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ABSTRACT 

 

 

 

BEYOND THE CASE STUDY: CHARACTERIZING NATURAL FLOODPLAIN 

HETEROGENEITY IN THE UNITED STATES 

 

 

With human degradation of natural river corridors, the number of natural, functional 

floodplains is rapidly decreasing due to dams, diversions, artificial levees, draining, 

development, agriculture, and invasive species. At the same time, small- to large-scale interest in 

and implementation of river restoration is expanding, with floodplain restoration soon to take a 

starring role. To properly manage and restore processes to floodplains, we first need a broad 

understanding of what they look like and why. A key component of natural river-floodplain 

systems is heterogeneity, defined as the spatial variation of geomorphic and vegetation classes 

and patches across a floodplain. Heterogeneity of floodplains both reflects and influences the 

fluvial processes acting on floodplains and can help shape our understanding of the form and 

function of floodplains. To begin characterizing floodplain spatial heterogeneity, I present in this 

dissertation: 1) the development of a method to combine field measurements and remote sensing 

data products to calculate integrative landscape-scale metrics of floodplain spatial heterogeneity, 

and the demonstration of which metrics from landscape ecology are likely to be useful for 

identifying qualities of natural floodplains at four case study sites; 2) a sensitivity analysis to 

determine whether and how the values of the heterogeneity metrics change when spatial and 

spectral resolution of the input data are increased, and the extraction of underlying data from the 

classification results to determine whether using higher resolution data allows identification of 

the resulting unsupervised classes in relation to field and remote data at four case study sites; and 
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3) quantification of floodplain spatial heterogeneity, evaluation of whether statistically 

significant patterns are present, and interpretation of the statistical analyses with respect to the 

influence of channel lateral mobility and valley-floor space available using a complete dataset of 

15 sites representing diverse floodplains across the continental United States. I found that 

“stacking” Sentinel-2A multispectral satellite imagery and digital elevation model topographic 

data allows for unsupervised classification of floodplains, and that metrics from landscape 

ecology can differentiate between different floodplain types. I also found via a sensitivity 

analysis that increasing the spatial resolution of the topographic data to finer than 10 m and 

including band ratios related to vegetation improves the classification results. Comparison of the 

field classes with the remote sensing classes allows for general interpretation of the results, but it 

is the heterogeneity within the broad classes that I expect is most important to these ecosystems. 

Lastly, through classification of 15 diverse river corridors across the United States, calculation of 

five heterogeneity metrics, and completion of a comparative analysis, I found that these natural 

floodplains have moderate aggregation of classes (median aggregation index = 58.8%), high 

evenness (median Shannon’s evenness index = 0.934) and intermixing of classes (median 

interspersion and juxtaposition index = 74.9%), and a wide range of patch densities (range of 

patch density = 491–1866 patches/100 ha). I also found that the river corridor characteristics of 

drainage area, floodplain width ratio (space available), and elevation, precipitation, total 

sinuosity, large wood volume, planform, and flow regime (channel mobility) emerge as 

important variables to understanding floodplain heterogeneity.
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 CH 1: INTRODUCTION 

 

 

Floodplains can be described as dynamic bioreactors (Wohl, 2021) that provide many 

ecosystem services in river corridors, including, as summarized by Petsch et al. (2022): soil 

formation, nutrient cycling (e.g. Harms et al., 2009; Appling et al., 2014; Wohl et al., 2018; 

Wohl and Knox, 2022), primary production, habitat provisioning (e.g. Bellmore and Baxter, 

2014), water regulation, erosion control, water purification, waste treatment, disease regulation, 

climate regulation, and genetic resources. Importantly, each of these processes is closely tied to 

the three-dimensional spatial heterogeneity of the floodplain (Naiman et al., 2005; Appling et al., 

2014; Helton et al., 2014), defined in this study as the spatial variation of geomorphic and 

vegetation classes and patches across a floodplain. Classes represent distinct types of floodplain 

habitats that blend geomorphic features and vegetation communities. Geomorphic features 

identified in the field include active channels, secondary channels with limited or no surface 

hydrologic connectivity, accretionary bars, backswamps, and natural levees. Vegetation 

communities include old-growth and younger conifer forest and deciduous forest, mesic 

wetlands, grasses, xeric vegetation, and beaver meadows (willow carrs). Floodplain 

heterogeneity results from erosion and deposition created by diverse fluvial processes (Nanson 

and Croke, 1992), as well as biotic processes such as beaver (Castor spp.) modifications (Larsen 

et al., 2021) in the northern hemisphere, vegetation dynamics (Naiman et al., 2005; Larsen and 

Harvey, 2010), and wildfire (Kleindl et al., 2015). Fundamentally, floodplain spatial 

heterogeneity responds to interactions among multiple controls (Figure 1.1) and both reflects and 

influences fluxes and storage of water, solutes, sediment, and large wood. 
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Figure 1.1. Conceptual model of controls of floodplain spatial heterogeneity. Main controls are shown in dark blue 

text and predictors are shown in turquoise and orange text. Turquoise predictors indicate drainage basin-level 

values and categories, and orange predictors indicate study site-level values and categories. Solid arrows connect 

predictor variables to the main controls they represent and to other predictor variables that they influence or are 

influenced by, and double-sided arrows connect predictor variables that interact reciprocally with each other. The 

dashed arrow connecting Beaver and Floodplain Width/Channel Width represents the habitat preference of beaver 

for wider floodplains, but also the fact that their presence and dam building can increase the regularly flooded 

width of the valley floor (e.g., Westbrook et al., 2011). The inset tiles illustrate contrasting values or levels for each 

variable. 

At present, spatially heterogeneous and fully functional floodplains are disappearing due 

to human modifications such as flow regulation (Thoms, 2003), land drainage, and artificial 
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levees (Knox et al., 2022). We know that managed river corridors have lower spatial 

heterogeneity and functionality (Samaritani et al., 2011; Kuiper et al., 2014; Schindler et al., 

2016; Wohl and Iskin, 2019), further emphasizing the need to quantify heterogeneity in natural 

floodplains. 

My approach to this urgent issue and the objectives of this dissertation are to 1) develop a 

method to quantify spatial floodplain heterogeneity using remote sensing principles and 

landscape ecology metrics; 2) refine the method by increasing many facets of data resolution and 

determine a suite of suitable metrics through a sensitivity analysis; and 3) apply the method to 15 

diverse river systems around the United States, evaluate whether statistically significant patterns 

occur among these data, determine whether there are salient characteristics of river corridors that 

relate to multiple facets of heterogeneity, and interpret the statistical results in terms of the 

primary controls – channel lateral mobility and valley-floor space available – as well as the 

factors underlying mobility and space, such as flow regime and biota. The three primary chapters 

of this dissertation outline the specific workflow and tools I used to collect, process, and analyze 

the remotely sensed data to ensure repeatability of this work. The chapters provide insight into 

important considerations when conducting remote sensing of river systems, and present multiple 

statistical tools to investigate patterns. They also provide a framework for both classification and 

quantification of heterogeneity that should be applicable to floodplains anywhere, expanding the 

applicability of this work far beyond the United States. Each of the next three chapters is a self-

contained unit that has been published (Chapter 2 in River Research and Applications), 

submitted to (Chapter 3 to Journal of Hydrology), or is in preparation for (Chapter 4 expected to 

Water Resources Research) a peer-reviewed journal.
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 CH 2: METHODS & METRICS1 

 

 

Summary 

Floodplains provide numerous ecosystem services that depend on the spatial 

heterogeneity, or patchiness, of the floodplain. Direct and indirect human alterations of rivers can 

reduce floodplain heterogeneity and function, but relatively little is known of patterns of 

floodplain heterogeneity in natural, fully functional floodplains. I quantify floodplain 

heterogeneity at four sites in the United States with the objectives of (i) developing a method of 

combining field measurements and remote sensing data products to calculate integrative 

landscape-scale metrics of floodplain spatial heterogeneity and (ii) demonstrating which metrics 

from landscape ecology are likely to be useful for identifying qualities of natural floodplains, 

differentiating floodplains, and inferring processes, based on a case study of three prairie 

floodplains and one beaver-modified floodplain in the continental United States. I developed a 

new unsupervised classification workflow that combines field data, topography, and Sentinel-2A 

imagery to create classified floodplains for all four field sites that could be used to calculate 

heterogeneity metrics. I identified six heterogeneity metrics for characterizing natural floodplain 

heterogeneity: aggregation index, interspersion and juxtaposition index, largest patch index, 

patch density, percentage of like adjacencies, and Shannon’s evenness index, and these metrics 

capture both intermetric (variation in spatial heterogeneity between the floodplains) and 

intrametric variation (variation in the patterns of the metrics). Results show that natural 

floodplains have high evenness and interspersion and juxtaposition of classes, and I attribute this 

 

1Published as Iskin and Wohl, 2023. Quantifying floodplain heterogeneity with field observation, remote sensing, and landscape 

ecology: Methods and Metrics, River Research and Applications, https://doi.org/10.1002/rra.4109. 
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to natural flow and sediment regimes driving channel migration, erosion, deposition, vegetation 

succession, and active beaver modifications. Colorado floodplains show higher aggregation and 

lower fragmentation than the Oklahoma floodplain. I attribute this to the greater incision and 

lower hydrologic variability at the Oklahoma site.  

 Introduction 

Floodplain heterogeneity, defined here as the three-dimensional spatial variation of 

topography and vegetation communities, influences many aspects of river corridors. My 

objectives are to develop a method to calculate integrative landscape-scale metrics of floodplain 

spatial heterogeneity and demonstrate which metrics from landscape ecology are likely to be 

useful for identifying qualities of natural floodplains, differentiating floodplains, and inferring 

processes with a case study of four floodplains and one beaver-modified floodplain in the 

continental United States. In this introduction, I first review the drivers and implications of 

floodplain spatial heterogeneity in relation to ecosystem services provided by floodplains, then 

review the use of spatial heterogeneity metrics in landscape ecology, and finally discuss the 

objectives of this paper. 

2.1.1 Floodplain Heterogeneity 

Floodplains can be described as dynamic bioreactors (Wohl, 2021) that provide many 

ecosystem services in river corridors. Examples of floodplain ecosystem services include flood-

peak attenuation, groundwater recharge and aquifer storage, hyporheic exchange, denitrification 

(Harms et al., 2009; Appling et al., 2014; Wohl et al., 2018), organic carbon sequestration (Wohl 

and Knox, 2022), habitat abundance and diversity, and biodiversity (Bellmore and Baxter, 2014). 

Each of these processes is closely tied to the three-dimensional spatial heterogeneity of the 

floodplain (Naiman et al., 2005; Appling et al., 2014; Helton et al., 2014). Floodplain 
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heterogeneity results from erosion and deposition created by diverse fluvial processes (Nanson 

and Croke, 1992), as well as biotic processes such as beaver (Castor spp.) modifications (Larsen 

et al., 2021) in the northern hemisphere, vegetation dynamics (Naiman et al., 2005; Larsen and 

Harvey, 2010), and wildfire (Kleindl et al., 2015). Floodplain erosion, deposition, and storage 

reflect fluctuating inputs of water (Junk et al., 1989; Tockner et al., 2000), sediment (Trimble, 

1981; Lecce, 1997), and large wood (Collins et al., 2012) that drive channel movements (Amoros 

and Bornette, 2002; Choné and Biron, 2016) and overbank erosion and deposition. Floodplain 

heterogeneity also creates spatial heterogeneity in river corridor processes (Zeug and Winemiller, 

2008; Doering et al., 2021), such as channel sinuosity and meander migration (Güneralp and 

Rhoads, 2011; Schwendel et al., 2015), channel planform (Polvi and Wohl, 2012), subsurface 

flow paths (Fuchs et al., 2009), sediment transport and storage (Westbrook et al., 2011; 

Baartman et al., 2013), contaminant transport and storage (Lowell et al., 2009; Ciszewski and 

Grygar, 2016), carbon storage (Samartini et al., 2011; Lininger et al., 2018), soil nutrients 

(Naiman et al., 2005; Appling et al., 2014), inundation patterns and associated vegetation 

establishment (Scott et al., 1996; Hughes, 1997; Friedman and Lee, 2002), and fish life cycles 

and food webs (Bellmore et al., 2013; Zeug and Winemiller, 2008; Stoffers et al., 2022). 

Fundamentally, floodplain spatial heterogeneity responds to interactions among multiple drivers 

and both reflects and influences fluxes and storage of water, solutes, sediment, and large wood 

(Figure 2.1). 

Floodplain heterogeneity is dynamic in time in response to changes in drivers and 

interactions among response variables. At present, spatially heterogeneous and fully functional 

floodplains are rapidly disappearing due to human modifications such as flow regulation 

(Thoms, 2003), land drainage, and artificial levees (Knox et al., 2022). As loss of heterogeneity 
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creates loss of floodplain functionality (Samaritani et al., 2011; Kuiper et al., 2014; Schindler et 

al., 2016; Wohl and Iskin, 2019), floodplains are becoming a major focus of river restoration 

(Tockner et al., 2008; Wohl et al., 2021), emphasizing the need to quantitatively characterize 

heterogeneity in natural floodplains. 

 

Figure 2.1. Conceptual diagram of the dynamic interactions of natural heterogeneous floodplains. Colors group the 

processes into three types and arrows indicate the directionality of influence. Solid text boxes surrounding 

floodplain heterogeneity indicate the three main physical factors that interact with floodplain heterogeneity. These 

arrows are double-sided as the interactions are dynamic and reciprocal. The dashed text boxes list some specific 

larger-scale processes that could result in changes in boundary erodibility and/or sediment deposition and erosion. 

The striped callouts list some specific biota and fluxes that interact with floodplains. CPOM is coarse particulate 

organic matter. 

The three-dimensional spatial heterogeneity of the floodplain can be described as the 

patchiness of the floodplain (Ward et al., 1999; Beechie et al., 2006). Patches are discrete spatial 

units that differ from adjacent units. Recognition of channel and floodplain patches gave rise to 

the conceptual model of the shifting habitat mosaic in river corridors (Arscott et al., 2002; 
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Stanford et al., 2005) and Thoms et al. (2005) describe floodplains as dynamic mosaics of 

patches. Patches can be defined using diverse criteria, such as depositional history and associated 

differences in substrate and topography (e.g., levee versus backswamp), vegetation community, 

or soil moisture. Many of these characteristics correlate with one another, so the primary criteria 

used to define patches depend on the focus of the investigation (Scott et al., 2022). Patches can 

also be defined at diverse spatial scales, from sub-meter habitat patches for macroinvertebrates, 

for example, to individual floodplain wetlands covering tens to hundreds of square meters. 

2.1.2 Metrics in Landscape Ecology 

The field of landscape ecology deals with heterogeneity of surfaces across spatial and 

temporal scales, including landscape composition and configuration (With, 2019). Classic 

descriptions of landscapes are segmented into landscapes, classes, and patches (“patch-based”, 

Figure 2.2), and the spatial metrics are consequently grouped by landscape-scale, class-scale, and 

patch-scale metrics. Although there are other types of analyses in landscape ecology beyond 

patch-based (Erős and Lowe, 2019; With, 2019), I have chosen to use patch-based, following 

Scott et al. (2022), landscape-scale metrics in this study to simplify the methods and to facilitate 

comparison between floodplains at the reach scale (here, a reach is a length of river corridor with 

consistent channel and valley geometry). More detailed analysis of specific classes could use 

class- or patch-scale metrics.  

General metrics of heterogeneity include measures of richness, diversity, and evenness. 

Measures of richness relate to the number of different types of classes present in a landscape – 

many different class types would be a rich landscape (With, 2019). Measures of diversity relate 

to the number of classes and their relative abundance. Evenness is a normalized measure of 

diversity. Shannon’s and Simpson’s indices are commonly used diversity and evenness metrics 
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(With, 2019; Hesselbarth et al., 2021). Before the landscapemetrics package was developed for 

the R programming language by Hesselbarth et al. (2019), the FRAGSTATS program was used 

to calculate landscape metrics from different types of digital images (McGarigal and Marks, 

1995). 

 

Figure 2.2. Example landscape illustrating the different spatial scales of patch-based landscape ecology. This 

landscape has four classes and 18 patches. Metrics could be calculated for a landscape like this and compared with 

analogous metrics for other landscapes. In this analysis, landscapes, or riverscapes, are the delineated floodplains, 

classes were defined in the field for each floodplain, and patch boundaries were delineated along lateral transects.  

Heterogeneity, complexity, connectivity, diversity, and other terms are used to describe 

related facets of temporal and spatial variation characteristic of river corridors (Table 2.1). 

Different methods have been used to measure floodplain variations, typically with the intent of 

inferring underlying processes (Turner and Chapin III, 2005; Scott et al., 2022). 
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Table 2.1. Definitions of terms commonly used to describe the natural variation of river corridors 

Term Definition References 

Spatial heterogeneity 
Spatially explicit structure commonly described in terms 

of spatial units (e.g., patches) 

Cadenasso et al., 2006; 

Wohl, 2016 

Complexity 
Nonlinear dynamics, self-organization, and emergent 

properties 

Werner and McNamara, 

2007; Rhoads, 2013; 

Phillips, 2014 

Connectivity 
The degree to which matter and organisms can move 

among spatially defined units in a natural system 

Fryirs, 2013; Bracken 

et al., 2013, 2015; 

Wohl, 2017; Wohl et 

al., 2019 

Spatial diversity Analogous to spatial heterogeneity Feoli et al., 2013 

Natural range of 

variability 

The spatial and temporal bounds of variations in specified 

system parameters within a specified timespan, for 

systems relatively unaffected by people 

Landres et al., 1999; 

Grondin et al., 2018 

Historic range of 

variability 

Analogous to the natural range of variability, but including 

systems or periods of time with human influence on the 

system; sometimes used synonymously with natural range 

of variability  

Morgan et al., 1994; 

Fryirs et al., 2012 

 

Multiple metrics are useful for distinguishing different aspects of floodplain 

heterogeneity, which varies across spatial scales and can be captured by different window sizes 

(Table 2.2). However, temporal metrics for heterogeneity are lacking. Table 2 suggests that 

previous ecological and geomorphic investigations of floodplains have focused primarily on 

surface variation, including topography and hydraulic habitat. Subsurface properties affect 

topography, hydrologic flow paths and associated biogeochemical reactions, and vegetation 

(Scott et al., 1996; Hughes, 1997; Friedman and Lee, 2002; Naiman et al., 2005; Güneralp and 

Rhoads, 2011; Appling et al., 2014; Helton et al., 2014; Schwendel et al., 2015), and therefore 

should be included in metrics of floodplain heterogeneity, but there is a disconnect between the 

extensive literature on floodplain sedimentology and stratigraphy (e.g., Allen, 1965; Slingerland 

and Smith, 2004) and the literature on floodplain spatial heterogeneity. And while many studies 

investigate riparian vegetation structure and health with a landscape ecology lens (Walford and 

Baker, 1995; van Coller et al., 2000; Bagstad et al., 2006; Aguiar et al., 2009, 2011; Fernandes et 

al., 2011), there is commonly a lack of explicit inclusion of vegetation in the development of 
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general floodplain heterogeneity metrics based on topography (Table 2.2). I start to address these 

gaps in the analyses presented here, which incorporate topography and vegetation. Subsequent 

analyses will include subsurface soil texture data collected in the field. 

Table 2.2. Summary of previous studies of floodplain hydrological and geomorphic variation in the context of 

estimating spatial heterogeneity 

Dimension Metric Data Results Reference 

Floodplain 

complexity 
Surface elevation 

measures 
- - 

Wohl, 

2016 

Floodplain 

connectivity 

Surface Hydrological 

Connectivity (temporal, 

longitudinal) 

Riverscape Diversity 

(spatial Shannon index 

with turbidity classes and 

channel length proportion 

as abundance) 

Historical 

records, 

digitized maps, 

aerial 

photographs, 

field data 

Surface Hydrological Connectivity 

reveals a threshold channel length of 15 

km below which channel length increases 

and surface connectivity stays about 

constant. 

Riverscape Diversity increases with 

increasing river length. 

Ward et al., 

2002 

Hydraulic 

habitat 

Hydromorphological 

Index of Diversity, 

Entropy, and Modal 

Density (all spatial, over 

river networks) 

Worldview II 

imagery, field 

calibration, 

hydraulic 

modeling 

All three metrics varied when calculated 

over 130- and 430-m window sizes. 

Hydromorphological Index of Diversity 

and Entropy where able to identify a 

“heterogeneity hotspot” 

Gostner et 

al., 2013; 

Hugue et 

al., 2016 

Surface 

topography 

complexity 

Four statistical metrics 

Digital elevation 

models 

All the metrics vary across spatial scales, 

and that the Standard Deviation of 

Surface Height and Standard Deviation 

of Total Surface Curvature showed 

surface elevation varies more for 

confined floodplains, 

Scown et 

al., 2015a 

Four statistical metrics + 

four more 

Thresholds of scale for patchiness 

emerged at a few different window sizes. 

Scown et 

al., 2015b 
Floodplain Surface 

Complexity (from three 

measures of variability 

and two measures of 

spatial organization 

Floodplain width was related to 

Floodplain Surface Complexity at all 

spatial scales. 

Scown et 

al., 2016 

Floodplain 

heterogeneity 
Number of patches per 

transect length 

Field patch 

delineation 

Decreasing drainage area, planform, and 

decreasing channel gradient are 

associated with increasing floodplain 

spatial heterogeneity. 

More complex planforms (anastomosing, 

meandering, and braided) have higher 

values of spatial heterogeneity. 

Graf, 2006; 

Wohl and 

Iskin, 2019 

Vegetation 
Riparian Vegetation 

Index: multimetric index 

of biotic integrity 

Plant field 

sampling 

Metric was able to separate sites based on 

different criteria 

Aguiar et 

al., 2009 

 

2.1.3 Objectives 

Although previous reviews suggest that landscape ecology methods are appropriate for 

river systems (Poole, 2002; Wiens, 2002) and have even coined the phrase “riverscape ecology” 
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to highlight the specific importance of longitudinal connectivity in river corridors compared to 

terrestrial landscapes (Erős and Lowe, 2019), no one has yet systematically applied heterogeneity 

metrics from landscape ecology to diverse natural floodplains and then related these metrics to 

drivers of fluvial processes. Previous studies have called for quantification of floodplain 

heterogeneity (Tockner et al., 2000; Wohl, 2021) and ecological conditions of large floodplain 

rivers (Erős et al., 2019). 

My primary objectives are to (i) develop a method of combining field measurements and 

remote sensing data products to calculate integrative landscape-scale metrics of floodplain 

spatial heterogeneity and (ii) demonstrate which metrics from landscape ecology are likely to be 

useful for identifying qualities of natural floodplains, differentiating floodplains, and inferring 

processes with a case study of three prairie floodplains and one beaver-modified floodplain in the 

continental US. Although the proposed method only measures spatial heterogeneity, it could be 

repeated over time to measure temporal heterogeneity as well using repetitive capture of Earth 

images. I include a brief discussion of change through time at all sites as an indicator of how 

well the metrics calculated here might represent diverse timespans. 

 Study Area 

This case study focuses on three prairie floodplains in the western and central United 

States, West Bijou Creek and East Plum Creek in Colorado and Sand Creek in Oklahoma, and 

one beaver meadow floodplain in the Rocky Mountains, Rough and Tumbling Creek in Colorado 

(Figure 2.3). The study reaches vary in most of their basic characteristics (Supplemental Table 

2.1), especially Rough and Tumbling Creek’s lithology, basin elevation, slope, channel 

planform, flow regime, and dominant vegetation.  
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Figure 2.3. Location map of field sites: a) Rough and Tumbling Creek, Colorado (flow direction is east); b) East 

Plum Creek, Colorado (flow direction is north); c) West Bijou Creek, Colorado (flow direction is north); and d) 

Sand Creek, Oklahoma (flow direction is east). Map shows the drainage area boundaries upstream of the 

downstream-most point of each study reach. Level III Ecoregions are labeled. Drainage area shapefiles delineated 

and downloaded from USGS StreamStats in September 2021 and September 2022 (USGS, 2021, 2022a), and 

ecoregion shapefiles downloaded from the Environmental Protection Agency in December 2021 (U.S. EPA, 2013). 

