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ABSTRACT OF DISSERTATION 

TOWARDS EMULATION OF LARGE-SCALE IP NETWORKS USING 

END-TO-END PACKET DELAY CHARACTERISTICS 

Network emulation combines concepts from network simulation and 

measurements and provides an emulated network testbed over which application 

and protocol software can be evaluated. Network emulators allow the 

investigation of the interaction of network and protocols and applications in a 

controllable and repeatable manner. Existing network emulators are not scalable 

due to the limitations of available computer hardware infrastructure and the 

reliance on one-to-one packet mapping and modeling schemes. 

This research proposes a measurement-based modeling methodology for the 

design of a network-in-a-box emulator. The methodology aims at overcoming the 

limitation of computational overhead and end-to-end network system 

characterization complexity. A comprehensive study of end-to-end packet delay 

dynamics, in the context of network system modeling, is presented. 

A framework for large scale IP network emulation, named Overall Trend 

Replicating Network Emulator Tool (OTRENET), is presented. OTRENET 

intercepts data packet streams and modifies them, based on network system 
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models, in real-time. The complexity and overhead is reduced over those of 

packet-by-packet mapping and modeling, while producing results consistent with 

measurements by means of a traffic sampling algorithm. The algorithm monitors 

traffic metrics at a per-packet level, to dynamically separate sequences of 

packets into frames. Traffic behavior is then characterized by the average 

response of each time frame. The proposed Average Traffic Sampler by Time 

Frame Segmentation Algorithm captures significant trends of the traffic metrics 

while not being sensitive to instantaneous fluctuations. Design, implementation 

and performance of the proposed algorithm and the emulator are described in 

detail. Experimental results are used to demonstrate the effectiveness of 

OTRENET in replicating realistic conditions imposed by modeled environments. 

A comprehensive study of end-to-end packet delay dynamics, in the context 

of network system modeling, is presented. Theoretical basis, techniques and 

measurements for network packet delay dynamics characterization for various 

sending rate conditions and network stages have been developed. Modeling 

network systems by means of modeling of end-to-end packet delay dynamics is 

performed with emphasis on the effect due to cross traffic, sending rate and 

packet size. Measurements of packet delays over the Internet under various 

conditions indicate that packet autocorrelation dynamics change according to the 

sending rate and packet size of the probes. Moreover, under weakly-stationary 

network conditions, traditional ARMA and ARIMA time series techniques can be 

used to model packet delay and IPG processes. Under these conditions, 

goodness-of-fit results demonstrate the modeling accuracy for both packet delay 
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and IPG processes for cases where sending bit rate is relatively small compared 

to the link capacity. However, as the sending bit rate increases, as a fraction of 

the bandwidth, IPG becomes a better alternative for network system modeling. 

Measurement based analysis of packet streams has also demonstrated that 

packet autocorrelation, along with other packet delay characteristics, tends to 

vary in time in a non-stationary manner. A novel approach for online modeling 

end-to-end packet delay dynamics is proposed to address this. Proposed 

methodology models and captures the network system characteristics taking into 

account the non-stationarity of the packet delay samples by identifying time 

frames during which the trace can be considered to be weakly- stationary, while 

keeping computational and storage requirements low. Experiment results 

demonstrate the potential for online packet delay classification with the proposed 

algorithm, while keeping computational and storage requirements low. In 

general, results presented show that analyzing packet delay processes by 

modeling the segmented traces yield a better understanding of the network 

system dynamics. 

Daniel A. Vivanco 
Department of Electrical & Computer Engineering 
Colorado State University 
Fort Collins, Colorado 80523 
Summer, 2008 
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CHAPTER 1. INTRODUCTION 

Network research and development generally requires a simulation, 

emulation, or testbed environment to test and evaluate the performance of 

protocols, algorithms, services, and applications for both wireless and wired 

networks. When the target network is sufficiently large, simulation can consume 

a large amount of memory, and results are mostly based on traffic and network 

modeling assumptions. Network emulators, like network simulators, allow for 

investigation the interaction between networks and protocols in a controllable 

and repeatable manner. In addition, compared to testeds, their construction is 

less labor intensive and costly. 

Despite multiple studies on network emulation, existing emulator modules 

are still no-scalable due to the limitation of available physical infrastructure and 

the one-to-one packet mapping and modeling scheme. This research proposes a 

measurement-based modeling methodology for the design of a network-in-a-box 

emulator, which aims to overcome the limitation of computational overhead and 

network system modeling. A framework for large scale IP network emulation, 

named Overall Trend Replicating Network Emulator Tool (OTRENET), is 

formally introduced in this research. OTRENET overcomes the overhead of 

packet-by-packet mapping and modeling, while keeping track of the consistency 

of results, by means of a proposed Average Traffic Sampler by Time Frame 

Segmentation Algorithm. 
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Complementarily, a comprehensive study of end-to-end packet delay 

dynamics, in the context of network system modeling, is presented in this 

dissertation. Modeling network systems by means of end-to-end packet delay 

characterization is performed with emphasis on the effect due to cross traffic, 

sending rate, and packet size. The impact of non-stationarity on modeling 

network system dynamics is also analyzed in this research. A computer network 

system is considered non-stationary when its statistic properties vary over time. 

In the context of this analysis, a computationally efficient methodology for 

online segmentation and modeling of packet delay series based on an adaptive 

AR model, Kalman Filtering algorithm, and a modified version of the 

Divergence-Test is proposed. Experimental results demonstrate the online 

packet delay classification capability of the proposed algorithm based on the 

non-stationarity of the observations, while keeping computational and storage 

requirements low. 

A brief overview of the evolution of the Internet is provided in Section 1.1. 

In Section 1.2 alternatives for modeling and prediction of network and 

applications performance and development are presented. Section 1.3 highlights 

the challenges associated with current approaches for modeling and prediction of 

network and applications. In addition, in Section 1.3 the motivation of this 

research is discussed. Finally in Section 1.4, the outline of the dissertation is 

presented. 



1.1 E V O L U T I O N OF THE I N T E R N E T 

In 1973, the U.S. Defense Advanced Research Projects Agency (DARPA) 

started a research program to investigate the development of communication 

protocols, which would allow networked computers to communicate 

transparently across multiple, linked packet networks [80]. This project was 

named the Internetting project and the system of networks that emerged from this 

research are now known as the Internet. TCP/IP protocol suite was developed 

over the course of this research. In 1986, the U.S. National Science Foundation 

(NSF) initiated the development of the NSFNET project, which today provides a 

major backbone communication service for the Internet. The National 

Aeronautics and Space Administration (NASA) and the U.S. Department of 

Energy contributed additional backbone facilities in the form of the NSINET and 

ESNET respectively. 

Today Internet has revolutionized the computer and communications world 

like nothing before. Internet is at once a world-wide broadcasting capability, a 

mechanism for information dissemination, and a medium for collaboration and 

interaction between individuals and their computers without regard for 

geographic location. A large number of applications, ranging from voice, 

broadcast and on-demand video, gaming, data transfer, peer-to-peer, among 

others, are carried over the Internet daily. 



1.2 M O D E L I N G AND PREDICTION TECHNIQUES FOR NETWORK AND 

APPLICATION PERFORMANCE AND DEVELOPMENT 

Understanding the nature of end-to-end packet dynamics is crucial to 

several areas of application development, routing and transport protocol design, 

and congestion and flow control algorithm development. For instance, on the 

development and testing of congestion control algorithms [34], routing protocols 

[48], and real-time applications [72], a deep understanding of packet flow 

characteristics, i.e. one-way delay and jitter, is crucial. Application software 

developed for emerging complex distributed systems such as Collaborative 

Adaptive Sensing of the Atmosphere [8] also need to be evaluated and tested 

under a wide variety of network conditions. 

It can be difficult to study network protocols and distributed applications in 

real networks because of the complexity of the network, the randomness 

associated with queuing and processing interaction of packet flows, and load 

variations on different links. Several alternatives have been presented for 

accurate representation of end-to-end packet dynamics. For instance, queuing 

theory has been used as a powerful tool for modeling packet flow dynamics. 

However, such an approach requires knowledge of the inter-arrival and inter-

departure traffic distribution at every single link, resulting in tremendous 

computational demands, thus rendering it infeasible for large-scale networks 

[70]. The use of actual packet traces, i.e. packet delay traces, has also been 

proposed. Although this approach entirely captures traffic and network dynamics 

in a granular manner, its main limitation results from the large amount of data 
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needed to be collected and stored, depending on the duration of the observations. 

Network simulation approaches are also suggested alternatives. Network 

simulations are modeled representations of a network system that allow the 

researcher to create network topologies and conditions that are difficult to 

reproducibly achieve [27]. Packet level simulations do not generate real network 

traffic, but rather model traffic and major network components internally. 

Modeled traffic, in general, assumes well-defined distributions, i.e. Poisson or 

Pareto, throughout the entire simulation. These assumptions can obscure the 

understanding of behavior in real world situations by concealing their random 

nature [35]. Network testbed-based approaches are also proposed for studying 

network and application performance and development. However, while they 

closely mimic realistic characteristics, constructing testbeds is labor intensive 

and costly. 

Conversely, network emulators combine real world and modeled network 

components to provide an emulated network testbed over which application and 

protocol software may be evaluated. Network emulators alter real network traffic 

between nodes in a physical network based on various modeled network 

configurations. In general, such network models can be either packet level 

simulation or any other end-to-end packet model. 

1.3 C H A L L E N G E S IN END-TO-END NETWORK MODELING AND PREDICTION 

Modeling behavior of end-to-end packet dynamics over the Internet is not 

without major challenges. Complexity of network topologies, together with 
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randomness and non-stationarity of packet data streams [35], make it difficult to 

capture end-to-end packet dynamics over the Internet. 

Modeling end-to-end packet dynamics by means of network emulator tools 

also comes with challenges; among them, computational overhead and network 

system modeling. Several network emulators have emerged in an attempt to come 

up with accurate and inexpensive network emulator solutions. In general, 

incoming real packet data streams are altered within a network emulator tool 

based on modeled end-to-end packet dynamics. Two main approaches are 

typically used. The first approach is to capture each incoming data packet and 

translate it into synthetic replicates, which are used in an embedded packet level 

simulation model of the network. Simulated packets are then converted into real 

packet data [26] [32]. Such an approach yields to granular analysis of packet 

flow dynamics and its interaction with the network components; however, the 

computational overhead involved in these processes can rise considerably for 

high loads and complex network topologies under standard computer station 

conditions [26]. 

Conversely, the second alternative aims to reduce computational overhead 

by providing an environment for evaluation of end-to-end packet dynamics as the 

network system is abstracted to a simple router with specific packet handling 

operations [3] [19] [71]. However, topology related protocols, such as routing 

protocols and queuing metrics, cannot be evaluated. In addition, packet-handling 
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operations need to be dictated by a pre-defined modeled representation of the 

network system, which has to be obtained by other means. 

This research proposes a dynamic sampling algorithm that collects the 

average-sampled stream characteristics of an incoming packet stream without 

affecting its behavior, while maintaining lower computational overhead than a 

packet-by-packet capturing approach. In search of generic models, we 

approached the problem of end-to-end packet dynamics characterization and 

prediction by proposing novel modeling techniques based on time series analysis 

analyses for the design of a large scale IP network emulator tool. Modeling 

network end-to-end packet dynamics is achieved by characterizing packet delay 

with emphasis on the effect due to cross traffic, sending rate, and packet size 

under weakly-stationary and non-stationary network conditions [17]. 

This work is supplemented by a detailed study on end-to-end packet delay 

modeling. This research also develops a theoretical foundation, techniques and 

measurements for characterization of network packet delay dynamics under 

various sending rate conditions and network stages. Using abundant 

measurements of packet delay over the Internet under various conditions, we 

found that traditional ARMA and ARIMA time series techniques [17] can be 

used to model packet delay and IPG processes under weakly-stationary network 

conditions. Under these conditions, model goodness-of-fit results demonstrate 

modeling accuracy for both packet delay and IPG processes under small sending 

8 



bit rate conditions. However, as the sending bit rate increases as a fraction of the 

bandwidth, IPG becomes a better alternative for network system modeling [69]. 

In the context of modeling end-to-end packet dynamics, an in-depth study 

of packet delay under various network conditions is also performed. This 

analysis concludes that using packet delay characteristics (such as mean and 

higher moments) for network system modeling does not always result in a 

complete system model [59] [69] due to the fact that correlation of packets 

belonging to the same stream is not considered. However, autocorrelation of 

sample packet delay is an effective way for faithfully modeling associated 

characteristics [59] [69]. Measurement analysis of various packet streams 

demonstrates that packet autocorrelation, along with other packet delay 

characteristics, tends to vary in time under non-stationary network conditions 

[35]. Thus modeling techniques based on this metric need to be adjusted 

according to changes in the system dynamics. A methodology for online 

modeling of end-to-end packet delay characteristics induced by non-stationary 

network conditions is introduced. Effect of network dynamics induced into a 

packet flow is captured by means of Adaptive AR statistical models. Test 

statistics techniques are used sequentially to detect significant changes on the 

model parameters. This methodology separates, in real-time, non-stationary 

packet delay traces into stationary segments, in which a segment is generated 

only when a significant change on the system dynamics is detected, and each 

segment is represented by a different statistical model. Results demonstrate the 

potential online packet delay classification capability of the proposed algorithm 
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based on the no-stationarity of the observations. False sense of LRD on packet 

delay is also studied in the context of the proposed algorithm, and the importance 

of distinguishing it when modeling packet delay processes is highlighted 

1.4 D I S S E R T A T I O N OUTLINE 

The reminder of this research is structured as follows. In CHAPTER 2, an 

overview of previous studies on network emulation is presented. Advantages and 

limitations of previous studies related to this research are listed and discussed. 

In CHAPTER 3 a review of end-to-end packet delay is presented. 

Techniques on how to mitigate their impact on the quality of experience are 

presented. This chapter focuses on the study end-to-end packet delay 

characteristics, and it is also supplemented by the theoretical foundation, metrics 

and techniques for network modeling based on end-to-end packet delay. Multiple 

alternatives for packet delay modeling are presented and critiqued in CHAPTER 

3 . 

In CHAPTER 4 the design of a scalable emulator tool capable of recreating 

large networks in real-time is presented. The proposed tool, Overall Trend 

Replicating Network Emulator Tool (OTRENET), intercepts and alters incoming 

real packet data streams based on modeled end-to-end packet dynamics. 

OTRENET architecture is presented in Section 4.2. In addition, its functionalities 

are described, and compared to the limitations of previous related studies. In 

CHAPTER 4 an alternative for packet-by-packet capture and translation 

emulation approach is introduced. This algorithm is named Average Traffic 
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Sampler by Time Frame Segmentation (ASAF), and it is designed to be 

embedded into the proposed OTRENET emulator tool. 

In CHAPTER 5 the Average Traffic Sampler by Time Frame Segmentation 

Algorithm (ASAF) introduced in CHAPTER 4 is explained in detail. ASAF is 

focused on minimizing the overhead delay caused by packet-by-packet capture 

and translation approachs done by previous network emulator modules. ASAF 

algorithm is mathematically described in detail in CHAPTER 5. A performance 

comparison analysis of ASAF against other methodologies for traffic sampling 

and trend detection is presented. This analysis consists of determining its ability 

to generate estimated sampled traffic that resembles the original traffic, and its 

ability to reduce the number of time frames generated on the estimated traffic.In 

CHAPTER 6 the performance of the current stage of the proposed OTRENET 

module, as described in CHAPTER 4 and CHAPTER 5, is analyzed. CHAPTER 6 

describes in detail the experiment setup, performance metrics to be monitored 

and evaluated, and the emulation outcomes. Performance analysis of OTRENET 

on replicating realistic conditions imposed by simulated environments is tested 

in different manners in Section 6.1. 

In CHAPTER 7 approaches for packet delay modeling and characterization 

are discussed. Using measurements performed over the Internet, end-to-end 

packet delay dynamics are modeled using time series techniques under weakly-

stationary network conditions. The impact of sending rate and packet size of 

probes is investigated on the modeled results. Impact of Auto Correlation 
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Function (ACF) and Partial Autocorrelation Function (PACF) distributions on 

the packet delay modeling is also studied. CHAPTER 7 is complemented by 

testing and comparing the goodness of the fitted packet delay and IPG time 

series models under varied sending conditions. 

CHAPTER 8 extends the research presented in CHAPTER 7 to network 

systems under non-stationary conditions. The impact of non-stationatity when 

modeling network system dynamics is analyzed in CHAPTER 8. In addition, 

CHAPTER 8 proposes a computationally efficient methodology for online 

segmentation and modeling of packet delay series based on adaptive AR model, 

Kalman Filtering algorithm, and a modified version of the Divergence-Test. This 

method is based on the non-stationarity of the packet delay observations. 

Experimental results demonstrate the potential online packet delay classification 

capability of the proposed algorithm based on the piecewise-stationary of the 

observations, while keeping computational and storage requirements low. False 

sense of the Long Range of Dependency on packet delay is also studied in the 

context of the proposed algorithm, and the importance of identifying it when 

modeling packet delay processes is highlighted in CHAPTER 8. CHAPTER 9 

concludes the dissertation. 
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CHAPTER 2. OVERVIEW OF NETWORK EMULATOR 

TOOLS 

This chapter provides an overview of available network emulator tools. 

Well known and novel approaches for implementing network emulation are 

described. NISTNET and NSE emulators are described in detail, and their 

benefits and limitations are remarked addressed. 

In Section 2.1 previous studies related to network emulation are presented 

and described. Advantages and limitations of prior approaches are considered. 

NISTNET and NSE are selected for description in Sections 2.2 and 2.3, 

respectively due to the fact that they are directly related to our network 

emulation analysis. NISTNET architecture is explained in detail in Section 2.2.1. 

It's functionalities will be borrowed for the development of a large scale IP 

network emulator tool, which is presented in CHAPTER 4. 

In section 2.4, the most relevant advantages and limitations of NISTNET 

and NSE are listed and discussed. Alternative approaches that overcome these 

limitations are discussed in the context of the development of a large scale IP 

network emulator tool, and presented in CHAPTER 5, CHAPTER 7, and 

CHAPTER 8. 
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2.1 P R I O R APPROACHES FOR IMPLEMENTING NETWORK EMULATORS 

In recent past, several network emulators have emerged trying to come up 

with an accurate, inexpensive network emulator tool [1]. For instance, ENDE: 

An End-to-end Network Delay Emulator Tool for Multimedia Protocol 

Development [71] and the Ohio Network Emulator (ONE) [2] were designed 

focused to imitate queuing, propagation and end-to-end delays for local and wide 

networks. 

ENDE was designed to emulate end-to-end delays between two hosts 

machines in a single machine. ENDE enables the user to test new multimedia 

protocols realistically. ENDE has two modes; the delay-observing mode, and the 

delay-impacting mode. In the former mode, ENDE can generate accurate traces 

of one-way delays between two hosts on the network. In the later mode, ENDE 

can be used to simulate the functioning of a protocol or an application as if it 

were running on the network. 

Additionally, ONE enables researchers the emulation of a network between 

a pair of interfaces on a single Solaris-based workstation. Various features of 

wired networks, such as propagation delay, queueing characteristics and 

bandwidth can be controllable by the user. In addition, tool offers the capability 

of emulating variable propagation delays on satellite networks, based on the 

orbits of satellites. 

In [40] an emulator for performance evaluation of TCP/IP applications over 

a mixed network of wired and wireless elements is presented. Emulator presented 
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in [40] is a Linux based framework, which separates the simulated topology into 

two parts: wired network simulation and wireless network emulation. Complex 

topology of wired network is simulated in a Linux processor. Network traffic is 

then redirected from the simulated host and connected with the real wireless 

network. 

RAMON (Rapid-Mobility Network Emulator) is presented in [30]. 

RAMON is tailored to mimic the realistic characteristics of wireless networks. 

The main focus of RAMON is studying how mobile protocols handle high 

vehicular speed. 

Dedicated boxes for IP network emulators can also be found. For instance, 

PacketStorm communications [75] provides dynamic IP network emulators, and 

other bandwidth emulator products. Such products are a combination of 

dedicated hardware and software in a single box, which are focused on 

replicating the unfavorable conditions of IP networks and WANs in a 

controllable and repeatable lab setting. 

Well-known network simulators have also been extended to include 

emulator modules. As an example, OPNET Technologies has presented the 

system-in-the-loop (SITL) module[84]. SITL provides a simple plug and play 

interface that connects live applications or network devices to OPNET discrete 

event simulations. SITL extends OPNET's simulation technology to support 

application and network device testing for equipment manufacturers. OPNET 

consist of several models Internet protocols and architectures, which can be 
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modeled using discrete event simulation, flow analysis, or in a hybrid manner 

(combination of the two previous modes). 

In addition the Berkeley Network Simulator (NS) [26] has also been 

extended to include an emulator module (NSE) [26] over the well known NS 

simulator. NS is a discrete-event simulator used widely in the networking 

research community [66] [67], it includes several models of common and novel 

Internet protocols and architectures. NSE captures incoming real world packet 

streams, convert them into simulator compatible packets, and then inject them 

into NS simulator. NSE has the support of NS simulator for accurate 

network/traffic metrics generation, and its scalability can be improved with 

Parallel Discrete Event Simulation (PDES) techniques [28]. However, NSE is 

planned to be a real-time emulator, and thus all computational tasks involved in 

the emulation process need to be accomplished in real-time. Conversely, such a 

condition may fail in case of high loads and complex systems, in which 

computation delays related to the emulation process can rise considerably. As an 

alternative, EMPOWER [73] retains the packet-by-packet emulation process but 

attempts to reduce computation overhead by creating an IP network emulator 

cluster of workstations in a local-area network. Thus, computation overhead is 

just distributed among workstations, as opposed to being centralized in one 

system. 

On the other hand, the NISTNET emulator [19], developed by the National 

Institute of Standards and Technology [74] alleviates the problem of real-time 
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execution. This system allows an inexpensive standard PC-based router to 

imitate numerous complex performance scenarios, such as tunable packet delay 

distributions, congestion and background loss, without incurring unnecessary 

time overheads. NISTNET neither captures nor transforms incoming streams. It 

just buffers or drops incoming packets depending on parameters specified by the 

user and the random nature of the process. However, these parameters have to be 

pre-specified, and there is no in-built support for real-time emulation of dynamic 

network conditions. While NISTNET has many advantages, it is focused more to 

mimic the behavior of a router than a computer network. In the following 

subsections a complete explanation of NISTNET and NSE is presented. 

NISTNET and NSE are selected due to their relation to our network emulation 

analysis, NISTNET architecture is explained in detail, since its functionalities 

will be borrowed for the development of a large scale IP network emulator tool, 

which is presented in CHAPTER 4. 

2.2 NISTNET 

NISTNET is a simple Linux PC based network emulator that works as a 

"network-in-a-box", NISTNET provides capabilities of applying network 

characteristics to an IP packet stream going to or through the Linux PC it runs 

on. Network characteristics such as packet loss, delay, duplication, congestion, 

bandwidth limitation and reordering are included in NISTNET. NISTNET 

requires as its input the network effects to be applied and a flow specification to 

identify the IP datagrams. This flow is the target for applying those specific 

effects. The basic form of a flow specification is the source IP address and the 
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destination IP address of the IP packets. However, other IP header fields such as 

higher-level protocol (such as UDP, TCP, ICMP, IGMP etc.) and type of service 

(ToS) can be provided for more refined packet selection. Some higher level 

protocol header fields such as source and destination port numbers (for UDP and 

TCP), type or code field (for ICMP or IGMP) and multicast group (for IGMP) 

can also be provided to get even more explicit flow specification [19]. 

NISTNET allows the user to input flow specifications, either at the 

beginning of the emulation or during the emulation. In general, network dynamic 

can be reproduced in real-time when using NISTNET if accurate up-to-date flow 

information is available. 

2.2.1 NISTNET ARCHITECTURE 

Inside a Linux kernel, an IP packet is stored and moved in the form of a 

socket buffer (SKB). A socket buffer is designed such that a packet can be 

queued and transferred easily using pointers or references without copying the 

contents of the packet repetitively. A socket buffer is neither same as nor related 

to send and receive buffers of a BSD socket. An instance of C structure called 

SKJBUFF is associated with each socket buffer. This structure holds the 

information about the socket buffer such as time and device it arrived at, length, 

checksum, priority, etc [19]. The structure also has a field called the packet type 

of the socket buffer, which has a value E T H P I P for IP packets. The packet 

type determines the packet handler (in the IP stack) that will process the socket 
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buffer. Linux kernel provides a number of kernel level functions to manage the 

socket buffers [19]. 

NISTNET is basically a Linux Loadable Kernel Module (LKM). It utilizes 

hooks provided in the Linux kernel to modify the procedure of processing a 

socket buffers in the networking stack. NISTNET takes control of the IP packet 

type ( E T H P I P ) handler to intercept the socket buffer of an incoming packet. 

This forces the network device driver to forward the socket buffer to NISTNET 

rather than to the kernel's own packet handler. After NISTNET is finished with 

identifying an IP datagram using the flow specifications and applying 

corresponding network effects (if any) to it, the socket buffer is passed on to the 

kernel's packet handler for actual IP stack processing. For timing computations 

required when applying real time delays, NISTNET modifies the frequency of 

the real time clock (RTC) and uses it as the source of time. NISTNET makes use 

of the highest frequency that RTC can provide (8192 MHz) to obtain a good tick 

granularity (122 us). This allows for computing delays with sufficient accuracy 

for most practical applications [78]. NISTNET replaces the interrupt service 

handler for RTC device by a simple interrupt handler, ISR. All the RTC related 

operations are controlled by NISTNET fastRTC module. 

2.2.2 A P P L Y I N G NISTNET RULES TO INCOMING T R A F F I C 

Packet loss rate can be provided as a simple percentage loss or as DRD 

(Derivative Random Drop) parameters (drdmax and drdmin). If NISTNET 

decides to drop a packet using these parameters, it simply frees up the socket 
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buffer as if it never arrived at that host. The kernel IP stack never sees the socket 

buffer after this. Duplication rate can be supplied as the probability of 

duplicating a packet with an optional correlation factor. If a packet is to be 

duplicated, NISTNET clones the socket buffer and sends both the original packet 

and the cloned packet, back to back to give an effect of duplication. In real 

streams, however, if duplication occurs, the two copies, original and duplicate, 

may arrive with some gap (or other packets) between them. However, NISTNET 

does not implement it that way for simplicity of operation. 

Delay specifications can be provided as mean delay with optional 

parameters of standard deviation and delay correlation. After the delay for a 

packet is decided, an entry is added to the delayed packets linked list. This entry 

holds the socket buffer and an expiration time. As described earlier, NISTNET 

replaces the ISR for real time clock, i.e., RTC. At every interrupt generated by 

RTC, the handler checks if the delay of any of the packets in the delayed-packets 

linked list has expired. If it finds one, it takes the socket buffer out of the linked 

list and calls the kernel's IP level code for further processing of the packet. This 

is achieved by calling kernel's packet handler for packet type ETH_P_IP. This is 

the same kernel function that is called by the network device driver if NISTNET 

module is not present. 

2.3 NSE 

NSE (NS Emulator) is a logical extension of NS, which aims to provide an 

interaction between simulated and real-world components. NS is a discrete-event 
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simulator used widely in the networking research community [66] [67]. It 

includes several modules of common and novel Internet protocols and 

architectures. NSE incorporates special objects within the NS simulator to make 

it capable of introducing live traffic into the simulator and injecting traffic from 

the simulator into live networks. Injecting real word traffic in real-time into the 

simulator is done by first capturing the incoming packets through the Berkeley 

Packet Filter (BPF), and then converting them into simulator compatible packets. 

When using NSE, a special version of the system scheduler, Real-Time 

Scheduler, is used. This scheduler uses the same underlying structure as the 

standard calendar-queue based scheduler, but ties the execution of events to real­

time. Calendar-queue based scheduler uses a data structure analogous to a one-

year desk calendar, in which events on the same month/day of multiple years can 

be recorded in one day [18]. 

The interface between the simulator and live network is provided by a 

collection of objects including tap agents and network objects. Tap agents embed 

live network data into simulated packets and vice-versa. Network objects are 

installed in tap agents and provide an entry point for the sending and receipt of 

live data. Figure 2.1 illustrates how these objects are used on NSE [26]. 
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Figure 2.1. NSE objects infrastructure. 

2.2.3 R E A L - T I M E SCHEDULER 

The real-time scheduler implements a soft real-time scheduler, which ties 

the event execution within the simulator to real time [26]. Sufficient CPU 

horsepower is needed to keep up with arriving packets, thus the simulator virtual 

time should closely track real-time. If the simulator becomes too slow to keep up 

with elapsing real time, a warning is continually produced. 

The real-time scheduler should always be used with an emulation facility. 

Failure to do so may easily result in the simulator running faster than real-time. 

In such cases, traffic passing through the simulated network will not be affected 

by the proper characteristics specified by the simulator at the right time. 

22 



2.2.4 T A P AGENT 

The class TAP AGENT is a simple class derived from the base agent class. 

As such, it is able to generate simulator packets containing arbitrarily assigned 

values within the NS common header. TAP AGENT handles the setting of the 

common header packet size field and the type field. It uses the packet type 

PTLIVE for packets injected into the simulator. Each tap agent can have at most 

one associated network object, although more than one tap agent may be 

instantiated on a single simulator node. Tap agents are able to send and receive 

packets to/from an associated network object. 

2.2.5 N E T W O R K O B J E C T S 

Network objects provide access to a live network (or to a trace file of 

captured network packets). In general, network objects provide an entry point 

into the live network at a particular protocol layer (e.g. link, raw IP, UDP, etc.) 

and with a particular access mode (read-only, write-only, or read-write). Some 

network objects provide specialized facilities such as filtering or promiscuous 

access (i.e., the pcap/bpf network object) or group membership (i.e. UDP/IP 

multicast). The C++ class Network is provided as a base class from which 

specific network objects are derived. Three network objects are currently 

supported: pcap/bpf, raw IP, and UDP/IP [26]. 

2.4 ADVANTAGES AND LIMITATIONS OF NISTNET AND NSE 

Although NSE is still under construction some limitations can already been 

identified and foreseen, among them the computational overhead generated by 
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the packet-by-packet emulation process is the most relevant. NSE captures 

incoming real-world packets, which will then be converted into simulator 

compatible packets. After these packets are altered within NS simulator engine, 

based on the modeled network system, these simulator packets are converted 

back into real world packets and sent back to the live network. This procedure is 

done in a packet-by-packet manner and must be accomplished in real-time, 

thereby computation overhead delays related to the emulation process can rise 

considerably for high loads and complex systems, which can compromise the 

real-time emulation process promises by NSE. 

Conversely, NISTNET overcomes the limitation of packet-by-packet 

capturing, simulation and transformation. NISTNET does not capture nor 

transform incoming streams. It just buffers or drops incoming packets depending 

on parameters specified by the user and the random nature of the process. 

However, these parameters have to be pre-specified, and there is no in-built 

support for real-time emulation of dynamic network conditions. While NISTNET 

has many advantages, it is focused more to mimic the behavior of a router than a 

computer network. When a computer network is emulated using NISTNET, 

dynamics of the network need to be injected into the emulator module. However, 

such dynamics need to be generated in real time using external models of the 

network. 
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CHAPTER 3. REVIEW OF END-TO-END PACKET DELAY 

This research focuses on the study of end-to-end packet delay and its 

application on network system modeling. This chapter is supplemented by the 

theoretical foundation, metrics and techniques for network modeling based on 

end-to-end packet delay. 

In Section 3.1, an introduction to packet delay is provided. Importance of 

end-to-end packet delay and jitter on the application performance is also 

discussed in this section, in addition with techniques on how to mitigate their 

impact on the quality of experience. Packet delay components are presented in 

Section 3.2. In Section 3.3 multiple alternatives for packet delay modeling are 

presented and critiqued. 

Section 3.4 presents the challenges associated with measuring packet delay 

parameter, mainly clock synchronization and clock skew issues are presented, 

along with proposed methods to counter these effects. 

