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ABSTRACT 

 

EVALUATION OF SEASONAL VENTILATION CHANGES AND THEIR EFFECT 

ON AMBIENT DUST, ENDOTOXIN AND BIOAEROSOL CONCENTRATIONS IN 

A DAIRY PARLOR 

 

This pilot study measured the impact of seasonal ventilation changes on 

concentrations of organic dust, endotoxin and bacteria in one modern dairy milking 

parlor.  Pyrosequencing, a new non-target specific molecular methodology was used to 

characterize airborne bioaerosols.  

Area samples for inhalable dust, respirable dust, endotoxin, and bacteria were 

collected in one modern dairy parlor during both summer and winter seasons. Five 

sampling sessions were performed at approximately weekly intervals during each season. 

The summer season included an open facility with fresh mechanical air ventilation. The 

winter season consisted of a closed facility with no fresh air ventilation and forced heat.  

Aerosol size distributions, air velocity inside the parlor, humidity, temperature, and CO2 

were also sampled on each trip. Two-way ANOVA was performed to test statistically 

significant differences between variables.   

No significant differences between mean concentrations of inhalable dust, 

respirable dust, or bacteria were seen by season. Endotoxin showed a near significant 

differen ce (p=0.06). CO2 concentration doubled during the winter season as compared to
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the summer (p<0.001) due to reduced ventilation. The aerosol size distribution did not 

vary between seasons (MMOD=12µm) indicating that seasonal ventilation changes do 

not affect the particle size distribution. The most common bacterial genera in both 

seasons were Clostridium (anaerobic), Oscillibacter and Staphylococcus – all Gram 

positive bacteria. Gram-positive bacterial genera occurred more frequently during the 

summer than winter seasons. Gram-negative bacteria cell counts increased in the winter 

season. Average concentrations of total bacteria in the facility during summer and winter 

were 2839 and 7008 counts/m
3
, respectively.  

This study was the first to apply Pyrosequencing to measure bioaerosols in a dairy 

environment.  The diversity of bacteria and predominance of Gram-positive bacteria is 

consistent with studies in swine and poultry facilities.  Concentrations of dust, endotoxin, 

and bacteria were low during both seasons in this milking parlor, most likely due to the 

new construction of the facility.  These study results will inform the design of future 

comprehensive studies of aerosol exposure interventions in dairy operations.  

Understanding these aerosol exposures and potential interventions is important for 

reducing respiratory disease among workers in the dairy industry. 
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CHAPTER 1 
 

INTRODUCTION 
 

Inhaling certain dusts or other particulates has been observed to produce breathing 

difficulties since Georgius Agricola in 1556 (Holt, 1987). Since that time, observations 

along with research have led to better understanding of respiratory illnesses in the work 

environment. Today, agriculture is ranked one of the most hazardous occupations in the 

United States (Kirkhorn, et al., 2000) (Rautiainen, et al., 2002). A segment of the 

agriculture industry in the United States is made up of animal confinement operations, 

with dairy farms falling into this category. The dairy industry has moved from small 

milking operations into much larger operations, with increased herd sizes (USDA, 2010) 

(GAO, 2001). Large animal confinement operations provide unique environments for 

many respiratory hazards to concentrate, increasing employee exposure to organic dusts, 

endotoxins, and bioaerosols (Rylander, et al., 1983) (Millner, 2009) (Barber, et al., 1992). 

Numerous correlations have been observed between working in animal confinement 

operations and respiratory symptoms, including chest tightness, wheezing, bronchitis, and 

cough along with other more severe respiratory conditions such as hypersensitivity 

pneumoconiosis, organic dust toxic syndrome (ODTS), as well as acute and chronic 

airway inflammation (Heederik, et al., 1991) (Donham, 1986) (Choudat, et al., 1994) 

(Reynolds, et al., 2009).  
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 Organic dust, endotoxin, and airborne bacteria have all been found in animal 

confinement operations, including dairy operations (Kullman, et al., 1998) (Cormier, et 

al., 1991). These contaminants have the potential to cause various respiratory diseases 

(Schenker, et al., 1998). Organic dusts are complex mixtures of organic materials such as 

feed, hay, dander or other animal particles, urine, fecal material, chemicals, insect parts, 

bacteria, fungi, pollen grains, and endotoxins (Schenker, et al., 1998). Endotoxins are 

located on Gram-negative bacterial cell walls and are components of organic dust. Both 

Gram-negative and Gram-positive bacteria adhere to dust particles and are also a part of 

‘organic dust’ (Schenker, et al., 1998) (DeMaria, et al., 1980).  

 
Currently there are few guidelines pertaining to exposures that dairy workers may 

face. Most of the regulated occupational exposure levels regarding agricultural dust are 

set for grain dust (oat, barley, and wheat). A standard for organic dusts found in animal 

confinement operations does not currently exist (Burch, et al., 2010). Other standards set 

for dust by the Occupational Safety and Health Administration (OSHA) do not take into 

account the type of dust or the bioactive nature of dust found in animal facilities making 

adequate protection of the worker a concern (Donham, 1986). Characterization of 

exposures to endotoxin and bacteria have been researched, but not enough data exists to 

understand all of the health implications associated. Occupational limits for endotoxin 

exposure have been suggested, but a regulation has not yet been passed (DECOS, 2010) 

(Reynolds, et al., 1996) (Donham, et al., 1995). Few research studies exist on controlling 

airborne concentrations of organic dust, endotoxin, or airborne bacteria, while even less 

research exists regarding control specifically for the dairy environment. New methods of 

quantifying and identifying bacteria specific to animal confinement industries are 
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available, but need further testing. One aspect to providing a safe and healthy workplace 

for all employees in animal confinement operations will be to adequately understand the 

exposures associated with these contaminants along with methods of controlling the 

exposures for each specific work environment.
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CHAPTER  2 

LITERATURE REVIEW 

History 

Throughout history, many individuals have identified the relationship between 

dust inhalation that results in a subsequent disease outcome. Georgius Agricola noted in 

his work De re Metallica (1556) that certain kinds of dusts produced breathing 

difficulties (Agricola, et al., 1950). Later Bernardino Ramazzini (1713) made similar 

associations and observations, writing how the inhalation of certain materials produced a 

specific and identifiable disease outcome (Wright, 1940). In another observation, 

Ramazzini made an explicit reference regarding how farmers appeared to suffer from 

increased respiratory illness, which he believed resulted from dust exposure in their work 

environments (Donham, 1986). Today, agriculture is one of the most hazardous 

occupations in the United States (Kirkhorn, et al., 2000) (Rautiainen, et al., 2002).  The 

nature of work in agriculture occupations provides common and almost unavoidable 

exposures to organic dusts and bioaerosols.  Those employed specifically in agricultural 

animal operations, such as animal production (poultry, swine, beef, and dairy cattle), are 

exposed to many inhalable and potentially hazardous constituents, contributing to 

numerous respiratory diseases (Kirkhorn, et al., 2000) (Rautiainen, et al., 2002). 
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Animal Confinement Operations 

Animal operations are known to be hazardous work environments (Rylander, et 

al., 1983) (Millner, 2009). The movement towards intensive livestock production has 

increased the confinement of the livestock, thereby increasing the concern for indoor air 

quality inside the animal housing (Barber, et al., 1992). Such a high density of animals 

located within enclosed buildings creates increased exposures to any dusts, bacteria, 

fungi, and toxins that may be released by the environment or animals
 
(Millner, 2009). 

Airborne contaminants in buildings where animals are housed are of significant concern 

for the respiratory health of employees working inside these buildings. Numerous 

correlations have been observed between animal confinement operations and respiratory 

symptoms including chest tightness, wheezing, bronchitis, and cough along with other 

more severe respiratory conditions such as hypersensitivity pneumonitis, organic dust 

toxic syndrome (ODTS), as well as acute and chronic airway inflammation (Rylander, et 

al., 1983) (Rylander, et al., 2006) (Heederik, et al., 1991) (Choudat, et al., 1994). Much 

work has been done to quantify respiratory exposures in poultry and swine operations, 

whereas less is known about the airborne exposures in the dairy industry, specifically 

dairy parlors (Donham, 1986). 

 

The Dairy Industry 

In the last eight years, the dairy industry has condensed from many small 

operations into larger, regional facilities (USDA, 2010). Dairy operations with more than 

500 head increased by 20% percent, from 2,795 operations in 2001, to 3,350 operations 

in 2009, with a decrease of 35% seen in smaller dairy farms (<500 head) (USDA, 2010).. 
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The increase in herd size produces higher levels of contaminants from cleaning, milking, 

and feeding, which can become concentrated in buildings where the animals and 

employees are located (Donham, 1986). Routine exposures to endotoxin in dairy parlors 

have been documented (Burch, et al., 2010) (Reynolds, et al., 2009). Dairy barns have 

also been confirmed to be rich with Gram-positive bacteria (Poole, et al., 2010). Dairy 

barns uniquely provide a humid environment for the growth of bacteria, which can then 

be aerosolized during milking and cleaning operations (Lange, et al., 1997). Inhalation of 

bioaerosols has potential to cause respiratory diseases such as ODTS, asthma, allergic 

rhinitis, hypersensitivity pneumonitis, and bronchitis (Donham, 1986) (Lange, et al., 

1997). Employees in the dairy industry are exposed to the following airborne respiratory 

hazards: organic dusts, allergens, endotoxin, airborne microorganisms, noxious gases, 

fungi, and molds (Schenker, et al., 1998). In this thesis, specific hazards of organic dusts, 

endotoxin, and airborne bacteria and their control methods will be addressed.  

Organic Dusts 

Organic dusts of dairy or livestock facilities stem from organic materials and are 

mixtures of feed, hay, dander or other animal particles, urine, fecal material, chemicals, 

insect parts, bacteria, fungi, pollen grains, and endotoxins (Rask-Anderson, et al., 2006) 

(Schenker, et al., 1998). Organic dust can range in size from very small particles (<5µm) 

to greater than 30µm in diameter (Donham, 1986). Due to the large size distribution, 

organic dusts can penetrate and affect all regions of the lung, causing inflammation that 

may influence the occurrence of occupational respiratory diseases (Schenker, et al., 1998) 

(Rask-Anderson, et al., 2006). Symptoms associated to organic dust exposure that many 

research studies have documented are nose and throat irritation, cough, shortness of 
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breath, and wheezing (Rylander, et al., 1989) (Rylander, et al., 2006) (Kullman, et al., 

1998). Organic dusts in swine and dairy noted decreased lung function with decreases in 

forced expiratory volume in one second (FEV1) as well as forced expiratory flow (FEF) 

(Cormier, et al., 1991) (Choudat, et al., 1994) (Donham, et al., 1995) (Donham, et al., 

2000). Most of the guidelines regarding agricultural dust pertain to grain dust (oat, barley, 

and wheat) and a standard for organic dust found in animal confinement operations does 

not currently exist. The current TLV for organic dust falls under the term ‘particulates not 

otherwise specified’ (PNOS) due to the little data that exists. For PNOS to apply, the 

organic dust needs to be proven as insoluble or poorly soluble and have low toxicity 

(ACGIH, 2010). The TLV for PNOS suggest that airborne concentrations be kept under 

3mg/m
3 

for respirable particulates and under 10mg/m
3
 for all inhalable particulates 

(ACGIH, 2010). The Occupational Health and Safety Administration (OSHA) have 

similar permissible exposure limits (PEL) regarding ‘particulates not otherwise 

regulated’. According to OSHA, respirable particulates should be kept under 5mg/m
3
 and 

total particulate concentrations not to exceed 15mg/m
3 

(OSHA, 1989). Using these 

standards does not take into account the type of dust (i.e. organic, inorganic) or where the 

dust may have come from. A proposed occupational exposure guideline (OEL) of 2.4 

mg/m
3
 for total dust has been recommended to prevent adverse work-related health 

effects in swine and poultry production, but it has not yet been adopted. This proposed 

OEL is based on consistent findings using regression models that correlate dust exposure 

with associated decreases in forced vital capacity (FVC) and FEV1. (Burch, et al., 2010) 

(Reynolds, et al., 2009) (Donham, et al., 2000). Research supports the conclusion that 

organic dusts have adverse effects on employee health and that the current safety 
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guidelines do not accurately protect the worker from such exposures (Schenker, et al., 

1998) (Rylander, et al., 1989) (Christiani, 1996).  

