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I. INTRODUCTION 

Sheet flow is classified as "wide" open channel flow because 

channel walls do not affect the flow pattern. Wide open channel flow 

exists when the ratio of channel width to flow depth is larger than 10 

(Chow, 1959). The hydraulic properties of sheet flows depend on the 

relative magnitude of inertia and viscous forces. The ratio of these 

two forces defines the Reynolds number, Re. For wide open channels the 

Reynolds number is equal to the ratio of the volumetric flow rate (unit 

discharge) to the kinematic viscosity of water. Laminar flow conditions 

prevail when Re < 500 for smooth surfaces. The corresponding unit 
2 discharge must be less than about 5 cm Is f.or the usual range of water 

temperatures. In laminar sheet flows the viscous forces damp the veloc-

ity fluctuations and the motion of fluid particles follow smooth paths. 

In turbulent flow (Re > 2000 for smooth surfaces) inertia forces 

overcome the friction forces and fluid particles move erratically, 

transferring mass and momentum between adjacent flow regions. 

Under both laminar and turbulent conditions sheet flows can be 

unstable such that an initially small perturbation of the water surface 

amplifies with time and with distance downstream until a well-defined 

wave pattern is observed. These amplified perturbations are called roll 

waves. 

Previous treatments of the formation of roll waves in laminar sheet 

flows were mainly confined to the definition of necessary conditions for 

the occurrence of surface instability. It became apparent with theore-

tical derivation for turbulent flow (Montuori, 1963 and Liggett, 1975) 

that conditions based on the Froude number are not sufficient since the 

length required for the formation of roll waves is not considered. In 
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this study, previous theories relating to this distance are modified in 

the light of laminar sheet flow characteristics. An experimental study 

was conducted in order to verify the results of the theoretical 

analysis. 

The characteristics of steady, uniform sheet flows are first 

described in Chapter II, followed by a theoretical analysis of free 

surface instability. Chapter III presents the results of the experi-

mental study performed in the Hydraulics Laboratory of the Engineering 

Research Center at Colorado State University. 



3 

II. THEORY ON THE STABILITY OF LAMINAR SHEET FLOW 

The analysis of the free surface stability of laminar sheet flows 

assumes that steady uniform flow conditions exist prior to the occur-

rence of a small perturbation of the water surface. This chapter dis-

cusses the characteristics of laminar, steady uniform sheet flow, and 

the criteria which have been used to determine its stability. 

Expressions for the length of roll wave formation are derived. 

2.1 Steady uniform laminar sheet flow characteristics 

The principal variables describing laminar, steady uniform sheet 

flows are: the slope S, the flow depth h, the mean velocity u, the 

unit discharge q, the gravitational acceleration g, and the kinematic 

viscosity v. Two nonlinear partial differential equations were derived 

by Saint-Venant to describe gradually varied unsteady flows. These are 

respectively the continuity and the momentum relationships. For steady 

uniform sheet flows, the continuity equation can be written as: 

q =uh (1) 

The momentum equation reduces to the so-called kinematic wave approxima-

tion for which the bed slope s is equal to the friction slope sf. 

The friction slope in the laminar region is defined as follows from the 

Darcy-Weisbach equation (in Chow, 1969): 

(2) 

in which K is the friction coefficient. After combining Eqs. 1 and 2, 

the mean velocity and flow depth are: 

u = !!..& 113 1/3 2/3 
( KV ) S q (3) 



Kv l/3 -1/3 1/3 
h = ( 8g ) s q 

4 

(4) 

These relationships are valid for uniform or gradually varied 

laminar sheet flows only. The distribution of velocity u at a 

distance y from the water surface is expressed by the following 

relationship (see Chow, 1959): 

(5) 

This velocity profile decreases parabolically from a maximum of 1.5 

times the mean velocity at the free surface to zero at the boundary. 

2.2 Critical Froude number and Vedernikov criteria 

In deriving a fundamental stability criteria for the water surface, 

several approaches were used by different researchers. Early investiga-

tions by Thomas (1939) and Stoker (1957) suggested that the flow is 

unstable when S > 4g/C2 in which C is the Chezy coefficient. The fore-

most criterion for instability published in the Russian literature was 

derived by Vedernikov (1945, 1946). For laminar flows, the Vedernikov 

number Ve can be written as: 

ap 
Ve = 2F (1 - Rh aA) (6) 

in which Rh is the hydraulic radius; P is the wetted perimeter; and A is 

the cross-sectional area. The Froude number F equals the ratio u//ifi 
which represents the ratio of inertia to gravity forces. For an infin-

itely wide channel, the Vedernikov number is equal to twice the Froude 

number and the flow becomes unstable when the Froude number exceeds 0.5 

(Ve > 1). This critical Froude number was also reported by Robertson 

and Rouse (1941) and Powell (1948). Mayer (1961) observed roll waves in 
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subcritical laminar sheet flows but mistakenly concluded that roll waves 

can form only when the slope is larger than 3 percent. Yih (1954, 

1963,1977) and Benjamin (1957) solved the problem of stability of sheet 

flows down an inclined plane using the Orr-Sommerfeld equation. For 

very long waves the flow is unstable when: 

5 
Re ~ 6S 

in which Re is the Reynolds number. 

(7) 

This criterion was also suggested by Taylor and Kennedy (1961). If 

Eq. 2 is substituted into Eq. 7 and a K value of 24 corresponding to a 

smooth channel is assumed, a critical Froude number of F = 0.53 c 
results which is close to the Vedernikov criteria for wide rectangular 

.channels. 

