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ABSTRACT

SPIN WAVES IN MAGNETIC THIN FILMS: NEW TYPES OF SOLITONS AND

ELECTRICAL CONTROL

New types of spin-wave solitons in magnetic thin films and the methods to control spin
waves electrically are studied in this thesis. In the first part, the first observation of chaotic
spin-wave solitons in yttrium iron garnet (YIG) thin film-based active feedback rings is
presented. At some ring gain levels, one observes the self-generation of a single spin-wave
soliton pulse in the ring. When the pulse circulates in the ring, its amplitude varies chaotically
with time. The excitation of dark spin-wave envelope solitons in YIG thin film strips is also
described. The formation of a pair of black solitons wiffhase jump of 180s observed for
the first time. The excitation of bright solitons in the case of repulsive nonlinearity is also
observed and is reproduced by a numerical simulation based loigh-order nonlinear

Schrddinger equation.

In the second part, the control of magnetization relaxation in ferromagnetic insulators via
interfacial spin scattering is presentéd.the experiments nanometer-thick YIG/Pt bi-layered
structures are used, with the Pt layer biased by an electric voltage. The bias voltage produces a
spin current across the Pt layer thickness due to the spin Hall effect. As this currers sffatte
the YIG surface, it exerts a torque on the YIG surface spins. This torque can reduceaseincre
the damping and thereby compress or broaden the ferromagnetic resonance linewidth®f the YI
film, depending on the field/current configuration. The control of spin waves in a YIG thin film

via interfacial spin scattering is also presentadhe experiments a 46Atthick YIG film strip



with a 20-nm-thick Pt capping layer is used. D& current pulse is applied to the Pt layer and
produced a spin current across the Pt layer. As the spin current scatters off the YIG surface, it
can either amplify or attenuate spin-wave pulses that travel in the YIG strip, depending on the

current/field configuration.
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CHAPTER 1

OVERVIEW

1.1 Background and motivations

Magneto-static spin waves (MSW) which propagate in magnetic thin films, such as yttrium
iron garnet (YIG) thin films, have been extensively studied in the past decades for two main
reasons. First, MSW in YIG films are well suited for investigation of nonlinear wave properties
due to their low loss and low power thresholds for nonlinear excitations. A wide variety of
nonlinear wave phenomenaveaalready been studied in MSW systerifiese include the
studies of envelope soliton excitations (for example: Kalinikos, Kovshikov, and Slavin, 1983;
Wu, Kalinikos, and Patton, 2004; Scott, Kostylev, Kalinikos, and Patton, 2005), soliton fractals
(Wu, Kalinikos, Carr, and Patton, 2006), chaexcitations (Wu, Kalinikos, and Patton, 2005;
Hagerstrom, Tong, Wu, Kalinikos, and Eykholt, 2009), and modulational instability (Wu and
Kalinikos, 2008), among others. Aside from nonlinear dynamics studies, the potential
applications of MSW-based devicesvhalso been extensively studied. These devices include
nonlinear spin-wave phase shifters (Ustinov and Kalinikos, 2008), nonlinear microwave
interferometers (Ustinov and Kalinikos, 2007), and broad-band chaotic oscillators (Hagerstrom,
Wu, Eykholt, and Kalinikos, 2011), among others. Beside these more traditional applications of
MSW in microwave devices, there has also been a tremendous growth of interest very recently
in spin wave-based spintronic devices. This growth is attributed to the fact that spin waves in
insulating magnetic materials are an idea carrier of spin currents due to the magneiad’snate
low energy dissipation (Liu and Vignale, 2011). Therefore, such spintronic devices have the

potential to be smaller and more energy efficient than traditional electronic circuits.



The motivations for this investigation are twofold. From the fundamental point of view,
even after decades of extensive research, the nonlinear dynamics of spin wavisaréusity
understood. Previous studies of nonlinear spin waves have mostly been conducted under the
scope of the nonlinear Schrédinger equation. However, the use of a more complex model leads
to more enriched possibilities (Akhmediev, Soto-Crespo, and Town, 2001). On the other hand,
recent advances in spintronic (Takahashi, Saitoh, and Maekawa, 2009; Liu, Moriyama, Ralph,
and Buhrman, 2011; Kajiwargt al., 2010) have opened a new area for the stiichpin waves
and spin wave-based devices. In spite of the promising future for the applications of those spin
wave-based spintronic devices, a number of fundamental questions are still unanswered. These
guestions include the reduction of spin-wave damping, electronic control of spin waves, efficient

spin injections and detections, and many others.

1.2 Thesisoverview

This thesis is organized into eight chapters. The first chapter addresses the motivations and
overview for this study. The second chapter gives a brief introduction to both linear and
nonlinear spin-wave theories, and also the experimental methods used to study spin waves.
Chapter three and Chapter four discuss the experimental control of magnetization relaxation and
spin-wave amplitude based on the spin Hall effect. Chapter five to Chapter seven are devoted
to discussions on the experimental and numerical studies of nonlinear spin wave phenomena
which include chaotic solitons, black soliton excitations, and excitations of bright solitons in
repulsive nonlinear media. Chapter eight gives the conclusions of the thesis and an outlook for

future studies.



CHAPTER 2
INTRODUCTION TO SPIN WAVE THEORY AND EXPERIMENT
2.1 Uniform precession mode

If considering a classical picture of an atom, i.e. an electron on a circular orbit around a
nucleus, one finds that théectron’s angular momentum gives rise to a magnetic moment. In
addition to orbital angular momentum, the electron also possesses spin angular momentum,
which is of quantum mechanical origin. Generally speaking, the total magnetic moment of the
atom can be obtained by the combination of the orbital and spin angular momenta which follows
the equation (Hook and Hall, 1991):

n=—u (L+2S)/h (2.2)
whereL andS are the quantum numbers for the orbital and spin angular momenta of the atom,

and y; is Bohr magneton, which is the magnitude of the magnetic dipole moment of an

orbiting electron with an orbital angular moment of ohe

The magnetizatiorM is defined as net macroscopic magnetic moment per unit volume. If
the magnetic momenta of all the atoms in a magnetic material are collinear, the magnéfization

can be expressed in the following equation:

M=—p (2.2)

N
\Y
Here V represents the volume of the magnetic material and N is the number of atoms. The
potential energy density related to the magnetizddom the presence @ magnetic fieldH is

given by:

E=-M-H (2.3)



This equation states that (1) the energy associated with the magnetization is minimized when
the magnetization is parallel to an externally applied magnetic field, and (2) magnetic moments
in the presence of an external applied magnetic field tend to align with the field. However, rather
than simply aligning with the magnetic field due to this potential energy, the magnetization will
experience a torqua which drives the magnetization to precess around the magnetic field. The
eqguation that describes this rotational motion was introduced by (Laudau and Lifshitz, 1935):

dM
EZ—MMXH (2.4)

where J | is the absolute electron gyromagnetic ratio. This equation is also called the magnetic
torque equation. In the above equation bdthndH have static and dynamic components:

M =M, +m(t)
H=H_ +h(t)

(2.5)

where m(t) and h(t) are the dynamic components of magnetization and magnetic field,
respectively. The dynamic components here are perpendicular to the static components for
simplicity. H,, is the effective magnetic field which is a combination of external field,
demagnetization field, anisotropy field, and other magnetic fields if presntne assumes
m(t) =m_ e and magnetic field is a uniform field along z directibre,H_, , one can solve
the above torque equation and obtain,

a)=a)05|7/|Heff (2.6)
where o,is the magnetization precession frequency about the static magnetic field. Also it is

dm[
dt

=0 or

dv
easy to realize from the above toque equation—g?atM =0, which indicates

|[M| = constan. In other words, the magnitude of magnetization is a constant.



Now if one considers the response of magnetization with respect to a small dynamic
magnetic field, the susceptibility of the magnetic material can then be calculated with a linear

approximation of torque equation, i.e.

Im, | <|M|,|h,| <H (2.7)
One obtains,
m, x iy, 0)(h,
m, |=-iy, x O|h (2.8)
m, 0 0 Olh
In this equation,;gz% and Za:% where o, is defined as|y|4z|M|. It is
W, —@ W, —w

interesting to see that wheais very close ta,, the susceptibility will be approaching infinity,

which means at this frequency, a small magnetic field will be able to drive a very large
magnetization precession motion if damping is not considered. This frequency is called the

ferromagnetic resonance frequency.

Now consider a thin magnetic film with an external magnetic field applied out of the film
plane. In this case the ferromagnetic resonance frequency can be found in a vétyostraigl
manner. The internal magnetic field is the applied field combined with demagnetization field,

H,, =H 47M (2.9)

external
Here one does not consider the anisotropy field and assumes that the applied field is strong
enough to overcome the demagnetization field and saturate the magnetic flm. The resonance
frequency is then given by,

a)=|7/|(Hexternal_4ﬂ-M s) (210)

Now consider the case in which the magnetic field is applied in the film plane. Notice the fact



that the dynamic component of magnetization will have an out-of-plane component. As a result,
a small dynamic demagnetization magnetic field will be generated. In this case, the resonance

frequency is given by,
0= o, (0, + o) (2.11)

2.2 Propagating spin-wave mode

In the last section, the discussion is only about uniform precession mode where all the
magnetic moments are collinear and precess in phase throughout the entire sample. However,
the magnetic moments are coupled to each other through dipole-dipole and/or exchange
interactions. The result of these interactions can be seen if one excites some magnetits mom
locally, the precession motion of those moments can propagate spatially in the magnetic material
like a wave. This wave is therefore a collective excitation of magnetic moments @swhlity
termed as a spin wave. Spin waves in magnetic materials are analyzed by Stixingl’s
equations, which naturally take dipolar interacsionto account, together with the magnetic

torque equation and boundary conditions.
2.2.1 Spin-wave dispersion relation in an unbounded medium

In an unbounded sample, the spin-wave dispersion relation is solved by a combination of
Maxwell’s equations and the magnetic torque equation. For the unbounded case one takes the
magneto-static wave approximation or slow wave approximation (Stancil, 1993). This
approximation is taken because, over the frequency range which typicavapeexperiments
deal with, the spin-wave wavenumbers are much larger than those of electromagnetic waves. In
other words, for a given wavenumber, the corresponding spin-wave frequency is much smaller
than that of an electromagnetic wave. With this approximation, one can wriddatheell’s

6



equations for spin waves (magneto-static waves) as:

Vxh=0
* (2.12)
Vxb=0=V-h=-V-m
It is important to note thahe Maxwell’s equations are linear equations. Thus, one can mrite
andh in the following form,

_ (kT —at)
m=m,,¢€

h=h,e'“ (213)

By substitutingm and h into (2.13), one can obtain the dipolar field generated by magnetic

moment,

. k(K - 4
h(r't):h[er—l(k.r—wt) - _ ( kka) e—|(k.r—ax) (214)

The exchange field ia magnetic material can be writtes

Moo+ ©) = AoV °M(T, 1) = 2 Jm,, g7 (2.15)

where A, is the exchange constant. For YIG materials, this valu@=s3.2x 10" cn.

With the above approximations, the field can be written as,

H. =eH +h(r,t)+h_(r,t) (2.16)
One can now derive from the magnetic torque equation the following resonance frequency and
propagation angle:

o’ = (o, + 0, k*) (@, + o, K>+, sin’q,)
k. +k,? (2.17)

HJ
sing, =—————
“ ok, kK,

Figure 1 shows a schematic of the dispersion for two diffetemtalues: 0 and 90, where 6,

is the angle between spin wave propagation direction and the magnetic field direction.



Depending on the wavenumber value, the dispersion relation is separated into three different
regions: (1) dipolar spin wave region, (2) the dipole-exchange wave region, and (3) the exchange
wave region. Dipolar spin wave region roughly correspond to the region where the
wavenumbers are below “léad/cm and above the lower limit below which the magneto-static
approximation is invalid. In this region, the frequency has a weak dependence on the
wavenumber. This region is the one in which most of the expesnmetitis study are carried

out.

Exchange
22 . I I waves
20 - —*—6=90 I |
18- —=— 0 = 0° : !
16 - !Dipole-exchang'e
I

14 lwaves
] Non-exchange |
dipole waves I

Frequency (GHz)
N

O T T LA | T T T ""I'I T T T "I"'I
10°* 10° 10°
Wavenumber (rad/cm)

Figure 1. Dispersion relations for spin waves in an unbounded medium. The circles cortes|
the case in which spin waves propagate in a direction perpendicular to the magueticdeation,
while the squares correspond to the case in which spin waves propagate in a directirnigéral
magnetic field direction. The calculations used H = 800 & =175¢G and ;_ =3.2x10" cnf.



2.2.2 Spin-wave dispersion relation in a bounded medium

In this section, the main features of spin waves propagating in a long and narrow magnetic
film strip are discussed. Three types of magnetic field/film configurations are considered which
correspond to three different clas®f spin waves. In all discussions below, the external static
magnetic field is applied along the z-axis (as indicated in Figure 2) and the spin wapeagape

along the film strip from left to right.

Consider first the geometry where a magnetic field is applied out of the film plane. In this
case, the boundary conditions requiig to be continuous across the upper and lower film
surface, and b, to be continuous across the upper and lower film surfaces. Also it is important
to notice that the film thicknedsis much smaller than the spin-wave decay length. Thus, spin
waves will have reflections back and forth along z axis and the z-component of the wave vector
k, will be quantized. A detald derivation can be carried out with the above boundary
conditions,Maxwell’s equations, and the magnetic torque equation. This derivation, however,

will not be discussed here in details. For the lowest-order mode, a useful approximate

dispersion relation has been derived by Kalinikos (Eshbach & Damon, 1960; Kalinikos, 1980),

w(k)= \/a)H {a)H + o, (1— 1_kz_kd H (2.18)

wherek is the spin-wave wavenumbierthe film plane andl is the thickness of the film. This

notation is followed in the rest of this thesis unless otherwise specifigus type of spin waves
is the so-called magneto-static forward volume waves. Several additional points should be
made for forward volume waves. First of all, the notatifmmward’ comes from the fact that

the group velocity isn the same direction as the phase velocity. This can be seen directly from



the positive slope of the dispersion curve. See Figure 2(a). The positive slope of the
dispersion curve corresponds to a positive group velocifyolume” in the notation denotes

that the spin-wave excitations are extended throughout the entire film thickness, as opposed to a
surface mode (Stancil, 1993; Wu, 2011). Second, the slope of dispersion curve or group velocity
is decreasing with an increase in wavenumb@ne can define the dispersion coefficient as

follows,

D*w(k)

D =
ok?

(2.19)

This dispersion coefficient has a negative value for forward volume spin waves. It should be
mentioned that the sign of the dispersion coefficisntery important for the formation of

solitons, as discussed in the following sections.

Forward volume waves have a rotation symmetry in the film plane due to the fact that the
magnetic field is applied out of plane. If the magnetic field is applied tangentially, the symmetr
is broken and one needs to consider thdeabgtween the magnetic field and the wave vector
(Stancil, 1993). Two special field/wave vector configurations are as follows: (1) the wave vector
is parallelto the magnetic field direction and (2) the wave vector direction is perpendicular to the

field.

The first configuration supports the propagation of backward volume waves. The
dispersion relation can be derived using a similar method described above for forward volume

waves. An approximate dispersion relation for the lowest-order mode has also been derived by

(k)= J‘“ {w +a, (1‘@% H (2.20)

10

Kalinikos (Kalinikos, 1980),




A (a) Forward Volumn Wave 7
¥ a4 K
e 4.0
3 H
T 3.6
=
g 32
L
2.8 0 2 4 6 8 10
Wavenumber(10°rad/cm)
— (b) Backward Volumn Wave yi
Y 44 K =
Q
§ 4.0
g 3.2
0 2 4 6 8 10
Wavenumber (10°rad/cm)
o (c) Surface Wave \Z
n 5.2
0] K
E
T 4.8

0 2 4 6 8 10
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Figure 2. Examples of dispersion curves for: (a) magneto-static forward volemes; (b
magneto-static backward volume waves; and (c) magneto-static surface wavesalcuitations usett
=1000 Oe and4zM =175(G.

Figure 2(b) shows an example of this dispersion curve. As opposed to forward volume waves
the phase velocity of the backward volume wave has an opposite sign with respect to the group
velocity, which explains thébackward nature of such waves. Also, the dispersion coefficient of

the backward volume wave positive.

