
DISSERTATION

TOWARDS EMULATION OF LARGE-SCALE IP NETWORKS USING END-TO-

END PACKET DELAY CHARACTERISTICS

Submitted by

Daniel A. Vivanco

Department of Electrical & Computer Engineering

In partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2008

UMI Number: 3332753

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3332753

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, Ml 48106-1346

COLORADO STATE UNIVERSITY

May 6, 2008

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED

UNDER OUR SUPERVISION BY DANIEL A. VIVANCO ENTITLED

TOWARDS EMULATION OF LARGE-SCALE IP NETWORKS USING END-

TO-END PACKET DELAY CHARACTERISTICS BE ACCEPTED AS

FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR

OF PHILOSOPHY.

Committee on Graduate Work

31-Jl \U*U H-K/. X W
Committee Member

^ A * r ^ J ^ ± ^ Committee Member

Committee MdrfTber

Department Head

ZdbS\/\ Ckon Qna

I A • A - HAcvcfJg?WSl^e/

ABSTRACT OF DISSERTATION

TOWARDS EMULATION OF LARGE-SCALE IP NETWORKS USING

END-TO-END PACKET DELAY CHARACTERISTICS

Network emulation combines concepts from network simulation and

measurements and provides an emulated network testbed over which application

and protocol software can be evaluated. Network emulators allow the

investigation of the interaction of network and protocols and applications in a

controllable and repeatable manner. Existing network emulators are not scalable

due to the limitations of available computer hardware infrastructure and the

reliance on one-to-one packet mapping and modeling schemes.

This research proposes a measurement-based modeling methodology for the

design of a network-in-a-box emulator. The methodology aims at overcoming the

limitation of computational overhead and end-to-end network system

characterization complexity. A comprehensive study of end-to-end packet delay

dynamics, in the context of network system modeling, is presented.

A framework for large scale IP network emulation, named Overall Trend

Replicating Network Emulator Tool (OTRENET), is presented. OTRENET

intercepts data packet streams and modifies them, based on network system

iii

models, in real-time. The complexity and overhead is reduced over those of

packet-by-packet mapping and modeling, while producing results consistent with

measurements by means of a traffic sampling algorithm. The algorithm monitors

traffic metrics at a per-packet level, to dynamically separate sequences of

packets into frames. Traffic behavior is then characterized by the average

response of each time frame. The proposed Average Traffic Sampler by Time

Frame Segmentation Algorithm captures significant trends of the traffic metrics

while not being sensitive to instantaneous fluctuations. Design, implementation

and performance of the proposed algorithm and the emulator are described in

detail. Experimental results are used to demonstrate the effectiveness of

OTRENET in replicating realistic conditions imposed by modeled environments.

A comprehensive study of end-to-end packet delay dynamics, in the context

of network system modeling, is presented. Theoretical basis, techniques and

measurements for network packet delay dynamics characterization for various

sending rate conditions and network stages have been developed. Modeling

network systems by means of modeling of end-to-end packet delay dynamics is

performed with emphasis on the effect due to cross traffic, sending rate and

packet size. Measurements of packet delays over the Internet under various

conditions indicate that packet autocorrelation dynamics change according to the

sending rate and packet size of the probes. Moreover, under weakly-stationary

network conditions, traditional ARMA and ARIMA time series techniques can be

used to model packet delay and IPG processes. Under these conditions,

goodness-of-fit results demonstrate the modeling accuracy for both packet delay
iv

and IPG processes for cases where sending bit rate is relatively small compared

to the link capacity. However, as the sending bit rate increases, as a fraction of

the bandwidth, IPG becomes a better alternative for network system modeling.

Measurement based analysis of packet streams has also demonstrated that

packet autocorrelation, along with other packet delay characteristics, tends to

vary in time in a non-stationary manner. A novel approach for online modeling

end-to-end packet delay dynamics is proposed to address this. Proposed

methodology models and captures the network system characteristics taking into

account the non-stationarity of the packet delay samples by identifying time

frames during which the trace can be considered to be weakly- stationary, while

keeping computational and storage requirements low. Experiment results

demonstrate the potential for online packet delay classification with the proposed

algorithm, while keeping computational and storage requirements low. In

general, results presented show that analyzing packet delay processes by

modeling the segmented traces yield a better understanding of the network

system dynamics.

Daniel A. Vivanco
Department of Electrical & Computer Engineering
Colorado State University
Fort Collins, Colorado 80523
Summer, 2008

V

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION 2
1.1 Evolution of the Internet 4
1.2 Modeling and prediction techniques for network and application

performance and development 5
1.3 Challenges in end-to-end network modeling and prediction 6
1.4 Dissertation outline 10

CHAPTER 2. OVERVIEW OF NETWORK EMULATOR TOOLS 13
2.1 Prior approaches for implementing network emulators 14
2.2 NISTNET 17
2.2.1 NISTNET architecture 18
2.2.2 Applying NISTNET rules to incoming traffic 19
2.3 NSE 20
2.2.3 Real-time scheduler 22
2.2.4 Tap agent 23
2.2.5 Network objects 23
2.4 Advantages and limitations of NISTNET and NSE 23

CHAPTER 3. REVIEW OF END-TO-END PACKET DELAY 25
3.1 Packet delay 26
3.2 Components of packet delay 27
3.3 Packet delay modeling 28
3.4 Challenges on measuring packet delay over the internet 33
3.5 Packet delay variation 34
3.5.1 IPDV: Inter-packet delay variation 35
3.5.2 PDV: Packet delay variation 36

CHAPTER 4. DESIGN OF A LARGE SCALE IP NETWORK EMULATOR TOOL 38
4.1 Overview of network emulation 39
4.2 OTRENET: Overall Trend Replicating Network Emulator Tool 41
4.3 OTRENET UNITS: Design, Implementation, and Synchronization 44
4.3.1 Input traffic sampler unit 44
4.3.2 Network model unit 44
4.3.3 Traffic adjuster unit 45
4.3.4 Synchronization among units 46

CHAPTER 5. TRAFFIC SAMPLER BY TIME FRAME SEGMENTATION ALGORITHM. . 49
5.1 Algorithm description 50
5.2 Evaluation of threshold function for ASAF algorithm 58
5.3 Performance analysis and comparison of traffic sampler algorithm ... 60

CHAPTER 6. OTRENET PERFORMANCE ANALYSIS 69
6.1 Results 69
6.2 Remarks 75

CHAPTER 7. A MEASUREMENT-BASED MODELING APPROACH FOR NETWORK-
INDUCED PACKET DELAY 77

7.1 Modeling end-to-end packet delay using time series techniques 78
7.1.1 ACF and PACF analysis for end-to-end packet delay 79
7.1.2 ARMA and ARIMA model selection for end-to-end packet delay

processes 82
7.1.3 Optimization criteria and fitting procedures for ARMA Models 84
7.1.4 Diagnostic checking for ARMA and ARIMA models 86
7.2 Analysis of measurment data 87

VI

7.2.1 Methodology for fitting ARMA and ARIMA models into packet delay
series 87

7.2.2 Modeling results 89
7.2.3 Goodness of ARMA model fitt ing vs. time series dynamics 96
7.3 Remarks 108

CHAPTER 8. AN ONLINE METHODOLOGY FOR MODELING NON-STATIONARY END-
TO-END PACKET DELAY 109

8.1 Impact of non-stationarity on network system dynamcics 110
8.2 Exploring LRD on packet delay series 113
8.3 Statistical methodologies for modeling non-stationary end-to-end

packet delta series 119
8.4 A computational efficient method for segmenting non-stationary

packet delay series 123
8.4.1 An online packet delay segmentation algorithm 127
8.4.2 Memory storage savings vs. computational overhead 131
8.4.3 Segmentation algorithm seetings 134
8.5 Performance Results 139
8.5.1 Memory storage savings vs. non-stationarity 153
8.6 Remarks 156

CHAPTER 9. CONCLUSIONS 158
REFERENCES. 161
APENDIX A. Script for traffic sampler by t ime frame segmentation algorithm 169

A . l . Matlab script for traffic sampler by time frame segmentation 169
APENDIX B. Script for OTRENET Emulator 173

B. l . Tel script for NS network simulation 173
B.2. Awk script for measuring simulated traffic metrics and online traffic

sampler by time frame segmentation. 176
B.3. Perl script that executes and synchronizes otrenet units 182
B.4. Modified version of knistnet.c 184

APENDIX C. Script for online packet delay segmentation algorithm 207
C. l . Matlab script for implementing packet delay segmentation 207

vii

TABLES AND FIGURES

FIGURES:

2.1. NSE objects infrastructure 22
4.1. OTRENET architecture 42
4.2. Flow diagram of the main OTRENET code and module synchronization 47
5.1. Time frame segmentation according to traffic variation, (a) Traffic metric vs. time, (b)
Cumulative metrics and exponential threshold vs. time 53
5.2. Time frame segmentation for simulated delay, (a) Instantaneous simulated delay and
averaged simulated delay using time frame segmentation vs. time, (b) Variation of simulated
cumulative delay and exponential threshold vs. time 57
5.3. Comparison of metric threshold functions 59
5.4. Comparison of the estimated average traffic sampler by time frame segmentation algorithm
against C-MA, (a) Analyzed time 0-500 sec, (b) Analyzed time 180-350 sec 64
5.5. Comparison analysis of the estimated average traffic sampler by time frame segmentation
algorithm and modified MA, (a) Reduction of number of frames comparison analysis, (b) MSE
comparison analysis 66
6.1. Emulation configuration and test environment 71
6.2. Input bit rate variation vs. time 72
6.3. Error sampling vs. rate of increase of bit rate 73
6.4. Error in delay emulation vs. rate of increase of bit rate 74
7.1. ACF function for lag 1-20 of packet delay values for varied sending bit rates (0.5 - 80Mbps)
using 64 bytes packet size 90
7.2. PACF function for lag 1-20 of packet delay values for varied sending bit rates(0.25,1,30 and
70Mbps) using 64 bytes packet size 90
7.3. ACF function for lag 1-20 of packet delay values for varied sending bit rates (0.5 - 80Mbps)
using 256 bytes packet size 93
7.4. PACF function for lag 1-20 of packet delay values for varied sending bit rates (0.5 - 80Mbps)
using 256 bytes packet size 94
7.5. Hurst parameter of the packet delay values for varied sending bit rates (0.5-80Mbps) using
64 and 256 bytes packet size 98
7.6. IDI for blocks of k consecutives packet delay samples for varied sending bit rates, (a) using
64 bytes packet size, (b) using 256 bytes packet size 100
7.7. Normal Q-Q plot residual of fitted ARMA models for packet delay and IPG traces for varied
sending bit rates using 64 bytes packet size. 104
7.8. Normal Q-Q Plot Residual R2 values for test of randomness for residual of fitted ARMA
models for packet delay and IPG traces for varied sending bit rates and packet sizes 105
7.9. p-values of Ljung-Box test of randomness for residual of fitted ARMA models for packet delay
and IPG traces for varied sending bit rates and packet sizes 106
8 .1 . Packet delay analysis for scenario; 130.206.163.166 -> 157.181.172.103,
(8.1.a) Packet delay trace, (8.1.b) ACF distribution of packet delay trace, (8.1.c)
Recurrence plot of packet delay trace 115
8.2. Packet delay analysis for scenario; 130.206.163.166 -» 132.65.240.106, (8.2.a)
Packet delay trace, (8.2.b) ACF distribution of packet delay trace, (8.2.c) Recurrence
plot of packet delay trace 115

VIII

8.3. Location of <&0 and Q?i models for the divergence test method 125
8.4. Packet Delay Series Segmentation Methodology 129
8.5. Flow diagram of online packet delay segmentation algorithm 139
8.6. Segmentation analysis of Packet Delay trace for Runl HUJI-> UNAV experiment
using lOOpps, (8.6.a) Packet delay trace, (8.6.b)Segmentation process of the packet

delay trace, (8.6.c)ACF distribution of packet delay 143
8.7.Segmentation analysis of packet delay trace for HUJI-> UNAV experiment,
(8.7.1.x)Run 4 using 2000pps ,(8.7.2.x)Run 4 using lOOpps, (8.7.3.x)Run 10 using
lOOOpps 146
8.8. Performance of the proposed algorithm under different values of x, (8.8.a)
Number of segments vs. x, (8.8.b) Average entropy vs. x 149
8.9. Evolution in time of two AR coefficients used for online modeling of packet delay
trace shown on Figure 8.7.3.a 152
8.10. Index of Dispersion of Intervals (IDI) for blocks of k consecutives packet delay
samples obtained from multiple traces 154

TABLES:

7.1 . End-to-end packet delay model fitt ing for different sending bit rate scenariosn
using 64 bytes packet size 92
7.2. End-to-end packet delay model fitting for different sending bit rate scenarios
using 256 bytes packet size 95
8 .1 . Algorithm seetings used on segmentation analysis 138
8.2. Packet Delay Characteristics and UTC times for the HUJI^ UNAV set of
experiment reults 141
8.3. Percentage of memory storage savings using segmentation algorithm as a
function of x 156

IX

CHAPTER 1. INTRODUCTION

Network research and development generally requires a simulation,

emulation, or testbed environment to test and evaluate the performance of

protocols, algorithms, services, and applications for both wireless and wired

networks. When the target network is sufficiently large, simulation can consume

a large amount of memory, and results are mostly based on traffic and network

modeling assumptions. Network emulators, like network simulators, allow for

investigation the interaction between networks and protocols in a controllable

and repeatable manner. In addition, compared to testeds, their construction is

less labor intensive and costly.

Despite multiple studies on network emulation, existing emulator modules

are still no-scalable due to the limitation of available physical infrastructure and

the one-to-one packet mapping and modeling scheme. This research proposes a

measurement-based modeling methodology for the design of a network-in-a-box

emulator, which aims to overcome the limitation of computational overhead and

network system modeling. A framework for large scale IP network emulation,

named Overall Trend Replicating Network Emulator Tool (OTRENET), is

formally introduced in this research. OTRENET overcomes the overhead of

packet-by-packet mapping and modeling, while keeping track of the consistency

of results, by means of a proposed Average Traffic Sampler by Time Frame

Segmentation Algorithm.

2

Complementarily, a comprehensive study of end-to-end packet delay

dynamics, in the context of network system modeling, is presented in this

dissertation. Modeling network systems by means of end-to-end packet delay

characterization is performed with emphasis on the effect due to cross traffic,

sending rate, and packet size. The impact of non-stationarity on modeling

network system dynamics is also analyzed in this research. A computer network

system is considered non-stationary when its statistic properties vary over time.

In the context of this analysis, a computationally efficient methodology for

online segmentation and modeling of packet delay series based on an adaptive

AR model, Kalman Filtering algorithm, and a modified version of the

Divergence-Test is proposed. Experimental results demonstrate the online

packet delay classification capability of the proposed algorithm based on the

non-stationarity of the observations, while keeping computational and storage

requirements low.

A brief overview of the evolution of the Internet is provided in Section 1.1.

In Section 1.2 alternatives for modeling and prediction of network and

applications performance and development are presented. Section 1.3 highlights

the challenges associated with current approaches for modeling and prediction of

network and applications. In addition, in Section 1.3 the motivation of this

research is discussed. Finally in Section 1.4, the outline of the dissertation is

presented.

1.1 E V O L U T I O N OF THE I N T E R N E T

In 1973, the U.S. Defense Advanced Research Projects Agency (DARPA)

started a research program to investigate the development of communication

protocols, which would allow networked computers to communicate

transparently across multiple, linked packet networks [80]. This project was

named the Internetting project and the system of networks that emerged from this

research are now known as the Internet. TCP/IP protocol suite was developed

over the course of this research. In 1986, the U.S. National Science Foundation

(NSF) initiated the development of the NSFNET project, which today provides a

major backbone communication service for the Internet. The National

Aeronautics and Space Administration (NASA) and the U.S. Department of

Energy contributed additional backbone facilities in the form of the NSINET and

ESNET respectively.

Today Internet has revolutionized the computer and communications world

like nothing before. Internet is at once a world-wide broadcasting capability, a

mechanism for information dissemination, and a medium for collaboration and

interaction between individuals and their computers without regard for

geographic location. A large number of applications, ranging from voice,

broadcast and on-demand video, gaming, data transfer, peer-to-peer, among

others, are carried over the Internet daily.

1.2 M O D E L I N G AND PREDICTION TECHNIQUES FOR NETWORK AND

APPLICATION PERFORMANCE AND DEVELOPMENT

Understanding the nature of end-to-end packet dynamics is crucial to

several areas of application development, routing and transport protocol design,

and congestion and flow control algorithm development. For instance, on the

development and testing of congestion control algorithms [34], routing protocols

[48], and real-time applications [72], a deep understanding of packet flow

characteristics, i.e. one-way delay and jitter, is crucial. Application software

developed for emerging complex distributed systems such as Collaborative

Adaptive Sensing of the Atmosphere [8] also need to be evaluated and tested

under a wide variety of network conditions.

It can be difficult to study network protocols and distributed applications in

real networks because of the complexity of the network, the randomness

associated with queuing and processing interaction of packet flows, and load

variations on different links. Several alternatives have been presented for

accurate representation of end-to-end packet dynamics. For instance, queuing

theory has been used as a powerful tool for modeling packet flow dynamics.

However, such an approach requires knowledge of the inter-arrival and inter-

departure traffic distribution at every single link, resulting in tremendous

computational demands, thus rendering it infeasible for large-scale networks

[70]. The use of actual packet traces, i.e. packet delay traces, has also been

proposed. Although this approach entirely captures traffic and network dynamics

in a granular manner, its main limitation results from the large amount of data
5

needed to be collected and stored, depending on the duration of the observations.

Network simulation approaches are also suggested alternatives. Network

simulations are modeled representations of a network system that allow the

researcher to create network topologies and conditions that are difficult to

reproducibly achieve [27]. Packet level simulations do not generate real network

traffic, but rather model traffic and major network components internally.

Modeled traffic, in general, assumes well-defined distributions, i.e. Poisson or

Pareto, throughout the entire simulation. These assumptions can obscure the

understanding of behavior in real world situations by concealing their random

nature [35]. Network testbed-based approaches are also proposed for studying

network and application performance and development. However, while they

closely mimic realistic characteristics, constructing testbeds is labor intensive

and costly.

Conversely, network emulators combine real world and modeled network

components to provide an emulated network testbed over which application and

protocol software may be evaluated. Network emulators alter real network traffic

between nodes in a physical network based on various modeled network

configurations. In general, such network models can be either packet level

simulation or any other end-to-end packet model.

1.3 C H A L L E N G E S IN END-TO-END NETWORK MODELING AND PREDICTION

Modeling behavior of end-to-end packet dynamics over the Internet is not

without major challenges. Complexity of network topologies, together with

6

randomness and non-stationarity of packet data streams [35], make it difficult to

capture end-to-end packet dynamics over the Internet.

Modeling end-to-end packet dynamics by means of network emulator tools

also comes with challenges; among them, computational overhead and network

system modeling. Several network emulators have emerged in an attempt to come

up with accurate and inexpensive network emulator solutions. In general,

incoming real packet data streams are altered within a network emulator tool

based on modeled end-to-end packet dynamics. Two main approaches are

typically used. The first approach is to capture each incoming data packet and

translate it into synthetic replicates, which are used in an embedded packet level

simulation model of the network. Simulated packets are then converted into real

packet data [26] [32]. Such an approach yields to granular analysis of packet

flow dynamics and its interaction with the network components; however, the

computational overhead involved in these processes can rise considerably for

high loads and complex network topologies under standard computer station

conditions [26].

Conversely, the second alternative aims to reduce computational overhead

by providing an environment for evaluation of end-to-end packet dynamics as the

network system is abstracted to a simple router with specific packet handling

operations [3] [19] [71]. However, topology related protocols, such as routing

protocols and queuing metrics, cannot be evaluated. In addition, packet-handling

7

operations need to be dictated by a pre-defined modeled representation of the

network system, which has to be obtained by other means.

This research proposes a dynamic sampling algorithm that collects the

average-sampled stream characteristics of an incoming packet stream without

affecting its behavior, while maintaining lower computational overhead than a

packet-by-packet capturing approach. In search of generic models, we

approached the problem of end-to-end packet dynamics characterization and

prediction by proposing novel modeling techniques based on time series analysis

analyses for the design of a large scale IP network emulator tool. Modeling

network end-to-end packet dynamics is achieved by characterizing packet delay

with emphasis on the effect due to cross traffic, sending rate, and packet size

under weakly-stationary and non-stationary network conditions [17].

This work is supplemented by a detailed study on end-to-end packet delay

modeling. This research also develops a theoretical foundation, techniques and

measurements for characterization of network packet delay dynamics under

various sending rate conditions and network stages. Using abundant

measurements of packet delay over the Internet under various conditions, we

found that traditional ARMA and ARIMA time series techniques [17] can be

used to model packet delay and IPG processes under weakly-stationary network

conditions. Under these conditions, model goodness-of-fit results demonstrate

modeling accuracy for both packet delay and IPG processes under small sending

8

bit rate conditions. However, as the sending bit rate increases as a fraction of the

bandwidth, IPG becomes a better alternative for network system modeling [69].

In the context of modeling end-to-end packet dynamics, an in-depth study

of packet delay under various network conditions is also performed. This

analysis concludes that using packet delay characteristics (such as mean and

higher moments) for network system modeling does not always result in a

complete system model [59] [69] due to the fact that correlation of packets

belonging to the same stream is not considered. However, autocorrelation of

sample packet delay is an effective way for faithfully modeling associated

characteristics [59] [69]. Measurement analysis of various packet streams

demonstrates that packet autocorrelation, along with other packet delay

characteristics, tends to vary in time under non-stationary network conditions

[35]. Thus modeling techniques based on this metric need to be adjusted

according to changes in the system dynamics. A methodology for online

modeling of end-to-end packet delay characteristics induced by non-stationary

network conditions is introduced. Effect of network dynamics induced into a

packet flow is captured by means of Adaptive AR statistical models. Test

statistics techniques are used sequentially to detect significant changes on the

model parameters. This methodology separates, in real-time, non-stationary

packet delay traces into stationary segments, in which a segment is generated

only when a significant change on the system dynamics is detected, and each

segment is represented by a different statistical model. Results demonstrate the

potential online packet delay classification capability of the proposed algorithm
9

based on the no-stationarity of the observations. False sense of LRD on packet

delay is also studied in the context of the proposed algorithm, and the importance

of distinguishing it when modeling packet delay processes is highlighted

1.4 D I S S E R T A T I O N OUTLINE

The reminder of this research is structured as follows. In CHAPTER 2, an

overview of previous studies on network emulation is presented. Advantages and

limitations of previous studies related to this research are listed and discussed.

In CHAPTER 3 a review of end-to-end packet delay is presented.

Techniques on how to mitigate their impact on the quality of experience are

presented. This chapter focuses on the study end-to-end packet delay

characteristics, and it is also supplemented by the theoretical foundation, metrics

and techniques for network modeling based on end-to-end packet delay. Multiple

alternatives for packet delay modeling are presented and critiqued in CHAPTER

3 .

In CHAPTER 4 the design of a scalable emulator tool capable of recreating

large networks in real-time is presented. The proposed tool, Overall Trend

Replicating Network Emulator Tool (OTRENET), intercepts and alters incoming

real packet data streams based on modeled end-to-end packet dynamics.

OTRENET architecture is presented in Section 4.2. In addition, its functionalities

are described, and compared to the limitations of previous related studies. In

CHAPTER 4 an alternative for packet-by-packet capture and translation

emulation approach is introduced. This algorithm is named Average Traffic

10

Sampler by Time Frame Segmentation (ASAF), and it is designed to be

embedded into the proposed OTRENET emulator tool.

In CHAPTER 5 the Average Traffic Sampler by Time Frame Segmentation

Algorithm (ASAF) introduced in CHAPTER 4 is explained in detail. ASAF is

focused on minimizing the overhead delay caused by packet-by-packet capture

and translation approachs done by previous network emulator modules. ASAF

algorithm is mathematically described in detail in CHAPTER 5. A performance

comparison analysis of ASAF against other methodologies for traffic sampling

and trend detection is presented. This analysis consists of determining its ability

to generate estimated sampled traffic that resembles the original traffic, and its

ability to reduce the number of time frames generated on the estimated traffic.In

CHAPTER 6 the performance of the current stage of the proposed OTRENET

module, as described in CHAPTER 4 and CHAPTER 5, is analyzed. CHAPTER 6

describes in detail the experiment setup, performance metrics to be monitored

and evaluated, and the emulation outcomes. Performance analysis of OTRENET

on replicating realistic conditions imposed by simulated environments is tested

in different manners in Section 6.1.

In CHAPTER 7 approaches for packet delay modeling and characterization

are discussed. Using measurements performed over the Internet, end-to-end

packet delay dynamics are modeled using time series techniques under weakly-

stationary network conditions. The impact of sending rate and packet size of

probes is investigated on the modeled results. Impact of Auto Correlation

11

Function (ACF) and Partial Autocorrelation Function (PACF) distributions on

the packet delay modeling is also studied. CHAPTER 7 is complemented by

testing and comparing the goodness of the fitted packet delay and IPG time

series models under varied sending conditions.

CHAPTER 8 extends the research presented in CHAPTER 7 to network

systems under non-stationary conditions. The impact of non-stationatity when

modeling network system dynamics is analyzed in CHAPTER 8. In addition,

CHAPTER 8 proposes a computationally efficient methodology for online

segmentation and modeling of packet delay series based on adaptive AR model,

Kalman Filtering algorithm, and a modified version of the Divergence-Test. This

method is based on the non-stationarity of the packet delay observations.

Experimental results demonstrate the potential online packet delay classification

capability of the proposed algorithm based on the piecewise-stationary of the

observations, while keeping computational and storage requirements low. False

sense of the Long Range of Dependency on packet delay is also studied in the

context of the proposed algorithm, and the importance of identifying it when

modeling packet delay processes is highlighted in CHAPTER 8. CHAPTER 9

concludes the dissertation.

12

CHAPTER 2. OVERVIEW OF NETWORK EMULATOR

TOOLS

This chapter provides an overview of available network emulator tools.

Well known and novel approaches for implementing network emulation are

described. NISTNET and NSE emulators are described in detail, and their

benefits and limitations are remarked addressed.

In Section 2.1 previous studies related to network emulation are presented

and described. Advantages and limitations of prior approaches are considered.

NISTNET and NSE are selected for description in Sections 2.2 and 2.3,

respectively due to the fact that they are directly related to our network

emulation analysis. NISTNET architecture is explained in detail in Section 2.2.1.

It's functionalities will be borrowed for the development of a large scale IP

network emulator tool, which is presented in CHAPTER 4.

In section 2.4, the most relevant advantages and limitations of NISTNET

and NSE are listed and discussed. Alternative approaches that overcome these

limitations are discussed in the context of the development of a large scale IP

network emulator tool, and presented in CHAPTER 5, CHAPTER 7, and

CHAPTER 8.

13

2.1 P R I O R APPROACHES FOR IMPLEMENTING NETWORK EMULATORS

In recent past, several network emulators have emerged trying to come up

with an accurate, inexpensive network emulator tool [1]. For instance, ENDE:

An End-to-end Network Delay Emulator Tool for Multimedia Protocol

Development [71] and the Ohio Network Emulator (ONE) [2] were designed

focused to imitate queuing, propagation and end-to-end delays for local and wide

networks.

ENDE was designed to emulate end-to-end delays between two hosts

machines in a single machine. ENDE enables the user to test new multimedia

protocols realistically. ENDE has two modes; the delay-observing mode, and the

delay-impacting mode. In the former mode, ENDE can generate accurate traces

of one-way delays between two hosts on the network. In the later mode, ENDE

can be used to simulate the functioning of a protocol or an application as if it

were running on the network.

Additionally, ONE enables researchers the emulation of a network between

a pair of interfaces on a single Solaris-based workstation. Various features of

wired networks, such as propagation delay, queueing characteristics and

bandwidth can be controllable by the user. In addition, tool offers the capability

of emulating variable propagation delays on satellite networks, based on the

orbits of satellites.

In [40] an emulator for performance evaluation of TCP/IP applications over

a mixed network of wired and wireless elements is presented. Emulator presented

14

in [40] is a Linux based framework, which separates the simulated topology into

two parts: wired network simulation and wireless network emulation. Complex

topology of wired network is simulated in a Linux processor. Network traffic is

then redirected from the simulated host and connected with the real wireless

network.

RAMON (Rapid-Mobility Network Emulator) is presented in [30].

RAMON is tailored to mimic the realistic characteristics of wireless networks.

The main focus of RAMON is studying how mobile protocols handle high

vehicular speed.

Dedicated boxes for IP network emulators can also be found. For instance,

PacketStorm communications [75] provides dynamic IP network emulators, and

other bandwidth emulator products. Such products are a combination of

dedicated hardware and software in a single box, which are focused on

replicating the unfavorable conditions of IP networks and WANs in a

controllable and repeatable lab setting.

Well-known network simulators have also been extended to include

emulator modules. As an example, OPNET Technologies has presented the

system-in-the-loop (SITL) module[84]. SITL provides a simple plug and play

interface that connects live applications or network devices to OPNET discrete

event simulations. SITL extends OPNET's simulation technology to support

application and network device testing for equipment manufacturers. OPNET

consist of several models Internet protocols and architectures, which can be

15

modeled using discrete event simulation, flow analysis, or in a hybrid manner

(combination of the two previous modes).

In addition the Berkeley Network Simulator (NS) [26] has also been

extended to include an emulator module (NSE) [26] over the well known NS

simulator. NS is a discrete-event simulator used widely in the networking

research community [66] [67], it includes several models of common and novel

Internet protocols and architectures. NSE captures incoming real world packet

streams, convert them into simulator compatible packets, and then inject them

into NS simulator. NSE has the support of NS simulator for accurate

network/traffic metrics generation, and its scalability can be improved with

Parallel Discrete Event Simulation (PDES) techniques [28]. However, NSE is

planned to be a real-time emulator, and thus all computational tasks involved in

the emulation process need to be accomplished in real-time. Conversely, such a

condition may fail in case of high loads and complex systems, in which

computation delays related to the emulation process can rise considerably. As an

alternative, EMPOWER [73] retains the packet-by-packet emulation process but

attempts to reduce computation overhead by creating an IP network emulator

cluster of workstations in a local-area network. Thus, computation overhead is

just distributed among workstations, as opposed to being centralized in one

system.

On the other hand, the NISTNET emulator [19], developed by the National

Institute of Standards and Technology [74] alleviates the problem of real-time

16

execution. This system allows an inexpensive standard PC-based router to

imitate numerous complex performance scenarios, such as tunable packet delay

distributions, congestion and background loss, without incurring unnecessary

time overheads. NISTNET neither captures nor transforms incoming streams. It

just buffers or drops incoming packets depending on parameters specified by the

user and the random nature of the process. However, these parameters have to be

pre-specified, and there is no in-built support for real-time emulation of dynamic

network conditions. While NISTNET has many advantages, it is focused more to

mimic the behavior of a router than a computer network. In the following

subsections a complete explanation of NISTNET and NSE is presented.

NISTNET and NSE are selected due to their relation to our network emulation

analysis, NISTNET architecture is explained in detail, since its functionalities

will be borrowed for the development of a large scale IP network emulator tool,

which is presented in CHAPTER 4.

2.2 NISTNET

NISTNET is a simple Linux PC based network emulator that works as a

"network-in-a-box", NISTNET provides capabilities of applying network

characteristics to an IP packet stream going to or through the Linux PC it runs

on. Network characteristics such as packet loss, delay, duplication, congestion,

bandwidth limitation and reordering are included in NISTNET. NISTNET

requires as its input the network effects to be applied and a flow specification to

identify the IP datagrams. This flow is the target for applying those specific

effects. The basic form of a flow specification is the source IP address and the
17

destination IP address of the IP packets. However, other IP header fields such as

higher-level protocol (such as UDP, TCP, ICMP, IGMP etc.) and type of service

(ToS) can be provided for more refined packet selection. Some higher level

protocol header fields such as source and destination port numbers (for UDP and

TCP), type or code field (for ICMP or IGMP) and multicast group (for IGMP)

can also be provided to get even more explicit flow specification [19].

NISTNET allows the user to input flow specifications, either at the

beginning of the emulation or during the emulation. In general, network dynamic

can be reproduced in real-time when using NISTNET if accurate up-to-date flow

information is available.

2.2.1 NISTNET ARCHITECTURE

Inside a Linux kernel, an IP packet is stored and moved in the form of a

socket buffer (SKB). A socket buffer is designed such that a packet can be

queued and transferred easily using pointers or references without copying the

contents of the packet repetitively. A socket buffer is neither same as nor related

to send and receive buffers of a BSD socket. An instance of C structure called

SKJBUFF is associated with each socket buffer. This structure holds the

information about the socket buffer such as time and device it arrived at, length,

checksum, priority, etc [19]. The structure also has a field called the packet type

of the socket buffer, which has a value E T H P I P for IP packets. The packet

type determines the packet handler (in the IP stack) that will process the socket

18

buffer. Linux kernel provides a number of kernel level functions to manage the

socket buffers [19].

NISTNET is basically a Linux Loadable Kernel Module (LKM). It utilizes

hooks provided in the Linux kernel to modify the procedure of processing a

socket buffers in the networking stack. NISTNET takes control of the IP packet

type (E T H P I P) handler to intercept the socket buffer of an incoming packet.

This forces the network device driver to forward the socket buffer to NISTNET

rather than to the kernel's own packet handler. After NISTNET is finished with

identifying an IP datagram using the flow specifications and applying

corresponding network effects (if any) to it, the socket buffer is passed on to the

kernel's packet handler for actual IP stack processing. For timing computations

required when applying real time delays, NISTNET modifies the frequency of

the real time clock (RTC) and uses it as the source of time. NISTNET makes use

of the highest frequency that RTC can provide (8192 MHz) to obtain a good tick

granularity (122 us). This allows for computing delays with sufficient accuracy

for most practical applications [78]. NISTNET replaces the interrupt service

handler for RTC device by a simple interrupt handler, ISR. All the RTC related

operations are controlled by NISTNET fastRTC module.

2.2.2 A P P L Y I N G NISTNET RULES TO INCOMING T R A F F I C

Packet loss rate can be provided as a simple percentage loss or as DRD

(Derivative Random Drop) parameters (drdmax and drdmin). If NISTNET

decides to drop a packet using these parameters, it simply frees up the socket

19

buffer as if it never arrived at that host. The kernel IP stack never sees the socket

buffer after this. Duplication rate can be supplied as the probability of

duplicating a packet with an optional correlation factor. If a packet is to be

duplicated, NISTNET clones the socket buffer and sends both the original packet

and the cloned packet, back to back to give an effect of duplication. In real

streams, however, if duplication occurs, the two copies, original and duplicate,

may arrive with some gap (or other packets) between them. However, NISTNET

does not implement it that way for simplicity of operation.