0.577. 

Ishihara et al. (1961) also suggested the critial value F = c 

Unfortunately, these criteria based on the Froude number ignore ~he 

distance along the channel required for the formation of roll waves. 

This factor becomes extremely important for subcritical sheet flows 

since previous studies for turbulent flows (Montuori, 1963) demonstrate 

that the distance at which the waves are fully developed increases to 

infinity as the Froude number approaches the critical value. 

2.3 Distance required for the formation of roll waves 

When the flow is unstable (Ve > 1) a minor perturbation of the 

water surface will induce the formation of small waves. The amplitude 

of these waves will increase gradually as they move downstream until a 

bore is formed and the wave breaks. The distance travelled between the 

point at which the perturbation is initiated and the breaking point of 

the wave defines the distance required for the formation of roll waves. 
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This distance, tc' is determined theoretically from the following 

procedure using the celerity of roll waves. 

2.3.1 Celerity of roll waves 

The total celerity, c, of a small gravity wave moving in a fluid 

with a uniform velocity distribution along the vertical is: 

c = u + .J&ii (8) 

In the more general case of a nonuniform ve.rtical velocity 

distribution, the celerity can be theoretically derived from the momen-

tum equation. After the momentum correction factor, P , is used instead m 
of an empirical coefficient, the equation for celerity suggested by 

Arsenishvili (1965) becomes: 

c = u + c 
0 

= p u + Jgh + p <P -1)1i2 
m m m (9) 

in which c is the celerity of the wave relative to the mean velocity 
0 

u; and 
1 h 2 

Pm = ~ f u dy . 
u h 0 

(10) 

When p =1, Eq. 9 reduces to Eq. 8. For sheet flows, however, the 
m 

momentum correction factor p = 1. 2 is obtained from Eqs. 5 and IO. m 
The ratio of celerities c/.J&ii is: 

c = p F + J1 + p (p -l)F2 
m m m (11) 

Equations 9 and 11 are used to compute the celerity of roll waves. 

2.3.2 Perturbation analysis 

The following perturbation analysis of the shallow water equation 

has been used by Liggett (1975) to determine the distance t . c As 

viewed from a fixed coordinate system the constant u + c 
0 

defines the 

propagation speed of the wave. The flow appears to be steady to an 
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observer moving downstream with the speed of the wave. In the 

derivation, the space and time coordinates x and t are replaced by 

t = x and n, defined by: 

n = cil + c )t - t 
0 

(12) 

in which t is the position relative to a fixed observer of a point on 

the wave while n defines its position relative to the moving coordi-

nate system. This coordinate transformation allows the conservation of 

mass and momentum for a prismatic channel without lateral inflow to be 

written as follows (Dracos and Glenne, 1967): 

ahG _ ahG ahG - ail 
BG(u+c

0
) an + uGBG (~ - an ) + AG (auG _ ___Q) = 0 (13) 

~ an 
and 

(u+c ) 
ailG _ auG auG ahG ahG = g(S-SfG). (14) an + uG (~ an ) + g (~ an ) 0 

in which the subscript G designates gradually varied flow variables. 

A small perturbation of an initially steady uniform flow is then 

considered. The perturbed variables h', u, B' and A' can be 

defined as follows: 

h' = h + ah' n 1 a2h' 2 + +---11 ... an 2 a112 
(IS) 

- au' 2-
u' = u + -11 + .! a u' 112 + ... a., 2 a112 

(16) 

B' = B + aB' ah' 11 ah' an + ... (17) 

A' = A + aA' ah' 11 ah' a11 + ... (18) 

in which the perturbed variables are primed while the uniform flow 

variables remain unprimed. 
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The truncated series are valid for small values of l'1 and the 

solution is examined in the neighborhood of ri=o. 

The perturbed friction slope, S£, can be approximated by 

substituting h' and u' for the depth and velocity in Eq. 2. After 

considering only the first order terms of the series: 

(19) 

Reducing Eq. 19 to a first-order approximation results in: 

1 aii' 2 ah• 
S£ = s + sric = ari - h ari ) + ... 

u 
(20) 

The perturbed variables of Eqs. 15 through 18 and 20 replace the 

gradually varied flow varibles hG' uG' BG, AG and SfG in Eqs. 13 and 

14 to describe fluid motion when a small perturbation is imposed. The 

terms of equivalent powers of l'1 are set equal and after several 

elementary algebraic manipulations presented in Appendix I, the shallow 

water equations can be combined to give: 

a2h' ah' 2 ah' 
atari - f3 C ari ) + Y ari = 0 (21) 

in which for rectangular channels (B aB' = B' and ah' = O), the coefficients 

f3 and y are respectively: 
f3 = __ 3 ...... g __ 

2 -c +2uc +gh 
0 0 

y = ~ (1 
-2 u 

2c F2 
0 

u 

(22) 

(23) 

The derivation presented in Appendix I improves the one given by 

Liggett (1975) since the wave celerity defined by Eq. 9 is not 
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restricted to the relationship c = /ih. The coefficients ~ and 1 are 
0 

a function of the variables S, u, c , h, F and g and Eqs. 22 and 23 
0 

reduce to the coefficients proposed by Liggett for the particular case 

when c = .fib.. 
0 

The solution of Eq. 21 is: 

ah' e 
a11 = -~-+-e_Y __ t 

y 
(24) 

in which e is a constant of integration along the longitudinal distance 

t. The critical distance t at which the wave breaks is assumed to occur c 

when the water surface is vertical. Mathematically, this condition is 

obtained when the denominator of Eq. 24 is set equal to zero, or when: 

t = l £.n (- !! e) 
SC y y (25) 