The second configuration supports the propagation of surface waves. This configuration is
different from forward and backward volume waves, because the wavenumber of surface waves
in out-of- plane direction is imaginary. The meaning of this imaginary wavenumber is that the

wave amplitude exponentially decays in this direction. In the case Wwherarger than I

11



spin waves propagate on one of the surfaces of the film. For the film/field configuration showed
in Figure 2(c), the waves withhwave vector pointing to the right propagate along the top surface
of the film while the waves witla wave vector pointing to the left propagate along the bottom
surface of the film. Therefore, the surface waves are non-reciprocal waves (Wu, 2011). Also
there is only a single propagating mode for surface sanstead of a series of modes with
different thickness variations (Stancil, 1993). The dispersion relation equation for surface waves

has also been derived by Kalinikos (Kalinikos, 1980),

2

w(k)= \/a)H (0, + o, )+wTM(1—ez"d) (2.21)

It is evident from Figure 2(c) that for surface waves the group velocity and the phase vedocity ar
in the same direction, the same for forward volume waves. The dispersion coefficient of surface
waves is negative. Note that the dispersion coefficient is negative for forward volume waves

and positive for backward volume waves.
2.3 Introduction to nonlinear spin waves
2.3.1 Nonlinear coefficients for different types of spin waves

The discussions in the last two sections are based on the assumption that the input signal is

small and the magnetization precesat a small angle. For this reason, the valuesvgfand

w, are calculated by using the saturation magnetization vigand all of these parameters

are constant. However, when the spin-wave signal is strong and the magnetization precession
angle is large,M, in those equations has to be replacedNby, which is the z-component of

the magnetization (along the precession axis as indicated in FigureAR).increasein

spin-wave amplitudgm| leads to a decrease M ,, and the latter leads to a corresponding

z!

12



change in spin-wave frequency. In other words, the spin-wave frequency not only depends on
the wavenumber, but also on the spin-wave amplitude. The dependence of the spin-wave

frequency on amplitude is the origin of spin-wave nonlinearity.

It is useful to define a complex, dimensionléssction u(t) to describe the amplitude and
relative phase of a nonlinear spin wave. For forward volume waves, due to the fact that the

precession is circular, one can whteas (Wu, 2011),
M, =M, (1-|u’) (2.22)

Notice here that the Z axis is out of plane indicating thatufte describe the spin wave

amplitude in the plane. The spin-wave nonlinearity coefficient is then defined as,

_ ow
oluf

(2.23)

For forward volume waves witly close towy, one can estimate the nonlinearity coefficiest
(Wu, 2011),

o
ol

o
olu

N =

[7(H-4zM,)]= Z[y(H —47M + AﬂMs|u|2)}=a)M (2.24)

For surface wave and backward volume waves, due to the existents of demagnetizing field, the
precession is elliptical instead of circular. As described in Figure 2, now the Z axis is in the plane
and the dynamic magnetization has both in-plane and out-of-plane components. Ifuft tose
describe the spin wave amplitude out of plane, in this casks, given by

2
M, = M{l—%[ﬂ%}ud (2.25)

H
The nonlinearity coefficient for both surface waves and backward volume waves with
wavenumbers close to zero is given by,

13



0 o, 0 @32
N=—— H(H+4~zM =—_HM| 14 B 2.26
SR A [0 (wj (2:20)

However, if we defineu(t) as the spin wave amplitude in the film plane, then the nonli

nearity coefficient is different which is given by,

2
N M[N)_] 2.27)

2
4o, o

Two important points are evident from the above equations. First, the nonlinearity
coefficient for forward volume waves always legsositive value. In contrast, for both surface
and backward volume waves the nonlinearity coefficient has a negative value. The physical
meaning of these coefficients is straightforward: by increasing spin wave amplitude, it is
expected that the spin-wave transmission bandafforward volume wave in the frequency
domain shifts up, whilehat for a backward wave or a surface wave in the frequency domain
shifts down. Second, the nonlinearity coefficient is not constant. Rather, it depends on both the

saturation magnetization and the magnetic field magnitude.

It should be noted that the product of the signs of the dispersion coeffi€grang
nonlinearity coefficientl{l) gives rise to different types of spin-wave nonlinearity. It is said that
a spin wave has repulsive nonlinearity wHeN>0 and attractive nonlinearity whdbN<O.

The reason for those definitiorssexplained in the next section.
2.3.2 Introduction to nonlinear Schrodinger equation

One can use the nonlinear Schrddinger (NLS) equation to describe the propagation of
nonlinear spin waves in magnetic thin films. There exist two methods for the derivation of the

NLS equation for nonlinear spin waves. The first method is based on the Taylor expansion of

14



the dispersion relation, which is well documented by Scott (Scott, 2002). The other method is

based on the Hamiltonian formulation of spin-wave dynamics which is discussed below.

A very goodreview of the Hamiltonian formulation of spin waves is given by (Krivosik and
Patton, 2010). Instead of using the magnetic torque equation, a scalar Hamiltonian form in
terms of canonical variables is used to solve the problem of spin-wave dynamic. Following the
notation by (Krivosik and Patton, 2010), the spin-wave dynalmequation is given by the

Hamiltonian equation,

idak(t): a*é/ _idak(t): ol (2.28)
dt 0oa, (t) dt oa, (t)
Here a (t) and a (t) are obtained by a series @lnonical transformations from the
magnetization compone¥l, and are the complex amplitude of a plane spin wave with

propagation direction defined by, Z7 is converted from the magnetic systerilamiltonian

77 which has the unit of frequency,

o :% (2.29)

The effective magnetic fieldH_, is connected with Hamiltoniaff through,

1 6H
S 2.30
VM (2:30)

In general, if one takes the Taylor expansignas a function ofa, (t) anda (t), only the
first-order terms are significant and can be written as,

U=UP+2P+ 2/ P+ ... (2.3)
where Z/® leads to the linear spin-wave dispersiof,® leads to so-called three-wave

processes, and7“ leads to so-called four-wave process.
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If three-wave processes are non-resonant (in other words, the magnetic field is sufficiently
high so that the&Suhl first-order spin-wave instability is prohibited), the three-wave interaction
term in the Hamiltonian can then be folded. Then Equation (2.31) can be written as (Krivosik

and Patton, 2010),

U = jwkakakdm [Tosddaagk +k ~k s~k )k gk gk gk . (2.32)

If one substitutes this Hamiltonian into Equation (2.28), one obtains the following equation for

spin-wave dynamics (Bouchbinder, 2003),
I——a)kak j Laaask+k —k ~k Jdk gk gk . (2.33)

If one takesa Taylor expansion ofe, about k ,and assumek =k,+q and |g|<|k,| , one

obtains,

2
o‘w

KoK —) (2.34)

G =W +-V+ Q.Q(

wherev is the group velocity. If one further assumes a one-dimensional wave propagation and

considers the envelopg(t) =expiat yp @ t )where ¢ is the spin wave amplitude, we obtain:

.0 2 1 \
[i = a4 4 D](Dq ==Tos|Pppd(a+a,-q,~ql)dgdgdg . (2.35)
ot 2 2

If one then transformthis equation into the time domain and takbs=— Tom, one obtains the
famous NLS equatioas

.6(0 D8(p
[ -N 2.36
[at ] 2l ol o (2.36)

16



2.3.3 Soliton solutions of the nonlinear Schrédinger equation

The NLS equation admits the solution of a solitoa large-amplitude pulse excitation that
can propagate with constant shape and velocity in a nonlinear dispersive syBtersically, a
soliton results from a fine balance between dispersion-caused pulse broadening and

nonlinearity-associated self-narrowing.

The exact soliton solution of the NLS equatisaleterminedy the sign oDN, which is the
product of the dispersion and nonlinearity coefficients. WDBInis negtive, the solution of the
NLS equation is a bright soliton describeg (Xia, kabos, Staudinger, Patton, and Slavin, 1998;

Wu, 2011),

u(zt)=uo sec}{uo\/@(z—vst)} expi (ksz—axt) | (2.37)

whereug is the peak amplitudes is the soliton velocityks is the wavenumber shift, and is the
frequency shift. Note thdt; and ws are additions to the wavenumber and frequency of the
original carrier wave. The soliton velocityis given by

Vs =Vg +ksD (2.38)
where one usually hag[P>kD|. The frequency shitbs is given by

a)szvgks+%Dk52+%Nu§ (2.39)

Figure 3(a) shows the typical shape abright soliton. The soliton considered here is an

envelope soliton. Namely, it is the envelope of the carrier spin wave that shows a soliton
feature. The termk(z-wd) in Equation (2.37) represents the extra phase added to the original
carrier phase of the overall wave packet. One can see form Equation (2.39) that, ah result

DN being negtive, the frequency shift due to the dispersion is compensated by the frequency shift
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due to the nonlinearity. The net result is that the phase change across the center of a bright

soliton is constant.

0.10]
0.08! (a)
0.06
0.04.
0.02.
0.00]

Ampitude (a.u.)
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Time (ns)
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Time (ns)
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Figure 3. (a) Example of a bright solitafin) Example of a black soliton. (c) The phase respons
black soliton.
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In the case oDN is positive, the NLS equation has a dark soliton solution given by

(Lukomskii, 1978),
u(z,t):uo{,/l—m2 +imtan{rmo\/§(z—vst)}} ex%i[ks—,/ }m2u0\/gjz—iwst} (2.40)

where m denotes the depth of the dip relative to the amplitude of the continuous wave
background and is given by
:ug—uz

2 (2.41)

whereug is the amplitude of the background wave anduhgis the wave amplitude at the dip

center.
The frequency shiftx is given by
1 1 N
s :vgks+§ Dk2 +5Nu§(3— m?2)—y1- m2u0\/gvg (2.42)
The shape of a dark soliton is given by

|u(z,t)|:uo\/1— mZSecﬁ{rmoE(z—vst)} (2.43)

The phase of a dark soliton is

$(zt)= arctan{\/l_m_m2 tanErruoE(z—vst)}} (2.44)

It can be seen from the above equationsinet actually a critical parameter. Whew 1, the

amplitude level at the center of a dark soliton goes to zero, and the phase shift at the soliton
center equals exactly to 180n this special case, the soliton is called a black solit@ee Figs.
3(b) and 3(c). Whem s smaller than 1, the amplitude at the soliton center is larger than zero,

and the phase shift is less than ?180In this case, the soliton is termed agay soliton.
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It is important to emphasize that, from the NLS equation model, only bright solitons are
allowed wherDN is negtive and only black solitons are allowed wb&his positive. Therefore,
in the surface spin wave configuration, one will only be able to excite dark solitons because
bright solitons are not allowed due to the fact that for this configuration both the dispersion and
nonlinearity coefficients are negative. For forward and backward volumesylegever, the

two coefficients have opposite signs and caeexcite bright solitons only.

2.4 Excitation and detection of spin waves in magnetic thin films

This section providea brief overview of the experimental method utilized in this thesis for
the excitation and detection of spin waves in magnetic thin films. Specifically, spin-wave

detection using microstrip transducers and inductive probes is discussed.

Microstrip antennas are the most commonly used structures for the excitation and detection
of spin waves. A microstrip antenna typically consists of a narrow metal strip deposited on a
low-loss dielectric substrate. The other side of the dielectric substrate is a continuous metal layer
which serves as the ground plane of the structure. A via is made at the end of the microstrip
element across the dielectric substrate to connect the microstrip to the ground plane. An SMA
(SubMininature version A) connecter is often used for external connection to the microstrip
antenna. Due to the fact that the microstrip element can be easily manufactured in any shape, a

microstrip antenna is one of the most useful antennas at microwave frequencies.

Figure 4 shows the typical configuration of a spin-wave excitation and detection setip base
on a pair of microstrip transducer antennas. The microstrip antennas are placed so that the
microstrip elements are in close contact with the magnetic film surface. The magnetic moments

in the area close tan antenna element can be excited due to the antenna-produced microwave
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magnetic field. The wavenumber limit of the spin waves that a microstrip antenna cansexcite i
determined by the width of the microstrip transducer. For a transducer element with a width of

50 um, the maximum wavenumber is about 1000 rad/cm.

Microwave Oscillo-
Source ! Scope
Pulse Microwave Spectrum
Generator Switch — Analyzer |

Input Transducer Detection
. Transducer
Magnetic
Field

Magnetic YIG Film

Figure 4. A typical spin wave experiment setup consists of an input transducer and a deteci
transducer.

Physically, the power loss of a microstrip transducer consists of the intrinsic loss of the
antenna and the loss due to spin-wave radiation (Dmitriev and Kalinikos, 1988). The complex
resistance of the antenna can be written as,

Z=R+iX=(R+R)+i(Xo+X) (2.45)
wherer, +iXqis the primary parameter of the antenna in the absence of radiation and
Z =R +iX, is the complex resistance due to the spin-wave excitation. The linear radiation
resistance is related to the power of radiabign

Z =12Ruy (2.46)
wherel is the current in the antenna. If there is no spin-wave excitation, thissteeno.
One can also use the microstrip transducer to detect spin-wave signals in magnetic films. The
oscillating magnetic fields produced by spin waves generate an electricalisiiraimicrostrip
antenna, and the intensity of this electric sigag@kroportional to the spin-wave amplitude. The

spin-wave propagation distance is determined by the distance between the excitation and
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Figure 5. Schematic setup of inductive probe system (Wu, Kraemer, Scott, Patton, and Kal
2004).

detection transducers.See Figure 4. One can excite a spin-wave pulse by sending a microwave
pulse into the excitation transducer. The output signal from the detection transducer is usually
sent to a fast oscilloscope for time-domain measurement® epectrum analyzer for

frequency-domain analigs

One can also detect spin-wave signals in magnetic films with an inductive magneto-dynamic
probe (IMP). See Figure 5. Different from the microstrip detection, the IMP detection can be
bothtime- and space-resolved. The probe consists of a small loop attached to the end of a rigid
coaxial line and can be scanned above the surface of magnetic films. The IMP aydtem
CSU Magnetics Laboratory has a spatial resolution of about 50 pm and a temporal resolution of

about 1 ns.
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2.5 Ferromagnetic resonance system

The discussion on the uniform mode in Section 2.1 has not taken into account the damping
of magnetization oscillation. To analyze the effects of the damping, one can add a damping
term to the magnetic torque equation. One of the widely used equations is the Gilbert equation
(Gilbert, 1955),

%'V'=_|y|MXH+MiMx‘L_'\t" (2.47)
S

where « is the damping constant.f bne follows the procedure in Section 2.1 and solve
Equation (2.4y for the magnetic susceptibility with the small precession angle assumption, the

results can be written as

x=x iy
_1lou (0x0§ — y0? + 2 202(wx + vy)) (2.48)
Ar (02 — oxwy)? + o 20 *(oy + 0y )? '
.1 awoy (02 + wfF)
£ = 4r (2 — ogwy)? + o’ ?(ox + oy )?
where @y =|y|Hx and oy =[y|H, . Here  Hy=H-4zMsN,+47MN,  ard

Hx=H-4zMsN, + 4zMsN, .  Notice that the imaginary part of the susceptibility is responsible

for damping (Stancil, 1993).

Ferromagnetic resonance (FMR) measurements are commonly used to determine the
damping parameters of a magnetic material. A typical setup is shown in Figure 6. In tlaé type
measurement, the sample is placed eitliehe end of a shorted waveguide or in a microwave
resonance cavity. Note that the sample should be sufficiemtall so that the microwave field
applied on the sample is spatially uniform. Due to the damping of the magnetic material, the
microwave power will be absorbed. The power absorption can be determined by measuring the

refleced microwave power. Since the sample is very small, the amount of power that is
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Figure 6. A schematic setup of a ferromagnetic resonance system.

albsorbed is also very small. For this reason, it is very difficult (i.e. expensive) to measure the
absorbed power directly. The use of a modulation scheme andrickplifier allows for the
extraction of very small signals in the presence of large noise with relative ease. The quantit
that is to be modulated is the external DC magnetic field. Rather than measuring the absorbed
power, we are in fact measuring the slope of the absorbed power with respect to DC magnetic
field. During the field sweeping, the microwave power absorbed by the sample exlpbak a

when the FMR condition is satisfied. The width of this absorption peak is associated with the

damping constant as discussed below.

