin configurations for Winter and Summer seasons for a given region).

Spatial and temporal components of observation are also represented at coarser resolutions

using geohashes. The geohash algorithm [40] produces a deterministic mapping of 2-dimensional

spatial extents into a 1-dimensional string; the length of the geohash string is inversely proportional

to the size of the spatial extent – the longer the geohash, the smaller the spatial extent that it

represents. We use a prefix of the geohash to represent the spatial component — this maps multiple

observations that occur within spatial proximity onto the same geohash prefix. Similarly, temporal

components are also mapped to coarser-grained time intervals.

The discretized records are then collated into a tree-like data structure, as shown in Figure 3.2.

Each tree path ending with a unique leaf node is called a strand. Coarser-grained resolutions im-

prove the compaction of the dataset by mapping multiple records into fewer strands. Records that

occur within a particular spatial and temporal proximity will be likely to be mapped into a single

strand after being discretized. At leaf nodes, a set of online statistics are maintained to summa-

rize all records that are represented using that particular strand. We use Welford’s method [41] to

maintain the number of observations, the running mean, the sum of squares of differences from
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the current mean, and the sum of cross products between features. These statistics are useful for

calculating descriptive statistics as well as inter-feature relationships. We use strands as the unit of

data storage in our backend system.

3.1.3 Aperture without Synopsis

Visualization is underpinned by queries over the observational space, and the efficiency of

these evaluations is vital. We conducted microbenchmarks to assess the effectiveness of Aperture

with and without Synopsis at the backend. We profiled the performance of Aperture’s queries while

sidestepping Synopsis and reading data directly from the hard drive. The comparative performance

is depicted in Figure 3.3. As can be seen, direct queries to disk require more than 14 seconds to

complete compared to sub-second latencies that are made possible by leveraging the Synopsis

sketch. Furthermore, disk-based queries generated nearly 3.5 gigabytes of network traffic that

must occur on shared clusters and will degrade performance for other, colocated applications. A

comparison of rendering precisions was impossible because the amount of data returned by

the direct-to-disk queries invariably crashed the Aperture client.

Also, not captured in Figure 3.3 is the fact that only a single query is being performed on

the disk. Aperture’s speed and interactivity depend critically on being able to run many queries

simultaneously in order to pre-load data that may be viewed in the future. Attempting to run

multiple simultaneous queries on disk would produce an enormous amount of I/O contention,

cause throughputs to plummet, and likely force the queries to be performed serially. This would

dramatically reduce the responsiveness of Aperture and make interactivity impossible.

3.2 Rendering Spatiotemporal Phenomena

Users interact with Aperture via a web page which displays the data over a pannable and

zoomable choropleth map of the world (Figure 3.4). Users are able to specify their queries in terms

of spatiotemporal regions and can filter the results based on the type and the minimum/maximum
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Figure 3.3: A comparison of the time Aperture takes to complete a query with and without Synopsis.

Performing queries on sketches is more than 14 times faster than queries on un-sketched data.
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Figure 3.4: Aperture’s display. The map consists of tessellated polygons, each colored to represent mea-

surements within their area. Temperature (red-green), humidity (white), and precipitable water (purple) are

shown.

values of the data features they wish to view. The precision at which the data is rendered is also

configurable. Once generated, the query is handled by the server.

Aperture allows users to automatically advance their visualizations through time at a specified

number of frames per second. These visual artifacts form an animation which can be used to

explore data over a temporal range. Animations are also zoomable and pannable while being

played. Consequently, Aperture allows for exploration and analysis of both spatial regions and

temporal regions simultaneously.