After combining Eqs. 22, 23 and 25, the distance ~ can be written c 

as follows: 

(26) 

c 
in which, 'I' = 

[ 
~
2 

J (2 
+ ~ + u ) 

u c F2 (27) 

and, 

2c F __ o_ 1 

u 

<I> = £.n (2 
c 
_o) 
u 

0 

(28) 

From Eq. 10, c /u can be written as a function of the Froude number 
0 

for a given value of ~ . Taking ~ = 1.2 for laminar sheet flows, the m m 
variables 'I' and <I> from Eqs. 27 and 28 are dimensionless and unique 

functions of the Froude number as plotted in Fig. 1. For supercritical 

flows, 'I' has a nearly constant value of 2.0 while ~ increases 



16 

14 

12 

10 

8 

'O 6 c 
c 

4 

-2 

-4 

10 

Froude Number, F 

Fig. 1. Dimensionless variables ~ and ~ as a function of Froude number. 
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gradually with the Froude number. It can also be demonstrated that over 

a fairly wide range of slopes the expression ln(~e) will be substan-
S tially constant. If ~ is small compared to ln(3e) then the 

following approximate relationship for tc can be written: 

t ~ D !! 
~c - S (29) 

in which D is equivalent to the factor in braces in Eq. 26 and is 

approximately constant. Equations 25 and 29 represent alternate expres-

sions for evaluating tc, the latter expression being a simplified 

expression of the former for supercritical flows. The ability of 

Eqs. 25 and 29 to predict the distance tc is evaluated with laboratory 

data described in the following section. 
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III. EXPERIMENTAL INVESTIGATION OF ROLL WAVES 

Laboratory experiments were conducted in the Hydraulics Laboratory 

at .the Engineering Research Center. The experiments determined laminar 

flow conditions which produced roll waves. Measured roll wave charac-

teristics included the length required for their formation, wave 

frequency and wave celerity. 

3.1 Laboratory Equipment and Experimental Procedure 

A 0.21 m wide by 9. 75 m long, rectangular flume constructed of 

plexiglass and supported by an aluminum I-beam was utilized for the 

experimental runs. A pump circulated water from a tailbox to the head 

end of the flume. The slope of the flume was adjusted with a screw 

jack. Discharge was controlled by a valve located on the discharge side 

of the pump. The range of flow conditions investigated were as follows: 

Unit Discharge -s -4 2 6.SxlO to 5.SxlO m /sec 

Channel Slope 1.5 to 4.0 percent 

Water Temperature 20.0 to 24.o0 c 

Discharge was obtained using the volumetric method in which time and 

water volumes were measured with a stopwatch and a graduated cylinder. 

Channel slope was set using the screw jack and a slope scale which had 

been calibrated with a surveyor's level. Water temperature was measured 

using an electronic digital thermometer. Reynolds numbers were calcu-

lated using the unit discharge and the viscosity obtained from water 

temperature. The theoretical value of the friction parameter, K, was 

verified by measuring the surface velocity, us, of small buoyant 

particles (styrofoam and paper) under steady uniform sheet flow condi-

tions. The friction factor, K, was calculated from measured u values s 

using Eqs. 5 and 4: 
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K = ~ ( 1.5 )3 
v u (30) 

s 

An average value of K = 25.7 was determined from the surface velocity 

measurements in the experimental flwne. This result was considered 

sufficiently close to the theoretical value of K = 24 to justify its 

use in calculating the uniform flow depth, h, and the mean velocity, u, 
from Eqs. 3 and 4. 

For each of the 31 main experimental runs the flow conditions were 

given sufficient time to reach equilibriwn before discharge measurements 

were made. Roll waves were noted by visual inspection when a well-

defined breaking wave front could be observed across the entire width of 

the flwne. The length t , for roll wave formation was estimated with c 
the aid of reference marks at 0.61 m (2 ft) intervals along the trans-

parent side walls of the flume. Consecutive reference marks which 

bounded the point where roll waves could first be observed were noted. 

The distance from the upstream end of the flume to the midpoint between 

the two noted reference marks was used to define the distance for roll 

wave formation t . c 

In addition to the formation length, roll wave period (frequency) 

and celerity were also measured. Wave period was determined by counting 

the number of flow surges over a given amount of time at the downstream 

end of the flume. Wave celerity was determined by timing the progress 

of 5 or more wave crests over a known distance and averaging the 

results. 

All the data collected in this experimental investigation are 

presented in Appendix II. The main data base is composed of the first 

31 experimental runs while the additional data (runs 32-57) were 

collected during a preliminary investigation. 
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3.2 Data Summary 

A summary of the experimental data is presented in Table 1. The 

first 5 columns read as follows: slope, flow Reynolds number, wave 

celerity, wave period, and distance for roll wave formation. Wave 

celerity and period values represent the average of several measurements 

for each run. In Table 1, the parameters in columns 6 to 15 are calcu-

lated from columns 1 to 5 and will be discussed in the following section 

dealing with the analysis of experimental data. 

3.3 Data analysis 

The velocity, flow depth and Froude number were- computed from the 

measured slope and Reynolds number using Eqs. 2, 3 and 4. These three 

variables are shown in Table 1 in columns 6, 7 and 8. The first part of 

this analysis of experimental data is focused on the evaluation of the 

wavelength, period and celerity. 