Endotoxin 

Endotoxin exposure has been acknowledged to adversely effect lung function 

(DeMaria, et al., 1980) (DECOS, 2010) (Rylander, et al., 1998)
 
(Zejda, et al., 1994). 

Influenza-like symptoms, shortness of breath, chest tightness, airway inflammation, 

cough, and decrease in FEV1 and FEF have all been reported associated with endotoxin 

exposure (Kirkhorn, et al., 2000) (Rylander, 2002) (Smit, et al., 2008) (Donham, et al., 

2000).  Endotoxins are noninfectious, heat stable lipopolysaccharides (LPS) that are 

found on the outer cell wall of Gram-negative bacteria (Rylander, et al., 1982) (Rylander, 

1985). Endotoxins are frequently found as part of organic dust in animal operations 

(Reynolds, et al., 2009).  Inhalation of endotoxin containing material or the endotoxin 

itself induces lung inflammation by eliciting an immune response within the respiratory 

system at a cellular level (Poole, et al., 2010). Lipid A, the biologically active lipid part 

of the LPS, is hypothesized to be the cause of adverse health effects associated with 

endotoxin exposure (Kirkhorn, et al., 2000) (Burch, et al., 2010). See figure 2.1 for visual 

representation of endotoxin and lipid A structure.  
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Figure 2.1: Gram-negative bacterial endotoxin (lypopolysaccharide) structure (BIOMIN, 

Herzogenburg, Austria). 

 

Lipid A is made up of hydroxylated fatty acids of varying lengths. Previous 

studies have used endotoxin’s 3-hydroxy fatty acid (3-OHA) agents as chemical markers 

of endotoxin in environments (Burch, et al., 2010). The internalization of endotoxin 

(LPS) in macrophages and neutrophil cells results in local production of inflammatory 

cytokines in the lung that may migrate into the blood, possibly causing some of the 

suspected systemic reactions (DECOS, 2010) (Rylander, 2002). This migration of 

cytokines into the lung and possibly the blood may lead to the observed clinical effects of 

airway inflammation, bronchoconstriction, toxic pneumonitis, and ODTS (Rylander, 

2002). Guidelines regarding total dust (TLV, PEL) leave room for error when applied to 

organic dusts containing endotoxin because the biological activity of the airborne 

particulates in the dust is not taken into account (Barber, et al., 1992). Guidelines 

specifically regarding endotoxin exposure in the workplace have been suggested, but a 

regulation has yet to be set.  Recommendations made by the Health Council of the 

Netherlands suggests that endotoxin exposure not exceed 90 endotoxin units (EU)/m
3
 as 

an 8 hour time weighted average (TWA) (DECOS, 2010). In swine and poultry facilities, 

recommended limits for total endotoxin exposure are 614 EU/m
3
 and 900 EU/m

3
, 
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respectively (Donham, et al., 1995) (Reynolds, et al., 1996). Currently there are no 

specific recommendations made for dairy facilities. Lack of data regarding endotoxin 

exposure and corresponding symptoms is problematic in creating a standard that will 

keep workers in animal operations safe (Reynolds, et al., 1996) (Rask-Anderson, et al., 

1989).  

Airborne Bacteria 

 Airborne bacteria are components of organic dusts. Little documentation about 

the concentration and variety of bacteria in organic dust exists for animal confinement 

industries (Rylander, et al., 2006) (Dutkiewicz, 1978) (Nonnenmann, et al., 2010) 

(Fallschissel, et al., 2010). Airborne bacterial concentrations may have an integral role to 

play in influencing some of the symptoms seen with organic dust exposure (Poole, et al., 

2010). Until recently, understanding any kind of worker exposure to airborne bacteria 

required culture-based techniques (Nonnenmann, et al., 2010). A majority of bacteria 

found in the air cannot be grown in culture. Also, only living bacteria found in the sample 

will grow, underestimating the actual airborne bacterial concentrations (Nonnenmann, et 

al., 2010) (Fallschissel, et al., 2010) (Letourneau, et al., 2009). Due to the drawbacks 

associated with culture-based techniques, new studies have characterized the bacteria 

through the use of pyrosequencing and other molecular-biological techniques for DNA or 

RNA  (Nonnenmann, et al., 2010) (Dowd, et al., 2008). Bacterial tag-encoded flexible 

amplicon pyrosequencing (bTEFAP) method has been utilized in bacterial identification 

and concentration of airborne bioaerosols in poultry facilities and has been used to 

characterize bacteria found in cattle feces (Nonnenmann, et al., 2010) (Dowd, et al., 

2008). Pyrosequencing offers identification of bacteria in the sample with a very high 
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level of precision (≥95%) as well as being able to describe the genera and species of 

bacteria as percentages and counts (Nonnenmann, et al., 2010). Significant differences in 

concentrations observed between DNA/RNA methods and culture-based methods are 

credited to the possible limited detection capability of culture-based methods 

(Nonnenmann, et al., 2010). Currently guidelines have not been set regarding counts of 

bacteria (count/m
3
). This study is the first to use the bTEFAP method to determine 

airborne bacterial concentrations in dairy parlors. 

Research Studies 

  Symptoms of increased cough, wheezing, shortness of breath, as well as nose and 

throat irritation have all been reported among workers in swine, poultry, and dairy 

professions. A study on airway inflammation among workers in poultry houses reported 

that baseline FEV1 values were significantly lower among poultry workers than controls 

(Rylander, et al., 2006). The study also reported a significant increase in the symptoms of 

dry cough, cough with phlegm, and shortness of breath among the poultry workers as 

compared to controls. Research regarding the respiratory health of swine producers 

reported an increase in symptoms of chronic bronchitis as well as increased asthmatic 

symptoms when compared to non-farming counterparts (Zejda, et al., 1993). Lower mean 

values of FEV1 were also consistently observed among swine producers when compared 

to non-farming controls after controlling for age, height, and smoking. A five year 

prospective study on respiratory disease in swine confinement workers documented that 

34% of workers reported episodes of ODTS when compared to blue-collar controls 

(Donham, et al., 1990). 
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Endotoxin exposure among swine farmers has been associated with decreased 

lung function and increased occurrence of chronic cough (Zejda, et al., 1994). Zejda et al. 

(1994) noted that respiratory response was related to the presence of endotoxin, not the 

dust levels, after looking at swine workers in low dust levels. A study looking at 

agricultural workers from various industries found a positive dose-response relationship 

between endotoxin exposure and adverse respiratory effects such as wheezing, shortness 

of breath, and cough (Smit, et al., 2008). Endotoxin moiety 3-OHA has been significantly 

associated with increased nasal airway inflammation (Burch et al. 2009). 3-OHA has also 

been seen to induce inflammatory cytokine responsiveness in human monocytes (Poole, 

et al., 2010).  Donham et al. (1989) found a relationship between endotoxin exposure and 

subsequent decrease in FEV1 in non-smoking swine confinement workers. 

Average concentrations of endotoxin measured in various animal industry ranges 

between 220EU/m
3
 and 11,443EU/m

3 
(Kullman, et al., 1998) (Zejda, et al., 1994) (Smit, 

et al., 2008) (Saito, et al., 2009). Endotoxin concentrations calculated in dairy farms 

varied from 220EU/m
3
 to 850EU/m

3 
(Saito, et al., 2009) (Smit, et al., 2008) (Reynolds, et 

al., 2009).  The presence and absence of symptoms observed with varying levels of 

endotoxin contributes to the difficulty of setting a standard regarding a safe exposure 

level (DECOS, 2010)   

Endotoxin exposure in adulthood has been associated with many adverse health 

effects (Heederik, et al., 1991) (Smit, et al., 2008) (Zejda, et al., 1994). However, 

research supports the concept that endotoxin exposure in childhood may be preventative 

for development of allergies and atopy (Rylander, 2002) (von Mutius, et al., 2000) (Rask-

Anderson, et al., 1989) (Ernst, et al., 2000) (Merchant, et al., 2005). A study performed 
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by von Mutius et al. (2000) found that populations of Swiss children living on farms who 

were exposed to endotoxin during childhood had decreased seasonal symptoms of 

hayfever and decreased development of atopic sensitization when compared to peers not 

raised on farms. Significant lower prevalence of asthma was found among children who 

were raised on farms as opposed to peers in the same rural area without farm contact 

(Ernst, et al., 2000). Rask-Anderson et al. (1989) found no correlation between endotoxin 

exposure and respiratory symptoms in adult Swedish dairy farmers. Subject choice may 

have influenced the lack of correlation if dairy farmers chosen were exposed to 

endotoxins from farm environments as children. The author did not look at childhood 

exposure. A study by Merchant et al. (2005) on animal farming operations in Iowa 

reported that allergies and atopy of children decreased with farming exposure, but not the 

prevalence of asthma. The author suggested that this most likely occurred from the 

different nature of Iowa farming to farming in Europe. European farms tend to be smaller 

and are in close proximity to living quarters. The farm in Iowa was an intensive livestock 

operation located away from the employee housing. Children were only exposed when 

brought to the farm on a visit or to help their parents. The brief and infrequent exposure 

to the farm environment likely contributed to the increased prevalence of asthma. 

Because endotoxin elicits an immune response upon inalation, it has been suggested that 

tolerance can be developed to endotoxin exposure and that early exposure can be 

beneficial in immune development (Rylander, 2002) (Rylander, 1981) (Burch, et al., 

2010)
 
(von Mutius, et al., 2000) (Ernst, et al., 2000). Today, fewer individuals are likely 

to grow up with exposure to endotoxin during childhood, due the decreasing number of 

family farms and increases in confinement operations among the animal industry. 
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Research performed on dairy workers in Colorado found that most of the workers did not 

have farming backgrounds (Roman-Muniz, et al., 2006). The movement away from small 

farming operations to large, intensive livestock operations limits childhood exposures and 

increases the likelihood that endotoxin exposure would cause the associated symptoms 

seen in workers of animal confinement operations (USDA, 2010) (Ernst, et al., 2000).  

Another element of the complex organic dust mixture is both Gram-negative and 

Gram-positive airborne bacteria. Gram-negative bacteria are associated with occurrence 

of endotoxin, which is a part of the bacterial cell wall (DeMaria, et al., 1980). Normal air 

will usually contain from 10
3
 to 10

4
 bacteria/m

3 
(Rylander, 1985)

 
. The lung can defend 

against these normal environmental exposures, but adverse reactions to bacteria occur 

when the respiratory system is compromised or overloaded (Rylander, 1985). Histamine 

release and congregation of macrophages and neutrophils aid the inflammation process 

associated with bacterial inhalation (Rylander, 1981). Bacteria found in swine and 

poultry have been documented to induce precipitating antibodies and hypersensitivity 

pneumonitis among those exposed (Rylander, 1985) (Cormier, et al., 1990) (Cormier, et 

al., 1991) (Eduard, 1997). In a research study regarding biological agents, prevalence of 

COPD and chronic bronchitis were higher in livestock farmers than crop farmers and 

dairy farmers especially had significantly increased rates of COPD (Eduard, et al., 2009).  

Subjects ever exposed to biological dusts had an increased risk of chronic obstructive 

bronchitis (OR 3.19; 95% CI 1.27 to 7.97), emphysema (OR 3.18; 95% CI 1.41 to 7.13), 

and COPD (OR 2.70, 95% CI 1.39 to 5.23) (Matheson, et al., 2005).  

