Project Assignments for Statics

Developed by:

Rebecca Atadero, Department of Civil and Environmental Engineering, Colorado State University Meena Balgopal, School of Education, Colorado State University Darrell Fontane, Department of Civil and Environmental Engineering, Colorado State University Karen Rambo-Hernandez, Learning Sciences and Human Development, West Virginia University

This material is based upon work supported by the National Science Foundation under Grant No. 1137023 Research Initiation Grant: Problem/Project-Based Learning in Statics, a Stepping Stone to Engineering Education Research. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Introduction

The project assignments included in this document were used in addition to a traditional lecture based statics course in our research. However, these assignments can be adapted to fit a variety of course styles. We provide additional details of our course here to give an example implementation and context for some of the assignment requirements.

The three assignments presented here correspond to three units used to organize the semester:

- 1. Equilibrium (sum of forces=zero, sum of moments = zero)
- 2. Applications of Equilibrium (beams, trusses, machines)
- 3. Miscellaneous topics (moments of inertia, friction, virtual work)

The project was assigned at the beginning of the unit, students received traditional lecture during the unit, and at the end of the unit student groups had to present their designs to the class. Midterm exams were also held at the end of each unit.

In class we presented these projects as design opportunities for the students. On the second day of the semester, the instructor described the engineering design process to students and then assigned the first group project. For each project students were given one in-class meeting of about 20-30 minutes, the remainder of work was expected to be completed outside of class.

Students completed these assignments in groups of five. The course enrollment was approximately 110 students. Two-hour evening time periods traditionally used for exams were used for groups to present their design projects to the rest of the class.

Project 1: Design and Build a Rube Goldberg Machine Demonstration: (date and time)

What:

Wikipedia defines a Rube Goldberg Machine as "a deliberately over-engineered or overdone machine that performs a very simple task in a very complex fashion." In this project students will work in teams of 5 to design and build a Rube Goldberg machine.

Machine Requirements:

- 1. The objective or purpose of your machine is to display a team flag, thus the last step in the machine must end with a flag (of any size) being displayed, waved, etc.
- 2. The machine should have at least **five steps** or operations, each member of the group should be the design engineer responsible for one of the steps.
- 3. The machine will need to be demonstrated to the class. Thus it needs to be portable and able to be quickly set-up.
- 4. The components of the machine should operate on principles that can be described with statics the operation should not depend on high speeds, impact or momentum.

Design Report Requirements:

- 1. Teams must prepare a report detailing how the Engineering Design Process (as discussed in class) was followed in design of their machine.
- 2. The report should describe preliminary conceptual planning of how different components might work together.
- 3. The report should include a 1 page diagram that shows each of the major steps in your machine, with some indication of the statics principles involved at each step.
- 4. The report must include a detailed analysis of the operation of each component. This analysis should be based on the principles of statics learned in this course, and include freebody diagrams and mathematical computations. Each student in the group should be the design engineer preparing the drawings and computations for one component of the machine. The design engineer for each component should be clearly indicated on the relevant pages.
- 5. The report should describe changes and adjustments made to the design during construction to enhance its performance.
- 6. At the end of the report each group member should attach a self-reflection with two short paragraphs describing 1) what the student learned about statics from the project and 2) what the student would do differently if they received a similar assignment in the future (this could be something technical, something related to group work, any type of change).
- 7. The report should be a neat, organized and thorough documentation of project work.

Top Three Machines:

On demonstration day students in class will vote for their favorite machine. The top three machines will be videotaped in action and the videos will be placed on the College of Engineering website.

Project 1 Rubric

Team # _____ Group Members:_____

Machine

			Score
Displays a Flag			
Flag is clearly displayed (it is lifted,	Flag is present, but not effectively	Flag is not displayed (0 pts.)	
it waves, it pops up, etc) (5 pts.)	displayed (e.g. it gets stuck, or is		
	kind of hidden) (3 pts.)		
Includes at least 5 components			
2 points per component up to 10 points			
Works during demonstration			
Machine runs smoothly without aid	Machine needs one or two small	Machine requires many	
after starting (10 pts.)	interventions (7 pts.)	interventions, does not work (0 pts.)	
Operates on principles of statics			
All components can be described	One or two components cannot be	More than two components cannot	
with statics (5 pts.)	described with statics (3 pts.)	be described with statics (0 pts.)	

