
DISSERTATION

A METHODOLOGY FOR AUTOMATED LOOKUP TABLE OPTIMIZATION

OF SCIENTIFIC APPLICATIONS

Submitted by

Chris Wilcox

Department of Computer Science

In partial fulfillment of the requirements

for the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2012

Doctoral Committee:

Advisor: Michelle Mills Strout
Co-Advisor: James M. Bieman

Anton P. W. Böhm
Daniel Turk

ABSTRACT

A METHODOLOGY FOR AUTOMATED LOOKUP TABLE OPTIMIZATION

OF SCIENTIFIC APPLICATIONS

Tuning the performance of scientific codes is challenging because of their math-intensive

nature. Applications such as climate modeling and molecular biology simulate the behavior

of natural systems based on scientific equations. Translating these equations into code

can often yield expressions that are expensive to evaluate. Trigonometric, logarithmic, and

exponential elementary functions are especially problematic because of their high cost relative

to ordinary arithmetic. Lookup table (LUT) transformation can expedite function evaluation

by precomputing and storing function results, thereby allowing inexpensive memory lookups

to replace costly function calls. Practical concerns limit the size and accuracy of LUT data,

thus the technique represents a tradeoff between error and performance. Current practice

has the programmer apply each LUT transform manually, thereby impacting productivity,

obfuscating code, and limiting programmer control over accuracy and performance.

The goal of our research is to help scientific programmers use LUT techniques in a

more effective and productive manner. Our approach substantially automates the process of

applying LUT transformation via a methodology and its implementation in the Mesa tool.

Mesa incorporates algorithms that make adding a LUT transform easier for the programmer,

including expression enumeration, domain profiling, error analysis, performance modeling,

and code generation. In addition we introduce a novel algorithm for LUT optimization

that analyzes application code and helps the programmer identify the most beneficial set of

expressions to transform. We demonstrate the effectiveness of our algorithms by using Mesa

to perform case studies of scientific applications. Mesa achieves performance speedups of

1.4× to 6.9× without significantly compromising application accuracy. Finally we present

evidence that our methodology allows the scientific programmer to be more productive and

effective.

ii

ACKNOWLEDGEMENTS

I would like to acknowledge support for our research from Award Number 1R01GM096192

from the National Institute Of General Medical Sciences. The content is solely the respon-

sibility of the authors and does not necessarily represent the official views of the National

Institute Of General Medical Sciences or the National Institutes of Health. Our research is

also supported by grant number DESC0003956 from the Department of Energy, with ad-

ditional seed funding from the Vice President of Research and the Office of the Dean of

the College of Natural Sciences at CSU and from a Department of Energy Early Career

grant. This research utilized the CSU ISTeC Cray HPC System supported by NSF Grant

CNS-0923386.

We gratefully acknowledge the partners who have shared code, including Stefan Sillau,

Ryan Croke, and Mark van der Woerd for the SAXS code, Paulette Clancy for the Stillinger-

Weber program, Chuck Anderson for the neural network application, and Olaf David and

George Leavesley for the PRMS code. I also received ideas from Michael Heroux and Paul

Hovland and help with optimization code from Sven Leyffer at Argonne National Labs.

iii

DEDICATION

I would like to give special thanks to Michelle Strout and James Bieman for their limitless

patience and help with this dissertation, my research, and every other aspect of graduate

school. I would also like to acknowledge Wim Böhm for help on various algorithms, John

Labadie for the methodology to proof the local optimization formula, and Sudipto Ghosh

for his inspired teaching. Most of all I would like to thank my wife Joann and my daughters

Kate and Emma for their understanding of my quixotic desire to pursue a doctorate.

iv

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

DEDICATION . iv

1 Introduction . 1

1.1 Motivation . 2

1.2 LUT Techniques for Function Evaluation . 4

1.3 Simple Example of LUT Transformation . 6

1.4 Continued Relevance of LUT Approach . 7

1.5 Brief Overview of LUT Methodology . 10

1.6 Summary of Contributions . 11

2 LUT Background . 12

2.1 LUT Example and Terminology . 12

2.2 LUT Implementation Issues . 15

2.3 LUT Optimization Problem . 16

3 Related Work . 18

3.1 Trading Imprecision for Performance . 18

3.1.1 LUT Transformation in Hardware . 19

3.1.2 LUT Transformation in Software . 20

3.1.3 Cache Impact on LUT Performance 21

3.2 Other Techniques that Exploit Reuse . 21

3.2.1 Value Locality and Value Reuse . 21

3.2.2 Explanation of Reuse Types . 22

3.2.3 Memoization versus LUT transformation 22

3.3 Productivity in Scientific Computing . 23

v

4 LUT Optimization Methodology . 24

4.1 Performance Profiling and Scope Identification 25

4.2 Expression Enumeration and Domain Profiling 27

4.3 Error and Performance Modeling . 32

4.4 Solving the LUT Optimization Problem . 34

4.5 Code Generation and Integration . 38

4.6 Performance and Accuracy Evaluation . 38

5 LUT Optimization Algorithms . 41

5.1 Expression Enumeration . 41

5.1.1 Intersection Constraints . 44

5.1.2 Expression Coalescing . 45

5.1.3 Parameter Merging . 47

5.1.4 Domain Conditioning . 48

5.1.5 Partial Domains . 49

5.2 Error Analysis . 50

5.2.1 Analytic Error Method . 52

5.2.2 Exhaustive Method . 54

5.2.3 Stochastic Method . 56

5.2.4 Boundary Method . 56

5.2.5 Comparison of Error Methods . 56

5.3 Performance Model . 57

5.4 Optimization Problem . 59

5.4.1 Mathematical Definition of the Problem 61

5.4.2 The LUT Optimization Algorithm . 62

5.4.3 More Examples of Optimization Results 70

5.4.4 Rank Culling Algorithm . 73

5.5 Evaluation of Performance and Error Models 75

5.5.1 Model versus Actual Performance . 76

vi

5.5.2 Model versus Actual Error . 76

6 Mesa Tool . 78

6.1 Mesa Implementation . 78

6.2 Mesa Evolution . 81

6.3 Effect of Cache Misses . 81

6.4 Evaluation of Multi-Dimensional Tables . 83

6.5 Parallel Efficiency of Generated Code . 84

7 Case Studies . 85

7.1 Evaluation Methodology . 85

7.2 Hydrology Modeling . 87

7.2.1 Slope Aspect Computation . 87

7.2.2 Solar Radiation Computation . 91

7.3 Molecular Biology . 94

7.3.1 Saxs Discrete Scattering . 95

7.3.2 Saxs Continuous Scattering . 98

7.4 Molecular Dynamics . 100

7.5 Neural Network . 103

7.6 Summary and Evaluation . 105

8 Limitations and Threats to Validity . 107

8.1 Limitations . 107

8.2 Threats to Validity . 109

9 Conclusions and Future Work . 111

9.1 Conclusions . 111

9.2 Future Work . 112

References . 113

vii

Chapter 1

Introduction

Scientists depend on increasingly complex software applications to support the advance of

human knowledge. Such programs have insatiable performance demands [29], which are

hard to fulfill because of the math-intensive nature of scientific codes. Scientific programs

frequently call elementary functions that consume many more processor cycles than ordinary

arithmetic [41, 46], as shown in Table 1.1. For example, a cosine call is∼45× to∼53× costlier

than a multiply on current architectures. The topic of our research is a method that improves

the performance of scientific codes. Our approach is to automate and extend an existing

technique called lookup table (LUT) transformation that exploits the fuzzy redundancy often

found in scientific computations. A LUT transform improves performance by precomputing

results for a function, then sharing those results between multiple computations with similar

input values to eliminate computation.

Table 1.1: Performance of elementary functions versus arithmetic.
(Intel Core 2 Duo, E8300, family 6, model 23, 2.83GHz, single core)

Elementary
Function

Single
Precision

Double
Precision

sin 40 ns 51 ns

cos 45 ns 53 ns

tan 56 ns 71 ns

acos 42 ns 48 ns

asin 43 ns 47 ns

atan 43 ns 49 ns

exp 32 ns 35 ns

log 56 ns 61 ns

sqrt 7.1 ns 5.2 ns

* 1.1 ns 1.9 ns

/ 2.0 ns 3.1 ns

+ 1.0 ns 1.7 ns

- 1.2 ns 2.0 ns

1

Programmers often use LUT transformation to improve the sequential performance of

math-intensive codes [56]. In current practice, the programmer develops LUT code by hand,

often without the benefit of error analysis or a performance model. This makes it difficult

for the programmer to gauge the impact of a LUT transform on accuracy and performance.

Developing LUT code by hand also represents a substantial effort that can obfuscate appli-

cation code. The research presented here addresses these problems with a new methodology

and algorithms to automate the LUT process, which we implement in a tool called Mesa.

Mesa automates many of the steps required for LUT transformation, and it implements a

novel algorithm that we call LUT optimization to help the programmer identify optimal

sets of expressions to which transformations can be applied. Our evaluation shows that

Mesa can achieve application speedups of 1.4× to 6.9×, and we find that automation makes

programmers more effective and productive.

1.1 Motivation

Our interest in LUT methods began with an application that we wrote for the Small Angle

X-ray Scattering (SAXS) project [64] at Colorado State University (CSU). The program

simulates the X-ray scattering of proteins. We initially received a partial implementation

of the discrete algorithm based on Debye’s formula [26], written in R code. Porting to

C++ improved the performance significantly, but still fell short of our performance goals.

We reduced execution time by manually incorporating a LUT transform for the dominant

calculation, which we found through performance profiling. The process was cumbersome

and required lengthy experimentation to determine an effective solution, but the result was

a 6.9× speedup. To simplify tuning we developed the Mesa tool to automate the time-

consuming and error-prone aspects of LUT transformation. We have since applied Mesa to

another version of the SAXS code that implements a continuous algorithm, enabling a 3.0×

speedup on the C++ code that we ported from Matlab. For both algorithms the performance

improvements were achieved while meeting accuracy requirements.

2

The current version of Mesa is much more capable than the original, as described in

Section 6. We have extended the tool to automatically find and evaluate candidate expres-

sions in source code, and we have applied the tool to additional application areas. Table 1.2

shows the performance improvement and error introduced using Mesa for these applications.

The performance speedup is calculated as the ratio of the original time divided by the op-

timized time, and the maximum error is calculated as the relative difference between the

output of the original and optimized versions. The table shows results for the discrete and

continuous variants of the SAXS application [64], the Stillinger-Weber molecular dynamics

program [31], a CSU neural network application [53], and the PRMS precipitation runoff

model [58]. These results were achieved while constraining the LUT data to reside in cache

memory on the test system as shown in the last column. The evaluation of these and other

applications is described in detail in Section 7.

Table 1.2: Results of application optimization with Mesa.
(Intel Core 2 Duo, E8300, family 6, model 23, 2.83GHz, single core)

Application
Name

Original
Time

Optimized
Time

Performance
Speedup

Maximum
Error

Memory
Usage

Saxs Scattering
(discrete)

196.2s 29.0s 6.8X 4.06 x 10-3% 4MB

Saxs Scattering
(continuous)

10.1s 2.5s 4.0X 1.48 x 10-4% 4MB

Stillinger-Weber
(simulation)

14.6s 10.4s 1.4X 2.91 x 10-2% 1MB

Neural Network
(logistics)

8.0s 3.6s 2.2X 8.70 x 10-2% 4MB

Neural Network
(hypertan)

10.9s 3.9s 2.8x 6.30 x 10-1% 4MB

PRMS
(slope aspect)

242ns 56ns 4.3X 8.21 x 10-6% 4MB

PRMS
(solar radiation)

13.7s 6.1s 2.2X 2.97 x 10-4% 4MB

3

1.2 LUT Techniques for Function Evaluation

The context of our research is the use of LUT transformation to improve the performance

scientific codes with expressions that contain elementary function calls. Assignment state-

ments and their component expressions can be viewed as mathematical functions, so in this

document we use the terms expression and function interchangeably. LUT transformation

improves the performance of function evaluation by exploiting the imprecise or fuzzy reuse

of previously computed results, thereby sharing a computations over a range input values.

Computing and storing expression results allows costly function evaluations to be replaced

by LUT accesses. Performance improves when LUT accesses are less expensive than the orig-

inal computation, and when enough reuse occurs to amortize the cost of LUT initialization.

The citation that follows from Pharr and Fernando [56] describes the concept succinctly:

“Lookup tables (LUTs) are an excellent technique for optimizing the evaluation of func-
tions that are expensive to compute and inexpensive to cache. By precomputing the eval-
uation of a function over a domain of common inputs, expensive runtime operations
can be replaced with inexpensive table lookups. If the table lookups can be performed
faster than computing the results from scratch (or if the function is repeatedly queried at
the same input), then the use of a lookup table will yield significant performance gains.
For data requests that fall between the table’s samples, an interpolation algorithm can
generate reasonable approximations by averaging nearby samples.”

LUT transformation is only one of several methods that exploit reuse to gain performance.

Memoization is a related technique that caches computational results during program exe-

cution for future reuse. Memoization supports both precise and fuzzy reuse [2]. When fuzzy

reuse is employed, the technique is similar to LUT transformation, but there are two signifi-

cant differences. First, a LUT transform computes results for the entire domain in advance,

whereas memoization waits until computation occurs to cache results. Second, a LUT trans-

form provides a simple and inexpensive indexing operation to retrieve LUT data for a given

input. Memoization, in contrast, must provide a mapping function that determines whether

a result has been cached, which can introduce significant overhead.

4

CPU designers have long been aware that scientific codes are dependent on elementary

function performance, thus there has been a longstanding debate over the need for dedicated

instructions [55]. Early microprocessors contained instructions such as FSIN, FCOS, and

FSQRT, and these opcodes are still supported in current architectures [37]. Many current

Field-Programmable Gate Arrays (FPGAs) incorporate elementary functions to support

image processing and other applications [19]. These hardware implementations of elementary

functions often take advantage of hardware LUTs [25]. The fundamentals of applying a LUT

transform are the same for hardware and software, but a handful of important differences

exist. Section 3.1 lists these differences and presents related work.

Software developers also have a long history of using LUTs, starting with the discovery

by early assembly language programmers that table lookups could reduce instruction counts

for simple algorithms such as character conversion [36]. Scientific programmers have used

LUT transformation for function evaluation for many years. For example, the Fastest Fourier

Transforms in the West (FFTW) libraries store LUT data that is computed using cosines and

sines, resulting in “significant reductions in computation time result from table lookup” [39].

Rapid Radiative Transfer Model (RRTM) software uses LUT transforms for the exponential

and tau functions, yielding a 1.75× improvement on code that represents almost 25% of the

execution time of a global climate model [59]. Additional evidence of current usage is shown

by the LUT programming support in scientific languages such as Matlab [47] and SciPy [66].

Engineering practices related to LUT transformation vary significantly between software

and hardware. We are not aware of any tools that support software LUT methods, with the

exception of a compiler presented by Zhang et al. [84] that generates hardware and software

LUT transforms. The Zhang et al. compiler does not operate directly on application code,

but the central idea of the tool is similar to Mesa, as we discuss in more detail in Section 3.1.2.

As a result, scientific programmers must perform LUT transformation in an ad hoc manner.

In contrast, hardware designers have an extensive literature on error analysis [74, 75, 65].

This disparity leads to poor representation of topics that are specific to software methods.

5

For example, research on LUT error analysis performance appears to be virtually nonexistent,

possibly because the topic is not a concern for hardware designers.

Our research objective is to bring significant automation to software LUT methods. We

have adopted this goal to support our own development needs by avoid manual tuning, which

is known to be unproductive [70]. Without automation, a programmer must explore the

space of LUT parameters through unguided experimentation, making it difficult to control

the critical tradeoff between error and performance. Manual analysis of this tradeoff may be

feasible for a single expression, but the large solution space that is created when considering

multiple expressions makes it impractical to analyze by hand.

1.3 Simple Example of LUT Transformation

The following example demonstrates LUT transformation. Consider an application that

repeatedly calls the sine function for inputs between 0.0 and 2π. We implement a LUT

transform for the sine function by computing a sine table for the specified range of input

values, and replacing sine calls with LUT accesses. The resulting LUT transformation de-

creases application accuracy and improves performance. Error is introduced because the sine

table represents a discrete sampling of a continuous function. Table 1.3 shows the memory

usage and error statistics for a range of different LUT sizes. For example, a sine table with

65,536 entries uses 256KB to replicate the sine function with a maximum absolute error of

4.88×10−5%. The method used to compute this error is described in Section 5.2. The LUT

error is inversely proportional to LUT size, regardless of the function being approximated.

To continue our example, we define LUT benefit as the execution time reduction achieved

through LUT transformation. The upper bound of LUT benefit is the evaluation time of

the original function multiplied by its call frequency. Table 1.1 shows evaluation time of

40ns or 51ns for a sine call on our test system, depending on the precision. No lower bound

exists for LUT benefit because it can actually be negative in cases where the LUT access is

slower than evaluation of the original function, for example arithmetic operators on current

architectures. We benchmark the LUT transformation described above and find that a LUT

6

Table 1.3: Lookup table for sine function over domain [0.0,2π].

Table
Entries

Memory
Usage

Maximum
Error

Average
Error

256 1 KB 1.25 x 10-2 4.03 x 10-3

1024 4 KB 3.12 x 10-3 1.00 x 10-3

4096 16 KB 7.79 x 10-4 2.50 x 10-4

16384 64 KB 1.95 x 10-4 6.26 x 10-5

65536 256 KB 4.88 x 10-5 1.57 x 10-5

262144 1024 KB 1.23 x 10-5 3.92 x 10-6

access takes 7.4ns. We conclude that the portion of application execution time dedicated to

sine evaluation can be improved by approximately 5.4× to 6.9×. We perform the experiment

on our test system and measure a speedup of 6.4×. The LUT sizes in Table 1.3 fit into cache

on our test system, thus performance varies only slightly between the table sizes shown.

Our example shows that LUT transformation can provide a significant performance increase

without incurring an unreasonable amount of error.

1.4 Continued Relevance of LUT Approach

LUT transformation has been around since the 1950’s [3] and is still in use today. We claim

that research on the automation of LUT methods is still relevant for current computing

platforms, because elementary function calls remain a bottleneck for many applications. A

recent trend of great concern to scientific programmers is the “power wall”, which has ended

many years of performance gains achieved solely by increasing clock speed. According to

Hennessy and Patterson, processor performance increased annually by 52% from 1986-2002,

but only by 6% per year from 2002-2005 [34]. In 1986, the fastest microprocessor was the

Intel 80386 at 16Mhz. By 2005, the Intel Pentium was running 200× faster at 3200Mhz.

Since then Intel processors have briefly achieved 4Ghz before scaling back to the current

3Ghz range. Through the entire period Moore’s Law has remained in effect, with transistor

counts doubling every year. The consequence has been an industry-wide shift to multi-core

7

 20

 40

 60

 80

 2006 2007 2008 2009 2010 2011

E
x

ec
u

ti
o

n
 T

im
e

(n
s)

Release Date

GCC compiler, version 4.6.1

sin

cos

tan

asin

acos

atan

log

 20

 40

 60

 80

 2006 2007 2008 2009 2010 2011

E
x

ec
u

ti
o

n
 T

im
e

(n
s)

Release Date

ICC compiler, version 12.0.3

sin

cos

tan

asin

acos

atan

log

Q3

2005: AMD Opteron 254 (Troy), family 15, model 37, 2.8Ghz,

Q1 2007: Intel Xeon E5450 (Harpertown), family 6, model 23, 3.0Ghz,

Q2 2008: Intel Core 2 E8300 (Wolfdale), family 6, model 23, 2.83Ghz,

Q1 2010: AMD Opteron 6168 (Magny-Cours), family 15, model 37, 2.8Ghz,

Q2 2011: Intel Xeon E31230 (SandyBridge), family 6, model 42, 3.2Ghz

Figure 1.1: Elementary function performance over time.

architecture and parallelism. This shift has had an effect on elementary function performance

and cache availability, both of which impact the viability of LUT transformation.

The power wall has had a large impact on scientific computing, most notably because

parallel programming is now required to meet performance demands [6]. However, even

within a parallel program, many elementary functions are executed on each processor core.

The performance of such functions will no longer benefit from increases in clock frequency.

Figure 1.1 shows that elementary function performance has leveled off recent years, based on

a sampling of processors available at CSU. The average performance increase of the functions

shown is 1.85× over six years, a much slower rate of improvement than previously provided

by clock scaling. As a result, many scientific applications may remain limited by elementary

function performance, even when executed on multiple cores.

Given the dominance of multi-core architectures, we can justify sequential optimizations

only if they are effective in the context of parallel execution. A critical factor for successful

LUT optimization on multi-core systems is cache availability, because LUT data must reside

in mid-level cache. An increasing number of cores raises the concern that manufacturers

8

Figure 1.2: Combined L2 and L3 cache per core.

may be unable to maintain the current levels of per core cache. However, recent cache size

trends do not support this hypothesis. Figure 1.2 shows the combined size of L2 and L3

cache per core, on historical and recent Intel processors with up to 8 cores. The L2 caches of

uniprocessor systems grew quickly from 256KB in 1995 to 1MB or more in 2004. Since then

there is no evidence of a reduction in combined L2 and L3 cache size, despite the growth in

the number of cores. In our case studies we have confirmed that sufficient cache exists to

support LUT transformation on existing multi-core systems.

While the size of cache has remained stable, cache hierarchies are clearly changing. Early

dual-core and quad-core processors simply replicated L2 cache for each core. Current multi-

cores have reduced L2 cache to 256KB, but designers have added up to 3MB shared L3 cache

per core. For example, current server products from Intel have up to 2MB of L2 and 24MB of

L3 for eight cores. The recent introduction of L4 cache supports the premise that hardware

designers continue to place importance on mid-level cache. Caches have traditionally been

built from static memories that provide fast access but require significant die area. A recent

trend of using embedded dynamic memory [8] increases the likelihood that mid-level cache

size will remain be maintained or increase on future systems.

9

1.5 Brief Overview of LUT Methodology

To address problems with ad hoc practices, we have developed a methodology to help per-

formance programmers with LUT optimization. We briefly summarize the steps here. First,

performance profiling tools are employed to identify methods that contain bottlenecks. Mesa

processes C functions and C++ methods in the source code, but in this document we use

the term function. The programmer then inserts pragmas above the declarations of these

functions to identify the scope of LUT optimization, and runs the Mesa to instrument the

program. Mesa analyzes the source code within the specified scope and extracts expressions

that contain elementary function calls. Each of these expressions represents a candidate for

LUT transformation. Mesa finishes by instrumenting the application for domain profiling.

The resulting program must be executed by the programmer with one or more representa-

tive data sets to gather domain boundaries and call frequency. The data sets must be varied

enough to establish robust boundaries for the input domains. This information is stored in a

file that the programmer can inspect and edit. After domain information has been gathered,

the programmer runs Mesa again to optimize the program.

Mesa starts optimization by evaluating the cost and benefit of each expression through

error analysis and performance modeling, then it formulates and solves a numerical optimiza-

tion problem whose purpose is to identify a set of optimal solutions. The dual objectives of

the LUT optimization problem are to maximize performance and minimize error, subject to

constraints on memory usage. Solutions are sets of expressions that can be simultaneously

transformed while sharing cache resources. Mesa evaluates solutions by combining the ben-

efits and errors of their member transformations. We define an optimal solution as one for

which no other solution has more benefit with the same or less error. The LUT optimiza-

tion problem has competing objectives, thus it produces multiple optimal solutions. Mesa

discards suboptimal solutions, leaving the programmer to select from the remaining optimal

solutions, which are ranked by accuracy and performance. Mesa realizes the selected solution

by generating LUT code for each of its expressions, and by applying a transformation to in-

10

tegrate the code into the application. The programmer completes the process by comparing

the performance and accuracy of the original and optimized versions of the program.

1.6 Summary of Contributions

In a workshop paper [76], we described an early version of Mesa that required separate

specification of candidate expressions. A programmer using this version had to manually

identify candidate expressions and domains, specify the expressions and constituent variables

in a file, run Mesa to generate code, and then manually integrate the resulting code back

into the application. In a journal paper [77], we presented an approach and newer version of

Mesa that used pragmas to apply LUT transformation to expressions in C and C++ source

code, thereby operating directly on application source code. This thesis includes the work

from these papers, and presents an automated technique for LUT optimization that further

minimizes programmer effort. The contributions of this thesis are as follows:

� A comprehensive methodology that applies software LUT techniques to

scientific codes with expressions that contain elementary functions (Chapter 4).

� A comparison of the accuracy and performance of error analysis for LUT

data, including analytic and numerical techniques (Chapter 5).

� A novel LUT optimization technique that identifies a set of expressions

for LUT transformation to maximize performance and minimize error (Chapter 5).

� A set of case studies that demonstrates the effectiveness of our LUT methodology

and tool in the context of single-core and multi-core execution (Chapter 7).

� A software tool that provides automation of domain profiling, error analysis,

performance modeling, and code generation for LUT transformation (Chapter 6).

In addition to the above list we provide a background of LUT transformation in Chap-

ter 2 and a review of LUT related work in Chapter 3. We discuss the limitations of our

methodology and threats to validity in our empirical research in Chapter 8. We conclude

and present future research directions in Chapter 9.

11

Chapter 2

LUT Background

In this chapter we review the fundamentals of LUT transformation by showing an example.

We use the example to introduce LUT terminology and explain how LUT transformation

affects accuracy and performance. Next we discuss LUT sampling methods, including direct

access and linear interpolation. We conclude with a discussion of several important issues

related to the implementation of LUT transformation.

2.1 LUT Example and Terminology

Figure 2.1 shows LUT data for the expression exp(x). The input value is restricted to

0 ≤ x ≤ 1, thus the LUT domain is [0, 1]. The left graph shows a table with 16 entries and

the right graph shows a table with 32 entries. The original function is plotted as f(x) and its

approximation via the LUT data as l(x). The tables are created by partitioning the domain

into uniform intervals, and assigning a LUT entry for each interval. LUT entries contain

results computed using the original function, stored as an array of LUT data. The number of

intervals is the LUT size, and the interval width is the LUT granularity. Equation 2.1 shows

the relationship between domain, granularity, and size, from which we compute a granularity

of 0.0625 for the 16-entry table and 0.03125 for the 32-entry table:

Granularity = Domain/Size (2.1)

We initialize LUT data by evaluating the expression over each interval and storing the

result in the corresponding LUT entry. Each LUT entry stores a single result that must

be shared by all inputs in the interval, thus the result is often imprecise. The decision

about which output value to select in each interval is an important one, as it will affect

accuracy. The literature suggests selecting the output value that corresponds to the center

12

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5
ex

p
(x

)

er
ro

r
te

rm

x

Direct Access, 16 entries

l(θ)
f(θ)
e(θ)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

ex
p
(x

)

er
ro

r
te

rm

x

Direct Access, 32 entries

l(θ)
f(θ)
e(θ)

Figure 2.1: LUT data for exponential function, with 16 and 32 entries.

of the interval. Using the mean value of the function over the interval is theoretically more

accurate, but expensive to compute. As LUT granularity decreases, the output function in

each interval approach linearity. When the output function is linear, the average and center

outputs correspond, so computing the mean is unnecessary.

The difference between a function and its approximation represents LUT error. Figure 2.1

shows error as the distance between f(x) and l(x), plotted separately as e(x). We can

combine the individual error terms to compute the maximum and average error over a LUT

entry or the entire table, as described in Section 5.2. Each step in l(x) represents a single

LUT entry. For example, the left-most step on the graph assigns the output value 1.0317 to

input values in the interval 0.0000 ≤ x < 0.0635. The maximum absolute error is 0.0836 for

16 entries and 0.0421 for 32 entries, found at the right-most step because this is where the

exponential function has the highest slope. The graphs illustrate that an increase in LUT

size decreases error. As a result of this relationship, we can control LUT error by setting the

LUT size, subject to constraints on memory usage.

The amount of error introduced by a LUT transform depends on several factors, including

how the LUT data is sampled. The most common sampling methods are direct access and

linear interpolation. Direct access simply finds the interval that contains the input value and

returns its LUT entry. Linear interpolation selects the two closest LUT entries and combines

them according to their respective distances from the exact input. Linear interpolation

improves accuracy, but performance is degraded by the extra LUT access and computation.