From Equation (2.48), one can obtain the field linewidth of the FMR power absorption for a
fixed input microwave frequency. Assuming that the<1, which is generally true, then the

value of y'is maximal at /w0y = oOr at
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2
H =%[—(47TMSNX +4ﬂMSNy)+\/(47rMSNX — 4TMN, P + A[ﬁ] I 4tMsN, (2.49)
y

; 1.
The value of y* equals to - Zmax at

2
H, :%[—(47;MSNX +4ﬂMsNy)+\/(4ﬂMsNx— ATMGN, P + {ﬁ} +%]+ 4MN,
)

- (2.50)
H_ =%[—(47ZMSNX +47zMSNy)+\/(47zMSNX — 4TMNy P + z{ﬁJ —%H 4TM N,
4 4

Thus, the FMR half-magnitude frequency linewidth is given by

AHevr =H, —H_ (2.51)
As a result, the FMR field linewidth is given by,
2a

AHFMR Imw (252)

One can see that, by using Equation (2.52), the damping constant can be evaluated from the
FMR field linewidth. It is important to note that the damping term introduced in Equation (2.47

is only a phenomenological term.
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CHAPTER 3

ELETCTIC CONTROL OF MANGETIZATION RELAXATION

In this chapter the control of magnetization relaxation in ferromagnetic insulators via
interfacial spin scattering is demonstrated. The experiments use nanometer-thick yttrium iron
garnet (YIG)/Pt layered structures, with the Pt layer biased by an electric voltage. The bias
voltage produces a spin current across the Pt thickness. As this current scatters off the YIG
surface, it exerts a torque on the YIG surface spins. This torque can reduce or increase the
damping and thereby compress or broaden the ferromagnetic resonance linewidth of the YIG
film, depending on the field/current configuration. The linewidth vs. current response shows a

threshold effect and nonlinear behavior.

3.1 Introduction to the spin Hall effect

The spin Hall effect was first introducég Hirsch (Hirsch, 1999) and is in analog with the
classical Hall effect. In the classical Hall effect, charge accumulation in the lateral direction
across an electrical conductor is produced when the magnetic field is applied perpendicular to the
electron moving direction. EBwspin Hall effect, however, consists of the accumulation of spins
on the lateral direction of a current carrying sample in the absence of magnetic fiialdsry

strong magnetic field is applied, the spin Hall effect will not take place.

The origin of the spin Hall effect is spin-orbit coupling. Consider, for example, an electron
passing through the adjacent area of a non-magnetic ion. According to the Lorentz

transformation, the electron will experience an effective magnetic field,
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B:—}VXE:—}VX(k—grj (3.1)
c C r

whereE is the electric field produced by the ion,s the velocity of electron, and is the
position vector of the electron relative to the ion. Assuming that the electron has a magnetic

momenty, the spin-orbit coupling energy can be written as,

k -
o (var)-é (3.2)

H =—u-B=

where the unit vectors denotes the direction of the electron’s magnetic moment. For the
configuration in Figure 7, the effective magnetic field direction is pointing upward and out of
plane, with the magnitude larger when closer to the ion. Therefore, for an electron with a
magnetic moment pointing up, the trajectory bends to the left to minimize the spin-orbit coupling
energy. For an electron with a magnetic moment pointing down, the trajectory bends to the
right. It can also be shown that when the ion is on the left side of the electron, the same
conclusion will be drawn. The net effect is that a charge current induces a spin cuaent in
direction transverse to the electron’s initial velocity, and the latter results in the accumulations of
spin-up and spin-down electrons on the opposite edges of the film element. This phenomenon
is the so-called spin Hall effect. Inversely, a spin current can also excite an elacéit i a

direction transverse to itself. This phenomenon is referred to as the inverse spin Hall effect.

Several points need to be made here. First, the diagrams in Figure 7 correspond to a situation
where the width of the film element is on the same order of the spin diffusion leggtiile
the thickness of the film element is significantly smaller than In the case that the width is

significantly larger thamsq and the thickness is on the same ordefsgfone has only a spin
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current along the thickness direction and spin accumulations on the top and bottom surfaces.
Second, strong spin Hall and inverse spin Hall effects only occur in materials with strong

spin-orbit interaction due to the origin of the effects.

¢A¢<M¢
p99¢——f
92999999

Figure 7. Cartoons for the spin Hall effects in a normal metal film element.

3.2 Control of magnetization relaxation

The magnetization in a magnetic material can precess around the direction of a static
magnetic field. Such a magnetization precession can be excited by the applicaion of
external radio-frequency (rf) magnetic field. However, once the rf field is removed, the
magnetization will relax back to its equilibrium direction. This magnetization relaxation can be
due to energy redistribution within the magnetic subsystem, energy transfer out of the magnetic
subsystem to non-magnetic subsystems such as phonons and electrons, or energy transfer out of

the material to external systems (Heinrich and Bland, 2005; Sparks, 1964).
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One can change the rate of the magnetization relaxation of a magnetic material through
controlling the material fabrication processes. However, once the material is made, the
relaxation rate is generally considered to be unchangeable at certain external field. In contrast,
recently two approaches have been demonstrated that can control magnetization relaxations i
magnetic thin films: one makes use of fh@v of spin-polarized electrons through the films,
(Fuchs,et al., 2007; Ralph and Stiles, 2008) and the other takes the advantagenpédtien of
spin-polarized electrons into the films (Andbal., 2008; Liu, Moriyama, Ralph, and Buhrman,
2011). Although both approaches rely on angular momentum transfer between the polarized
conduction electrons and the spins in the films, there exists a substantial difference: the first
approach involves the flows of net charge currents through the film materials, while the second
does not. The demonstration of such relaxation control is of great significance, both
fundamentdy and practicdy. In practical terms, the control of magnetization relaxation is
highly desirable because the magnetization relaxation not only plays a critical role in the
dynamics of spin-based devices but also sets a natural limit to the response time of a device and

determines the magnetization noise.

The two approaches demonstrated so far apptyetallic films only.  This chapter presents
the control of magnetization relaxations in thin film magnetsulators. Specifically, it is
demonstrated that one can control ferromagnetic resonance (FMR) linewidth in thin film
magnetic insulatorsia interfacial spin scattering (ISS). The experiments use nanometer-thick
ferrimagnetic YIG films capped with a nanometer-thick Pt layer. An electric voltagel $&3
applied to the Pt layer that produces a spin current along the Pt thickness direction via the spin
Hall effect (Dyakonov and Perel, 1971; Hirsch, 1999). As the spin current scatters off the surface

of the YIG film, it exerts a torque on the YIG surface spins. Due to the exchange interactions,
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the effect of this torque is extended to other spins across the YIG thickness and, thereby, changes

the FMR response in the whole YIG film.

3.3 Experimental configurationsand parameters

The net effect of the ISS process on the FMR response depends critically on the relative
orientation between (1) the magnetic moments of the electrons in the Pt layer, which move
toward the YIG surface, and (2) the precession axis of the magnetic moments in the YIG film.
When they are anti-parallel, the FMR linewidth is reduced, which indicates a decrease in the
relaxation rate. In contrast, for a parallel configuration, the FMR linewidth is broadened, which
indicates an increase in the relaxation rate. Moreover, the FMR linewidth vs. spin current
response shows a current threshold and nonlinear behavior. It is important to emphasize that, as
the parallel/anti-parallel configuration can be changed simply by reversing the directien of
current or the field, the results demonstrate a simple approach for relaxation control in magnetic

insulators.

Figure 8 shows a schematic of the experimental configuration. The YIG film is
magnetized by an in-plane static magnetic fidld The Pt film is biased by dc voltage V..
This voltage signal leads to a currérdlong +x direction and a flow of electrons along the -
direction, and the latter produces a spin current in the Pt thickness direction via the spin Hall
effect. The spins moving towards the YIG film have their magnetic moments i divection,
while those moving towards the Pt top surface have their moments inytdeeetion. In
Figure 8, these directions are indicated by the short arrows in the Pt layer. The YIG/Pt element

is placed inside a shorted rectangular waveguide, and the latter produces a microwave magnetic
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field h which is in the film plane and perpendicularHo For the discussions below, “+1”

denotes ac current along the x direction; while “-I”” denotes a dc current along thex direction.

Figure 8. Experimental configuration for control of ferromagnetic resonance through ialesfaci
scattering.

The YIG films were deposited with pulsed laser deposition (PLD) techniques. The
deposition used a 1 inch-diameter YIG target and a single-crystal (111) gadolinium gallium
garnet substrate. The tardetsubstrate distance was kept constant at 7 cm. The deposition
was done in high-purity (99.999%) oxygen for several minutes. Prior to the deposition, the
system had a base pressure of 3.4%T6rr. During the deposition, the substrate temperature
was kept constant at 790 °C and the oxygen pressure was 0.1 Torr. Right after the deposition,
the film sample was annealed at the same temperature in the same oxygen atmoasphere for 10
minutes. The cooling of the films was in a 400 Torr oxygen environment at a rate of 2 °C per
minute. The deposition used 248 nm KrF excimer laser pulses with an energy fluence of 1.7
Jicnf, a pulse duration of 30 ns, and a pulse repetition rate of 2 Hz. These laser parameters
together with the target-substrate distance yielded a YIG growth rate of about 1 nm per minute.

After the deposition, each YIG film was capped by a Pt layer with the PLD technique. The Pt
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deposition was done at room temperature with a base pressure of 4Tort@nd other PLD

parameters described above.

For the data presented below, the YIG/Pt element was 4.7 mm long and 3.7 mm wide; and
the thicknesses of the YIG and Pt films were 10.0 nm and 5.6 nm, respectively, as determined by
X-ray reflectivity measurements. Atomic force microscopy measurements indicated that the
YIG film had a surface roughness of about 0.5 nm. Static magnetic measurements yielded a
saturation induction of 1858 G. This value is about 6% larger than that for YIG bulk materials.
Possible reasons for this difference include the error in film thickness determination and small
deviations in chemical composition near YIG film surfaces. All FMR measurements were done
by sweeping the field at a fixed microwave frequency of 11.5 GHz. The measurements used

field modulation and lock-in detection techniques.

3.4 Experimental results
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Figure 9. Ferromagnetic resonance profiles: (a) derivative signal and (b) integratetlyintensi

Figure 9 shows representative FMR profiles measured in the absende afiraent { = 0).

Figure 9(a) shows the power absorption derivative profile. The profile in Figure 9(b) is
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obtained through the integration of the profile in Figuie @ith the field. The “full linewidth

at half maximum” of the profile in Figure 9(b) is the so-called FMR linewidtkH. One can see

that the AH value of the YIG film is much larger than that of YIG single-crystals.
Frequency-dependent FMR measurements indicated that this large value is mainly due to

inhomogeneity-caused line broadening and two magnon scattering. (Kalatickal2008).

In the presence ofdc currentl, the FMR linewidth is

AH, =AH; +AH g +|2—a|)Aa| (3.3)
/4

whereAHg is the FMR linewidth measured for= 0, AHneaiing denotes the change in linewidth

due todc current-produced heating, and the last term describes the 1SS-produced change in
linewidth. In the last term,#¥ 2.8 MHz/Oe is the absolute Gyromagnetic ratio; au
denotes the ISS-caused change in Gilbert constantNote that the Gilbert constant has been
widely used to describe magnetization relaxations (Heinrich and Bland, 2005; Sparks, 1964) and
Equation (3.3) has assumed a Gilbert-like damping for the ISS contribution to the relaxation. It
is important to emphasize that the value\blicaingdepends on the magnitude of theecurrent,

not the direction of the current; while the valueAaf depends on both. One can in fact expect
Aay = -Aa, as discussed below. For this reason, one can simply use the following equation to

describe the ISS-associated damping:

4w/
AH, —AH_, :Z_G)(Aan -Aa )= 60| |0[+I (3.4)

7]
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Figures 10 (a), (b), and (c) showH, —AH_, for the field H along the ¥, +x, and -y
directions, respectively, with each configuration measured ten tinfies. all measurements, the
magnitude of thedc current was 80 mA. One can see in Figu® completely different
AH, —AH_, values for different field configurations. All values in Figure 10(a) are negative
and indicate a negativAa,, for the H||(+y) configuration. In stark contrast, all values in
Figure 10(b) foH||(+x) are small and indicatéa.,~0; and all values in Figure 10(c) fét{|(-y)

are positive and indicatea,,>0.
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Figure 10AH.-AH,, values measured at different times for different field configurations, as indicated.

These results can be interpreted as follows. When spin-polarized electrons scatter off the

YIG surface, they transfer a certain angular momentum to the surface spins in the YIG film

(Takahashi, Saitoh, and Maekawa, 2009)his momentum transfer is realized through the s-

exchange interactions at the Pt/YIG interface. Here, “s” refers to spin-polarized electrons in the

Pt layer and “d” refers to localized electrons on the surface of the YIG film. The interfacial

momentum transfer results in a net torque on the YIG surface spins (&ralg, 2008; Liu,

Moriyama, Ralph, and Buhrman, 2011):

1= Crax6x 1 (3.5)

34



where rhdenotes the magnetic moment direction of the YIG surface sgidenotes the
magnetic moment direction of the spin-polarized electrons in the Pt film which moves toward the
YIG surface, and the coefficie@ is associated with the strength of the spin current and the
properties of the YIG and Pt layers. For tHH(+y) configuration, the precession @ is

A

m
around the ¥ direction and the torque counters the damping of the precession. The net

2

m
effect is a decrease in. For theH||(-y) configuration, in contrast, the precession of is

around they direction and the torqueleads to an additional damping. One can expect that the
changes inx in the two cases have the same magnitude, even though they have opposite signs.
This is because the magnitudewis the same for both configurations. Thus, one can expect
Aay = -Aa, as mentioned above. In the caseélfj{+x), the precession axis is perpendicular to

6, and the average of the torqu®ver each precession period is very small. As a result, the
torque produces negligible effects. It is important to emphasize that, although thettisque
exerted on the surface spins in the YIG film, its effect is extended to other spins across the YIG
film thickness due to exchange interactions. This is possible because the YIG film thickness is

smaller than the exchange length. Indeedimilar behavior has even been demonstrated in

YIG films with a thickness of several microns (Kajiwara, et al., 2010).

The AH.-AH,, values measured at differetit currents are shown in Figure 11(a). Each
point shows the averaged value over 5-10 measurements, and the error bar for each point shows
the corresponding standard deviation. The right axis shows the correspandinglues
evaluated by Equation (3.4). The top axis shows the corresponding spin current densities
obtained byJs = éspJ., where 65y =0.013 was the Pt spin Hall angle aidwas the charge

current density. (Mosendz, et al., 2010)hree important results are evident in Figure 11(a).
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(1) There is a current threshold for the onset of the ISS effect. (2) Above the threshold, the sign
of Aa agrees with the expectation discussed aboy®) Above the threshold, the magnitude of

A« increases nonlinearly with the spin current, with a negative curvature. Similar &8& eff

were observed for other YIG/Pt samples. Figure 11(b) shows data for a YIG/Cu control
sample. Each point shows the averaged value over 5 measurements, and the error bar for each
point shows the corresponding standard deviation. Note that the thickness of the Cu layer is
very close to that of the Pt layer in the YIG/Pt sample. Since the spin Hall effect in Cw is ver
weak (Niimi, et al., 2011), the sample showed no ISS effects. This indicates that the spin

current in the Pt layer is critical for the ISS effects presented.