Delay specifications can be provided as mean delay with optional

parameters of standard deviation and delay correlation. After the delay for a

packet is decided, an entry is added to the delayed packets linked list. This entry

holds the socket buffer and an expiration time. As described earlier, NISTNET

replaces the ISR for real time clock, i.e., RTC. At every interrupt generated by

RTC, the handler checks if the delay of any of the packets in the delayed-packets

linked list has expired. If it finds one, it takes the socket buffer out of the linked

list and calls the kernel's IP level code for further processing of the packet. This

is achieved by calling kernel's packet handler for packet type ETH_P_IP. This is

the same kernel function that is called by the network device driver if NISTNET

module is not present.

2.3 NSE

NSE (NS Emulator) is a logical extension of NS, which aims to provide an

interaction between simulated and real-world components. NS is a discrete-event

20

simulator used widely in the networking research community [66] [67]. It

includes several modules of common and novel Internet protocols and

architectures. NSE incorporates special objects within the NS simulator to make

it capable of introducing live traffic into the simulator and injecting traffic from

the simulator into live networks. Injecting real word traffic in real-time into the

simulator is done by first capturing the incoming packets through the Berkeley

Packet Filter (BPF), and then converting them into simulator compatible packets.

When using NSE, a special version of the system scheduler, Real-Time

Scheduler, is used. This scheduler uses the same underlying structure as the

standard calendar-queue based scheduler, but ties the execution of events to real

time. Calendar-queue based scheduler uses a data structure analogous to a one-

year desk calendar, in which events on the same month/day of multiple years can

be recorded in one day [18].

The interface between the simulator and live network is provided by a

collection of objects including tap agents and network objects. Tap agents embed

live network data into simulated packets and vice-versa. Network objects are

installed in tap agents and provide an entry point for the sending and receipt of

live data. Figure 2.1 illustrates how these objects are used on NSE [26].

21

I Capture |

Live f NS

NS •» Live

Inject

Figure 2.1. NSE objects infrastructure.

2.2.3 R E A L - T I M E SCHEDULER

The real-time scheduler implements a soft real-time scheduler, which ties

the event execution within the simulator to real time [26]. Sufficient CPU

horsepower is needed to keep up with arriving packets, thus the simulator virtual

time should closely track real-time. If the simulator becomes too slow to keep up

with elapsing real time, a warning is continually produced.

The real-time scheduler should always be used with an emulation facility.

Failure to do so may easily result in the simulator running faster than real-time.

In such cases, traffic passing through the simulated network will not be affected

by the proper characteristics specified by the simulator at the right time.

22

2.2.4 T A P AGENT

The class TAP AGENT is a simple class derived from the base agent class.

As such, it is able to generate simulator packets containing arbitrarily assigned

values within the NS common header. TAP AGENT handles the setting of the

common header packet size field and the type field. It uses the packet type

PTLIVE for packets injected into the simulator. Each tap agent can have at most

one associated network object, although more than one tap agent may be

instantiated on a single simulator node. Tap agents are able to send and receive

packets to/from an associated network object.

2.2.5 N E T W O R K O B J E C T S

Network objects provide access to a live network (or to a trace file of

captured network packets). In general, network objects provide an entry point

into the live network at a particular protocol layer (e.g. link, raw IP, UDP, etc.)

and with a particular access mode (read-only, write-only, or read-write). Some

network objects provide specialized facilities such as filtering or promiscuous

access (i.e., the pcap/bpf network object) or group membership (i.e. UDP/IP

multicast). The C++ class Network is provided as a base class from which

specific network objects are derived. Three network objects are currently

supported: pcap/bpf, raw IP, and UDP/IP [26].

2.4 ADVANTAGES AND LIMITATIONS OF NISTNET AND NSE

Although NSE is still under construction some limitations can already been

identified and foreseen, among them the computational overhead generated by

23

the packet-by-packet emulation process is the most relevant. NSE captures

incoming real-world packets, which will then be converted into simulator

compatible packets. After these packets are altered within NS simulator engine,

based on the modeled network system, these simulator packets are converted

back into real world packets and sent back to the live network. This procedure is

done in a packet-by-packet manner and must be accomplished in real-time,

thereby computation overhead delays related to the emulation process can rise

considerably for high loads and complex systems, which can compromise the

real-time emulation process promises by NSE.

Conversely, NISTNET overcomes the limitation of packet-by-packet

capturing, simulation and transformation. NISTNET does not capture nor

transform incoming streams. It just buffers or drops incoming packets depending

on parameters specified by the user and the random nature of the process.

However, these parameters have to be pre-specified, and there is no in-built

support for real-time emulation of dynamic network conditions. While NISTNET

has many advantages, it is focused more to mimic the behavior of a router than a

computer network. When a computer network is emulated using NISTNET,

dynamics of the network need to be injected into the emulator module. However,

such dynamics need to be generated in real time using external models of the

network.

24

CHAPTER 3. REVIEW OF END-TO-END PACKET DELAY

This research focuses on the study of end-to-end packet delay and its

application on network system modeling. This chapter is supplemented by the

theoretical foundation, metrics and techniques for network modeling based on

end-to-end packet delay.

In Section 3.1, an introduction to packet delay is provided. Importance of

end-to-end packet delay and jitter on the application performance is also

discussed in this section, in addition with techniques on how to mitigate their

impact on the quality of experience. Packet delay components are presented in

Section 3.2. In Section 3.3 multiple alternatives for packet delay modeling are

presented and critiqued.

Section 3.4 presents the challenges associated with measuring packet delay

parameter, mainly clock synchronization and clock skew issues are presented,

along with proposed methods to counter these effects.

In Section 3.5 packet delay variation metric is presented as an alternative

for packet delay measuring. Packet delay variation is defined as the difference

between the delays of two IP packets. This parameter has a great influence on the

behavior of streaming applications and real-time protocols. Section 3.5 presents

two different formulations for packet delay variation widely used in the context

of active measurements.

25

3.1 P A C K E T DELAY

End-to-end packet delay refers to the time taken by a packet to transit

through the network from source to destination. End-to-end packet delay has

been extensively used in the past to study several areas of network application

performance and development. Several congestion control algorithms [32],

routing protocols [47], and real-time applications [71], are designed based on

one-way delay and jitter characteristics. For instance, it is well known that

increase on packet delay can affect significant the TCP protocol behavior [32].

TCP relies on synchronized acknowledgments to detect congestion in the

network and avoid further congestion by reducing the sending bit rate.

Moreover, monitoring delay characteristics provides a good understanding

about the network state and allows Internet Service Providers make engineering

traffic decisions based on the expected quality of service of different types of

applications. For example, for voice applications G.114 standard of ITU

(International Telecommunication Union) recommends 150 milliseconds as the

maximum one-way delay for voice traffic, as anything above this value will

degrades the quality of the voice [71]. In general, time susceptible applications

such as voice and video need to be handle differently than the other types of

applications. For these types of applications end-to-end delay and the second

order of the delay, also known as the jitter delay, play an important role. Higher

jitter indicates more buffering leading to a decrease of the voice or video quality,

and also may lead to other undesirable effects such as packet reordering [60] and

packet loss [49]. Vendors of routers handle delay and jitter in different ways.
26

Some routers provide load-balancing options to alleviate network link

congestion. On the other hand, jitter buffer management is also widely used for

voice and video application, in which packets are buffered in such a way that

they can be then played out by the application at a constant rate.

3.2 C O M P O N E N T S OF PACKET DELAY

A packet can be delayed within the network due to determinist or stochastic

factors. Deterministic components of packet delay depend on packet delay, link

capacity and physical distance, and are independent of the network congestion.

Transmission delay and propagation delay are considered deterministic

components of packet delay. The former represents the time to transmit an entire

packet, from first bit to last bit over a communication link. The later represents

the time to propagate a bit through the communication link, which is determined

by the time of electromagnetic wave through a physical channel of

communication path.

Conversely, stochastic components of packet delay change accordingly to

the network congestion and the traffic scheduling policies applied. Queuing

delay and processing delay are considered stochastic components of packet

delay. The former is represented by the waiting time of a packet in a buffer,

either in a switch or in a router. The later, represents the time needed to process

a packet at each network element. In general, stochastic components of packet

delay vary not only based on the traffic intensity but also based on the presence

of packets from other streams, also known as cross-traffic.

27

3.3 P A C K E T DELAY MODELING

Capturing accurately the end-to-end packet delay characteristics is crucial

for understanding the dynamics of the end-to-end delivery process and for the

development of accurate models. Such models can also have a great impact on

operation and management of networks. For instance, with both real-time [9] and

non-real time congestion control mechanisms [15][32], delay based alternatives

to packet-loss based approaches aim at preventing network congestion at early

stages.

Furthermore, end-to-end packet delay models can be applied to estimate the

behavior of live streams under particular network conditions. A direct

application for accurate delay models can be found on network emulators

[19] [68], in which incoming real packet data streams are altered based on traces

capturing end-to-end behavior or analytical/simulation models representing such

behavior. Such emulators are useful for investigating the performance and

behavior of distributed applications and application software under different

network conditions. In general end-to-end packet delay and inter-packet gap

(IPG) models characterize the effects induced by cross traffic and the probe's

sending rate conditions [59] [69].

Multiple studies have been performed, mostly using the measurements over

the Internet, to explain the end-to-end packet delay dynamics. We have selected

few research works that have drawn varied conclusions according to the analysis

conducted.

28

Several alternatives have been presented for accurate representation of

packet delay, among them queuing theory has been used as a powerful tool for

modeling packet delay. However, such an approach requires knowledge of the

inter-arrival and inter-departure traffic distribution at every single link, which

requires tremendous computational demands and thus not feasible for large scale

networks [70]. The use of actual delay traces has also been proposed for this

matter. Although this approach capture entirely the traffic and network dynamics

in a granular manner, its main limitation relies on the fact that large amount of

data need to be collected and stored, depending on the duration of the

observations. Back box models have also been proposed for modeling packet

delay. Such approaches are based on the analysis of the system output

observations, and rarely the system input information. Among then, time series is

one the most popular ones used by the research community. Time series is a

collection of observations made sequentially in time [17]. Packet delay traces,

when collected accurately, are considered typical time series data. Modeling

techniques based on time series captures the dynamics of the process by

analyzing the collected samples. After process is modeled, samples can be

discarded. Several modeling research based on time series have been conducted

on the past. In [10] , predictive models for video packet delay using auto-

regressive models are presented. In [53] a variable bit rate (VBR) flow of probes

and an ARX model (Auto-Regressive exogenous) are applied for modeling the

end-to-end delay, in which the packet delay process is captured based not only

29

on the observed end-to-end packet delays, but also on the probe's inter-departure

packet gap distribution.

A measurement-based tool for traffic modeling and queuing analysis is

developed in [41], which uses CMPP (Circulant Modulated Poisson Process) for

a traffic model. A comparative analysis of network traffic prediction based on

both ARMA and MMPP (Markov-Modulated Poison Process) models is

presented in [61].

End-to-end packet delay over the Internet has also been modeled using

system identification techniques[53]. In [53]end-to-end is modeled as SISO

(Single-Input and Single-Output) system. However, due to the varying network

conditions, a SIMO (Single-Input and Multiple-Output) system is recommended.

Mathematically, delay has been modeled using different distributions in

previous studies. Exponential, Weibull, and Pareto distributions, as well as, time

varying exponentials are some of the distributions used for this matter. In [14]

delay distribution is modeled using Gamma-like distributions with heavy tails of

sub-exponential. Although, analysis is promising, network condition information

is missing, and results seem to be generalized from a set of measurements. In

[31] packet delay is modeled as time varying exponential. In this research one

way delay is modeled by the composition of states, each of them modeled as a

shifted exponential distribution with varying parameters. In [59] packet delay on

a data stream was fitted into several distributions for different probe's sending

rate and packet size conditions. Measurements indicate that the delay distribution

30

follow a spectrum of distributions ranging from gamma to beta. It is also pointed

in this study the existence of correlation among delay values of consecutives

packets. Such correlation tends to get stronger for high sending rates than for

low ones.

In [59] was also shown that the distribution of end-to-end packet delay by

itself does not always result in a complete model, due to the fact that the

correlation of packets belonging to the same stream is not considered. In [69], a

system approach is used to characterize the network system dynamics by means

of modeling end-to-end packet delay. Findings of this study reveal that the

behavior of end-to-end packet delay and IPG sequences can be captured

effectively by ARMA and ARIMA models, when CBR probe flows are used.

Effects of sending bit rate, packet size, and available link capacity are analyzed

on the context of system modeling. Results indicate that modeling system

dynamics using IPG traces yields to better goodness-of-fit than packet delay, for

the same probe stream bit rate, as the combination of data rates and packet size

increases. Packet auto correlation have been study in both [59] [69], as a

function of probe's sending rate and packet size.

The impact of packet autocorrelation on traffic modeling has also been

previously study. For instance, in [41], time series approaches are used to study

the impact of packet autocorrelation on the queue response. In [6][39]

methodologies for modeling autocorrelation functions for Long-Range-

Dependent (LRD) and Short-Range-Dependent (SRD) traffic are presented.

31

Tools for replicating actual network conditions in controllable

environments, such as network emulators [17][68], are impaired by the necessity

of capturing and injecting packet autocorrelation from measurements into the

emulated network traffic. This is crucial to reproduce the actual observed

network conditions for experimental purposes. For instance, NISTNET [19], uses

correlation coefficients, to a limited extend, to generated delay values for data

streams.

Packet delay, among many Internet traffic metrics, is considered to be a

non-stationary processes by nature, even under light congested link scenarios

[35]. A process is considered to be non-stationary when its statistical properties

change in time. Although network link congestion is considered as the main

reason for non-stationarity and LRD on packet delay observations [6], it has

previously been demonstrated that other network conditions, such as link failure,

routing table updates, and routing flapping [35], can also be responsible for this

phenomenon. Thus, in practice it is common to observe patterns of periodic

spikes, bursty behavior, and level shifting in packet delay traces.

One of the most important factors that LRD introduces into time series is

non-stationarity [17][34] [35]. However random spikes and irregular events on

the network system can indeed create a false sense of LRD on the observations.

When modeling non-stationary time series, traditional time series

methodologies rely on transforming them into stationary ones by means of

differencing techniques [17]. However such an approach may fail to distinguish

32

uneven events responsible of creating false sense of LRD on the packet traffic,

since it only captures the overall behavior of the system during the observation

period. Consequently, segmenting the observation's trace into groups of

stationary time series has been proposed as an alternative solution. Time series

segmentation is considered a useful approach for quantifying a non-stationary

packet delay series, since it represents the observed trace as a number of time

series that are themselves stationary [26][56].

Time series modeling techniques is used on this research to model network

system dynamics by means of packet delay observations. CHAPTER 7 presents

methodology, results, and remarks for system modeling based on packet delay

observations under weakly-stationary network conditions. CHAPTER 8 presents

a novel approach for similar analysis of system modeling based on packet delay

observations under non-stationary network conditions. The approach presented in

CHAPTER 8 relies on the segmentation of packet delay traces. Experiment

results indicate that the segmented stationary packet delay series yields to a

better understanding of the network system dynamics and lead to more accurate

modeling and prediction analysis.

3.4 C H A L L E N G E S ON MEASURING PACKET DELAY OVER THE INTERNET

Provide an unbiased and quantitative measure of packet delay is a crucial

task on research and network system monitoring. However, measuring packet

delay comes with some challenges. Challenges on measuring packet delay

33

Clock synchronization between sender and receiver is critical for reliable

packet delay measurement. If the timing of arrival or transmission is off between

the sender and the receiver, then packet delay information will be distorted.

Network Time Protocol (NTP), has mostly been used to synchronize clocks of

systems to high precision atomic clocks located in different parts of the word.

Conversely, clock skew is also considered an essential reason of

uncertainties when measuring packet delay. Clock skew refers to the phenomena

in which two clocks involved in the measurement, sender and receiver for

instance, run at different frequencies. Numerous techniques for reducing the

effect of clock skew issues can be found on the literature [57]. However, such a

phenomenon can not be totally eliminated. Clock skew is usually in the range of

microseconds in an interval of few seconds. Thus, if the measurements are

performed over networks within few seconds and the delays are in milliseconds

range, most of these errors can be neglected.

3.5 P A C K E T DELAY VARIATION

Contrary to packet delay, packet delay variation metric does not present the

mentioned challenges when measured over the Internet. In general packet delay

variation metrics are derived metrics, thus their definition rely on another metric

[23]. The fundamental of this metric is the one-way delay, variations are

computed by taking the difference between two individual one-way delay

measurements. This intrinsic property of the packet delay variation metrics,

makes them unsusceptible to the challenges packet delay measurements are

34

exposed, which were mentioned in Section 3.4, as notion of packet sending time

is not needed.

In general, packet delay variation metrics have a great impact on the

behavior of streaming applications and real-time protocols. Typical cases for

such applications are voice-over-IP, video applications like video conferencing,

internet radio or other multimedia applications [72]. In such cases, the use of a

buffer to smooth out the delay variations encountered on the path from source to

destination is needed. Buffer needs to be dimensioned in such a way to

accommodate most of the expected variation, otherwise packet loss will result.

However, if buffer is too large, large delays will be experienced on the

communication and thus conversational dynamics will be affected [72]. In

addition, Internet Service Providers usually monitor these metrics and compare

them against numerical objective from Service Level Agreement, to ensure

quality of real-time applications.

There are many ways to formulate delay variation metrics for packet

networks. However, two main formulations are preferred [23], the Inter-Packet

Delay Variation (IPDV), and the Packet Delay Variation (PDV). Both

formulations are explained and compared in detail below.

3.5.1 IPDV: I N T E R - P A C K E T DELAY VARIATION

IPDV is the abbreviation for IP packet delay variation, also known as jitter

delay. IPDV is defined as the difference between the delays of two consecutive

35

IP packets [23][51]. The reference packet in the pair is always the previous

packet in the sending sequence. IPDV is defined below;

IPDV(i) = D(i)-D(i-l) (3.1)

where D(i) and D(i-\) are the end-to-end delay of two consecutives

packets, / and i-1, respectively. In general, IPDV can be considered as a measure

of the network's ability to preserve the spacing between packets [23].

3.5.2 PDV: P A C K E T DELAY VARIATION

Packet delay variation, also known as PDV, is defined as the difference of a

packet delay observation minus the minimum one-way-packet delay sample

within the specified interval of the observations [51]. Using the same

nomenclature introduced in Section 3.5.1, PDV is defined below;

PDV(i) = D(t) - £>(min) (3.2)

where D(min) is the minimum one-way-packet delay observation within the

specified interval of the observations.

36

IPDV and PDV differ from each other on the reference term. Comparison of

these metrics has previously been done [22]. The most significant conclusions

reached from such comparison are listed below;

1. Distribution of IPDV is usually symmetrical about the origin, with a

zero mean value.

2. IPDV distinguishes quick delay variations, from longer term variations.

3. IPDV places reduced demands on the stability and skew of measurement

clocks.

4. PDV does not distinguish quick variation from variation over the

complete test interval.

5. Location of PDV distribution is very sensitive to the reference delay,

minimum packet within the specified interval of the observations.

6. Shape of the PDV distribution is identical to the delay distribution, but

shifted by the reference delay.

37

CHAPTER 4. DESIGN OF A LARGE SCALE IP NETWORK

EMULATOR TOOL.

Network research requires accurate environments for protocols and services

analysis and performance evaluation. In this chapter the design of a scalable

emulator tool capable of recreating large networks in real-time is presented. The

proposed tool, Overall Trend Replicating Network Emulator Tool (OTRENET),

intercepts and alters incoming real packet data streams based on modeled end-to-

end packet dynamics. The current version of OTRENET, presented in this

section, uses a network simulator to provide the modeled end-to-end packet

dynamics. However, OTRENET is flexible enough to handle other types of

models. CHAPTER 7 and CHAPTER 8 present alternatives means of network

modeling, which can be used on the context of network emulation.

In Section 4.1 an overview of network emulation is provided. Classic

architecture of previous studies is presented and critiqued. The proposed network

emulator tool is also outlined in Section 4.1, aiming at overcome limitations of

previous efforts. In Section 4.2 OTRENET is formally introduced. OTRENET

architecture is presented in Section 4.2. In addition, its functionalities are

described in this chapter, and compared to previous related studies.

In Section 4.3 the units that form OTRENET are described. An explanation

on how they work individually and collectively is provided. Synchronization of

OTRENET units is explored in 4.3.4.

38

4.1 O V E R V I E W OF NETWORK EMULATION

Precise and efficient tools for network analysis and performance evaluation

are critical for testing new distributed applications, protocols and technologies.

Network simulators have been widely used for this purpose; while this is a

repeatable and manageable experimental approach, it requires the use of

simplifying assumptions (i.e., traffic patterns, dropping probability, etc.). These

assumptions can obscure understanding of behavior in real world situations, and

often conceal the random nature of real systems [55] [56]. Application software

developed for emerging complex distributed systems such as Collaborative

Adaptive Sensing of the Atmosphere [8] need to be evaluated and tested in a

wide variety of network conditions. The approach presented in this research, can

be used to evaluate the end-to-end performance of such applications by providing

an emulated network environment that directly connects to nodes running the

application. Network emulation combines concepts from network simulation and

measurements and provides an emulated network testbed over which application

and protocol software may be evaluated. Compared to simulation, a network

emulation approach could lead faster and more accurate results. This approach is

more practical to implement, more versatile and significantly less expensive than

a real testbeds [7].

A network emulation system can be conceptualized using three units. The

first unit captures real incoming traffic. The second unit uses the captured traffic

to inject simulated traffic into a modeled environment. In the third unit, the

output of the simulated network modulates the real traffic, captured in the first
39

unit, prior to its release from the emulator. Prior approaches suggest meeting the

terms of the three mentioned units in a packet-by-packet level [26]. Although

that yields to accurate emulation, it also may yields to computation overhead

when the simulated network is sufficiently large. Several existing network

emulators attempt to reduce the computation overhead on the simulation unit by

providing environments for end-to-end protocol evaluation as they abstract a

network cloud to a simple router with specific packet handling operations

[3][71][26]. Therefore topology related protocols such as routing protocols

cannot be evaluated.

Our approach receives real traffic stream characteristics of incoming

packets and uses them as input for a network model to regulate characteristics of

real traffic streams. The proposed approach differs from previous emulators in

two aspects. On one hand, it obtains average information of a sample group of

incoming data packet, as apposed to packet-by-packet capture. On the other

hand, it regulates the actual stream based on simulator/model generated

characteristics, since no packet capture is attained. Thus, although the terms of

the three mentioned emulator units are met, computation overhead on the first

and third unit is greatly reduced.

As an alternative to the packet-by-packet capture and translation approach,

OTRENET uses the embedded Average Traffic Sampler by Time Frame

Segmentation (ASAF) algorithm to sample incoming traffic and inject parameters

corresponding to dynamically determined time-frames into the simulator/model.

40

By including this algorithm in the system, the proposed emulator module mimics

the overall behavior of real network scenarios with significantly less

computation/time overhead. Thus, the proposed emulator maintains repeatability

and ease of configuration while using real-world interaction to minimize

deficiencies of simulated approaches. OTRENET, as its name suggests, was

designed to mimic the overall behavior of real network scenarios rather than the

instantaneous packet-by-packet responses of the system.

4.2 OTRENET: O V E R A L L T R E N D R E P L I C A T I N G N E T W O R K E M U L A T O R

T O O L

OTRENET modifies the characteristics of a stream of packets mimicking

the effect on it when passing through a given network. The stream enters the

emulator via a network interface card (NIC), Ethl, and leaves via a second NIC,

Eth2, with the delay, losses, and throughput etc. of the stream changed according

to the results from a network model.

OTRENET overcomes the need for packet-by-packet capture and injection

of packets to the network model; yet it allows the simulation model to depend on

stream traffic, and end-to-end traffic in emulated network. Our approach is to

collect the average input stream information from incoming real-time traffic flow

as an alternative to injecting it directly into the simulator model packet-by-

packet, as NSE proposes to do it. The statistical characteristics gathering process

is done by employing a dynamic sampling algorithm at the input, sampling real

time streams without affecting their behavior.

41

NISTNET

Input
stream

Information

wi&m i^r»"

SAMPLING
ALGORITHM

•f-
Average
Network

#. Model output
applied as

traffic change
rules

SAMPLING
ALGORITHM

aT

Stream
statistics Network

lode I Unit

Eth2

«S

"** Real Traffic
Real/Modeled traffic characteristics
Information exchange among units

Figure 4.1. OTRENET architecture

This way, OTRENET will not cause unnecessary packet loss at the entry at

any given time, even when the module gets overloaded due to excessive traffic.

After the average-sampled stream characteristics are obtained from the sampling

algorithm, those values are introduced into the network model (NS), see Figure

42

4.1. In the current version of OTRENET input stream information is collected

directly from the NISTNET kernel, as shown in Figure 4.1. This approach has

been found to be less computational expensive than collecting it from the Ethl

NIC.

The output of the network model is used to extract characteristics of traffic

passing through it, such as burst packet losses, transmission delay and

duplication created by the simulated environment set up. These are features that

in turn act upon traffic routed through it in order to trigger and emulate the

congestion behavior of real networks. Thus output stream features are collected

from the network model unit, and these parameters represent the particular

behavior of each real-word stream inside the modeled network environment.

Finally, the statistics of these output values are collected from the sampling

scene and injected into the traffic adjuster unit (NISTNET), which is responsible

for fine-tuning the real-traffic stream that is currently passing through the

module as shown in Figure 4.1. In the following subsections the units that form

the emulator are described, also an explanation on how they work individually

and collectively is provided.

Notice that even though OTRENET currently uses NS and NISNET for

network modeling and traffic adjusting, respectively, it is able to accept other

tools capable to provide similar functions.

43

4.3 OTRENET UNITS: D E S I G N , I M P L E M E N T A T I O N , AND

SYNCHRONIZATION

4.3.1 INPUT TRAFFIC SAMPLER UNIT

This unit is in charge of sampling the input traffic coming into the emulator,

via the network interface card Ethl. Besides filtering, classifying and collecting

the stream information, this unit is also responsible for adjusting the sampling

process dynamically depending on the input fluctuations and the availability of

the simulator unit. Thus the input stream information is not only used as a feeder

to the simulator, but its characteristic distributions are used to decide how often

the sampling has to be done. This process is achieved by employing an embedded

Average Traffic Sampler by Time Frame Segmentation algorithm (ASAF) within

the input traffic sampler unit, as shown in Figure 4.1. CHAPTER 5 explains in

detail the algorithm utilized in this unit, the metrics that it requires and the

dynamic thresholds selection.

4.3.2 N E T W O R K MODEL UNIT

This unit consists on a model of the emulated IP network. This could be an

analytical model, a trace table, packet-by-packet simulation or even a scaled

simulation version. Its selection depends on the performance accuracy and the

execution speed needed. A customized version of NS has been chosen as a

network model for the current version of OTRENET.

Since the simulated network characteristics (available bandwidth, queue

length, network congestion, etc.) constantly change during the time, it is not

44

possible to turn this component on and off every time new input traffic

characteristics are collected and injected. Therefore it is essential to keep the

simulator running all the time that the emulator is on. NS has been designed as a

discrete event simulator in which the traffic stream characteristics have to be

specified before it is executed, and the system output characteristics can only be

collected and analyzed at the end of the simulation. Thus NS was modified to

support these features.

Two main modifications were done on the NS functionalities. The first one

consists on a periodic feeding mechanism of real-traffic characteristics into the

simulator. The second one consists on a "on the fly" analysis of each real stream

which traverses the simulated network. The latter approach consists of examining

periodically the end-to-end real stream behavior such as throughput, end-to-end

delay, jitter, and packet-loss rate. End-to-end delay and packet-loss rate were

found appropriate to accomplish the input-output mapping based on network

simulation.

Note that the architecture lends itself for replacement of NS simulator with

other appropriate simulation or analytical models as well.

4.3.3 T R A F F I C ADJUSTER UNIT

This unit is in charge of the traffic adjustment, and triggers NISTNET based

on the output responses (end-to-end delay, packet loss rate, etc) of the simulator

unit captured through the sampling-algorithm within the traffic adjuster unit, as

shown in Figure 4.1.

45

The same traffic sampling algorithm that is used to capture the

characteristics of the input stream is used to capture the characteristics of the

simulator output, which in turn is used to control the outgoing stream. The

periodicity of the real traffic adjuster triggering depends primarily on the

simulated response variations. Also since the input sampler unit collects IP

addresses/port number information of the source and destination of each

incoming stream, this unit is able to provide sufficient information to the traffic

adjuster unit in order to accurately match the simulated stream responses with

the real traffic passing through the emulator.

4.3.4 SYNCHRONIZATION AMONG UNITS

Synchronization among the three units is crucial for the emulation

processes. Each of its units must work with tight dependence to the others.

Furthermore, to accurately recreate the behavior of real word scenario and to

take advantage of inherent parallelism while minimizing the total execution time

of the whole process, we execute these three units in parallel. Thus each unit has

to be executed only at specific times and just the amount of time that it is

expected to work.

Time boundaries are calculated during the emulation processing to prevent

system inaccuracies or collapses. The scripts used in each unit are linked

together by a main script, in which three procedures were created; traffic

collector, network simulator/traffic adjuster and system scheduler. These

procedures are executed in parallel, as shown in Figure 4.2.

46

Truffle Collector Network simulator/traffic adjuster

System scheduler

Figure 4.2. Flow diagram of the main OTRENET code arid module synchronization.

The first procedure is responsible for collecting the stream characteristics.

The second one combines the network model and traffic adjuster emulator units.

Finally the third procedure is responsible of synchronizing and interconnecting

the previous two threads. So the scheduler procedure will transfer the collected

information on incoming packet stream from the first procedure to the second

one only when the network model unit is idle (i.e., it is done simulating the

47

previous transferred information). Also in the case that the network-

model/traffic-adjuster process goes faster than the collecting process the

scheduler procedure will force the simulator-model/traffic process to wait

preventing this way the starvation of other processes.

The script used to execute and synchronize OTRENET units in the manner

described above is presented on appendix B.3.

48

CHAPTER 5. TRAFFIC SAMPLER BY TIME FRAME

SEGMENTATION ALGORITHM.

In this chapter the Average Traffic Sampler by Time Frame Segmentation

Algorithm (ASAF) introduced in CHAPTER 4 is explained in detail. ASAF is

focused on minimize the overhead delay caused by packet-by-packet maping

approach, done by previous network emulator modules.

In Section 5.1, ASAF algorithm is mathematically described in detail.

Metrics to be monitored are specified, as well as algorithm settings are fine

tuned according to the expected sensitivity. In Section 5.1, ASAF algorithm

performance is tested. Experiment was conducted by comparing a simulated end-

to-end delay response against the average delay per time frame generated by the

proposed algorithm. Results indicate that the average delay per time frame

follows closely the variability of the instantaneous delay response, even when it

changes severely.

In Section 5.2 several functions are evaluated as alternative candidates for

the threshold decay function embedded in the proposed ASAF algorithm.

In Section 5.3 a rigorous performance comparison analysis of the proposed

ASAF algorithm against other methodologies for traffic sampling and trend

detection is presented. Analysis is done to measure the algorithm ability on

49

replicating the original sample series, while keeping the number of time frames

low, to the extent possible.

5.1 A L G O R I T H M DESCRIPTION

As was mentioned in CHAPTER 4, the main disadvantage of network

emulator modules such as NSE is the packet-by-packet capture and translation

approach, in which each incoming real packet is captured, translated into

simulated one, and injected into a network model embedded in the emulator

module, in altered based on modeled network end-to-end packet dynamics.

Although by this approach accurate packet-by-packet emulation is guaranteed,

heavy CPU resources are required to accomplish these tasks in real-time.

However, if this cannot be achieved, which is likely to be the case with complex

networks, additional computation overhead delay is added into the results. In

cases where hundreds of thousands of packets are emulated, e.g., with Mbps and

Gbps links, this becomes a very significant limitation.

In this section the ASAF algorithm is proposed as an alternative to the

packet-by-packet capturing and translating approach. This algorithm is used to

report significant changes and not instantaneous fluctuations, for both real entry

traffic and output modeled traffic response, as was mentioned in CHAPTER 4.

ASAF aims at reducing the computation overhead delay, while keeping track on

the consistency of the results.

On the current version of OTRENET the input sampler unit monitors packet

size and inter-arrival packet gap, while in traffic adjuster unit the utilized metrics

50

are end-to-end delay and packet loss rate. In this section we explain in detail

only the use of the algorithm as utilized in the traffic adjuster unit. However, its

use in the input sampler is very similar.

The main objective of the ASAF algorithm is to detect significant changes

in the metrics of interest. After this, a new time frame is created and the short-

term averages of the metric during the generated frame are reported. The output

responses of the network simulator-model unit may change rapidly within short

periods of time during network transients. By analyzing the output trace of the

simulator offline, one can actually observe how harshly the per-packet response

fluctuates. In such situation a sensitive algorithm that reports changes in metrics

too frequently can trigger the traffic adjuster excessively, and in many cases

unnecessarily, making it impossible for the outgoing real stream to adjust itself

in real time according to the traffic adjuster rules imposed by the algorithm. As a

result, incongruity between modeled traffic and emulator output traffic can be

expected, see CHAPTER 6 for details. As an alternative, the proposed ASAF

algorithm is triggered by the change of the accumulated difference of the

metrics. In this case the simulated end-to-end delay and packet loss rate are

calculated periodically for each real-time stream within the simulator. These

metrics are subtracted from their previous respective values and absolute values

of this difference are accumulated during time, abs _ ace _ delayw ,

and abs _ ace _ drop(t), respectively. The value of abs _ ace _ delay{t) is given

by equation (5.1).

51

abs _ ace_ delay/.\ = \delay^\ - delay ̂ _, J + abs _ ace _ delay,, IN (5.1)

where delay {t) and delay^^ represents the end-to-end delay at times t and

t-1, respectively, t and t-1 represent the present and the previous simulated time,

respectively. The absolute value was chosen for this task in order to keep track

of the changes regardless whether they are positive (increasing change) or

negative (decreasing change). Small fluctuations or slow changes on the metrics

will take longer time to trigger the algorithm than drastic fluctuations. Thus

when the accumulated difference of the metric exceeds a threshold value

(thr_delay(tjr ^ , thr_drop(t frame)) a system-trigger alarm is activated and a

new time frame is created. The outgoing real traffic is then adjusted with the

average end-to-end delay and packet loss of the last time frame (see Figure 5.1).

52

Traffic
Metric

/ Real Traffic metrics

/
/

j—~f̂ ***** LJgy~j^\

- J • \
: - t r « : • \

Jri\""' Average sampled
: •• "•" version

Time

Figure 5.1.a

Cumulative difference

Time

Figure 5.1.b

Figure 5.1. Time frame segmentation according to traffic variation, (a) Traffic metric
vs. time, (b) Cumulative metrics and exponential threshold vs. time

Threshold values utilized in the proposed algorithm need to change

according to actual time of the analyzed frame. This way, after a change has been

detected and a new time frame is about to begin, the threshold value is raised to a

53

predefined peak value (see Figure 5.1). Then the threshold has to decrease in a

smooth controlled decay fashion. The curve chosen for this threshold decay

function can follow many shapes such as linear, quadratic, polynomial, and

exponential. However, exponential decay threshold function was found to be a

more convenient alternative as explained in section 5.2.