These field sites are conducive to measuring natural floodplain heterogeneity because 

they have minimal large-scale human impacts such as artificial levees, land drainage, flow 

regulation, or land cover changes. This can be observed as little-to-no change of land use 

category via the NLCD Land Cover Change Index (MRLC, 2022). This facilitates distinguishing 

natural floodplain characteristics in contrast to those modified by human activities (Graf, 2006; 

Tockner et al., 2008; Wohl and Iskin, 2019). 
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 Methods 

Data were collected through a combination of field measurements and compiling of 

remote imagery. The field measurements were conducted primarily to inform interpretation of 

remote imagery but are not essential to using the classification method described below. I 

specifically did not to pre-define floodplain classes (“field classes” and “field patches”) as I did 

not want to limit the types of classes to what I saw during the pilot study (Wohl and Iskin, 2019). 

The pilot was conducted only on Colorado mountain stream floodplains, and I wanted the field 

classes in this study to reflect each unique site (Scott et al., 2022). 

Floodplain patches were mapped along mostly linear transects perpendicular to the valley 

trend at each site. The purpose of this ground-based mapping was primarily to ground-truth patch 

boundaries delineated by classification (“ISO classes” and “ISO patches”) with the field patches. 

Ground-based transects were spaced at approximately 10x the approximate active channel width 

where possible (10 transects at West Bijou and Sand Creeks, 3 at East Plum Creek because the 

length of the study area was limited by human alterations of the floodplain up- and downstream, 

and 1 at Rough and Tumbling Creek due to easily identified floodplain boundaries at the valley 

walls). Each transect spanned the active floodplain at each location. The edges of the active 

floodplain were determined visually using relative topography, vegetation types, water features, 

and evidence of flow observed in the field. Topographic features with vertical relief greater than 

2 m above the surrounding floodplain were interpreted as terraces rather than floodplain on these 

relatively small creeks. Areas with known wetland and mesic plants, such as sedges, rushes, and 

cottonwoods (Populus spp.) generally indicated active floodplain. Surfaces with xeric upland 

vegetation, such as yucca (Yucca spp.) and conifers, generally indicated inactive floodplain. 

Presence of and relative age of cottonwoods reflect the history of floodplain dynamics via 



14 

channel migration, degradation, and aggregation (Everitt, 1968). Areas with evidence of flow, 

such as flowing or standing water, well-sorted gravel or larger sediment, directional 

accumulations of coarse particulate organic matter (CPOM) and wood, and highwater marks, 

were used as indicators of active floodplain, and indicated processes such as sediment and wood 

transport and storage (e.g., Wohl et al., 2016). 

Field classes and field patches were differentiated visually based on depositional and 

erosional features, vegetation type and relative age, relative sediment grain size and moisture, 

and presence of large wood accumulations (Table 2.3). Depositional and erosional features 

included side channels, overflow surfaces, overgrown surfaces, and abandoned meanders. These 

features indicate processes such as channel migration and avulsion, side channel formation, 

wood transport and storage, sediment transport and deposition, and meander cutoff (e.g., Hooke, 

1995; Collins et al., 2012). Vegetation type and age characteristics were defined at each field site 

rather than being predetermined, and included plant height, tree trunk diameter at breast height, 

coniferous vs. deciduous trees and shrubs, grasses, xeric or upland plants, wetland plants such as 

sedges and rushes, and visual assessment of “healthy” or “stressed” (wilting, dry, etc.) vegetation 

condition. Relative vegetation age, type, and health are indicators of recurrence of floodplain 

inundation and large flooding, depth to groundwater, and succession (e.g., Hughes, 1998; Karimi 

et al., 2021). Relative sediment grain size included simple visual differentiation (not explicitly 

measured) between sand, gravel, cobbles, and boulders. Grain size is an indicator of source 

material, flow competence, and stream power (e.g., Nicholas and Walling, 1997). Large wood 

features included small accumulations of sticks and CPOM and true logjams (> 3 pieces of large 

wood ≥ 1 m long and ≥10 cm diameter). CPOM is an indicator of floodplain inundation and flow 

(Hein et al., 2003), whereas large wood and jams are indicators of processes such as wood 
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recruitment, transport, and storage (Pettit et al., 2005; Lininger et al., 2021). All of these features 

were used to define the field classes. Field patch edges were generally delineated as a single GPS 

point between two field classes, as most of the patch edges were smaller than the 3 m resolution 

of the GPS. The criteria used to delineate field classes and field patch boundaries are arbitrary 

and subjective in the sense that they are based on visual assessments and limited measurements 

rather than statistically defined categories but allow for simple and quick class designation. I 

endeavored to be consistent in the types of classes that I designated at each field site and to 

choose criteria that could be easily applied by other field investigators. 

I differentiated ten classes at West Bijou Creek in July and October of 2020, six at East 

Plum Creek in September 2020, eight at Sand Creek in June 2021, and three at Rough and 

Tumbling Creek in August 2022, all after peak seasonal flows (Table 2.3). Dates of field data 

collection differ due to availability and access to the sites, but the overall goal was to collect field 

data after seasonal high flows, so that more of the floodplain was visible from the ground. 

Watershed boundaries, digital elevation data, and remote imagery were gathered to align with the 

field data. Overall, field observations were used to map the extent of the active floodplain in the 

study area and to refine the classification workflow, so the mismatch of timing between field 

data and remote sensing products should not significantly affect results. 

Table 2.3. Field class descriptions. 

River 
Class 

No. 
Description 

West Bijou 

Creek 

1 "Active" channel from Transect 1 East boundary 

2 
Sand to fine gravel overflow channel with discontinuous grass and seedling 

willows; 10 cm of loose sand/pebbles, then indurated 

3 
Stable, higher floodplain surface, flat, continuous grass cover, abundant 

cottonwoods with 10–25 cm DBH, many pinned jams, silt/clay drape 

4 
Older, multi-stem cottonwoods with 50 cm DBH, higher/sloped surface, low 

terrace, no jams, continuous grass with cheat grass, prickly pear 

5 Overflow/secondary channel, analogous to Class 3 

6 Young cottonwoods, no jams, yucca - GRASS 

7 Defined secondary channel, not recently active, ~2 m elevation drop 
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8 
Sandy, very young cottonwoods, max 10–15 cm DBH, more undergrowth that is 

cottonwood sprouts, coarse sand bars 

9 
Similar elevation to Class 6, cottonwoods, a lot of LW on the ground, slight 

vertical undulations of floodplain 

10 Young cottonwoods, no jams, yucca – TREES 

Rough and 

Tumbling 

Creek 

1 
Grassy beaver meadow, undulating topography, bushy willow interspersed, at base 

of valley wall 

2 Active channel with beaver dams, gravel point bars, sand to cobble size clasts 

3 
Potentilla bushes with little yellow flowers, yarrow, thinner/drier grass, small 

willows, gentle sloping surface, burrowing rodents 

Sand Creek 

1 
Tall green undergrowth, long-leafed trees that vary from 10–40 cm DBH, sapling 

oak tree, varied depressions with gravel, many types of undergrowth 

2 Downward sloping terrace, silty mud, tall undergrowth 

3 Active channel 

4 Thigh-high grasses 

5 Overflow surface, wetland plants, siltation on leaves, beaver chew visible on wood 

6 
Overgrown section of multi-thread channel, maple-like trees in channel, 3 m high 

water marks, some ponded water, large clam 

7 Head-high bushy plants, 1 m high water marks 

8 
Overflow channel upstream of channel-spanning logjam, 1 m high water marks, 

coarse sand to small boulders 

East Plum 

Creek 

1 
Sumac, dying willows, grass, horsetails, flat, terrace transition, prickly pear, not 

active 

2 Dense willows (not healthy), raspberries, sumac, gradual down slope 

3 
Slight increase in elevation, grasses, sparse stressed willow, sparse cottonwoods 

15–20 cm DBH 

4 
Active channel with flowing water, point bar, willows, annuals, seeding 

cottonwoods 

5 
Dense stressed willows, coarse gravel, undulating topography 3 m above active 

channel, old channels 

Wetland Off-transect wetland area 
Note: DBH stands for diameter at breast height, measured mostly by eye. Species identification was not exact – no field guide 

was used. 

 

2.3.1 Objective I Analysis 

I developed a new workflow for combining topography and multispectral images (Table 

2.4) in an unsupervised spectral classification scheme to determine whether I could successfully 

quantify floodplain heterogeneity remotely (Figure 2.4). It should be noted that while I used two 

datasets in the workflow, almost any raster data could be used in this classification methodology. 

The steps shown in Figure 2.4 are described in detail below. 
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Figure 2.4. Flow chart of classification workflow completed in ArcGIS Pro (Esri, 2022a). Input data are shown in 

orange, specific ArcGIS tools in italicized green (specific options non-italicized), intermediate shapefiles and rasters 

in yellow, manual drawing step in blue, and final raster product in red. 

The field data were imported into ArcGIS Pro (Esri, 2022a) using the XY Table to Points 

tool for the large wood and sediment core locations and the Coordinate Table to 2-Point Line 

tool (geodesic method) for the patch boundaries to represent the transects. Cloud-free mosaics 

were prepared from Sentinel-2A imagery (ESA, 2021) in Google Earth Engine (Gorelick et al., 

2017; code links in Supplemental Information) and imported into ArcGIS Pro. Digital elevation 

models (DEMs) were downloaded from The National Map for each site (USGS, 2020). 
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Table 2.4. Data collected and used in this analysis. 

Data Details Instrument Resolution 
Program 

Used 
References 

GPS Locations 
Patch boundaries, large 

wood, and sediment cores 

Garmin 

GPSMAP 

66ST 

± 3 m - - 

Watershed 

Characteristics 

Upstream drainage basin 

shapefiles and associated 

mean values, downloaded 

on 9/2021 

- 
Drainage basin 

scale 
StreamStats 

USGS, 2021, 

2022a 

Digital 

Elevation 

Models 

NED n40w105 IMG 2018 

NED n37w097 IMG 2019 

NED n40w107 IMG 2022 

Airborne 

Lidar 

1/3 arc-second 

1 x 1 degree 

10 m 

The 

National 

Map 

Open 

Topography, 

2021; USGS, 

2022b, 2020, 

2019, 2018 

Cloud-free 

Mosaics 

5% cloudy mean pixel 

values from 4/1/2020-

10/31/2020 from GEE 

Image Collection 

“COPERNICUS/S2_SR” 

Copernicus 

Sentinel-2A 

10 m 

12-bit radiometric 

5-day temporal 

Bands 2, 3, 4, 8 

Google 

Earth 

Engine 

ESA, 2021; 

Gorelick et 

al., 2017; 

Sabins Jr. and 

Ellis, 2020 

 

Active floodplain polygons were manually delineated using the field transects and DEM, 

and a 10-m geodesic buffer was added to account for field and/or user error. Because only one 

field transect was mapped at Rough and Tumbling Creek, I used the DEM, field transects, 

Google Maps imagery, and the Sentinel imagery to delineate this floodplain. The DEMs and 

Sentinel imagery were clipped to the floodplain polygons to be used in the classifications (Figure 

2.5). 
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Figure 2.5. Sentinel-2A mosaics clipped to buffered floodplain boundaries, field classes, and large wood locations 

and (counts) for a) West Bijou Creek, Colorado, b) Rough and Tumbling Creek, Colorado (small channel locations 

in Class 1 also included), c) Sand Creek, Oklahoma, and d) East Plum Creek, Colorado. 

The DEMs were processed further to emphasize the local elevation changes of floodplain 

features (side channels, terraces, etc.). To decrease the influence of the river corridor gradients, 

the DEM data were detrended. This involved (i) reprojecting the DEMs to WGS84 using bilinear 

interpolation (for continuous values; Esri 2022c), (ii) extracting elevation values from random 

points (number of points calculated from the floodplain area to give a point density of 100 pts/ha, 

numbers given in Supplemental Table 2.1), (iii) creating a linear trend polygon using a 12th order 

polynomial (the maximum for the tool and the highest complexity surface), and (iv) subtracting 

the trend from the DEM. The East Plum Creek DEM was not detrended because the study area 
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was small relative to the scale of the valley trend and detrending did not seem necessary. To 

decrease the dominance of the topographic data over the spectral data from the Sentinel imagery, 

a reducing factor of 0.1 was applied to the detrended DEMs (non-detrended DEM for East Plum 

Creek).  

An unsupervised classification scheme was used to classify the floodplains (ISO Cluster 

Unsupervised Classification tool). The 4-band Sentinel imagery and the processed DEMs were 

used as the input rasters. In addition, the tool requires the user to input a number of classes, 

minimum class size in pixels (default: 20), and sample interval (default: 10) (Esri, 2022b). To 

balance analysis consistency with floodplain area diversity of the sites, I used the same pixel 

values for all classifications and adjusted the number of classes (Supplemental Table 2.2). Low 

numbers for minimum class size (4 pixels) and sample interval (2 pixels) were used so that 

classes would be identified for even the smallest floodplains (and to match the 2-to-1 ratio of the 

default values). Number of classes was set to 20 for the largest floodplain, 10 for the medium-

sized floodplains, and 5 for the smallest (Supplemental Table 2.2). Final classified rasters were 

then projected into the appropriate UTM coordinates using a cell size of 10 and exported for 

statistical analysis (Project Raster tool with nearest neighbor resampling technique and Copy 

Raster tool to eliminate null values outside the floodplain boundaries). 

2.3.2 Objective II Analysis 

All post-classification analyses were conducted in R (R Core Team, 2022) using the 

landscapemetrics package (Hesselbarth et al., 2019). The package can calculate over 100 metrics 

and “reimplements the most common metrics from FRAGSTATS and new ones from the current 

literature on landscape metrics” (Hesselbarth et al., 2021, p. 23). The 11 landscape-scale metrics 

that are normalized, bounded, relative, scalable, and/or comparable were identified: aggregation 
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index, division index, interspersion and juxtaposition index, patch density, percentage of like 

adjacencies, largest patch index, disjunct core area density, patch richness density, Shannon’s 

evenness index, and perimeter-area fractal dimension. Shannon’s diversity (and therefore I infer 

Shannon’s evenness) can show opposite trends to and is more sensitive to rare cover types than 

Simpson’s diversity (and therefore I infer Simpson’s evenness and Modified Simpson’s 

evenness) (Nagendra, 2002) and is more appropriate for this analysis. 

The final list of metrics calculated in this study is the overlap of the 11 comparable 

metrics and the 24 metrics analyzed by Huang et al. (2006) in their sensitivity analysis: 

aggregation index, interspersion and juxtaposition index, patch density, percentage of like 

adjacencies, largest patch index, and Shannon’s evenness index (Table 2.5). When specified, 

metrics were calculated in 8 directions (Queen’s case). Metric details and interpretations 

provided in Table 2.5. 

Table 2.5. Normalized, bounded, relative, scalable, and/or comparable landscape-scale metrics from Huang et al. 

(2006); interpretations adapted from Hesselbarth et al. (2021) and With (2019). 

Metric Type Interpretation 
Range 

(units) 

Aggregation 

Index 
Aggregation 

Aggregation of classes 

0 = disaggregated classes 

100 = aggregated classes 

[0, 100] 

(%) 

Interspersion and 

Juxtaposition 

Index 

Aggregation 

Patch intermixing index, low value indicates pairing 

of two class types 

0 = certain class only next to another certain class 

100 = certain class next to all other classes equally 

(0, 100] 

(%) 

Patch Density Aggregation 
Simple fragmentation, higher value as landscape gets 

patchier 

(0, 1 x 106] 

(#/100 ha) 

Percentage of 

Like Adjacencies 
Aggregation 

Aggregation within a class, likelihood that two 

adjacent cells are the same class 

0 = no like adjacencies, complete disaggregation 

100 = whole landscape is the same class 

[0, 100] 

(%) 

Largest Patch 

Index 
Area and Edge Simple area dominance of the single largest patch 

(0, 100] 

(%) 

Shannon’s 

Evenness Index 
Diversity 

Measure of dominance of a class across the landscape, 

normalized Shannon’s diversity, large values indicate 

equal distribution 

[0, 1) 
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 Results 

I present the results of the classification workflow and the resulting heterogeneity metrics 

calculated.  

2.4.1 Objective I Results 

The resulting classified floodplains are shown Figure 2.6 and were used to calculate 

heterogeneity metrics. Although the choice of input values directly affects the resulting 

classification, the sensitivity of the metrics to changing inputs has been thoroughly documented 

(Huang et al., 2006). I acknowledge that the process of choosing input values for classification is 

somewhat arbitrary, and that this inherently reduces the reproducibility of the study. This is why 

documentation of values used is important when presenting results so that the classifications can 

be reproduced. 

 

Figure 2.6. ISO cluster unsupervised classifications for a) West Bijou Creek, Colorado, b) Rough and Tumbling 

Creek, Colorado, c) Sand Creek, Oklahoma, and d) East Plum Creek, Colorado. The classification was completed 

using 4-band Sentinel-2A imagery and detrended, flattened DEMs. ISO Class numbers are separate from Field 

Class numbers. 
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2.4.2 Objective II Results 

The classified rasters were imported into RStudio and the six heterogeneity metrics were 

calculated for each floodplain (Table 2.6 and Figure 2.7). 

Table 2.6. Values of landscape heterogeneity metrics for the classified floodplain rasters. 

Metric 
West Bijou 

Creek 

Rough and 

Tumbling 

Creek 

Sand Creek 
East Plum 

Creek 

Aggregation Index (%) 64.1 65.5 28.5 64.9 

Interspersion and Juxtaposition Index 

(%) 76.3 78.3 93.7 78.5 

Largest Patch Index (%) 4.8 12.5 7.0 21.1 

Patch Density (#/100 ha) 947 1154 4374 1186 

Percentage of Like Adjacencies (%) 62.6 60.3 28.5 62.0 

Shannon’s Evenness Index 0.970 0.960 0.966 0.902 

  

 

Figure 2.7. Bar plot visualizations of the levels of each metric for each floodplain: a) aggregation index, b) 

interspersion and juxtaposition index, c) largest patch index, d) patch density, e) percentage of like adjacencies, and 

f) Shannon’s evenness index. In descending order of floodplain area, blue bars represent West Bijou Creek, 

Colorado (109 ha), turquoise represent Rough and Tumbling Creek, Colorado (5.6 ha), green represent Sand 

Creek, Oklahoma (5.5 ha), and coral represent East Plum Creek, Colorado (2.1 ha). Intermetric variation can be 

seen by looking at the values of a single metric for all three sites while intrametric variation ban be seen by looking 

at the similarities and differences between the levels of each site for all metrics (a–f). 



24 

For the purposes of the following results and discussion, I define a “high” level of a 

metric as a value falling in the top 25% of the range for that metric, a “moderate” level as a value 

falling in the middle 50%, and a “low” level as a value falling in the bottom 25% (ranges given 

in Table 2.5), except for patch density that is defined as ≥ 0. These designations are arbitrary and 

moderate is conservatively wide, as there are no published thresholds for these metrics as they 

relate to floodplain heterogeneity. 

West Bijou, Rough and Tumbling, and East Plum Creeks all have moderate aggregation 

indices and percentage of like adjacencies, while Sand Creek has low values for both metrics. 

This indicates that the Colorado sites have moderately aggregated classes and moderate 

aggregation within the classes, while Sand Creek has class and within-class disaggregation 

(Figure 2.7a, e; Hesselbarth et al., 2021). All four floodplains have high interspersion and 

juxtaposition, indicating that there is not much preference for one class to occur next to another 

(Figure 2.7b; Hesselbarth et al., 2021). All four floodplains have low largest patch indices, 

indicating that the largest patch on each landscape is small compared to the entire landscape 

(Figure 2.7c; Hesselbarth et al., 2021). This is probably driven by the small input value of 4 

pixels used for minimum class size in the classification workflow. I anticipate that largest patch 

index would be very sensitive to changes in this number so I held it constant for this analysis. All 

of the floodplains have high levels of Shannon’s evenness (Figure 2.7f). This indicates that all 

the landscapes have abundant, evenly distributed classes (Hesselbarth et al., 2021). Patch density 

varies across the landscapes, with Sand Creek having the highest (near 4,400 patches/100 ha), 

Rough and Tumbling and East Plum Creeks having similar values near 1,200 patches/100 ha, 

and West Bijou Creek having the lowest near 950 patches/100 ha. This indicates that Sand Creek 

is more fragmented than the other floodplains. As these metrics exhibit different patterns 
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between sites (intermetric variation) and between metrics for all sites (intrametric variation; 

Figure 2.7), I infer that I am capturing different facets of floodplain heterogeneity with this suite 

of six metrics. 

 Discussion 

In this section, I outline the advantages and disadvantages of the classification workflow 

and discusses inferences regarding fluvial processes. 

2.5.1 Objective I Discussion 

There are a few important advantages to being able to calculate floodplain heterogeneity 

from remote imagery. First, Sentinel-2 imagery is available for most of the United States and is 

repeated every 5 days (starting in 2015; Sabins Jr. and Ellis, 2020). This allows for repeat 

classification and comparison of spatial and temporal differences in heterogeneity. 3DEP 

elevation data are also available for most the United States, allowing for stacking of these two 

types of data for almost any floodplain. Moreover, other topographic and multispectral imagery 

could be used in the workflow. In addition, there are many metrics available in the 

landscapemetrics package that could be calculated with this workflow if a specific metric is of 

interest.  

Disadvantages of this workflow include mismatched resolutions when looking back in 

time. For example, the Landsat program has gone through three generations of imaging systems, 

starting in 1972 with a spatial resolution of 60 m and a spectral resolution of four bands, and now 

has a spatial resolution of 30 m and a spectral resolution of 11 bands (Sabins Jr. and Ellis, 2020). 

This evolution of just one satellite system illustrates that the resolution gets poorer farther back 

in time, making it more difficult to compare results for a single location. When completing 

classification, the user sets a number of classes for the tool to find. Sometimes if the value is set 



26 

too high, the tool finds fewer classes than if the number is set lower. For example, if the number 

of classes is set to 20, the classifier may find 5 classes, but if it is set to 8, it may find 8 classes. 

This was evident for the smaller floodplains in this study, causing me to lower the number of 

classes. Number of classes specified and actual number of classes found are given in 

Supplemental Table 2.2. Moreover, unsupervised classification means I do not inherently know 

what the resulting classes represent, such as landcover class or vegetation health. While this 

workflow only includes 4-band spectral data and 3 m elevation data, inclusion of more detailed 

data and comparison to field data could better illuminate the meaning of the classes. This will be 

the focus of work going forward. 

Overall, a strength of this workflow is that it can be easily repeated for other locations. 

The main types of data needed are approximate boundaries of the floodplain of interest, and 

some idea of the spatial scale of floodplain patches. Although I was able to delineate the active 

floodplain and patches at the test field sites, this information is not necessary to get an order of 

magnitude estimate of floodplain heterogeneity. If the active floodplain boundary is not 

available, topographic data could be used to approximate the floodplain/valley bottom boundary, 

and remote data could be clipped to the topographic data. If field-delineated patches and classes 

are not available, descriptions, aerial imagery, or other studies could be used to estimate the 

approximate spatial scale of patches.  

2.5.2 Objective II Discussion 

I have identified six heterogeneity metrics to use for characterizing spatial floodplain 

heterogeneity: aggregation index, interspersion and juxtaposition index, largest patch index, 

patch density, percentage of like adjacencies, and Shannon’s evenness index. The results indicate 

variation within each metric between sites (intermetric) and variation in patterns of the values for 
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all sites between metrics (intrametric). The intermetric variation, as shown by the levels of the 

bars in each bar plot (Figure 2.7), indicates that there is variation in spatial heterogeneity 

between the floodplains. The intrametric variation, as shown as patterns of the bars between bar 

plots (Figure 2.7), indicates that there is variation in the patterns of the metrics. These metrics 

provide six dimensions of spatial heterogeneity information and exhibit both intermetric and 

intrametric variation, expanding the simple analysis of floodplain heterogeneity in Wohl and 

Iskin (2019). This result aligns with the ideas from Forman and Gordon (1981) that both number 

of patches and patch configuration in space may be important to landscape structure, and the 

recommendations from Scott et al. (2022) to use both diversity and spatial configuration metrics 

to characterize geomorphic heterogeneity. 