Concentrations of airborne bacteria vary among the different animal confinement 

industries. An average of 3.3x10
5
 CFU/m

3
 of culturable bacteria was found across five 
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types of swine housing (Chang, et al., 2001). In Milner et al. (2009) the average airborne 

bacterial exposure concentration for dairy farms was found to be 1.7x10
7
 CFU/m

3
. A 

study looking at the swine barns reported culturable mesophilic bacteria in concentrations 

up to 2.29x10
6
 CFU/m

3
 (Letourneau, et al., 2009). Letourneau et. al (2009) also used 

quantitative polymerase chain reaction (PCR) to identify fungi in the facility with 

measured success, a method similar to bTEFAP, but without the use of pyrosequencing. 

Use of the bTEFAP technique by Nonnenmann et al. (2010) yielded total bacterial counts 

of 7503 cells/m
3 

in poultry houses.
  
Specifically, poultry and swine production operations 

have been found to contain abundant levels of Bacilllus, Corynebacterium, Enterococci, 

Escherichia coli, Staphylococcus,and  Actinobacter, with many other bacterial genera 

being found (Rylander, 1985) (Cormier, et al., 1990) (Nonnenmann, et al., 2010) 

(Eduard, 1997). Potential lung toxicity from airborne bacteria is correlated to not only the 

total number of bacteria but also the bacterial species involved (Cormier, et al., 1990). 

Data regarding counts and species of bacteria found in the dairy operations is at this time 

very limited.  

Contaminant Control 

 Concern for the hazard associated with occupational exposure to dust and 

bioaerosols necessitates a method of control.  Control of dust and other contaminants in 

animal confinement operations have been attempted with demonstrated successes, but 

prove yet to be effective for all agents involved or for the work environment. Using a 

self-contained breathing apparatus (SCBA) or supplied air respirator is limited in animal 

confinement operations because of heat and the uncomfortable nature of the device, 

hindering the employees working ability (Kirkhorn, et al., 2000). To use SCBAs there 
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must also be training and purchasing of equipment, making it costly in addition to 

cumbersome. The N-95 disposable respirator was found to reduce acute negative health 

effects when worn by workers not previously exposed in swine confinement barns 

(Dosman, et al., 2000). Engineering control methods should be assessed first and are 

usually a better option than the use of personal protective equipment (PPE) because they 

do not rely on employee compliance. Adequate ventilation of animal housing, decreasing 

the number of animals, and management of manure will generally minimize dust and 

endotoxin exposure, but a study performed by Kim et al.(2007) discovered that 

significant differences between total dust and airborne microorganisms was not seen 

when ventilation rates were changed (Millner, 2009) (Kim, et al., 2007). Kim et al. 

(2007) looked at three ventilation conditions in a pig growing/finishing facility and 

documented that as ventilation rates increased concentrations of total dust and airborne 

microorganisms did not see a statistically significant reduction. Respirable dust 

concentrations were controlled well by the increase in ventilation (Kim, et al., 2007).  

A common dust control method tried in swine and poultry housing was the 

sprinkling of oil, either to the feed or air, to reduce dust generation (Barber, et al., 1992) 

(Ellen, et al., 2000) (Nonnenmann, et al., 2004) (Zhang, et al., 1996) (Senthilselvan, et 

al., 1997). Oil sprinkling has shown to be an effective method in reducing total dust and 

endotoxin levels, but not microbial concentrations. Barber et al. (1992) found that the 

addition of soybean oil to pig feed significantly reduced overall dust levels, but respirable 

dust fractions were not affected. This observation has led to hypothesis that oil will not 

affect the reduction of particle sizes smaller than 5.0m (Barber, et al., 1992). There was 

also no significant difference in microorganism counts between the oil and no oil 
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treatments according to Barber et al. (1992). A 52% reduction in total dust levels was 

seen in piggeries when canola oil was sprayed at an amount of ~8g/pig/day 

(Nonnenmann, et al., 2004). Oil sprinkling in a swine confinement building effectively 

reduced dust concentrations from 37-89% depending on the oil application rate, 

according to Zhang et al. (1996). The more oil that was sprinkled, the more dust control 

was observed, but slippery walkways were observed with a daily dosage of 20mL/m
2
. 

The author suggests the application of 10mL/m
2
 of oil to effectively control the dust and 

minimize any safety hazards (Zhang, et al., 1996). Reductions in endotoxin and dust 

concentrations were seen in swine barns upon sprinkling of canola oil throughout the 

facility (Senthilselvan, et al., 1997). Application of oil sprinkling on the floor of the 

swine facility once a day decreased endotoxin levels (EU/m
3
) from 3,983.5±498.3 to 

452.3±65.8 (Senthilselvan, et al., 1997). Similar drops were seen in dust concentrations 

(mg/m
3
) from 2.41±0.09 down to 0.15±0.02. Respirable dust concentrations were not 

measured in this study to see if oil sprinkling was effective (Senthilselvan, et al., 1997). 

Poultry houses also saw a reduction of 65% in the total dust after spraying with 10% oil 

and pure water mixture (Ellen, et al., 2000). Oil has shown to be very effective in 

controlling dust concentrations in animal confinement facilities. 

 In poultry houses, the use of electrostatic precipitators has been shown to reduce 

dust from house emissions
 
with 40-60% efficiency (Takai, et al., 1998) (Chai, et al., 

2009).  Poultry facilities have seen some dust reduction with the use of electrostatic space 

charge systems (Millner, 2009). A reduction of Salmonella enteritidis from 89% to 39% 

was found on the feathers of chicks with the use of an electrostatic space charge system 

downstream (Gast, et al., 1999). Reduced levels of airborne dust particles were also 
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observed with the presence of the electric space charge system (Gast, et al., 1999). Wet 

scrubbing devices can be used to capture particles and have been shown to be efficient at 

removing dust from the air (Takai, et al., 1998). Unfortunately, both electrostatic 

precipitators and wet scrubbers can be impracticable when applied to this work 

environment. The size of the system that would be required to effectively handle the large 

volumes of air in modern livestock buildings would be costly and energy intensive 

(Takai, et al., 1998). Reducing dust particles as well as airborne microorganisms would 

help in decreasing the spread of disease between animals or between animals and 

humans. 

Summary and Research Needs 

 Studies performed by Reynolds et al. (2009) and Burch et al. (2010) have 

reported respiratory illnesses among employees in the dairy industry. Studies of the dairy 

environment have observed high exposures to organic dust and bioaerosols, which have 

been shown to increase lung inflammation and decrease airway function in swine and 

poultry (Rask-Anderson, et al., 2006) (Heederik, et al., 1991) (Donham, 1986). Airborne 

bacteria are found inorganic dust and are either Gram-negative or Gram-positive in 

origin. Much data has been published regarding endotoxin from Gram-negative bacterial 

cell walls, but there is a lack of research regarding the true diversity of exposure to Gram-

positive bacteria and other microbial constituents. Poole et al. (2010) published 

information confirming the importance Gram-positive bacteria play in pulmonary 

response. Because endotoxin and airborne bacteria (Gram-negative and positive) both are 

biological agents found in organic dust, research needs to be aimed at making a 
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distinction between the exposures, understanding how each  may affect the lung (Eduard, 

et al., 2009).   

In addition to a better understanding of the role endotoxin and airborne bacteria 

play in the pulmonary response, additional research needs to be done to look across the 

current testing methods and view possible inconsistencies. Research has been done 

comparing various testing methods for endotoxin, but little research has been done to 

compare airborne bacterial testing methods using RNA or DNA (Saito, et al., 2009) 

(Reynolds, et al., 2005) (Thorne, et al., 2010). There is a research need to identify and 

better understand the concentration and variety of the bacteria that make up organic dusts 

in various animal confinement industries. Studies using different testing methods for 

bacteria are difficult to compare, and the current culture based methods have limitations. 

New molecular biological methods using DNA/RNA offer significant advancement in the 

area of bacterial identification, but their applicability bioaerosol sampling needs 

refinement. The bTEFAP method for characterizing and quantifying bacteria appears to 

be a solution in airborne bacterial identification, but further testing using this method 

needs to occur to test its reliability and accuracy. The bTEFAP method should 

additionally be compared to other standard bioaerosol techniques such as Q-PCR, 

fluorescence, and culture-based.  

Control of dust and bioaerosols in the swine and poultry environment have been 

studied in detail, with possible methods showing great potential, but such methods have 

not been evaluated in the dairy environment. The dairy facility has shown similar 

exposures to respiratory hazards that have been controlled in swine and poultry. Another 

research focus regarding occupational health exposure in the dairy environment should be 
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evaluating if the effective control methods in swine and poultry would be effective in the 

dairy industry as well.  
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CHAPTER 3 

PURPOSE AND SCOPE 

  

Industrialized dairy operations have made the milking process very streamlined 

and efficient, keeping operations running 24hrs per day, seven days a week. Cows are 

pushed through the milking process at high rates, requiring employees to stay in confined 

environments until their shift (8-10hrs) is finished. Research has demonstrated that 

workers in animal confinement operations suffer from increased respiratory health issues; 

however, it is not well known how ventilation changes in such facilities will affect the 

quantity, dispersion, or growth of organic dusts, endotoxins, and bacteria in the air. 

Understanding how changes in the ventilation will affect the concentrations of such 

exposures is essential in reducing exposures and preventing respiratory illness. 

The purpose of this study was to evaluate how different seasonal changes in the 

ventilation of a dairy facility would affect the aerosol size distribution as well as the 

concentrations of organic dust, bacteria, and endotoxin in one dairy parlor. Results will 

facilitate design of further comprehensive research on reducing exposures to these 

contaminants.  The project also proposed to evaluate the application of pyrosequencing to 

air sampling environments to characterize Gram-positive and Gram-negative airborne 

bacteria. This pilot study data will facilitate the design of more comprehensive studies 
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regarding respiratory disease among dairy workers and take the next step to begin 

identifying and evaluating effective interventions to reduce occupational respiratory 

disease.  
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CHAPTER  4 

MATERIALS AND METHODS 

Background 

All data collection was performed at one modern milking parlor located in 

Colorado.  Five sampling trips were performed approximately weekly during July 2010 

to September 2010. These five sampling trips established baseline data for warm 

conditions, when the parlor has all fans running and curtains open to outside air 

movement. The second five sampling trips were performed biweekly in December 2010, 

and established baseline data for the colder season, which represented a worst case 

scenario. During the colder months, the facility is completely closed, fans are off, and 

heaters occasionally run. Comparisons were made between different seasons to 

understand how these seasonal ventilation changes effect the air movement and 

concentration of airborne endotoxin, microbial, and dust.  

  The study dairy is one of four commercial dairies operated by the same company. 

The study facility employs roughly 64 employees and cares for 4,900 head of cows. 

Cows are milked three times per day in three shifts during a 24 hour period. The milking 

parlor is two Double 24 Parallel Parlors side by side. The facility is enclosed and 

employees use automated milking equipment. The milking parlor area opens into a 

holding barn, which is fully covered except for an opening in the roof for fresh air, and



24 

 

moveable curtains halfway up the exterior walls to allow air movement when necessary 

or to hold in heat. Heavy plastic curtains separate the milking alley from the holding pen. 

Mechanical ventilation in the facility consisted of eight stationary axial fans above the 

milking alley to move air in the facility (2 hp, 36 inches in diameter). Two large tunnel 

fans were located in the front walkway drawing air from outside into the facility (1 hp, 46 

inches in diameter). In the eaves separating the milking parlor from the holding pen were 

four tunnel fans (1hp, 36 inches in diameter) pulling air from the milking parlor into the 

holding area. See Figure 4.1 for a blueprint of the milking parlor with fan locations as 

well as sampling locations.  