13

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5
ex

p
(x

)

er
ro

r
te

rm

x

Direct Access, 16 entries

l(θ)
f(θ)
e(θ)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1
 0

 0.001

 0.002

 0.003

 0.004

 0.005

ex
p
(x

)

er
ro

r
te

rm

x

Linear Interpolation, 16 entries

l(θ)
f(θ)
e(θ)

Figure 2.2: LUT data for exponential function, direct access and linear interpolation.

When computing LUT data, the sampling method determines the selection of output values.

For direct access we use center selection, as previously described. For linear interpolation,

we follow the standard practice of computing output values at interval boundaries.

Figure 2.2 compares the direct access and linear interpolation sampling methods. For a

table with 16 entries, the maximum absolute error is 0.0836 for direct access and 0.0013 for

linear interpolation, a difference of almost two orders of magnitude. We have adjusted the

error scale on the right graph to make the linear interpolation error more visible.

The purpose of LUT transformation is a reduction in execution time that we refer to

as LUT benefit. We compute the benefit as the difference between the cost of expression

evaluation and the cost of LUT access. Expression evaluation is relatively consistent and

therefore easy to model. Access cost is harder to characterize because it depends on the

location of LUT data in the memory hierarchy. LUT data for an elementary function rarely

fits in top-level (L1) cache, which is typically 32-64KB per core on modern systems. Our

work shows that LUT transformation performance degrades quickly when the LUT overflows

mid-level (L2 or L3) cache, which is typically 1-3MB per core [76]. As a result, we constrain

LUT data to reside in mid-level cache. We describe the performance model in Section 5.3.

14

2.2 LUT Implementation Issues

We now address several issues that arise when implementing a LUT transform. Among these

are the LUT data precision, which affects both accuracy and memory usage. Single-precision

numbers are accurate to FLT EPSILON, which is ±1.19×10−07. Double-precision numbers

are accurate to DBL EPSILON, which is ±2.22×10−16. For typical input domains, the LUT

granularity is much larger than FLT EPSILON, so approximation error dominates. It is

therefore more effective to store single-precision LUT data and reduce error by increasing

the LUT size. Double-precision may be needed when the LUT granularity is close to or

smaller than FLT EPSILON, but this would be practical only for highly restricted domains.

All examples and evaluations in this thesis use single-precision LUT data.

Another issue arises with respect to coverage of the LUT domain. To allow the original

expression to be completely replaced with a LUT access, a LUT transform must store data

for the entire domain, There is another option, which is to store results for a partial domain

and add conditional code to choose between the LUT access and the original expression. The

advantage of a partial domain is that memory usage can be reduced by storing only the results

that are evaluated most frequently, thereby gaining most of the performance advantage. The

downside is that the original expression must remain in the code, and conditionals are very

expensive. We evaluate the use of partial domains in Section 5.1.5.

A final issue is the uniformity of the intervals used to partition the LUT domain. The use

of uniform intervals simplifies the LUT index computation, but non-uniform intervals can

selectively provide more accuracy in domain regions where the error rate is higher, thereby

decreasing memory usage. However, we have not incorporated non-uniform intervals into

our methodology because they reduce the performance benefit by increasing the cost of the

LUT index computation. Equation 2.2 shows the index computation for uniform intervals:

Index = Input ∗ (Size/Domain) (2.2)

15

The table index is computed by multiplying the input value by the table size divided by

the domain. The latter is the inverse of the granularity, which can be computed in advance

to avoid the division. Finally the table index is used to access the table data to fetch the

stored result, which is not shown. An extra subtraction (not shown) is necessary to make

the index zero-based when the lower boundary of the domain is non-zero.

2.3 LUT Optimization Problem

In this section we describe how our LUT optimization problem is similar to the knapsack

problem, a classic example of combinatorial optimization [45]. The knapsack analogy allows

us to frame our problem in terms of traditional numerical optimization languages and ter-

minology. However, there is a significant difference between LUT optimization problem and

the knapsack problem, and this has led us to develop a custom solution instead of using

existing optimization solvers.

We use optimization methods to find the most effective expressions to which to apply

LUT transformation. To do so we must select a set of LUT transforms, then compute the

optimal allocation of cache memory for them. The knapsack problem is analogous in that

it searches for optimal sets of objects that fit inside a knapsack. In its simplest form, each

object has volume and value. The single objective of this problem is to find the set of

objects that fit in the backpack to maximize total value, defined as the sum of object values.

A constraint on knapsack volume limits the number of objects that can fit in the knapsack.

The problem has a unique solution in terms of total value.

We can extend the knapsack problem to include multiple objectives, thus making it closer

to the cache memory allocation problem. We do this by adding a weight attribute to objects

and a second objective to minimize the sum of object weights. The two objectives compete,

since reducing total weight tends to decrease total value and vice versa. As a result there are

multiple solutions, some of which do better at the first objective and others that do better at

the second. Figure 2.3 shows an example knapsack problem and the two optimal solutions

16

Figure 2.3: Example of knapsack optimization problem.

that provide the highest value and lowest weight. Other optimal solutions exist whose total

value and weight are in between the ones shown.

The knapsack problem allocates knapsack space and the LUT optimization problem

allocates cache memory. For LUT optimization our objects are LUT transforms, with benefit

replacing value, error replacing weight, and memory usage replacing volume. The objectives

are to maximize benefit and minimize error, subject to a constraint on memory usage. The

crux of the problem is that cache resources limit the number and size of LUT transformations,

thus we are trying to allocate cache memory in the most effective way possible. Our problem

differs from the knapsack problem in that the error associated with a LUT transform is

described by a nonlinear equation, as opposed to a constant weight.

As with the knapsack problem, we end up with multiple solutions that represent optimal

tradeoffs, in this case between performance and accuracy. Selection of a particular optimal

solution allows the programmer to balance these competing demands. By specifying the

constraint on cache size, the programmer also gains control over resource usage. Section 5.4

provides an in-depth description of the algorithms that we use to construct and solve the

LUT optimization problem.

17

Chapter 3

Related Work

We start our chapter on related work by citing examples where imprecision is tolerated

in exchange for a performance advantage, and we address numerical stability and analysis

issues. Next we survey related work on hardware and software LUT transformation, and

discuss the difference in requirements between the two disciplines. We briefly review the

important issue of the impact of cache memory on LUT performance. We follow this with

a discussion of alternate techniques such as memoization and value reuse, and we conclude

with a survey of the literature on productivity and the scientific programmer.

3.1 Trading Imprecision for Performance

There is considerable precedence for methods such as LUT transformation that trade accu-

racy for performance. Computer precision is inherently limited, yet the existing floating-point

representations have proven to be satisfactory for many scientific applications. Linderman

et al. [43] argue that reducing the precision of computation has benefits, but caution that

a careful analysis is necessary to maintain accuracy. Research suggests that single-precision

arithmetic can sometimes be used in place of double-precision [10], and several authors pro-

pose the intentional reduction of precision to save power [7, 62]. Some libraries give the

programmer explicit control over accuracy and performance. For example, the Intel Math

Kernel Library (MKL) supports an enhanced performance mode that throws away up to

half of the significand bits for single or double-precision [38], and references in the Intel

documentation suggest that performance gains can be achieved by using LUT techniques to

approximate elementary functions, as quoted below [37]:

The existence of methods that trade accuracy for performance does not necessarily imply

that all applications can do so safely. The numerical stability of an application is determined

18

“Usually, math libraries take advantage of the transcendental instructions (for example,
fsin) when evaluating elementary functions. If there is no critical need to evaluate the
transcendental functions using the extended precision of 80 bits, applications should
consider alternate, software-based approach, such as look-up-table-based algorithm using
interpolation techniques.”

by many factors [27], so some applications are more sensitive to the introduction of error

than others. Techniques such as interval analysis can be used to bound error on sequences of

operations [51], but characterizing the error propagation for an entire application is a complex

numerical analysis problem that is beyond the scope of this thesis [12]. Our methodology

estimates the error introduced by a set of LUT approximations, and we provide support for

empirically measuring application error. In Section 5.2 we describe how to quantify the error

associated with LUT transformation.

3.1.1 LUT Transformation in Hardware

Hardware LUTs date back to an early IBM computer into which Amdahl [3] incorporated

a table for character conversion. More recent hardware LUT examples are found in graph-

ics [32, 56], network routing [1], and logic synthesis [24]. The optimization of elementary

functions in hardware also has a considerable history [55, 20], not necessarily limited to LUT

methods. The first application of LUT hardware to elementary function evaluation that we

are aware of was proposed by Gal [25], who suggested using polynomial reconstruction to

increase accuracy. Tang [74, 75] applied LUT methods to elementary functions for number

in IEEE format. Many other papers have expanded the use of LUT methods to additional

functions [80, 65, 83]. Dedicated memory is expensive, so LUT implementations usually

depend on some form of interpolation between table entries to limit LUT size. At a mini-

mum, hardware LUT solutions implement linear interpolation [56], and hardware designers

commonly use high-order polynomial reconstruction to reduce error even further [57]. LUT

methods for function evaluation in FPGAs has recently become popular [69, 19].

19

3.1.2 LUT Transformation in Software

Software LUTs have few academic references, but there are a variety of books [60, 56, 36] that

discuss the topic. We are aware of only one tool that supports software LUT transformation,

as described by Zhang et al. [84]. The Zhang et al. paper presents a standalone compiler that

analyzes mathematical expressions written in a language that is similar to MATLAB, and

transforms these expressions either into an FPGA design or C/C++ code. Although their

compiler does not operate directly on source code, their work provides a unique discussion of

software LUT issues. Unlike previous work, the Zhang et al. compiler can transform arbitrary

numerical expressions that combine function calls with other operators. The premise of

their paper, which we confirm in our work, is that C/C++ code can be generated that will

significantly outperform the math library [84]. They also suggest that direct access sampling

is impractical, and that cache sizes in current systems do not limit LUT performance. In

this work we show that direct access is sufficient for some applications, and we find that

cache availability is a critical factor for LUT performance.

Hardware and software environments have fundamental differences with respect to LUT

implementation. First, the cost of dedicated memory in a hardware is very high, so LUT

sizes are usually limited to 64KB or less. This requires designers to compensate with high

accuracy sampling methods such as polynomial reconstruction [19]. Such techniques can

be implemented in hardware with multiple computational units that operate in parallel to

provide good performance. In addition, hardware is more difficult to modify for specific

applications, so designers must pay more attention to accuracy up front. Software, on the

other hand, has access to abundant memory resources. LUTs of 6MB or more are feasible

on current systems, even when the LUT data is constrained to reside in mid-level cache.

Software memory resources are extremely flexible, and can be reconfigured to match the

requirements of each application, thus they can address a much broader range of expressions.

However, software cannot support the same level of complexity when reconstructing samples

as hardware, without risking poor performance.

20

3.1.3 Cache Impact on LUT Performance

As previously mentioned, there is little published research on software LUT methods. In

particular, we are not aware of work on domain profiling, error analysis, or performance

modeling in the context of software LUTs, nor have we seen case studies that characterize

the performance versus accuracy tradeoff, or that explore the cost versus benefit of the

various LUT sampling methods. The issue of whether LUT data must reside in cache to

make LUT transformation beneficial is especially important, but the only related work that

we are aware of that discusses the impact of cache usage is Defour [18]. Defour combines

polynomial reconstruction with small tables, and suggests that LUT data must fit into L1

cache to be effective. Our research has shown a substantial performance gain even when

LUT data resides in L2 or L3 cache [76].

3.2 Other Techniques that Exploit Reuse

The reuse of computation is fundamental to a number of optimization techniques. For

example, value locality is often exploited by compilers via result caching and other forms

of value reuse. In this section we discuss techniques that take advantage of reuse, and we

define the terms precise and fuzzy as they apply to reuse. We conclude with a description

of memoization.

3.2.1 Value Locality and Value Reuse

Many programs exhibit value locality, in which computations are performed repeatedly with

a small number of inputs [63]. Value locality creates redundancy that can be exploited to

improve performance. Optimizations based on value reuse eliminate redundant computation

by storing and reusing results from previous computations [40]. Some compilers implement

value reuse by selectively caching results to avoid future computation [21]. Hardware can

also exploit value reuse by caching results or sequences of instructions, or through speculative

value prediction [14]. Most implementations of value reuse apply the method to a small set

21

of precise inputs over localized areas in a program, in contrast to LUT transformation, which

exploits value reuse more fully by allowing imprecision.

3.2.2 Explanation of Reuse Types

Value reuse can be exploited even without value locality. Consider a program that repeat-

edly evaluates one or more expressions with identical or similar inputs. Caching previously

computed results can provide a benefit even when the computation is distributed throughout

the program, if the reuse is applied globally. Performance gains depend on the reuse inherent

to the program, which provides the opportunity to eliminate redundant computation. We

use the term precise reuse when input values must exactly match [30]. Precise reuse provides

the same accuracy as the original expression, if the cache has sufficient precision. Alvarez

et al. introduced fuzzy reuse, in which input values can match imprecisely [2]. Fuzzy reuse

improves performance by sharing cached results between multiple inputs, at the expense of

a loss of accuracy. LUT transformation for function evaluation is based on fuzzy reuse.

3.2.3 Memoization versus LUT transformation

Memoization reuses computation by caching results in a data structure called the reuse

table, which maps input values to results in a similar fashion to a lookup table [63]. At

program launch the reuse table is empty, and results are cached only as needed during

program execution [30]. When and how tables are built is the primary difference between

memoization and LUT transformation, since the latter computes results for the entire domain

in advance. Memoization is invoked each time a computation is performed. Before doing the

computation, the input value is mapped to its corresponding table entry. If the entry exists

its value is returned, otherwise the computation is completed and a new table entry is created

to store the result. The mapping function is kept as lightweight as possible, commonly by

using associative data structures such as hash tables [21, 30].

Memoization can be combined with precise or fuzzy reuse [2]. Using fuzzy reuse makes

the technique similar to LUT transformation, except for the overhead of identifying whether

22

or not a result has been previously cached. In contrast to LUT transformation, memoization

only stores values that are used by the computation. As a result, memoization may be

able to handle very large domains that are sparsely sampled more easily. On the other

hand, LUT transformation provides better performance for small domains that are sampled

heavily, because the overhead is smaller. We are not aware of a direct comparison of the two

techniques anywhere in the literature.

3.3 Productivity in Scientific Computing

Implementing LUT transforms by hand requires significant time and effort. At the same time

the productivity of scientific programmers is a current topic of research [70]. The growing

importance of high-performance computing (HPC) has led to an interest in the software

development processes and environments used by scientific programmers [11]. Manual tuning

methods are thought to be responsible for an increasing amount of the development time and

effort [23], and there is concern that such tuning may obscure the original algorithms [44].

One point of agreement is that automation reduces effort by freeing programmers from low-

level details [13]. In the parallel programming community, high-level abstractions are being

pursued as the path to higher productivity [6]. For example, programming models such

as OpenMP decrease the programming effort by providing pragmas to convert sequential

programs into parallel ones [16], thereby avoiding costly development of parallel code.

One problem is the difficulty of agreeing on objective measures for productivity [82,

17, 68], particularly for activities such as performance tuning that have no clear endpoint.

Empirical studies are needed to understand the high costs often associated with HPC devel-

opment [35], but these studies face a variety of challenges [67]. Our research centers on the

automation of performance tuning, supported by the insertion of pragmas as a substitute

for developing code.

23

Chapter 4

LUT Optimization Methodology

The objectives of our methodology are to significantly increase the performance of compute-

bound scientific applications, improve programmer productivity while doing so, and give the

programmer control over the tradeoff between accuracy and performance inherent to LUT

methods. Our methodology leverages and extends the techniques discussed in Section 2, and

we introduce automation to the LUT optimization process to help the programmer identify

the most effective set of LUT transformations.

Our approach to LUT optimization is fundamentally different from existing LUT tech-

niques. In current practice, the programmer identifies expressions in the source code that

can benefit from LUT transformation, then they manually develop LUT code that is specific

for each application. The programmer must often experiment with the LUT implementation

to evaluate its effect on accuracy and performance, tweaking the code and data as necessary.

Because of the ad hoc nature of the process, achieving a solution that is optimal is difficult.

In contrast, our approach systematically evaluates expressions in the source code to find the

most effective set of potential LUT transforms. We do this by constructing and solving the

LUT optimization problem.

The input to the LUT optimization problem is a set of expressions extracted from ap-

plication source code. These include (1) expressions involving elementary function calls, (2)

individual elementary functions that appear more than once, and (3) parameter expressions

to elementary function calls. The LUT optimization problem consists of selecting subsets of

these expressions for LUT transformation that provide Pareto optimal points in the perfor-

mance and accuracy tradeoff space. The selection is based on the accuracy and performance

impact of the LUT transform for each expression, which we estimate through error analysis

24

and performance modeling. The output of the LUT optimization problem is a list of Pareto

optimal solutions that represent sets of potential LUT transforms.

The crux of the LUT optimization problem is to compare solutions to find the best

tradeoff between performance benefit and accuracy. We do this by constructing and solving

a numerical optimization problem, similar to the knapsack problem described in Section 1.

The complexity of this problem makes it impractical to solve without automation, even when

the number of expressions is very limited. To compare solutions, we combine the error and

benefit estimates of each of their component LUT transforms. We then apply an algorithm

that finds the Pareto optimal solutions. These are presented to the programmer along with

the estimated accuracy and performance for each solution.

Our methodology is implemented in the Mesa tool, which automates much of the process

through a series of stages that perform code analysis and transformation. Figure 4.1 shows

the six stages in our methodology and tool and indicates three stages where significant user

interaction occurs and one stage with minor user interaction. Throughout this chapter we

present the workflow from the viewpoint of the programmer, describing how the Mesa tool

is used and what results are achieved. We defer the details of expression enumeration, error

analysis, performance modeling, and numerical optimization until Section 5.

4.1 Performance Profiling and Scope Identification

We demonstrate our methodology with an example program that is complex enough to

show off our methodology and tool, but simple enough to present in entirety. The program

provides a suitable example because it is limited by the computation of elementary functions,

and the domain of input values for the program enables us to satisfy accuracy requirements

while fitting in cache memory. Figure 4.2 shows the source code for the dominant method

in the example program, with the statements numbered from S13 to S29. By inspection, we

see that the function has many elementary function calls.

In the first stage of our methodology we use existing performance profiling tools to gather

information about application performance. Our goal is to identify the code that consumes

25

Performance Profiling &
Scope Identification

Original
Code

Error Analysis &
Performance Modeling

Code Generation &
Integration

Optimized
Code

Performance & Accuracy
Evaluation

Construct & Solve
Optimization Problem

User

Interaction

User

Interaction

Expression Enumeration &
Domain Profiling

User

Interaction

User

Interaction

Figure 4.1: Methodology for automated optimization.

double Calcu la te ()
{
S13 double x , y , z ;
S14 double fRe su l t = 0 . 0 ;
S15
S16 for (x = −1.0; x < 1 . 0 1 ; x += 0 .05)
S17 {
S18 z = x + 0 . 3 3 ;
S19 fRe su l t += cos (z) / 2 . 0 ;
S20 z = x + 0 . 6 7 ;
S21 fRe su l t += exp(z) * 3 . 0 ;
S22 for (y = 0 . 1 ; y < M PI ; y += 0 .05)
S23 {
S24 fRe su l t += sin (x) + cos (x) ;
S25 fRe su l t += exp(x) + sin (y) ;
S26 fRe su l t += exp(x) + sqrt (y) ;
S27 }
S28 }
S29 return fRe su l t ;
}

Figure 4.2: Source listing for methodology example program.

the majority of the program execution time. Such performance bottlenecks are easily located

using commonly available tools such as gprof [28]. Profiling tools identify the most expensive

functions in an application, which in turn allows the programmer to limit the scope of the

26

optimization. Figure 4.3 shows the gprof output for the example program, which reports

that 99.99% of the execution time is spent in 100,000 calls to the Calculate method.

Each sample counts as 0 .01 seconds .
% t o t a l

time c a l l s
99 .99 100000 CExample : : Ca l cu la t e ()
00 .01 1 CExample : : Execute ()

Figure 4.3: Profiling output for methodology example program.

After performance profiling, the programmer specifies the functions that they want Mesa

to analyze. This is referred to as scope identification. In our methodology, a programmer

identifies scope by inserting pragma statements above function declarations. Mesa considers

LUT transformation only within these functions. The pragma identifies the scope as the body

of the specified function. The selection of entire functions has the advantage of matching the

granularity of profiling data from gprof. Multiple functions can be optimized simultaneously,

so the scope could be theoretically be extended to include the entire program. However, the

cost of analysis increases quickly as functions are added. Figure 4.4 shows the function

declaration and pragma. The pragma causes Mesa to analyze statements S13 through S29

in the example code in Figure 4.2.

#pragma LUTOPTIMIZE
double CExample : : Ca l cu la t e ()
{

. . .
}

Figure 4.4: Pragma insertion into methodology example program.

4.2 Expression Enumeration and Domain Profiling

The LUT optimization problem depends on the identification of expressions for which LUT

transformation may be beneficial. Mesa does this through expression enumeration, which

uses static analysis of the abstract syntax tree (AST) for the source code to extract expres-

sions. The programmer starts program analysis by running Mesa in instrumentation mode.

Mesa identifies and parses statements that contain elementary function calls. Figure 4.5

27

>>> . / Mesa Or i g i na l . cpp P r o f i l e . cpp −p r o f i l e
Mesa 2 . 0 : Optimizat ion s t a r t ed .
Mesa 2 . 0 : Optimizing Ca l cu la te method .
S19 : Or i g i na l . cpp (l i n e 19) fRe su l t +=(cos (z) / 2 . 0)
S21 : Or i g i na l . cpp (l i n e 21) fRe su l t +=(exp (z) * 3 . 0)
S24 : Or i g i na l . cpp (l i n e 24) fRe su l t +=(s i n (x) + cos (x))
S25 : Or i g i na l . cpp (l i n e 25) fRe su l t +=(exp (x) + s i n (y))
S26 : Or i g i na l . cpp (l i n e 26) fRe su l t +=(exp (x) + sq r t (y))
Number o f Statements = 5
S19 : X0 = cos (z)
S19 : X1 = (cos (z)/2 .00000000 e+00)
S21 : X2 = exp (z)
S21 : X3 = (exp (z)*3 .00000000 e+00)
S24 : X4 = s in (x)
S24 : X5 = cos (x)
S24 : X6 = (s i n (x)+cos (x))
S25 : X7 = exp (x)
S25 : X8 = s in (y)
S26 : X9 = exp (x)
S26 : X10 = sq r t (y)
Number o f Expres s ions = 11
[X0 ,X1]
[X2 ,X3]
[X4 ,X6]
[X5 ,X6]
Number o f Const ra in t s = 4
Mesa 2 . 0 : Generating p r o f i l i n g code
Mesa 2 . 0 : Optimizat ion completed .

Figure 4.5: Instrumentation run for methodology example program.

shows the instrumentation run for the example program, including the Mesa invocation.

Mesa displays statements, expressions, and constraints extracted from the example program.

Expression enumeration is key to our methodology, because each enumerated expression

represents a potential LUT transformation. Mesa parses the candidate statements and ex-

tracts expressions according to the criteria described in more detail in Section 5.1. The most

important criteria are that each expression must include only one variable and at least one

elementary function call. For the example program, Mesa extracts 11 expressions from the

5 statements as shown in Figure 4.5. These include 8 individual elementary functions and

3 more complex expressions. The latter come from the inclusion of arithmetic operators

in S19 and S21, and the combined expression sin(x) + cos(x) in S24. Mesa extracts only

elementary functions from S25 and S26, because the combined expressions exp(x) + sin(y)

and exp(x) + sqrt(y) in these statements have multiple variables.

Expression enumeration decomposes statements into expressions that in some cases can

overlap. For example, the expressions X0 and X1 intersect because both of them contain

the cosine call from statement S19, and X4 and X6 intersect because they contain the sine

28

call from statement S24. Mesa disallows the simultaneous transformation of overlapping

expressions by detecting such intersections and storing them as constraints. Figure 4.5

shows the four intersection constraints {X0 ∩ X1, X2 ∩ X3, X4 ∩ X6, X5 ∩ X5} for the

example program. The number of expressions and constraints are important because they

determine the complexity of the optimization problem.

After expression enumeration, we can construct the LUT optimization problem by gener-

ating a set of solutions that consist of the power set of expressions. This set has a theoretical

complexity of O(2N) for N expressions, and the number of expressions can increase because

of expression coalescing, or decrease because of intersection constraints, both of which are

explained in Section 5.1. However, the complexity of the LUT optimization problem still

grows exponentially with the number of expressions. As a result, solving the optimization

problem for large numbers of expressions is unfeasible. Our current algorithm can process

up to ∼24 expressions in a reasonable amount of time. To handle more expressions we have

developed a culling algorithm that reduces the search space, as described in Section 5.4.4.

The next step in our methodology is domain profiling, which gathers data concerning

program execution for the modeling stage. A LUT domain is defined by the range of input

values for which results must be stored. The input values are generally unavailable at

compile-time, so Mesa helps the programmer to collect domain information at runtime by

providing an instrumented version of the application. The instrumented version replicates

the original code and adds profiling calls for each input variable. Additional instrumentation

is inserted to gather execution frequency for each candidate statement, which is needed for

the performance model. Mesa generates the instrumented program automatically. Figure 4.6

shows a partial listing of the instrumented code for statements S24 through S26. S25 and

S26 each profile both the x and y variables. Additional code (not shown) is inserted to write

profiling variables and counters to a file when the program exits

To complete the profiling stage, the programmer compiles and runs the instrumented

code with one or more representative data sets. The instrumented code writes text files with

input domain and call frequency information, and the programmer can edit these files. One

29

S24++;
i f (x < S24 x low) S24 x low = x ;
i f (x > S24 x high) S24 x high = x ;
fRe su l t +=(sin (x) + cos (x)) ;
S25++;
i f (x < S25 x low) S25 x low = x ;
i f (x > S25 x high) S25 x high = x ;
i f (y < S25 y low) S25 y low = y ;
i f (y > S25 y high) S25 y high = y ;
fRe su l t +=(exp(x) + sin (y)) ;
S26++;
i f (x < S26 x low) S26 x low = x ;
i f (x > S26 x high) S26 x high = x ;
i f (y < S26 y low) S26 y low = y ;
i f (y > S26 y high) S26 y high = y ;
fRe su l t +=(exp(x) + sqrt (y)) ;

Figure 4.6: Profiling instrumentation for methodology example program.

reason to edit the files is to expand the domains to safely handle data sets that have not

been run. Another reason to edit the files is that a programmer may have domain knowledge

that allows the setting of domain boundaries without running the instrumented code at all.

Call frequency is stored for each statement, and domain information is stored for each

variable and statement. This is necessary because variables can change from one candidate

statement to the next. Figure 4.7 lists the domain and call frequency files from a profiling

run of the example code. Note the change in the input domain of the variable z in statements

S19 to S21 caused by an intervening arithmetic operation. In addition, the three statements

in the inner loop have a much higher call frequency.

>>> more mesa . domains
S19 z −0.670000 1.330000
S21 z −0.330000 1.670000
S24 x −1.000000 1.000000
S25 x −1.000000 1.000000
S25 y 0.100000 3.100000
S26 x −1.000000 1.000000
S26 y 0.100000 3.100000
>>> more mesa . f r e qu en c i e s
S19 4100000
S21 4100000
S24 250100000
S25 250100000
S26 250100000

Figure 4.7: Profiling data for methodology example program.

After domain profiling, the programmer starts the LUT optimization process by running

Mesa in optimization mode. Mesa enumerates exactly the same set of expressions as during

30

the instrumentation run, and fetches their domain boundaries and call frequencies from the

files shown in Figure 4.7. Mesa then uses an algorithm that we call expression coalescing to

decrease memory usage and improve accuracy.

Expression coalescing shares LUT data between expressions to conserve scarce cache

memory resources. The expressions being coalesced can appear in different statements or

methods. The coalescing algorithm searches for sets of expressions that have the same

operators, constants, and variables, in the same order. Comparison of variables is based on

the input domain, not variable names. For example, sin(x) and sin(y) can share a single

LUT transformation for the sine function when the domains of x and y are equal. Even when

the domains differ, we can still coalesce expressions by expanding the LUT data to encompass

the domains of both input variables, but this may decrease accuracy. Section 5.1.2 describes

the heuristic we use to compare domains.