Aperture leverages Leaflet to render spatiotemporal phenomena. Leaflet [42] is an open-source

JavaScript library that provides utilities for displaying spatiotemporal data. It supports function-

ality for tile-layers and SVG layers, is mobile-friendly, and contains many utilities that make it

easily modifiable and extendable.
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Aperture utilizes Leaflet for two purposes. Firstly, it is used in conjunction with MapBox [43]

to display a zoomable tilemap of the Earth, giving users information about where the displayed data

is in relation to cities and coastlines. Secondly, Leaflet’s layer functionality is used to display a

rendered choropleth map generated by Aperture. Leaflet provides tools to zoom into and pan across

the rendered image as well as utilities to calculate the location of the user’s pointer and the area

of the image currently viewed. These tools allow Aperture to have a higher level of interactivity

than if the data were rendered statically. Aperture also utilizes Leaflet Time Dimension layers [44],

developed by the Balearic Island Coastal Observing and Forecasting System (SOCIB), to assist in

displaying animations over temporal ranges.

We have tested two different configurations for Aperture. The first depends on the server to

raster the dataset into an image, which is sent to the client to display. This method is advanta-

geous in that it enables Aperture to use the server’s resources, which are typically much greater

than the client’s, to construct a high-quality visualization at the cost of higher latency and lower

interactivity. The second configuration depends on the client to render individual data points as

they arrive, resulting in dramatically lower latency at the cost of some fidelity. This trade-off is

explored further in chapter 4.

3.2.1 Containerized Server-Side Rendering

In the server-side rendering configuration, the server is responsible for handling all queries, a

process which includes querying the distributed memory-resident Synopsis sketch, rastering the

output of the queries, and caching the results for future use. All queries are handled by a server

utilizing a dynamic thread pool. This allows the server’s operations to be extended to a machine

with many cores or a cluster of machines commensurate with the needs of the system.

We explored how to leverage core cloud constructs to orchestrate visualization workloads. In

particular, we viewed containers as a promising avenue. Containers facilitate lightweight packag-

ing of a program together with its necessary dependencies and data. Furthermore, containers allow

an application to be easily moved from one computing environment to another or replicated across
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a cluster of machines. This makes containers a natural fit for distributed server-side applications

as the amount of resources the application consumes can be quickly scaled in or out to match user

demand.

However, there are some difficulties in implementing a container-based server for applications

that require access to voluminous data. Packaging large amounts of data into containers makes

them unwieldy, increasing the time and resource cost of scaling services. Additionally, re-reading

large chunks of data every time a container is moved or a service is replicated is slow and will

significantly escalate disk I/O contention in busy data centers. In this study, we leveraged Docker

[37] to quickly create and deploy applications in containers. We also investigate the benefits of

utilizing sketched data in containerized applications.

Aperture’s Docker-based server works in the same manner as its basic server with the same

query types, caching scheme, and query phases. We create a separate Docker image for data

from each day in the dataset to allow the container-orchestration system to dynamically replicate

containers containing days which are receiving a disproportionate number of queries.

Upon start-up, all containers contact a central server with the container’s location and the date

of the data it contains. When the client wishes to query a specific date, it first contacts the central

server to get the location of a relevant container before sending the query directly to the container.

This allows the container-orchestration system to place containers wherever it chooses without

worrying about the client.

A challenge that we encountered is that the data for a single day in our dataset totals more

than 13.45 GB. Creating a sketch from that data requires 4 minutes and 10 seconds. This wait-

time to scale up a service is untenable, especially in an interactive environment where consistent

slowdowns prove extremely frustrating for users. This measure also fails to consider the time

required by the container-orchestration system to load/move the huge image to a specific machine.

To tackle this, we pre-sketch the data and package a serialized version of the sketch into the

container. As a result, images containing sketched data are an order of magnitude smaller and

faster to start-up than their un-sketched counterparts, allowing Aperture’s Docker-based server to
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scale more dynamically and consume far fewer resources than it otherwise would. It should also

be noted that we did not compress the sketched data. The size of the serialized sketch could be

further reduced in a resource constrained environment using any typical compression algorithm at

the cost of increased start-up time due to decompression.