Report

			Score
Describes conceptual planning			
Report describes how the team arrived	Report describes how the team	Not included in the report, or very poor	
at the idea for each component and how	developed individual components but	description. (0 pts.)	
the components work together (5 pts.)	not how they work together (3 pts.)		
1 page diagram showing machine operation			
Diagram shows all components and	Diagram shows all components, but	Not included in the report, or very poor	
describes the statics principle behind	does not explain principles behind	diagram (0 pts.)	
each component (5 pts.)	operation (2 pts.)		
Analysis of each component : Free Body Diagrams			
Appropriately isolated a portion of the	Isolated body, but missing forces (1	Does not fully isolate a body for analysis	
component for analysis, and included	pt. per component)	(0 pts. per component)	
all forces (3 pts. per component)			

Analysis of each component: Mathematical computations			
Correct application of equilibrium	Correct application of equilibrium	Incorrect application of equilibrium	
equations with real weights,	equations without real quantities (2	equations (0 pts. per component)	
dimensions etc. (3 pts. per component)	pts. per component)		
Changes and adjustments made to the	design		
Describes changes made to the design	Describes changes made to the	Describes changes made to the design	
during construction. Compares	design. Some comparison, or	with no additional discussion. (1 pt.)	
computed quantities to the quantities	discussion of error – but limited		
that actually work. Identifies sources of	detail (no explicit calculations, no		
difference/error or limitations of the	clear definition of sources of error).		
analysis (10 pts.)	(5 pts.)		
Neat, organized, professional			
Text is typed. Drawings are very neat	Report is hand written. Drawings are	Report text and drawings are sloppy.	
and use a straight edge. Pages are in	clear, but not especially neat. Limited	Report has very little or no organization.	
the correct order. Report shows	organization. (5 pts.)	(0 pts.)	
organization (uses headings, for			
example)(10 pts.)			
Self -reflection page			
2 points per group member with decent effort answering the two questions listed on the assignment page, 1 point per			
group member with limited effort.			

TOTAL SCORE: _____/100

Suggested Modifications for Project 1

• When this project was used during the pilot semester with in-lecture presentations, students came up with designs that they could easily transport around campus. When projects were presented in the evening, outside of the normal class time, students produced much more elaborate designs. Depending on the presentation context, it might be a good idea to include a time limit for set-up of the machine and perhaps a limit on the size of the machine.

Project 2: Design and Build a Truss Bridge

Objective:

In this project teams will design and construct a bridge using only wood and string. Bridges will be load tested in class. The objective is to carry the highest load with the least material, while meeting the design constraints listed below. Teams will also need to prepare a report that describes how they applied the engineering design process to their bridge design and includes analysis of their design and of the bridge failure.

Design Constraints:

1. For load testing the bridge must rest on the support platforms which will be arranged as shown below:

- 2. The bridge must allow for a loading device to be **hung from the centerline** of the bridge.
- 3. The bridge must be free-standing. (A planar truss will not have the necessary stability.) The bridge cannot be anchored to the supports with string.
- 4. Each team will be provided with six 3'x(3/16)" x(3/16)" pieces of bass wood. You do not have to use it all, but you cannot use more.
- 5. Teams may use an unlimited amount of string, but the string must be the string provided by the professor and TA.
- 6. No glue or adhesives are allowed.

Judging:

Bridges will be loaded in class. The formula below will be used to rate the bridges:

$$Bridge Rating = \frac{Total Load}{2(total length of wood) + (total length of string)}$$

The bridge with the highest rating will be declared the winner. In order to receive credit for using less wood or string than provided, extra segments of material must be turned in.

Monday 10-1-12	Project assigned, New groups assigned
Friday 10-5-12	Time for group work in class
Monday 10-15-12	Drawings of truss designs due in class
Wednesday 10-24-12	Bridge load testing in the evening, Prediction due at time of testing
Monday 10-31-12	Analysis of bridge failure due

Timeline of Important Dates:

Design Report Requirements:

The report for this project will include three separate components:

<u>1. Bridge Drawing – due 10-15-12</u>

An accurate drawing of the bridge design (showing plan and elevation views) must be produced. This drawing can be done carefully by hand, but if you are familiar with a CAD package you are encouraged to use it. Your drawing must clearly indicate how the design can be loaded by hanging a loading device at the center line. These drawings will be used to ensure the loading device will work for all teams.

2. Description of Design Process and Prediction – due 10-24-12

Teams should prepare a description of the process followed in the design and construction of their bridge. The report should describe preliminary conceptual planning of how the loads could be supported with different arrangements of members. The report should include a complete analysis of your bridge. This analysis should identify which members will be the most highly loaded. You should use your analysis to predict how the bridge will fail. The report should describe any changes or adjustments made to the design during construction.

3. Analysis of Failure and Reflection – due 10-31-12

After load testing each group must take their broken bridge and analyze the failure. This portion of the report should describe how the bridge failed using the best of your knowledge. Questions to answer might include: Was your prediction correct? Why or why not? Did anything unexpected happen? Did your bridge act effectively as a truss? Did bending or shear play a role in the failure of the bridge?

At this time each group member should attach a self-reflection with two short paragraphs describing 1) what the student learned about statics from the project and 2) what the student would do differently if they received a similar assignment in the future (this could be something technical, something related to group work, any type of change).