Segmentation of the simulated time into frames depends upon the variation

of the simulated response. For instance, long frames are associated with traffic

that varies slowly. Finally the traffic adjuster unit (NISTNET) receives the

average value of the metrics for the current time frame, which represents the

average behavior of the traffic within it.

The proposed ASAF algorithm starts calculating the threshold distribution

of the analyzed metrics as a function of the simulated time t and frame i. The

exponential threshold for end-to-end delay is shown in equation (5.2).

f \
thr _ delay{rdativetframei) = ampl _ thr _ delay{fmme)

V i J

relative t

*
r _ delay\ (framei) (5.2)

where r _delay^nme () represents the speed decay of the exponential

threshold curve of frame i, and amp_thr_delay{frame ()the initial peak amplitude

of the exponential functions on frame i. Also, relative_t represents the current

time on frame i. Note that each frame will start with relative_t=0. Moreover the

increment of this parameter will cause the thresholds amplitude to decrease in an
54

exponential manner. Thus when abs _acc _delay{t) and/or abs_acc_drop{t)

exceed their respective thresholds, a system-trigger alarm will be activated and

the frame average for each metric will be inserted into the NISTNET rules.

After counters are reset, new values for t_delay^rame ^ and

ampl _thr_delay(frame /} are calculated for the next new frame, using equation

(5.4).

B
• _ delay(frame _ /) =

l ~ 1 (5-3)

amPl-thr-del(*y {frame _i) = A*thr -delay(TiA, frame J-\)

where 7,_/ is the duration of frame i-1, (or the largest relative_t on frame i-

1). Thus, thr_delay{T j m m e M) is the lowest point of the exponential threshold

function on frame i-1. From equation (5.4), it can be seen that

ampl_thr_delay^mme ^depends directly on the lowest point that the previous

exponential threshold function reached. Also it can be seen that t_delay^rame ^,

depends inversely on the previous frame duration. Thus a small duration frame

(rapid traffic fluctuation) will force next frame to quickly respond to traffic

variations, if it appears. A and B have been chosen as constants. Their selection

has been done by rule of thumb, such as 1 < A < 2 and B > 30 .

55

B
r _ delay (frame J) ~ ~Z

l - \ (5.4)

ampl _ thr _ delay(frame J) = A* thr _ delay ^ j m m e _ M)

The result of this process is an accurate algorithm that will divide the total

simulated time into frames of variable sizes. These frames are generated every

time a significant change in the metrics is detected. At the same time the average

of the metric of interest during frame time, rather than instantaneous change of

the metric, is used as input for the NISNET rules.

Sensitivity of the ASAF algorithm can be fine-tuned. With this algorithm

OTRENET can trade-off fidelity and computation time.

Figure 5.2 shows the time frame segmentation and the exponential threshold

adjustment for a simulated end-to-end delay response case. A and B (see equation

(5.4)) have been chosen to be 1.3 and 50, respectively, for this case and for the

next scenarios presented in CHAPTER 6. Figure 5.2.b shows how the

abs_acc_delay{t-)changes with the simulated end-to-end delay responses (see

Figure 5.2.a). When the cumulative value exceeds the corresponding exponential

threshold value, a new time frame is generated, the exponential threshold is

raised to a predefined value, and the cumulative value of delay is reset.

56

SimlQIated time(se1ffonds)
Figure 5.2(a).

Simul ated ti me(seconds)
Figure 5.2(b).

Figure 5.2. Time frame segmentation for simulated delay, (a) Instantaneous simulated delay
and averaged simulated delay using time frame segmentation vs. time, (b) Variation
of simulated cumulative delay and exponential threshold vs. time

57

Figure 5.2.a shows the time frame generation and compares the simulated

end-to-end delay response against the average delay per time frame generated by

the proposed algorithm. From this figure, it can be seen that the average delay

per time frame follows very well the variability of the simulated delay response,

even when it change severely. Note that in the input sampler unit, the packet size

and the inter-arrival packet gap are used as the monitored metrics in the same

manner as shown in equations (5.1), (5.2) and (5.4). The A and B values selected

for this unit were also 1.3 and 50, respectively.

5.2 EVALUATION OF THRESHOLD FUNCTION FOR ASAF A L G O R I T H M

In the section several functions are evaluated as alternative candidates for

the threshold decay function embedded in the proposed ASAF algorithm. The

criteria for the function selection rely not only on its ability to rapidly detect

changes in the traffic variation but also in its simplicity of implementation.

Performance results of the proposed ASAF algorithm were generated using the

source code presented on appendix C.l.

Figure 5.3 shows a cumulative metrics and threshold functions versus time,

t, in the same manner as was presented in Figure 5.2.b. Three functions are

shown; linear, polynomial (2nd order) and exponential. These functions start at an

arbitrary point A and decay along t.

58

y<t>

\ " ' **»•. ̂ \ ^
. \ X ^ v /Y2=b2t

2+b1t+A

\ V >

Cumulative y < /
difference ^^J ^ s . ""*"••• /

— • / > « , ^ \
/ Y3=Ae-t/T ^ ^ ^ ~ - .

, Y^rr^t+A

\
\

\
- - ~ _ _ \

Figure 5.3. Comparison of metric threshold functions.

Their mathematical expressions with their respective parameters are

equation (5.5), asy ,y andy , respectively.

y-i, x = m , s *t + A 1(0 (0

yott.= I \b *tl)+A 2(0 . / 0 , 0 /
I = 1

t

y - A * e T
y3(t)

(5

59

From Figure 5.3 it can be seen that the decay speed of the selected threshold

function plays an important role on reporting traffic variations. I.e., a threshold

function that decays too fast could report traffic variations too frequently and

sometimes unnecessarily. Even though the parameters of the linear and

polynomial functions can be adjusted every time frame to produce longer or

shorter tail thresholds that can match traffic variability, this will require prior

knowledge of the traffic behavior, which is not possible. Another alternative

could be to vary these parameters not only every time frame but also as a

function of the simulated time t, as shown in equation (5.5) (i.e.,TO ,A.).

Although possible, this approach will add additional complexity to the algorithm.

As an alternative, exponential threshold requires the change of only two

parameters for each time frame, and keeps them constant during the frame. The

concave and long-tail variation of the exponential function makes it a more

suitable threshold function for reporting significant changes on the traffic

variability. Thus, the exponential function has been chosen as the most

convenient option for this task.

5.3 PERFORMANCE ANALYSIS AND COMPARISON OF TRAFFIC SAMPLER

ALGORITHM

In this section the performance of the proposed ASAF algorithm is

compared against two methodologies for traffic sampling and trend detection;

Moving Average (MA) and a customized version of MA, referred to as C-MA.

60

As mentioned in CHAPTER 4, the performance of the sampler algorithm

does not only depend on its ability of generating estimated sampled traffic that

can resemble the original one, but also, on the reduction of the number of time

frames generated on the estimated traffic, to the extent possible. It was

concluded in Section 5.2 that the length of a time frames is associated with the

corresponding traffic variability. The computational requirements of the traffic

adjuster unit and the traffic sampler unit can be lessened significantly by

reducing the number of times frames. Note that the term time frame used in this

section comes from Section 5.2. Invariant portions of the traffic will have similar

metrics and will be clustered in the same frame, and each metric will be

represented by the average of its samples belonging to that particular frame.

Moving averages, MA, are one of the most popular and easy to use tools

available for trend detection. MA smooth data series and make it simpler to spot

tendencies by flattening out rapid fluctuations [76]. The two most popular types

of moving averages are the Simple Moving Average (SMA) and the Exponential

Moving Average (EMA). SMA is explained below, and its performance is

compared against the proposed time frame segmentation algorithm. Similar

analysis has been done previously with EMA, and can be found on [68].

Given a sequence {Xi}j=1, an MA order n, n-SMA, is defined as a new

sequence {J7};=["+ defined from the xt term by taking the average of the

previous n terms:

61

yt
f i \i-n+\

2X (5.6)

W ./=!

The number of time frames of the estimated sequence, Y, referred to here

as Py, represents the length of the estimated sequence. Thus Py = N - n + l. Note

that the reduction of sequence length from the original to the estimated

sequence,«-l, is only due to the estimated sequence Y starts from the xn_x term.

Hence using n-SMA will provide almost no improvement on time frame

reduction. On the other hand a customized version of MA, C-MA(n,m) ,can

address this problem better and it is presented in equation (5.7).

yi=[\)txj-,yl=y2=y3=... = ym
\nJH

ym+\= ~ £ xj'>ym+i =ym+2 = - = y2m
V n Jj-m-n+2

L) 2v+1

•^2/w+l ~\ „ \ J^ Xj'>y2m+\ -y2m+2"-y?>r,
nj j=2m-n+2

(5.7)

C-MA^mj depends on two parameters, n and m. The former represents the

number of previous x(terms averaged to obtain an estimated termj>;., the latter

represents the number of times the estimated term will be kept invariant. Since n

and m are chosen off-line without knowing the behavior of original sequence,

their selection will play an important role on the C-MA performance. On one
62

hand, n and m will assure the accuracy of Y. On the other hand, Py will be

driven by the value of m selected. Note that C-MA^oj = n-SMA, and also in this

scenario n and m are both defined in seconds.

Performance of the proposed ASAF algorithm is compared against those of

SMA and C-MA next. Figure 5.4.a shows an end-to-end delay trace obtained

through simulation and two estimated traces of this delay, one generated using

the proposed traffic sampler algorithm, and the other generated using C-MA^^;,

for n and m are 5 and 7 seconds, respectively. Figure 5.4.b shows a particular

region of Figure 5.4.a (from 180 to 350 seconds) for a more granular analysis.

63

D
el

ay
(m

se
c)

500

450:

400;

350

3001

2501

200

150i

100

soir*

Actual Delay -

Estimated Delay using C-MA(5,7)

Estimated Delay using time frame segmentation

K A

f—XT x r-
_*

\f i i

60,

50!

50 100 150 200 250 300 350 400 450

Time(seconds)

Figure
5.4.a

500

Estimated Delay using C-MA(5,7)

y u\
Actual Delay

_ »r \A^' Y\
M

•f; 30l

Q

20

10l

lU^k
i

Estimated Delay using time frame segmentation

?80 200 220 240 260 280 300 320 340

Time(seconds)

Figure
5.4.b.

Figure 5.4. Comparison of the estimated average traffic sampler by time frame segmentation
algorithm against C-MA, (a) Analyzed time 0-500 sec, (b) Analyzed time 180-350 sec.

64

From these figure, the superiority of the proposed ASAF algorithm over C-

MA can be observed. Note that since only the traffic sampler algorithm is tested

in this section, the simulated scenario for this analysis is not relevant at this

point, thus it is omitted on the description.

The time frame reduction and the algorithms accuracy are analyzed in

Figures 5.5.a and 5.5.b, respectively. Figures 5.5.a shows the ratio of Py

obtained using C-MA^mj over the one obtained using the proposed traffic

sampler algorithm for different values of m. From this figure, it can be seen that

C-MA(„,o;, provides no improvement on the time frame reduction. On the other

hand, C-MA^„ m; with m values greater than 0 deploys smaller Py than «-SM.

Also for this particular scenario C-MAf„>m; with m>2 deploys smaller Py than the

proposed time frame segmentation algorithm. Time frame segmentation done in

C- MA(„rm) is done independently to the traffic variability, thus the reduction of

this metric is a trade-off with the algorithm accuracy, which can be appreciated

in Figure 5.5.b.

65

<
S
6

Figure 5.5.a.

120

100

1 1.5

C-MA (3,m) at "stable region"

2 2.5 3 3.5

m
4.5

Figure 5.5.b.

Figure
5.5. Comparison analysis of the estimated average traffic sampler by time frame
segmentation algorithm and modified MA, (a) Reduction of number of frames
comparison analysis, (b) MSE comparison analysis.

66

Figure 5.5.b shows the accuracy of the algorithms replicating the original

sequence. This has been done by calculating the Mean Square Error (MSE)

between the original metric and the estimated ones, using equation (5.8).

MSE
'' X-Y^1

X
(5.8)

where X is the original sequence and Y corresponds to the predicted

response calculated using the scheme. We denote by MSE(MA) and MSE(ASAF) for

C- MA(„>mj, and the proposed traffic sampler algorithm respectively. Finally the

MSE(MA)
ratio of this parameters, s, is calculated as s = and plotted in Figure

5.5.b. Two regions were analyzed in this figure; a stable region and an un-stable

region. The former was selected from 120 to 135 seconds, the latter from 135 to

150 seconds, see Figure 5.4.a. This was done to show the dependency of s with

the traffic variability. Figure 5.5.b indicates that MSE for C- MA^„„,; changes

according to the n and m values selected and the variability of the sequence. Also

from this figure, it can be seen that MSE(ASAF) always shows smaller than

MSE (MA). This analysis demonstrates that the performance superiority of the

proposed ASAF algorithm over SMA and C- MA^>m; is due to its ability of

dynamically select accurate n and m values according to the traffic variability,

i.e., its ability for detecting small and large changes of the average behavior.

Thus when using the proposed sampler algorithm, heavy concentration of small

67

time frames can be found only in areas where the traffic changes rapidly. Note

that the intent of the algorithm is not just to reproduce the behavior of the actual

signal, but also to do this with the smallest number of frames.

68

CHAPTER 6. OTRENET PERFORMANCE ANALYSIS.

In this chapter the performance of the proposed OTRENET module, as

described in CHAPTER 4 and CHAPTER 5, is analyzed.

Section 6.1 describes in detail the experiment setup, performance metrics to

be monitored and evaluated, and the emulation outcomes. Performance analysis

of OTRENET on replicating realistic conditions imposed by simulated

environments is tested in Section 6.1.

6.1 R E S U L T S

In this section the performance of the current stage of the proposed

OTRENET module, as described in CHAPTER 4 and CHAPTER 5, is tested and

evaluated. The network model unit is based on a customized version of NS-

simulator, which was described in Section 4.3. ASAF algorithm, which was

described and tested in CHAPTER 5, is used to report significant changes and

not instantaneous fluctuations, for both real entry traffic and output modeled

traffic response, as was explained in CHAPTER 4.

Notice that in this chapter the OTRENET architecture description used in

Section 4.3 is used to illustrate the units of the emulator.

In this section the performance of OTRENET is tested and evaluated. The

network model unit is based on a customized version of NS-simulator, which was

described in Section 4.3. In this section we measure two aspects of the

69

performance of the emulator system. First, the accuracy of the ASAF algorithm

used in the input traffic sampler unit is evaluated. Second, the emulator system

response is compared against the response of a pure network simulation (NS)

under the same conditions. The first set of performance measurements indicate

how an error in input sampling produces inaccuracy in the simulation results,

which in turn is reflected in the traffic adjuster and in the actual real output

traffic. The second set of performance measurements demonstrate that errors

between the emulator response and pure network simulation can be attributed to

two factors; error in the input traffic sampler and inaccuracy of the traffic

adjuster unit. The emulator environment implementation is shown in Figure 6.1.

The simulated topology within the emulator box consists of a simple

network with a 100kbps bottleneck link. For simplicity, no simulated background

traffic was utilized. The emulator module was installed on a Pentium III-861Mhz

dual processor computer with two Ethernet cards, allowing the traffic from one

card (Ethl NIC) to pass to the other (Eth2 NIC) after being modified by the

module. Performance results of the proposed OTRENET module were generated

using the source codes presented on appendix B.

70

Simulated
background
traffic

Real Incoming
Traffic

Simulated output traffic
characteristics

Eth2

Real Outgoing
Traffic

Figure 6.1. Emulation configuration and test environment.

The real incoming traffic shown on point D of Figure 6.1 was generated

with an IXIA Traffic Generator 1600 Performance Analyzer device [77] and its

variation in time is shown in Figure 6.2.

71

in
<x
.o

£
cc
m

/: 1\
/ i I \

'7'
iW \

M \\

f i l l a

/ I
/

\
\

it *

IN "A

A

Time(seconds)

Figure 6.2. Input bit rate variation vs. time.

In this particular experiment the variability of the input traffic, represented

as the bit rate slope (a), was varied to cover smooth to steep changes in traffic.

After this traffic is analyzed and sampled with proposed ASAF algorithm, the

sampled characteristics are inserted into the simulator unit (point A of Figure

6.1). The traffic at this point is named sampled real traffic characteristics. The

simulated output traffic characteristics (point B, Figure 6.1) represent the

simulated output response of the sampled version of the incoming traffic injected

into the simulator unit. Traffic at point B is inserted as NISTNET rules to

regulate the real traffic passing through the emulator box according to the

simulated response. The modified real output traffic is named real outgoing

traffic (point C, Figure 6.1).

72

!

I

0 5 10 15 20 25

Rate of bit rate increment (a) [kbps/sec]

Figure 6.3. Error sampling vs. rate of increase of bit rate.

In this experiment, the error in the input traffic sampling is identified and

shown in Figure 6.3. Error in the input traffic sampling was identified by

comparing the sampled real traffic characteristics against the real input traffic

collected at the module entrance. Figure 6.3 shows the percentage sampling

error calculated using equation (5.8), against a range of rate of increase of bit

rate (Kbps/sec), a. Notations X and Y represent the input real traffic before and

after the sampling traffic algorithm, points D and A of Figure 6.1, respectively.

This figure demonstrates that the error in sampling gets larger for steeper traffic

(big a values). The maximum error percentage obtained from the previous

analysis is 12% for the steepest case (20Kbps/sec). To measure the performance

of the proposed emulator module, its outputs were compared to the output based

on a pure simulation. The pure simulation was carried out using the same

network topology used for the emulation; but the real explicit input (Figure 6.2)

73

was used instead of a sampled version of the input. Since the emulator module

(Figure 6.1) uses a sampled version of the input bit rate, the outcomes depend on

the quality of the input traffic sampling. Two error traces were calculated using

equation (5.8) as functions of a. For both cases, X is the end-to-end delay of the

pure simulation. The first and second error trace use 7/ and Y2 as their respective

inputs, where 7/ and Y2 are the end-to-end delay obtained from the emulator

module at points B and C, of Figure 6.1, respectively.

- Error Trace 1 — A — Error Trace 2

e 10

1
f0
3
E

re
» 0.1 -a
c

2 0.01

V

LU
10 15 20 25

Rate of bit rate increment (a) [kbps/sec]

Figure 6.4. Error in delay emulation vs. rate of increase of bit rate.

74

Figure 6.4 shows these two error traces for different values of rate of

increase of bit rate, a (see Figure 6.2). The first error trace is due to input traffic

sampling, while the second error trace is due to the input traffic sampling and the

error introduced from the traffic adjuster unit (see Figure 6.1). Figure 6.4

indicates that in both cases the error is increased when rate of increase of bit rate

increases. This is understandable since both traces are driven by the input

sampling, the error that increases with the rate of increase of bit rate (see Figure

6.2). It is also shown in Figure 6.4 that the second error trace is higher than the

first one; a phenomenon attributed to two factors. On one hand, when a change in

the simulated metrics response is detected and the NISTNET rules are applied

right away, the change in the outgoing traffic is not seen instantaneously. This

change is observable in the outgoing traffic after a small period of time,

generating small time shifts between the outgoing traffic and its correspondent

simulated version. On the other hand, since NISTNET was built to accurately

reproduce network conditions, it automatically introduces randomness into the

analyzed outgoing traffic together with the input rules. More performance

analysis results of OTRENET can be found [68].

6.2 R E M A R K S

Performance analysis results shown in Section 6.1 indicate that the

proposed OTRENET module fulfills our expectations of mimicking the overall

behavior of a real network scenario.

75

The proposed ASAF algorithm, described in CHAPTER 5, has proven to

reduce the computational overhead required by the packet-by-packet capturing

and translating technique. This algorithm not only reproduces the behavior of the

actual series, but also does this with the smallest number of frames.

The results presented demonstrate the effectiveness of OTRENET on

replicating realistic conditions imposed by simulated environments.

On-going work on OTRENET includes the evaluation of alternatives

methodologies to reduce the computation overhead associated with the packet-

by-packet simulation employed by simulators like NS. Alternatives ways of end-

to-end packet modeling are explained in CHAPTER 7 and CHAPTER 8.

76

CHAPTER 7. A MEASUREMENT-BASED MODELING

APPROACH FOR NETWORK-INDUCED PACKET

DELAY

In CHAPTER 3, we discussed various studies on packet delay modeling and

characterization. In this chapter, using measurements performed over the

Internet, end-to-end packet delay dynamics are modeled using time series

techniques under weakly stationary network conditions. Impact of sending rate

and packet size of the probes are investigated on the modeling results. Section

7.1 describes time series techniques utilized for packet delay modeling. The

impact of ACF and PACF distributions on the packet delay modeling is presented

in Section 7.1.1. Sections 7.1.2 and 7.1.3 present methodologies for time series

model selection and optimization, respectively. In Section 7.1.4, criteria for

evaluating the model goodness of fit and its impact on system modeling is

explained.

Section 7.2 presents the experiment setup, methodology and results of end-

to-end packet delay and Inter-Packet Gap (IPG) modeling based on the

measurement data. Section 7.2.3 complements the analysis by testing the

goodness of the fitted packet delay and IPG time series models. In addition,

Section 7.2.3 compares the model goodness of fitting results against the

characteristics of the packet streams that originate each modeled process.

77

7.1 M O D E L I N G END-TO-END PACKET DELAY USING TIME SERIES

TECHNIQUES

A time series {A"(0}is defined as a set of observations ordered sequentially in

time [47]. A series of n observations can be viewed as a random process of the

variables xl ,x2 ,...,xn, sampled at, often equidistant, time intervals t\,t2,...,t„.

Time series can be considered as the output of a dynamic system of which

external input can not be observed [43]. There are two main goals of time series

analysis; prediction and modeling. The former aims at forecasting future system

output values. However, we are interested in latter, in which the properties of the

series are summarized and its salient features characterized.

In general, time series modeling focuses on series that are not deterministic

but contains a random component. If this random component is stationary,

powerful techniques for modeling can be developed. ARMA models are widely

used for this purpose. However, most time series data on the Internet are non-

stationary or weakly stationary. For such cases there are methods which

transform a non-stationary series into a stationary one. In most cases first and

second-order differencing are sufficient to remove any kind of trend existing in a

time series [47]. ARIMA methodology is based on such an idea [15].

An ARMA model can be viewed as a special case of ARIMA models.

ARMA and ARIMA are considered passive black box approaches in which model

identification relies solely on the data, without prior information of the system

that generated the data. ARMA and ARIMA models fit very well into the study

78

of Internet data packets, since very little information is known to build up the

state of the system, due to the complexity of the networks [70]. Identification

and developing of ARMA and ARIMA models rely on ACF and PACF

distribution and coefficients. These concepts are presented and associated with

the Internet end-to-end packet delay processes next.

7 . 1 . 1 A C F AND P A C F ANALYSIS FOR END-TO-END PACKET DELAY

Auto Correlation Function (ACF) and Partial Auto Correlation Function

(PACF) play an important role on time series modeling and prediction, since they

provide useful measures on the degree of dependence between the sampled

values at different times.

ACF of a random process describes the correlation between the process at

different points in time. Informally, ACF is a measure of how well a series

matches a time-shifted version of itself, as a function of the amount of time shift.

Sample ACF,ph, is defined as >°A= — . Where rft is the sample auto-covariance
ro

function at lag h, which is presented on equation (7.1):

/
xt+\h\

V

_ \
- Xn

)

r

*t
V

_ \
~Xn

)

where -«</?<«, x„ is the mean of the observed time series {x(t)\, and n is

the number of data samples. ACF for end-to-end packet delay process denotes
79

the amount of dependency the delay of the current packet has to previous

packets.

Contrary to ACF, PACF is used to measure the degree of association

between the current sample of the series, Xt, and a previous sample, Xt_k ,when

the effect of the other k-1 time lags is removed [61]. PACF can be considered as

the amount of correlation between a variable and a lag of itself that is not

explained by correlations at all lower-order-lags. In practice, ACF of a end-to-

end packet delay time series, {£>(?)}, at lag 1 is the coefficient of correlation

between Dt and Dt_x, which is also most likely to be the correlation between

I>(_i and Dt_2. However, if £>,is correlated with •£>,_], and Dt_x is equally

correlated with Dt_2, it has to result in a correlation between Dt and D,_2. Thus,

the correlation at lag 1 propagates to lag 2 and most probably to higher-order

lags. The PACF at lag 2 is therefore the difference between the actual correlation

at lag 2 and the expected correlation due to the propagation of correlation at lag

1[17].

Previous analysis have observed the relationship between the probe's

sending rate, as a fraction of the available link capacity, and the end-to-end

packet delay ACF [59] and PACF [10] distributions. Degree of link congestion

itself depends on the sending bit rate and the available link capacity, and only

sending bit rate can be controlled in an experiment. So when it is increased up to

a point at which link congestion is perceived, packets get closer to each other

and thus their correlation can be expected to become stronger. This effect

80

manifests as a slower decay of the ACF function as the sending bit rate increases.

Contrary to ACF, the PACF function decays towards zero faster as the sending

bit rate increases [10]. Relationship between PACF and ACF is presented in

equation (7.2):

0 = Rplrp (7.2)

where O is the vector of the PACF coefficients, and Rp and Tp are presented

in equations (7.3) and (7.4) respectively [17]. Note that the number of PACF

coefficients, p, obtained through equation (7.2) depends on the number of ACF

coefficients used.

Rp=

rf

1

Pi

Pi

PpA

i=\P\

P\ Pi

1 P\

Pi 1

Pp~2 Pp-3

Pi P3

Pi • • Pp-l

Pi • • Pp-2

Pi • • Pp-3

Pp~4 1

• • pPY

(7.3)

(7.4)

For a CBR flow of probes, the scenario considered in this research, end-to-

end packet delay has a direct relationship to Inter Packet Gap (IPG), Gt, as shown

in equation (7.5).

Gi=DM-Dt

81

(7.5)

Thus a relationship between ACF and PACF distributions of IPG and end-

to-end packet delay can also be expected. This fact plays an important role on

end-to-end packet delay modeling, since measuring IPG is less complex and

more accurate. This alternative will be explained in detail in the Section 7.2.1.

7 . 1 . 2 A R M A AND A R I M A MODEL SELECTION FOR END-TO-END PACKET

DELAY PROCESSES

The main goal of Internet traffic modeling is to develop powerful models

that represent closely the behavior and characteristics of the observed data

values. The black-box modeling approach obtained through ARMA and ARIMA

models is very appropriate for characterizing the impact of network on Internet

traffic streams. Selection of the best model that represents the observed process

depends intrinsically on ACF and PACF characteristics. On one hand, a

stationary series can be identified straightforwardly from an ACF distribution, as

their autocorrelation coefficients die out quickly. If this is not the case, the

observed series has to be considered to be in the range of weakly stationary to

non-stationary, depending on its degree of autocorrelation. In the former case, as

well as for the stationary series, ARMA is suitable for representing the observed

process. However, for non-stationary series, ARIMA models are better

alternatives. Order of ARIMA(p,q,d) models are represented by their indexes.

Where p and q indicate the order of the embedded AR(p) and MA{q) models,

respectively. However d indicates the number of times the process has to be

differentiated before it becomes a stationary one. ARMA(p,g) for modeling a

{x(t)} process is presented in equation (7.6).
82

*t - i^t-i = zt + i 0jZt-j (7.6)
1=1 i= l

where x, is the best linear mean-square predictor of x, based on the data up

to time t-1, Zt is assumed to be a sequence of independent and normal distributed

random variables with zero and variance of0-2 U.d.~'N(0,a2)} and ,̂ and 9f are the

AR and MA coefficients, respectively. Note that AR(p), MA(q) models can be

obtained from equation (7.6) when taking q=0 and p=Q, respectively. Equation

(7.6) can also be written as (j>(B)xt = e(B)zt, where <#(•) and <?(»)are the pih and qxh

degree polynomials,

e{B)=\ + 6xB + ... + 9qB
q (7.7)

t{B)=l-hB-...-*pBP (7.8)

and B is the backward shift operator\pJx, =xl_i) [17]. Following this

methodology, ARIMA(p,q,d) models for non-stationary process are shown in

equation (7.9).

f{B% s4{B\\ - B)dX, = 6{B)zt (7.9)

83

Note that AR(p) may be considered as a way of differentiation if model

coefficients are close to unity [17], see equation (7.9); thus it is possible that

ARMA(p,q) or AR(p) can represent non-stationary processes when coefficients

are accurately selected. Note also that since IPG at the receiver side denotes the

first differentiation, d=\, of the packet delay time series, {D(t)}, ARMA(p,q) of

{iPG(t)} is equivalent to ARIMA(p,q,l) of {D(t)}.

In practice MA(q) models are called q-correlated processes, as their ACF is

reduce to zero for all lags greater than q. Hence, the ACF is a good indication of

the IsAA(q) order. However for a strongly correlated series, ACF tails off but

never approaches zero for any q values. In such cases, it is difficult to

characterize the process based on ACF only. For these cases, AR(p) models are

better alternatives. AR(p) models apply similar methodology as MA(q) models

for identifying the model order but, on the contrary, use the PACF function [17].

However, in general ARMA(p,q) and ARlMA(p,q,d) models are often used in

time series modeling, combining the benefits of the two previous models and

often providing lower order models.

Notice that in general ACF and PACF functions are assumed to reach zero,

or cut off, when lying within the 95% Confidence Interval [17].

7.1.3 OPTIMIZATION CRITERIA AND FITTING PROCEDURES FOR ARMA

M O D E L S

Although ARMA and ARIMA model order can go has high as the number of

available data samples, n, over-specified models may fail to distinguish the

84

systematic effects of the data from its random effects [17] [43]. Thus, it is our

goal to find a model that fits accurately the observed sampled data values with

the smallest number of parameters. Scoring methods have been developed to

quantify the relative goodness-of-fit of statistical models for a given data. These

methods add a penalty factor to the negative log-likelihood for each parameter of

the fitted model. One of the widely used methods is the Akaike's Information

Corrected Criterion (AICC). For an ARMA(p,q) process, the AICC score is

computed by [17];

AICC = -2\n(L(s))+
2nX^ + q^-

n-p-q-2
(7.10)

where n is the sample size and z,(?)is the Gaussian Likelihood of an ARMA

process with n observations.

$)- rexp-

271(7 ' W i

i ikj-xjf
2a2JlX 0-1 (7.11)

where rt_]=E[Xt~xtf fa and a2 is the white noise variance of the fitted

model, x, and xt are the modeled and actual data samples at time t,

respectively. The values p, q and a1 that maximize equation (7.11),/.(?)max ,is

called the Maximum Likelihood Estimator, which is interpreted as the ARMA

parameter values most likely to be responsible for the observed data values. As a

85

result, the model that has a lower AICC score is a better representation of the

process than those with higher scores. After selecting the right order of the

ARMA or ARIMA process, estimation of its parameters has to be done. Several

techniques exist for this. Yule-Walker and Burg procedures apply to the fitting of

pure autoregressive models, although the former can be adapted to models with q

> 0 its performance is less efficient that when q=0. On the other hand, Innovation

and Hannan-Rissanen algorithms are used also to provide preliminary estimates

of ARMA parameters when q > 0. For pure autoregressive models Burg's

algorithm usually gives higher likelihoods than the Yule-Walker equations. For

pure moving average models the Innovation algorithm often gives slightly higher

likelihoods than the Hannan-Rissanen algorithm. For mixed models the Hannan-

Rissanen algorithm usually gives better fitting. Detailed information on the

above mentioned techniques can be found in [17].

7.1.4 D I A G N O S T I C CHECKING FOR ARMA AND ARIMA MODELS

Prediction and modeling analysis using ARMA and ARIMA models

typically judges the goodness of fit of a statistical model to a set of data by

comparing the observed values with the corresponding predicted values obtained

from the fitted model. It is known that if the fitted model is appropriate, then the

residual should have properties consistent with those of a white noise sequence

[17][43]. Residuals, wt, are defined to be the rescaled one-step predictor errors

[17];

86

Wt=(xt-Xt)lf~x (7.12)

To check the appropriateness of the model we can therefore examine the

residual series and check that it resembles a WN(Q,l/n) sequence [17]. ACF/PACF

distribution, histogram and data plot generated from the model residual can be

compared to the expected generated by a fVN(0,i) sequence when evaluating the

correctness of the model [53].

7.2 ANALYSIS OF MEASURMENT DATA

In this section, experiment setup, methodology and results of end-to-end

packet delay modeling are presented. The data used for this analysis is from a

previous study described in detail in [59]. Here CBR UDP traffic streams of

20,000 packets each, corresponding to 64 and 256 bytes packet size, were sent

from California Polytechnic to Colorado State University, using Ixia 1600T

chassis [77] at both sides. Average one-way delay was found to be 22

milliseconds. Experiments were run on consecutive days at the same time to

maintain consistency. Non-peak times of the days were chosen when running the

experiments to keep cross traffic within a narrow range. End-to-end packet delay

and IPG values were collected for a variety of sending rates and packet sizes.

7.2.1 M E T H O D O L O G Y FOR FITTING ARMA AND ARIMA MODELS INTO

PACKET DELAY SERIES

The research presented in this section focuses on capturing the effect of the

network induced on a CBR flow of UDP probes, by means of finding an optimum

87

ARMA/ARIMA model that best represents the dynamics of the probe's packet

trace. In practice, this is mostly done by collecting consecutives packet delays

samples [59]. However, such an approach requires clock synchronization

techniques on both sides to prevent clock skew issues. Conversely, collecting

IGP samples is presented here as an alternative. IPG not only avoids the

synchronization dilemma between the sender and the receiver, but also represents

an alternative for modeling non-stationary packet delay processes, as was

explained in Section 7.1.2. Packet delay model can be obtained afterwards,

integrating the IPG model. Note that higher order of differentiation may be

needed in some cases.

For both packet delay and IPG modeling, AR and MA model order can be

estimated by observing the ACF and PACF distributions, respectively. These in

turn depend on probe's sending rate, as a fraction of the available link capacity,

and probe's packet size, as will be seen in Section 7.2.2. However, ARMA and

ARIMA represent a mixture of AR and MA models, and their orders are

calculated through scoring methods. Thus, although a change of the model order

is expected according to changes on the probe's sending conditions, a clear

relationship of the model orders to the probe's sending conditions can not be

expected, as it is on AR and MA models.

The analysis presented in this section studies the effect of the network

induced on a CBR flow of probes, by finding the most optimum ARMA/ARIMA

model which captures the dynamics of the observed probe's packet delay or IPG

88

series. A comparison of packet delay and IPG modeling approaches is given for

varied bit rate and packet size scenarios in the following subsections. Note that

for very low sending bit rate scenarios, as a fraction of the available link

capacity, packet delay autocorrelation is very weak and thus its distribution may

be enough to represent the process. However, this conclusion can only be

reached after examining the ACF/PACF distributions of the series.