The Oersted field produced by the dc current in the Pt layer was estimated to be less than 0.2
Oe. This field was significantly smaller than the FMR fields which were about 3200 Oe.
Although the Oersted field did cause a slightly shift in the FMR field, it resulted in negligible
effects inAH since the FMR frequency was kept constant. The observed threshold effects are
rather unexpected. One possible origin is the change of spin accumulations in the Pt layer with
temperature. At low dc currents, the spin diffusion length, which is about 10 nm (Vila, Kimura,
and Otani, 2007), is relatively large in comparison with the Pt thickness and the efficiency in
building spin accumulations near the Pt surfaces is relatively small. Adctloairrent is
increased to a certain level, the current induced heating leads to a decrease in the spin diffusion
length and a corresponding increase in the efficiency of building the spin accumulations

(Jedema, Filip, and Wees, 2001).
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Figure 11. (ahH.-AH, as a function ofic currentl and spin current densitl for the YIG/Pt sampl
The right axis shows the corresponding change in damping comstantb) AH.,-AH., as a function «
dc currentl for a YIG/Cu control sample. The sample is 5.0 mm long and 3.7 mm wide. Ti
film is 6 nm thick and the Cu capping layer is 5 nm thick. The magnetic field is along the +y dit

In summary, this chapter presented the electric control of magnetization relaxation in YIG
thin films via the ISS process. It was found that the ISS effect can play a positive ovenegati

role in the relaxation; and one can control this role by simply changing the strength andrdirecti

37



of thedc current. It was also found that the damping constant vs. spin current response showed
a current threshold and nonlinear behavior. Future work that is of great interest includes the
study of the roles of YIG and Pt thicknesses on the ISS effects and the demonstration of the ISS
effects in other materials. Future study on the origins and features of the observed threshold

and nonlinear effects is also of great interest.
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CHAPTER 4

CONTROL OF SPIN-WAVE AMPLITUDE IN FERRIMAGNETIC INSULATORS

This chapter describes the control of spin waves in a ferrite thin film via interfacial spin
scattering. The experiments used aph6thick YIG film strip with a 20-nm thick Pt capping
layer. A dc current pulse was applied to the Pt layer and produced a spin current adPbss the
thickness. As the spin current scatters off the YIG surface, it can either amplify or attenuate
spin-wave pulses that travel in the YIG strip, depending on the current/field configuration. The

spin scattering also affects the saturation behavior of high-power spin waves.

4.1 Spin wave damping and parametric pumping

Spin waves in ferromagnetic films have many unique properties and thereby have potential
for applications in microwave signal processing (Kabos and Stalmachov, 1994; Stancil and
Prabhakar, 2009; Adanat al., 2002), logic operations (Bancet, al., 2008; Schneidesrt al.,

2008; Khitun, Bao, and Wang, 2010), and insulator-based electrical signal transmissions
(Kajiwara, et al., 2010; Gurevich and Melkov, 1996).These applications, however, are
bottlenecked by the damping of spin waves. Such damping can result from various physical
processes, such as spin-orbit coupling, scattering on defects, and three- and four-wave nonlinear

interactions.
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Figure 12. Experimental setup of parametric pumping of spin wave (Kokdin, 1998).

One way to compensate the spin-wave damping is tparseetric pumping (Gurevich and
Melkov, 1996). Previous experiments have demonstrated that the spin waves in magnetic thin
films could be parametrically amplified (Kolodiet al., 1998; Bagada, Melkov, Serga, and
Slavin, 1997). Figure 12 shows a schematic experiment setup for the parametric pumping of
spin waves. The spin wave travelling in the YIG film loses energy during propagation. In this
setup, the energy lost is compensated by an external microwave source through three-wave
parametric pumping. This method, however, requires the use of (1) an external microwave
signal with a frequency twice that of the spin wave and (2) a delicate microwave resonator
structure for the delivery of this signal to the magnetic film. Moreover, the amplification is
limited to a very narrow frequency range, which is determined by the frequency conditions of the

parametric resonance.

4.2 Amplification of spin wavesthrough interfacial spin scattering

The work described in Chapter 3 demonstrates the control of FMR linewidth through the

interfacial spin scattering (ISS) effect. This chapter presents the results on the amplification of
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spin waves. Experiments use a grf-thick yttrium iron garnet (YIG) film strip with a 20-nm

thick platinum (Pt) capping layer. A dc current pulse is applied to the Pt film and produces a
spin current along the Pt thickness direction via the spin-Hall effect (Dyakonov and Perel, 1971;
Hirsch, 1999; Day, 2005).As the spin current scatters off the surface of the YIG film, it exerts

a torque on the YIG surface spins. Due to the dipolar and exchange interactions, the effect of
this torque is extended to other spins across the YIG thickness and thereby to spin-wave pulses

that travel in the YIG film.

The net effect of the ISS process on spin waves depends critically on the relative orientation
of (1) the magnetic moments of the electrons in the Pt layer which scatter off the YIG surface
and (2) the precession axis of the magnetic moments on the YIG surface. When they are
anti-parallel, the spin-wave damping is reduced and the amplitude of a traveling spin-wave puls
is increased. In contrast, in a parallel configuration, the spin-wave pulse experiences an
enhanced attenuation. The ISS process can also raise or reduce the power level to which
high-power spin-wave pulses saturate due to nonlinear damping (Gurevich and Melkov, 1996;

Scott, Patton, Kostylev, and Kalinikos, 2004).

It is important to emphasize that, as the parallel/anti-parallel configuration can be changed
simply by reversing the direction of the dc current, this work demonstrates a rather simple new
approach for the control of spin waves. One can expect that in the future this ISS effect would
allow for the realization of decay-free spin-wave propagation and the development of a new class
of electronic devices (Kabos and Stalmachov, 1994; Stancil and Prabhakar, 2009; Adam, Dauvis,
Dionne, Schloemann, and Stitzer, 2002; Bagtal., 2008; Schneidegt al., 2008; Khitun, Bao,

and Wang, 2010).
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4.3 Experimental configuration and parameters

Figure 13. Experimental setup for control of spin waves through interfacial spiarsg in
YIG/Pt structure.

Figure 13 shows a schematic of the experimental configuration. The core component is a

long and narrow YIG film strip with its central portion covered by a Pt thin film. The YIG film

is magnetized by an in-plane magnetic field The field is referred as a “positive field” (H>0)

when it is applied along they+direction and a “negative field” (H<0) when it is in they
direction. This film/field configuration supports the propagationswfface spin waves, of

which the amplitude has an exponential distribution along the YIG film thickness. M#ten

the spin wave with a wave vectkralong the % direction has a larger amplitude near the top
surface of the YIG film. WherH<0, the spin wave along thex+direction has a larger

amplitude near the bottom surface of the YIG film. Two microstrip transducers are placed on
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the right and left ends of the YIG strip for the excitation and detection, respectively,spirthe

wave.

A dc voltageV, is applied to the Pt film. A positive voltagé.£0) results in a current flow
along the x direction and a flow of electrons along thedirection. The electrical current
produces a spin current along the Pt thickness direction via the spin Hall effect. \A#¥Ben
the electrons moving towards the YIG film have their magnetic moments +y theection. In
Figure 8, the small spheres in the Pt layer represent electrons, and the arrows through the spheres

indicate the directions) of the electron magnetic moments.

For the data presented below, the YIG strip wasdn6thick, 2.2 mm wide, and 22 mm
long. It was cut from a larger single-crystal (111) YIG film grown on a gadolinium gallium
garnet substrate by liquid phase epitaxy. The Pt film was grown on the YIG strip at room
temperature by pulsed laser deposition (PLD). Based on the PLD parameters, the thickness of
the Pt film was estimated to be about 20 nm. This value matches the estimation based on the
resistance of the Pt element, which was 20.1 nm. For this estimation, a resistjp#g7df
nQ-m was used for the Pt flm. The Pt element had the same width as the YIG strip and a
length of L=3.5 mm. The microstrip transducers were B0 wide and 2.0 mm long. The

transducer separation was held at 5.5 mm, with each transducer 1.0 mm away from the Pt

element.

The signals applied to the excitation transducer were microwave pulses with a width of 50
ns and a repetition period of 10 ms. These signals excited spin-wave pulses in the YIG strip.
The signals applied to the Pt element were dc pulses with a width of 300 ns and the same period

as the microwave pulses. The microwave pulses had a delay of 20 ns relative to the dc pulses.
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These parameters ensure that the spin current was on over the entire propagation time of each

spin-wave pulse.

4.4 Experimental results and discussions

Figure 14 presents the data measuredHe683 Oe. Graph (a) shows the transmission
profile for the transducer-YIG-transducer structure. The dashed line indicates a frequency of
3.636 GHz, which was the carrier frequency of the input microwave pulses for most of the
measurements. Graph (b) shows output signals measured for three different dc pulse voltages
(Va) applied to the Pt layer. The tineO corresponds to the moment when a microwave pulse
enters the excitation transducer. Graph (c) gives the relative change in the peak ofaiteg
output signal as a function . Here, the relative change is defined\8/§)/V,, whereV, is
the peak voltage of the output signal ¥9=0 andV is the peak voltage of the output signal for
V0. For the data in both (b) and (c), the power of the input microwave pulses was set to 0.68
W. Graph (d) shows the peak power of the output pulse as a function of the peak power of the

input microwave pulse for thrag values.

The data in Figure 14 show three important results. The application of a positive voltage to
the Pt element leads to an enhancement in the amplitude of the output signal and an increase in
the power level to which the output pulse saturates. This indicates that\istethe ISS effect
leads to the amplification of the spin wave and plays a role of negative damping. (2) In
contrast, the application of a negative voltage to the Pt element leads to a decrease in both the
amplitude and saturation power level of the output pulse. This indicates that\Wwternhe
ISS effect results in an attenuation in the spin-wave amplitude and plays a role of additional

damping. (3) Over the highest availablgrange, the output signal amplitude Vg.response
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Figure 14. Control of spin waves through interfacial spin scattering. (a¥Mission profile for tt
transducer-YIG-transducer structure. (b) Time-domain output signaldffieredt dc pulse voltag
(Vo) applied to the Pt layer. (c) Relative change in output signal amplitude as iarfusfct,. (d
Output power vs. input power responses for tMeelues, as indicated.

shows almost perfect linear behavior. Besides, the data in (b) also indicates that a “short” pulse
travels slightly faster than a “tall” pulse. This can be explained by the nonlinearity-associated

dependence of the spin-wave group veloargy ¢n amplitude (Slavin and Zaspel, 2002).

These results can be interpreted as follows. When spin-polarized electrons scatter off the
YIG surface, they transfer a certain net angular momentum to the surface spins in the YIG film.
This momentum transfer is realized through #thd exchange interactions at the Pt/YIG

interface. Heres refers to spin-polarized conduction electrons in the Pt layer, @hééers to
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localized electrons on the YIG surface. A theoretical model of this interfacial processenas b

suggested recently (Takahashi, Saitoh, and Maekawa, 2009).

The interfacial momentum transfer results in a net torque on the surface magnetic moments

in the YIG film (Ando,et al., 2008; Liu and Vignale, 2011):

mx 6 x m (4.1)

where m is a unit vector along the magnetic moment direction of the YIG surface gsribe
absolute value of the Gyromagnetic raty,is the saturation magnetization of the YIG filinis

the effective thickness of the YIG surface layer where the spins are involved in the momentum
transfer, andC is a phenomenological coefficient which describes the properties of the PY/YIG
interface such as the spin mixing conductanck.is the density of the spin current in the Pt

layer, which can be written as
‘]s ZHSH ‘]c :(98H H (42)

wherebsy andJ. are the spin Hall angle of and the charge current in the Pt element, respectively.
The torquet is exerted on the surface magnetic moments in the YIG film, but its effect is

extended to other moments across the YIG thickness via dipolar and exchange interactions.

One can write the moment vectaéi asmp+m(t), wheremgis along the precession axis and
is typically considered being static amat) is perpendicular to the precession axis and is
dynamical. The magnitude ah(t) defines the spin-wave amplitude. If one takes the

small-signal approximation, namelym(t)|<<jmo|, one can rewrite Equation (4.1) as
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Figure 15. Relative change in output pulse amplitude as a function of dc pulse apitdigd to th
Pt film for three different field orientations, as indicated.

T = sgnem, 6 -2 m () 4.3)

MS

With this equation, one can qualitatively understand the results shown in Figure 14, as discussed

below.

First, whenV_>0, the vectore is along the-y direction, as shown in Figure 13, and the
torquert is parallel to the momemn(t) and tends to open up the precession cone. As a result,
the spin-wave pulse is amplified and its saturation power level is raised up. Second, when
V<0, ¢ is along the ¥y direction andt is anti-parallel tom(t). The net effect is that the
spin-wave pulse is attenuated and saturates to a lower power level. Third, Equations (2) and (3)

also indicate that| increases with/}|. This explains the behavior shown in Figure 14(c).
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The above interpretation was supported by measurements performed with the dire@ion of
fixed and the direction o, varied. The representative data are given in Figure 15. The
Figure shows\(-Vp)/Vy as a function o¥/,. The open circles show the same data as in Figure
14(c), which were measured fbi=683 Oe. The solid circles show the dataHer-683 Oe.

This “negative field” supports the propagation of spin waves with a wave vector k near the

bottom surface of the YIG film (Kabos and Stalmachov, 1994; Stancil and Prabhakar, 2009).
The squares show the data for a field of 1074 Oe in thdirection. This field orientation
supports the propagation of backward volume spin waves (Kabos and Stalmachov, 1994; Stancil
and Prabhakar, 2009).For the volume wave measurements, the frequency of the input

microwave pulse was 5.036 GHz. All other parameters were the same as cited above.

Three results are evident in Figure 15. (1) A reversal of the field orientation frony the +
direction to the-y direction leads to opposite behavior, and this is true for ¥gth andV,<O0.
This observation agrees with the expectation of Equation (4.3), namely, that arfijpregults
in a switching between the|jm and z||(dm) configurations and a corresponding switching
between the “positive damping” and “negative damping” roles of t. (2) For a field applied
along the length of the YIG strip, the effects\@fon V are insignificant. This agrees with the
prediction of Equation (4.1), namely, that the net effeat isfzero over each precession period
whenmp and ¢ are normal to each other. (3) The ISS effects on the spin waves with larger
amplitude near the bottom surface are weaker than those on the waves with larger amplitude near
on the top surface. This may indicate that the efficiency of transfer of the ISS effects on the

surface spins to other spins decreases with film thickness.
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Turn now to the evaluation of the ISS-produced changes in the decay aatk damping
constantx of the spin waves. One can use the following equation to model the propagation of a

spin-wave pulse(x, t) along an YIG strip
. OuU . 0 : .
|E=[co0+vg(—|&—ko)]u—mu“m]u (4.4)

where ap and ky; are the spin-wave carrier frequency and wavenumber, respectivety.
describes the ISS-produced changeyin It is clear from the above discussion that the sign of
An depends on sgm(-6); and the magnitude af7 increases witht| (and thereby with\f|).

To perform the quantitative calculation®f;, one needs to know the spin mixing conductance at

the YIG/Pt interface and consider the specific spin-wave configuration. For a qualitative

discussion below, one introduces a phenomenological expression

A
An=sgn(no-o)%ﬁ (4.5)
pL

where the coefficient describes the efficiency of the changejadue to the ISS process. One
can use Equation (4.4) to determine the spatial variation of the peak amplitude of th&>pulse
t). AssumingA, and A are the peak amplitudes afx, t) at x=L for V;=0 and Vz0,

respectively, one then obtains

A_A) _ eAr]L/Vg -1

A (4.6)

This ratio equals toM-Vp)/Vo. Thus, one can use the data in Figure 15 and Equation (6) to

estimata 7.
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Figure 16 gives the ISS-produced changeg iend « for the experimental configurations
which are the same as for the data shown in Figure 14 (b) and (c). The left and right axes show
An and Aa, respectively, as a function ak. The estimation ofAa was based on the
assumption that; was close to the decay rate of a uniform mode. The estimation used
2An=Aay(2H+47Ms) (Craik, 1975), withy=2.8 MHz/Oe and #AMs=1750 G (Liu, Moriyama,

Ralph, and Buhrman, 2011)The Js values were obtained with Equation (4.2) a&g=0.076.
The data in Figure 16 clearly show that one can control, either enhance or mitigate, the decay of
a spin wave through the ISS process. Fitting Ahge values with Equation (4.5) yields

2=1.03<10?% m?*Hz/A for theH]||(+y) case and=0.33<10?% m?Hz/A for theH||(-y) case.
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Figure 16. Change in spin-wave decay rate and damping constant as a function of spidensitgnt
the Pt layer.
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In addition to the spin current, the electric current in the Pt layer also produces ohmic
heating and Oersted fields, but both have negligible influences on spin waves for the
configurations in the present work. Figure 17 shows representative data. Graph (a) gives
(V-Vo)/Vp as a function oV, The circles give the same data as in Figure 14(c), for which the
dc pulse width was 300 ns. The crosses give the data measured with a dc pulse width of 900 ns.
One sees an almost perfect agreement between the two sets of data. This indicates that the
heating effect is very weak. Graph (b) gives the relative change of the output amplitude as a
function of a small shift irH. The data were measured #=0. Other parameters are the
same as cited above. #1 Oe field shift range was considered because the estimated value of
the current-produced field was less than 1 Oe. The data in (b) show that the field-induced
amplitude change is less than 2%. This small change probably results from the shift of the
spin-wave dispersion curve with the field (Kabos and Stalmachov, 1994; Stancil and Prabhakar,
2009). The dispersion shift can give rise to a shift of the transmission profile (see Figure 14(a))
along the frequency axis and a corresponding change in transmission loss for a specific spin

wave.
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4.5 Control of spin waveswith large input currents

In the last section, an amplification of a spin wave up to 16% is demonstrated with the help
of a spin current generated in the Pt layer by the spin Hall effect. However, therdl are sti

several open questions remaining to be answered. First of all, is it possible to realize a larger
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amplification beyond 16% by applying larger electrical currents to the Pt layer? Second,
Equations (4.5) and (4.6) implies that the amplification should increase exponentially as the
applied voltage across the Pt layer is increased. Will this be the case? Third, is there any

frequency or wavenumber dependences for the amplification response?