The floodplains in Colorado exhibit moderate aggregation, high intermixing, low 

dominance, lower fragmentation, and high evenness. The Oklahoma floodplain exhibits low 

aggregation, high intermixing, low dominance, higher fragmentation, and high evenness. These 

results suggest that high intermixing, low dominance, and high evenness may be characteristic of 

natural floodplains, while differences in aggregation and fragmentation between Colorado and 

Oklahoma may indicate differences in fluvial processes between these two regions. Natural 

floodplains may exhibit high intermixing and evenness due to intact natural flow and sediment 

regimes that result in overbank flooding, reworking of material, and establishment of 

successional species.  

The Colorado shortgrass prairie floodplains may exhibit higher aggregation and lower 

fragmentation than the Oklahoma tallgrass prairie floodplain due to more dynamic hydrology, 

less cohesive soils, and reduced channel incision, as observed in the field. Other investigators 

have documented substantial shifts in channel planform and dynamics in the shortgrass prairie of 
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eastern Colorado over timespans of several decades, with repeated alternations between 

relatively narrow, sinuous, single-thread channel planform in a vegetated floodplain (the 

condition at the time of my measurements) and wide, braided channel planform in a floodplain 

stripped of vegetation following a large flood (Friedman and Lee, 2002). Although rivers in the 

mixed prairie and tallgrass prairie of Kansas and Oklahoma can exhibit alterations between 

narrow and wide planforms (Schumm and Lichty, 1963; Bergman and Sullivan, 1963), there was 

less evidence of this at Sand Creek due to thick layers of clay-rich, cohesive sediment present in 

the bed and banks and the dense vegetation both in and beside the river. Sand Creek is also in a 

more humid climate than the Colorado sites, which corresponds to higher baseflow and lower 

magnitude of flow variability relative to drier sites (Berghuijs et al., 2014). Greater flow 

variability tends to correlate with substantial temporal variations in channel planform and 

floodplain dimensions (e.g., Miller and Friedman, 2009; Hooke, 2016), which may explain the 

higher aggregation seen at the Colorado sites. 

Resource preferences differ somewhat between cattle (Bos spp.) and bison (Bison spp.) 

(Allred et al., 2010), but it is unclear if their grazing affects landscapes differently (Towne et al., 

2005). The observed heterogeneity metrics may reflect the influence on vegetation distribution of 

large ungulate grazing at the sites (bison at Sand Creek, and cows at West Bijou and East Plum 

Creeks). This could potentially account for some of the differences in aggregation and 

fragmentation between the Colorado and Oklahoma sites. The metrics qualitatively distinguish 

all of the Colorado sites from the Oklahoma sites, but do not distinguish the prairie and beaver 

meadow sites in Colorado. I infer that this reflects the dynamic and patchy nature of river 

corridors actively occupied by beaver, which continually modify existing dams and build new 
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dams, creating newly flooded areas and multiple ponds in gradual stages of infilling (Ives, 1942; 

Polvi and Wohl, 2012; Laurel and Wohl, 2019). 

The sensitivity of these landscape metrics to changes in classification scheme have been 

documented by Huang et al. (2006). They found that all six of the metrics used in this study 

exhibited a “high” amount of total change as the number of classes specified in the classification 

was increased, and sensitivity of the metrics to increased classification differed between groups 

of metrics (Huang et al., 2006). Interspersion and juxtaposition (no consistent models, sensitivity 

window of 3–8 classes), patch density (flat line predictability, sensitivity window of 11–34 

classes), and Shannon’s evenness (flat line predictability, sensitivity window of 7–29 classes) all 

increased with increasing number of classes, while largest patch (declining power law 

predictability, sensitivity window of 3–13 classes), aggregation (declining logarithmic 

predictability, sensitivity window of 8–32 classes), and percentage of like adjacencies (declining 

logarithmic predictability, sensitivity window of 8–32 classes) decreased with increasing number 

of classes (Huang et al., 2006). I observe weak positive correlation between number of classes 

and both aggregation index (R = 0.08) and percentage of like adjacencies (R = 0.12); weak 

negative correlation between number of classes and both interspersion and juxtaposition (R = -

0.22) and patch density (R = -0.16); strong positive correlation between number of classes and 

Shannon’s evenness (R = 0.77); and strong negative correlation between number of classes and 

largest patch index (R = -0.86). I do not provide p-values because correlation values were 

calculated in Microsoft Excel. Huang et al. (2006) also found that the metrics I used exhibited 

“high”, “moderate-high”, or “moderate” differences between locations, expect for Shannon’s 

evenness that exhibited “low” difference (Huang et al., 2006). This indicates that these metrics 

are useful for discerning landscape differences, as used in this study. 
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For this study, this means that, although the metrics are sensitive to changes in number of 

classes (and I classified with different numbers of classes), the direction and character of change 

are predictable for most cases (except interspersion and juxtaposition). Caution should be 

exercised when class numbers are low, for example, East Plum Creek, as the sensitivity windows 

identified by Huang et al. (2006) include the number of classes used in this study. Even if I 

exclude East Plum Creek from the analysis, I still see differentiation between Colorado and 

Oklahoma. Overall, I feel that using different numbers of classes is reasonable for this analysis, 

because I expect different rivers to differ in structure and class number, and I controlled for 

resolution differences by using the same type of remote imagery and same input values for class 

size and sample interval for all four landscapes. 

This study is a detailed documentation of the methods used to classify floodplains using 

remotely sensed data and an analysis of heterogeneity metrics applied to river corridors. This is a 

small piece of a larger study that applies these methods with higher resolution and more detailed 

data across 10+ natural floodplains in the United States. The ultimate goal of this work is to 

relate levels of spatial heterogeneity to river corridor characteristics (biome, drainage area, flow 

regime, valley confinement, and channel planform), and then infer processes, through a rigorous 

statistical analysis. 

 Conclusion 

Floodplain heterogeneity is an integral component of natural river corridors and 

influences the ecosystem functions of natural floodplains. The field of landscape ecology deals 

substantially with characterizing and quantifying spatial heterogeneity at multiple scales. 

Although some fluvial research has incorporated tenets of landscape ecology, I directly use 

metrics from this discipline to calculate the spatial heterogeneity of four natural floodplains. 
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I have developed an unsupervised classification workflow to classify natural floodplains. 

The workflow can be completed with any type of raster data, and inclusion of the field data 

enhances the analysis and interpretation but is not necessary. I calculated a suite of six 

heterogeneity metrics that show intra- and intermetric variation and capture different facets of 

floodplain heterogeneity: aggregation index, interspersion and juxtaposition index, largest patch 

index, patch density, percentage of like adjacencies, and Shannon’s evenness index. It is useful 

to know that no single metric captures all the facets of floodplain heterogeneity. The metrics are 

sensitive to the choices made by the user during classification, and documenting these choices is 

essential to reproducibility. All of the metrics are normalized in some way and are highly 

sensitive to changes in location and are therefore very useful for comparing floodplains in space. 

Results show that natural floodplains have high evenness and interspersion and 

juxtaposition of classes. I attribute this to natural flow and sediment regimes driving channel 

migration, erosion, deposition, vegetation succession, and active beaver modifications. The 

Colorado floodplains at West Bijou, East Plum, and Rough and Tumbling Creeks show higher 

aggregation and lower fragmentation than the Oklahoma floodplain at Sand Creek. I attribute this 

to the greater incision and lower hydrologic variability in Oklahoma. Future research will expand 

this method of quantifying floodplain spatial heterogeneity to include additional field sites with 

varying hydrological (drainage area, precipitation, and flow regimes), ecological (dominant 

species types, beaver vs. large wood dynamics), and geomorphological (channel planform) 

characteristics, and include high-resolution elevation data, near-surface soil texture data, large 

wood load data, and vegetation and moisture spectral indices to better parse out what the classes 

might indicate about fluvial processes and floodplain geomorphic history.
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 CH 3: DETAIL & DIFFERENTIATION2 

 

 

Summary 

Spatial heterogeneity of floodplains is pervasive across floodplain form and affects 

associated floodplain functions. Natural floodplains and their functions are disappearing due 

primarily to human activities in river corridors. Quantification of heterogeneity at floodplains is 

needed to establish natural variability and inform floodplain restoration. I expanded on a 

previous unsupervised classification workflow that combines field data, remote sensing, and 

landscape ecology for three rivers in the U.S. Pacific Northwest and one river in the southeastern 

U.S. to conduct a sensitivity analysis on the spatial and spectral resolution of the data used. The 

results indicate that natural floodplains in the Pacific Northwest and coastal Southeast have 

moderate to high evenness, moderate to high intermixing, and moderate aggregation; and similar 

aggregation and evenness as rivers in Colorado and Oklahoma, U.S., but lower intermixing. I 

attribute lower intermixing at the Altamaha River, Georgia to slower rates of lateral channel 

migration, and lower intermixing at the Hoh River to the different hydrologic and sediment 

regimes and less stable braided planform. The results show that the larger rivers (arbitrarily 

floodplain area > 50 ha) in this study (Altamaha, Hoh, and Sol Duc Rivers) have similar spatial 

heterogeneity as beaver-modified and shortgrass prairie rivers in Colorado, while the more 

inland and smaller river (Lookout Creek) has similar spatial heterogeneity to the tallgrass prairie 

site (Sand Creek). From the results of the sensitivity analysis, I suggest using the highest spatial 

resolution topographic data available, using aerial imagery/mosaics from the same sensor, and 

 

2Submitted as Iskin and Wohl, In Review. Sensitivity Analysis of Spatial and Spectral Resolution in Quantifying Floodplain 

Heterogeneity, Journal of Hydrology.  
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removing largest patch index from the suite of comparable indices. I find that field 

classifications, relative topography, and normalized difference vegetation index (NDVI) are 

useful for interpreting results from the unsupervised classification workflow. The metrics show 

that there are similarities and differences between rivers in Washington, Oregon, Colorado, 

Oklahoma, and Georgia, and that discernable trends may arise from a meta study comparing 

heterogeneity from more rivers across the country. 

 Introduction 

Nearly every aspect of a floodplain – surface and subsurface water storage and 

movement; sediment grain-size distribution and associated porosity and permeability; soil 

chemistry; topography; vegetation communities; large wood abundance and distribution; 

microclimates; and channel migration – exhibit distinct levels of heterogeneity, and interactions 

among them influence floodplain functions (Appling et al., 2014; Harms et al., 2009; Naiman et 

al., 2005). With the disappearance of naturally functioning floodplains, managed river corridors 

have lower spatial heterogeneity and functionality (Kuiper et al., 2014; Samaritani et al., 2011; 

Schindler et al., 2016; Wohl and Iskin, 2019) and regulated river channels have lower channel 

spatial heterogeneity (Graf, 2006). We urgently need to quantitatively analyze spatial 

heterogeneity of natural floodplains to determine whether characteristic levels or types of 

heterogeneity are present in relation to potential controls such as flow, sediment regime, or 

biome. This more detailed understanding can then be used to inform future river corridor 

restoration. 

My overriding research goal is to quantify natural floodplain heterogeneity in diverse 

river corridors. In this context, I define natural floodplains as occurring along rivers with 

minimal flow regulation, channel engineering, and contemporary or historical land cover 
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alterations in the floodplain. I first review the studies that provide the basis for the work 

presented here and then discuss the objectives of this paper. 

3.1.1 Previous Work 

This study builds on my previous analyses of floodplain heterogeneity. Wohl and Iskin 

(2019) calculate a simple measure of floodplain heterogeneity by dividing the number of patches 

along a transect by the transect length for a number of sites. They find that unmanaged 

floodplains have greater heterogeneity than managed floodplains (Wohl and Iskin, 2019). Iskin 

and Wohl (2023) expand their methods by focusing on a subset of four sites, develop a remote 

sensing and classification workflow, and calculate a suite of heterogeneity metrics from 

landscape ecology. This suite, chosen to maximize comparability between sites, consists of 

aggregation index (aggregation of classes), interspersion and juxtaposition index (patch/class 

intermixing, pairing of one class with another), largest patch index (simple dominance of largest 

patch), patch density (simple fragmentation), percentage of like adjacencies (within class 

aggregation – are cells of a class next to cells of the same class), and Shannon’s evenness index 

(class dominance, normalized diversity) (Hesselbarth et al., 2021; With, 2019). These six 

indicators show intermetric (differences in spatial heterogeneity between the floodplains) and 

intrametric (differences in the patterns of the metrics) variation for four floodplains (Iskin and 

Wohl, 2023). Their results indicate that natural floodplains have high evenness and interspersion 

and juxtaposition of classes, and that a suite of six metrics distinguish between floodplains in 

Colorado and Oklahoma along small to moderate prairie rivers and a site modified by beaver 

(Castor canadensis). Iskin and Wohl (2023) attribute the differences in heterogeneity metrics to 

differences in fluvial processes. 
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In this study, I expand on the results of Iskin and Wohl (2023) by using the same methods 

to conduct a sensitivity analysis at four new sites and increasing the detail of the datasets with ≤ 

3 m topography, 10-band Sentinel imagery, and vegetation band indices. Others have shown that 

the addition of ancillary data can improve the performance of classification schema (le Hégarat-

Mascle et al., 1997; Lu and Weng, 2007). The addition of more detailed data allows me to 

examine how the values of the heterogeneity metrics change with increased spatial and spectral 

resolution, and to geomorphically and ecologically interpret the resulting classes from the 

unsupervised classification.  

3.1.2 Objectives 

By repeating the workflow from Iskin and Wohl (2023) at four new sites, I am able to 

compare results across diverse regions within the contiguous United States. My objectives are to 

i) conduct a sensitivity analysis to determine whether and how the values of the six heterogeneity 

metrics used in the earlier analysis change when I increase spatial (≤ 3 m lidar topography) and 

spectral resolution (10-band imagery) of the input data, and ii) extract the underlying data from 

the classification results and determine whether using higher resolution data allows identification 

of the resulting unsupervised classes in relation to relative topography, soil texture, and 

vegetation health and moisture content. This analysis concludes with comparing fluvial spatial 

heterogeneity across the United States from the Colorado and Oklahoma sites from Iskin and 

Wohl (2023) and the Washington, Oregon, and Georgia sites in this study. 

 Study Area 

This study focuses on natural floodplains in the Pacific Northwest region of the United 

States (Lookout Creek in Oregon, and the Sol Duc and Hoh Rivers in Washington) and the 
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Altamaha River of the Southeastern region in coastal Georgia (Figure 3.1). Supplemental Table 

3.1 provides background information on the study regions, drainage basins, and study reaches. 

 

 Figure 3.1. Location map of field sites: a) Sol Duc River (top) and Hoh River (bottom), Washington (flow direction 

is west) and b) Lookout Creek, Oregon (flow direction is southwest), and c) Altamaha River, Georgia (flow direction 

is southeast). Map shows the drainage area boundaries upstream of the downstream-most point of each study reach. 

The drainage basin for the Altamaha River includes 2.4 km of the study reach and excludes 11.2 km of the study 

reach (downstream) due to limitations in StreamStats and proximity to coastline (shown in the callout). Level III 

Ecoregions are labeled. Drainage area shapefiles delineated and downloaded from USGS StreamStats in November 

2022 (USGS, 2022c) and January 2023 (USGS, 2023a), and ecoregion shapefiles downloaded from the 

Environmental Protection Agency in December 2021 (EPA, 2013). 

 Methods 

Data were collected through a combination of field measurements and compiling of 

remote imagery. Although field data is not required for the implementation of the workflow 

(Iskin and Wohl, 2023), it is useful for ground truthing patches and interpreting the unsupervised 
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classification. Floodplain patches and classes were mapped in the field using the same techniques 

as Iskin and Wohl (2023). I differentiated 10 classes at the Sol Duc River in July 2021, 13 at the 

Hoh River in July 2021, and 13 at Lookout Creek in July 2022, all after peak spring flows. I 

differentiated 7 classes at the Altamaha River in October 2021 during unexpected high flows. 

Because of this, the Altamaha River study reach boundaries were chosen during data analysis as 

between a bounding road on the upstream end and just above a distributary section on the 

downstream end. Qualitative field descriptions of the class types are provided in Table 3.1.  

Table 3.1. Field class descriptions. 

River 
Class 

No. 
Description 

Altamaha 

River, GA 

0 Standing water with a little current, trees, some shrubs 

1 

Small to 60 cm DBH conifers and deciduous trees, some undergrowth, but not dense; 

prolific leaf litter, bamboo, sparse palmettos, some vines. Sandy soil, pine needles, 

undulating topography with linear features 

2 
Inundated, more palmetto, small to 60 cm DBH deciduous trees, no conifers in water, 

loam, silt, clay 

3 
0.5 m vertical features, abundant palmettos, bamboo/small to 80 cm DBH trees, looks 

like wet recently (dark leaves and duff), linear features, viny, moss, no pine needles 

4 
Similar to Class 3, but denser undergrowth, holly, palmettos, pine needles, same linear 

features as Class 3, bamboo 

5 
Dry, pine needles, sandy, dense undergrowth, large palmettos, woody shrubs, a lot of 

conifers, 10–50 cm DBH, maples 

6 
Small dense trees, interspersed old growth/large trees, dense leaf duff and pine needles, 

shrubs with big waxy leaves 

Hoh River, 

WA 

1 
3 m high sediment deposit, fine sand to large cobbles, some bushy vegetation and dried 

grasses, old braid surface 

2 ≤ to 10 cm DBH alders closely spaced, viny groundcover and moist soil 

3 
40 cm DBH alders, 40–120 cm DBH conifers, bracken fern, abundant low groundcover, 

natural levee surface 

4 Undulating topo, 20–40 cm DBH alders, abundant bracken fern 

5 Waist high grasses, dry surface, drained abandoned channel? 

6 Horsetails, grasses, reeds, wetland 

7 
Fine sand, < 10 year old willows and alders, marginal logjam in river, 1 m above water 

level HWMs, fluvially deposited, unconsolidated 

8 
Snags and downed wood, 60–200 cm DBH, bracken fern, deer fern, alders and conifers, 

young maples, ground topo dominated by root wads and their holes 

9 Overgrown channel with running water, horsetails, downed wood, small maple 

10 0.5 m deep and 4 m wide side channel, bracken fern, no water or mud 

11 
20–60 cm DBH maples, abundant grass cover, bracken fern interspersed in grasses, 

undulating topo 

12 Up to 30 cm DBH alders, viny groundcover, between 2 side channels 

13 
Muddy/silty overflow surface, on the channel side of a 1 m high cutbank (in the river), 

beaver chew 
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Sol Duc 

River, WA 

1 

Fluvial surface, 2–3 m above water surface, covered with moss, ferns, widely spaced 

conifers, 30–250 cm DBH, bracken ferns, abundant downed wood, undulating topo 

under 1 m 

2 
Sloping moss covered surface, closely spaced conifers, 6–15 cm DBH, small cobbles to 

boulders, some HWMs, terrace? 

3 Active channel 

4 
Shallower slope than Class 2 from water level, small cobbles to boulders, <10 cm DBH 

alders, maples?, large leafy ground cover, maple up to 10 cm DBH, bracken ferns 

5 
Overflow channel, evidence of recent competent flow, sparse moss on rocks, 

unconsolidated sediment, sand to large cobbles 

6 

Off transect wetland/abandoned beaver pond: abundant vegetation, fern, large leafy 

ground cover, nurse logs, 20 cm DBH alders, sedges and rushes, side channel with flow 

in it, hellebore 

7 Ferns, devil's club, overgrown side channel, 0.5 m lower than previous patch, hellebore 

8 
Small–40 cm DBH abundant maples, abundant bracken ferns, nurse logs, small–30 cm 

DBH conifers, cobbles and boulders hiding under duff, undulating topo/linear features 

9 
Abandoned side channel, overgrown ferns/grasses/maples, maple saplings, sand to 

cobble sized clasts 

10 

3+ distinct channels, 20 cm DBH conifers, 40 cm DBH maples, 10–30 cm DBH alders, 

bracken fern, abundant groundcover including grasses, overflow surface including 2+ 

distinct channels, channels are ≤ to 1 m wide and have small cobbles to large boulders, 

log jam present 

Lookout 

Creek, OR 

1 Active channel, ~2 m below Class 2, cobbles to boulders 

2 

Debris flow/boulder bar, large gravel to boulder size clasts visible in bank cut, dense 

young veg, fir trees, viny maple, sword ferns, cedars, 2–20 cm DBH alders, beaver 

chew 

3 

Backwater channel behind berm, multiple fern types, 3 m below top of Class 2, young 

viny maple, 8–30 cm DBH alder, standing water, sediment and coarse particulate 

organic matter build up, large nurse logs 

4 
Backwater channel, 0.5 m above Class 3, abundant fern, abundant horsetail, deciduous 

plants, 10–30 cm DBH maple, undulating topo, gravel bars 

5 
Abundant clover, downed wood, spaced out sword ferns, 10–100 cm DBH 

cedars/maple/fir 

6 Grassy side channel, 3 m wide, dry 

7 
Cobble to boulder bar, mossy, dry, lower edges have dense viny maple, creek edge has 

dense willow 

8 
Active side channel, 1.5 m wide, sand to boulders, leafy ground cover on banks, grassy 

banks, 1 m HWMs 

9 Overgrown side channel, thick layer of duff, 20–40 cm DBH fir and maple, clover 

10 Overflow cobble bank, dense willow, gentle slope from water surface, 50 cm HWMs 

11 Sandy riverbank between active channel and mossy terrace, 25 cm HWMs 

12 Overgrown surface, 5–15 cm DBH alder, groundcover, no flow (?) 

13 
Active anastomosing island, beaver chew, very dense veg with willow, boulders 

underfoot, small side channels, viny maple 
Note: DBH stands for diameter at breast height, measured mostly by eye. Species identification was not exact and not field 

guide was used. 

 

Hand-driven soil cores were collected at each floodplain along the preestablished 

transects. Two cores per class were collected at three approximate depths where possible (0–30, 

30–60, and 60–90 cm). In some cases, I could not physically core to the full 90 cm depth because 
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of resistant layers such as cobbles and boulders. Core location, depth, and relative moisture (dry, 

moist, saturated) were noted in the field. Soil cores were subsequently sent to Ward Laboratories, 

Inc. for soil texture analysis. For the Hoh River, 48 of 52 soil samples were suitable for lab 

analysis (Figure 3.2a), 24 of 25 submitted samples were suitable for analysis for the Sol Duc 

River (Figure 3.2b), and 19 of 36 soil samples were suitable for analysis for Lookout Creek 

(Figure 3.2c). No soil cores were collected at the Altamaha River due to flooded conditions and 

air-travel restrictions for transporting soil. The soil data are used to interpret the resulting classes 

in Section 4.2. 

 

Figure 3.2. Fractional soil components for the a) Hoh River, Washington, b) Sol Duc River, Washington, and c) 

Lookout Creek, Oregon. Pie chart colors indicate soil components and size indicates core depth below the surface. 

White arrows indicate flow direction. 
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3.3.1 Objective I Analysis 

This analysis is conducted in two parts for the four natural floodplains (Figure 3.3): (1) 

repeat the workflow developed by Iskin and Wohl (2023) (Classification 1) and (2) repeat the 

workflow with additional datasets to evaluate how the results compare (Classification 2). Data 

sets used are provided in Table 3.2. 

 

Figure 3.3. Sentinel-2A mosaics clipped to buffered floodplain boundaries and field classes and (counts) for a) Hoh 

River, Washington, b) Sol Duc River, Washington, c) Lookout Creek, Oregon, and d) Altamaha River, Georgia. 

Floodplain boundaries delineated based on field observation and data (transect, large wood, and sediment core 

locations), Sentinel remote satellite imagery, and elevation datasets. 
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Table 3.2. Data collected and used in this analysis. 

