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ABSTRACT 
 

 

 

LIGHTNING CHANNEL LOCATIONS, LNOx PRODUCTION, AND ADVECTION IN  
 

ANOMALOUS AND NORMAL POLARITY THUNDERSTORMS 
 
 
 

Tropospheric ozone is a powerful greenhouse gas and OH precursor, thus understanding its 

sources is important. Its production is also widely studied in atmospheric science today as global 

climate modelers attempt to estimate future warming within the troposphere. Nitrogen oxides 

(NO + NO2 = NOx), serve as a precursor to ozone production. In areas where higher 

concentrations of OH are present, NOx will undergo reactions to produce nitric acid, thereby 

shortening its lifetime and limiting the production of ozone. Due to lower concentrations of OH 

in the upper troposphere, NOx tends to experience a longer lifetime (on the order of days) and 

greater ozone production at these heights. Lightning produces an appreciable amount of NOx 

(a.k.a. LNOx) but the final distribution of resulting LNOx, and thus its ozone production, remains 

poorly understood. Therefore, it is important that this source of NOx be further investigated to 

improve current LNOx parameterizations.   

Numerical modeling methods attempt to study this issue by parameterizing the nature of 

lightning within thunderstorms. Often, the vertical distribution of flash channels (and LNOx) is 

produced according to a parameterized flash rate within a defined vertical profile and reflectivity 

volume threshold. The structure and intensity of thunderstorms are highly variable though, 

causing the location of lightning within a thunderstorm to differ from one thunderstorm to the 

next. Furthermore, one remaining goal of the Deep Convective Clouds and Chemistry (DC3) 
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field campaign (May – June 2012) was to compare the lightning flash locations and contributions 

to upper tropospheric LNOx between storms of normal and anomalous charge polarity.  

To address this remaining goal, five cases with over 5600 total flashes are analyzed in detail 

using data from DC3, three in northern Colorado and two in northern Alabama. Lightning 

sources are combined into 3-dimensional (3-D) flash channels and flash channel parcels, with 

each parcel containing the LNOx produced by its parent flash channel. Parcels are then advected 

forward in time during the lifetime of each storm using 3-D wind fields produced from dual-

Doppler analyses. Results reveal a greater number of flashes and flash channels within 

anomalous polarity thunderstorms compared to normal polarity thunderstorms at a mean 

initiation height around 5 km. Flashes in these storms also appear to transect areas of higher 

vertical velocities resulting in roughly half of flash channel parcels being advected to the upper 

troposphere (z > 8 km). Contrary to some assumptions, an appreciable fraction of these parcels 

and NOx contributions remain in the boundary layer of these storms. In the two normal polarity 

thunderstorm cases, flash channels tend to initiate around 8 km with roughly half of the flash 

channel parcels remaining near or above 8 km. While both storm types appear to transport 

roughly 50% of their flash channel parcels to the upper troposphere, significantly larger flash 

counts and total flash length in the anomalous polarity storms lead to much higher mixing ratios 

of LNOx in the upper troposphere. These results may help chemistry modelers in parameterizing 

LNOx formation in both normal and anomalous thunderstorm polarity structures, which will also 

improve global climate model parameterizations of tropospheric ozone production. 
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CHAPTER 1 INTRODUCTION 
 
 
 

1.1. Study motivation 

Resulting from dielectric breakdown of air in the presence of strong electric fields, lightning 

has been at the center of growing research over the past several decades (Maggio et al. 2005). 

Due to advances in technology, it is now possible to examine this phenomenon on a flash-scale 

basis. One such advance, the lightning mapping array (LMA) networks, allows for the detection 

of the radiative components of all lightning flashes. These components termed sources, can be 

combined into flashes using a flash clustering algorithm based upon initiation time and location 

(Fuchs et al. 2016). New developments have enabled lightning flash channels to be mapped from 

source locations, which can then be analyzed with respect to various radar-derived storm 

parameters such as reflectivity, wind speed, and hydrometeor species (Fuchs 2017).  

Lightning is considered to be the largest natural source of nitrogen oxides (NOx  NO + NO2) 

in the upper troposphere, yet the amount of NOx produced by an individual lightning flash is far 

from certain (Lawrence et al. 1995; Price et al. 1997; Schumann and Huntrieser 2007). 

Fundamentally, lightning produced NOx (LNOx) is created as diatomic nitrogen and oxygen 

dissociate within super-heated air surrounding flash channels, making production proportional to 

flash channel length (hereafter FCL; Wang et al. 1998). These products then undergo reactions to 

form NO. After undergoing photolysis, NO is converted to NO2. These two species rapidly 

interconnect during the daytime, and thus are considered a chemical family (NOx). The 

importance of NOx lies in its production of ozone, which in the middle and upper troposphere 

acts as a greenhouse gas and source of OH. Understanding the vertical transport of LNOx by 

storm scale updrafts and downdrafts is critical because this transport determines the ozone 
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production potential of LNOx. For example, when NOx is transported to the upper troposphere by 

storm updrafts, its lifetime is on the order of days, allowing for increased production of 

tropospheric ozone (Ridley et al. 1996). Moreover, Wu et al. (2007) shows that LNOx is roughly 

six times more efficient than anthropogenic NOx emissions in producing upper tropospheric 

ozone due to the extended lifetime at these altitudes. Conversely, NOx can be transported to the 

surface by storm downdrafts, where it can be depleted through the reaction with OH to produce 

nitric acid, thereby shortening its lifetime to the order of a day or less and preventing substantial 

net ozone production (DeCaria et al. 2000; Schumann and Huntrieser 2007). Recent research 

estimates the lifetime of LNOx to only be ~3 hours within storm outflow regions (Nault et al. 

2017). Until this point, little research has been carried out to quantify the amount of LNOx 

removed to the boundary layer by convective downdrafts as the shortened lifetime at these levels 

makes in situ measurements by aircraft quite difficult in addition to the difficulty in isolating 

NOx sources from lightning to background NOx concentrations (Schumann and Huntrieser 2007). 

In short, knowing precisely just how much LNOx is being input to the upper troposphere by 

individual thunderstorms is critical to fully closing the global atmospheric NOx and ozone budget 

(Wu et al. 2007). 

One aspect in this lack of understanding is knowing where flash channels originate and 

where LNOx generated by those channels is transported, which remain as major gaps in current 

atmospheric chemistry models. This lack of understanding exists for thunderstorms throughout 

various atmospheric regions, thereby preventing accurate modeling of ozone in global climate 

models (Wu et al. 2007). Many studies have investigated this problem using satellite detection of 

lightning by the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) 

and the Optical Transient Detector (OTD), concluding that lightning produces anywhere from 2-
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8 Tg of NOx per year, yet still far from the goal of refining this estimate to ±1 Tg yr-1 (Schumann 

and Huntrieser 2007). In fact, they note that this estimate has only been improved from 1-8 to 2-

8 Tg yr-1 as found by Lawrence et al. (1995).  

One method of improving this estimate is to compare NOx production to the number of 

flashes that occur within individual thunderstorms (e.g. Pollack et al. 2016). Following this, it 

has since been suggested that both intra-cloud (IC) and cloud-to-ground (CG) flashes produce 

similar amounts of LNOx (DeCaria et al. 2000, 2005; Schumann and Huntrieser 2007; Ott et al. 

2010). While this is an advance in knowledge, not enough improvement appears to have taken 

place to refine the global LNOx estimate due to the continued lack of understanding in the 

transport of LNOx to the upper troposphere. Quantifying the impact of storms of various regions 

on the production of NOx capable of tropospheric ozone production will help to fill gaps in the 

understanding of global lightning contributions to tropospheric ozone production.  

Examining where flash channels originate in individual thunderstorms and where the LNOx-

rich air parcels produced from those channels end up is a first step in this process. For example, 

Pickering et al. (1998) note the critical dependence in upper tropospheric NOx and ozone to the 

vertical distribution of LNOx in the form of prescribed vertical profiles and the importance of 

examining LNOx convective redistribution by actual thunderstorms. Barthe and Barth (2008) 

supports this, noting that the placement of NO (LNOx) within a model domain is of critical 

importance when calculating the resulting NO transport and chemistry. Most research has 

examined this problem only from a modeling perspective, with little consideration of 

observational flash channel distribution data. Many current model simulations parameterize 

LNOx production based on flash rate and distribute the resulting NOx into the troposphere based 

on methods using vertical profiles from previous studies.  
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1.2. Background 

1.2.1. Modeling 

One such method is that developed by DeCaria et al. (2000, 2005). Initially, flash rates are 

parameterized as functions of various storm parameters such as reflectivity volume, storm cloud 

top height and storm ice mass flux (e.g. Basarab et al. 2015). Here IC and CG flashes are 

modelled by assigning a fixed IC to CG ratio to this flash rate, while confining these flashes to 

fixed vertical profiles. Regardless of flash type, each flash is set to 18.0 km in total length and 

distributed according to its prescribed vertical profile. DeCaria et al. (2005) notes that 

MacGorman and Rust (1998) found most that flash channels occur within reflectivity echoes > 

20 dBZ, which they then use to limit the distribution of flash channels uniformly in the 

horizontal in accordance with the fixed vertical profile. LNOx is then parameterized according to 

the channel length, altitude (pressure), and temperature, while assuming a fixed flash current 

within these distributions (generally 19 kA; Wang et al. 1998; DeCaria et al. 2000; Barthe and 

Barth 2008). DeCaria et al. (2000) notes that the vertical distribution of FCL is highly variable, 

according to MacGorman and Rust (1998), varying from one storm to another and even within a 

single storm’s lifetime. This is troubling because most global atmospheric models use effective 

vertical emission profiles that could be incorrectly parameterizing the placement of LNOx for 

certain storms at various heights and regions around the globe. Research is needed to investigate 

the variability in LNOx emissions among regions to correctly determine the contribution of 

lightning to NOx and tropospheric ozone production globally. This motivates the examination of 

the distribution of FCL among storms of different charge structure and how this affects the 

convective transport efficiency of LNOx. 
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1.2.2. Normal and anomalous thunderstorms 

While it is unrealistic to study the vertical distribution of lightning channels globally in a 

single study, this motivates the examination of this distribution between storms of different 

charge structure in the U.S. where observational analysis is more readily available. As discussed 

above, the final altitude LNOx reaches is critical to determining whether or not it will impact 

upper tropospheric ozone production efficiency. Fuchs et al. (2015, 2016) and many previous 

authors describe how thunderstorm charge structures can be reversed from the normal dipole or 

tripole structure into an anomalous dipole or tripole. Most thunderstorms with this charge 

structure (hereafter anomalous storms) often exhibit higher reflectivity values, more intense 

vertical motions, and, sometimes, more intense rainfall and hail all in conjunction with 

supposedly higher super-cooled liquid water contents (SLWC) in the mixed-phase region. These 

storms are often associated with environments characterized by high convective available 

potential energy (CAPE) and shallow warm cloud depths (Williams et al. 2005; Fuchs et al. 

2015). The quantitative differences in flash channels and their LNOx production between these 

thunderstorms and those of normal charge polarity both initially and after advection during the 

storm lifetime have yet to be studied (Barth et al. 2015).  

While there are typically two or three charge layers in both thunderstorm types, the 

difference in the sign of each charge layer ultimately is important in flash channel distribution 

and LNOx production. In normal polarity thunderstorms, flashes tend to initiate between two 

charge layers, an upper-level region of positive charge and a mid-level region of negative charge. 

This charge structure is thought to develop when graupel particles collide with smaller ice 

crystals in the presence of super-cooled liquid water droplets (Takahashi 1978; Saunders et al. 

1991; Takahashi 2017). As the graupel descends, it carries this charge, producing a mid-level 
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negative charge layer while the ascending ice crystals carry a net positive charge to the upper 

levels of the storm. Most storms possess this charge structure, leading to this “normal” label 

(Williams 1989). It is important to note here that a greater number of sources of IC flashes is 

detected within the positive charge region. This will be described in more detail in Section 2.3. 