7.2.2 M O D E L I N G RESULTS

Figure 7.1 shows the sample ACF of the packet delay series, for different

sending bit rates, using 64 bytes for packet size. ACF distributions for low

sending rates decay faster than ones coming from medium or high sending rates.

PACF distributions are shown in Figure 7.2 for four packet delay traces,

generated with four different sending bit rates; 0.25,1,30 and 70Mbps, also using

64 bytes for packet size. It can be seen from here that, as the lag increases all

PACF coefficients diminish to zero faster than their corresponding ACF, as was

anticipated in Section 7.1.1. However, we note that it takes a larger number of

lags for the PACF to die off for the one generated by the smallest sending bit

rate (0.25Mbps).

89

ACF for delay values

1_

o
r;

A
C

F
 F

a

0.75 |

0.5

0.25

1

5

5

5

0

- * e - 2 0 + ^ 0 . 5 0

Figure 7.1. ACF function for lag 1-20 of packet delay values for varied sending bit rates
(0.5 - 80Mbps) using 64 bytes packet size

1

0 0.75
o

1 °-5

^ 0.25

0

70

P A C F for delay values

- * — 3 0 + _ 0 . 2 5

Figure 7.2. PACF function for lag 1-20 of packet delay values for varied sending bit
rates(0.25,1,30 and 70Mbps) using 64 bytes packet size.

This can be explained since as sending bit rate increases, I P C s tend to

decrease [59] and thus adjacent packets get closer to each other and more likely

90

to be aligned together on the same buffer [10]. As a result correlation between

adjacent delay samples becomes stronger. When applying PACF, this chain of

dependency is broken (strong influence of intermediate samples is removed),

consequently PACF coefficients will decays faster than their corresponding ACF

ones. Since packet delay chain of dependency for high sending rates streams is

stronger than for low ones, it can be expected that PACF coefficients tend to

decay faster, as was anticipated in Section 7.1.1 , and previously observed on

[10].The inverse relationship between ACF and PACF coefficients (o and Tp)

can also be seen mathematically from equations (7.2), (7.3), and (7.4).

Table 7.1 shows results of the model fitting done for a set of sending bit

rates scenarios for the experiment set up described above. Order of the ARMA

models, as well as model parameters were obtained using the methodologies

presented in Section 7.1 and equation (7.10). ITSM package is used for the

model fitting [78]. Table 7.1 shows also the negative log-maximum likelihood

estimator,-2 in(z,(r)max), which represents the goodness-of-fit for the modeled

series [17]. Model that has lower -2in(z(j)max)is considered better fit for the

analyzed series, as explained in Section 7.1.3. From Table 7.1, it can be seen

that ARMA order selection for packet delay and IPG series show no clear

connection to the sending bit rate, as was anticipated in Section 7.2.1. Also as

the sending bit rate increases, greater than 70Mbps for this experiment set up,

model order for both series tend to decrease. This can be understood due to the

91

fact that PACF for packet delay and IPG decays faster as sending bit rate

increases, see Figure 7.2.

End-to-end Packet Delay and IPG Modeling Fitting

Sending
Bit Rate

0.5 Mbps

1 Mbps

10 Mbps

20 Mbps

30 Mbps

40 Mbps

50 Mbps

70 Mbps

80 Mbps

ARMA model for packet delay
series

P

3

6

2

1

1

7

1

1

1

9

4

6

7

7

6

5

6

0

0

-21n(/ , (?)m a x)

6.06E+03

4.35E+03

-2.33E+04

-3.96E+04

-4.27E+04

-.486477E+05

-.535692E+05

-.799783E+04

-.125418E+05

ARMA model for IPG series

P

4

3

7

7

1

7

4

1

1

9

5

3

1

5

7

7

4

0

0

- 2 1 n (l (?) m a x)

6.12E+03

4.47E+03

-2.32E+04

-3.95E+04

-4.26E+04

-.485815E+05

-.535711E+05

-.800136E+04

-.125485E+05

Table 7.1. End-to-end packet delay model fitting for different sending bit rate scenariosn using 64
bytes packet size.

Figure 7.3 and 7.4 show the ACF and PACF distributions for packet delays

for varied sending bit rate scenarios for 256 bytes packet size. From here, it can

be seen that autocorrelation of the process at different points in time is weaker

than the one observed using 64 bytes packet size for the same probe sending rate.

This is expected since sender IPG for these scenarios are 4 times bigger than

with corresponding 64 packet size cases for the same probe stream bit rate.

92

From Figure 7.4 it can be seen that PACF coefficients die off abruptly after a

small number of lags, in fact, for sending bit rates higher than 10 Mbps PACF

distribution cuts off after the second lag. This phenomenon tells us that the chain

of dependency of intermediate samples is easily broken, see Section 7.1.1.

s_

o
t> 05
LL
LL

%

1

0.75

0.5

0.25

0

A C F for de lay va lues

- * — 5 0

Figure 7.3. ACF function for lag 1-20 of packet delay values for varied sending bit rates
(0.5 - 80Mbps) using 256 bytes packet size.

93

PACF for delay values

1

0 0.75

1 0.5
LL

% 0.25

0

-m— 80 —X— 50 —•JK— 20 —-•— 1

Figure 7.4. PACF function for lag 1-20 of packet delay values for varied sending bit rates
(0.5 - 80Mbps) using 256 bytes packet size.

Comparing Figure 7.4 to Figure 7.2, it can be seen that the chain of

dependency of intermediate packet samples does not only depend on probe's

sending bit rate but also on probe's packet size. Thus, it can be expected that

auto-regressive models of packet delay and IPG series will vary according these

two parameters, and thus both have to be considered when extracting the effect

of the network on the captured packet stream.

94

End-to-end Packet Delay and IPG Modeling Fitting

Sending
Bit Rate

0.5 Mbps

1 Mbps

10 Mbps

20 Mbps

30 Mbps

40 Mbps

50 Mbps

70 Mbps

80 Mbps

100 Mbps

ARMA model for packet delay
series

P

5

4

6

q

7

1

4

0

0

0

0

0

0

0

-2l"(4)max)

1.99E+05

1.80292E+05

1.43592E+05

1.6921E+05

1.2275E+05

1.4591E+05

1.41872E+05

1.37721E+05

1.3579E+05

1.3991E+05

ARMA model for IPG series

P

5

3

2

2

2

q

7

1

2

2

-2 In (4 Lax)

2.00E+05

1.80492E+05

1.43871E+05

1.67212E+05

1.22264E+05

1.4517E+05

1.41851E+05

1.37531E+05

1.3521E+05

1.3972E+05

Table 7.2. End-to-end packet delay model fitting for different sending bit rate scenarios using 256
bytes packet size.

Table 7.2 shows the results of the model fitting done for a set of sending bit

rates scenarios for 256 bytes packet size. Results were obtained in a similar

manner to those in Table 7.1. From Table 7.2 it can be seen that ARMA model

orders, for both packet delay and IPG series, decreases rapidly for sending bit

rates higher than 10Mbps. This can be expected from the PACF distribution

observed in Figure 7.4. By comparing results obtained from Table 7.2 to the ones

observed in Table 7.1, it can be concluded that the packet delay model becomes

95

an AR process at smaller sending data rates for the 256 bytes packet size

experiment than for the 64 bytes packet size one. Also, in general ARMA packet

delay and IPG models show lower orders for the 256 bytes packet size cases than

their corresponding 64 bytes packet size cases. This can be explained since both

ACF and PACF distributions decay faster for 256 bytes packet size than for 64

bytes packet size. From here it can be concluded that ACF and PACF

distributions and therefore ARMA/ARIMA models depends not only on the

probe's sending data rate but also on the probe's packet size.

Note that since the above experiments were conducted at non peak times of

the day, network cross traffic remained within a narrow range. Thus non-

stationarity of the observed packet delay samples was modeled successfully

using ARIMA(p,q,d), where d={0-l} , and not higher orders of d were needed.

fi?=0 represent the ARMA model of packet delay and d=\ the ARMA process of

IPG. Modeling efforts presented in this research aim at generating ARMA

models which characterize the overall behavior of a packet delay or IPG trace,

and not to obtain a perfect match of these ones at any given time. In the next

subsection goodness of fitting for these ARMA models is tested.

7.2.3 G O O D N E S S OF ARMA MODEL FITTING VS. TIME SERIES DYNAMICS

In this subsection the goodness of the fitted packet delay and IPG ARMA

models presented in Section 7.2.2 is tested. Goodness of fitting results is related

to the characteristics of the packet streams that originate each of them. In this

research characteristics of packet stream dynamics are captured by two

96

complementary means; range of dependency of packet samples, and degree of

non-stationarity of packet trace. The former is measured by the ACF distribution

of the collected data packet trace; packet delay and IPG series. Range of

dependency of trace samples can be categorized by fitting the ACF distribution

into a Zipf function, as shown below:

ph~h-2+2H (7.13)

where/?/; is the autocorrelation coefficient at lag h, and H e{Vi,\} is the

Hurst parameter [11]. Range of dependency of trace samples can be analyzed by

means of the H value. H» 0.5 indicates a true random walk, which denotes no

correlation between samples [17]. Short-Range Dependent (SRD) and Long-

Range Dependent (LRD) traffic, follow onto the 0.5 < H < 1 range. However,

SRD traffic exhibit H values closer to the lower boundary, in which ACF

distribution shows an exponential rate of decay. While H values for LRD traffic

get closer to the higher boundary as traffic gets more autocorrelated. In general,

the essential contrast between SRD and LRD traffic lies on the fact that the

former represents a Poisson-like traffic, while the latter represents traffic bursty

in nature [6].

97

2 0.4
3
X

0.2

0.0

Packet Size=64 Bytes
Packet Size=256 Bytes

•&

20 40 60 80

Sending Bit Rate(Mbps)

100

Figure 7.5. Hurst parameter of the packet delay values for varied sending bit rates (0.5-
80Mbps) using 64 and 256 bytes packet size.

ACF distributions of packet delay traces obtained from the experiment

described in Section 7.2 were fitted into a Zipf distribution using Matlab Curve

Fitting Toolbox [82]. Figure 7.5 shows the H parameters for packet delay samples

for varied sending bit rates using 64 and 256 bytes packet size. From here it can be

seen that H increases asymptotically along with the sending bit rate, as a traffic

changes from SRD to LRD. Low sending bit rate, compared to the available link

capacity, exhibit H~ 0.5, which denotes traffic dynamics resemble a random walk

process [6]. From Figure 7.5 it can be seen that H rises faster and higher for the

64 bytes packet size than for the 256 bytes packet size scenario. Peak values of H

98

are reached at sending bit rates greater than 50Mbps, for both 64 and 256 bytes

packet size.

Conversely, to describe the degree of non-stationarity on a packet delay

trace, the Index of Dispersion of Intervals (IDI) is used. In general IDI measures

the dependence between consecutives samples on a trace, and it is often used to

2
describe the burstiness of a signal [65]. IDI is defined as a sequence {<^ }, k >1,

where;

2 kVaASk)
Ct"WJf (714)

and the random variable £# is the sum of k consecutives samples on a trace.

2
If the trace represents a Poisson process, then c^ =1 for every k. However if

2
process has higher variance at some time scale, then c^ will tend to increase as a

function of k [35].

99

1000

9 800
e
0
'w 600
&

| 400

I 200

0 *•

1Mbps

-A 20Mbps i

• 50Mbps

- • 70Mbps |

• •

10 100
Consecu t i ves Intervals (k)

(7.6.a)

1000

1000

800

600 •s
1/1

J5 400

I 200

o *-

-1Mbps

-*——-20Mbps

••- 50Mbps

- • -70Mbps

. . • "

„ s - = = fc = | r 3 g H t e ^ ! (y<*

10 100

Consecutives Intervals (k)

(7.6.b)

1000

Figure 7.6. IDI for blocks of k consecutives packet delay samples for varied sending bit
rates, (a) using 64 bytes packet size, (b) using 256 bytes packet size.

100

Figures 7.6.a and 7.6.b show the IDI for the packet delay traces obtained

from the experiment described in Section 7.2, using 64 and 256 bytes,

respectively. From Figure 7.6 it can be seen that packet delay distribution can be

fitted as stationary Poisson process for low sending bit rates, compared to the

available link capacity, for both 64 and 256 bytes packet size cases. However, as

sending bit rates increases processes tend to get more non-stationary. This

phenomenon gets more notorious for 64 bytes packet size than for 256 bytes

packet size. In general, results of Figure 7.6 agree and complement the ones

observed in Figure 7.5.

Goodness of fitted ARMA models is measured by analyzing the randomness

of the residual, as was explained in Section 7.1.4. In this research test for

checking the hypothesis that residuals are independent and identical distributed

(iid) sequence are performed by two means, by analyzing the normality of the

residuals and by measuring the amount of autocorrelation on the residual

samples.

Normality of the residuals is checked by means of the Normal Quantile-

Quantile plots (q-q plots). Normal q-q plots are a graphical method for

diagnosing differences between the probability distribution of a statistical

population from which a random sample has been taken, and a comparison

normal distribution [17]. If samples belongs to a normal distribution, points of

the normal q-q plots will straggle about the line y = x. In general normality of a

trace is measured by the R2 value obtained by comparing the points of the q-q

101

plots against the y = x line. If R is closer to one, then the residuals can safely

be assumed to be normally distributed, however assumption of normality is

rejected if R2 is sufficient small [17].

Conversely, the Ljung-Box Test is used to measure the amount of

autocorrelation on the residual samples. The Ljung-Box test is based on the

autocorrelation plots, which are commonly used to test the range of dependency

on the samples. However, instead of testing randomness at each distinct lag, it

tests the overall randomness based on a number of lags [17]. The Ljung-Box test

statistic is calculated as:

1=1

where n is the sample size, Pj is the autocorrelation at lag /, and k is the

number of lags being tested. The hypothesis of randomness is rejected if

Q > X\-a;k , where X\-a-,k is the critical value of a chi-square distribution with k

degrees of freedom [17]. In general, critical values are cut-off values that define

regions where the test statistic is unlikely to lie [17]. Critical values for a

hypothesis test depend upon a test statistic, and the significance level, a, which

defines the test sensitivity [83]. It is a common practice to use a = 0.05, which

implies that the null hypothesis is rejected 5% of the time when it is in fact true

[83]. Another measurement of testing the mentioned hypothesis is by means of

102

ft
n — l

(7.15)

the p-value. The p-va\ue is formally defined as the probability of the chi-square

test statistic being at least as extreme as the one observed given that the null

hypothesis is true [83]. In general, a small p-value is an indication that the null

hypothesis is false. In addition, p-value is analogous to the significance level for

the test, a. For instance, rejecting the null hypothesis for a=0.05, it is equivalent

of rejecting the null hypothesis for p-value smaller than 0.05 [83]. In this

research degree of autocorrelation of the residual samples is measured, in the

context of the Ljung-Box Test, by analyzing the/?-value for a a=0.05 condition.

Figure 7.7 shows the normal Q-Q plot residual samples of fitted ARMA

models for packet delay and IPG traces for varied sending bit rates using 64

bytes packet size. As it can be seen from here, points of the normal q-q plots

differ from the y=x line as the sending bit rate increases. As a result, R2 value for

both packet delay and IPG normal residual analysis decreases as the sending bit

rate increase. From Figure 7.7 also it can be seen that for high sending bit rate

scenarios, IPG sample residual analysis shows better resembles to a normal

distribution than the corresponding packet delay model.

103

10
a)

nt
il

as 3
u
•8
2
8
8

5

3

1

-1

-3

-5

R2=0.68

- 3 - 1 1 3

Theoretical quantiles

a)
1 3
co

s 1
I
8 -3

-1

R2=0.68

- 3 - 1 1 3 5

Theoretical quantiles

-y=x
-1 Mbps Packet Delay, uisng 64 bytes packet size

• y=x
• 1 Mbps IPG, uisng 64 bytes packet size

- 3 - 1 1 3

Theoretical quantiles

— y=x
~ 20 Mbps Packet Delay, uisng 64 bytes packet size

c
CO

cr

1
I

- 3 - 1 1 3

Theoretical quantiles

y=x
- a - - 20 Mbps IPG, uisng 64 bytes packet size

1 3 c
TO
3
cr

73
0)
£
(D
<n

_Q

O -3

-5
- 3 - 1 1 3

Theoretical quantiles

- 3 - 1 1 3

Theoretical quantiles

-y=x

• 70 Mbps Packet Delay, uisng 64 bytes packet size

-y=x

• 70 Mbps IPG, uisng 64 bytes packet size

Figure 7.7. Normal Q-Q plot residual of fitted ARMA models for packet delay and IPG
traces for varied sending bit rates using 64 bytes packet size.

104

In Figure 7.8 the normal Q-Q Plot Residual R2 values for test of randomness

for residual of fitted ARMA models for packet delay and IPG traces for varied

sending bit rates and packet sizes is shown. As it can be seen from Figure 7.8, both

packet delay and IPG model residual series differ from a normal distribution,

within a narrow range, as the sending bit rate increases. In general, Figures 7.8

and 7.7 show that model residual for both, packet delay and IPG processes, can

be assumed to be normally distributed. However, residual sample distribution

differs from normal distribution, within a narrow range, as sending bit rate

increases.

| 0.00

0 20 40 60 80
Sending Bit Rate(M bps)

Packet Delay - 64bytes
» -« _ »IPG- 64bytes
— * — — P a c k e t Delay - 256bytes

X- -IPG-256bytes

Figure 7.8. Normal Q-Q Plot Residual R2 values for test of randomness for residual of fitted
ARMA models for packet delay and IPG traces for varied sending bit rates and
packet sizes.

105

From Figure 7.8 it can be concluded that IPG is less susceptible than the

corresponding packet delay processes, for a given sending rate and packet size

scenario, to this phenomenon. Also that model residuals generated with 256

bytes packet size show better resembles to a normal distribution than the

corresponding 64 bytes packet size scenarios.

r 0.60

o
m
CTi

§ 0.30

:> 0.00

0 20 40 60
Sending Bit Rate(M bps)

80

Packet Delay - 64 bytes
-a « -IPG-64bytes

-»*•»—Packet Delay- 256bytes
, x - -IPG-256bytes

Figure 7.9. p-values of Ljung-Box test of randomness for residual of fitted ARMA
models for packet delay and IPG traces for varied sending bit rates and packet
sizes.

In Figure 7.9 the/?-values of the Ljung-Box test of randomness for residual of

fitted ARMA models for packet delay and IPG samples for varied sending bit rates and

packet sizes is shown. From here it can be seen that the /?-value of the Ljung-Box
106

Test for packet delay series generated with sending bit rates greater than 70Mbps

and 64 bytes packet size, are lower than 0.05, which implies that the null

hypothesis is rejected for the residual samples of these cases. However, for all

the other cases the p-value of the Ljung-Box Test shows values greater than 0.05,

which implies that residual samples have low dependency. In general, results of

Figure 7.9 reach similar conclusion that the ones observed in Figure 7.8.

In a nutshell, it can be stated that the analyzed packet delay and IPG traces

show accurate goodness of ARMA model fit for all the analyzed sending

conditions. Goodness of ARMA model fit deteriorates as the sending bit rate

increases, and shows stronger robustness for the 256 bytes scenario than the 64

bytes scenarios. In general, goodness of ARMA model fit for packet delay and

IPG processes is similar for small sending bit rate. However, as sending bit rate

increase IPG shows a better alternative for network system modeling. This can

be understood due to the fact that sending bit rate increment creates non-

stationarity and autocorrelation on the sample trace. ARIMA models are more

suitable when modeling such a series, and it was previously mentioned in Section

7.1.2, ARMA for IPG traces represents an ARIMA(p,q,l) for packet delay traces.

Finally, it can be concluded that goodness of ARMA model fit agrees with the

corresponding characteristics of the analyzed packet traces dynamics.

7.3 R E M A R K S

This chapter discussed the impact of packet delay and IPG on the network

system modeling. Methodology, results, and remarks for network system

107

modeling, by means of time series techniques, based on packet delay and IPG

observations under weakly-stationary network conditions has been presented in

this chapter. The impact on packet autocorrelation on capturing the network

system dynamics has also been investigated here.

Finding presented in this chapter concludes that the behavior of end-to-end

packet delay and IPG sequences can be captured effectively by ARMA and

ARIMA models, under weakly-stationary network conditions and using CBR

probe flows. Effects of sending bit rate, packet size, and available link capacity

on network system modeling has been analyzed. Under these conditions, model

goodness-of-fit results demonstrate modeling accuracy for both packet delay and

IPG processes under small sending bit rate conditions. However, as sending bit

rate increases, as a fraction of the bandwidth, IPG becomes better alternative for

network system modeling.

108

CHAPTER 8. AN ONLINE METHODOLOGY FOR

MODELING NON-STATIONARY END-TO-END PACKET

DELAY

In CHAPTER 7 end-to-end packet delay dynamics were modeled using time

series techniques under weakly stationary network conditions. In this chapter

this analysis is extended to network systems under non-stationary conditions.

In Section 8.1 the impact of non-stationatity when modeling network system

dynamics is analyzed. Factors that create non-stationarity and Long Range of

Dependency (LRD) on packet sample observations are presented in Section 8.1.

In addition, traditional methods for modeling non-stationarity network systems

are critiqued and a novel approach is proposed.

In Section 8.2 the effect of non-stationarity on packet delay is explored and

real evidence of false sense of LRD on packet delay is presented. In Section 8.3 a

methodology for modeling time variant packet delay series is presented based on

adaptive AR model and Kalman Filtering algorithm.

In Section 8.4 a modified version of the Divergence-Test [9] is proposed for

online segmentation of packet delay traces. Such method is based on the non-

stationary of the packet delay observations.

Section 8.5 presents the experiment setup, methodology and results of the

proposed methodology for segmenting non-stationary packet delay traces.

109

Abundant measurements of packet delay over the Internet under various

conditions are used for testing the proposed methodology. Experiment results

demonstrate a potential online packet delay classification capability of the

proposed algorithm based on the non-stationary of the observations, while

keeping computational and storage requirements low. In general, results shows

that analyzing packet delay processes by modeling the segmented stationary

traces yield to a better understanding of the network system dynamics.

8.1 I M P A C T OF NON-STATIONARITY ON NETWORK SYSTEM DYNAMCICS

In CHAPTER 3 the theoretical foundation for network system modeling

based on packet delay have been presented. In addition, system characterization

based on real measurements has been presented in CHAPTER 7. Modeling

efforts shown in CHAPTER 7 assumes weakly stationary network conditions.

However it is well known that packet delay, among many Internet traffic metrics,

may change in time due to several factors [35], and thus system can be become

non-stationary.

Although network link congestion is considered as the main reason for non-

stationarity and strong autocorrelation, also known as LRD, on packet delay

observations [6], it has previously been demonstrated that other network

conditions, such as link failure, routing table updates, and routing flapping [35],

can also be responsible for this phenomenon. In practice it is common to observe

patterns of periodic spikes, bursty behavior, and level shifting in packet delay

traces. One of the most important factors that LRD introduces into time series is

110

non-stationarity [17] [35]. However random spikes and irregular events on the

network system can indeed create a false sense of LRD on the observations.

When modeling non-stationary systems, traditional time series

methodologies rely on transforming them into stationary ones by means of

differencing techniques [17]. However, in the context of packet delay modeling,

such an approach may fail of distinguishing uneven events responsible of

creating false sense of LRD on the packet traffic since it only captures the

overall behavior of the system during the observation period.

Consequently, segmenting the observation's trace into groups of stationary

time series has been proposed as an alternative solution. Time series

segmentation is considered a useful approach for quantifying a piecewise-

stationary series [35], since it represents the observed trace as a number of time

series that are themselves stationary [29] [58]. Analyzing packet delay

observations by modeling the segmented stationary series yields a better

understanding of the network system dynamics and lead to more accurate

modeling and prediction analysis.

Segmentation of a packet delay trace based on its observed non-stationarity

is a complex task. In general, obtaining an exact segmentation of a non-

stationary time series demands tremendous computation requirements that scales

as 0(NN), where N is the number of packet delay [29]. In addition, packet delay

observations may require enormous storage requirements depending on the

length of the experiment and the probe's sending conditions employed, when

111

analyzed offline. Moreover, collecting and storing packet-by-packet data may be

impractical and unnecessary for offline analysis; such an approach can also be

considered to be extremely computationally expensive for modeling, prediction,

and flow control mechanisms when conducted in an online manner.

In this chapter we propose a novel approach for online packet delay

segmentation and modeling based on the non-stationarity of the samples. The

proposed methodology aims at modeling, in real-time, the effect of the network

dynamics induced into a packet flow traversing it, while keeping computational

and storage requirements low. This methodology, which is based on the

Divergence-Test [9], separates the observed packet delay trace into segments in

which each segment is represented by a different statistical model(AR model)

[17]. A segment is generated only when a significant change on the packet delay

dynamics is detected. Each segment represents a stationary process, which is

uncorrelated to the others. The proposed methodology employs an embedded

Kalman Filtering algorithm to recursively update the system statistical model

based on the current observation and the past modeled network system stage. The

online segmentation methodology compares the distance between the updated

system model and the model of the previous stationary segment detected [9],

when deciding if segmentation is needed.

Low memory storage requirement is one of the main benefits of the

proposed mechanisms. This is achieved, due to the fact that only key statistical

model parameters of the detected segments are stored in memory, as opposed of

112

storing every given observed packet delay sample. Notice that the proposed

modeling and segmentation mechanism does not attempt to detect instantaneous

changes of the packet delay observations; on the contrary, its segmentation

process is triggered by the non-stationarity of the observations. In addition, the

adaptive behavior of the proposed methodology offers the capability of

understanding the dynamics of the network system online, which can be used for

real-time decision making. Moreover, the proposed mechanism accomplishes a

tradeoff between the complexity of the calculations and the desired precision of

the results. The proposed segmentation methodology is explained in detail in

Section 8.4.

8.2 E X P L O R I N G LRD ON PACKET DELAY SERIES

Packet delay dynamics varies in time according to network conditions, such

as link congestions, link failure, routing table updates, and routing flapping

(which may appear at link failure situations), among others [35]. Such

phenomenon tends to vary packet delay characteristics in time, among them,

packet delay autocorrelation, which is a key factor for modeling the network

dynamics [59] [69].

Although network link congestion is considered to be one of the main

reasons for LRD on traffic samples [6], network spikes can also create a false

sense of LRD on packet delay samples [35]. Failing to distinguish and separate

irregular events like these may lead to misinterpreted results [35].

113

To illustrate the effects discussed above, real packet delay values in terms

of one-way delay (OWD) traces were collected and are analyzed below. These

traces were collected from the Evergrow Traffic Observatory Measurement

Infrastructure (ETOMIC) European project [80]. ETOMIC is a measurement

infrastructure, which is focused on realizing a pan-european measurement

infrastructure, consisting of a number of measurement nodes deployed at selected

European locations [50]. ETOMIC offers to the scientific community a

measurement platform for conducting multiple types of traffic and network

measurement experiments, among them, analysis of packet delay measurements

between nodes. In addition, ETOMIC conducts periodic measurement

experiments, results of which are provided to the scientific community as open

repositories [80].

ETOMIC offers a high-precision infrastructure, based on hardware specially

created and modified according to the project requirements; such as for example,

packet trains may be transmitted with strict timing, with resolutions in the range

of nanoseconds. Furthermore, a GPS system is incorporated to the measurement

nodes to synchronize the infrastructure to the same reference clock. For further

information refer to [50] [80].

114

H

0 200 400 BOO BOO 10CD 1200 1400 1600 1800 2000

Samp les

(8.1.8)

0 400 BOO 1200 1600 2000 2400 2800 3200 3600 4000

Samples

(8.2.a)

A C F for d e l a y va lues

21

Lag
4 Region 1

-«s Repion 3
- Region 2
_ A!LBegjpns_

8 0.75
u- 0.5
^ 0.25

0

ACF for delay values

UtMlAitiutttto ll 111 • m m i i » a . y l l | | | . . m t

21

Lag
i Region 1
a Region 3

Region 2
AJI Regions

(8.1.b) (8.2.b)

R e c u r r e n c e Plot for P a c k e t D e l a y R e c u r r e n c e Plot f o r P a c k e t D e l a y

1000 1500
S a m p l e s

(8.1.C) (8.2.c)

Figure
8.1. Packet delay analysis for scenario;
130.206.163.166 -» 157.181.172.103,
(8.1 .a) Packet delay trace, (8.1 .b) ACF
distribution of packet delay trace, (8.1.c)
Recurrence plot of packet delay trace.

Figure
8.2. Packet delay analysis for scenario;
130.206.163.166^ 132.65.240.106,
(8.2.a) Packet delay trace, (8.2.b) ACF
distribution of packet delay trace, (8.2.c)
Recurrence plot of packet delay trace.

115

Figure 8.1.a shows 2000 OWD samples collected from the ETOMIC

repositories. Samples represent an experiment measurement conducted between

two nodes in the ETOMIC infrastructure conducted on March, 2006. Packet

probes were sent from 130.206.163.166 -> 157.181.172.103, traversing 18 hops,

at 1 pps rate and using 46 byte packet size (entire packet length). Figure 8.2.a

shows 4000 OWD samples also collected from the ETOMIC repositories. Packet

probes were sent from 130.206.163.166 -» 132.65.240.106 in August, 2006,

traversing 15 hops, at 1 pps and using 46 bytes packet size. Average OWD of the

collected samples were 35.33 and 45.44 msec respectively, for the first and

second experiments. Note that the offset, minimum value, of the OWD traces has

already been removed in Figures 8.1.a and 8.2.a. From Figures 8.1.a and 8.2.a it

can be seen that packet delay changes in time immensely due to one or many of

reasons explained before. Packet delay traces have been segmented manually in

regions according to their observed nature. Each trace has been segmented to

three regions and shown in Figures 8.1.a and 8.2.a. It is apparent that region R2

in Figure 8.1.a is the product of a level shift, possibly caused by routing

flapping. However, the gradual ramping behavior of region R2 shown in Figure

8.2.a is likely to be due to incremental packet queue congestion. In both cases

the statistical properties of the packet delay series are different in each region,

and thus different from each the entire trace.

Figures 8.1 .b and 8.2.b show the Auto Correlation Function (ACF)

distribution of the corresponding packet delay for the entire trace and for each

segmented region. In general ACF distribution describes how well a series
116

matches a time-shifted version of itself as a function of the amount of time shift

[17]. Previous studies [59][69] have analyzed the relationship between ACF

distributions and probe's sending conditions. For further information on ACF

calculation and ACF properties refer to [17].

From Figures 8.La and 8.2.a and 8.1.b and 8.2.b. it can be seen that ACF

changes drastically due to the presence of region R2 on both traces. ACF

distributions of Figure 8.1.b for all three regions denote weak sample

autocorrelation. However the entire trace shows clearly LRD of its samples, due

to the level shifting. In Figure 8.2.b only region R2 shows clear LRD among its

samples. Consequently, the ACF of the entire trace also exhibits LRD, just due to

the network stage change observed on region R2.

Figures 8.1.c and 8.2.c show the Recurrence Plots (RP) for the packet delay

samples shown in Figures 8.La and 8.2.a, respectively, and were obtained using

[45]. RP were first introduced in [24].

RP is a two dimensional representation, which denotes all those times at

which a state of the dynamical system recurs [24], or in other words, reveals all

the times when the phase space trajectory visits roughly the same area in the

phase space [45]. Recurrence is a fundamental feature of many non-linear

dynamic systems, and has been previously used to study the non-stationarity of

processes [24]. Interpretation of RP can be summarized for the study of non-

stationarity processes as follows [45].

117

••• Homogeneity; The process is stationary.

••• Fading to the upper left and lower right corners; Non-stationarity. The

process contains a trend or drift.

••• Disruptions (white bands); Non-stationarity. Some states are rare or far

from the normal behvaior.Tansitions may have occurred.

t Single isolated points; Heavy fluctuation in the process. If only single

isolated points occur, the process may be an uncorrelated random or

even anti-correlated.

Based on the RP interpretations and by inspecting both Figures 8.1 and 8.2

it can be seen that in fact the white bands shown on both Figures 8.1.c and 8.2.c

denote transition stages which require the creation of a new series segment. Also,

it can be seen that regions are filled uniformly, which also indicates segments are

indeed stationary, with the exception of region R2 of Figure 8.2 in which a

packet queue congestion trend is observed.

From the results presented above it can be concluded that, although ACF is

believed to be mainly driven by queuing delay [6], and thus it is often used as a

measurement of network link congestion [59], this metric may change drastically

in time due to other stimulus, such as link failures or routing table update, which

may disappear rapidity. Also, it can be seen that contribution of small abnormal

events on the observations may alter considerably the ACF distributions of the

118

entire packet delay trace. Consequently, a false sense of LRD on packet delay

samples can be created, which may lead to misinterpreted model results.

8.3 S T A T I S T I C A L M E T H O D O L O G I E S FOR MODELING NON-STATIONARY

END-TO-END PACKET DELTA S E R I E S .

Auto-Regressive (AR) models is one of the most widely used methods for

statistical time series modeling and prediction [10] [17]. AR(p) models represent

a process in which the observation at time t is a weighted average of the most

recent p previous observations in the series [17]. Selection between AR and

ARMA models depends on the computational complexity. In general, AR model

is much simpler to handle [33] and its performance has been proven to be

adequate for many applications [10].

Considering an end-to-end packet delay time series, {D(t)},dt can be

estimated as a linear summation of its previous observations by use of a scalar

AR process of order p, AR(p), [17]. and it is given by equation (8.1).

P
dt = 'Zakdt_i+et (8.1)

/=1

where, et is assumed to be a sequence of independent and normal

distributed random variables with zero mean and variance a2 \i-d.~~N(0,cr2)\ [17].

Traditional time series models, such as AR models, focus on modeling systems

in which their statistical properties change slightly with time or do not change at

119

all. Such systems are known as stationary or weakly stationary, and are rare to

find or just occur for moderate periods of time on real-life observations.

Nevertheless, dynamics of real systems, such as Internet traffic, tend to

change in time according to many factors. Traditional AR models need to be

updated recursively in time to reflect such effects. Such models are known as

adaptive AR (AAR), in which the autoregressive coefficients, ak , change in time

to capture the dynamics of the system. In general, AAR offers a solution for

modeling time variant systems. AAR has been used extensively for modeling

time variant systems [5][24][33]. In this context, equation (8.1) can be re-written

as;

dt=J)fAt+et (8.2)

where A, and D, are shown in equations (8.3) and (8.4), respectively. Note

that all boldface variables are vectors or matrices.

At = (a\,t>a2,t>->ap,tf (g 3)

Dt=(dt_i,dt,...,dt_py (8.4)

Vector of AR coefficients, A,, is no longer time invariant, on the contrary,

it changes in time reflecting the system dynamics. It has been previously
120

demonstrated [30] that in general the evolution of A, can be characterized as a

first order Markov process, with small changes in the state, as shown below

[5][24];

At+l=At+wt (8.5)

where wt is a zero-mean white noise. Equation (8.5) indicates that the AR

coefficients, akf, change in time in a random walk manner and assume small

changes in the state. An alternative is to estimate A, by means of prediction

techniques based on the system observations. Among them, Kalman Filtering

algorithm has been widely used. Kalman Filtering algorithm is an efficient

recursive technique which estimates the state of a dynamic system from a series

of incomplete and noisy measurements [30]. A basic condition for using the

Kalman Filtering algorithm is that the series model has a representation in state-

space form, consisting of two joined linear equations; the state equation and the

observation equation [30]. For the end-to-end packet delay process, the space

equation is represented by equation (8.2) and the state equation is represented by

equation (8.5).