Data Details Instrument Resolution 
Program 

Used 
References 

GPS 

Locations 

Patch boundaries, large 

wood, and sediment 

cores 

Garmin 

GPSMAP 

66ST 

± 3 m - - 

Watershed 

Characterist

ics 

Upstream drainage basin 

shapefiles and associated 

mean values, 

downloaded 11/2022 

(HWA, SDWA, LOR) 

and 1/2023 (AGA) 

- Drainage basin scale 
StreamStat

s 

USGS, 2022c, 

2023a 

Digital 

Elevation 

Models 

Tile N48W124 5/5/2022 

(HWA, SDWA) 

Tile N48W125 1/9/2020 

(HWA, SDWA) 

Tile N49W124 1/9/2020 

(HWA, SDWA) 

Tile N45W123 

4/26/2022 (LOR) 

Tile N32W082 

7/25/2022 (AGA) 

Airborne Lidar 

1/3 arc-second 

1 x 1 degree 

10 m 

The 

National 

Map 

Open 

Topography, 

2021; USGS, 

2023b 

High-

Resolution 

Digital 

Terrain 

Models* 

Hoh River 2013 DEM 4, 

5 

Sol Duc River 2014 

DEM 47, 57 

McKenzie River 2016 

DEM mosaic 

Not available for AGA 

Airborne Lidar 

0.91 m (HWA and 

LOR) 

3 m (SDWA) 

32-bit radiometric 

WA DNR 

Lidar 

Portal and 

The 

National 

Map 

Allison and 

Martinez, 

2013; Division 

of Geology 

and Earth 

Resources, 

2022; Gleason 

and McWethy, 

2014; USGS, 

2016 

Cloud-free 

Mosaics* 

GEE Image Collection 

“COPERNICUS/S2_SR” 

2% cloudy mean pixels 

from 5/1/2022-9/30/2022 

(HWA, SDWA, LOR) 

0.5% cloudy mean pixels 

from 4/1/2022-9/30/2022 

(AGA) 

Copernicus 

Sentinel-2A 

10 m: Bands 2, 3, 4, 

8 

20 m: Bands 5, 6, 7, 

8a, 11, 12 

12-bit radiometric 

5-day temporal 

Google 

Earth 

Engine 

ESA, 2021; 

Google 

Developers, 

2022; Gorelick 

et al., 2017; 

Sabins Jr. and 

Ellis, 2020 

Soil Data* 

Soil texture data 

provided in % sand, % 

silt, and % clay (HWA, 

SDWA, LOR) 

Not available for AGA 

JMC Soil 

Samplers 15 in 

Wet Sampling 

Tube (2.2 cm 

diameter) 

± 3 m horizontal 

(GPS) 

~30 cm maximum 

vertical (corer size) 

- - 

*Note: The cloudy percentage was decreased for the Altamaha River due to increased cloud cover in the Southeast, and the date 

range was expanded by one month to account for the lower cloudy percentage. No high-resolution elevation data was available 

for the Altamaha River, so USGS 3DEP data was used in Classification 2, and no soil cores were collected. 
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Figure 3.4. Flow chart of classification workflow completed in ArcGIS Pro (Esri, 2023) from Iskin and Wohl 

(2023). Input data are shown in orange, specific ArcGIS tools in italicized green (specific options non-italicized), 

intermediate shapefiles and rasters in yellow, manual drawing step in blue, and final raster product in red. 

Classification 1 repeats the methods from Iskin and Wohl (2023) for the Altamaha River, 

Hoh River, Sol Duc River, and Lookout Creek (Figure 3.4). Data used are the 10 m DEMs 

(mosaicked for the Hoh and Sol Duc Rivers due to overlapping tiles) and 4-band Sentinel 

mosaics (RGB and IR, created using the Make Raster Layer tool) (Table 3.2). Classification 2 

repeats the methods from Iskin and Wohl (2023) for the same four sites, but with different input 

data. Data used are the ≤ 3 m DEMs where available, 10-band Sentinel mosaics (all 10 and 20 m 

bands available, created using the Make Raster Layer tool) (Table 3.3), and two band ratio 

rasters: normalized difference vegetation index (NDVI) and normalized difference moisture 
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index (NDMI) (Table 3.4). Lidar tiles for the Hoh and Sol Duc Rivers (Table 3.2) were 

mosaicked separately due to the difference in spatial resolution using the Mosaic to New Raster 

tool before clipping to the respective floodplain boundaries. High-resolution DEMs were 

detrended using the same methods as for Classification 1 but with higher spatial resolution. The 

band ratio rasters were made by using the Indices tool from the ArcGIS Pro Imagery tab (Table 

3.4). Separate rasters were created for each index by indicating which bands in the multispectral 

image corresponded to the bands needed in the ratio formulas (near infrared and red for NDVI, 

and near infrared and short-wave infrared for NDMI) (GISGeography, 2022b). 

Table 3.3. Sentiel-2A bands used in this analysis (Google Developers, 2022). 

Band Description Spatial Resolution (m) Wavelength (nm) 

2 Blue 10 496.6 

3 Green 10 560 

4 Red 10 664.5 

5 Red Edge 1 20 703.9 

6 Red Edge 2 20 740.2 

7 Red Edge 3 20 782.5 

8 Near Infrared 10 835.1 

8a Red Edge 4 20 864.8 

11 Shortwave Infrared 1 20 1613.7 

12 Shortwave Infrared 2 20 2202.4 

 

Table 3.4. Data layers created from the cloud-free mosaics using ArcGIS Pro. 

Data 
Band 

Ratio 

Spatial 

Resolution 
Interpretation References 

NDVI 
𝐵𝐵8 − 𝐵𝐵4𝐵𝐵8 + 𝐵𝐵4

 10 m 

Range [-1, 1], indicator of 

vegetation greenness, health, 

and/or density; higher values 

indicate healthier/greener/denser 

vegetation 

EOS Data Analytics, 

2019; GISGeography, 

2022a, 2022b; Google 

Developers, 2022; USGS, 

2018, 2022a, 2022b 
NDMI 

𝐵𝐵8𝑎𝑎 − 𝐵𝐵11𝐵𝐵8𝑎𝑎 + 𝐵𝐵11
 20 m 

Range [-1, 1], indicator of 

vegetation moisture content; 

higher values indicate vegetation 

with more water 

 

The ISO Cluster Unsupervised Classification ArcGIS Pro tool was run using a minimum 

class size of four pixels and sample interval of two pixels for both classifications and all rivers. 
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The maximum number of classes to find was set to 30 for the large Altamaha and Hoh Rivers, 20 

for the mid-sized Sol Duc River, and 10 for the small Lookout Creek for both classifications. 

This was done to balance the tool finding more classes than I saw in the field without causing the 

tool to find too few classes. To demonstrate for Classification 1, when the maximum number of 

classes for Lookout Creek is set to 20, the tool finds 1 class, but when it is set to 10, it finds 10 

classes. The tool seems to differentiate fewer classes if the maximum number of classes is set too 

high. The suite of six heterogeneity metrics – aggregation index, interspersion and juxtaposition 

index, largest patch index, patch density, percentage of like adjacencies, and Shannon’s evenness 

index – from Iskin and Wohl (2023) were calculated in R (R Core Team, 2023) for the four 

floodplains with the results from Classifications 1 and 2. Resulting metrics were compared 

qualitatively using the same high-moderate-low scale from Iskin and Wohl (2023). Classified 

rasters were projected to the appropriate UTM zone using a cell size of 10 m (Project Raster 

tool) and exported for analysis in R (Copy Raster tool). 

3.3.2 Objective II Analysis 

To interpret the classes from the unsupervised method for Classification 2, detrended-

flattened elevation, NDVI, NDMI, and ISO Class values were extracted from the rasters to 

random points using the Extract Multi Values to Points tool (the same random points used to 

detrend the elevation data that have a point density of 100 pts/ha). The elevation data were “un-

flattened” by dividing the values by 0.1 so that they were more representative of real elevations 

and therefore more interpretable. Field data were incorporated by joining the Field Class and soil 

core features with the extracted point data using the Spatial Join tool with the “One to Many” 

option selected, within geodesic distance specified, and not keeping all target features. Field 

Class was joined to the random points if they were within 3 m and cores were joined if they were 
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within 10 m. A greater distance was used for the core data because there were fewer core data 

than Field Class data. This process creates a few extracted/joined tables for each site, and those 

were exported to Excel for analysis. Pivot tables were used to calculate the average detrended 

elevation, NDVI, and NDMI for each ISO Class for each river. The nearest Field Class and soil 

core data were compared manually to the ISO Classes because one ISO Class point might be 

within 3 m of more than one Field Class line and/or within 10 m of more than one soil core 

point. ISO Classes were then interpreted based on elevation, NDVI, nearest field classes, nearest 

soil textures and moistures, and visual inspection in ArcGIS Pro and Google Earth. 

 Results 

I present the results of Classification 1 and 2, the heterogeneity metric values, 

comparisons of the classifications and metrics, and identify the classes based on field and 

Classification 2 data. 

3.4.1 Objective I Results 

Resulting rasters from Classification 1 and 2 for all field sites are shown in Figure 3.5 

and Figure 3.6, respectively. Visual inspection shows that the results from Classification 2 seem 

more detailed than those from Classification 1. 
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Figure 3.5. ISO cluster unsupervised classifications for a) Hoh River, Washington, b) Sol Duc River, Washington, c) 

Lookout Creek, Oregon, and d) Altamaha River, Georgia. The classification was completed using 4-band Sentinel-

2A imagery and detrended, flattened DEMs. ISO Class numbers are separate from Field Class numbers. 
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Figure 3.6. ISO cluster unsupervised classifications for a) Hoh River, Washington, b) Sol Duc River, Washington, c) 

Lookout Creek, Oregon, and d) Altamaha River, Georgia. The classification was completed using 10-band Sentinel-

2A imagery, detrended, flattened high resolution lidar where available, NDVI, and NDMI. ISO Class numbers are 

separate from Field Class numbers. 

The heterogeneity metrics calculated for the four rivers for both classifications are given 

in Table 3.5 and visualized in Figure 3.7. Percent difference was calculated between the values 

using Equation 3.1 and given in the Table 3.6. 
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Table 3.5. Values of landscape heterogeneity metrics for Classification 1 and 2. 

Classification Metric 
Altamaha 

River 

Hoh 

River 

Sol Duc 

River 

Lookout 

Creek 

1 

Aggregation Index (%) 56.2 62.3 53.5 39.5 

Interspersion and Juxtaposition Index (%) 73.8 73.8 76.3 88.8 

Largest Patch Index (%) 6.4 1.7 3.3 8.7 

Patch Density (#/100 ha) 1355.2 1043.7 1576.7 2662.7 

Percentage of Like Adjacencies (%) 55.9 61.6 52.2 38.5 

Shannon’s Evenness Index 0.946 0.980 0.979 0.982 

2 

Aggregation Index (%) 58.8 66.0 50.8 57.4 

Interspersion and Juxtaposition Index (%) 73.3 71.6 79.9 74.9 

Largest Patch Index (%) 4.2 1.6 2.0 26.1 

Patch Density (#/100 ha) 1213.0 855.3 1866.4 1697.5 

Percentage of Like Adjacencies (%) 58.5 65.3 49.5 58.6 

Shannon’s Evenness Index 0.934 0.973 0.967 0.639 

 

 

Figure 3.7. Bar plot visualizations of the levels of each metric for each floodplain for Classification 1 (a–f) and 

Classification 2 (g–l). In descending order of floodplain area, cream bars represent the Altamaha River, Georgia 

(3705.3), gold bars represent the Hoh River, Washington (987.8 ha), green bars represent the Sol Duc River, 

Washington (58.1 ha), and grey bars represent Lookout Creek, Oregon (6.9 ha). 

I used the same qualitative high-moderate-low scale as Iskin and Wohl (2023), in which 

high is assigned to metric values in the top 75% of their range, moderate to values in the middle 

50% of their range, and low to values in the bottom 25% of their range. All four sites exhibit 

moderate aggregation (Figure 3.7a,g) and moderate percentage of like adjacencies (Figure 

3.7e,k) for both Classifications 1 and 2. The Altamaha, Hoh, and Sol Duc Rivers all exhibit low 
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largest patch index (Figure 3.7c,i) and high Shannon’s evenness (Figure 3.7f,l) for both 

classifications. The Hoh and Altamaha Rivers exhibit moderate interspersion and juxtaposition 

(Figure 3.7b,h), whereas the Sol Duc River exhibits high interspersion and juxtaposition (Figure 

3.7b,h) for both classifications. Lookout Creek exhibits high interspersion and juxtaposition 

(Figure 3.7b), low largest patch index (Figure 3.7c), and high Shannon’s evenness for 

Classification 1 (Figure 3.7f), but moderate interspersion and juxtaposition (Figure 3.7h), 

moderate largest patch index (Figure 3.7i), and moderate Shannon’s evenness for Classification 2 

(Figure 3.7l). Lookout Creek is the only river whose metrics change qualitatively between 

Classification 1 and 2, with a decrease from high interspersion and evenness to moderate and an 

increase from low to moderate largest patch. Table 3.6 shows the percent difference between 

Classification 1 and 2 for each river and each metric (Eq. 3.1). Largest patch index and patch 

density have the highest mean and median percent differences of the metrics, whereas 

interspersion and juxtaposition has the smallest mean and median percent differences. Lookout 

Creek has the highest percent differences for all metrics, whereas the other three rivers have 

generally similar and lower percent differences. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  � |𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀|𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 1 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 2 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2 �× 100          (3.1) 

Table 3.6. Percent difference between Classification 1 and 2. 

Metric 
Altamaha 

River 

Hoh 

River 

Sol Duc 

River 

Lookout 

Creek 
Median Mean 

Aggregation Index (%) 4.5% 5.7% 5.2% 37.0% 5.5% 13.1% 

Interspersion and Juxtaposition Index (%) 0.7% 3.1% 4.6% 17.0% 3.8% 6.3% 

Largest Patch Index (%) 42.1% 3.6% 49.0% 99.7% 45.5% 48.6% 

Patch Density (%) 11% 20% 17% 44% 18.3% 23.0% 

Percentage of Like Adjacencies (%) 4.6% 5.7% 5.3% 41.5% 5.5% 14.3% 

Shannon’s Evenness Index (%) 1.26% 0.75% 1.26% 42.26% 1.3% 11.4% 
Note: Colors indicate level of absolute value change, where red is a change of 75%, yellow is a change of 25%, and green is a change of 0%. 

 



62 

These results indicate that these natural rivers have moderately aggregated classes and 

moderate aggregation within the classes; moderate to high intermixing; low to moderate 

dominance of the largest patch; and moderately to highly abundant, evenly distributed classes 

(Hesselbarth et al., 2021). These results also show that rivers of the Pacific Northwest and 

Southeast have similar aggregation and evenness as rivers in Colorado and Oklahoma, but lower 

intermixing (Iskin and Wohl, 2023). They also show that natural rivers on the Olympic Peninsula 

(Hoh and Sol Duc Rivers) and in the Southeast (Altamaha River) have similar spatial 

heterogeneity as beaver-modified and shortgrass prairie rivers in Colorado, while the more 

inland Lookout Creek of Oregon has similar spatial heterogeneity to Sand Creek in the tallgrass 

prairie of Oklahoma (Iskin and Wohl, 2023). 

3.4.2 Objective II Results 

Interpreting unsupervised classification results can be difficult without additional 

knowledge of the study locations. I use both the data from Classification 2 and field data to 

interpret the results. Extracted class-average detrended and un-flattened elevation, NDVI, NDMI, 

and nearest soil texture, moisture, and Field Class are given in Supplemental Tables 3.2–5. I 

started to group ISO Classes that had high positive class-average elevations and used general 

thresholds and ranges of NDVI values from the U.S. Geological Survey (2018) and visual 

inspection to further group ISO Classes. Nearest soil textures and moisture and nearest Field 

Classes were used to validate the groupings and provide geomorphic units and vegetation ages 

and species types. Figure 3.8 visualizes the lumped ISO Classes from Supplemental Tables 3.2–

5. 
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Figure 3.8. Grouped ISO Classes based on underlying data for a) Hoh River, Washington, b) Sol Duc River, 

Washington, and c) Lookout Creek, Oregon. ISO Class numbers are not the same as Field Class numbers. 

In Figure 3.8a, blue represents the bare sediment, water, and/or sparsely vegetated 

midchannel islands in and around the active channel; light green represents the active floodplain 

with channel features, wetlands, younger forest and groundcover, and varying vegetation 

health/density; dark green represents old growth forest floor/inactive floodplain with nurse logs 

and varying vegetation health/density of mosses, fern (including Polystichum and Athyrium 

spp.), alder (Alnus spp.), conifer (including Picea, Pseudotsuga, and Thuja spp.), maple (Acer 
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spp.) (NPS, 2015, 2020); and beige represents uplands and inactive floodplain with varying 

vegetation health/density. In Figure 3.8b, blue represents the active channel; light green 

represents the active floodplain, and/or vegetation overhanging channel, with side channels, 

overflow surfaces, nurse logs, and varying vegetation health/density, including mosses, alder, 

maple, herbaceous groundcover, fern, conifer, and grasses; and beige represents higher elevation 

surfaces and/or uplands with conifer forest, including vertical cliffs above the channel. In Figure 

3.8c, light green represents the active channel and floodplain with midchannel island, boulder 

bars, backwater channels, side channels and varying vegetation health/density, including fir, viny 

maple, fern, cedar, alders, horsetail (Equisetum spp.), grasses, and evidence of beaver chew (HJ 

Andrews Experimental Forest, n.d.); and grey represents the bridge, road, steep banks and/or 

boundaries next to channel and floodplain. In Figure 3.8d, blue represents the active channel, 

tributaries, side channels, and/or standing water; light green represents the Active floodplain with 

inundated areas and areas of exposed sediment, varying vegetation health/density, including 

evergreen and deciduous trees (including Pinus, Quercus, Taxodium, and Ulmus spp.), bamboo, 

palmetto (Serenoa spp.), moss, vines, leaf litter, holly (Ilex spp.), and maples (Acer spp.) (Luber, 

2002); and grey represents structures, roads, other manmade surfaces, and/or active floodplain 

with similar spectral properties. 

 Discussion 

This discussion addresses the differences between Classifications 1 and 2, the benefits 

and drawbacks of each dataset, the metric values compared to each other and regionally, and the 

geomorphic interpretations of the results. 
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3.5.1 Objective I Discussion 

Although interspersion differs qualitatively between sites, aggregation, largest patch, and 

evenness do not differ between sites or classifications for the Altamaha, Hoh, and Sol Duc 

Rivers. This indicates that perhaps the metrics are more influenced by actual properties of the 

floodplains and less by the data used. This is encouraging, especially as there was a mismatch in 

resolution between the Hoh River and Lookout DEMs (0.91 m), the Sol Duc River DEM (3 m), 

and the Altamaha River DEM (10 m) for Classification 2. This indicates that using the highest 

available resolution for elevation data is recommended. This is exemplified in the results for the 

Sol Duc River (Figure 3.5b vs. Figure 3.6b). I find that the increased spatial resolution is most 

important for the smallest rivers, as each pixel covers a greater percentage of the floodplain for 

smaller rivers and therefore less granularity is possible per pixel than for larger rivers. For broad 

comparison studies, I suggest using aerial imagery with the same spectral resolution for all sites 

and the highest available resolution of topographic data. National Agriculture Image Program 

(NAIP) imagery could be used if the user wants higher spatial resolution at the expense of lower 

spectral and temporal resolution. The heterogeneity metrics differ qualitatively for Lookout 

Creek between Classification 1 and 2. This could be because the floodplain is small and 

adjustment to pixel values alters the results dramatically. With this in mind, I propose that using 

the same spectral data when comparing classifications between sites is more important than 

which spectral data are used to maintain the same spectral resolution, spectral ranges, and post-

processing methods for deriving surface reflectance. For example, when comparing rivers like 

Lookout Creek and Altamaha River, it is more important to use the aerial imagery with the same 

spectral bands and use the highest spatial resolution data available. 
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Moving forward with similar analyses of additional sites, I suggest the removal of largest 

patch index from the suite of heterogeneity metrics because it is highly dependent on the input 

values of classification and has variable and sometimes large percent change across the rivers 

(99.7% for Lookout Creek). The smaller suite of five metrics I suggest moving forward with are 

aggregation index, interspersion and juxtaposition, patch density, percentage of like adjacencies, 

and Shannon’s evenness index. 

Overall, the results suggest that natural floodplains in the Pacific Northwest and coastal 

Southeast have moderate to high evenness, moderate to high intermixing, and moderate 

aggregation; and similar aggregation and evenness as rivers in Colorado and Oklahoma, but 

lower intermixing (Iskin and Wohl, 2023). The results show that the larger rivers (arbitrarily 

floodplain area > 50 ha) in this study (Altamaha, Hoh, and Sol Duc Rivers) have similar spatial 

heterogeneity as beaver-modified and shortgrass prairie rivers in Colorado, while the more 

inland and smaller river (Lookout Creek) has similar spatial heterogeneity to the tallgrass prairie 

site (Sand Creek) (Iskin and Wohl, 2023).  

I calculated the ratio of average floodplain width to average channel width in ArcGIS Pro 

from six hand drawn, approximately evenly spaced cross sections at each river using the Sentinel 

imagery, floodplain boundaries, and field delineations. I find that the ratio of floodplain width to 

channel width is 19.3 for the Altamaha River, 7.0 for the Hoh and Sol Duc Rivers, and 3.2 for 

Lookout Creek. I attribute the lower interspersion at the Altamaha River compared to the Sol 

Duc River, and West Bijou, East Plum, and Rough and Tumbling Creeks to slower rates of 

lateral channel migration or avulsion across the much broader floodplains (Konrad, 2012). The 

Hoh River has lower interspersion than the Sol Duc River despite the same average floodplain to 

channel width ratio. I attribute this to the different hydrologic and sediment regimes on either 
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side of the Olympic Mountains. The Hoh River valley is considered a temperate rainforest (NPS, 

2020), is glacially fed, and receives almost twice as much precipitation (Supplemental Table 

3.1). The Sol Duc River valley is considered a lowland forest (NPS, 2015) and is lake-fed. These 

differences in precipitation and source flow could result in different sediment regimes (Wada et 

al., 2011) and the presence of braided planform in the Hoh River and not at the Sol Duc River. 

The more dynamic planform of the braided Hoh River (Sambrook Smith et al., 2006) could 

result in the higher pairing of certain classes (lower interspersion) by more punctuated/less 

gradual channel movement across the floodplain (Schumm, 1985). I attribute the high evenness 

at the Altamaha, Hoh, and Sol Duc Rivers to the natural flow, sediment, and wood regimes, as 

did Iskin and Wohl (2023) in the earlier analysis of West Bijou, East Plum, and Rough and 

Tumbling Creeks. I attribute the similarities of aggregation and intermixing between Lookout 

Creek (Classification 1) and Sand Creek to lateral confinement of the channels and low ratio of 

average floodplain width to average channel width at Lookout Creek. 

3.5.2 Objective II Discussion 

Extraction of the underlying data was useful for interpreting the ISO Classes from the 

unsupervised classifications. I find that class-averaged NDVI is good at differentiating 

vegetation from non-vegetation, and is therefore very useful for interpreting classes. Although 

NDMI seems to follow the same trend as NDVI, NDMI data are harder to interpret but seem to 

help in the classification step, so I left them in. I find that increasing the spatial resolution of the 

elevation data makes the classifications more visually interpretable. I also find that the field data 

are crucial for differentiating between different types of floodplain classes. I was able to 

differentiate between younger active floodplain and older floodplain for the Hoh River (Figure 

3.8a) because of the field classifications, but I could not further differentiate the active floodplain 



68 

for the Altamaha River (Figure 3.8d) because I could not collect detailed field classifications due 

to unexpected inundation in October 2021. Although I was able to group ISO Classes into 

geomorphic units, the groups gloss over the inherent heterogeneity of the individual classes. The 

groups are visually interesting and generally interpretable, but I propose that it is the 

heterogeneity within the groups that is vital to floodplain functioning. For example, the grouped 

light green younger active floodplain at the Hoh River (Figure 3.8) includes side channels, but 

the individual channels where fluvial processes such as transporting water, sediment, organic 

matter and providing habitat occur are not actually visible. The classifications give us more 

insight to the structure and function of the floodplains than do the groupings. 