3.3.1 Wavelength, period and celerity 

In this section three important characteristics of roll waves are 

discussed: the wavelength, the period and the wave celerity. The wave-

length can be evaluated from the wave celerity and the period. The 

observed values of the ratio c/~ have been plotted against the 

Froude number on Fig. 2a. The agreement with the theoretical relation-

ship (Eq. 11 with p = 1.2) is excellent. m Equation 11 can also be 

written as the ratio of the wave celerity to the mean flow velocity u. 

For unstable flows (F>O.S), the ratio c/u calculated from Eq. 31 

(pm = 1.2) decreases from 3.26 to a minimum of 1.69 as shown in Fig. 2b. 



Table 1. Data Summary 

- ~ y gSt 
Run Re tc Ytc c E s c T u h F !ng -=2 D 

m/s m/s -1 -1 s m mm m m u mm 
(1) (2) (3) (4) (5) (6) (1) (8) (9) (10) (11) (12) (13) (14) (15) 

1 0.040 335 0.46 1.33 0.91 0.24 1.37 2.11 176 -15.4 -14.0 -16.5 6.03 26.6 1.80 
2 0.040 400 0.50 1.61 0.91 0.27 1.43 2.31 154 -14.2 -12.9 -15.3 4. 74 25.4 1. 71 

3 0.040 500 0.57 1.96 0.91 0.32 I.SS 2.58 124 -12.1 -11.0 -13.3 3.53 23.5 1.59 
4 0.035 68 0.22 1.27 2. 74 0.08 0.82 0.89 588 -21.3 -58.3 -61.3 147.30 
5 0.035 95 0.26 1.28 1.52 0.10 0.94 1.05 441 -20.8 -31.7 -34.7 51.20 56.6 3.81 
6 0.035 141 0.34 1.45 1.52 0.13 1.07 1.28 270 -21.8 -33.2 -35.7 30.50 49.7 3.35 ,_. 

VI 

7 0.035 188 0.34 1.32 2.13 0.16 1.19 1.48 289 -14.9 -31.8 -34.7 28.70 62.6 4.26 
8 0.035 265 0.42 1.37 2.13 0.20 1.31 1. 76 197 -14.7 -31.3 -33.9 18.40 56.9 3.81 
9 0.035 380 0.43 1.19 2. 74 0.26 1.49 2.11 222 -8.2 -22.4 -25.7 14.40 64.4 4.33 

10 0.030 90 0.24 1.35 2.13 0.09 0.98 0.95 503 -16.8 -35.9 -39.3 72. 70 
11 0.030 122 0.25 1.43 2.13 0.11 1.07 1.10 487 -12.9 -27.5 -31.1 49.60 59.7 4.02 
12 0.030 200 0.36 1.47 2.74 0.16 1.25 1.41 252 -12.5 -34.2 -37.2 33.10 65.8 4.36 
13 0.030 260 0.41 1.25 2.13 0.19 1.37 1.61 202 -11. 7 -24.9 -27.7 23.10 46.6 3.99 
14 0.030 340 0.42 1.37 2.13 0.22 1.49 1.84 207 -9.7 -20.6 -23.7 16.30 42.9 3.66 
15 0.030 460 0.48 1.35 1.52 0.28 1.68 2.15 174 -7.0 -10.6 -13.8 5.90 27.1 1.83 
16 0.030 550 - - 1.52 0.31 1. 77 2.35 - - - - 4.68 25.8 1. 74 



Table 1. (Continued) 

- fl y gS~ 

~c h Y~c ine c D E Run s Re c T u F -1 -1 ~ m/s s m m/s mm m m u mm 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

17 0.025 65 - - 7.62 0.07 0.91 0. 74 - - - - 380.00 
18 0.025 71 - - 7.62 0.07 o. 94 0. 77 - - - - 340.00 
19 0.025 85 0.22 1.52 3.35 0.08 1.01 0.84 576 -12.9 -41.4 -45.2 118. 00 
20 0.025 104 0.24 1.52 3.35 0.10 1.07 0.93 497 -8.3 -27.6 -31. 7 91.00 
21 0.025 130 0.33 1.54 2. 74 0.11 1.16 1.04 272 -15.1 -41.4 -44.3 54. 70 59.1 3.96 
22 0.025 200 0.34 1.61 2.74 0.15 1.34 1.29 276 -9.4 -25.7 -29.3 30.70 51.1 3.44 ..... 
23 0.025 246 0.38 1. 75 2.13 0.17 1.43 1.43 227 -9.5 -20.2 -23.3 18.20 37.2 2.50 °' 
24 0.025 320 0.44 1.52 1.52 0.20 1.55 1.63 175 -9.4 -14.3 -17.2 9.20 24.5 1.62 
25 0.025 420 0.47 1.19 0.91 0.24 1. 71 1.87 164 -7.5 -6.8 -9.9 3.83 13.3 0.88 
26 0.025 530 0.50 1.15 1.52 0.28 1.86 2.10 155 -6.0 -9.2 -12.4 4.65 20.4 1.37 
27 0.015 140 0.26 1. 72 2.74 0.10 1.40 0.84 410 -4.1 -11.3 -15.9 41.60 
28 0.015 173 0.27 1.33 2.13 0.11 1.52 0.93 393 -4.3 -9.2 -13.7 24.30 
29 0.015 260 0.33 1.43 2.13 0.15 1. 74 1.14 284 -3.6 -7.7 -12.0 14.20 18.4 1.25 
30 0.015 320 0.40 1.23 2.13 0.17 1.86 1.26 197 -4.4 -9.4 -13.2 10.80 17 .2 1.16 
31 0.015 450 0.43 1.08 1.52 0.21 2.07 1.50 183 -3.6 -5.4 -9.4 5.90 11.0 0.88 

Mean 1.41 -22.5 -25.7 38.5 2.67 
Standard Deviation 0.20 13.1 13.0 18.5 1.28 
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The measured wave periods T shown in Table 1 (column 4) were fairly 

constant with a mean value of T = 1.41 seconds and a standard 

deviation of 0.20 seconds. 