On the other hand, enhanced vertical motions within anomalous thunderstorms often lead to 

higher SLWC. Saunders and Peck (1998) found that the sign of the charge on graupel is 

correlated to both temperature and SLWC. Hence, in these types of storms opposite charge 

transfer between graupel and ice crystals can take place (Williams et al. 2005; Bruning et al. 

2014). This is thought to cause negative charge to accumulate in the upper levels of these 

thunderstorms, while positive charge tends to build in the mid-levels (Williams et al. 2005; 

Fuchs 2017). Flashes still initiate between the charge zones, but greater channel length tends to 

occur at lower levels in the storm, with breakdown of negative charge occurring in the mid-level 

positive charge regions. Flash rates also tend to be higher in such cases, which would inherently 

lead to more initial LNOx production, but the impact of these channel lengths at a lower altitude 

mode to upper tropospheric NOx has not been studied. Figure 1.1 provides a simplified depiction 

of the charge structure of a normal and anomalous polarity thunderstorm for comparison. 

Examining the vertical profile of FCL (from observations) and associated LNOx production 

across a variety of storm modes, such as air mass to supercell storms, and storms in moist to dry 

environments, remains largely unstudied. This study attempts to bridge this gap through 

examining the organization of flash channels in storms of both normal and anomalous polarity in 

the U.S. To do this, flash channels are specifically investigated with regard to hydrometeor types, 

vertical winds (i.e. updrafts and downdrafts), reflectivity, and height to determine initial 

distributions and associated LNOx production. To investigate the LNOx transport efficiency of 
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these different types of storms, a parcel trajectory analysis is also used with the dual-Doppler 

derived three-dimensional (3-D) winds to advect the produced LNOx during the lifetime of each 

storm. Studying LNOx production in this manner separates this study from previous modeling 

studies such as DeCaria et al. (2000, 2005) who parameterize flash channel and LNOx production 

rather than examining it from LMA observations. This study also differs from observational 

studies that do not consider actual flash channel variation but instead average in situ NOx 

measurements among all flashes (either IC, CG, or both), inherently assuming production is the 

same for all flashes.  

Collectively, the goal of this study is to investigate the production and transport of LNOx in 

normal and anomalous thunderstorms using observational radar and LMA data to recreate 

lightning flash channels. This will improve our understanding of how LNOx production changes 

as a result of the dynamics and charge structure differences for storms of each polarity structure. 

These results provide chemical transport modelers with possible avenues to improve LNOx 

parameterizations (at least for storms of similar charge structure in these two regions). This 

collective goal can be refined into three questions that this study will attempt to address: 

1.  Where do flash channels occur and where is LNOx specifically created in storms of normal 

and anomalous polarity? 

2.  To where is the LNOx being advected in storms of each polarity structure? 

3.  What is the mean LNOx production per flash for each polarity structure? 
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Figure 1.1: Cartoon depiction of the charge structure of a normal (left) versus anomalous polarity 
(right) thunderstorm tripole adapted from Fuchs (2017). Representative flashes (yellow) with 
associated sources (blue dots) show flash channel tendency with a flash channel mode near 9 km 
in normal polarity storms and near 6 km in anomalous polarity storms. Representative positive 
(+) and negative (-) charge layers also shown. Vertical profile of summed sources characteristic 
of each polarity type shown in green. Charge transfer tendency between graupel (light blue 
circle) and ice crystal (light blue hexagon) theorized to lead to these charge structure shown with 
hydrometeor direction of motion depicted by arrow attached arrows.   
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CHAPTER 2 DATA AND METHODOLOGY 
 
 
 

2.1. Selection of cases 

To accomplish these goals, five case-study storms are selected from the data-rich 

observations of the Deep Convective Clouds and Chemistry (DC3) field campaign conducted in 

May - June 2012 (Barth et al. 2015). Isolated storms are selected for this study so that lightning 

flash channels and their LNOx production can be properly attributed to each storm with no 

overlap between separate convective cells. Furthermore, isolated storms tend to have better 

distinguished updrafts and downdrafts compared to linear storm complexes. The latter can be 

hard to define in multi-cell thunderstorms that are usually composed of developing and decaying 

cells. Flashes are attributed to storms using very high frequency (VHF) Lightning Mapping 

Arrays (LMAs) in northeast Colorado (COLMA) and Northern Alabama (NALMA). Radar 

observations were measured by the Colorado State University (CSU) (S-band) and CSU Pawnee 

(S-band) radars in the northern Colorado region and the National Weather Service (NWS) WSR-

88D KHTX (S-band) and University of Alabama in Huntsville (UAH) ARMOR (C-band) radars 

in the northern Alabama region. Due to the intricate nature and randomness of storm path 

trajectories, only selected storms fit the criteria for this study. To be selected, storms needed to 

(1) remain isolated in nature, (2) move nearly perpendicular to the baseline between radars used 

for dual-Doppler analysis so that 3-D winds could be properly estimated, (3) occur within the 

detection range of the LMA networks and radars throughout the entire lifetime of the storm, and 

(4) produce enough flashes to analyze (nfl.  100). Based on these criteria, 5645 lightning flashes 

from five thunderstorm cases are gridded, totaling 206,565 km of FCL segments. The three 

selected anomalous polarity storms occurred on 6 June, 27 June, and 28 June 2012 in Colorado 
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while the two normal polarity storms occurred on May 18 and June 11, 2012 in Alabama. Further 

descriptions of each storm are provided in Section 3.1. The total channel length of each flash is 

then divided into 1 km flash channel parcels and advected forward throughout each respective 

storm lifetime. This is described further in Section 2.4. 

2.2. Radar attributions 

Dominant hydrometeor fields are created for each 3-D radar domain using a combination of 

dual-polarization variables. A fuzzy logic framework is used with CSU RadarTools for this 

calculation (Dolan et al. 2013). This method uses radar variables such as reflectivity, differential 

reflectivity, correlation coefficient, and specific differential phase along with the temperature 

(interpolated from corresponding soundings in shown in Appendix A) to determine a 

hydrometeor identification (HID) that best matches the corresponding variables attributed to 

each grid cell. Once HID has been estimated, vertical fall speeds can be calculated for the 

hydrometeors, and the 3-D wind fields can be created. Fall speeds are estimated for the identified 

hydrometeors in each grid cell based on observed fall speeds for similar hydrometeor species. 

Temperature soundings are also used to determine whether hydrometeors in grid cells are frozen 

or melted. 

Dual-Doppler syntheses were performed using consecutive scans of the two radars in each 

region (CSU CHILL and CSU Pawnee, KHTX and UAH ARMOR; see Fig. 2.1). First, the radar 

fields are gridded to 1 km in resolution for the UAH radars and 0.5 km for the CSU radars. 

Radial winds are also converted to the U and V wind components using Radx2Grid. Note that 

the U-wind component corresponds to the north-south direction, and the V-wind component 

corresponds to the east-west direction. NCAR Custom Editing and Display of Reduced 
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Information in Cartesian space (CEDRIC) software is then used retrieve the vertical wind 

component throughout the storm volumes. This is done by using the known horizontal wind 

components for each grid cell in conjunction with the mass continuity equation to solve for the 

vertical wind component. Dominant hydrometeor fall speed is then subtracted from each grid cell 

to consider the contribution from hydrometeors. This calculation is repeated and vertically 

integrated for all grid cells until the vertical wind profile is left with no motion immediately at 

the surface and the tropopause, as would theoretically occur (only convergence and divergence 

can exist at these levels as air is not allowed to penetrate the ground or stratosphere). While not a 

perfect retrieval, this method typically resolves vertical winds inside convection to within ± 1 

ms-1 (Nelson and Brown 1987). One inherent shortfall of using multi-Doppler syntheses to 

calculate 3-D wind fields is that radial winds cannot be computed in areas without precipitation-

sized hydrometeors to backscatter emitted radiation to the radar, and therefore vertical wind 

speeds also cannot be computed for these regions. This usually is true only for volumes outside 

the identified storm cells, but it is still important that winds exist in these regions so that flash 

channel parcels that may advect outside the main storm cells can continue to freely travel. To 

overcome this, storm soundings are interpolated to the vertical grid, and horizontal wind 

components are set for each level. The storm motion is subtracted from these winds so that only 

storm-relative winds are being used for parcels along their entire trajectories. Horizontal winds 

are then set for each vertical grid level for areas outside the storm cell. The vertical wind 

component was set to 0 ms-1 for grid cells at all levels where winds could not be determined. 

This likely introduces some error, but little vertical motion should occur outside thunderstorms, 

otherwise hydrometeor scatterers would more than likely be present with air parcels reaching 

their lifting condensation levels. Gravity waves likely exist near the tropopause within the storm 
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anvils but are likely to not exceed the error bounds of 1 ms-1 and are therefore ignored. 

Soundings used for interpolating these winds are listed in Appendix A.  

Each of the storm cells is identified and tracked using an automated case study framework so 

that characteristics of the radar and lightning data for each storm can be properly studied. The 

CSU Lightning, Environmental, Aerosol and Radar (CLEAR) framework contours the 35 dBZ 

composite reflectivity areas over consecutive radar scans (Lang and Rutledge 2011). New areas 

are identified as new cells and tracked until they merge with a larger cell or dissipate. A benefit 

to this method is that reflectivity echo and other radar variables for each scan time are calculated 

and stored for each cell. Once cells are tracked, sources and flashes can be attributed to each cell 

over their respective lifetimes. 

2.3. Flash clustering algorithm 

After the cells have been tracked, flash processing using data measured by LMAs can take 

place. LMA networks are constructed as a set of about ten stations designed to detect very high 

frequency (VHF  60-66 MHz) radiation emissions produced from the discontinuous breakdown 

of lightning channel leader propagation (Rison et al. 1999). This is seen in the form of a series of 

numerous emission sources for each flash. The number of sources per flash can vary from tens to 

thousands depending on the spatial extent and detection efficiency of the flash, which depends 

upon the efficiency of the network and distance of the flash from the LMA center (Fuchs et al. 

2016; Fuchs 2017).  

Processing starts with combining sources into flashes based on a flash clustering algorithm 

described by Bruning (2013) and Fuchs et al. (2015, 2016). For this study, flashes require ten or 

more sources in Colorado and two or more in Alabama to prevent spurious flashes from being 
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created. Also, flashes are attributed to cells if they occur within or up to 10 km outside of a cell 

contour; all other flashes that occurred outside this range for each case are considered to be 

associated with other cells and ignored. Flashes that occur within 10 km of multiple cell contours 

are attributed to the nearest cell. One natural artifact of LMA detection is that more sources often 

appear within the positive charge region since the breakdown of negative charge within positive 

charge is a physically more noisy process, and more radiation is produced (Rison et al. 1999; 

Williams 2006). For an LMA network, this is reflected in the form of a greater number of 

sources appearing in sections of flashes transferring negative charge into regions of positive 

charge. This measurement characteristic allows for the polarity charge structure to determined. 

The process of constructing flashes from sources is by no means perfect, but it has been refined 

overtime and is considered accurate. In fact, Krehbiel et al. (2000) showed that LMAs can detect 

the in-cloud portion of flash channels quite well. 

FCL segments are created in a 3-D field at 1 km resolution to match the radar and 3-D wind 

fields. Fuchs (2017) shows through sensitivity tests that lightning channel vertical distribution 

best matches the vertical distribution of sources most often at 1 km resolution, so this resolution 

was chosen for this study. Since the radar data was previously gridded at 0.5 km resolution for 

initial analysis in the Colorado cases, a nearest-neighbor method is used to produce a 1 km 

resolution parameter field for all dual-Doppler radar variables. In a sense, only data at integral 

Cartesian grid locations in each dimension is used, yielding radar parameter fields at 1 km 

resolution for the Colorado storms to match that of the Alabama storms. Since flash channels 

produce the radiation detected as sources through their discontinuous breakdown of air, flash 

channels are essentially created for each flash using grid cells containing at least one source. The 

final distribution of these tallied grid cells makes up a gridded representation of each flash. FCL 
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fields can be created at various resolutions, but it has been determined that at 1 km, the vertical 

profile of FCL best matches the vertical profile of sources (Fuchs 2017). Cases were selected 

well within optimal detection range (~100 km) of each LMA center, so source detection should 

be quite efficient for all five storm cases.  