In the context of the Kalman Filtering algorithm, the system stage and the

AR coefficient's vector, A, , can be recursively estimated as follows [30];

121

P A , H - P A M
 + C w M (8.6)

K^=PA D ' | D f P A Vt+Ce\ (8.7)

P A r (, -K ,Df)p A (M (8.8)

At+1=At+Kt(dt-DtAt) (8.9)

where A?=A<-A? is the estimation error, K, is the Kalman Filter gain

vector, and c, and cw denote the covariance of e, and wt, respectively, P? is the

so called error covariance matrix, which is used to measure the stability of the

system. cw is estimated as shown in equation (8.10) by means of an updated

coefficient,uc, and knowledge of the system's previous state [24]. For further

information on cWi estimation refer to [24].

UC*trac<iYi
r v A'-^J (8.10)

In [63], a methodology for selecting uc and the model order,/?, is proposed,

such as the estimated AAR model best describe the analyzed process. For further

information on uc estimation refer to [63]. Finally, it can be seen that the

122

estimation of the state noise covariance matrix, cWi, presented in Equation (8.10)

is based on the prediction error from a single prediction and therefore

statistically unreliable [21]. For cw to be reliable estimated, it is necessary to

calculate the prediction error over a window of samples [21]. An alternative

approach is to smooth cWi, as shown below, where a is the smoothing parameter.

CWt=a* CWf] + (l - a)* CWf (8.H)

8.4 A COMPUTATIONAL EFFICIENT METHOD FOR SEGMENTING NON-

STATIONARY PACKET DELAY SERIES

Modeling packet delay by means of Kalman Filtering algorithm requires to

update the recursive equations presented in Section 8.3 for any given packet

delay sample. Although this approach yields an accurate up-to-date model of the

trace dynamics, it can be seen that it produces p+1 parameters for any given

sample. Collecting and storing this amount of data at a packet-by-packet

granularity may be impractical and unnecessary for offline analysis, and

extremely computational demanding for online modeling, and online network

congestion control mechanisms.

However, considering that it is the goal of this analysis to fit the packet

delay dynamics of the samples within each stationary segment into AR model,

and not to model extensively the packet-by-packet delay behavior, it is

considered a more efficient approach to report and store only AR models that

123

represent significant changes on the packet delay dynamics. In this chapter we

propose to achieve this by employing an online modeling and segmentation

algorithm, which compares the distance [9] of the current AR model against the

AR model that represents the previous stationary segment detected. If distance is

small, the current sample belongs to the previous stationary AR model, if not a

new segment needs to be created. Notice that the AR model of each segment

governs the dynamics of the packet delay samples within the segment.

Stationarity of the observations depends on several factors, such probe's

traffic conditions, network link congestion status, and network changes, among

others. It is expected that weakly stationary packet delay traces need few

segments, or maybe just one. However, non-stationary packet delay traces may

need many more.

In the past, previous efforts on online [36] and offline [58] segmentation of

time series have been conducted. Techniques based on the statistical properties

of time series [29][36][44][58], power spectral analysis [1], and tracking the

roots of ARMA processes [54], among others, have been proposed. Many of

them are used in application such digital signal processing, voice recognition [4],

and biometric related analysis [54], in which level shifting and peak detection is

key for the application.

However on the study of Internet end-to-end packet delay, the goal of

segmentation is to reflect significant changes on the probe's packet delay

dynamics, which indeed reflect variations on the network stage, and not to detect

124

instantaneous changes on the sample trace. Thus, in this chapter we propose an

online methodology for packet delay series segmentation which requires storing

low amount of data and low computation overhead. Memory storage capacity

requirements and computational overhead produced by the proposed algorithm

are analyzed and quantified in Section 8.4.2.

The proposed method uses the Divergence-Test [9], which is based on

measuring and monitoring the distance between two models, Oo and Oi. Figure

8.3 shows Oo and Oi. Oo and Oi are the two AR models to be compared, and are

composed by n and L samples, respectively, where n < L. In the context of the

proposed algorithm <£>i represents a subset of the first n samples of O0, as shown

on Figure 8.3.

• •

1 n

1 L

Figure 8.3. Location of $ 0 and $] models for the divergence test
method.

125

The distance measure is derived from the cross entropy between the

conditional distributions of <t>0 and ® i , a , which in the Gaussian case is given by

[4][9];

< r * = -
e0,ke\,k

(J,

<Jr
1 +

cr,

'0,/t
• +

CJr

<y,

a
(8.12)

where n< k <L, &l and ofare the variance of €>o and (t>\, respectively. e0Jl

and eu are the forward prediction errors of the packet delay series using the <I>o

and <E>i model, respectively, (see Equation (8.1)). Under the hypothesis that <t>o

and <Di represent the same process,^ has zero conditional drift. However, if a

change is detected, ^ will show a strong negative conditional drift [9]. Change

detection is identified when the long term and short term models, Oo and <t>i

respectively, disagree in the sense of the cumulative sum statistics [4], as shown

below;

k=n

where s is a positive bias, used to generate a positive drift on the modified

cumulative sum. However when changes occur, a strong negative drift on £L is

expected. For further information refer to [4]. In the following subsection a

methodology for online segmentation, in the context of packet delay analysis, is

presented.
126

8.4.1 AN ONLINE PACKET DELAY SEGMENTATION A L G O R I T H M

Considering an end-to-end packet delay time series, {/>(?)}, the proposed

algorithm starts by collecting the first n samples. Using the initial n samples the

first optimal AR model is calculated, ARl
{n } , using classic time series techniques

[17][69].

Where/?/ is the order of the fitted first AR model. ARl
{n p}is the statistical

model that represents Oi, see Figure 8.4, and it is assumed to be a stationary

process. The non-stationary case is studied in Section 8.4.3. After that, the

buffered n packet delay samples are flushed out of memory. Next, the recursive

Kalman Filtering algorithm presented in Section 8.3, is used for estimating the

AR model that governs the system for samples k, k>n, which is denoted by

AR*k }. A\R'k } represents the evolution in time of ^ } , and it is the statistical

model that represents O0, see Figure 8.4. Stationarity of AR\k,p }is assured by the

stationary of ®i, and as long as a process change is not detected. Subsequently,

<ftis calculated recursively with every observed sample to measure the distance

between ®o and ®i. Notice that in the context of the described packet delay

segmentation algorithm, as shown in Figure 8.4, Oo and ®i are conformed by n

and k samples, respectively. Thus £k\s the modified cumulative sum from sample

n to k.

127

Equation (8.14) is then used for identifying the initial change point, r,

where the two stationary AR models diverge from each other, and thus a new

segment is created [4], see Figure 8.4.

r>n (°-14)

where X is the selected threshold for detecting the beginning of a new

segment, l<m<r, and Cm is the previous maximum peak value of Oc occurred

before Cr • After r is identified, the first segment is created in which

ARx
{n . governs the behavior of all k samples, 1 < k <r. Notice that, Cm has to

belong to the segment which is analyzed [4]. The second segment is then

commenced, which has r as its starting point. Considering that the first and

second segments are uncorrelated to each other [4], n new samples need to be

collected starting from sample r in order to create the initial optimal AR model

for the second segment, <J>3. <t>2 is then created and updated in the same recursive

manner done for the first segment, see Figure 8.4. Distance between the new two

models, O3 and <E>2, is again compared online using Ck to identify the ending of

the second stationary segment. This process continues for the duration of the

experiment. Notice that regardless of the degree of sample auto-correlation

within each stationary segment, it can be seen that any segment is uncorrelated to

its adjacent ones, since this is basically the underlying reason for the series

128

segmentation [4]. Figure 8.4 shows graphically the proposed packet delay

segmentation methodology.

samples

AR1
{n.P-f} AR2

fr

Figure 8.4. Packet Delay Series Segmentation
Methodology.

Notice that since <?k is related to the change in time of the AR model which

governs the packet delay dynamics of a specific segment, it can be expected that

this one change according to the degree of non-stationarity of the samples.

However, only significant changes on the network system dynamics should be

responsible of triggering the segmentation algorithm. Although equation (8.14)

specifies the threshold for negative drifts responsible of detecting network

system dynamics changes, it can be noticed that this threshold can be reached

either by; sudden spikes on the trace, or significant changes on the network

129

system dynamics, either abruptly or gradually. Sudden spikes should be avoided

by the algorithm, to the extent possible. Moreover spikes occurring apart of each

other within the same segment can make equation (8.14) reaches X, due to the

accumulative behavior of Ck and the condition of equation (8.14), and it should

also be avoided. The former phenomena can be evaded by analyzing the negative

slope of the drift when threshold of equation (8.14) is reached. Sudden spikes are

associated with large negative slopes, and can be quantified by the small number

of samples between r and m, see Figure 8.4. Such condition can be expressed as;

£ < (m-r), where £ is a threshold selected to avoid algorithm detecting sudden

isolated spikes. Conversely, the latter phenomena can be evaded by selecting m

as the previous maximum peak value of Ck occurred before r, see Figure 8.4, and

thus eliminating the contributions of previous spikes observed on the delay trace.

It can be seen that the proposed online segmentation algorithm only adds

small additional computation overhead on top of the recursive fitting model

procedure explained in Section 8.3. This can be explained since the updated

model, ®o , see Figure 8.3 and first segment of Figure 8.4, is already generated

recursively by the Kalman Filtering algorithm. Thus no additional computation

overhead is needed when finding the parameters related to <J>o needed for

equation (8.12). Note also that none of these parameters are kept in memory after

condition of equation (8.14) is satisfied. However, parameters related to the

initial model, O t j needed in equation (8.14) requires an additional small

130

computation overhead. For instance, of for Oi is calculated when the initial n

samples are fitted into the AR\np) model. In addition, Oi model has to be used

against the incoming packet delay samples, k (k>n), when executing the online

calculation of e\,k. Calculation of e\,k is done by adding equation (8.1),

containing the O] model, into the recursive Kalman Filter equations. Storage

capacity requirements and computational overhead produced by the proposed

algorithm are analyzed and quantified in Section 8.4.2.

Note that <t>0 and <£>i have to be both stationary to be used on equation

(8.12). Since Oo represents the evolution in time of ®i, its stationarity is

conditional to the one of cl>u as long as a process change is not detected by Ck .

However stationarity of Q>\ will depend on the starting point of the segment, the

probe's sending condition, and the value of n, among other factors. Section 8.4.3

will explain this phenomenon in detail. In addition, effectiveness of the

proposed algorithm depends on its settings. Therefore a tradeoff exists among

accuracy, computational overhead and memory storage requirements according

to the settings employed. This will be explained in more detail in Section 8.4.3.

8.4.2 M E M O R Y STORAGE SAVINGS VS. COMPUTATIONAL OVERHEAD

In this subsection the memory storage savings achieved by using the

proposed packet delay segmentation algorithm are quantified and compared

against the computational overhead this generates.

131

In the context of packet delay analysis, offline modeling techniques require

storing the entire packet delay trace prior to modeling the dynamics of the

network system, either by segmenting the series or modeling it entirely. Such an

approach may require enormous storage requirements depending on the length of

the experiment and the probe's sending conditions employed. However, the

proposed segmentation algorithm reduces memory storage requirements

compared to such an approach.

To quantify this remark, let's considering the packet delay trace shown on

Figure 8.4 and explained on Section 8.4.1. First segment starts at sample 1 and

ends at sample r/, also considering that the first n samples of the first segment

are used to determine the initial system model, 0\. After <t>i is determined, and

characterized by pi + 1 parameters, the initial n samples are flushed out of

memory. The embedded Kalman Filtering algorithm is then used to update the

state of O] recursively at any given iteration, k (n<k<ri), such an evolution is

represented by <t>o- Following the algorithm condition presented on Section 8.4.1,

the distance between <J>o is and <E>i is measured for any given iteration, k. Due to

the first segment ends at sample r/, see Figure 8.4, it can be safely assumed that

the distance between ®o to <t>\ is minimum, see Section 8.4.1. Thus it also saved

to conclude that Oi can characterize all the rj initial samples of the trace, and

therefore only the p/ + l coefficients need to be kept in memory.

This process continues in the same manner for the consecutives segments

for the duration of the observations. In general, memory storage savings

132

compared to storing the entire packet delay trace can be quantified by equation

(8.15);

perc_memory_storage savings = 1 -
l (f t+ l)

2=1

Hn)
V ' = 1 J

(8.15)

where s is the total number of segments in which the delay traces is

fragmented to, and rt is the number of packet delay samples on segment /, Notice

that £(r() represents the entire packet delay sample trace. As it can be seen,

memory storage savings depends on the total number segments generated, which

indeed is based on the degree of non-stationarity of the packet delay trace and

the algorithm settings employed.

The proposed algorithm creates an initial system model, Oi, at each

segment with the first n samples of the segment. Creation of <E>i using traditional

AR(pj fitting methods, such Yuke Walker, need to be done at every single new

segment [17]. Such fitting methods can demand a significant amount of

computational overhead compared to the Kalman Filtering recursive equations

[17]. For instance, Yuke Walker equations need to calculate set of (p + 1)

correlation factors that then are used to solve (p+1) linear equations, when

fitting a system model [17]. Moreover, the proposed segmentation algorithm

adds additional computational overhead from calculations used on equations

133

(8.12), (8.13), and (8.14). Although these equations demand low computational

overhead, they need to be executed "Lvi-n-l) times within segment i.
i=\

In general, it can be concluded, that the proposed packet delay segmentation

algorithm trades off accuracy with computational overhead and memory storage

requirements. For stationary packet delay trace scenarios, memory storage

savings can be considerable, and computational overhead can be considered to be

small. Conversely, non-stationarity packet delay traces scenarios may have the

opposite effect depending on the degree of non-stationarity. Although

computational overhead and memory storage savings are sacrificed when non-

stationary traces are analyzed, this is needed to accomplish accurate

representation of the network system dynamics.

8.4.3 SEGMENTATION ALGORITHM SEETINGS

In this subsection, the settings for the proposed segmentation algorithm are

specified according to the probe's sending conditions and the desired granularity

of the results.

Previous efforts have analyzed the effect of probe's sending rate and

probe's packet size on packet delay autocorrelation [59][69]. In general, higher-

rate probe flows tend to generate stronger autocorrelation on packet delay

samples than lower-rate ones, as they occupy a higher fraction of link bandwidth

[69], and thus generate larger packet queuing delays. However this phenomenon

can also be attributed to the fact that high rate probes monitor the stages of the

134

network in at a more granular level than do low bit rate ones, regardless of the

fraction of bandwidth they occupy on the network links. Thus high rate probes

are more likely to capture sudden spikes and irregularities that occur in the

network, and as was mentioned on Section 8.2 these events may cause false sense

of LRD on packet delay samples. In both cases, the algorithm proposed in

Section 8.4.1 segments the packet delay trace into as many stationary segments

as needed, in which each segment represents a different state of the network

system. However, in the context of the segmentation methodology proposed in

this paper, probe's sending rate may affect the creation of segments 3>o and ®i.

This is due to the fact that ®i is formed by the first n packet delay samples

collected right after a new segmented is detected. Classic statistical methods

require n to be large enough for O] to reflect accurately the stage of the network

system and to generate proper sample distributions. However, collecting large

amount of packet delay samples can take different amounts of time depending on

the probe's sending rate and probe's packet size. For instance, consider the case

of small packet size probes sent at high rates; it can take a few seconds to collect

the required n samples. On the contrary, the same amount of samples can take

several minutes to be collected for low sending rates probes, under the same

network circumstances and using the same probe's packet size. Thus, it can be

seen that granularity of the segmentation depends on the probe's sending

conditions, and these have to be selected according to the expected results.

However, probe's sending conditions settings are not suggested in this paper and

135

are left to be chosen by the researcher. Moreover, experiment results employing

different sending conditions are presented and analyzed in Section 8.5.

Conversely, settings of the segmentation algorithm, such as selection of

s,x, e, and n values, needs to be specified in fine ranges to assured its

performance results. Selection of <?and rvalues are critical for the algorithm

performance. In [4] it has been suggested to select sou the {0-1} range, s has to

be large enough, such as 4 shows always a positive drift when both O0 and ®i

represent similar processes. However, choosing*? too large can cause the drift of

4 to be too positive and thus equation (8.14) may fail detecting significant

divergence between <Do and Oi. x has also to be chosen in such a way that only

significant changes trigger equation (8.14). Considering that the goal of the

packet delay segmentation algorithm is to reflect significant changes on the

probe's packet flow dynamics and not detect instantaneous changes on the trace,

it is suggested to choose a large enough value of ;i ,as oppose to ones used on

more rigorous trace segmentation studies ,such as that in [4]. In addition thas

also to be selected in such a way that the algorithm is not triggered, to the extent

possible, by isolated spikes on the packet delay trace. Large values of ^are

suggested for this matter, however a relationship between £ and /tcan be

foreseen to avoid large negative slopes on Ck , see Figure 8.4. From experiment

results it has been found that better performance of the algorithm is reached

when selecting £ values in the range; 40° < tan"1 (X/e) < 50° .

136

Assuring the stationarity of Oi is also a crucial condition for the algorithm.

However, by following the segmentation algorithm steps presented on Section

8.4.1, O] may represent two or more uncorrelated sample regions, and thus

stationarity of <t>\ may not be achieved.

To clarify the previous statement, let's apply the algorithm steps presented

on Section 8.4.1 into the measurement showed on Figure 8.1.a. Let's consider

«=1000, and Oi starting at sample 1. It can be seen that Oi in fact is a non-

stationary model, due to the shift level occurred at sample 900, and therefore it

can not be used by the proposed segmentation algorithm. To overcome this and

the previously mentioned phenomenon, we propose to use n = 1000 for any

probes' sending condition, however stationarity of <t>i has to be tested before

using it in the proposed algorithm. This test will consist on finding the change

point(s), r, (l<r<n) in the same manner as explained in Section 8.4.1, but in a

static manner. As shown on Figure 8.3, the mentioned test will create a large and

a small model, formed by n and n/2 samples, respectively. Note the small model

is a subset of the large one as explained on Section 8.4. The distance of these

models is measured as described on Section 8.4.1. If a change point(s) are found,

<I>i stationarity test fails, and two or more stationary sub-segments are created,

which replace the original <t>\ segment.

Next, the algorithm is forced to collect the following n packet delay

samples to create a new Oi, and its stationary tested before using it in the

proposed algorithm. Based on previous analysis of the nature of packed delay
137

process [35], it can be concluded that irregularities in packet delay samples, such

as the one observed at sample 900 in Figure 8.1.a, are unlikely to happen

consecutively in the small time windows, such as the time window used for

collecting n packet delay samples. Thus it can be concluded that if <E>i is found to

be non-stationary, only few uncorrelated stationary segments will be obtained

from the sub-segmentation of O]. Notice that, testing the stationary of Oi, may

add some additional computational overhead time into the algorithm, and the

online behavior of the algorithm can be delayed temporarily. However, the

proposed algorithm recovers from this stage rapidly. <J>2 does not need to be

tested for stationary if <t>i is stationary.

Algorithm Settings
s

0.25

X

150

E

[0 . 8 4 A - 1 . 1 9 A]

a

0.0001

n
1000

uc

0.05

Table 8.1. Algorithm seetings used on segmentation
analysis.

Based on this, Table 8.1 shows the algorithm settings chosen and employed

for the analysis done in this paper. In Section 8.5 performance results of the

algorithm using these settings is presented. Section 8.5 also presents a

performance comparison analysis for different sets of settings.

Figure 8.5 summarizes the procedure of the proposed online packet delay

segmentation algorithm. Figure 8.5 presents a flow diagram of the mentioned

algorithm.
138

(Start) -
initial sample =1

Initial sample =L+1

Initial sample =n+1 m

•Collect next n samples from packet delay series
•Create <D, using (initial sample,..., initial sample +n)

•Collect next n samples from packet delay series
•Create G>, using (initial sample,..., initial sample +n)
•L=n

•Create <P0 using
(initial sample,..., initial sample +L)

r i
•n=n*1 I I

' ^ . i ^ ; g f e ^ ^

•Model (p0 represents process of packet
delay samples
(initial sample,..-, initial sample +L)
•Store <D0 parameters for segment k
•k=k+1

Figure 8.5. Flow diagram of online packet delay
segmentation algorithm.

8.5 P E R F O R M A N C E R E S U L T S

In this section performance of the proposed online modeling and

segmentation methodology is tested against real encl-to-end packet delay traces.

Packet delay traces were collected by conducting customized experiments using

the ETOMIC infrastructure [80], ETOMIC offers to the research community a

vast flexibility for setting network traffic experiments over its infrastructure,

139

however experiments are constrained to one hour duration and probe's sending

rate up to 1Mbps, to avoid network link congestion and allow multiple

concurrent user experiments [50] [80]. Based on this, a set of experiments were

conducted using two ETOMIC nodes under different traffic sending conditions.

Pamplona-Spain(UNAV-130.206.163.166) and Jerusalem-Israel(HUJI-

132.65.240.106) were the two selected nodes. Packet flows were sent in both

direction, UNAV^-HUJI and HUJI^-UNAV, traversing 14 hops on both cases.

Flows were generated using 64bytes packet size and a set of three sending rates

were used; lOOpackets per second (pps), lOOOpps and 2000pps. Each scenario

was run several times a day and at different times of the day, aiming of capturing

different packet delay characteristics induced by various degrees of network link

utilization. Experiments were conducted during consecutive days between July-

August, 2007, to achieve consistency on the results. Performance results of the

modeling and segmentation algorithm were generated using the source code

presented on appendix C.l

140

Packet Delay Characteristics and UTC time for the HUJI-> UNAV scenai

Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Run 10

UTC Time

19:00 UTC 2007
21:00 UTC 2007
23:00 UTC 2007
01:00 UTC 2007
03:00 UTC 2007
05:00 UTC 2007
07:00 UTC 2007
09:00 UTC 2007
11:00 UTC 2007
13:00 UTC 2007

Average Delay(msec) / Delay Variance
lOOpps
49.21/1.25
49.11/0.14
49.10/0.08
49.17/0.05
49.28/0.06
49.29/0.05
49.12/0.08
49.23/ 0.05
49.22/0.09
49.06/0.13

lOOOpps
49 .11 / 0.04
49 .10 /0 .04
49.25/0.05
49.27/0.07
49.25/0.04
49.24/0.14
49.14/0.51
49.01/0.08
49.05/0.16
49.35/1.12

2000pps
48.99/ 0.09
49 .01 / 0.08
49 .14 /0 .11
49.06/0 .12
49.07/0 .10
49.03/ 0.10
50.67/ 0.22
48.63/ 0.30
48.60/ 0.13
48.69/ 0.07

Table 8.2. Packet Delay Characteristics and UTC times for the HUJI->
UNAV set of experiment reults.

Table 8.2 shows the approximated UTC time for each scenario run on the

HUJI—»UNAV experiment. In addition Table 8.2 shows the observed average and

variance of each packet delay trace collected in each scenario. From Table 8.2

no clear peak delay hour can be identified, however analysis of individuals traces

show that high variance packet delay traces are mainly encountered on

runs{l,8,9 and 10}. Although a large amount of data was collected through the

set of mentioned experiments, only selected packet delay traces were chosen on

this research to test the performance of the proposed mechanism. Criterion used

for choosing packet delay traces is based on demonstrating the algorithm

performance under different packet delay dynamics, induced by various degrees

of link congestion.

In Figure 8.6, performance of the modeling and segmentation algorithm is

analyzed by using a trace of packet delay samples from the HUJI-> UNAV
141

experiment under a sending rate condition of lOOpps. Figure 8.6.a shows 65,000

packet delay samples collected from Run 1. Notice that the offset, minimum

value, of the packet delay trace has already been removed on Figures 8.6.a, as

well as on the rest of packet delays traces shown in this section. As it can be seen

from Figure 8.6.a, dynamics of selected packet delay trace vary in time, showing

stationary regions followed by sudden spikes.

142

(8.6.a)

— New s e g m e n t boundary / J

> t
Region 8

i *
i /

i
i

t

1
Samples

(8.6.b)

ACF for delay values

Region 2
-Region 8

(8.6.c)

21
Lag

Region 4
~ Ejitire Trace

41

-Region 7

Figure
8.6. Segmentation analysis of Packet Delay trace for Runl HUJI-> UNAV
experiment using lOOpps, (8.6.a) Packet delay trace, (8.6.b)Segmentation
process of the packet delay trace, (8.6.c)ACF distribution of packet delay.

143

Figure 8.6.b shows ck, in dotted lines, for the corresponding packet delay

traces (see equation (8.13)). Figure 8.6.b also shows the segments created using

the proposed algorithm; solid lines represent the end of a segment and the

beginning of the next one. As it can be seen, the proposed algorithm identifies, in

an online manner, stationary segments on the observed delay trace, in which c,k

represent shows positive drifts. However when non-stationarity is detected, a

strong negative drift is perceived on £k (see Section 8.4.1).

Notice that the proposed segmentation algorithm clearly specifies that £k

needs to comply with the conditions mentioned on see Section 8.4.1, when

triggering the trace segmentation. Negative drifts on £k that do not comply with

these specifications will not dictate trace segmentation, as it can be seen on

Figure 8.6.b.

Figure 8.6.c shows the ACF distribution of the entire packet delay sample

trace, together with the ones generated by some of the segmented regions.

Numbering of the segmented regions starts from the left hand side. From here, it

can be seen that in general ACF distribution of the entire trace differs from the

distributions of each individual segment. This again is proof that ACF

distribution of a sample packet delay trace does not always represents the

dynamics of the trace at any given time, in addition that spikes on the packet

delay samples may generate a false sense of LRD on the observations. Sample

autocorrelation of the selected regions shown on Figure 8.6.c can be easily

associated with their corresponding packet delay dynamics shown on Figure

144

8.6.a. In a nutshell, the performance results shown on Figure 8.6 proves that the

proposed algorithm does not act as change point detection or spike detection

mechanism, since instantaneous changes of the packet delay do not trigger the

segmentation. On the contrary, it segments the packet delay trace based on the

non-stationarity of the observations. This can be appreciated on segmented

region 8 of Figure 8.6.a, for instance, in which numerous spikes are observed but

none of them trigger the algorithm. Although 4 decays at the beginning of

region 8, as result of the spikes, it can be seen that it rapidly recovers from this

stage and shows a positive drift, which denotes that observations on this region

are indeed stationary. Stationarity in this case is represented by repeated similar

irregularities on the observations, which make samples on this region more auto-

correlated that the ones on the other segmented regions, see Figure 8.6.c.

145

-̂t t ^JM i ut* i f l i t tiflk*tiM[L„

(8.7.1.a)

JS 6

0 0.5 1 1.5 2 2.5 3 0

Samples x 10

(8.7.2.a)

2000 4000 6000 8000
Samples

(8.7.3.a)

k

10000;

8000

6000

4000

2000

0

•2000,

New SOTent kiiindarv

, x 1 0

(8.7.1.b)

ft

0 0.5 1 1.5 2
Sample x -JO4

„x10

P 3|

Sampjes _

V

Ci
2000

L/L
0 0.5 1 1.5 2 2.5 3

Samples x K

-1000i

^ l ^
0.5 1 1.5 2.5

Samples xlO

! New segment boundan'

S

1/
2000 4000 6000 8000

Samples

2000 4000 6000 8000
Samples

Figure
8.7.Segmentation analysis of packet delay trace for HUJI-> UNAV
experiment, (8.7.1.x)Run4 using 2000pps ,(8.7.2.x)Run 4 using lOOpps,
(8.7.3.x)Run 10 using lOOOpps.

146

Figure 8.7 shows the performance analysis of the proposed modeling and

segmentation algorithm under three packet delay traces from the HUJI-> UNAV

experiment, using three different sending rate conditions. Figures 8.7.1.a and

8.7.1 .b show 20,000 packet delay samples, and their corresponding 4 ,

respectively, for Run 4 of 2000pps scenario. Due to the stationarity observed on

the packet delay samples, Figure 8.7.1 .b shows that not segmentation was

needed. Figure 8.7.1.C shows the corresponding state noise covariance

matrix, cw , for the entire packet delay trace. In the context of Kalman Filter

algorithm, cW/ has been previously used to analyze changes on the system state

[58], see equation (8.5). In addition cWi has been estimated recursively by means

ofp^ , which it is associated to the stability of the system, see equation (8.10).

cW/ starts after the first n samples of each segment have been collected with the

initial value of uc and varied in time according to the fluctuations of Pr .From

Figure 8.7.1.C it can be seen that statistical AR model used to capture the

corresponding packet delay dynamics stays in a moderate narrow invariant stage,

which denotes stationary on the observations, a fact that is also corroborated by

the smooth positive drift observed on the corresponding £k.

Figures 8.7.2.a, 8.7.2.b, and 8.7.2.C show the same analysis for 30,000

packet delay samples collected from Run 4 of the lOOpps scenario. Three

segments were created, which indeed were generated due to irregular spikes on

the observations. Notice that although the proposed algorithm avoids, to the

147

extent possible, being triggered by instantaneous changes, spikes shown on

Figures 8.7.2.a will create a false sense of LRD on the observations if not

identified, due to their intensity and the stationarity of the remaining samples.

Corresponding cWi shows again the segmented regions are stationary, however

different degrees of stationarity can be perceived at each segmented region, a

fact that is corroborated by ck on Figure 8.7.2.b, in which each segment shows

different positive slopes.

Finally in Figures 8.7.3.a, 8.7.3.b, and 8.7.3.C 9,000 packet delay samples

collected from Run 10 of the lOOOpps scenario are used to analyze the

performance of the proposed mechanism. Packet delay samples in this case

present higher variance than that in two previous scenarios; however this does

not seem to affect the segmentation process. Three segments were created using

the proposed mechanism, dynamics of packet delay samples at each segment vary

significantly among each other. By analyzing the corresponding packet delay

dynamics, £k, and cWi of each segment separately it can be concluded that

segmentation in each region obeys different criteria. For instance, first region

starts with low variance delay samples, followed by a train of high variance

delay samples. Such irregularities are responsible of changing the process

dynamics and thus trace segmentation is enforced. Second region starts when

spikes disappear and low variance samples show up, again the region is

segmented when a train of highly variance delay samples appears. In third region

a peculiar phenomenon is observed, this region is started with highly varying

148

delay samples, however dynamics of the samples are observed to be consistent

during a large number of samples and thus none segmentation is needed.

Characteristics of £k, and cW/ denotes samples stationarity in each segment, even

on the third one.

10

8 CO
c
CD
E ft
CD
if)

"5 4

0
10 40 80

X

150

•Run 10 using lOOOpps
Run 4 using 100pps
Run 4 using 2000pps

110%

o
"to 100%

2 90%
c
LU

t 80%
<

70% i r1' r i i r i

10 40 80 150

•Run 10 using 1000pps
Run 4 using DOpps
Run4 using 2000pps

Figure
8.8. Performance of the proposed algorithm under different values of X , (8.8.a) Number of
segments vs. 1 , (8.8.b) Average entropy vs. X .

In Figure 8.8 performance of the proposed algorithm is tested for different

values of x using traces presented in Figure 8.7. Figure 8.8.a shows the number

of segments to which the packet delay trace is fragmented for each value of x,

for each of the three packet delay traces. As can be seen, the number of segments

149

obtained tends to increase as A decreases. This is due to the fact that x controls

the responsiveness of the segmentation algorithm. Thus smaller values of x tend

to make the algorithm more receptive to packet delay changes. This phenomenon

depends also on the degree of stationarity and variability of the observed packet

delay trace. For instance, only one segment is generated for any value of /tused

on Run 4 using 2000pps scenario. However packet delay traces obtained on Run

10 using lOOOpps scenario generates the most number of segments for small

values of x, compared to the other two traces.

Degree of disorder of packet delay samples within each segment is

measured by means of entropy. Entropy is a concept used to define the

randomness or disorder. The expected information content of a probability

distribution, called entropy, is derived by weighing the information values by

their respective probabilities [62]. Packet delay entropy is calculated on each

segment. A set of entropy values is obtained for each packet delay trace. Average

of this set of values is calculated and divided by the entropy of the entire packet

delay trace. In this research, this metric is called average entropy ratio and it is

presented in equation (8.16):

U * I (8.16)
average _ entropy _ ratio ~

Efotal

150

where E' is the entropy of segment /, Etota, is the entropy of the entire packet

delay trace, and s is the total number of segments in which the packet delay

traces was fragmented using the proposed algorithm. As it can be seen from

Figure 8.8.b, average entropy ratio tends to increase as xincreases. This can be

explained due to the fact that small A values tend to make the algorithm more

aware to packet delay spikes and other uneven events on the packet delay series,

and thus create small size segments. In this context, segments tend to group

packet delay samples with similar dynamics, and thus entropy of them are more

likely to be lower than entropy of segments generated using larger rvalues.

From Figure 8.8.b it can be seen that average entropy ratio of packet delay trace

obtained from Run 10 using lOOOpps scenario changes considerably for different

values of x, compared to the other two traces. This can be explained due to the

variability of the packet delay samples observed for this trace, see Figure 8.7.3.a.

Average entropy ratio of packet delay traces obtained from Run 4 using lOOpps

scenario show less variability for different values of x. In fact, it is observed

that average entropy ratio for this scenario reaches a steady state value for

rvalues larger than 40. This can be understood, since this packet delay trace

only present few spikes. Finally, average entropy ratio of packet delay trace

obtained from Run 4 using 2000pps scenario, shows no variability at all for any

value of x . This is due to the fact that only one segment is required for this trace,

regardless of the rvalue used on the algorithm.

151

Figure 8.9 shows the evolution in time of two of the four AR coefficients,

%k and a2j(, used for online modeling of packet delay trace shown on Figure

8.7.3.a.., where k represents the sample number. As it can be seen, AR

coefficients change drastically in time according to the packet delay dynamics.

However they tend to vary within a narrow range in stationarity segments. Note

that traditional time invariant AR models only capture the overall behavior of the

packet delay trace, and thus fail of distinguishing such changes on the system

dynamics, even when differentiation techniques are employed.

0.5

"5" Oh-

-0.5
^

5000 10000 15000
Samples

LiUk—jiikLi

5000 10000 15000
Samples

Figure 8.9. Evolution in time of two AR coefficients used for online modeling of
packet delay trace shown on Figure 8.7.3.a.