All components of the report should be a neat, organized and thorough documentation of project work.

Project 2 Rubric

Team # _____ Group Members:_____

Bridge

				Score
Stable and Self-supporting				
Bridge can be placed on supports	The bridge must	be gingerly placed	The bridge is not stable and self-	
quickly and then loaded without	on the supports	and the team may	supporting (0 pts.)	
any interventions from the team	have to intervene to keep the			
(10 pts.)	bridge upright at the start of			
	loading (5 pts.)			
Uses only provided materials				
There is no evidence that additional materials or There is evidence of additional materials or				
adhesives were used (5 pts.) adhesives (0 pts.)				

Design Drawing

			Score
Loading Point			
The loading point is clearly	The loading point is indicated on	No loading point indicated. (0	
indicated on the drawing and is	the drawing, but is not compatible	pts.)	
compatible with a hanging load	with a hanging load. (2 pts.)		
device (5 pts.)			
Neat and Professional			
Drawn neatly in a CAD package or	Drawing is neat, but lacks some	Drawing is very sloppy and lacks	
by hand with a straight edge.	details such as dimensions or	detail (0 pts.)	
Dimensions are labeled. Includes	different views of the bridge. (2		
at least 2 different views of the	pts.)		
bridge. (5 pts.)			
Accurate representation of constructed bridge			
The drawing is representative of	There are significant differences	The constructed bridge does not	
the constructed bridge with only	between the constructed bridge	resemble the drawing at all. (0	
minor differences (5 pts.)	and the drawing (2 pts.)	pts.)	

Design Process and Prediction

			Score
Describes conceptual planning			
Report describes in detail how the	Report describes how the team	Not included in the report, or very	
team decided on the configuration of	decided on the general	poor description. (0 pts.)	
the bridge and how to make use of the	configuration of the bridge, but with		
materials. (5 pts.)	less detail (3 pts.)		
Detailed Analysis of Bridge Forces			
Calculations are provided showing the	Internal forces are determined for	Internal forces are not determined. (0	
internal forces in each member of the	some pieces of the bridge, but not	pts.)	
bridge. (15 pts.)	all members. (8 pts.)		
Analysis Assumptions			
Assumptions for analysis are clearly	Analysis assumptions are listed, but	Analysis relies on assumptions, but no	
explained (5 pts.)	not explained. (2 pts.)	assumptions are described.(0 pts.)	
Failure Prediction			
Report includes a prediction of	Report includes a prediction of	No prediction is made (0 pts.)	
how/where failure will occur and	how/where failure will occur		
explains why this prediction was	without any justification (2 pts.)		
made. (5 pts.)			
Changes and adjustments made to th	e design		
Describes changes made to the design	Describes changes made to the	Does not describe changes made to the	
during construction, and why these	design without further explanation	design (0 pt.)	
changes were necessary (5 pts.)	(2 pts.)		
Neat, organized, professional			
Text is typed. Drawings are very neat	Report is hand written. Drawings	Report text and drawings are sloppy.	
and use a straight edge. Pages are in	are clear, but not especially neat.	Report has very little or no	
the correct order. Report shows	Limited organization. (2 pts.)	organization. (0 pts.)	
organization (uses headings, for			
example) (5 pts.)			

Failure Analysis

Failure Description		
The failure is clearly described with	The failure is described without	A poor description of failure without
text and drawings or figures to aid	figures, or figures are used but the	figures (1 pt.)
explanation (5 pts.)	written description is poor (3 pts.)	
Rationale for Failure		
An explanation for the failure is	An explanation for failure is	No explanation for the failure is
provided drawing on course material	provided without specific	provided (0 pts.)
and including calculations (10 pts.)	supporting information (5 pts.)	
Neat, organized, professional		
Text is typed. Drawings are very neat	Report is hand written. Drawings	Report text and drawings are sloppy.
and use a straight edge. Pages are in	are clear, but not especially neat.	Report has very little or no
the correct order. (5 pts.)	Limited organization. (3 pts.)	organization. (0 pts.)
Self -reflection page		
2 points per group member with decen	t effort answering the two questions lis	sted on the assignment page, 1 point per
group member with limited effort.		

TOTAL SCORE: _____/100

Suggested Modifications for Project 2

- The presentation/bridge loading evening was an underutilized learning opportunity when we implemented this project. Students observed how different bridges failed, and the instructor heard some very good comments from students during the presentations. This learning could have been formalized though an assignment requiring students to comment on the failures of different bridges or through a structured group discussion.
- It may be worthwhile to instruct students to design bridges that they have the tools to analyze. We had some very creative bridge designs that could not be analyzed with just the statics skills students had. Alternatively, the fact that some bridges could not be analyzed with just statics could have been better leveraged as a chance for students to reflect on the limitations of their current knowledge.
- Many students were frustrated with only using knots for connections. Other connection materials could be used with a higher loading ability.
- Our loading technique was not very fast and made the presentation evening long and slow. The means of applying load is worth detailed consideration.