As previously discussed, the additional concentration of sources within areas of positive 

charge would appear to bias flash channel construction in these areas. On the other hand, fewer 

sources in areas of negative charge representing the breakdown of positive charge would appear 

to lead to suboptimal flash channel construction in these charge regions. Sensitivity tests show 

that accurate flash channel representation can still be constructed for flashes even when the weak 

power sources are removed (Fuchs 2017). Therefore, we determine that the bias of flash channels 

to positive charge regions is of minimal impact. 

2.4. Flash channel parcels 

Storm wind fields produced from the dual-Doppler analyses provide a convenient framework 

for investigating the LNOx convective transport efficiency. To do this, theoretical flash channel 

parcels are created at all grid cells transected by lightning flash channels for each storm as a 

function of time. The parcels are then advected forward in a Lagrangian framework according to 

the 3-D wind fields in a pseudo-model method. To start each case, parcels are created when and 

where LMA observed sources occur within grid cells (see Fig. 2.2). Time steps between the 

advection of each parcel are set to 50 seconds, less if the wind component speeds are updated 

with a following radar scan within 50 consecutive seconds of the parcel’s current time step. For 

example, assuming radar scan intervals are 5 minutes each (as is the case for CSU CHILL) and a 

flash occurs 20 seconds after the start of a radar scan, all flash channel parcels making up that 
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flash would advect five times, at 50 seconds in duration each for a total change in time of 250 

seconds, and then 30 seconds for the sixth time step to allow the parcel to begin advection for the 

seventh time step with a fresh radar scan. After that, each wind component would be updated and 

the process would continue with six time step advections at 50 seconds each. 50 second time step 

intervals are chosen so that space-time congruency can be maintained. In the case that flash 

channel parcels ran out of the pseudo model domain, they were kept at the boundary edge.  

Many benefits result from analyzing flash channel parcel trajectories in a Lagrangian 

framework. One being that all storm parameters such as reflectivity, wind speeds, dominant 

hydrometeor identification (HID), Cartesian coordinate locations, and distance traveled can be 

recorded after each time step creating a spatial location history for each parcel and flash parcel 

group. With this, flash channel parcels can be analyzed individually or as a sum at any point 

during each storm’s lifetime. Parcels can be analyzed for each flash to record where they travel 

throughout the storm’s lifetime without worrying about their influences upon one another. Figure 

2.3 provides an example of a single flash comprised of 33 flash channel parcels and their 

trajectories throughout the lifetime of the June 6, 2012 Colorado storm. The flash-produced 

parcels were then analyzed according to various storm parameters from their initial to final 

locations to determine when and where flash channels were originating and where the produced 

LNOx within each parcel advects. Note that parcels are advected independently of one another, 

so the LNOx contained within each parcel is retained and final profile analysis is done at the end 

of each storms lifetime. Initial and final profiles of FCL are formed by summing the parcels 

along the z-axis. This analysis method will be discussed in more detail in Section 3.6. 
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2.5. Lightning NOx calculation 

Since flash channel parcels are created for each flash as a construct from the grid resolution, 

assumptions regarding the channel length within each grid needs to be made. It is assumed that a 

flash travels perpendicular to the edges of each cell, whether horizontal or vertical, traveling the 

exact length of the average of each of the three dimensions. Since each grid cell is one cubic 

kilometer, we assume the FCL of each parcel is the average of each dimension, i.e. 1 km. This 

likely introduces some error as the tortuosity of each channel is ignored but it is assumed that 

this averages among all parcels to minimal impact.  

With FCL being attributed to each parcel, LNOx can be parameterized based upon the initial 

environmental conditions of each parcel. DeCaria et al. (2000) describes one such method based 

upon the lab findings of Wang et al. (1998) who found NOx production to be nearly linearly 

proportional to channel length (r2 = 0.67) at a given flash current. The resulting equation of best 

fit for the study giving the NO production (in molecules m-1) as a function of pressure p (in Pa) is 

nno(p) = a + bp, 

 where a and b are constants (described below). DeCaria et al. (2000) note the mean flash 

channel current based on data from the National Lightning Detection Network (NLDN) for the 

simulated storm in their study was 15 kA, whereas the U.S. mean current estimate from NLDN is 

~30 kA (Wacker and Orville 1999). Channel current can vary widely, and it is usually highest for 

large positive CG flashes common to the stratiform regions of mesoscale convective systems 

(MCSs), which were not considered in this study. We assume all flashes occur within this range 

and define a set value of 19 kA for each channel based upon the original NOx equation from 

Wang et al. (1998). Changes in the current would affect the linear fit of NOx production versus 

pressure and thus constant a and coefficient b would change. Future work could test LNOx 
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production and redistribution for varying current estimates, but this is outside the scope of this 

study. 

DeCaria et al. (2000) start their derivation of NO production per cloud to ground (CG) flash 

using this equation, which can be applied to each flash channel parcel in our analysis. Since the 

focus of this study is on flashes in terms of channel length, this equation is utilized to produce 

NO per meter of FCL and can be multiplied by the average length for each grid cell to get an 

equation for the total NO production per grid cell based on the cell’s initial pressure. The 

resulting equation gives the total number of molecules of NO produced for each grid cell of FCL 

�"# � = � + �� �, 

where a = 0.34 x 1021 molecules m-1, b = 1.30 x 1016 molecules m-1 Pa-1, and � is the average 

length of each grid cell traversed by each FCL (i.e. 1000 m). The photostationary state 

assumption assumes that the production of NO2 from NO,  

NO + O3  NO2 + O2 

is nearly instantaneously balanced with its destruction through photolysis,  

NO2 + hv  NO + O. 

In other words, the sum of NO and NO2 remains approximately unchanged as NOx molecules 

transition from one form to another (Leighton 1961; DeCaria et al. 2005; Schumann and 

Huntrieser 2007). This is a reasonable assumption for areas away from large sources of organic 

radicals in the boundary layer, as are most of the flash channel parcels in this study (DeCaria et 

al. 2005). As photolysis ceases during the night, more NOx is stored as NO2, but can photolyze 

back to NO after sunrise. With this, we can treat NO as being the primary component in the 

contribution of LNOx to total NOx (DeCaria et al. 2000). Therefore, each parcel carries the LNOx 

produced from a 1 km, 19 kA flash channel at an initial pressure. This concentration can be 
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tracked anywhere during its parent storm’s lifetime after the initial flash has occurred. The LNOx 

production within the parcel is also converted from molecules to moles by simply dividing by 

Avogadro’s number. To get the mixing ratio of LNOx at each level, the moles of LNOx in all 

parcels are summed up for each vertical 1 km level in the identified cell and then divided by the 

total number of moles of air that the flash channel parcels reside within at that specific level (see 

Section 3.6.1).  

Note that vertical mixing within and above the boundary layer can often be higher over the 

High Plains causing an increase in boundary layer depth than in the U.S. Southeast. The deepest 

boundary layers among these cases occurred on June 27 and 28, 2012 in the Colorado anomalous 

thunderstorm cases (~4.8 km above MSL), calculated as height of lowest inversion level in 

soundings (see Appendix A for soundings). Deep boundary layers are not uncommon for the 

High Plains, as previous field projects such as the DISCOVER-AQ/FRAPPÉ (Deriving 

Information on Surface conditions from Column and Vertically Resolved Observations Relevant 

to Air Quality/Front Range Air Pollution and Photochemistry Éxperiment) (July - August 2014) 

field campaign found. In this study, a maximum boundary layer height of 4.2 km above MSL 

(2.5 km above ground level at ~1.7 km for the Denver Metro area) along with some mixing of 

free tropospheric air into and out of the boundary layer was found to occur over the two-month 

study (Kaser et al. 2017).  

To ensure LNOx is well removed from the boundary layer of our storms and to heights where 

the lifetime of NOx is sufficient to produce ozone a boundary we define a boundary separating 

the upper and lower troposphere. Various studies have defined a boundary between the upper 

and lower troposphere as being roughly 8 km above mean sea level (MSL) (e.g. Ridley et al. 

1996). Therefore, this study uses 8 km as an arbitrary boundary between the upper-lower 
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troposphere to consistently compare transport between the various cases for this study. This is 

simply a boundary to compare flash channel parcels in terms of whether they reach the upper 

troposphere are not. With this boundary, LNOx concentrations can be equally compared between 

all five cases. We can have higher confidence that parcels above 8 km will remain there after 

their parent storm dissipates and that clear sky conditions will allow for photolysis and ozone 

production in the following days.  
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Figure 2.1: Doppler radar and LMA station set-up for both Colorado (top) and Alabama (bottom) 
DC3 regions from Barth et al. (2015). Radars used in this study are top: CSU CHILL (red 
square) and Pawnee (dark blue square) and bottom: KHTX (white square) and ARMOR (dark 
blue square). Dual-Doppler and polarimetric radar coverage depicted by green circles. LMA 
stations depicted by purple squares with 300 m detection range depicted by purple circle.   
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Figure 2.2: Example of a gridded lightning flash in X-Y dimensions at 1.0 km resolution. 
Individual sources within flash depicted by red circles. Sources are laid upon grid. Grid cells 
containing at least one source are highlighted in yellow, signifying the flash transected the cell. 
Highlighted grid cells each represent 1 km of flash channel length and become flash channel 
parcels to be advected forward in storm winds throughout the lifetime of parent storm. 
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Figure 2.3: Example trajectories of individual flash parcels initialized for a single flash in the 
June 6, 2012 Colorado storm. Parcels are colored by time from the initial flash time (blue) to the 
end of the storm lifetime (red). Note the flash displayed is comprised of 33 flash parcels with 101 
time steps. Notice the varying directions in which parcels advect due to changes in wind with 
height.   
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CHAPTER 3 RESULTS 
 
 
 

3.1. The five cases 

The strongest of the five storm cases occurred in Weld County, Colorado from 2259-0017 

UTC June 6-7, 2012. This storm was super-cellular in nature, prompting a severe thunderstorm 

warning from 2334-0015 UTC as it moved north-northeast from just north of the Denver metro 

area to the Wyoming border. This storm was one of several super-cellular storms that later 

converged into a larger complex after this individual storm dissipated. Significant hail and 

rainfall accompanied this storm, which is consistent with maximum updraft speeds nearing 40 

ms-1 at times. The polarity of this storm was anomalous with a larger number of sources in the 

mid-levels of the storm centered around 6.0 km, indicative of predominant midlevel positive 

charge. Sources created a bimodal vertical distribution with a primary mode at 6 km and a 

secondary peak at 10 km. Lightning activity was quite intense in this case, with flash rates 

peaking at 111 fl. min-1 and a total of 3737 flashes occurring during its lifetime. This storm has 

been studied extensively due to its near ideal motion and lifetime all within the dual-Doppler 

network of the CSU CHILL and Pawnee radars and well within a 100 km radius of COLMA 

(e.g. Basarab et al. 2015; Fuchs et al. 2016). 

The second case occurred along the Front Range in Colorado from 2154-2254 UTC on June 

27, 2012. This storm was weaker than the previously described storm but also remained 

anomalous in polarity with a peak in sources centered around a single mode at 6 km. Flash rates 

were also lower, peaking at 65 fl. min-1 and producing 723 total flashes. The motion of the storm 

was also different as it moved eastward from the foothills of the Rocky Mountains onto the 

plains from Larimer to Weld County, Colorado. Storm structure was more elongated with a 
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much larger region of reflectivity echo values below 40 dBZ. The storm was also not as super-

cellular in nature with larger areas of weaker reflectivity surrounding the main cell downwind of 

the main updraft. Updraft speeds were also lower with a maximum reaching ~17 ms-1. 

The third and final case in Colorado occurred from 2039-2159 UTC June 28, 2012. Storm 

motion and structure closely resembled the previous case with polarity also remaining 

anomalous. On the other hand, the vertical distribution of sources more resembled the June 6 

Colorado storm with main peak at 6 km and a slight secondary maximum near 9 km. Vertical 

motions were slightly weaker in this storm with maximum updraft speeds reaching ~15 ms-1, 

though downdrafts surpassed 11 ms-1 at times. Flash rates only peaked at 28 fl. min-1 in this 

storm, with a total of 687 flashes.  