Figure 4.8 shows expression coalescing in the listing of the Mesa optimization run for the

example program. Mesa coalesces the sine calls in X0 and X4 into a new expression X11,

the cosine calls in X0 and X5 into X12, and so on. The new expressions intersect with the

expressions they coalesce, so Mesa must add new intersection constraints. For example, the

new expression X11 introduces the constraints {X4 ∩ X11, X8 ∩ X11, X6 ∩ X11}. The latter

is inherited from the previously existing X4 ∩ X6 constraint. Expression coalescing is often

applicable to elementary functions because of their restricted domains. The complexity of

the LUT optimization problem increases because of the expressions introduced by coalescing,

but the technique can improve accuracy and performance.

Table 4.1 shows the candidate expressions for the example program, after expression

coalescing. The domain boundaries and call frequencies added during the profiling stage are

shown in bold. The coalesced expressions apply to more than one statement, so multiple

statement identifiers are listed. The domain boundaries and call frequencies of the new

expressions combine those of their constituent expressions. For example, the expression X12

lists statements S19 and S24, and has a combined domain of [-1.0,1.33] and a combined

31

Mesa 2 . 0 : Coa l e sc ing exp r e s s i on s (con s e rva t i v e)
Coa le sc ing X1 from X4 X8
Adding [X4 , X11]
Adding [X6 , X11]
Adding [X8 , X11]
Coa le sc ing X12 from X0 X5
Adding [X0 , X12]
Adding [X1 , X12]
Adding [X5 , X12]
Adding [X6 , X12]
Adding [X11 , X12]
Coa le sc ing X13 from X2 X7 X9
Adding [X2 , X13]
Adding [X3 , X13]
Adding [X7 , X13]
Adding [X9 , X13]

Figure 4.8: Expression coalescing for the methodology example program.

Table 4.1: Domains and frequencies for methodology example program.

Expression

Identifier

Expression

Description

Statement

Identifiers

Input

Domain

Call

Frequency

X0 cos(z) S19 -0.67,1.33 4,100,000

X1 cos(z) / 2.0 S19 -0.67,1.33 4,100,000

X2 exp(z) S21 -0.33,1.67 4,100,000

X3 exp(z) * 3.0 S21 -0.33,1.67 4,100,000

X4 sin(x) S24 -1.0,1.0 250,100,000

X5 cos(x) S24 -1.0,1.0 250,100,000

X6 sin(x) + cos(x) S24 -1.0,1.0 250,100,000

X7 exp(x) S25 -1.0,1.0 250,100,000

X8 sin(y) S25 0.1,3.1 250,100,000

X9 exp(x) S26 -1.0,1.0 250,100,000

X10 sqrt(y) S26 0.1,3.1 250,100,000

X11 sin(x or y) S24, S25 -1.0,3.1 500,200,000

X12 cos(x or z) S19, S24 -1.0,1.33 254,200,000

X13 exp(x or z) S21, S25, S26 -1.0,1.67 504,300,000

frequency of 254.1 million. The original expressions remain in the list with the combined

expressions, because we want the optimization problem to consider them separately.

4.3 Error and Performance Modeling

The modeling stage estimates the accuracy and performance of potential LUT transforma-

tions for each expression. These estimates are used by the subsequent LUT optimization

32

stage to select sets of expressions for which LUT transformation is most effective. The model-

ing stage consists of error analysis and performance modeling, both of which are automated.

Error analysis depends on an error equation that characterizes the maximum error for

each LUT transformation. We use maximum error as a conservative measure for comparing

the accuracy of LUT data. For direct access, the error equation references the LUT domain

and size and function slope. For linear interpolation, the change in the slope is used instead

of the slope. We explain the error equation and describe analytic and numerical methods

for finding the slope and change in slope in Section 5.2. The error equation allows the

optimization stage to model the LUT approximation error for a range of LUT sizes.

Performance modeling estimates the benefit of each LUT transformation as a function

of the cost of elementary functions, arithmetic operators, and table access. In optimization

mode, Mesa runs an embedded benchmark to get timing information for each of these.

The expression cost is computed by summing the costs of the expression operators, then

subtracting the LUT access time. Benefit models the potential savings in execution time,

and the benefit is multiplied by call frequency since each execution saves computation. Our

performance model also incorporates the relative performance of linear interpolation versus

direct access. Section 5.3 describes the performance model in more detail.

Table 4.2 again lists the candidate expressions for the example code, now with the max-

imum slope and performance benefit from the modeling stage. The domain column shows

the boundaries and extent, computed as the upper bound minus the lower bound. To reduce

complexity, we have limited the example to direct access sampling.

To further clarify Table 4.2, we show how the values are calculated. The domain extent

is computed as the absolute difference between domain boundaries. For example, the bound-

aries for X3 are [-0.33,1.67], so the domain magnitude is |1.33-(-0.67)| = 2.00. To find the

maximum slope for X2, we look for the maximum of the derivative over the domain. The

derivative of exp(x) equals exp(x) for the exponential function. The slope of the exponential

increases monotonically, so we know the maximum is at the right boundary. We therefore

compute the maximum slope as exp(1.67) = 5.31. Mesa does this with numerically and finds

33

Table 4.2: Slope and benefits for methodology example program.

Expression

Identifier

Expression

Description

Statement

Identifiers

Input

Domain

Maximum

Slope

Performance

Benefit

Call

Frequency

X0 cos(z) S19 [-0.67,1.33] = 2.00 0.97 0.154s 4,100,000

X1 cos(z) / 2.0 S19 [-0.67,1.33] = 2.00 0.49 0.162s 4,100,000

X2 exp(z) S21 [-0.33,1.67] = 2.00 5.31 0.101s 4,100,000

X3 exp(z) * 3.0 S21 [-0.33,1.67] = 2.00 15.94 0.105s 4,100,000

X4 sin(x) S24 [-1.0,1.0] = 2.00 1.00 8.153s 250,100,000

X5 cos(x) S24 [-1.0,1.0] = 2.00 0.84 9.404s 250,100,000

X6 sin(x) + cos(x) S24 [-1.0,1.0] = 2.00 1.41 19.660s 250,100,000

X7 exp(x) S25 [-1.0,1.0] = 2.00 2.72 6.152s 250,100,000

X8 sin(y) S25 [0.1,3.1] = 3.00 1.00 8.153s 250,100,000

X9 exp(x) S26 [-1.0,1.0] = 2.00 2.72 6.152s 250,100,000

X10 sqrt(y) S26 [0.1,3.1] = 3.00 1.58 -0.075s 250,100,000

X11 sin(x or y) S24, S25 [-1.0,3.1] = 4.10 1.00 16.310s 500,200,000

X12 cos(x or z) S19, S24 [-1.0,1.33] = 2.33 0.97 9.558s 254,200,000

X13 exp(x or z) S21, S25, S26 [-1.0,1.67] = 2.67 5.31 12.410s 504,300,000

the same value. The performance benefit for X6 is computed by adding the costs of a sine

call (40ns), a cosine call (45ns), and an addition (1.0ns), and subtracting the cache access

time (7.4ns), which yields a benefit of 78.6ns for a single execution. Multiplying 78.6ns by

the call frequency of 2.5×108 gives an expression benefit of 19.7s. The performance benefit

for X10 is negative because the square root is faster then the LUT access on the test system.

For all calculations we have used the costs from Table 1.1.

4.4 Solving the LUT Optimization Problem

After completion of the modeling stage, we now have enough information to build and solve

the LUT optimization problem. Figure 4.9 shows a partial listing of the Mesa optimization

run. The listing starts with the error and performance modeling stages, and ends with the

presentation of Pareto optimal solutions to the programmer. The listing of expressions shown

in Table 4.2 is omitted to avoid duplication. Mesa displays the number of possible solutions

as 214 or 16,384 for the 14 expressions in the example, and the number of actual solutions as

34

Mesa 2 . 0 : Running e r r o r an a l y s i s (boundary)
Mesa 2 . 0 : Applying performance model
Mesa 2 . 0 : So lv ing opt imiza t i on problem
Optimizing f o r cache s i z e 4194304
. . .
16384 s o l u t i o n s (p o s s i b l e)
1040 s o l u t i o n s (ac tua l)
9 s o l u t i o n s (pareto optimal)
So lu t i on Error Bene f i t Opt imizat ions
C0 0 .000 e+00 0 .000 e+00
C1 1.899 e+00 1 .624 e+08 X1
C2 3.373 e+02 1 .966 e+10 X6
C3 1.389 e+03 2 .781 e+10 X6 ,X8
C4 3.936 e+03 3 .396 e+10 X6 ,X8 ,X9
C5 7.779 e+03 4 .012 e+10 X6 ,X8 ,X7 ,X9
C6 8.746 e+03 4 .028 e+10 X6 ,X8 ,X7 ,X9 ,X1
C7 1.073 e+04 4 .038 e+10 X6 ,X8 , X13 ,X1
C8 1.436 e+04 4 .038 e+10 X6 ,X8 ,X7 ,X9 ,X1 ,X3
Se l e c t s o l u t i o n :

Figure 4.9: Optimization solution for the methodology example program.

1,040 after intersection culling. The 16× decrease in solutions is not unusual when expression

coalescing is enabled, because coalescing introduces new intersection constraints. From the

1,040 potential solutions, our algorithm has discovered 9 Pareto optimal solutions, which are

listed in order of benefit. Mesa lists error as an absolute number, benefit in nanoseconds,

and shows the list of expressions that comprise each solution.

To calculate the estimated errors shown in Figure 4.9, Mesa first determines the optimal

cache allocation for each expression. The programmer specifies the cache size when running

Mesa, and the error equations enable computation of error values for any allocation within

that size. We have developed a formula derived from the error equation that computes

the optimal allocation for a set of expressions, as described in Section 5.4.2. Mesa uses the

formula to calculate the allocation, then applies the error equation to compute the expression

error based on the allocated size. By summing the expression errors, Mesa gets the estimated

solution error. Solution benefit is computed in a similar fashion as the sum of expression

benefits. For example, the benefit for C3 is the sum of the benefits for X6 and X8. Adding

1.966 ×1010ns to 8.153 ×109ns yields a benefit of 2.781 ×1010ns. Thus the performance

model estimates that realizing C3 will cause the example program to run 27.8s faster.

Figure 4.10 shows the solution to the optimization problem for the data in Figure 4.9,

which we call a Pareto chart. Solution error is on the x-axis, solution benefit is on y-axis,

35

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 3000 6000 9000 12000 15000

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n

d
s)

Estimated Error (Absolute)

C0,C1

C2

C3

C4

C5 C6 C7 C8

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 3000 6000 9000 12000 15000

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n

d
s)

Estimated Error (Absolute)

C0,C1

C2

C3

C4

C5 C6 C7 C8

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 3000 6000 9000 12000 15000

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n

d
s)

Estimated Error (Absolute)

C0,C1

C2

C3

C4

C5 C6 C7 C8

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 3000 6000 9000 12000 15000

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n

d
s)

Estimated Error (Absolute)

C0,C1

C2

C3

C4

C5 C6 C7 C8

Suboptimal
Optimal

Figure 4.10: Pareto chart for methodology example program.

suboptimal solutions are triangles, and Pareto optimal solutions are circles. Optimal solu-

tions lie above and the left of suboptimal solutions, because they provide more performance

with the same or less error. To find the nine Pareto optimal points shown, Mesa uses a

convex hull algorithm. The C0 solution is the empty set of expressions, which is equivalent

to the original code. The C1 solution contains only the X1 expression, which has so little

error and benefit that is almost coincides with C0. The C2 solution adds X6, which has the

most benefit of any expression, C3 adds X8 which has the next most benefit, and so on. C5

appears to be the best solution, because it provides 99% of the benefit but only 54% of the

error, as compared to C8. This is reflected in the Pareto optimal line in Figure 4.10, which

flattens out after C5, thus providing diminishing returns in terms of performance. Figure 4.9

also shows that expression coalescing has not contributed to any solutions except C7.

Mesa completes the optimization stage by presenting the Pareto optimal solutions to

the programmer. The solutions are accompanied by the estimated error and performance.

These values are intended to represent proxies for application error and performance. Sec-

36

tions 5.2 and 5.3 evaluate the effectiveness of our proxies and find that estimated benefit is

generally a good predictor of application performance, but that estimated error often fails

to predict application accuracy. The reason for this is the difficulty of estimating how the

error introduced by a LUT transformation will propagate through the application. Even

so, the error model does correctly indicate the maximum error that can be introduced, and

therefore provides a basis for comparing LUT transforms.

Figure 4.11 shows how a solution is selected by the programmer. Mesa lists all of the

Pareto optimal choices, and waits for the programmer to select a solution. After the program-

mer selects solution C5, Mesa shows the optimal LUT sizes for a realization of the solution.

For the example run, Mesa was given a cache size of 4MB. Mesa outputs the domain extent

(Di), maximum slope (Mi), maximum error (Ei), performance benefit (Bi), and table size

(Si). The cache allocations for X7 and X9 are ∼1.2MB each, because both expressions have

the same domain and maximum slope. The allocations for X6 and X8 are smaller because

the associated LUT transforms are more accurate. The sums of the expression errors and

benefits columns are equal to the solution error and benefit for C5, the selected solution.

So lu t i on Error Bene f i t Opt imizat ions
C0 0 .000 e+00 0 .000 e+00
C1 1.899 e+00 1 .624 e+08 X1
C2 3.373 e+02 1 .966 e+10 X6
C3 1.389 e+03 2 .781 e+10 X6 ,X8
C4 3.936 e+03 3 .396 e+10 X6 ,X8 ,X9
C5 7.779 e+03 4 .012 e+10 X6 ,X8 ,X7 ,X9
C6 8.746 e+03 4 .028 e+10 X6 ,X8 ,X7 ,X9 ,X1
C7 1.073 e+04 4 .038 e+10 X6 ,X8 , X13 ,X1
C8 1.436 e+04 4 .038 e+10 X6 ,X8 ,X7 ,X9 ,X1 ,X3
Se l e c t s o l u t i o n : 5
X6 Di = 2.00 Mi = 1.41 Ei = 1.620 e+03 Bi = 1.966 e+10 Si = 873405 (853KB)
X8 Di = 3.00 Mi = 1.00 Ei = 1.668 e+03 Bi = 8.153 e+09 Si = 899116 (878KB)
X7 Di = 2.00 Mi = 2.72 Ei = 2.246 e+03 Bi = 6.152 e+09 Si = 1210891 (1183KB)
X9 Di = 2.00 Mi = 2.72 Ei = 2.246 e+03 Bi = 6.152 e+09 Si = 1210891 (1183KB)
Mesa 2 . 0 : Generating opt imized code
Rea l i z i ng X6 in statement S24
Rea l i z i ng X8 in statement S25
Rea l i z i ng X7 in statement S25
Rea l i z i ng X9 in statement S26
Mesa 2 . 0 : Optimizat ion completed .

Figure 4.11: Optimization selection for methodology example program.

37

4.5 Code Generation and Integration

The next stage includes code generation and code integration. After the programmer selects

a solution, Mesa realizes the necessary code for the specified set of expressions, including the

LUT data, constructor, destructor, initialization code, table access, and original function.

Mesa then integrates the generated code into the application and replaces original expressions

with LUT access calls. An optimized version of the application code is written to the file

specified on the command line. The programmer rebuilds the application using the normal

build process, and the resulting executable should behave in an identical manner to the

original program, except for differences in performance and accuracy. Figure 4.12 shows a

partial listing of the code generated by Mesa for the example code. To save space, we show

only the code for the X6 expression, and the modifications to the original expressions.

4.6 Performance and Accuracy Evaluation

In the last stage in our methodology, the programmer evaluates the benefit and accuracy of

the optimized version of the program against the original version. We compute performance

speedup as the original execution time divided by the optimized execution time. A beneficial

optimization is defined as a performance speedup greater than 1.0. Figure 4.13 shows our

evaluation of the example code. The original and optimized versions of the program are

timed, showing a 8.1× speedup.

Evaluation of accuracy requires a comparison of program results. The original output

is assumed to be the oracle, and the error is measured as the deviation of the optimized

output. The error values are computed as shown in numerical analysis textbooks [12], with

absolute error equal to the absolute difference between the results, and relative error equal to

the absolute error divided by the original result. The example code accumulates the values

returned from the Calculate function, and displays the result on completion as shown in

Figure 4.13. We compare these values to find an absolute error of 9.2×10−4 and a relative

error of 7.1x10−6%, despite having approximated ∼2.5 billion elementary function calls.

38

// Star t o f opt imiza t i on code generated by Mesa , v e r s i on 2 .0
// LUT constant s
const double X6 lower = −1.0000000000 e+00;
const double X6 upper = 1.0000000000 e+00;
const double X6 granu la r i ty = 9.1595542680 e−06;
class CLut {

public :
// LUT Constructor
CLut ()
{

for (double dInput = X6 lower ; dInput <= X6 upper ; dInput += X6 granu la r i ty)
{

X6 data . push back (X6 or ig (dInput + (X6 granu la r i ty / 2 . 0))) ;
}

}
// LUT Destructor
˜CLut ()
{

X6 data . c l e a r () ;
}
// LUT func t i on s
f loat X6 lut (f loat X6 param)
{

X6 param −= X6 lower ;
int uIndex = (int) (X6 param * (1 . 0 / X6 granu la r i ty)) ;
return (X6 data [uIndex]) ;

}
// Or i g i na l f un c t i on s
double X6 or ig (double x)
{

return (sin (x)+cos (x)) ;
}

private :
// LUT data s t r u c t u r e s
std : : vector<f loat> X6 data ;

} ;
// Object i n s t a n t i a t i o n
CLut c l u t ;
// End o f opt imiza t i on code generated by Mesa , v e r s i on 2 .0

// Expres s ions r ep laced by Mesa
S24 fRe su l t += c lu t . X6 lut (x) ;
S25 fRe su l t += c lu t . X7 lut (x) + c l u t . X8 lut (y) ;
S26 fRe su l t += c lu t . X9 lut (x) + sq r t (y) ;

Figure 4.12: Optimized code generated by Mesa.

>>> time . / TestOrig
Accumulated value = 12957.614419
r e a l 0m23.656 s
user 0m23.651 s
sys 0m0.000 s

>>> time . / TestOptd
Accumulated value = 12957.613499
r e a l 0m2.932 s
user 0m2.924 s
sys 0m0.006 s

Figure 4.13: Evaluation of the optimized code generated by Mesa.

39

The evaluation stage is complete when the programmer has the accuracy and performance

information necessary to evaluate whether the optimization is worthwhile. The programmer

can choose to accept the optimization and use the Mesa generated code, run Mesa again and

pick a different solution, or revert to the original code. Mesa has a parameter that specifies

the selection of a solution so that the iterative process just described can be scripted.

40

Chapter 5

LUT Optimization Algorithms

Chapter 4 introduces several algorithms that are complex enough to merit further expla-

nation including expression enumeration, error analysis, performance modeling, and the

optimization problem. In this chapter we present detailed information about the algorithms,

which we illustrate with the example code shown in Figure 5.1. The example code is similar

to the SAXS continuous code evaluated in Section 7.3, but we have modified it to demon-

strate several features of our methodology. The main change is the removal of two variables

and two constants from the dSum0 and dSum1 computations.

#pragma LUTOPTIMIZE
double ScatterSample (Sample sample , vector<Cartes ian> &vGeometry)
{
S35 double dProduct ;
S36 double dSum0 = 1 . 0 ;
S37 double dSum1 = 1 . 0 ;
S38
S39 // I t e r a t e geometry
S40 for (int j = 0 ; j < vGeometry . s i z e () ; j++)
S41 {
S42 dProduct = (sample . x * vGeometry [j] . x) + (sample . y * vGeometry [j] . y) ;
S43 dSum0 += exp(dProduct) + sin (dProduct) ;
S44 dSum1 += exp(dProduct) + cos (dProduct) ;
S45 }
S46
S47 // Return answer
S48 return dSum0 * dSum0 + dSum1 * dSum1 ;
}

Figure 5.1: Source listing for algorithms example program.

5.1 Expression Enumeration

Our first algorithm is expression enumeration, which identifies expressions in the candidate

statements that may be suitable for LUT transformation. The enumeration traverses the

AST for each statement and extracts subtrees that meet our criteria. The expressions repre-

sented by the subtrees are then evaluated as LUT transformation candidates. The algorithm

applies four criteria when deciding whether or not to enumerate an expression:

41

1. The expression must contain one or more elementary functions since elemen-

tary functions are the focus of our LUT optimization methodology.

2. The expression must contain exactly one variable to avoid multi-dimensional

LUT data, which we currently do not handle.

3. The expression must be a contiguous subtree of the original syntax tree so that

we can maintain the original evaluation order.

4. The expression must be a complete subtree, as defined by every operator having

the arguments it needs for evaluation.

Our algorithm discards expressions that cannot benefit from LUT optimization, and the

remaining expressions are considered as candidates for LUT transformation. Per our criteria,

a candidate expression must contain one or more elementary functions, and can also contain

any number of arithmetic operators. Optimizing arithmetic gains little performance, but can

be beneficial in the following cases. First, if the inclusion of an arithmetic operator increases

the number of elementary functions, it may be worthwhile. For example, the expression

sin(y) + cos(y) has two elementary functions linked by an addition operator. Second, if

the inclusion of an arithmetic operator reduces the amount of error for the associated LUT

transform, it may be worthwhile. For example, x = sin(y)/2.0 has half the maximum slope

of sin(y) and the same domain, so it introduces half the error for the same memory usage.

Our strategy is to enumerate all of the expressions that meet the criteria and let the

optimization process decide which are the most effective. Our enumeration algorithm works

by enumerating all of the contiguous subtrees contained in the statement AST, then culling

those that do not match the criteria. The resulting expressions can include everything from

a single elementary function call to the entire statement.

Figure 5.2 shows the ASTs for statements S43 and S44 with circles representing operators

and rectangles representing variables. The leaves of the subtree are the input variables (or

constants) needed to evaluate the expression. Temporary variables that hold a subtree result

are introduced to enable decomposition. This allows the subtree to be replaced by a LUT

transform that sets the value of the temporary variable, thereby providing an argument for

42

S43 S44

dSum0

*

t1

exp

t2

sin

dProduct dProduct

dSum1

*

t3

exp

t4

cos

dProduct dProduct

Figure 5.2: Syntax trees for candidate statements S43 and S44.

the operator that depends on evaluation of the subtree. For example, the t1 variable in

Figure 5.2 enables the creation of a LUT transform for the exponential call, whose return

value becomes the first argument to the multiply operator.

Each statement in the example code contains two variables, two elementary function

calls, and one arithmetic operator, not counting temporary variables. The dSum0 and

dSum1 variables are assignment variables for the statement, so they are not included in

the optimization. For the remaining 5 nodes in each statement, the maximum number of

possible subtrees is 25 − 1 = 31. However, because of our criteria, only 3 subtrees are

enumerated for each statement. Figure 5.3 shows several examples of expressions from

statement S43 that do not meet our criteria. Expression XA (t1 ∗ t2) has no elementary

function, expression XB (exp(dProduct)...sin(dProduct)) is not contiguous, expression XC

(exp(...)) is not complete because it is missing an argument to the exponential function, and

expression XD (exp(dProduct ∗ t2)) contains two input variables: t2 and dProduct.

Figure 5.4 shows the candidate expressions from statement S43 that meet all of the crite-

ria. X0 and X1 are individual elementary functions, and X2 represents the entire statement.

Each expressions is a subtree that can be replaced by a LUT transform that returns an

approximation of the result previously computed by the subtree.

43

Figure 5.3: Invalid subtrees for candidate statement S43.

Figure 5.4: Valid subtrees for candidate statement S43.

Mesa 2.0 is the first version of our tool that implements expression enumeration, thereby

introducing some new concerns. First, expression enumeration creates list of expressions that

can overlap, and this must be taken into account during optimization. Second, expression

enumeration improves our ability to improve efficiency and performance through resource

sharing. Third, expression enumeration automatically handles certain types of expressions

that were problematic for Mesa 1.1. In the subsequent sections we discuss each of these.

5.1.1 Intersection Constraints

Table 5.1 lists the enumerated expressions for both statements numbered from X0 to X5. For

each expression we show the identifier, syntax, statements, and input variables. Expressions

44

Table 5.1: Enumerated expressions for algorithms example program.

Expression

Identifier

Expression

Description

Statement

Identifiers

Input

Variables

X0 exp(vProduct) S43 dProduct

X1 sin(dProduct) S43 dProduct

X2 exp(vProduct) * sin(dProduct) S43 dProduct

X3 exp(vProduct) S44 dProduct

X4 cos(dProduct) S44 dProduct

X5 exp(vProduct) * cos(dProduct) S44 dProduct

X0 through X2 come from statement S43 and expressions X3 to X5 come from statement

S44. Table 5.1 shows that our enumeration algorithm can extract expressions that overlap

with other expressions in the same statement. For example, X0 and X1 are both contained

by X2, thus their subtrees intersect as can be seen in Figure 5.4. Overlapping expressions

cannot be optimized simultaneously without causing redundant and incorrect computation.

To enforce this, Mesa maintains intersection constraints to prevent these expressions from

being combined in a solution. We define intersection constraints as pairs of expressions joined

by the intersection operator. For the example code the intersection constraints are {X0 ∩

X2, X1 ∩ X2, X3 ∩ X5, X4 ∩ X5}. During setup of the optimization problem, solutions

that contain expressions associated by an intersection constraint are culled.

5.1.2 Expression Coalescing

Expression enumeration also improves our ability to manipulate the candidate expressions

to improve efficiency and performance. For example, we can combine similar expressions

through expression coalescing. The purpose of coalescing is to save resources by sharing a

LUT transform between two or more expressions. Coalescing is applied globally, so expres-

sions that appear anywhere in the program can share resources. Mesa implements expres-

sion coalescing by finding sets of expressions that represent identical computations, i.e. they

evaluate the same operators in the same order. The coalescing algorithm does not compare

variable names since the domains of variables can change from one statement to the next.

45

Table 5.2: Coalesced expressions for algorithms example program.

Expression

Identifier

Expression

Description

Statement

Identifiers

Input

Domain

Call

Frequency

X0 exp(dProduct) S43 [-1.246134, 1.1962899] 250,000,000

X1 sin(dProduct) S43 [-1.246134, 1.1962899] 250,000,000

X2 exp(dProduct) + sin(dProduct) S43 [-1.246134, 1.1962899] 250,000,000

X3 exp(dProduct) S44 [-1.246134, 1.1962899] 250,000,000

X4 cos(dProduct) S44 [-1.246134, 1.1962899] 250,000,000

X5 exp(dProduct) + cos(dProduct) S44 [-1.246134, 1.1962899] 250,000,000

X6 exp(dProduct) S43, S44 [-1.246134, 1.1962899] 500,000,000

Instead, the domain extents of variables are compared when deciding whether or not to

coalesce, so domain profiling precedes coalescing.

When we run the example code with expression coalescing enabled, the algorithm cre-

ates a new expression X6 that combines the identical exp(dProduct) calls in X0 and X3.

Table 5.2 shows the expression list after adding the coalesced expression. The X6 expression

is associated with S43 and S44 and will be realized into both statements if it is part of the

solution selected by the programmer. The call frequency of X6 is the sum of the frequencies

of X0 and X3, which will increase its benefit. The domain of X6 combines the domains of X0

and X3, which could cause X6 to contribute more error. However, since these domains are

identical in the example the X6 error term will be the same as the individual expressions.

X0 and X3 remain in the list to allow the optimization problem to consider them separately.

A new set of intersection constraints is introduced for X6, which overlaps with X0 and X3

and inherits their constraints. Figure 5.5 shows the expanded set of intersection constraints.

Different heuristics can be used for domain comparison, depending on how aggressively

we wish to coalesce. Mesa currently supports three levels of coalescing. If the domains have

no intersection, then coalescing is at best unproductive because no resources are shared.

Or ig ina l Const ra in t s : {X0 ∩ X2 , X1 ∩ X2 , X3 ∩ X5 , X4 ∩ X5}
Coalesce Const ra in t s : {X0 ∩ X6 , X3 ∩ X6}
I nhe r i t ed Const ra in t s : {X2 ∩ X6 , X5 ∩ X6} .

Figure 5.5: Intersection constraints for algorithms example program.

46

The conservative heuristic coalesces only when the domains are identical, since the resulting

expression is guaranteed to have at least equal error and more benefit in this case than the

component expressions. The aggressive heuristic indiscriminately coalesces all expressions

with overlapping domains, but this can end up reducing accuracy instead of increasing it.