152

In a nutshell, it can be seen that the proposed segmentation and modeling

mechanism successfully separates and characterizes the dynamics of packet delay

samples into a set of AR models based on the observed sample's stationarity. The

proposed mechanism has demonstrated not being triggered by instantaneous

changes on the trace dynamics, but to respond to the packet delay distribution's

changes. Which is mainly driven b y 4 - It can also be seen that the embedded

Kalman Filtering algorithm indeed captures effectively the evolution in time of

the system. Moreover cw reflects accurately the degree of non-stationarity on the

segmented regions, which corroborates the underlying reason for the

segmentation process. The proposed mechanism requires low computational and

storage overhead, since a small set of parameters and recursive linear equations

are needed to discover and model each segment. Algorithm settings are selected

in such a way that segmentation is based on the non-stationarity of the packet

delay samples. However, it can be expected that sensitivity of the algorithm and

thus results may vary according to these settings.

8.5.1 M E M O R Y STORAGE SAVINGS VS. NON-STATIONARITY

In this subsection the memory storage savings capabilities of the proposed

segmentation algorithm are tested against packet delay traces with different

degrees of non-stationary. Traces presented on Figures 8.6 and 8.7 were used. To

describe the degree of non-stationarity of a packet delay trace, the Index of

Dispersion of Intervals (IDI) has been used. In general IDI measures the

dependence between consecutives samples on a trace, and it is often used to

153

describe the burstiness of a signal [65]. IDI is defined as a sequence { ^ } , k > l ,

where:

j_kVar(Sk)

'* [E(Skf
(8.17)

and the random variable S^ is the sum of k consecutives samples on a trace.

If the trace represents a Poisson process, then <̂ =1 for every k. However if

2 -,
process has higher variance at some time scale, then <̂ will tend to increase as a

function of k [35].

Index of Dispersion (IDI)

y 300

e
0

I
0

I

200

100

Run 1 using lOOpps

Run 10 using lOOOpps

Run 4 using lOOpps

Run 4 using 2000pps

10 100

Consecutive Intervals (k)

1000

Figure 8.10. Index of Dispersion of Intervals (IDI) for blocks of k consecutives
packet delay samples obtained from multiple traces.

154

Figure 8.10 shows the IDI for the packet delay trace presented on Figure 8.6

and the three traces presented on Figure 8.7. As it can be seen from Figure 8.10,

IDI obtained from Run 4 using 2000 pps and Run 4 using 100 pps scenarios

indicate these traces come from stationary Poisson process, which indeed it can

be corroborated by Figures 8.7.1.a and 8.7.2.a. However, IDI obtained from Run

1 using 100 pps and Run 10 using 1000 pps scenarios indicates a noticeable

degree of non-stationary on these traces, which also can be corroborated by

Figures 8.6.a and 8.7.3.a. In general, it can be concluded that the first two traces

of Figure 8.10, starting from the bottom, can be easily modeled as Poisson

process. Thus packet delay distributions of the entire traces can be used when

modeling these series. As a result, in the context of the proposed segmentation

algorithm, these traces may need very few segments or just one when modeling

them. Conversely, the other two traces will fit poorly into a Poisson distribution,

and thus more segments are needed when modeling them in the context of the

proposed segmentation algorithm. These remarks can be confirmed by the

number of segments generated through the segmentation algorithm on these

packet delay traces and shown on Figures 8.6.b, 8.7.1.b, 8.7.2.b, and 8.7.3.b.

155

Percentage of Memory Storage Savings using Segmentation Algorithm as a function of
X

X

10
20
40
60
80
100
150
200

Run 4 Using
2000pps
99.96%
99.96%
99.96%
99.96%
99.96%
99.96%
99.96%
99.96%

Run 4 Using
lOOpps
99.84%
99.84%
99.89%
99.89%
99.89%
99.89%
99.92%
99.92%

Run 10 Using
lOOOpps
99.10%
99.10%
99.20%
99.40%
99.50%
99.60%
99.60%
99.80%

Run 1 Using
lOOpps
99.96%
99.97%
99.97%
99.97%
99.98%
99.98%
99.99%
99.99%

Table 8.3. Percentage of memory storage savings using segmentation
algorithm as a function of X

Table 8.3 shows the percentage of memory storage savings using

segmentation algorithm for the four mentioned packet delay traces, obtained

through equation (8.15), as a function of A. As it can be seen the proposed

algorithm produces tremendous memory storage saving compared to a traditional

approach of storing the entire trace for all the four scenarios presented. Memory

storage saving in general not only depends on the degree of non-stationarity of

the trace, but also on the number of samples of the trace and the sensibility of the

algorithm, x. This remark can be confirmed by Table 8.3 results.

8.6 R E M A R K S

A novel approach for online modeling end-to-end packet delay dynamics

under non-stationary network conditions is presented. Proposed methodology

models the network system characteristics based on the non-stationarity of the

packet delay samples, while keeping computational and storage requirements

156

low. Such method is based on adaptive AR model, Kalman Filtering algorithm,

and a modified version of the Divergence-Test.

Our findings show that the proposed methodology separates and model, in

an online manner, packet delay traces based on significant changes on the system

dynamics, and not based on isolated spikes on the trace. Performance of

algorithm has been tested against different network and traffic conditions.

Results indicate that segmented series obtained through this approach reflect

stationarity within its samples, which indeed demonstrate the capability of the

algorithm of modeling a non-stationary packet delay process as a sequence of

stationary sub-processes. Number of fragmented segments, generated from

packet delay traces using the proposed algorithm, and their duration clearly

indicate a correlation to the algorithm settings and the network system dynamics.

Responsiveness of the algorithm was also tested for different settings. Results

indicate a tradeoff of accuracy by computational overhead and memory storage

requirements according to the settings employed. False sense of LRD on packet

delay was also studied in the context of the proposed algorithm, and the

importance of distinguishing it when modeling packet delay processes is

highlighted. In general, results shows that analyzing packet delay processes by

modeling the segmented stationary traces yield to a better understanding of the

network system dynamics.

157

CHAPTER 9. CONCLUSIONS

When tested under realistic scenarios, existing approaches for modeling

network system and packet dynamics for network emulation are not scalable.

This research proposes a measurement-based modeling methodology for the

design of a network-in-a-box emulator that aims to overcome the limitations

associated with computational overhead and complexity associated with

traditional approaches to end-to-end network system modeling.

A framework for large scale IP network emulation, named OTRENET, has

been formally introduced. OTRENET overcomes the overhead of packet-by-

packet mapping and modeling, while keeping track on the consistency of the

results, by means of a proposed Average Traffic Sampler by Time Frame

Segmentation Algorithm. Design and operation performance of the proposed

network emulation were described in detail. Performance analysis results shown

indicate that the proposed OTRENET module fulfills our expectations of

mimicking the overall behavior of a real network scenario.

Methodologies for modeling network system dynamics by means of packet

delay and IPG characterization, with emphasis on cross traffic, sending rate, and

packet size were discussed in this research. Findings presented leads to the

conclusion that the behavior of end-to-end packet delay and IPG sequences can

be captured effectively by ARMA and ARIMA models, under weakly-stationary

network conditions and using CBR probe flows. Under these network conditions,

158

model goodness-of-fit results demonstrate modeling accuracy for both packet

delay and IPG processes under low sending bit rate conditions. However, as

sending bit rate increases as a fraction of the bandwidth, IPG becomes better

alternative for network system modeling.

Network system modeling using end-to-end packet delay dynamics is

extended to no-stationary network system conditions. A novel computational

efficient methodology for online segmentation and modeling of packet delay

series based on adaptive AR model, Kalman Filtering algorithm, and a modified

version of the Divergence-Test was proposed. Our findings show that the

proposed approach separates and models, in an online manner, packet delay

traces based on significant changes on the system dynamics. Performance of

algorithm has been tested against different network and traffic conditions.

Results indicate that segmented series obtained through this algorithm reflect

stationarity within its samples, which indeed demonstrate the capability of the

algorithm of modeling a non-stationary packet delay process as a sequence of

stationary sub-processes. Responsiveness of the algorithm was also tested for

different settings, and under various network system conditions. Results indicate

a tradeoff of accuracy by computational overhead and memory storage

requirements according to the settings employed. False sense of LRD on packet

delay was also studied in the context of the proposed algorithm, and the

importance of distinguishing it when modeling packet delay processes is

highlighted. In general, results shows that analyzing packet delay processes by

159

modeling the segmented stationary traces yield to a better understanding of the

network system dynamics.

REFERENCES.

[1] M. Aboy, J. McNames, 0. Marquez, R. Hornero, T. Thong, and B.
Goldstein, "Power spectral density estimation and tracking of
nonstationary pressure signals based on Kalman filtering," Annual
International Conference of the IEEE Engineering in Medicine and
Biology-Proceedings., pp. 156-159.04, San Francisco, California,
September 2004.

[2] J. Ahn, P. B. Danzig, Z. Liu, and L Yan, "Evaluation of TCP Vegas:
Emulation and Experiment," Proc. of the ACM SIGCOMM, pp 185-
195, Cambridge, Massachusetts, Aug. 1995. ACM.

[3] M. Allman, A. Caldwell, S Ostermann, "ONE: The Ohio Network
Emulator," TR-19972, School of Electrical Engineering and
Computer Science, Ohio University, August 1997.

[4] R. Andre-Obrecht, "A new statistical approach for the automatic
segmentation of continuous speech signals," IEEE Trans. Speech
and Audio Proc, vol. 36, no. 1, 1988.

[5] M. Arnold, W. Miltner, H. Witte, R. Bauer, and C. Braun, "Adaptive
AR Modeling of Non-stationary Time Series by Means of Kalman
Filtering," IEEE Trans. Biomed. Eng., vol. 45(5), 1998.

[6] D.K. Arrowsmith, R.J.Mondragon, J.M. Pitts, and M. Woolf,
"Internet packet congestion," IEEE International Symposium on
Circuits and Systems, Bangkok, Thailand, May 2003.

[7] S. Bajaj, L.Beslau, K Fall. "Virtual internetwork testbed: Status and
research agenda," Technical Report 98-678, University of Southern
California, July 1998.

[8] T. Banka, A. Maroo, A. P. Jayasumana, V. Chandrasekar, N.
Bharadwaj, and S. Chittibabu, "Radar Networking: Considerations
for Data Transfer Protocols and Network Characteristics," Proc.
21st International Conference on Interactive Information
Processing Systems (UPS) for Meteorology, Oceanography, and
Hydrology, Paper 19.1, San Diego, CA, January 2005.

161

[9] M. Basseville and A. Benveniste. "Sequential detection of abrupt
changes in spectral characteristics of digital signals." IEEE Trans,
on Information Theory, vol. IT-29, pp. 709-723, Sept. 1983.

[10] A. Begen, M. Begen and Y. Altunbasak, "Predictive modeling of
video packet delay in IP networks", Proc. IEEE Int. Conf. Image
Processing (ICIP), Atlanta, GA, Oct. 2006.

[11] J. Beran, "Statistics of long memory processes", Monographs on
Stats and Appi. Prob. 6 1 , Chapman & Hall, London.

[12] J.-C Bolot, "End-to-end packet delay and loss behavior in the
Internet", Proc. ACM SIGCOMM '93, pp. 289-298, Sept. 1993.

[13] J.-C.Bolot, "Characterizing end-to-end packet delay and loss in
the Internet," Journal of High-Speed Networks, vol. 2, pp. 305-
323, Dec. 1993.

[14] C. Bovy, H. Mertodimedjo, G. Hooghiemstra, H. Uijterwaal, and P.
Mieghem, "Analysis of End-to-End Delay Measurements in
Internet", Proc. Passive and Active Measurements Conferences,
Colorado, March 2002.

[15] G. E. P. Box, G. M. Jenkins, and, G. C. Reinsel, "Time Series
Analysis, Forecasting and Control", 3rd ed. Prentice Hall,
Englewood Clifs, NJ, 1994.

[16] L S. Brakmo, S. W. O'Malley, and L L Peterson, "TCP Vegas:
New techniques for congestion detection and avoidance," Proc. of
ACM SIGCOMM '94, pp. 24-35, Oct. 1994.

[17] P. Brockwell and R. Davis, "Introduction to Time Series and
Forecasting (2nd ed.)", New York: Springer-Verlag, 2002. ISBN 0-
387-95351-1.

[18] R. Brown, "Calendar queues: A fast 0(1) priority queue
implementation for the simulation event set problem",
Communications of the ACM, 31(10):1220-1227, October 1988.

[19] M. Carson., and D. Santay, "NIST Net - A Linux based network
emulator tool", ACM SIGCOMM Computer Communications Review,
Vol .33 , Jan 2003, pages 111-126.

162

[20] D. Cox and P. Lewis, "The Statistical Analysis of Series of Events,"
London, England: Methuen, 1966, pp71-72.

[21] J. DeFreitas, M. Niranjan, and A. Gee, "Hierarchical Bayesian-
Kalman models for regularisation and automatic relevance
determination in sequential Learning", Neural Computation, 12,
pp. 933-953. April 2000.

[22] C. Demichelis, "Packet Delay Variation Comparison between ITU-T
and IETF Draft Defintions," in the IPPM mail archives, November
2000.

[23] C. Demichelis, P. Chimento, "IP Packet Delay Variation
Metric for IP Performance Metrics (IPPM)", RFC 3393,
November 2002.

[24] G. Dharwarkar and O. Basir, "Enhancing Temporal Classification
of AAR Parameters in EEG single-trial analysis for Brain-Computer
Interfacing", Engineering in Medicine and Biology Society, 2005.
IEEE-EMBS 2005. Sept. 2005 Page(s): 5358 - 5361.

[25] J.-P. Eckmann, S. Kamphorst, and D. Ruelle. "Recurrence plots of
dynamical systems". Europhysics Letters, 4:973-977, 1987.

[26] K. Fall. "Network Emulation in the VINT/NS Simulator," Proc. of
4th IEEE Symposium on Computers and Communications, July
1999.

[27] K. Fall, K. Varadhan, editors. NS notes and documentation. The
VINT project, LBL, February 2000. http:/ /www.isi.edu/nsnam/ns/

[28]R. Fujimoto, "Parallel Discrete Event Simulation," Comm. ACM,vo\.
33, pp. 30-53, Oct. 1990.

[29] K. Fukuda, H.Stanley, and L. Amaral. "Heuristic segmentation of a
nonstationary time series". Phys. Rev. E 69, art. no. 021108, 1-12
(2004).

[30] S. Haykin, Adaptive Filter Theory, 4 t h edition, Upper Saddle River,
NJ: Prentice Hall, 2002, Ch 10.

163

http://www.isi.edu/nsnam/ns/

[31] L. Huang, and K. Sezaki, "An analysis of the characterization and
prediction of network delay," Proc. IEICE General Conference
2000, SB-9-7, Japan, Mar 200 0.

[32] E. Hernandez and Sumi Helal, "RAMON: Rapid Mobility Network
Emulator". Proc. of the 27 th Annual IEEE Conference on Local
Computer Networks (LCN), November 2002, Tampa, Florida.

[33] A. Isaksson, A. Wennberg, and L. H. Zetterberg, "Computer
analysis of EEG signals with parametric models," Proc. IEEE, vol.
69, pp. 451 -461 , Apr. 1981.

[34] R. Jain, "A delay-based approach for congestion avoidance in
interconnected heterogeneous computer networks," ACM
Computer Communication Review, vol. 19, pp. 56-71 , Oct. 1989.

[35] T. Karagiannis, M. Molle, and M. Faloutsos, "A nonstationary
poisson view of internet traffic," Proc. of IEEE INFOCOM, pp. 1 - 1 ,
March 2004.

[36] J. Kohlmorgen and S. Lemm. "An On-line Method for
Segmentation and Identification of Non-stationary Time Series".
Neural Networks for Signal Processing XI, IEEE, NJ, 113-122,
2001.

[37] L. A. Kulkarni and S. Q. Li, "Measurement-Based Traffic Modeling:
Capturing Important Statistics," Journal of Stochastic Model, Vo.
14, No. 5, 1998.

[38] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. "On the Self-
Similar Nature of Ethernet Traffic," In IEEE/ACM Transactions on
Networking, 1994.

[39] M. Li, W. Jia, and W. Zhao, "A Method for Modeling
Autocorrelation Functions of Asymptotically LRD Traffic and Its
Verification," Conf. Proc, ICCT2000, 16th IFIP World Computer
Congress, IEEE Press, 21-25, Aug., 2000, Beijing, China, pp. 62-
65.

[40] K. Lien, and J. Reeve, "A TCP/IP Network Emulator", In IST2005
International Symposium on Telecommunications, September
2005, Shiraz, Iran.

164

[41] S.-Q. Li, S. Park, and D. Arifler, "SMAQ: A measurement-based
tool for traffic modeling and queueing analysis Part I - design
methodologies and software architecture," IEEE Communications
Magazine, vol. 36, Aug. 1998.

[42] S. Q. Li & C. L. Hwang, "Queue Response to Input Correlation
Functions: Discrete Spectral Analysis," IEEE/ACM Transactions on
Networking, vol. 1, No. 5, Oct. 1994, pp. 522-533.

[43] L. Ljung, "System Identification - theory for the user". NJ:
Prentice Hall, Englewood Cliffs, 1987.

[44] M. Lopatka, C. Laplanche, 0. Adam, J. Motsch, J. Zarzycki, "Non-
Stationary Time-Series Segmentation Based on the Schur
Prediction Error Analysis," Statistical Signal Processing, IEEE/SP
13th Workshop, July 17-20 2005 pp: 251 - 256.

[45]N.Marwan. "Recurrence Plots and Cross Recurrence Plots,"
http://www.recurrence-plot.tk/

[46]N.Marwan. Matlab CRP Toolbox 5.5. Available at
http://www.agnld.uni-potsdam.de/ marwan.

[47]S. Makridakis, "A survey of time series", Int. Stat Rev.,
44(l),pp:29-70, 1976.

[48]J. Minho, K. Hyungdo, and K. Hyogon Kim, "An Adaptive Routing
Method for VoIP Gateways Based on Packet Delay Information,"
IEICE Transactions on Communications, Feb. 2005.

[49]S. B Moon., J.Kurose, P. Skelly, and D. Towsley, "Correlation of
packet delay and loss in the Internet," Report UM-CS-1998-0I1,
UM-CS-1998-011, Mar. 1998.

[50]D. Morato, E. Magana, M. Izal, J. Aracil, F. Naranjo, F. Astiz, U.
Alonso, I. Csabai, P. Haga, G. Simon, J. Steger, and G. Vattay.
"The European traffic observatory measurement infrastructure
(etomic): A testbed for universal active and passive
measurements," In Proc. of Tridentcom 2005. Trento, Italy,
February 23, 2005.

[51]A. Morton, "Packet Delay Variation Applicability Statement",
draft-morton-ippm-delay-var-as-OO. Work in progress.

165

http://www.recurrence-plot.tk/
http://www.agnld.uni-potsdam.de/

[52]A. Nussi, A. Sridharan and N. Taft, "The problem of synthetically
generating IP traffic matrices: Initial recommendations," ACM
SIGCOMM Computer Communication Review, 35(3), 19-32 July
2005.

[53]H. Ohsaki, M. Murata, and H. Miyahara, "Modeling end-to-end
packet delay dynamics of the Internet using system identification".
In Proceedings of the International Teletraffic Congress 17, pp
1027-1038, Dec. 2001.

[54] L. Patomaki, J. Kaipio, and P. Karjalainen, "Tracking of
nonstationary EEG with the roots of ARMA models", IEEE Conf.
EMBC-95, 1995.

[55]K. Pawlikowski, H. Jeong, J Lee, "On Credibility of Simulation
Studies of Telecommunication Networks," IEEE Communications
Magazine, January 2002, pp 132-139.

[56] V. Paxson and S. Floyd, "Why We don't Know How to Simulate
the Internet," Proc. of the 1997 Winter Simulation Conference,
December 1997.

[57] V. Paxson, "On calibrating measurements of packet transit
times," LBNL -41535, ftp://ftp.ee.lbl.gov/papers/vp-
clockssigmetrics98.ps.gz, Mar. 1998.

[58] W. Penny and S. Roberts, "Dynamic models for nonstationary
signal segmentation," Computers and Biomedical Research,
32(6) :483-502, 1999.

[59] N. Piratla, A. P. Jayasumana and H. Smith, "Overcoming Effects of
Correlation in Packet Delay Measurements using Inter-packet
Gaps," Proc. IEEE International Conference on Networks,
Singapore, November 2004, pp. 233-238.

[60] N. M. Piratla, A. P. Jayasumana and T. Banka, "On Reorder
Density and its Application to Characterization of Packet
Reordering," Proc. 30th IEEE Local Computer Networks (LCN)
Conference, Sydney, Australia, Nov. 2005.

[61] A.Sang and S.Li, "A predictability analysis of networktraffic," Proc.
of the 2000 IEEE Computer and Communications Societies

166

ftp://ftp.ee.lbl.gov/papers/vp-

Conference on Computer Communications (INFOCOM-00), pp 342-
351 , 2000.

[62] C.E Shannon, "A Mathematical Theory of Communication", Bell
Sys. Tech. Journal, vol. 27, 1948.

[63] A. Schlogl, S. Roberts, G. Pfurtscheller, "A criterion for adaptive
autoregressive models," Proceedings of the 22nd EMBS
International Conference, pp. 1581-1582, 2000.

[64] C. Spielvogel. "Design and Implementation of a Network Resource
Service for QoS Aware Servers," Master's thesis, University
Klagenfurt, Institute of Information Technology, November 2003.

[65] K. Sriram and W. Whitt, "Characterizing Superposition Arrival
Processes in Packet Multiplexers for Voice and Data," IEEE Journal
on Selected Areas in Communications SAC-4,pp. 833-846,
September 1986.

[66] D. Vivanco and A. Jayasumana, "New QoS Approaches for Delay-
sensitive Applications over DiffServ," Proc. of ITCOM 2002 - SPIE
Int. Symposium on The Convergence of Information and
Technologies and Communications, Aug. 2002.

[67] D. Vivanco and A. Jayasumana, "Bandwidth Brokering and
Dynamic Resource Allocation in DiffServ Domains for
Heterogeneous Applications," Proc. 27th IEEE Conference on Local
Computer Networks, Tampa, FL, Nov. 2002, pp. 372-381.

[68] D. Vivanco and A. Jayasumana, "OTRENET: Overall Trend
Replicating Network Emulator Tool," Proc. International
Symposium on Performance Evaluation of Computer and
Telecommunication Systems (SPECTS'05), Philadelphia, PA, July
2005, pp.863-872.

[69] D. Vivanco and A. P. Jayasumana, "A Measurement-Based
Modeling Approach for Network-Induced Packet Delay," 32nd IEEE
Int. Conference on Local Computer Networks, Dublin, Ireland, Oct.
2007.

[70] M. Yang, X.R. Li, H. Chen, and N.S.V. Rao, "Predicting Internet
end-to-end delay: An overview", Proc. of 36th IEEE Southeastern
Symposium on Systems Theory, pp. 210-214, Atlanta, Mar. 2004.

167

[71] I . Yeom and A. L. Narasimha Reddy, "ENDE: An End-to-end
Network Delay Emulator Tool for Multimedia Protocol
Development," Multimedia Tools and Applications, No. 14, pp. 269-
296, 2001.

[72] L. Zheng, L. Zhang, and D. Xu, "Characteristics of network delay
and delay j i t ter and its effects on voice over IP (VoIP)," Proc. IEEE
ICC, Jun 2001, pp 122-126.

[73] P. Zheng, and L. Ni, "EMPOWER: A Cluster Architecture
Supporting Network Emulation," IEEE Transactions on Parallel and
Distributed Systems, Volume 15, Issue 7, July 2004.

[74] National Institute of Standards and Technology.
Nistnet(http://snad.ncsl.nist.gov/itg/nistnet.)

[75] http://www.packetstorm.com

[76] http://www.stockcharts.com/education/IndicatorAnalysis/indic__m
ovingAvg.html

[77]Ixia Incorporated webpage, http://www.ixiacom.com

[78]ITSM 2000 Professional Version 6.0, developed by Peter J.
Brockwell and Richard (http://www.stat.colostate.edu/~pjbrock/).

[79]The official website of Linux Kernel information.
http://www.kernelnotes.org.

[80]ETOMIC (Evergrow Traffic Observatory Measurement
Infrastructure), http:/ /www.etomic.org.

[81]History of ARPANET - http://www.dei.isep.ipp.pt/~acc/docs/arpa.
Last Accessed December 14, 2007.

[82]MATLAB Version 7.1 - Curve Fitting Toolbox v l . 1 .4 .

[83] http://www.it l .nist.gov

[84]OPNET Modeler Documentation, OPNET Technologies Inc.,
Bethesda, MD, 2001.

168

http://snad.ncsl.nist.gov/itg/nistnet
http://www.packetstorm.com
http://www.stockcharts.com/education/IndicatorAnalysis/indic__m
http://www.ixiacom.com
http://www.stat.colostate.edu/~pjbrock/
http://www.kernelnotes.org
http://www.etomic.org
http://www.dei.isep.ipp.pt/~acc/docs/arpa
http://www.itl.nist.gov

APENDIX A. S C R I P T FOR T R A F F I C SAMPLER BY T I M E FRAME

SEGMENTATION ALGORITHM

The source code of the traffic sampler by time frame segmentation

algorithm, which was written in Matlab, is presented below. This algorithm was

formally presented and described in detail in CHAPTER 5. A performance

comparison analyis of this algorithm against similar algorithms was presented in

CHAPTER 5. The code presented below separates packet delay metrics

according to its variability.

A. l . M A T L A B SCRIPT FOR TRAFFIC SAMPLER BY TIME FRAME

SEGMENTATION

clc;
clear all;
close all;

load algo_prove\out_simul_per_second.txt;
A=out_simul_per_second;
sampled_delay=A(300:800,2);
sampled_drop=A(:,3);
sampled_time=A(:,1);
initial_thres_acc_delay=10;
in itia l_th res_acc_d ro p= 10;
time_frame_number=1;
star_time_frame=sampled_time(1);
index_star_time_frame=1;
star_time_frame__p=0;
estimated_delay_aetual_frame=0;
maximum_delay_deviation=0.4;
estimated_drop_actual_frame=0;
maximum_drop_deviation=0.4;
T=10;

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%—Delay Analysis
for i=1:1 :length(sampled_delay)-1;

diff_ave_delay_(i)= sampled_delay(i+1)- sampled_delay(i);
acc_diff_ave_delay_(i)=sum(diff_ave_delay_(index_star_time_frame:i));
signal_new_frame_1(i)=0;signal_new_frame_2(i)=0;

if ((time_frame_number==1)& (i==1))

169

file://algo_prove/out_simul_per_second.txt

thr_delay(time_frame_number)=initial_thres_acc_delay;
thr_delay_time(i)=thr_delay(time_frame_number);

else
D=i-index_star_time_frame;
thr_delay_time(i)=thr_delay(time_frame_number)*exp(-D/T);

end

if (abs(acc_diff_ave_delay_(i)) > thr_delay_time(i))
T=50/(star_time_frame-star_time_frame_p);
star_time_frame_p=star_time_frame;
estimated_delay_(index_star_time_frame:i)=mean(sampled_de!ay(index_star_time_frame:i));
estimated_delay_actual_frame=mean(sampled_delay(index_star_time_frame:i));
time_frame_number=time_frame_number+1
star_time_frame=sampled_time(i+1);
index_star_time_frame=i+1;
thr_delay(time_frame_number)=1.3*thr_delay_time(i);
signal_new_frame_1 (i)=1;

if ((abs(sampled_delay(i+1)-estimated_delay_actual_frame)) > maximum_delay_deviation)
T=0.4;
signal_new_frame_2(i)=1;
thr_delay(time_frame_number)=initial_thres_acc_delay;

end

end

end

figure(1)
B=[1 0.5 0.25J/1.75;
A=[1];

estimated_gaussian_delay=filter(B,A,sampled_delay);
subplot(4,1,1);
plot(sampled_delay);holdon;plot(estimated_delay_,'r');
plot(estimated_gaussian_delay,'g')
subplot(4,1,2);plot(abs(acc_diff_ave_delay_));hold on; plot(thr_delay_time,'g')
subplot(4,1,3);plot(signal_new_frame_1)
subplot(4,1,4);plot(signal_new_frame_2,'y')

mse(sampled_delay(1:length(estimated_delay_))-
(estimated_gaussian_delay(1:length(estimated_delay_))))

max(sampled_time)/sum(signal_new_frame_1)
max(sampled_time)/sum(signal_new_frame_2)

%%%%%%%%%%%%%% EWMA ANALYSIS %%%%%%%%%%%%%%%%%
%%%
x=sampled_delay;
z_previous=0;
lambda=0.05;
start_frame_time=1;
L=3;

170

for i=1:1:length(x)
mean_x=mean(x(start_frame_time:i));
x(i);
sigma_x=sqrt(var(x(start_frame_time:i)));
z(i)=lambda*x(i)+(1-lambda)*z_previous;
z_previous=z(i);
num=lambda*(1-(1-lambda)A(2*i));
n=1; % sample size
den=(2-lambda)*n;
UCL(i)=mean_x+L*sigma_x*sqrt(num/den);
LCL(i)=mean_x-L*sigma_x*sqrt(num/den);
mean_x+L*sigma_x*sqrt(num/den);
UCL_(i)=mean_x+L*sigma_x*sqrt(lambda/den);

signal_EWMA(i)=0;
if((UCL(i)< z(i))| (LCL(i) < z(i)))

averaged_signal_EWMA(start_frame_time:i)=mean(x(start_frame_time:i));
start_frame_time=i-1;
signal_EWMA(i)=500;

end
end

figure(1)
%subplot(4,1,1);
plot(averaged_signal_EWMA,'k')

(length(estimated_delay_))/(sum(signal_EWMA)/max(signal_EWMA))
(length(estimated_delay_))/(sum(signal_new_frame_1)+sum(signal_new_frame_2))
mse(sampled_delay(1:length(estimated_delay_))-estimated_delay_')
mse(sampled_delay-averaged_signal_EWMA')
legend('sampled_delay','Estimated delay using dynamic average traffic sampler by time
segmentation','averaged_signal_EWMA');

figure(2)
subplot(2,1,1);plot(z); hold on; plot(UCL,'g');hold on;plot(LCL,'y')
subplot(2,1,2);plot(signal,'g');

% Drop Analysis
for i=1:1:length(sampled_drop)-1;

diff_ave_drop_(i)= sampled_drop(i+1)- sampled_drop(i);
acc_diff_ave_drop_(i)=sum(diff_ave_drop_(index_star_time_frame:i));
signal_new_frame_1(i)=0;signal_new_frame_2(i)=0;

if ((time_frame_number==1)& (i==1))
thr_drop(time_frame_number)=initial_thres_acc_drop;
thr_drop_time(i)=thr_drop(time_frame_number);

else
D=i-index_star_time_frame;
thr_drop_time(i)=thr_drop(time_frame_number)*exp(-D/T);

end

if (abs(acc_diff_ave_drop_(i)) > thr_drop_time(i))
T=50/(star_time_frame-star_time_frame_p);
star_time_frame_p=star_time_frame;
estimated_drop_(index_star_time_frame:i)=mean(sampled_drop(index_star_time_frame:i));
estimated__drop_actual_frame=mean(sampled_drop(index star_time_frame:i));
time_frame_number=time_frame_number+1
star_time_frame=sampled_time(i+1);

171

index_star_time_frame=i+1;
thr_drop(time_frame_number)=1.3*thr_drop_time(i);
signal_new_frame_1(i)=1;

if ((abs(sampled_drop(i+1)-estimated_drop_actual_frame)) > maximum_drop_deviation)
T=0.4;
signal_new_frame_2(i)=1;
thr_drop(time_frame_number)=initial_thres_acc_drop;

end

end

end

figure(2)
subplot(4,1,1);plot(sampled_drop);hold on;plot(estimated_drop_,"r')
subplot(4,1,2);plot(abs(acc_diff_ave_drop_));hold on; plot(thr_drop_time,'g')
subplot(4,1,3);plot(signal_new_frame_1)
subplot(4,1,4);plot(signal_new_frame_2,'y')

max(sampled_time)/sum(signal_new_frame_1)
max(sampled_time)/sum(signal_new_frame_2)

172

APENDIX B. S C R I P T F O R OTRENET E M U L A T O R

In this appendix the scripts used within the OTRENET network emulator

module are presented. Appendix 2.3.2B.1 presents the TCL script used in NS

network simulator to recreate a computer network topology and realistic cross-

traffic situations. In Appendix B.2 the traffic sampler by time frame

segmentation algorithm, presented on Appendix A.l, is used to characterize the

simulated traffic metrics obtained through the network simulation presented on

Appendix 2.3.2B.1. Code presented in appendix B.2 was written in awk.

The script used to link the three units of the OTRENET, which was

explained in 4.3.4, is presented in appendix B.3. Code presented in appendix B.3

was written in Perl. In appendix B.4 the modified version of knistnet.c code,

which was written in C, is presented. This code is used to capture in real time

incoming traffic metrics using the time frame segmentation algorithm, which was

formally presented and described in detail in CHAPTER 5, and input the traffic

metrics into the network simulator.

B . l . TCL SCRIPT FOR N S NETWORK SIMULATION

#Create a simulator object
set ns [new Simulator]
while { [f i le exists
/home/daniel/Emul/total/final_module_2/dump_files/ns_input.tcl] = = 0 } {

#puts "Simulator doesn't have input file..."

}
source /home/daniel/Emul/total/final_module_2/dump_files/ns_input.tcl
source simulator_scheduler_2.tcl
exec rm /home/daniel/Emul/total/final_module_2/dump_files/ns_input.tcl

Switching Output traces

173

set f [open "| awk -f simulator emulator_7.awk" w]
$ns trace-all $f

Topology

#Create five nodes
set nO [$ns node]
set n l [$ns node]
set n2 [$ns node]
set n3 [$ns node]
set n4 [$ns node]
.

#Create a duplex link between the nodes
$ns duplex-link $n0 $n3 lOOOkb 1ms DropTail
$ns duplex-link $ n l $n3 lOOOkb 1ms DropTail
$ns duplex-link $n2 $n3 lOOOkb 1ms DropTail
#$ns duplex-link $n3 $n4 17kb 1ms SFQ
$ns duplex-link $n3 $n4 lOOkb 1ms SFQ

Orientation
$ns duplex-link-op $n0 $n3 orient right-down
$ns duplex-link-op $n2 $n3 orient right-up
$ns duplex-link-op $ n l $n3 orient right
$ns duplex-link-op $n3 $n4 orient right

Initial values
set counter_ 0
set now_p -1
set real_end_time $end_time
. . „ _

#Create a UDP agent and attach to real stream
set udpO [new Agent/UDP]
$ns attach-agent $n0 $udpO
set cbrO [new Application/Traffic/CBR]
.

set packetsize_2 50
set interval_2 0.01
set packetsize_3 100
set interval_3 0.01

#Create three traffic sinks and attach them to the node n4
set sinkO [new Agent/LossMonitor]
set s ink l [new Agent/LossMonitor]
set sink2 [new Agent/LossMonitor]
$ns attach-agent $n4 $sink0
$ns attach-agent $n4 $sinkl
$ns attach-agent $n4 $sink2

174

#Create a UDP agent and attach it to node n l
set udp l [new Agent/UDP]
$ns attach-agent $ n l $udp l

Create a CBR traffic source and attach it to udpl(0.384 Mbps)
set cbr l [new Application/Traffic/CBR]
$cbr l set packetSize_ $packetsize_2
$cbr l set intervaL $interval_2
$cbr l attach-agent $udp l
$udp l set fid 2

#Create a UDP agent and attach it to node n2
set udp2 [new Agent/UDP]
$ns attach-agent $n2 $udp2

Create a CBR traffic source and attach it to udp2 (0.768 Mbps)
set cbr2 [new Application/Traffic/CBR]
$cbr2 set packetSize_ $packetsize_3
$cbr2 set intervaL $interval_3
$cbr2 attach-agent $udp2
$udp2 set fid 2
.