In northern Alabama, the fourth and fifth storm cases occurred from 2223-2256 UTC May 

18, 2012 and 2018-2122 UTC June 11, 2012. Both cases were more discrete cells, common to 

the U.S. Southeast in summer. Steering flow (e.g. 500 mb winds) and 0-6 km effective bulk 

shear were weak, especially for the May 18 case, causing both storms to remain nearly stationary 

with a slight drift towards the southeast. Both storms were of normal polarity with a source mode 

height of 7 km (May 18 storm) and 9 km (June 11 storm). The overall depth of sources was 

deeper than that in the Colorado cases though. Both storms were similar in overall strength with 

a reduced reflectivity echo volume exceeding 20 dBZ (hereafter 20 dBZ volume). Maximum 

updraft speeds approached 10 ms-1 in each case with 238 total flashes for the May 18 storm and 

267 flashes for the June 11 storm. For a list of storm intensity parameters along with flash 

information for each storm event, refer to Table 3.1. 
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3.2. Storm lifetimes 

Lightning activity is well correlated with many intensity indices for these five storm cases. 

For example, Fig. 3.1 shows that various storm volumes (20 dBZ reflectivity echo, updraft 

volume  5 ms-1) along with the total FCL and flash rate for each storm over its respective 

lifetime follow similar trends of increase and decrease in accordance to flash rate and total FCL. 

It appears that the 20 dBZ volume, updraft volume, flash rate, and total FCL all increase and 

decrease in unison to a large extent, and the total FCL and flash rate appear to correlate between 

all cases (mean r2  0.7 for all cases). The downdraft volume does not appear to change as often 

as the updraft volume for each case, indicating the overwhelming strength and expanse of 

updrafts compared to downdrafts. This makes sense as maximum downdraft velocities did not 

peak nearly as high as updraft velocities. Though the total FCL and flash are somewhat 

correlated, total FCL does not appear to linearly correlate with flash rate most often during peaks 

in the flash rates.  

Previous studies have suggested that stronger electric fields build during peaks in storm 

intensity, causing stronger reservoirs of charge to build and therefore shorter flashes are needed 

to equilibrate these charge differences (e.g. Carey et al. 2005; Kuhlman et al. 2009; Weiss et al. 

2012; Bruning and MacGorman 2013). Accordingly, such shorter flashes also tend to occur near 

deep convective updrafts. Figure 3.2 shows a scatterplot of flash rate versus FCL for all flashes 

in all five storm cases in this study. A clear decrease in FCL for flashes that occur during higher 

flash rate periods appears, though there are a few outlier flashes in the June 28 case. This 

suggests that smaller flashes, likely surrounding the updraft cores, likely occur during peak storm 

intensity. With these shorter flashes, less LNOx is produced per flash during this time – this topic 
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will be discussed further in Section 4.3. Also note that significantly higher flash rate peaks occur 

in the anomalous storms in Colorado compared to the normal polarity storms in Alabama.  

3.3. Anomalous polarity cases 

As previously discussed, the three anomalous thunderstorm cases in Colorado were more 

intense compared to the normal polarity cases in Alabama. The flash rates were also much higher 

throughout the lifetimes of these storms, along with significantly higher total flash counts. In 

addition to the lower mode in source initiation, another key distinction in these storms is the 

lower mode in flash channel initiation. In fact, mean flash channel initiation heights were around 

5 km for these three cases versus 8 km for the normal polarity cases. Figures 3.3 and 3.4 show 

cross sections taken through the three anomalous storms with FCL contours overlaid. Flash 

channels clearly appear to congregate around 5-6 km for these storms. This artifact resembles 

findings by Fuchs (2017) who found the mode in flash channel height to be ~7 km for Colorado 

and ~9 km for Alabama. This tendency is also seen in the vertical distribution of flash sources 

initiating around 6 km. Most flash channels appear to occur during the peak in the flash rate from 

23:16-23:32 UTC for the June 6 case (Fig. 3.5), from 21:57-22:06 UTC for the June 27 case 

(Fig. 3.6), and from 20:47-21:07 for the June 28 case (Fig. 3.7). 

Few flash channel parcels appear to remain within mid-level regions of these storms. For 

example, Fig. 3.5 (a, b, c) shows that flash channels initiating from 8-12 km appear to advect 

upward while those below this (mainly < 6 km) seem to advect downward or remain near their 

level of initiation, especially during peaks in flash rates. To little surprise, spikes in maximum 

updraft and downdraft speeds also occur during these periods. This appears to allow for the 

transport of flash channel parcels, leading to the distinctive gap of flash channel parcel fractions 
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in the mid-levels (6-12 km) throughout the storm lifetime as seen for the June 6 storm. Similar 

results occur for the June 27 and 28 cases with almost identical plots occurring (Figs. 3.6 and 

3.7). Most flash channel parcels near the bottom and tops of each storm case seem to have 

initiated within 2 km of these heights, though this is likely due to the fewer parcels that occur at 

these extremes too. Towards the end of the lifetime of these storms, a greater fraction of parcels 

appears to remain within 2 km in the mid-levels as vertical motions begin to subside however. 

Examining the advection of flash channel parcels at each of the various levels throughout 

these storms and over their respective lifetimes reveals deep upward advection. Figure 3.8 shows 

the number of flash channel parcels, each representing 1 km of FCL, initiating at all 1 km height 

intervals for the three anomalous Colorado storm cases. Parcels at each level are divided into 

their final vertical levels and further broken up into the number of parcels that advect upward 

more than 2 km (hatched areas) or downward more than 2 km (dotted areas). Figure 3.9 shows 

the same plots but for the two normal polarity Alabama cases. Notice the larger number of 

parcels that advect upward by 2 or more kilometers in the Colorado versus Alabama cases. 

Strong downward advection of parcels does not seem to occur in any of the five cases, which 

agrees with findings for a Colorado storm during the Stratospheric-Tropospheric Experiment: 

Radiation, Aerosols, and Ozone (STERAO)-Deep Convection field campaign (Dye et al. 2000). 

Figure 3.10 shows a similar view of the first plot in Fig. 3.8 for the June 6 storm but with each 

vertical bar normalized by the number of parcels initiating at that level. Upward advection is 

strongest in this case, with more than 78% of all parcels advecting upward more than 2 km for all 

initial levels between 4 and 9 km as shown by the hatched bar sectors. This suggests that though 

flash channels tend to originate at lower levels in anomalous thunderstorms, the enhanced 

vertical motions transport a significant portion, even a majority at some levels, of the induced 
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parcels higher into the thunderstorms. Figure 3.11 also shows a similar representation of the 

upward advection of parcels for the June 6 storm. Here, a two-dimensional histogram of parcels 

categorized by initial vertical wind speed and initial height (left) is compared to the initial 

vertical wind speed and final height (right). It is clear that a large fraction of the parcels is 

advected upward to heights above 8 km with most parcels at these heights initiating in positive 

vertical winds. Parcels ending at the greatest heights also appear to have initiated in the strongest 

vertical winds. As will be discussed in Section 3.6, this has substantial impacts on LNOx 

transport with larger amounts making it into the upper troposphere in these thunderstorms. At 

these levels, LNOx is well removed from the boundary layer and is likely to survive longer with 

ample time to produce ozone. Even though flashes (and channels) occur lower in these 

thunderstorms, they have a larger impact on the tropospheric NOx and ozone budget in the upper 

troposphere. 

3.4. Normal polarity cases 

The two normal polarity thunderstorm cases that occurred on May 18 and June 11, 2012 in 

northern Alabama were significantly less intense, and this is observed in both flash rates and 

vertical motions for each storm. For both cases, flash rates never exceeded 10 fl. min-1 

(computed at 1 minute time increments) and total flash counts were only 238 (May 18) and 267 

(June 11) as identified through LMA data. These are only nearly one third of the totals for each 

of the two weaker anomalous cases in Colorado. Figure 3.12 provides an example cross sectional 

view with total FCL contoured in black for channels lying within 1 km on either side of the cross 

section for both storms at times near their peak intensities. Therefore, it is no surprise that parcel 
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counts were less than half that of the 2 weaker anomalous cases, totaling only 8881 (May 18) and 

6737 (June 11).  

As previously discussed, flashes tended to initiate at higher altitudes in these cases, with a 

flash channel mode lying at 8 km (see Fig. 3.9) Also note that the x-axes for these cases extends 

to only 2500 parcels in the plots of this figure, one tenth that of the June 6 Colorado case and one 

fourth of the other two Colorado cases. These results fall in line with those of Fuchs et al. (2016) 

and Fuchs (2017) who found a flash channel mode ~7 km for Colorado storms and ~8 km for 

Alabama storms through an analysis of flashes in nearly 4000 thunderstorms. Therefore, these 

cases likely represent common storm structure in each region.  

Vertical wind speeds were less intense for these normal polarity storms, as Fig. 3.13d,e and 

Fig. 3.14d,e show in the vertical profile time series of maximum updraft and downdraft speeds 

for these storms. Updraft volumes tended to stay below 100 km3 throughout most of the lifetimes 

of these storms too, indicating less volume of the storm was available for deep vertical transport 

of flash channel parcels after initiation. A smaller number of parcels appear to initiate in updrafts 

over 5 ms-1 in these cases, even though the fraction of parcels in the May 18 case is more 

comparable to the June 27 and 28 Colorado cases. Figure 3.9 shows that relatively few parcels 

initiating below 12 km could make it above this level, unlike what is seen for the anomalous 

Colorado cases.  

A key difference in advection between the normal polarity and anomalous polarity cases is 

that the flash channel parcels initiate at greater heights in the normal polarity cases, but they tend 

to remain closer to their initiation heights. Figures 3.13b and 3.14b show the vertical distribution 

time series of the fraction of flash channel parcels remaining within 2 km of initiation height for 

these storms. Notice the deeper concentration of flash channel parcels in purple within the mid-
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levels of these two cases compared to the three Colorado cases (see Figs. 3.5, 3.6, and 3.7). 

These figures show that over half of the parcels originating in the mid-levels (6-12 km) of these 

storms remain within 2 km of their initial heights. Figure 3.15 also quantifies this for each 

vertical level of the May 18 Alabama case where more than 50% of the parcels in each 

normalized bar remain unhatched. This is vastly different than that for the anomalous polarity 

cases where vertical wind speeds are considerably stronger and small fractions of flash channel 

parcels remain within 2 km of their initiation heights throughout the mid-levels, especially for 

the June 6 storm (see Figs. 3.8 and 3.10). Moreover, Fig. 3.16 shows little change in the 

distribution of parcels by height and vertical wind speed both at parcel initiation (left) and after 

advection (right) compared to Fig. 3.11 for the June 6 storm. Figure 3.17a summarizes these 

claims for these two normal polarity storms, showing that more than 25% of all flash channel 

parcels initiate and remain above 8 km (red bars), more than the three Colorado anomalous 

storms (especially the less intense June 27 and 28 storms).  

3.5. Comparison between all storm cases 

3.5.1 Differences in advection 

The height where flash channel parcels initiate appears to vary significantly between each 

storm type, therefore influencing their advection. In the normal polarity cases, the average mode 

height is ~8 km, versus ~5 km in the anomalous polarity cases. Since updraft and downdraft 

maxima appear to be relatively weak (staying within ± 10 ms-1) at these heights in the normal 

polarity cases, the abundance of parcels that initiate at this height do not undergo strong 

advection and move much more than 2 km in height. Figure 3.17 summarizes the vertical 

advection of flash channel parcels, quantifying the transport for each of the cases around 8 km 



 

  31 

altitude – a height marking the bottom of the upper troposphere for this study as previously 

discussed. Though variable from case to case, several observations in trend are common for each 

storm. First, about half of all flash channel parcels initiate and remain below 8 km (blue bars) for 

each of the five cases. This signifies that less advection occurs for the lowest initiating parcels. 

Second, the fraction of parcels that initiate above and advect to below 8 km (green bars) remains 

small for each case, showing that strong downward transport of LNOx from upper levels is 

minimal for each polarity structure. This is not surprising as it is difficult for downdrafts to fully 

penetrate the boundary layer, especially starting from at and above 6 km where most parcels 

originate amongst the cases.   