3.2.2 Incremental Client-Side Rendering

Incremental client-side rendering, in which visualizations are computed entirely on the client,

depends on the Synopsis server replying to queries with a stream of data strands. The cumulative

network footprint of the strands matched with a particular query can vary from a few Kilobytes

to hundreds of Gigabytes depending on the spatiotemporal scope collectively constructed by the

predicates. Instead of returning all matching strands at once, we stream matching strands to the

client as soon as they are retrieved by the worker threads.

Streaming results and handling them incrementally is beneficial for visualizations because: (1)

the visualization is updated immediately after any user interaction, dramatically improving the

perceived responsiveness of the system, and (2) expensive computations required to render the

visualization are amortized, minimizing interference with other processes on the client machine

and reducing the odds of the client suffering load-related failures. Further, a streaming query

model reduces the strain on the memory of the server by shortening the memory retention period

of the results, therefore improving the overall query throughput of the system.

We designed our query API to be language agnostic by using gRPC/Protocol Buffers — allow-

ing clients implemented using numerous supported programming languages to interact with our

storage system. We group multiple strands into a single message to improve the network band-

width utilization.

The Synopsis query API is exposed through an array of proxy services acting as the gateway to

the storage system. Once a query is received, the proxy server forwards it to the DHT, triggering

a set of response streams originating from individual DHT nodes. These streams are then merged

into a single stream at the proxy server and funneled back to the client. Proxy nodes can often
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become bottlenecks due to saturated resources such as network bandwidth and CPU. To counter

this issue, new proxies can be added on-demand without disrupting the ongoing queries. The

stateless runtime design of proxy servers enables the seamless horizontal scaling of the proxy

array.

Data arrives at the client as a stream of Synopsis strands, serialized as protocol buffers. The

client is responsible for deserializing them, converting the geohash location to a <latitude, lon-

gitude> point, calculating the color of the associated polygon from the deserialized features, and

passing this information to the HTML canvas. The client performs these operations on each data

strand asynchronously to allow it to cope dynamically with changes in the rate of data arrival.

Sketches are rendered on an HTML canvas in real-time as strands arrive at the client, allowing

users to visualize data points the moment that they are available. The canvas element is a low

level model in HTML used for rendering bitmaps and 2D graphics. It can optionally make use of

WebGL which enables 3D rendering and hardware acceleration via a GPU.

Due to the high rate of strand arrival it is critical that the canvas can render each strand quickly.

Because canvas elements can be updated incrementally, where only the modified region of the

canvas is recomputed rather than the entirety, it is well-suited to rendering streamed data. Addi-

tionally, we ensure that the canvas is not performing expensive anti-aliasing operations by rounding

the location of each polygon so that its bounds align evenly with the canvas’ pixels.

On the canvas each strand is represented as a square polygon of a dynamic size, the color of

which is determined by the strand’s features. The size of each polygon is computed using one of

several decay algorithms (see Section 4.3): the result is that the first few polygons are extremely

large, taking up much of the visualization area, while the size of later polygons is rapidly reduced

down to a fixed minimum. This has the effect of immediately providing users with a coarse-grained

visualization that becomes increasingly refined as more data arrives. The incremental rendering

process is visualized in Figure 4.8.
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3.2.3 Rendering with Deep Neural Networks

We experiment with using deep convolutional networks to quickly generate visualizations on

the client. We explore the ways in which this can improve the performance of Aperture in three

major respects:

1. Reducing network traffic by eliminating the need to re-run queries server-side when users

change the spatial, temporal, or feature predicates of the visualization within a predefined

temporal range.

2. Improving the responsiveness of data visualizations by eliminating the need to wait for data

to be streamed from the server.

3. Reducing computational load at the client by replacing CPU-intensive deserialization oper-

ations with matrix multiplications highly amenable to co-processor acceleration.

We also investigate the uncertainty that comes from using generated visualizations and the poten-

tially deleterious effects on the final resolution.