In order to answer these questions, a dc pulse generator with the maximum output voltage of
150 V is used to apply dc voltages across the Pt layer. Special attention need to be paid in the
case where large bias voltages are applied. First, due to large input voltages, the ohimic heating
effect may be very significant. In order to minimize the heating effect, short dcevpitdges
with low repletion rates were used. More discussions on this concern are given in the end of
this section. Second, the magnetic fields generated by large currents may shift the spin-wave
transmission band significantly. To take into account the magnetic field effect and at the same
time avoid any heating in the sample, the spin-wave amplitude frequency characteristic (AFC) in
the presence of a dc voltage on the Pt layer was measured in the pulse region. Herel the signa
to the transducer is a microwave pulse with a duration of 1 us, and the signal applied on the Pt
film is a dc voltage pulse which has the same duration as and is synchronized with the
microwave pulse. The spin-wave pulse signal is detected by the output transducer and
monitored with a fast oscilloscope. The frequency of the input microwave pulse is swept over a
certain range in order to map the spin-wave AFC. The transmission coefficient is measured as

a function of the input microwave frequency. Here the transmission coefficient is defined as,

VO
S, =20log v

ut

(4.6)

n
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where \, and \,, are the voltage amplitudes of the input and output microwave pulses,

respectively. Figure 18 shows the measurement configurations.

Signal to Pt: V,(t)

1,

Signal to input transducer: V;, (1)

Output signal: V,(t)

VAR -

Figure 18. Schematic of spin-wave amplitude frequency characteristic (AFC) meas
configurations.

For the data presented below, the YIG film strip had a length of 16 mm, a width of 1.6 mm,
and a thickness of about 5 um. The Pt layer was grown on the top of the YIG film by the PLD
technique and was 18 nm thick. The resistance between the two ends of the Pt strip was 112
Ohm. The separation between the input and output transducers was about 9 mm. The input
microwave pulse power was kept constant at 15 dBm.  This input power level was chosen to
insure that the output signals were sufficiently strong for detection, while at thetigzartae

nonlinear damping was not involved.
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Figure 19. Transmission profile for the structure shown in Figure 18. The circles show tihate
for a dc pulse voltage of 63.3 V applied to the Pt layer. The red curve shows assansprofile afte
smoothing the raw data.

Figure 19 gives a representative transmission profile measured with the method described
above. The circles in the Figure show the raw data which were taken with a dc voltage pulse of
63.3 V applied to the Pt layer. The frequency is swept with a step of 1 MHz and a range of 200
MHz. As can be seen from the Figure, the noise level of the raw data is relatively high. In order
to obtain useful information for further analysis, a smoothing of the raw data is carried out
sequentially in each 20 MHz span. The transmission result after the smoothing is shown as the

red curve in the Figure.

Figure 20 shows the transmission profiles (after smoothing) obtained with three different dc
pulse voltages applied across the Pt layer. Here the red curve shows the transmission profile
obtained for a positive applied voltage of 63.3V, the blue curve shows the transmission profile in

the absence of dc pulses, and the green curve shows the profile for a negative applied voltage
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For all the curves shown in the Figure, the data were taken with the same input microwave power

and the same external magnetic field.

Several important points can be made about the data shown in Figure 20. First, it can be
seen that, with positive dc pulses applied, the transmission profile has higher amplitude
compared to the one obtained in the absence of dc pulses. This “higher amplitude” indicates
that the application of the dc pulses gives rise to the amplification of the spin-wave signal and a
corresponding increase in the output signal amplitude. On the other hand, with negative dc
pulses applied, the transmission profile has lower amplitude compared to the one measured in the
absence of dc pulses. This “lower amplitude” behavior indicates a decrease in the output signal
amplitude or the attenuation of the spin-wave signal in the presence of negative dc pulses.
Second, the transmission band is shifted to low frequencies in the presence of positive dc pulses
and is shifted to high frequencies in the presence of negative dc pulses. This shifting of the
transmission band is a direct result of the dc pulse-produced magnetic field. Finally, it is worth
to mention that, although not shown here, the transmission profile measured in the absence of dc
pulses matches very well with the transmission response of the structure measured by a vector

network analyzer.
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Figure20. Transmission profiles (after smoothing) obtained for three differeragedtapplied to tl
Pt layer.

In order to quantitatively evaluate the amplification as a function of frequency or
wavenumber, the magnetic field-caused frequency shift of the transmission band needs to be
corrected. The corrections were carried out with three steps as follows. (1) The magnitude of
the magnetic field produced by the electric current in the Pt layer was estimated. (2) The
corresponding change in the spin-wave frequency was calculated by using the dispersion relation
of magneto-static surface waves (see Equation (2.19)). (3) The obtained frequency change was

then used to correct the frequencies of the measured transmission profile.

Figure 21 gives the data that show the above-described corrections. Graph (a) shows a
series of transmission profiles measured for different input dc pulse voltage levels. Here the
voltage is increased from 0 V to 132.4 V with a step of about 30ItMs evident that, with an
increase in the pulse voltage, the transmission band not only show a higher amplitude, but also

shifts to the left. As discussed above, the “higher amplitude” is due to the ISS-produced
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spinwave amplification, while the “left-shift” results from the electric current-produced

magnetic field. Graph (b) shows the transmission profiles after the corrections. One can see
that, after the corrections, all the transmission profiles are located in the same frequency range.
Also, the weak dips in the different profiles occur at the same frequencies. These dips may

result from the partial pinning of the spins on the YIG film surface.

251 (a) 132.4 V
304 ——99.6V

Transmission (dB)

3.55 3.60 3.65
Frequency (GHz)

257 (b) 132.4 V
——99.6 V

Transmission (dB)

3.55 3.60 3.65
Frequency (GHz)

Figure 21. (a) Transmission profiles measured with a series of graduallyseatrda pulse voltag
(b) Transmission profiles with the magnetic field-caused frequency shifting eotrect
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The amplification as a function of frequency can now be determined by subtracting the
corrected transmission data for a certain applied voltage from the transmission data obtained in
the absence of dc pulses. Figure 22 shows representative data on the amplification vs.
frequency response. The Figure shows four responses obtained for different dc pulse voltages,
as indicated. Figure 23 shows the amplification as a function of the dc pulse voltage for two

different frequencies, as indicated.

10 4

132.4 V

Amplification (dB)

3.55 3.60 3.65
Frquency (GHz)

Figure 22. Amplification as a function of frequency obtained for four different dc polisges.

Three important results can be seen from the data in Figs. 22 and 23. First, significant
amplifications were observed for large dc pulse voltages. At an applied voltage of 130 V, for
example, the maximal amplification is about 10 dB, which corresponds to a 200% increase in
spin-wave amplitude. Second, the amplification as a function of the applied voltage shows
nearly linear behavior. This linear behavior is unexpected since Equations (4.5) and (4.6)

indicate an exponential increase in amplification with the applied voltage. Third, the

59



amplification is indeed frequency- or wavenumber-dependent.  Although the physical
mechanisms for this dependence is not clear, additional experiments indicate that the dependence
is not a nonlinear effect, is not associated with the group velocity property, and does not result

from the ohm heating effect, as discussed below.
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Figure 23. The change of output amplitude as a function of DC pulse voltage.

Figure 24 shows the transmission profiles measured with three different input microwave
power levels, as indicated. The upper graph shows the data taken for a dc pulse voltage of 46.2
V, and the lower graph shows the data for a dc pulse voltage of 99.6V. For both graphs, the
change in the transmission profile with the input microwave power is insignificant. This
indicates that there are no nonlinear effects in the experiments with an input power of 15 dBm or
lower. The small changes at the edges of the transmission band is most likely due to the fact

that the instrument sensitivity is low for weak transmissions at low input microwave power
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levels. Note that the data in Figs. 22 and 23 were obtained with an input power level of 5 dBm.

Thus, one can see that the above-described frequency dependence is not a nonlinear effect.
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Figure 24. Transmission profiles measured with different input microwave powes, lagahdicate
The upper and lower graphs give the data obtained for different dc pulse voltages, as indicated

Figure 25 shows the relative phase change as a function of the input microwave frequency
measured for the same structure in the absence of dc pulses. The slope of this phase-frequency
response is inversely proportional to the group velocity of the spin wave in the YIG film. It can

be seen from the data in Figure 25 that the phase-frequency response shows nearly linear
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Figure 25. Change of spin-wave phase as a function of frequency for therstskaiwn in Figure 1
No dc pulses were applied to the Pt layer.

behavior. This behavior indicates that the group velocity is almost constant in the frequency
range where the experiments were conducted. Therefore, the above-described
frequency-dependent amplification is not due to the variation of the spin-wave group velocity

with the frequency.

The heating effect was examined by measuring the transmission responses at two different
input microwave durations. If there exists a heating effect, the frequency of the tramsmissi
band should shift as one varies the microwave pulse duration. This expectation results from
two facts: (1) The longer the microwave pulse is, the stronger the heating effect; and (2) the
heating can lead to a decrease in the saturation magnetization, and the latter gives rise to a
decrease in the spin-wave frequency. Figure 26 shows representative data on the effects of

microwave pulse duration. It is evident that there is almost no change in the transmission
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Figure 26. Transmission profiles measured at two different input microwave pulagomsyr a
indicated.

profile when the input microwave duration is changed from 1us to 4us. This indicates that the

frequency dependence presented above is not a heating effect.

In summary, the control of spin waves propagating in ferrimagnetic insulator films through
the ISS effect was demonstrated for the first time. The experiment utilized a YIG thin film strip
with an ultrathin Pt capping layer. It was found that one can control the amplitude and
saturation behavior of a spin-wave pulse simply through the application of a dc pulse to the Pt
layer. Future work that is of great interest includes the realization of decay-free spin-wave
propagation via the ISS effect, the development of an appropriate theoretical model for the
above-presented effects, and the demonstration of control of propagating spin waves in metallic

films via interfacial spin penetration.
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CHAPTER S

CHAOTIC SPIN-WAVE SOLITONSIN MAGNETIC FILM FEEDBACK RINGS

The work described in Chapters 3 and 4 was mainly on linear spin waves. In congast, thi
chapter and the following two chapters concerns nonlinear spin waves. In this chapter, the first
observation of chaotic bright solitons in magnetic film active feedback rings is reported. At
some ring gain level, one observes the self-generation of spin-wave bright soliton pulses in the
ring. When the pulse circulates in the ring, its amplitude varies chaotically with time.
Numerical simulations based on a gain-loss nonlinear Schrodinger equation reproduce the
observed chaotic responses. Chapters 6 and 7 present results on dark solitons in magnetic film

strips.

5.1 Introduction to chaotic spin-wave solitons

If one amplifies the output signal from a dissipative transmission line and then feeds it back
to the input of the line, one creates an active feedback ring systenriven damped system.
In the steady state of this system, the energy loss of the wave in the dissipative line is
compensated by the energy gain provided by the amplifier. Examples of this type of ring
system include fiber ring lasers (Luo, Tee, and Chu, 1998; Zhao, Tang, and Liu, 2006;
Soto-Crespo and Akhmediev, 2004), magnetic film feedback rings (Wu, Kalinikos, and Patton,
2005; Wu, Kalinikos, Carr, and Patton, 2006; Demidov and Kovshikov, 1998; Demoktitby,
2003), and electromagnetic transmission line oscillators (Ham, Li, and Ricketts, 2006; Ricketts,
Li, nad Ham, 2006). These systems are excellent test beds for studies of nonlinear dymmics a
therefore, have attracted considerable research interest. The two main focus areas are (1)

envelope solitons and (2)chaos. For (1), the main work has been on the demonstration of
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envelope solitons in a wide variety of ring configurations (Zhao, Tang, and Liu, 2006; Wu,
Kalinikos, Carr, and Patton, 2006; Ricketts, Li, and Ham, 2006; Soto-Crespo and Akhmediev,
2004; Demokritov,et al., 2003). For (2), the main focus has been on the use of various
configurations to demonstrate chaotic excitations through different nonlinear processes (Luo,
Tee, and Chu, 1998; Soto-Crespo and Akhmediev, 2004; Zhao, Tang, and Liu, 2006; Demidov
and Kovshikov, 1998; Wu, Kalinikos, and Patton, 2005; Ricketts, Li, and Ham, 2006; Ham, Li,
and Ricketts, 2006) and the development of new models to describe chaotic excitations in certain
ring systems (Luo, Tee, and Chu, 1998; Zhao, Tang, and Liu, 2006; Soto-Crespo and Akhmediev,

2004).

Recent theoretical work showed that the active feedback system could also shauart
solitons.  Specifically, Soto-Crespet al. (Soto-Crespo and Akhmediev, 2005), Zhsioal.
(Zhao, Tang, and Liu, 2006), and Kasrtral. (Karar, Smy, and Steele, 2008) reported optical
envelope solitons that circulated in fiber feedback rings and had their amplitudes varying with
time in a chaotic manner. This discovery opened a completely new paradigm in the field of
nonlinear science. This is because solitons and chaos are usually considered to exist in opposite
physical regimes and present two totally unconnected aspects of nonlinear dynamics (Ablowitz
and Segur, Solitons and the Inverse Scattering Transform, 1985; Kivshar and Agrawal, 2003;
Addison, 1997). In spite of the significance of this result, however, the experimental
demonstration of such chaotic solitons has been rather limited. The only demonstration so far
was done by Zhaet al. for optical soliton pulses in fiber feedback rings (Zhao, Tang, and Liu,
2006); however, neither the solitonic nature of the pulses nor the chaotic nature of their behavior

was confirmed.

65



This chapter reports on the first experimental demonstration and modeling of chaotic
spin-wave solitons in magnetic film active feedback rings. As the ring gain is increased to a
certain threshold level, one observes the self-generation of spin-wave envelope solitons that
circulates in the ring with constant amplitude. With a further increase in the ring gain, this
soliton pulse develops into a chaotic soliton - a soliton whose amplitude changes chaotically with
time. The pulse has a hyperbolic secant shape and a flat phase profile across its width, which
are the signatures of a soliton. The overall time-domain signal resulting from the circulation of
the pulse shows a finite correlation dimension and a positive Lyapunov exponent, both of which
are signature of chaos. Numerical simulations, based on a gain-loss nonlinear Schrodinger
equation (GLNLS), reproduced the observed responses. At relatively low ring gain levels, there

IS even a quantitative agreement between the numerical and experimental results.

It is important to emphasize that, although these results were obtained for a magnetic film
feedback ring, the work has implications for other driven damped nonlinear systems, including
optical fiber rings (Luo, Tee, and Chu, 1998; Soto-Crespo and Akhmediev, 2004; Zhao, Tang,
and Liu, 2006) and electromagnetic transmission line oscillators (Ricketts, Li, and Ham, 2006;
Ham, Li, and Ricketts, 2006). It is also important to highlight that this work demonstrates a
new type of chaotic microwave pulse generator. Chaotic microwave sources aggdlycritic
needed by chaotic radar (Liu, Zhu, Hu, and Jiang, 2007; Dimitriev, Kyarginskii, Panas, Puzikov,

and Starkov, 2003) and chaotic communications.