Two distinct differences appear between the Colorado anomalous and Alabama normal 

polarity storms from this figure. In the normal polarity storms, a greater fraction of flash channel 

parcels initiate and remain above 8 km. The maxima in updrafts also appear to occur near this 

level so it makes sense that a higher fraction of flash channel parcels initiate and remain above 8 

km. Weak downdrafts would also be capable of transporting parcels downward, helping account 

for the large fraction of parcels that initiate and remain below 8 km (blue bars). On the other 

hand, a larger fraction of parcels initiate below 8 km and advect to a final height above 8 km 

(purple bars) in the anomalous polarity Colorado cases. Figures 3.5, 3.6, and 3.7 show that most 

parcels initiate just below or at the base of the strongest updrafts during periods when the updraft 

volume is largest. This enhanced advection would easily be capable of advecting parcels from 4-

8 km upward to final heights above 8 km. Parcels would also likely be undergoing positive 

vertical acceleration, capable of transport to levels above 8 km of the storms. Regardless, the 

total fraction of parcels that end above 8 km after parcel advection (black bars) appears 

uniformly around 50% for all cases. From this, we can conclude that both normal and anomalous 
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polarity thunderstorms appear to produce a relatively equal proportion of flash parcels to the 

upper troposphere (z > 8 km MSL) resulting from two different processes for each polarity 

structure. Advection resulting from enhanced updraft strength and volume appears to dominate 

the number of flash channel parcels ending above 8 km in the anomalous cases, while location 

ultimately determines the resulting final locations above 8 km of flash parcels in the normal 

polarity cases. The fact that significantly more flashes and channel length occurs in the 

anomalous cases leads to a net larger quantity of flash channel parcels entering the upper 

troposphere. This has important consequences as will be discussed in Section 3.6 when it comes 

to LNOx mixing ratios.  

Figure 3.18 demonstrates the net effect of advection on the vertical distribution of total FCL 

for each storm. In this figure, flash channel parcels, each representing 1 km of FCL, are 

integrated along the vertical axis for each storm. The enhanced vertical motions in the three 

anomalous polarity Colorado storms has a clear impact on the final profile of total FCL after 

advection (“Advected”) compared to the original vertical distribution (“Original”). The bimodal 

redistribution of parcels seen in Figs. 3.5, 3.6, and 3.7 for the anomalous storms is well displayed 

in the “Advected” profiles. However, the placement of flash channel parcels at greater heights 

and weaker vertical winds causes less redistribution of the parcels and so the “Advected” curves 

remain more tightly bound to the “Original” curves for the normal polarity Alabama cases. 

3.5.2. Microphysics, charging, and initial parcel locations 

Examining flash channel parcel initiation in relation to reflectivity also reveals several 

interesting findings. First, flash channels appear to occur more frequently just downwind of 

reflectivity cores. This is demonstrated especially well in the June 6 Colorado anomalous storm 

in Fig. 3.3 where the densest areas of FCL contouring appear just east of the reflectivity core – 
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slightly down shear of the main updraft. Weiss et al. (2012) also found a tendency for flashes to 

traverse regions down wind of the main updrafts of supercells. Vertical wind speeds are lower 

outside these areas as well, which would allow for more graupel fallout. Non-inductive charging 

theory states that most charge transfer tends to occur between graupel and ice crystals, so greater 

charge transfer can occur and stronger electric fields can build in these areas (e.g. Workman and 

Reynolds 1950; Takahashi 1978; Jayaratne 1983; Dye et al. 1986). Figure 3.3 shows that indeed, 

the densest concentration of FCL appears to occur in volumes of predominantly hail (red), high 

density graupel (yellow), and low density graupel (green) hydrometeor regions of the June 6 

storm. As hydrometeors continue to collide, positive and negative charge zones build with an 

electric field strengthening between. Eventually, air between these charge zones breaks down 

and lightning occurs (Williams 1985). Though not as compelling, similar trends in flash channel 

contouring appear for the other four storms considering the shear appears to be lower (see Figs. 

3.4 and 3.12).  

It makes sense that most flash channels occur in areas surrounding storm updraft cores as 

high shear occurs in the vertical wind, likely aiding in the collision efficiency between 

hydrometeors. In fact, Fig. 3.19 shows that nearly 75% of flash channel parcels appear to initiate 

in areas of weaker vertical motions (|w|  5 ms-1) and lower reflectivity for all five cases. Also, 

relatively few flash channels (< 15%) appear to occur in areas with updrafts/downdrafts 

exceeding 10 ms-1 or reflectivity values over 60 dBZ. This is remarkably similar to findings for a 

storm in Northeast Colorado during the STERAO field campaign in 1996, where a majority of 

flash sources were located in moderate updrafts downshear of the main storm updraft and 

downdraft (Dye et al. 2000). In that study, Dye et al. (2000) acknowledges the difficulty yet 

importance in obtaining lightning spatial and temporal coverage in relation to storm convective 
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motions, highlighting the importance of this study in providing observational insight into 

understanding where lightning occurs.    

Further investigation reveals that most flash channels appear to originate outside the 

strongest reflectivity echoes among the five cases (see Fig. 3.20). This is not surprising 

considering that most flash channels were located just down shear of the main convective 

updrafts with higher reflectivity as seen in Figs. 3.3, 3.4, and 3.12. The right-hand plots of Fig. 

3.8 and 3.9 provide a clearer view of the number of parcels initiating within various reflectivity 

volumes with height. While there is more initiation in high reflectivity volumes in the June 6 

storm, relatively similar fractions of parcels appear to initiate within each reflectivity threshold, 

regardless of storm region/polarity (though less initiate in higher reflectivity values above 6 km 

in the June 11 Alabama storm). Figure 3.20 quantifies these initiations for all heights within each 

storm showing the fraction of parcels initiating within each reflectivity volume. Note that the 10 

dBZ volume includes all higher reflectivity values (20 dBZ, 30 dBZ, 40 dBZ, 50 dBZ etc.) so all 

bars need not sum to unity for each storm. Notice that over 75% of flash channel parcels initiate 

within reflectivity values of at least 20 dBZ. The weaker June 11 Alabama storm merged with a 

weaker, decaying cell, which can also be seen in the smaller fraction of parcels initiating within 

at least 30 dBZ. These results confirm the 20 dBZ horizontal flash channel and subsequent LNOx 

findings of MacGorman and Rust (1998) used in the modeling techniques of DeCaria et al. 

(2000, 2005). This methodology appears valid considering these results between two sets of 

different storms from different regions and environments.   

In terms of hydrometeor type, most flash channel parcels originate in areas predominantly 

identified as either low and high density graupel or hail for all cases except the June 11 Alabama 

storm. For example, Fig. 3.21 shows that over 30% of flash parcels in four of the five cases 
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originate in areas predominantly composed of low density graupel, with aggregates, rain, high 

density graupel, and hail as the next most predominant species. In the June 11 Alabama case, 

most flash channel initiations occur in aggregates, with low density graupel being the second 

most common hydrometeor initiation species. This is likely a result of the storm merger with a 

decaying storm with reflectivity values < 35 dBZ during the middle of its lifetime. The larger 

volume of weaker vertical motion was not sufficient to produce a larger graupel and hail volume, 

leading to a large remaining volume of aggregates. All remaining charge equilibrated in these 

areas after the merger. One limitation to the HID approach is that not all hydrometeors within 

each grid cell are necessarily of the identified species, rather they are the most likely dominant 

hydrometeor specie based on radar and sounding observations. The fact that these results across 

all five storms fit nicely with non-inductive charging theory (i.e. most flash channels initiating 

between ice crystals and graupel) described by Workman and Reynolds (1950), Takahashi 

(1978), Jayaratne et al. (1983), and others makes this limitation less discouraging.   

3.6. LNOx concentrations 

3.6.1. Calculations 

Now that flash channels have been gridded and parcels have been advected and tracked 

through each storm, LNOx can be attributed to the parcels in order to investigate the upper 

tropospheric NOx impact from each storm. The process of producing LNOx from lightning has 

been studied in lab settings, and so we follow a common parameterization method from DeCaria 

et al. (2000) and Wang et al. (1998) as discussed in section 2.5. This method produces LNOx at a 

given pressure per unit channel length. This parameterization is dependent upon pressure as the 

availability of diatomic nitrogen and oxygen to encounter flash channels decreases with 
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increasing height. Figure 3.22a shows profiles of the total lightning produced NOx profiles for 

each storm before (dotted line = “Original”) an after advection (solid line = “Advected”). LNOx 

is calculated for each parcel using its initial pressure as interpolated from the nearest/closest 

National Weather Service sounding (see Appendix A) and then summed for each vertical level. 

Note that the May 19 0000 UTC KBMX sounding for the May 18 Alabama storm was 

incomplete, so the May 18, 1200 UTC KBMX sounding was used instead. “Original” lines are 

summed LNOx values if parcels were kept stationary at their initiation locations when and where 

flash channels occurred. “Advected” lines are calculated after all flash channel parcels have 

undergone advection from the storm winds.  

Calculating the LNOx mixing ratios proceeds as follows. For the vertical profiles of each 

storm, the total concentration of LNOx is computed for each level as a sum for all parcels at that 

level. The parcels are then interpolated onto an empty 3-D grid at 1.0 km resolution and the total 

number of grid cells containing parcels is summed for each vertical level and converted to moles 

of air via the Ideal Gas Law. Figure 3.23 shows the number of grid cells or volume the parcels 

are contained within for each storm after advection has taken place to calculate these mixing 

ratios. With these, the moles of air are calculated for each level in each case and the fraction of 

moles of LNOx to moles of air in parts per billion (ppb) are calculated for each vertical level in 

each case. Note that this method includes all flash parcels after advection for the “Advected” 

plots, even if they exited the tracked cell volume at the end of the storm lifetime. These results 

can be seen in Fig. 3.22b.   

3.6.2. Anomalous polarity cases 

After closer examination, upward transport of flash channel parcels (and LNOx) clearly 

dominates in the anomalous polarity cases. For example, 63% (June 6), 84% (June 27), and 40% 
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(June 28) of the final advected LNOx profiles above 8 km is contributed to by flash channel 

parcels that were advected upward by 2 km or more compared to only 12% (May 18) and 8% 

(June 11) in the two normal polarity storms. The profiles after advection for the June 6 and 27 

anomalous storms are nearly a reversal of the original profiles before advection took place where 

parcels transition from one mode in height to two. This is not surprising considering these two 

storms produce the most flash channel parcels and the vertical wind speeds that many parcels 

initiate within were much greater (see Figs. 3.8 and 3.19). This tendency for enhanced vertical 

transport is comparable to Ott et al. (2010) who found enhanced LNOx mass fractions above 8 

km for modeled mid-latitude storms, though less defined than what is seen for these three 

anomalous polarity storms. They also found a resulting bimodal distribution in the LNOx profile 

after convection but with a lower mode at approximately 4.5 km rather than near or in the 

boundary layer. Updraft volumes exceeding 5 ms-1 peaked at higher values (~800 km3 for June 6 

storm and ~400 km3 for the June 27 storm) and volumes remained larger throughout the storm 

lifetimes compared to the other cases (see Figs. 3.5 and 3.6). Note that the mixing ratio maxima 

in Fig. 3.22b appear larger than the concentration profiles in Fig. 3.22a because pressure and air 

density are lower in the upper portion of storms. While the mixing ratio of LNOx above 8 km 

after advection in the June 28 case is lower than that of the other two Colorado cases, the volume 

into which parcels were distributed was much larger, therefore causing a lower density of LNOx 

at these levels. The updraft volume of this storm remained lower over its lifetime than the other 

two anomalous storms, but larger over the storm’s duration than that for the two Alabama cases. 