Training

The training dataset was created and curated by generating high quality visualizations for a

large number of user queries, then saving the query and the visualization along with all of the data

strands for that particular temporal scope. This resulted in a set of (input, target) pairs where the

input consisted of both a user query and all of the strands from the encompassing temporal scope

that could potentially be used to generate the associated visualization. The strands are grouped

into a matrix that preserves the geospatial relations between the data points, allowing the use of

convolutional layers.

The network was trained in a distributed computing cluster using PyTorch [45], both to make

use of additional cores and help cope with the relatively slow process of reading and evaluating the

(input,target) pairs. The error was calculated by averaging the binary cross-entropy loss [46] (BCE)

between every pixel in the generated image and the target visualization. Gradients were computed
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to minimize the BCE loss and the weights of the network were updated using the Adam [47]

stochastic optimizer.

Network Structure

The network is structured as a typical image-to-image translation model, using convolutional

layers to transform one image to another. The user query is encoded as an additional channel and

appended to the matrix of input strands.

Due to the limited types of matrix operations that can be executed on the client the generator

is required to have an unusual structure. Rather than using the traditional up-sampling or deconvo-

lutional layers to generate images common in GANs and VAEs, we use a series of convolutional

layers with a low number of filters that do not change the size of the image. This allows us to

transform data into a generated rendering within the contraints of web-based deep learning while

still taking advantage of the spatial nature of convolutions.

Mapping Phenomenon

To run the trained network on the client-side we first convert the trained PyTorch model to Onnx

[48], a protocol buffer based machine learning model representation format. We use Onnxjs, which

has WebGL support, to execute the model on the browser with co-processor support. Onnxjs was

chosen over Tensorflowjs [49] due to higher compatibility with different libraries and improved

speed during model evaluation [50].

3.3 Query Generation and Refinement

In Aperture, queries are intelligently generated based on the region of the map currently being

viewed and the degree to which the view is zoomed in or out. The period of time being queried is

set by the user, and constrained by the frequency of the data.
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3.3.1 Spatial Predicates

The spatial predicates for each query are determined by a geohash-based tree search. The small-

est bounding geohash is computed by taking the longest matching geohash of the top-right and

bottom-left corners of the visualization area. For example, if the top-right geohash is "9zgvkpbsf"

and the bottom-left is "9zjs22e3h", the shortest matching prefix would be "9z". Sub-geohashes are

then searched recursively: the bounding box of each geohash is compared to the bounding box of

the visualization area to determine if there is any overlap. If the boxes do overlap, that geohash

is added to the search set and the process continues down to a predefined precision. Due to over-

heads in querying many geohashes simultaneously, the target precision is determined based on the

current zoom level of the visualization so that there will never be too many geohashes in a single

query.

3.3.2 Temporal Predicates

The temporal range of a query is determined based on two factors: the frequency of the

sketched data and a user-selected time. All sketched data is bucketed into a configurable tem-

poral bracket (see Section 3.4). Each query specifies a single temporal bracket, although querying

multiple brackets is possible. The bracket is determined via a Time-Dimension UI [44] that allows

users to query a specific time or play an animation across a range of times by performing many

sequential queries.

3.3.3 Speculative Queries

To ensure interactivity during visualizations our methodology includes support for launching

speculative tasks. These speculative tasks initiate actions based on forecasts of a user’s likely

trajectory for explorations. By performing such tasks in the background we reduce the amount of

work that needs to be performed in the critical path of explorations.

Based on a client’s exploration paths we dynamically generate speculative queries at the client-

side. These speculative queries are generated in two cases:
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1. While an animation is being played

2. During a pan crossing more than two geospatial regions

In the first case, Aperture proactively sends query requests to the server for times that may

become part of the animation in the future. Data for times that will be viewed soon can be cached

on the server and buffered on the client, ensuring that the animation proceeds smoothly.