In Section 3.5 packet delay variation metric is presented as an alternative 

for packet delay measuring. Packet delay variation is defined as the difference 

between the delays of two IP packets. This parameter has a great influence on the 

behavior of streaming applications and real-time protocols. Section 3.5 presents 

two different formulations for packet delay variation widely used in the context 

of active measurements. 
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3.1 P A C K E T DELAY 

End-to-end packet delay refers to the time taken by a packet to transit 

through the network from source to destination. End-to-end packet delay has 

been extensively used in the past to study several areas of network application 

performance and development. Several congestion control algorithms [32], 

routing protocols [47], and real-time applications [71], are designed based on 

one-way delay and jitter characteristics. For instance, it is well known that 

increase on packet delay can affect significant the TCP protocol behavior [32]. 

TCP relies on synchronized acknowledgments to detect congestion in the 

network and avoid further congestion by reducing the sending bit rate. 

Moreover, monitoring delay characteristics provides a good understanding 

about the network state and allows Internet Service Providers make engineering 

traffic decisions based on the expected quality of service of different types of 

applications. For example, for voice applications G.114 standard of ITU 

(International Telecommunication Union) recommends 150 milliseconds as the 

maximum one-way delay for voice traffic, as anything above this value will 

degrades the quality of the voice [71]. In general, time susceptible applications 

such as voice and video need to be handle differently than the other types of 

applications. For these types of applications end-to-end delay and the second 

order of the delay, also known as the jitter delay, play an important role. Higher 

jitter indicates more buffering leading to a decrease of the voice or video quality, 

and also may lead to other undesirable effects such as packet reordering [60] and 

packet loss [49]. Vendors of routers handle delay and jitter in different ways. 
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Some routers provide load-balancing options to alleviate network link 

congestion. On the other hand, jitter buffer management is also widely used for 

voice and video application, in which packets are buffered in such a way that 

they can be then played out by the application at a constant rate. 

3.2 C O M P O N E N T S OF PACKET DELAY 

A packet can be delayed within the network due to determinist or stochastic 

factors. Deterministic components of packet delay depend on packet delay, link 

capacity and physical distance, and are independent of the network congestion. 

Transmission delay and propagation delay are considered deterministic 

components of packet delay. The former represents the time to transmit an entire 

packet, from first bit to last bit over a communication link. The later represents 

the time to propagate a bit through the communication link, which is determined 

by the time of electromagnetic wave through a physical channel of 

communication path. 

Conversely, stochastic components of packet delay change accordingly to 

the network congestion and the traffic scheduling policies applied. Queuing 

delay and processing delay are considered stochastic components of packet 

delay. The former is represented by the waiting time of a packet in a buffer, 

either in a switch or in a router. The later, represents the time needed to process 

a packet at each network element. In general, stochastic components of packet 

delay vary not only based on the traffic intensity but also based on the presence 

of packets from other streams, also known as cross-traffic. 
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3.3 P A C K E T DELAY MODELING 

Capturing accurately the end-to-end packet delay characteristics is crucial 

for understanding the dynamics of the end-to-end delivery process and for the 

development of accurate models. Such models can also have a great impact on 

operation and management of networks. For instance, with both real-time [9] and 

non-real time congestion control mechanisms [15][32], delay based alternatives 

to packet-loss based approaches aim at preventing network congestion at early 

stages. 

Furthermore, end-to-end packet delay models can be applied to estimate the 

behavior of live streams under particular network conditions. A direct 

application for accurate delay models can be found on network emulators 

[19] [68], in which incoming real packet data streams are altered based on traces 

capturing end-to-end behavior or analytical/simulation models representing such 

behavior. Such emulators are useful for investigating the performance and 

behavior of distributed applications and application software under different 

network conditions. In general end-to-end packet delay and inter-packet gap 

(IPG) models characterize the effects induced by cross traffic and the probe's 

sending rate conditions [59] [69]. 

Multiple studies have been performed, mostly using the measurements over 

the Internet, to explain the end-to-end packet delay dynamics. We have selected 

few research works that have drawn varied conclusions according to the analysis 

conducted. 
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Several alternatives have been presented for accurate representation of 

packet delay, among them queuing theory has been used as a powerful tool for 

modeling packet delay. However, such an approach requires knowledge of the 

inter-arrival and inter-departure traffic distribution at every single link, which 

requires tremendous computational demands and thus not feasible for large scale 

networks [70]. The use of actual delay traces has also been proposed for this 

matter. Although this approach capture entirely the traffic and network dynamics 

in a granular manner, its main limitation relies on the fact that large amount of 

data need to be collected and stored, depending on the duration of the 

observations. Back box models have also been proposed for modeling packet 

delay. Such approaches are based on the analysis of the system output 

observations, and rarely the system input information. Among then, time series is 

one the most popular ones used by the research community. Time series is a 

collection of observations made sequentially in time [17]. Packet delay traces, 

when collected accurately, are considered typical time series data. Modeling 

techniques based on time series captures the dynamics of the process by 

analyzing the collected samples. After process is modeled, samples can be 

discarded. Several modeling research based on time series have been conducted 

on the past. In [10] , predictive models for video packet delay using auto-

regressive models are presented. In [53] a variable bit rate (VBR) flow of probes 

and an ARX model (Auto-Regressive exogenous) are applied for modeling the 

end-to-end delay, in which the packet delay process is captured based not only 
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on the observed end-to-end packet delays, but also on the probe's inter-departure 

packet gap distribution. 

A measurement-based tool for traffic modeling and queuing analysis is 

developed in [41], which uses CMPP (Circulant Modulated Poisson Process) for 

a traffic model. A comparative analysis of network traffic prediction based on 

both ARMA and MMPP (Markov-Modulated Poison Process) models is 

presented in [61]. 

End-to-end packet delay over the Internet has also been modeled using 

system identification techniques[53]. In [53]end-to-end is modeled as SISO 

(Single-Input and Single-Output) system. However, due to the varying network 

conditions, a SIMO (Single-Input and Multiple-Output) system is recommended. 

Mathematically, delay has been modeled using different distributions in 

previous studies. Exponential, Weibull, and Pareto distributions, as well as, time 

varying exponentials are some of the distributions used for this matter. In [14] 

delay distribution is modeled using Gamma-like distributions with heavy tails of 

sub-exponential. Although, analysis is promising, network condition information 

is missing, and results seem to be generalized from a set of measurements. In 

[31] packet delay is modeled as time varying exponential. In this research one­

way delay is modeled by the composition of states, each of them modeled as a 

shifted exponential distribution with varying parameters. In [59] packet delay on 

a data stream was fitted into several distributions for different probe's sending 

rate and packet size conditions. Measurements indicate that the delay distribution 
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follow a spectrum of distributions ranging from gamma to beta. It is also pointed 

in this study the existence of correlation among delay values of consecutives 

packets. Such correlation tends to get stronger for high sending rates than for 

low ones. 

In [59] was also shown that the distribution of end-to-end packet delay by 

itself does not always result in a complete model, due to the fact that the 

correlation of packets belonging to the same stream is not considered. In [69], a 

system approach is used to characterize the network system dynamics by means 

of modeling end-to-end packet delay. Findings of this study reveal that the 

behavior of end-to-end packet delay and IPG sequences can be captured 

effectively by ARMA and ARIMA models, when CBR probe flows are used. 

Effects of sending bit rate, packet size, and available link capacity are analyzed 

on the context of system modeling. Results indicate that modeling system 

dynamics using IPG traces yields to better goodness-of-fit than packet delay, for 

the same probe stream bit rate, as the combination of data rates and packet size 

increases. Packet auto correlation have been study in both [59] [69], as a 

function of probe's sending rate and packet size. 

The impact of packet autocorrelation on traffic modeling has also been 

previously study. For instance, in [41], time series approaches are used to study 

the impact of packet autocorrelation on the queue response. In [6][39] 

methodologies for modeling autocorrelation functions for Long-Range-

Dependent (LRD) and Short-Range-Dependent (SRD) traffic are presented. 
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Tools for replicating actual network conditions in controllable 

environments, such as network emulators [17][68], are impaired by the necessity 

of capturing and injecting packet autocorrelation from measurements into the 

emulated network traffic. This is crucial to reproduce the actual observed 

network conditions for experimental purposes. For instance, NISTNET [19], uses 

correlation coefficients, to a limited extend, to generated delay values for data 

streams. 

Packet delay, among many Internet traffic metrics, is considered to be a 

non-stationary processes by nature, even under light congested link scenarios 

[35]. A process is considered to be non-stationary when its statistical properties 

change in time. Although network link congestion is considered as the main 

reason for non-stationarity and LRD on packet delay observations [6], it has 

previously been demonstrated that other network conditions, such as link failure, 

routing table updates, and routing flapping [35], can also be responsible for this 

phenomenon. Thus, in practice it is common to observe patterns of periodic 

spikes, bursty behavior, and level shifting in packet delay traces. 

One of the most important factors that LRD introduces into time series is 

non-stationarity [17][34] [35]. However random spikes and irregular events on 

the network system can indeed create a false sense of LRD on the observations. 

When modeling non-stationary time series, traditional time series 

methodologies rely on transforming them into stationary ones by means of 

differencing techniques [17]. However such an approach may fail to distinguish 
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uneven events responsible of creating false sense of LRD on the packet traffic, 

since it only captures the overall behavior of the system during the observation 

period. Consequently, segmenting the observation's trace into groups of 

stationary time series has been proposed as an alternative solution. Time series 

segmentation is considered a useful approach for quantifying a non-stationary 

packet delay series, since it represents the observed trace as a number of time 

series that are themselves stationary [26][56]. 

Time series modeling techniques is used on this research to model network 

system dynamics by means of packet delay observations. CHAPTER 7 presents 

methodology, results, and remarks for system modeling based on packet delay 

observations under weakly-stationary network conditions. CHAPTER 8 presents 

a novel approach for similar analysis of system modeling based on packet delay 

observations under non-stationary network conditions. The approach presented in 

CHAPTER 8 relies on the segmentation of packet delay traces. Experiment 

results indicate that the segmented stationary packet delay series yields to a 

better understanding of the network system dynamics and lead to more accurate 

modeling and prediction analysis. 

3.4 C H A L L E N G E S ON MEASURING PACKET DELAY OVER THE INTERNET 

Provide an unbiased and quantitative measure of packet delay is a crucial 

task on research and network system monitoring. However, measuring packet 

delay comes with some challenges. Challenges on measuring packet delay 
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Clock synchronization between sender and receiver is critical for reliable 

packet delay measurement. If the timing of arrival or transmission is off between 

the sender and the receiver, then packet delay information will be distorted. 

Network Time Protocol (NTP), has mostly been used to synchronize clocks of 

systems to high precision atomic clocks located in different parts of the word. 

Conversely, clock skew is also considered an essential reason of 

uncertainties when measuring packet delay. Clock skew refers to the phenomena 

in which two clocks involved in the measurement, sender and receiver for 

instance, run at different frequencies. Numerous techniques for reducing the 

effect of clock skew issues can be found on the literature [57]. However, such a 

phenomenon can not be totally eliminated. Clock skew is usually in the range of 

microseconds in an interval of few seconds. Thus, if the measurements are 

performed over networks within few seconds and the delays are in milliseconds 

range, most of these errors can be neglected. 

3.5 P A C K E T DELAY VARIATION 

Contrary to packet delay, packet delay variation metric does not present the 

mentioned challenges when measured over the Internet. In general packet delay 

variation metrics are derived metrics, thus their definition rely on another metric 

[23]. The fundamental of this metric is the one-way delay, variations are 

computed by taking the difference between two individual one-way delay 

measurements. This intrinsic property of the packet delay variation metrics, 

makes them unsusceptible to the challenges packet delay measurements are 
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exposed, which were mentioned in Section 3.4, as notion of packet sending time 

is not needed. 

In general, packet delay variation metrics have a great impact on the 

behavior of streaming applications and real-time protocols. Typical cases for 

such applications are voice-over-IP, video applications like video conferencing, 

internet radio or other multimedia applications [72]. In such cases, the use of a 

buffer to smooth out the delay variations encountered on the path from source to 

destination is needed. Buffer needs to be dimensioned in such a way to 

accommodate most of the expected variation, otherwise packet loss will result. 

However, if buffer is too large, large delays will be experienced on the 

communication and thus conversational dynamics will be affected [72]. In 

addition, Internet Service Providers usually monitor these metrics and compare 

them against numerical objective from Service Level Agreement, to ensure 

quality of real-time applications. 

There are many ways to formulate delay variation metrics for packet 

networks. However, two main formulations are preferred [23], the Inter-Packet 

Delay Variation (IPDV), and the Packet Delay Variation (PDV). Both 

formulations are explained and compared in detail below. 

3.5.1 IPDV: I N T E R - P A C K E T DELAY VARIATION 

IPDV is the abbreviation for IP packet delay variation, also known as jitter 

delay. IPDV is defined as the difference between the delays of two consecutive 
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IP packets [23][51 ]. The reference packet in the pair is always the previous 

packet in the sending sequence. IPDV is defined below; 

IPDV(i) = D(i)-D(i-l) (3.1) 

where D(i) and D(i-\) are the end-to-end delay of two consecutives 

packets, / and i-1, respectively. In general, IPDV can be considered as a measure 

of the network's ability to preserve the spacing between packets [23]. 

3.5.2 PDV: P A C K E T DELAY VARIATION 

Packet delay variation, also known as PDV, is defined as the difference of a 

packet delay observation minus the minimum one-way-packet delay sample 

within the specified interval of the observations [51]. Using the same 

nomenclature introduced in Section 3.5.1, PDV is defined below; 

PDV(i) = D(t) - £>(min) (3.2) 

where D(min) is the minimum one-way-packet delay observation within the 

specified interval of the observations. 
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IPDV and PDV differ from each other on the reference term. Comparison of 

these metrics has previously been done [22]. The most significant conclusions 

reached from such comparison are listed below; 

1. Distribution of IPDV is usually symmetrical about the origin, with a 

zero mean value. 

2. IPDV distinguishes quick delay variations, from longer term variations. 

3. IPDV places reduced demands on the stability and skew of measurement 

clocks. 

4. PDV does not distinguish quick variation from variation over the 

complete test interval. 

5. Location of PDV distribution is very sensitive to the reference delay, 

minimum packet within the specified interval of the observations. 

6. Shape of the PDV distribution is identical to the delay distribution, but 

shifted by the reference delay. 
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CHAPTER 4. DESIGN OF A LARGE SCALE IP NETWORK 

EMULATOR TOOL. 

Network research requires accurate environments for protocols and services 

analysis and performance evaluation. In this chapter the design of a scalable 

emulator tool capable of recreating large networks in real-time is presented. The 

proposed tool, Overall Trend Replicating Network Emulator Tool (OTRENET), 

intercepts and alters incoming real packet data streams based on modeled end-to-

end packet dynamics. The current version of OTRENET, presented in this 

section, uses a network simulator to provide the modeled end-to-end packet 

dynamics. However, OTRENET is flexible enough to handle other types of 

models. CHAPTER 7 and CHAPTER 8 present alternatives means of network 

modeling, which can be used on the context of network emulation. 

In Section 4.1 an overview of network emulation is provided. Classic 

architecture of previous studies is presented and critiqued. The proposed network 

emulator tool is also outlined in Section 4.1, aiming at overcome limitations of 

previous efforts. In Section 4.2 OTRENET is formally introduced. OTRENET 

architecture is presented in Section 4.2. In addition, its functionalities are 

described in this chapter, and compared to previous related studies. 

In Section 4.3 the units that form OTRENET are described. An explanation 

on how they work individually and collectively is provided. Synchronization of 

OTRENET units is explored in 4.3.4. 
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4.1 O V E R V I E W OF NETWORK EMULATION 

Precise and efficient tools for network analysis and performance evaluation 

are critical for testing new distributed applications, protocols and technologies. 

Network simulators have been widely used for this purpose; while this is a 

repeatable and manageable experimental approach, it requires the use of 

simplifying assumptions (i.e., traffic patterns, dropping probability, etc.). These 

assumptions can obscure understanding of behavior in real world situations, and 

often conceal the random nature of real systems [55] [56]. Application software 

developed for emerging complex distributed systems such as Collaborative 

Adaptive Sensing of the Atmosphere [8] need to be evaluated and tested in a 

wide variety of network conditions. The approach presented in this research, can 

be used to evaluate the end-to-end performance of such applications by providing 

an emulated network environment that directly connects to nodes running the 

application. Network emulation combines concepts from network simulation and 

measurements and provides an emulated network testbed over which application 

and protocol software may be evaluated. Compared to simulation, a network 

emulation approach could lead faster and more accurate results. This approach is 

more practical to implement, more versatile and significantly less expensive than 

a real testbeds [7]. 

A network emulation system can be conceptualized using three units. The 

first unit captures real incoming traffic. The second unit uses the captured traffic 

to inject simulated traffic into a modeled environment. In the third unit, the 

output of the simulated network modulates the real traffic, captured in the first 
39 



unit, prior to its release from the emulator. Prior approaches suggest meeting the 

terms of the three mentioned units in a packet-by-packet level [26]. Although 

that yields to accurate emulation, it also may yields to computation overhead 

when the simulated network is sufficiently large. Several existing network 

emulators attempt to reduce the computation overhead on the simulation unit by 

providing environments for end-to-end protocol evaluation as they abstract a 

network cloud to a simple router with specific packet handling operations 

[3][71][26]. Therefore topology related protocols such as routing protocols 

cannot be evaluated. 

Our approach receives real traffic stream characteristics of incoming 

packets and uses them as input for a network model to regulate characteristics of 

real traffic streams. The proposed approach differs from previous emulators in 

two aspects. On one hand, it obtains average information of a sample group of 

incoming data packet, as apposed to packet-by-packet capture. On the other 

hand, it regulates the actual stream based on simulator/model generated 

characteristics, since no packet capture is attained. Thus, although the terms of 

the three mentioned emulator units are met, computation overhead on the first 

and third unit is greatly reduced. 

As an alternative to the packet-by-packet capture and translation approach, 

OTRENET uses the embedded Average Traffic Sampler by Time Frame 

Segmentation (ASAF) algorithm to sample incoming traffic and inject parameters 

corresponding to dynamically determined time-frames into the simulator/model. 
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By including this algorithm in the system, the proposed emulator module mimics 

the overall behavior of real network scenarios with significantly less 

computation/time overhead. Thus, the proposed emulator maintains repeatability 

and ease of configuration while using real-world interaction to minimize 

deficiencies of simulated approaches. OTRENET, as its name suggests, was 

designed to mimic the overall behavior of real network scenarios rather than the 

instantaneous packet-by-packet responses of the system. 

4.2 OTRENET: O V E R A L L T R E N D R E P L I C A T I N G N E T W O R K E M U L A T O R 

T O O L 

OTRENET modifies the characteristics of a stream of packets mimicking 

the effect on it when passing through a given network. The stream enters the 

emulator via a network interface card (NIC), Ethl, and leaves via a second NIC, 

Eth2, with the delay, losses, and throughput etc. of the stream changed according 

to the results from a network model. 

OTRENET overcomes the need for packet-by-packet capture and injection 

of packets to the network model; yet it allows the simulation model to depend on 

stream traffic, and end-to-end traffic in emulated network. Our approach is to 

collect the average input stream information from incoming real-time traffic flow 

as an alternative to injecting it directly into the simulator model packet-by-

packet, as NSE proposes to do it. The statistical characteristics gathering process 

is done by employing a dynamic sampling algorithm at the input, sampling real 

time streams without affecting their behavior. 
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Figure 4.1. OTRENET architecture 

This way, OTRENET will not cause unnecessary packet loss at the entry at 

any given time, even when the module gets overloaded due to excessive traffic. 

After the average-sampled stream characteristics are obtained from the sampling 

algorithm, those values are introduced into the network model (NS), see Figure 
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4.1. In the current version of OTRENET input stream information is collected 

directly from the NISTNET kernel, as shown in Figure 4.1. This approach has 

been found to be less computational expensive than collecting it from the Ethl 

NIC. 

The output of the network model is used to extract characteristics of traffic 

passing through it, such as burst packet losses, transmission delay and 

duplication created by the simulated environment set up. These are features that 

in turn act upon traffic routed through it in order to trigger and emulate the 

congestion behavior of real networks. Thus output stream features are collected 

from the network model unit, and these parameters represent the particular 

behavior of each real-word stream inside the modeled network environment. 

Finally, the statistics of these output values are collected from the sampling 

scene and injected into the traffic adjuster unit (NISTNET), which is responsible 

for fine-tuning the real-traffic stream that is currently passing through the 

module as shown in Figure 4.1. In the following subsections the units that form 

the emulator are described, also an explanation on how they work individually 

and collectively is provided. 

Notice that even though OTRENET currently uses NS and NISNET for 

network modeling and traffic adjusting, respectively, it is able to accept other 

tools capable to provide similar functions. 
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4.3 OTRENET UNITS: D E S I G N , I M P L E M E N T A T I O N , AND 

SYNCHRONIZATION 

4.3.1 INPUT TRAFFIC SAMPLER UNIT 

This unit is in charge of sampling the input traffic coming into the emulator, 

via the network interface card Ethl. Besides filtering, classifying and collecting 

the stream information, this unit is also responsible for adjusting the sampling 

process dynamically depending on the input fluctuations and the availability of 

the simulator unit. Thus the input stream information is not only used as a feeder 

to the simulator, but its characteristic distributions are used to decide how often 

the sampling has to be done. This process is achieved by employing an embedded 

Average Traffic Sampler by Time Frame Segmentation algorithm (ASAF) within 

the input traffic sampler unit, as shown in Figure 4.1. CHAPTER 5 explains in 

detail the algorithm utilized in this unit, the metrics that it requires and the 

dynamic thresholds selection. 

4.3.2 N E T W O R K MODEL UNIT 

This unit consists on a model of the emulated IP network. This could be an 

analytical model, a trace table, packet-by-packet simulation or even a scaled 

simulation version. Its selection depends on the performance accuracy and the 

execution speed needed. A customized version of NS has been chosen as a 

network model for the current version of OTRENET. 

Since the simulated network characteristics (available bandwidth, queue 

length, network congestion, etc.) constantly change during the time, it is not 
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possible to turn this component on and off every time new input traffic 

characteristics are collected and injected. Therefore it is essential to keep the 

simulator running all the time that the emulator is on. NS has been designed as a 

discrete event simulator in which the traffic stream characteristics have to be 

specified before it is executed, and the system output characteristics can only be 

collected and analyzed at the end of the simulation. Thus NS was modified to 

support these features. 

Two main modifications were done on the NS functionalities. The first one 

consists on a periodic feeding mechanism of real-traffic characteristics into the 

simulator. The second one consists on a "on the fly" analysis of each real stream 

which traverses the simulated network. The latter approach consists of examining 

periodically the end-to-end real stream behavior such as throughput, end-to-end 

delay, jitter, and packet-loss rate. End-to-end delay and packet-loss rate were 

found appropriate to accomplish the input-output mapping based on network 

simulation. 

Note that the architecture lends itself for replacement of NS simulator with 

other appropriate simulation or analytical models as well. 

4.3.3 T R A F F I C ADJUSTER UNIT 

This unit is in charge of the traffic adjustment, and triggers NISTNET based 

on the output responses (end-to-end delay, packet loss rate, etc) of the simulator 

unit captured through the sampling-algorithm within the traffic adjuster unit, as 

shown in Figure 4.1. 
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The same traffic sampling algorithm that is used to capture the 

characteristics of the input stream is used to capture the characteristics of the 

simulator output, which in turn is used to control the outgoing stream. The 

periodicity of the real traffic adjuster triggering depends primarily on the 

simulated response variations. Also since the input sampler unit collects IP 

addresses/port number information of the source and destination of each 

incoming stream, this unit is able to provide sufficient information to the traffic 

adjuster unit in order to accurately match the simulated stream responses with 

the real traffic passing through the emulator. 

4.3.4 SYNCHRONIZATION AMONG UNITS 

Synchronization among the three units is crucial for the emulation 

processes. Each of its units must work with tight dependence to the others. 

Furthermore, to accurately recreate the behavior of real word scenario and to 

take advantage of inherent parallelism while minimizing the total execution time 

of the whole process, we execute these three units in parallel. Thus each unit has 

to be executed only at specific times and just the amount of time that it is 

expected to work. 

Time boundaries are calculated during the emulation processing to prevent 

system inaccuracies or collapses. The scripts used in each unit are linked 

together by a main script, in which three procedures were created; traffic 

collector, network simulator/traffic adjuster and system scheduler. These 

procedures are executed in parallel, as shown in Figure 4.2. 
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Figure 4.2. Flow diagram of the main OTRENET code arid module synchronization. 

The first procedure is responsible for collecting the stream characteristics. 

The second one combines the network model and traffic adjuster emulator units. 

Finally the third procedure is responsible of synchronizing and interconnecting 

the previous two threads. So the scheduler procedure will transfer the collected 

information on incoming packet stream from the first procedure to the second 

one only when the network model unit is idle (i.e., it is done simulating the 
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previous transferred information). Also in the case that the network-

model/traffic-adjuster process goes faster than the collecting process the 

scheduler procedure will force the simulator-model/traffic process to wait 

preventing this way the starvation of other processes. 

The script used to execute and synchronize OTRENET units in the manner 

described above is presented on appendix B.3. 
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CHAPTER 5. TRAFFIC SAMPLER BY TIME FRAME 

SEGMENTATION ALGORITHM. 

In this chapter the Average Traffic Sampler by Time Frame Segmentation 

Algorithm (ASAF) introduced in CHAPTER 4 is explained in detail. ASAF is 

focused on minimize the overhead delay caused by packet-by-packet maping 

approach, done by previous network emulator modules. 

In Section 5.1, ASAF algorithm is mathematically described in detail. 

Metrics to be monitored are specified, as well as algorithm settings are fine 

tuned according to the expected sensitivity. In Section 5.1, ASAF algorithm 

performance is tested. Experiment was conducted by comparing a simulated end-

to-end delay response against the average delay per time frame generated by the 

proposed algorithm. Results indicate that the average delay per time frame 

follows closely the variability of the instantaneous delay response, even when it 

changes severely. 

In Section 5.2 several functions are evaluated as alternative candidates for 

the threshold decay function embedded in the proposed ASAF algorithm. 

In Section 5.3 a rigorous performance comparison analysis of the proposed 

ASAF algorithm against other methodologies for traffic sampling and trend 

detection is presented. Analysis is done to measure the algorithm ability on 
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replicating the original sample series, while keeping the number of time frames 

low, to the extent possible. 

5.1 A L G O R I T H M DESCRIPTION 

As was mentioned in CHAPTER 4, the main disadvantage of network 

emulator modules such as NSE is the packet-by-packet capture and translation 

approach, in which each incoming real packet is captured, translated into 

simulated one, and injected into a network model embedded in the emulator 

module, in altered based on modeled network end-to-end packet dynamics. 

Although by this approach accurate packet-by-packet emulation is guaranteed, 

heavy CPU resources are required to accomplish these tasks in real-time. 

However, if this cannot be achieved, which is likely to be the case with complex 

networks, additional computation overhead delay is added into the results. In 

cases where hundreds of thousands of packets are emulated, e.g., with Mbps and 

Gbps links, this becomes a very significant limitation. 

In this section the ASAF algorithm is proposed as an alternative to the 

packet-by-packet capturing and translating approach. This algorithm is used to 

report significant changes and not instantaneous fluctuations, for both real entry 

traffic and output modeled traffic response, as was mentioned in CHAPTER 4. 

ASAF aims at reducing the computation overhead delay, while keeping track on 

the consistency of the results. 

On the current version of OTRENET the input sampler unit monitors packet 

size and inter-arrival packet gap, while in traffic adjuster unit the utilized metrics 
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are end-to-end delay and packet loss rate. In this section we explain in detail 

only the use of the algorithm as utilized in the traffic adjuster unit. However, its 

use in the input sampler is very similar. 

The main objective of the ASAF algorithm is to detect significant changes 

in the metrics of interest. After this, a new time frame is created and the short-

term averages of the metric during the generated frame are reported. The output 

responses of the network simulator-model unit may change rapidly within short 

periods of time during network transients. By analyzing the output trace of the 

simulator offline, one can actually observe how harshly the per-packet response 

fluctuates. In such situation a sensitive algorithm that reports changes in metrics 

too frequently can trigger the traffic adjuster excessively, and in many cases 

unnecessarily, making it impossible for the outgoing real stream to adjust itself 

in real time according to the traffic adjuster rules imposed by the algorithm. As a 

result, incongruity between modeled traffic and emulator output traffic can be 

expected, see CHAPTER 6 for details. As an alternative, the proposed ASAF 

algorithm is triggered by the change of the accumulated difference of the 

metrics. In this case the simulated end-to-end delay and packet loss rate are 

calculated periodically for each real-time stream within the simulator. These 

metrics are subtracted from their previous respective values and absolute values 

of this difference are accumulated during time, abs _ ace _ delayw , 

and abs _ ace _ drop(t), respectively. The value of abs _ ace _ delay{t) is given 

by equation (5.1). 
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abs _ ace_ delay/.\ = \delay^\ - delay ̂ _, J + abs _ ace _ delay,, IN (5.1) 

where delay {t) and delay^^ represents the end-to-end delay at times t and 

t-1, respectively, t and t-1 represent the present and the previous simulated time, 

respectively. The absolute value was chosen for this task in order to keep track 

of the changes regardless whether they are positive (increasing change) or 

negative (decreasing change). Small fluctuations or slow changes on the metrics 

will take longer time to trigger the algorithm than drastic fluctuations. Thus 

when the accumulated difference of the metric exceeds a threshold value 

(thr_delay(tjr ^ , thr_drop(t frame)) a system-trigger alarm is activated and a 

new time frame is created. The outgoing real traffic is then adjusted with the 

average end-to-end delay and packet loss of the last time frame (see Figure 5.1). 
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Figure 5.1. Time frame segmentation according to traffic variation, (a) Traffic metric 
vs. time, (b) Cumulative metrics and exponential threshold vs. time 

Threshold values utilized in the proposed algorithm need to change 

according to actual time of the analyzed frame. This way, after a change has been 

detected and a new time frame is about to begin, the threshold value is raised to a 
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predefined peak value (see Figure 5.1). Then the threshold has to decrease in a 

smooth controlled decay fashion. The curve chosen for this threshold decay 

function can follow many shapes such as linear, quadratic, polynomial, and 

exponential. However, exponential decay threshold function was found to be a 

more convenient alternative as explained in section 5.2. 

Segmentation of the simulated time into frames depends upon the variation 

of the simulated response. For instance, long frames are associated with traffic 

that varies slowly. Finally the traffic adjuster unit (NISTNET) receives the 

average value of the metrics for the current time frame, which represents the 

average behavior of the traffic within it. 

The proposed ASAF algorithm starts calculating the threshold distribution 

of the analyzed metrics as a function of the simulated time t and frame i. The 

exponential threshold for end-to-end delay is shown in equation (5.2). 

f \ 
thr _ delay{rdativetframei) = ampl _ thr _ delay{fmme ) 

V i J 

relative t 

* 
r _ delay\ (framei) (5.2) 

where r _delay^nme () represents the speed decay of the exponential 

threshold curve of frame i, and amp_thr_delay{frame ()the initial peak amplitude 

of the exponential functions on frame i. Also, relative_t represents the current 

time on frame i. Note that each frame will start with relative_t=0. Moreover the 

increment of this parameter will cause the thresholds amplitude to decrease in an 
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exponential manner. Thus when abs _acc _delay{t) and/or abs_acc_drop{t) 

exceed their respective thresholds, a system-trigger alarm will be activated and 

the frame average for each metric will be inserted into the NISTNET rules. 

After counters are reset, new values for t_delay^rame ^ and 

ampl _thr_delay(frame /} are calculated for the next new frame, using equation 

(5.4). 

B 
• _ delay(frame _ /) = 

l ~ 1 (5-3) 

amPl-thr-del(*y {frame _i) = A*thr -delay(TiA, frame J-\) 

where 7,_/ is the duration of frame i-1, (or the largest relative_t on frame i-

1). Thus, thr_delay{T j m m e M ) is the lowest point of the exponential threshold 

function on frame i-1. From equation (5.4), it can be seen that 

ampl_thr_delay^mme ^depends directly on the lowest point that the previous 

exponential threshold function reached. Also it can be seen that t_delay^rame ^, 

depends inversely on the previous frame duration. Thus a small duration frame 

(rapid traffic fluctuation) will force next frame to quickly respond to traffic 

variations, if it appears. A and B have been chosen as constants. Their selection 

has been done by rule of thumb, such as 1 < A < 2 and B > 30 . 
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B 
r _ delay (frame J) ~ ~Z 

l - \ (5.4) 

ampl _ thr _ delay(frame J) = A* thr _ delay ^ j m m e _ M ) 

The result of this process is an accurate algorithm that will divide the total 

simulated time into frames of variable sizes. These frames are generated every 

time a significant change in the metrics is detected. At the same time the average 

of the metric of interest during frame time, rather than instantaneous change of 

the metric, is used as input for the NISNET rules. 