For example, consider the coalescing of two expressions with domain [0.0, 0.1] and [0.0, 10.0],

using the same amount of memory for the combined expression as was allocated for the in-

dividual expressions. The result is to slightly increase the accuracy of the latter expression

and greatly decrease the accuracy of the former. For this reason we have implemented a

moderate heuristic in Mesa that coalesces only when the domain overlap is at least half of

both original domains.

5.1.3 Parameter Merging

Another benefit of expression enumeration is parameter merging, which avoids the realization

of unnecessary multi-dimensional LUT transformations by merging input variables. To illus-

trate this we consider optimization of the statement x = exp(y/z). Mesa extracts expressions

for the exponential by itself and the entire expression with the division. Optimizing just the

exponential is achieved with a single-dimensional LUT indexed by (y/z), whereas the entire

expression requires a multi-dimensional LUT indexed by y and z. The latter requires sig-

nificantly more memory to achieve the same level of accuracy. Ideally, we would enumerate

both expressions and let the optimization problem decide which was more advantageous.

However, Mesa does not support multi-dimensional data, so it culls the expression instead,

leaving only the preferred single-dimensional expression.

The next step in our methodology is error analysis, which follows expression enumeration

and domain profiling. We now discuss two methods that can reduce the error in a LUT

transform: domain conditioning and partial domains. Both techniques make use of domain

information, so they are applied after domain profiling but before error analysis.

47

5.1.4 Domain Conditioning

Domain conditioning takes advantage of the fact that some elementary functions are cyclical,

thus providing the opportunity to reduce the input domain of the associated LUT transform.

Reducing the error domain decreases the error associated with a LUT transform. For ex-

ample, the sine and cosine functions are completely represented by the interval from 0 to

2π radians. Input values outside of this domain can be mapped back into the interval by a

modulo operation or repeated addition and subtraction. We call this technique domain con-

ditioning, also referred to in the literature as parameter folding or range reduction [69]. We

have experimented with a command line option to Mesa that generates domain conditioning

code for cyclical functions.

Figure 5.6 shows LUT access code with domain conditioning code based on the iterative

method. On our test system, the performance of a sine lookup with a 4MB table is 6.97ns

with domain conditioning and 6.29ns without, constituting an 11% overhead. However, the

LUT transformation becomes ∼3× more accurate with domain conditioning, assuming that

the original domain is [−π, 3π] and the conditioned domain is [0.0, 2π]. The speedup for the

domain conditioning is ∼5.4× over the unoptimized code, as compared to ∼6.0× without

domain conditioning, so the tradeoff of performance for more accuracy is reasonable. Some

care needs to be taken with domain conditioning, for at least two reasons. First, executing a

conditional repeatedly is very expensive on current architectures. Second, performance and

accuracy are degraded by iterative subtractions and additions.

// LUT Function
f loat X1 lut (f loat X1 param)
{

// Domain cond i t i on ing
while (X1 param < 0 . 0) X1 param += (2 . 0 * M PI) ;
while (X1 param > (2 . 0 * M PI)) X1 param −= (2 . 0 * M PI) ;

// Table a c c e s s
int uIndex = (int) (X1 param * (1 . 0 / X1 granu la r i ty)) ;
return (X1 data [uIndex]) ;

}

Figure 5.6: Source listing for domain conditioning code.

48

5.1.5 Partial Domains

Partial domains are another method for reducing error. Domain profiling finds the bound-

aries of input variables, but does not capture distribution data for the input values over the

domain. The distribution of input values is important because it determines the sampling

of LUT data, and can therefore affect accuracy and performance. For example, some ap-

plications may sample the domain at regular intervals. For such an application the LUT

initialization code could potentially decrease memory usage and increase accuracy by con-

structing LUT entries that exactly correspond to these intervals.

We have prototyped profiling code that captures the distribution of input data. Figure 5.7

shows the result for the SAXS discrete scattering code. The distribution is sampled heavily

at the left side of the domain, near 0.0, and lightly sampled on the right side of the domain,

near 20.0. This suggests that the corresponding LUT transform could reduce memory usage

by storing only a partial domain. This requires the generation of conditional code to decide

between a LUT access and the original function. An experimental version of partial domain

code is shown in Figure 5.8.

We tested the code by creating an application that samples the sine function heavily in

the range [0, 1π] and lightly in the range [1π, 2π]. We then implement a LUT transformation

for sine with the partial domain [0, 1π] and the code shown in Figure 5.8. On our test system,

the performance of a sine lookup with a 4MB table is 5.71ns with the partial domain code,

In
p
u
t

F
re

q
u
en

cy

Input Domain

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 2 4 6 8 10 12 14 16 18 20

Figure 5.7: Domain distribution for SAXS discrete scattering code.

49

// LUT Function
f loat X1 lut (f loat X1 param)
{

// Pa r t i a l domain
i f (X1 param > X1 upper)

return s i n (X1 param) ;

// Table a c c e s s
int uIndex = (int) (X1 param * (1 . 0 / X1 granu la r i ty)) ;
return (X1 data [uIndex]) ;

}

Figure 5.8: Source listing for partial domain code.

and 3.34ns without, constituting an 71% overhead. The accuracy varies only negligibly

between the two versions, but the partial table uses half the memory. The speedup for the

partial domain code is ∼5.0× over the unoptimized code, as compared to ∼ 8.5× without,

so the optimization remains viable. Our code only checks the upper boundary because our

partial domain includes the lower boundary, but some partial domains would require both

boundaries to be checked in the conditional.

5.2 Error Analysis

Error analysis is the next algorithm in terms of the LUT optimization workflow. Error

analysis follows domain profiling, which has provided the domain information needed to

characterize the error for a LUT transform. LUT transforms represent continuous functions

with discrete values, thereby introducing a fundamental source of error. With unlimited

memory for LUT data, we could theoretically match processor precision. The IEEE 754 for-

mat is accurate to ±1.19× 10−07 for single-precision and ±2.22× 10−16 for double-precision.

To provide the same precision as the processor for an optimization with domain [0.0, 1.0]

would therefore require ∼8.4×106 LUT entries (32 MB) for single-precision, and ∼4.5×1015

LUT entries (16PB) for double-precision. The former exceeds cache memory on most sys-

tems, and the latter exceeds the memory capability of modern computers. We conclude that

for most domains, a LUT transformation will provide significantly less precision than the

processor. This motivates the need for a reliable method to predict and control LUT error.

50

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

0 pi/2 pi 3pi/2 2pi
 0

 0.1

 0.2

 0.3

 0.4

 0.5
si

n
(θ

)

E
m

ax

θ

Sine Table, Direct Access, 16 entries

l(θ)
f(θ)
e(θ)

-1

-0.75

-0.5

-0.25

 0

 0.25

 0.5

 0.75

 1

0 pi/2 pi 3pi/2 2pi
 0

 0.1

 0.2

 0.3

 0.4

 0.5

si
n
(θ

)

E
m

ax

θ

Sine Table, Linear Interpolation, 16 entries

l(θ)
f(θ)
e(θ)

Figure 5.9: Lookup tables for sine function.

Fast and accurate error analysis is needed to support automation, and to help the pro-

grammer decide critical tradeoff between accuracy and performance for LUT transforms.

This section presents the algorithms we have explored for LUT error analysis including an-

alytic, exhaustive, stochastic, and boundary methods. As an example, Figure 5.9 illustrates

the error introduced by LUT transformation for the sine function with a domain of [0.0, 2π].

The left graph shows direct access sampling, and the right graph shows linear interpolation.

On both plots f(θ) is the original function, l(θ) is the approximation, and e(θ) is the er-

ror. The error is the absolute difference of the function and its approximation, computed as

e(θ) = |f(θ)− l(θ)|. The error can be interpreted graphically as the area between f(θ) and

l(θ). As with the exponential function shown in Figure 2.1, linear interpolation considerably

reduces the error magnitude.

For error analysis, we consider the following error statistics: Emax, the worst case error,

and Eavg, the average error. These statistics can be computed over a single LUT interval or

the entire domain. Emax is the largest possible value e(θ), which bounds the error that can

be introduced by any single table access. Eavg is the arithmetic mean of e(θ) when the table

is sampled uniformly. The maximum error provides a conservative measure for comparing

LUT accuracy. The average error is an alternative measure for comparing accuracy, but

it costs more to compute and is less reliable, since it depends on the distribution of input

values. As a result, Mesa no longer uses the average error for LUT optimization.

51

 0

 0.1

 0.2

 0.3

 0.4

7pi/8 15pi/16 pi
 0

 0.1

 0.2

 0.3

 0.4

 0.5
si

n
(θ

)

E
m

ax

θ

Sine Table, Direct Access, Single Interval

l(θ)
f(θ)
e(θ)

 0.92

 0.94

 0.96

 0.98

 1

3pi/8 7pi/16 pi/2
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

si
n
(θ

)

E
m

ax

θ

Sine Table, Linear Interpolation, Single Interval

l(θ)
f(θ)
e(θ)

Figure 5.10: Error illustration in table interval.

Figure 5.9 shows the maximum error in the left graph at 0, π, 2π, and in the right graph

close to π/2, 3π/2, because the location of the maximum error differs for direct access and

linear interpolation. Figure 5.10 expands the LUT interval that includes the maximum error

to illustrate why this is the case. The left graph shows the interval [7π/8, π] for direct access.

In this case the error is related to the slope of the function, there is no error at the interval

center, and Emax is at the interval boundaries. The right graph shows the interval [3π/8, π/2]

for linear interpolation. In this case the error is related to the curvature of the function, so

there is no error at the interval boundaries, and Emax is at the interval center.

We investigated analytic and numerical approaches for computing error statistics. An-

alytic techniques apply differential or integral calculus to the functions being optimized.

Numerical approaches apply sampling techniques to the functions being optimized to find

the same information. Analytic techniques are generally more efficient and accurate, however

they require the ability to do calculus on arbitrary functions, which may not always be pos-

sible. Numerical approaches, on the other hand, are relatively straightforward to implement

and can handle arbitrary functions. The disadvantage of numerical sampling is the amount

of time it requires. The following sections describe both approaches.

5.2.1 Analytic Error Method

To understand the source of error in a LUT transform, we provide a geometric interpretation.

The left graph of Figure 5.10 illustrates the error for direct access sampling. Consider the

52

function f(x), which is approximated by l(x) in an interval bounded by [x, x + ε],where ε

represents the granularity of the LUT data. The left graph shows the specific case where

f(x)=sin(x) and ε is pi/8. If the function is monotonically increasing or decreasing in the

interval, the worst case error for the LUT interval will depend on the slope and granularity.

LUT data is uniformly distributed over the domain, so the granularity is the domain divided

by the size. The approximation value l(x) is determined by sampling f(x) at the center of

the interval. Assuming that f(x) is linear throughout the interval, the maximum error will

actually be half of the worst case, and it will lie at the interval boundaries. We show the

equation for the maximum error calculation for direct access in Equation (5.1). MaxSlope

is the maximum value of the function slope over the domain.

MaxError = (Granularity ∗MaxSlope)/2 = (Domain/Size) ∗ (MaxSlope/2) (5.1)

From the equation we see that the error is a function of the domain, size, and maximum

slope. Note that the error for direct access is inversely proportional to size. This means

that a 2× increase in size will decrease the error by 2×. The optimization problem requires

an equation that solves for maximum error based on size. The domain is known for each

expression, so error analysis only has to compute the maximum slope. The analytic method

for computing the slope is to find the first derivative of the function and solve for its maximum

absolute value over the domain. For the elementary functions, we know the derivatives in

advance, and can therefore compute the maximum slope for arbitrary intervals.

The right graph of Figure 5.10 shows the error for linear interpolation. Again we have

the function f(x), which is approximated by l(x) in an interval bounded by [x, x+ ε],where

ε represents the granularity of the LUT data. If the function f(x) were linear through the

interval, there would be no error, thus the error is caused by the curvature of the function.

The curvature is determined by the delta in slope over the interval, which is the second

derivative of the function. This leads to the definition of error shown in Equation (5.2) and

cited many places in the literature [22]. MaxDelta is the maximum change in the slope of

53

the function over the domain. Because the error term contains the square of the granularity,

a 2× increase in size will decrease the error by 4×.

MaxError = (Granularity2 ∗MaxDelta)/8.0 = (Domain/Size)2 ∗ (MaxDelta/8) (5.2)

Earlier versions of Mesa computed Emax and Eavg by evaluating the original function

and approximation value at each LUT entry. This required Mesa to construct a LUT of a

specified size. Equations 5.1 and 5.2 compute the maximum error for any LUT size, based

on the maximum slope or delta slope of the function. As a result, error analysis now consists

of evaluating the original function to find these values.

Figure 5.11 shows the maximum slope calculation for several common elementary func-

tions. The functions and their derivatives are plotted over the domain, and the maximum

slope is highlighted with a small circle. Note that all functions are continuous in the selected

domains, thus the slopes are never undefined. One advantage of analytic techniques is that

they can flag discontinuous functions. The same method as shown in Figure 5.11 can be used

to compute the maximum delta, except that the second derivative is used. Table 5.3 shows

the results of the error computation for several elementary functions. For each function we

evaluate a LUT transform of the domain and size shown, and we calculate the maximum

slope and error using both sampling methods.

Analytical techniques derived from calculus can also compute the average error over an

interval. Unfortunately these methods require the integral and in some cases the derivative

of the function being analyzed, which is not trivial to compute for arbitrary expressions.

Even for the maximum error, analytical techniques are useful only for the functions that

we specifically handle in the code, i.e. individual elementary functions. For this reason we

generally use numerical methods, which are slower but very robust.

5.2.2 Exhaustive Method

The most straightforward numerical method is an emphexhaustive traversal of the input

domain at a granularity close to the precision of the LUT data. For single-precision an

54

-1

 0

 1

 2

 3

 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

lo
g

(x
)

x

log function, maximum slope equals 2.0

f(x) = log(x)
f’(x) = 1/x

 0
 1
 2
 3
 4
 5
 6
 7

-2 -1 0 1 2

lo
g

(x
)

x

exp function, maximum slope equals 7.389

f(x) = exp(x)
f’(x) = exp(x)

-1

-0.5

 0

 0.5

 1

0 pi/2 pi 3pi/2 2pi

lo
g

(x
)

x

sin function, maximum slope equals 1.0

f(x) = sin(x)
f’(x) = cos(x)

-pi/2

0

pi/2

-10 -7.5 -5 -2.5 0 2.5 5 7.5 10

lo
g

(x
)

x

atan function, maximum slope equals 1.0

f(x) = atan(x)

f’(x) = 1/(1+x
2
)

Plots elementary functions and derivatives, maximum slope is shown by a circle.

Figure 5.11: Maximum slope for elementary functions.

Table 5.3: Maximum error for elementary functions.

Lists maximum slope and error for LUT transforms with specified domain and size.

Direct Access Linear Interpolation

Function Domain Size
Maximum

Slope

Maximum

Error

Maximum

Delta

Maximum

Error

sqrt(x) [1.0, 4.0] 64KB 0.500 4.58E-05 0.250 1.05E-09

sqrt(x) [2.0, 5.0] 128KB 0.354 1.62E-05 0.088 9.28E-11

exp(x) [0.0, 1.0] 4KB 2.718 1.33E-03 2.718 3.24E-07

exp(x) [0.0, 2.0] 512KB 7.389 5.65E-05 7.389 2.15E-10

log(x) [0.5, 1.0] 64KB 2.000 3.05E-05 4.000 4.66E-10

sin(x) [0, 6.28] 32KB 1.000 3.84E-04 1.000 7.35E-08

tan(x) [1.75, 3.14] 256KB 31.474 3.34E-04 347.517 1.95E-08

interval of 2−23 or 1.19 × 10−07 produces very accurate results. To compute the slope, the

algorithm evaluates the function at the left and right boundary of the interval. The maximum

delta is found in an almost identical manner except that three points are required, so the

algorithm samples an additional point in the middle of the interval. The advantage of the

technique is high accuracy, and the drawback is the cost of sampling at such fine granularity.

55

5.2.3 Stochastic Method

To address the performance limitations of exhaustive traversal, we experimented with stochas-

tic sampling. This method samples randomly across the domain, accumulating samples in

the same manner as numerical traversal. The sampling terminates when the maximum slope

converges to within a specified criteria. The stochastic technique has the advantage of com-

pleting more quickly and with fewer samples than exhaustive traversal. The drawback of

stochastic sampling is that it can miss the maximum slope by a wide margin, and no method

exists to decide how many samples are required to get a reliable answer.

5.2.4 Boundary Method

Exhaustive and stochastic methods both require extensive domain sampling. The boundary

method samples error only at the boundary of LUT intervals. For direct access, the method

evaluates the original function at the left and right boundary of each LUT interval, which

gives us the two values needed compute the slope. For linear interpolation, the method adds

an evaluation at the interval center, which gives us the three values needed to compute the

delta slope. Boundary methods have proven to be very accurate for tables of all sizes. The

advantage of computing error at the boundaries is that the number of samples is proportional

to the LUT size instead of the domain size. The boundary method does not require the actual

LUT data, instead the technique works by evaluating the function at intervals equal to the

LUT granularity. The boundary method does not support the computation of average error.

5.2.5 Comparison of Error Methods

Table 5.4 compares error analysis performance and accuracy for the LUT transforms in Ta-

ble 5.3. The stochastic method is an order of magnitude faster than the exhaustive method,

and the boundary method is generally even better. The performance of the exhaustive and

stochastic methods is proportional to the domain size, and the performance of the boundary

method is proportional to the table size. The analytic method is extremely fast, but han-

dles only individual elementary functions. Table 5.5 compares accuracy against the analytic

56

Table 5.4: Comparison of the Performance of Error Methods.
(Intel Core 2 Duo, E8300, family 6, model 23, 2.83GHz, single core)

Analytic

Method

Exhaustive

Method

Stochastic

Method

Boundary

Method

Expression Function Domain Analysis Time

X0 sqrt(x) [1.0, 4.0] ~0.001s 19.334s 1.960s 0.814s

X1 sqrt(x) [2.0, 5.0] ~0.001s 19.468s 1.953s 0.827s

X2 exp(x) [0.0, 1.0] ~0.001s 7.331s 0.739s 0.937s

X3 exp(x) [0.0, 2.0] ~0.001s 14.376s 1.427s 0.899s

X4 log(x) [0.5, 1.0] ~0.001s 3.571s 0.381s 0.911s

X5 sin(x) [0, 6.28] ~0.001s 41.733s 6.626s 0.886s

X6 tan(x) [1.75, 3.14] ~0.001s 10.264s 1.057s 0.934s

Table 5.5: Comparison of the Accuracy of Error Methods.

Analytic

Method

Exhaustive

Method

Stochastic

Method

Boundary

Method

Expression Function Domain Maximum Slope

X0 sqrt(x) [1.0, 4.0] 0.500000 0.500000 0.500000 0.500000

X1 sqrt(x) [2.0, 5.0] 0.363553 0.363553 0.363553 0.363553

X2 exp(x) [0.0, 1.0] 2.718281 2.718282 2.718278 2.718281

X3 exp(x) [0.0, 2.0] 7.389056 7.389056 7.389046 7.389049

X4 log(x) [0.5, 1.0] 2.000000 2.000000 1.999995 1.999999

X5 sin(x) [0, 6.28] 1.000000 1.000000 1.000000 1.000000

X6 tan(x) [1.75, 3.14] 31.474594 31.474574 31.474520 31.474564

result, which we believe is the most accurate. Error digits that do not match the analytic

result are shown in bold. The data shows reasonable accuracy for all methods.

5.3 Performance Model

The performance model estimates the benefit of applying LUT transformation to expressions.

The model takes into account the performance of arithmetic operators, elementary function

calls, and table access. This information comes from an benchmark implemented in Mesa

that measures execution times for each of these items. The table access benchmark includes

both the index calculation and cache access execution times. In addition, the benchmark

measures the relative performance of direct access and linear interpolation. Mesa automat-

57

ically runs the benchmark and writes the execution times to a file. The performance file is

read before applying the performance model.

To apply the performance model, Mesa counts the arithmetic operators and elementary

function calls in each expression. These counts are multiplied by the cost of each operation

stored in the performance file, and the table access time is subtracted. For linear interpola-

tion, the result is then divided by the relative performance compared to direct access. This

produces an estimate of the potential benefit of replacing the expression with a LUT access.

For example, optimizing an expression with a sine call on our test system should save 40ns

for the sine call, minus 7.4ns for the table access, for a total of 32.6ns per execution. We

multiply this number by the call frequency of the expression to get overall expression ben-

efit. If the call frequency is 108 for the same expression, the benefit would be 32.6ns×108,

or 3.26s. When the expression is optimized with linear interpolation, the benefit would be

reduced by the relative factor, which is ∼1.8× on our test system, so 3.26s / 1.8 = 1.81s.

Equation 5.3 shows the computation just described.

Benefit = ((Cost(Operator) ∗ Count(Operator))− Cost(Access)) ∗ Frequency (5.3)

The purpose of the performance model is not to predict the exact performance, but

to establish the relative performance to allow comparison of different solutions. Even so,

we are often within 5-10% when estimating performance speedup for individual elementary

functions. For example, we compile and run a program on our test system that calls a

single sine function 2.52×108 times, and we measure performance as 9.5s. Mesa optimizes

the program, and estimates a savings of 32.6ns x 2.52 ×108 = 8.2s. We run the optimized

code and measure performance as 0.9s. We then compare the estimated savings of 8.2s to

the actual savings of 9.5s - 0.9s = 8.6s a ∼5% difference. The same experiment on the

exponential function yields a ∼9% difference between the estimated benefit of 6.2s and the

actual benefit of 6.8s.

When optimizing code with multiple elementary functions, the model tends to overesti-

mate the benefit of LUT optimization, mainly for the following reasons. First, elementary

58

function performance can vary based on input values. This introduces inaccuracy because

our benchmark uses a fixed domain of input values for measurement. To measure sine and

cosine, for example, we evaluate random inputs in the domain [0.0, π]. The resulting per-

formance on our test system is around 40ns per call. By changing the domain to [0.0, 0.02]

the execution time becomes 17ns. Thus the performance of sine is dependent on the domain

and distribution of input values. We have seen this same behavior with other elementary

functions, independent of the compiler used. We theorize that math libraries take advan-

tage of specific input conditions to accelerate computations. For example, we have noted

that the pow function is considerably faster when the exponent is an integer. We have also

seen a considerable slowdown in the math library implementation of sin and cos when the

parameters are far outside the range 0 to 2π.

Second, the compiler and hardware optimize combinations of elementary functions ag-

gressively. For example, the code shown in this section makes one sine and cosine and two

exponential calls, thus we would expect an execution time of around 40ns + 45ns + 32ns

+ 32ns = 149ns. The actual time of the loop as measured on our test system is 108ns.

As a result, our performance model predicts an 8.6s benefit, but the actual savings is 5.9s.

We speculate that the increase in performance of combinations of elementary functions is a

result of Instruction-level Parallelism (ILP). We have also seen other compiler optimizations

that speed up combinations of elementary functions, such as replacing a sine and cosine call

with a single sincos function. However, our case studies have shown that our estimates ere

usually within ∼1-2× of the performance benefit, even for complex expressions.

5.4 Optimization Problem

We construct and solve the LUT optimization problem after the profiling and modeling

stages are complete. These prior stages have provided the information needed to find the

most effective set of LUT transforms. The essence of the problem is to allocate cache memory

for LUT data in a way that maximizes performance and minimizes error. Cache memory

is a constrained resource that limits the number and size of LUT transformations active at

59

Table 5.6: Input data for optimization problem.

X
i

D
i

M
i

B
i

Expression Description

X0 2.44 3.31 6.15 s exp(dProduct)

X1 2.44 1.00 8.15 s sin(dProduct)

X2 2.44 3.67 16.40 s exp(dProduct) + sin(dProduct)

X3 2.44 3.31 6.15 s exp(dProduct)

X4 2.44 0.95 9.40 s cos(dProduct)

X5 2.44 2.38 17.65 s exp(dProduct) + cos(dProduct)

X6 2.44 3.31 12.30 s exp(dProduct)

any given time. The optimization problem is responsible for the global problem of selecting

the set of expressions that will be optimized, and the local problem of finding the optimal

allocation of cache memory for those expressions.

The dual objectives of the optimization problem are to maximize performance (benefit)

and minimize error (cost). As with the knapsack problem we presented in Section 2.3, these

objectives conflict with each other, so multiple solutions exist with different tradeoffs between

performance and error. The goal is to find the set of solutions that have the most effective

tradeoff and allow the programmer to choose between them. The programmer is also given

error and performance estimates for each solution, thereby supporting an informed decision

about which solution is the best. The optimization problem additionally constrains memory

usage, with the goal of keeping LUT data in cache memory.

We discuss the optimization algorithm by continuing the example introduced at the

beginning of this chapter, which has 7 expressions and 8 intersection constraints. Table 5.6

shows the input data to the optimization problem for the example, after the previous stages

have completed. We use the following terminology: Xi is the expression, Di is the domain

size (from domain profiling), Mi is the maximum slope (from error analysis), and Bi is the

benefit (from performance modeling). The independent variables are Si, the LUT size, and

Ei, the LUT errors. Solutions are subsets of expressions from the table.

The complexity of the optimization problem is exponential because it evaluates all subsets

of expressions. The solution space for the problem is the power set of expressions, which has

60

size O(2N) for N expressions. The actual number of subsets is smaller, because we disallow

solutions with intersecting expressions. For our example we have 7 expressions that yield a

power set of size 27 = 128, but intersection constraints reduce that number.

Figure 5.12 shows the members of the power that remain after enforcing intersection

constraints. The resulting set has 29 actual solutions out of 128 possible, a 77% reduction

in complexity for this example. We number the solutions from C0 to C28. The example

solutions include the empty set and all 7 single transformations, since individual transforma-

tions are never culled because of intersection constraints. In addition there are 13 out of 21

possible subsets of two transforms, 7 out of 35 subsets of three transforms, 1 out of 35 subsets

of four transforms, and no solutions with 5 or more transforms. Intersection constraints are

therefore responsible for significantly decreasing the complexity of the optimization prob-

lem. For example, a single intersection constraint reduces the solution space for a set of 9

expressions from 512 to 384.

5.4.1 Mathematical Definition of the Problem

Figure 5.13 presents the LUT optimization problem in mathematical terminology. The

independent variables for each solution include the table sizes Si and the approximation

errors Ei for each transform. Selection variables are named Xi, same as the expressions they

represent. Error is computed by Ei = (Di/Si) ∗ (Mi/2.0), as defined by Equation 5.5, where

Di is the domain size, Mi is the maximum slope, and Si is the table size. The TotalError and

TotalBenefit variables are summations of the error and benefit terms for all of the selected

expressions. The objectives to maximize performance and minimize error have equal weight.

The primary constraint is the LUT data for all expressions must fit into cache. We write

this constraint as
∑
Si = CS to ensure that the entire cache is used. Secondary constraints

are added to enforce the intersection constraints. For example, X0 + X2 ≤ 1 keeps the

associated expressions from being optimized simultaneously.

To evaluate solvers on the NEOS framework [52] we translated the optimization problem

into AMPL [4], an input language used by many optimization frameworks. Figure 5.14 shows

61

Power Set (c u l l e d) :
{

C0 = { } , // 0 t rans f o rmat i ons
C1 = { X0 } , // 1 t rans f o rmat i ons
C2 = { X1 } ,
C3 = { X2 } ,
C4 = { X3 } ,
C5 = { X4 } ,
C6 = { X5 } ,
C7 = { X6 } ,
C8 = { X0 , X1 } , // 2 t rans f o rmat i ons
C9 = { X0 , X3 } ,
C10 = { X0 , X4 } ,
C11 = { X0 , X5 } ,
C12 = { X1 , X3 } ,
C13 = { X1 , X4 } ,
C14 = { X1 , X5 } ,
C15 = { X1 , X6 } ,
C16 = { X2 , X3 } ,
C17 = { X2 , X4 } ,
C18 = { X2 , X5 } ,
C19 = { X3 , X4 } ,
C20 = { X4 , X6 } ,
C21 = { X0 , X1 , X3 } , // 3 t rans f o rmat i ons
C22 = { X0 , X1 , X4 } ,
C23 = { X0 , X1 , X5 } ,
C24 = { X0 , X3 , X4 } ,
C25 = { X1 , X3 , X4 } ,
C26 = { X1 , X4 , X6 } ,
C27 = { X2 , X3 , X4 } ,
C28 = { X0 , X1 , X3 , X4 } // 4 t rans f o rmat i ons

} ;

Figure 5.12: Culled power set for optimization problem.

the AMPL code that we developed to use existing multi-objective optimization software.