#Connect the traffic source with the traffic sink
$ns connect $udp0 $sink0
$ns connect $udp l $s ink l
$ns connect $udp2 $sink2

.
#Schedule events for the CBR agent
$ns at 0 "parameters"
$ns at 0.0 "$cbr0 start"
$ n s a t 0 . 1 "$cbr l start"
#$ns at 0.2 "$cbr2 start"
#$ns at 5.0 "$cbr0 stop"
#$ns at 5.0 "$cbr l stop"
#$ns at 5.0 "$cbr2 stop"

proc combine { } {

global f ns cbr2 cbr l
set ns [Simulator instance]
set now [$ns now]
$ns at $now "$cbr l start"
$ns at [expr $now+40] "$cbr l stop"

175

$ns at [expr $now+10] "$cbr2 start"
$ns at [expr $now + 30] "$cbr2 stop"
$ns at [expr $now + 50] "combine"
puts "combine"

>

#Call the finish procedure after 5 seconds of simulation time
#$ns at 10 "finish"
#$ns at 50.1 "combine"

#Run the simulation
$ns run

B . 2 . AWK SCRIPT FOR MEASURING SIMULATED TRAFFIC METRICS AND

ONLINE TRAFFIC SAMPLER BY TIME FRAME SEGMENTATION

BEGIN {
Description: awk script for measuring delay, packet loss and jitter

— Configuration lines —
noc = 10;
minflow = 1;
maxflow= 10;
.

highest_packet_id = - 1 ;
highest_start_time_id=-1;
change_counter=1;
total__ave_delay_p=0;
total_ave__drop_p=0;
aver_applied_delay=1;
aver_applied_drop=1;
aver_applied_delay_th=1;
aver_applied_drop_th=1;

system_trlgger_time=0;
#—Exponentila_initail_paramters--

t=0;
j = 1 ;
D=0;
T_delay=30;
T_drop=15;
intial_ampl_thr_delay=10;
intial_ampl_thr_drop=5;
ampl_thr_delayO]=intial_ampl_thr_delay;

176

ampl_thr_dropO]=intial_ampl_thr_drop;
thr_trigger=0;
signal_2=0;
#max_delay_deviation=0.4;
max_delay_deviation=0.4;
counter deviation=0

for (i = minflow; i <= maxflow; i++) {

counter_passed_[i]=0;
counter_dropped_[i]=0;
total_pack_duration_p[i] =0;
total_packet_size_p[i]=0;
smallest_start_timejd[i]=0;
minimum_sampling_boundryJimit[i] =-1;
Throughput_p[1]=0;
Thr_p[1]=0;
acc_diff_thr_p[1]=0
acc_drop_p=0;
average_pack_duration_p[i]=0;
acc_diff_ave_pack_duration_p[i]=0;
percentage_pack_dropped_p[i] = 0;
acc_diff_perc_pack_dropped_p[i] = 0;
sampling_rate[i]=1;

}

}

#.
{

Get tokens from a string
action = $1;
time = $2;
temporal_source = $3;
temporal_destination = $4;
flow = $8;
source = int($9);
final_destination = int($10);
packetjd = $12;
packet_size= $6;

if (action == "h" || action == "r" || action == "d" || action =="+" || action == "-") {

if (action =="+")
{

start_time[flow,packet_id] = time;

if (((startJime[flow,packetjd] > start_time_p[flow,packetjd]) && (start_time_p[flow,packet_id]
!= 0)) || (start_time_p[flow,packet_id] == 0 && packetjd == 0 && start_time[flow,packet_id] != 0))

{
start_time[flow,packetjd]=start_time_p[flow,packet_id];
}

else {
start_time_p[flow,packet_id]=start_time[flow,packet_id];

}

177

if (packetjd == 0 && action == "+" && (temporal_source === source)) {
smallest_start_time_id[flow] = time;

}
b

if (minimum_sampling_boundry_limit[flow] < smallest_start_time_id[flow]) {
minimum_sampling_boundry_limit[flow] = smallest_start_time_id[flow];
maximum_sampling_boundryJimit[flow] = (minimum_sampling_boundry_limit[flow]) +

(sampling_rate[flow]);
}

if (((action != "d") && (action == "r" && final_destination == 1:emporal_destination)) || (action ==
"d")) {

if ((action == "r" && final_destination == temporaldestination) && (action != "d")) {

end_time[flow,packet_id] = time;
counterpassedjflow] = counter_passed_[flow]+1;

pack_size[flow,packet_id] = packet_size;
totaLpacket_size[flow]=total_packet_size_p[flow]+pack_size[flow,packet_id];
total_packet_size_p[flow]=total_packet_size[flow];

pack_duration[flow] = (end_time[flow,packet_id] - start_time[flow,packet_id])*1000;
total_pack_duration[flow] = pack_duration[flow]+total_pack_duration_p[fiow];
total_pack_duration_p[flow] = total_pack_duration[flow];

if (start_time[flow,packet_id] > highest_start_time_id) {#in case of reordering
h ig hest_start_time_id=start_time[f low, packetjd];

}

if (start_time[flow,packet_id] > maximum_sampling_boundry_limit[flow]) {
average_packet_size[flow] = (total_packet_size[flow])/(counter_passed_[flow]);
averagej3ack_duration[flow] = (total_pack_duration[flow])/(counterj3assed_[flow]);
percentage_pack_dropped[flow] =

100*(counter_dropped_[flow])/(counter_dropped_[flow]+counter_passed_[flow]);
Throughput[flow]=

(0.008*average_packet_size[flow]*counter_passed_[flow])/(start_time[flow,packet_id]-
minimum_sampling_boundry_limit[flow]);

minimum_sampling_boundry_limit[flow] = start_time[flow, packetjd];
maximum_sampling_boundryJimit[flow] = (minimum_sampling_boundry_limit[flow]) +

(sampling_rate[flow]);
counter_passed_[flow]=0;
counter_dropped_[flow]=0;
total_pack_duration_p[flow] =0;
total_packet_size_p[flow]=0;

if(flow==1){
system_trigger=0;
diff_ave_pack_duration[1] = average_pack_duration_p[1]-average_pack_duration[1];
acc_diff_ave_pack_duration[1] = diff_ave_pack_duration[1] +

acc_diff_ave_pack_duration_p[1];
average_pack_duration_p[1] = average_pack_duration[1];
acc_diff_ave_pack_duration_p[1]= acc_diff_ave_pack_duration[1];
abs_acc_delay[1]= sqrt((acc_diff_ave_pack_duration[1])A2);
total_ave_delay=(total_ave_delay_p+average_pack_duration[1]);
total_ave_delay_p=total_ave_delay;

178

diff_perc_pack_dropped[1] = percentage_pack_dropped_p[1] -
percentage j>ack_dropped[1];

acc_diff_perc_pack_dropped[1] = diff__perc_pack_dropped[1] +
acc_diff_perc_pack_dropped_p[1];

percentage_pack_dropped_p[1] = percentage_pack_dropped[1];
acc_diff_perc_pack_dropped_p[1] =acc_diff_perc_pack_dropped[1];
abs_acc_drop[1]= sqrt((acc_diff_perc_pack_dropped[1])A2);
total_ave_drop=(total_ave_drop_p+percentage_pack_dropped[1]);
total_ave_drop_p=total_ave_drop;

change_counter=change_counter+1;
#—-—Exponential_Threshold_Algorithm
if(j==1||thr_trigger==1){
D=0;
trigger_time=start_time[flow,packet_id];
thr_trigger=0;
} else{
D=start_time[flow,packet_id]-trigger_time;
}
if (signal_2==1 &&j!=2){
D=0;
T_delay=0.1;
T_drop=0.5;
signal_2=0;
signal_peak=1;
ampl_thr_delay[j]=intial_ampl_thr_delay;#could be changed from 80 to thr_delay[t-1]
ampl_thr_dropO]=intial_ampl_thr_drop;#could be changed from 80 to thr_delay[t-1]
printf("\n HERE \n");
}
thr_delay[t]=(ampl_thr_delay[j])*exp(-D/T_delay);
thr_drop[t]=(ampl_thr_drop[j])*exp(-D/T_drop);
Thriggering_delay
if (abs_acc_delay[1] > thr_delay[t]) {

#T_delay=30; #should change according the the peaks periodicity
system_trigger=1;
value_delay=((average_pack_duration[1]-

aver_applied_delay_th)/aver_applied_delay_th);
if(((average_pack_duration[1]-aver_applied_delay_th)/aver_applied_delay) > 0) {
sign=1;
}
else {sign=-1;}

if (aver_applied_drop != 0) {
value_drop= sqrt(((percentage_pack_dropped[1]-

aver_applied_drop)/aver_applied_drop)A2);
}

printf("\n Signal_.11 :%f %f\n",value_delay,value_drop);

if ((sqrt(((average_pack_duration[1]-aver_applied_delay)/aver_applied_delay_th)A2))
>0.3){

system_trigger=1;
signal_2=1;
signal_22=1;
printf("\n Signal_12 \n");

}
}

Thriggeringdrop

#if ((abs_acc_drop[1] > thr_drop[t]) && (signal_2 !== 1)) {
##T_drop=50; #should change according the the peaks periodicity

179

http://Signal_.11

#system_trigger=1;
#printf("\n Signal_21... \n");
#if ((sqrt(((percentage_pack_dropped[1]-

aver_applied_drop)/aver_applied_drop)A2))>0.25){
#signal_2=1;
#printf("\n Signal_22 \n");
#}

#}

#- —Display
real_time_simulation = systimeQ;

print(1000*Throughput[1],real_time_simulation,''<Simulator_out_>'',system_trigger_time,thr_drop[t],ab
s_acc_delay[1],abs_acc_drop[1],average_pack_duration[1],aver_applied_delay,percentage_pack_dr
opped[1],aver_applied_drop,1000*Throughput[2],maximum_sampling_boundry_limit[1]) >
"simulated_trace.txt";

#print(1000*Throughput[1],real_time_simulation,"<Simulator_out_>",thr_delay[t],thr_drop[t],abs_acc_
delay[1],abs_acc_drop[1],average_pack_duration[1],aver_applied_delay,percentage_pack_dropped[1
],aver_applied_drop,1000*Throughput[2]) > "simulated_trace.txt";

closeCsimulated_trace.txt");
printf("\n Thr_delayjime:%f | abs_acc_delay[1]:%f \n",thr_delay[t],abs_acc_delay[1]);

printf("\n flow :%d |Throu(kbps):%f |ave_delay:%f |acc_diff_delay[1]:%f | ave_drop:%f
|acc_diff_drop[1]:%f| %f
|System_time_:%f\n",flow,Throughput[flow],average_pack_duration[1],acc_diff_ave_pack_duration[1],
percentage_pack_dropped[1],acc_diff_perc_pack_dropped[1],thr_delay[t],system_trigger_time);

t=t+1;

System_Trigger
if (system_trigger == 1) {
j=j+1;
thr_trigger=1;
ampl_thr_delay[j]=1.2*thr_delay[t-1];
ampl_thr_dropD]=1.2*thr_drop[t-1];
if (signal_peak == 1)

{ampl_thr_delay[j]=intial_ampl_thr_delay;ampl_thr_drop[j]=intial_ampl_thr_drop;}
aver_applied_delay=total_ave_delay/(change_counter-1);
aver_applied_drop=total_ave_drop/(change_counter-1);
aver_applied__delay_th=total_ave_delay/(change_counter-1);
aver_applied_drop_th=total_ave_drop/(change_counter-1);
total_a ve_delay_p=0;
total_ave_drop_p=0;
acc_diff_ave_pack_duration_p[flow]=0;
acc_diffj3erc_pack_dropped_p[flow]=0;
change_counter=1;
system_trigger_time = systime();

if (signal_2 == 0){counter_deviation=0;max_delay_.deviation=0.4}

if(signal_22==1){
printf("\n System Drasticall change| counter_deviation = %f

\n",counter_deviation);
if (counter_deviation > 2 || counter_deviation == 0 || sqrt((value_delay)A2) >1

value_drop >0.5){
aver_applied_delay = ((2.5)Asign)*aver_applied_delay;
aver_applied_drop = ((2.5)Asign)*aver_applied_ drop;
#max_delay_deviation=2.5*max_delay_deviation;

180

printf("\n System Drasticall change| counter_deviation = %f
\n",counter_deviation);

counter_deviation=0;
}
counter_deviation=counter_deviation+1;
signal_22=0;

}

printf("\n System _Signal..::: %f \n",aver_applied_delay);
#system(7root/download/nistnet/cli/./cnistnet-F");
system(7root/download/nistnet/cli/./cnistnet-a 13.0.0.5 15.0.0.2 add new-delay

"aver_applied_delay" -drop "aver_applied_drop"");
#system("cnistnet -a 13.0.0.5 15.0.0.2 add new -delay 0 -drop 0");

}

•

}

} if (action == "d") {
start_time[flow,packet_id] = time;
end_time[flow,packet_id] = - 1 ;
counter_dropped_[flow] = counter_dropped_[flow]+1;
#printf("Amount of packets dropped [1]:%d\n",counter_dropped_[1]);
#printf("Amount of packets dropped [2]:%d\n",counter_dropped_[2]);

181

B.3. PERL SCRIPT THAT EXECUTES AND SYNCHRONIZES OTRENET UNITS

#!/usr/bin/perl

use threads;
use threads::shared;

my $collector_flag : shared = 0;
my $simulator_flag : shared = 0;
my $file_scheduler_flag: shared = 0;
my $file_counter_collector :shared =0;
my $file_counter_simulator :shared =1;
my $initial_flag :shared =0;
my $input_size : shared = 0;
my $plotter_flag : shared =0;

$input_size_p = -s "/var/log/messages";

my $collector = threads->new (\&traffic_collector, 1);
my $simulator = threads->new (\&network_simulator_emulator, 2);
my $file_scheduler = threads->new (\&scheduler, 3);
my $emulator_plotter = threads->new (\&plotter, 4);

#system("echo 0 > ns_availability");
system(7root/download/nistnet/cli/./cnistnet-u");
system("/root/download/nistnet/cli/./cnistnet-F");
#system("cnistnet-a 15.0.0.3 13.0.0.2 add new -delay 0 -drop 0");
system("/root/download/nistnet/cli/./cnistnet -a 13.0.0.5 15.0.0.2 add new -delay 0 -drop 0");
#system(7root/download/nistnet/cli/./cnistnet -S 13.0.0.5 15.0.0.2 »file_1");
system ("rm/home/daniel/Emul/total/final_module_2/dump_files/*.*");
system ("rm/home/daniel/Emul/total/final_module_2/simul_continuous/dump_files/*.*");
system ("rm -rf /home/daniel/Emul/total/final_module_2/simul_continuous/dump_files/*");
system ("rm/home/daniel/Emul/total/final_module_2/simul_continuous/results/*.*");
system ("rm -rf /home/daniel/Emul/total/final_module_2/simul_continuous/results/*");

$collector->join;
$simulator->join;
$file_scheduler->join;
$plotter->join;

sub traffic_collector {
system("dmesg -c");

while (1){
#while($file_counter_collector - $file_counter_simulator > 2) (sleep(1);}
$input_size= -s 7var/log/messages";
while ($input_size_p == $input_size){

$input_size= -s "/var/log/messages";
}
print("$input_size $input_size_p \n");
$input_size_p = $input_size;
system("dmesg -c »/home/daniel/Emul/total/final_module_2/dump_files/temp_file");

if ((-z 7home/daniel/Emul/total/final_module_2/dump_files/temp_file")) {
#print ("\n..temp_file exist and is empty..An");
}

182

#print ("\n testing: Collector is on ..in betwen...\n");

if ((-e "/home/daniel/Emul/total/final_module_2/dump_files/temp_file") && (-s
7home/daniel/Emul/total/final_module_2/dump_files/temp_file")){

print ("\n..temp_file exist and is not empty..An");
systemfawk -f simulatorJnput_generator_2.awk

/home/daniel/Emul/total/final_module_2/dump_files/temp_file");
system("rm/home/daniel/Emul/total/finaLmodule_2/dump_files/temp_file");

if ((-e "/home/daniel/Emul/total/final_module_2/dump_files/ns_input_temp") && (-s
7home/daniel/Emul/total/final_module_2/dump_files/nsjnput_temp")) {

print ("\n...ns_input_temp exist and is not empty..An");
$file_counter_collector++;
system("mv/home/daniel/Emul/total/final_module_2/dump_files/ns_input_temp

/home/daniel/Emul/total/final_module_2/dump_files/".$file_counter_collector.".tcl");
systemfmv

/home/daniel/Emul/total/final_module_2/simul_continuous/dump_files/ns_continuous_input_temp
/home/daniel/Emul/total/finaLmodule_2/simul_continuous/dump_files/".$file_counter_collector.".tcl");

print "\n Collector is done file $file_counter_collector \n\n";
}

}

if ($file_counter_collector ==1) {
$file_scheduler_flag =1;
cond_signal($file_scheduler_flag);
}

}

}

sub network_simulator_emulator {
lock($simulator_flag);
cond_wait($simulator_flag);

if ($simulator_flag == 1) {
print "Simulator is on...\n\n";
$plotter_flag=1;
cond_signal($plotter_flag);
systemfns simulator_3.tcl");
#system("nssimulator_exp_back.tcl");
#system("ns complex_simul_1 .tcl");
exit 0;

}
}

sub plotter {
lock($plotter_flag);
cond_wait($plotter_flag);
if ($plotter_flag==1){
#system(7root/download/nistnet/cli/./cnistnet-S 15.0.0.22 13.0.0.22");
}

}

sub scheduler {
lock($file_scheduler_flag);
cond_wait($file_scheduler_flag);

183

while (1){
if ($file_scheduler_flag == 1) {

if ((!-e "/home/daniel/Emul/total/final_module_2/dump_files/ns_input.tcl")
||($file_counter_simulator == 1)){

print ("File_simulator:$file_counter_simulator- File_collector:$file_counter_collector\n");

while ($file_counter__simulator > $file_counter_collector){}
while (!-e

7home/daniel/Emul/total/final_rnodule_2/dump_files/''.$file_counter_simulator.''.tcr'){}

system("mv
/home/daniel/Ernul/total/final_module_2/dump_files/".$file_counter_simulator.".tcl
/home/daniel/Emul/total/final_module_2/dump_files/ns_input.tcl");

print" Scheduler: File #$file_counter_simulator was switched \n\n";
$file_counter_simulator++;

if ($file_counter_simulator ==2) {
$simulator_flag =1;
cond_signal($simulator_flag);

}

}
}

}
}

B.4. M O D I F I E D VERSION OF KNISTNET.C

I* $Header$ 7

/* knistnet.c - Linux implementation of "hitbox'Mike functionality.
* This code exists as a loadable kernel module. It gains access to the
* entry points it needs through some patches to the existing Linux kernel.
* (Unfortunately, there seemed to be no practical alternative to patching
* to gain access to the basic packet handling routine entry points.)
* The user-level interface provided is a device driver one, modeled on the
* original SunOS-based hitbox.
*
* Mark Carson, NIST/UMPC
* 1/1997
7

#include "kincludes.h"

/* The following can only be included in one place! 7
#define EXPORT_SYMTAB
#include <linux/module.h>
#include <linux/kernel.h>
#include "tabledist.h"

int nistnet_debug;

/* Breakpoints are only helpful when we're compiled into the kernel 7
#ifndef MODULE

#ifdef DEBUG

184

#define BREAKPOINT(string) asm(" int $3")
#define DEBUG_SPINLOCKS 2
#else
#define BREAKPOINT(string) printk(string)/*@@minidebug@@*/
#endif

#else /* MODULE */

#ifdef DEBUG
#define DEBUG_SPINLOCKS 2
#endif

#define BREAKPOINT(string) printk(string)/*@@minidebug@@*/

#endif/* MODULE*/

spinlockj LinLockVar = SPIN_LOCK_UNLOCKED;

static int lock_ticker;
#define LinLock(string) \

do {++lock_ticker;\
if (nistnet_debug > 4 && (!(lock_ticker&0x3f) || nistnet_debug > 5)) \

printk("lock %s", string); \
spin_lock_irqsave(&LinLockVar, pre_flags);} while (0)

#define LinUnlock(string) \
do {if (nistnet_debug > 4 && (!(lock_ticker&0x3f) || nistnet_debug > 5)) \

printk(" unlock %s\n", string); \
spin_unlock_irqrestore(&LinLockVar, pre_flags);} while (0)

#ifdef notdef
#define HASHSIZE 256
static struct linjiitbox *hittable[HASHSIZE];
#endif

#ifdef DEBUG
static int hittable_count;
#endif

struct nistnet_globalstats ourstats;
#define STATS_START 0
#define STATS_PROCESS 1
#define STATS_UNPROCESS 2

void fixed_gettimeofday(struct timeval *tv);
void lin_hash_stats(int number);

void fast_fill(void);
void fast_empty(void);
struct fast_timer_list * fast_alloc(int how);
void fast_free(struct fast_timer_list *done);

int
addnistnet(NistnetTableEntryPtr entry)
{

/* Check entry for sanity */
if (entry->lteStats.hitreq.drd_min &&

entry->lteStats.hitreq.drd_min >= entry->lteStats.hitreq.drd_max)
return -EINVAL;

#ifdef CONFIG ECN

185

if (entry->lteStats.hitreq.drd_congestion) {
if (entry->lteStats.hitreq.drd_min > entry->lteStats.hitreq.drd_congestion ||

entry->lteStats.hitreq.drd_max < entry->lteStats.hitreq.drd_congestion)
return -EINVAL;

}
#else

entry->lteStats.hitreq.drd_congestion = 0;
#endif

/* Should ignore these fields, but it doesn't feel right... */
entry->lteOldDrop = entry->lteDrop;
entry->lteOldDup = entry->lteDup;
entry->lteOldDeiay = entry->lteDelay;
entry->lteOldDelsigma = entry->lteDelsigma;

/* Initialize packet timer */
fixed_gettimeofday(&entry->lteStats.last_packet);
entry->lteStats.next_packet = entry->lteStats.last_packet;
/* Insert in table */
if (!lt_add(entry))

return -ENOMEM;
#ifdef DEBUG

++hittable_count;
#endif

return 0;
}

int
addhitreq(struct lin_hitreq *hitreq)
{

NistnetTableEntry nistnetreq;

bzero(&nistnetreq, sizeof(nistnetreq));
nistnetreq.IteSource = hitreq->src;
nistnetreq.lteDest = hitreq->dest;
nistnetreq.lteStats.hitreq = *hitreq;
nistnetreq.IteDrop = hitreq->p_drop;
nistnetreq.lteDup = hitreq->p_dup;
nistnetreq.IteDelay = hitreq->delay;
nistnetreq.IteDelsigma = hitreq->delsigma;
return addnistnet(&nistnetreq);

}

int
rmnistnet(NistnetTableEntryPtr entry)
{

/* Remove from table */
switch (lt_rm(entry)) {
case 1:

break;
case 0:

return -ESRCH;
case - 1 :

return -EFAULT;
}

#ifdef DEBUG
-hittable_count;

#endif
return 0;

}

int

186

rmhitreq(struct lin_hitreq *hitreq)
{

NistnetTableEntry nistnetreq;

bzero(&nistnetreq, sizeof(nistnetreq));
nistnetreq.IteSource = hitreq->src;
nistnetreq.IteDest = hitreq->dest;
nistnetreq.IteStats.hitreq = *hitreq;
return rmnistnet(&nistnetreq);

}

int
gethitstats(struct linhitstats *hitstats)
{

NistnetTablePtr tableptr;
int i;

tableptr = lt_find_by_srcdest(hitstats->hitreq.src, hitstats->hitreq.dest);
if ('tableptr)

return -ESRCH;
/* Put things where the old stuff expects it */
tableptr->ltEntry.lteOldDrop = tableptr->ltEntry.lteDrop;
tableptr->ltEntry.lteOldDup = tableptr->ltEntry.lteDup;
*hitstats = tableptr->ltEntry.lteStats;
/* Compute current_bandwidth */
for (i=0; i < BAND_ARRAY; ++i)

hitstats->current_bandwidth +=
hitstats->bandwidth_array[i];

if (hitstats->seats_used)
hitstats->current_bandwidth /= hitstats->seats_used;

return 0;
}

int
getnistnet(NistnetTableEntryPtr where)
{

struct linjiitstats *hitstats;
NistnetTablePtr tableptr;
inti;

tableptr = lt_find_by_key(&where->lteKey, NULL);
if (Itableptr)

return -ESRCH;

/* Copy things where the old stuff expects it 7
tableptr->ltEntry.lteOldDrop = tableptr->ltEntry.lteDrop;
tableptr->ltEntry.lteOldDup = tableptr->ltEntry.lteDup;

*where = tableptr->ltEntry;
hitstats = &where->lteStats;
where->lteOldDelay = where->lteDelay;
where->lteOldDelsigma = where->lteDelsigma;
/* Compute current_bandwidth */
for (i=0; i < BAND_ARRAY; ++i)

hitstats->current_bandwidth +=
hitstats->bandwidth_array[i];

if (hitstats->seats_used)
hitstats->current_bandwidth /= hitstats->seats_used;

return 0;
}

187

/* nice and high, but it is tunable: insmod hitmod.o major=your_selection */
static int major = HITMAJOR;

/*
* The driver.
7

I* read -- get what's in the table 7
static
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0)
ssize_t
hw_read(struct file * file, char * buf, size_t count, loff_t *whoknows)
#else
int
hwread (struct inode * node, struct file * file, char * buf, int count)
#endif
{

extern int DumpPairs(char *buf, int count);
extern int lt_read(char *buf, int count);

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0)
switch (MINOR(file->f_dentry->d_inode->i_rdev))

#else
switch (MINOR(node->i_rdev))

#endif
{
case HITMINOR:

return DumpPairs(buf, count);
case NISTNETMINOR:

return lt_read(buf, count);
default:

return 0;
}

}

static
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0)
ssize_t
hw_write(struct file * file, const char * buf, size_t count, loff_t *whoknows)
#else
int
hw_write(struct inode * node,struct file * file.const char * bufjnt count)
#endif
{

int ret;

if (count >= tabledistsizeO) {
ret = tabledistfill(buf);
if (ret) return ret;
return tabledistsizeO;

} else
return -E2BIG; /* ha, ha 7

}

/*
* mucky muck ioctl interface
7
static int
hw_ioctl(struct inode * inode, struct file * file, unsigned int type, unsigned long arg)
{

struct linhitreq hitreq;

188

NistnetTableEntry nistnetreq;
extern void kick_fast_rtc(void);
int re = 0;

switch (type) {
case HITIOCTLJDFF:
case N1STNETJDFF:

/* Shut down */
ourstats.emulator_on=0;
break;

case HITIOCTL_ON:
case NISTNETJDN:

/* Turn on if not already on 7
ourstats.emulator_on=1;
break;

case HITIOCTL_ADD:
/* Get what they want 7
copy_from_user_ret(&hitreq, (struct tinhitreq *)arg,

sizeof(struct linjiitreq), -EFAULT);
/* Add it to the table 7
re = addhitreq(&hitreq);
break;

case NISTNET_ADD:
/* Get what they want 7
copy_from_user_ret(&nistnetreq, (NistnetTableEntryPtr)arg,

sizeof(NistnetTableEntry),-EFAULT);
/* Add it to the table 7
re = addnistnet(&nistnetreq);
break;

case HITIOCTL_REMOVE:
/* Get what they want 7
copyjTom_user_ret(&hitreq, (struct linjiitreq *)arg,

sizeof(struct lin_hitreq), -EFAULT);
/* Remove it from the table 7
re = rmhitreq(&hitreq);
break;

case NISTNET_REMOVE:
/* Get what they want 7
copy_from_user_ret(&nistnetreq, (NistnetTableEntryPtr)arg,

sizeof(NistnetTableEntry),-EFAULT);
/* Remove it from the table 7
re = rmnistnet(&nistnetreq);
break;

case HITIOCTL_STATS:
{
struct lin_hitstats hitstats;

/* Get what they want 7
copy_from_user_ret(&hitstats, (struct lin_hitstats *)arg,

sizeof(struct lin_hitstats), -EFAULT);
re = gethitstats(&hitstats);
/* Copy out individual stats 7
if (!rc) {

copy_to_user_ret((struct linjiitstats *)arg,
Shitstats,
sizeof(struct lin_hitstats), -EFAULT);

}
break;
}

case NISTNETJ3TATS:
/* Get what they want 7

189

copy_from_user_ret(&nistnetreq, (NistnetTableEntryPtr)arg,
sizeof(NistnetTableEntry), -EFAULT);

re = getnistnet(&nistnetreq);
/* Copy out individual stats */
if (!rc) {

copy_to_user_ret((NistnetTableEntryPtr)arg,
&nistnetreq,
sizeof(NistnetTableEntry), -EFAULT);

}
break;

case HITIOCTL_MODE:
/* ?? 7
break;

case HITIOCTLJTMER:
/* ?? 7
break;

case HITIOCTL_MTU:
/* ?? 7
break;

case HITIOCTL_DEBUG:
case NISTNET_DEBUG:

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0)
re = get_user(nistnet_debug, (long *)arg);
if (re < 0) break;

#else
nistnetdebug = get_user((long *)arg);

#endif
#ifdef LTJDEBUG

lt_set_debug_level(nistnet_debug);
#endif

break;
case HITIOCTL_GLOBALSTATS:

copy_to_user_ret((struct lin_globalstats *)arg,
&ourstats.l,
sizeof(struct lin_globalstats), -EFAULT);

break;
case HITIOCTLJMGLOBALSTATS:
case NISTNET_GLOBALSTATS:

copy_to_user_ret((struct nistnet_globalstats *)arg,
Sourstats,
sizeof(struct nistnet_globalstats), -EFAULT);

break;
case NISTNET_KICK:

kick_fast_rtc();
break;

case NISTNET_FLUSH:
flush_fast_timer_list();
break;

}
return re;

r
* Our special open code.
* MOD_INC_USE_COUNT make sure that the driver memory is not freed
* while the device is in use.
7

static int
hw_open(struct inode* ino, struct file* filep)
{

190

MOD_INC_USE_COUNT;
return 0;

}

/*
* Now decrement the use count.
7
static
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0)
int
#else
void
#endif
hw_close(struct inode* ino, struct file* filep)
{

MOD_DEC_USE_COUNT;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0)

return 0;
#endif
}

static struct file_operations hw_fops = {
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,3,25)

owner: THIS_MODULE, /* struct module "owner */
read:
write:
ioctl:
open:
release:

hw_read,
hw_write,
hw_ioctl,/*
hw_open,
hw close,

/* read - get emulator table */
/* write - fill distribution table */

ioctl - most of the controls */
/* open */
/* release */

#else /* 2.0 and 2.2 versions */

NULL,
hw_read,
hw write,
NULL,
NULL,
hw ioctl,/* ioctl •
NULL,
hw open,

/* Iseek - n/a */
/* read - get emulator table */
/* write - fill distribution table */
/* readdir - n/a */
/* poll/select - n/a 7

• most of the controls */
/* mmap - n/a, for now at least 7
/* open */

#if LINUX VERSION CODE >= KERNEL VERSION(2,1,0)
NULL,

#endif
hw close,
NULL,
NULL,
NULL,
NULL

/* flush 7

/* release 7
/* fsync */
/* fasync */
/* check_media_change */
/* revalidate */

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0)

NULL
#endif

/* lock */

#endif /* 2.0 and 2.2 versions 7

};

/* Various statistics. We record some running totals in circular arrays,
* to give an idea of how things are going.
*/

191

#define band_seat(time) ((time.tv_sec)%BAND_ARRAY)

I* How well is the hash table doing? */
void
lin_hash_stats(int number)
{

static int hashslot;

/* average 50/50 with the last value we got */
ourstats.l.hash_tries[hash_slot] = (number + ourstats.l.hash_tries[hash_slot]) » 1;
hash_slot = (hash_slot+1)%BAND_ARRAY;

}

/* How long is our processing time? */
void
global_stats(int process)
{

static struct timeval start;
struct timeval end;
static int process_slot, unprocess_slot;
long int usec_time;

switch(process) {
case STATS_START:

fixed_gettimeofday(&start);
return;

case STATS_PROCESS:
fixed_gettimeofday(&end);
usec_time = timeval_diff(&end, &start);
/* Check for bogus time values */
if (nistnet_debug && usec_time < 0) {

printkfnistnet: pretty fast processing, %ld usecs'An", usec_time);
return;

}
/* Average in with previous value 50/50 */
ourstats.l.process_overhead[process_slot] =

(usec_time+ourstats.l.process_overhead[process_slot])» 1;
process_slot = (process_slot+1)%BAND_ARRAY;
break;

case STATSJJNPROCESS:
fixed_gettimeofday(&end);
usectime = timeval_diff(&end, &start);
/* Check for bogus time values */
if (nistnet_debug && usec_time < 0) {

printk("nistnet: pretty fast unprocessing, %ld usecs!\n", usec_time);
return;

}
/* Average in with previous value 50/50 */
ourstats.l.unprocess_overhead[unprocess_slot] =

(usec_time+ourstats.l.unprocess_overhead[unprocess_slot])» 1;
unprocess_slot = (unprocess_slot+1)%BAND_ARRAY;
break;

}
}

I* What's the traffic like on this entry? */
void
packet_stats(struct skbuff *skb, struct lin_hitstats *hitme)
{

struct timeval ourjime;

192

long packettime;
int last_seat, our_seat, seat;

if (!skb->len)
return;

fixed_gettimeofday(&our_time);
last_seat = band_seat(hitme->last_packet);
ourseat = band_seat(our_time);
packettime = timeval_diff(&our_time, &hitme->last_packet);
/* Check for bogus time values */
if (nistnetdebug && packettime < 0) {

printkf'nistnet: packet arrived in %ld usecs!\n", packettime);
goto after_bandwidth;

}
hitme->last_packet = our_time;
/* compute bandwidth */
if (packettime > BAND_ARRAY*MILLION) {

/* too long since last packet; zero out everything 7
memset(hitme->bandwidth_array, 0,

BAND__ARRAY*sizeof(unsigned long));
hitme->seats_used = 1;

} else if (last_seat != our_seat) { /* zero out skipped intervals 7
for (seat = (last_seat+1)%BAND_ARRAY; seat != our. seat;

seat = (seat+1)%BAND_ARRAY) {
hitme->bandwidth_array[seat] = 0;