Sensitivity of the ASAF algorithm can be fine-tuned. With this algorithm 

OTRENET can trade-off fidelity and computation time. 

Figure 5.2 shows the time frame segmentation and the exponential threshold 

adjustment for a simulated end-to-end delay response case. A and B (see equation 

(5.4)) have been chosen to be 1.3 and 50, respectively, for this case and for the 

next scenarios presented in CHAPTER 6. Figure 5.2.b shows how the 

abs_acc_delay{t-)changes with the simulated end-to-end delay responses (see 

Figure 5.2.a). When the cumulative value exceeds the corresponding exponential 

threshold value, a new time frame is generated, the exponential threshold is 

raised to a predefined value, and the cumulative value of delay is reset. 
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Figure 5.2. Time frame segmentation for simulated delay, (a) Instantaneous simulated delay 
and averaged simulated delay using time frame segmentation vs. time, (b) Variation 
of simulated cumulative delay and exponential threshold vs. time 
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Figure 5.2.a shows the time frame generation and compares the simulated 

end-to-end delay response against the average delay per time frame generated by 

the proposed algorithm. From this figure, it can be seen that the average delay 

per time frame follows very well the variability of the simulated delay response, 

even when it change severely. Note that in the input sampler unit, the packet size 

and the inter-arrival packet gap are used as the monitored metrics in the same 

manner as shown in equations (5.1), (5.2) and (5.4). The A and B values selected 

for this unit were also 1.3 and 50, respectively. 

5.2 EVALUATION OF THRESHOLD FUNCTION FOR ASAF A L G O R I T H M 

In the section several functions are evaluated as alternative candidates for 

the threshold decay function embedded in the proposed ASAF algorithm. The 

criteria for the function selection rely not only on its ability to rapidly detect 

changes in the traffic variation but also in its simplicity of implementation. 

Performance results of the proposed ASAF algorithm were generated using the 

source code presented on appendix C.l. 

Figure 5.3 shows a cumulative metrics and threshold functions versus time, 

t, in the same manner as was presented in Figure 5.2.b. Three functions are 

shown; linear, polynomial (2nd order) and exponential. These functions start at an 

arbitrary point A and decay along t. 
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Their mathematical expressions with their respective parameters are 

equation (5.5), asy ,y andy , respectively. 
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From Figure 5.3 it can be seen that the decay speed of the selected threshold 

function plays an important role on reporting traffic variations. I.e., a threshold 

function that decays too fast could report traffic variations too frequently and 

sometimes unnecessarily. Even though the parameters of the linear and 

polynomial functions can be adjusted every time frame to produce longer or 

shorter tail thresholds that can match traffic variability, this will require prior 

knowledge of the traffic behavior, which is not possible. Another alternative 

could be to vary these parameters not only every time frame but also as a 

function of the simulated time t, as shown in equation (5.5) (i.e.,TO ,A. ). 

Although possible, this approach will add additional complexity to the algorithm. 

As an alternative, exponential threshold requires the change of only two 

parameters for each time frame, and keeps them constant during the frame. The 

concave and long-tail variation of the exponential function makes it a more 

suitable threshold function for reporting significant changes on the traffic 

variability. Thus, the exponential function has been chosen as the most 

convenient option for this task. 

5.3 PERFORMANCE ANALYSIS AND COMPARISON OF TRAFFIC SAMPLER 

ALGORITHM 

In this section the performance of the proposed ASAF algorithm is 

compared against two methodologies for traffic sampling and trend detection; 

Moving Average (MA) and a customized version of MA, referred to as C-MA. 
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As mentioned in CHAPTER 4, the performance of the sampler algorithm 

does not only depend on its ability of generating estimated sampled traffic that 

can resemble the original one, but also, on the reduction of the number of time 

frames generated on the estimated traffic, to the extent possible. It was 

concluded in Section 5.2 that the length of a time frames is associated with the 

corresponding traffic variability. The computational requirements of the traffic 

adjuster unit and the traffic sampler unit can be lessened significantly by 

reducing the number of times frames. Note that the term time frame used in this 

section comes from Section 5.2. Invariant portions of the traffic will have similar 

metrics and will be clustered in the same frame, and each metric will be 

represented by the average of its samples belonging to that particular frame. 

Moving averages, MA, are one of the most popular and easy to use tools 

available for trend detection. MA smooth data series and make it simpler to spot 

tendencies by flattening out rapid fluctuations [76]. The two most popular types 

of moving averages are the Simple Moving Average (SMA) and the Exponential 

Moving Average (EMA). SMA is explained below, and its performance is 

compared against the proposed time frame segmentation algorithm. Similar 

analysis has been done previously with EMA, and can be found on [68]. 

Given a sequence {Xi}j=1, an MA order n, n-SMA, is defined as a new 

sequence {J7};=["+ defined from the xt term by taking the average of the 

previous n terms: 
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The number of time frames of the estimated sequence, Y, referred to here 

as Py, represents the length of the estimated sequence. Thus Py = N - n + l. Note 

that the reduction of sequence length from the original to the estimated 

sequence,«-l, is only due to the estimated sequence Y starts from the xn_x term. 

Hence using n-SMA will provide almost no improvement on time frame 

reduction. On the other hand a customized version of MA, C-MA(n,m) ,can 

address this problem better and it is presented in equation (5.7). 
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(5.7) 

C-MA^mj depends on two parameters, n and m. The former represents the 

number of previous x( terms averaged to obtain an estimated termj>;., the latter 

represents the number of times the estimated term will be kept invariant. Since n 

and m are chosen off-line without knowing the behavior of original sequence, 

their selection will play an important role on the C-MA performance. On one 
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hand, n and m will assure the accuracy of Y. On the other hand, Py will be 

driven by the value of m selected. Note that C-MA^oj = n-SMA, and also in this 

scenario n and m are both defined in seconds. 

Performance of the proposed ASAF algorithm is compared against those of 

SMA and C-MA next. Figure 5.4.a shows an end-to-end delay trace obtained 

through simulation and two estimated traces of this delay, one generated using 

the proposed traffic sampler algorithm, and the other generated using C-MA^^;, 

for n and m are 5 and 7 seconds, respectively. Figure 5.4.b shows a particular 

region of Figure 5.4.a (from 180 to 350 seconds) for a more granular analysis. 
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From these figure, the superiority of the proposed ASAF algorithm over C-

MA can be observed. Note that since only the traffic sampler algorithm is tested 

in this section, the simulated scenario for this analysis is not relevant at this 

point, thus it is omitted on the description. 

The time frame reduction and the algorithms accuracy are analyzed in 

Figures 5.5.a and 5.5.b, respectively. Figures 5.5.a shows the ratio of Py 

obtained using C-MA^mj over the one obtained using the proposed traffic 

sampler algorithm for different values of m. From this figure, it can be seen that 

C-MA(„,o;, provides no improvement on the time frame reduction. On the other 

hand, C-MA^„ m; with m values greater than 0 deploys smaller Py than «-SM. 

Also for this particular scenario C-MAf„>m; with m>2 deploys smaller Py than the 

proposed time frame segmentation algorithm. Time frame segmentation done in 

C- MA(„rm) is done independently to the traffic variability, thus the reduction of 

this metric is a trade-off with the algorithm accuracy, which can be appreciated 

in Figure 5.5.b. 
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Figure 5.5.b shows the accuracy of the algorithms replicating the original 

sequence. This has been done by calculating the Mean Square Error (MSE) 

between the original metric and the estimated ones, using equation (5.8). 

MSE 
'' X-Y^1 

X 
(5.8) 

where X is the original sequence and Y corresponds to the predicted 

response calculated using the scheme. We denote by MSE(MA) and MSE(ASAF) for 

C- MA(„>mj, and the proposed traffic sampler algorithm respectively. Finally the 

MSE(MA) 
ratio of this parameters, s, is calculated as s = and plotted in Figure 

5.5.b. Two regions were analyzed in this figure; a stable region and an un-stable 

region. The former was selected from 120 to 135 seconds, the latter from 135 to 

150 seconds, see Figure 5.4.a. This was done to show the dependency of s with 

the traffic variability. Figure 5.5.b indicates that MSE for C- MA^„„,; changes 

according to the n and m values selected and the variability of the sequence. Also 

from this figure, it can be seen that MSE(ASAF) always shows smaller than 

MSE (MA). This analysis demonstrates that the performance superiority of the 

proposed ASAF algorithm over SMA and C- MA^>m; is due to its ability of 

dynamically select accurate n and m values according to the traffic variability, 

i.e., its ability for detecting small and large changes of the average behavior. 

Thus when using the proposed sampler algorithm, heavy concentration of small 
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time frames can be found only in areas where the traffic changes rapidly. Note 

that the intent of the algorithm is not just to reproduce the behavior of the actual 

signal, but also to do this with the smallest number of frames. 
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CHAPTER 6. OTRENET PERFORMANCE ANALYSIS. 

In this chapter the performance of the proposed OTRENET module, as 

described in CHAPTER 4 and CHAPTER 5, is analyzed. 

Section 6.1 describes in detail the experiment setup, performance metrics to 

be monitored and evaluated, and the emulation outcomes. Performance analysis 

of OTRENET on replicating realistic conditions imposed by simulated 

environments is tested in Section 6.1. 

6.1 R E S U L T S 

In this section the performance of the current stage of the proposed 

OTRENET module, as described in CHAPTER 4 and CHAPTER 5, is tested and 

evaluated. The network model unit is based on a customized version of NS-

simulator, which was described in Section 4.3. ASAF algorithm, which was 

described and tested in CHAPTER 5, is used to report significant changes and 

not instantaneous fluctuations, for both real entry traffic and output modeled 

traffic response, as was explained in CHAPTER 4. 

Notice that in this chapter the OTRENET architecture description used in 

Section 4.3 is used to illustrate the units of the emulator. 

In this section the performance of OTRENET is tested and evaluated. The 

network model unit is based on a customized version of NS-simulator, which was 

described in Section 4.3. In this section we measure two aspects of the 
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performance of the emulator system. First, the accuracy of the ASAF algorithm 

used in the input traffic sampler unit is evaluated. Second, the emulator system 

response is compared against the response of a pure network simulation (NS) 

under the same conditions. The first set of performance measurements indicate 

how an error in input sampling produces inaccuracy in the simulation results, 

which in turn is reflected in the traffic adjuster and in the actual real output 

traffic. The second set of performance measurements demonstrate that errors 

between the emulator response and pure network simulation can be attributed to 

two factors; error in the input traffic sampler and inaccuracy of the traffic 

adjuster unit. The emulator environment implementation is shown in Figure 6.1. 

The simulated topology within the emulator box consists of a simple 

network with a 100kbps bottleneck link. For simplicity, no simulated background 

traffic was utilized. The emulator module was installed on a Pentium III-861Mhz 

dual processor computer with two Ethernet cards, allowing the traffic from one 

card (Ethl NIC) to pass to the other (Eth2 NIC) after being modified by the 

module. Performance results of the proposed OTRENET module were generated 

using the source codes presented on appendix B. 
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Figure 6.1. Emulation configuration and test environment. 

The real incoming traffic shown on point D of Figure 6.1 was generated 

with an IXIA Traffic Generator 1600 Performance Analyzer device [77] and its 

variation in time is shown in Figure 6.2. 
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Figure 6.2. Input bit rate variation vs. time. 

In this particular experiment the variability of the input traffic, represented 

as the bit rate slope (a), was varied to cover smooth to steep changes in traffic. 

After this traffic is analyzed and sampled with proposed ASAF algorithm, the 

sampled characteristics are inserted into the simulator unit (point A of Figure 

6.1). The traffic at this point is named sampled real traffic characteristics. The 

simulated output traffic characteristics (point B, Figure 6.1) represent the 

simulated output response of the sampled version of the incoming traffic injected 

into the simulator unit. Traffic at point B is inserted as NISTNET rules to 

regulate the real traffic passing through the emulator box according to the 

simulated response. The modified real output traffic is named real outgoing 

traffic (point C, Figure 6.1). 
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Figure 6.3. Error sampling vs. rate of increase of bit rate. 

In this experiment, the error in the input traffic sampling is identified and 

shown in Figure 6.3. Error in the input traffic sampling was identified by 

comparing the sampled real traffic characteristics against the real input traffic 

collected at the module entrance. Figure 6.3 shows the percentage sampling 

error calculated using equation (5.8), against a range of rate of increase of bit 

rate (Kbps/sec), a. Notations X and Y represent the input real traffic before and 

after the sampling traffic algorithm, points D and A of Figure 6.1, respectively. 

This figure demonstrates that the error in sampling gets larger for steeper traffic 

(big a values). The maximum error percentage obtained from the previous 

analysis is 12% for the steepest case (20Kbps/sec). To measure the performance 

of the proposed emulator module, its outputs were compared to the output based 

on a pure simulation. The pure simulation was carried out using the same 

network topology used for the emulation; but the real explicit input (Figure 6.2) 
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was used instead of a sampled version of the input. Since the emulator module 

(Figure 6.1) uses a sampled version of the input bit rate, the outcomes depend on 

the quality of the input traffic sampling. Two error traces were calculated using 

equation (5.8) as functions of a. For both cases, X is the end-to-end delay of the 

pure simulation. The first and second error trace use 7/ and Y2 as their respective 

inputs, where 7/ and Y2 are the end-to-end delay obtained from the emulator 

module at points B and C, of Figure 6.1, respectively. 

- Error Trace 1 — A — Error Trace 2 
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Figure 6.4. Error in delay emulation vs. rate of increase of bit rate. 
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Figure 6.4 shows these two error traces for different values of rate of 

increase of bit rate, a (see Figure 6.2). The first error trace is due to input traffic 

sampling, while the second error trace is due to the input traffic sampling and the 

error introduced from the traffic adjuster unit (see Figure 6.1). Figure 6.4 

indicates that in both cases the error is increased when rate of increase of bit rate 

increases. This is understandable since both traces are driven by the input 

sampling, the error that increases with the rate of increase of bit rate (see Figure 

6.2). It is also shown in Figure 6.4 that the second error trace is higher than the 

first one; a phenomenon attributed to two factors. On one hand, when a change in 

the simulated metrics response is detected and the NISTNET rules are applied 

right away, the change in the outgoing traffic is not seen instantaneously. This 

change is observable in the outgoing traffic after a small period of time, 

generating small time shifts between the outgoing traffic and its correspondent 

simulated version. On the other hand, since NISTNET was built to accurately 

reproduce network conditions, it automatically introduces randomness into the 

analyzed outgoing traffic together with the input rules. More performance 

analysis results of OTRENET can be found [68]. 

6.2 R E M A R K S 

Performance analysis results shown in Section 6.1 indicate that the 

proposed OTRENET module fulfills our expectations of mimicking the overall 

behavior of a real network scenario. 
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The proposed ASAF algorithm, described in CHAPTER 5, has proven to 

reduce the computational overhead required by the packet-by-packet capturing 

and translating technique. This algorithm not only reproduces the behavior of the 

actual series, but also does this with the smallest number of frames. 

The results presented demonstrate the effectiveness of OTRENET on 

replicating realistic conditions imposed by simulated environments. 

On-going work on OTRENET includes the evaluation of alternatives 

methodologies to reduce the computation overhead associated with the packet-

by-packet simulation employed by simulators like NS. Alternatives ways of end-

to-end packet modeling are explained in CHAPTER 7 and CHAPTER 8. 
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CHAPTER 7. A MEASUREMENT-BASED MODELING 

APPROACH FOR NETWORK-INDUCED PACKET 

DELAY 

In CHAPTER 3, we discussed various studies on packet delay modeling and 

characterization. In this chapter, using measurements performed over the 

Internet, end-to-end packet delay dynamics are modeled using time series 

techniques under weakly stationary network conditions. Impact of sending rate 

and packet size of the probes are investigated on the modeling results. Section 

7.1 describes time series techniques utilized for packet delay modeling. The 

impact of ACF and PACF distributions on the packet delay modeling is presented 

in Section 7.1.1. Sections 7.1.2 and 7.1.3 present methodologies for time series 

model selection and optimization, respectively. In Section 7.1.4, criteria for 

evaluating the model goodness of fit and its impact on system modeling is 

explained. 

Section 7.2 presents the experiment setup, methodology and results of end-

to-end packet delay and Inter-Packet Gap (IPG) modeling based on the 

measurement data. Section 7.2.3 complements the analysis by testing the 

goodness of the fitted packet delay and IPG time series models. In addition, 

Section 7.2.3 compares the model goodness of fitting results against the 

characteristics of the packet streams that originate each modeled process. 
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7.1 M O D E L I N G END-TO-END PACKET DELAY USING TIME SERIES 

TECHNIQUES 

A time series {A"(0}is defined as a set of observations ordered sequentially in 

time [47]. A series of n observations can be viewed as a random process of the 

variables xl ,x2 ,...,xn, sampled at, often equidistant, time intervals t\,t2,...,t„. 

Time series can be considered as the output of a dynamic system of which 

external input can not be observed [43]. There are two main goals of time series 

analysis; prediction and modeling. The former aims at forecasting future system 

output values. However, we are interested in latter, in which the properties of the 

series are summarized and its salient features characterized. 

In general, time series modeling focuses on series that are not deterministic 

but contains a random component. If this random component is stationary, 

powerful techniques for modeling can be developed. ARMA models are widely 

used for this purpose. However, most time series data on the Internet are non-

stationary or weakly stationary. For such cases there are methods which 

transform a non-stationary series into a stationary one. In most cases first and 

second-order differencing are sufficient to remove any kind of trend existing in a 

time series [47]. ARIMA methodology is based on such an idea [15]. 

An ARMA model can be viewed as a special case of ARIMA models. 

ARMA and ARIMA are considered passive black box approaches in which model 

identification relies solely on the data, without prior information of the system 

that generated the data. ARMA and ARIMA models fit very well into the study 
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of Internet data packets, since very little information is known to build up the 

state of the system, due to the complexity of the networks [70]. Identification 

and developing of ARMA and ARIMA models rely on ACF and PACF 

distribution and coefficients. These concepts are presented and associated with 

the Internet end-to-end packet delay processes next. 

7 . 1 . 1 A C F AND P A C F ANALYSIS FOR END-TO-END PACKET DELAY 

Auto Correlation Function (ACF) and Partial Auto Correlation Function 

(PACF) play an important role on time series modeling and prediction, since they 

provide useful measures on the degree of dependence between the sampled 

values at different times. 

ACF of a random process describes the correlation between the process at 

different points in time. Informally, ACF is a measure of how well a series 

matches a time-shifted version of itself, as a function of the amount of time shift. 

Sample ACF,ph, is defined as >°A= — . Where rft is the sample auto-covariance 
ro 

function at lag h, which is presented on equation (7.1): 
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where -«</?<«, x„ is the mean of the observed time series {x(t)\, and n is 

the number of data samples. ACF for end-to-end packet delay process denotes 
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the amount of dependency the delay of the current packet has to previous 

packets. 

Contrary to ACF, PACF is used to measure the degree of association 

between the current sample of the series, Xt, and a previous sample, Xt_k ,when 

the effect of the other k-1 time lags is removed [61]. PACF can be considered as 

the amount of correlation between a variable and a lag of itself that is not 

explained by correlations at all lower-order-lags. In practice, ACF of a end-to-

end packet delay time series, {£>(?)}, at lag 1 is the coefficient of correlation 

between Dt and Dt_x, which is also most likely to be the correlation between 

I>(_i and Dt_2. However, if £>,is correlated with •£>,_], and Dt_x is equally 

correlated with Dt_2, it has to result in a correlation between Dt and D,_2. Thus, 

the correlation at lag 1 propagates to lag 2 and most probably to higher-order 

lags. The PACF at lag 2 is therefore the difference between the actual correlation 

at lag 2 and the expected correlation due to the propagation of correlation at lag 

1[17]. 

Previous analysis have observed the relationship between the probe's 

sending rate, as a fraction of the available link capacity, and the end-to-end 

packet delay ACF [59] and PACF [10] distributions. Degree of link congestion 

itself depends on the sending bit rate and the available link capacity, and only 

sending bit rate can be controlled in an experiment. So when it is increased up to 

a point at which link congestion is perceived, packets get closer to each other 

and thus their correlation can be expected to become stronger. This effect 
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manifests as a slower decay of the ACF function as the sending bit rate increases. 

Contrary to ACF, the PACF function decays towards zero faster as the sending 

bit rate increases [10]. Relationship between PACF and ACF is presented in 

equation (7.2): 

0 = Rplrp (7.2) 

where O is the vector of the PACF coefficients, and Rp and Tp are presented 

in equations (7.3) and (7.4) respectively [17]. Note that the number of PACF 

coefficients, p, obtained through equation (7.2) depends on the number of ACF 

coefficients used. 

Rp= 
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(7.3) 

(7.4) 

For a CBR flow of probes, the scenario considered in this research, end-to-

end packet delay has a direct relationship to Inter Packet Gap (IPG), Gt, as shown 

in equation (7.5). 

Gi=DM-Dt 

81 

(7.5) 



Thus a relationship between ACF and PACF distributions of IPG and end-

to-end packet delay can also be expected. This fact plays an important role on 

end-to-end packet delay modeling, since measuring IPG is less complex and 

more accurate. This alternative will be explained in detail in the Section 7.2.1. 

7 . 1 . 2 A R M A AND A R I M A MODEL SELECTION FOR END-TO-END PACKET 

DELAY PROCESSES 

The main goal of Internet traffic modeling is to develop powerful models 

that represent closely the behavior and characteristics of the observed data 

values. The black-box modeling approach obtained through ARMA and ARIMA 

models is very appropriate for characterizing the impact of network on Internet 

traffic streams. Selection of the best model that represents the observed process 

depends intrinsically on ACF and PACF characteristics. On one hand, a 

stationary series can be identified straightforwardly from an ACF distribution, as 

their autocorrelation coefficients die out quickly. If this is not the case, the 

observed series has to be considered to be in the range of weakly stationary to 

non-stationary, depending on its degree of autocorrelation. In the former case, as 

well as for the stationary series, ARMA is suitable for representing the observed 

process. However, for non-stationary series, ARIMA models are better 

alternatives. Order of ARIMA(p,q,d) models are represented by their indexes. 

Where p and q indicate the order of the embedded AR(p) and MA{q) models, 

respectively. However d indicates the number of times the process has to be 

differentiated before it becomes a stationary one. ARMA(p,g) for modeling a 

{x(t)} process is presented in equation (7.6). 
82 



*t - i^t-i = zt + i 0jZt-j (7.6) 
1=1 i= l 

where x, is the best linear mean-square predictor of x, based on the data up 

to time t-1, Zt is assumed to be a sequence of independent and normal distributed 

random variables with zero and variance of0-2 U.d.~'N(0,a2)} and ,̂ and 9f are the 

AR and MA coefficients, respectively. Note that AR(p), MA(q) models can be 

obtained from equation (7.6) when taking q=0 and p=Q, respectively. Equation 

(7.6) can also be written as (j>(B)xt = e(B)zt, where <#(•) and <?(»)are the pih and qxh 

degree polynomials, 

e{B)=\ + 6xB + ... + 9qB
q (7.7) 

t{B)=l-hB-...-*pBP (7.8) 

and B is the backward shift operator\pJx, =xl_i) [17]. Following this 

methodology, ARIMA(p,q,d) models for non-stationary process are shown in 

equation (7.9). 

f{B% s4{B\\ - B)dX, = 6{B)zt (7.9) 
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Note that AR(p) may be considered as a way of differentiation if model 

coefficients are close to unity [17], see equation (7.9); thus it is possible that 

ARMA(p,q) or AR(p) can represent non-stationary processes when coefficients 

are accurately selected. Note also that since IPG at the receiver side denotes the 

first differentiation, d=\, of the packet delay time series, {D(t)}, ARMA(p,q) of 

{iPG(t)} is equivalent to ARIMA(p,q,l) of {D(t)}. 

In practice MA(q) models are called q-correlated processes, as their ACF is 

reduce to zero for all lags greater than q. Hence, the ACF is a good indication of 

the IsAA(q) order. However for a strongly correlated series, ACF tails off but 

never approaches zero for any q values. In such cases, it is difficult to 

characterize the process based on ACF only. For these cases, AR(p) models are 

better alternatives. AR(p) models apply similar methodology as MA(q) models 

for identifying the model order but, on the contrary, use the PACF function [17]. 

However, in general ARMA(p,q) and ARlMA(p,q,d) models are often used in 

time series modeling, combining the benefits of the two previous models and 

often providing lower order models. 

Notice that in general ACF and PACF functions are assumed to reach zero, 

or cut off, when lying within the 95% Confidence Interval [17]. 

7.1.3 OPTIMIZATION CRITERIA AND FITTING PROCEDURES FOR ARMA 

M O D E L S 

Although ARMA and ARIMA model order can go has high as the number of 

available data samples, n, over-specified models may fail to distinguish the 
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systematic effects of the data from its random effects [17] [43]. Thus, it is our 

goal to find a model that fits accurately the observed sampled data values with 

the smallest number of parameters. Scoring methods have been developed to 

quantify the relative goodness-of-fit of statistical models for a given data. These 

methods add a penalty factor to the negative log-likelihood for each parameter of 

the fitted model. One of the widely used methods is the Akaike's Information 

Corrected Criterion (AICC). For an ARMA(p,q) process, the AICC score is 

computed by [17]; 

AICC = -2\n(L(s))+
2nX^ + q^-

n-p-q-2 
(7.10) 

where n is the sample size and z,(?)is the Gaussian Likelihood of an ARMA 

process with n observations. 

$)- rexp-

271(7 ' W i 

i ikj-xjf 
2a2JlX 0-1 (7.11) 

where rt_]=E[Xt~xtf fa and a2 is the white noise variance of the fitted 

model, x, and xt are the modeled and actual data samples at time t, 

respectively. The values p, q and a1 that maximize equation (7.11),/.(?)max ,is 

called the Maximum Likelihood Estimator, which is interpreted as the ARMA 

parameter values most likely to be responsible for the observed data values. As a 
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result, the model that has a lower AICC score is a better representation of the 

process than those with higher scores. After selecting the right order of the 

ARMA or ARIMA process, estimation of its parameters has to be done. Several 

techniques exist for this. Yule-Walker and Burg procedures apply to the fitting of 

pure autoregressive models, although the former can be adapted to models with q 

> 0 its performance is less efficient that when q=0. On the other hand, Innovation 

and Hannan-Rissanen algorithms are used also to provide preliminary estimates 

of ARMA parameters when q > 0. For pure autoregressive models Burg's 

algorithm usually gives higher likelihoods than the Yule-Walker equations. For 

pure moving average models the Innovation algorithm often gives slightly higher 

likelihoods than the Hannan-Rissanen algorithm. For mixed models the Hannan-

Rissanen algorithm usually gives better fitting. Detailed information on the 

above mentioned techniques can be found in [17]. 

7.1.4 D I A G N O S T I C CHECKING FOR ARMA AND ARIMA MODELS 

Prediction and modeling analysis using ARMA and ARIMA models 

typically judges the goodness of fit of a statistical model to a set of data by 

comparing the observed values with the corresponding predicted values obtained 

from the fitted model. It is known that if the fitted model is appropriate, then the 

residual should have properties consistent with those of a white noise sequence 

[17][43]. Residuals, wt, are defined to be the rescaled one-step predictor errors 

[17]; 
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Wt=(xt-Xt)lf~x (7.12) 

To check the appropriateness of the model we can therefore examine the 

residual series and check that it resembles a WN(Q,l/n) sequence [17]. ACF/PACF 

distribution, histogram and data plot generated from the model residual can be 

compared to the expected generated by a fVN(0,i) sequence when evaluating the 

correctness of the model [53]. 

7.2 ANALYSIS OF MEASURMENT DATA 

In this section, experiment setup, methodology and results of end-to-end 

packet delay modeling are presented. The data used for this analysis is from a 

previous study described in detail in [59]. Here CBR UDP traffic streams of 

20,000 packets each, corresponding to 64 and 256 bytes packet size, were sent 

from California Polytechnic to Colorado State University, using Ixia 1600T 

chassis [77] at both sides. Average one-way delay was found to be 22 

milliseconds. Experiments were run on consecutive days at the same time to 

maintain consistency. Non-peak times of the days were chosen when running the 

experiments to keep cross traffic within a narrow range. End-to-end packet delay 

and IPG values were collected for a variety of sending rates and packet sizes. 

7.2.1 M E T H O D O L O G Y FOR FITTING ARMA AND ARIMA MODELS INTO 

PACKET DELAY SERIES 

The research presented in this section focuses on capturing the effect of the 

network induced on a CBR flow of UDP probes, by means of finding an optimum 
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ARMA/ARIMA model that best represents the dynamics of the probe's packet 

trace. In practice, this is mostly done by collecting consecutives packet delays 

samples [59]. However, such an approach requires clock synchronization 

techniques on both sides to prevent clock skew issues. Conversely, collecting 

IGP samples is presented here as an alternative. IPG not only avoids the 

synchronization dilemma between the sender and the receiver, but also represents 

an alternative for modeling non-stationary packet delay processes, as was 

explained in Section 7.1.2. Packet delay model can be obtained afterwards, 

integrating the IPG model. Note that higher order of differentiation may be 

needed in some cases. 

For both packet delay and IPG modeling, AR and MA model order can be 

estimated by observing the ACF and PACF distributions, respectively. These in 

turn depend on probe's sending rate, as a fraction of the available link capacity, 

and probe's packet size, as will be seen in Section 7.2.2. However, ARMA and 

ARIMA represent a mixture of AR and MA models, and their orders are 

calculated through scoring methods. Thus, although a change of the model order 

is expected according to changes on the probe's sending conditions, a clear 

relationship of the model orders to the probe's sending conditions can not be 

expected, as it is on AR and MA models. 

The analysis presented in this section studies the effect of the network 

induced on a CBR flow of probes, by finding the most optimum ARMA/ARIMA 

model which captures the dynamics of the observed probe's packet delay or IPG 
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series. A comparison of packet delay and IPG modeling approaches is given for 

varied bit rate and packet size scenarios in the following subsections. Note that 

for very low sending bit rate scenarios, as a fraction of the available link 

capacity, packet delay autocorrelation is very weak and thus its distribution may 

be enough to represent the process. However, this conclusion can only be 

reached after examining the ACF/PACF distributions of the series. 

7.2.2 M O D E L I N G RESULTS 

Figure 7.1 shows the sample ACF of the packet delay series, for different 

sending bit rates, using 64 bytes for packet size. ACF distributions for low 

sending rates decay faster than ones coming from medium or high sending rates. 

PACF distributions are shown in Figure 7.2 for four packet delay traces, 

generated with four different sending bit rates; 0.25,1,30 and 70Mbps, also using 

64 bytes for packet size. It can be seen from here that, as the lag increases all 

PACF coefficients diminish to zero faster than their corresponding ACF, as was 

anticipated in Section 7.1.1. However, we note that it takes a larger number of 

lags for the PACF to die off for the one generated by the smallest sending bit 

rate (0.25Mbps). 

89 



ACF for delay values 

1_ 

o 
r; 

A
C

F
 F

a 

0.75 | 

0.5 

0.25 

1 

5 

5 

5 

0 

- * e - 2 0 + ^ 0 . 5 0 

Figure 7.1. ACF function for lag 1-20 of packet delay values for varied sending bit rates 
(0.5 - 80Mbps) using 64 bytes packet size 
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Figure 7.2. PACF function for lag 1-20 of packet delay values for varied sending bit 
rates(0.25,1,30 and 70Mbps) using 64 bytes packet size. 