Our problem is mixed-integer, because we combine integer and real parameters, and non-

linear, because of the error equations and performance model. Optimization frameworks

exist that handle both of these attributes. However, our problem is unusual because the

solver must simultaneously determine which expressions are included (selection) and the

allocation for each optimization (size). As a result, we have not yet been able to solve the

LUT optimization problem with existing solvers including SYMPHONY [73], Couenne [15],

Bonmin [9], and MINLP [49]. The remainder of this section discusses our methodology for

solving the optimization problem without using an existing solver.

5.4.2 The LUT Optimization Algorithm

Our optimization algorithm divides into three steps. First, we enumerate the set of potential

solutions. Second, for each enumerated solution we compute the cache allocation that min-

62

INPUTS

Di: real - input domain for expression
Mi: real - maximum slope for expression
Bi: real - potential benefit for expression
CS: integer - cache size

UNKNOWNS

Xi: boolean - expression selector, 0 when Si is 0, and 1 otherwise
Si: integer - table size, computed by the solver as 0 < Si < CS
Ei: real - computed as (Di/Si) ∗ (Mi/2.0)

OBJECTIVES

maximize TotalBenefit =
∑

(Xi ∗Bi) - search for solutions that maximize benefit
minimize TotalError =

∑
(Xi ∗ Ei) - search for solutions that minimize error

CONSTRAINTS∑
Si = CS - must fit into cache and use entire cache

Intersection constraints
X0 +X2 ≤ 1, X1 +X2 ≤ 1, X3 +X5 ≤ 1, X4 +X5 ≤ 1,
X0 +X6 ≤ 1, X2 +X6 ≤ 1, X3 +X6 ≤ 1, X5 +X6 ≤ 1

Figure 5.13: Mathematical definition of optimization problem.

imizes error. Third, we use the benefit and error associated with each solution to identify

Pareto optimal solutions. During enumeration we cull solutions that violate intersection

constraints, thereby avoiding enumeration of the entire power set.

Enumeration of Solution Space To efficiently enumerate the solution space, we iterate

an integer with N bits over the interval [0,2N -1] and use its value as a bitmask. Each

value of the integer is a solution whose transforms are selected based on the nonzero bits.

For example, the mask for C27 from Figure 5.12 has a binary value of 00011100b to select

{X2,X3,X4}. We use an unsigned 64-bit integer to support up to 64 expressions. The

intersection constraints are enforced by a mask operation during enumeration. For example,

the constraint X0 +X1 ≤ 1 causes us to discard solutions in which both Bit 0 and 1 are set.

63

AMPL data
param : EXPRESSIONS: Bene f i t Domain Slope :=

“X0” 23 2 .000 2 .718
“X1” 39 2 .000 1 .000
“X2” 62 2 .000 3 .259
“X3” 23 1 .500 7 .389
“X4” 41 1 .500 1 .000
“X5” 64 1 .500 8 .298
“X6” 46 3 .000 7 .389

param CS := 6291456; # 6 MB

AMPL code
set EXPRESSIONS ordered ;
param Bene f i t {EXPRESSIONS} >= 0 ;
param Domain {EXPRESSIONS} >= 0 ;
param Slope {EXPRESSIONS} >= 0 ;

Unknown va r i a b l e s
var S i z e { i in EXPRESSIONS} i n t e g e r >= 0 , <= CS, := 1 ;
var Se l e c t { i in EXPRESSIONS} i n t e g e r >= 0 , <= 1 ;

Object ive f unc t i on s
maximize TotalError : sum { i in EXPRESSIONS} (Slope [i] * Domain [i]) / (S i z e [i] * 2 . 0) ;
maximize Tota lBene f i t : sum { i in EXPRESSIONS} (S e l e c t [i] * Bene f i t [i]) ;

Const ra in t s
subject to ComputeSelect { i in OPTIMIZATIONS} : S e l e c t [i] <= Siz e [i] ;
subject to CacheSize : CS <= sum { i in OPTIMIZATIONS} S i z e [i] <= CS;

I n t e r s e c t i o n c on s t r a i n t s
X0 + X2 <= 1 ;
X1 + X2 <= 1 ;
X3 + X5 <= 1 ;
X4 + X5 <= 1 ;
X0 + X6 <= 1 ;
X2 + X6 <= 1 ;
X3 + X6 <= 1 ;
X5 + X6 <= 1 ;

AMPL commands
solve ;
display S i z e ;
display Tota lBene f i t ;
display TotalError ;
display CacheSize . body ;

Figure 5.14: AMPL code for optimization problem.

Determining Cache Allocation We can compute the solution benefit by summing the

benefits of the expressions it contains. To find solution error, we must compute the cache

allocation. We derived a closed-form analytic formula to compute the LUT sizes and errors

for each subset of expressions. The formula shown in Equation (5.4) computes the precise

size for each transformation that minimizes solution error, and Equation (5.5) computes the

precise error. Our algorithm only has to compute one equation or the other, since size and

error are related through Equation (5.1), which is less computationally expensive.

64

Si = CS/

(∑
j=1..n

√
(MjDj/MiDi)

)
(5.4)

Ei = MiDi

(∑
j=1..n

√
(MjDj/MiDi)

)
/CS (5.5)

Figure 5.15 shows the derivation of Equation (5.4) for an arbitrary number of expres-

sions. The function we minimize is the sum of the errors based on the error formula in

Equation (5.1), and subject to the constraint of sharing the cache (1). We create the La-

grangian function that combines the minimization with a lambda expression that represents

the constraint (2). Next we take the derivative of the Lagrangian function w.r.t. to the size

and set it to zero (3) to get the Stationarity constraint. This lets us solve for the size squared

(4) and the size (5) in terms of lambda.

Next we return to the Lagrangian function and substitute all instances of the size with

the lambda equivalent (6). We then simplify by distributing lambda and dividing (MiDi/2)1

by (MiDi/2)1/2 to get (MiDi/2)1/2 and λ1 by λ1/2 to get λ1/2 (7), and combining similar

terms (8). We again take the derivative of the Lagrangian function, this time w.r.t. lambda

and set it to zero (9). We can now solve for lambda by adding CS to both sides (10), dividing

by the summation term (11) and squaring the result to compute the inverse of lambda (12).

Note that this value is defined in terms of the known values CS, Mj, and Dj. Returning

to the equation in (4), we substitute our new value for lambda (13). Next we take the

square root (14) and divide by sqrt(MiDi/2) (15) to match the formula in Equation (5.4).

Equation (5.5) is then derived from Equation (5.4).

65

Minimize
∑
i=1..n

Ei =
∑
i=1..n

MiDi

2Si
, subject to

∑
i=1..n

Si = CS (1)

L =
∑
i=1..n

MiDi

2Si
+ λ

[∑
i=1..n

Si − CS
]

// Lagrangian Function (2)

L′ =
δL

δSi
= −MiDi

2S2
i

+ λ = 0 // Stationarity Condition (3)

1

S2
i

=
2λ

MiDi

or S2
i =

MiDi

2λ
(4)

1

Si
=

(
2λ

MiDi

)1/2

or Si =

(
MiDi

2λ

)1/2

(5)

L =
∑
j=1..n

MjDj

2

(
2λ

MjDj

)1/2

+ λ

[∑
j=1..n

(
MjDj

2λ

)1/2

− CS
]

(6)

L =
∑
j=1..n

(
MjDj

2

)1/2

λ1/2 +
∑
j=1..n

(
MjDj

2

)1/2

λ1/2 − λCS (7)

L =
∑
j=1..n

2

(
MjDj

2

)1/2

λ1/2 − λCS (8)

L′ =
δL

δλ
=
∑
j=1..n

(
MjDj

2

)1/2

λ−1/2 − CS = 0 (9)

CS =
∑
j=1..n

(
MjDj

2

)1/2

λ−1/2 (10)

λ−1/2 = CS/
∑
j=1..n

(
MjDj

2

)1/2

(11)

λ−1 = CS2/

[∑
j=1..n

(
MjDj

2

)1/2]2

(12)

S2
i =

MiDi

2λ
= CS2MiDi

2
/

[∑
j=1..n

(
MjDj

2

)1/2]2

(13)

Si = CS

(
MiDi

2

)1/2

/

[∑
j=1..n

(
MjDj

2

)1/2]
(14)

Si = CS/

[∑
j=1..n

(
MjDj

MiDi

)1/2]
= CS/

(∑
j=1..n

√
MjDj

MiDi

)
(15)

Figure 5.15: Derivation of the analytic size equation

66

We can use Equations (5.4) and (5.5) to find the optimal size and error for each LUT

transform in a solution. The results for the example code are shown in Table 5.7. Sizes and

errors are listed for each LUT transform in the solution, along with the total benefit Bi, in

nanoseconds, and total error Ei for each solution. The total benefit is a summation of the

benefits as shown in Equation (5.6). The total error is a summation of the errors as shown

in Equation (5.7). The solutions in Table 5.7 are sorted by benefit.

TotalBenefit =
∑
i=1..n

XiBi (5.6)

TotalError =
∑
i=1..n

XiEi (5.7)

Table 5.7: Errors and Sizes for algorithms example program.

Ci Xi Bi Ei S0 S1 S2 S3 E0 E1 E2 E3
C0 Empty Set 0.00E+00 0.00E+00

X0 6.15E+09 9.63E+02 4194304 9.63E+02

X3 6.15E+09 9.63E+02 4194304 9.63E+02

X1 8.15E+09 2.91E+02 4194304 2.91E+02

C1 X4 9.40E+09 2.76E+02 4194304 2.76E+02

X6 1.23E+10 1.93E+03 4194304 1.93E+03

X0,X3 1.23E+10 3.85E+03 2097152 2097152 1.93E+03 1.93E+03

X0,X1 1.43E+10 2.31E+03 1488006 2706297 8.21E+02 1.49E+03

X1,X3 1.43E+10 2.31E+03 1488006 2706297 8.21E+02 1.49E+03

X0,X4 1.56E+10 2.27E+03 1462350 2731953 7.92E+02 1.48E+03

X3,X4 1.56E+10 2.27E+03 1462350 2731953 7.92E+02 1.48E+03

X2 1.64E+10 1.07E+03 4194304 1.07E+03

X1,X4 1.76E+10 1.13E+03 2069022 2125281 5.59E+02 5.75E+02

C2 X5 1.77E+10 6.92E+02 4194304 6.92E+02

X1,X6 2.05E+10 3.81E+03 1488006 2706297 8.21E+02 2.99E+03

X0,X1,X3 2.05E+10 6.26E+03 904436 1644933 1644933 1.35E+03 2.46E+03 2.46E+03

X4,X6 2.17E+10 3.75E+03 1462350 2731953 7.92E+02 2.96E+03

X0,X3,X4 2.17E+10 6.19E+03 885549 1654377 1654377 1.31E+03 2.44E+03 2.44E+03

X2,X3 2.26E+10 4.06E+03 2152133 2042170 2.09E+03 1.98E+03

X0,X1,X4 2.37E+10 4.19E+03 1076736 1106014 2011552 1.08E+03 1.10E+03 2.01E+03

X1,X3,X4 2.37E+10 4.19E+03 1076736 1106014 2011552 1.08E+03 1.10E+03 2.01E+03

X0,X5 2.38E+10 3.29E+03 1924322 2269981 1.51E+03 1.78E+03

C3 X1,X5 2.58E+10 1.88E+03 2544168 1650135 1.14E+03 7.40E+02

X2,X4 2.58E+10 2.43E+03 1412800 2781503 8.19E+02 1.61E+03

X1,X4,X6 2.99E+10 6.20E+03 1076736 1106014 2011552 1.08E+03 1.10E+03 4.02E+03

X0,X1,X3,X4 2.99E+10 9.17E+03 727725 747513 1359532 1359532 1.59E+03 1.63E+03 2.97E+03 2.97E+03

X0,X1,X5 3.20E+10 5.54E+03 1483018 961878 1749407 1.96E+03 1.27E+03 2.31E+03

X2,X3,X4 3.20E+10 6.46E+03 867132 1707200 1619971 1.34E+03 2.63E+03 2.49E+03

C4 X2,X5 3.41E+10 3.48E+03 1869832 2324471 1.55E+03 1.93E+03

67

Determination of Pareto Optimal The final step in the optimization problem is to

find the Pareto optimal solutions by using the Graham Scan [33] algorithm for convex hull

detection. The input data has estimated error on the x-axis and estimated benefit on the

y-axis. The algorithm sorts the solutions by the cosine of angle between the x-axis and the

line between the origin and the solution. The solutions are traversed in order, and a cross-

product is computed for each contiguous set of three points. The cross-product differentiates

between a left and right turn. A right turn maintains the points being evaluated, and a left

turn culls the center point. The result is to cull all of the non-optimal solutions that lie within

the convex hull, leaving only solutions that lie on the Pareto optimal line. The algorithm

requires the removal of solutions that lie below the diagonal line between the origin and the

solution with the most benefit, to avoid adding solutions outside the convex hull.

Figure 5.16 shows the Mesa output for the optimization run on the example code. Mesa

has found 5 Pareto optimal solutions and presented them to the programmer, with the

corresponding error and benefit estimates. The C4 solution that has the maximum bene-

fit is a combination of the X2 (exp(dProduct) ∗ sin(dProduct)) and X5 (exp(dProduct) ∗

cos(dProduct)) expressions, each of which combines two elementary functions. Expression

X6 (exp(dProduct)), which is the coalesced exponential call, does not appear in the solu-

tion so expression coalescing has not helped the example code. The programmer selects

the maximum benefit solution C4, and Mesa realizes the corresponding expressions. Note

128 s o l u t i o n s (p o s s i b l e)
29 s o l u t i o n s (ac tua l)
5 s o l u t i o n s (pareto optimal)
So lu t i on Error Bene f i t Opt imizat ions
C0 0 .000 e+00 0 .000 e+00
C1 2.759 e+02 9 .400 e+09 X4
C2 6.921 e+02 1 .765 e+10 X5
C3 1.881 e+03 2 .580 e+10 X5 ,X1
C4 3.483 e+03 3 .405 e+10 X5 ,X2
S e l e c t s o l u t i o n : 4
X5 Di = 2.44 Mi = 2.38 Ei = 1.553 e+03 Bi = 1.765 e+10 Si = 1869833 (1826KB)
X2 Di = 2.44 Mi = 3.67 Ei = 1.930 e+03 Bi = 1.640 e+10 Si = 2324471 (2270KB)
Mesa 2 . 0 : Generating opt imized code
Rea l i z i ng X5 in statement S44
Rea l i z i ng X2 in statement S43
Mesa 2 . 0 : Optimizat ion completed .

Figure 5.16: Optimization run for algorithms example program.

68

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000 3500

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n
d
s)

Estimated Error (Absolute)

C0

C1

C2

C3

C4

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000 3500

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n
d
s)

Estimated Error (Absolute)

C0

C1

C2

C3

C4

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000 3500

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n
d
s)

Estimated Error (Absolute)

C0

C1

C2

C3

C4

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000 3500

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n
d
s)

Estimated Error (Absolute)

C0

C1

C2

C3

C4

Suboptimal
Optimal

Figure 5.17: Pareto chart for algorithms example program.

that X2 receives a larger cache allocation because of its higher slope. The result is that the

LUT optimization has identified the most effective LUT transforms based on the error and

performance model, and allocated the ideal amount of cache for them.

Figure 5.17 plots all 29 solutions in the example, with error on the x-axis and benefit

on the y-axis. The Pareto optimal solutions are shown as circles, and suboptimal solutions

are shown as triangles. Only 14 points are visible because many of solutions have identical

error and benefit. The 5 solutions on the curved line are Pareto optimal. We observe that

the Pareto optimal solutions include the most effective transformations, i.e. those estimated

to have the most performance for the least error. Table 5.7 also shows the Pareto optimal

solutions in bold type. Only Pareto optimal solutions have identifiers, for consistency with

the Mesa output.

The Pareto optimal solutions include C0, which has zero benefit and error. This cor-

responds to to the original application code. X5 is the highest benefit LUT transform, so

it appears repeatedly in the Pareto optimal solutions, both by itself and in combination

with other solutions. C4 is the solution with the maximum benefit, which corresponds to

accepting expressions X2 and X5. We now compare the actual performance and accuracy of

the example code, in Figure 5.18. The optimized code is 8.1× faster, and the relative error

is 1.13×10−7, based on the accumulation of return values from the ScatterSample function.

69

>>> time . / Or i g ina l
Accumulated value = 1329836312500.0
r e a l 0m27.299 s
user 0m27.292 s
sys 0m0.001 s

>>> time . / Optimized
Accumulated value = 1329836314000.0
r e a l 0m3.364 s
user 0m3.357 s
sys 0m0.006 s

Figure 5.18: Optimization results for algorithms example program.

Local optimization and the Pareto algorithm take ∼3.2us each per LUT transform on our

test system, and expression enumeration is ∼0.4us. For 24 candidate expressions without

intersection constraints the solution space has 224 = 16 million solutions. Mesa can run

problems of this size in ∼100s. The Pareto algorithm selects the most effective solutions in

terms of the estimated performance and error, so its accuracy is entirely dependent on the

validity of these models.

5.4.3 More Examples of Optimization Results

Results from the Pareto algorithm vary based on the homogeneity of the input data. To

further explore optimization results we present two synthetic data sets. The first data

set introduces a set of LUT transforms that vary in effectiveness more widely than in our

example code. Table 5.8 shows the inputs for the disparate data set, and Table 5.9 lists the

Pareto optimal solutions. There are no intersection constraints, so the number of solutions

is exactly 27=128. Just two LUT transforms provide the majority of the benefit for this

data set with minimal error. Figure 5.19 graphs the Pareto optimal solutions. C1 has only

the most effective transformation X4, C2 adds the next most effective X3, and so on. The

Pareto curve is steep on the left side, and flat on the right side, so the programmer may

want to select solutions C2, C3, or C4 to capture most of the performance with less error.

The second data set introduces a set of LUT transforms that have an almost identical

benefit and error. Table 5.10 shows the inputs for the similar data set, and Table 5.11 lists

the Pareto optimal solutions. As with the disparate data set, the problem has no intersection

70

Table 5.8: Input data for disparate data set.

X
i

B
i

D
i

M
i

X0 23 s 2.0 71.718

X1 39 s 2.0 87.000

X2 62 s 2.0 19.259

X3 175 s 1.5 2.389

X4 141 s 1.5 1.000

X5 4 s 1.5 23.928

X6 47 s 3.0 15.389

Table 5.9: Optimization solution for disparate data set.

C
i

X
i

B
i

E
i

C0 ∅ 0 s 0.000E+00

C1 X4 141 s 1.192E-07

C2 X4,X3 316 s 7.725E-07

C3 X4,X3,X2 378 s 6.909E-06

C4 X4,X3,X2,X6 425 s 2.065E-05

C5 X4,X3,X2,X6,X1 464 s 6.827E-05

C6 X4,X3,X2,X6,X1,X0 487 s 1.355E-04

 0

 100

 200

 300

 400

 500

 0 0.0001 0.0002

E
st

im
at

ed
 B

en
ef

it
 (

se
co

n
d
s)

Estimated Error (absolute)

C0

C1

C2

C3

C4

C5
C6 C7

 0

 100

 200

 300

 400

 500

 0 0.0001 0.0002

E
st

im
at

ed
 B

en
ef

it
 (

se
co

n
d
s)

Estimated Error (absolute)

C0

C1

C2

C3

C4

C5
C6 C7

 0

 100

 200

 300

 400

 500

 0 0.0001 0.0002

E
st

im
at

ed
 B

en
ef

it
 (

se
co

n
d
s)

Estimated Error (absolute)

C0

C1

C2

C3

C4

C5
C6 C7

 0

 100

 200

 300

 400

 500

 0 0.0001 0.0002

E
st

im
at

ed
 B

en
ef

it
 (

se
co

n
d
s)

Estimated Error (absolute)

C0

C1

C2

C3

C4

C5
C6 C7

Suboptimal
Optimal

Figure 5.19: Pareto chart for disparate data set.

constraints. Figure 5.20 graphs the Pareto optimal solutions computed for the similar data

set. Note that all LUT transforms are essentially equal in benefit and error, so each optimal

point is very close to another set of points. This means that any set of LUT transforms can

71

be selected at each optimal point, with only minor changes to the overall performance and

accuracy. The similarity creates a Pareto optimal curve that is much flatter. The decision

for the programmer in this case is a straightforward tradeoff between performance and error.

Table 5.10: Input data for similar data set.

X
i

B
i

D
i

M
i

X0 20 s 2.8 3.100

X1 21 s 2.7 3.300

X2 22 s 2.6 3.200

X3 23 s 2.5 3.400

X4 24 s 2.4 3.500

X5 25 s 2.3 3.600

X6 26 s 2.2 3.000

Table 5.11: Optimization solution for similar data set.

C
i

X
i

B
i

E
i

C0 ∅ 0 s 0.000E+00

C1 X6 26 s 5.245E-07

C2 X6,X5 51 s 2.358E-06

C3 X6,X5,X4 75 s 5.534E-06

C4 X6,X5,X4,X3 98 s 1.008E-05

C5 X6,X5,X4,X3,X2 120 s 1.590E-05

C6 X6,X5,X4,X3,X2,X1 141 s 2.332E-05

 0

 40

 80

 120

 160

 0 1e-05 2e-05 3e-05

E
st

im
at

ed
 B

en
ef

it
 (

se
co

n
d
s)

Estimated Error (absolute)

C0

C1

C2

C3

C4

C5

C6

C7

 0

 40

 80

 120

 160

 0 1e-05 2e-05 3e-05

E
st

im
at

ed
 B

en
ef

it
 (

se
co

n
d
s)

Estimated Error (absolute)

C0

C1

C2

C3

C4

C5

C6

C7

 0

 40

 80

 120

 160

 0 1e-05 2e-05 3e-05

E
st

im
at

ed
 B

en
ef

it
 (

se
co

n
d
s)

Estimated Error (absolute)

C0

C1

C2

C3

C4

C5

C6

C7

 0

 40

 80

 120

 160

 0 1e-05 2e-05 3e-05

E
st

im
at

ed
 B

en
ef

it
 (

se
co

n
d
s)

Estimated Error (absolute)

C0

C1

C2

C3

C4

C5

C6

C7

Suboptimal
Optimal

Figure 5.20: Pareto chart for similar data set.

72

5.4.4 Rank Culling Algorithm

Our algorithm optionally prunes solutions to avoid exponential growth in complexity for large

numbers of transformations. We call the algorithm we have developed for this rank culling.

Rank culling is integrated with power set generation to avoid storing the entire exponential

space of solutions. To efficiently support rank culling, we use a different algorithm for solution

enumeration. The goal of rank culling is to reduce the complexity of the optimization problem

without changing the outcome. On current systems we start rank culling when the number

of expressions is greater than a tuning parameter, currently set to 24 expressions.

To show the need for culling we measure the performance of the Mesa optimization al-

gorithm. Table 5.12 shows the overall performance, and the timing of each step in the

optimization problem: solution enumeration, solution optimization, and selection of Pareto

optimal points. The table lists the number of expressions, possible solutions, and optimal

solutions. We have measured performance for 8 to 24 expressions. The performance follows

the expected 2N growth, where N is the number of optimizations. We can derive the perfor-

mance from the table. Generating subsets takes ∼0.4 us per transformation, solving for the

optimal size and error takes ∼3.2us per transformation, and selection of the optimal solu-

tions takes ∼3.2us. By extrapolation we can predict that solving the optimization problem

for 32 expressions would take around 8 hours. This motivates the need to cull the solution

space for this size of problem.

Table 5.12: Optimization problem performance without culling.

Number of

Expressions

Number of

Solutions

Optimal

Solutions

Performance

Solution

Enumeration

Cache

Allocation

Pareto

Selection

Overall

Performance

8 256 11 0.002 s

10 1 K 13 0.003 s

12 4 K 17 0.007 s

14 16 K 19 0.031 s

16 64 K 21 0.142 s

18 256 K 25 0.843 s

20 1 M 28 0.2 s 2.4 s 1.9 s 4.5 s

22 4 M 33 0.6 s 11.4 s 9.8 s 21.8 s

24 16 M 39 2.6 s 53.8 s 53.0 s 109.4 s

73

The goal of the culling algorithm is to avoid consideration of solutions that are not Pareto

optimal. We do this by avoiding enumeration of solutions based on transforms that we predict

to be less effective. Prediction requires a metric to rank LUT transform effectiveness. Such

a metric must increase when benefit increases, and decrease when accuracy decreases. We

have evaluated several metrics, and found that the most accurate one is the benefit divided

by the square root of the error. The reasoning behind this metric is that performance benefit

is absolute, but error can be reduced by an increased cache allocation.

We compute the metric before solving the optimization problem, when the precise er-

ror is still unknown. For this reason the metric uses MiDi as a proxy for error as shown

in Equation 5.4.4. This is equivalent to normalizing the error by setting the size for all

transformations to 1.0. We represent the metric by the symbol Vi.

Vi = Bi/
√
Di ∗Mi (5.8)

We call the algorithm that is based on the above metric rank culling, because it depends

an a metric-based ranking. The rank culling algorithm is designed to prune solutions that

lie far from the Pareto optimal line. The assumption we make is that optimal solutions

primarily consist of sets of the most effective LUT transforms. This assumption works only

if the metric accurately predicts the effectiveness of a LUT transform. The justification for

the metric as currently defined is empirical. To use the metric we sort LUT transforms and

prune the least effective ones. The current algorithm uses several parameters to decide on

how many solutions to prune, based on the number of expressions. We do this to favor

solutions that lie along the Pareto optimal line.

Figure 5.21 presents a larger example with 16 expressions and 216 = 65536 solutions.

The culled points are shown as triangles and the unculled points are shown as circles. The

optimal points are shown as squares that lie along the Pareto optimal line. Note that some

culled solutions lie near the Pareto optimal curve, thus culling presents the risk that some

optimal solutions may be culled. We have evaluated sets of random transformations in the

size range from 16 to 32 transformations, and found that no Pareto optimal solutions are

74

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600

B
en

ef
it

Error

Pareto solution (16 optimizations)

Culled
Unculled

Pareto

Figure 5.21: Illustration of culling algorithm.

culled. When an optimal solution is culled, our experiments shows that an almost optimal

solution replaces the culled solution, so the outcome of the optimization is almost identical.

The benefit of rank culling is a significant increase in performance as shown in Fig-

ure 5.22. The table shows the performance with culling, for 16 to 48 transformations. The

set of solutions produced during the experiment was identical with and without culling, how-

ever as discussed above this may not always be the case. Note that the increase in time and

complexity with culling grows approximately in a quadratic fashion, as opposed to the expo-

nential growth of the original problem. Without culling we can handle only 24 expressions

in a small amount of time. With culling we can solve optimization problems with up to 40

expressions in seconds instead of hours as shown in Figure 5.22.

5.5 Evaluation of Performance and Error Models

Our methodology relies on error analysis and performance modeling to make decisions about

the effectiveness of individual LUT transforms. In this section we evaluate our models by

comparing their estimates to the measured performance and error of the optimized appli-

cation. Results from the optimized application represent the ground truth against which

75

2^
4

2^
82^

12
2^

16
2^

20
2^

24
2^

28
2^

32
2^

36
2^

40

 16 20 24 28 32 36 40
1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

N
u
m

b
er

 o
f

S
o
lu

ti
o
n
s

E
x
ec

u
ti

o
n
 T

im
e

(s
)

Number of Expressions

Unculled Size
Culled Size

Unculled Time
Culled Time

Figure 5.22: Optimization problem performance with culling.

we evaluate our estimates. Performance benefit is measured as the decrease in execution

time from the original to the optimized code. Application accuracy is based on the program

output that the programmer decides needs to be compared.

5.5.1 Model versus Actual Performance

We evaluate the performance model on the example code by disabling the Pareto optimal

selection to gather error and performance estimates for all solutions. We use a script to

invoke Mesa to realize all solutions, including optimal and suboptimal, then compile and

run each solution to measure application time for comparison with the performance model.

Figure 5.23 graphs the estimated benefit against the actual benefit. The solutions are listed

in order of increasing performance as estimated by the model. The performance model

slightly overestimates the benefit, but the estimated and actual numbers have the same

slope, showing that the prediction correlates with real performance gain.