 Conclusion 

I repeated a previously developed unsupervised classification workflow for three rivers in 

the U.S. Pacific Northwest and one river in the Southeast, and compared the results based on 

data used and metrics calculated. The results indicate that natural floodplains in the Pacific 

Northwest and coastal Southeast have moderate to high evenness, moderate to high intermixing, 

and moderate aggregation; and similar aggregation and evenness as rivers in Colorado and 

Oklahoma, but lower intermixing. I attribute lower intermixing at the Altamaha River to slower 

rates of lateral channel migration, and lower intermixing at the Hoh River to the different 

hydrologic and sediment regimes and less stable braided planform. The results show that the 

larger rivers (arbitrarily floodplain area > 50 ha) in this study (Altamaha, Hoh, and Sol Duc 

Rivers) have similar spatial heterogeneity as beaver-modified and shortgrass prairie rivers in 

Colorado, while the more inland and smaller river (Lookout Creek) has similar spatial 

heterogeneity to the tallgrass prairie site (Sand Creek). 
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These results also indicate that using the highest resolution topographic data available 

and the same spectral resolution aerial imagery is the best path forward when comparing results 

between sites. The metrics show that there are similarities and differences between rivers in 

Washington, Oregon, Colorado, Oklahoma, and Georgia, and that discernable trends may arise 

from a meta study comparing heterogeneity from more rivers across the country.
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 CH 4: TRENDS & PROCESS3 

 

 

Summary 

I use the five landscape ecology metrics of aggregation index (AI), percentage of like 

adjacencies (PLADJ), interspersion and juxtaposition index (IJI), patch density (PD), and 

Shannon’s evenness index (SHEI) to assess spatial heterogeneity at 15 floodplains in the 

continental United States. Assessments are based on floodplain patches delineated remotely 

using topography and vegetation. Floodplain reaches examined here represent diverse drainage 

areas, flow regimes, valley geometry, channel planforms, and biomes. I selected sites with 

minimal direct human alteration, such as upstream dams, widespread development, intensive 

grazing, intensive forestry, or extensive manmade levees. My objectives are to quantify 

floodplain spatial heterogeneity, evaluate whether statistically significant patterns are present, 

and interpret the statistical analyses with respect to the influence of channel lateral mobility and 

valley-floor space available. I develop a conceptual model of the influences on lateral mobility 

and space available, and then test specific hypotheses derived from this conceptual model. These 

natural floodplains have a median aggregation index of 58.8%, median interspersion and 

juxtaposition index of 74.9%, median patch density of 1241 patches/ha, median percentage of 

like adjacencies of 58.5%, and median Shannon’s evenness index of 0.934 (n=15). In other 

words, natural floodplains have moderate aggregation of classes, high evenness and intermixing 

of classes, and a wide range of patch densities. Drainage area, floodplain width ratio (space 

available), and elevation, precipitation, total sinuosity, large wood volume, planform, and flow 

 

3In preparation as Iskin and Wohl, In Preparation. Beyond the Case Study: Characterizing Natural Floodplain Heterogeneity in 

the United States, Water Resources Research. 
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regime (channel mobility) emerge as important variables to floodplain heterogeneity. More study 

is needed to determine how variables interact with each other to affect floodplain spatial 

heterogeneity, how river corridor restoration can boost heterogeneity, and the effects of climate 

change on floodplains. 

 Introduction 

My primary objectives are to (i) quantify floodplain spatial heterogeneity for diverse 

natural floodplains in the United States using multiple heterogeneity metrics from landscape 

ecology, (ii) evaluate whether statistically significant patterns occur among these data and 

determine whether there are salient characteristics of river corridors that relate to multiple facets 

of heterogeneity, and (iii) interpret the statistical results in terms of the primary controls – 

channel lateral mobility and valley-floor space available – as well as the factors underlying 

mobility and space, such as flow regime and biota. I first review floodplain functions and the 

importance of floodplain spatial heterogeneity, then present the conceptual model and 

hypotheses. 

Following Iskin and Wohl’s (2023; In Review) methodologies, I define floodplain 

heterogeneity as the spatial variation of geomorphic and vegetation classes and patches across a 

floodplain. Classes represent distinct types of floodplain habitats that blend geomorphic features 

and vegetation communities. Geomorphic features identified in the field include active channels, 

secondary channels with limited or no surface hydrologic connectivity, accretionary bars, 

backswamps, and natural levees. Vegetation communities include old-growth and younger 

conifer forest and deciduous forest, mesic wetlands, grasses, xeric vegetation, and beaver 

meadows (willow carrs). This definition of floodplain heterogeneity can be applied to any 

floodplain; expands on the metric for floodplain heterogeneity from Graf (2006) and Wohl and 
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Iskin (2019); and is distinct from the metrics of floodplain connectivity (Ward et al., 2002), 

surface topographic complexity (Scown et al., 2015, 2016a, 2016b) and riparian vegetation 

(Aguiar et al., 2009) described in other studies.  

4.1.1 Importance of Floodplain Heterogeneity 

As summarized by Petsch et al. (2022), floodplains provide many ecosystem services 

including, but not limited to: soil formation, nutrient cycling, primary production, habitat 

provisioning, water regulation, erosion control, water purification, waste treatment, disease 

regulation, climate regulation, genetic resources, aesthetic, and cultural services. They store 

material and facilitate the internal and external exchange of surface water, hyporheic water, 

groundwater, solutes including dissolved carbon, nitrogen and phosphorous, sediment, and 

organic matter including coarse particulate organic matter and large wood (Appling et al., 2014; 

Hopkins et al., 2018; Wohl, 2021). Floodplains more effectively capture and biologically process 

organic matter when compared to laterally confined river reaches with small to no floodplain 

(Bellmore and Baxter, 2014; Wohl et al., 2018a) and store large wood, sometimes in unique 

ways compared to channels, such as long narrow logjams (Iskin and Wohl, 2021). They also 

serve as habitat for a diverse array of organisms, including microbes (Tockner et al., 2000; 

Benke, 2001; Jeffres et al., 2008; Zeug and Winemiller, 2008; Bellmore and Baxter, 2014; 

Doering et al., 2021) and are commonly more biodiverse than other landcover types (Tockner et 

al., 2008; Junk et al., 2010). Important floodplain functions are not limited to large floods, and 

exchange of water between the river and the floodplain can be similar for both large and small 

rivers (Scott et al., 2019), highlighting the importance of studies that incorporate multiple river 

sizes.  
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Floodplain heterogeneity both reflects and influences water and sediment connectivity. 

Fluxes and storage of water and sediment can modify floodplain configuration and alter 

connectivity, but these fluxes also respond to existing connectivity. Consequently, floodplain 

connectivity is dynamic in time, changing with the rising and falling limbs of inundating flows 

(Junk et al., 1989; Tockner et al., 2000), for example, as well as in response to channel 

movement and associated erosion and deposition (Amoros and Bornette, 2002), vegetation 

dynamics (Naiman et al., 2005; Larsen and Harvey, 2010), movement and storage of large wood 

(Wohl, 2021), modifications created by other biota (Larsen et al., 2021), and disturbances such 

as wildfire (Kleindl et al., 2015). 

Floodplain heterogeneity has nuanced effects on floodplain forms and functions. 

Heterogeneity enhances diversity of hydrologic flow paths within the floodplain and thus 

diversity of water temperatures, water residence times, and associated biogeochemical reactions 

(Helton et al., 2014; Uno, 2016). Channel migration that creates heterogeneity also increases 

floodplain habitat diversity (Choné and Biron, 2016), including for foundational species such as 

the cottonwood (Populus sp.) (Stella, et al., 2011). Spatial heterogeneity in floodplain soils, 

particularly clay, results in heterogeneity of channel sinuosity and meander migration patterns 

(Güneralp and Rhoads, 2011a; Schwendel et al., 2015), as well as in preferential subsurface flow 

paths (Fuchs et al., 2009). Increased spatial heterogeneity of the entire river corridor, including 

floodplain presence, is associated with decreased catchment-wide sediment yield and sediment 

connectivity (Baartman et al., 2013). Floodplain heterogeneity affects the deposition and storage 

of pollutants because many contaminants travel adsorbed to sediment or are influenced by 

spatially diverse microbial transformations in patchy surface and subsurface environments 

(Lowell et al., 2009; Ciszewski and Grygar, 2016). Forested floodplain soil texture affects 
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carbon and nitrogen cycling (Appling et al., 2014) and floodplain heterogeneity is linked to 

heterogeneity of carbon storage (Samaritani et al., 2011; Lininger et al., 2018). Surface 

heterogeneity of vegetation is associated with near-surface soil nutrient heterogeneity (Naiman et 

al., 2005; Appling et al., 2014). Floodplain topographic heterogeneity influences inundation 

patterns and resulting vegetation establishment (Scott et al., 1996; Hughes, 1997; Friedman and 

Lee, 2002), as well as fish life cycles, aquatic communities, and food webs (Zeug and 

Winemiller, 2008; Bellmore et al., 2013; Stoffers et al., 2022; Uno et al., 2022). These previous 

studies highlight the importance and the effects of floodplain heterogeneity, but there is much 

work to be done in comparing heterogeneity across latitudes, elevations, and biomes and 

connecting heterogeneity to overarching floodplain processes. 

This study builds directly off the development of a classification workflow in Ch 2 and 3, 

choice of metrics from landscape ecology, and investigation into floodplain heterogeneity around 

the continental United States. This work builds beyond the case study by quantifying floodplain 

spatial heterogeneity for 15 natural floodplains across North America that differ in relative 

channel mobility, flashiness of flood peaks, and biome to provide insights into the fluvial and 

ecological processes that create and maintain natural floodplain heterogeneity. 

4.1.2 Conceptual Model 

I seek to determine whether river corridor characteristics can predict levels of floodplain 

heterogeneity through a multivariate linear analysis and to infer processes that create and 

maintain floodplain heterogeneity. I start from the premise that the two primary controls of 

floodplain heterogeneity are the lateral space available for floodplain development in a river 

corridor and the lateral mobility of the channel. For the conceptual model in Figure 4.1, I assume 

that the space available for a river is governed primarily by processes acting at timespans of 
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millennia and longer (e.g., Wohl, 2015) and is thus static for the timespans of 101–102 years 

during which the floodplain features that I analyze are created and maintained. I use valley 

geometry to represent valley-floor space available for floodplain development and adjustment. I 

quantify drainage area (DrA) and the ratio of average floodplain width to average channel width 

(FP/CH) at the reach scale and use these as indicators of valley geometry because valley-floor 

width tends to increase with drainage area (e.g., Bhowmik, 1984; Beighley and Gummadi, 2011) 

but reach-scale variations in longitudinal trends are better captured by FP/CH for a reach (e.g., 

Wohl et al., 2017).  

I expect flow regime, channel planform, and biota to influence lateral channel mobility. I 

categorize flow regime (Flow) as a proxy for the flashiness and relative erosional power of peak 

flows, under the assumption that snowmelt-dominated flow regimes are less flashy than rainfall-

dominated regimes. Thirty-year normal precipitation (Precip) is a variable that can be easily 

quantified from publicly available data and that may influence flow regime and floodplain 

vegetation. Mean floodplain elevation (Elev) can be a proxy for elevational differences in 

climate and disturbance regime, particularly in high-relief watersheds (Sutfin and Wohl, 2019). 

Categorical planform (Plan) reflects relative lateral mobility, which I interpret to increase along a 

continuum from straight to meandering, anastomosing, and then braided channel planform 

(Schumm, 1985). Latitude (Lat) and elevation are likely to jointly distinguish ecoregions in the 

United States (Omernik, 1987; Barry et al., 2004) and median large wood volume (LWV) 

reflects a biotic influence on floodplain process and form (Figure 4.1). Methods used to 

determine values and categories for each predictor variable are described in the Methods section 

and provided for each site in Table 4.1. 



80 

 

Figure 4.1. Main controls of floodplain spatial heterogeneity and the predictor variables used to quantify them. 

Main controls are shown in dark blue text and predictors are shown in turquoise and orange text. Turquoise 

predictors indicate to drainage basin-level values and categories, and orange predictors indicate study area-level 

values and categories. Solid arrows connect predictor variables to the main controls they represent and to other 

predictor variables that they influence or are influenced by, and double-sided arrows connect predictor variables 

the interact reciprocally with each other. The dashed arrow connecting Beaver and Floodplain Width/Channel 

Width represents the habitat preference of beaver for wider floodplains, but also the fact that their presence and 

dam building can increase the regularly flooded width of the valley floor (e.g., Westbrook et al., 2011). The inset 

tiles illustrate contrasting values or levels for each variable. 

I relate the predictor variables in Figure 4.1 to five response variables that are commonly 

used spatial patch- and class-based heterogeneity metrics from landscape ecology: aggregation 

index (AI), percentage of like adjacencies (PLADJ), interspersion and juxtaposition index (IJI), 



81 

patch density (PD), and Shannon’s evenness index (SHEI) (levels of each metric demonstrated 

Supplemental Figure 4.1). AI and PLADJ are both measures of the aggregation across a 

landscape based on class edge length (He et al., 2000; Hesselbarth et al., 2022), and going 

forward the term aggregation (AGG) will be used when I refer to AI and PLADJ together. Low 

values of AGG indicate that few pixels are adjacent to pixels of the same class (He et al., 2000; 

Hesselbarth et al., 2022). IJI is a measure of intermixing of class types at a patch level, or how 

spatially mixed patches of different classes are (McGarigal and Marks, 1995; Hesselbarth et al., 

2022). PD is a measure of how broken up a landscape is, where a higher PD indicates a patchier 

landscape with more individual patches, regardless of class type (Hesselbarth et al., 2022). SHEI 

is a measure of diversity and distribution of class types across a landscape (Hesselbarth et al., 

2022). A higher SHEI indicates that the landscape area is not dominated by one class type 

(McGarigal and Marks, 1995). 

4.1.3 Hypotheses 

I test five hypotheses regarding relationships between predictor and response variables 

using pairwise comparisons of medians and variances, and a multivariate linear analysis. 

 

H1: AGG will increase and PD will decrease with increasing FP/CH. I based this hypothesis on 

the assumption that the turnover rate of a relatively broad floodplain will be longer (Mertes et al., 

1996; Konrad, 2012) and individual patches will persist for longer and be subject to less frequent 

disturbance, thus merging into larger patches via vegetation establishment and encroachment.  

 

H2: AGG, IJI, PD, and SHEI will increase with increasing LWV. This tests the inference that 

large wood accumulations can increase channel-floodplain connectivity (Jeffries et al., 2003; 
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Collins et al., 2012), increasing the size of patches, but can also affect vegetation establishment, 

store sediment, and armor channel banks (Daniels and Rhoads, 2003; Skalak and Pizzuto, 2010).  

 

H3: For non-beaver sites, IJI, SHEI, and PD will increase and AGG will decrease with 

increasing channel mobility and migration (as reflected in the proxy of Plan). This hypothesis 

tests the assumption that new floodplain will be formed, vegetation succession will be reset, and 

sediment will be transported and deposited in new areas, thus dissecting large patches and 

therefore increasing the number of patches and class intermixing.  

 

H4: IJI, SHEI, and PD will increase and AGG will decrease with increasing flow regime 

flashiness (as reflected in the category of Flow). This hypothesis tests the inference that the 

channel will be more mobile and the floodplain will be inundated more often with less time for 

large vegetation to establish (e.g., Everitt, 1968), increasing the number of small, interspersed 

patches and dissecting large patches. 

 

H5: For beaver sites vs. non-beaver sites, IJI will decrease and AGG and PD will increase with 

the presence of beaver modification (as reflected in the proxy of Plan) because beaver organize 

the landscape in a specific way that accumulates wet and non-wet patches (Laurel and Wohl, 

2019) while maintaining vegetation stands throughout the river corridor. 

 Study Area 

This study examines 15 diverse river corridors from the continental United States (Figure 

4.2). The sites are the Yukon River (YAK; floodplain area = 2,380 km2) in the Yukon Flats 

National Wildlife Refuge in Alaska, the Hoh River (HWA; 10 km2) and Sol Duc River (SDWA; 
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0.6 km2) in Olympic National Park in Washington, Lookout Creek (LOR; 0.1 km2) in HJ 

Andrews Experimental Forest in Oregon, the Swan River (SMT; 26 km2) in the Swan River State 

Forest (including the Swan River National Wildlife Refuge) in Montana, Downs Fork (DFWY; 

0.2 km2) and Dinwoody Creek (DWY; 0.3 km2) in the Fitzpatrick Wilderness in Wyoming, 

North St. Vrain Creek (NSV; 0.4 km2) in Boulder County in Colorado, Rough and Tumbling 

Creek (RTCO; 0.1 km2) in Park County in Colorado, East Plum Creek (EPC; 0.02 km2) in 

Douglas County in Colorado, West Bijou Creek (WBJ; 1 km2) in Arapahoe County in Colorado, 

Sand Creek (SOK; 0.1 km2) in the Joseph H. Williams Tallgrass Prairie Preserve in Oklahoma, 

the Embarras River (EIL; 6 km2) in the Chauncy Marsh Nature Preserve in Illinois, the Congaree 

River (CSC; 106 km2) in Congaree National Park in South Carolina, and the Altamaha River 

(AGA; 37 km2) in the Altamaha Wildlife Management Area in Georgia. Site information and 

data collected are presented in the next section. 

I chose these sites to represent a range of drainage area (30–500,000 km2), flow regime 

(snowmelt vs. rainfall), channel planform (straight, meandering, anastomosing, beaver, braided), 

and biome/latitude (31–66o). I emphasized the least human-altered floodplains and watersheds 

that I could identify. My intent was to minimize the effects of flow regulation, artificial levees, 

floodplain drainage and land cover changes, and channel engineering on floodplain process and 

form. 
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Figure 4.2. Floodplain sites used in this study, shown regionally and in more detail. Region 1 includes the Yukon 

River in the arctic (YAK); region 2 includes the Hoh River (HWA), Sol Duc River (SDWA), and Lookout Creek 

(LOR) in the Pacific Northwest; region 3 includes the Swan River (SMT), Downs Fork (DFWY), and Dinwoody 

Creek (DWY) in the Rocky Mountains; region 4 includes North St. Vrain Creek (NSV), Rough and Tumbling Creek 

(RTCO), East Plum Creek (EPC), West Bijou Creek (WBJ), and Sand Creek (SOK) in the Rocky Mountains and 

Great Plains; and region 5 includes Embarras River (EIL), Congaree River (CSC), and Altamaha River (AGA) in 

the (coastal) plains. 

 Methods 

Following the methods from Ch 3, I present a full suite of sites with field data, classified 

floodplains, and values of heterogeneity. Field classifications for specific sites can be found in 

Tables 2.3 and 3.1, and Supplemental Table 4.1, and can be used to interpret the classified data 

(Iskin and Wohl, In Review). Field transect locations were spaced at approximately ten times the 

average channel width, and study reaches were chosen based on existence of a floodplain (river 

beads), access by car and foot, and in some cases by existence of published datasets. Patches 
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were defined in the field along the floodplain transects on the 3–10 m scale and with remote 

sensing on the 10 m scale. Classes are identified with an unsupervised remote sensing 

classification run with 10-band aerial imagery, high-resolution digital elevation models (DEMs), 

normalized difference vegetation index (NDVI), and normalized difference moisture index 

(NDMI) (Supplemental Table 4.3). Sentinel-2A data from 2022 only were used to create the 

multispectral mosaics in Google Earth Engine because the Sentinel processing baseline was 

updated in January 2022 (ESA, 2023). I used a timeframe of data from 1 May 2022 – 30 

September 2022 to capture the entire summer growing period. I shortened this window for 

RTCO to exclude snow-covered periods and widened the window for CSC and AGA to reduce 

the impact of clouds in this humid region. I decreased the cloudy percentage as necessary to 

produce a clear mosaic (Supplemental Table 4.3). DEMs with higher spatial resolution than 10 m 

were used where available and when they covered the entire study site; 10 m DEMs were used 

otherwise (Supplemental Table 4.3). 

Floodplains were delineated manually in ArcGIS Pro (Esri, 2022) using field transect 

data, DEMs, Sentinel imagery, and park boundaries (where applicable). For specifics on 

floodplain delineations of WBJ, EPC, SOK, and RTCO, see Ch 2, and for specifics for HWA, 

SDWA, LOR, and AGA, see Ch 3. A 10-m geodesic buffer was added to the floodplains to 

account for field and/or user error (Iskin and Wohl, 2023). Floodplains were generally drawn to 

exclude most of the human-impacted areas, but not all were excluded. No 10 m buffer was added 

to the DFWY and DWY floodplains because they are adjacent to each other and a buffer would 

have caused overlap. High elevation non-floodplain surfaces were removed from the SMT 

floodplain and agricultural areas were removed from the EIL floodplain using the Erase tool 

after the 10 m buffer was added. The YAK floodplain was obtained from Lininger et al. (2019) 
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and a 10 m buffer was added. The floodplain was then truncated to exclude the braided section 

upstream of the anastomosing section as there was an error in the Sentinel data in that region. 

Values and categories for each site are provided in Table 4.1. For this study, I assume that the 

metrics calculated from the classification are not very sensitive to the specific area that is being 

classified. For example, I assume that adding the 10 m buffer will not significantly affect the 

results. 

4.3.1 Classification 

Classification of the 15 study floodplains followed a similar workflow to Ch 3 and is 

detailed in Figure 4.3. The unsupervised classification was performed on 2022 Sentinel-2A 

mosaics, detrended highest resolution DEMs, and NDVI and NDMI rasters calculated from the 

Sentinel data (Supplemental Table 4.3). The inputs for the maximum number of classes for the 

tool to find were set to 50 (YAK; FPA > 2000 km2), 30 (HWA, SMT, AGA, EIL, CSC; FPA > 5 

km2), 20 (WBJ, SDWA; FPA > 0.5 km2), 10 (EPC, RTCO, NSV, LOR, DWY, DFWY; FPA < 

0.5 km2), and 5 (SOK). These values are subjective and were chosen to balance identifying more 

classes than were observed in the field without overclassifying the floodplains. The classifier 

delineated these maximum number classes for all sites expect EPC (set to 10, found 5) and 

RTCO (set to 10, found 9). The minimum size for a class was set to 4 pixels (each pixel is 10 m 

x 10 m in the appropriate Universal Transverse Mercator projections) and the sample interval 

was set to 2 pixels for all sites except YAK, as the tool could not classify the floodplain due to 

the large file size if set any lower than 6 pixels and 3 pixels.  
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Figure 4.3. Analytical workflow completed in ArcGIS Pro and RStudio. 
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4.3.2 Statistical Analysis 

For the statistical analysis, several values for each site were compiled: latitude (Lat) and 

longitude (Long), drainage area (DrA), floodplain area (FPA), floodplain perimeter (FPP), mean 

floodplain elevation (Elev), annual average precipitation (Precip), categorical flow regime 

(Flow), categorical planform (Plan), total sinuosity (TS), average transect large wood volume in 

(LWV), and average floodplain width per average channel width (FP/CH) (Table 4.1, 4.2). 

Although DWY and DFWY have somewhat overlapping drainage areas and floodplains, they 

were treated as independent sites in this analysis because they have distinct floodplain 

characteristics and originate from different upstream sources. 

Table 4.1. Predictor variables and sources. Lat, Long, FPA, FPP, TS, and FP/CH are rounded to the nearest tenth; 

DrA and Precip are rounded to the nearest one; and Elev is rounded to the nearest ten. 