5.2 Magneticfilm active feedback rings

Figure 27 shows a schematic diagram of a magnetic film feedback ring. The ring consists

of a YIG thin film strip and two microstrip transducers placed over the YIG strip to excite and
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detect spin waves (Dimitriev, Kyarginskii, Panas, Puzikov, and Starkov, 200B& output

signal from the detection transducer was fed back to the excitation transducer through a
microwave amplifier and an adjustable microwave attenuator. The YIG strip was magnetized
by a static magnetic field applied parallel to the YIG strip length. This film-field configuration
supports the propagation of backward volume spin waves along the YIG strip and, at the same
time, prohibits three-wave processes (Chen, Tsankov, Nash, and Patton, 1994; Stancil, 1993).
The ring signal was sampled through a directional coupler, with feeds to a spectrum analyzer for
frequency analysis and an oscilloscope for temporal signal measurements. For the data
presented below, the YIG strip was pu@ thick, 2.1 mm wide, and 52 mm long. The magnetic
field was 938 Oe. The microstrip transducers wergrB@vide and 2 mm long elements. The
transducer separation was held at 5.5 mm. The microwave amplifier had a peak output power

of 2 W and a linear response over the frequency range of 1-8 GHz.

<]

Amplifier

Input H Output

| E———

Magnetic film

Figure 27. Schematic of a magnetic film strip-based active feedback ring.

The feedback ring can have a number of resonance eigenmodes that exhibit low decay rates
(Wu, Kalinikos, Carr, and Patton, 2006). The frequencies of these modes can be deteggmined b

the phase conditiok( w)|+¢@=2rn, wherek is the spin-wave wavenumbey,is the frequency,is
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the transducer separatiof, is the phase shift introduced by the electronic circuits,naisdan
integer. At a low ring gairs, all eigenmodes experience an overall net loss, and there is no
spontaneous signal in the ring. If the ring gain is increased to a certain level, here @ken as

0, the eigenmode with the lowest decay rate will start to self-generate in the ring. As a result, in
the time domain one will obtain a continuous wave response. A further incre@deads to

the excitation of additional modes and a comb-like frequency spectrum, which, in the time
domain, corresponds to a spin-wave soliton that circulates in the ring; and then to the broadening
of each mode in the frequency spectrum, which, in the time domain, corresponds to the
realization of chaotic solitons as reported below. Here, both the excitation of new modes and
the mode broadening are realized through four-wave interactions. At even higher gain levels,
one obtains the circulation of two or more spin-wave pulses in the ring. Note that the first
demonstration of solitons in magnetic film feedback rings was carried out by Kaligtilabs
(Kalinikos, Kovshikov, and Patton, 1997). That demonstration also used the backward volume
spin-wave configuration, but the solitons were excited by the use of external microwave pulses

and appropriate interruption to the ring.

5.3 Experimental observation of chaotic solitons

Figure 28 shows representative power spectra for ring signals obtained at different ring
gains. In each panel, the bottom diagram shows the full spectrum, and the top diagrams present
x32 expanded views for the three main peaks in the bottom diagram. All diagrams have the
same vertical power scale. The three top diagrams for the same main peak also have the same

frequency scale. The peak widths in all the diagrams are instrument limited.
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Figure 28. Spectra for ring signals obtained at different ring gain levels, as indicated.

The data in Figure 28 demonstrate three results. (1) On a large frequency scale, as shown
in all the bottom diagrams, the power spectrum has a comb-like structure. With an increase in
G, this comb spectrum remains the same, except that there is a weak growth in mode intensity.
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(2) On a smaller frequency scale, each mode consists of a narrow single p&si fordB.

With an increase G, one observes the excitation of new sideband peaks near the initial single
peak, as shown in the top diagrams in (b), and then the wash out of those modes and the
realization of broad spectra, as shown in the top diagrams in (c). (3) There is a slight shift of
the modes to lower frequencies. This shift agrees with the fact that backward volume spin

waves have a negative nonlinearity coefficient. (Chen, Tsankov, Nash, and Patton, 1994)
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Figure 29. Time-domain signal obtainedGat2.5 dB: (a)-(c) power profiles; (d)-(e) carrier waves.
(c), the circles show the actual data and the curve shows a hyperbolic sactionffit. The curves
(d) show the relative phase profiles of the corresponding pulses.

The time-domain signal obtained @2.0 dB consists of a uniform train of pulses. This
signal corresponds to the clean comb spectrum in Figure 28(a) and results from the continuous
circulation of a single spin-wave soliton in the ring (Wu, Kalinikos, Carr, and Patton, 2006).
With an increase i to 2.25 dB, the train becomes chaetithe amplitude of the pulse varies
chaotically with time. This corresponds to the excitation of new side modes shown in Figure

28(b) and is the onset of chaos. With a further increasg ione observes stronger chaotic

behavior.
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Figure 29 shows the time-domain signal obtaine@=2.5 dB. Graphs (a) and (b) show
the power profile of the signal in different time and power scales. Graph (c) shows one pulse in
(a) in an expanded time scale. The circles are data, and the curve is a fit tdballtypecant
squared function. Graph (d) shows the carrier waves (left axis) and phase profiles (right axis)
for four pulses. Each phase profile shows the phase of the carrier wave relative to a reference
continuous wave whose frequency was given by the main frequency of the carrier wave of the

pulse. Graph (e) shows the carrier wave of one pulse in (d) in an expanded time scale.

The data in Figure 29(a)-(b) show a train of chaotic pulses. This train corresponds to the
circulation of a single spin-wave soliton pulse whose amplitude changes chaotically with time.
The data in (c) shows a perfect hyperbolic secant function fit. The data in (d) show flat phase
profiles across the central portions of the pulses. These results clearly confirm the solitonic
nature of the pulses. The waveform in (e) and the clean phase profiles in (d) show that, in spite
of the chaotic variation in amplitude, the soliton has a coherent carrier wave as a conventional

soliton.

Figure 30 shows representative data that confirm the chaotic nature of the time-domain
signals.  Graph (a) shows a 3D attractor. Graph (b) shows plots of correlatioG gsm
probing distance for embedding dimensioms=2-20. Graphs (c) and (d) show the correlation
dimension and maximal Lyapunov exponent, respectively, as a functimn ofhe squares in
(c) are for theG=2.25 dB signal. All other data in Figure 30 are for@w.5 dB signal. The
approaches for attractor construction and correlation sum calculation are the same as in (Wu,
Hagerstrom, Eykholt, Kondrashov, and Kalinikos, 2009). The calculation of the maximal
Lyapunov exponents involved the following steps: (Rosenstein, Collins, and De Luca, 1993) (1)

construction of the attractor; (2) identification of the nearest neighbor point to each of the points
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Figure 30. Chaotic characterization of time-domain ring signals.
on the attractor; (3) examination on how these points separate as time increases; (4) average of
the logs of the separations for a given time; (5) plotting of the average as a function of time; and
(6) determination of the slope of the linear region in the plot. The obtained slopes were taken to

be the maximal Lyapunov exponent [].

The attractor in Figur80(a) is smooth and has a visible structure. The correlation plots in
(b) all show a linear regime, in which the slopes of the plots yield the dimension data shown in
(c). The data in (c) clearly demonstrate saturation behavior and indicate a fractal dimension of
about 1.27 for th&5=2.25 dB signal and a higher dimension of about 3.83 foiGh2.5 dB
signal. The response in (d) shows a saturatiohaifabout 1.9x10s. These results clearly

confirm the chaotic nature of the measured signals. Note that the anomalously negative value
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of A for m=3 is due to the fact that the embedding dimensios less than the fractal dimension

of the attractor.
5.4 Numerical ssmulations of chaotic solitons

The above-described responses were reproduced by numerical modeling. The modeling
was carried out in collaboration with Professor Lincoln Carr’s group in Colorado School of
Mines. The results described in this section were mainly obtained by Mr. Justin Anderson from

the Carts group.

Numerical modeling was performed with the following GLNLS equation:

2

M —%%HLHN +iC)|u* +(S+iQ)|u|* |u, (5.1)
X

ot
whereu is a unitless spin-wave amplitud2,is the dispersior\l andS are the cubic and quintic
nonlinearity, respectively,is the ‘temporal’ evolution coordinate, X is the ‘spatial’ coordinate of
propagation boosted to the group velocity of the envelopel.a@dandQ are the linear, cubic,
and quintic gains (if positive) or losses (if negative), respectively. Note that similar equations
have been used to model exciton-polariton Bose-Einstein condensates (Amo, et al., 2009) and

mode-locked lasers (Ablowitz and Horikis, 2009).

The measurements indicate that nonlinearity and dispersion are the dominant sources of
envelope shaping for spin waves and that the losses present in the ring are fully compensated by
the amplifier. This imposed two constraints on modeling. (1) The coeffidieatslD must
be orders of magnitude larger thianC, andQ. (2) The linear amplifier must compensate both

the linear and nonlinear losses present in the film, requiring a net averaged linedr>@ain (
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The dissipative terms represent the net gain and loss processes occurring in the ring averaged
over several round trip times. One expects the use of this approximation to be valid when the
time scale of envelope modulation is greater than the soliton round trip time. This condition is

met by all ring gains in this work.

Simulations were performed using adaptive time-step Ring@a-for ‘temporal” evolution
and pseudospectral techniques for ‘spatial’ propagation. Periodic boundary conditions
mimicked the propagation of a single soliton around the ring. Experimentally me&saret
N values were used to generate a stable soliton train which then numerically propagated in the
YIG strip with higher order nonlinearity. The cubic dissipation represented nonlinear loss
processesd<0). Q>0 was used to saturate the nonlinear loss. All simulations were run with
max(ju f )< 1and the quintic nonlinearity was evaluated separately as a higher order nonlinearity
(S < 0) and as a high-power saturation of cubic nonlineasy>(0). Finite correlation
dimensions were observed numerically only $o¥ 0. The amplitude of envelope modulation
was seen to vary with the magnitudeSpivhile increases in gain quickly destroyed the solitonic

nature of the pulse.
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Figure 31 illustrates typical simulation data. The left and right columns show data for
chaotic solitons with amplitude variations of 2.0% and 5.1%, respectively. These two variation
levels are chosen because they match the experimental variations@G{2l2% dB andG=2.5
dB signals, respectively. The simulation used the following paraméters9.0x10 rad/s,D
= 4.5x16 cnrad/s,L = 5.9x10 rad/s,C = -5.9x10 rad/s, and) = 5.9x10 rad/s. The value of
Swas taken as 6.0x1@ad/s for the data with 2.0% variation and 12.05>#0/s for the data with
5.1% variation. The top and middle rows give power profiles in different time scales, which
show trains of chaotic solitons just like those in Figure 105 (a)-(c). The two graphs in the
bottom row show the correlation dimension dat@he left one indicates a fractal dimension of
about 1.26, which closely matches that of &e2.25 dB signal. The right one indicates a
dimension of about 1.66, which is lower than that of@.5 dB signal. One can see that the
simulations reproduced measured responses in terms of the amplitude variation and qualitative

structure for all gains. The correlation dimensions were reproduced only at low gains. The
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Figure 31. Simulation results for chaotic spin-wave solitons.
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lack of a quantitative agreement for the high dimensional chaos suggests that the periodic nature
of the active feedback is not negligible and the use of averaged gain parameters is not
appropriate folG>2.25dB. Preliminary studies of an iterative GLNLS model for the feedback

ring indicate promise for high gain descriptions without the use of a saturated nonlinearity.

In summary, this chapter reports on the experimental observation of a spin-wave soliton that
circulates in a magnetic film feedback ring with chaotically varying amplitude. The observed
responses were reproduced by numerical simulations. There are two additional points of note.
(1) There is a recent work on the propagation of a chaotic train of soliton-like spin-wave pulses
in a YIG element (Ustinovet al., 2011). Two significant differences exist between that
previous work and the present work. First, different nonlinear systems were used. The YIG
element in (Ustinov, Demidov, Kondrashov, Kalinikos, and Demokritov, 2011) represents a
dissipative system, rather than the driven ring system considered in the present work and in the
theoretical prediction of chaotic solitons (Soto-Crespo and Akhmediev, 2005; Karar, Smy, and
Steele, 2008; Zhao, Tang, and Liu, 2006%econd, the nonlinear objects observed are different.

In that work, the soliton-like pulses have their amplitudes differing chaotically from one to
another, and it is unknown whether the amplitude of each pulse changes chaotically.  In stark
contrast, the present work involves a single soliton only. This soliton circulates in the ring with
its amplitude changing chaotically from one round trip to another. (2) The present work was
realized in a regime where three-wave interactions were prohibited. Recent work has shown
that soliton-like pulses with a chaotic phase modulation can develop in a regime where both

three- and four-wave processes are allowed (Beginin, Grishin, and Sharaevsky, 2008).
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CHAPTER 6

OBSERVATION OF SPIN-WAVE DARK SOLITON PAIRSIN YTTRIUM IRON

GARNET THIN FILMS

The formation of a pair of dark solitons from a single nonlinear black spin-wave pulse was
observed for the first time. The experiments were carried out with a long and narrow magnetic
yttrium iron garnet film strip in a surface-spin-wave configuration. The black spin-wave pulses
were excited by the use of microwave black pulsésrgeamplitude microwaves with narrow
square-like dips. Pairs of black solitons were observed in certain input power and input black
pulse width ranges. For each pair, the two solitons show oppogsitase jumps and an overall
phase change of zero. Beyond those power and width ranges, one also observed pairs of gray
solitons that also showed opposite phase jumps and a zero total phase change. The formation of
a single black soliton was also observed, but only for an input black pulse that was very narrow.
The experimental observations were re-produced by numerical simulations based on the complex

Ginzburg-Landau equation.

6.1 Introduction

Due to dispersion, a narrow dip on a continuous wave broadens as the wave propagates. |If
the wave amplitude is large, the dip broadening can be further enhanced by the nonlinearity.
This is true for waves that have an attractive nonlinearity. For waves with a repulsive
nonlinearity, however, the nonlinearity can give rise to a self-narrowing effect which cah canc
the dispersion-produced broadening of the dip. When a fine balance is achieved between the
two effects, the dip on the continuous wave can evolve into a stable localized exeitation

envelope dark soliton. (Hasegawa & Kodama, 1995; Kivshar & Luther-Davies, 1998;
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Remoissenet, 1999; Slavin & Zaspel, 2002; Sulem & Sulem, 199B¢re are two types of dark
solitons, black and gray. When the dip amplitude at the soliton center goes to zero, one has a
black soliton. When the amplitude at the dip is nonzero, one has a gray soliton. Both the
black and gray solitons have a jump in the carrier wave phase at their centers. For black
solitons, such a phase jump is exactly equal to m. For gray solitons, the jump is between 0 and

T.

From a physical point of view, a straightforward way to excite a dark envelope soliton is to
use a dark input pulse a narrow dip in the amplitude or intensity of a continuous wave
background. This approach has indeed been previously used to excite black envelope solitons,
for example, for surface spin waves in magnetic yttrium iron garnet (YIG) thin film strips (Chen,
Tsankov, Nash, & Patton, 1993) and for lasers in photorefractive crystals (Chen, Mitchell, &
Segev, 1996). Theoretically, however, an initial dark signal should not evolve into a single
dark soliton. Rather, it should develop into a pair of dark solitons that have opposite phase
jumps and an overall phase change of zero. (Blow & Doran, 1985; Slavin, Kivshar, Ostrovskaya,
& Benner, 1999; Chen, Segev, Singh, Coskun, & Christodoulides, 1997; Zhang, Lu, Guo, Li, &
Liu, 2012) This phase condition is needed because of symmetry conservation, namely, that the
initial experimental signal has no phase difference across the dark region, and the
zero-phase-change property should be conserved. (Blow & Doran, 1B8pgrimentally, the
formation of such a dark soliton pair from a single dark input signal has been observed not only
for temporal solitons in optical fibers, (Krokel, Halas, Giuliani, & Grischkowsky, 1988; Weiner,
et al., 1988) but also for spatial optical solitons in Kerr-like media, (Luther-Davies & Yang, 1992)

photovoltaic media, (Taya, Bashaw, Fejer, Segev, & Valley, 1996) and photorefractive crystals,
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(Chen, Mitchell, & Segev, 1996) but the phase signature of the solitons, namely, opposite phase

jumps, has never been demonstrated so far.

6.2 Experiment setup and parameters

This chapter reports the first unambiguous experimental evidence for opposite phase jumps
of dark soliton pairs. The experiments were carried out with a YIG film strip in a
surface-spin-wave configuratigdabos & Stalmachov, 1994; Stancil & Prabhakar, 2009) and
used as an input signal a single black spin-wave pulse with no phase change. A pair of black
solitons with opposite phase jumps was observed in certain input power and input pulse width
ranges. Beyond those ranges, one also observed pairs of gray solitons that also showed
opposite phase jumps and an overall phase change of zero. The formation of a single black
soliton from a dark pulse, similar to that reported previously, (Chen, Tsankov, Nash, & Patton,
1993) was also observed, but only for an initial black pulse that was very narrow. The
experimental results were supported by numerical simulations which made use of the complex
Ginzburg-Landau equation (Kovalev & Kosevich, 1976; Barashenkov & Makhankov, 1988) and

the experimental parameters.