In the second case, Aperture keeps track of the user’s panning trajectory. Sequential requests

to adjacent locations will trigger the web page to query locations further along the user’s current

trajectory. The results of these queries are stored in the server cache and in a client-side buffer,

reducing loading times when visualizing many adjacent geospatial areas.

While Aperture is capable of generating speculative queries in both server-side and client-

side rendering configurations, during client-side rendering Aperture makes optimal use of client

resources. This means that simultaneously computing multiple visualizations reduces client re-

sponsiveness linearly with respect to the number of visualizations being computed (computing two

at once means both will take twice as long, three will take thrice as long etc...). Consequently,

speculative queries are only performed while no other visualization is being actively generated.

In this case, precomputed visualizations are stored in an LRU cache on the client and rendered as

needed.

3.4 Query Evaluation

Our storage subsystem is optimized for queries (read traffic). We employ an array of optimiza-

tions such as uniform data dispersion, data locality, indexing, parallel query execution, parallel

disk I/O, and caching for efficient data retrieval. Figure 3.5 depicts the high level architecture of

our query model.

We arrange the storage nodes as a DHT with a consistent hashing-based data dispersion scheme

based on a key generated by combining the spatial attribute and the temporal attribute of a strand.

DHTs provide better load balancing, incremental scalability, ability to work with heterogeneous

commodity hardware, and fault tolerance. We use the geohash of a strand combined with a coarser-
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Figure 3.5: The high-level architecture of our query model. Proxy servers are responsible for propagating

a query to multiple storage nodes, aggregating the response streams into a single stream, and sending the

results back to the query client running on a browser. A small Zookeeper cluster is used to identify newly

added and failed nodes.

grained temporal component (e.g., the month of the year) to generate the key for data dispersion.

Using a coarser-grained temporal component, instead of the higher resolution timestamps, provides

better temporal locality during data storage. Consistent hashing on a key generated by combining

both spatial and temporal components and the use of virtual nodes [51] enables better load balanc-

ing across the DHT.

At each DHT node, strands are indexed both spatially and temporally for efficient retrieval.

Geohashes are indexed using a prefix tree to support efficient wildcard matching. Leaf nodes of

the prefix tree are log structured merge (LSM) trees where strands are stored in a sorted order based

on their timestamps. Each LSM tree contains a hierarchical temporal index to retrieve matching

strands based on temporal predicates of a query. We utilize multiple disks available on a machine

for storage to facilitate parallel disk I/O.

During query evaluation, a query is transformed into multiple sub-queries by partitioning the

spatial scope. These sub-queries are then evaluated in parallel to leverage the multi-core architec-

ture in the underlying hardware. We also leverage disk caches by pinning frequently accessed data

in memory, a technique used in blob-store implementations [52]. Memory limits are enforced on
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the storage node processes such that the operating system can use sufficient physical memory for

the disk cache. Parallel query execution works with caching and parallel disk I/O to reduce the

query latencies significantly.

When performing server-side rendering several additional operations need to be performed.

These operations are divided up into three phases:

Decoding Phase: In the decoding phase the sketch is deserialized. The geohash corresponding

to each data point in the sketch is decoded into its latitude and longitude values and stored along

with the feature data.

Computation Phase: In the computation phase a Mercator projection is applied to the decoded

latitudes and longitudes which are then used to compute a Voronoi diagram. This Voronoi diagram

consists of a set of tessellated polygons, each one corresponding to a single geohash.

Rendering Phase: The polygons created in the computation phase are rendered as a choropleth

map, the colors of their regions corresponding to the feature values for each geohash. The map is

converted into a raster which is sent to the client.
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Chapter 4

Performance Evaluation

4.1 Experimental Setup

The evaluation was performed on a client with 32GB of RAM, an Intel Core i5-9300H 2.40GHz

CPU, and a Nvidia 1660GTX GPU. Aperture was accessed via a Chrome browser, and GPU sup-

port was disabled during some experiments by disabling WebGL canvas acceleration.