}
/* plus get this one! 7
hitme->bandwidth_array[our_seat] = 0;
if (hitme->seats_used < BAND_ARRAY)

++hitme->seats_used;
}
hitme->bandwidth_array[our_seat] += skb->len;

after_bandwidth:
hitme->current_size = skb->len;
hitme->bytes_sent += skb->len;
return;

}

#ifdef DEBUG
void
check_skb(struct sk_buff *skb, char *where)
{

if (skb->data < skb->head) {
printk("bug:check_skb:under:%s\n", where);

}
if (skb->tail>skb->end) {

printk("bug:check_skb:over:%s\n", where);
}

}
#endif/* DEBUG*/

/* Receive packet interception 7
static struct packet_type *ippt;

static struct packet_type ourpt;

/* We use an arbitrary spot in the skb control buffer to mark packets
* which we've already processed.
7

#define NISTNET_CB_MAGIC 66

193

#define NISTNET_CB_MAGIC_SPOT33
#define we_saw_skb(skb) (skb->cb[NISTNET_CB_MAGIC_SPOT] == NISTNET_CB_MAGIC)
#define gaze_at_skb(skb) (skb->cb[NISTNET_CB_MAGIC_SPOT] = NISTNET_CB_MAGIC)

/* Resume processing of a delayed packet */
void
runpacket(struct fast_timerjist *info)
{

struct nistnet_packetinfo *hpi = (struct nistnet_packetinfo *)info->data;
unsigned long pre_flags;

LinLock("runpacket1");
packet_stats(hpi->skb, &hpi->nte->lteStats);
LinUnlock("runpacket1");
/* Non-local save/restore of flags doesn't work on some
* architectures (notably Suns). We should be in an OK
* situation without it, though...
*/

/*restore_flags(hpi->flags);*/
#ifdef DEBUG

check_skb(hpi->skb, "third");
#endif

/* Mark this one as already having been queued */
gaze_at_skb(hpi->skb);
(void) netif_rx(hpi->skb);
LinLock("runpacket2");
if (!hpi->nte->lteStats.qlen) {

BREAKPOINT("zero queue in runpacket");
} else {

~hpi->nte->lteStats.qlen;
}
fast_free(info);
LinUnlock("runpacket2");
MOD_DEC_USE_COUNT;

}

/* This is the (slightly modified) DRD algorithm for dropping */

/* probability factors * PROBFACTOR */
static unsigned int drdtablefl = { /* constant "ramp up" */
6554,
9830,
13107,
16384,
19661,
22938,
26214,
29491,
32768,
36045,
39322,
42598,
45875,
49152,
52429,
55706,
58982,
62259,
65535

};
194

#define DRDLIMIT (sizeof(drdtable)/sizeof(int))

/* packet_drop - compute probability of dropping packet. If we are using
* DRD, use its table (adjusted for the queue length parameters we're
* using), otherwise use a constant drop probability (which may be 0).
* If both DRD and constant drop are specified, we use the DRD probability
* in preference to the constant drop if the former is non-zero.
*
* Note that DRD drops are by definition uncorrelated. The whole point
* in doing "preventive" drops is to avoid correlated loss and retransmit!!
*
* Return 1 if packet is to be dropped, 0 otherwise.
7
int
packet_drop(NistnetTablePtrtableme, int*use_drd, int*use_ecn)
{

struct linhitstats *hitme;
int value;

hitme = &tableme->ltEntry.lteStats;
*use_drd=0;
*use_ecn=0;
if (hitme->hitreq.drd_max) { /* using DRD */

unsigned int stretch = DRDUMIT/(hitme->hitreq.drdjriax-hitme->hitreq.drd_min);

if (hitme->qlen < hitme->hitreq.drd_min) {/* below DRD limit 7
if (tableme->ltEntry.lteDrop) {

value = (correlatedrandom(&tableme->ltEntry.ltelDrop)&Oxffff);
return value < tableme->ltEntry.lteDrop;

} else {
return 0;

}
}

value = (myrandomO&Oxffff);
*use_drd=1;
if (hitme->qlen >= hitme->hitreq.drd_max)

return value < drdtable[DRDLIMIT-1];
#ifdef CONFIG_ECN

/* If using DRD, check whether the queue length is still
* below the ECN limit. If so, the packet can be marked
* with the ECN bit rather than dropped.
*/
else if (hitme->qlen <= hitme->hitreq.drd_congestion)

*use_ecn=1;
#endif /* CONFIG_ECH 7

return value < drdtable[stretch *
(hitme->qlen-hitme->hitreq.drd_min)];

} else {
if (tableme->ltEntry.lteDrop) {

value = (correlatedrandom(&tableme->ltEntry.ltelDrop)&Oxffff);
return value < tableme->ltEntry.lteDrop;

} else {
return 0;

}
}

}

#ifdef CONFIG_ECN
/* ecn_skb - mark a packet for explicit congestion notification, if supported.
7

195

int
ecn_skb(struct sk_buff *skb)
{

struct iphdr *iph;

/* Get the ip header */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0)

iph = skb->nh.iph;
#else

iph = skb->h.iph;
#endif

/* Check if ecn enabled */
if (!(iph->tos & ECN_CAPABLE))

return - 1 ;
/* Munge bit, if not already munged */
if (!(iph->tos & ECN_NOTED)) {

unsigned long checksum;

iph->tos |= ECN_NOTED;
/* Adjust checksum to account for munged bit */
/* ip checksum is 1's complement in network byte order... */
checksum = iph->check - htons(ECN_NOTED);
checksum += checksum » 1 6 ; /* catch carry */
iph->check = checksum;

}
return 0;

}
#endif/*CONFIG_ECN*/

/* Determine the amount of time to delay a packet. This is the maximum
* of two quantities:
* 1. Probabilistic packet delay time
* 2. Bandwidth-limitation delay time
*
* Question: Should we take probabilistic delay into account in determining
* bandwidth consumption? Answer: This complicates things a little too much.
* Our model is that bandwidth throttling happens first at one virtual
* choke point, then packets may get independently delayed at some later
* point. This can result in packets getting bunched up, so the stated
* bandwidth limitation is actually exceeded at some point.
*
* The problem with taking the delay into account is that the simplest
* way of doing so would remove any possibility of reordering packets -
* each packet could not be sent any sooner than its predecessor. It
* thus seems more useful in terms of network effects to do things the
* way they are here.
7
int
packet_delay(struct sk_buff *skb, NistnetTablePtr tableme)
{

int probdelay=0, bandwidthdelay=0, delay=0;
struct linhitstats *hitme;
struct timeval our_time={0,0};
long packettime=0;

hitme = &tableme->ltEntry.lteStats;

/* Figure probabilistic delay */
probdelay = correlatedtabledist(&tableme->ltEntry.ltelDelay);

/* Figure bandwidth-limitation delay */

196

if (hitme->hitreq.bandwidth) {

%d\n"

fixed_gettimeofday(&our_time);
/* We can't send until queued packets have been taken care of */
bandwidthdelay = timeval_diff(&hitme->next_packet,

&our_time);
if (bandwidthdelay < 0) {

bandwidthdelay = 0;
hitme->next_packet = ourjime;

}
/* Now determine how much time this packet will take in
* usee, in order to schedule the following one.
*/

/* skb->len can sometimes be too big (with other junk)(?) */
packettime = (long)skb->len*(MILLION/hitme->hitreq.bandwidth) +

((long)skb->len*(MILLION%hitme->hitreq.bandwidth)
+ hitme->hitreq.bandwidth/2)/hitme->hitreq.bandwidth;

/* Quick defensive hack: even at 1 byte/second, a packet
* shouldn't take longer than MTU seconds!
*/
if (packettime < 0 || packettime > 1500*MILLION) {

if (nistnet_debug)
printkfnistnet: wacky packettime of %ld, with length %ld and bandwidth

(long)packettime, (long)skb->len, hitme->hitreq.bandwidth);
packettime = 0;

} else {
timeval_add(&hitme->next_packet, packettime);

}
#if defined(CONFIG_DELAYMIDDLE)

bandwidthdelay += packettime/2;
#elif defined(CONFIG_DELAYEND)

bandwidthdelay += packettime;
#elif defined(CONFIG_DELAYSTART)
#endif

}

delay = probdelay > bandwidthdelay ? probdelay : bandwidthdelay;

if (nistnet_debug > 4) { /* Print what we're doing every once in a while */
static int ticker;

if(!(ticker&0x3f)){
printkfnistnet: packet size %ld packettime %ld usee delay %ld usec\n",

(long)skb->len, (long) packettime, (long)delay);
if (bandwidthdelay)

printkfnistnet: current time is %d.%06d, will send at %d.%06d\n",
(int)our_time.tv_sec, (int)our_time.tv_usec,
(int)hitme->next_packet.tv_sec, (int)hitme-

>next_packet.tv_usec);
}
++ticker;

}

return usec_to_minijiffy(delay);
}

int
packetdup(NistnetTablePtrtableme)
{

197

int value;

if (!tableme->ltEntry.lteDup) return 0;
value = (correlatedrandom(&tableme->ltEntry.ltelDup)&Oxffff);
return value < tableme->ltEntry.lteDup;

}

int
default_munger(struct skbuff *skb, struct netdevice *dev, struct packet_type *ptype, struct
linjiitbox *hitme)
{

return 1;
}

int
DefaultNistnetMunger(struct sk_buff *skb, struct net_device *dev, struct packet_type *ptype,
NistnetTableEntry *hitme)
{

return 1;
}

packetjnunger otherjnunger = defaultjnunger;
NistnetMunger OtherNistnetMunger = DefaultNistnetMunger;

void addmunge(packet_munger munger)
{

otherjnunger = munger;
}

void AddNistnetMunger(NistnetMunger munger)
{

/* New mungers take precedence */
otherjnunger = defaultjnunger;
OtherNistnetMunger = munger;

}

void rmmunge(packet_munger munger)
{

if (munger == otherjnunger)
otherjnunger = defaultjnunger;

}

void RmNistnetMunger(NistnetMunger munger)
{

if (munger == OtherNistnetMunger)
OtherNistnetMunger = DefaultNistnetMunger;

}

static struct timeval ingress_time_p={0,0};
static long int total_sampling_time_p=0;
static long inttotal_packet__size_input_emulator_p=0;
static sampling_counter=0;
static emulatorjnput_counter=1;
static long int average_packet_jnterval_gap_p=0;
static long int average_packet_sizejnput_emulator_p=0;
static long int diff_time_gap_p =0;
static long int acc_diff_time_gap_p =0;
static long int acc_diff_pack_size_p =0;

static void printk_double(double value, unsigned int places)

198

{
int whole;
int fraction;
int multiplier;
for(multiplier = 1; places; places--) multiplier *= 10;
whole = (int)(value);
fraction = (int)((value - whole) * multiplier);
infraction < 0) fraction = -fraction;
printk("%d.%d", whole, fraction);
}

#define munge_finish(string) {LinUnlock(string); if (skb2) (void) rcv_packet_munge(skb2, dev,
ptype);/* recursively process dup */}

int
rcv_packet_munge(struct sk_buff *skb, struct net_device *dev, struct packet_type *ptype)
{

unsigned long pre_flags;

LinLock("rcv_packet1");
if (ourstats.emulator_on && !we_saw_skb(skb)) {

int use_drd, use_ecn, delaytime;
NistnetTablePtr tableme;
struct lin_hitstats *hitme;
struct lin_hitbox dummy;
struct fast_timer_list *screamer;
struct nistnet_packetinfo *hpi;
struct sk_buff*skb2=NULL;
int ret=1 ,special_sampling_time;

struct timeval ingress_time={0,0};
struct timeval ingress_time_u={0,0};
long int packet_interval_gap;
long int total_sampling_time=0;
long int average_packet_interval_gap,change;
double total_sampling_time_seconds,ingress_time_seconds;
long inttotal_packet_sizejnput_emulator,diff_pack_size,total_acc_diff_time_gap;
long int

average j3acket_size_input_emulator,diff_time_gap,acc_diff_time_gap,acc_diff_pack_size;
long int final_acc_diff_time_gap;

global_stats(STATS_START);
tableme = lt_find_by_ipheader(skb);
/*tableme = lt_find_by_srcdest(skb->h.iph->saddr, skb->h.iph->daddr);*/
if (tableme) {

hitme = &tableme->ltEntry.lteStats;
if (other_munger != defaultjnunger) {

dummy.stats = *hitme;
dummy.next = NULL;
ret = (*other_munger)(skb, dev, ippt, &dummy);

} else {
ret = (*OtherNistnetMunger)(skb, dev, ippt, &tableme->ltEntry);

}
} else {

hitme = NULL;
if (otherjmunger != defaultjnunger) {

ret = (*other_munger)(skb, dev, ippt, NULL);
} else {

ret = (*OtherNistnetMunger)(skb, dev, ippt, NULL);
}

}
if (ret <= 0) {

199

global_stats(STATS_PROCESS); /* well, sort of */
LinUnlock("global_stats1");
return ret;

}
if (Itableme) { /* not intercepting */

global_stats(STATS_UNPROCESS);
LinUnlock("global_stats2");
return ippt->func(skb, dev, ippt);

}

fixed_gettimeofday(&ingress_time);
packet_interval_gap = timeval_diff(&ingress_time,&ingress_time_p);
total_sampling_time = packetjnterval_gap+total_sampling_time_p;
total_sampling_time_seconds=(double)total_sampling_time/1000000.0;
sampling_counter++;
average_packet_interval_gap=total_sampling_time/sampling_counter;
total_packet_size_input_emulator=(long)skb->len+total_packet_size_input_emulator_p;
average_packet_size_input_emulator=total_packet_size_input_emulator/sampling_counter;

diff_pack_size = average_packet_size_input_emulator_p-
average_packet_size_input_emulator;

diff_time_gap = average_packet_interval_gap_p-average_packetjnterval_gap;
acc_diff_time_gap = diff_time_gap + acc_diff_time_gap__p;
acc_diff_pack_size = diff_pack_size + acc_diff_pack_size_p ;
memcpy(&acc_diff_time_gap_p,&acc_diff_time_gap,sizeof(long int));
memcpy(&acc_diff_pack_size_p,&acc_diff_pack__size,sizeof(long int));

if (emulator_input_counter !=1 && totaLsampling_time_seconds > 1 && (abs(acc_diff_time_gap) >
1000 || abs(acc_diff_pack_size) > 6)) {

change =1;

ingress_time_seconds=(double)(ingress_time.tv_sec) +
(double)(ingress_time.tv_usec)/1000000;

printk("<lnput_change> %ld %ld %ld
",average_packet_size_input_emulator,average_packet_interval_gap,emulator_input_counter);

printk_double(ingress_time_seconds,6);
printk_double(total_sampling_time_seconds,6);
printk("\n");
total_sampling_time = 0;
total_packet_size_input_emulator=0;
sampiing_counter =0;
emulator_input_counter++;
acc_diff_time_gap_p=0;
acc_diff_pack_size_p=0;
}

if((total_sampling_time_seconds > 5)||(sampling_counter >1000)){
change =0;
ingress_time_seconds=(double)(ingress_time.tv_sec) +

(double)(ingress_time.tv_usec)/1000000;
printk("<|nput_normal> %ld %ld %ld

",average_packet_size_input_emulator,average_packet_interval_gap,emulator_input_counter);
printk_double(ingress_time_seconds,6);
printk_double(total_sampling_time_seconds,6);
printk("\n");

/*printk("<Emulator_input_previous> %ld %ld %d
%ld\n",average_packet_size_input_emulator_p,average_packetjnterval_gap_p,emulator_input_coun
ter,ingress_time);7

total_sampling_time = 0;

200

total_packet_sizejnput_emulator=0;
sampling_counter =0;
emulatorjnput_counter++;
}

memcpy(&ingress_time_p,&ingress_time,sizeof(structtimeval));
memcpy(&total_sampling_time_p,&total_sampling_time,sizeof(long int));
memcpy(&total_packet_size_input_emulator_p,&total_packet_size_input_emulator,sizeof(long int));
memcpy(&average_packet_size_input_emulator_p,&average_packet_size_input_emulator,sizeof(lon
9 int));
memcpy(&average_packet_interval_gap_p,&average_packet_intervaLgap,sizeof(long int));
memcpy(&diff_time_gap_p,&diff_time_gap,sizeof(long int));

/* Assume we will queue until we find otherwise */
++hitme->qlen;

/* See if we're going to drop the packet */
if (packet_drop(tableme, &use_drd, &use_ecn)) {

#ifdefCONFIG_ECN
/* ecn behavior: mark packet, don't drop */
if (use_ecn && ecn_skb(skb) == 0) {

++hitme->drd_ecns;

#endif/*C0NFIG_ECN7
our_kfree_skb(skb, FREE_WRITE);
--hitme->qlen;
++hitme->n_drops;
if (use_drd)

++hitme->drd_drops;
else

++hitme->rand_drops;
global_stats(STATS_PROCESS);
LinUnlock("global_stats3");
return 0;

#ifdef CONFIG_ECN
}

#endif /* CONFIG_ECN */
}

/* See if we're going to duplicate the packet. Here,
* we just do fixed probability.
7

if (packet_dup(tableme)) {/* you get a new sister! */
++hitme->dups;
skb2 = skb_copy(skb, GFP_ATOMIC);

}

/* Now see if we're going to delay the packet */
if (!(delaytime = packet_delay(skb, tableme))) {/* no dejay 7

~hitme->qlen;
packet_stats(skb, hitme);

global_stats(STATS_PROCESS);
munge_finish("no delay");
return ippt->func(skb, dev, ippt);

}

screamer = fast_alloc(GFP_ATOMIC);

201

/* If we can't allocate, punt! */
if (Iscreamer) {

-hitme->qlen;
++hitme->mem_drops;
packet_stats(skb, hitme);
global_stats(STATS_PROCESS);
munge_finish("fast_alloc failed");
return ippt->func(skb, dev, ippt);

}
hpi = (struct nistnet_packetinfo *)screamer->data;

init_fast_timer(screamer);
#ifdef DEBUG

check_skb(skb, "first");
#endif

hpi->skb = skb_unshare(skb, GFP_ATOMIC);
#ifdef DEBUG

check_skb(hpi->skb, "second");
#endif

hpi->dev = dev;
hpi->nte = &tableme->ltEntry;
/* We don't actually use this anymore, as non-local
* save/restore of flags turns out not to work on
* some architectures (notably Suns). But we'll
* leave it in to indicate what we were thinking
* about...
7
hpi->flags = pre_flags;

/* Schedule something to happen in a little while */
screamer->expires = delaytime;
MOD_INCJJSE_COUNT;
add_fast_timer(screamer);
global_stats(STATS_PROCESS);
munge_finish("reg delay");
return 0;

LinUnlock("ippt->func");
return ippt->func(skb, dev, ippt);

} else {

}

void
grab_ip_rcv(void)
{

struct packetjype *us;

ourpt.type = htons(ETH_P_IP); /* IP packets (only) 7
ourpt.dev = NULL; /* wild card, for any dev */
ourpt.func = rcv_packet_munge; /* our handler 7
ourpt.data = NULL; /* nothing we need to keep 7
ourpt.next = NULL; /* filled out by dev_add_pack 7
I* Add our handler 7
dev_add_pack(&ourpt);
/* Now we search for the old one. Yes, this is a dirty trick.
* We are using our proffered handler as a Trojan horse to get
* at the old one. Heh, heh, heh.
7
us = &ourpt;

202

for (us = us->next; us; us = us->next) {
if (us->type == ourpt.type) { /* Got 'em! */

printk("grab_ip_rcv: Found ippt at %lx\n",
(unsigned long int) us);

ippt = us;
dev_remove_pack(us);
break;

}
}

}

void
release_ip_rcv(void)
{

if (ippt) {
dev_remove_pack(&ourpt);
dev_add_pack(ippt);
ippt = NULL;

}
}

#ifdef MODULE

#if LINUX_VERSION_CODE > KERNEL_VERSION(2,1,0) && LINUX_VERSION_CODE <
KERNEL_VERSION(2,3,0)
extern int irq_desc_addr;
MODULE_PARM(irq_desc_addr, "i");
#endif

/* I don't know exactly when these various modules macros were defined;
* the following is a rough cut...
*/

#if LIMUX_VERSION_CODE > KERNEL_VERSION(2,1,0)
MODULE_AUTHOR("Mark Carson <carson@antd.nist.gov>");
MODULE_DESCRIPTION("NIST Net network emulator");
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,4,10)
/* See the README.License file for why this "license" is included */
MODULE_LICENSE("GPL and additional rights");
#endif
#endif

int
init_module(void)
#else
int
nistnet_init(void)
#endif
{
#if LINUX_VERSiON_CODE >= KERNEL_VERSION(2,1,0)
#else

void export_nistnet_symbols(void);
#endif

if (register_chrdev(major, "hw", &hw_fops)) {
printk("nistnet: registerchrdev failed: goodbye world :-(\n");
return -EIO;

}
else

printkf'nistnet: Hello, world\n");

(void) install_fast_timer();

203

mailto:carson@antd.nist.gov

fast_fill();
lt_init();
memset(&ourstats, 0, sizeof(ourstats));
grab_ip_rcv();

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0)
#else

export_nistnet_symbols();
#endif

return 0;
}

#ifdef MODULE
void
cleanup_module(void)
{

if (unregister_chrdev(major, "hw") != 0)
printkfnistnet: cleanupmodule failed\n");

ourstats.emulator_on = 0;
release_ip_rcv();
lt_cleanup();
fast_empty();
if (uninstall_fast_timer() != 0) {

printkfnistnet: uninstall_fast_timer failed\n");
/* Well, we're in trouble now! */

}
}
#endif

/* We allocate 1024 slots at startup, then allow for extra bunches
* of 64 at a time to be allocated if needed. (We keep the extra
* allocations small, since they are done at interrupt time, from
* presumably precious locked-down kernel buffers.)
*
* Hence, the initial memory requirement is around 36K, while the
* maximum allowed usage is on the order of 616K (17344 packets),
* not counting the space used up by all those extra sk_buffs hanging
* around.
*
* If you really are planning to delay enormous numbers of packets,
* you'd be better off making FAST_RESERVE larger, more or less
* equal to the maximum number of packets you anticipate delaying.
*/

#define FAST_RESERVE 1024
#define FAST_EMERGENCY 64
#define FAST_MAX256

struct fast_timer_list *bigfastspace[FAST_MAX], *fast_stack;
struct nistnet_packetinfo *bighpispace[FAST_MAX];
int extra_count = 0;

void
fastjill(void)
{

struct fast_timer_list *newfast, *fastspace;
struct nistnet_packetinfo *newhpi, *hpispace;
int i, limit;

if (!extra_count) { /* First time, allocate a few pages */
limit = FAST_RESERVE;
fastspace = (struct fast_timerjist *)

vmalloc(sizeof(structfast_timerJist)*limit);

204

if (Ifastspace)
return;

hpispace = (struct nistnet_packetinfo *)
vmalloc(sizeof(struct nistnet_packetinfo)*limit);

if (Ihpispace) {
vfree(fastspace);
return;

}
} else if (extracount < FAST_MAX) { /* subsequent times, go for fairly small chunks */

limit = FASTJEMERGENCY;
fastspace = (struct fastj imerjist *)

kmalloc(sizeof(struct fast_timer_list)*limit, GFP_ATOMIC);
if (Ifastspace)

return;
hpispace = (struct nistnet_packetinfo *)

kmalloc(sizeof(struct nistnet_packetinfo)*limit, GFP_ATOMIC);
if (Ihpispace) {

our_kfree_s(fastspace, sizeof(struct fastjimerjist)*limit);
return;

}
) else { /* somebody got too greedy */

return;
}
bigfastspace[extra_count] = fastspace;
bighpispace[extra_count] = hpispace;
++extra_count;

for (i=0; i < limit; ++i) {
newfast = fastspace+i;
newhpi = hpispace+i;
newfast->data = (unsigned long) newhpi;
newfast->function = runpacket;
newfast->next = fast_stack;
fast_stack = newfast;

}
}

void
fast_empty(void)
{

int i;

vfree((void *)bigfastspace[0]);
vfree((void *)bighpispace[0]);
for (i = 1; i < extra_count; ++i) {

our_kfree_s(bigfastspace[i], sizeof(structfast_timer_list)*FAST_EMERGENCY);
our_kfree_s(bighpispace[i], sizeof(struct nistnet_packetinfo)*FAST_EMERGENCY);

}
extra_count = 0;
fast_stack = NULL;
memset((void *)bigfastspace, 0, sizeof(bigfastspace));
memset((void *)bighpispace, 0, sizeof(bighpispace));

}

struct fastj imerjist *
fast_alloc(int how)
{

struct fastj imerjist 'answer = fast_stack;

if (answer) {
faststack = answer->next;

205

return answer;
}
fastjill();
answer = fast_stack;
if (answer)

fast_stack = answer->next;
return answer;

}

void
fast_free(struct fast_timer_list *done)
{

done->next = fast_stack;
fast_stack = done;

}

/* Export interfaces */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0)
EXPORT_SYMBOL_NOVERS(addmunge);
EXPORT_SYMBOL_NOVERS(rmmunge);
EXPORT_SYMBOL_NOVERS(AddNistnetMunger);
EXPORT_SYMBOL_NOVERS(RmNistnetMunger);
#else
static struct symbol_table nistnetsyms = {
#include <linux/symtab_begin.h>

X(addmunge),
X(rmmunge),
X(AddNistnetMunger),
X(RmNistnetMunger),

#include <linux/symtab_end.h>
};

void export_nistnet_symbols(void)
{

register_symtab(&nistnet_syms);
}
#endif

206

APENDIX C. SCRIPT FOR ONLINE PACKET DELAY S E G M E N T A T I O N

ALGORITHM

In this appendix the script used for implementing the online methodology

for modeling non-stationary end-to-end packet delay, which was formally

introduced in CHAPTER 8, is presented. Script presented below was written on

Matlab.

c.1. MATLAB SCRIPT FOR IMPLEMENTING PACKET DELAY SEGMENTATION

close all;
clc;
clear all;

change_threshold=150;
original_bias=0.25;%
P=8;
delay_data = load ('E:\Old DaTa\delay\net_1\data_delay\delay_50.del');
delay_data =delay_data-mean(delay_data);
x=(delay_data);

% start of the program - — —
% .

% . %
% Initial values for algorithm %
% . %
segment_counter=0;
segment_index=1;
UC=0.05;
alpha=0.0001;
buffered_samples=1000;
start_sample_region=1;
end_sample_region=start_sample_region+buffered_sarnples-1;
segment_end_point=end_sample_region;
segment_start_point=end_sample_region+1;
time_segmentation=zeros((length(delay_data)),1);
combined_cummulative_cross_entropy_(1:end_sample_region)=zeros(end_sample_region,1);
original_factor_check_negative_slop=100;
% %
% Kalman algorithm loop %
% %

for n = 1 :(length(delay_data)),
if(n==(end_sample_region)) %Computing Model Theta_1 of the segment

A=[];E=Q;a_zero=[];AR_model_small_segment=0;
var_forward_error_small_segment=[];Cov_e=[];e=[];
Coy_w=[];P=D;

207

file://'E:/Old

initial_sample=[];AR_model_small_segment=[];
initial_sample=x(start_sample_region:end_sample_region);
initial_sample=initial_sample-mean(initial_sample);
[A,E] = ARBURG(initial_sample,p);
A=-A(2:p+1);%AR coeficients
a_zero=A; % AR coefficients
a(n,:)=a_zero;
P{n} = eye(p);
AR_model_small_segment=a_zero;
var_forward_error_small_segment=E;
Cov_w(n)=0;
Cov_e(n) = E; % Noise variance of AR model
e(start_sample_region:end_sample_region)=normmd(0,sqrt(E),end_sample_region-

start_sample_region+1,1);
bias=original_bias;
factor_check_negative_slop=original_factor_check_negative_slop;

ARRAY_AR_model_small_segments(segmentjndex,:)=AR_model_small_segment;
array_delay_small_segment=x(start_sample_region:end_sample_region);

if (0)
for h = p+20:1:end_sample_region-start_sample_region+1;
error_small_segment(h)= array_delay_small_segment(h)-
AR_model_smali_segment*array_delay_small_segment(h-p:h-1);
error__half_small_segment(h)= array_delay_small_segment(h)-
AR_model_rtalf_small_segment*array_delay_smalLsegment(h-p:h-1);

first_coeff_=(2/var_forward_error_half_small_segment)*(error_srnall_segment(h))*(error_half_small_s
egment(h));
second_coeff_=-
1+(var_forward_error_small_segment/var_forward_error_half_small_segment))*(((error_small_segme
nt(n))A2)/var_forward_error_small_segment);
third_coeff_=(1-(varJorward_error_small_segment/var_forward_error_half_small_segment));

small_w(h)=(1/2)*(first_coeff_+second_coeff_+third_coeff_)+original_bias;
big_w(h)=sum(small_w);

end
plot(big_w);
pause(10);

end

elseif(n== (start_sample_region+((end_sample_region-start__sample_region+1)/2)))
end_half_small_segment= (start_sample_region+((end_sample_region-

start_sample_region+1)/2));
initial_sample=rj;A=n;E=[];P=[|;AR_model_half_small_segment=[];
initial_sample=delay_data(start_sample_region:end_half_small_segment);
initial_sample=initial_sample-mean(initial_sample);
[A,E] = ARBURG(initial_sample,p);
A=-A(2:p+1);%AR coeficients
AR_model_half_small_segment=A;
ARRAY_AR_model_half_small_segment(segmentjndex>:)=AR_model_half_small_segment;
var_forward_error_half_small_segment=E;

elseif(n >(end_sample_region))
Y{n} = x(n-1:-1:n-p);
e(n) = x(n)-a(n-1,:)*Y{n};
Cov_e(n)=var(e);

208

Cov_w(n)=(UC/p)*TRACE(P{n-1});
array_cov_w(n)=Cov_w(n);
Cov_w(n)=alpha*Cov_w(n-1)+(1-alpha)*Cov_w(n);
P_estimation= P{n-1}+Cov_w(n-1); % P_A(t/t-1)
K = (P_estimation)* Y{n} / (Y{n}'*P__estimation* Y{n} + Cov_e(n));
a(n,:) = a(n-1,:) + K'*e(n);
P{n} = (P_estimation - K*(P_estimation*Y{n})');

% %
%% Segmenting the forwarding error prediction %%%%
% Grap the var(e) and e(t) of the "updated" AR model and the var(e)
% and e(t) using a truncated for AR model. Then compare entropy of
% both outcome models
% %
segment_counter=segment_counter+1;
forward_error_small_segment(n)= x(n) -
AR_model_small_segment*Y{n};
%Small segment is the one analysed with the fixed AR model

forward_error_big_segment(n)=e(n);
%Big segment is the one analysed with the dynamic AR model
var_forward_error_big_segment=Cov_e(n);

first_coeff_=(2*((forward_error_small_segment(n)*forward_error_big_segment(n))/var_forward_error_
small_segment));

second_coeff_= -
((1+var_forward_error_big_segment/var_forward_error_small_segment)*((forward_error_big_segmen
t(n))A2/(var_forward_error_big_segment))) ;

third_coeff_= +(1-(var_forward_error_big_segment/var_forward_error_small_segment));

conditional_cross_entropy(segment_counter)=(1/2)*(first_coeff_+second_coeff_+third_coeff_)+bias;
cummulative_conditional_cross_entropy(segment_counter)=sum(conditional_cross_entropy);

[max_cummulative_conditional_cross_entropy,index_max_cummulative_conditional_cross_entropy]
= max(cummulative_conditional_cross_entropy);

delta=max_cummulative_conditional_cross_entropy-
cummulative_conditional_cross_entropy(segment_counter);

difference_peak_down=segment_counter-index_max_cumrnulative_conditional_cross_entropy;
%&(max_cummulative_conditional_cross_entropy > 0.8*change_threshold)

if(factor_check_negative_slop-segment_counter == 0)
slope_= cummulative_conditional_cross_entropy(segment_counter)-

cummulative_conditional_cross_entropy(segment_counter-original_factor_check_negative_slop+1);
slope_=((slope_)/original_factor_check_negative_slop);
if ((slope_ < 0)&(cummulative_conditional_cross_entropy(segment_counter) < 0))

bias=0.25+bias;
end

factor_check_negative_slop=factor_check_negative_slop+original_factor_check_negative_slop;
end

%if ((((delta > change_threshold)&(segment_counter > 300)&(difference_peak_down < 200))|
(n==length(delay_data))))

%if ((((delta > change_threshold)&(segment_counter > 150)&(difference_peak_down < 150))|
(n==length(delay_data))))

if ((((delta > change_threshold)&(segment_counter > 200)&(difference_peak_down < 200))|
(n==length(delay_data))))

segment_end_point=segment_end_point+segment_counter;

combined_cummulative_cross_entropy_(start_sample_region:end_sample_region)=zeros(1,end_sam
ple_region-start_sample_region+1);

209

combined_cummulative_cross_entropy_(end_sample_region+1:encl_sarnple_region+segrnent_count
er)=cummulative_conditional_cross_entropy;

segment_start_point=segment_end_point+1;
%time_segmentation(length(combined_cummulative_cross_entropy_))=1;
time_segmentation(n)=1;
conditional_cross_entropy=[];
cummulative_conditional_cross_entropy=[];

time_segmentation_array(segment_index)=n
if (segmentjndex ==1)

index_initial=1;
else

index_initial=time_segmentation_array(segrnentjndex-1);
end

index_final=time_segmentation_array(segment_index);
Entropy(segment_index)= entropy(x(index_initial:index_final))

segment_counter=0;
segment_index=segment_index+1;
start_sample_region=n;
end_sample_region=start_sample_region+buffered_samples-1;

end

end

end

% End of the program
time_segmentation_array
Entropy
total_entropy=entropy(x);
figure(4);
stem(time_segmentation_array,Entropy/(total_entropy));
coefficients_length=100;
figure(1);
plot(x-min(x),'b');
figure(2);
plot(combined_cummulative_cross_entropy_);
hold on;
stem(time_segmentation_array,(max(combined_cummulative_cross_entropy_))*1.2*ones(1,length(ti
me_segmentation_array))>'r-');
counter_seg=1;
offset_=0;

for t = 1:1 :length(delay_data);
segmented_series(t-offset_)=x(t);

if (t==time_segmentation_array(counter_seg))
counter_seg=counter_seg+1;
ACF_X_=akfrader(segmented_series,coefficients_length);
offset_=t;
plot(ACF_X_);hold on;
segmented_series=[];ACF_X_=Q;

end

210

end
x=x-min(x);

start_point=1;
for t = 1:1 :length(time_segmentation_array);

end_point=time_segmentation_array(t);
variance_array(t)=var(x(start_point:end_point));
entropy _array(t)=entropy(x(start_point:end_point))
start_point=end_point+1;

end
mean(variance_array)
mean(entropy_array)
length(variancearray)
figure(5);
plot(array_cov_w)

figure(6);
plot(a(:,1),'b');
figure(7);
plot(a(:,2),'b');

211