All sampling was performed by the same individual to minimize potential 

sampling bias.  Sampling was performed for four hours and conducted during 1
st
 shift 

(7am-3pm), specifically from 8am-12pm. All sampling pumps were hung from tripods 

approximately four feet high and placed in the middle of the milking alley, approximately 

30ft into the milking alley and 30ft from the back wall of the milking alley heading into 

the holding area. See Figure 4.1 for a visual diagram of sampling locations. For the rest 

of the discussion the label of ‘worker zone’ designates the milking alley way where the 

employees work. 
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Figure 4.1: Location of fans and sampling locations. 

 

 

Key: Fan Locations at dairy parlor 

          = Axial Fan (2 hp, 36 inches in diameter) 

         = Tunnel Fan (1 hp, 46 inches in diameter) 

         = Axial Fan (1hp, 36 inches in diameter) 

         = Direction of fan air stream 

Key: Approximate Sampling locations at dairy 

parlor 

     =Location where anemometer reading was taken 

     = Location where outside measurements of 

temperature, humidity, and CO2 were taken 

       = Location where tripod was set up for all area 

samples and where PAS measurements were taken. 

Also where measurements of indoor temperature, 

humidity, and CO2 were taken 
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All preparation for sampling visits was performed in the Industrial Hygiene 

Laboratory of Colorado State University, Fort Collins, Colorado. All pumps were pre and 

post-calibrated using a Bios Dry-Cal Lite Primary Flow Meter (Bios, Butler, NJ). Pumps 

were calibrated to 4.0L/min if used for an inhalable button sampler and to 2.5L/min for 

use with a cyclone sampler. Pump numbers and calibration flow rates, button sampler 

numbers, cyclone sampler numbers, microbial sample numbers, filter pre-weights and 

post weights, as well as all environmental conditions during the sampling visit were 

documented on a sampling data sheet (Appendix A).  

Dust Collection 

Inhalable dust samples were collected using 25mm SKC Button aerosol samplers 

(SKC Inc., Eighty Four, PA) attached to personal sampling pumps (SKC AirCheck 

XR5000, Eighty Four, PA) calibrated at 4.0 L/min. The PVC filters (5.0µm, SKC Inc., 

Eighty Four, PA) were weighed prior and post sampling to determine mass of dust 

collected. Pre and post-weighing occurred after allowing filters to dry in a dessicater for 

24 hours prior to weighing and post sampling to remove moisture. All weighing was 

performed using a Mettler MX5 analytical microbalance (Mettler Toledo, Sercom, 

Columbus, OH).  One sample was collected in each worker zone and a field blank was 

used for control. Field blanks were suspended in the same area as the sampling occurred. 

Dust concentrations were reported as mg/m
3
.  
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Respirable Dust 

Respirable dust samples were collected using 37mm aluminum cyclone samplers 

(SKC Inc., Eighty Four, PA). The PVC filters (SKC, 5.0µm) were handled identically to 

the Button sampler filters. Personal sampling pumps (MSA Escort ELF, Pittsburgh, PA) 

attached to cyclone samplers calibrated at 2.5 L/min were placed in each worker zone. A 

field blank was again used as a control. Respirable dust samples were reported as mg/m
3
.  

Aerosol Size Distribution 

Particle size distributions were measured using a Grimm portable aerosol 

spectrometer (Grimm Industries, PAS 1:108, S/N 8F0020008, Douglasville, GA). The 

Grimm meter was placed on top of the tripod in each worker zone and allowed to run for 

an average of 15 minutes per sample. Two samples were taken in each worker zone 

during the four-hour sampling interval. A total of four measurements were made each 

trip. The meter could not be kept running for the full sampling period in the facility due 

to possible water damage to the instrument. Grimm Dust Monitor Software (#1177/01 

v3.0) was used to obtain dust size mass distributions. Distributions were used to calculate 

the mass mean optical diameter (MMOD) and the geometric standard deviation (σg). The 

MMOD is the center of the dust size distribution where 50% of the particle size is above 

the calculated MMOD and 50% is below the MMOD value on a log scale. The σg 

identifies the variation of the particle size in the distribution. Formulas for calculating the 

MMOD and σg can be found in Appendix B. MMOD and σg for trips 01, 02, and 03 are 

not available due to malfunction of the instrument. MMOD values were reported in µm. 
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Endotoxin  

Filters used to collect dust in both the cyclone and button samplers were placed in 

sterile 100mL tubes and frozen (0°F) after post weighing for later endotoxin analysis.  

Endotoxin analysis was performed using the Pyrogene Recombinant Factor C (rFC) 

Endotoxin Assay (Lonza Inc, Walkersville, MD). Factor C (rFC) is activated by 

endotoxin binding. The activated enzyme acts upon the fluorogenic substrate to produce 

product fluorescene. Figure 4.2 represents the pathway of endotoxin detection using the 

rFC method. 

Figure 4.2: Visual representation of the rFC endotoxin detection method of the assay (Lonza 

Inc, Walkersville, MD). 

Endotoxin 

 

 

 

The level of fluorescence measured is proportional to the endotoxin concentration 

in the sample. The sample endotoxin level is calculated relative to a standard curve. All 

samples were extracted in 10 ml certified pyrogen-free (PF) water (Lonza, Inc.) 

containing 0.05% Tween 20 for 1 hr at 22°C with continuous shaking. Serial dilutions of 

endotoxin standards (Escherichia coli O55:B5; Lonza, Inc.) and sample extracts were 

prepared using sterile, PF water with Tween 20. Samples were added to a 96-well plate 

followed by 100 μl of a mixture of enzyme, buffer, and fluorogenic substrate (Thorne, et 

al., 2010). All samples, control and regular, were run in triplicate to ensure quality 

control. Cyclone and blank samples were run at full strength due to low dust 

rF

C 

rF

C 
Fluorogenic  

Substrate 

Product 

Fluroescence 
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concentrations. Button samples were run on a 1:25 dilution. Plates were incubated at 

37°C for 1 hr and read in a fluorescence microtiter plate reader (Biotek Instruments, 

Winooski, VT, USA; FLX800TBIE) at excitation/emission 380/440 nm (Saito, et al., 

2009). Background fluorescence was subtracted. Four assay reagent blank wells served as 

control and reference for the pf status of the reagent water, centrifuge tubes, pipette tips, 

and microplates (Saito, et al., 2009) (Thorne, et al., 2010). Quality assurance spiking 

assays were run with samples to assess matrix interference or enhancement (Thorne, et 

al., 2010). Results were given in endotoxin units (EU). Triplicate results were further 

analyzed using Excel (Microsoft, 2010) to observe if all triplicate results were within 

three standard deviations of the mean. Blanks were subtracted from sample results and 

ending values were divided by the volume of air to report data in EU/m
3
.  

Airborne Bacteria 

Sampling for bioaerosols was performed using Button samplers with a specific 

3.0µm gelatin filter (SKC, Product # 225-9551, Eighty Four, PA). Gelatin filters arrived 

with 10 packages of five filters and were refrigerated (38°F). A new five pack of filters 

was used each sampling trip to minimize contamination. To inhibit possible 

contamination, Button samplers were washed in a 70% ethanol solution prior to filter 

application and sampling. Gelatin filters were suggested to be kept refrigerated (38°F) by 

the manufacturer until use and were transported on ice to and from sampling location. 

Counters were wiped down with a 70% ethanol solution before filters were applied to the 

cleaned button. Forceps used for application were wiped with a new ethanol wipe 

between samples.  All filter loading for microbial sampling was performed the night 

before sampling occurred. Buttons with filters were then placed in personal Whirlpak 
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bags (Nasco, 4oz) to prevent contamination and placed in refrigerator (3°F) overnight. 

Immediately post sampling, buttons with the sampled filters were returned to their 

designated Whirlpak bag and transported on ice back to the laboratory. Counters were 

again cleaned using 70% ethanol before filters were removed from buttons. Filters were 

placed in sterile 100ml tubes and frozen (0°F) until shipping for analysis. Appendix E 

contains standard operating procedures (SOPs) used for airborne bacterial collection. 

Again, forceps were cleaned using a new ethanol wipe between each sample. To control 

for the possible contamination on the first five trips, bacterial concentrations found on the 

blanks were subtracted from the sample counts.  

Due to the possible contamination identified in the first five sampling trips, a 

more stringent cleaning method was employed between sampling trips to ensure no 

contamination would occur in winter season samples. Button samplers were allowed to 

soak for 20 minutes in a bleach solution (Bleach-Rite Disinfectent, MarketLab, 

Caledonia, MI) before being autoclaved prior to sampling. Buttons were autoclaved in 

personal autoclave bags. The autoclave cycle consisted of 20 minute dry sterilization 

(121°C) with 20 minutes of drying. Filters were applied to autoclaved button samplers the 

night before sampling and all filter application and removal from the buttons was 

performed in a biohazard hood. Forceps were wiped with a new ethanol wipe between 

each sample. Samplers were again placed in personal Whirlpak bags during transport to 

prevent contamination. The same sterile care was taken post sampling when filters were 

removed from buttons and placed in sterile 100ml tubes. Appendix D contains the SOP 

used for winter season collection. Tubes were then placed in freezer (0°F) until ready to 

ship.  
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Pyrosequencing 

Frozen airborne bacterial  samples were overnighted on ice packs to the Research 

and Testing Laboratory in Lubbock, TX, for pyrosequencing. Samples were overnighted 

containing only the filter inside the sterile tube, no reagents were added. Only samples 

belonging to trips one and two were overnighted with 10ml of DNAse free water added 

before shipment, but due to leakage of one of the containers, the addition of water was 

discontinued prior to shipment of other samples. Samples were analyzed using the 

bacterial tag-encoded flexible (FLX) amplicon pyrosequencing (bTEFAP) technique as 

previously described (Dowd, et al., 2008) (Nonnenmann, et al., 2010). The genomic 

DNA collected by the gelatin filters was extracted in 500μl RLT buffer in a Qiagen 

TissueLyser (Qiagen, Valencia, CA),followed by a DNA spin column, and quantified 

using a Nanodrop spectrophotometer (Nyxor Biotech, Paris, France) (Nonnenmann, et 

al., 2010). Massively Parallel Titanium Bacterial tag-encoded FLX amplicon 

pyrosequencing (bTEFAP) was performed as previously described, utilizing titanium 

reagents and a one-step PCR, mixture of Hot Start and HotStar (Qiagen, Valencia, CA) 

high fidelity taq polymerases, and amplicons originating from the 27F region numbered 

in relation to E.coli rRNA (Dowd, et al., 2008). Following sequencing, all failed 

sequence reads and low quality sequence ends and tags were removed, and sequences 

were depleted of any non-bacterial ribosomal DNA sequences and chimeras using custom 

software and Black Box Chimera Check software B2C2 (Research and Testing 

Laboratories, LLC, Lubbock, Texas). Sequences less than 300 base pairs (bp) were also 

removed. To determine the identity of bacteria in the samples, sequences were queried 
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using a distributed Basic Local Alignment Search Tool (BLASTn) .NET algorithm 

against a database of high quality 16s bacterial ribosomal DNA sequences derived from 

the National Center for Biotechnology Information (NCBI) database (Dowd, et al., 2008) 

(Nonnenmann, et al., 2010). Database sequences were characterized as high quality based 

on the criteria of the Ribosomal Database Project (version 9). Using a .NET and C# 

analysis pipeline (Dowd, et al., 2008), the resulting BLASTn outputs were compiled, 

validated using taxonomic distance methods and data reduction analysis as previously 

described (Dowd, et al., 2008) (Nonnenmann, et al., 2010). Results were obtained in both 

genera and species of bacteria. Of the genera reported, inhalable concentrations were 

calculated through dividing the cells counted by the volume of air sampled to report cell 

counts/m3. Individual species that accounted for the majority of a particular genus were 

also reported. Estimates of total bacteria were calculated by adding the total number of 

sequences identified for the bTEFAP procedure (Nonnenmann, et al., 2010). 