The data storage system comprised 75 nodes (Xeon E5-2620, 32 GB Memory, 4 TB storage)

and a varying number of proxy servers (Xeon E5-2620, 64 GB Memory) depending on the experi-

ment, each running Fedora 30 and JDK 1.8.0_251. Each machine is connected to the cluster using

a 1 Gbps link.

4.2 Responsiveness

Aperture’s responsiveness in both server-side and client-side rendering is defined as the time

between a query being initiated by a user and the results of the query being visualized. In the server-

side configuration, the size of the area being queried is varied and response times are compared.

For incremental client-side rendering, the time required to visualize N strands is measured, from

which it’s possible to extrapolate response times for any area of strand density.

4.2.1 Server-Side Rendering

In Figure 4.1 we report the time required for each phase based on the area being queried. From

Figure 4.1, it is clear that the decoding phase takes up the bulk of the time for queries over large

areas (more than every other phase combined). The time required to send the results over the

network is also significant. It is also worth noting that Synopsis’ query time remains relatively

constant regardless of the size of the query area.
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Figure 4.1: A comparison of query times over different query areas. Network and query phase time are

relatively constant, while the decoding, computation, and rendering phases dominate query time for large

areas.
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Figure 4.2: A comparison between query times with and without GPU support. Using a GPU, Aperture is

able to render data at a faster and more consistent rate.

Each query generates a minimum of 5MB of network traffic with a small query area and a

maximum of 20 MB with a query area of zero characters. This traffic consists almost entirely of

the response to the client, which contains a rendered image and a substantial amount of metadata.

4.2.2 Client-Side Rendering

Responsiveness with client-side rendering is difficult to quantify due to the incremental nature

of the visualization construction. It is also difficult to compare to other systems as there are few

specialized geospatial data visualization tools, none incremental. GeoSparkViz [53] is capable of

rendering geospatial scatter-plots and heat-maps at a rate of 20 million points per minute, moder-

ately faster than Aperture, however doing so requires the visualization to be generated server-side

using all the cores in a Spark cluster, restricting it to one user at a time, and suffers from the

overheads of submitting jobs and collecting results, which make sub-second latencies impossi-

ble. Interactive geospatial visualization systems, such as Waldo [54], are capable of rendering
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continent-scale visualizations in 5-7 seconds. Other visualization systems, such as ISOS [55],

achieve real-time interactivity with sampling algorithms. As a heuristic for comparing Aperture’s

incremental data visualization to the different types of geospatial visualization tools, we define two

baselines: the sampling baseline, at one second, and the full-data baseline, at five seconds.

As can be observed in Figure 4.2, the first data points arrive a fraction of a second after a query

is issued. Although Figure 4.8 shows that a visualization is not completed immediately, the rapid

feedback is likely to improve user perception of the responsiveness of the system [56], as is the

visible and constant improvement as the visualization is refined [57]. We can also see that, with

co-processor support, Aperture is able to match the full-data baseline using exclusively client-side

rendering.

Figure 4.2 also quantifies the difference between running Aperture with and without a GPU.

The presence of a co-processor dramatically improves the performance of Aperture, reducing the

time to complete a visualization by more than 30%. Additionally, it stabilizes the rate at which

the visualization is incrementally rendered, likely because the CPU faces contention from threads

responsible for receiving and deserializing data strands.

Table 4.1: Comparison in neural network evaluation times with and without GPU support, averaged over

20 runs.

Processor Mean Evaluation Time (ms) Standard Deviation

CPU 2096.75 64.67

GPU 231.60 135.04

4.2.3 Deep-Learning Assisted Rendering

We also evaluate the responsiveness of queries rendered using the pre-trained deep neural net-

work. The results of that evaluation are shown in Table 4.1. The presence of a GPU improves

performance by nearly a factor of ten, and, similarly to the incremental rendering operations, per-
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forming the evaluation on a GPU reduces to competition between simultaneous rendering and

deserialization operations.