The wavelength L can be approximated by taking the product of the 

celerity c and the mean wave period. The following relationship for 

the wavelength is obtained from Eq. 8 with 

L ~ cT = 1.69 u + 1.41 jgh + 0.24 u2 

~ = 1.2 and T = 1.41: m 

(32) 

The wavelength can also be written in the following dimensionless 

form, L/uT. It is easily demonstrated from Eq. 31 with ~ = 1.2 that m 

the dimensionless wavelength varies with the Froude number as follows: 

uT 
1.20 + ~~2 + 0.24 -= L (33) 

This equation is more general than Eq. 32 since it depends on the 

wave period T as opposed to the mean value T = 1.41 s used in Eq. 32. 

3.3.2 Critical distance for the formation of roll waves 

In Section 2.3.2, two equations were theoretically derived to 

define the critical distance t . c Prediction of tc from Eq. 25 

requires evaluation of the parameter, e, while Eq. 29, valid only for 

supercritical flows, requires the evaluation of the parameter D. In 

this section, both relationships are examined in the light of experi-

mental data for laminar sheet flows. 

In Eq. 25, the distance tc is a function of ~' y, and e. The 

parameters ~ and y are computed from Eq. 22 and 23 and presented in 

Columns 9 and 10 in Table 1. The values of !n e calculated from 

.Eq. 25 using measured values of tc are presented in Column 12, 

Table 1. The values of Qn e range from -61 to -9.4 with a mean value 
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of -25. 7. 

values of 

As suggested by Montuori (1963) and Liggett (1975), the 
-pe tn( y) or Ytc were computed as shown in Table 1 (Col. 11). 

Measured values of were converted to the dimensionless 

parameter -2 gSt /u c in column 13 of Table 1 and plotted against the 

Froude number in Fig. 3. This figure clearly defines a region where 

roll waves were observed Ct > -35/y) and a region where roll waves 

were not completely developed Ct< -5/y). Between these limits exists a 

zone of uncertainty defined by -35/y < t < -5/y. c This figure can be 

used to estimate the distance for the formation of roll waves from the 

parameter y. The evaluation of y from Eq. 23 is. possible provided 

the variables S, u, c and F are known. 
0 

If the flow is supercritical, the evaluation of tc from Eq. 29 

involves only the flow depth, slope and the coefficient D. It was 

demonstrated in Section 2.3.2 that D is substantially constant if ~ 

is small compared to ln(S/3e). This condition is satisfied for the 

range of data in this experimental study. The values of D tabulated 

in column 14 (Table 1) were computed from the experimental values of 

t , S and h using Eq. 29. The mean value for D is 38.S with a stan-c 
dard deviation equal to 18.5. Equation 29 is therefore recommended to 

estimate tc for supercritical flows, when depth and slope are known. 

The flow depth in Eq. 29 can also be replaced by a function of the 

slope and the Reynolds number from Eq. 4: 

in which, E 
Kv2 1/3 

= D(-) 8g 

(34) 

(35) 
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These relationships indicate that for the same slope and Reynolds 

number, the constant E, and therefore the critical distance, tc' 
increases with increasing viscosity and surface roughness, K. The 

parameter E, has dimensions of length. Values of E from the 

experiments are tabulated in column 15 of Table 1. This parameter has a 

mean value of 2.67 mm and a coefficient of variation of 48 percent. 

Equation 34 is recommended for supercritical laminar sheet pows over 

smooth surfaces. It should be noted that the mean values of the coeffi-

cients, D = 38.S and E = 2.67 mm, apply to the range of conditions used 

in this experimental study. These values may not be applicable beyond 

this range. 
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Fig. 3. Dimensionless critical distance as a function of Froude number. 
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IV. SUMMARY AND CONCLUSIONS 

The formation of roll waves in laminar sheet flows is examined 

using a theoretical analysis supported by experimental data. Previous 

investigations indicate that roll waves are theoretically possible in 

laminar sheet flows at Froude numbers as low as 0.50. The existence of 

roll waves at Froude numbers near the lower limit is difficult to verify 

experimentally because of the extreme channel lengths required. How-

ever, in this study, roll waves were observed in laminar, subcritical 

flow at a Froude number as low as 0.74. 

The parabolic velocity distribution in laminar sheet flows implies 

that the momentum correction factor is larger than unity (f3 = 1.2). m 

Since the celerity of roll waves depends on the momentum correction 

factor, the relationship c = ii + Ji,h. suggested in previous studies is 

not applicable to laminar sheet flows. The recommended relationship for 

c uses the momentum correction factor, f3 , instead of an empirical m 
coefficient proposed by Arsenishvili. The proposed relationship reduces 

to c = /i,h when f3 = 1 and is in good agreement with the measured o m 

celerities of roll waves when f3 = 1.2 as shown in Fig. 2. The measured m 

periods of roll waves remained fairly constant in the experimental study 

at T = 1.41 second. The wavelength is shown to vary between 1.69 iiT < L 

< 3.26 uT. 