This can be explained since as sending bit rate increases, I P C s tend to 

decrease [59] and thus adjacent packets get closer to each other and more likely 
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to be aligned together on the same buffer [10]. As a result correlation between 

adjacent delay samples becomes stronger. When applying PACF, this chain of 

dependency is broken (strong influence of intermediate samples is removed), 

consequently PACF coefficients will decays faster than their corresponding ACF 

ones. Since packet delay chain of dependency for high sending rates streams is 

stronger than for low ones, it can be expected that PACF coefficients tend to 

decay faster, as was anticipated in Section 7.1.1 , and previously observed on 

[10].The inverse relationship between ACF and PACF coefficients ( o and Tp) 

can also be seen mathematically from equations (7.2), (7.3), and (7.4). 

Table 7.1 shows results of the model fitting done for a set of sending bit 

rates scenarios for the experiment set up described above. Order of the ARMA 

models, as well as model parameters were obtained using the methodologies 

presented in Section 7.1 and equation (7.10). ITSM package is used for the 

model fitting [78]. Table 7.1 shows also the negative log-maximum likelihood 

estimator,-2 in(z,(r)max), which represents the goodness-of-fit for the modeled 

series [17]. Model that has lower -2in(z(j)max)is considered better fit for the 

analyzed series, as explained in Section 7.1.3. From Table 7.1, it can be seen 

that ARMA order selection for packet delay and IPG series show no clear 

connection to the sending bit rate, as was anticipated in Section 7.2.1. Also as 

the sending bit rate increases, greater than 70Mbps for this experiment set up, 

model order for both series tend to decrease. This can be understood due to the 
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fact that PACF for packet delay and IPG decays faster as sending bit rate 

increases, see Figure 7.2. 

End-to-end Packet Delay and IPG Modeling Fitting 

Sending 
Bit Rate 

0.5 Mbps 

1 Mbps 

10 Mbps 

20 Mbps 

30 Mbps 

40 Mbps 

50 Mbps 

70 Mbps 

80 Mbps 

ARMA model for packet delay 
series 

P 

3 

6 

2 

1 

1 

7 

1 

1 

1 

9 

4 

6 

7 

7 

6 

5 

6 

0 

0 

-21n(/ , (?)m a x) 

6.06E+03 

4.35E+03 

-2.33E+04 

-3.96E+04 

-4.27E+04 

-.486477E+05 

-.535692E+05 

-.799783E+04 

-.125418E+05 

ARMA model for IPG series 

P 

4 

3 

7 

7 

1 

7 

4 

1 

1 

9 

5 

3 

1 

5 

7 

7 

4 

0 

0 

- 2 1 n ( l ( ? ) m a x ) 

6.12E+03 

4.47E+03 

-2.32E+04 

-3.95E+04 

-4.26E+04 

-.485815E+05 

-.535711E+05 

-.800136E+04 

-.125485E+05 

Table 7.1. End-to-end packet delay model fitting for different sending bit rate scenariosn using 64 
bytes packet size. 

Figure 7.3 and 7.4 show the ACF and PACF distributions for packet delays 

for varied sending bit rate scenarios for 256 bytes packet size. From here, it can 

be seen that autocorrelation of the process at different points in time is weaker 

than the one observed using 64 bytes packet size for the same probe sending rate. 

This is expected since sender IPG for these scenarios are 4 times bigger than 

with corresponding 64 packet size cases for the same probe stream bit rate. 
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From Figure 7.4 it can be seen that PACF coefficients die off abruptly after a 

small number of lags, in fact, for sending bit rates higher than 10 Mbps PACF 

distribution cuts off after the second lag. This phenomenon tells us that the chain 

of dependency of intermediate samples is easily broken, see Section 7.1.1. 
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Figure 7.3. ACF function for lag 1-20 of packet delay values for varied sending bit rates 
(0.5 - 80Mbps) using 256 bytes packet size. 
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Figure 7.4. PACF function for lag 1-20 of packet delay values for varied sending bit rates 
(0.5 - 80Mbps) using 256 bytes packet size. 

Comparing Figure 7.4 to Figure 7.2, it can be seen that the chain of 

dependency of intermediate packet samples does not only depend on probe's 

sending bit rate but also on probe's packet size. Thus, it can be expected that 

auto-regressive models of packet delay and IPG series will vary according these 

two parameters, and thus both have to be considered when extracting the effect 

of the network on the captured packet stream. 
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End-to-end Packet Delay and IPG Modeling Fitting 

Sending 
Bit Rate 

0.5 Mbps 

1 Mbps 

10 Mbps 

20 Mbps 

30 Mbps 

40 Mbps 

50 Mbps 

70 Mbps 

80 Mbps 

100 Mbps 

ARMA model for packet delay 
series 

P 

5 

4 

6 

q 

7 

1 

4 

0 

0 

0 

0 

0 

0 

0 

-2l"(4)max) 

1.99E+05 

1.80292E+05 

1.43592E+05 

1.6921E+05 

1.2275E+05 

1.4591E+05 

1.41872E+05 

1.37721E+05 

1.3579E+05 

1.3991E+05 

ARMA model for IPG series 

P 

5 

3 

2 

2 

2 

q 

7 

1 

2 

2 

-2 In (4 Lax) 

2.00E+05 

1.80492E+05 

1.43871E+05 

1.67212E+05 

1.22264E+05 

1.4517E+05 

1.41851E+05 

1.37531E+05 

1.3521E+05 

1.3972E+05 

Table 7.2. End-to-end packet delay model fitting for different sending bit rate scenarios using 256 
bytes packet size. 

Table 7.2 shows the results of the model fitting done for a set of sending bit 

rates scenarios for 256 bytes packet size. Results were obtained in a similar 

manner to those in Table 7.1. From Table 7.2 it can be seen that ARMA model 

orders, for both packet delay and IPG series, decreases rapidly for sending bit 

rates higher than 10Mbps. This can be expected from the PACF distribution 

observed in Figure 7.4. By comparing results obtained from Table 7.2 to the ones 

observed in Table 7.1, it can be concluded that the packet delay model becomes 
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an AR process at smaller sending data rates for the 256 bytes packet size 

experiment than for the 64 bytes packet size one. Also, in general ARMA packet 

delay and IPG models show lower orders for the 256 bytes packet size cases than 

their corresponding 64 bytes packet size cases. This can be explained since both 

ACF and PACF distributions decay faster for 256 bytes packet size than for 64 

bytes packet size. From here it can be concluded that ACF and PACF 

distributions and therefore ARMA/ARIMA models depends not only on the 

probe's sending data rate but also on the probe's packet size. 

Note that since the above experiments were conducted at non peak times of 

the day, network cross traffic remained within a narrow range. Thus non-

stationarity of the observed packet delay samples was modeled successfully 

using ARIMA(p,q,d), where d={0-l} , and not higher orders of d were needed. 

fi?=0 represent the ARMA model of packet delay and d=\ the ARMA process of 

IPG. Modeling efforts presented in this research aim at generating ARMA 

models which characterize the overall behavior of a packet delay or IPG trace, 

and not to obtain a perfect match of these ones at any given time. In the next 

subsection goodness of fitting for these ARMA models is tested. 

7.2.3 G O O D N E S S OF ARMA MODEL FITTING VS. TIME SERIES DYNAMICS 

In this subsection the goodness of the fitted packet delay and IPG ARMA 

models presented in Section 7.2.2 is tested. Goodness of fitting results is related 

to the characteristics of the packet streams that originate each of them. In this 

research characteristics of packet stream dynamics are captured by two 
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complementary means; range of dependency of packet samples, and degree of 

non-stationarity of packet trace. The former is measured by the ACF distribution 

of the collected data packet trace; packet delay and IPG series. Range of 

dependency of trace samples can be categorized by fitting the ACF distribution 

into a Zipf function, as shown below: 

ph~h-2+2H (7.13) 

where/?/; is the autocorrelation coefficient at lag h, and H e{Vi,\} is the 

Hurst parameter [11]. Range of dependency of trace samples can be analyzed by 

means of the H value. H» 0.5 indicates a true random walk, which denotes no 

correlation between samples [17]. Short-Range Dependent (SRD) and Long-

Range Dependent (LRD) traffic, follow onto the 0.5 < H < 1 range. However, 

SRD traffic exhibit H values closer to the lower boundary, in which ACF 

distribution shows an exponential rate of decay. While H values for LRD traffic 

get closer to the higher boundary as traffic gets more autocorrelated. In general, 

the essential contrast between SRD and LRD traffic lies on the fact that the 

former represents a Poisson-like traffic, while the latter represents traffic bursty 

in nature [6]. 
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Figure 7.5. Hurst parameter of the packet delay values for varied sending bit rates (0.5-
80Mbps) using 64 and 256 bytes packet size. 

ACF distributions of packet delay traces obtained from the experiment 

described in Section 7.2 were fitted into a Zipf distribution using Matlab Curve 

Fitting Toolbox [82]. Figure 7.5 shows the H parameters for packet delay samples 

for varied sending bit rates using 64 and 256 bytes packet size. From here it can be 

seen that H increases asymptotically along with the sending bit rate, as a traffic 

changes from SRD to LRD. Low sending bit rate, compared to the available link 

capacity, exhibit H~ 0.5, which denotes traffic dynamics resemble a random walk 

process [6]. From Figure 7.5 it can be seen that H rises faster and higher for the 

64 bytes packet size than for the 256 bytes packet size scenario. Peak values of H 
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are reached at sending bit rates greater than 50Mbps, for both 64 and 256 bytes 

packet size. 

Conversely, to describe the degree of non-stationarity on a packet delay 

trace, the Index of Dispersion of Intervals (IDI) is used. In general IDI measures 

the dependence between consecutives samples on a trace, and it is often used to 

2 
describe the burstiness of a signal [65]. IDI is defined as a sequence {<^ }, k >1, 

where; 

2 kVaASk) 
Ct"WJf (714) 

and the random variable £# is the sum of k consecutives samples on a trace. 

2 
If the trace represents a Poisson process, then c^ =1 for every k. However if 

2 
process has higher variance at some time scale, then c^ will tend to increase as a 

function of k [35]. 
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Figure 7.6. IDI for blocks of k consecutives packet delay samples for varied sending bit 
rates, (a) using 64 bytes packet size, (b) using 256 bytes packet size. 
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Figures 7.6.a and 7.6.b show the IDI for the packet delay traces obtained 

from the experiment described in Section 7.2, using 64 and 256 bytes, 

respectively. From Figure 7.6 it can be seen that packet delay distribution can be 

fitted as stationary Poisson process for low sending bit rates, compared to the 

available link capacity, for both 64 and 256 bytes packet size cases. However, as 

sending bit rates increases processes tend to get more non-stationary. This 

phenomenon gets more notorious for 64 bytes packet size than for 256 bytes 

packet size. In general, results of Figure 7.6 agree and complement the ones 

observed in Figure 7.5. 

Goodness of fitted ARMA models is measured by analyzing the randomness 

of the residual, as was explained in Section 7.1.4. In this research test for 

checking the hypothesis that residuals are independent and identical distributed 

(iid) sequence are performed by two means, by analyzing the normality of the 

residuals and by measuring the amount of autocorrelation on the residual 

samples. 

Normality of the residuals is checked by means of the Normal Quantile-

Quantile plots (q-q plots). Normal q-q plots are a graphical method for 

diagnosing differences between the probability distribution of a statistical 

population from which a random sample has been taken, and a comparison 

normal distribution [17]. If samples belongs to a normal distribution, points of 

the normal q-q plots will straggle about the line y = x. In general normality of a 

trace is measured by the R2 value obtained by comparing the points of the q-q 
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plots against the y = x line. If R is closer to one, then the residuals can safely 

be assumed to be normally distributed, however assumption of normality is 

rejected if R2 is sufficient small [17]. 

Conversely, the Ljung-Box Test is used to measure the amount of 

autocorrelation on the residual samples. The Ljung-Box test is based on the 

autocorrelation plots, which are commonly used to test the range of dependency 

on the samples. However, instead of testing randomness at each distinct lag, it 

tests the overall randomness based on a number of lags [17]. The Ljung-Box test 

statistic is calculated as: 

1=1 

where n is the sample size, Pj is the autocorrelation at lag /, and k is the 

number of lags being tested. The hypothesis of randomness is rejected if 

Q > X\-a;k , where X\-a-,k is the critical value of a chi-square distribution with k 

degrees of freedom [17]. In general, critical values are cut-off values that define 

regions where the test statistic is unlikely to lie [17]. Critical values for a 

hypothesis test depend upon a test statistic, and the significance level, a, which 

defines the test sensitivity [83]. It is a common practice to use a = 0.05, which 

implies that the null hypothesis is rejected 5% of the time when it is in fact true 

[83]. Another measurement of testing the mentioned hypothesis is by means of 
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the p-value. The p-va\ue is formally defined as the probability of the chi-square 

test statistic being at least as extreme as the one observed given that the null 

hypothesis is true [83]. In general, a small p-value is an indication that the null 

hypothesis is false. In addition, p-value is analogous to the significance level for 

the test, a. For instance, rejecting the null hypothesis for a=0.05, it is equivalent 

of rejecting the null hypothesis for p-value smaller than 0.05 [83]. In this 

research degree of autocorrelation of the residual samples is measured, in the 

context of the Ljung-Box Test, by analyzing the/?-value for a a=0.05 condition. 

Figure 7.7 shows the normal Q-Q plot residual samples of fitted ARMA 

models for packet delay and IPG traces for varied sending bit rates using 64 

bytes packet size. As it can be seen from here, points of the normal q-q plots 

differ from the y=x line as the sending bit rate increases. As a result, R2 value for 

both packet delay and IPG normal residual analysis decreases as the sending bit 

rate increase. From Figure 7.7 also it can be seen that for high sending bit rate 

scenarios, IPG sample residual analysis shows better resembles to a normal 

distribution than the corresponding packet delay model. 
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Figure 7.7. Normal Q-Q plot residual of fitted ARMA models for packet delay and IPG 
traces for varied sending bit rates using 64 bytes packet size. 
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In Figure 7.8 the normal Q-Q Plot Residual R2 values for test of randomness 

for residual of fitted ARMA models for packet delay and IPG traces for varied 

sending bit rates and packet sizes is shown. As it can be seen from Figure 7.8, both 

packet delay and IPG model residual series differ from a normal distribution, 

within a narrow range, as the sending bit rate increases. In general, Figures 7.8 

and 7.7 show that model residual for both, packet delay and IPG processes, can 

be assumed to be normally distributed. However, residual sample distribution 

differs from normal distribution, within a narrow range, as sending bit rate 

increases. 

| 0.00 

0 20 40 60 80 
Sending Bit Rate(M bps) 

Packet Delay - 64bytes 
» -« _ »IPG- 64bytes 
— * — — P a c k e t Delay - 256bytes 

X- -IPG-256bytes 

Figure 7.8. Normal Q-Q Plot Residual R2 values for test of randomness for residual of fitted 
ARMA models for packet delay and IPG traces for varied sending bit rates and 
packet sizes. 
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From Figure 7.8 it can be concluded that IPG is less susceptible than the 

corresponding packet delay processes, for a given sending rate and packet size 

scenario, to this phenomenon. Also that model residuals generated with 256 

bytes packet size show better resembles to a normal distribution than the 

corresponding 64 bytes packet size scenarios. 
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Figure 7.9. p-values of Ljung-Box test of randomness for residual of fitted ARMA 
models for packet delay and IPG traces for varied sending bit rates and packet 
sizes. 

In Figure 7.9 the/?-values of the Ljung-Box test of randomness for residual of 

fitted ARMA models for packet delay and IPG samples for varied sending bit rates and 

packet sizes is shown. From here it can be seen that the /?-value of the Ljung-Box 
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Test for packet delay series generated with sending bit rates greater than 70Mbps 

and 64 bytes packet size, are lower than 0.05, which implies that the null 

hypothesis is rejected for the residual samples of these cases. However, for all 

the other cases the p-value of the Ljung-Box Test shows values greater than 0.05, 

which implies that residual samples have low dependency. In general, results of 

Figure 7.9 reach similar conclusion that the ones observed in Figure 7.8. 

In a nutshell, it can be stated that the analyzed packet delay and IPG traces 

show accurate goodness of ARMA model fit for all the analyzed sending 

conditions. Goodness of ARMA model fit deteriorates as the sending bit rate 

increases, and shows stronger robustness for the 256 bytes scenario than the 64 

bytes scenarios. In general, goodness of ARMA model fit for packet delay and 

IPG processes is similar for small sending bit rate. However, as sending bit rate 

increase IPG shows a better alternative for network system modeling. This can 

be understood due to the fact that sending bit rate increment creates non-

stationarity and autocorrelation on the sample trace. ARIMA models are more 

suitable when modeling such a series, and it was previously mentioned in Section 

7.1.2, ARMA for IPG traces represents an ARIMA(p,q,l) for packet delay traces. 

Finally, it can be concluded that goodness of ARMA model fit agrees with the 

corresponding characteristics of the analyzed packet traces dynamics. 

7.3 R E M A R K S 

This chapter discussed the impact of packet delay and IPG on the network 

system modeling. Methodology, results, and remarks for network system 
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modeling, by means of time series techniques, based on packet delay and IPG 

observations under weakly-stationary network conditions has been presented in 

this chapter. The impact on packet autocorrelation on capturing the network 

system dynamics has also been investigated here. 

Finding presented in this chapter concludes that the behavior of end-to-end 

packet delay and IPG sequences can be captured effectively by ARMA and 

ARIMA models, under weakly-stationary network conditions and using CBR 

probe flows. Effects of sending bit rate, packet size, and available link capacity 

on network system modeling has been analyzed. Under these conditions, model 

goodness-of-fit results demonstrate modeling accuracy for both packet delay and 

IPG processes under small sending bit rate conditions. However, as sending bit 

rate increases, as a fraction of the bandwidth, IPG becomes better alternative for 

network system modeling. 
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CHAPTER 8. AN ONLINE METHODOLOGY FOR 

MODELING NON-STATIONARY END-TO-END PACKET 

DELAY 

In CHAPTER 7 end-to-end packet delay dynamics were modeled using time 

series techniques under weakly stationary network conditions. In this chapter 

this analysis is extended to network systems under non-stationary conditions. 

In Section 8.1 the impact of non-stationatity when modeling network system 

dynamics is analyzed. Factors that create non-stationarity and Long Range of 

Dependency (LRD) on packet sample observations are presented in Section 8.1. 

In addition, traditional methods for modeling non-stationarity network systems 

are critiqued and a novel approach is proposed. 

In Section 8.2 the effect of non-stationarity on packet delay is explored and 

real evidence of false sense of LRD on packet delay is presented. In Section 8.3 a 

methodology for modeling time variant packet delay series is presented based on 

adaptive AR model and Kalman Filtering algorithm. 

In Section 8.4 a modified version of the Divergence-Test [9] is proposed for 

online segmentation of packet delay traces. Such method is based on the non-

stationary of the packet delay observations. 

Section 8.5 presents the experiment setup, methodology and results of the 

proposed methodology for segmenting non-stationary packet delay traces. 
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Abundant measurements of packet delay over the Internet under various 

conditions are used for testing the proposed methodology. Experiment results 

demonstrate a potential online packet delay classification capability of the 

proposed algorithm based on the non-stationary of the observations, while 

keeping computational and storage requirements low. In general, results shows 

that analyzing packet delay processes by modeling the segmented stationary 

traces yield to a better understanding of the network system dynamics. 

8.1 I M P A C T OF NON-STATIONARITY ON NETWORK SYSTEM DYNAMCICS 

In CHAPTER 3 the theoretical foundation for network system modeling 

based on packet delay have been presented. In addition, system characterization 

based on real measurements has been presented in CHAPTER 7. Modeling 

efforts shown in CHAPTER 7 assumes weakly stationary network conditions. 

However it is well known that packet delay, among many Internet traffic metrics, 

may change in time due to several factors [35], and thus system can be become 

non-stationary. 

Although network link congestion is considered as the main reason for non-

stationarity and strong autocorrelation, also known as LRD, on packet delay 

observations [6], it has previously been demonstrated that other network 

conditions, such as link failure, routing table updates, and routing flapping [35], 

can also be responsible for this phenomenon. In practice it is common to observe 

patterns of periodic spikes, bursty behavior, and level shifting in packet delay 

traces. One of the most important factors that LRD introduces into time series is 
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non-stationarity [17] [35]. However random spikes and irregular events on the 

network system can indeed create a false sense of LRD on the observations. 

When modeling non-stationary systems, traditional time series 

methodologies rely on transforming them into stationary ones by means of 

differencing techniques [17]. However, in the context of packet delay modeling, 

such an approach may fail of distinguishing uneven events responsible of 

creating false sense of LRD on the packet traffic since it only captures the 

overall behavior of the system during the observation period. 

Consequently, segmenting the observation's trace into groups of stationary 

time series has been proposed as an alternative solution. Time series 

segmentation is considered a useful approach for quantifying a piecewise-

stationary series [35], since it represents the observed trace as a number of time 

series that are themselves stationary [29] [58]. Analyzing packet delay 

observations by modeling the segmented stationary series yields a better 

understanding of the network system dynamics and lead to more accurate 

modeling and prediction analysis. 

Segmentation of a packet delay trace based on its observed non-stationarity 

is a complex task. In general, obtaining an exact segmentation of a non-

stationary time series demands tremendous computation requirements that scales 

as 0(NN), where N is the number of packet delay [29]. In addition, packet delay 

observations may require enormous storage requirements depending on the 

length of the experiment and the probe's sending conditions employed, when 
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analyzed offline. Moreover, collecting and storing packet-by-packet data may be 

impractical and unnecessary for offline analysis; such an approach can also be 

considered to be extremely computationally expensive for modeling, prediction, 

and flow control mechanisms when conducted in an online manner. 

In this chapter we propose a novel approach for online packet delay 

segmentation and modeling based on the non-stationarity of the samples. The 

proposed methodology aims at modeling, in real-time, the effect of the network 

dynamics induced into a packet flow traversing it, while keeping computational 

and storage requirements low. This methodology, which is based on the 

Divergence-Test [9], separates the observed packet delay trace into segments in 

which each segment is represented by a different statistical model(AR model) 

[17]. A segment is generated only when a significant change on the packet delay 

dynamics is detected. Each segment represents a stationary process, which is 

uncorrelated to the others. The proposed methodology employs an embedded 

Kalman Filtering algorithm to recursively update the system statistical model 

based on the current observation and the past modeled network system stage. The 

online segmentation methodology compares the distance between the updated 

system model and the model of the previous stationary segment detected [9], 

when deciding if segmentation is needed. 

Low memory storage requirement is one of the main benefits of the 

proposed mechanisms. This is achieved, due to the fact that only key statistical 

model parameters of the detected segments are stored in memory, as opposed of 

112 



storing every given observed packet delay sample. Notice that the proposed 

modeling and segmentation mechanism does not attempt to detect instantaneous 

changes of the packet delay observations; on the contrary, its segmentation 

process is triggered by the non-stationarity of the observations. In addition, the 

adaptive behavior of the proposed methodology offers the capability of 

understanding the dynamics of the network system online, which can be used for 

real-time decision making. Moreover, the proposed mechanism accomplishes a 

tradeoff between the complexity of the calculations and the desired precision of 

the results. The proposed segmentation methodology is explained in detail in 

Section 8.4. 

8.2 E X P L O R I N G LRD ON PACKET DELAY SERIES 

Packet delay dynamics varies in time according to network conditions, such 

as link congestions, link failure, routing table updates, and routing flapping 

(which may appear at link failure situations), among others [35]. Such 

phenomenon tends to vary packet delay characteristics in time, among them, 

packet delay autocorrelation, which is a key factor for modeling the network 

dynamics [59] [69]. 

Although network link congestion is considered to be one of the main 

reasons for LRD on traffic samples [6], network spikes can also create a false 

sense of LRD on packet delay samples [35]. Failing to distinguish and separate 

irregular events like these may lead to misinterpreted results [35]. 
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To illustrate the effects discussed above, real packet delay values in terms 

of one-way delay (OWD) traces were collected and are analyzed below. These 

traces were collected from the Evergrow Traffic Observatory Measurement 

Infrastructure (ETOMIC) European project [80]. ETOMIC is a measurement 

infrastructure, which is focused on realizing a pan-european measurement 

infrastructure, consisting of a number of measurement nodes deployed at selected 

European locations [50]. ETOMIC offers to the scientific community a 

measurement platform for conducting multiple types of traffic and network 

measurement experiments, among them, analysis of packet delay measurements 

between nodes. In addition, ETOMIC conducts periodic measurement 

experiments, results of which are provided to the scientific community as open 

repositories [80]. 

ETOMIC offers a high-precision infrastructure, based on hardware specially 

created and modified according to the project requirements; such as for example, 

packet trains may be transmitted with strict timing, with resolutions in the range 

of nanoseconds. Furthermore, a GPS system is incorporated to the measurement 

nodes to synchronize the infrastructure to the same reference clock. For further 

information refer to [50] [80]. 
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Figure 
8.1. Packet delay analysis for scenario; 
130.206.163.166 -» 157.181.172.103, 
(8.1 .a) Packet delay trace, (8.1 .b) ACF 
distribution of packet delay trace, (8.1.c) 
Recurrence plot of packet delay trace. 

Figure 
8.2. Packet delay analysis for scenario; 
130.206.163.166^ 132.65.240.106, 
(8.2.a) Packet delay trace, (8.2.b) ACF 
distribution of packet delay trace, (8.2.c) 
Recurrence plot of packet delay trace. 
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Figure 8.1.a shows 2000 OWD samples collected from the ETOMIC 

repositories. Samples represent an experiment measurement conducted between 

two nodes in the ETOMIC infrastructure conducted on March, 2006. Packet 

probes were sent from 130.206.163.166 -> 157.181.172.103, traversing 18 hops, 

at 1 pps rate and using 46 byte packet size (entire packet length). Figure 8.2.a 

shows 4000 OWD samples also collected from the ETOMIC repositories. Packet 

probes were sent from 130.206.163.166 -» 132.65.240.106 in August, 2006, 

traversing 15 hops, at 1 pps and using 46 bytes packet size. Average OWD of the 

collected samples were 35.33 and 45.44 msec respectively, for the first and 

second experiments. Note that the offset, minimum value, of the OWD traces has 

already been removed in Figures 8.1.a and 8.2.a. From Figures 8.1.a and 8.2.a it 

can be seen that packet delay changes in time immensely due to one or many of 

reasons explained before. Packet delay traces have been segmented manually in 

regions according to their observed nature. Each trace has been segmented to 

three regions and shown in Figures 8.1.a and 8.2.a. It is apparent that region R2 

in Figure 8.1.a is the product of a level shift, possibly caused by routing 

flapping. However, the gradual ramping behavior of region R2 shown in Figure 

8.2.a is likely to be due to incremental packet queue congestion. In both cases 

the statistical properties of the packet delay series are different in each region, 

and thus different from each the entire trace. 

Figures 8.1 .b and 8.2.b show the Auto Correlation Function (ACF) 

distribution of the corresponding packet delay for the entire trace and for each 

segmented region. In general ACF distribution describes how well a series 
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matches a time-shifted version of itself as a function of the amount of time shift 

[17]. Previous studies [59][69] have analyzed the relationship between ACF 

distributions and probe's sending conditions. For further information on ACF 

calculation and ACF properties refer to [17]. 

From Figures 8.La and 8.2.a and 8.1.b and 8.2.b. it can be seen that ACF 

changes drastically due to the presence of region R2 on both traces. ACF 

distributions of Figure 8.1.b for all three regions denote weak sample 

autocorrelation. However the entire trace shows clearly LRD of its samples, due 

to the level shifting. In Figure 8.2.b only region R2 shows clear LRD among its 

samples. Consequently, the ACF of the entire trace also exhibits LRD, just due to 

the network stage change observed on region R2. 

Figures 8.1.c and 8.2.c show the Recurrence Plots (RP) for the packet delay 

samples shown in Figures 8.La and 8.2.a, respectively, and were obtained using 

[45]. RP were first introduced in [24]. 

RP is a two dimensional representation, which denotes all those times at 

which a state of the dynamical system recurs [24], or in other words, reveals all 

the times when the phase space trajectory visits roughly the same area in the 

phase space [45]. Recurrence is a fundamental feature of many non-linear 

dynamic systems, and has been previously used to study the non-stationarity of 

processes [24]. Interpretation of RP can be summarized for the study of non-

stationarity processes as follows [45]. 
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••• Homogeneity; The process is stationary. 

••• Fading to the upper left and lower right corners; Non-stationarity. The 

process contains a trend or drift. 

••• Disruptions (white bands); Non-stationarity. Some states are rare or far 

from the normal behvaior.Tansitions may have occurred. 

*t* Single isolated points; Heavy fluctuation in the process. If only single 

isolated points occur, the process may be an uncorrelated random or 

even anti-correlated. 

Based on the RP interpretations and by inspecting both Figures 8.1 and 8.2 

it can be seen that in fact the white bands shown on both Figures 8.1.c and 8.2.c 

denote transition stages which require the creation of a new series segment. Also, 

it can be seen that regions are filled uniformly, which also indicates segments are 

indeed stationary, with the exception of region R2 of Figure 8.2 in which a 

packet queue congestion trend is observed. 

From the results presented above it can be concluded that, although ACF is 

believed to be mainly driven by queuing delay [6], and thus it is often used as a 

measurement of network link congestion [59], this metric may change drastically 

in time due to other stimulus, such as link failures or routing table update, which 

may disappear rapidity. Also, it can be seen that contribution of small abnormal 

events on the observations may alter considerably the ACF distributions of the 
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entire packet delay trace. Consequently, a false sense of LRD on packet delay 

samples can be created, which may lead to misinterpreted model results. 

8.3 S T A T I S T I C A L M E T H O D O L O G I E S FOR MODELING NON-STATIONARY 

END-TO-END PACKET DELTA S E R I E S . 

Auto-Regressive (AR) models is one of the most widely used methods for 

statistical time series modeling and prediction [10] [17]. AR(p) models represent 

a process in which the observation at time t is a weighted average of the most 

recent p previous observations in the series [17]. Selection between AR and 

ARMA models depends on the computational complexity. In general, AR model 

is much simpler to handle [33] and its performance has been proven to be 

adequate for many applications [10]. 

Considering an end-to-end packet delay time series, {D(t)},dt can be 

estimated as a linear summation of its previous observations by use of a scalar 

AR process of order p, AR(p), [17]. and it is given by equation (8.1). 

P 
dt = 'Zakdt_i+et (8.1) 

/=1 

where, et is assumed to be a sequence of independent and normal 

distributed random variables with zero mean and variance a2 \i-d.~~N(0,cr2)\ [17]. 

Traditional time series models, such as AR models, focus on modeling systems 

in which their statistical properties change slightly with time or do not change at 
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all. Such systems are known as stationary or weakly stationary, and are rare to 

find or just occur for moderate periods of time on real-life observations. 

Nevertheless, dynamics of real systems, such as Internet traffic, tend to 

change in time according to many factors. Traditional AR models need to be 

updated recursively in time to reflect such effects. Such models are known as 

adaptive AR (AAR), in which the autoregressive coefficients, ak , change in time 

to capture the dynamics of the system. In general, AAR offers a solution for 

modeling time variant systems. AAR has been used extensively for modeling 

time variant systems [5][24][33]. In this context, equation (8.1) can be re-written 

as; 

dt=J)fAt+et (8.2) 

where A, and D, are shown in equations (8.3) and (8.4), respectively. Note 

that all boldface variables are vectors or matrices. 

At = (a\,t>a2,t>->ap,tf ( g 3 ) 

Dt=(dt_i,dt,...,dt_py (8.4) 

Vector of AR coefficients, A,, is no longer time invariant, on the contrary, 

it changes in time reflecting the system dynamics. It has been previously 
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demonstrated [30] that in general the evolution of A, can be characterized as a 

first order Markov process, with small changes in the state, as shown below 

[5][24]; 

At+l=At+wt (8.5) 

where wt is a zero-mean white noise. Equation (8.5) indicates that the AR 

coefficients, akf, change in time in a random walk manner and assume small 

changes in the state. An alternative is to estimate A, by means of prediction 

techniques based on the system observations. Among them, Kalman Filtering 

algorithm has been widely used. Kalman Filtering algorithm is an efficient 

recursive technique which estimates the state of a dynamic system from a series 

of incomplete and noisy measurements [30]. A basic condition for using the 

Kalman Filtering algorithm is that the series model has a representation in state-

space form, consisting of two joined linear equations; the state equation and the 

observation equation [30]. For the end-to-end packet delay process, the space 

equation is represented by equation (8.2) and the state equation is represented by 

equation (8.5). 