River Lat Long DrA FPA FPP Elev Precip Flow Plan TS FP/CH 
Units DD DD km2 km2 km m mm - - m/m m/m 

WBJ 39.6 -104.3 653 1.1 6.5 1630 459 Rain Braided 2.2 4.1 

EPC 39.3 -104.9 192 0.02 0.6 1950 552 Snow Straight 1.3 19.4 

RTCO 39.1 -106.1 60 0.1 1.1 2950 591 Snow Beaver 2.6 8.1 

SOK 36.8 -96.4 31 0.1 2.2 300 994 Rain Meandering 1.5 2.8 

AGA 31.4 -81.6 36542 37.1 32.2 1 1233 Rain Straight 1.2 19.3 

HWA 47.8 -124 323 9.9 19 160 3984 Rain Braided 4.1 7.0 

SDWA 48 -123.9 101 0.6 6.1 420 3856 Rain Meandering 1.5 7.0 

LOR 44.2 -122.2 54 0.1 2.1 540 2341 Rain Straight 1.3 3.2 

YAK 65.9 -149.2 500329 2378.2 401.8 110 438 Snow Anastomosing 13.3 7.5 

SMT 47.9 -113.9 1540 26.2 65.2 960 1062 Snow Anastomosing 4.8 12.5 

CSC 33.8 -80.7 21918 106.1 53.8 30 1248 Rain Meandering 2.0 59.2 

EIL 38.9 -87.8 5496 6.2 21 130 1098 Rain Meandering 2.2 25.9 

DFWY 43.3 -109.6 62 0.2 2.2 2810 849 Snow Anastomosing 5.6 17 

DWY 43.3 -109.6 131 0.3 3.2 2810 834 Snow Meandering 1.6 14.3 

NSV 40.2 - 105.5 84 0.4 3.5 2540 935 Snow Beaver 2.6 13.7 

Scale Drainage Area Study Reach 
Drainage 

Area 
Regional Study Reach 

 

DrA was obtained using StreamStats (USGS, 2023a) to delineate the contributing area 

upstream of the study reach, with the pour point specified as the downstream-most part of the 

study reach. The basin polygons were brought into ArcGIS Pro and the geodesic areas were 

calculated using Calculate Geometry. StreamStats is not available for interior Alaska or the state 
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of Wyoming, so the drainage basins for YAK, DFWY, and DWY were delineated in ArcGIS Pro 

using the Watersheds (Ready to Use) tool (Esri, 2023) with the default snap distance and finest 

data source resolution. Lat and Long were obtained from the pour points used to delineate the 

watersheds. FPA and FPP were obtained by calculating the geodesic areas and perimeters from 

the floodplain polygons. Elev was acquired from the DEM statistics. 

Precip values were obtained from modeled average annual precipitation data for the 

coterminous U.S. (800 m resolution, 1991–2020 time period; PRISM, 2022), Alaska (800 m 

resolution, 1991–2020 time period; PRISM, 2018), and western Canada (2 km resolution, 1961–

1990 time period; PRISM, 2002). The data were clipped to the respective drainage areas, and the 

mean values in millimeters were extracted from the raster statistics. Part of the YAK watershed 

is in Canada, so both the Alaska and western Canada PRISM data were used to calculate a mean 

precipitation value for the Yukon River. The Mosaic to New Raster tool was used to combine the 

Alaska and Canada rasters, specifying an 800 m cell size and that the Alaska cells should be kept 

in overlapping regions to preserve the detail of the smaller cells. 

Flow was determined from visual inspection of 2021–2023 annual gage/discharge data 

for each site, and from nearby sites for ungaged streams (RTCO, SOK, SDWA) (USGS, 2023b). 

A snowmelt-dominated flow regime was assigned when the annual discharge had a few-months-

long peak in the late spring/early summer, and a rainfall-dominated flow regime was assigned 

when the annual discharge had many short peaks in the year. There are no nearby gaging stations 

to WBJ, so it was assigned a rainfall-dominated flow regime because the drainage area is entirely 

on the plains and does not originate in the Rocky Mountains. There are also no nearby gaging 

stations to DWY and DFWY with a full year of data, so they were assigned snowmelt-dominated 

flow regimes because the drainage areas originate in the high elevations of the Wind River 
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Range. There is no nearby gaging station to NSV, so it was also assigned a snowmelt-dominated 

flow regime because the drainage area originates in the Rock Mountains. 

Planform classifications reflect a continuum based on flow, sediment, and wood regimes 

(Schumm, 1985), but I chose one planform category for each site (straight, meandering, 

anastomosing, beaver, or braided) based on field experiences. I also calculated total sinuosity 

using base-flow imagery for each site available in Google Earth Pro as of March 2023 as a less 

subjective and numerical measure of planform characteristics. Both WBJ and HWA are 

transitioning (WBJ from braided to straight and HWA from braided to anastomosing), but I 

classified them both as braided for this analysis. Average FP/CH was calculated in ArcGIS Pro 

by measuring manually delineated floodplain widths and channel widths. Floodplain widths were 

measured perpendicular to the valley trend using the floodplain polygons. Channel widths were 

measured perpendicular to flow direction at the same locations as the floodplain widths using the 

Sentinel satellite imagery, DEMs, and ArcGIS Pro NAIP Hybrid base map where necessary. I 

excluded large anastomosing islands for YAK for channel widths, and included part of DFWY in 

the DWY measurements because it flows onto the DWY floodplain. The average bankfull 

channel width for NSV was calculated from field data because the beaver dams made discerning 

channels from imagery difficult. 

LWV was calculated from field transect data from various sources that generally coincide 

with the delineated floodplains (Table 4.2) according to Van Wagner’s method (1968). Large 

wood volume estimates should be considered minima for HWA because I could not access the 

channel or the river-left floodplain; SDWA and LOR because some jams on the transects were 

estimated with the box method (Livers et al., 2020); EPC because I encountered no wood on the 

three transects I walked; RTCO because the one transect did not include any of the beaver dams 
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present at the site; and AGA because the site was unexpectedly flooded during the field visit and 

I could not access most of the floodplain.  

Table 4.2. Floodplain large wood loads for the United States. These estimates include some instream wood at sites 

where the active channel was accessible by foot. Values are rounded to the nearest ten. 

River 

Median 

Transect Wood 

Load (m3/ha) 

Range (m3/ha) 
Number of 

Transects 
Collected 

West Bijou Creek 130 20–220 10 
July and October 

2020 

East Plum Creek 0 
No wood 

observed 
3 September 2020 

Rough and Tumbling Creek 0 
No wood 

observed 
1 August 2022 

North St. Vrain Creek 1 0 
No wood 

observed 
10 

August 2010 and 

August 2018 

Sand Creek 0 0–600 10 June 2021 

Hoh River 2760 140–8820 7 July 2021 

Sol Duc River 3900 800–18900 10 July 2021 

Lookout Creek 4110 0–8660 10 July 2022 

Altamaha River 10 0–140 4 October 2021 

Embarrass River 1120 140–2220 4 March 2022 

Swan River 2 140 130–150 16 July 2017 

Yukon River 3 30 0–170 24 (patches) June and July 2015 

Downs Fork 30 10–50 6 July 2019 

Dinwoody Creek 20 20–30 5 July 2019 

Congaree River 4 50 1–180 NA October 2009 
1Wohl and Cadol, 2011; Laurel and Wohl, 2019 
2Wohl et al., 2018b 
3Lininger et al., 2017 (Note: wood volumes do not include wood jams that were on the channel margins) 
4Wohl et al., 2011 

 

The classified floodplains and data from Table 4.1 were brought into R (R Core Team, 

2023) and prepared for analysis and visualised using tools from the tidyverse, raster, rasterVis, 

and rgdal packages (Wickham et al., 2019; Bivand et al., 2023; Hijmans, 2023; Lamigueiro and 

Hijmans, 2023). Heterogeneity metrics were calculated using the landscapemetrics package 

(Hesselbarth et al., 2019), the coin and dunn.test packages were used to compare medians 

(Hothorn, 2008; Dinno, 2017), and the car package was used to compare variances (Fox and 

Weisberg, 2019). The tidymodels package was used to perform the model fitting (Kuhn and 

Wickham, 2020). 
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 The Flow variable was ordered by flashiness (Snow < Rain) and the Plan variable was 

ordered by channel mobility (Straight < Meandering < Anastomosing < Beaver < Braided). The 

continuous predictor variables are compared to the heterogeneity metrics via correlation, and the 

planform and flow predictor variables are first compared to the heterogeneity metrics using 

boxplots and non-parametric comparisons of medians and variances. The nonparametric method 

of leave-one-out cross-validation (LOOCV) is then used to fit and choose multivariate models 

with the heterogeneity metrics as the response variables in turn. The LOOCV model selection is 

iterative and is ultimately based on choosing the model with the highest LOOCV R2 value. These 

analyses include all 15 data points and none of the variables are transformed.  

 Results 

The 15 classified floodplains from across the country are presented in Figure 4.4 and 

through a quantitative comparison of the heterogeneity metrics for each floodplain. Correlations 

and pairwise comparisons of heterogeneity between the levels of the categorical variables are 

provided, and the LOOCV multivariate models are presented. H1–H5 are discussed first with 

qualitative results and then with the model results. To summarize the results, floodplain 

heterogeneity is significantly related to river corridor characteristics and some heterogeneity 

metrics are also significantly related to each other. 

4.4.1 Classification 

The classified floodplains for all sites are provided in Figure 4.4. The classifications for 

HWA, SDWA, LOR, and AGA come from Ch 3, and the floodplain polygons used for WBJ, 

EPC, SOK, and RTCO come from Ch 2. Detail insets are provided for floodplains with an area ≥ 

10 km2. The YAK floodplain is the largest floodplain in this study (2,380 km2) and spans nine 

DEM tiles from three different years (Supplemental Table 4.3). 
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Figure 4.4. ISO unsupervised classification results for Regions 1–5: Yukon River, Alaska (YAK; with detail inset); 

Sol Duc River, Washington (SDWA); Hoh River, Washington (HWA; with detail inset); Swan River, Montana (SMT; 

with detail inset); Lookout Creek, Oregon (LOR); Downs Fork, Wyoming (DFWY); Dinwoody Creek, Wyoming 

(DWY); North St. Vrain Creek, Colorado (NSV); Rough and Tumbling Creek, Colorado (RTCO); West Bijou Creek, 

Colorado (WBJ); East Plum Creek, Colorado (EPC); Sand Creek, Oklahoma (SOK); Embarrass River, Illinois 

(EIL); Congaree River, South Carolina (CSC; with detail inset); and Altamaha River, Georgia (AGA; with detail 

inset). ISO classes are not equal to field classes. 
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4.4.2 Exploratory Statistics 

First, I present the overall median values of floodplain heterogeneity and discuss 

relationships between the heterogeneity metrics. These floodplains have median AI of 58.8%, 

median IJI of 74.9%, median PD of 1241 patches/ha, median PLADJ of 58.5%, and median 

SHEI of 0.934 (Table 4.3). AI ranges from 46.9% for SOK to 75.7% at YAK. IJI ranges from 

55.2% at EPC to 96.6% at SOK. PD ranges from 490 patches/100ha at YAK to 1870 

patches/100ha at SDWA. PLADJ ranges from 48.6% at SOK to 75.6% at YAK. SHEI ranges 

from 0.554 at RTCO to 0.973 at WBJ and HWA. These results indicate that natural floodplains 

have moderate aggregation of classes, high evenness and intermixing of classes, and a wide 

range of patch densities. 

Table 4.3. Calculated heterogeneity metrics for each site. Color scales represent red = 25%, yellow = 50%, and 

green = 75% of the metric’s range, excluding PD. The PD color scale represents red = lowest value, yellow = 50th 

percentile, and green = highest value. AI, IJI, and PLADJ are rounded to the nearest tenth, PD is rounded to the 

nearest one, and SHEI is rounded to the nearest hundredth. 

River AI (%) IJI (%) PD (patches/100 ha) PLADJ (%) SHEI 

WBJ 56.7 80.2 1328 55.4 0.973 

EPC 60.6 55.2 1168 56.7 0.721 

RTCO 65.8 55.8 1241 64.1 0.554 

SOK 46.9 96.6 1823 48.6 0.972 

AGA 58.8 73.3 1213 58.5 0.934 

HWA 66.0 71.6 855 65.3 0.973 

SDWA 50.8 79.9 1866 49.5 0.967 

LOR 57.4 74.9 1698 58.6 0.639 

YAK 75.7 73.4 491 75.6 0.966 

SMT 50.8 78.9 1819 50.6 0.962 

CSC 52.3 73.2 1578 52.1 0.922 

EIL 55.7 71.7 1335 55.2 0.906 

DFWY 69.5 78.3 832 67.0 0.927 

DWY 60.2 79.3 1217 58.9 0.917 

NSV 61.4 83.4 1148 60.1 0.957 

Median 58.8 74.9 1241 58.5 0.934 

 

Some of the heterogeneity metrics demonstrate high collinearity with each other, as 

shown in fitted linear models in Equations 4.1–4.3 and pairwise scatter plots in Supplemental 
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Figure 4.3 (bold values in the equations represent p-values < 0.05 for the models and individual 

predictors). The results show that PLADJ describes 97% of the variability in AI, indicating that 

perhaps only one of these metrics is necessary to capture the level of aggregation in a landscape. 

The opposite relationship between the AGG metrics and PD makes intuitive sense as one would 

expect an increase in the number of patches to decrease class aggregation (Eq. 4.1, 4.3). Because 

AI and PLADJ are highly correlated, AI will be the only aggregation metric discussed going 

forward. 

 𝐴𝐴𝐴𝐴 =  −𝟎𝟎.𝟎𝟎𝟎𝟎𝟎𝟎 × 𝑷𝑷𝑷𝑷 +  𝟎𝟎𝟖𝟖.𝟎𝟎𝟎𝟎;  𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃𝐷𝐷𝑀𝑀𝑀𝑀𝑃𝑃 𝑅𝑅2 =  𝟎𝟎.𝟎𝟎𝟎𝟎              (4.1) 𝐴𝐴𝐴𝐴 =  𝟎𝟎.𝟎𝟎𝟎𝟎 × 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 –  1.54;  𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃𝐷𝐷𝑀𝑀𝑀𝑀𝑃𝑃 𝑅𝑅2 =  𝟎𝟎.𝟗𝟗𝟗𝟗               (4.2) 𝑃𝑃𝐷𝐷 =  −𝟎𝟎𝟗𝟗.𝟗𝟗𝟗𝟗 × 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 +  𝟎𝟎𝟒𝟒𝟒𝟒𝟒𝟒.𝟖𝟖𝟎𝟎;  𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃𝐷𝐷𝑀𝑀𝑀𝑀𝑃𝑃 𝑅𝑅2 =  𝟎𝟎.𝟎𝟎𝟎𝟎         (4.3) 

 

Correlation tables were calculated for all the predictor and response variables in this 

study. Correlations were calculated for n = 15 (Table 4.4) to look at numerical relationships. As 

Table 4.4 shows, there is some collinearity in the set of predictor variables, particularly Lat, 

Long, FPA, FPP, and TS. This intuitively makes sense as the variables are interconnected 

(Figure 4.1). Because of this, I removed Lat, Long, FPA, and FPP to get a final suite of predictor 

variables of DrA, Elev, Precip, TS, LWV, FP/CH, Flow, and Plan. I kept TS because it is the 

only numerical indicator of channel planform. The correlations show that FP/CH is weakly 

negatively correlated with AI, not supporting H1. LWV is weakly negatively correlated with AI 

and SHEI, and weakly positively correlated with PD, partially supporting H2. DrA is strongly 

positively correlated with AI, weakly positively correlated with SHEI, and strongly negatively 

correlated with PD. Precip is weakly positively correlated with PD and SHEI, and weakly 

negatively correlated with AI. TS follows the same trends as DrA, partially supporting H3. This 



96 

makes sense as these two predictor variables are strongly positively correlated. Elev is weakly 

negatively correlated with SHEI, PD, and IJI, and weakly positively correlated with AI. 

Table 4.4. Correlations between continuous variables with all sites (n = 15). Red indicates a correlation ≤ -0.75 and 

green represents a correlation ≥ 0.75. 

 Lat Long DrA FPA FPP Elev Precip TS LWV FP/CH AI IJI PD 

Lat              

Long -0.94             

DrA 0.76 -0.59            

FPA 0.78 -0.62 1.00           

FPP 0.77 -0.57 0.99 0.99          

Elev -0.12 -0.02 -0.29 -0.27 -0.34         

Precip 0.15 -0.28 -0.23 -0.23 -0.22 -0.43        

TS 0.84 -0.68 0.89 0.90 0.91 -0.11 -0.19       

LWV 0.23 -0.38 -0.17 -0.16 -0.18 -0.38 0.87 -0.19      

FP/CH -0.41 0.60 -0.10 -0.10 -0.03 -0.17 -0.17 -0.15 -0.29     

AI 0.52 -0.51 0.58 0.58 0.51 0.32 -0.18 0.68 -0.17 -0.17    

IJI 0.01 0.02 -0.05 -0.05 -0.04 -0.21 0.10 -0.02 0.03 -0.21 -0.43   

PD -0.42 0.35 -0.57 -0.56 -0.51 -0.23 0.23 -0.64 0.31 0.05 -0.94 0.34  

SHEI 0.18 0.00 0.18 0.17 0.23 -0.34 0.13 0.25 -0.15 0.09 -0.17 0.68 -0.07 

 

Comparing median heterogeneity values among the categorical variables of Plan (Figure 

4.6) and Flow (Figure 4.7), there are no significant differences in medians (Wilcoxon Rank Sum, 

Wilcoxon Rank Sum with ties, and Kruskal-Wallis Rank Sum test p-values all > 0.05). There are 

also no significant differences in heterogeneity variances by Flow (Levene’s test p-values > 

0.05), but there are significant differences in variances for SHEI by Plan (Levene’s test p-values 

< 0.05).  
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Figure 4.6. Pairwise comparisons of heterogeneity metrics by reach-scale channel planform for a) AI, b) IJI, c) PD, 

and d) SHEI. There are no statistical differences in medians. 
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Figure 4.7. Pairwise comparisons of heterogeneity metrics by watershed-scale flow regime for a) AI, b) IJI, c) PD, 

and d) SHEI. There are no statistical differences in medians. 

Although there are no significant differences in medians, I can draw qualitative 

inferences in relation to the conceptual model-based hypotheses (H3–H5). H3 proposed that IJI, 

SHEI and PD would increase with increasing channel mobility (not including beaver-modified 

planforms). Figure 4.6b shows that straight planforms (least mobile) generally have lower IJI 

than the other planform types, supporting H3. Figure 4.6c shows that meandering planforms have 

greater PD than straight planforms, but that anastomosing and braided planforms (most mobile) 

have lower PD than all the others, partially supporting H3. Figure 4.6d shows that median SHEI 

increases from least mobile to most mobile planforms, supporting H3. H3 also proposed that 

AGG would decrease with channel mobility. From Figure 4.6a, meandering planforms have the 
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lowest AI and straight, anastomosing, and braided planforms have similar and higher AI. This 

only partially supports H3, as straight planforms have higher AI than meandering, but 

anastomosing and braided planforms also have greater AI than meandering. Overall, H3 is 

primarily supported by the data, but inclusion of more sites in each planform category would 

strengthen future analyses. 

Similar to H3, H4 proposed that IJI, SHEI and PD would increase and AGG would 

decrease with increasing flow regime flashiness. Figures 4.7b,d show that median IJI and SHEI 

are similar for snowmelt (less flashy) and rainfall (flashier) flow regimes, not supporting H4. 

Figure 4.7c, however, shows increasing PD with increasing flashiness of the flow regime, 

supporting H4. Figure 4.7a shows that AI decreases with increasing flashiness, supporting H4. 

Overall, I conclude that H4 is partially supported by the data. 

H5 proposed that AGG and PD would be higher and IJI would be lower for beaver-

modified planforms vs. non-beaver planforms. Figure 4.6a shows that beaver planforms have 

higher AI than straight and anastomosing planforms, partially supporting H5. Figure 4.6c shows 

that beaver planforms have lower PD than meandering planforms, not supporting H5. Figure 

4.6b shows no discrimination between IJI for different planform types, not supporting H5. 

Overall, I conclude that H5 is not supported by the data. 

4.4.3 Multivariate Models 

Multiple attempts using standard methods for multivariate linear analysis led to 

overfitting and little applicability beyond my dataset of 15 sites. Instead, I used a non-parametric 

method of model fitting that guards against overfitting and can provide insights into important 

predictors of floodplain heterogeneity. The final LOOCV models are presented in Table 4.5. 

Boxplots of the estimates for each predictor variable for each model are given in Supplemental 
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Figures 4.4–4.7. Predictor values are considered “important” (as opposed to statistically 

significant) if the interquartile range of the boxplots does not include zero and the range of the 

boxplots are reasonably narrow. 

The results show that 45% of the variability in AI can be explained by the full model: the 

combination of DrA, Elev, Precip, TS, LWV, FP/CH, Plan, and Flow. DrA, Elev, FP/CH, Plan 

and Flow are important in this model, with smaller drainage areas, higher elevations, and greater 

floodplain width ratios corresponding to larger AI values, supporting H1. Straight planforms 

have higher AI than anastomosing, beaver, and braided planforms, partially supporting H3. 

Rainfall dominated flow regimes have higher AI than snowmelt dominated ones, not supporting 

H4. LWV can explain 77% of the variability in IJI. The combination of DrA, TS, LWV, and Plan 

can explain 48% of the variability in PD. All of these predictor variables are important in this 

model, with larger drainage areas, higher large wood volumes, and lower total sinuosity 

corresponding to larger PD values, supporting H2. Straight planforms have lower PD than 

anastomosing and braided planforms, supporting H3. Lastly, Precip can explain 59% of the 

variability in SHEI and is important in this model, with greater annual average precipitation over 

the drainage area corresponding with an increase in SHEI. Table 4.6 summarizes support of 

hypotheses 1–5 from the qualitative and quantitative results.  

 

Table 4.5. Leave-one-out cross-validation multivariate models and R2 values. 

Response Variable Predictor Variables LOOCV R2 

AI DrA + Elev + Precip + TS + LWV + FP/CH + Plan + Flow 0.45 

IJI LWV 0.77 

PD DrA + TS + LWV + Plan 0.48 

SHEI Precip 0.59 
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Table 4.6. Summary of support for study hypotheses 

Hypothesis Result 

H1: ↑ in AGG, ↓ in PD with ↑ in FP/CH Partially Supported 

H2: ↑ in AGG, IJI, PD, SHEI with ↑ LWV Supported 

H3: ↑ in IJI, PD, SHEI, ↓ in AGG with ↑ mobility Supported 

H4: ↑ in IJI, PD, SHEI, ↓ in AGG with ↑ flashiness Partially Supported 

H5: ↑ in AGG and PD, ↓ in IJI for beaver planforms Not Supported 

 Discussion 

Although a sample size of 15 is small in the realm of statistics, these were hard-won data 

points from three years of field work and both the qualitative and LOOCV analyses provide a 

launching point for future study. More work could be done to (i) identify a more robust way to 

choose the maximum number of classes in the unsupervised classification workflow, as it is 

known that these metrics are sensitive to the number of classes used (Huang et al., 2006), and (ii) 

test whether the delineated floodplain area significantly affects the metrics. Additionally, even 

with Blend mosaicking, the boundaries between the YAK DEM tiles from 2016 and 2017 are 

visible in the final classification. Ways to reduce discrepancies in the satellite data could be 

further investigated as well. That said, the results from the classification workflow are 

straightforward and are discussed at length in Ch 2 and 3, so the following discussion addresses 

both the qualitative results from the boxplot comparisons and quantitative results from the 

LOOCV model fitting. Qualitatively, H2 and H3 are supported, H1 and H4 are partially 

supported, and H5 is not supported by the results. Quantitatively, river corridor characteristics 

can explain 45-77% of the variability in floodplain heterogeneity. These results can provide 

insights into the fluvial processes that create and maintain floodplain heterogeneity. An 

important caveat on this discussion is that some variables potentially relevant to channel lateral 

mobility and thus floodplain spatial heterogeneity, such as discharge, sediment load in the 
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channel (Constantine et al., 2014), or floodplain stratigraphy (Güneralp and Rhoads, 2011b), 

were not quantified in this study. 