Project 3: Friction

During the first group project many teams commented about the generally negative effect friction was having on the accuracy of their analysis and the operation of their machines. However, there are also many situations where a machine, piece of equipment, engineering system or process relies on friction to make it work.

Objective:

The objective of this project is for each group to use friction to their advantage to move a CSU ram to the top of the "mountain". There are a variety of different ways that friction can be of use to you. I encourage you to be creative in your choice(s). Sections 6/4 through 6/9 of your textbook include some example applications of friction calculations that might help you come up with an idea, but if you have another idea feel free to use it – variety will make our class demos fun.

Your process to get the ram to the top does not have to be a self-operating machine, it is perfectly acceptable for it to be a hands-on process. You just need to be able to describe and calculate how friction is helping the ram climb the mountain.

The Mountain:

The mountain will have the dimensions shown below. It will have a depth into the page of 1.5 feet. It will be constructed of plywood. You may take advantage of any side/surface of the mountain to get the ram to the top.

Class Demonstrations:

Groups will demonstrate their application of friction in the evening from 5-7pm on Wednesday December 5th in Clark A201. Groups will be limited to a total of 5 minutes for set-up, explanation, and demonstration. If your group learns something interesting about friction or statics while you are working on this project please share it with the class during your presentation.

Report:

Each group must prepare a <u>short</u> report which:

- Describes how friction is essential to their process for getting the ram to the top.
- Includes calculations using real (or at least realistic) numbers to describe the process.

- Explains with words and calculations how the situation would be different if friction did not exist or was very limited.
- Includes a short reflection from each group member answering the questions: 1) what the student learned about friction from the project and 2) what the student would do differently if they received a similar assignment in the future.

Project 3 Rubric

Team # _____ Group Members:_____

Demonstration

			Score
Ram Gets to the Top			
The ram gets to the top of the	The ram gets to the top of the	The ram does not get to the top of	
mountain using the method the	mountain, but it is clear things	the mountain (0 pts.)	
group intended (10 pts.)	didn't go as planned (7 pts.)		
The process applies friction			
Friction is a very important part of	Friction is involved, but is not the	The involvement of friction is	
the process (10 pts.)	primary means for moving the	incidental. (0 pts.)	
	ram (5 pts.)		
Explanation			
The explanation of the process is	The explanation generally makes	The explanation is very limited/poor.	
very clear and emphasizes how	sense, but there are some	Friction is not really discussed. (0	
friction is important to achieving the	confusing parts and/or it does not	pts.)	
goal (10pts.)	emphasize the role of friction (7		
	pts.)		
Group Work			
All members of the group are active	Most of the group members are	The demonstration is dominated by	
in the demonstration, either by	active in some way (7 pts)	one or two people (0 pts.)	
helping with explanation or			
conducting the process (10 points)			

Report

			Score
Describes how friction is essential			
Report describes in detail how their	Report provides a cursory	Not included in the report, or very poor	
process for getting the ram up the	explanation of how friction is	description. (0 pts.)	
mountain depends on friction and	essential to the groups process (5		
explains how friction is helpful (10 pts.)	pts.)		
Calculations with Friction			
It is clear what is being calculated and	Calculations are provided but it is not	Calculations have major inaccuracies	
why. The calculations use real	very clear why they are meaningful	and the significance of the calculations is	
numbers. They include FBDs (20 pts.)	(14 pts.)	not at all clear. (5 pts.)	
Without Friction			
Report describes how the situation	Report describes how the situation	Not included in the report (0 pts.)	
would be different without friction and	would be different but does not		
provides some calculations to back up	include any calculations (5 pts.)		
the description. (10 pts.)			
Neat, organized, professional			
Text is typed. Drawings are very neat	Report is hand written. Drawings are	Report text and drawings are sloppy.	
and use a straight edge. Pages are in	clear, but not especially neat. Limited	Report has very little or no organization.	
the correct order. Report shows	organization. (5 pts.)	(0 pts.)	
organization (uses headings, for			
example)(10 pts.)			
Self -reflection page			
2 points per group member with decent effort answering the two questions listed on the assignment page, 1 point per			
group member with limited effort.			

TOTAL SCORE: _____/100

Suggested Modifications for Project 3

- This assignment description does not put enough emphasis on students conducting outside research on friction. Also students need to be encouraged to use friction creatively, possibly with credit assigned to creativity in the rubric. We had many projects that were very similar.
- Students seemed a little burned out by the end of the semester. This project could be skipped, reduced in scope, or presented with great emphasis or enthusiasm to help improve student response.