In the context of the Kalman Filtering algorithm, the system stage and the 

AR coefficient's vector, A, , can be recursively estimated as follows [30]; 
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P A , H - P A M
 + C w M (8.6) 

K^=PA D ' | D f P A Vt+Ce\ (8.7) 

P A r ( , -K ,Df )p A ( M (8.8) 

At+1=At+Kt(dt-DtAt) (8.9) 

where A?=A<-A? is the estimation error, K, is the Kalman Filter gain 

vector, and c, and cw denote the covariance of e, and wt, respectively, P? is the 

so called error covariance matrix, which is used to measure the stability of the 

system. cw is estimated as shown in equation (8.10) by means of an updated 

coefficient,uc, and knowledge of the system's previous state [24]. For further 

information on cWi estimation refer to [24]. 

UC*trac<iYi 
r v A'-^J (8.10) 

In [63], a methodology for selecting uc and the model order,/?, is proposed, 

such as the estimated AAR model best describe the analyzed process. For further 

information on uc estimation refer to [63]. Finally, it can be seen that the 
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estimation of the state noise covariance matrix, cWi, presented in Equation (8.10) 

is based on the prediction error from a single prediction and therefore 

statistically unreliable [21]. For cw to be reliable estimated, it is necessary to 

calculate the prediction error over a window of samples [21]. An alternative 

approach is to smooth cWi, as shown below, where a is the smoothing parameter. 

CWt=a* CWf] + (l - a)* CWf (8.H) 

8.4 A COMPUTATIONAL EFFICIENT METHOD FOR SEGMENTING NON-

STATIONARY PACKET DELAY SERIES 

Modeling packet delay by means of Kalman Filtering algorithm requires to 

update the recursive equations presented in Section 8.3 for any given packet 

delay sample. Although this approach yields an accurate up-to-date model of the 

trace dynamics, it can be seen that it produces p+1 parameters for any given 

sample. Collecting and storing this amount of data at a packet-by-packet 

granularity may be impractical and unnecessary for offline analysis, and 

extremely computational demanding for online modeling, and online network 

congestion control mechanisms. 

However, considering that it is the goal of this analysis to fit the packet 

delay dynamics of the samples within each stationary segment into AR model, 

and not to model extensively the packet-by-packet delay behavior, it is 

considered a more efficient approach to report and store only AR models that 
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represent significant changes on the packet delay dynamics. In this chapter we 

propose to achieve this by employing an online modeling and segmentation 

algorithm, which compares the distance [9] of the current AR model against the 

AR model that represents the previous stationary segment detected. If distance is 

small, the current sample belongs to the previous stationary AR model, if not a 

new segment needs to be created. Notice that the AR model of each segment 

governs the dynamics of the packet delay samples within the segment. 

Stationarity of the observations depends on several factors, such probe's 

traffic conditions, network link congestion status, and network changes, among 

others. It is expected that weakly stationary packet delay traces need few 

segments, or maybe just one. However, non-stationary packet delay traces may 

need many more. 

In the past, previous efforts on online [36] and offline [58] segmentation of 

time series have been conducted. Techniques based on the statistical properties 

of time series [29][36][44][58], power spectral analysis [1], and tracking the 

roots of ARMA processes [54], among others, have been proposed. Many of 

them are used in application such digital signal processing, voice recognition [4], 

and biometric related analysis [54], in which level shifting and peak detection is 

key for the application. 

However on the study of Internet end-to-end packet delay, the goal of 

segmentation is to reflect significant changes on the probe's packet delay 

dynamics, which indeed reflect variations on the network stage, and not to detect 
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instantaneous changes on the sample trace. Thus, in this chapter we propose an 

online methodology for packet delay series segmentation which requires storing 

low amount of data and low computation overhead. Memory storage capacity 

requirements and computational overhead produced by the proposed algorithm 

are analyzed and quantified in Section 8.4.2. 

The proposed method uses the Divergence-Test [9], which is based on 

measuring and monitoring the distance between two models, Oo and Oi. Figure 

8.3 shows Oo and Oi. Oo and Oi are the two AR models to be compared, and are 

composed by n and L samples, respectively, where n < L. In the context of the 

proposed algorithm <£>i represents a subset of the first n samples of O0, as shown 

on Figure 8.3. 

• • 

1 n 

1 L 

Figure 8.3. Location of $ 0 and $] models for the divergence test 
method. 
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The distance measure is derived from the cross entropy between the 

conditional distributions of <t>0 and ® i , a , which in the Gaussian case is given by 

[4][9]; 

< r * = -
e0,ke\,k 

(J, 

<Jr 
1 + 

cr, 

'0,/t 
• + 

CJr 

<y, 

a 
(8.12) 

where n< k <L, &l and ofare the variance of €>o and (t>\, respectively. e0Jl 

and eu are the forward prediction errors of the packet delay series using the <I>o 

and <E>i model, respectively, (see Equation (8.1)). Under the hypothesis that <t>o 

and <Di represent the same process,^ has zero conditional drift. However, if a 

change is detected, ^ will show a strong negative conditional drift [9]. Change 

detection is identified when the long term and short term models, Oo and <t>i 

respectively, disagree in the sense of the cumulative sum statistics [4], as shown 

below; 

k=n 

where s is a positive bias, used to generate a positive drift on the modified 

cumulative sum. However when changes occur, a strong negative drift on £L is 

expected. For further information refer to [4]. In the following subsection a 

methodology for online segmentation, in the context of packet delay analysis, is 

presented. 
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8.4.1 AN ONLINE PACKET DELAY SEGMENTATION A L G O R I T H M 

Considering an end-to-end packet delay time series, {/>(?)}, the proposed 

algorithm starts by collecting the first n samples. Using the initial n samples the 

first optimal AR model is calculated, ARl
{n } , using classic time series techniques 

[17][69]. 

Where/?/ is the order of the fitted first AR model. ARl
{n p}is the statistical 

model that represents Oi, see Figure 8.4, and it is assumed to be a stationary 

process. The non-stationary case is studied in Section 8.4.3. After that, the 

buffered n packet delay samples are flushed out of memory. Next, the recursive 

Kalman Filtering algorithm presented in Section 8.3, is used for estimating the 

AR model that governs the system for samples k, k>n, which is denoted by 

AR*k }. A\R'k } represents the evolution in time of ^ } , and it is the statistical 

model that represents O0, see Figure 8.4. Stationarity of AR\k,p }is assured by the 

stationary of ®i, and as long as a process change is not detected. Subsequently, 

<ftis calculated recursively with every observed sample to measure the distance 

between ®o and ®i. Notice that in the context of the described packet delay 

segmentation algorithm, as shown in Figure 8.4, Oo and ®i are conformed by n 

and k samples, respectively. Thus £k\s the modified cumulative sum from sample 

n to k. 
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Equation (8.14) is then used for identifying the initial change point, r, 

where the two stationary AR models diverge from each other, and thus a new 

segment is created [4], see Figure 8.4. 

r>n (°-14) 

where X is the selected threshold for detecting the beginning of a new 

segment, l<m<r, and Cm is the previous maximum peak value of Oc occurred 

before Cr • After r is identified, the first segment is created in which 

ARx
{n . governs the behavior of all k samples, 1 < k <r. Notice that, Cm has to 

belong to the segment which is analyzed [4]. The second segment is then 

commenced, which has r as its starting point. Considering that the first and 

second segments are uncorrelated to each other [4], n new samples need to be 

collected starting from sample r in order to create the initial optimal AR model 

for the second segment, <J>3. <t>2 is then created and updated in the same recursive 

manner done for the first segment, see Figure 8.4. Distance between the new two 

models, O3 and <E>2, is again compared online using Ck to identify the ending of 

the second stationary segment. This process continues for the duration of the 

experiment. Notice that regardless of the degree of sample auto-correlation 

within each stationary segment, it can be seen that any segment is uncorrelated to 

its adjacent ones, since this is basically the underlying reason for the series 
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segmentation [4]. Figure 8.4 shows graphically the proposed packet delay 

segmentation methodology. 

samples 

AR1 
{n.P-f} AR2

fr 

Figure 8.4. Packet Delay Series Segmentation 
Methodology. 

Notice that since <?k is related to the change in time of the AR model which 

governs the packet delay dynamics of a specific segment, it can be expected that 

this one change according to the degree of non-stationarity of the samples. 

However, only significant changes on the network system dynamics should be 

responsible of triggering the segmentation algorithm. Although equation (8.14) 

specifies the threshold for negative drifts responsible of detecting network 

system dynamics changes, it can be noticed that this threshold can be reached 

either by; sudden spikes on the trace, or significant changes on the network 
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system dynamics, either abruptly or gradually. Sudden spikes should be avoided 

by the algorithm, to the extent possible. Moreover spikes occurring apart of each 

other within the same segment can make equation (8.14) reaches X, due to the 

accumulative behavior of Ck and the condition of equation (8.14), and it should 

also be avoided. The former phenomena can be evaded by analyzing the negative 

slope of the drift when threshold of equation (8.14) is reached. Sudden spikes are 

associated with large negative slopes, and can be quantified by the small number 

of samples between r and m, see Figure 8.4. Such condition can be expressed as; 

£ < (m-r), where £ is a threshold selected to avoid algorithm detecting sudden 

isolated spikes. Conversely, the latter phenomena can be evaded by selecting m 

as the previous maximum peak value of Ck occurred before r, see Figure 8.4, and 

thus eliminating the contributions of previous spikes observed on the delay trace. 

It can be seen that the proposed online segmentation algorithm only adds 

small additional computation overhead on top of the recursive fitting model 

procedure explained in Section 8.3. This can be explained since the updated 

model, ®o , see Figure 8.3 and first segment of Figure 8.4, is already generated 

recursively by the Kalman Filtering algorithm. Thus no additional computation 

overhead is needed when finding the parameters related to <J>o needed for 

equation (8.12). Note also that none of these parameters are kept in memory after 

condition of equation (8.14) is satisfied. However, parameters related to the 

initial model, O t j needed in equation (8.14) requires an additional small 
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computation overhead. For instance, of for Oi is calculated when the initial n 

samples are fitted into the AR\np) model. In addition, Oi model has to be used 

against the incoming packet delay samples, k (k>n), when executing the online 

calculation of e\,k. Calculation of e\,k is done by adding equation (8.1), 

containing the O] model, into the recursive Kalman Filter equations. Storage 

capacity requirements and computational overhead produced by the proposed 

algorithm are analyzed and quantified in Section 8.4.2. 

Note that <t>0 and <£>i have to be both stationary to be used on equation 

(8.12). Since Oo represents the evolution in time of ®i, its stationarity is 

conditional to the one of cl>u as long as a process change is not detected by Ck . 

However stationarity of Q>\ will depend on the starting point of the segment, the 

probe's sending condition, and the value of n, among other factors. Section 8.4.3 

will explain this phenomenon in detail. In addition, effectiveness of the 

proposed algorithm depends on its settings. Therefore a tradeoff exists among 

accuracy, computational overhead and memory storage requirements according 

to the settings employed. This will be explained in more detail in Section 8.4.3. 

8.4.2 M E M O R Y STORAGE SAVINGS VS. COMPUTATIONAL OVERHEAD 

In this subsection the memory storage savings achieved by using the 

proposed packet delay segmentation algorithm are quantified and compared 

against the computational overhead this generates. 
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In the context of packet delay analysis, offline modeling techniques require 

storing the entire packet delay trace prior to modeling the dynamics of the 

network system, either by segmenting the series or modeling it entirely. Such an 

approach may require enormous storage requirements depending on the length of 

the experiment and the probe's sending conditions employed. However, the 

proposed segmentation algorithm reduces memory storage requirements 

compared to such an approach. 

To quantify this remark, let's considering the packet delay trace shown on 

Figure 8.4 and explained on Section 8.4.1. First segment starts at sample 1 and 

ends at sample r/, also considering that the first n samples of the first segment 

are used to determine the initial system model, 0\. After <t>i is determined, and 

characterized by pi + 1 parameters, the initial n samples are flushed out of 

memory. The embedded Kalman Filtering algorithm is then used to update the 

state of O] recursively at any given iteration, k (n<k<ri), such an evolution is 

represented by <t>o- Following the algorithm condition presented on Section 8.4.1, 

the distance between <J>o is and <E>i is measured for any given iteration, k. Due to 

the first segment ends at sample r/, see Figure 8.4, it can be safely assumed that 

the distance between ®o to <t>\ is minimum, see Section 8.4.1. Thus it also saved 

to conclude that Oi can characterize all the rj initial samples of the trace, and 

therefore only the p/ + l coefficients need to be kept in memory. 

This process continues in the same manner for the consecutives segments 

for the duration of the observations. In general, memory storage savings 
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compared to storing the entire packet delay trace can be quantified by equation 

(8.15); 

perc_memory_storage savings = 1 -
l ( f t+ l ) 

2=1 

Hn) 
V ' = 1 J 

(8.15) 

where s is the total number of segments in which the delay traces is 

fragmented to, and rt is the number of packet delay samples on segment /, Notice 

that £(r() represents the entire packet delay sample trace. As it can be seen, 

memory storage savings depends on the total number segments generated, which 

indeed is based on the degree of non-stationarity of the packet delay trace and 

the algorithm settings employed. 

The proposed algorithm creates an initial system model, Oi, at each 

segment with the first n samples of the segment. Creation of <E>i using traditional 

AR(pj fitting methods, such Yuke Walker, need to be done at every single new 

segment [17]. Such fitting methods can demand a significant amount of 

computational overhead compared to the Kalman Filtering recursive equations 

[17]. For instance, Yuke Walker equations need to calculate set of (p + 1) 

correlation factors that then are used to solve (p+1) linear equations, when 

fitting a system model [17]. Moreover, the proposed segmentation algorithm 

adds additional computational overhead from calculations used on equations 
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(8.12), (8.13), and (8.14). Although these equations demand low computational 

overhead, they need to be executed "Lvi-n-l) times within segment i. 
i=\ 

In general, it can be concluded, that the proposed packet delay segmentation 

algorithm trades off accuracy with computational overhead and memory storage 

requirements. For stationary packet delay trace scenarios, memory storage 

savings can be considerable, and computational overhead can be considered to be 

small. Conversely, non-stationarity packet delay traces scenarios may have the 

opposite effect depending on the degree of non-stationarity. Although 

computational overhead and memory storage savings are sacrificed when non-

stationary traces are analyzed, this is needed to accomplish accurate 

representation of the network system dynamics. 

8.4.3 SEGMENTATION ALGORITHM SEETINGS 

In this subsection, the settings for the proposed segmentation algorithm are 

specified according to the probe's sending conditions and the desired granularity 

of the results. 

Previous efforts have analyzed the effect of probe's sending rate and 

probe's packet size on packet delay autocorrelation [59][69]. In general, higher-

rate probe flows tend to generate stronger autocorrelation on packet delay 

samples than lower-rate ones, as they occupy a higher fraction of link bandwidth 

[69], and thus generate larger packet queuing delays. However this phenomenon 

can also be attributed to the fact that high rate probes monitor the stages of the 
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network in at a more granular level than do low bit rate ones, regardless of the 

fraction of bandwidth they occupy on the network links. Thus high rate probes 

are more likely to capture sudden spikes and irregularities that occur in the 

network, and as was mentioned on Section 8.2 these events may cause false sense 

of LRD on packet delay samples. In both cases, the algorithm proposed in 

Section 8.4.1 segments the packet delay trace into as many stationary segments 

as needed, in which each segment represents a different state of the network 

system. However, in the context of the segmentation methodology proposed in 

this paper, probe's sending rate may affect the creation of segments 3>o and ®i. 

This is due to the fact that ®i is formed by the first n packet delay samples 

collected right after a new segmented is detected. Classic statistical methods 

require n to be large enough for O] to reflect accurately the stage of the network 

system and to generate proper sample distributions. However, collecting large 

amount of packet delay samples can take different amounts of time depending on 

the probe's sending rate and probe's packet size. For instance, consider the case 

of small packet size probes sent at high rates; it can take a few seconds to collect 

the required n samples. On the contrary, the same amount of samples can take 

several minutes to be collected for low sending rates probes, under the same 

network circumstances and using the same probe's packet size. Thus, it can be 

seen that granularity of the segmentation depends on the probe's sending 

conditions, and these have to be selected according to the expected results. 

However, probe's sending conditions settings are not suggested in this paper and 
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are left to be chosen by the researcher. Moreover, experiment results employing 

different sending conditions are presented and analyzed in Section 8.5. 

Conversely, settings of the segmentation algorithm, such as selection of 

s,x, e, and n values, needs to be specified in fine ranges to assured its 

performance results. Selection of <?and rvalues are critical for the algorithm 

performance. In [4] it has been suggested to select sou the {0-1} range, s has to 

be large enough, such as 4 shows always a positive drift when both O0 and ®i 

represent similar processes. However, choosing*? too large can cause the drift of 

4 to be too positive and thus equation (8.14) may fail detecting significant 

divergence between <Do and Oi. x has also to be chosen in such a way that only 

significant changes trigger equation (8.14). Considering that the goal of the 

packet delay segmentation algorithm is to reflect significant changes on the 

probe's packet flow dynamics and not detect instantaneous changes on the trace, 

it is suggested to choose a large enough value of ;i ,as oppose to ones used on 

more rigorous trace segmentation studies ,such as that in [4]. In addition thas 

also to be selected in such a way that the algorithm is not triggered, to the extent 

possible, by isolated spikes on the packet delay trace. Large values of ^are 

suggested for this matter, however a relationship between £ and /tcan be 

foreseen to avoid large negative slopes on Ck , see Figure 8.4. From experiment 

results it has been found that better performance of the algorithm is reached 

when selecting £ values in the range; 40° < tan"1 (X/e) < 50° . 
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Assuring the stationarity of Oi is also a crucial condition for the algorithm. 

However, by following the segmentation algorithm steps presented on Section 

8.4.1, O] may represent two or more uncorrelated sample regions, and thus 

stationarity of <t>\ may not be achieved. 

To clarify the previous statement, let's apply the algorithm steps presented 

on Section 8.4.1 into the measurement showed on Figure 8.1.a. Let's consider 

«=1000, and Oi starting at sample 1. It can be seen that Oi in fact is a non-

stationary model, due to the shift level occurred at sample 900, and therefore it 

can not be used by the proposed segmentation algorithm. To overcome this and 

the previously mentioned phenomenon, we propose to use n = 1000 for any 

probes' sending condition, however stationarity of <t>i has to be tested before 

using it in the proposed algorithm. This test will consist on finding the change 

point(s), r, ( l<r<n) in the same manner as explained in Section 8.4.1, but in a 

static manner. As shown on Figure 8.3, the mentioned test will create a large and 

a small model, formed by n and n/2 samples, respectively. Note the small model 

is a subset of the large one as explained on Section 8.4. The distance of these 

models is measured as described on Section 8.4.1. If a change point(s) are found, 

<I>i stationarity test fails, and two or more stationary sub-segments are created, 

which replace the original <t>\ segment. 

Next, the algorithm is forced to collect the following n packet delay 

samples to create a new Oi, and its stationary tested before using it in the 

proposed algorithm. Based on previous analysis of the nature of packed delay 
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process [35], it can be concluded that irregularities in packet delay samples, such 

as the one observed at sample 900 in Figure 8.1.a, are unlikely to happen 

consecutively in the small time windows, such as the time window used for 

collecting n packet delay samples. Thus it can be concluded that if <E>i is found to 

be non-stationary, only few uncorrelated stationary segments will be obtained 

from the sub-segmentation of O]. Notice that, testing the stationary of Oi, may 

add some additional computational overhead time into the algorithm, and the 

online behavior of the algorithm can be delayed temporarily. However, the 

proposed algorithm recovers from this stage rapidly. <J>2 does not need to be 

tested for stationary if <t>i is stationary. 

Algorithm Settings 
s 

0.25 

X 

150 

E 

[ 0 . 8 4 A - 1 . 1 9 A ] 

a 

0.0001 

n 
1000 

uc 

0.05 

Table 8.1. Algorithm seetings used on segmentation 
analysis. 

Based on this, Table 8.1 shows the algorithm settings chosen and employed 

for the analysis done in this paper. In Section 8.5 performance results of the 

algorithm using these settings is presented. Section 8.5 also presents a 

performance comparison analysis for different sets of settings. 

Figure 8.5 summarizes the procedure of the proposed online packet delay 

segmentation algorithm. Figure 8.5 presents a flow diagram of the mentioned 

algorithm. 
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( Start ) -
initial sample =1 

Initial sample =L+1 

Initial sample =n+1 m 

•Collect next n samples from packet delay series 
•Create <D, using (initial sample,..., initial sample +n) 

•Collect next n samples from packet delay series 
•Create G>, using (initial sample,..., initial sample +n) 
•L=n 

•Create <P0 using 
(initial sample,..., initial sample +L) 

r i 
•n=n*1 I I 

' ^ . i ^ ; g f e ^ ^ 

•Model (p0 represents process of packet 
delay samples 
(initial sample,..-, initial sample +L) 
•Store <D0 parameters for segment k 
•k=k+1 

Figure 8.5. Flow diagram of online packet delay 
segmentation algorithm. 

8.5 P E R F O R M A N C E R E S U L T S 

In this section performance of the proposed online modeling and 

segmentation methodology is tested against real encl-to-end packet delay traces. 

Packet delay traces were collected by conducting customized experiments using 

the ETOMIC infrastructure [80], ETOMIC offers to the research community a 

vast flexibility for setting network traffic experiments over its infrastructure, 
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however experiments are constrained to one hour duration and probe's sending 

rate up to 1Mbps, to avoid network link congestion and allow multiple 

concurrent user experiments [50] [80]. Based on this, a set of experiments were 

conducted using two ETOMIC nodes under different traffic sending conditions. 

Pamplona-Spain(UNAV-130.206.163.166) and Jerusalem-Israel(HUJI-

132.65.240.106) were the two selected nodes. Packet flows were sent in both 

direction, UNAV^-HUJI and HUJI^-UNAV, traversing 14 hops on both cases. 

Flows were generated using 64bytes packet size and a set of three sending rates 

were used; lOOpackets per second (pps), lOOOpps and 2000pps. Each scenario 

was run several times a day and at different times of the day, aiming of capturing 

different packet delay characteristics induced by various degrees of network link 

utilization. Experiments were conducted during consecutive days between July-

August, 2007, to achieve consistency on the results. Performance results of the 

modeling and segmentation algorithm were generated using the source code 

presented on appendix C.l 

140 



Packet Delay Characteristics and UTC time for the HUJI-> UNAV scenai 

Run 1 
Run 2 
Run 3 
Run 4 
Run 5 
Run 6 
Run 7 
Run 8 
Run 9 
Run 10 

UTC Time 

19:00 UTC 2007 
21:00 UTC 2007 
23:00 UTC 2007 
01:00 UTC 2007 
03:00 UTC 2007 
05:00 UTC 2007 
07:00 UTC 2007 
09:00 UTC 2007 
11:00 UTC 2007 
13:00 UTC 2007 

Average Delay(msec) / Delay Variance 
lOOpps 
49.21/1.25 
49.11/0.14 
49.10/0.08 
49.17/0.05 
49.28/0.06 
49.29/0.05 
49.12/0.08 
49.23/ 0.05 
49.22/0.09 
49.06/0.13 

lOOOpps 
49 .11 / 0.04 
49 .10 /0 .04 
49.25/0.05 
49.27/0.07 
49.25/0.04 
49.24/0.14 
49.14/0.51 
49.01/0.08 
49.05/0.16 
49.35/1.12 

2000pps 
48.99/ 0.09 
49 .01 / 0.08 
49 .14 /0 .11 
49.06/0 .12 
49.07/0 .10 
49.03/ 0.10 
50.67/ 0.22 
48.63/ 0.30 
48.60/ 0.13 
48.69/ 0.07 

Table 8.2. Packet Delay Characteristics and UTC times for the HUJI-> 
UNAV set of experiment reults. 

Table 8.2 shows the approximated UTC time for each scenario run on the 

HUJI—»UNAV experiment. In addition Table 8.2 shows the observed average and 

variance of each packet delay trace collected in each scenario. From Table 8.2 

no clear peak delay hour can be identified, however analysis of individuals traces 

show that high variance packet delay traces are mainly encountered on 

runs{l,8,9 and 10}. Although a large amount of data was collected through the 

set of mentioned experiments, only selected packet delay traces were chosen on 

this research to test the performance of the proposed mechanism. Criterion used 

for choosing packet delay traces is based on demonstrating the algorithm 

performance under different packet delay dynamics, induced by various degrees 

of link congestion. 

In Figure 8.6, performance of the modeling and segmentation algorithm is 

analyzed by using a trace of packet delay samples from the HUJI-> UNAV 
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experiment under a sending rate condition of lOOpps. Figure 8.6.a shows 65,000 

packet delay samples collected from Run 1. Notice that the offset, minimum 

value, of the packet delay trace has already been removed on Figures 8.6.a, as 

well as on the rest of packet delays traces shown in this section. As it can be seen 

from Figure 8.6.a, dynamics of selected packet delay trace vary in time, showing 

stationary regions followed by sudden spikes. 
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Figure 
8.6. Segmentation analysis of Packet Delay trace for Runl HUJI-> UNAV 
experiment using lOOpps, (8.6.a) Packet delay trace, (8.6.b)Segmentation 
process of the packet delay trace, (8.6.c)ACF distribution of packet delay. 
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Figure 8.6.b shows ck, in dotted lines, for the corresponding packet delay 

traces (see equation (8.13)). Figure 8.6.b also shows the segments created using 

the proposed algorithm; solid lines represent the end of a segment and the 

beginning of the next one. As it can be seen, the proposed algorithm identifies, in 

an online manner, stationary segments on the observed delay trace, in which c,k 

represent shows positive drifts. However when non-stationarity is detected, a 

strong negative drift is perceived on £k (see Section 8.4.1). 

Notice that the proposed segmentation algorithm clearly specifies that £k 

needs to comply with the conditions mentioned on see Section 8.4.1, when 

triggering the trace segmentation. Negative drifts on £k that do not comply with 

these specifications will not dictate trace segmentation, as it can be seen on 

Figure 8.6.b. 

Figure 8.6.c shows the ACF distribution of the entire packet delay sample 

trace, together with the ones generated by some of the segmented regions. 

Numbering of the segmented regions starts from the left hand side. From here, it 

can be seen that in general ACF distribution of the entire trace differs from the 

distributions of each individual segment. This again is proof that ACF 

distribution of a sample packet delay trace does not always represents the 

dynamics of the trace at any given time, in addition that spikes on the packet 

delay samples may generate a false sense of LRD on the observations. Sample 

autocorrelation of the selected regions shown on Figure 8.6.c can be easily 

associated with their corresponding packet delay dynamics shown on Figure 
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8.6.a. In a nutshell, the performance results shown on Figure 8.6 proves that the 

proposed algorithm does not act as change point detection or spike detection 

mechanism, since instantaneous changes of the packet delay do not trigger the 

segmentation. On the contrary, it segments the packet delay trace based on the 

non-stationarity of the observations. This can be appreciated on segmented 

region 8 of Figure 8.6.a, for instance, in which numerous spikes are observed but 

none of them trigger the algorithm. Although 4 decays at the beginning of 

region 8, as result of the spikes, it can be seen that it rapidly recovers from this 

stage and shows a positive drift, which denotes that observations on this region 

are indeed stationary. Stationarity in this case is represented by repeated similar 

irregularities on the observations, which make samples on this region more auto-

correlated that the ones on the other segmented regions, see Figure 8.6.c. 
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Figure 
8.7.Segmentation analysis of packet delay trace for HUJI-> UNAV 
experiment, (8.7.1.x)Run4 using 2000pps ,(8.7.2.x)Run 4 using lOOpps, 
(8.7.3.x)Run 10 using lOOOpps. 
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Figure 8.7 shows the performance analysis of the proposed modeling and 

segmentation algorithm under three packet delay traces from the HUJI-> UNAV 

experiment, using three different sending rate conditions. Figures 8.7.1.a and 

8.7.1 .b show 20,000 packet delay samples, and their corresponding 4 , 

respectively, for Run 4 of 2000pps scenario. Due to the stationarity observed on 

the packet delay samples, Figure 8.7.1 .b shows that not segmentation was 

needed. Figure 8.7.1.C shows the corresponding state noise covariance 

matrix, cw , for the entire packet delay trace. In the context of Kalman Filter 

algorithm, cW/ has been previously used to analyze changes on the system state 

[58], see equation (8.5). In addition cWi has been estimated recursively by means 

ofp^ , which it is associated to the stability of the system, see equation (8.10). 

cW/ starts after the first n samples of each segment have been collected with the 

initial value of uc and varied in time according to the fluctuations of Pr .From 

Figure 8.7.1.C it can be seen that statistical AR model used to capture the 

corresponding packet delay dynamics stays in a moderate narrow invariant stage, 

which denotes stationary on the observations, a fact that is also corroborated by 

the smooth positive drift observed on the corresponding £k. 

Figures 8.7.2.a, 8.7.2.b, and 8.7.2.C show the same analysis for 30,000 

packet delay samples collected from Run 4 of the lOOpps scenario. Three 

segments were created, which indeed were generated due to irregular spikes on 

the observations. Notice that although the proposed algorithm avoids, to the 
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extent possible, being triggered by instantaneous changes, spikes shown on 

Figures 8.7.2.a will create a false sense of LRD on the observations if not 

identified, due to their intensity and the stationarity of the remaining samples. 

Corresponding cWi shows again the segmented regions are stationary, however 

different degrees of stationarity can be perceived at each segmented region, a 

fact that is corroborated by ck on Figure 8.7.2.b, in which each segment shows 

different positive slopes. 

Finally in Figures 8.7.3.a, 8.7.3.b, and 8.7.3.C 9,000 packet delay samples 

collected from Run 10 of the lOOOpps scenario are used to analyze the 

performance of the proposed mechanism. Packet delay samples in this case 

present higher variance than that in two previous scenarios; however this does 

not seem to affect the segmentation process. Three segments were created using 

the proposed mechanism, dynamics of packet delay samples at each segment vary 

significantly among each other. By analyzing the corresponding packet delay 

dynamics, £k, and cWi of each segment separately it can be concluded that 

segmentation in each region obeys different criteria. For instance, first region 

starts with low variance delay samples, followed by a train of high variance 

delay samples. Such irregularities are responsible of changing the process 

dynamics and thus trace segmentation is enforced. Second region starts when 

spikes disappear and low variance samples show up, again the region is 

segmented when a train of highly variance delay samples appears. In third region 

a peculiar phenomenon is observed, this region is started with highly varying 
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delay samples, however dynamics of the samples are observed to be consistent 

during a large number of samples and thus none segmentation is needed. 

Characteristics of £k, and cW/ denotes samples stationarity in each segment, even 

on the third one. 
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Figure 
8.8. Performance of the proposed algorithm under different values of X , (8.8.a) Number of 
segments vs. 1 , (8.8.b) Average entropy vs. X . 

In Figure 8.8 performance of the proposed algorithm is tested for different 

values of x using traces presented in Figure 8.7. Figure 8.8.a shows the number 

of segments to which the packet delay trace is fragmented for each value of x, 

for each of the three packet delay traces. As can be seen, the number of segments 
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obtained tends to increase as A decreases. This is due to the fact that x controls 

the responsiveness of the segmentation algorithm. Thus smaller values of x tend 

to make the algorithm more receptive to packet delay changes. This phenomenon 

depends also on the degree of stationarity and variability of the observed packet 

delay trace. For instance, only one segment is generated for any value of /tused 

on Run 4 using 2000pps scenario. However packet delay traces obtained on Run 

10 using lOOOpps scenario generates the most number of segments for small 

values of x, compared to the other two traces. 