The main controls of floodplain spatial heterogeneity are the space a river has available 

and the mobility of the channel across its floodplain (Figure 4.1). The predictor variables were 

chosen specifically to capture different fluvial processes that relate to and affect space and 

mobility. Determining the specific controls of floodplain heterogeneity within channel mobility 

and space available is complex, especially with a small sample size. The non-statistically 

significant boxplot comparisons show that there may be differences in heterogeneity between 

planform and flow regime types. The low sample sizes at the individual levels of the categorical 

variables are probably obscuring potential differences in heterogeneity between channel 

planforms and flow regimes. This could be investigated by including additional sites from each 

of the levels of Plan and Flow. I will not discuss pairwise comparisons in a process-based 

framework due to the lack of statistical significance. The main takeaways from the exploratory 

analysis are the general trends seen across sites of moderate aggregation, high interspersion and 

evenness, and varying patch density. Future work could focus on establishing thresholds for 

these metrics, such as between planform types of natural floodplains and for natural vs. degraded 

floodplains. 

Shifting focus to the quantitative results, I find that DrA, Elev, Precip, TS, LWV, FP/CH, 

Plan, Flow all influence floodplain heterogeneity. This important finding supports the idea that 

heterogeneity is complex and reflects the influence of many fluvial processes. Additionally, no 

model is the same (Table 4.5), indicating that the metrics are capturing difference facets of 

floodplains heterogeneity and that it may be important to consider all four metrics when 

assessing a floodplain’s heterogeneity across space and through time. 
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I infer that channel mobility in the form of planform and total sinuosity influences 

floodplain heterogeneity, and that there is (1) a difference in aggregation between straight and all 

other planforms, (2) a difference in patch density between straight and the most mobile 

planforms (anastomosing and braided), and (3) that patch density decreases with increasing total 

sinuosity. This is an interesting result as we would expect increasing channel mobility (straight < 

meandering < anastomosing < braided) to be positively related to increasing total sinuosity 

(Hong and Davies, 1979), but we see the opposite trend with patch density, a pattern that remains 

to be explained. Channel planform reflects differences in rates and styles of lateral mobility and 

associated patchiness of the floodplain. Meandering channels, for example, move in predictable 

directions, with meander migration toward the outside of each bend and episodic cutoffs. 

Braided channels are more likely to experience avulsion (e.g., Ashmore, 2009) rather than 

gradual lateral migration and to create a three-dimensional mosaic of floodplain topography and 

stratigraphy rather than the meander-scroll topography and fining upward stratigraphy 

characteristic of meandering rivers (Miall, 1977). Previous studies suggest that channel planform 

integrates the effects of flow regime, sediment dynamics, large wood load, and floodplain 

vegetation, so it makes sense that channel planform is an important factor influencing reach-scale 

floodplain heterogeneity in this analysis. To return to the conceptual model, channel planform 

reflects differences in lateral mobility and space available in that braided, anastomosing, and 

meandering channels require a greater minimum floodplain width to develop when compared to 

straight channels. Future study could investigate the relationships between categorical planform, 

total sinuosity, and patch density. An additional predictor that may help illuminate these 

connections could be rate of change through time to examine the magnitude and direction of 

heterogeneity in relation to channel mobility. 



104 

I also infer that space available in the form of drainage area and floodplain width ratio 

exerts an influence on floodplain heterogeneity, and that (1) aggregation decreases with 

increasing drainage area, (2) aggregation increases with floodplain width ratio, and (3) patch 

density increases with drainage area. Once again, this is an interesting result as drainage area and 

floodplain width ratio exhibit opposite trends in relation to aggregation. This supports previous 

studies that show that reach-scale variations in valley-floor width and floodplain area can create 

substantial variations in the relationship between drainage area and floodplain width (e.g., Wohl 

et al., 2017). Greater drainage areas are more likely to have large flood magnitudes and therefore 

increasing disturbance of at least the channel-proximal portions of the floodplain, leading 

intuitively to the relationship with increased patch density. Wider floodplains are more likely to 

have portions farther from the contemporary active channel that have long turnover times 

(Konrad, 2012) and may experience homogenization through vegetation succession and 

prolonged vertical accretion, as reflected in greater aggregation for greater floodplain width 

ratios. These results suggest that healthy river beads are very important to floodplain 

heterogeneity (Wohl et al., 2018a). 

The variables of average annual precipitation, mean floodplain elevation, and categorical 

flow regime were all chosen to constrain discharge characteristics. The results show that (1) 

aggregation increases with elevation, (2) aggregation is higher for rainfall dominated flow 

regimes, and (3) Shannon’s evenness increases with precipitation. I expect increasing elevation 

to correspond with greater likelihood of snowmelt-dominated flow regimes and therefore less 

flashy systems and less floodplain disturbance due to colder winters. I see this reflected in 

aggregation increasing with elevation but not with higher aggregation for rainfall vs. snowmelt. 

This suggests that elevation may not be an effective proxy for snowmelt vs rainfall dominated 
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flow regimes, and that the relationship between aggregation and elevation could more strongly 

reflect other vegetation dynamics rather than fluvial disturbances caused by different flow 

regimes. Lower aggregation for snowmelt systems could be due to the shorter growing season 

and reduced time for vegetation succession each year, resulting in less aggregated areas of 

vegetation. Evenness increasing with precipitation could reflect more evenly distributed 

resources for vegetation through higher groundwater levels across the floodplain (Zeng et al., 

2019). Clearly, the relationships between elevation, precipitation, and flow regime need more 

study. Future study could use other proxies for flow regime, such as annual mean and range of 

temperature paired with precipitation and snow water equivalent, or direct measurements of flow 

regime such as mean annual flow, maximum annual flow, and base flow. 

Large wood volume exerts an important influence on floodplain heterogeneity and is 

related to heterogeneity by (1) explaining 77% of the variability in interspersion and 

juxtaposition and (2) increasing patch density with large wood volume. It makes intuitive sense 

that large wood would increase patch density as wood can increase channel bifurcation and 

avulsion, island formation, planform complexity, and patchiness of floodplain forests (Collins et 

al., 2012). The primary effects of large wood in river corridors can be complex, however, as 

large wood can also reduce near-bank velocity and shear stress and reduce channel mobility 

(Daniels and Rhoads, 2003). Increasing the spatial detail of the large wood metric may shed light 

on the effects of large wood on floodplains, especially as large wood was once living trees and 

wood volumes reflect complex interactions between climate, habitat, and channel dynamics 

(Benda and Sias, 2003), shown simply in the strong positive relationship between precipitation 

and large wood volume (Table 4.4). This dataset only includes wood volume per area from a 

limited number of transects and does not include the spatial distribution or concentration (e.g., 
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jams) of the wood on the floodplain. Wood loads can be dynamic in space and time (Wohl, 2013; 

Iroumé et al., 2015; Villanueva et al., 2016; Tonon et al., 2017; Wohl et al., 2019) and the 

distribution of wood in a channel or floodplain can change substantially over 1–2 years (Wohl 

and Iskin, 2022). This highlights the need for more detailed study of large wood on floodplains 

to determine its effect on fluvial processes as related to floodplain heterogeneity. Isolating the 

category of large wood and including characteristics such as percentage of wood load in jams vs 

individual pieces, average distance between floodplain jams, average piece diameter, average 

piece length, and piece decay and/or burn class may allow for a more detailed understanding of 

the relationship between large wood and floodplain heterogeneity. 

 Conclusion 

The results show that different facets of floodplain heterogeneity can be quantified with 

metrics from landscape ecology and that the patterns across the United States are varied and 

related to complex and dynamic fluvial processes. Although floodplain heterogeneity is a 

complex concept, there are some emergent trends from the LOOCV model results that are easily 

interpretable, even with a sample size of 15. Qualitatively, I find that space available (measured 

by drainage area and floodplain width ratio) and channel mobility (measured by channel 

planform and flow regime) are related to floodplain heterogeneity, and that natural floodplains in 

the United States have moderate aggregation, high interspersion and evenness, and a range of 

patch densities. Quantitatively, I find that drainage area, elevation, total sinuosity, floodplain 

width ratio, large wood volume, planform, and flow regime all influence floodplain 

heterogeneity and can explain 45-77% of the variability in aggregation, interspersion, patch 

density, and evenness. 
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These findings can inform how river corridors can be managed in a way to protect the 

processes that create and maintain floodplain heterogeneity, and how floodplains might change 

due to climate change. River corridor management and restoration can benefit from knowing the 

main controls of floodplain heterogeneity. Although management and restoration cannot target 

drainage area, elevation or precipitation, they can target aspects related to natural flow, sediment, 

and wood regimes that affect sinuosity, floodplain width ratio, large wood volume, planform, 

and flow regime. Climate change is predicted to affect all the controls of floodplain 

heterogeneity, especially species distribution across latitude and elevation (Gray and Hamann, 

2013) and habitat refugia (Michalak et al., 2018). The predicted effects of climate change are 

complex, and the results of this study highlight the need for additional investigation into how 

climate change will specifically affect floodplains and functional heterogeneity that sustain river 

ecosystems. 

For natural corridors, I highlight the fact that it is difficult to isolate individual 

characteristics from each other (such as flow regime and elevation), because they commonly 

have dependent effects and are controlled by currently unidentified thresholds (e.g., does large 

wood volume influence planform, reflect planform, or both?). The results presented here 

represent the beginning of cross-site investigations into floodplain heterogeneity, and the story 

that will unfold is bound to be interesting. Future research should focus on natural sites where it 

is possible to keep all/most of the characteristics consistent except for the variable of interest and 

compare floodplain heterogeneity related to that specific variable. For example, the Dinwoody 

Creek and Downs Fork sites in Wyoming occur adjacent to each other, so they have similar 

latitudes, elevations, precipitation, and flow regimes. The main distinguishing factor for these 

sites is that Dinwoody Creek has a straight planform, whereas Downs Fork has a history of 
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glacier-outburst floods, creating an anastomosing planform. Searching for regions with sites like 

this would be an effective way to investigate the effects of specific controls on floodplain spatial 

heterogeneity.
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 CH 5: CONCLUSION 

 

 

 

Through this dissertation research, I have come to my own conceptualization of rivers 

and our responsibility to them. Rivers comprise entire ecosystems that are intimately connected 

to the surrounding land (floodplains and hillslopes), the ground (hyporheic and groundwater), 

and the atmosphere (gas exchange). They are hydrological, geological, and ecological systems 

that are integral to our natural environments. The world as we know it today is the way it is 

because of rivers. Without rivers, there would be no fertile land, deltas, or beaches from ancient 

sediment deposition. There would be significantly less biodiversity from the loss of river and 

floodplain functions and species native to rivers in general and endemic to specific rivers. We 

classify rivers in different ways (planforms, bedforms, beads and strings, stream order), but the 

processes that underly the forms are what truly drive fluvial dynamics. Local river form reflects 

local processes, and rivers naturally change in time and space; a straight reach can begin to 

meander, a cascading reach can become a step-pool reach, and so on. Rivers are not static or 

homogeneous in any sense; I am not sure there is true stationarity in any real river system. 

Climate, geology, topography, flow regime, sediment regime, and large wood regime are 

the main controlling factors of river systems, and changes in one or more of these factors will 

cause rivers to shift to reach new energy equilibria. With this in mind, humans have negatively 

impacted almost every aspect of many rivers around the world – we have altered climate with 

industry and automobiles; we have altered topography by draining, leveling, and building on 

floodplains and building dams; we have altered flow regimes by building dams, diversions, and 

paving surfaces in every population center; we have altered sediment regimes by building dams, 

dredging reservoirs, and mining sand and gravel; and we have altered wood regimes by logging 



120 

and removing wood from floodplains and rivers. When the rivers adjust to these changes in 

external forces, we react to reduce the adjustment; i.e., when a river begins to cut into a bank 

because the reach is sediment starved, we reinforce banks with concrete and riprap, forcing the 

river to adjust in another way. It is our understanding of fluvial processes and the innate 

connectivity of rivers that will guide us in river restoration. Without a true understanding of 

rivers as landscape integrators, we will only continue to “restore” rivers by fixing symptoms of 

form and not curing the processes. 

These ideas are important in the context of floodplains as well. Floodplains are biomes 

that only exist next to rivers, and they depend on the natural dynamic of overbank flows to be 

maintained. Biota all over the world depend on these cycles (Uno et al., 2022), without which 

they might perish. Emergent trends from this study are that classification from remotely sensed 

data can be a great way to expand the breadth of study sites, especially in areas that are difficult 

to access on foot, and that pairing field data with classification results can increase the 

interpretability of the classifications. My results show that natural floodplains have many, 

interconnected facets of heterogeneity, just a few of which are aggregation, intermixing, patch 

density, and evenness. These floodplains have moderate to high levels of most of the metrics, 

indicating that natural floodplains have generally high spatial heterogeneity that is related to 

many river corridor characteristics, including variables that can be influenced by management 

and restoration (large wood volume, planform, and flow regime). Knowing this, we cannot wait 

any longer to protect the naturally functioning heterogeneous floodplains we have left, and to 

come up with creative ways to restore the processes to degraded floodplains that create and 

maintain this heterogeneity. 
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 Future Directions 

Future directions building from this research include increasing the breadth and depth of the 

dataset. Increasing breadth includes (1) expanding the dataset in the United States, such as 

including streams from the Southwest and Northeast, (2) expanding the dataset globally to 

include natural rivers where sufficient elevation data are available, and (3) adding degraded sites 

to compare heterogeneity between impacted and natural floodplains. Adding sites that have been 

altered by human use might facilitate the delineation of metric thresholds for natural sites and 

provide more detail into natural vs. altered levels of heterogeneity. Increasing depth includes (1) 

increasing the sample size at the individual levels of the categorical variables to better discern 

statistically significant trends, (2) adding one or more predictor variables that relate to dominant 

disturbance regime, such as wildfire, mass movements, glacial outburst floods, etc., (3) using 

other statistical methods, such as regression trees, that can use a predictor variable more than 

once to tease out emergent trends among the predictor variables, and (4) comparing metrics 

through time – within a growing season, between seasons, between years, and after major 

disturbance. 

The ultimate goal of this dissertation is to inform ways that management and restoration 

practices can enhance floodplain functions that create and maintain heterogeneity. My results 

only begin to narrow the aspects that influence heterogeneity, but I can say that no one measure 

of heterogeneity can capture the variability seen in the four metrics used extensively in this 

study. From my results, I recommend that practitioners focus on measuring large wood 

characteristics and investigating historical planforms and sinuosity values as they relate to fluvial 

processes relevant to a specific site and consider measuring and monitoring interspersion and 

patch density, as they are the most readily understandable and interpretable metrics. My hope is 



122 

that this work is just the beginning of a body of work that investigates the relationship between 

floodplain heterogeneity, connectivity, and fluvial processes, with the goal of protecting, 

improving, and restoring our river systems.
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APPENDICES 

 

 

Appendix I: CH 2 Supplemental Material 

Google Earth Engine Code: 

https://code.earthengine.google.com/e802adc8540bd51fae1922fda062af29  

https://code.earthengine.google.com/a47a47aad63d9856cd2faab37a8699ee
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Supplemental Table 2.1. Study area characteristics, where the “Study Reach” is the floodplain where field data were collected, and “Drainage Basin” is the 

basin delineated in StreamStats at the downstream-most part of the study reach.  

 Characteristic East Plum Creek West Bijou Creek Sand Creek 
Rough and Tumbling 

Creek 
Source 

Study Reach 

Level II Ecoregion of 

study reach 

South Central Semi-

Arid Prairies 

South Central Semi-

Arid Prairies 

South Central Semi-

Arid Prairies 
Western Cordillera 

EPA, 2013 
Level III Ecoregion 

of study reach 

Southwestern 

Tablelands 

Southwestern 

Tablelands 
Flint Hills Southern Rockies 

Underlying lithology 

of study reach 

Modern and older 

gravels and 

alluviums and eolian 

deposits (eastern 

edge); underlain by 

Cretaceous Fox 

Hills Sandstone 

Modern gravels and 

alluviums (older just 

beyond study reach) 

and eolian deposits; 

underlain by 

Cretaceous Fox 

Hills Sandstone 

Pennsylvanian Ada 

Formation with 

shale, sandstone, 

limestone, and 

conglomerate 

Evaporitic facies of 

Pennsylvanian 

Minturn and Belden 

Formations, siltstone 

and shale 

Horton, 

2017; 

Horton et al., 

2017; USGS, 

2022a 

Floodplain area (ha) 2.1 109 5.5 5.6 

Field 

delineation 

Number of Random 

Points (100 pts/ha) 
200 11,000 600 600 

Dates field data 

collected 
9/29/2020 

7/9/2020 and 

10/29/2020 

6/16/2021 to 

6/18/2021 
8/15/2022 

Drainage Basin 

Drainage area 

upstream of study 

reach (km2) 

192 653 31.4 59.8 

USGS, 2021, 

2022b 

Mean basin annual 

precipitation (mm) 
569.5 457.2 990.9 608.1 

Mean basin elevation 

(m) 
2255 1861 347 3376 

Mean basin slope 

from 10-m DEM 
17% 7% 5% 24% 

Site Characteristics 

Channel planform Straight to braided 
Straight to 

meandering 
Multithread 

Field 

observation 

Flow regime Rainfall dominated Snowmelt dominated 

Dominant vegetation Shortgrass prairie and open woodland 
Tallgrass prairie and 

woodland 

Beaver-modified 

meadow 

Confinement Unconfined 

Soil Type 
Sandy wet alluvial 

land 
Sandy alluvial land 

Verdigris silt loam, 

0–1% slopes, 

occasionally to 

frequently flooded 

Not available 
NRCS, 

2022a 
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Supplemental Table 2.2. Inputs used for raster classification in ArcGIS Pro. 

River Number of Classes 
Minimum Class 

Size (pixels) 
Sample Interval 

Actual Number of 

Classes Found 

West Bijou Creek, 

CO 
20 4 2 20 

East Plum Creek, 

CO 
5 4 2 4 

Sand Creek, OK 10 4 2 10 

Rough and 

Tumbling Creek, 

CO 

10 4 2 10 
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Appendix II: CH 3 Supplemental Material 

Google Earth Engine Code:  

https://code.earthengine.google.com/cd34cb787996d650676198999cf0e381  

https://code.earthengine.google.com/0167529f885e330859082b7a0e796c9b 
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Supplemental Table 3.1. Study area characteristics, where the “Study Reach” is the floodplain where field data were collected, and “Drainage Basin” is the 

basin delineated in StreamStats at the downstream-most part of the study reach.  

 Characteristic Lookout Creek Hoh River Sol Duc River Altamaha River 2 Source 

Study Reach 

Level II Ecoregion of 

study reach 
Western Cordillera 

Marine West 

Coast Forest and 

Western Cordillera 

Marine West Coast 

Forest and Western 

Cordillera 

Mississippi Alluvial and 

Southeast USA Coastal 

Plains EPA, 2013 

Level III Ecoregion of 

study reach 
Cascades 

Coast Range and 

North Cascades 

Coast Range and North 

Cascades 
Southern Coastal Plain 

Underlying lithology of 

study reach 

Undifferentiated 

tuffaceous sedimentary 

rocks, tuffs, and basalt 

with basalt and basaltic-

andesite; Landslide and 

debris-flow deposits with 

coarse-detrital 

Mesozoic-Tertiary 

marine rocks, 

undivided with 

graywacke, slate, 

and argillite 

Younger glacial drift 

with fine- and coarse-

detrital; Alluvium with 

silt and sand; and 

Mesozoic-Tertiary 

marine rocks, undivided 

with graywacke, slate, 

and argillite 

Stream alluvium; 

Holocene Shoreline 

Complex – marsh and 

lagoonal facies; and 

Pamlico shoreline 

complex – marsh and 

lagoonal facies all with 

fine-detrital 

Horton, 2017; 

Horton et al., 

2017; USGS, 

2022a 

Floodplain area (ha) 6.9 987.8 58.1 3,705.3 

Field delineation 

Number of random points 

(100 pts/ha) 
700 99,000 5,800 371,000 

Dates field data collected 7/6/2022 to 7/13/2022 
7/7/2021 to 

7/18/2021 
7/6/2021 to 7/17/2021 10/19/2021 

Drainage 

Basin 

Drainage area upstream 

of study reach (km2) 
53.6 323 101 36,500 

USGS, 2022b, 

2023a 

Mean basin annual 

precipitation (mm) 
2,263.1 4,343.4 2,590.8 1,229.4 3 

Mean basin elevation (m) 1,033 978 975 132 

Mean basin slope from 

30-m DEM 
37% 1 56% 52% 5% 4 

Site 

Characteristics 

Channel planform Straight to Anastomosing 
Braided to 

Anastomosing 
Meandering to Straight Meandering to Straight 

Field observation Flow regime Rain and snow Rain and snow Rain and snow Rainfall dominated 

Dominant vegetation Conifer forest Conifer rainforest Conifer forest Swamp forest 

Confinement Confined Unconfined Confined Unconfined 

Soil Type 

Jimbo-Greenpeter-

Manlywham complex, 0–

15% slopes; Aschoff-

Kinney complex, 40–85% 

slopes, south-facing; and 

Saturn clay loam, 0–5% 

slopes 

Isomesic valley 

bottom floodplain, 

river channel, and 

alluvial terraces, 

0–15% slopes 

Mesic valley bottom 

floodplain, river channel, 

and alluvial terraces, 0–

15% slopes; Colluvial 

debris aprons, 15–60% 

slopes 

Swamp, 0–2% slopes; 

Galestown fine sand, 0–

2% slopes; Satilla silt 

loam, 0–1% slopes; 

Bladen loam and clay 

loam, 0–2% slopes; 

Meggett loam, frequently 

flooded, 0–2% slopes 

NRCS, 2022a, 

2022b, 2023 

1Source topographic data not indicated in StreamStats, converted from slope degrees to slope percent; 2The drainage basin for the Altamaha River includes 2.4 km of the study reach and excludes 

11.2 km of the study reach (downstream) due to limitations in StreamStats and proximity to coastline (an exclusion area); 3Basin average mean annual precipitation for 1971–2000 from PRISM; 
4From 10-m DEM 
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Supplemental Table 3.2. Extracted Data and Interpretation for Classification 2 at the Altamaha River, Georgia 

ISO 

Class 

Average Detrended 

Elevation 

Average 

NDVI 

Average 

NDMI 

Number of 

Points 

Nearest Field 

Class (3 m) 
Interpretation 

1 -1.0 -0.05 0.05 - - 

Active channel, tributaries, side channels, and/or standing water 2 -0.8 0.06 0.09 - - 