Figure 32(a) showa schematic diagram of the experimental setup. The core components
include a long and narrow YIG thin film strip and two microstrip line transducers placed on the
top the YIG strip for the excitation and detection of spin waves. The YIG film strip is
magnetized to saturation by an external magnetic field which is applied in the plane and
perpendicular to the length of the YIG film strip. This film/field configuration supports the
propagation of surface spin wavg&abos & Stalmachov, 1994; Stancil & Prabhakar, 2009)

which show a repulsive nonlinearity. (Sulem & Sulem, 1999; Wu M. , 2011) The microwave
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switch is fed by a continuous microwave source and is controlled by a fast pulse generator. It
generates black microwave pulses for the excitation transducer. The signals from the detection
transducer are analyzed directly by a fast oscilloscope and a spectrum analyzer, without using

any microwave amplifiers or diodes.
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Figure 32. (a) Schematic of the experimental configuration. (b) Transmissipanses of tr
transducer/YIG/transducer structure measured at two different input power Byelayindicated.

For the experimental data presented below, the YIG film strip wasnd #hick, 2 mm wide,
and 50 mm long. It was cut from a larger single-crystal YIG wafer grown on a gadolinium
gallium garnet substrate by liquid phase epitaxy. The magnetic field was set to 909 Oe. The

microstrip line transducers were 50n wide and 2 mm long and were end-shorted. The
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separation of the two transducers was set to 6.8 mm. The input pulses applied to the excitation
transducer were squaliée dips on a continuous microwave signal, with the amplitude at the
dips less than 5% of the amplitude of the microwave background. The power level of the
microwave background was controlled by a microwave amplifier and a tunable microwave
attenuator inserted between the microwave switch and the excitation transducer. The amplifier
had a 30 dB dynamic range, a peak output power of 2 W, and a linear response from 2 to 8 GHz.
These characteristics ensured that the nonlinear response of the system was determined solely by

the YIG film.

Figure 32(b) shows the transmission responsgg ©f the transducer/YIG/transducer
structure measured at two different input power levely,(as indicated. One can see three
results from the data in Figure 32(b). (1) The spin-wave frequency range is about@z5.0
For the data presented below, the carrier wave frequencies of the input signals all fell within this
frequency range. (2) The transmission profiles are relatively smooth. This indicates that the
spins on the film surfaces are unpinned and a repulsive nonlinearity is expected for the entire
4.5-5.0 GHz frequency range. In films with strongly pinned surface spins, one has a repulsive
nonlinearity only in narrow frequency ranges. (Kalinikos & Slavin, 1986; Kalinikos, Kovshikov,

& Slavin, 1988) (3) The transmission foP,=10.8 dBm is notably smaller than that for
Pin=-4.2 dBm. This difference results from nonlinear damping, (Scott, Patton, Kostylev, &

Kalinikos, 2004) which was considered in the numerical simulations presented below.

6.3 Experiment results on black solitons

Figures 33 and 34 present representative experimental data for the formation of dark

solitons. Figure 33 shows the output signals measured for a fixed input black pulse width
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=29 ns and differen®, levels, as indicated. Here,, denotes the power level of the
microwave background of the signals applied to the excitation transducer. In contrast to Figure
33, Figure 4 shows the output signals obtained for a fixed input pBwer8.3 dBm and
different pulse widths, as indicated. In both the Figures, the voltage waves are shown in light
blue, while the corresponding phase profiles are shown in light red. The black and gray solitons
are marked with “B” and “G”, respectively. Note that all the data were obtained with an input

carrier wave frequencgf 4.609 Gz, and the phase profiles show the phase data of the output
signals relative to the phase of a reference continuous wave with the same frequency as the input

carrier wavegNash, Kabos, Staudinger, & Patton, 1998)

The data in Figs. 33(a) and (b) show the key results of this wetink demonstration of a
pair of black solitons. For each soliton, the dip almost goes to zero and the phase shows a
jump at its center. For each pair, the phase jumps of the two solitons are opposite, and the
overall phase change is zero. With an increasiinfrom 3.3 dBm to 8.3 dBm, the black
soliton pair evolves into a pair of gray solitons, as shown in Figure 33(c). For each gray
soliton, the dip amplitude is nonzero and the phase jump is lessnath@bout 0.92).
Nevertheless, the two solitons have opposite phase jumps and the total phase change is almost
zero, the same as the black soliton pairs in Figs. 33(a) and (b). WNyhenncreased to 13.3
dBm and then to 18.3 dBm, one observes only a single gray soliton, as shown in Figs. 33(d) and
(e). With a further increase iRy, one observes non-solitonic waveforms only, as shown in
Figure 33(f). Note that, independent of the valuedPgf the zero-phase-change condition is

always satisfied.
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Figure 33. Output signals obtained for a fixed input pulse width of 29 ns and diffepenhtpowe
levels @;,), as indicated. The voltage wave signals are shown in light blue, whilea¥e phas
profiles are shown in light red. The black and gray solitons are marked by “B” and “G”, respectively.

The data in Figure 34 show that the formation of dark soliton pairs also depends on the

width of the initial black pulse. Figure 34(b) shows a pair of black solitons obtaingd2& ns.

It is essentially the same as the pairs shown in Figs. 33(a) and (b).

For a narrower initial black

pulse with 7,=23 ns, however, one observes only a single black soliton, as shown in Figure

34(a).

As discussed shortly, this single black soliton is similar to the one reported. (Chen,

Tsankov, Nash, & Patton, 1993)n contrast, for broader initial pulses, one observes multiple

gray solitons or non-solitonic dips, as shown in Figs. 34(c)-(f). z/A71 ns, for example, the

83



signal consists of three gray solitons and two non-solitonic dips, as shown in Figs. 34(e). It
should be noted that the overall phase change is always zero for all the data shown iB4Eigure

the same as for the data in Figure 33.
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Figure 34. Output signals obtained for a fixed input power of 8.3 dBm and diffepemtpulse width
(@), as indicated. The voltage wave signals are shown in light blue, whileatieephase profiles ¢
shown in light red. The black and gray solitons are marked by “B” and “G”, respectively.

The above-presented experimental results can be reproduced by numerical simulations using
the so-called complex Ginzburg-Landau equafitmvalev & Kosevich, 1976; Barashenkov &

Makhankov, 1988)
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whereu is the spin-wave amplitudg,is the spatial coordinatejs the temporal coordinatey is

the group velocity,n is the damping coefficien), is the dispersion coefficienDs; is the
third-order dispersion coefficient\ is the nonlinearity coefficient, and is the nonlinear
damping coefficient. In comparison with the standard nonlinear Schrodinger equation,
(Remoissenet, 1999) equation (6.1) incorporates three additional tewng describes the
third-order dispersion and the other two describe the linear and nonlinear damping of the spin

waves. These additional terms are required in order to re-produce the experimental responses.

The simulations used the split-step method to solve the derivative terms with respect to
and used the Runge-Kutta method to solve the equation with the rest of the terms. (Weideman &
Herbst, 1986) The split-step method uses Fourier transformation to convert the space domain
(x) of the equation into the wave-number dom#&ntirning the differential parts of the equation
into simpler linear algebra. A high-order Gaussian-type dip, instead of a square black pulse,
was used in simulations as the initial black pulse. The use of a square pulse as an initial black
pulse gave rise to numerical noise due to the discontinuities at the pulse edges. Though it is
also possible to use the fundamental Gaussian function, a high-order Gaussian dip better

resembles the experimental situation.

Figure 35 shows representative simulation results. In each row, the gray dashed curves
show the envelope and phase profiles of the signal measured at &grtamd 7, values, as
indicated, while the light blue and light red curves show the simulated envelope and phase

profiles, respectively. The simulations presented in Figs. 35(a), (b), and (c) were carried out
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with “U,=7x10° and 7,=29 ns”, “Ui,=8x10" and 7,=29 ns”, and “U;,=8x10" and 5,=23 ns”,
respectively, wherei, denotes the background amplitude of the initial spin-wave signal. The
other parameters used are as follows3.6x16 cm/s,7=5.28x10 rad/s,D,=-3x10 rad- cris,

Ds=1 rad-cn¥s, N=-1x10" rad/s, and =6.28x18 rad/s. Among these parametasg,is the

only fitting parameter, while all others were calculated based on the properties of tlign¥IG
sample. Note that the experimental and numerical results in Figure 35 are normalized in

amplitude and shifted in time for the purpose of easy comparisons.

One can see from the data in Figure 35 that the experimental responses can be well
reproduced by numerical simulations. Furthermore, the simulations presented in Figure 35
together with additional simulations indicate two important results as follows. First, a black
spin-wave pulse genetically evolves into a pair of black solitons, as in Figs. 33(a) and (b) and
Figure 34(b), or a pair of gray solitons, as in Figs. 33(c), for a certain initial poweraadge
certain initial pulse width range. All of the soliton pairs show an overall phase change of zero.
These results agree with theoretical expectati@isw & Doran, 1985; Chen, Segev, Singh,
Coskun, & Christodoulides, 1997; Zhang, et al., 1998¢cond, when the initial black pulse is
too narrow to evolve into a soliton pair, it may develop into a single black soliton-like object as
shown in Figure 35(c). This is similar to that reported previously (Chen, Tsankov, Nash, &
Patton, 1993) and is consistent with the standard nonlinear Schrédinger equation model. The
existence of a single black soliton, however, does not break the zero-phase-change condition.
This is clearly shown by the two phase profiles shown in Figure 35(c). The simulated profile
shows a phase jump af at the soliton center, a gradual increase in the phase for the waveforms
both leading and following the soliton, and an overall phase change of zero. The experimental

profile shows a slightly different feature - the phase undergoes a jump abfthe soliton’s
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center and a gradual phase increase fdr the waveform following the soliton. Besides, the
simulations also indicated that the slight asymmetry of the experimental amplitude and phase

profiles was associated with the third-order dispersion.
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Figure 35. Comparisons between experimental data and numerical simulations. The gra
curves show the data measured at different input power or input pulse widthdicaged. The ligl
blue and light red curves show the simulated envelope and phase profiles, relspectiie simulatior
shown in (a), (b), and (¢) were obtained with “U=7% 10° and z,=29 ns”, “U,=8x10* and 7,,=29 ns”, and
“U,=8x10" and 7,,=23 ns”, respectively. For easy comparisons, all the profiles were normalized il
amplitude and shifted in time.
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Several important points should be noted. First, in addition to providing the first
experimental evidence for the intrinsic phase characteristic of dark solitons pairs, this work also
demonstrates that dark soliton pairs not only exist in optical systems, (Chen, Mitchell, & Segev,
1996; Krokel, Halas, Giuliani, & Grischkowsky, 1988; Weiner, et al., 1988; Luther-Davies &
Yang, 1992; Taya, Bashaw, Fejer, Segev, & Valley, 1996) but also take place in spin-wave
systems, thereby indicating the universal feature of the dark soliton pair phenomenon. Second,
previous work on spatial solitons has also indicated that an initial dark signal could also develop
into a sequence of dark solitons whose number is more than two and i€CGesm.Mitchell, &

Segev, 1996; Chen, Segev, Singh, Coskun, & Christodoulides, 1%iture work is of
importance that demonstrates such development for temporal dark solitons and studies the phase
features of the solitons. Third, the numerical simulations in this work indicate that the complex
Ginzburg-Landau equatiofiKovalev & Kosevich, 1976; Barashenkov & Makhankov, 1988)
appears to be a more accurate model for nonlinear spin waves in magnetic thin films than the
standard nonlinear Schrodinger equation, although the latter has been proved to be a generally
good model for many different types of nonlinear wagie@emoissenet, 1999; Sulem & Sulem,

1999) Finally, the simulations in this work also revealed the existence of a soliton triplet that
consists of a bright soliton embraced by two black solitons. The data in Figure 33(c) presents a
similar effect. Future study, both experimental and theoretical, on such soliton triplets is of

great interest.

In summary, this chapter reported on the formation of black soliton pairs from nonlinear
black spin-wave pulses. For each soliton, the dip almost goes to zero and the phasenshows a
jump at its center. For each pair, the phase jumps of the two solitons have opposite signs, and

the overall phase change is zero. The formation of such black soliton pairs requires the initial
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black pulses to have appropriate power and widths. Beyond them, the formation of a gray
soliton pair is also possible, which also shows opposite phase jumps and a zero overall phase
change as the black soliton pairs. When the initial pulses are too narrow to support black or
gray soliton pairs, they can evolve into single black solitons. This is consistent with the
standard nonlinear Schrédinger equa(@emoissenet, 1999; Sulem & Sulem, 1999) and the

previous experimental observatigG@hen, Tsankov, Nash, & Patton, 1993)
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CHAPTER 7

FORMATION OF BRIGHT SOLITONSFORM WAVE PACKETSWITH REPULSIVE

NONLINEARITY

Formation of bright envelope solitons from wave packets with a repulsive nonlinearity was
observed for the first time. The experiments used surface-spin-wave packets in magnetic
yttrium iron garnet (YIG) thin film strips. When the wave packets are narrow and have low
power, they undergo self-broadening during the propagation. When the wave packets are
relatively wide or their power is relatively high, they can experience self-narrowing or eve
ewlve into bright solitons. The experimental results were reproduced by numerical simulations

based on a modified nonlinear Schrédinger equation model.

7.1 Introduction

Solitons are a universal phenomenon in nature, appearing in systems as diverse as water,
optical fibers, electromagnetic transmission lines, deoxyribonucleic acid, and ultra-cold quantum
gases. The formation of solitons from large-amplitude waves can be described by paradigmatic
nonlinear equations, one of which is the nonlinear Schrodinger equation (NLSE). In the terms
of the NLSE model, two classes of envelope solitons, bright and dark, can be excited in
nonlinear media. A bright envelope soliton is a localized excitation on the envelope of a
large-amplitude carrier wave. It typically takes a hyperbolic secant shape anddrastaat
phase across its width. (Nash, Kabos, Staudinger, & Patton, 1908xrk envelope soliton is a
dip or null in a large-amplitude wave background. When the dip goes to zero, one has a black
soliton. When the amplitude at the dip is nonzero, one has a gray soliton. A dark soliton has a
jump in phase at its center. For a black soliton, such a phase jump equals to m. For a gray

soliton, the phase jump is between 0 and . The envelope of a dark soliton can be described by
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a unique function. (Remoissenet, 199%or a black soliton, this function is typically a

hyperbolic tangent function.

According to the NLSE model, the formation of a bright soliton from a large-amplitude
wave packet is possible in systems with an attractive (or self-focusing) nonlinearity and is
prohibited in systems with a repulsive (or defocusing) nonlinearity. The underlying physics is
as follows. The attractive nonlinearity produces a pulse self-narrowing effect; at a certain
power level the self-narrowing can balance the dispersion-induced pulse self-broadening and
give rise to the formation of a bright envelope soliton. In contrast, in systems with a repulsive
nonlinearity the nonlinearity induces self-broadening of the wave packet, just as the dispersion
does, and thereby disables the formation of a bright soliton. Previous experiments show good
agreements with these theoretical predictions: the formation of bright solitons from wave
packets has been demonstrated in different systems with an attractive nonlinearity, (Chen,
Tsankov, Nash, & Patton, 1994) while the self-broadening has been observed for wave packets in

systems with a repulsive nonlinearity. (Chen, Tsankov, Nash, & Patton, 1993)

7.2 Experimental resultsobtained with transducer structures

This chapter reports on the first observation of the formation of bright solitons from wave
packets with a repulsive nonlinearity. The experiments made use of spin waves traveling along
long and narrow magnetic yttrium iron garnetf¥%0;,, YIG) thin film strips. The YIG strips
were magnetized by static magnetic fields applied in their planes and perpendicular to their
length directions. This film/field configuration supports the propagation of surface spin waves
with a repulsive nonlinearity. (Stancil D. D., 1993 excite a spin wave packet in the YIG strip,

a microstrip line transducer was placed on one end of the YIG strip and was fed with a
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microwave pulse. As the spin wave packet propagates along the YIG strip, it was measured by
either a secondary microstrip line or a magneto-dynamic inductive probe located above the YIG
strip. When the input microwave pulse is relatively narrow and has relatively low power, one
observes the broadening of the spin wave packet during its propagatiboertain large input

pulse widths and high power levels, however, the spin wave packet undergoes self-narrowing
and evolves into a bright envelope soliton. The formation of this soliton is contradictory to the
prediction of the standard NLSE model, but was reproduced by numerical simulations with a

modified NLSE model that took into account damping and saturable nonlinearity.