Degree of disorder of packet delay samples within each segment is 

measured by means of entropy. Entropy is a concept used to define the 

randomness or disorder. The expected information content of a probability 

distribution, called entropy, is derived by weighing the information values by 

their respective probabilities [62]. Packet delay entropy is calculated on each 

segment. A set of entropy values is obtained for each packet delay trace. Average 

of this set of values is calculated and divided by the entropy of the entire packet 

delay trace. In this research, this metric is called average entropy ratio and it is 

presented in equation (8.16): 

U * I (8.16) 
average _ entropy _ ratio ~ 

Efotal 
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where E' is the entropy of segment /, Etota, is the entropy of the entire packet 

delay trace, and s is the total number of segments in which the packet delay 

traces was fragmented using the proposed algorithm. As it can be seen from 

Figure 8.8.b, average entropy ratio tends to increase as xincreases. This can be 

explained due to the fact that small A values tend to make the algorithm more 

aware to packet delay spikes and other uneven events on the packet delay series, 

and thus create small size segments. In this context, segments tend to group 

packet delay samples with similar dynamics, and thus entropy of them are more 

likely to be lower than entropy of segments generated using larger rvalues. 

From Figure 8.8.b it can be seen that average entropy ratio of packet delay trace 

obtained from Run 10 using lOOOpps scenario changes considerably for different 

values of x, compared to the other two traces. This can be explained due to the 

variability of the packet delay samples observed for this trace, see Figure 8.7.3.a. 

Average entropy ratio of packet delay traces obtained from Run 4 using lOOpps 

scenario show less variability for different values of x. In fact, it is observed 

that average entropy ratio for this scenario reaches a steady state value for 

rvalues larger than 40. This can be understood, since this packet delay trace 

only present few spikes. Finally, average entropy ratio of packet delay trace 

obtained from Run 4 using 2000pps scenario, shows no variability at all for any 

value of x . This is due to the fact that only one segment is required for this trace, 

regardless of the rvalue used on the algorithm. 
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Figure 8.9 shows the evolution in time of two of the four AR coefficients, 

%k and a2j(, used for online modeling of packet delay trace shown on Figure 

8.7.3.a.., where k represents the sample number. As it can be seen, AR 

coefficients change drastically in time according to the packet delay dynamics. 

However they tend to vary within a narrow range in stationarity segments. Note 

that traditional time invariant AR models only capture the overall behavior of the 

packet delay trace, and thus fail of distinguishing such changes on the system 

dynamics, even when differentiation techniques are employed. 

0.5 

"5" Oh-

-0.5 
^ 
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Figure 8.9. Evolution in time of two AR coefficients used for online modeling of 
packet delay trace shown on Figure 8.7.3.a. 
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In a nutshell, it can be seen that the proposed segmentation and modeling 

mechanism successfully separates and characterizes the dynamics of packet delay 

samples into a set of AR models based on the observed sample's stationarity. The 

proposed mechanism has demonstrated not being triggered by instantaneous 

changes on the trace dynamics, but to respond to the packet delay distribution's 

changes. Which is mainly driven b y 4 - It can also be seen that the embedded 

Kalman Filtering algorithm indeed captures effectively the evolution in time of 

the system. Moreover cw reflects accurately the degree of non-stationarity on the 

segmented regions, which corroborates the underlying reason for the 

segmentation process. The proposed mechanism requires low computational and 

storage overhead, since a small set of parameters and recursive linear equations 

are needed to discover and model each segment. Algorithm settings are selected 

in such a way that segmentation is based on the non-stationarity of the packet 

delay samples. However, it can be expected that sensitivity of the algorithm and 

thus results may vary according to these settings. 

8.5.1 M E M O R Y STORAGE SAVINGS VS. NON-STATIONARITY 

In this subsection the memory storage savings capabilities of the proposed 

segmentation algorithm are tested against packet delay traces with different 

degrees of non-stationary. Traces presented on Figures 8.6 and 8.7 were used. To 

describe the degree of non-stationarity of a packet delay trace, the Index of 

Dispersion of Intervals (IDI) has been used. In general IDI measures the 

dependence between consecutives samples on a trace, and it is often used to 
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describe the burstiness of a signal [65]. IDI is defined as a sequence { ^ } , k > l , 

where: 

j_kVar(Sk) 

'* [E(Skf 
(8.17) 

and the random variable S^ is the sum of k consecutives samples on a trace. 

If the trace represents a Poisson process, then <̂  =1 for every k. However if 

2 -, 
process has higher variance at some time scale, then <̂  will tend to increase as a 

function of k [35]. 
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Figure 8.10. Index of Dispersion of Intervals (IDI) for blocks of k consecutives 
packet delay samples obtained from multiple traces. 
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Figure 8.10 shows the IDI for the packet delay trace presented on Figure 8.6 

and the three traces presented on Figure 8.7. As it can be seen from Figure 8.10, 

IDI obtained from Run 4 using 2000 pps and Run 4 using 100 pps scenarios 

indicate these traces come from stationary Poisson process, which indeed it can 

be corroborated by Figures 8.7.1.a and 8.7.2.a. However, IDI obtained from Run 

1 using 100 pps and Run 10 using 1000 pps scenarios indicates a noticeable 

degree of non-stationary on these traces, which also can be corroborated by 

Figures 8.6.a and 8.7.3.a. In general, it can be concluded that the first two traces 

of Figure 8.10, starting from the bottom, can be easily modeled as Poisson 

process. Thus packet delay distributions of the entire traces can be used when 

modeling these series. As a result, in the context of the proposed segmentation 

algorithm, these traces may need very few segments or just one when modeling 

them. Conversely, the other two traces will fit poorly into a Poisson distribution, 

and thus more segments are needed when modeling them in the context of the 

proposed segmentation algorithm. These remarks can be confirmed by the 

number of segments generated through the segmentation algorithm on these 

packet delay traces and shown on Figures 8.6.b, 8.7.1.b, 8.7.2.b, and 8.7.3.b. 
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Percentage of Memory Storage Savings using Segmentation Algorithm as a function of 
X 

X 

10 
20 
40 
60 
80 
100 
150 
200 

Run 4 Using 
2000pps 
99.96% 
99.96% 
99.96% 
99.96% 
99.96% 
99.96% 
99.96% 
99.96% 

Run 4 Using 
lOOpps 
99.84% 
99.84% 
99.89% 
99.89% 
99.89% 
99.89% 
99.92% 
99.92% 

Run 10 Using 
lOOOpps 
99.10% 
99.10% 
99.20% 
99.40% 
99.50% 
99.60% 
99.60% 
99.80% 

Run 1 Using 
lOOpps 
99.96% 
99.97% 
99.97% 
99.97% 
99.98% 
99.98% 
99.99% 
99.99% 

Table 8.3. Percentage of memory storage savings using segmentation 
algorithm as a function of X 

Table 8.3 shows the percentage of memory storage savings using 

segmentation algorithm for the four mentioned packet delay traces, obtained 

through equation (8.15), as a function of A. As it can be seen the proposed 

algorithm produces tremendous memory storage saving compared to a traditional 

approach of storing the entire trace for all the four scenarios presented. Memory 

storage saving in general not only depends on the degree of non-stationarity of 

the trace, but also on the number of samples of the trace and the sensibility of the 

algorithm, x. This remark can be confirmed by Table 8.3 results. 

8.6 R E M A R K S 

A novel approach for online modeling end-to-end packet delay dynamics 

under non-stationary network conditions is presented. Proposed methodology 

models the network system characteristics based on the non-stationarity of the 

packet delay samples, while keeping computational and storage requirements 
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low. Such method is based on adaptive AR model, Kalman Filtering algorithm, 

and a modified version of the Divergence-Test. 

Our findings show that the proposed methodology separates and model, in 

an online manner, packet delay traces based on significant changes on the system 

dynamics, and not based on isolated spikes on the trace. Performance of 

algorithm has been tested against different network and traffic conditions. 

Results indicate that segmented series obtained through this approach reflect 

stationarity within its samples, which indeed demonstrate the capability of the 

algorithm of modeling a non-stationary packet delay process as a sequence of 

stationary sub-processes. Number of fragmented segments, generated from 

packet delay traces using the proposed algorithm, and their duration clearly 

indicate a correlation to the algorithm settings and the network system dynamics. 

Responsiveness of the algorithm was also tested for different settings. Results 

indicate a tradeoff of accuracy by computational overhead and memory storage 

requirements according to the settings employed. False sense of LRD on packet 

delay was also studied in the context of the proposed algorithm, and the 

importance of distinguishing it when modeling packet delay processes is 

highlighted. In general, results shows that analyzing packet delay processes by 

modeling the segmented stationary traces yield to a better understanding of the 

network system dynamics. 
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CHAPTER 9. CONCLUSIONS 

When tested under realistic scenarios, existing approaches for modeling 

network system and packet dynamics for network emulation are not scalable. 

This research proposes a measurement-based modeling methodology for the 

design of a network-in-a-box emulator that aims to overcome the limitations 

associated with computational overhead and complexity associated with 

traditional approaches to end-to-end network system modeling. 

A framework for large scale IP network emulation, named OTRENET, has 

been formally introduced. OTRENET overcomes the overhead of packet-by-

packet mapping and modeling, while keeping track on the consistency of the 

results, by means of a proposed Average Traffic Sampler by Time Frame 

Segmentation Algorithm. Design and operation performance of the proposed 

network emulation were described in detail. Performance analysis results shown 

indicate that the proposed OTRENET module fulfills our expectations of 

mimicking the overall behavior of a real network scenario. 

Methodologies for modeling network system dynamics by means of packet 

delay and IPG characterization, with emphasis on cross traffic, sending rate, and 

packet size were discussed in this research. Findings presented leads to the 

conclusion that the behavior of end-to-end packet delay and IPG sequences can 

be captured effectively by ARMA and ARIMA models, under weakly-stationary 

network conditions and using CBR probe flows. Under these network conditions, 
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model goodness-of-fit results demonstrate modeling accuracy for both packet 

delay and IPG processes under low sending bit rate conditions. However, as 

sending bit rate increases as a fraction of the bandwidth, IPG becomes better 

alternative for network system modeling. 

Network system modeling using end-to-end packet delay dynamics is 

extended to no-stationary network system conditions. A novel computational 

efficient methodology for online segmentation and modeling of packet delay 

series based on adaptive AR model, Kalman Filtering algorithm, and a modified 

version of the Divergence-Test was proposed. Our findings show that the 

proposed approach separates and models, in an online manner, packet delay 

traces based on significant changes on the system dynamics. Performance of 

algorithm has been tested against different network and traffic conditions. 

Results indicate that segmented series obtained through this algorithm reflect 

stationarity within its samples, which indeed demonstrate the capability of the 

algorithm of modeling a non-stationary packet delay process as a sequence of 

stationary sub-processes. Responsiveness of the algorithm was also tested for 

different settings, and under various network system conditions. Results indicate 

a tradeoff of accuracy by computational overhead and memory storage 

requirements according to the settings employed. False sense of LRD on packet 

delay was also studied in the context of the proposed algorithm, and the 

importance of distinguishing it when modeling packet delay processes is 

highlighted. In general, results shows that analyzing packet delay processes by 
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modeling the segmented stationary traces yield to a better understanding of the 

network system dynamics. 
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APENDIX A. S C R I P T FOR T R A F F I C SAMPLER BY T I M E FRAME 

SEGMENTATION ALGORITHM 

The source code of the traffic sampler by time frame segmentation 

algorithm, which was written in Matlab, is presented below. This algorithm was 

formally presented and described in detail in CHAPTER 5. A performance 

comparison analyis of this algorithm against similar algorithms was presented in 

CHAPTER 5. The code presented below separates packet delay metrics 

according to its variability. 

A. l . M A T L A B SCRIPT FOR TRAFFIC SAMPLER BY TIME FRAME 

SEGMENTATION 

clc; 
clear all; 
close all; 

load algo_prove\out_simul_per_second.txt; 
A=out_simul_per_second; 
sampled_delay=A(300:800,2); 
sampled_drop=A(:,3); 
sampled_time=A(:,1); 
initial_thres_acc_delay=10; 
in itia l_th res_acc_d ro p= 10; 
time_frame_number=1; 
star_time_frame=sampled_time(1); 
index_star_time_frame=1; 
star_time_frame__p=0; 
estimated_delay_aetual_frame=0; 
maximum_delay_deviation=0.4; 
estimated_drop_actual_frame=0; 
maximum_drop_deviation=0.4; 
T=10; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%—Delay Analysis 
for i=1:1 :length(sampled_delay)-1; 

diff_ave_delay_(i)= sampled_delay(i+1)- sampled_delay(i); 
acc_diff_ave_delay_(i)=sum(diff_ave_delay_(index_star_time_frame:i)); 
signal_new_frame_1(i)=0;signal_new_frame_2(i)=0; 

if ((time_frame_number==1)& (i==1)) 

169 

file://algo_prove/out_simul_per_second.txt


thr_delay(time_frame_number)=initial_thres_acc_delay; 
thr_delay_time(i)=thr_delay(time_frame_number); 

else 
D=i-index_star_time_frame; 
thr_delay_time(i)=thr_delay(time_frame_number)*exp(-D/T); 

end 

if (abs(acc_diff_ave_delay_(i)) > thr_delay_time(i)) 
T=50/(star_time_frame-star_time_frame_p); 
star_time_frame_p=star_time_frame; 
estimated_delay_(index_star_time_frame:i)=mean(sampled_de!ay(index_star_time_frame:i)); 
estimated_delay_actual_frame=mean(sampled_delay(index_star_time_frame:i)); 
time_frame_number=time_frame_number+1 
star_time_frame=sampled_time(i+1); 
index_star_time_frame=i+1; 
thr_delay(time_frame_number)=1.3*thr_delay_time(i); 
signal_new_frame_1 (i)=1; 

if ((abs(sampled_delay(i+1)-estimated_delay_actual_frame)) > maximum_delay_deviation) 
T=0.4; 
signal_new_frame_2(i)=1; 
thr_delay(time_frame_number)=initial_thres_acc_delay; 

end 

end 

end 

figure(1) 
B=[1 0.5 0.25J/1.75; 
A=[1]; 

estimated_gaussian_delay=filter(B,A,sampled_delay); 
subplot(4,1,1); 
plot(sampled_delay);holdon;plot(estimated_delay_,'r'); 
plot(estimated_gaussian_delay,'g') 
subplot(4,1,2);plot(abs(acc_diff_ave_delay_));hold on; plot(thr_delay_time,'g') 
subplot(4,1,3);plot(signal_new_frame_1) 
subplot(4,1,4);plot(signal_new_frame_2,'y') 

mse(sampled_delay(1:length(estimated_delay_))-
(estimated_gaussian_delay(1:length(estimated_delay_)))) 

max(sampled_time)/sum(signal_new_frame_1) 
max(sampled_time)/sum(signal_new_frame_2) 

%%%%%%%%%%%%%% EWMA ANALYSIS %%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x=sampled_delay; 
z_previous=0; 
lambda=0.05; 
start_frame_time=1; 
L=3; 
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for i=1:1:length(x) 
mean_x=mean(x(start_frame_time:i)); 
x(i); 
sigma_x=sqrt(var(x(start_frame_time:i))); 
z(i)=lambda*x(i)+(1-lambda)*z_previous; 
z_previous=z(i); 
num=lambda*(1-(1-lambda)A(2*i)); 
n=1; % sample size 
den=(2-lambda)*n; 
UCL(i)=mean_x+L*sigma_x*sqrt(num/den); 
LCL(i)=mean_x-L*sigma_x*sqrt(num/den); 
mean_x+L*sigma_x*sqrt(num/den); 
UCL_(i)=mean_x+L*sigma_x*sqrt(lambda/den); 

signal_EWMA(i)=0; 
if( (UCL(i)< z(i))| (LCL(i) < z(i))) 

averaged_signal_EWMA(start_frame_time:i)=mean(x(start_frame_time:i)); 
start_frame_time=i-1; 
signal_EWMA(i)=500; 

end 
end 

figure(1) 
%subplot(4,1,1); 
plot(averaged_signal_EWMA,'k') 

(length(estimated_delay_))/(sum(signal_EWMA)/max(signal_EWMA)) 
(length(estimated_delay_))/(sum(signal_new_frame_1)+sum(signal_new_frame_2)) 
mse(sampled_delay(1:length(estimated_delay_))-estimated_delay_') 
mse(sampled_delay-averaged_signal_EWMA') 
legend('sampled_delay','Estimated delay using dynamic average traffic sampler by time 
segmentation','averaged_signal_EWMA'); 

figure(2) 
subplot(2,1,1);plot(z); hold on; plot(UCL,'g');hold on;plot(LCL,'y') 
subplot(2,1,2);plot(signal,'g'); 

% Drop Analysis 
for i=1:1:length(sampled_drop)-1; 

diff_ave_drop_(i)= sampled_drop(i+1)- sampled_drop(i); 
acc_diff_ave_drop_(i)=sum(diff_ave_drop_(index_star_time_frame:i)); 
signal_new_frame_1(i)=0;signal_new_frame_2(i)=0; 

if ((time_frame_number==1)& (i==1)) 
thr_drop(time_frame_number)=initial_thres_acc_drop; 
thr_drop_time(i)=thr_drop(time_frame_number); 

else 
D=i-index_star_time_frame; 
thr_drop_time(i)=thr_drop(time_frame_number)*exp(-D/T); 

end 

if (abs(acc_diff_ave_drop_(i)) > thr_drop_time(i)) 
T=50/(star_time_frame-star_time_frame_p); 
star_time_frame_p=star_time_frame; 
estimated_drop_(index_star_time_frame:i)=mean(sampled_drop(index_star_time_frame:i)); 
estimated__drop_actual_frame=mean(sampled_drop(index star_time_frame:i)); 
time_frame_number=time_frame_number+1 
star_time_frame=sampled_time(i+1); 

171 



index_star_time_frame=i+1; 
thr_drop(time_frame_number)=1.3*thr_drop_time(i); 
signal_new_frame_1(i)=1; 

if ((abs(sampled_drop(i+1)-estimated_drop_actual_frame)) > maximum_drop_deviation) 
T=0.4; 
signal_new_frame_2(i)=1; 
thr_drop(time_frame_number)=initial_thres_acc_drop; 

end 

end 

end 

figure(2) 
subplot(4,1,1 );plot(sampled_drop);hold on;plot(estimated_drop_,"r') 
subplot(4,1,2);plot(abs(acc_diff_ave_drop_));hold on; plot(thr_drop_time,'g') 
subplot(4,1,3);plot(signal_new_frame_1) 
subplot(4,1,4);plot(signal_new_frame_2,'y') 

max(sampled_time)/sum(signal_new_frame_1) 
max(sampled_time)/sum(signal_new_frame_2) 
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APENDIX B. S C R I P T F O R OTRENET E M U L A T O R 

In this appendix the scripts used within the OTRENET network emulator 

module are presented. Appendix 2.3.2B.1 presents the TCL script used in NS 

network simulator to recreate a computer network topology and realistic cross-

traffic situations. In Appendix B.2 the traffic sampler by time frame 

segmentation algorithm, presented on Appendix A.l, is used to characterize the 

simulated traffic metrics obtained through the network simulation presented on 

Appendix 2.3.2B.1. Code presented in appendix B.2 was written in awk. 

The script used to link the three units of the OTRENET, which was 

explained in 4.3.4, is presented in appendix B.3. Code presented in appendix B.3 

was written in Perl. In appendix B.4 the modified version of knistnet.c code, 

which was written in C, is presented. This code is used to capture in real time 

incoming traffic metrics using the time frame segmentation algorithm, which was 

formally presented and described in detail in CHAPTER 5, and input the traffic 

metrics into the network simulator. 

B . l . TCL SCRIPT FOR N S NETWORK SIMULATION 

#Create a simulator object 
set ns [new Simulator] 
while { [ f i le exists 
/home/daniel/Emul/total/final_module_2/dump_files/ns_input.tcl] = = 0 } { 

#puts "Simulator doesn't have input file..." 

} 
source /home/daniel/Emul/total/final_module_2/dump_files/ns_input.tcl 
source simulator_scheduler_2.tcl 
exec rm /home/daniel/Emul/total/final_module_2/dump_files/ns_input.tcl 

# Switching Output traces 
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set f [open "| awk -f simulator emulator_7.awk" w] 
$ns trace-all $f 

# 
# Topology 
# 
# 

#Create five nodes 
set nO [$ns node] 
set n l [$ns node] 
set n2 [$ns node] 
set n3 [$ns node] 
set n4 [$ns node] 
# . 

# 

#Create a duplex link between the nodes 
$ns duplex-link $n0 $n3 lOOOkb 1ms DropTail 
$ns duplex-link $ n l $n3 lOOOkb 1ms DropTail 
$ns duplex-link $n2 $n3 lOOOkb 1ms DropTail 
#$ns duplex-link $n3 $n4 17kb 1ms SFQ 
$ns duplex-link $n3 $n4 lOOkb 1ms SFQ 
# 

# Orientation 
$ns duplex-link-op $n0 $n3 orient right-down 
$ns duplex-link-op $n2 $n3 orient right-up 
$ns duplex-link-op $ n l $n3 orient right 
$ns duplex-link-op $n3 $n4 orient right 
# 
# Initial values 
set counter_ 0 
set now_p -1 
set real_end_time $end_time 
# . . „ _ 

#Create a UDP agent and attach to real stream 
set udpO [new Agent/UDP] 
$ns attach-agent $n0 $udpO 
set cbrO [new Application/Traffic/CBR] 
# . 

set packetsize_2 50 
set interval_2 0.01 
set packetsize_3 100 
set interval_3 0.01 
# 
#Create three traffic sinks and attach them to the node n4 
set sinkO [new Agent/LossMonitor] 
set s ink l [new Agent/LossMonitor] 
set sink2 [new Agent/LossMonitor] 
$ns attach-agent $n4 $sink0 
$ns attach-agent $n4 $sinkl 
$ns attach-agent $n4 $sink2 
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# 

#Create a UDP agent and attach it to node n l 
set udp l [new Agent/UDP] 
$ns attach-agent $ n l $udp l 

# Create a CBR traffic source and attach it to udpl(0.384 Mbps) 
set cbr l [new Application/Traffic/CBR] 
$cbr l set packetSize_ $packetsize_2 
$cbr l set intervaL $interval_2 
$cbr l attach-agent $udp l 
$udp l set fid 2 

#Create a UDP agent and attach it to node n2 
set udp2 [new Agent/UDP] 
$ns attach-agent $n2 $udp2 

# Create a CBR traffic source and attach it to udp2 (0.768 Mbps) 
set cbr2 [new Application/Traffic/CBR] 
$cbr2 set packetSize_ $packetsize_3 
$cbr2 set intervaL $interval_3 
$cbr2 attach-agent $udp2 
$udp2 set fid 2 
# . 

#Connect the traffic source with the traffic sink 
$ns connect $udp0 $sink0 
$ns connect $udp l $s ink l 
$ns connect $udp2 $sink2 

# . 
#Schedule events for the CBR agent 
$ns at 0 "parameters" 
$ns at 0.0 "$cbr0 start" 
# $ n s a t 0 . 1 "$cbr l start" 
#$ns at 0.2 "$cbr2 start" 
#$ns at 5.0 "$cbr0 stop" 
#$ns at 5.0 "$cbr l stop" 
#$ns at 5.0 "$cbr2 stop" 
# 
proc combine { } { 

global f ns cbr2 cbr l 
set ns [Simulator instance] 
set now [$ns now] 
$ns at $now "$cbr l start" 
$ns at [expr $now+40] "$cbr l stop" 
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$ns at [expr $now+10] "$cbr2 start" 
$ns at [expr $now + 30] "$cbr2 stop" 
$ns at [expr $now + 50] "combine" 
puts "combine" 

> 

# 

#Call the finish procedure after 5 seconds of simulation time 
#$ns at 10 "finish" 
#$ns at 50.1 "combine" 

#Run the simulation 
$ns run 
# 

B . 2 . AWK SCRIPT FOR MEASURING SIMULATED TRAFFIC METRICS AND 

ONLINE TRAFFIC SAMPLER BY TIME FRAME SEGMENTATION 

BEGIN { 
# Description: awk script for measuring delay, packet loss and jitter 

# — Configuration lines — 
noc = 10; 
minflow = 1; 
maxflow= 10; 
# . 

highest_packet_id = - 1 ; 
highest_start_time_id=-1; 
change_counter=1; 
total__ave_delay_p=0; 
total_ave__drop_p=0; 
aver_applied_delay=1; 
aver_applied_drop=1; 
aver_applied_delay_th=1; 
aver_applied_drop_th=1; 

system_trlgger_time=0; 
#—Exponentila_initail_paramters--

t=0; 
j = 1 ; 
D=0; 
T_delay=30; 
T_drop=15; 
intial_ampl_thr_delay=10; 
intial_ampl_thr_drop=5; 
ampl_thr_delayO]=intial_ampl_thr_delay; 
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ampl_thr_dropO]=intial_ampl_thr_drop; 
thr_trigger=0; 
signal_2=0; 
#max_delay_deviation=0.4; 
max_delay_deviation=0.4; 
counter deviation=0 

for (i = minflow; i <= maxflow; i++) { 

counter_passed_[i]=0; 
counter_dropped_[i]=0; 
total_pack_duration_p[i] =0; 
total_packet_size_p[i]=0; 
smallest_start_timejd[i]=0; 
minimum_sampling_boundryJimit[i] =-1; 
Throughput_p[1]=0; 
Thr_p[1]=0; 
acc_diff_thr_p[1]=0 
acc_drop_p=0; 
average_pack_duration_p[i]=0; 
acc_diff_ave_pack_duration_p[i]=0; 
percentage_pack_dropped_p[i] = 0; 
acc_diff_perc_pack_dropped_p[i] = 0; 
sampling_rate[i]=1; 

} 

} 

#. 
{ 

# Get tokens from a string 
action = $1; 
time = $2; 
temporal_source = $3; 
temporal_destination = $4; 
flow = $8; 
source = int($9); 
final_destination = int($10); 
packetjd = $12; 
packet_size= $6; 

if (action == "h" || action == "r" || action == "d" || action =="+" || action == "-") { 

if (action =="+") 
{ 

start_time[flow,packet_id] = time; 

if (((startJime[flow,packetjd] > start_time_p[flow,packetjd]) && (start_time_p[flow,packet_id] 
!= 0 )) || (start_time_p[flow,packet_id] == 0 && packetjd == 0 && start_time[flow,packet_id] != 0 ) ) 

{ 
start_time[flow,packetjd]=start_time_p[flow,packet_id]; 
} 

else { 
start_time_p[flow,packet_id]=start_time[flow,packet_id]; 

} 
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if ( packetjd == 0 && action == "+" && (temporal_source === source)) { 
smallest_start_time_id[flow] = time; 

} 
b 

if ( minimum_sampling_boundry_limit[flow] < smallest_start_time_id[flow]) { 
minimum_sampling_boundry_limit[flow] = smallest_start_time_id[flow]; 
maximum_sampling_boundryJimit[flow] = (minimum_sampling_boundry_limit[flow]) + 

(sampling_rate[flow]); 
} 

if (((action != "d") && (action == "r" && final_destination == 1:emporal_destination)) || (action == 
"d")) { 

if ((action == "r" && final_destination == temporaldestination) && (action != "d")) { 

end_time[flow,packet_id] = time; 
counterpassedjflow] = counter_passed_[flow]+1; 

pack_size[flow,packet_id] = packet_size; 
totaLpacket_size[flow]=total_packet_size_p[flow]+pack_size[flow,packet_id]; 
total_packet_size_p[flow]=total_packet_size[flow]; 

pack_duration[flow] = (end_time[flow,packet_id] - start_time[flow,packet_id])*1000; 
total_pack_duration[flow] = pack_duration[flow]+total_pack_duration_p[fiow]; 
total_pack_duration_p[flow] = total_pack_duration[flow]; 

if (start_time[flow,packet_id] > highest_start_time_id) {#in case of reordering 
h ig hest_start_time_id=start_time[f low, packetjd]; 

} 

if ( start_time[flow,packet_id] > maximum_sampling_boundry_limit[flow]) { 
average_packet_size[flow] = (total_packet_size[flow])/(counter_passed_[flow]); 
averagej3ack_duration[flow] = (total_pack_duration[flow])/(counterj3assed_[flow]); 
percentage_pack_dropped[flow] = 

100*(counter_dropped_[flow])/(counter_dropped_[flow]+counter_passed_[flow]); 
Throughput[flow]= 

(0.008*average_packet_size[flow]*counter_passed_[flow])/(start_time[flow,packet_id]-
minimum_sampling_boundry_limit[flow]); 

minimum_sampling_boundry_limit[flow] = start_time[flow, packetjd]; 
maximum_sampling_boundryJimit[flow] = (minimum_sampling_boundry_limit[flow]) + 

(sampling_rate[flow]); 
counter_passed_[flow]=0; 
counter_dropped_[flow]=0; 
total_pack_duration_p[flow] =0; 
total_packet_size_p[flow]=0; 

if(flow==1){ 
system_trigger=0; 
diff_ave_pack_duration[1] = average_pack_duration_p[1]-average_pack_duration[1]; 
acc_diff_ave_pack_duration[1] = diff_ave_pack_duration[1] + 

acc_diff_ave_pack_duration_p[1]; 
average_pack_duration_p[1] = average_pack_duration[1]; 
acc_diff_ave_pack_duration_p[1]= acc_diff_ave_pack_duration[1]; 
abs_acc_delay[1]= sqrt((acc_diff_ave_pack_duration[1])A2); 
total_ave_delay=(total_ave_delay_p+average_pack_duration[1]); 
total_ave_delay_p=total_ave_delay; 
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diff_perc_pack_dropped[1] = percentage_pack_dropped_p[1] -
percentage j>ack_dropped[1]; 

acc_diff_perc_pack_dropped[1] = diff__perc_pack_dropped[1] + 
acc_diff_perc_pack_dropped_p[1]; 

percentage_pack_dropped_p[1] = percentage_pack_dropped[1]; 
acc_diff_perc_pack_dropped_p[1] =acc_diff_perc_pack_dropped[1]; 
abs_acc_drop[1]= sqrt((acc_diff_perc_pack_dropped[1])A2); 
total_ave_drop=(total_ave_drop_p+percentage_pack_dropped[1]); 
total_ave_drop_p=total_ave_drop; 

change_counter=change_counter+1; 
#—-—Exponential_Threshold_Algorithm 
if(j==1||thr_trigger==1){ 
D=0; 
trigger_time=start_time[flow,packet_id]; 
thr_trigger=0; 
} else{ 
D=start_time[flow,packet_id]-trigger_time; 
} 
if (signal_2==1 &&j!=2){ 
D=0; 
T_delay=0.1; 
T_drop=0.5; 
signal_2=0; 
signal_peak=1; 
ampl_thr_delay[j]=intial_ampl_thr_delay;#could be changed from 80 to thr_delay[t-1] 
ampl_thr_dropO]=intial_ampl_thr_drop;#could be changed from 80 to thr_delay[t-1] 
printf("\n HERE \n"); 
} 
thr_delay[t]=(ampl_thr_delay[j])*exp(-D/T_delay); 
thr_drop[t]=(ampl_thr_drop[j])*exp(-D/T_drop); 
# Thriggering_delay 
if (abs_acc_delay[1] > thr_delay[t]) { 

#T_delay=30; #should change according the the peaks periodicity 
system_trigger=1; 
value_delay=((average_pack_duration[1]-

aver_applied_delay_th)/aver_applied_delay_th); 
if(((average_pack_duration[1]-aver_applied_delay_th)/aver_applied_delay) > 0) { 
sign=1; 
} 
else {sign=-1;} 

if (aver_applied_drop != 0) { 
value_drop= sqrt(((percentage_pack_dropped[1]-

aver_applied_drop)/aver_applied_drop)A2); 
} 

printf("\n Signal_.11 :%f %f\n",value_delay,value_drop); 

if ((sqrt(((average_pack_duration[1]-aver_applied_delay)/aver_applied_delay_th)A2)) 
>0.3){ 

system_trigger=1; 
signal_2=1; 
signal_22=1; 
printf("\n Signal_12 \n"); 

} 
} 

# Thriggeringdrop 

#if ((abs_acc_drop[1] > thr_drop[t]) && (signal_2 !== 1)) { 
##T_drop=50; #should change according the the peaks periodicity 
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#system_trigger=1; 
#printf("\n Signal_21... \n"); 
#if ((sqrt(((percentage_pack_dropped[1]-

aver_applied_drop)/aver_applied_drop)A2))>0.25){ 
#signal_2=1; 
#printf("\n Signal_22 \n"); 
#} 