5.5.2 Model versus Actual Error

We evaluate the error model on the example code at the same time as performance. As

performance is measured for each solution, we also compute the relative error. Figure 5.24

graphs the error model estimate against the actual application error. The solutions are listed

in order of increasing error, as estimated by the model. The model estimate is absolute

76

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25
 0

 5

 10

 15

 20

 25

 30

M
o

d
e
l

B
e
n

e
fi

t
(s

e
c
o

n
d

s)

A
c
tu

a
l

B
e
n

e
fi

t
(s

e
c
o

n
d

s)

Solution Number

Model
Actual

Figure 5.23: Comparison of model benefit with application benefit.

error, and the application measures relative error, so no direct comparison of the magnitude

is possible. There appears to be some correlation, but many solutions have much lower

error than estimated. We theorize that this is related to the accumulation of values in the

example code, which tends to reduce error through cancellation. We observe this behavior in

both of the SAXS applications. The reason for the cancellation is that LUT approximations

introduce negative and positive error in close to equal amounts. We provide an evaluation

of the error model in which error values are not accumulated in Section 7.2.2.

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20 25
 0

 1e-07

 2e-07

 3e-07

 4e-07

 5e-07

 6e-07

E
rr

o
r

M
o

d
el

 (
ab

so
lu

te
)

A
p

p
li

ca
ti

o
n

 E
rr

o
r

(r
el

at
iv

e)

Solution Number

Model
Actual

Figure 5.24: Comparison of error model with application accuracy.

77

Chapter 6

Mesa Tool

As previously stated, the manual development of LUT transformation code can lower produc-

tivity, obfuscate code, and limit control over performance and accuracy. We have developed

the Mesa tool to address these concerns. Automation helps the programmer cope with

the complexity of expression enumeration, error analysis, and performance modeling. These

kinds of analysis are not practical with pencil and paper, except for trivial examples. Solving

optimization problems by hand is also impractical for more than a handful of expressions,

because the number of solutions grows exponentially with the number of expressions. Mesa

can process up to 40 expressions in a couple of minutes, thus it can apply LUT transforma-

tion at a much larger scale than was previously possible. The current version of Mesa handles

expressions with the arithmetic operators: +, -, *, and /, and double-precision elementary

functions: sin, asin, sinh, cos, acos, cosh, tan, atan, tanh, exp, log, and sqrt. Mesa can also

handle the associated single-precision functions when they exist, for example sinf, cosf, and

tanf. Adding new functions requires fewer than 20 lines of new code.

6.1 Mesa Implementation

Mesa is a standalone tool written in C++ that incorporates the ROSE compiler infrastruc-

ture [61, 42] to support source-to-source transformations on C and C++ application code.

The workflow for the tool shown in Figure 6.1. After the programmer inserts a #pragma

LUTOPTIMIZE above the function(s) to be profiled, the steps shown below are followed:

Step 1: Run Mesa with a command-line option requesting program instrumentation.

Step 2: Mesa generates instrumented code that is compiled into a profiling executable.

Step 3: Compile and run the instrumented code, which writes the domain profiles.

Step 4: Run Mesa with a command-line option requesting program optimization.

78

Original
Executable

Profiling
Executable

Optimized
Executable

Application
Code

Rose
Compiler

Mesa Tool

gcc

Performance
Comparison

Domain
Profile

AST

Instrumentation Run
Step 1

Optimization Run

Step 4

Step 2 Step 3

Step 5 Step 6

(-profile)

(-optimize)

Figure 6.1: Workflow Diagram for Mesa Tool.

Step 5: Mesa generates optimized code that the programmer compiles into an executable.

Step 6: Compare the performance and accuracy of the original and optimized programs.

The instrumentation and optimization runs are implemented by calling the Rose libraries

to read the original code and parse it into an abstract syntax tree (AST). Mesa analyzes the

portion of the AST identified by the pragma to find the set of expressions that may benefit

from LUT transformation, then either instruments or optimizes the code by modifying the

AST and calling Rose to unparse it back into C and C++ application code.

Mesa 2.0 currently consists of ∼7000 lines of C++ code in 9 modules. The code is

freely distributed and available on our project website [48]. Expression enumeration and

code generation modules manipulate the AST through inheritance of the node traversal

mechanism in Rose, which is based on the visitor pattern. A performance module implements

a benchmark to measure the performance of elementary functions and arithmetic operators.

An error module implements analytic and numerical analysis using double-precision math

for accuracy. An optimization module implements the algorithms presented in Section 5,

without making use of an optimization framework. Processing occurs in a pipelined fashion,

79

Figure 6.2: Output of lstopo command from hwloc suite.

with each module contributing to the solution. Expression data is stored in a global object

that can be accessed from all modules.

Mesa has a command line option for setting the memory usage constraint. The tool will

operate within any specified constraint, but the usual usage is to specify a portion of the

mid-level cache for LUT data. Mesa does not determine the size of mid-level cache, but this

can be done through external tools such as lstopo, which is part of the Hardware Locality

Suite (hwloc) [72]. Figure 6.2 shows the output of the lstopo command on our test system.

From the diagram we see that our test system has two cores with 32KB of dedicated L1

cache, and a shared L2 cache of size 6MB. The programmer is responsible for deciding how

much cache to allocate, taking into account the cache requirements of the application. For

the examples and case studies in this thesis we set a limit of 4MB on memory usage.

Another tool concern is that the embedded benchmark ties the optimization to the plat-

form on which the tool runs. The Mesa default behavior is to use the performance file

instead of running the benchmark each time. Using a performance file has two advantages.

First, it provides stability over a series of Mesa executions. Second, performance files can

be moved to another system. This allows Mesa to optimize for target systems other than

the one on which it executes. The programmer can explicitly request a benchmark run via

the command line. Deleting the performance file will also force a benchmark run. Mesa will

not perform optimization without the performance file. The benchmark is a straightforward

80

measurement of operators in a loop using randomly generated data in a specified range. The

benchmark accumulates results to avoid removal of the loop by code optimization.

6.2 Mesa Evolution

Mesa 2.0 is the only version that supports the LUT optimization algorithm with global scope.

The original version of Mesa was 1.0, which required specification of the expression, variables,

and constants in a separate file. Programmers using Mesa 1.0 had to extract candidate

expressions from the source code, use the tool to generate LUT code and data, then integrate

the resulting code back into the application manually. Mesa 1.1, the only other version,

operated directly on application code, optimizing individual statements marked by a pragma.

The purpose of Mesa 1.1 was to partially automate the application of LUT transforms. Using

Mesa 1.1, the programmer had to pinpoint the exact location of expressions. Mesa 2.0 can

optimize entire methods that are preceded by a pragma, thereby automatically identifying

sets of potential LUT transforms in the source code.

6.3 Effect of Cache Misses

We used Mesa 1.0 to investigate the performance of LUT transforms with respect to the

memory hierarchy. In this research we noted that the performance of a LUT transform

degrades when LUT data overflows mid-level cache. This behavior has been replicated

on newer versions of Mesa and with different compilers including gcc 4.6.1 and icc 12.1.2.

It has also been confirmed on a variety of 32-bit and 64-bit Intel and AMD processors,

including processors from the Pentium, Xeon and Opteron families. Figure 6.3 compares the

performance of the original and optimized SAXS discrete scattering code [76]. On the y-axis,

TORIGINAL is the performance of the original code, and TOPTIMIZED is the performance of the

code optimized by Mesa 1.0. The x-axis varies the size of LUT data, from 256KB to 32MB,

with a vertical line showing the L2 cache size. The notable result is that the performance of

the optimized code is relatively flat until the L2 cache overflows, then it quickly degrades.

81

 0

 50

 100

 150

 200

 250

 300

25
6

K
b

51
2

K
b

1
M

b

2
M

b

4
M

b

8
M

b

16
 M

b

32
 M

b

10^{-4}

10^{-3}

10^{-2}

10^{-1}

10^{0}

S
ca

tt
er

 P
er

fo
rm

an
ce

 (
S

ec
o
n
d
s)

A
p
p
li

ca
ti

o
n
 E

rr
o
r

(P
er

ce
n
ta

g
e)

Table Size (Bytes)

Toriginal
Toptimized

Amaximum
Aaverage

Figure 6.3: SAXS discrete scattering simulation results.
(Intel Xeon E5450, 3.00Ghz, 6MB L2 cache, single core)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

19
2

K
b

38
4

K
b

76
8

K
b

1.
5

M
b

3
M

b

6
M

b

12
 M

b

24
 M

b

10^{-5}

10^{-4}

10^{-3}

10^{-2}

10^{-1}

S
ca

tt
er

 P
er

fo
rm

an
ce

 (
S

ec
o
n
d
s)

A
p
p
li

ca
ti

o
n
 E

rr
o
r

(P
er

ce
n
ta

g
e)

Size of Tables (Bytes)

Toriginal
Toptimized

Amaximum
Aaverage

Figure 6.4: SAXS continuous scattering simulation results.
(Intel Xeon E5450, 3.00Ghz, 6MB L2 cache, single core)

The application maximum error AMAXIMUM and average error AAV ERAGE is also shown,

with the expected improvement as LUT size grows.

Figure 6.4 plots the same information for the SAXS continuous scattering code. The

results are similar, except that optimized performance degrades even more quickly. We

attribute the degradation in performance to L2 cache misses, and we have documented these

using the PAPI library [54].

82

6.4 Evaluation of Multi-Dimensional Tables

Mesa 1.0 had limited support for multi-dimensional LUT data that we used to experiment

with multi-dimensional LUT transforms for the SAXS discrete scattering code [76]. This

code originally computed the Debye’s formula based on two variables: the distance between

atoms (r), and the scattering angle (θ). We compared a 1-dimensional LUT transform that

combined the variables to a 2-dimensional transform as shown in Figures 6.5 and 6.6. The

latter required significantly more memory to meet the same accuracy, which caused the

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0.
4

M
b

0.
8

M
b

1.
6

M
b

3.
2

M
b

6.
4

M
b

12
.8

 M
b

25
.6

 M
b

51
.2

 M
b

10
2

M
b

20
4

M
b

 0

 50

 100

 150

 200

 250

 300

E
rr

o
r

S
ta

ti
st

ic
s

(M
es

a
E

st
im

at
es

)

S
ca

tt
er

 P
er

fo
rm

an
ce

(N
u
m

b
er

 o
f

S
ec

o
n
d
s)

Table Size
(Number of Bytes)

Emax
Eavg
Tini
Topt
Torg

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

0.
4

M
b

0.
8

M
b

1.
6

M
b

3.
2

M
b

6.
4

M
b

12
.8

 M
b

25
.6

 M
b

51
.2

 M
b

10
2

M
b

20
4

M
b

 0

 50

 100

 150

 200

 250

 300

E
rr

o
r

S
ta

ti
st

ic
s

(M
es

a
E

st
im

at
es

)

S
ca

tt
er

 P
er

fo
rm

an
ce

(N
u
m

b
er

 o
f

S
ec

o
n
d
s)

Table Size
(Number of Bytes)

Figure 6.5: Performance of 1-dimensional LUT data.
(Intel Xeon E5450, 3.00Ghz, 6MB L2 cache, single core)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

40
0

M
b

80
0

M
b

1.
6

G
b

3.
2

G
b

6.
4

G
b

12
.8

 G
b

25
.6

 G
b

51
.2

 G
b

10
2

G
b

20
4

G
b

 0

 50

 100

 150

 200

 250

 300

E
rr

o
r

S
ta

ti
st

ic
s

(M
es

a
E

st
im

at
es

)

S
ca

tt
er

 P
er

fo
rm

an
ce

(N
u
m

b
er

 o
f

S
ec

o
n
d
s)

Table Size
(Number of Bytes)

Emax
Eavg
Tini
Topt
Torg

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

40
0

M
b

80
0

M
b

1.
6

G
b

3.
2

G
b

6.
4

G
b

12
.8

 G
b

25
.6

 G
b

51
.2

 G
b

10
2

G
b

20
4

G
b

 0

 50

 100

 150

 200

 250

 300

E
rr

o
r

S
ta

ti
st

ic
s

(M
es

a
E

st
im

at
es

)

S
ca

tt
er

 P
er

fo
rm

an
ce

(N
u
m

b
er

 o
f

S
ec

o
n
d
s)

Table Size
(Number of Bytes)

Figure 6.6: Performance of 2-dimensional LUT data.
(Intel Xeon E5450, 3.00Ghz, 6MB L2 cache, single core)

83

performance to degrade quickly. LUT initialization time, which is generally insignificant on

our 1-dimensional LUT transforms, quickly became the dominant factor in the 2-dimensional

case. We do not claim that these results generalize to other applications. However, due to

these problems, Mesa 1.1 and Mesa 2.0 do not optimize expressions with multiple variables.

There are a number of papers that describe the use of multi-dimensional tables [50].

6.5 Parallel Efficiency of Generated Code

We used Mesa 1.1 to evaluate the parallel performance of the automatically generated LUT

code To do so, we parallelized the SAXS discrete and continuous scattering loops with

OpenMP directives. Figure 6.7 and 6.8 show that Mesa generates code with parallel effi-

ciencies of 84% to 98% using 24 cores on a Cray XT6m computer [77]. We have replicated this

on other multi-core systems including 4 and 8-core Xeons. We conclude that our single-core

optimizations are independent from and complementary to parallelization.

 10

 20

 30

 40

 50

 60

 70

 1 2 4 8 16 20 24

S
p

ee
d

u
p

Number of Cores

SAXS Discrete Scattering on Cray

Ideal (Original)

Discrete (Original)

Ideal (Optimized)

Discrete (Optimized)

(Cray XT6m, AMD Opteron 6100, 2.5Ghz, 512KB L2, 6MB L3, 24 cores)

Figure 6.7: Parallel efficiency of SAXS discrete scattering application.

 10

 20

 30

 40

 50

 1 2 4 8 16 20 24

S
p

ee
d

u
p

Number of Cores

SAXS Continuous Scattering on Cray

Ideal (Original)

Continuous (Original)

Ideal (Optimized)

Continuous (Optimized)

(Cray XT6m, AMD Opteron 6100, 2.5Ghz, 512KB L2, 6MB L3, 24 cores)

Figure 6.8: Parallel efficiency of SAXS continuous scattering application.

84

Chapter 7

Case Studies

We evaluate our methodology in terms of ease of use, accuracy, and performance by using

Mesa to optimize six scientific applications. The first two case studies evaluate slope aspect

and solar radiation computations from the Precipitation-Runoff Modeling System (PRMS),

developed by the United States Geologic Survey [58] for hydrologic modeling. The third

and fourth case studies come from two applications written for the SAXS project [64], a

multi-disciplinary project at CSU between the Molecular Biology, Mathematics, Statistics,

and Computer Science departments. The fifth application is Stillinger-Weber, a molecular

dynamics program developed and used for research at Cornell University [31]. The sixth

application is neural network code [53] developed by a faculty member in our Computer

Science department and used in [5]. Some of the applications were originally written in a

different language, and we have ported them to C++. We have also made slight modifications

to the C applications to support C++ compilation and Mesa optimization.

7.1 Evaluation Methodology

To evaluate applications we use Mesa 2.0 to optimize the performance dominant code in the

same manner as a programmer would. We performance profile to find bottleneck functions,

which we identify with a pragma. We ask Mesa to instrument the application, and we compile

and run the resulting code to profile input domains and call frequencies. Next we ask Mesa

to optimize the application. Mesa lists the statements, expressions, and constraints for the

problem, and it constructs and solves the optimization problem. Part of our evaluation

is to examine the number of possible and actual solutions for each application, and we

measure tool processing time. We also produce a Pareto chart that provides insight into the

optimization problem by reporting the number and location of Pareto solutions in the error

85

and performance space. Next we select a solution for Mesa to realize. We finish by compiling

and running the original and optimized code and comparing the benefit and error predicted

by Mesa to the measured application performance and accuracy.

To further evaluate our tool, we use case studies to enable different features of Mesa. For

example, we show SAXS discrete scattering with direct access and interpolation. The rea-

son for selecting this application is that it has the highest performance speedup of our case

studies, thus there is headroom to support the increased computational cost of linear inter-

polation. We use the PRMS slope aspect program to compare LUT optimization with and

without expression coalescing. The reason for selecting this application is that it repetitively

calls sine and cosine with similar domains, so coalescing is especially effective.

Table 7.1 summarizes the performance and results of our case studies. The first five

columns show the program and tool statistics: lines of code analyzed, number of expressions,

number of possible and actual solutions, and the number of Pareto optimal solutions, followed

by the processing time. The next two columns show the sampling method (direct access or

linear interpolation), and whether expression coalescing is enabled or disabled. The final

two columns report the performance speedup and error relative to the original output. For

example, Mesa extracts 9 expressions from the PRMS slope aspect code, from which it

analyzes 384 solutions, and finds 9 to be Pareto optimal. Mesa then generates optimized

code that achieves a 4.5× speedup at the expense of 2.67×10−1% error.

Table 7.1: Application results from Mesa optimization.
(Intel Core 2 Duo, E8300, family 6, model 23, 2.83GHz, single core)

Application

Name

Lines of Code

Analyzed

Number of

Expressions

Possible

Solutions

Actual

Solutions

Pareto

Solutions

Processing

Time

Sampling

Method

Expression

Coalescing

Performance

Speedup

Relative

Error

PRMS Slope Aspect 35 9 512 384 9 13.7s Direct Disabled 4.4x 2.67E-01%

PRMS Slope Aspect 35 11 2048 425 9 15.5s Direct Aggressive 4.3x 8.21E-06%

PRMS Solar Radiation 7 6 64 64 8 14.1s Direct Moderate 2.2x 2.97E-04%

SAXS Discrete 60 3 8 4 3 11.2s Direct Disabled 6.8x 4.06E-03%

SAXS Discrete 60 3 8 4 3 16.5s Linear Disabled 3.0x 5.55E-04%

SAXS Continuous 30 5 32 20 4 10.8s Direct Conservative 4.0x 1.48E-04%

Stillinger-Weber 44 6 64 36 3 9.3s Direct Disabled 1.4x 2.91E-02%

Neural Network (logistics) 5 2 4 3 2 4.9s Direct Disabled 2.2x 8.70e-02%

Neural Network (hypertan) 5 1 2 2 2 2.8s Direct Disabled 2.8x 6.30e-01%

86

7.2 Hydrology Modeling

We present two case studies of LUT optimization using computations from the PRMS appli-

cation. The first function we optimize computes the slope aspect for a point on a terrain grid

based a variety of parameters including the latitude and declination. The second function

we optimize computes the solar radiation based on the latitude and the slope aspect. The

source code is 1500 lines of C++ that we ported from Java code. The functions are called

from a test program that randomly varies the input data, provides timing, and maintains

the results to allow a comparison of accuracy.

7.2.1 Slope Aspect Computation

Our first case study is a slope aspect computation from the PRMS application. Figure 7.1

shows a partial listing of the slope aspect function. We initially run Mesa without expression

coalescing, specifying direct access sampling, and a 4MB memory usage constraint. Mesa

identifies 9 expressions from 8 statements as shown in Table 7.2, and an intersection con-

straint X0 ∩ X1. The list of expressions shows the domain extent, maximum slope, and

estimated benefit. The maximum slope is computed by error analysis, and is not related to

the slope aspect computation itself. The call frequency for all expressions is 3.65 ×107. The

estimated benefit is similar for all of the expressions, but there is variance in the domains and

slopes, so some of the associated LUT transformations will be more accurate than others.

#pragma LUTOPTIMIZE
float CGeospatial : : Ca l cu l a t i on (int julDay , double aspect , double s lope , double l a t i t u d e)
{
S103 // Dec l i na t i on c a l c u l a t i o n
S104 double de c l i n e = 0.4095* sin (0 . 01720* (julDay −79 .35)) ;

. . .
S110 double s i n d e c l i n e = sin (d e c l i n e) ;
S111 double c o s d e c l i n e = cos (d e c l i n e) ;
S112 double s i n l a t i t u d e = sin (l a t i t u d e) ;
S113 double c o s l a t i t u d e = cos (l a t i t u d e) ;
S114 double s i n s l o p e = sin (s l ope) ;
S115 double c o s s l o p e = cos (s l ope) ;
S116 double c o s a sp e c t = cos (aspect) ;
S117 double s l ope = (s i n d e c l i n e * s i n l a t i t u d e * c o s s l o p e) −

(s i n d e c l i n e * c o s l a t i t u d e * s i n s l o p e * c o s a sp e c t) +
(c o s d e c l i n e * c o s l a t i t u d e * c o s s l o p e) +
(c o s d e c l i n e * s i n l a t i t u d e * s i n s l o p e * c o s a sp e c t) ;

}

Figure 7.1: Source code for slope aspect computation.

87

Table 7.2: Expressions from slope aspect code.

Expression Statement Expression Domain Maximum Estimated
Identifier Identifier Syntax Extent Slope Benefit

X0 S104 sin(dAngle) 6.27 1.00 1.24s
X1 S104 0.40954 * sin(dAngle) 6.27 0.41 1.36s
X2 S110 sin(declRad)) 6.28 1.00 1.24s
X3 S111 cos(declRad) 6.28 1.00 1.39s
X4 S112 sin(latRad) 1.05 1.00 1.24s
X5 S113 cos(latRad) 1.05 0.87 1.39s
X6 S114 sin(slopeRad) 1.05 1.00 1.24s
X7 S115 cos(slopeRad) 1.05 0.87 1.39s
X8 S116 cos(aspRad) 6.28 1.00 1.39s

Figure 7.2 shows the Mesa optimization run for the PRMS slope aspect code. The

intersection constraint limits the problem to 384 actual out of 512 possible solutions. Mesa

finds 9 Pareto optimal solutions, which for this application consist of adding of one transform

at a time with increasing benefit and error. We select the maximum benefit solution (C8)

and Mesa realizes it, reporting the error, benefit, and size for each expression. Summing

these values gives the solution error and benefit shown in Figure 7.2. For example, we sum

the error (Ei) and benefit (Bi) columns to compute a total error of 8.148×10−05 and a total

benefit of 10.66s. The size column (Si) shows the cache allocation for LUT transforms.

Optimizing for cache s i z e 4194304
512 s o l u t i o n s (p o s s i b l e)
384 s o l u t i o n s (ac tua l)
9 s o l u t i o n s (pareto optimal)
So lu t i on Error Bene f i t Opt imizat ions
C0 0 .000 e+00 0 .000 e+00
C1 4.324 e−07 1 .391 e+09 X5
C2 1.730 e−06 2 .781 e+09 X5 ,X7
C3 4.088 e−06 4 .026 e+09 X5 ,X7 ,X4
C4 7.445 e−06 5 .271 e+09 X5 ,X7 ,X4 ,X6
C5 1.470 e−05 6 .632 e+09 X5 ,X7 ,X4 ,X6 ,X1
C6 3.097 e−05 8 .023 e+09 X5 ,X7 ,X4 ,X6 ,X1 ,X3
C7 5.323 e−05 9 .413 e+09 X5 ,X7 ,X4 ,X6 ,X1 ,X3 ,X8
C8 8.148 e−05 1 .066 e+10 X5 ,X7 ,X4 ,X6 ,X1 ,X3 ,X8 ,X2
S e l e c t s o l u t i o n : 8
X5 Di = 1.05 Mi = 0.87 Ei = 5.936 e−06 Bi = 1.391 e+09 Si = 305556 (298KB)
X7 Di = 1.05 Mi = 0.87 Ei = 5.936 e−06 Bi = 1.391 e+09 Si = 305558 (298KB)
X4 Di = 1.05 Mi = 1.00 Ei = 6.379 e−06 Bi = 1.245 e+09 Si = 328342 (321KB)
X6 Di = 1.05 Mi = 1.00 Ei = 6.379 e−06 Bi = 1.245 e+09 Si = 328344 (321KB)
X1 Di = 6.27 Mi = 0.41 Ei = 9.985 e−06 Bi = 1.361 e+09 Si = 513995 (502KB)
X3 Di = 6.28 Mi = 1.00 Ei = 1.562 e−05 Bi = 1.391 e+09 Si = 804119 (785KB)
X8 Di = 6.28 Mi = 1.00 Ei = 1.562 e−05 Bi = 1.391 e+09 Si = 804271 (785KB)
X2 Di = 6.28 Mi = 1.00 Ei = 1.562 e−05 Bi = 1.245 e+09 Si = 804119 (785KB)
Mesa 2 . 0 : Generating opt imized code

Figure 7.2: Optimization results for slope aspect code without coalescing.

88

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 500 1000 1500 2000 2500 3000

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n
d
s)

Estimated Error (Absolute)

C0

C1

C2

C3

C4

C5

C6

C7

C8

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 500 1000 1500 2000 2500 3000

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n
d
s)

Estimated Error (Absolute)

C0

C1

C2

C3

C4

C5

C6

C7

C8

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 500 1000 1500 2000 2500 3000

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n
d
s)

Estimated Error (Absolute)

C0

C1

C2

C3

C4

C5

C6

C7

C8

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 500 1000 1500 2000 2500 3000

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n
d
s)

Estimated Error (Absolute)

C0

C1

C2

C3

C4

C5

C6

C7

C8

Suboptimal
Optimal

Figure 7.3: Pareto chart for slope aspect code without coalescing.

Coa le sc ing X9 from X0 X2 X4 X6
Adding [X0 ,X9]
Adding [X1 ,X9]
Adding [X2 ,X9]
Adding [X4 ,X9]
Adding [X6 ,X9]
Coa le sc ing X10 from X3 X5 X7 X8
Adding [X3 , X10]
Adding [X5 , X10]
Adding [X7 , X10]
Adding [X8 , X10]

Figure 7.4: Expression coalescing for slope aspect code.

Figure 7.3 shows the chart of Pareto optimal solution for the PRMS source code, without

coalescing. The Pareto curve climbs steeply, then flattens after solution C5. The reason for

this is that the performance benefit is similar for all of the transforms, but the error rate

grows quickly after C5. As a result, the programmer must decide whether to accept the

additional error to get all of the possible benefit.

We repeat the experiment with the same parameters except that we enable aggressive ex-

pression coalescing. Mesa identifies the same candidate statements, expressions, constraints,

domains, and slopes. The sine and cosine calls are coalesced into two new expressions, and a

series of intersection constraints are introduced as shown in Figure 7.4. The processing time

is 13% longer because coalescing introduces new expressions that require error analysis and

increase the complexity of the optimization problem.

89

Optimizing for cache s i z e 4194304
2048 s o l u t i o n s (p o s s i b l e)
425 s o l u t i o n s (ac tua l)
9 s o l u t i o n s (pareto optimal)
So lu t i on Error Bene f i t Opt imizat ions
C0 0 .000 e+00 0 .000 e+00
C1 1.578 e+01 1 .391 e+09 X5
C2 6.314 e+01 2 .781 e+09 X5 ,X7
C3 1.492 e+02 4 .026 e+09 X5 ,X7 ,X4
C4 2.717 e+02 5 .271 e+09 X5 ,X7 ,X4 ,X6
C5 5.367 e+02 6 .632 e+09 X5 ,X7 ,X4 ,X6 ,X1
C6 9.568 e+02 8 .052 e+09 X4 ,X6 , X10
C7 1.749 e+03 1 .054 e+10 X10 ,X9
C8 2.439 e+03 1 .066 e+10 X4 ,X6 , X10 ,X1 ,X2
S e l e c t s o l u t i o n : 7
X10 Di = 6.28 Mi = 1.00 Ei = 8.748 e+02 Bi = 5.563 e+09 Si = 2097350 (2048KB)
X9 Di = 6.28 Mi = 1.00 Ei = 8.746 e+02 Bi = 4.979 e+09 Si = 2096954 (2048KB)
Mesa 2 . 0 : Generating opt imized code

Figure 7.5: Optimization results for slope aspect code with coalescing.

Because of expression coalescing, the solution space expands to 425 actual out of 2048

possible solutions. Mesa finds 9 Pareto optimal solutions, several of which use the coalesced

transformations as shown in Figure 7.5 because they provide the same benefit with less

error. We select solution C7 because it has 99% of the benefit and approximately ∼28% less

error than C8, the maximum benefit solution. Solution C8 has omitted one of the coalesced

expressions to get slightly more performance, thereby introducing more error. Mesa realizes

LUT transformations for the two coalesced expressions with allocations of around 2MB each,

which is much larger than the allocations of the uncoalesced expressions. As a result, we can

expect higher accuracy from the version optimized with expression coalescing.

Figure 7.6 shows the chart of solutions for the PRMS slope aspect code, with coalescing.