Figure 36 shows representative data on the formation of bright solitons from surface
spin-wave packets. Graph (a) shows the experimental configuration. The YIG film strip was
cut from a 5.6am-thick (111) YIG wafer grown on a gadolinium gallium garnet substrate. The
strip was 30 mm long and 2 mm wide. The magnetic field was set to 910 Oe. The input and
output transducers were pOr-wide striplines and were 6.3 mm apart. The input microwave
pulses had a carrier frequency of 4.51 GHz. Note that, in Figure 1 and other Figuresaas well
the discussions below?;, denotes the nominal microwave pulse power applied to the input
transducer,s, denotes the half-power width of the input microwave pusg,is the power of
the output signal, and,,; represents the half-power width of the output pulse. In Figure 36,
graphs (b), (c), (d), (f), and (g) give the power profiles of the output signals measured with
different P, andg, values, as indicated. The circles in (d) shows a fit to the hyperbolic secant
squared function(Ablowitz & Segur, Solitons and the Inverse Scattering Transform, 1985;
Remoissenet, 1999)Graph (e) shows the corresponding ph#&eofile of the signal shown in
(d). Here, the profile shows the phase relative to a reference continuous wave whose frequency

equals to the carrier frequency of the input microwélNash, Kabos, Staudinger, & Patton, 1998)
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Graph (h) shows the change ®f; with P;, for a fixed 5, as indicated, while graph (i) shows the

change ofr,; with 7, for a fixedP,, as indicated.
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Figure 36. Propagation of spin-wave packets in anth®wide YIG strip. (a) Experimental set
(b), (c), (d), (f), and (g) Envelopes of output signals obtained at differeut pulse power levelsP()
and widths ¢,). (e) Phased) profile for the signal shown in (d). (h) Width of output pulag)(as i
function of P,,. (i) Width of output pulse as a function gf
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The data in Figure 36 show three important results. (1) The data in Figs. 36 (b)-(e) and
(h) show the change of the output signal with the input p&uer One can see that the output
pulse is broader than the input pulse wigr13 mW, as shown in (b), and is significantly
narrower wherP;,>30 mW, as shown in (c), (d), and (h). This indicates that the spin-wave
packet undergoes self-broadening at low power and self-narrowing at relatively high power. (2)
The data in Figs. 36 (d), (f), (g), and (i) show the change of the output signal with the input pulse
width 7,. It is evident that the width of the output pulse increases myithhen 7,<50 ns and
then saturates to about 19.5 ns whgrb0 ns. These results indicate that the spin-wave packet
experiences strong self-narrowing when it is relatively broad. (3) The pulses shown in (d) and
(g) are indeed bright solitons. As shown representatively in (d) and (e), they have a hyperbolic
secant shape and a constant phase profile at their centers, which are the two key signatures of
bright solitons(Ablowitz & Segur, Solitons and the Inverse Scattering Transform, 1985; Nash,

Kabos, Staudinger, & Patton, 1998)

The data from Figure 36 clearly demonstrate the formation of bright solitons from surface
spin-wave packets when the energy of the initial signals (the prodégt ahd 75,) is beyond a
certain level. This result is contradictory to the predictions of the NLSE model. One possible
argument is that the width of the YIG strip might play a role in the observed formation of bright
solitons. To rule out this possibility, similar measurements were carried out with a YIG strip

that is an order of magnitude narrower. The main data are as follows.

7.3 Experiment results obtained with a scanning probe

Figure 37 gives the data measured with arr2wide YIG strip. This Figure is shown in

the same format as in Figure 36. In contrast to the data in Figure 36, the data here were
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measured by a 50 inductive probe, (Wu, Kalinikos, & Patton, 2004) rather than a secondary
microstrip transducer. The distance between the input transducer and the inductive grobe wa

about 2.6 mm. The magnetic field was set to 1120 Oe. The input microwave pulse had a

carrier frequency of 5.07 GHz.
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Figure 37. Propagation of spin-wave packets in anewide YIG strip. (a) Experimental set
(b), (c), (d), (f), and (g) Envelopes of output signals obtained at diffameat pulse power levelsP(,)
and widths ¢,). (e) Phased) profile for the signal shown in (d). (h) Width of output pulgg)(as i
function ofP,,. (i) Width of output pulse as a function gf.
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The data in Figure 37 show results very similar to those shown in Figure 36. Specifically,
the low- power, narrow spin-wave packets undergo self-broadening, as shown in (b),dey (f),
(h); as the power and width are increased to certain levels, the spin-wave packets experience
self-narrowing, as shown in (h) and (i), and can also evolve into solitons, as shown in (d), (e),
and (g). Therefore, the data in Figure 37 clearly confirm the results from R@ureThis
indicates that the formation of solitons reported here is not due to any effects associated with the
YIG strip width. Note that the solitons shown in Figure 38 are narrower than those shown in
Figure 36. This difference results mainly from the fact that the spin-wave amplitudes and
dispersion properties were different in the two experiments. The spin-wave dispersion differed
in the two experiments because the magnetic fields were different and the wave numbers of the

excited spin-wave modes were also not the same.

Turn now to the spatial formation of solitons from surface spin-wave packets. Figure 38
shows representative data. Graph (a) gives the profile of an input signal. The power and
carrier frequency of the input signal were 700 mW and 5.07 GHz, respectively. Graphs (b)-(f)
give the corresponding output signals measured with the same experimental configuration as
depicted in Figure 37(a). The signals were measured by placing the inductive probe at different
distances X) from the input transducer, as indicated. The red curves in (b)-(f) are the

corresponding phase profiles.

96



0.8- (a) Input pulse 0.06- (b) x=1.1 mm

S 06 =z
s 00 £ 0.04
g 0.4 g
g 0.2 g 0.02;
0.0 r . . . 0.00
800 850 900 950 1000 800
0.04 (c) x=2.1 mm 0.02,
2 0.03 ‘ s ?'{ g
il £2 £
= 0.02; il = 0.01
e Ry q;)
3 0.01- | ! u‘“ 5
o | | o
0.00 r r r . 0.00
800 850 900 950 1000 800
0.02- (e) x=3.6 mm 0.02;
= | =
S S
= 0.01 = 0.014
o o
= =
(@) (@)
o o
0.00 " r r . 0.00 , ; . .
800 850 900 950 1000 800 850 900 950 1000
Time (ns) Time (ns)

Figure 38. Spatial formation of a spin-wave soliton in ann2wide YIG strip. (a) Profile of ¢
input signal. (b)-(f) Profiles of output signals measured by an inductidee pplaced at differe
distances ) from the input transducer. The red curves in (b) and (f) are the correspqidia
profiles.

The data in Figure 38 show the spatial evolution of a spin-wave packek=1Atmm, the
packet has a width similar to that of the input pulse. As the packet propagat@sltanm, it
develops into a soliton, which is not only much narrower than both the initial pulse and the
packet atx=1.1 mm but also has a constant phase at its center portion, as shown in (c). At
x=2.6 mm, the packet has a lower amplitude due to the magnetic damping but still maintains its
solitonic nature, as shown in (d). As the packet continues to propagate further, it loses its
solitonic properties and undergoes self-broadening, as shown in (e) and (f), due to significant

reduction in amplitude. Note that the phase profiles for all the signals in (b), (e), and (f) are not
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constant. These results support the above-drawn conclusion, namely, that it is possible to

produce a bright soliton from a surface spin-wave packet.

The data in Figure 38 also indicate the other two important results. (1) The development of
a soliton takes a certain distance, about 2 mm for the above-cited conditions, due to the fact that
the nonlinearity effect needs a certain propagation distance to develop. (2) The soliton exists
only in a relatively short range, about 1-2 mm for the above-cited conditions, due to the damping
of carrier spin waves. To increase the "life" distance or lifetime of a spin-wave solitotgrone
take advantage of parametric pumping (Bagada, Melkov, Serga, & Slavin, 1997) or active

feedbackWu M. , 2011) techniques.
7.4 Simulation results with modified NL S equation

As mentioned above, the soliton formation presented here is contradictory to the standard
NLSE model. However, it can be reproduced by numerical simulations based on the equation

2
i[au 8u+ uJ—lDa—g+(N|u|2+S|u|4)u:0
2 ox (7.1)

whereu is the amplitude of a spin-wave packetandt are spatial and temporal coordinates,
respectivelyyy is the group velocityy is the damping coefficienD is the dispersion coefficient,

and N and S are the cubic and quintic nonlinearity coefficients, respectively. The quantic
nonlinearity term is included because the cubic nonlinearity is insufficient to capture the
experimental observations presented above. This additional term is an expansion to the lowest
order of saturable nonlinearity. The simulations used the split-step method to solve the
derivative terms with respect toand used the Runge-Kutta method to solve the equation with
the rest of the termgWeideman & Herbst, 1986; Pathria & Morris, 1990) high-order

Gaussian profile was taken in simulations for the input pulse because it is much closer to the
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experimental situation than a squared pulse. The use of a square pulse as in the input pulse
gave rise to numerical noise due to the discontinuity at the pulse's edges. The use of a
fundamental Gaussian function did not considerably change the simulation results. It should be
noted that both the standard and modified NLSE models are for nonlinear waves in
one-dimensional (1D) systems, and previous work had demonstrated the feasibility of using the
1D NLSE models to describe nonlinear spin waves in quasi-1D YIG film <#ipsng, et al.,

1998; Wang, Sun, Wu, Tiberkevich, & Slavin, 2011)

Figure 39 shows representative results obtained for different initial pulse amplig)dess (
indicated. In each panel, the left and right diagrams show the power and phase profiles,
respectively. The simulations were carried out for am2ong 1D film strip and a total
propagation time of 250 ns. The film strip was split into 9182 steps, and the temporal evolution
step was set to 0.05 ns. The input pulse was a high-order Gaussian profile with an order
number of 20 and a half-power width of 15 ns. The other parameters used are as follows:
Vg=3.8x10 cm/s, 7=3.1x10 rad/s, D=-4.7x106 radcnf/s, N=-10.1x10 rad/s, andS=1.8x10°
rad/s. Among these parameterg,D, 1,andN were calculated according to the properties of

the YIG film, and the&Swas optimized for the reproduction of the experimental responses.

The profiles in Figure 39 indicate that, at low initial power, the pulse is broader than the
initial pulse and has a phase profile which is not constant at the pulse center, as shown in (a) and
(b); at relatively high power, however, the pulse is not only significantly narrower than the initial
pulse but also has a constant phase across its center portion, as shown Tingsg results

agree with the experimental results presented above.
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Figure 39. Power (left) and phase (right) profiles of spin-wave packets propagating in a pY.1G B
profiles were obtained from simulations with different initial pulse amgéis as indicated, for

propagation distance of 4.9 mm.

The reproduction of the experimental responses with the modified NLSE model indicates
the underlying physical processes for the formation of bright solitons from surface spin-wave

packets. In comparison with the standard NLSE, the additional terms in the modified equation

are nu and sju*u. The termnu accounts for the damping of spin waves in YIG films,
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while the term s|u*u is needed for the reproduction of the experimental responses. Since the

sign of S was opposite to that dfl, the term sju*u played a role opposite to|u*u and
caused nonlinearity saturation. In particular, for the configuration cited for Figure 39(c) the
term s|u*u overwhelmed the termn|uu, resulting in a repulsives-attractive nonlinearity

transition and the formation of a bright soliton. Thus, one can see that the saturable
nonlinearity played a critical role in the formation of the bright solitons from surface spin-wave
packets. It should be noted that the saturable nonlinearity has been known as a critical factor

for the formation of solitons in optical fibe(&ratz & Herrmann, 1991).

In summary, this chapter reports the first observation of the formation of bright solitons from
surface-spin-wave packets propagating in YIG thin films. The formation of such solitons was
observed in YIG film strips with significantly different widths. The spatial evolution of the
solitons was measured by placing an inductive probe at different positions along the YIG strip.
The experimental observation was reproduced by numerical simulations based on a modified
NLSE model. The agreement between the experimental and numerical results indicates that the

saturable nonlinearity played important roles in the soliton formation.
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CHAPTER 8

SUMMARY AND OUTLOOK

This chapter summarizes the work presented in this thesis and suggests future work that is

relevant to this work and is of great interest.

8.1 Summary and conclusion

In order to realize an easy control of spin waves propagating in magnetic films agatemiti
the spin-wave damping problem for future applications, a method based on the spin Hall effect
has been developed and demonstrated. It is shown that, by growing a nanometer thick Pt film
on the top of a YIG thin film, the damping of the YIG film can be controlled by applying an
electrical current through the Pt capping layer. The mechanism is explained by the fact that the
spin current is generated due to the spin Hall effect in the Pt layer which exerts a torque onto the
magnetic moments in the YIG film. A summary of the results was published in an Applied
Physics Letters paper (Warg,al., 2011). It is further shown that, the amplitude of spin waves
propagating in the YIG film can be controlled by utilizing this method. A maximum of 30%
change in amplitude has been reported in a Physical Review Letters paper (Wang, Sun, Wu,
Tiberkevich, and Slavin, 2011). A more than 10 dB amplification/attenuation in amplitude is
also demonstrated with larger input currents through the Pt film. A manuscript of the results is

in preparation.

This thesis also reports the excitations of several new types of solitons. First, the excitation
of chaotic spin wave solitons in magnetic film feedback rings was demonstrated for the first time.
A paper that reports the main experimental and simulation results was published in another

Physical Review Letter paper (Warggal., 2011).  The excitations of a pair of black solitons
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with two 180 phase jump were also demonstrated for the first time. This observation competes
the observation of the most fundamental solitons predicted by the NLS model. At the same
time, the excitations of bright solitons in a medium with repulsive nonlinearity were

demonstrated, which was further explained by a simulation work based on a high-order NLS

model. Several papers are in preparation to report the above results.
8.2Future work

For the interaction between the spin currents produced by the spin Hall effect and the
magnetic moments in ferromagnetic insulators, a lot of work still needs to be done. First, an
effort can be made to search for new materials that can give larger spin Hall anglet than P
Recently, B-tantalum has been found as a material that can generate spin currents with an
intensity several times larger than that of Pt (Ewal., 2012). It is possible that there are other
heavy metals which will give an even larger spin Hall angle than p-tantalum. Second, the Pt
film used in this study has a negative effect, namely, that it can severely increasaiveyd=
the adjacent magnetic material. It still has to be understood why the damping is increased so
much after a Pt layer is grown on the top of a YIG film. New materials, such as p-tantalum,
however, do not lead to a significant increase in the damping of the adjacent magnetic material.
At last, it might be possible that, by growing Pt/Ta on the top of low-damping YIG films, the
magnetization switching can be realized by the use of the spin current generated via the spin Hall
effect. Such magnetization switching has already been demonstrated in magnetic metallic
materials (Liu,et al., 2012). To realize the magnetization switching in a magnetic insulator,
two things need to be done. First, a method to grow ultra-thin YIG films with small damping
has to be found. The spin current required to switch magnetic moments is expected to be

proportional to the damping constant of the magnetic material (Ralph and Stiles, 2008).
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Therefore, a low-damping YIG film is critical to realize the magnetization switching with spin
currents. Second, a metallic material with a large spin Hall angle needs to be found. This
material, at the same time, should not increase the damping of the YIG film when it is deposited
on the YIG film. f-tantalum may be a good candidate. This, however, still needs to be further

investigated.

On the nonlinear spin wave side, future work on the roles and physics explanations of the
additional terms in the high-order NLS equation will be of great interest. In this work,en ord
to explain the behavior of chaotic solitons and also bright solitons excited in media with
repulsive nonlinearity, additional terms have been added into the NLS equation. However, the
underlying physics behind the addition of each term is still not very clear. Additionally, other
possibilities of nonlinear excitations, for example, solitons with chaotic spin waves as the carrier
waves (Wu, 2011), are very interesting from the fundamental point of view and deserves further

investigations.
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