#} 

#- —Display 
real_time_simulation = systimeQ; 

print(1000*Throughput[1],real_time_simulation,''<Simulator_out_>'',system_trigger_time,thr_drop[t],ab 
s_acc_delay[1],abs_acc_drop[1],average_pack_duration[1],aver_applied_delay,percentage_pack_dr 
opped[1],aver_applied_drop,1000*Throughput[2],maximum_sampling_boundry_limit[1]) > 
"simulated_trace.txt"; 

#print(1000*Throughput[1],real_time_simulation,"<Simulator_out_>",thr_delay[t],thr_drop[t],abs_acc_ 
delay[1],abs_acc_drop[1],average_pack_duration[1],aver_applied_delay,percentage_pack_dropped[1 
],aver_applied_drop,1000*Throughput[2]) > "simulated_trace.txt"; 

closeCsimulated_trace.txt"); 
printf("\n Thr_delayjime:%f | abs_acc_delay[1]:%f \n",thr_delay[t],abs_acc_delay[1]); 

printf("\n flow :%d |Throu(kbps):%f |ave_delay:%f |acc_diff_delay[1]:%f | ave_drop:%f 
|acc_diff_drop[1]:%f| %f 
|System_time_:%f\n",flow,Throughput[flow],average_pack_duration[1],acc_diff_ave_pack_duration[1], 
percentage_pack_dropped[1],acc_diff_perc_pack_dropped[1],thr_delay[t],system_trigger_time); 

t=t+1; 

# 
# System_Trigger 
if (system_trigger == 1) { 
j=j+1; 
thr_trigger=1; 
ampl_thr_delay[j]=1.2*thr_delay[t-1]; 
ampl_thr_dropD]=1.2*thr_drop[t-1]; 
if (signal_peak == 1) 

{ampl_thr_delay[j]=intial_ampl_thr_delay;ampl_thr_drop[j]=intial_ampl_thr_drop;} 
aver_applied_delay=total_ave_delay/(change_counter-1); 
aver_applied_drop=total_ave_drop/(change_counter-1); 
aver_applied__delay_th=total_ave_delay/(change_counter-1); 
aver_applied_drop_th=total_ave_drop/(change_counter-1); 
total_a ve_delay_p=0; 
total_ave_drop_p=0; 
acc_diff_ave_pack_duration_p[flow]=0; 
acc_diffj3erc_pack_dropped_p[flow]=0; 
change_counter=1; 
system_trigger_time = systime(); 

if (signal_2 == 0){counter_deviation=0;max_delay_.deviation=0.4} 

if(signal_22==1){ 
printf("\n System Drasticall change| counter_deviation = %f 

\n",counter_deviation); 
if (counter_deviation > 2 || counter_deviation == 0 || sqrt((value_delay)A2) >1 

value_drop >0.5){ 
aver_applied_delay = ((2.5)Asign)*aver_applied_delay; 
aver_applied_drop = ((2.5)Asign)*aver_applied_ drop; 
#max_delay_deviation=2.5*max_delay_deviation; 
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printf("\n System Drasticall change| counter_deviation = %f 
\n",counter_deviation); 

counter_deviation=0; 
} 
counter_deviation=counter_deviation+1; 
signal_22=0; 

} 

printf("\n System _Signal..::: %f \n",aver_applied_delay); 
#system(7root/download/nistnet/cli/./cnistnet-F"); 
system(7root/download/nistnet/cli/./cnistnet-a 13.0.0.5 15.0.0.2 add new-delay 

"aver_applied_delay" -drop "aver_applied_drop""); 
#system("cnistnet -a 13.0.0.5 15.0.0.2 add new -delay 0 -drop 0"); 

} 

# • 

} 

} if (action == "d") { 
start_time[flow,packet_id] = time; 
end_time[flow,packet_id] = - 1 ; 
counter_dropped_[flow] = counter_dropped_[flow]+1; 
#printf("Amount of packets dropped [1]:%d\n",counter_dropped_[1]); 
#printf("Amount of packets dropped [2]:%d\n",counter_dropped_[2]); 
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B.3. PERL SCRIPT THAT EXECUTES AND SYNCHRONIZES OTRENET UNITS 

#!/usr/bin/perl 

use threads; 
use threads::shared; 

my $collector_flag : shared = 0; 
my $simulator_flag : shared = 0; 
my $file_scheduler_flag: shared = 0; 
my $file_counter_collector :shared =0; 
my $file_counter_simulator :shared =1; 
my $initial_flag :shared =0; 
my $input_size : shared = 0; 
my $plotter_flag : shared =0; 

$input_size_p = -s "/var/log/messages"; 

my $collector = threads->new (\&traffic_collector, 1); 
my $simulator = threads->new (\&network_simulator_emulator, 2); 
my $file_scheduler = threads->new (\&scheduler, 3); 
my $emulator_plotter = threads->new (\&plotter, 4); 

#system("echo 0 > ns_availability"); 
system(7root/download/nistnet/cli/./cnistnet-u"); 
system("/root/download/nistnet/cli/./cnistnet-F"); 
#system("cnistnet-a 15.0.0.3 13.0.0.2 add new -delay 0 -drop 0"); 
system("/root/download/nistnet/cli/./cnistnet -a 13.0.0.5 15.0.0.2 add new -delay 0 -drop 0"); 
#system(7root/download/nistnet/cli/./cnistnet -S 13.0.0.5 15.0.0.2 »file_1"); 
system ("rm/home/daniel/Emul/total/final_module_2/dump_files/*.*"); 
system ("rm/home/daniel/Emul/total/final_module_2/simul_continuous/dump_files/*.*"); 
system ("rm -rf /home/daniel/Emul/total/final_module_2/simul_continuous/dump_files/*"); 
system ("rm/home/daniel/Emul/total/final_module_2/simul_continuous/results/*.*"); 
system ("rm -rf /home/daniel/Emul/total/final_module_2/simul_continuous/results/*"); 

$collector->join; 
$simulator->join; 
$file_scheduler->join; 
$plotter->join; 

sub traffic_collector { 
system("dmesg -c"); 

while (1){ 
#while($file_counter_collector - $file_counter_simulator > 2) (sleep(1);} 
$input_size= -s 7var/log/messages"; 
while ($input_size_p == $input_size){ 

$input_size= -s "/var/log/messages"; 
} 
print("$input_size $input_size_p \n"); 
$input_size_p = $input_size; 
system("dmesg -c »/home/daniel/Emul/total/final_module_2/dump_files/temp_file"); 

if ((-z 7home/daniel/Emul/total/final_module_2/dump_files/temp_file")) { 
#print ("\n..temp_file exist and is empty..An"); 
} 
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#print ("\n testing: Collector is on ..in betwen...\n"); 

if ((-e "/home/daniel/Emul/total/final_module_2/dump_files/temp_file") && (-s 
7home/daniel/Emul/total/final_module_2/dump_files/temp_file")){ 

print ("\n..temp_file exist and is not empty..An"); 
systemfawk -f simulatorJnput_generator_2.awk 

/home/daniel/Emul/total/final_module_2/dump_files/temp_file"); 
system("rm/home/daniel/Emul/total/finaLmodule_2/dump_files/temp_file"); 

if ((-e "/home/daniel/Emul/total/final_module_2/dump_files/ns_input_temp") && (-s 
7home/daniel/Emul/total/final_module_2/dump_files/nsjnput_temp")) { 

print ("\n...ns_input_temp exist and is not empty..An"); 
$file_counter_collector++; 
system("mv/home/daniel/Emul/total/final_module_2/dump_files/ns_input_temp 

/home/daniel/Emul/total/final_module_2/dump_files/".$file_counter_collector.".tcl"); 
systemfmv 

/home/daniel/Emul/total/final_module_2/simul_continuous/dump_files/ns_continuous_input_temp 
/home/daniel/Emul/total/finaLmodule_2/simul_continuous/dump_files/".$file_counter_collector.".tcl"); 

print "\n Collector is done file $file_counter_collector \n\n"; 
} 

} 

if ($file_counter_collector ==1) { 
$file_scheduler_flag =1; 
cond_signal($file_scheduler_flag); 
} 

} 

} 

sub network_simulator_emulator { 
lock($simulator_flag); 
cond_wait($simulator_flag); 

if ($simulator_flag == 1) { 
print "Simulator is on...\n\n"; 
$plotter_flag=1; 
cond_signal($plotter_flag); 
systemfns simulator_3.tcl"); 
#system("nssimulator_exp_back.tcl"); 
#system("ns complex_simul_1 .tcl"); 
exit 0; 

} 
} 

sub plotter { 
lock($plotter_flag); 
cond_wait($plotter_flag); 
if ($plotter_flag==1){ 
#system(7root/download/nistnet/cli/./cnistnet-S 15.0.0.22 13.0.0.22"); 
} 

} 

sub scheduler { 
lock($file_scheduler_flag); 
cond_wait($file_scheduler_flag); 
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while (1){ 
if ($file_scheduler_flag == 1) { 

if ((!-e "/home/daniel/Emul/total/final_module_2/dump_files/ns_input.tcl") 
||($file_counter_simulator == 1)){ 

print ("File_simulator:$file_counter_simulator- File_collector:$file_counter_collector\n"); 

while ($file_counter__simulator > $file_counter_collector){} 
while (!-e 

7home/daniel/Emul/total/final_rnodule_2/dump_files/''.$file_counter_simulator.''.tcr'){} 

system("mv 
/home/daniel/Ernul/total/final_module_2/dump_files/".$file_counter_simulator.".tcl 
/home/daniel/Emul/total/final_module_2/dump_files/ns_input.tcl"); 

print" Scheduler: File #$file_counter_simulator was switched \n\n"; 
$file_counter_simulator++; 

if ($file_counter_simulator ==2) { 
$simulator_flag =1; 
cond_signal($simulator_flag); 

} 

} 
} 

} 
} 

B.4. M O D I F I E D VERSION OF KNISTNET.C 

I* $Header$ 7 

/* knistnet.c - Linux implementation of "hitbox'Mike functionality. 
* This code exists as a loadable kernel module. It gains access to the 
* entry points it needs through some patches to the existing Linux kernel. 
* (Unfortunately, there seemed to be no practical alternative to patching 
* to gain access to the basic packet handling routine entry points.) 
* The user-level interface provided is a device driver one, modeled on the 
* original SunOS-based hitbox. 
* 
* Mark Carson, NIST/UMPC 
* 1/1997 
7 

#include "kincludes.h" 

/* The following can only be included in one place! 7 
#define EXPORT_SYMTAB 
#include <linux/module.h> 
#include <linux/kernel.h> 
#include "tabledist.h" 

int nistnet_debug; 

/* Breakpoints are only helpful when we're compiled into the kernel 7 
#ifndef MODULE 

#ifdef DEBUG 
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#define BREAKPOINT(string) asm(" int $3") 
#define DEBUG_SPINLOCKS 2 
#else 
#define BREAKPOINT(string) printk(string)/*@@minidebug@@*/ 
#endif 

#else /* MODULE */ 

#ifdef DEBUG 
#define DEBUG_SPINLOCKS 2 
#endif 

#define BREAKPOINT(string) printk(string)/*@@minidebug@@*/ 

#endif/* MODULE*/ 

spinlockj LinLockVar = SPIN_LOCK_UNLOCKED; 

static int lock_ticker; 
#define LinLock(string) \ 

do {++lock_ticker;\ 
if (nistnet_debug > 4 && (!(lock_ticker&0x3f) || nistnet_debug > 5)) \ 

printk("lock %s", string); \ 
spin_lock_irqsave(&LinLockVar, pre_flags);} while (0) 

#define LinUnlock(string) \ 
do {if (nistnet_debug > 4 && (!(lock_ticker&0x3f) || nistnet_debug > 5)) \ 

printk(" unlock %s\n", string); \ 
spin_unlock_irqrestore(&LinLockVar, pre_flags);} while (0) 

#ifdef notdef 
#define HASHSIZE 256 
static struct linjiitbox *hittable[HASHSIZE]; 
#endif 

#ifdef DEBUG 
static int hittable_count; 
#endif 

struct nistnet_globalstats ourstats; 
#define STATS_START 0 
#define STATS_PROCESS 1 
#define STATS_UNPROCESS 2 

void fixed_gettimeofday(struct timeval *tv); 
void lin_hash_stats(int number); 

void fast_fill(void); 
void fast_empty(void); 
struct fast_timer_list * fast_alloc(int how); 
void fast_free(struct fast_timer_list *done); 

int 
addnistnet(NistnetTableEntryPtr entry) 
{ 

/* Check entry for sanity */ 
if (entry->lteStats.hitreq.drd_min && 

entry->lteStats.hitreq.drd_min >= entry->lteStats.hitreq.drd_max) 
return -EINVAL; 

#ifdef CONFIG ECN 
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if (entry->lteStats.hitreq.drd_congestion) { 
if (entry->lteStats.hitreq.drd_min > entry->lteStats.hitreq.drd_congestion || 

entry->lteStats.hitreq.drd_max < entry->lteStats.hitreq.drd_congestion) 
return -EINVAL; 

} 
#else 

entry->lteStats.hitreq.drd_congestion = 0; 
#endif 

/* Should ignore these fields, but it doesn't feel right... */ 
entry->lteOldDrop = entry->lteDrop; 
entry->lteOldDup = entry->lteDup; 
entry->lteOldDeiay = entry->lteDelay; 
entry->lteOldDelsigma = entry->lteDelsigma; 

/* Initialize packet timer */ 
fixed_gettimeofday(&entry->lteStats.last_packet); 
entry->lteStats.next_packet = entry->lteStats.last_packet; 
/* Insert in table */ 
if (!lt_add(entry)) 

return -ENOMEM; 
#ifdef DEBUG 

++hittable_count; 
#endif 

return 0; 
} 

int 
addhitreq(struct lin_hitreq *hitreq) 
{ 

NistnetTableEntry nistnetreq; 

bzero(&nistnetreq, sizeof(nistnetreq)); 
nistnetreq.IteSource = hitreq->src; 
nistnetreq.lteDest = hitreq->dest; 
nistnetreq.lteStats.hitreq = *hitreq; 
nistnetreq.IteDrop = hitreq->p_drop; 
nistnetreq.lteDup = hitreq->p_dup; 
nistnetreq.IteDelay = hitreq->delay; 
nistnetreq.IteDelsigma = hitreq->delsigma; 
return addnistnet(&nistnetreq); 

} 

int 
rmnistnet(NistnetTableEntryPtr entry) 
{ 

/* Remove from table */ 
switch (lt_rm(entry)) { 
case 1: 

break; 
case 0: 

return -ESRCH; 
case - 1 : 

return -EFAULT; 
} 

#ifdef DEBUG 
-hittable_count; 

#endif 
return 0; 

} 

int 
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rmhitreq(struct lin_hitreq *hitreq) 
{ 

NistnetTableEntry nistnetreq; 

bzero(&nistnetreq, sizeof(nistnetreq)); 
nistnetreq.IteSource = hitreq->src; 
nistnetreq.IteDest = hitreq->dest; 
nistnetreq.IteStats.hitreq = *hitreq; 
return rmnistnet(&nistnetreq); 

} 

int 
gethitstats(struct linhitstats *hitstats) 
{ 

NistnetTablePtr tableptr; 
int i; 

tableptr = lt_find_by_srcdest(hitstats->hitreq.src, hitstats->hitreq.dest); 
if ('tableptr) 

return -ESRCH; 
/* Put things where the old stuff expects it */ 
tableptr->ltEntry.lteOldDrop = tableptr->ltEntry.lteDrop; 
tableptr->ltEntry.lteOldDup = tableptr->ltEntry.lteDup; 
*hitstats = tableptr->ltEntry.lteStats; 
/* Compute current_bandwidth */ 
for (i=0; i < BAND_ARRAY; ++i) 

hitstats->current_bandwidth += 
hitstats->bandwidth_array[i]; 

if (hitstats->seats_used) 
hitstats->current_bandwidth /= hitstats->seats_used; 

return 0; 
} 

int 
getnistnet(NistnetTableEntryPtr where) 
{ 

struct linjiitstats *hitstats; 
NistnetTablePtr tableptr; 
inti; 

tableptr = lt_find_by_key(&where->lteKey, NULL); 
if (Itableptr) 

return -ESRCH; 

/* Copy things where the old stuff expects it 7 
tableptr->ltEntry.lteOldDrop = tableptr->ltEntry.lteDrop; 
tableptr->ltEntry.lteOldDup = tableptr->ltEntry.lteDup; 

*where = tableptr->ltEntry; 
hitstats = &where->lteStats; 
where->lteOldDelay = where->lteDelay; 
where->lteOldDelsigma = where->lteDelsigma; 
/* Compute current_bandwidth */ 
for (i=0; i < BAND_ARRAY; ++i) 

hitstats->current_bandwidth += 
hitstats->bandwidth_array[i]; 

if (hitstats->seats_used) 
hitstats->current_bandwidth /= hitstats->seats_used; 

return 0; 
} 
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/* nice and high, but it is tunable: insmod hitmod.o major=your_selection */ 
static int major = HITMAJOR; 

/* 
* The driver. 
7 

I* read -- get what's in the table 7 
static 
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0) 
ssize_t 
hw_read(struct file * file, char * buf, size_t count, loff_t *whoknows) 
#else 
int 
hwread (struct inode * node, struct file * file, char * buf, int count) 
#endif 
{ 

extern int DumpPairs(char *buf, int count); 
extern int lt_read(char *buf, int count); 

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0) 
switch (MINOR(file->f_dentry->d_inode->i_rdev)) 

#else 
switch (MINOR(node->i_rdev)) 

#endif 
{ 
case HITMINOR: 

return DumpPairs(buf, count); 
case NISTNETMINOR: 

return lt_read(buf, count); 
default: 

return 0; 
} 

} 

static 
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0) 
ssize_t 
hw_write(struct file * file, const char * buf, size_t count, loff_t *whoknows) 
#else 
int 
hw_write(struct inode * node,struct file * file.const char * bufjnt count) 
#endif 
{ 

int ret; 

if (count >= tabledistsizeO) { 
ret = tabledistfill(buf); 
if (ret) return ret; 
return tabledistsizeO; 

} else 
return -E2BIG; /* ha, ha 7 

} 

/* 
* mucky muck ioctl interface 
7 
static int 
hw_ioctl(struct inode * inode, struct file * file, unsigned int type, unsigned long arg) 
{ 

struct linhitreq hitreq; 
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NistnetTableEntry nistnetreq; 
extern void kick_fast_rtc(void); 
int re = 0; 

switch (type) { 
case HITIOCTLJDFF: 
case N1STNETJDFF: 

/* Shut down */ 
ourstats.emulator_on=0; 
break; 

case HITIOCTL_ON: 
case NISTNETJDN: 

/* Turn on if not already on 7 
ourstats.emulator_on=1; 
break; 

case HITIOCTL_ADD: 
/* Get what they want 7 
copy_from_user_ret(&hitreq, (struct tinhitreq *)arg, 

sizeof(struct linjiitreq), -EFAULT); 
/* Add it to the table 7 
re = addhitreq(&hitreq); 
break; 

case NISTNET_ADD: 
/* Get what they want 7 
copy_from_user_ret(&nistnetreq, (NistnetTableEntryPtr)arg, 

sizeof(NistnetTableEntry),-EFAULT); 
/* Add it to the table 7 
re = addnistnet(&nistnetreq); 
break; 

case HITIOCTL_REMOVE: 
/* Get what they want 7 
copyjTom_user_ret(&hitreq, (struct linjiitreq *)arg, 

sizeof(struct lin_hitreq), -EFAULT); 
/* Remove it from the table 7 
re = rmhitreq(&hitreq); 
break; 

case NISTNET_REMOVE: 
/* Get what they want 7 
copy_from_user_ret(&nistnetreq, (NistnetTableEntryPtr)arg, 

sizeof(NistnetTableEntry),-EFAULT); 
/* Remove it from the table 7 
re = rmnistnet(&nistnetreq); 
break; 

case HITIOCTL_STATS: 
{ 
struct lin_hitstats hitstats; 

/* Get what they want 7 
copy_from_user_ret(&hitstats, (struct lin_hitstats *)arg, 

sizeof(struct lin_hitstats), -EFAULT); 
re = gethitstats(&hitstats); 
/* Copy out individual stats 7 
if (!rc) { 

copy_to_user_ret((struct linjiitstats *)arg, 
Shitstats, 
sizeof(struct lin_hitstats), -EFAULT); 

} 
break; 
} 

case NISTNETJ3TATS: 
/* Get what they want 7 

189 



copy_from_user_ret(&nistnetreq, (NistnetTableEntryPtr)arg, 
sizeof(NistnetTableEntry), -EFAULT); 

re = getnistnet(&nistnetreq); 
/* Copy out individual stats */ 
if (!rc) { 

copy_to_user_ret((NistnetTableEntryPtr)arg, 
&nistnetreq, 
sizeof(NistnetTableEntry), -EFAULT); 

} 
break; 

case HITIOCTL_MODE: 
/* ?? 7 
break; 

case HITIOCTLJTMER: 
/* ?? 7 
break; 

case HITIOCTL_MTU: 
/* ?? 7 
break; 

case HITIOCTL_DEBUG: 
case NISTNET_DEBUG: 

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0) 
re = get_user(nistnet_debug, (long *)arg); 
if (re < 0) break; 

#else 
nistnetdebug = get_user((long *)arg); 

#endif 
#ifdef LTJDEBUG 

lt_set_debug_level(nistnet_debug); 
#endif 

break; 
case HITIOCTL_GLOBALSTATS: 

copy_to_user_ret((struct lin_globalstats *)arg, 
&ourstats.l, 
sizeof(struct lin_globalstats), -EFAULT); 

break; 
case HITIOCTLJMGLOBALSTATS: 
case NISTNET_GLOBALSTATS: 

copy_to_user_ret((struct nistnet_globalstats *)arg, 
Sourstats, 
sizeof(struct nistnet_globalstats), -EFAULT); 

break; 
case NISTNET_KICK: 

kick_fast_rtc(); 
break; 

case NISTNET_FLUSH: 
flush_fast_timer_list(); 
break; 

} 
return re; 

r 
* Our special open code. 
* MOD_INC_USE_COUNT make sure that the driver memory is not freed 
* while the device is in use. 
7 

static int 
hw_open( struct inode* ino, struct file* filep) 
{ 
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MOD_INC_USE_COUNT; 
return 0; 

} 

/* 
* Now decrement the use count. 
7 
static 
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0) 
int 
#else 
void 
#endif 
hw_close( struct inode* ino, struct file* filep) 
{ 

MOD_DEC_USE_COUNT; 
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0) 

return 0; 
#endif 
} 

static struct file_operations hw_fops = { 
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,3,25) 

owner: THIS_MODULE, /* struct module "owner */ 
read: 
write: 
ioctl: 
open: 
release: 

hw_read, 
hw_write, 
hw_ioctl,/* 
hw_open, 
hw close, 

/* read - get emulator table */ 
/* write - fill distribution table */ 

ioctl - most of the controls */ 
/* open */ 
/* release */ 

#else /* 2.0 and 2.2 versions */ 

NULL, 
hw_read, 
hw write, 
NULL, 
NULL, 
hw ioctl,/* ioctl • 
NULL, 
hw open, 

/* Iseek - n/a */ 
/* read - get emulator table */ 
/* write - fill distribution table */ 
/* readdir - n/a */ 
/* poll/select - n/a 7 

• most of the controls */ 
/* mmap - n/a, for now at least 7 
/* open */ 

#if LINUX VERSION CODE >= KERNEL VERSION(2,1,0) 
NULL, 

#endif 
hw close, 
NULL, 
NULL, 
NULL, 
NULL 

/* flush 7 

/* release 7 
/* fsync */ 
/* fasync */ 
/* check_media_change */ 
/* revalidate */ 

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0) 

NULL 
#endif 

/* lock */ 

#endif /* 2.0 and 2.2 versions 7 

}; 

/* Various statistics. We record some running totals in circular arrays, 
* to give an idea of how things are going. 
*/ 
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#define band_seat(time) ((time.tv_sec)%BAND_ARRAY) 

I* How well is the hash table doing? */ 
void 
lin_hash_stats(int number) 
{ 

static int hashslot; 

/* average 50/50 with the last value we got */ 
ourstats.l.hash_tries[hash_slot] = (number + ourstats.l.hash_tries[hash_slot]) » 1; 
hash_slot = (hash_slot+1)%BAND_ARRAY; 

} 

/* How long is our processing time? */ 
void 
global_stats(int process) 
{ 

static struct timeval start; 
struct timeval end; 
static int process_slot, unprocess_slot; 
long int usec_time; 

switch(process) { 
case STATS_START: 

fixed_gettimeofday(&start); 
return; 

case STATS_PROCESS: 
fixed_gettimeofday(&end); 
usec_time = timeval_diff(&end, &start); 
/* Check for bogus time values */ 
if (nistnet_debug && usec_time < 0) { 

printkfnistnet: pretty fast processing, %ld usecs'An", usec_time); 
return; 

} 
/* Average in with previous value 50/50 */ 
ourstats.l.process_overhead[process_slot] = 

(usec_time+ourstats.l.process_overhead[process_slot])» 1; 
process_slot = (process_slot+1)%BAND_ARRAY; 
break; 

case STATSJJNPROCESS: 
fixed_gettimeofday(&end); 
usectime = timeval_diff(&end, &start); 
/* Check for bogus time values */ 
if (nistnet_debug && usec_time < 0) { 

printk("nistnet: pretty fast unprocessing, %ld usecs!\n", usec_time); 
return; 

} 
/* Average in with previous value 50/50 */ 
ourstats.l.unprocess_overhead[unprocess_slot] = 

(usec_time+ourstats.l.unprocess_overhead[unprocess_slot])» 1; 
unprocess_slot = (unprocess_slot+1)%BAND_ARRAY; 
break; 

} 
} 

I* What's the traffic like on this entry? */ 
void 
packet_stats(struct skbuff *skb, struct lin_hitstats *hitme) 
{ 

struct timeval ourjime; 
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long packettime; 
int last_seat, our_seat, seat; 

if (!skb->len) 
return; 

fixed_gettimeofday(&our_time); 
last_seat = band_seat(hitme->last_packet); 
ourseat = band_seat(our_time); 
packettime = timeval_diff(&our_time, &hitme->last_packet); 
/* Check for bogus time values */ 
if (nistnetdebug && packettime < 0) { 

printkf'nistnet: packet arrived in %ld usecs!\n", packettime); 
goto after_bandwidth; 

} 
hitme->last_packet = our_time; 
/* compute bandwidth */ 
if (packettime > BAND_ARRAY*MILLION) { 

/* too long since last packet; zero out everything 7 
memset(hitme->bandwidth_array, 0, 

BAND__ARRAY*sizeof(unsigned long)); 
hitme->seats_used = 1; 

} else if (last_seat != our_seat) { /* zero out skipped intervals 7 
for (seat = (last_seat+1)%BAND_ARRAY; seat != our. seat; 

seat = (seat+1)%BAND_ARRAY) { 
hitme->bandwidth_array[seat] = 0; 

} 
/* plus get this one! 7 
hitme->bandwidth_array[our_seat] = 0; 
if (hitme->seats_used < BAND_ARRAY) 

++hitme->seats_used; 
} 
hitme->bandwidth_array[our_seat] += skb->len; 

after_bandwidth: 
hitme->current_size = skb->len; 
hitme->bytes_sent += skb->len; 
return; 

} 

#ifdef DEBUG 
void 
check_skb(struct sk_buff *skb, char *where) 
{ 

if (skb->data < skb->head) { 
printk("bug:check_skb:under:%s\n", where); 

} 
if (skb->tail>skb->end) { 

printk("bug:check_skb:over:%s\n", where); 
} 

} 
#endif/* DEBUG*/ 

/* Receive packet interception 7 
static struct packet_type *ippt; 

static struct packet_type ourpt; 

/* We use an arbitrary spot in the skb control buffer to mark packets 
* which we've already processed. 
7 

#define NISTNET_CB_MAGIC 66 
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#define NISTNET_CB_MAGIC_SPOT33 
#define we_saw_skb(skb) (skb->cb[NISTNET_CB_MAGIC_SPOT] == NISTNET_CB_MAGIC) 
#define gaze_at_skb(skb) (skb->cb[NISTNET_CB_MAGIC_SPOT] = NISTNET_CB_MAGIC) 

/* Resume processing of a delayed packet */ 
void 
runpacket(struct fast_timerjist *info) 
{ 

struct nistnet_packetinfo *hpi = (struct nistnet_packetinfo *)info->data; 
unsigned long pre_flags; 

LinLock("runpacket1"); 
packet_stats(hpi->skb, &hpi->nte->lteStats); 
LinUnlock("runpacket1"); 
/* Non-local save/restore of flags doesn't work on some 
* architectures (notably Suns). We should be in an OK 
* situation without it, though... 
*/ 

/*restore_flags(hpi->flags);*/ 
#ifdef DEBUG 

check_skb(hpi->skb, "third"); 
#endif 

/* Mark this one as already having been queued */ 
gaze_at_skb(hpi->skb); 
(void) netif_rx(hpi->skb); 
LinLock("runpacket2"); 
if (!hpi->nte->lteStats.qlen) { 

BREAKPOINT("zero queue in runpacket"); 
} else { 

~hpi->nte->lteStats.qlen; 
} 
fast_free(info); 
LinUnlock("runpacket2"); 
MOD_DEC_USE_COUNT; 

} 

/* This is the (slightly modified) DRD algorithm for dropping */ 

/* probability factors * PROBFACTOR */ 
static unsigned int drdtablefl = { /* constant "ramp up" */ 
6554, 
9830, 
13107, 
16384, 
19661, 
22938, 
26214, 
29491, 
32768, 
36045, 
39322, 
42598, 
45875, 
49152, 
52429, 
55706, 
58982, 
62259, 
65535 

}; 
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#define DRDLIMIT (sizeof(drdtable)/sizeof(int)) 

/* packet_drop - compute probability of dropping packet. If we are using 
* DRD, use its table (adjusted for the queue length parameters we're 
* using), otherwise use a constant drop probability (which may be 0). 
* If both DRD and constant drop are specified, we use the DRD probability 
* in preference to the constant drop if the former is non-zero. 
* 
* Note that DRD drops are by definition uncorrelated. The whole point 
* in doing "preventive" drops is to avoid correlated loss and retransmit!! 
* 
* Return 1 if packet is to be dropped, 0 otherwise. 
7 
int 
packet_drop(NistnetTablePtrtableme, int*use_drd, int*use_ecn) 
{ 

struct linhitstats *hitme; 
int value; 

hitme = &tableme->ltEntry.lteStats; 
*use_drd=0; 
*use_ecn=0; 
if (hitme->hitreq.drd_max) { /* using DRD */ 

unsigned int stretch = DRDUMIT/(hitme->hitreq.drdjriax-hitme->hitreq.drd_min); 

if (hitme->qlen < hitme->hitreq.drd_min) {/* below DRD limit 7 
if (tableme->ltEntry.lteDrop) { 

value = (correlatedrandom(&tableme->ltEntry.ltelDrop)&Oxffff); 
return value < tableme->ltEntry.lteDrop; 

} else { 
return 0; 

} 
} 

value = (myrandomO&Oxffff); 
*use_drd=1; 
if (hitme->qlen >= hitme->hitreq.drd_max) 

return value < drdtable[DRDLIMIT-1]; 
#ifdef CONFIG_ECN 

/* If using DRD, check whether the queue length is still 
* below the ECN limit. If so, the packet can be marked 
* with the ECN bit rather than dropped. 
*/ 
else if (hitme->qlen <= hitme->hitreq.drd_congestion) 

*use_ecn=1; 
#endif /* CONFIG_ECH 7 

return value < drdtable[stretch * 
(hitme->qlen-hitme->hitreq.drd_min)]; 

} else { 
if (tableme->ltEntry.lteDrop) { 

value = (correlatedrandom(&tableme->ltEntry.ltelDrop)&Oxffff); 
return value < tableme->ltEntry.lteDrop; 

} else { 
return 0; 

} 
} 

} 

#ifdef CONFIG_ECN 
/* ecn_skb - mark a packet for explicit congestion notification, if supported. 
7 
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int 
ecn_skb(struct sk_buff *skb) 
{ 

struct iphdr *iph; 