The linearized derivation by Liggett (1975) of the length, ~ , c 

required for the formation of roll waves has been modified because 

experimental evidence demonstrates that the assumption c = .Jib. does not 
0 

hold true for laminar sheet flows. The modified derivation gives more 

general expressions for the coefficients f3 and y which reduce to those 

proposed by Liggett when f3 = 1. The results indicate that the length 
m 
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t is a function of several flow variables and a constant of integration c 

e which could be calculated from experiments. Though the parameter 

£~ e varies from -61 to -9.4, the dimensionless distance shown in Fig. 

3 displays a relationship to the Froude number similar to the one found 

by Montuori (1963) for turbulent flows. These results show that in 

laminar flows, the distance tc is inversely proportional to y. For 

supercritical flows, tc is proportional to the ratio of flow depth and 

slope. Alternatively, an equivalent function of Reynolds number and 

slope may be used. 
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APPENDIX I 

Derivation of the Coefficients ~ and y 
for Laminar Sheet Flow 
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A. Coordinate Transformation of the Equations of Continuity and 
Momentum 

The equations of continuity and momentum for shallow flow in a 

prismatic channel (Liggett, 1975a) are given by: 

(1.1) 

and 

(1.2) 

in which x is the downslope distance and the subscript G designates 

gradually varied flow. We now define an alternative set of coordinates: 

t = x (1.3) 

~ = cu + c )t - x 
0 

in which u is the uniform flow velocity. 

(1.4) 

The variable, t, represents the distance between the origin of the 

fixed coordinate system and one point moving with characteristic speed, 

(u + c ). The variable, ~' defines position in the moving coordinate 
0 

system. 

Differential operators given by the chain rule are: 

and 

From 1.3 and 1.4: 

~ - 1 ax -

(1.5) 

(1.6) 

(1. 7) 
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£!} -ax - -1 (1.8) 

£!} - (ii + c ) at - 0 
(1.9) 

£t -at - 0 (1.10) 

Substituting 1.7 and 1.8 into 1.5, and 1.9 and 1.10 into 1.6 results in: 

a a a 
ax = ~ - a., (1.11) 

a - a 
at = (u + co) a., (1.12) 

Equations 1.8 and 1.11 show that despite the dependence of 11 and t 

evident in Eq. 14, a111at = 0 in the transformed coordinate system. 

Using 1.11 and 1.12, 1.1 and 1.2 are transformed into: 

(1.13) 

and 

(1.14) 

in which t and 11 are the new independent variables. Note that 

Eqs. 1.13 and 1.14 are identical to Eqs. 13 and 14 in the text. 

B. Perturbation Analysis of the Transformed Equations of Continuity 
and Momentum 

Given a small perturbation, the flow variables hG' uG' BG and AG 

in Eqs. 13 and 14 (1.13 and 1.14) are replaced by the perturbed vari-

ables, h', u', B' and A' as defined in Eqs. 15 through 18. For the 

sake of convenience, ·the partial derivatives of the perturbed variables 

are written using the following notation: 

h* = ah' a., (1.15) 
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h"""* ah* = a., (1.16) 

u* = au' 
a., (1.17) 

u** 
a2U., = 
ari2 (1.18) 

B+ aB' = ah' (1.19) 

B aA' 
ah' (1. 20) 

Using Eqs. 1.15 through 1.20, and Eqs. 15 through 18, and 20 in the 

text, first order approximations for variables in the perturbed continu-

ity and momentum equations can be written as follows: 

u.· 'V u. + U.*11 

+ B' 'V B + B h-;'c-11 

A' ~A + Bh*'l 

au - - ~·· + 2u-ol.-1:-n a., = U" ····., 

(1.21) 

(1. 23) 

(1.24) 

(1.25) 

(1.26) 

(1.27) 

(1.28) 

(1. 29) 

Assuming a perturbation, the continuity and momentum equations are given 

by: 



30 

B'(ll + c0 ) :~· + ll 1 B'(:t• - ;~
1

) + A'(:i' - ;~
1

) = 0 (1. 30) 

and 

(u + c) au' + u'(~ - au') (ah' ah') ( ) 
0 an as an + g ar - an = g S - Sf (1.31) 

Note that the mean velocity in the term cu + c ) 
0 

remains unaffected by 

the perturbation because this term represents the characteristic speed 

which is assumed to be constant. 

Substituting the right hand sides of Eqs. 1.21 through 1.29 into 

Eqs. 1.30 and 1.31, dropping second order and higher terms and simplify-

ing results in: 

c
0

[B(h* + 2h~""*n) + B+h*2n] + uB a~iQ 

- 2Bll*h*~ + A(a~i~ - ll* - 2ll**~) ~ 0 

= -s g(~* - 2:*)n 
u 

(1. 32) 

(1. 33) 

As n approaches zero, zero and first order terms in n on the 

left hand sides of Eqs. 1. 32 and 1. 33 can each independently be set 

equal to the respective right hand sides and rearranged to yield 

c u* - gh* 
0 

+ 2 - ahi• 2Bc hih~ + B c h* + Bu ~ o o as 

(1. 34) 

(1. 35) 