After data was broken down into cell counts per sample by genera, data was 

further analyzed using Excel. Genera containing ≤3 cells were eliminated. Counts were 

then summed and divided by the quantity of air sampled per sample for counts/m
3
. The 

10 bacterial genera with the highest counts were reported per season. Gram-negative 

bacteria was calculated by identifying using the highest 20 genera in each sample, 

identifying whether Gram-negative or positive and then adding those 20 sample counts. 

Data is recorded for each sampling trip and worker zone located in parlor from where the 

sample was taken. Data is reported in bacterial cell counts/m
3
.  
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Quality Control Pilot 

Because of the possible contamination suspected in trip five of the first round of 

sampling, a control project was performed before sampling began on the winter 

conditions to test where possible contamination may have occurred. Samples of de-

ionized water, ethanol, nuclease-free water, and LAL reagent water were placed in sterile, 

100mL centrifuge tubes, shipped, and analyzed as described before for bTEFAP analysis. 

Gelatin filters from new and old packages were also placed in 100mL centrifuge tubes as 

well as filters from buttons on which were performed three different cleaning methods, 

which were also sent in for bTEFAP analysis. Cleaning methods included washing the 

button in 70% ethanol using various waters before applying a filter as well as autoclaving 

the button before filter application. Sample filters that were placed on differently cleaned 

buttons were left out at room temperature for four hours inside an individual Whirlpak 

bag to simulate handling conditions, but not allow airborne contamination from the 

laboratory. All work regarding filter loading and unloading was performed in a biohazard 

hood to control for room contamination. Forceps were wiped with a new ethanol wipe 

between samples. Samples were shipped and analyzed as stated above. Data received was 

also analyzed as stated above.  A detailed chart with sample ID and corresponding 

sample can be found in Table 4.1. 
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Table 4.1: Quality control sample ID with corresponding sample sent in for bTEFAP analysis.  

Sample 

ID Sample type 

01113010 DI water 10ml 

02113010 Qiagen nuclease free water lot # 430135350 

03113010 

Lonza LAL reagent water lot # EL0795 

exp:12Apr08 

04113010 

Fisher 100% reagent ethanol lot # 056671-

36 exp: Jan. 2009 

05113010 

Fisher Absolute Ethanol 200 proof Lot # 

107005 

06113010 

Autoclaved buttons before filter was added, 

let sit out at room temp for 4 hrs. Filters 

from new package SKC gelatin filters lot # 

030912602090048 

07113010 

Autoclaved buttons before filter was added, 

let sit out at room temp for 4 hrs. Filters 

from new package SKC gelatin filters lot # 

030912602090048 

08113010 

Filter from new package of SKC gelatin 

filters lot # 030912602090048 

09113010 

Filter from new package of SKC gelatin 

filters lot # 021012602090104 

10113010 

Filter from old opened package of SKC 

gelatin filters lot # 030912602090048 

11113010 

Washed button using Qiagen nuclease free 

water (lot# 430135350) and 200 proof 

ethanol (lot# 107005) (30%/70% mix). Used 

newer filters, new 5pack, lot # 

021012602090104 

12113010 

Washed button using Qiagen nuclease free 

water (lot# 430135350) and 200 proof 

ethanol (lot# 107005) (30%/70% mix)Used 

newer filters, new 5pack, lot # 

021012602090104 

13113010 

Washed button using Lonza LAL reagent 

water (lot# HL0277 exp:12sep2010) and 

200 proof ethanol (Lot# 107005) (30%/70% 

mix)Used newer filters, new 5pack, lot # 

021012602090104 

14113010 

Washed button using Lonza LAL reagent 

water (lot# HL0277 exp:12sep2010) and 

200 proof ethanol (Lot# 107005) (30%/70% 

mix)Used newer filters, new 5pack, lot # 

021012602090104 
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Parlor Conditions 

Measurements of the temperature, humidity, carbon dioxide (CO2), and carbon 

monoxide (CO) concentrations were also taken during every sampling trip in each worker 

zone as well as outside the facility. Measurements were obtained using a Q-TRAK Indoor 

Air Quality meter (TSI, St. Paul, MN, Model# 8554, Serial# S10406, Last Factory 

Calibration Feb. 2010). These environmental factors were recorded once every hour in 

each worker zone and outside the facility during the four hour sampling period. 

Measurements were averaged per trip and in each worker zone. All temperature 

measurements were reported in °F, all humidity measurements were reported in % 

relative humidity, and all CO2 and CO measurements were reported in parts per million 

(ppm). 

Air Movement 

 Indoor air movement was measured using a TSI Alnor Velometer (TSI, St. Paul, 

MN, AVM440, Last factory calibration April 2010). Air speed (ft/min) was found for 

eight locations in the parlor to give an overview of air movement in the facility. Air speed 

measurements were averaged in each worker zone and in the breezeway with results 

presented in ft/min.  

Statistical Analysis 

 Statistical analysis was performed using SAS (Enterprise Guide 4.2). Statistical 

inferences were based on a P<0.05 level of significance. Based upon plots of residuals 

versus predicted values, data where residuals appeared normal and independent were 
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analyzed using a two way analysis of variance (ANOVA) test. For data where the 

residuals did not appear normal or independent, a log10 transformation was then applied 

for correction before being analyzed by a two way ANOVA. Correlations programs in 

SAS were also used to determine if possible relationships existed between variables.
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CHAPTER 5 

RESULTS AND DISCUSSION 

Overview 

 The intent of this research project was to collect data that would aid in 

understanding of how different changes in the seasonal ventilation of a dairy facility 

would impact the concentrations of organic dust, bacteria, and endotoxin in dairy parlor 

environments. Inhalable dust, respirable dust, and Grimm PAS meter readings were 

useful in determining dust concentrations and size distributions at the facility, which 

could be compared upon changing the ventilation in the building. Analysis for endotoxin 

concentrations in the facility helped to determine what the baseline exposure level was 

for employees working in dairy environment and how that may change depending on 

conditions in the facility. The application of pyrosequencing for bioaerosols is relatively 

new and offers a more extensive identification of the Gram-positive and negative bacteria 

that make up air samples, as well as increase the ease of determining concentrations of 

the bacteria. Currently not much is known about microbial concentrations in the air of 

facilities or how worker health could be affected, but knowledge regarding the type and 

concentration of bacteria can lead to development of occupational exposure guidelines 

for workers.  
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Inhalable Dust 

Inhalable dust concentrations averaged over all sample locations for each trip can 

be found in Figure 5.1.The mean inhalable dust level and standard deviation (σ) for 

summer and winter was 0.38mg/m
3
 and 0.53mg/m

3 
with 0.10 and0.22 respectively. No 

statistically significant difference was found between seasons (p=0.096) or worker zones 

in the facility (p=0.498). Inhalable dust data did not require log transformation and plots 

of residuals did not improve upon log transformation. The limit of detection (LOD) and 

limit of quantification (LOQ) were calculated based on the standard deviation of the 

blanks. The LOD and LOQ were determined by finding the standard deviation of all 

blank samples and multiplying by three and ten, respectively. Only one sample was 

below the LOQ (0.30mg) while all samples were above the LOD (0.09mg).  

Figure 5.1: Mean inhalable dust concentrations by sampling trip. Error bars indicate ± each sample 

standard deviation.  
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The current TLV for total dust is 4mg/m
3
 (ACGIH, 2010). The PEL as stated by 

OSHA for PNOR as total dust is 15 mg/m
3
 (OSHA, 1989). We sampled inhalable dust in 

this study, making it more difficult to compare our concentrations to a published 

guideline.  Research using a button sampler in the dairy environment revealed that the 

sampler behaved more like a total dust sampler, which is most likely due to the inhalable 

range size distribution found (MMAD=7.7µm) (Reynolds, et al., 2009). This value differs 

from the distribution found in our dairy facility (MMOD=12µm). The inhalable dust 

values measured in our facility are well below any published guideline and are much 

lower than what has been found in poultry, swine, and other dairy facilities (Zejda, et al., 

1994) (Ellen, et al., 2000) (Kullman, et al., 1998). Our average dust concentration for 

summer and winter were 0.38mg/m
3
 and 0.53mg/m

3
, respectively. Kullmen et al. (1998), 

found dust concentrations of 0.74mg/m
3
 for total dust and 0.07mg.m

3 
for respirable 

fractions. This is very similar to the concentrations for both inhalable and respirable dust 

found in this study. Previous studies have noted that total dust patterns are not influenced 

greatly by the change in ventilation rate due to gravity and particle size/weight  (Kim, et 

al., 2007). Dust inside livestock buildings is not uniformly distributed and dust 

distribution depends on several factors. Dust sources, the airflow characteristics, animal 

activities and worker activities will all have an effect on particles in the air (Takai, et al., 

1998). The dairy facility where the samples were collected is a newer facility, built in 

2006. Care and planning was taken in the design and implementation of the building to 

provide the best possible environment for both animal and employee.  
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Aersosol Size Distribution 

The Grimm PAS data values were fairly consistent throughout the entire sampling 

period. Mean values for the MMOD and σg by season are presented in Table 5.1. There 

was no significant difference between the means by season (p=0.84) or worker zones 

(p=0.43). The summer season consisted of only two sampling trips due to equipment 

malfunction (trips four and five) but there is no evidence to support that comparison 

would be significant if sample sizes per group were equal. All results for Grimm dust 

meter have been included in Appendix C. 

Table 5.1: Average MMOD and σg by season. 

Season: MMOD (µm) σg 

Summer 11.8±3.7 3.35±0.27 

Winter 12.1±2.4 2.83±0.39 

 

The distribution of dust in the facility (MMOD and σg) is similar to what has been 

found in other dairy facilities. The average MMOD value found in this study was 11.8µm 

for the summer and 12.1µm for the winter, with an overall average of 12µm. Reynolds et 

al. (2009) published values found in a dairy smaller than our distribution 

(MMOD=7.7µm). Kullman et al. (1998) found in dairy environments a mass mean 

aerodynamic diameter (MMAD) value of 13.5µm. MMAD values in poultry facilities 

were mostly larger, finding 12.6µm for cage-housed bird facilities and 16.6µm for floor-

housed bird facilities (Kirychuk, et al., 2008). Barber et al. (1991) found an average 

MMAD value of 14µm in swine facilities (Barber, et al., 1991). Both the MMOD and 
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MMAD are the value at which 50% of the particles are smaller than the MMOD/MMAD 

and 50% of the particles are larger than the MMAD/MMOD allowing MMOD values and 

MMAD values to be directly compared. The difference is whether the measurement 

method used optical light scattering to count the particles or a gravimetric analysis of a 

filter. Our distribution suggests that the dairy facility has mostly large particles (>10µm), 

leading to better understanding of lung deposition. For the little respirable dust data that 

was gained, it appeared that respirable dust concentrations were very low, which is now 

validated by the MMOD value, indicating that particles around 12µm are more abundant.  

Respirable Dust 

Respirable dust concentrations were found to be low and under the published 

guidelines by OSHA for dust exposure. The TLV for respirable dust exposure for an 

eight-hour workday is 3mg/m
3
 (ACGIH, 2010). The OSHA permissible exposure limit 

for particulates not otherwise regulated (respirable fraction) for an eigth-hour workday is 

set at 5mg/m
3
 (OSHA, 1989). All of the respirable dust concentrations found in this study 

were under both of these values. Respirable dust samples were very inconsistent in this 

study. In some cases, the 37mm PVC filters returning from sampling for respirable dust 

weighed less than before the sampling occurred. It is unknown what caused the drop in 

weight after sampling and the problem occurred for six of the 20 samples collected over 

the entire sampling period. Other sampling trips then had very large changes between 

sides of the facilities as well as between trips in the same season. Concentrations for 

respirable dust samples ranged from 0.008mg/m
3
 to 1.2mg/

3
, not including filters that 

saw a drop in weight post-sampling. The average concentration for the respirable dust 

samples for the summer and winter were 0.33mg/m
3
 and 0.24mg/m

3
 respectively (not 
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including samples found weighing negative values). Endotoxin analysis on respirable 

dust samples also yielded highly variable results (0.063-9.98 EU/m
3
). Respirable dust and 

endotoxin appeared to have a highly variable relationship. The LOD for respirable dust 

samples was 0.23mg, higher than most of the actual samples. Due to the inconsistencies 

and extremely low values, the respirable dust samples, including respirable endotoxin, 

were excluded from the study and no statistical analysis was performed. 