Overall for these three anomalous storms, 14% of all flash channel parcels originated in 

updrafts  5 ms-1 compared to 7% in the normal polarity cases (16% to 8% when factoring out 

parcels that started in areas without sufficient hydrometeor content needed to determine wind 
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velocities by Doppler radar). These results suggest that the enhanced updraft strength and updraft 

width characteristic of anomalous storms helps to transport LNOx formed from FCL upward to 

final heights above 8 km. This artifact is well represented in Fig. 3.22c where the vertical 

profiles of LNOx contributed to by parcels advecting upward, downward, or within 2 km are 

normalized by the total LNOx production in the storm. Results from this reveal the larger fraction 

of LNOx above 8 km in the anomalous Colorado cases contributed to by upward advected 

parcels. On the other hand, the fractions of LNOx at every level above 6 km contributed to by 

parcels remaining within 2 km of their initiation heights is much larger for the two normal 

polarity Alabama cases, further suggesting that parcels and LNOx tended to remain closer to 

where formed.  

3.6.3. Normal polarity cases 

LNOx concentration and mixing ratio profiles appear to remain more uniform with height for 

the normal polarity cases in Alabama. There is some upward transport from 10-12 km evident in 

Fig. 3.22c, but not nearly the extent to that seen in the anomalous polarity storms. This is 

congruent with the lower proportion of flash channels initiating within intense updrafts in these 

cases. Updrafts tended to remain weaker as seen in Figs. 3.13d and 3.14d, creating less available 

potential upward transport volume for flash channels to traverse. With this, less LNOx is created 

in rising updraft parcels, causing it to remain near levels at which it is created. While the 

proportion of flash channel parcels ending above 8.0 km is still around 50% in these two cases, 

more parcels originated at or above 8.0 km to begin with, meaning the contributions of these 

normal polarity cases to upper tropospheric NOx is driven more so by flash channel initial 

locations (above 8.0 km) than by vertical advection. Moreover, a larger proportion of parcels 

tended to stay within 2 km of their originating heights in these cases than the anomalous cases 



 

  39 

according to Fig. 3.9. While only two cases of normal polarity cases were analyzed, they appear 

representative of average storm structure for northern Alabama following studies by Fuchs et al. 

(2015, 2016), and Fuchs (2017). These resulting vertical profiles of LNOx compare well to those 

for modeled subtropical storms by Ott et al. (2010) who found a “C-shaped” vertical profile with 

a mode in LNOx mass fractions also around 8 km.  

Figures 3.24-3.28 show two dimensional cumulative distributions of the LNOx mixing ratios 

of the storms before and after advection of the flash channel parcels. Mixing ratio values were 

computed similarly to those in Fig. 3.22b but not just along the vertical axis. Instead of summing 

all the grid cells with parcels for each level when calculating the number of moles of air, parcels 

are added to grid cells at each z- and y-distance locations existing along the x-axis into and out of 

the page to calculate the background volume of air. If there are less grid cells to contain parcels 

in these two dimensions than for the corresponding whole level of the storm, as is used in Fig. 

3.22b, the mixing ratio will be higher for these locations. Therefore, values show more detailed 

areas of higher LNOx concentrations with this added dimension, especially in the June 6 storm. 

This figure also serves as a good representation of the stronger vertical advection at play in this 

case leading to the bimodal final distribution of LNOx. The larger values found near 13 km in the 

anomalous cases follows other studies where most LNOx was found to reside in the anvil of 

storms after they begin to decay (e.g. Ridley et al. 1996; Huntrieser et al. 2016). However, the 

LNOx mixing ratios appear much more uniform in the vertical for the normal polarity cases with 

no clear upper level maxima, not just in the anvil as in the anomalous storm cases. Figure 3.23 

shows the number of grid cells that parcels are contained within after advection has taken place. 

Notice that flash channel parcels are distributed within fewer grid cells with height in the May 18 

case (purple curve) than the June 11 case (green curve), yet the May 18 case produced more flash 
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channel parcels in total. Therefore, the LNOx concentration is confined to less storm volume in 

the May 18 case and explains the enhanced mixing ratio values in the “After Advection” for this 

storm compared to that in the June 11 storm.   
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Figure 3.1: Various storm volumes, total FCL (purple), and flash rate (black) over each storm’s 
lifetime. Reflectivity echo volumes at or above 20 dBZ are in green, updraft volumes at or above 
5 ms-1 are in red, and downdraft volumes at or above 5 ms-1 are in blue. Left y-axes correspond 
to all volume time series, “FCL (km)” y-axes correspond to total FCL time series, and “Flashes 
min-1” y-axes correspond to flash rate time series. Note that the right y-axes of the bottom three 
storm plots are half of the first two upper plots.  
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Figure 3.2: Scatterplot of flash rate to total FCL for each flash in each storm. As the flash rate 
increases in storms the total channel length appears to decrease. Several outlier flashes with high 
flash rates and extended channel length appear for the June 28, 2012 Colorado storm. Note that 
the x-axes differ among these subplots.  
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Figure 3.3: Reflectivity and HID cross sections through the June 6, 2012 CO thunderstorm at 
2329 UTC. (a): reflectivity cross section along X-Z axes at y = 22.0 km with U, W wind vectors. 
(b): reflectivity cross section along Y-Z axes at x = 24.0 km with V, W wind vectors. (c) and (d): 
same as (a) and (b) but for HID fields. HID fields are not applicable (“N/A”), drizzle (“DZ”), 
Rain (“RA”), ice crystals (“IC”), aggregates (“AG”), snow (“SN”), vertical ice (“VI”), low-
density graupel (“LG”), high-density graupel (“HG”), hail (“HA”), and big drops (“BD”). FCL 
contoured in black at 2.5, 10, 15, 20, and 25 km. Note that ground level is ~1.7 km for this 
Colorado case. 
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Figure 3.4: Vertical reflectivity cross sections through the June 27, 2012 CO thunderstorm at 
2239 UTC (a, b) and June 28, 2012 CO thunderstorm at 2144 UTC (c, d). (a): cross section along 
X-Z axes at y = 30.0 km with U, W wind vectors. (b): cross sections along Y-Z axes at x = -46.0 
km with V, W wind vectors. (c): cross section at y = 30.0 km with U, W wind vectors. (d): cross 
section at x = -30.0 km with V, W wind vectors. FCL contoured in black for both plots at 2.5, 10, 
15, 20, and 25 km. Note that ground level is ~1.7 km for the Colorado case. 
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Figure 3.5: Time series of storm intensity parameters for the June 6, 2012 Colorado storm. (a): 
time series of the fraction of total FCL at each 1 km height in the storm advecting upward more 
than 2.0 km from initiation and flash rate (black line). (b) time series of the fraction of total FCL 
at each 1 km height in the storm remaining within 2.0 km of initiation and flash rate (black line). 
(c): time series of the fraction of total FCL at each 1 km height in the storm advecting downward 
more than 2.0 km and flash rate (black line). (d): maximum updraft at each level of storm and 
total updraft volume exceeding 5.0 ms-1 (black line). (e): maximum downdraft at each level of 
storm and total downdraft volume exceeding 5.0 ms-1 (black line). Note that ground level is ~1.7 
km for this storm. 



 

  46 

 
Figure 3.6: Same as Fig. 3.5 except for the June 27, 2012 Colorado case. 
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Figure 3.7: Same as Fig. 3.5 except for the June 28, 2012 Colorado case. 
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Figure 3.8: Bar plots of the vertical distribution of flash channel parcels by initiation height at 1 
km increments for the June 6 (top), 27 (middle), and 28 (bottom), 2012 Colorado storm cases. 
Parcels are binned into 1 km vertical height increments based upon initiation height (note y-axis 
labels are lowest height in each 1 km increment). Left-most plots are colored by number of 
parcels advecting to various height ranges. Hatched areas represent parcels that end more than 2 
km above initiation height, and dotted areas, represent parcels that end more than 2 km below 
initiation height. Note that dotted areas are quite small, further showing that transport of flash 
channel parcels by convective downdrafts is much less than that by updrafts. Number of parcels 
originating within each 1 km vertical height range are shown at the end of each bar. Middle 
column plots for each case are colored by vertical wind velocity ranges in which parcels initiate. 
Right-most plots are colored by reflectivity volume ranges with which parcels initiate. Note that 
ground level is ~1.7 km in these three cases.  
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Figure 3.9: Same as Fig. 3.8 but for the May 18 (top) and June 11 (bottom), 2012 Alabama storm 
cases. Note the x-axis scale is one tenth that of the Colorado storms and ground level is ~0.2 km 
in these cases. Also, downward transport more than 2 km (dotted sections of left-most plots) is 
quite limited for these storms, suggesting even less downward advection of parcels and 
associated LNOx. 
 

!

!
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Figure 3.10: Normalized version of “Final Heights” plot for the June 6 Colorado storm in Fig. 
3.8. Each colored final height bar at each vertical level is normalized by total number of flash 
channel parcels initiating at that corresponding level. Hatching represents parcels advecting 
upward more than 2 km from initial height, and dotted areas represent parcels advecting 
downward more than 2 km from initial height (very small amount for this storm). Number of 
parcels originating within each 1 km vertical height level are listed to the right.  
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Figure 3.11: Cumulative distributions of flash channel parcels binned by initial vertical wind 
speed and initial height (a) and initial vertical wind speed and final height (b) for the June 6, 
2012 Colorado storm. Notice the final bimodal distribution of parcels and the trend for parcels to 
end at heights above 8 km and to initiate in positive vertical motion in plot (b), suggesting deep 
upward transport of LNOx. 
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Figure 3.12: Vertical reflectivity cross sections through the May 18, 2012 AL thunderstorm at 
2223 UTC (a, b) and June 11, 2012 Alabama thunderstorm at 2042 UTC (c, d). (a): cross section 
along X-Z axes at y = 100.0 km with U, W wind vectors. (b): cross section along Y-Z axes at x = 
50.0 km with V, W wind vectors. (c): cross section along X-Z axes at y = 60.0 km with U, W 
wind vectors. (d): cross section along Y-Z axes at x = 50.0 km with V, W wind vectors. FCL 
contoured in black for both plots at 2.5, 10, 15, 20, and 25 km.  
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Figure 3.13: Same as Fig. 3.5 except for the May 18, 2012 Alabama storm. Note ground level is 
around 0.2 km in this case. 
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Figure 3.14: Same as Fig. 3.5 except for the May 18, 2012 Alabama storm. Note ground level is 
around 0.2 km in this case. 
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Figure 3.15: Same as Fig. 3.10 but for the May 18 Alabama storm and its respective flash 
channel parcels. Notice the reduced hatched fraction of parcels at each vertical level representing 
less parcels advecting upward more than 2 km.  
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Figure 3.16: Same as Fig. 3.11 but for the May 18, 2012 Alabama storm. Note the color bar is 
scaled to one fourth that of Fig. 3.11 due to the significantly lower number of total flash channel 
parcels. Notice that less redistribution of parcels appears to take place from initial heights to final 
heights of parcels in the May 18 case whereas a more pronounced bimodal distribution with a 
larger concentration of parcels end above 8 km in the June 6 case.  
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Figure 3.17: (a): fractions of all flash channel parcels advecting around 8.0 km for each 
thunderstorm and total amount of flash channel parcels advecting around 8.0 km not normalized 
for each thunderstorm (b). Notice around 50% of parcels end above 8.0 km for all cases (black 
bars). More parcels advect from below to above 8.0 km in the Colorado cases (purple bars) while 
more parcels initiate and remain above 8.0 km in the Alabama cases (red bars). 
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Figure 3.18: Vertical distribution profile of FCL integrated over all parcels before (“Original”) 
and after advection (“Advected”) for each storm. Created from the initial and final parcels 
locations with each parcel representing 1 km of FCL based on the 1 km resolution used in the 
trajectory analysis. Notice the stronger advection creating the bimodal shape in the “Advected” 
profile of the anomalous Colorado cases. 
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Figure 3.19: Fraction of total number of flash channel parcels initiating within various vertical 
wind velocity volumes for all five cases. Notice a higher fraction of parcels initiate in winds  
5.0 ms-1 in the anomalous Colorado storms (right three cases). Also note, most parcels appear to 
initiate in weak vertical winds of ± 5.0 ms-1. 
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Figure 3.20: Fraction of total number of flash channel parcels initiating within reflectivity 
volume thresholds for all five cases. Notice fraction of parcels initiating within 20 dBZ (green) is 
comparable between all storms.  
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Figure 3.21: Fraction of total number of flash channel parcels initiating within various 
predominant hydrometeor volumes for all five cases. Notice a higher fraction of parcels initiate 
within volumes dominated by low density graupel but less channels within rain following non-
inductive charging theory. Species listed are the top five volumes flash channel parcels most 
commonly initiate within, however flash channel parcels also initiate, though less frequently, 
within other dominant hydrometeor volumes.  
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Figure 3.22: Vertical distribution of LNOx for all thunderstorm cases in kilo moles (a) and parts 
per billion mixing ratios (b). Vertical profile of the LNOx fraction at each level of the total LNOx 
produced within each storm (c) categorized by contributions from parcels advecting  2.0 km 
(red), from parcels remaining within 2.0 km of initiation height (purple), and from parcels 
advecting downward  2.0 from initiation height (blue). Dashed lines represent values if flash 
channel parcels remained stationary at initiation locations without undergoing advection and 
solid lines represent values after flash channel parcels have been advected over storm lifetimes. 
Note that the x-axes’ scales for May 18 and June 11 Alabama cases are one fifth that of Colorado 
storm cases in plot (a). Also, note that ground level is ~1.7 km for the Colorado cases and ~0.2 
km for the Alabama cases. 
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Figure 3.23: Vertical distribution of the number of grid cells containing flash channel parcels 
within the domain of each storm after all flash channel parcels have been advected in the 
trajectory analysis. These profiles represent the volume of environmental air that is used to 
calculate the mixing ratio values for each vertical level used in Fig. 3.22b. Each grid cell has a 
volume of 1 km3. Note that ground level is ~1.7 km in the Colorado cases versus ~0.2 km in the 
Alabama cases. 
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Figure 3.24: LNOx mixing ratios in parts per billion integrated along x-axes of June 6, 2012 
Colorado storm. (a): values if flash channel parcels are kept at initiation locations and values 
after parcels advect throughout storm lifetimes (b). Note that ground level is ~1.7 km for this 
Colorado case. 
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Figure 3.25: Same as Fig. 3.24 except for the June 27, 2012 Colorado case. Note that the color 
scale is one third that of the June 6, 2012 Colorado storm and that ground level is ~1.7 km for 
this Colorado case. 
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Figure 3.26: Same as Fig. 3.24 except for the June 28, 2012 Colorado case. Note that the color 
scale is one third that of the June 6, 2012 Colorado storm and that ground level is ~1.7 km for 
this Colorado case. 
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Figure 3.27: Same as Fig. 3.24 except for the May 18, 2012 Alabama case. Note that the color 
scale is one sixth that of the June 6, 2012 Colorado storm and that ground level is ~0.2 km for 
this Alabama case. 
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Figure 3.28: Same as Fig. 3.24 except for the June 11, 2012 Alabama case. Note that the color 
scale is one sixth that of the June 6, 2012 Colorado storm and that ground level is ~0.2 km for 
this Alabama case. 
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Table 3.1: Various Measurements for Each Storm Event 
 