(1. 36) 
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- - - - au* ah* 2c0 u** - u*u* + u ~ + g(~ - 2h**) 

u* 2h* + Sg(:- - h) ~ 0 (1.37) 
u 

After assuming a rectangular channel (B + = 0 and A = Bh), 

Eq. 1.36 is divided by Be 
0 

and Eq. 1.37 by g to yield respectively: 

2h** u ah* u*h* h au* - ) 
+ c ~ -2 -c- + c ( ~ -2u** ~ O 

0 0 0 
(1.38) 

and, 

c u~-k 
2 _o __ -

g 
u*u* u au* ah* cu* 2h* 
-g- + g ~ + ~ -2h~-k + s :- - ·h) ~ 0 

u 
. (1. 39) 

Adding Eqs. 1.38 and 1.39 cancels the term h~"'* as follows: 

ah* (1+ u ) + au* ( ~ + ~ ) - 2u* h~ 
~ c ~gc c" 

0 0 0 
g 

+ u** Zco 2h u-* 2h* 
(- - -) + S(:- - h) ~ 0 

g co u 
(1. 40) 

Equation 1.35 is solved for u* and differentiated with respect to 

11 to obtain an expression for u** as follows: 

u* = gh* 
c 

0 

~ g_ ah* 
- c a., 

0 

(1.41) 

(1.42) 

The right hand sides of Eqs. 1.41 and 1.42 are substituted into 

Eq. 1.40 to yield: 
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2c F2 :r (1 + ~ii + gb.2) - 3g2 h*h* + h*gS (1 - ~) 
0 C C UC U 

0 0 0 

oh* 2 h 
0~ c2 - ~) = o 

c 
0 

(1.43) 

Assuming that the partial derivatives in the first and last terms 

of Eq. 1.43 are of similar magnitude while noting that the coefficient 

of the last derivative is always much smaller than the first, the last 

term is dropped to give: 

oh1
\- + 2u + 8!!_) 
~ (l c 2 

382 h*h* + h* ~ (1 
0 c 

0 
C UC 

0 0 

This equation is in the form: 
oh~..-af - ~ h*h* + yh* = 0 

~ = ___ 3 __ g __ _ 

c 2 + 2iic + gh 
0 0 

2c F2 
y=~(l- 0 )( 

u u 

c 
0 

2 -c +2c u+gh 
0 0 

) 

2c F2 
0 

u 
) = 0 (1.44) 

(1.45) 

(1.46) 

(1.47) 

These two relationships for ~ and y reduce to those found by 

Liggett (1975) for the particular case where c = ..f&h. 
0 
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APPENDIX II 

Experimental Data 
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Water Unit Roll Wave 
AT 3 AT 4 Date Run Slope Temp. Discharge Formation 

oc 2 c p 
cm /sec m sec sec 

10/19/84 1 0.040 20.0 3.33 0.61 No 1 3.2 27.0 
1.22 Yes 2 3.4 25.0 

3.2 28.0 
3.3 
3.3 

10/19/84 2 0.040 20.0 3.97 0.61 No 3.0 31.8 
1.22 Yes 3.0 31.4 

3.2 33.6 
3.0 
3.0 

10/19/84 3 0.040 20.0 4.97 0.61 No 2.6 40.6 
1.22 Yes 3.0 42.4 

2.6 35.8 
2.8 
2.6 
2.8 
2.8 
2.8 
2.9 
2.4 
3.0 
2.9 

10/19/84 4 0.035 20.0 0.68 2.44 No 7.0 25.2 
3.05 Yes 6.8 25.2 

7.4 23.6 
7.2 26.8 
6.9 

10/19/84 5 0.035 20.0 0.94 1.83 No 5.6 25.6 
2.44 Yes 6.6 24.6 

5.6 26.6 
6.6 
5.4 

10/19/84 6 0.035 20.0 1.40 1.22 No 4.4 28.2 
1.83 Yes 4.2 32.0 

5.0 26.2 
4.2 
4.5 

10/19/84 7 0.035 20.0 1.87 1.83 No 4.6 25.0 
2.44 Yes 4.2 27.8 

4.4 
4.6 
4.6 

1No roll waves observed at this length. 
2Roll waves observed at this length. 
3Time interval for wave crest to travel 1.52 m. 
4Time interval for 20 wave crests to pass a fixed point. 



35 

Water Unit Roll Wave 
b.T 3 !J.T 4 Date Run Slope Temp. Discharge Formation oc 2 c p 

cm /sec m sec sec 

10/19/84 8 0.035 20.0 2.63 1.83 No 3.5 28.4 
2.44 Yes 3.1 27.8 

3.8 26.0 
4.0 
3.8 

10/19/84 9 0.035 20.0 3.77 2.44 No 4.0 22.6 
3.05 Yes 3.3 25.1 

3.3 24.0 
3.5 
3.6 
3.8 

10/18/84 10 0.030 20.0 0.89 1.83 No 6.2 27.4 
2.4 Yes 6.4 25.4 

6.5 28.0 
6.4 
6.4 

10/18/84 11 0.030 20.0 1.21 2.44 No 6.2 35.2 
3.05 Yes 5.6 25.4 

6.6 25.8 
6.4 26.6 
6.2 30.0 

10/18/84 12 0.030 2.0 1.99 2.44 No 4.0 29.0 
3.05 Yes 4.5 30.2 

4.0 29.0 
4.6 
4.1 

10/18/84 13 0.030 20.0 2.58 2.44 No 3.7 25.2 
3.05 Yes 3.5 24.4 

3.8 25.6 
4.0 
3.5 

10/18/84 14 0.030 20.0 3.37 2.44 No 3.8 28.0 
3.05 Yes 3.8 26.6 

3.6 28.0 
3.6 
3.4 

10/18/84 15 0.030 20.0 4.57 1.22 No 3 .. 2 27.4 
1.83 Yes 3.2 28.0 

3.4 25.2 
3.0 
3.1 

10/18/84 16 0.030 20.0 5.46 1.22 No 
1.83 Yes 

10/18/84 17 0.025 20.0 0.65 7.32 No 
7.93 Yes 

10/18/84 18 0.025 20.0 o. 71 7.32 No 
7.92 Yes 
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Water Unit Roll Wave 
llT 3 llT 4 Date Run Slope Temp. Discharge Formation 