Endotoxin 

 Endotoxin mean concentrations over all locations for each sampling trip can be 

found in Figure 5.2. When broken down by season, there was not a statistically 

significant difference between summer and winter values (p=0.1).  There was a near 

significant difference found between the summer and winter (p=0.06) when data was log 

transformed (base 10). Plots of residuals did not improve considerably upon log 

transformation although the significance changed slightly with log transformation. There 

was not a significant difference between worker zone samples with or without log 

transformation (p=0.16, p=0.24). The mean endotoxin concentration for summer and 

winter were 70.3 EU/m
3
 and 104.7 EU/m

3
, respectively. All samples were above the 

LOD (4.3 EU/sample) and LOQ (14.4 EUsample). 
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Figure 5.2: Mean endotoxin concentration by sampling trip. Error bars indicate ± each sample 

standard deviation. 

 

Endotoxin results were near significant when viewing summer and winter 

(p=0.06) after a log transformation.  Overall endotoxin concentrations did increase during 

the winter months, but the larger distribution of values during the summer decreased the 

significance of the difference. See Figure 5.3 for the distribution of endotoxin during the 

different seasons. The box plot displays the range of the data (end caps) with the mean of 

the data as the plus sign. The median is the red line in the middle of the box and the edges 

of the box denote the upper quartile (25% of the values are above) and lower quartile 

(25% of values are below) with the box itself contain 50% of the data. All box plots in 

this study are formatted as stated above. Due to the facility being completely closed with 

less air movement, it makes sense that the overall endotoxin concentration would 

increase at that time, even if a statistically significant increase is not seen.  
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Figure 5.3: Endotoxin (EU/m
3
) distribution by season. 

 

 

When endotoxin is normalized by the mass of dust in the sample the increase in 

endotoxin suggested before is not seen. Instead, it appears that the occurrence of 

endotoxin follows the small increase in dust. Figure 5.4 provides visual representation of 

the change in EU/mg throughout sampling trips. 

Figure 5.4: Changes in EU/mg throughout sampling trips. Error bars indicate ± each sample 

standard deviation.  
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 The influence that the dust concentration plays on the endotoxin concentration 

can be better seen by comparing distributions of EU/mg and inhalable dust (mg). See 

figures 5.5 and 5.6 for the distributions of EU/mg and inhalable dust (mg) per season. 

Figure 5.5: Seasonal distribution of endotoxin units (EU) per mg of dust 

 

Figure 5.6: Seasonal distribution of inhalable dust 
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 The box plot displays the range of the data (end caps) with the mean of the data as 

the plus sign. The median is the red line in the middle of the box and the edges of the box 

denote the upper quartile (25% of the values are above) and lower quartile (25% of 

values are below) with the box itself contain 50% of the data. These seasonal 

distributions are very similar to one another, indicating that dust is playing a role in 

endotoxin concentrations in this facility. Looking back at the seasonal distribution of 

EU/m
3
 (Figure 5.3) and comparing to the seasonal distribution of EU/mg (Figure 5.5) 

indicates that the loadings of endotoxin seen in this facility do not necessarily increase 

into the winter, rather the dust concentration increases, allowing the concentration of 

endotoxin to also increase. Endotoxin adsorbs to the dust particle, and a previous study 

has suggested that binding preference is given to particles greater than 10µm as opposed 

to particles less than 10µm (Millner, 2009). If binding preference is given to particles 

larger than 10µm, , our aerosol size distribution (MMOD=12µm) appears to be effective 

for endotoxin binding, then explaining why the endotoxin concentration only seemed to 

increase when the dust concentration increased Other studies have found that endotoxin 

may not correlate to dust concentrations, but this study appears to suggest that they do 

(Millner, 2009) (Kirychuk, et al., 2010).  

Endotoxin concentrations (EU/m
3
) measured in this facility were extremely low 

when compared to what has been found in swine and poultry facilities and slightly lower 

than other dairy facilities (Reynolds, et al., 2009). The average winter concentration 

found for in this dairy facility was 104.7 EU/m
3
, whereas Smit et al. (2008) presents an 

average value of 220 EU/m
3
. Values greater than 800 EU/m

3
 have been documented in 

dairy barns in Colorado and Nebraska (Reynolds, et al., 2009). Again, the lower 
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endotoxin concentrations seen in this study could be attributed to the newer construction 

of the facility. We assume there would be a small degree of correlation between 

endotoxin and dust concentrations due to endotoxins adhering to dust particles in the air. 

Airborne bacteria and endotoxin have shown a preference for adhering to particles 

>10µm,
 
which explains the very low endotoxin results found in our respirable dust 

samples (range 0.06-10 EU/m
3
) (Kim, et al., 2007). A study by Kirychuk et al. (2009) 

also supports this hypothesis that endotoxin binds better to larger particles. Data on 

EU/mg observed in this study seem to agree with Kirychuk’s study. Although larger 

endotoxin loading is usually found in larger particle size distributions, endotoxin is still 

found in sometimes high amounts in respirable dust fractions (Kirychuk, et al., 2010). 

The endotoxin loading in respirable dust will be more dangerous due the increased 

deposition into the deeper areas of the lung (Kirychuk, et al., 2010). Even though 

endotoxin may preferentially bind to larger particles in the non-respirable fraction, 

endotoxin concentrations in the respirable fraction pose a much larger threat to 

pulmonary inflammation in workers.   

Environmental Conditions 

 Log transformation was not required on any environmental conditions after 

viewing plots of residuals. Statistical analysis of the environmental conditions revealed 

significant seasonal differences in temperature (decrease), humidity (increase) and air 

movement (decrease) (p=<0.0001, p=0.0012, and p=0.019, respectively). This is as 

expected with changing the seasons and ventilation of the building. See Figures 5.7 and 

5.8 for representation of changes seen across the sampling trips. Average summer 

temperatures and σ were found to be 75.3°F in the milking parlor and 76.5°F outdoors. 



48 

 

Average winter temperatures were 60.6°F inside milking parlor and 37.2°F outdoors. 

Average humidity inside the milking parlor for the summer and winter was 59% and 

84.8%, respectively, with the average humidity outside the facility for summer and winter 

being 41.9% and 36.1%, respectively. Air movement varied the least between the seasons 

with an average for summer and winter measuring 52.3ft/min and 35.9ft/min, 

respectively. The increase in CO2 concentrations was statistically significant from 

summer to winter (p=<0.001). Average values for the summer and winter were 921ppm 

and 2489ppm, respectively. Measurements for CO2 were also taken outside to allow for 

background levels. Levels outside for the summer were 370ppm and winter 411ppm. 

Measurements for CO were taken but levels were consistently zero.  

Figure 5.7: Changes in temperature, humidity, and air movement by sampling trip. 
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Figure 5.8: Mean CO2 concentrations in ppm by sampling trip. Error bars indicate ± each sample 

standard deviation. 

 

 

 

Table 5.2: Mean values and σ of environmental conditions by season. 
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conditions were significantly different from one another for the seasonal differences. 

Specifically, CO2 can be an index of the ventilation in a building (NIOSH, 2010). With 

CO2 concentrations more than doubling in the winter months, it can be assumed that the 

airflow in the facility was poor and fresh air was not supplied as needed. A negative 

correlation was observed between air speed observed in the facility and CO2 

concentrations (p=0.0032, r
2
=-0.63) but moderate positive correlations were observed for 

both endotoxin and airborne bacteria with CO2 (p=0.034, r
2
=0.48 and p=0.05, r

2
=0.45). 

Again, if CO2 is used as an index of the extent of the ventilation in the facility, it could be 

assumed that as levels of CO2 would increase from decreased ventilation, that levels of 

endotoxin and airborne bacteria would also increase. The TLV and PEL for CO2 is 

5000ppm (ACGIH, 2011). The highest level of CO2 observed during sampling was 

recorded to be 3186ppm for this facility. An average concentration of CO2 in a swine 

facility observed 2632ppm, lower than what was found in the dairy facility (Zejda, et al., 

1994).  

Airborne Bacteria 

 Bacterial concentrations required log base 10 transformation after observing plots 

of residuals. Differences in mean total bacterial counts were not statistically significant 

between seasons (p=0.2). There was no significant difference between worker zones 

(p=0.45) regarding total counts/m
3
, but the different sides of the facility as well as 

different trips did observe widely varying concentrations as well as genera. Bacterial 

counts during the 10 sampling trips ranged from 373-14,638 counts/m
3
 with an average 

of 4924±4196 counts/m
3
. Table 5.3 contains bacterial concentrations per trip. Figure 5.9 
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depicts distribution of bacterial counts by trip and Figure 5.10 represents the five most 

reported genera overall.  

Table 5.3: Total bacterial counts broken down by trip and by side of facility, right side worker 

zone=RS and left side worker zone=LS 

Total Bacterial Cell Counts/m3 

Trip # RS LS 

1 5978 9134 

2 642 842 

3 1962 552 

4 1930 1460 

5 2308 3583 

6 1052 373 

7 14638 11079 

8 4238 6306 

9 9665 5447 

10 7540 9744 

 

Figure 5.9: Mean airborne total bacteria counts observed by sampling trip. Error bars indicate ± 

each sample standard deviation. 
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Figure 5.10: Breakdown of five most common Genera of bacteria seen across all seasons and 

sampling trips. 

 

 

Airborne bacteria levels were highly variable and largely inconsistent between 
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facility sampling did not necessarily match field blank contamination, also indicating that 

contamination is occurring at a different source or step in the sampling process. The 

percent of contamination per sample ranged between 0%-84% and averaged 34%. 

Appendix E contains the percent contamination found in each sample with the method of 

calculation. 

Though possible contamination was seen, analysis of bacterial data was still 

performed for research purposes. The analysis of bacterial data revealed that in the 

summer Clostridium (anaerobic), Oscillibacter, and Staphylococcus, all Gram-positive 

bacteria, were the most common genera seen. The sampling during the winter season 

yielded different bacterial results of Lactobacillales, Clostridium (anaerobic), and 

Turicibacter, all Gram-positive bacteria, as the highest genera of bacteria. View Figures 

5.11 and 5.12 for overall percentage of bacteria during each season. Graphs are based on 

the four highest genera found for each trip, and then summed to find overall 10 highest 

genera per season. Up to 200 different genera of bacteria could be observed in some of 

the sampling trip results.   
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Figure 5.11: Summer season genera percentages. Bacteria in red denote Gram-negative bacteria and 

bacteria in black denote Gram-positive. 

 

 

Figure 5.12: Winter season genera percentages. Bacteria in red denote Gram-negative bacteria and 

bacteria in black denote Gram-positive. 
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 Count of bacteria for Gram-negative bacteria were viewed for possible association 

with endotoxin. Mean cell counts of Gram-negative bacteria found per sampling trip can 

be viewed in Figure 5.13. 