 Anomalous Polarity Normal Polarity 

 
June 6, 

2012 CO 

June 27, 

2012 CO 

June 28, 

2012 CO 
Mean 

May 18, 

2012 AL 

June 11, 

2012 AL 
Mean 

Timespan (UTC) 
2259 - 
0017 

2154 - 
2254 

2039 - 
2159 

N/A 
2223 - 
2256 

2018 - 
2122 

N/A 

Total Flashes
a 3737 723 680 1713 238 267 253 

Peak Flash Rate       

(fl. min
-1

)
a,b 111 65 28 68 18 15 11 

Mean Initial FCL 

Height (MSL km) 
5.9 5.1 5.5 5.5 6.6 7.9 7.3 

Max 35 dBZ Height 

(MSL km) 
13.0 12.0 11.0 12.0 12.0 11.0 11.5 

Max 20 dBZ Volume 

(km
3
)

c 3051 2125 1805 2327 2098 4000 3049 

Max Updraft (ms
-1

)
c 38 17.6 15.1 23.6 9.1 11.3 10.2 

Max Downdraft     

(ms
-1

)
c 17.9 10.1 11.3 13.1 6.4 16.6 11.5 

Approximate LCL 

(MSL km)
d 3.8 3.5 4.2 3.8 1.0 0.7 0.9 

 
aFlashes were attributed to each storm if they occurred within the storm identified cell or up to 
10.0 km outside of the cell. bFlash rates were calculated every minute through respective storm 
lifetimes. c20 dBZ volume and maximum updrafts and downdrafts were calculated within each 
storm cell boundary extended upward along the z-axis. dLifting condensation levels (LCLs) and 
boundary layer tops are estimated from University of Wyoming archived NWS soundings. 
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Table 3.2: LNOx Estimates for Each Storm Event 
 

 Anomalous Polarity Normal Polarity 

 
June 6, 

2012 CO 

June 27, 

2012 CO 

June 28, 

2012 CO 
Mean 

May 18, 

2012 AL 

June 11, 

2012 AL 
Mean 

Total Flash 

Channel Parcels 
108,406 43,803 38,738 190,947 8,881 6,737 7,809 

Approx. 

Boundary Layer 

Top (MSL km)
a 

3.6 4.8 4.8 4.4 2.5 0.8 1.7 

Single Flash 

LNOx Production 

Range (moles)
b
  

2 – 1030 2 – 1449 5 - 1062 3-1180 2 - 638 3 - 269 3-454 

Mean LNOx per 

Flash (moles)
b 72.4 158.0 142.8 124.4 92.5 60.7 76.6 

Total LNOx 

Produced (kmol)
b 171.8 74.6 64.8 103.7 13.3 9.3 11.3 

LNOx from 

Parcels Advected 

Upward  2 km 

& Ending > 8 

km
b 

63.1% 84.2% 39.8% 62.4% 11.5% 8.4% 10% 

LNOx from 

Parcels Ending 

Above Boundary 

Layer
a,b 

84.1% 56% 35.4% 58.5% 96.8% 99.9% 98.4% 

 
aBoundary layer tops estimated from University of Wyoming archived NWS soundings. bLNOx 
production follows parameterization in Wang et al. (1998) using initial pressure of each parcel. 
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CHAPTER 4 DISCUSSION 
 

 
 

4.1. DC3 aircraft measurements 

In situ observations of ambient NOx concentrations and mixing ratios were measured during 

the DC3 field campaign. The NASA DC-8 normally measured concentrations in inflow areas 

while the National Science Foundation (NSF)/National Center for Atmospheric Research 

(NCAR) Gulfstream-V (G-V) aircraft measured outflow concentrations in the outer portions of 

17 thunderstorm anvils. Occasionally the aircraft reversed their roles with the DC-8 penetrating 

thick anvil tops close to the deepest convection on a routine basis. Subtracting the inflow values 

from outflow NOx values allows for the calculation of total LNOx contributions. Unfortunately, 

measurements were not individually taken for these five storms though measurements were taken 

for other storms in both Colorado and Oklahoma during DC3. Stratospheric air was found to 

penetrate the tropopause in the June 6 storm, causing stratospheric ozone to mix into the storm 

anvil rendering LNOx measurements less distinguishable. Additionally, transport was low due to 

weak environmental winds in the Alabama storms, causing weak transport of storm anvil outflow 

and increased likelihood of under-representative LNOx concentrations (Pollack et al. 2016).  

Observational analysis from Pollack et al. (2016) reveal similar LNOx production per flash to 

those inferred from the current study which is based on channel length and includes detailed 

advection by storm updrafts and downdrafts, something that the Pollack et al. study did not 

include. The mean LNOx production per flash in each storm in this study was approximately 72 

moles (June 6), 158 moles (June 27), 143 moles (June 28), 92 (May 18), and 61 moles (June 11). 

In Pollack et al. (2016), production per flash based on all observed thunderstorms from the DC3 

campaign was estimated to be 60 to 570 moles with larger uncertainty existing for larger 
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estimates from three Colorado storms (18 May, 12 June, and 22 June 2012). Additionally, Barthe 

and Barth (2008) found LNOx production to be ~121 ± 41 moles fl.-1 for simulations of a 

STERAO storm characterized by high cloud base and high shear, like those in our Colorado 

sampled storms. However, Pollack et al. (2016) did not consider possible LNOx transport from 

convective downdrafts when computing these production estimates since outflow measurements 

were only recorded at one flight level.  

4.2. LNOx within the boundary layer 

Pollack et al. (2016) note that previous studies (i.e. Chameides et al. 1987; Skamarock et al. 

2003) found little evidence for LNOx entering the boundary layer and therefore follow similar 

assumptions. But this could still be an important LNOx transport pathway for some 

thunderstorms. One reason why such uncertainty regarding this transport pathway remains is that 

measuring in situ NOx specifically attributable to lightning at these lower heights would likely be 

difficult due to the shorter NOx lifetimes and aircraft safety concerns (Schumann and Huntrieser 

2007).  

Fortunately, results from this study provide further insight into this conundrum. Note that we 

get around the difficulty in measurements but still retain the in situ/real-time component by using 

LMA data to represent flash channels while introducing LNOx when and where it occurs into our 

thunderstorm case studies. Also note, this aspect separates this study from previous modeling 

studies that parameterize flash channel construction and LNOx production rather than utilizing 

actual observations. For example, Fig. 3.22a shows that an appreciable amount of LNOx exists in 

the lowest levels of the anomalous cases after parcels have undergone advection. In fact, further 

investigation shows that approximately 16% (June 6), 44% (June 27), 65% (June 28), 3.0% (May 
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18), and 0.1% (June 11) of the total LNOx produced from each thunderstorm lies in the boundary 

layer (as estimated from soundings listed in Appendix A; boundary layer heights listed in Table 

3.2) after advection of flash channel parcels has occurred. Contrary to previous assumptions, this 

is an appreciable fraction of the total LNOx for the anomalous thunderstorm cases, especially for 

the June 27 and 28 storms. Future work is required to explicitly state that anomalous storms 

produce an appreciable fraction of their total LNOx within the boundary layer, though the lower 

mode in flash channel initiation in our anomalous storms similar to that in Fuchs (2017) suggests 

these three cases represent anomalous storm structure.  

Figure 3.22c shows clear peaks in the purple curves for each of these three cases, meaning 

that flash channel parcels that remained relatively stationary (within 2 km of initial heights) 

contribute to most of the LNOx that does exist within the boundary layer. For clarification, these 

curves show the fraction of total LNOx for each particular storm that is contributed to by parcels 

remaining within 2 km of their initial heights. Therefore, according to these trajectory analyses, 

nearly all the LNOx at the lowest levels of these storms results from parcels that remain close to 

their initial heights. This also appears to be the case for the two normal polarity Alabama cases, 

though less LNOx appears to reside in lower levels of these storms. Examining the positioning of 

updrafts in the anomalous storms in Figs. 3.5d, 3.6d, and 3.7d show that maximum updrafts 

occur within cloud level and above the lifting condensation level (LCL) for each of these storms 

(see Table 3.1 for LCLs). Since most flash channel parcels are created just above these LCLs and 

below the base of these updraft cores (FCL modes ~5.5 km), parcels are on the brink of 

undergoing strong upward transport by intense updrafts or remaining in areas of weak to 

moderate vertical motion and remaining more stationary. Figure 3.8 shows how an appreciable 

fraction of parcels appear to originate in the lowest two vertical levels of these three anomalous 
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storms, yet very few parcels originate in intense updrafts > 5 ms-1. This is also seen in the left-

hand plot in Fig. 3.11 where fewer parcels appear to initiate within stronger vertical wind speeds 

at the lowest levels of the June 6 storm. The overall lower mode in flash channel (parcel) 

initiation within these three anomalous Colorado thunderstorms appears to position a large 

fraction parcels directly beneath the strongest updraft cores. Since most parcels also appear to 

form on the periphery of updraft cores as previously discussed, not all flash channel parcels have 

the opportunity to enter the strongest updraft cores. Thus, flash channel parcels either remain in 

the lowest 2 km (providing a source of NOx to remain in the boundary layer) of the storm or 

undergo strong upward advection to heights above 8 km, working to create the distinct bimodal 

final distribution of flash channel parcels (length) seen in Fig. 3.18. Table 3.2 lists these values 

for reference.  