The top three Pareto solutions use one or both of the coalesced expressions. The chart

illustrates why C7 provides a better tradeoff between performance and accuracy than C8.

The maximum benefit solution C8 lies a small distance above, but a larger distance to the

right of C7, meaning that is has only slightly more performance but significantly more error.

Now we can compare the performance and accuracy of the optimization with and with-

out expression coalescing. Table 7.3 shows the execution times, performance speedup, and

maximum absolute and relative error of each version of the program. The optimized slope

90

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 500 1000 1500 2000 2500 3000

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n
d
s)

Estimated Error (Absolute)

C0

C1

C2

C3

C4

C5

C6

C7 C8

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 500 1000 1500 2000 2500 3000

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n
d
s)

Estimated Error (Absolute)

C0

C1

C2

C3

C4

C5

C6

C7 C8

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 500 1000 1500 2000 2500 3000

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n
d
s)

Estimated Error (Absolute)

C0

C1

C2

C3

C4

C5

C6

C7 C8

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 500 1000 1500 2000 2500 3000

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n
d
s)

Estimated Error (Absolute)

C0

C1

C2

C3

C4

C5

C6

C7 C8

Suboptimal
Optimal

Figure 7.6: Pareto chart for slope aspect with coalescing.

Table 7.3: Comparison of results for slope aspect code.
(Intel Core 2 Duo E8300, 2.83GHz, 6MB L2 cache, single core)

Program Execution Performance Absolute Relative
Versions Time Speedup Error Error

Original Code 8.85s n/a 0.0 n/a
Optimized Code: No Coalescing 2.00s 4.4× 83498.7 2.67×10−1%

Optimized Code: Coalescing 2.07s 4.3× 2.6 8.21×10−6%

aspect code achieves a 4.4× speedup without coalescing, and 4.3× with aggressive coalescing.

Thus both versions are very close in performance as would be expected since both optimize

all of the elementary functions in the source code and both constrain LUT data to reside

in cache. However, the optimized slope aspect code without coalescing has a relative error

of 2.67×10−1%, as compared to 8.21×10−6% with coalescing. The more than four orders

of magnitude improvement in accuracy is due to the superior allocation of cache resources

achieved by expression coalescing.

7.2.2 Solar Radiation Computation

Our second case study is a solar radiation computation from the PRMS application. Fig-

ure 7.7 shows a listing of the performance dominant function, which combines a series of

elementary function calls. Note that unlike our previous examples, the function result is not

a simple accumulation of values returned from these calls. Instead, the values approximated

91

#pragma LUTOPTIMIZE
double CSolarRadation : : func3r (double v , double w, double x , double y , double r1 , double d)

{
S212 double dResult = r1 *PI 12 *(sin (d)* sin (w)* (x−y)+cos (d)* cos (w)* (sin (x+v)−sin (y+v))) ;
S213 return dResult ;

}

Figure 7.7: Source code for solar radiation computation.

by the LUT optimization are multiplied together. To see what effect this may have we revisit

the correspondence of our error model to application accuracy in this section.

We run Mesa with expression coalescing, direct access sampling, and a 4MB memory us-

age. Mesa identifies 6 expressions from statement S212 and no intersection constraints. Ta-

ble 7.4 shows 4 sine expressions and 2 cosine expressions. The domain extents and maximum

slopes are dissimilar enough that moderate coalescing does not combine any expressions. The

call frequency for all expressions is 4.58 ×107.

Table 7.4: Expressions from solar radiation code.

Expression Statement Expression Domain Maximum Estimated
Identifier Identifier Syntax Extent Slope Benefit

X0 S212 sin(d) 0.82 1.00 1.49s
X1 S212 sin(w) 1.03 0.93 1.49s
X2 S212 cos(d) 0.82 0.40 1.72s
X3 S212 cos(w) 1.03 0.99 1.72s
X4 S212 sin(x+v) 4.68 1.00 1.49s
X5 S212 sin(y+v) 4.89 1.00 1.49s

Figure 7.8 shows the Mesa optimization run for the PRMS solar radiation code. The

solution space has all 64 possible solutions because there are no intersection constraints.

Mesa finds 8 Pareto optimal solutions, with the expressions X2 and X0 added first because

of their higher benefit, and X4 and X5 added last because of their higher error. We select the

C7 solution, which has the maximum benefit, and Mesa realizes its LUT transforms. Mesa

then reports the error, benefit, and size for each expression. Note that the least accurate

expressions X4 and X5 get more than 1MB of memory, and the others get 512KB or less.

Table 7.5 shows the execution times, performance speedup and error statistics for the

original and optimized code. The error is calculated by a program that compares all of

92

Optimizing for cache s i z e 4194304
64 s o l u t i o n s (p o s s i b l e)
64 s o l u t i o n s (ac tua l)
8 s o l u t i o n s (pareto optimal)
So lu t i on Error Bene f i t Opt imizat ions
C0 0 .000 e+00 0 .000 e+00
C1 7.117 e+00 1 .723 e+09 X2
C2 4.756 e+01 3 .217 e+09 X2 ,X0
C3 5.460 e+01 3 .446 e+09 X2 ,X3
C4 1.350 e+02 4 .940 e+09 X2 ,X3 ,X0
C5 2.623 e+02 6 .435 e+09 X2 ,X3 ,X0 ,X1
C6 6.921 e+02 7 .929 e+09 X2 ,X3 ,X0 ,X1 ,X4
C7 1.342 e+03 9 .423 e+09 X2 ,X3 ,X0 ,X1 ,X4 ,X5
S e l e c t s o l u t i o n : 7
X2 Di = 0.82 Mi = 0.40 Ei = 9.775 e+01 Bi = 1.723 e+09 Si = 305395 (298KB)
X3 Di = 1.03 Mi = 0.99 Ei = 1.730 e+02 Bi = 1.723 e+09 Si = 540470 (528KB)
X0 Di = 0.82 Mi = 1.00 Ei = 1.549 e+02 Bi = 1.494 e+09 Si = 484062 (473KB)
X1 Di = 1.03 Mi = 0.93 Ei = 1.677 e+02 Bi = 1.494 e+09 Si = 523955 (512KB)
X4 Di = 4.68 Mi = 1.00 Ei = 3.705 e+02 Bi = 1.494 e+09 Si = 1157625 (1130KB)
X5 Di = 4.89 Mi = 1.00 Ei = 3.786 e+02 Bi = 1.494 e+09 Si = 1182797 (1155KB)
Mesa 2 . 0 : Generating opt imized code

Figure 7.8: Optimization results for solar radiation code without coalescing.

Table 7.5: Comparison of results for solar radiation code.
(Intel Core 2 Duo E8300, 2.83GHz, 6MB L2 cache, single core)

Program Execution Performance Absolute Relative
Versions Time Speedup Error Error

Original Code 13.67s 1.0× 0.0 0.0%
Optimized Code 6.09s 2.2× 1.56×10−1 2.97×10−4%

the individual output values to find the maximum and average errors. The optimized solar

radiation code achieves a 2.2× speedup with a relative error of 2.97×10−4%.

We now use the solar radiation application to evaluate our error and performance model in

the same fashion as in Sections 5.5.2 and 5.5.2. Figure 7.9 shows that the performance model

predicts the slope of the actual performance, but slightly overestimates the benefit. Some

of the solutions are significantly below the estimated performance. We attribute this again

to ILP and other compiler optimizations. Figure 7.10 compares the estimated maximum

(absolute) error from the error analysis against the actual maximum (relative) error of the

optimized application. The error model appears better in this case than for the example

code in Section 5, possibly because the approximation results are not accumulated.

93

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60
 0

 2

 4

 6

 8

 10

P
e
rf

o
rm

a
n
c
e
 B

e
n
e
fi

t
(s

e
c
o
n
d
s)

Solution Number

C0C0

C1

C1
C2

C2

C3C3 C4C4

C5
C5

C6

C6

C7

C7

Model
Actual

Figure 7.9: Performance model versus application accuracy for solar radiation code.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60
 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

M
o
d
e
l

E
rr

o
r

(a
b
so

lu
te

)

A
c
tu

a
l

E
rr

o
r

(r
e
la

ti
v
e
)

Solution Number

C0C0

C1
C1

C2
C2

C3

C3

C4
C4

C5

C5

C6

C6

C7

C7

Model
Actual

Figure 7.10: Error model versus application accuracy for solar radiation code.

7.3 Molecular Biology

Our next two case studies are from the SAXS project. SAXS is an experimental technique

that explores the structure of molecules [26]. SAXS results can be simulated on a computer

via discrete or continuous algorithms that operate on molecular models. A partial discrete

scattering simulation was written in the R language by members of the Statistics department,

then ported to C++ and completed by the author. A complete simulation of continuous

scattering was written in MATLAB by members of the Math department, then ported to

C++ by various people in the Computer Science department. The current source base for

94

both programs is now around 6000 lines, excluding documentation, scripts, and test programs

and data. Separate applications exist for the discrete and continuous scattering algorithms.

In this section we evaluate the LUT optimization of both applications.

7.3.1 Saxs Discrete Scattering

Our third case study is the SAXS application that simulates the discrete scattering of a

molecular model using Debye’s formula [26] shown in Equation (7.1).

I(θ) = 2ΣN−1
i=1 ΣN

j=i+1Fi(θ)Fj(θ)sin(4πrθ)/(4πrθ) (7.1)

A partial listing of the code that implements Debye’s formula is shown in Figure 7.11.

The fDistance variable represents the distance r between atoms in the above formula. The

fTheta variable is the scattering angle θ in the above formula. The rTheta variable combines

the variables to avoid an expression with two variables. The only elementary function called

in the loop is the sine function. Running gprof on the SAXS scattering code shows that the

listed code dominates the computation time, so we insert a pragma above the function.

// I t e r a t e s t ep s (outer loop)
for (s tep = 0 ; s tep < 1000 ; ++step) {

// I t e r a t e atoms (middle loop)
for (atom1 = 0 ; atom1 < vecAtoms . s i z e () ; ++atom1) {

// I t e r a t e atoms (inner loop)
for (atom2 = atom1 ; atom2 < vecAtoms . s i z e () ; ++atom2) {

S193 // Compute d i s t ance between atoms
S194 f loat fD i s tance = d i s t ance (atom1 , atom2) ;
S195
S196 // Compute s c a t t e r i n g ang le
S197 f loat fTheta = m fStep * (f loat) (s tep + 1) ;
S198
S199 // Combine parameters to s c a t t e r
S200 f loat rTheta = fDi s tance * fTheta ;
S201
S202 // Optimize subexpre s s i on shown below
S203 f In t e rmed ia t e = s inf (FOURPI * rTheta) / (FOURPI * rTheta) ;

}
}

}

Figure 7.11: Dominant calculation from SAXS discrete scattering code.

Table 7.6 shows the expressions extracted during the Mesa optimization run. Mesa

considers only the statement S203, from which it extracts three expressions, all of which

95

include the sine function and varying amounts of associated math. Since all expressions

come from the same statement, they share the call frequency of 4.66 ×109. However, the

domain extents and maximum slopes vary widely. For example, the expressions X0 and X2

have the same domain as the rTheta parameter, which is [0.0,20.0], but expression X1 has a

range that is 4π larger as shown by its expression syntax. The maximum slope of X1 is 1.0,

since X1 represents the sine function. Expression X0 represents 4π times the sine function,

so it has a maximum slope of 4π. Expression S2 has a high maximum slope, because of

the division. However, Mesa estimates more performance for X2 because it handles two

multiplies and a division, as well as the sine function.

Table 7.6: Expressions from SAXS discrete scattering code.

Expression Statement Expression Domain Maximum Estimated
Identifier Identifier Syntax Extent Slope Benefit

X0 S203 sin(4πrTheta) 20.00 12.57 172.3s
X1 S203 sin(rTheta) 251.33 1.00 157.4s
X2 S203 sin(4πrTheta)/(4πrTheta) 20.00 52428.80 207.2s

Mesa finds two Pareto optimal solutions in addition to the empty solution. These trivially

consist of selecting either expressions X0 or X2, each with an allocation of the entire 4MB.

The expression X1 does not appear as Pareto optimal, because X0 provides more benefit for

the same amount of error. The Pareto optimal solutions present an interesting tradeoff for

the programmer, since X2 gives 20% more performance, but almost 2× the error. Figure 7.12

shows the solutions and the selection of solution C2 to maximize the performance benefit.

We have omitted the Pareto chart because of the small number of solutions.

Figure 7.13 shows the performance and accuracy evaluation of the original and optimized

versions of the SAXS discrete scattering code. Both versions of the program are run, then

our comparison program evaluates the maximum relative error between the program results.

The performance speedup is 6.8×, with a maximum relative error of 4.06X10−3%. This

meets our accuracy requirements, so we do not have to consider optimizing expression X0

instead to decrease the error. The performance benefit comes from reuse in the SAXS code.

96

Mesa 2 . 0 : So lv ing opt imiza t i on problem
Optimizing for cache s i z e 4194304
8 s o l u t i o n s (p o s s i b l e)
4 s o l u t i o n s (ac tua l)
3 s o l u t i o n s (pareto optimal)
So lu t i on Error Bene f i t Opt imizat ions
C0 0 .000 e+00 0 .000 e+00
C1 5.580 e+05 1 .723 e+11 X0
C2 2.328 e+09 2 .072 e+11 X2
Se l e c t s o l u t i o n : 2
X2 Di = 20.00 Mi = 52428.80 Ei = 2.328 e+09 Bi = 2.072 e+11 Si = 4194304 (4096KB)
Mesa 2 . 0 : Generating opt imized code

Figure 7.12: Optimization results for SAXS discrete scattering code.

>>> . / D i s c r e t eOr i g i n a l . . / Data/1 xib . pdb 1 xib . int . o r i g
Sca t t e r computation : 196 .2 seconds .

>>> . / DiscreteOpt imized . . / Data/1 xib . pdb 1 xib . int . optd
Sca t t e r computation : 29 .0 seconds .

>>>./Compare 1 xib . int . o r i g 1 xib . int . optd 0 .0
0 .00000 e+00\% minimum r e l a t i v e e r r o r
4 .05608 e−03\% maximum r e l a t i v e e r r o r
8 .13219 e−04\% average r e l a t i v e e r r o r

Figure 7.13: Comparison of results for SAXS discrete code.

The reuse occurs because we evaluate the function 4MB / sizeof(float) = ∼1×106 times to

initialize the LUT data, but the optimized program accesses the LUT data 4.6 billion times.

Thus each LUT entry is reused more than 4,600 times on the average. Mesa estimates a

performance benefit of 207.2s as compared to an actual benefit of 167.2, a difference of 19%.

To conclude our evaluation of the SAXS discrete code, we optimize the code with linear

interpolation instead of direct access sampling. Mesa extracts the identical set of expressions

and finds the same Pareto optimal solutions. However, Mesa estimates that the benefits of

each expression are reduced by the measured difference between direct access and linear

interpolation, which is 1.8× on our test system. The measured performance of the linear

interpolation code is 65.5s, which is 2.3× slower than direct access. The accuracy improves

by slightly less than an order of magnitude to 5.55×10−4. Thus linear interpolation increases

accuracy, but degrades performance significantly.

97

7.3.2 Saxs Continuous Scattering

Our fourth case study uses SAXS project code that implements another set of equations that

model scattering, using a continuous instead of a discrete algorithm. Performance profiling

shows that the ScatterSample function dominates the computation time. The C++ code

for the inner loop of ScatterSample is shown in Figure 7.14. The equations that define

continuous scattering are shown in Equation (7.2).

I(q, ψ) =

(N∑
j=1

dje
−σ2

j q·q/2cos(q · µj(ψ))

)2

+

(N∑
j=1

dje
−σ2

j q·q/2sin(q · µj(ψ))

)2

(7.2)

We invoke Mesa 2.0 with direct access, conservative expression coalescing, and a 4MB

memory constraint. No other elementary functions exist in the function, so S145 and S146

are the only candidates statements. Table 7.7 shows the expressions extracted during the

Mesa optimization run, after error analysis and performance modeling. The exponential

expressions from both statements are identical, and the sine and cosine expressions are

similar but with slightly different benefit. Expressions X0 and X2 are coalesced into X4, and

the intersection constraints X0 ∩ X4 and X2 ∩ X4 are added. The expression X4 has the

same domain and maximum slope as X0 and X2, but twice the benefit.

The intersection constraints limit the number of actual solutions to 20 out of 32 possible

solutions. From these Mesa finds three Pareto optimal solutions in addition to the empty

solution as shown in Figure 7.15. The X4 expression that coalesces the exponential function

is picked up first, then the X3 cosine expression, and finally the X1 sine expression. The X0

and X2 expressions are suboptimal because the coalesced X4 has higher benefit for the same

amount of error, so they do not appear in the Pareto optimal list. The X1 and X3 expressions

for (int j = 0 ; j < m vecGeometry . s i z e () ; j++) {
. . .
// S ca t t e r i ng equat ion

S145 dSum0 += m vecGeometry [j] . fDens i ty * exp(fProduct) * sin (vecProduct) ;
S146 dSum1 += m vecGeometry [j] . fDens i ty * exp(fProduct) * cos (vecProduct) ;

. . .
}

Figure 7.14: SAXS continuous scattering code.

98

Table 7.7: Expressions from SAXS continuous scattering code.

Expression Statement Expression Domain Maximum Estimated
Identifier Identifier Syntax Extent Slope Benefit

X0 S145 exp(fProduct) 0.01 0.99 4.88s
X1 S145 sin(vecProduct) 30.0 1.00 6.47s
X2 S146 exp(fProduct) 0.01 0.99 4.88s
X3 S146 cos(vecProduct) 30.0 1.00 7.46s
X4 S145, S146 exp(fProduct) 0.01 1.00 9.766s

Mesa 2 . 0 : So lv ing opt imiza t i on problem
Optimizing for cache s i z e 4194304
32 s o l u t i o n s (p o s s i b l e)
20 s o l u t i o n s (ac tua l)
4 s o l u t i o n s (pareto optimal)
So lu t i on Error Bene f i t Opt imizat ions
C0 0 .000 e+00 0 .000 e+00
C1 1.893 e+00 9 .764 e+09 X4
C2 2.996 e+03 1 .723 e+10 X4 ,X3
C3 1.167 e+04 2 .370 e+10 X4 ,X3 ,X1
S e l e c t s o l u t i o n : 3
X4 Di = 0.01 Mi = 1.00 Ei = 2.092 e+02 Bi = 9.764 e+09 Si = 37942 (37KB)
X3 Di = 30.00 Mi = 1.00 Ei = 5.730 e+03 Bi = 7.462 e+09 Si = 2078181 (2029KB)
X1 Di = 30.00 Mi = 1.00 Ei = 5.730 e+03 Bi = 6.470 e+09 Si = 2078181 (2029KB)
Mesa 2 . 0 : Generating opt imized code

Figure 7.15: Optimization results for SAXS continuous scattering code.

approximately the same maximum slope, but with a much more extensive domain, so their

cache allocation is more than 50 times larger. We show selection of solution C3, which has

the maximum benefit. Figure 7.16 shows the Pareto chart.

 0

 5

 10

 15

 20

 25

 0 2000 4000 6000 8000 10000 12000

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n

d
s)

Estimated Error (Absolute)

C0

C1

C2

C3

 0

 5

 10

 15

 20

 25

 0 2000 4000 6000 8000 10000 12000

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n

d
s)

Estimated Error (Absolute)

C0

C1

C2

C3

 0

 5

 10

 15

 20

 25

 0 2000 4000 6000 8000 10000 12000

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n

d
s)

Estimated Error (Absolute)

C0

C1

C2

C3

 0

 5

 10

 15

 20

 25

 0 2000 4000 6000 8000 10000 12000

E
st

im
at

ed
 B

en
ef

it
 (

S
ec

o
n

d
s)

Estimated Error (Absolute)

C0

C1

C2

C3

Suboptimal
Optimal

Figure 7.16: Pareto chart for SAXS continuous scattering code.

99

>>> . / Cont inuousOr ig ina l . . / Data/1 xib . xyzd 1 xib . o r i g 25
10 .1 seconds .

>>> . / ContinuousOptimized . . / Data/1 xib . xyzd 1 xib . optd 25
2 .5 seconds .

>>> . / Compare 1 xib . o r i g 1 xib . optd 0 .0 −xyi
0 .00000 e+00\% minimum r e l a t i v e e r r o r
1 .47644 e−04\% maximum r e l a t i v e e r r o r
5 .14799 e−05\% average r e l a t i v e e r r o r

Figure 7.17: Optimization results for SAXS continuous scattering code.

Figure 7.17 shows the performance and accuracy evaluation of the original and optimized

versions of the SAXS continuous scattering code. The performance speedup is 4.0×, with a

maximum relative error of 1.48X10−4%. The reuse analysis is similar to the SAXS discrete

case, because LUT initialization requires ∼1 million function evaluations, but the LUTs are

accessed approximately 800 million times. Mesa estimates a performance benefit of 23.7s

as compared to the actual benefit of 7.6s. In addition to the factors such as ILP that

are mentioned in Section 5.3, the overestimate occurs partially because the compiler uses

common subexpression elimination (CSE) to avoid calling the exponential function with the

same arguments in subsequent statements. Examination of the generated assembly code

shows that the compiler issues a single exponential call in this case.

7.4 Molecular Dynamics

Our fifth case study is Stillinger-Weber, a molecular dynamics program that models the

physical movement of atoms and molecules by computing the potential energy and inter-

action forces of particles. The code consists of around 3000 lines of C developed by Mohit

Haran, James Catherwood, and Paulette Clancy [31]. The molecular dynamics simulation

is performed over a series of time steps to predict particle trajectories. Many molecular

dynamics applications exist, but we have chosen Stillinger-Weber because the code contains

a manual LUT transformation done by the original authors. The calculations in Stillinger-

Weber are based on the potential energy equations [71] of the same name, which take into

100

S149 sq r t (r 2 j)
S150 sq r t (r2k)

. . .
S159 expgj = exp(g * (1 . 0 / (r r j−a))) ;
S160 expgk = exp(g * (1 . 0 / (rrk−a))) ;

Figure 7.18: Stillinger-Weber molecular dynamics program.

account 2-body (φ2) and 3-body (φ3) interactions that call the exponential function as shown

in Equations (7.3) and (7.4):

E =
∑
i

∑
j>i

φ2(rij) +
∑
i

∑
j 6=i

∑
k<i

φ3(rijrikθijk) (7.3)

φ2(rij) = Aijεij[Bij(
σij
rij

)pij]exp(
σij

rij − aijσij
) (7.4)

φ3(rij, rikθijk) = λijkεijk[cosθijk − cosθ0ijk]
2exp(

γijσij
rij − aijσij

)exp(
γikσik

rik − aikσik
)

The original version of Stillinger-Weber optimized the 2-body and 3-body calculation by

precomputing multiple lookup tables for series of expressions. To evaluate Stillinger-Weber

we removed LUT transformation code from the original version and inserted straightforward

implementations of the Stillinger-Weber equations into the 2-body and 3-body loops. We

used the resulting unoptimized version of Stillinger-Weber as a baseline for performance and

accuracy. The elementary function calls in the 3-body code are shown in Figure 7.18. Each

statement is executed 5.8 ×107 times.

We invoke Mesa 2.0 with direct access, expression coalescing disabled, and a 1MB cache

constraint. Table 7.8 shows the expressions extracted during the Mesa optimization run,

after error analysis and performance modeling. Two versions of each exponential call are

listed, with and without associated math. The square root calls have negative benefit, so we

do not expect them to show up in an optimal solution.

The intersection constraints limit the number of actual solutions to 36 out of 64 possible

solutions. From these Mesa finds only two Pareto optimal solutions in addition to the empty

solution as shown in Figure 7.19. We show selection of solution C2, which has the maximum

101

Table 7.8: Expressions from Stillinger-Weber program.

Expression Statement Expression Domain Maximum Estimated
Identifier Identifier Syntax Extent Slope Benefit

X0 S149 sqrt(r2j) 2.43 0.56 -0.17s
X1 S150 sqrt(r2k) 2.43 0.56 -0.17
X2 S159 exp(1.2*(1.0/(rrj - 1.8))) 0.90 0.45 1.69s
X3 S159 exp(rrj) 1260084.28 0.15 1.44s
X4 S160 exp(1.2*(1.0/(rrk - 1.8))) 0.90 0.45 1.69s
X5 S160 exp(rrk) 1260084.28 0.15 1.44s

benefit. The X2 and X4 expressions are the exponential calls, with associated math. They

have equal benefit and therefore each receive a 512KB allocation. We have omitted the

Pareto chart because it is trivial.

The Mesa version achieves 4.5× better accuracy with 5.6× less memory usage than

the original code with the manual LUT optimization, but the performance is 18% slower.

Table 7.9 shows the results. We modified the Mesa-generated code by hand to include all of

the expressions optimized by the original version. By doing so we were able to closely match

the performance of the original version with 3.5× better accuracy and 2.8× less memory

usage. The manual optimizations were needed because Mesa was unable to generate code

for two of the complex expressions in the Stillinger-Weber program, and do not reflect a

limitation of our methodology.

Mesa 2 . 0 : So lv ing opt imiza t i on problem
Optimizing for cache s i z e 4194304
64 s o l u t i o n s (p o s s i b l e)
36 s o l u t i o n s (ac tua l)
3 s o l u t i o n s (pareto optimal)
So lu t i on Error Bene f i t Opt imizat ions
C0 0 .000 e+00 0 .000 e+00
C1 1.137 e+01 1 .697 e+09 X4
C2 4.550 e+01 3 .394 e+09 X2 ,X4
S e l e c t s o l u t i o n : 2
X2 Di = 0.90 Mi = 0.45 Ei = 2.275 e+01 Bi = 1.697 e+09 Si = 524289 (512KB)
X4 Di = 0.90 Mi = 0.45 Ei = 2.275 e+01 Bi = 1.697 e+09 Si = 524289 (512KB)
Mesa 2 . 0 : Generating opt imized code

Figure 7.19: Optimization results for Stillinger-Weber program.

102

Table 7.9: Stillinger-Weber accuracy and performance comparison.
(Intel Core 2 Duo E8300, 2.83GHz, 6MB L2 cache, single core)

Program Execution Performance Application Memory
Version Time Speedup Error Usage
Original 8.79s 1.66× 0.135% 5.6MB

Mesa (manual) 8.99s 1.63× 0.038% 2.0MB
Mesa (automated) 10.37s 1.41× 0.030% 1.0MB

Unoptimized 14.62s 1.00× 0.000% 0.0MB

We also investigated the difference in accuracy between the original and Mesa versions and

found that the ad hoc transformation propagates and magnifies error terms by combining

LUT values in successive expressions. Mesa avoids this problem by optimizing only the

critical expressions. The disparity in memory usage between these versions is because (1)

Mesa stores single-precision values and the original tables were double-precision, and (2)

fewer expressions were optimized in the Mesa version. Mesa allowed us to experiment with

different LUT sizes, and we discovered that we could improve accuracy significantly with a

relatively small table. Another benefit from using Mesa is that the optimization required no

coding except for the addition of the pragma.

7.5 Neural Network

Our sixth case study evaluates a neural network program [53] developed by Chuck Anderson

at CSU. The program consists of around 1000 lines of C. Profiling shows that the evaluation

of transfer functions in the neural network is a performance bottleneck that consumes ap-

proximately 47% of the execution time. Two commonly used transfer functions are logistics

f = 1.0/(1.0 + ex), and hyperbolic tangent f = tanh(x), both of which call elementary

functions as shown in Figure 7.20.

Mesa analysis of the neural network code is trivial for the hyperbolic tangent case, since

the only candidate expression is an individual elementary function with a single argument.

The logistics function is slightly more interesting because of the associated math as shown in

Figure 7.21. Because of the simplicity of the transfer functions, Mesa 2.0 achieves the same

103

#pragma LUTOPTIMIZE
// l o g i s t i c f unc t i on
f loat l o g i s t i c (f loat x) {

f loat fReturn = (1 . 0 / (1 . 0 + exp(−x))) ;
return fReturn ;

}
#pragma LUTOPTIMIZE
// hype rbo l i c tangent
f loat l o g i s t i c (f loat x) {

f loat fReturn = (tanh (x)) ;
return fReturn ;

}

Figure 7.20: CSU neural network transfer functions.