3 -0.5 0.19 0.13 - - 

4 0.2 0.28 0.09 - - 
Active floodplain with inundated areas and areas of exposed sediment, 

varying vegetation health/density, evergreen and deciduous trees, 

bamboo, palmettos, moss, vines, leaf litter, holly, and maples 

5 -0.2 0.35 0.16 - - 

6 0.1 0.34 0.12 - - 

7 -0.3 0.29 0.17 - - 

8 1.0 0.41 0.12 
- - Structures, roads, other manmade surfaces, and/or active floodplain with 

similar spectral properties 

9 0.1 0.38 0.15 - - 

Active floodplain with inundated areas and areas of exposed sediment, 

varying vegetation health/density, evergreen and deciduous trees, 

bamboo, palmettos, moss, vines, leaf litter, holly, and maples 

10 -0.6 0.39 0.16 - - 

11 0.2 0.41 0.16 - - 

12 -0.1 0.41 0.18 - - 

13 0.1 0.45 0.20 - - 

14 -0.9 0.45 0.20 - - 

15 0.2 0.44 0.18 - - 

16 -0.3 0.44 0.19 - - 

17 -0.1 0.46 0.21 - - 

18 -0.5 0.49 0.23 - - 

19 0.3 0.47 0.20 - - 

20 0.0 0.49 0.22 - - 

21 0.2 0.51 0.23 - - 

22 -0.1 0.51 0.25 - - 

23 -0.6 0.53 0.26 - - 

24 1.1 0.51 0.24 Class: 4 Class: 1 
Structures, roads, other manmade surfaces, and/or active floodplain with 

similar spectral properties 

25 0.1 0.54 0.26 Class: 4 Class: 1 

Active floodplain with inundated areas and areas of exposed sediment, 

varying vegetation health/density, evergreen and deciduous trees, 

bamboo, palmettos, moss, vines, leaf litter, holly, and maples 

26 3.2 0.50 0.23 Class: 24 Class: 5, 6 
Structures, roads, other manmade surfaces, and/or active floodplain with 

similar spectral properties 

27 -0.1 0.56 0.28 Class: 6 Class: 0, 1, 2, 4 Active floodplain with inundated areas and areas of exposed sediment, 

varying vegetation health/density, evergreen and deciduous trees, 

bamboo, palmettos, moss, vines, leaf litter, holly, and maples 

28 0.7 0.56 0.27 Class: 3 Class: 1, 2 

29 0.3 0.59 0.29 Class: 8 Class: 2, 3 

30 5.5 0.47 0.18 
- - Structures, roads, other manmade surfaces, and/or active floodplain with 

similar spectral properties 
Note: Red elevation indicates ≥ 1 m and above the active floodplain, yellow NDVI indicates [0.2, 0.5] and sparse/unhealthy vegetation and/or shrubs/grassland, and brown NDVI indicates < 0.1 and 

unhealthy vegetation or bare soil, sediment, or snow. General NDVI thresholds from USGS (2018). 
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Supplemental Table 3.3. Extracted Data and Interpretation for Classification 2 at the Hoh River, Washington 

ISO 

Class 

Average 

Detrended 

Elevation 

Average 

NDVI 

Average 

NDMI 

Number 

of Points 

Nearest Soil 

Textures (10 m) 

Nearest Soil 

Moistures (10 m) 

Nearest Field 

Class (3 m) 
Interpretation 

1 -35.3 0.41 0.23 - - - - 

Active floodplain with channel features, wetlands, 

younger forest and groundcover, and varying 

vegetation health/density 

2 -16.6 0.03 0.01 - - - - 
Bare sediment, water, and/or sparsely vegetated 

midchannel islands in and around the active channel 

3 -27.9 0.38 0.20 - - - - 

Active floodplain with channel features, wetlands, 

younger forest and groundcover, and varying 

vegetation health/density 

4 -18.8 0.44 0.24 
Class: 4 

Cores: 1 

Sandy Loam 0–

30 cm 
- 

Class: 4, 5, 

10, 11 

Cores: 5 

5 -13.9 0.61 0.32 
Class: 18 

Cores: 22 

Loamy Sand 0–5 

cm 

Sandy Loam 0–

60 cm 

Saturated 0–15 

cm 

Moist 0–60 cm 

Class: 2, 4, 6, 

9, 12 

Cores: 9, 12 

6 -12.8 0.41 0.22 
Class: 5 

Cores: 6 

Loamy Sand 0–

10 cm 

Sandy Loam 0–

30 cm 

Dry 0–10 cm 

Saturated 0–15 

cm 

Class: 1, 2, 4, 

8 

Cores: 1, 5, 9 

7 -9.0 0.39 0.21 
Class: 23 

Cores: 4 

Loamy Sand 0–

10 cm 
Dry 0–10 cm 

Class: 1, 2, 6, 

8 

Class: 1 

Old growth forest floor/inactive floodplain with 

varying vegetation health/density and nurse logs; 

mosses, fern, alder, conifer, maple 

8 -12.0 0.05 0.03 - - - - 
Bare sediment, water, and/or sparsely vegetated 

midchannel islands in and around the active channel 

9 -10.6 0.56 0.29 
Class: 14 

Cores: 62 

Sand 0–5 cm 

Loam 0–60 cm 

Loamy Sand 0–

10 and 30–90 cm 

Sandy Loam 0–

90 cm 

Saturated 0–55 

cm 

Moist 0–90 cm 

Class: 1, 2, 4, 

6, 8, 10 

Cores: 1, 2, 3, 

4, 6, 10, 11 

Active floodplain with channel features, wetlands, 

younger forest and groundcover, and varying 

vegetation health/density 

10 -8.7 0.05 0.02 Cores: 2 
Loamy Sand 0–

10 cm 
Dry 0–10 cm Cores: 1 

Bare sediment, water, and/or sparsely vegetated 

midchannel islands in and around the active channel 

11 -6.8 0.54 0.28 
Class: 7 

Cores: 9 

Loamy Sand 0–

90 cm 

Sandy Loam 0–

90 cm 

Moist 0–90 cm 

Saturated 30–90 

cm 

Class: 2, 7, 8 

Cores: 2, 7 
Old growth forest floor/inactive floodplain with 

varying vegetation health/density and nurse logs; 

mosses, fern, alder, conifer, maple 
12 -5.5 0.39 0.21 Class: 9 - - Class: 8 

13 -3.6 0.49 0.25 
Class: 4 

Cores: 25 

Sand 0-5 cm 

Loamy Sand 0–

90 cm 

Moist 0–90 cm 

Saturated 0–5 and 

30–90 cm 

Class: 4, 8, 

Road 

Cores: 6, 7, 8 
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Sandy Loam 0–

90 cm 

14 -5.0 0.03 0.02 Cores: 6 
Loamy Sand 0–

90 cm 

Moist 0–60 cm 

Saturated 30–90 

cm 

Cores: 7 
Bare sediment, water, and/or sparsely vegetated 

midchannel islands in and around the active channel 

15 -2.0 0.39 0.21 Class: 16 - - 
Class: 8, 

Road 
Old growth forest floor/inactive floodplain with 

varying vegetation health/density and nurse logs; 

mosses, fern, alder, conifer, maple 
16 -0.2 0.52 0.28 

Class: 5 

Cores: 20 

Loam 0–35 cm 

Sandy Loam 0–

90 cm 

Moist 0–90 cm 
Class: 8 

Cores: 8, 12 

17 1.2 0.40 0.22 Class: 3 - - Class: 8 

18 1.4 0.06 0.03 - - - - 
Bare sediment, water, and/or sparsely vegetated 

midchannel islands in and around the active channel 

19 3.9 0.39 0.21 Class: 8 - - Class: 1, 8, 9 Old growth forest floor/inactive floodplain with 

varying vegetation health/density and nurse logs; 

mosses, fern, alder, conifer, maple 

20 3.6 0.51 0.25 Class: 5 - - Class: 1, 8 

21 6.6 0.38 0.21 Class: 4 - - Class: 8, 9 

22 7.0 0.49 0.25 Class: 5 - - Class: 3, 4, 5 

Uplands and inactive floodplain with varying 

vegetation health/density 

23 9.6 0.40 0.22 Class: 1 - - Class: 8 

24 11.2 0.55 0.29 Class: 7 - - Class: 3, 4 

25 12.6 0.40 0.21 Class: 2 - - 
Class: 3, 

Road 

26 16.0 0.40 0.21 Class: 6 - - 
Class: 6, 8, 

Road 

27 20.8 0.42 0.22 - - - - 

28 28.6 0.40 0.21 - - - - 

29 43.1 0.42 0.23 - - - - 

30 70.6 0.41 0.23 - - - - 
Note: Red elevation indicates ≥ 5 m and above the active floodplain, green NDVI indicates [0.6, 0.9] and healthy/dense vegetation, yellow NDVI indicates [0.2, 0.5] and sparse/unhealthy vegetation 

and/or shrubs/grassland, and brown NDVI indicates < 0.1 and unhealthy vegetation or bare soil, sediment, or snow. General NDVI thresholds from USGS (2018). 
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Supplemental Table 3.4. Extracted Data and Interpretation for Classification 2 at the Sol Duc River, Washington 

ISO 

Class 

Average 

Detrended 

Elevation 

Average 

NDVI 

Average 

NDMI 

Number 

of Points 

Nearest Soil Textures 

(10 m) 

Nearest Soil 

Moistures 

(10 m) 

Nearest Field Class (3 

m) 
Interpretation 

1 -21.7 0.50 0.28 - - - - 

Active floodplain with side 

channels, overflow surfaces, varying 

vegetation health/density, and nurse 

logs, and/or vegetation overhanging 

channel; mosses, alder, maple, leafy 

groundcover, fern, conifer, grasses 

2 -14.8 0.17 0.10 
Class: 2 

Cores: 2 
Sandy Loam 0–30 cm 

Moist 0–30 

cm 

Class: 3, 4 

Cores: 4 
Active channel 

3 -12.7 0.46 0.26 Class: 1 - - Class: 6 
Active floodplain with side 

channels, overflow surfaces, varying 

vegetation health/density, and nurse 

logs, and/or vegetation overhanging 

channel; mosses, alder, maple, leafy 

groundcover, fern, conifer, grasses 

4 -9.9 0.28 0.15 
Class: 6 

Cores: 8 
Sandy Loam 0–45 cm 

Moist 0–45 

cm 

Class: 3, 8 

Cores: 4, 9 

5 -7.0 0.20 0.12 
Class: 3 

Cores: 2 
Loamy Sand 0–5 cm 

Saturated 0–5 

cm 

Class: 3, 8 

Cores: 3 

6 -6.3 0.42 0.22 Class: 16 - - Class: 1, 3, 4, 5, 6, 8, 10 

7 -4.3 0.54 0.27 Class: 7 - - Class: 6, 8, 10 

8 -2.9 0.19 0.10 Class: 11 - - Class: 1, 2, 3, 4 Active channel 

9 -3.5 0.42 0.22 
Class: 17 

Cores: 13 

Sand 0–30 cm 

Loamy Sand 0–35 cm 

Sandy Loam 0–55 cm 

Moist 0–45 

cm 

Saturated 0–

55 cm 

Class: 1, 3, 4, 5, 7, 8, 9 

Cores: 4, 5, 6, 9 

Active floodplain with side 

channels, overflow surfaces, varying 

vegetation health/density, and nurse 

logs, and/or vegetation overhanging 

channel; mosses, alder, maple, leafy 

groundcover, fern, conifer, grasses 

10 -1.1 0.40 0.22 
Class: 25 

Cores: 13 

Loamy Sand 0–30, 60–90 cm 

Sand 30–60 cm 

Sandy Loam 0–90 cm 

Moist 0–90 

cm 

Class: 1, 3, 4, 5, 7, 8 

Class: 5, 7, 8 

11 -0.7 0.50 0.28 
Class: 10 

Cores: 11 
Sandy Loam 0–85 cm 

Moist 0–85 

cm 

Class: 5, 7, 8 

Cores: 7, 8 

12 1.3 0.40 0.23 
Class: 5 

Cores: 6 
Sandy Loam 0–90 cm 

Moist 0–90 

cm 

Class: 7, 8 

Cores: 8 

13 2.6 0.47 0.26 
Class: 10 

Cores: 10 

Loamy Sand 0–30, 60–90 cm 

Sand 30–60 cm 

Sandy Loam 0–90 cm 

Moist 0–90 

cm 

Class: 1, 7, 8 

Cores: 5, 7, 8 

14 4.6 0.42 0.24 
Class: 13 

Cores: 3 
Sandy Loam 0–30 cm 

Moist 0–30 

cm 

Class: 1, 2, 8 

Cores: 7 

15 7.9 0.44 0.26 
Class: 8 

Cores: 1 
Sandy Loam 0–10 cm 

Moist 0–10 

cm 

Class: 1, 7, 8 

Cores: 1 

16 4.7 0.55 0.30 Class: 4 - - Class: 1, 8 

17 11.8 0.46 0.27 Class: 4 - - Class: 1 
Higher elevation surfaces and/or 

uplands, including vertical cliffs 

above the channel and conifer forest 

18 18.8 0.48 0.27 - - - - 

19 34.1 0.43 0.25 - - - - 

20 53.4 0.45 0.27 - - - - 
Note: Red elevation indicates ≥ 5 m and above the active floodplain and yellow NDVI indicates [0.2, 0.5] and sparse/unhealthy vegetation and/or shrubs/grassland. General NDVI thresholds from USGS (2018). 
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Supplemental Table 3.5. Extracted Data and Interpretation for Classification 2 at Lookout Creek, Oregon 

ISO 

Class 

Average 

Detrended 

Elevation 

Average 

NDVI 

Average 

NDMI 

Number 

of 

Points 

Nearest Soil 

Textures 

(10 m) 

Nearest Soil 

Moistures 

(10 m) 

Nearest Field 

Class 

(3 m) 

Interpretation 

1 -1.8 0.54 0.27 
Class: 3 

Cores: 7 

Loam 0–5 cm 

Sandy Loam 0–60 

cm 

Dry 0–25 cm 

Moist 0–60 cm 

Class: 5, 9 

Cores: 5, 6, 9 

Active channel and 

floodplain with 

midchannel island, 

boulder bars, backwater 

channels, side channels 

and varying vegetation 

health/density; fir, viny 

maple, fern, cedar, alders, 

horsetail, grasses, beaver 

chew 

2 -2.9 0.45 0.23 
Class: 4 

Cores: 9 

Sandy Loam 0–20 

cm 

Sandy Clay Loam 

0–30 cm 

Loam 0–60 cm 

Saturated 0–20 cm 

Moist 0–60 cm 

Class: 1, 3, 5 

Cores: 3, 5, 11 

3 -2.0 0.52 0.25 
Class: 1 

Cores: 2 

Sandy Loam 0–16 

cm 
Moist 0–16 cm 

Class: 6 

Cores: 12 

4 -0.5 0.44 0.22 
Class: 8 

Class: 2 
Loam 0–8 cm 

Dry 0–7 cm 

Moist 0–8 cm 

Class: 1, 7, 9, 10 

Class: 7 

5 -0.5 0.50 0.25 Class: 1 - - Class: 1 

6 1.2 0.47 0.22 - - - - 

7 0.4 0.52 0.25 - - - - 

8 0.9 0.46 0.23 
Class: 2 

Cores: 1 
Loam 0–7 cm Loam 0–7 cm 

Class: 1, 2 

Cores: 7 

9 7.2 0.41 0.21 Cores: 2 
Sandy Loam 0–60 

cm 
Moist 0–60 cm Cores: 9 

Bridge, road, steep banks 

and/or boundaries next to 

channel and floodplain 

10 0.1 0.51 0.25 

Class: 

40 

Cores: 

18 

Loam 0–9 cm 

Sandy Loam 0–60 

cm 

Saturated 0–30 cm 

Moist 0–60 cm 

Class: 1, 2, 3, 4, 5, 

6, 9, 10, 11, 12, 13 

Cores: 4, 5, 7, 9, 

11, 12 

Active channel and 

floodplain with 

midchannel island, 

boulder bars, backwater 

channels, side channels 

and varying vegetation 

health/density; fir, viny 

maple, fern, cedar, alders, 

horsetail, grasses, beaver 

chew 
Note: Red elevation indicates ≥ 5 m and above the active floodplain and yellow NDVI indicates [0.2, 0.5] and sparse/unhealthy vegetation and/or shrubs/grassland. General 

NDVI thresholds from USGS (2018) 
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Appendix III: CH 4 Supplemental Material 

Google Earth Engine code:  

https://code.earthengine.google.com/0167529f885e330859082b7a0e796c9b 

https://code.earthengine.google.com/a9ab1223e0d40b3aa0b781afeaa69fa9 

https://code.earthengine.google.com/e04628ad8e8f6e095e47d04b52790183 

https://code.earthengine.google.com/da9c215b3b589df5073471eaf9f1ae22 

https://code.earthengine.google.com/81295533ab5babc0a1ac4b1847e1b1ca 

https://code.earthengine.google.com/03b6beb2bc20da178a672f9fcbaa273d 

https://code.earthengine.google.com/b8249d631f020570e37a4b5456069823 

Supplemental Table 4.1. Field class descriptions 

River 
Class 

No. 
Description 

Embarrass 

River, IL 

1 
Bottomland forest with 2 m HWMs, mature forest, standing water, wood accumulations, 

abandoned channels, all deciduous trees 

2 Higher surface, now farmed, grasses 

3 Active channel, sandy banks, incised 4–5 m 

4 Overflow surface, 1–2 m undulating topography, a lot of wood, 30–40 cm DBH 

5 Overflow surface, 1 m above Class 4, older trees, 70 cm DBH, denser ground cover 

6 Flowing secondary channel, incised 6 m 

7 Higher surface, vegetation flow fabric present, small trees 

8 
Overflow surface, (fewer) wood accumulations, 10–30 cm DBH, 2 m higher than Class 7, some 

standing water, linear features 

9 Tall grass, brambles/thicket, woody shrubs, small trees, standing shallow water 

10 Standing water, 40 cm–4 m away, abandoned meander?, slow current 

11 Beaver pond, a lot of beaver chew, standing water 

12 Dry upland, dense undergrowth, 20 cm DBH, briars 

13 Cattail marsh 

14 Standing water, abundant saplings, 10–40 cm DBH, not much ground cover 

Swan River, 

MT 

1 Active channel 

2 

Head high grasses, scalloped riverbank, gradual grassy bank into river, hawthorn and mock 

orange trees, willow, bedrock exposure, beaver chew, siltation on vegetation 25 cm off the 

ground 

3 
Boundary patch, grasses interspersed, leafy ground cover, big leaf willows, 10–20 cm DBH birch 

and hawthorn, dense leafy trees 

4 Marshy, lily pads, horsetail, marsh grass, standing water, possible meander scar 

5 Boundary patch, dense thorny bushes/trees, willow 

6 Alderleaf buckthorn, 50–150 cm tall, very dense, “understory” grass 

7 

Young, up to 15 cm DBH poplar, 150 cm tall alderleaf buckthorn; wet, horsetail, mossy logs, 

large leafy plants (Western skunk cabbage), plentiful downed wood, evidence of channelized 

flow, poplar/birch are multistem, high/dry areas, ponded areas, marsh grass 

8 
Very dense willow, grasses and other trees interspersed, siltation on vegetation 1 m off the 

ground, dense grass 

9 Forest floor at floodplain elevation 

10 Flooded forest, no standing water, many channels under conifers and bushes 

11 Active side channel with overflow banks on both sides, lots of wood, 1 m HWMs 

12 

Large beaver meadow/pond, ample grass, lily pads, standing water, beaver lodge, lots of chew, 

similar to Class 4 but much larger and beaver modified, mosses and sundews, many channels, 

some deep 

13 Young conifers, 2 m high ferns, dense ground cover 

Note: HWMs stands for high water marks. DBH stands for diameter at breast height, measured mostly by eye. Species 

identification was not exact and not field guide was used. 
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Supplemental Figure 4.1. Visual representation of rook’s case highs and lows of heterogeneity metrics, based on 

information from He et al. (2000) and Hesselbarth et al. (2022). Individual squares represent individual pixels in a 

landscape raster. Aggregation index (AI) and percentage of like adjacencies (PLADJ) have high values when pixels 

of the same class occur next to each other; interspersion and juxtaposition index has a low value when certain 

classes only occur next to each other (e.g. Class 1 and Class 2 only occurring next to Class 3); patch density (PD) 

has a high value when there are many patches across the landscape; and Shannon’s evenness index (SHEI) has a 

high value when each class covers the same proportion of area across the landscape. 
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Supplemental Table 4.3. Classification input data and sources 

Data Details Resolution Tools Used References 

GPS Locations 
Transect location, patch boundaries, and 

large wood locations 
± 3 m 

Garmin GPSMAP 

66ST 
- 

Watershed 

Characteristics 

Drainage basin shapefiles downloaded 

on 9/13/21 (WBJ), 11/1/22 (HWA, 

SDWA, LOR), 1/19/23 (AGA), 2/12/23 

(EIL, SMT, CSC, EPC, RTCO, SOK), 

and 3/24/23 (NSV) 

Drainage basins delineated for areas 

without StreamStats (DFWY, DWY, 

YAK) 

30-yr normal precipitation values from 

1981–2010 for YAK and 1991–2020 for 

all other sites on 3/24/23 

Varies depending 

data used by 

StreamStats and 

ArcGIS Pro 

 

800 m spatial, 

0.001 mm depth 

for precipitation 

data 

StreamStats 

ArcGIS Pro 

PRISM Climate 

Data 

Esri, 2022; 

USGS, 2023a; 

PRISM, 2002, 

2018, 2022  

Digital 

Elevation 

Models 

WBJ: LD33481653, LD33481644, 

LD33481650, LD33481647, 

LD33451647, LD33451644 DEMs 

published 10/17/2018 

EPC: 13SED510350 published 7/1/2014 

RTCO: CWCB_PARK_0408 published 

4/10/2020 

NSV: 2020 DRCOG W0454N4452, 

W0454N4450, W0453N4452, 

W0453N4450  

published 5/14/2020 

SMT: NCALM Preliminary Bare Earth 

DEM without bathymetric correction 

SOK: Oklahoma Bare Earth DEM 

mosaic 8/1/2016 

HWA: 2013 DEM 4, 5 

SDWA: 2014 DEM 47, 57 

LOR: McKenzie River 2016 DEM 

mosaic 

AGA: 3DEP Tile N32W082 7/25/2022 

CSC: 3DEP Tile N34W081 5/4/2022 

DFWY and DWY: 3DEP Tile N44W110 

6/15/2021 

EIL: 3DEP Tile N39W088 12/5/2022 

YAK*: 3DEP Tiles N66W145 2/2/2018, 

N66W149 11/5/2018, N66W150 

9/30/2016, N67W145 1/302018, 

N67W146 1/29/2018, N67W147 

12/28/2017, N67W148 12/27/2017, 

N67W149 1/5/2016, N67W150 4/3/2017 

0.91 m (HWA and 

LOR) 

1 m (WBJ, EPC, 

RTCO, NSV, 

SOK, SMT) 

3 m (SDWA) 

10 m (AGA, SOK, 

EIL, CSC, 

DFWY, DWY, 

YAK) 

32-bit radiometric 

(All) 

 

Colorado Hazard 

Mapping & Risk 

MAP Portal 

OKMaps Portal 

WA DNR Lidar 

Portal 

The National Map 

Allison and 

Martinez, 2013; 

Gleason and 

McWethy, 2014; 

USGS, 2016, 

2023b; 

Open Topography, 

2021; 

Division of 

Geology and Earth 

Resources, 2022; 

CWCB, 2023; 

NCALM, 2023; 

Oklahoma Office 

of Geographic 

Information, 2023; 

 

 

 

Aerial 

Imagery 

From GEE Image Collection 

“COPERNICUS/S2_SR” 

WBJ, EPC, NSV, SOK, HWA, SDWA, 

LOR, EIL, SMT, DFWY, DWY: 2% 

cloud-free mosaics from 5/1/2022–

9/30/2022 

AGA, CSC: 0.5% cloud-free mosaics 

from 4/1/2022–9/30/2022 

RTCO: 2% cloud-free mosaic from 

6/1/2022–9/30/2022 

YAK*: 1% cloud-free mosaic from 

5/1/2022–9/30/2022 

10 m: Bands 2, 3, 

4, 8 

20 m: Bands 5, 6, 

7, 8a, 11, 12 

12-bit radiometric 

5-day temporal 

Google Earth 

Engine 

Gorelick et al., 

2017; 

Sabins Jr. and 

Ellis, 2020; 

ESA, 2021; 

Google 

Developers, 2022 

 

*YAK DEM and Sentinel tiles were mosaicked using the “Blend” Mosaic Operator to try to reduce the impact of the boundaries between tiles 

from different years. All other DEM tiles were mosaicked, if necessary, using the default Mosaic Operator in ArcGIS Pro. 
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Supplemental Figure 4.3. Pairwise scatter plots of heterogeneity metrics. 

 

Supplemental Figure 4.4. AI LOOCV model estimates. 
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Supplemental Figure 4.5. IJI LOOCV model estimates. 

 

Supplemental Figure 4.6. PD LOOCV model estimates. 



139 

 

Supplemental Figure 4.7. SHEI LOOCV model estimates. 
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