4.3 Justification discussion 

Figure 3.2 suggest that flashes tended to be shorter during high flash rate periods of the 

storms in this study, likely explaining why our estimates compare well with Pollack et al. (2016). 

For example, when the total LNOx production is divided into the number of flashes for each 

storm, as is done in the Pollack et al. study, it is inherently assumed that flash length is the same 

among all flashes when, in fact, we have demonstrated that FCL and LNOx production are highly 

variable (see Table 3.2 for LNOx per flash ranges for each storm). The preponderance of shorter 

flashes at times would inherently produce less LNOx, but if some transport to the boundary layer 

occurs (not accounted for in Pollack et al. 2016), averaging over all flashes could produce similar 

results. In other words, the LNOx that is transported to or that forms from flashes within the 

boundary layer limits the total potential LNOx to be measured by aircraft at higher levels, just as 
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shorter flashes producing less LNOx does in the first place. Therefore, not taking aircraft 

measurements of LNOx in the boundary layer could be accounted for by the variance in flash 

size/length when total production is averaged over all flashes. These results increase confidence 

in LNOx production on a flash by flash basis though this artifact supports the need for further 

investigation into the LNOx production per flash using channel length for different regions of the 

world. 
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CHAPTER 5 CONCLUSIONS 
 

 
 

5.1. Summary 

In this study, over 5000 flashes with a total of over 206,500 km of channel length observed 

from VHF Colorado and Northern Alabama LMA networks are divided into 1.0 km flash 

channel parcels for five thunderstorm cases during the DC3 field campaign. Parcels are then 

advected within each storm at 50 second time steps following the 3-D wind fields derived from 

dual-Doppler analysis. The mean of flash channel initiation height was found to be lower in the 

anomalous polarity Colorado storms (~5.5 km) than in the normal polarity Alabama storms (~7.5 

km), which agrees with climatology discussed by Fuchs (2017). Updrafts also tended to be 

broader and more intense in these storms, especially the June 6, 2012 storm where values 

approached 40 ms-1 at times, with larger updraft volumes (over 5 ms-1) throughout their lifetimes. 

Even though flash channels tended to initiate at lower levels, the enhanced updrafts were found 

to efficiently advect flash channel parcels to higher altitudes in the anomalous thunderstorms. 

Moreover, a larger fraction (~70%) of parcels in the mid-levels (4-9 km) of these storms tended 

to advect upward by more than 2.0 km compared to the normal polarity cases (~35%), resulting 

in few parcels remaining near their initiation heights in the mid-levels of these anomalous 

storms. 

The more efficient transport of flash channel parcels in the anomalous storms causes a more 

distinct bimodal distribution in the final LNOx mixing ratios with appreciable transport to the 

upper troposphere while some parcels are not advected upward and remain near or within the 

boundary layer. The larger number of flashes (and channel length) in the anomalous storms in 

conjunction with this more efficient transport ultimately leads to higher amounts of LNOx 
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residing in the upper troposphere, where longer lifetimes exist. This suggests that on average, 

anomalous polarity thunderstorms have a more substantial impact on potential tropospheric 

ozone production than normal polarity thunderstorms. It is important to note that the 

environmental conditions such as elevated CAPE, reduced warm cloud depth, storm updraft 

width, shear, etc. play an important role in the developing charge structure that defines the storm 

polarity in the first place, thus it is not solely the distribution of charge and polarity that cause 

these differences in LNOx production and transport. For example, increased updraft strength and 

width are thought to play important roles in increasing the super-cooled liquid water content into 

storms that form in high CAPE and high cloud base environments, which then likely plays an 

important role in forming the charge structure of anomalous thunderstorms as was discussed in 

Section 1.2.2 (Saunders and Peck 1998; Williams et al. 2005; Bruning et al. 2014; Fuchs 2017). 

Studies of more thunderstorm cases should be completed in the future to further solidify this 

argument and develop more robust statistical significance for these statements. 

5.2. Normal versus anomalous polarity 

Once converted from FCL to LNOx following the parameterization from DeCaria et al. 

(2000) and Wang et al. (1998), enhanced concentrations and mixing ratios above 8 km in the 

anomalous polarity thunderstorms were found, though elevated values above this level occur in 

all five cases. For example, peak LNOx mixing ratios above 8 km were nearly two to three times 

as large in the June 6 and June 27 cases compared to the other three cases. More of these parcels 

were found to originate in updrafts of the three anomalous polarity cases resulting in nearly 25% 

of all parcels originating below 8 km to advect to above 8 km (from the lower to upper 

troposphere). However, relatively few parcels originated above 8 km in these storms. Thus, 
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nearly half of all flash channel parcels ended up above 8 km at the end of each storm’s lifetime 

for these three cases. On the other hand, a greater proportion of flash channel parcels originated 

above 8 km in the normal polarity Alabama cases, with fewer parcels advecting from below to 

above this level as occurs in the anomalous Colorado cases. Results between both storm 

structures reveal that nearly half of parcels end up above 8 km at the end of each storm’s 

lifetime. Therefore, the processes leading to similar upper tropospheric LNOx fractions can be 

divided into two processes – (1) advection-driven distribution in the anomalous polarity storms, 

and (2) location-driven distribution in the normal polarity thunderstorms. Since significantly 

more flashes (and larger channel length) tend to occur in storms of anomalous polarity like the 

June 6 storm, more total LNOx is created for these storms. This leads to overall higher mixing 

ratios of LNOx in the upper troposphere downwind of and following these storms. Since the 

lifetime of NOx is longer at these levels, increased LNOx-induced ozone production is likely to 

take place in the residual anvil air in the following days. These results suggest that storms of 

anomalous polarity have a larger impact in upper tropospheric LNOx and potential downstream 

ozone production, though examining more cases in future work must be done to substantiate this 

conclusion.  

Results from this study compare well in some areas to those of previous studies. For 

example, appreciable LNOx appears to remain in the lower troposphere/boundary layers in the 

anomalous Colorado storms as a result of the lower mode in the initiation of flash channels by 

height. While this contradicts findings of previous studies, it is somewhat in agreement with the 

emission profile suggested by Pickering et al. (1998) who includes a strong upper-level LNOx 

peak along with a peak in the boundary layer, though the peak in the boundary layer of the three 

anomalous storms does not necessarily reside directly at the surface (~1.7 km; see Fig. 3.22). 
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The resulting vertical profiles in LNOx in the anomalous polarity storms also appear to best 

match that of modeled mid-latitude storms in a study by Ott et al. (2010), while the normal 

polarity storms appear to best match that of modeled subtropical storms. LNOx production per 

flash compare well to observations listed in Pollack et al. (2016) and Barthe and Barth (2008). 

These results are for five storms only, so future investigation of more storms will help solidify 

these findings and develop more robust statistical evidence for the differences in LNOx 

production in anomalous versus normal polarity storms. 

5.3 Flash channel parcel originations 

As previously noted, DeCaria et al. (2005) note that MacGorman and Rust (1998) found most 

flash channels occur within the 20 dBZ reflectivity volume of storms. They make use of this to 

limit the horizontal distribution of flash channels following a pre-defined vertical profile. This 

method appears to be accurate with approximately 80% of all flash channel parcels in this study 

initiating in reflectivity values of at least 20 dBZ. However, it may also be beneficial to scale 

flash channel introduction to areas of weaker vertical motion (|w|  5 ms-1) since nearly 75% of 

flash channel parcels in each case of this study initiate within these regions surrounding stronger 

reflectivity and updraft cores. Scaling flash channel distribution to areas of low and high density 

graupel may also benefit modelers since most flash parcels originate in these regions for this 

study, though various models may produce ice mass differently depending on the microphysics 

scheme used. Also, identification of hydrometeors from radar-retrieved fields is an imperfect 

process with inherent limitations and, naturally, not all hydrometeors within a given volume are 

not uniquely the exact identified specie. Correctly placing LNOx in the vertical according to 

profiles representative to storms of the same region must also occur, otherwise unrealistic 
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convective transport may occur. If flash channels are scaled to these storm volumes, 

redistribution by storm winds will likely better resemble realistic storm patterns. Future work 

should examine the effect of such changes to LNOx parameterizations to analyze their potential 

benefit. 

5.4. Closing statements 

For this study, numerous flash channels were divided into 1.0 km flash length parcels and the 

convective transport of NOx generated by flash channels was studied in detail for five 

thunderstorms representing typical polarity structures commonly found in Colorado and 

Alabama. These results provide better understanding into the different contributions and impact 

of normal and anomalous polarity thunderstorms to upper tropospheric NOx production. Total 

FCL and LNOx production appear to vary widely between flashes within individual 

thunderstorms, which also vary in total flash production depending on environmental conditions 

(that are regionally dependent). Investigation of flash channel occurrence in the storms of this 

study show current distribution methods and parameterizations to be reasonable, however 

possible modifications can be made. Results suggest possible modifications could include scaling 

roughly 75% of the LNOx inserted within the 20 dBZ volume to areas of weaker vertical motion 

and hail, high density graupel, and low density graupel HID regions. These improvements in 

LNOx parameterizations in chemical transport and global climate modeling for storms in the 

Southeast and High Plains regions of the United States. In the end, upper tropospheric ozone 

production appears to be highly dependent upon not only the number of flashes and channel 

length that produce LNOx but also where this LNOx is transported once it is created, all of which 

is fundamentally affected by thunderstorm charge structures and cloud dynamics. Utilizing 
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appropriate FCL vertical distributions is necessary to correctly model storms of a particular 

environment. The variance found in this study highlights the need to further investigate 

thunderstorm total flash and channel length production in a wide variety of storm types and 

respective locations. Future work focusing on storms in other regions of the world will only 

enlighten our understanding of the variance in lightning activity and LNOx production by region. 

Natural lightning NOx production will be better parameterized when combined with results for 

this study for the two regions of the U.S., and hopefully with future research to come. 
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APPENDIX A 
 

 

 

 
 
Figure A.1: 0000 UTC June 7, 2012 KDNR sounding SKEW-T for the June 6, 2012 storm event 
from the University of Wyoming sounding archive website 
(http://weather.uwyo.edu/upperair/sounding.html). The x-axis corresponds to temperature (in °C) 
(angled blue lines with positive slope) and y-axis corresponds to pressure (in hPa) (horizontal 
blue lines) decreasing with height. Left-most solid black curve represents the dew point 
temperature with pressure/height and right-most black curve represents the actual air temperature 
with pressure/height. Horizontal winds are plotted with height on the right-hand side. All other 
lines and curves are irrelevant for this study. Pressure and horizontal winds were interpolated 
onto the 1 km vertical grid for the flash channel parcel trajectory analysis and LNOx production. 
Boundary layer height was estimated to be ~650 hPa (~3.6 km). 
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Figure A.2: Same as Fig. A.1 but shown is the 0000 UTC June 28, 2012 KDNR sounding 
SKEW-T for the June 27, 2012 storm event. Boundary layer height was estimated to be ~560 
hPa (~4.8 km). 
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Figure A.3: Same as Fig. A.1 but shown is the 0000 UTC June 29, 2012 KDNR sounding 
SKEW-T for the June 28, 2012 storm event. Boundary layer height was estimated to be ~550 
hPa (~4.8 km). 
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Figure A.4: Same as Fig. A.1 but shown is the 0000 UTC May 18, 2012 KBMX sounding 
SKEW-T for the May 18, 2012 storm event. The 0000 UTC May 19, 2012 KBMX sounding 
appeared incomplete for pressure levels above 608 hPa, though the boundary layer height was 
estimated to be ~700 hPa (~3.0 km) from the data available. Boundary layer height was 
estimated to be ~780 hPa (~2 km) from this sounding, therefore a boundary layer height of 2.5 
km was used for analysis. 
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Figure A.5: Same as Fig. A.1 but shown is the 0000 UTC June 12, 2012 KBMX sounding 
SKEW-T for the June 11, 2012 storm event. Boundary layer height was estimated to be ~925 
hPa (~0.8 km). 
 