oc 2 
c p 

cm /sec m sec sec 

10/18/84 19 0.025 20.0 0.84 3.05 No 6.8 31.2 
3.66 Yes 6.8 29.2 

7.0 29.8 
6.8 
7.2 

10/18/84 20 0.025 20.0 1.03 3.05 No 6.4 30.6 
3.66 Yes 6.4 28.6 

6.2 28.4 
6.2 34.2 
6.2 30.0 

10/19/84 21 0.025 20.0 1.29 2.44 No 4.8 32.0 
3.05 Yes 4.6 32.4 

4.2 27.6 
5.0 31.6 
4.6 

10/19/84 22 0.025 20.0 1. 99 2.44 No 4.8 34.4 
3.05 Yes 4.4 31.0 

4.4 31.4 
4.6 
4.4 

10/19/84 23 0.025 20.0 2.44 1.83 No 3.8 34.4 
2.44 Yes 4.0 36.0 

4.2 34.6 
4.0 
4.0 

10/19/84 24 0.025 20.0 3.17 1.22 No 3.7 30.0 
1.83 Yes 3.0 28.8 

3.4 31. 7 
3.6 30.4 
3.6 
3.6 

10/19/84 25 0.025 20.0 4.17 0.61 No 3.2 24.2 
1.22 Yes 3.8 23.4 

3.0 23.6 
3.0 
2.8 
2.8 
3.4 
3.4 
3.0 
3.4 
3.4 
3.4 

10/19/84 26 0.025 20.0 5.26 1.22 No 3.0 23.0 
1.83 Yes 3.0 23.0 

3.0 22.6 
3.2 
3.0 
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Water Unit Roll Wave 
llT 3 llT 4 Date Run Slope Temp. Discharge Formation oc 2 c p 

cm /sec m sec sec 

10/19/84 27 0.015 20.0 1.39 2.44 No 5.2 36.4 
3.05 Yes 6.2 29.8 

5.6 36.4 
6.0 
6.0 
6.0 

10/19/84 28 0.015 20.0 1. 72 1.83 No 5.6 27.6 
2.44 Yes 5.8 26.4 

5.4 21.8 
5.6 31.2 
5.6 

10/19/84 29 0.015 20.0 2.58 1.83 No 4.4 28.6 
2.44 Yes 4.6 29.0 

5.0 28.6 
4.4 
4.8 
4.8 

10/19/84 30 0.015 20.0 3.18 1.83 No 4.0 25.4 
2.44 Yes 3.8 25.0 

3.8 23.0 
3.8 
3.8 

10/19/84 31 0.015 20.0 4.47 1.22 No 3.8 20.2 
1.83 Yes 3.4 22.2 

3.4 22.2 
3.4 
3.6 

10/09/84 32 0.040 22.8 0.36 No 
10/09/84 33 0.040 22.8 0.59 Yes 
10/09/84 34 0.040 22.8 0.72 Yes 
10/09/84 35 0.040 22.8 0.89 Yes 
10/09/84 36 0.040 22.8 1.17 Yes 
10/09/84 37 0.040 22.8 1. 79 Yes 
10/09/84 38 0.040 22.8 2.45 Yes 
10/09/84 39 0.040 22.8 3.21 Yes 
10/09/84 40 0.040 22.8 4.21 Yes 
10/09/84 41 0.040 22.8 5.58 No 
10/09/84 42 0.020 22.8 0.39 No 
10/09/84 43 0.020 22.8 0.95 Yes 
10/09/84 44 0.020 22.8 1.26 Yes 
10/09/84 45 0.020 22.8 1.89 Yes 
10/09/84 46 0.020 22.8 2.11 Yes 
10/09/84 47 0.020 22.8 2.74 Yes 

*Measurement not taken. For runs 32-57, "Yes" indicates presenc.e of 
roll waves before end of flume. "No" indicates absence of roll waves 
along entire length of flume. 
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Water Unit Roll Wave 
/lT 3 /lT 4 Date Run Slope Temp. Discharge Formation oc 2 c p 

cm /sec m sec se·c 

10/09/84 48 0.020 22.8 3.84 Yes 
10/09/84 49 0.020 22.8 5.26 Yes 
10/09/84 50 0.010 22.8 0.41 No 
10/09/84 51 0.010 22.8 0.55 No 
10/09/84 52 0.010 22.8 1.25 No 
10/09/84 53 0.010 22.8 1.36 No 
10/09/84 54 0.010 22.8 2.69 No 
10/09/84 55 0.010 22.8 3.15 No 
10/09/84 56 0.010 22.8 4.21 Yes 
10/09/84 57 0.010 22.8 4.89 Yes 
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