4.2.4 Low-Latency Data Retrieval

We have designed our data storage system and the associated query processing system to fa-

cilitate low latency and scalable query evaluation. We validate our design decisions outlined in

Section 3.4 using a set of micro-benchmarks and system benchmarks.

Given that strands are disk-bound data, we leverage an array of disks attached to a node to pro-

vide higher disk I/O (both reads and writes). Figure 4.3 depicts the cumulative disk read throughput

achievable with multiple disks attached to a single node. Near-linear increase in the cumulative

read throughput implies the minimal overhead at the data access and query processing layer. In

our experimental setup, the network bandwidth is the most constrained resource, which indirectly

limits the disk read throughput.

Figure 4.4 and Figure 4.5 demonstrate the effect of parallelized query processing and disk

caching. At every DHT node, a query is split into a series of subqueries based on the qualifying

spatial scopes, which are then processed in parallel. This approach is most effective with larger

geospatial scopes — query completion times are improved by 74.7% for geohash prefixes of length

0, whereas the improvement is 38.9% for geohash prefixes with length 4. On the other hand, we

observed a consistent improvement, 96.4% - 98.3%, due to disk cache irrespective of the geohash

prefix length, as shown in Figure 4.5.

We profiled the query performance of our storage subsystem — the results are depicted in

Figure 4.6. Query completion times (latencies) and the cumulative query throughput of the system

is recorded for a different number of concurrent queries. Each query retrieved one month’s worth of

data for an area represented by a geohash prefix of length 4, therefore more uniformly distributing

the queries throughout the DHT. Our observations align with the behavior of a typical distributed

system approaching the peak performance. Latency stays constant initially before increasing with

the cumulative query throughput. Once the query throughput reaches the maximum capacity, the
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latency increases exponentially. Because the data storage system is the only aspect of Aperture

shared between users, all rendering is pushed to the client, this demonstrates that our experimental

setup can handle as many as 100 simultaneous queries before reaching capacity. Because users are

unlikely to be making queries every half-second, this translates to thousands or tens of thousands

of simultaneous clients.

Proxies act as the interface between the query clients and the backend DHT, therefore they

tend to become a bottleneck under heavy load. More proxy servers are provisioned on-demand

to counter this issue. This behavior is demonstrated in Figure 4.7 — we saturate the network

bandwidth of a single proxy server using a set of query clients operating simultaneously. As more

proxy servers join the array, the cumulative query output (measured in terms of data transfer rate)

is increased, while latencies are improved significantly. We do not see a linear improvement of

performance because we keep the initial load unchanged, which is not sufficient to saturate the

network bandwidths of multiple proxy servers.

4.3 Fidelity

Aperture is able to generate visualizations with sub-second latency due to a decaying-size ren-

dering scheme in which early data strands are used to approximate the values of spatially adjacent

data strands until those strands arrive at the client. This results in a loss in visualization fidelity, as

illustrated in Figure 4.9. Both exponential and linear decay schemes are never able to reach optimal

fidelity due to approximations made with early data strands. In Figure 4.8 it can be seen that the

loss in fidelity occurs around the edges of the dataset where data is scarce. In these regions certain

strands are made to approximate data that does not exist, creating some areas of the visualization

that will never be refined.

The response time gain, however, is enormous, with the exponential decay scheme reaching its

maximum fidelity in a quarter of a second, easily under both the sampling and full-data baselines.

Assuming that the area being visualized is not too close to the spatial edge of the dataset, the small
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loss in fidelity is visually insignificant (see Figure 4.8) compared to the improvement in response

time.