/* Get the ip header */ 
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0) 

iph = skb->nh.iph; 
#else 

iph = skb->h.iph; 
#endif 

/* Check if ecn enabled */ 
if (!(iph->tos & ECN_CAPABLE)) 

return - 1 ; 
/* Munge bit, if not already munged */ 
if (!(iph->tos & ECN_NOTED)) { 

unsigned long checksum; 

iph->tos |= ECN_NOTED; 
/* Adjust checksum to account for munged bit */ 
/* ip checksum is 1's complement in network byte order... */ 
checksum = iph->check - htons(ECN_NOTED); 
checksum += checksum » 1 6 ; /* catch carry */ 
iph->check = checksum; 

} 
return 0; 

} 
#endif/*CONFIG_ECN*/ 

/* Determine the amount of time to delay a packet. This is the maximum 
* of two quantities: 
* 1. Probabilistic packet delay time 
* 2. Bandwidth-limitation delay time 
* 
* Question: Should we take probabilistic delay into account in determining 
* bandwidth consumption? Answer: This complicates things a little too much. 
* Our model is that bandwidth throttling happens first at one virtual 
* choke point, then packets may get independently delayed at some later 
* point. This can result in packets getting bunched up, so the stated 
* bandwidth limitation is actually exceeded at some point. 
* 
* The problem with taking the delay into account is that the simplest 
* way of doing so would remove any possibility of reordering packets -
* each packet could not be sent any sooner than its predecessor. It 
* thus seems more useful in terms of network effects to do things the 
* way they are here. 
7 
int 
packet_delay(struct sk_buff *skb, NistnetTablePtr tableme) 
{ 

int probdelay=0, bandwidthdelay=0, delay=0; 
struct linhitstats *hitme; 
struct timeval our_time={0,0}; 
long packettime=0; 

hitme = &tableme->ltEntry.lteStats; 

/* Figure probabilistic delay */ 
probdelay = correlatedtabledist(&tableme->ltEntry.ltelDelay); 

/* Figure bandwidth-limitation delay */ 
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if (hitme->hitreq.bandwidth) { 

%d\n" 

fixed_gettimeofday(&our_time); 
/* We can't send until queued packets have been taken care of */ 
bandwidthdelay = timeval_diff(&hitme->next_packet, 

&our_time); 
if (bandwidthdelay < 0) { 

bandwidthdelay = 0; 
hitme->next_packet = ourjime; 

} 
/* Now determine how much time this packet will take in 
* usee, in order to schedule the following one. 
*/ 

/* skb->len can sometimes be too big (with other junk)(?) */ 
packettime = (long)skb->len*(MILLION/hitme->hitreq.bandwidth) + 

((long)skb->len*(MILLION%hitme->hitreq.bandwidth) 
+ hitme->hitreq.bandwidth/2)/hitme->hitreq.bandwidth; 

/* Quick defensive hack: even at 1 byte/second, a packet 
* shouldn't take longer than MTU seconds! 
*/ 
if (packettime < 0 || packettime > 1500*MILLION) { 

if (nistnet_debug) 
printkfnistnet: wacky packettime of %ld, with length %ld and bandwidth 

(long)packettime, (long)skb->len, hitme->hitreq.bandwidth); 
packettime = 0; 

} else { 
timeval_add(&hitme->next_packet, packettime); 

} 
#if defined(CONFIG_DELAYMIDDLE) 

bandwidthdelay += packettime/2; 
#elif defined(CONFIG_DELAYEND) 

bandwidthdelay += packettime; 
#elif defined(CONFIG_DELAYSTART) 
#endif 

} 

delay = probdelay > bandwidthdelay ? probdelay : bandwidthdelay; 

if (nistnet_debug > 4) { /* Print what we're doing every once in a while */ 
static int ticker; 

if(!(ticker&0x3f)){ 
printkfnistnet: packet size %ld packettime %ld usee delay %ld usec\n", 

(long)skb->len, (long) packettime, (long)delay); 
if (bandwidthdelay) 

printkfnistnet: current time is %d.%06d, will send at %d.%06d\n", 
(int)our_time.tv_sec, (int)our_time.tv_usec, 
(int)hitme->next_packet.tv_sec, (int)hitme-

>next_packet.tv_usec); 
} 
++ticker; 

} 

return usec_to_minijiffy(delay); 
} 

int 
packetdup(NistnetTablePtrtableme) 
{ 
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int value; 

if (!tableme->ltEntry.lteDup) return 0; 
value = (correlatedrandom(&tableme->ltEntry.ltelDup)&Oxffff); 
return value < tableme->ltEntry.lteDup; 

} 

int 
default_munger(struct skbuff *skb, struct netdevice *dev, struct packet_type *ptype, struct 
linjiitbox *hitme) 
{ 

return 1; 
} 

int 
DefaultNistnetMunger(struct sk_buff *skb, struct net_device *dev, struct packet_type *ptype, 
NistnetTableEntry *hitme) 
{ 

return 1; 
} 

packetjnunger otherjnunger = defaultjnunger; 
NistnetMunger OtherNistnetMunger = DefaultNistnetMunger; 

void addmunge(packet_munger munger) 
{ 

otherjnunger = munger; 
} 

void AddNistnetMunger(NistnetMunger munger) 
{ 

/* New mungers take precedence */ 
otherjnunger = defaultjnunger; 
OtherNistnetMunger = munger; 

} 

void rmmunge(packet_munger munger) 
{ 

if (munger == otherjnunger) 
otherjnunger = defaultjnunger; 

} 

void RmNistnetMunger(NistnetMunger munger) 
{ 

if (munger == OtherNistnetMunger) 
OtherNistnetMunger = DefaultNistnetMunger; 

} 

static struct timeval ingress_time_p={0,0}; 
static long int total_sampling_time_p=0; 
static long inttotal_packet__size_input_emulator_p=0; 
static sampling_counter=0; 
static emulatorjnput_counter=1; 
static long int average_packet_jnterval_gap_p=0; 
static long int average_packet_sizejnput_emulator_p=0; 
static long int diff_time_gap_p =0; 
static long int acc_diff_time_gap_p =0; 
static long int acc_diff_pack_size_p =0; 

static void printk_double(double value, unsigned int places) 
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{ 
int whole; 
int fraction; 
int multiplier; 
for(multiplier = 1; places; places--) multiplier *= 10; 
whole = (int)(value); 
fraction = (int)( (value - whole) * multiplier); 
infraction < 0) fraction = -fraction; 
printk("%d.%d", whole, fraction); 
} 

#define munge_finish(string) {LinUnlock(string); if (skb2) (void) rcv_packet_munge(skb2, dev, 
ptype);/* recursively process dup */} 

int 
rcv_packet_munge(struct sk_buff *skb, struct net_device *dev, struct packet_type *ptype) 
{ 

unsigned long pre_flags; 

LinLock("rcv_packet1"); 
if (ourstats.emulator_on && !we_saw_skb(skb)) { 

int use_drd, use_ecn, delaytime; 
NistnetTablePtr tableme; 
struct lin_hitstats *hitme; 
struct lin_hitbox dummy; 
struct fast_timer_list *screamer; 
struct nistnet_packetinfo *hpi; 
struct sk_buff*skb2=NULL; 
int ret=1 ,special_sampling_time; 

struct timeval ingress_time={0,0}; 
struct timeval ingress_time_u={0,0}; 
long int packet_interval_gap; 
long int total_sampling_time=0; 
long int average_packet_interval_gap,change; 
double total_sampling_time_seconds,ingress_time_seconds; 
long inttotal_packet_sizejnput_emulator,diff_pack_size,total_acc_diff_time_gap; 
long int 

average j3acket_size_input_emulator,diff_time_gap,acc_diff_time_gap,acc_diff_pack_size; 
long int final_acc_diff_time_gap; 

global_stats(STATS_START); 
tableme = lt_find_by_ipheader(skb); 
/*tableme = lt_find_by_srcdest(skb->h.iph->saddr, skb->h.iph->daddr);*/ 
if (tableme) { 

hitme = &tableme->ltEntry.lteStats; 
if (other_munger != defaultjnunger) { 

dummy.stats = *hitme; 
dummy.next = NULL; 
ret = (*other_munger)(skb, dev, ippt, &dummy); 

} else { 
ret = (*OtherNistnetMunger)(skb, dev, ippt, &tableme->ltEntry); 

} 
} else { 

hitme = NULL; 
if (otherjmunger != defaultjnunger) { 

ret = (*other_munger)(skb, dev, ippt, NULL); 
} else { 

ret = (*OtherNistnetMunger)(skb, dev, ippt, NULL); 
} 

} 
if (ret <= 0) { 
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global_stats(STATS_PROCESS); /* well, sort of */ 
LinUnlock("global_stats1"); 
return ret; 

} 
if (Itableme) { /* not intercepting */ 

global_stats(STATS_UNPROCESS); 
LinUnlock("global_stats2"); 
return ippt->func(skb, dev, ippt); 

} 

fixed_gettimeofday(&ingress_time); 
packet_interval_gap = timeval_diff(&ingress_time,&ingress_time_p); 
total_sampling_time = packetjnterval_gap+total_sampling_time_p; 
total_sampling_time_seconds=(double)total_sampling_time/1000000.0; 
sampling_counter++; 
average_packet_interval_gap=total_sampling_time/sampling_counter; 
total_packet_size_input_emulator=(long)skb->len+total_packet_size_input_emulator_p; 
average_packet_size_input_emulator=total_packet_size_input_emulator/sampling_counter; 

diff_pack_size = average_packet_size_input_emulator_p-
average_packet_size_input_emulator; 

diff_time_gap = average_packet_interval_gap_p-average_packetjnterval_gap; 
acc_diff_time_gap = diff_time_gap + acc_diff_time_gap__p; 
acc_diff_pack_size = diff_pack_size + acc_diff_pack_size_p ; 
memcpy(&acc_diff_time_gap_p,&acc_diff_time_gap,sizeof(long int)); 
memcpy(&acc_diff_pack_size_p,&acc_diff_pack__size,sizeof(long int)); 

if (emulator_input_counter !=1 && totaLsampling_time_seconds > 1 && (abs(acc_diff_time_gap) > 
1000 || abs(acc_diff_pack_size) > 6)) { 

change =1; 

ingress_time_seconds=(double)(ingress_time.tv_sec) + 
(double)(ingress_time.tv_usec)/1000000; 

printk("<lnput_change> %ld %ld %ld 
",average_packet_size_input_emulator,average_packet_interval_gap,emulator_input_counter); 

printk_double(ingress_time_seconds,6); 
printk_double(total_sampling_time_seconds,6); 
printk("\n"); 
total_sampling_time = 0; 
total_packet_size_input_emulator=0; 
sampiing_counter =0; 
emulator_input_counter++; 
acc_diff_time_gap_p=0; 
acc_diff_pack_size_p=0; 
} 

if((total_sampling_time_seconds > 5)||(sampling_counter >1000)){ 
change =0; 
ingress_time_seconds=(double)(ingress_time.tv_sec) + 

(double)(ingress_time.tv_usec)/1000000; 
printk("<|nput_normal> %ld %ld %ld 

",average_packet_size_input_emulator,average_packet_interval_gap,emulator_input_counter); 
printk_double(ingress_time_seconds,6); 
printk_double(total_sampling_time_seconds,6); 
printk("\n"); 

/*printk("<Emulator_input_previous> %ld %ld %d 
%ld\n",average_packet_size_input_emulator_p,average_packetjnterval_gap_p,emulator_input_coun 
ter,ingress_time);7 

total_sampling_time = 0; 
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total_packet_sizejnput_emulator=0; 
sampling_counter =0; 
emulatorjnput_counter++; 
} 

memcpy(&ingress_time_p,&ingress_time,sizeof(structtimeval)); 
memcpy(&total_sampling_time_p,&total_sampling_time,sizeof(long int)); 
memcpy(&total_packet_size_input_emulator_p,&total_packet_size_input_emulator,sizeof(long int)); 
memcpy(&average_packet_size_input_emulator_p,&average_packet_size_input_emulator,sizeof(lon 
9 int)); 
memcpy(&average_packet_interval_gap_p,&average_packet_intervaLgap,sizeof(long int)); 
memcpy(&diff_time_gap_p,&diff_time_gap,sizeof(long int)); 

/* Assume we will queue until we find otherwise */ 
++hitme->qlen; 

/* See if we're going to drop the packet */ 
if (packet_drop(tableme, &use_drd, &use_ecn)) { 

#ifdefCONFIG_ECN 
/* ecn behavior: mark packet, don't drop */ 
if (use_ecn && ecn_skb(skb) == 0) { 

++hitme->drd_ecns; 

#endif/*C0NFIG_ECN7 
our_kfree_skb(skb, FREE_WRITE); 
--hitme->qlen; 
++hitme->n_drops; 
if (use_drd) 

++hitme->drd_drops; 
else 

++hitme->rand_drops; 
global_stats(STATS_PROCESS); 
LinUnlock("global_stats3"); 
return 0; 

#ifdef CONFIG_ECN 
} 

#endif /* CONFIG_ECN */ 
} 

/* See if we're going to duplicate the packet. Here, 
* we just do fixed probability. 
7 

if (packet_dup(tableme)) {/* you get a new sister! */ 
++hitme->dups; 
skb2 = skb_copy(skb, GFP_ATOMIC); 

} 

/* Now see if we're going to delay the packet */ 
if (!(delaytime = packet_delay(skb, tableme))) {/* no dejay 7 

~hitme->qlen; 
packet_stats(skb, hitme); 

global_stats(STATS_PROCESS); 
munge_finish("no delay"); 
return ippt->func(skb, dev, ippt); 

} 

screamer = fast_alloc(GFP_ATOMIC); 
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/* If we can't allocate, punt! */ 
if (Iscreamer) { 

-hitme->qlen; 
++hitme->mem_drops; 
packet_stats(skb, hitme); 
global_stats(STATS_PROCESS); 
munge_finish("fast_alloc failed"); 
return ippt->func(skb, dev, ippt); 

} 
hpi = (struct nistnet_packetinfo *)screamer->data; 

init_fast_timer(screamer); 
#ifdef DEBUG 

check_skb(skb, "first"); 
#endif 

hpi->skb = skb_unshare(skb, GFP_ATOMIC); 
#ifdef DEBUG 

check_skb(hpi->skb, "second"); 
#endif 

hpi->dev = dev; 
hpi->nte = &tableme->ltEntry; 
/* We don't actually use this anymore, as non-local 
* save/restore of flags turns out not to work on 
* some architectures (notably Suns). But we'll 
* leave it in to indicate what we were thinking 
* about... 
7 
hpi->flags = pre_flags; 

/* Schedule something to happen in a little while */ 
screamer->expires = delaytime; 
MOD_INCJJSE_COUNT; 
add_fast_timer(screamer); 
global_stats(STATS_PROCESS); 
munge_finish("reg delay"); 
return 0; 

LinUnlock("ippt->func"); 
return ippt->func(skb, dev, ippt); 

} else { 

} 

void 
grab_ip_rcv(void) 
{ 

struct packetjype *us; 

ourpt.type = htons(ETH_P_IP); /* IP packets (only) 7 
ourpt.dev = NULL; /* wild card, for any dev */ 
ourpt.func = rcv_packet_munge; /* our handler 7 
ourpt.data = NULL; /* nothing we need to keep 7 
ourpt.next = NULL; /* filled out by dev_add_pack 7 
I* Add our handler 7 
dev_add_pack(&ourpt); 
/* Now we search for the old one. Yes, this is a dirty trick. 
* We are using our proffered handler as a Trojan horse to get 
* at the old one. Heh, heh, heh. 
7 
us = &ourpt; 
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for (us = us->next; us; us = us->next) { 
if (us->type == ourpt.type) { /* Got 'em! */ 

printk("grab_ip_rcv: Found ippt at %lx\n", 
(unsigned long int) us); 

ippt = us; 
dev_remove_pack(us); 
break; 

} 
} 

} 

void 
release_ip_rcv(void) 
{ 

if (ippt) { 
dev_remove_pack(&ourpt); 
dev_add_pack(ippt); 
ippt = NULL; 

} 
} 

#ifdef MODULE 

#if LINUX_VERSION_CODE > KERNEL_VERSION(2,1,0) && LINUX_VERSION_CODE < 
KERNEL_VERSION(2,3,0) 
extern int irq_desc_addr; 
MODULE_PARM(irq_desc_addr, "i"); 
#endif 

/* I don't know exactly when these various modules macros were defined; 
* the following is a rough cut... 
*/ 

#if LIMUX_VERSION_CODE > KERNEL_VERSION(2,1,0) 
MODULE_AUTHOR("Mark Carson <carson@antd.nist.gov>"); 
MODULE_DESCRIPTION("NIST Net network emulator"); 
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,4,10) 
/* See the README.License file for why this "license" is included */ 
MODULE_LICENSE("GPL and additional rights"); 
#endif 
#endif 

int 
init_module( void) 
#else 
int 
nistnet_init(void) 
#endif 
{ 
#if LINUX_VERSiON_CODE >= KERNEL_VERSION(2,1,0) 
#else 

void export_nistnet_symbols(void); 
#endif 

if (register_chrdev(major, "hw", &hw_fops)) { 
printk("nistnet: registerchrdev failed: goodbye world :-(\n"); 
return -EIO; 

} 
else 

printkf'nistnet: Hello, world\n"); 

(void) install_fast_timer(); 
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fast_fill(); 
lt_init(); 
memset(&ourstats, 0, sizeof(ourstats)); 
grab_ip_rcv(); 

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0) 
#else 

export_nistnet_symbols(); 
#endif 

return 0; 
} 

#ifdef MODULE 
void 
cleanup_module(void) 
{ 

if (unregister_chrdev(major, "hw") != 0) 
printkfnistnet: cleanupmodule failed\n"); 

ourstats.emulator_on = 0; 
release_ip_rcv(); 
lt_cleanup(); 
fast_empty(); 
if (uninstall_fast_timer() != 0) { 

printkfnistnet: uninstall_fast_timer failed\n"); 
/* Well, we're in trouble now! */ 

} 
} 
#endif 

/* We allocate 1024 slots at startup, then allow for extra bunches 
* of 64 at a time to be allocated if needed. (We keep the extra 
* allocations small, since they are done at interrupt time, from 
* presumably precious locked-down kernel buffers.) 
* 
* Hence, the initial memory requirement is around 36K, while the 
* maximum allowed usage is on the order of 616K (17344 packets), 
* not counting the space used up by all those extra sk_buffs hanging 
* around. 
* 
* If you really are planning to delay enormous numbers of packets, 
* you'd be better off making FAST_RESERVE larger, more or less 
* equal to the maximum number of packets you anticipate delaying. 
*/ 

#define FAST_RESERVE 1024 
#define FAST_EMERGENCY 64 
#define FAST_MAX256 

struct fast_timer_list *bigfastspace[FAST_MAX], *fast_stack; 
struct nistnet_packetinfo *bighpispace[FAST_MAX]; 
int extra_count = 0; 

void 
fastjill(void) 
{ 

struct fast_timer_list *newfast, *fastspace; 
struct nistnet_packetinfo *newhpi, *hpispace; 
int i, limit; 

if (!extra_count) { /* First time, allocate a few pages */ 
limit = FAST_RESERVE; 
fastspace = (struct fast_timerjist *) 

vmalloc(sizeof(structfast_timerJist)*limit); 
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if (Ifastspace) 
return; 

hpispace = (struct nistnet_packetinfo *) 
vmalloc(sizeof(struct nistnet_packetinfo)*limit); 

if (Ihpispace) { 
vfree(fastspace); 
return; 

} 
} else if (extracount < FAST_MAX) { /* subsequent times, go for fairly small chunks */ 

limit = FASTJEMERGENCY; 
fastspace = (struct fastj imerjist *) 

kmalloc(sizeof(struct fast_timer_list)*limit, GFP_ATOMIC); 
if (Ifastspace) 

return; 
hpispace = (struct nistnet_packetinfo *) 

kmalloc(sizeof(struct nistnet_packetinfo)*limit, GFP_ATOMIC); 
if (Ihpispace) { 

our_kfree_s(fastspace, sizeof(struct fastjimerjist)*limit); 
return; 

} 
) else { /* somebody got too greedy */ 

return; 
} 
bigfastspace[extra_count] = fastspace; 
bighpispace[extra_count] = hpispace; 
++extra_count; 

for (i=0; i < limit; ++i) { 
newfast = fastspace+i; 
newhpi = hpispace+i; 
newfast->data = (unsigned long) newhpi; 
newfast->function = runpacket; 
newfast->next = fast_stack; 
fast_stack = newfast; 

} 
} 

void 
fast_empty(void) 
{ 

int i; 

vfree((void *)bigfastspace[0]); 
vfree((void *)bighpispace[0]); 
for (i = 1; i < extra_count; ++i) { 

our_kfree_s(bigfastspace[i], sizeof(structfast_timer_list)*FAST_EMERGENCY); 
our_kfree_s(bighpispace[i], sizeof(struct nistnet_packetinfo)*FAST_EMERGENCY); 

} 
extra_count = 0; 
fast_stack = NULL; 
memset((void *)bigfastspace, 0, sizeof(bigfastspace)); 
memset((void *)bighpispace, 0, sizeof(bighpispace)); 

} 

struct fastj imerjist * 
fast_alloc(int how) 
{ 

struct fastj imerjist 'answer = fast_stack; 

if (answer) { 
faststack = answer->next; 
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return answer; 
} 
fastjill(); 
answer = fast_stack; 
if (answer) 

fast_stack = answer->next; 
return answer; 

} 

void 
fast_free(struct fast_timer_list *done) 
{ 

done->next = fast_stack; 
fast_stack = done; 

} 

/* Export interfaces */ 
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0) 
EXPORT_SYMBOL_NOVERS(addmunge); 
EXPORT_SYMBOL_NOVERS(rmmunge); 
EXPORT_SYMBOL_NOVERS(AddNistnetMunger); 
EXPORT_SYMBOL_NOVERS(RmNistnetMunger); 
#else 
static struct symbol_table nistnetsyms = { 
#include <linux/symtab_begin.h> 

X(addmunge), 
X(rmmunge), 
X(AddNistnetMunger), 
X(RmNistnetMunger), 

#include <linux/symtab_end.h> 
}; 

void export_nistnet_symbols(void) 
{ 

register_symtab(&nistnet_syms); 
} 
#endif 
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APENDIX C. SCRIPT FOR ONLINE PACKET DELAY S E G M E N T A T I O N 

ALGORITHM 

In this appendix the script used for implementing the online methodology 

for modeling non-stationary end-to-end packet delay, which was formally 

introduced in CHAPTER 8, is presented. Script presented below was written on 

Matlab. 

c.1. MATLAB SCRIPT FOR IMPLEMENTING PACKET DELAY SEGMENTATION 

close all; 
clc; 
clear all; 

change_threshold=150; 
original_bias=0.25;% 
P=8; 
delay_data = load ('E:\Old DaTa\delay\net_1\data_delay\delay_50.del'); 
delay_data =delay_data-mean(delay_data); 
x=(delay_data); 

% start of the program - — — 
% . 

% . % 
% Initial values for algorithm % 
% . % 
segment_counter=0; 
segment_index=1; 
UC=0.05; 
alpha=0.0001; 
buffered_samples=1000; 
start_sample_region=1; 
end_sample_region=start_sample_region+buffered_sarnples-1; 
segment_end_point=end_sample_region; 
segment_start_point=end_sample_region+1; 
time_segmentation=zeros((length(delay_data)),1); 
combined_cummulative_cross_entropy_(1:end_sample_region)=zeros(end_sample_region,1); 
original_factor_check_negative_slop=100; 
% % 
% Kalman algorithm loop % 
% % 

for n = 1 :(length(delay_data)), 
if(n==(end_sample_region)) %Computing Model Theta_1 of the segment 

A=[];E=Q;a_zero=[];AR_model_small_segment=0; 
var_forward_error_small_segment=[];Cov_e=[];e=[]; 
Coy_w=[];P=D; 
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initial_sample=[];AR_model_small_segment=[]; 
initial_sample=x(start_sample_region:end_sample_region); 
initial_sample=initial_sample-mean(initial_sample); 
[A,E] = ARBURG(initial_sample,p); 
A=-A(2:p+1);%AR coeficients 
a_zero=A; % AR coefficients 
a(n,:)=a_zero; 
P{n} = eye(p); 
AR_model_small_segment=a_zero; 
var_forward_error_small_segment=E; 
Cov_w(n)=0; 
Cov_e(n) = E; % Noise variance of AR model 
e(start_sample_region:end_sample_region)=normmd(0,sqrt(E),end_sample_region-

start_sample_region+1,1); 
bias=original_bias; 
factor_check_negative_slop=original_factor_check_negative_slop; 

ARRAY_AR_model_small_segments(segmentjndex,:)=AR_model_small_segment; 
array_delay_small_segment=x(start_sample_region:end_sample_region); 

if (0) 
for h = p+20:1:end_sample_region-start_sample_region+1; 
error_small_segment(h)= array_delay_small_segment(h)-
AR_model_smali_segment*array_delay_small_segment(h-p:h-1); 
error__half_small_segment(h)= array_delay_small_segment(h)-
AR_model_rtalf_small_segment*array_delay_smalLsegment(h-p:h-1); 

first_coeff_=(2/var_forward_error_half_small_segment)*(error_srnall_segment(h))*(error_half_small_s 
egment(h)); 
second_coeff_=-
1+(var_forward_error_small_segment/var_forward_error_half_small_segment))*(((error_small_segme 
nt(n))A2)/var_forward_error_small_segment); 
third_coeff_=(1-(varJorward_error_small_segment/var_forward_error_half_small_segment)); 

small_w(h)=(1/2)*(first_coeff_+second_coeff_+third_coeff_)+original_bias; 
big_w(h)=sum(small_w); 

end 
plot(big_w); 
pause(10); 

end 

elseif(n== (start_sample_region+((end_sample_region-start__sample_region+1)/2))) 
end_half_small_segment= (start_sample_region+((end_sample_region-

start_sample_region+1 )/2)); 
initial_sample=rj;A=n;E=[];P=[|;AR_model_half_small_segment=[]; 
initial_sample=delay_data(start_sample_region:end_half_small_segment); 
initial_sample=initial_sample-mean(initial_sample); 
[A,E] = ARBURG(initial_sample,p); 
A=-A(2:p+1);%AR coeficients 
AR_model_half_small_segment=A; 
ARRAY_AR_model_half_small_segment(segmentjndex>:)=AR_model_half_small_segment; 
var_forward_error_half_small_segment=E; 

elseif(n >(end_sample_region)) 
Y{n} = x(n-1:-1:n-p); 
e(n) = x(n)-a(n-1,:)*Y{n}; 
Cov_e(n)=var(e); 
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Cov_w(n)=(UC/p)*TRACE(P{n-1}); 
array_cov_w(n)=Cov_w(n); 
Cov_w(n)=alpha*Cov_w(n-1)+(1-alpha)*Cov_w(n); 
P_estimation= P{n-1}+Cov_w(n-1); % P_A(t/t-1) 
K = (P_estimation)* Y{n} / ( Y{n}'*P__estimation* Y{n} + Cov_e(n)); 
a(n,:) = a(n-1,:) + K'*e(n); 
P{n} = (P_estimation - K*(P_estimation*Y{n})'); 

% % 
%% Segmenting the forwarding error prediction %%%% 
% Grap the var(e) and e(t) of the "updated" AR model and the var(e) 
% and e(t) using a truncated for AR model. Then compare entropy of 
% both outcome models 
% % 
segment_counter=segment_counter+1; 
forward_error_small_segment(n)= x(n) -
AR_model_small_segment*Y{n}; 
%Small segment is the one analysed with the fixed AR model 

forward_error_big_segment(n)=e(n); 
%Big segment is the one analysed with the dynamic AR model 
var_forward_error_big_segment=Cov_e(n); 

first_coeff_=(2*((forward_error_small_segment(n)*forward_error_big_segment(n))/var_forward_error_ 
small_segment)); 

second_coeff_= -
((1+var_forward_error_big_segment/var_forward_error_small_segment)*((forward_error_big_segmen 
t(n))A2/(var_forward_error_big_segment))) ; 

third_coeff_= +(1-(var_forward_error_big_segment/var_forward_error_small_segment)); 

conditional_cross_entropy(segment_counter)=(1/2)*(first_coeff_+second_coeff_+third_coeff_)+bias; 
cummulative_conditional_cross_entropy(segment_counter)=sum(conditional_cross_entropy); 

[max_cummulative_conditional_cross_entropy,index_max_cummulative_conditional_cross_entropy] 
= max(cummulative_conditional_cross_entropy); 

delta=max_cummulative_conditional_cross_entropy-
cummulative_conditional_cross_entropy(segment_counter); 

difference_peak_down=segment_counter-index_max_cumrnulative_conditional_cross_entropy; 
%&( max_cummulative_conditional_cross_entropy > 0.8*change_threshold) 

if(factor_check_negative_slop-segment_counter == 0) 
slope_= cummulative_conditional_cross_entropy(segment_counter)-

cummulative_conditional_cross_entropy(segment_counter-original_factor_check_negative_slop+1); 
slope_=((slope_)/original_factor_check_negative_slop); 
if ((slope_ < 0)&(cummulative_conditional_cross_entropy(segment_counter) < 0)) 

bias=0.25+bias; 
end 

factor_check_negative_slop=factor_check_negative_slop+original_factor_check_negative_slop; 
end 

%if ((((delta > change_threshold)&(segment_counter > 300)&(difference_peak_down < 200))| 
(n==length(delay_data)))) 

%if ((((delta > change_threshold)&(segment_counter > 150)&(difference_peak_down < 150))| 
(n==length(delay_data)))) 

if ((((delta > change_threshold)&(segment_counter > 200)&(difference_peak_down < 200))| 
(n==length(delay_data)))) 

segment_end_point=segment_end_point+segment_counter; 

combined_cummulative_cross_entropy_(start_sample_region:end_sample_region)=zeros(1,end_sam 
ple_region-start_sample_region+1); 
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combined_cummulative_cross_entropy_(end_sample_region+1:encl_sarnple_region+segrnent_count 
er)=cummulative_conditional_cross_entropy; 

segment_start_point=segment_end_point+1; 
%time_segmentation(length(combined_cummulative_cross_entropy_))=1; 
time_segmentation(n)=1; 
conditional_cross_entropy=[]; 
cummulative_conditional_cross_entropy=[]; 

time_segmentation_array(segment_index)=n 
if (segmentjndex ==1 ) 

index_initial=1; 
else 

index_initial=time_segmentation_array(segrnentjndex-1); 
end 

index_final=time_segmentation_array(segment_index); 
Entropy(segment_index)= entropy(x(index_initial:index_final)) 

segment_counter=0; 
segment_index=segment_index+1; 
start_sample_region=n; 
end_sample_region=start_sample_region+buffered_samples-1; 

end 

end 

end 

% End of the program 
time_segmentation_array 
Entropy 
total_entropy=entropy(x); 
figure(4); 
stem(time_segmentation_array,Entropy/(total_entropy)); 
coefficients_length=100; 
figure(1); 
plot(x-min(x),'b'); 
figure(2); 
plot(combined_cummulative_cross_entropy_); 
hold on; 
stem(time_segmentation_array,(max(combined_cummulative_cross_entropy_))*1.2*ones(1,length(ti 
me_segmentation_array))>'r-'); 
counter_seg=1; 
offset_=0; 

for t = 1:1 :length(delay_data); 
segmented_series(t-offset_)=x(t); 

if (t==time_segmentation_array(counter_seg)) 
counter_seg=counter_seg+1; 
ACF_X_=akfrader(segmented_series,coefficients_length); 
offset_=t; 
plot(ACF_X_);hold on; 
segmented_series=[];ACF_X_=Q; 

end 
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end 
x=x-min(x); 

start_point=1; 
for t = 1:1 :length(time_segmentation_array); 

end_point=time_segmentation_array(t); 
variance_array(t)=var(x(start_point:end_point)); 
entropy _array(t)=entropy(x(start_point:end_point)) 
start_point=end_point+1; 

end 
mean(variance_array) 
mean(entropy_array) 
length(variancearray) 
figure(5); 
plot(array_cov_w) 

figure(6); 
plot(a(:,1),'b'); 
figure(7); 
plot(a(:,2),'b'); 
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