Figure 5.13: Gram-negative mean cell counts each sampling trip. Error bars indicate ± each sample 

standard deviation. 
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this facility when compared to other studies and animal industries. Endotoxin is a part of 

the Gram-negative bacterial cell wall, leading to the hypothesis that increased Gram-

negative bacteria would be associated with increased occurrence of endotoxin. Gram-

positive organisms have different chemical markers on their cell wall. Recent studies 

have indicated that exposure to peptidoglycan, a derivative of Gram-positive microbes, 

without the presence of endotoxin (Gram-negative bacteria) maintained increased 

inflammatory markers in human bronchial epithelial cells, demonstrating that Gram-

positive bacteria, or agents other than Gram-negative bacteria, play an integral part of 

inflammation observed with organic dust exposure (Poole, et al., 2010). Gram-negative 

bacteria were seen more often during the winter season when compared to summer 

(Figure 5.11), possibly contributing to the near significant increase (p=0.06) in endotoxin 

concentrations from summer to winter. Knowledge that the overall amount of endotoxin 

is limited by the dust suggests that control methods be directed to controlling the dust, 

then control of endotoxin will also be achieved.  

Only the top 20 bacterial genera were assessed for Gram-negative or Gram-

positive status for this research due to the incredibly large numbers of genera gained 

though the bTEFAP method and large sample number(>200 genera, 20 samples). Using 

the bTEFAP technique in poultry housing yielded cell counts of bacteria and genera 

somewhat similar to results found in this study. Nonnenmann et al. (2010) found 

bacterial genera of Staphylococcus, Salinicoccus, and Lactobacillus with the most cell 

counts. Clostridium was found in Nonnenmann et al. (2010) but in much lower quantities 

than what was discovered in this study (247 counts/m
3
 vs. 4170 counts/m

3
). Differences 

between our study and others in the bacteria seen, as well as the concentrations are most 
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likely due to the different animals in the facilities. Overall, statistically significant 

differences were not seen between seasons, but view of Figure 5.6 reveals a general trend 

of larger bacterial counts/m
3
 during the winter sampling season. Average concentrations 

of total bacteria in the facility during the winter and summer were 2839 and 7008 

counts/m
3
, respectively. Nonnenmann et al. (2010) found an overall concentration of 

7503 counts/m
3
 in poultry facilities. Nonnenmann et al. (2010) did not break down the 

total cell counts into amounts of Gram-negative and positive bacteria, allowing no 

comparison for our mean Gram-negative cell counts. Despite facing possible 

contamination issues, it appears are results are not too dissimilar to what has been found 

in other animal confinement operations.  Very little data is available for comparison using 

the bTEFAP method.  

 Concern for contamination was present in virtually all samples. Results of the 

control project revealed contamination in every sample sent. Samples of new filters, 

never before opened yielded counts of bacteria per sample of 1233 and 2565, suggesting 

that the filter media is contaminated either upon packaging, or during laboratory analysis. 

Control filter samples were taken out of new sealed packages and placed in sterile 100ml 

tubes, then shipped on ice for analysis. All work was performed in a biohazard hood with 

forceps being cleaned between each sample. Table 5.4 contains the counts of bacteria for 

each quality control sample sent in for bTEFAP analysis. The * denotes that washing 

occurred by dipping the button into the solution, with the solution completely covering 

the button and agitating for one minute. The SOP for this Quality Control Pilot can be 

found in Appendix D under Winter Season SOP (reagents differ slightly but procedure is 

the same).  



58 

 

Table 5.4: Bacterial counts observed on quality control samples. 

Sample 

ID Sample type 

Counts per 

sample 

01113010 DI water 10ml 2871 

02113010 Qiagen nuclease free water lot # 430135350 1429 

03113010 

Lonza LAL reagent water lot # EL0795 

exp:12Apr08 2079 

04113010 

Fisher 100% reagent ethanol lot # 056671-36 

exp: Jan. 2009 1131 

05113010 

Fisher Absolute Ethanol 200 proof Lot # 

107005 3960 

06113010 

Autoclaved buttons before filter was added, let 

sit out at room temp for 4 hrs. Filters from new 

package SKC gelatin filters lot # 

030912602090048 Missing 

07113010 

Autoclaved buttons before filter was added, let 

sit out at room temp for 4 hrs. Filters from new 

package SKC gelatin filters lot # 

030912602090048 2728 

08113010 

Filter from new package of SKC gelatin filters 

lot # 030912602090048 1233 

09113010 

Filter from new package of SKC gelatin filters 

lot # 021012602090104 2565 

10113010 

Filter from old opened package of SKC gelatin 

filters lot # 030912602090048 1967 

11113010 

Washed* button using Qiagen nuclease free 

water (lot# 430135350) and 200 proof ethanol 

(lot# 107005) (30%/70% mix). Used newer 

filters, new 5pack, lot # 021012602090104 4775 

12113010 

Washed* button using Qiagen nuclease free 

water (lot# 430135350) and 200 proof ethanol 

(lot# 107005) (30%/70% mix)Used newer 

filters, new 5pack, lot # 021012602090104 3163 

13113010 

Washed* button using Lonza LAL reagent 

water (lot# HL0277 exp:12sep2010) and 200 

proof ethanol (Lot# 107005) (30%/70% 

mix)Used newer filters, new 5pack, lot # 

021012602090104 2954 

14113010 

Washed* button using Lonza LAL reagent 

water (lot# HL0277 exp:12sep2010) and 200 

proof ethanol (Lot# 107005) (30%/70% 

mix)Used newer filters, new 5pack, lot # 

021012602090104 1207 
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Speaking with the manufacturer (SKC) of the gelatin filters yielded new 

information regarding the filter use for pyrosequencing. The filters are manufactured 

from pig skin and irradiated for sterility. If the filter wasn’t thoroughly irradiated to 

denature the DNA from the bacteria on the pig skin, pyrosequencing would amplify any 

non-viable bacterial DNA. This could have influenced the background contamination 

seen in our samples and Quality Control Pilot. Further research is needed to look into 

appropriate filters for air sampling to be used with pyrosequencing.   

Correlations 

Correlations between variables were evaluated with strong, moderate, or weak 

designations given to assess the strength of the correlation.  

­ Strong correlation  r
2
>0.75 

­ Moderate correlation r
2
=0.4-0.74 

­ Weak correlation r
2
<0.39 

Only statistically significant correlations are presented here. Correlations were not 

viewed heavily in this research. The strongest correlation was seen between CO2 and 

humidity (p=<0.001, r
2
=0.89). There was a moderate negative correlation between 

endotoxin and temperature (p=0.0265, r
2
=-0.50). As the temperature decreased in the 

winter, ventilation decreased, CO2 increased, and humidity increased, all probably 

influencing the endotoxin. Possibly a shift in bacterial distribution (greater concentration 

of Gram-negative bacteria in the winter) could have occurred to influence the increase 

endotoxin, but no statistically significant correlation between Gram-negative cell counts 

and endotoxin was observed. Decreased ventilation may have an increase on the type of 
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bacteria that propagate. Humidity and temperature had a strong negative correlation 

(P<0.001, r
2
=-0.80). Inhalable dust and temperature had a moderate negative correlation 

(p=0.05, r
2
=-0.44). Temperature and air speed had a moderate correlation (p=0.01, 

r
2
=0.55). Endotoxin and CO2 had a moderate correlation (p=0.05, r

2
=0.45) and airborne 

bacteria and CO2 had a moderate correlation (p=0.034, r
2
=0.48). Appendix F contains all 

Pearson Correlation Coefficients. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

 This study was the first to apply pyrosequencing to measure bioaerosols in a dairy 

environment. The diversity of bacteria and predominance of Gram positive bacteria is 

consistent with studies in swine and poultry facilities. It is difficult to evaluate potential 

occupational exposure from the airborne concentrations of bacteria found in this study 

due to the lack of exposure guidelines, but compared to studies in other enclosed 

livestock environments, high concentrations of bacteria are sometimes seen in the dairy 

facility (>14,000 counts/m
3
). Gram-positive bacteria appear to be found in higher 

percentages in this dairy parlor than Gram-negative bacteria overall, but data showed an 

increase in Gram-negative bacteria during the winter season. Results from the quality 

control project yield information directing research to where testing and assessment 

should take place to aid in the development of a pyrosequencing method that will 

accurately sample airborne bioaerosols.  

 Concentrations of inhalable dust, respirable dust, and endotoxin were low during 

both seasons in this milking parlor. But the new construction of the facility may have 

influenced the differences seen in this facility compared to other dairy facilities. 
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The size distribution in the facility (MMOD 12µm) demonstrates that larger particles 

(>10µm) are more abundant and do not change with changing seasonal ventilation 

conditions. Endotoxin concentrations showed a near significant increase from summer to 

winter, which may be have been influenced by the increased occurrence of Gram-

negative bacterial genera. Normalization of endotoxin with the mass of dust indicated 

that controlling dust might control the endotoxin concentrations in the facility.  

These study results will inform the design of future comprehensive studies of 

aerosol exposure interventions in dairy operations.  Understanding these aerosol 

exposures and potential interventions is important for reducing respiratory disease among 

workers in the dairy industry. 

Recommendations 

 Research regarding the accuracy of the bTEFAP method applied to air sampling 

needs to be addressed before further testing takes place. Results of this project indicate 

possible contamination of the gelatin filter, which is used in sampling. Another 

possibility for the contamination source is the centrifuge tubes used for this study, which 

were not assessed. Once contamination issues are resolved, research can move forward 

with the use of this method to identify and quantify bacterial exposures in any industry, 

not just animal confinement operations.  

 In addition to understanding the application of the bTEFAP method to bioaerosol 

sampling, research needs to be done to compare the various airborne bacterial testing 

methods using RNA or DNA. This will help in comparing concentrations seen in 

facilities and understanding the role that will play in dose-response relationships between 

airborne bacteria exposure and disease. 
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 Gram-positive bacterial exposure needs to be further studied, and a more thorough 

understanding of the relationship between organic dust and the percentage containing 

Gram-positive and Gram-negative organisms must be addressed. Understanding why 

Gram-positive or Gram-negative bacteria are seen and in what relation will aid in more 

accurate development of occupational exposure guidelines.  

 Control of dust and bioaerosols needs to be addressed specifically in the dairy 

environment. Useful and effective methods of dust control have been seen in swine and 

poultry industries, but have not been applied to the dairy industry. Further research 

should focus on controlling bioaerosols associated with animal confinement operations 

with control methods assessed in the dairy environment specifically. The milking parlor 

in this study appeared to have effective control of contaminants, but evaluation needs to 

be performed on the wider range of parlor designs as well as older facilities to apply 

lessons learned from this facility. 
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Appendix A:  

Sampling Data Sheet 

Area Sampling Sheet 

Dairy Study 

Collection Date:  Staff Initials:  

Left Side of Facility: 

Endotoxin Button # _______  Pump # _______  Sample ID: 

Pump Start Time:  Pump End Time:  

Pre-weight:  Pre-calibration:  

Post-weight:  Post-calibration:  

Comments:  

Gel Button # _______  Pump # _______ Sample ID  

Pump Start Time:  Pump End Time:  

Pre-weight:  Pre-calibration:  

Post-weight:  Post-calibration:  

Comments:  

Cyclone # _______ Pump # _______Sample ID: 

Pump Start Time:  Pump End Time:  

Pre-weight:  Pre-calibration:  

Post-weight:  Post-calibration:  

Comments:  

Right Side of Facility 

Endotoxin Button # _______  Pump # _______  Sample ID: 

Pump Start Time:  Pump End Time:  

Pre-weight:  Pre-calibration:  

Post-weight:  Post-calibration:  

Comments:  

Gel Button # _______  Pump # _______  Sample ID: 

Pump Start Time:  Pump End Time:  

Pre-weight:  Pre-calibration:  

Post-weight:  Post-calibration:  

Comments:  

Cyclone # _______ Pump # _______Sample ID: 

Pump Start Time:  Pump End Time:  

Pre-weight:  Pre-calibration:  

Post-weight:  Post-calibration:  

Comments:  
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Blank Samples: 

Endotoxin # Pre-weight Post-weight Sample ID: 

    

Gel # Lab Blank Field Blank  

    

    

Cyclone # Pre-weight Post-weight  

    

 

 

Comments: 

 

 

 

 

 

 

 

 

 

Q-Trak  Model # _______ 

Time: Temp(F)/Humidity(%): Location: Reading (ppm): 
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Grimm PAS Sampling 

Location: Time: How long sampled: 
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Appendix B: 

 

Formula for MMOD calculations 

1. Mass in each size range was imported into an Excel spreadsheet. 

2. The mass per each channel was then calculated by subtracting the mean in by 

each preceding mean. 