Fidelity of Learned Visualizations

Figure 4.9 also shows the quality of the pre-trained visualizations that are rendered as more

data arrives. All the strands that have arrived so far are evaluated and a learned visualization is

generated every half-second, as the model evaluation is too slow to be done every time a new

strand arrives. In Figure 4.9, the generated raster shows moderately higher error than any of the

decay schemes, although it does outperform manual rastering when just a few strands have arrived

due to the fact that, even with very little data, the model "knows" where data points are located and

the relative temperatures of varying regions.
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Figure 4.3: Disk read rates at a single node with multiple disks. Near linear growth suggests a low overhead

from the data access layer.

Figure 4.4: Impact of processing a query in parallel using multiple workers. Parallel processing significantly

reduces the latency of queries with predicates corresponding to larger scopes.
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Figure 4.5: Our query processing model extensively relies on disk cache to reduce disk I/O. Using of

caching reduces the query latency irrespective of the query scope.

Figure 4.6: Query latency vs. throughput as we funnel multiple queries simultaneously through a single

proxy node. Once the proxy nodes reach their maximum capacity, latency grows exponentially.
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Figure 4.7: Demonstrating the horizontal scalability of the proxy server arrays. Incrementally adding proxy

servers relieves the bandwidth bottleneck, improving latency and throughput.
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Figure 4.8: Three examples of increasing resolution over time. The top row is without decay, the middle

row uses linear decay, and the bottom row uses exponential decay. Visualizations are shown at 1/10th of a

second after the query, 3/4ths of a second after the query, and 4 seconds after the query.
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Figure 4.9: A measurement of how image fidelity improves over time with different methods. Comparisons

are between the current visualization and the final visualization generated without decay.
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Chapter 5

Conclusions

In this study we presented our methodology involving a mix of workload amortizations, fore-

casts and learning, and exploiting perceptual characteristics to render visual artifacts. In particular,

Aperture facilitates interactivity at the client while allowing high-throughput interactions at the

server side.

To cope with data volumes and the speed differential of the memory hierarchy we leverage

sketches. Sketches extract information from the data, are data-format agnostic, and are three orders

of magnitude more compact than the raw data. We leverage compactness of the sketches by pinning

them in memory, where access to them is not subject to the high latencies and low throughputs of

the disk I/O subsystem. Leveraging sketches also significantly reduces the amount of data that

needs to transferred from the server-side.

Visualization involves several processing tasks, implicit and explicit, that must be orchestrated

in concert to ensure effective visualization. Accomplishing this involves apportioning of these

loads at the client and server-side. Minimizing the amount of network I/O triggered by visualiza-

tion tasks, especially those in the critical path, is key to ensuring responsiveness. Effective sifting

of observations through query construction based on the view-port is also necessary to reduce

workloads and I/O.

Our rendering scheme includes a cooperative mechanism involving the client and server side to

combine fast coarser-grained rendering with incremental refinements that improves the visualiza-

tion over time. This is underpinned by our server-side DHT framework that partitions a query into

multiple predicates that are not just evaluated concurrently, but also support streaming of results

as they become available. Our methodology manages and ensures a high degree of concurrency

both in a distributed setting and at a particular node. The degree of concurrency at a node can be

dynamically tuned based on the ongoing system load. Besides reducing interference across queries

to improve responsiveness, this has the added benefit of high throughput evaluations.
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Interactivity during visualization is preserved by effectively apportioning workloads between

the client and server-side. Furthermore, since data access patterns often exhibit temporal locality,

they benefit from our caching at the server-side and also the buffering that we perform at the server

side. Our use of sketches facilitates attenuated disk and network I/O. Because our sketches are

distributed, server-side processing is distributed as well. This facilitates fast completion times.

As part of future work, we will explore inter-operation with two of the dominant spatial analy-

ses ecosystems: ESRI’s ArcGIS and Google Earth Engine. Our efforts will focus on incorporating

support for the sketch as a data type within these APIs and leveraging visual analytics capabilities

provided within these ecosystems.
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