Mesa 2 . 0 : Optimizat ion s t a r t ed .
S1016 : Train . cpp (l i n e 1016) fReturn =((1.0 / (1 . 0 + exp(((−x))))))
Number o f Statements = 1
S1016 : X0 = exp(x)
S1016 : X1 = (1 .00000000 e +00/(1.00000000 e+00+exp(x)))
Number o f Expres s ions = 2
[X0 ,X1]
Number o f Const ra in t s = 1
Mesa 2 . 0 : So lv ing opt imiza t i on problem
Optimizing for cache s i z e 4194304
2 opt im i za t i on s
X0 Di = 8.13 Mi = 29.14 Ei = 1.492 e+04 Bi = 3.419 e+09 Si = 4194304
X1 Di = 8.13 Mi = 0.25 Ei = 1.280 e+02 Bi = 4.752 e+09 Si = 4194304
Mesa 2 . 0 : rank c u l l i n g i s d i s ab l ed
4 s o l u t i o n s (p o s s i b l e)
3 s o l u t i o n s (ac tua l)
2 s o l u t i o n s (pareto optimal)
So lu t i on Error Bene f i t Opt imizat ions
C0 0 .000 e+00 0 .000 e+00
C1 1.280 e+02 4 .752 e+09 X1
Se l e c t s o l u t i o n : 1
X1 Di = 8.13 Mi = 0.25 Ei = 1.280 e+02 Bi = 4.752 e+09 Si = 4194304 (4096KB)
Mesa 2 . 0 : Generating opt imized code

Figure 7.21: CSU neural network, logistics function.

Table 7.10: Mesa results on neural network code
(Intel Core 2 Duo E8300, 2.83GHz, 6MB L2 cache, single core)

Transfer Original Optimized Performance Maximum
Function Time Time Speedup Error
Logistics 8.0s 3.6s 2.2× 8.7X10−2%

Hyperbolic Tangent 10.9s 3.9s 2.8× 6.3X10−1%

results on the hyperbolic function, as reported with Mesa 1.1 [77]. The logistics function

gains a slight advantage with Mesa 2.0 because of the additional math that it incorporates.

The results for the neural network are shown in Table 7.10.

104

7.6 Summary and Evaluation

The first criterion we use to evaluate our methodology is the performance speedup and

accuracy achieved by the optimized applications. These are measured quantitatively through

a comparison with the original program. The second criterion is programming effort, which

we define qualitatively as the effort needed to apply one or more LUT transforms with Mesa.

We gauge programmer effort in terms of the ease of use of the tool as compared to the

manual process. Our case studies demonstrate that LUT optimizations are effective on the

applications shown, because they show significant performance improvements while meeting

the accuracy requirements of the application. Table 7.1 show performance speedups ranging

from 2.3× to 6.8×, while degrading accuracy by at most a fraction of a percent.

Mesa reduces the programming effort significantly in several ways. First, our tool auto-

mates source source code analysis, thereby avoiding the need for the programmer to search

for candidate expressions. Second, the programmer is presented with error and performance

estimates without having to instrument the code manually. Third, our tool automatically

generates and integrates LUT code, freeing the programmer from coding. Fourth, our tool

computes effective cache allocations for LUT data, using a method that would be very cum-

bersome if not impossible by hand. Finally, the tool simplifies experimentation with different

solutions. We commonly call Mesa from a script to repeatedly optimize, compile, and run a

program until we are satisfied with the outcome. For example, we scripted the generation,

compilation, and execution of all 64 optimal and suboptimal solutions for the solar radiation

code, and were able to get results in under an hour.

Mesa has improved our own process for tuning applications whose performance is bound

by elementary functions. Our original ad hoc LUT implementation for the SAXS discrete

code required several weeks of development time and experimentation, even after the base

algorithm was implemented and tested. Characterization of error and performance was

especially time-consuming, because it required multiple runs of the entire SAXS application.

In addition, we simply had no way to estimate the performance or error impact of our LUT

105

transforms. In contrast, the SAXS continuous code was never optimized manually because

Mesa has been available during its development period. We can now revisit the optimization

of the SAXS discrete and continuous code, or any other application, in a matter of minutes.

Finally, Mesa error analysis allows us to quickly identify efficient set of LUT parameters

while constraining the LUT data to reside in mid-level cache. We find that the Mesa code very

closely matches the performance of the manually developed SAXS code. New applications

are equally easy to optimize with Mesa, requiring at most the insertion of a few pragmas.

Currently the most time consuming aspect of using Mesa is domain profiling, but even this

is aided by the automatic generation of instrumented code.

106

Chapter 8

Limitations and Threats to Validity

In this chapter we evaluate the limitations of our methodology and tool and the threats to

validity in the empirical research presented in this thesis.

8.1 Limitations

Several of the limitations of our methodology are inherent to LUT transformation, automated

or otherwise. The first of these is that LUT transformation only benefits programs that are

performance-limited by elementary functions or other expensive computations. Despite fre-

quent calls to elementary functions, some applications are still memory-limited because of

the extensive data sets involved. When memory is the bottleneck, computational cost can

often be ignored because of overlap with memory operations. For such applications, the

additional memory allocated for LUT data can actually reduce performance. However, per-

formance profiling tools usually make it easy to determine whether performance bottlenecks

are computational or memory related. Programs that are not clearly limited by either com-

putation or memory access can be evaluated as potential candidates for LUT optimization

by applying tools based on hardware performance counters, such as PAPI [54]. These tools

report the cost of computation and memory overhead with high precision. The Roofline

performance model also offers insight into the balance between computation and memory

access in an application [78].

A second limitation of LUT transformation is that decreased accuracy may violate the

accuracy requirements of some applications. Many scientific programs require at least double-

precision, and some codes are even less tolerant of error, requiring quad-precision and be-

yond [81]. The approximation of functions with LUT transformation can often reduce accu-

racy to below that of single-precision. In contrast, applications such as image processing and

107

multimedia are known to have reduced requirements for precision, and can therefore achieve

a significant benefit from LUT transformation without compromising results. Numerous

precedents for reducing precision to gain performance exist, as discussed in Section 3.1.

The third limitation of applying LUT transformation on current systems is that LUT

data must share mid-level cache memory with the application to avoid cache penalties. Some

applications may depend on complete ownership of cache memory, in which case using cache

resources for LUT data could reduce performance. However, the applications that we have

studied share the mid-level cache with LUT data without serious performance degradation as

shown by our case studies. Mesa allows the programmer to specify the amount of memory

used for LUT transformation. Thus the programmer can explicitly share cache memory

between the LUT data and the application.

A couple of additional limitations are specific to our methodology. In particular, it can

be difficult to model application error. Despite being able to quantify many aspects of

the error introduced by a LUT transformation, a general method to compute the effect on

application accuracy remains an open problem. The propagation of error through arbitrary

sections of application code poses a complex numerical analysis problem that is unique to

each application. This implies that some level of experimentation will still be necessary to

evaluate the effect of a LUT transformation on accuracy.

One limitation of the current Mesa tool is that it parses only C and C++ code, and the

generated code must be compiled by a C++ compiler. Mesa also only handles a single source

module. Beyond that, there are many syntactic elements that are not handled, including

type casts, structure and pointer access, and const variables, and the tool handles only the

elementary functions listed in Section 6. In addition, Mesa optimizes assignment expressions,

including operators in the set {=, +=, -=, *=, /=}, and initializers, but will not find

computation in other constructs. Mesa does not analyze or generate LUT transformations

with multiple variables. Cache size detection is not automatic, and the total number of

expressions is limited to 64. Finally, error analysis for linear interpolation is limited to

108

the boundary method, and the analytic method works only for elementary functions, not

arbitrary expressions. These are limitations of the tool, not the methodology.

8.2 Threats to Validity

This section is organized according to the four types of validity cited by Wohlin et al. that

must be examined in empirical research: conclusion validity, internal validity, construct

validity, and external validity [79].

Conclusion validity describes the degree to which conclusions made about the relation-

ship between variables is justified. Our study exhibits conclusion validity because we clearly

demonstrate the relationship between LUT optimization and program behavior. More specif-

ically, we show (1) that programs with LUT optimization are faster than those without, (2)

that programs with LUT optimization are less accurate than those without, and (3) that au-

tomated LUT optimization takes less programmer effort and produces more accurate results

than manual methods.

Internal validity is achieved when an empirical study shows a cause and effect relationship

between the treatment and external variables. One threat to internal validity is to have no

explanation for why the treatment would produce the results shown. Another threat is the

failure to control independent and dependent variables. In our research, we present a clear

rationale for the causal relationship between LUT optimization and the dependent variables:

performance, accuracy, and programming effort. In addition, the new and modified code

introduced into a program by our methodology is the only change to the program, thus the

changes in the dependent variables must be caused by our LUT optimization.

Construct validity is achieved when the treatment accurately represents the concepts

that we intend to study, and when the measurements of dependent variable are valid. Our

automated tool performs LUT optimization in a manner consistent with the LUT techniques

described in the literature. In addition, the measurement of performance as execution time,

and accuracy as the absolute or relative error from the original results, are consistent with the

extensive body of research on program performance. In a similar manner, using programming

109

time as a proxy for programming effort is consistent with current practices in the area of

productivity measurement.

External validity addresses whether the results of the study will generalize beyond the

scope of the study data. Empirical research is always limited with respect to the number

and scope of the applications that can be evaluated. Our empirical evaluation consists of

case studies of six applications in four scientific areas, of which two were partially written

by the authors. Further research is required to demonstrate applicability to other domains.

However, we expect that our results will generalize to applications that have the same limi-

tations on performance caused by elementary functions, assuming that other environmental

factors (compilers, languages, hardware) are consistent.

110

Chapter 9

Conclusions and Future Work

In this chapter we list our conclusions and describe future work in the area of LUT opti-

mization.

9.1 Conclusions

The contributions of this thesis are (1) a comprehensive methodology for LUT transforma-

tion, (2) an investigation of error analysis and performance modeling methods, (3) a novel

approach to LUT optimization, and (4) a software tool that automates many aspects of LUT

optimization. We describe our methodology and tool that substantially automate the appli-

cation of LUT optimization to scientific programs. We find that our methodology is effective

at speeding up code that is performance limited by elementary functions. Our case studies

demonstrate speedups from 1.4× to 6.8× with reasonable accuracy. We further demonstrate

that automation improves programmer productivity by reducing the effort required to iden-

tify and implement sets of LUT transforms, and by providing information that helps the

programmer make the critical tradeoff between error and performance.

Our research extends the literature on software LUT optimization. More specifically, we

present a variety of techniques for fast and accurate error estimation, and we introduce a

performance model that predicts the benefit of a LUT transform. Our work investigates some

of practical aspects of LUT implementation, including domain reduction, partial domains,

sampling methods, and the parallel performance of LUT code. Furthermore, we present a

novel approach to LUT optimization that performs analysis of expressions over the scope

of one or more functions. The Mesa tool provides an alternative to ad hoc practices that

require significant programmer effort. Mesa automates the time-consuming and error-prone

tasks associated with LUT methods. We find that the tool makes it easy to evaluate whether

111

LUT tuning is beneficial for a given application, and it helps us to identify sets of expressions

that can benefit from LUT transformation.

9.2 Future Work

Continued work on making the error model more accurate is the primary area for future work.

Successful prediction of application error would improve the ability of Mesa to correctly

choose the most effective set of LUT transformations. One approach would be to selectively

introduce error for each individual expression, then measure the resulting application error,

thereby quantifying the effect of each transformation on application accuracy. The results

could be incorporated into the error model to improve its estimation capability.

Applications often have performance bottlenecks that are encountered one after another,

but Mesa assumes that the cache memory allocation persists throughout program execution.

We could extend our work by taking into account the temporal aspect of cache allocation.

For example, we could successively allocate and initialize LUT data for different functions

over time, thereby providing more benefit over the lifetime of the program.

Another area for future work is the characterization of performance on multi-core systems

with shared caches. As shown by our work, the performance of LUT transformations depends

the availability of mid-level cache memory for LUT data. The evaluation of performance

on a single-core system is straightforward, and we see a clear degradation of performance

when LUT exceeds the cache size. Multi-core architectures are more complex, making the

evaluation more difficult. Current systems generally have dedicated L2 and shared L3 caches,

and recent systems now incorporate L4 cache. The performance characteristics of such

systems is made more complicated by cache sharing between cores.

Additional work could focus on research questions that have not been addressed in the

current literature. For example, we are not aware of a study that compares memoization to

LUT transformation. While similar in many aspects, these approaches differ in important

ways. The goal would be to characterize the conditions under which each technique is more

effective. The use of polynomial reconstruction in software LUT transformation is another

112

area that needs research. The hardware literature has made an extensive study of this, but

the usefulness of the technique in software is unknown.

113

REFERENCES

[1] Mohammad J. Akhbarizadeh and Mehrdad Nourani. Hardware-based IP routing using
partitioned lookup table. IEEE/ACM Transactions on Networking, 13(4):769–781,
2005.

[2] Carlos Alvarez, J. Corbal, and Mateo Valero. Fuzzy Memoization for Floating-Point
Multimedia Applications. IEEE Transactions on Computers, 54(7):922–927, 2005.

[3] Gene M. Amdahl. Computer Architecture and Amdahl’s Law. Solid-State Circuits
Newsletter, 12(3):4–9, Summer 2007.

[4] AMPL: A Modeling Language for Mathematical Programming, 2011.
http://www.ampl.com/.

[5] Charles W. Anderson, Saikumar V. Devulapalli, and Erik A. Stolz. Determining
mental state from EEG signals using parallel implementations of neural networks.
Scientific Programming, 4:171–183, Sep. 1995.

[6] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf,
Samuel Webb Williams, and Katherine A. Yelick. The Landscape of Parallel
Computing Research: A View from Berkeley. Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, CA, Dec. 2006.

[7] Woongki Baek and Trishul M. Chilimbi. Green: a framework for supporting
energy-conscious programming using controlled approximation. In Proceedings of the
2010 ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’10, pages 198–209, New York, NY, USA, 2010. ACM.

[8] J. Barth, D. Plass, E. Nelson, C. Hwang, G. Fredeman, M. Sperling, A. Mathews,
T. Kirihata, W.R. Reohr, K. Nair, and Nianzheng Caon. A 45 nm SOI Embedded
DRAM Macro for the POWER Processor 32 MByte On-Chip L3 Cache. IEEE
Journal of Solid-State Circuits, 46(1):64 –75, Jan. 2011.

[9] Bonmin Solver Project, 2012. http://projects.coin-or.org/Bonmin.

[10] Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Piotr Luszczek, and Stanimir Tomov.
Using Mixed Precision for Sparse Matrix Computations to Enhance the Performance
while Achieving 64-bit Accuracy. ACM Transations on Mathematical Software,
34:1–22, 2008.

[11] Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E. Post.
Software Development Environments for Scientific and Engineering Software: A Series
of Case Studies. In Proceedings of the 29th international conference on Software
Engineering, ICSE ’07, pages 550–559, Washington, DC, USA, 2007. IEEE Computer
Society.

114

[12] Steven C. Chapra and Raymond P. Canale. Numerical Methods for Engineers: With
Programming and Software Applications. McGraw-Hill, New York, NY, USA, 3rd
edition, 1997.

[13] G. Cong, S. Seelam, I. Chung, H. Wen, and D. Klepacki. Towards a Framework for
Automated Performance Tuning. In Proceedings of the 2009 IEEE International
Symposium on Parallel and Distributed Processing, pages 1–8, Washington, DC, USA,
2009. IEEE Computer Society.

[14] Daniel A. Connors and Wen-mei W. Hwu. Compiler-Directed Dynamic Computation
Reuse: Rationale and Initial Results. In Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture, pages 158–169, Washington, DC, USA,
1999. IEEE Computer Society.

[15] Couenne Solver Project, 2012. http://projects.coin-or.org/Couenne.

[16] L. Dagum and R. Menon. OpenMP: an Industry Standard API for Shared-memory
Programming. Computational Science Engineering, IEEE, 5(1):46–55, Jan. 1998.

[17] Catalina Danis, John Thomas, John Richards, Jonathan Brezin, Cal Swart, Christine
Halverson, Rachel Bellamy, and Peter Malkin. Towards Applying Complexity Metrics
to Measure Programmer Productivity in High Performance Computing. SE-CSE ’08.
ACM, New York, NY, USA, 2008.

[18] D. Defour. Cache-optimised methods for the evaluation of elementary functions.
Technical Report 2002-38, Ecole normale superieure de Lyon, Lyon, France, 2002.

[19] L. Deng, C. Chakrabarti, N. Pitsianis, and X. Sun. Automated Optimization of
Look-up table Implementation for Function Evaluation on FPGAs. In Proceedings of
SPIE, volume 7444, 2009.

[20] Jeremie Detrey, Florent de Dinechin, and Xavier Pujol. Return of the Hardware
Floating-point Elementary Function. In Proceedings of the 18th IEEE Symposium on
Computer Arithmetic, pages 161–168, Washington, DC, USA, 2007. IEEE Computer
Society.

[21] Yonghua Ding and Zhiyuan Li. A Compiler Scheme for Reusing Intermediate
Computation Results. In Proceedings of the International Symposium on Code
Generation and Optimization, page 279, Washington, DC, USA, 2004. IEEE
Computer Society.

[22] James Epperson. An Introduction to Numerical Methods and Analysis. John Wiley &
Sons, New York, NY, USA, 2007.

[23] Stuart Faulk, Adam Porter, John Gustafson, Walter Tichy, Philip Johnson, and
Lawrence Votta. Measuring HPC productivity. International Journal of High
Performance Computing Applications, 2004:459–473, 2004.

115

[24] Robert J. Francis. A tutorial on logic synthesis for lookup-table based FPGAs. In
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 40–47, Los Alamitos, CA, USA, 1992. IEEE Computer Society.

[25] Shmuel Gal. Computing Elementary Functions: A New Approach for Achieving High
Accuracy and Good Performance. In Proceedings of the Symposium on Accurate
Scientific Computations, pages 1–16, London, UK, 1986. Springer-Verlag.

[26] O. Glatter and O. Kratky, editors. Small angle x-ray scattering. Academic Press,
London, UK, 1982.

[27] David Goldberg. What every Computer Scientist should know about Floating-point
Arithmetic. ACM Computing Surveys, 23:5–48, Mar. 1991.

[28] Brian Gough. An introduction to GCC for the GNU compilers gcc and g++. Network
Theory Ltd., Bristol, IK, 2004.

[29] S. Graham and M. Snir. The NRC Report on the Future of Supercomputing.
CTWatch Quarterly, 1, Feb. 2005.

[30] Marty Hall and McNamee Paul. Improving Software Performance with Automated
Memoization. The Johns Hopkins APL Technical Digest, 18:254–260, 1997.

[31] Mohit Haran, James A. Catherwood, and Paulette Clancy. Diffusion of Group V
Dopants in Silicon-Germanium Alloys. Applied Physics Letters, 88(17):173502, Apr.
2006.

[32] David Harris. An Exponentiation Unit for an OpenGL Lighting Engine. IEEE
Transactions on Computers, 53(3):251–258, 2004.

[33] Thomas H.Cormen, Charles E. Leiserson, Ronald L.Rivest, and Clifford Stein.
Introduction to Algorithms (Second Edition). The MIT Press, Cambridge, MA, USA,
2001.

[34] John L. Hennessy and David A. Patterson. Computer Architecture. Morgan
Kaufmann, Waltham, MA, USA, 2007.

[35] Lorin Hochstein, Taiga Nakamura, Victor R. Basili, Sima Asgari, Marvin V. Zelkowitz,
Jeffrey K. Hollingsworth, Forrest Shull, Jeffrey Carver, Martin Voelp, Nico Zazworka,
and Philip Johnson. Experiments to Understand HPC Time to Development.
CTWatch Quarterly, 2:24–32, Nov. 2006.

[36] R. Hyde. The Art of Assembly Language. No Starch Press, San Francisco, CA, USA,
2003.

[37] Intel. IA-32 Intel Architecture Optimization Reference Manual. Beaverton, OR, USA,
2006.

[38] Intel. Intel Math Kernel Library Reference Manual. Beaverton, OR, USA, 2011.

116

[39] Douglas L. Jones. Efficient FFT Algorithm and Programming Tricks. Connexions,
2007. http://cnx.org/content/m12021/1.6/.

[40] K. V. Seshu Kumar. Value Reuse Optimization: reuse of Evaluated Math Library
Function Calls through Compiler Generated Cache. SIGPLAN Notices, 38:60–66,
Aug. 2003.

[41] Dong-U Lee, Altaf Abdul Gaffar, Oskar Mencer, and Wayne Luk. Optimizing
Hardware Function Evaluation. IEEE Trans. Comput., 54:1520–1531, Dec. 2005.

[42] Chunhua Liao, Daniel J. Quinlan, Thomas Panas, and Bronis R. de Supinski. A
ROSE-Based OpenMP 3.0 Research Compiler Supporting Multiple Runtime Libraries.
In IWOMP, pages 15–28, 2010.

[43] Michael D. Linderman, Matthew Ho, David L. Dill, Teresa H. Meng, and Garry P.
Nolan. Towards program optimization through automated analysis of numerical
precision. In Proceedings of the 8th annual IEEE/ACM international symposium on
Code generation and optimization, CGO ’10, pages 230–237, New York, NY, USA,
2010. ACM.

[44] Eugene Loh, Michael L. Van De Vanter, and Lawrence G. Votta. Can Software
Engineering Solve the HPCS Problem? In Proceedings of the Second International
Workshop on Software Engineering for High Performance Computing System
Applications, pages 27–31, New York, NY, USA, 2005. ACM.

[45] Silvano Martello and Paolo Toth. Knapsack problems: algorithms and computer
implementations. John Wiley & Sons, New York, NY, USA, 1990.

[46] Mathematical Acceleration Subsystem (MASS), 2012.
http://www-01.ibm.com/software/awdtools/mass.

[47] Matlab Lookup Tables, 2010.
http://www.mathworks.com/help/toolbox/simulink/ug/bqiqpa3.html.

[48] MESA Project, 2012. http://www.cs.colostate.edu/hpc/MESA.

[49] MINLP Solver Project, 2012.
//www.neos-server.org/neos/solvers/minco:MINLP/AMPL.html.

[50] Michael Mishchenko, Brian Cairns, Greg Kopp, Carl Schueler, Bryan Fafaul, James
Hansen, Ronald Hooker, Tom Itchkawich, Hal Maring, and Larry Travis. Accurate
Monitoring of Terrestrial Aerosols and Total Solar Irradiance. 88(5):677–691, May
2007.

[51] Ramon E. Moore and Fritz Bierbaum. Methods and Applications of Interval Analysis).
Society for Industrial and Applied Math (SIAM), Philadelphia, PA, USA, 1979.

[52] NEOS Solverss, 2012. http://www.neos-server.org/neos/solvers/index.html.

117

[53] Neural Network Software, 2011.
http://www.cs.colostate.edu/~anderson/meOther.html.

[54] PAPI Project, 2012. http://icl.cs.utk.edu/papi/index.html.

[55] George Paul and M. Wayne Wilson. Should the Elementary Function Library Be
Incorporated Into Computer Instruction Sets? ACM Trans. Math. Softw., 2:132–142,
Jun. 1976.

[56] Matt Pharr and Randima Fernando. GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computation. Addison-Wesley
Professional, Boston, MA, USA, 2005.

[57] J. A. Piñeiro, J. D. Bruguera, and J. M. Muller. Faithful Powering Computation
Using Table Look-Up and a Fused Accumulation Tree. In ARITH ’01: Proceedings of
the 15th IEEE Symposium on Computer Arithmetic, Washington, DC, USA, 2001.
IEEE Computer Society.

[58] PRMS Project, 2010. http://water.usgs.gov/software/PRMS.

[59] Rapid Radiative Transfer Model, 2010. http://rtweb.aer.com/rrtm_frame.html.

[60] John Riley. Writing Fast Programs: A Practical Guide for Scientists and Engineers.
Cambridge International Science Publishing, Cambridge, UK, 2006.

[61] ROSE Project, 2011. http://www.rosecompiler.org/.

[62] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze,
and Dan Grossman. Enerj: approximate data types for safe and general low-power
computation. In Proceedings of the 32nd ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’11, pages 164–174, New York, NY, USA,
2011. ACM.

[63] S. Subramanya Sastry, Rastislav Bodik, and James E. Smith. Characterizing
Coarse-Grained Reuse of Computation. In 3rd ACM Workshop on Feedback Directed
and Dynamic Optimization, pages 16–18, 2000.

[64] SAXS Project, 2010. http://www.cs.colostate.edu/hpc/SAXS.

[65] M.J. Schulte and Jr Swartzlander, E.E. Hardware designs for exactly rounded
elementary functions. IEEE Transactions on Computers, 43(8):964–973, 1994.

[66] Scientific Python Interpolation, 2011.
http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html.

[67] F. Shull, J. Carver, L. Hochstein, and V. Basili. Empirical study design in the area of
high-performance computing (HPC). In Proceedings of International Symposium on
Empirical Software Engineering, pages 305–314, Nov. 2005.

118

[68] Marc Snir, David A. Bader, James C. Browne, Brad Chamberlain, Peter Kogge, John
Mccalpin, Rami Melhem, and David Padua. A framework for measuring
supercomputer productivity. The International Journal of High Performance
Computing Applications, 18(4):417–432, 2004.

[69] K. Sobti, L. Deng, C. Chakrabarti, N. Pitsianis, X. Sun, J. Kim, P. Mangalagiri,
K. Irick, M. Kandemir, and V. Narayanan. Efficient Function Evaluations with
Lookup Tables for Structured Matrix Operations. In 2007 IEEE Workshop on Signal
Processing Systems, Oct. 2007.

[70] S. Squires, M. Van De Vanter, and L. Votta. Software Productivity Research In High
Performance Computing. CTWatch Quarterly, 2, Nov. 2006.

[71] F.H. Stillinger and T.A. Weber. Computer Simulation of Local Order in Condensed
Phases of Silicon. Physical Review B, 31(8):5262–5271, 1985.

[72] Portable Hardware Locality Suite, 2011.
http://www.open-mpi.org/projects/hwloc.

[73] SYMPHONY Solver Project, 2012. http://projects.coin-or.org/SYMPHONY.

[74] Ping-Tak Peter Tang. Table-driven Implementation of the Exponential Function in
IEEE Floating-point Arithmetic. ACM Transactions on Mathematical Software,
15(2):144–157, 1989.

[75] Ping-Tak Peter Tang. Table-lookup Algorithms for Elementary Functions and their
Error Analysis. In Proceedings of the 10th IEEE Symposium on Computer Arithmetic,
1991.

[76] C. Wilcox, M. Strout, and J. Bieman. Mesa: Automatic Generation of Lookup Table
Optimizations. In Proceedings of the 4th International Workshop on Multicore
Software Engineering, IWMSE ’11, New York, NY, USA, 2011. ACM.

[77] C. Wilcox, M. Strout, and J. Bieman. Tool support for software lookup table
optimization. Scientific Programming, 19(4):213–229, Dec. 2011.

[78] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful
visual performance model for multicore architectures. Commun. ACM, 52:65–76, Apr.
2009.

[79] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and A. Wesslen.
Experimentation in Software Engineering: An Introduction. Kluwer Academic
Publishers, Boston/Dordrecht/London, 2000.

[80] W. F. Wong and E. Gogo. Fast Hardware-Based Algorithms for Elementary Function
Computations Using Rectangular Multipliers. IEEE Transactions on Computers,
43(3):278–294, 1994.

119

[81] X.S. Li Y. Hida and D.H. Bailey. Quad-double arithmetic: Algorithms,
implementation, and application. Technical Report Technical Report LBNL-46996,
Lawrence Berkeley National Laboratory, Berkeley, CA, Oct. 2000.

[82] Marvin Zelkowitz, Victor Basili, Sima Asgari, Lorin Hochstein, Jeff Hollingsworth, and
Taiga Nakamura. Measuring productivity on high performance computers. In
Proceedings of the 11th IEEE International Software Metrics Symposium, pages 6–,
Washington, DC, USA, 2005. IEEE Computer Society.

[83] M Zhang, J.G. Delgado-Frias, and S. Vassiliadis. Table driven Newton scheme for high
precision logarithm generation. In Proceedings of the IEEE Computers and Digital
Techniques, volume 141, 1994.

[84] Yuanrui Zhang, Lanping Deng, P. Yedlapalli, S.P. Muralidhara, Hui Zhao,
M. Kandemir, C. Chakrabarti, N. Pitsianis, and Xiaobai Sun. A Special-Purpose
Compiler for Look-up Table and Code Generation for Function Evaluation. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2010, pages 1130 –1135,
Mar. 2010.

120