3. The cumulative mass was calculated by adding up the mass in each channel for a 

cumulative mass per channel. 

4. The cumulative percent  was calculated by dividing the cumulative mass by the 

total mass, which is the 1
st
 value in the mean column under the 0.23um channel 

5. After Excel calculated the cumulative percent, the percents were plotted by hand 

onto a log probability plot. 

6. The MMOD was found by looking at where the plot crossed the 50% axis. 

7. The σg was found by dividing the MMOD by the value found crossing the 15.9% 

axis. 

8. This same process was performed on all samples. See below for illustrations of 

the Excel spreadsheet. 

Date 8/30/10: 8:11am 

Channel Mean Mass per channel Cumulative mass Cum. % 

>0.23um 548.56 1.1 1.1 0.20% 

>0.30um 547.46 1.24 2.34 0.43% 

>0.40um 546.22 1.08 3.42 0.62% 

>0.50um 545.14 1.05 4.47 0.81% 

>0.65um 544.09 0.8 5.27 0.96% 

>0.80um 543.29 1.24 6.51 1.19% 

>0.90um 542.05 3.09 9.6 1.75% 

>1.0um 538.96 11.21 20.81 3.79% 

>2.0um 527.75 23.51 44.32 8.08% 

>3.0um 504.24 23.94 68.26 12.44% 

>4.0um 480.3 25.91 94.17 17.17% 

>5.0um 454.39 62.12 156.29 28.49% 

>7.5um 392.27 54.8 211.09 38.48% 

>10.0um 337.47 102.51 313.6 57.17% 

>15.0um 234.96 72.3 385.9 70.35% 

>20.0um 162.66 162.66 548.56 100.00% 

Total   548.56   
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Appendix C: 

All Grimm PAS Measurements 

Season Trip Side MMOD σg 

summer 4 RS 9 3.2 

summer 4 LS 18 3.6 

summer 4 RS 10 3 

summer 4 LS 17 3.8 

summer 5 RS 8.5 3.5 

summer 5 LS 10 3.3 

summer 5 RS 12 3.3 

summer 5 LS 9.8 3.1 

winter 6 LS 13 3 

winter 6 RS 14 3.2 

winter 6 LS 12 2.7 

winter 6 RS 15.5 2.9 

winter 7 RS 10 2.8 

winter 7 LS 11 2.8 

winter 7 RS 13 3.3 

winter 7 LS 13 2.8 

winter 8 LS 12 3.1 

winter 8 RS 11 2.8 

winter 8 RS 11 2.6 

winter 8 LS 13 2.7 

winter 9 RS 13 3.3 

winter 9 LS 6.5 3 

winter 9 RS 15 3.6 

winter 9 LS 8 2.6 

winter 10 RS 14 2.6 

winter 10 LS 10 1.9 

winter 10 RS 11 2.1 

winter 10 LS 16 2.8 
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Appendix D: 

Standard Operating Procedures (SOP) for Airborne Bacterial Collection 

List of Materials: 

- 25mm Inhalable Button Samplers (SKC Inc., Eighty Four, PA) 

- 25mm Gelatin Filters (SKC, Product # 225-9551, Eighty Four, PA) 

- Bleach Rite Disinfecting Spray (Product # ML3004, MarketLab, Caledonia, MI) 

- 70% Ethanol Solution (30% Filtered water from sink, 70% Fisher 100% reagent 

ethanol) 

- Ethanol wipes (Triad, Product # 10-3001, Brookfield, WI)  

- 100mL centrifuge tubes (Falcon, Product # 352074, Franklin Lakes, NJ) 

- Forceps (Aven, Product #18-499) 

- Whirlpak bags (Nasco, Product # B00736WA) 

- Biohazard Hood 

- Autoclave  

- Personal autoclave bags (Propper, Product # 024008, NY) 

Summer Season SOP: To be done the night before the sampling trip 

1. Wash buttons in 70% ethanol solution and let dry. (May want to perform this step 

earlier in the day. 

a. Make solution in beaker and let button samplers sit in there, gently 

agitating the beaker for approximately one minute. Make sure solution 

covers the whole button.  

b. Remove button using forceps and let air dry on counter wiped with a 70% 

ethanol solution in a spray bottle (this is already kept on hand in the lab). 

2. Clean the counter space with 70% ethanol solution spray 

3. Gelatin filters are kept in the refrigerator; take out only when ready to apply to 

samplers. 

4. Set out the required number of buttons, write button numbers or sample 

designations on whirlpak bags 

5. Spray gloves with ethanol solution and wipe forceps with a new ethanol wipe. Let 

forceps air dry for a couple seconds before grabbing filter, filter will dissolve if 

anything wet touches it. 

6. Open a new package of gelatin filters, apply one filter to a button sampler 

a. Close sampler and place in designated whirlpak bag 

7. Spray gloves again and wipe forceps with new ethanol wipe 

8. Repeat steps 5—7 until number of samples is reached. 
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9. Place Whirlpak bags containing button samplers in refrigerator (38°F) until 

sampling next morning. 

10. Transport samples on ice to and from sampling. 

11. Post sampling, return buttons to designated bags. 

12. Wash counter with the 70% ethanol solution before removing filters from buttons. 

13.  Spray gloves with ethanol solution and wipe forceps with a new ethanol wipe. 

Again, remember to let forceps air dry for a couple seconds before grabbing filter. 

14. Place filter in labeled 100mL centrifuge tube. 

15. Repeat steps 13 and 14 until samples are all in tubes. 

16. Freeze (0°F) the centrifuge tubes containing samples until shipping for analysis. 

17. Ship overnight on ice. 

Winter Season SOP: 

 Perform the day before sampling or earlier: 

1. Spray button samplers with Bleach-Rite disinfecting spray and let sit for 20min. 

Rinse with filtered water and let dry. 

2. Place dry buttons in personal autoclave bags and autoclave (20min dry 

sterilization (121°C) with 20min of dry time). 

3. Keep autoclaved buttons in bags until use. 

 

Perform this section the night before sampling 

4. Work in the biohazard hood for all of the filter application process. 

5. Spray gloves with the 70% ethanol solution and wipe forceps with new ethanol 

wipe. 

a. Remember to let the forceps dry for a couple seconds (you can just hold 

them in the hood) so you don’t dissolve the filter. 

6. Open one autoclaved button and assemble the bottom half. 

7. Open a new package of gelatin filters and place one on autoclaved button. 

8. Place assembled button in personal Whirlpak bag (label and designate bags 

beforehand) 

9. Repeat steps 4-8 until all button samplers are filled. 

10. Place assembled buttons in Whirlpak bags in refrigerator and refrigerate (38°F) 

overnight.  

11. Transport samples on ice to and from sampling. 

12. At sampling location, use clean gloves to gently expose lab blank to air, then 

close Whirlpak bag and keep lab blank on ice. 

a. Might want to designate lab blank the night before on the bag. 

13. Post-sampling, replace on microbial button samples to their personal Whirlpak 

bags and transport on ice to the lab. 
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14. Repeat steps 4-8 except instead of adding filters, remove them and place in 

100mL centrifuge tubes. 

a. Filters may be kind of wet and dissolving from sampling, use care to pry 

them off of the button screen. 

15. Place 100mL tubes with filters in freezer and freeze (0°F) until shipping for 

analysis. 

16. Ship overnight on ice. 
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Appendix E: 

Percent of Contamination per Sample and Method of Calculation 

Method of Calculation: 

1. Total Counts were summed for each sample and field blank 

2. Field blank counts were divided by the total count in each sample 

3. Percentage was rounded to the nearest decimal place 

Season Trip Side 

% Contamination 

of Sample 

Summer 1 RS 6% 

Summer 1 LS 4% 

Summer 2 RS 84% 

Summer 2 LS 72% 

Summer 3 RS 0% 

Summer 3 LS 0% 

Summer 4 RS 56% 

Summer 4 LS 63% 

Summer 5 RS 50% 

Summer 5 LS 35% 

Winter 6 RS 17% 

Winter 6 LS 44% 

Winter 7 RS 8% 

Winter 7 LS 10% 

Winter 8 RS 60% 

Winter 8 LS 62% 

Winter 9 RS 23% 

Winter 9 LS 35% 

Winter 10 RS 25% 

Winter 10 LS 20% 
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Appendix F: 

Pearson Correlation Coefficients 

Pearson Correlation Coefficients, N = 20  
Prob > |r| under H0: Rho=0 

  Temperature Humidity CO2 Dust Endotoxin Air Bacteria Endotoxinmg Gramneg 

Temperature 1.00000 

  
 

-0.80067 

<.0001 
 

-0.91573 

<.0001 
 

-0.44315 

0.0504 
 

-0.49495 

0.0265 
 

0.55396 

0.0113 
 

-0.34148 

0.1406 
 

-0.40195 

0.0790 
 

-0.50077 

0.0245 
 

Humidity -0.80067 

<.0001 
 

1.00000 

  
 

0.89185 

<.0001 
 

0.19544 

0.4089 
 

0.18811 

0.4271 
 

-0.35550 

0.1240 
 

0.39505 

0.0847 
 

0.17886 

0.4506 
 

0.23733 

0.3137 
 

CO2 -0.91573 

<.0001 
 

0.89185 

<.0001 
 

1.00000 

  
 

0.36388 

0.1148 
 

0.45136 

0.0458 
 

-0.62504 

0.0032 
 

0.47631 

0.0337 
 

0.28426 

0.2245 
 

0.36285 

0.1159 
 

Dust -0.44315 

0.0504 
 

0.19544 

0.4089 
 

0.36388 

0.1148 
 

1.00000 

  
 

0.23385 

0.3210 
 

-0.23801 

0.3123 
 

0.26228 

0.2639 
 

0.00285 

0.9905 
 

0.83047 

<.0001 
 

Endotoxin -0.49495 

0.0265 
 

0.18811 

0.4271 
 

0.45136 

0.0458 
 

0.23385 

0.3210 
 

1.00000 

  
 

-0.37204 

0.1063 
 

0.26912 

0.2512 
 

0.40674 

0.0751 
 

0.17336 

0.4648 
 

Air 0.55396 

0.0113 
 

-0.35550 

0.1240 
 

-0.62504 

0.0032 
 

-0.23801 

0.3123 
 

-0.37204 

0.1063 
 

1.00000 

  
 

-0.43535 

0.0550 
 

-0.09609 

0.6870 
 

-0.09742 

0.6828 
 

Bacteria -0.34148 

0.1406 
 

0.39505 

0.0847 
 

0.47631 

0.0337 
 

0.26228 

0.2639 
 

0.26912 

0.2512 
 

-0.43535 

0.0550 
 

1.00000 

  
 

-0.11576 

0.6270 
 

0.15448 

0.5155 
 

Endotoxinmg -0.40195 

0.0790 
 

0.17886 

0.4506 
 

0.28426 

0.2245 
 

0.00285 

0.9905 
 

0.40674 

0.0751 
 

-0.09609 

0.6870 
 

-0.11576 

0.6270 
 

1.00000 

  
 

0.08501 

0.7216 
 

Gramneg -0.50077 

0.0245 
 

0.23733 

0.3137 
 

0.36285 

0.1159 
 

0.83047 

<.0001 
 

0.17336 

0.4648 
 

-0.09742 

0.6828 
 

0.15448 

0.5155 
 

0.08501 

0.7216 
 

1.00000 

  
 

 

 


