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ABSTRACT

ORGANIC FLUXES AS A TOOL FOR SOLID-STATE SYNTHESIS

Solid-state materials allow us to charge our phones, store information on a computer, and har-

vest energy from the sun, among many other applications. They are the backbone of many modern

technologies. However, making solid-state materials remains challenging. Traditional solid-state

synthesis involves heating materials up to high temperatures to promote reactivity. These high

temperatures make controlling the reactions and directing product formation difficult, as they gen-

erally form products that are stable at those high temperatures. There are limited techniques to

make solid-materials, especially those that are not stable at high temperatures. In order to advance

modern technologies based on solid-state materials, more well-understood, controllable synthetic

techniques are necessary.

This thesis describes a new technique for making solid-state materials. This technique is based

on using molten organic materials, called organic fluxes, to enable selective reactivity between

solids at lower temperatures. Owing to the lower reaction temperatures, this synthesis can form

materials that are traditionally more difficult to make.

The concept of an organic flux is introduced through a case study where triphenylphosphine,

the organic flux, is used to make the low-temperature phase of iron selenide. This study demon-

strates the efficacy of organic fluxes and provides insight to their mechanism of reactivity. Then,

triphenylphosphine fluxes are further explored through reactions involving other metal chalco-

genide binaries. By analyzing a variety of systems, the guiding principles behind the reactivity

of triphenylphosphine fluxes are determined. Next, the ability of organic fluxes to aid materials

discovery is shown through the formation of a new cobalt-selenium-triphenylphosphine complex.

Finally, preliminary work exploring other organic fluxes and the future prospects for this synthetic

scheme are discussed.
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This research introduces a new technique to target low-temperature materials. The tunability of

organic fluxes enables the design of synthesis for selective reactivity in the solid-state. Adding to

the library of synthetic tools available to solid-state chemists is a step towards materials discovery

and the advancement of technologies based on solid-state materials.
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Chapter 1

Introduction

1.1 Challenges of low-temperature solid-state synthesis

Solid materials are the backbone of our society making up computers, cars, and many modern

technologies. Since the beginning of civilization, solid materials have played a key role in shaping

our technologies. Solid-state materials have been so crucial to our evolution as a species that we

have named ages of history after our abilities to make new solid-state materials. For example,

the stone age became the bronze age with the knowledge of alloying copper with tin, arsenic, or

other metals enabling widespread use of bronze. The transitions from stone age to bronze age

and bronze age to iron age were only possible due to our abilities to make each new material.

Now, in the age of silicon, we are still striving for the next solid-state material to revolutionize

modern technologies such as batteries and hard drives. To improve on these technologies, new

solid-state materials are necessary. To discover these new materials, new synthetic techniques will

be necessary. The limited number of techniques available in solid-state synthesis makes synthesis

by design (and therefore materials discovery) more difficult.

1.1.1 Techniques for solid-state synthesis are limited

Despite the importance and widespread use of solid-state materials, how to make them is not

as well understood as one would think. This is especially clear when comparing synthesis in solid-

state chemistry to organic chemistry. In organic chemistry, the guiding principles of reactivity and

how to direct product formation are more generally understood. There is a large library of well-

known, commonly used, named reactions that can be drawn from and strung together to target

specific materials. [7] Organic reactions can be highly selective and tuning selectivity to achieve

a desired outcome is more well understood. This allows for rational design of syntheses. For

example, SN2 reactions are one of the most commonly used reactions in organic chemistry, and
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Figure 1.1: SN2 reaction to form ethyl chloride from ethyl bromide.

they provide stereospecificity (Figure 1.1). With an SN2 reaction, the leaving group bond breaks as

the bond to the nucleophile forms. Since this occurs simultaneously, the reaction is selective for a

product with a specific stereochemistry. Using tools such as SN2 reactions allows organic chemists

to direct product formation whereas in solid-state chemistry, selectively forming a desired product

can be more difficult as these guiding principals behind reactions are less well understood. There

are fewer reaction schemes to use when designing a synthesis and this often limits the materials

able to be made. This is particularly true for materials that have limited stability, such as materials

that are only stable at lower temperatures.

1.1.2 Challenges accessing low-temperature phases

Many materials in solid-state chemistry are only stable at lower temperatures, and therefore

more challenging to make. Solid-state synthesis traditionally forms thermodynamically stable

phases due to the high temperatures necessary for reactivity. These high temperatures form thermo-

dynamically stable phases as they provide enough thermal energy for materials to find the energetic

minimal configuration. Achieving kinetic control to target non-thermodynamically stable phases,

such as low-temperature phases, can be difficult in the solid state. [8] A balance must be found

between overcoming solid-state diffusion to promote reactivity, which is traditionally done using

heat, while also stabilizing low-temperature phases. Therefore, making low-temperature phases

using traditional solid-state synthesis often requires multi-step reactions with complex heating

schedules.

For example, the formation of the low-temperature phase of iron selenide using traditional

solid-state techniques is relatively difficult (Figure 1.2). [2] The low-temperature iron selenide
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Figure 1.2: Synthetic scheme of the traditional solid-state reaction to form the low-temperature iron-
selenide phase. [2]

phase, β-FeSe, converts to the high temperature phase, α-FeSe, at 457 ◦C; however iron and se-

lenium together do not melt until 1075 ◦C. Therefore, a multi-step heating process is necessary to

first achieve a melt to react iron and selenium and then convert the product to the low-temperature

phase. To set up the reaction, iron and selenium must be sealed in two ampoules to contain the

reaction in case the inner ampoule breaks. This double ampoule set up is then heated at 750 ◦C

for 3-5 days to provide time for the selenium to partially react and reduce the risk of bursting the

ampoules. The temperature is then increased to 1075 ◦C for 3 days to allow the iron and selenium

to melt and react. The reaction is then moved into a different furnace set at 420 ◦C for 2 days. The

quick temperature change is necessary to keep the material molten while reducing the temperature

to the point where the low-temperature phase is stable. If the material is allowed to cool to that

temperature over time, it will stabilize as the thermodynamically-stable, high-temperature phase

(α-FeSe). The ampoules are then quickly cooled to prevent the formation of undesired phases, and

the product is transferred to another ampoule. This second ampoule is heated to 300 ◦C for 2 days

to improve the crystallinity of the product. Overall, this reaction takes 10-12 days, 3 ampoules

and a furnace capable of high temperatures. This reaction is only one example demonstrating the

difficulty accessing low-temperature phases in solid-state synthesis.
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There are numerous other materials with similarly challenging syntheses. For example, both

GaTe and SnS require multiple heating cycles at high temperatures. [9] Syntheses of these materials

are designed to provide enough heat to encourage reactivity and still stabilize the low-temperature

phase through the following steps. These processes are time-consuming and cannot be used to

access all materials as some materials are unable to be stabilized using traditional solid-state reac-

tions, even with the complex heating schemes. To simplify the process of making these materials

and expand the number of materials able to be made, the search for new low-temperature synthetic

techniques is ongoing. [8]

1.2 Techniques for low-temperature materials synthesis

There are a number of non-traditional techniques currently used in solid-state synthesis. The

main non-traditional techniques used to target low-temperature solid-state phases are solvothermal

reactions, metathesis reactions, and flux reactions. Solvothermal reactions involve heating a re-

action in a solvent often above the melting point of the solvent (Figure 1.3). [3] In solvothermal

reactions, the use of a solvent replaces the need to fully melt your reactants to promote reactivity

as is done in traditional reactions. The use of heated solvent can aid the solubility of solids, which

helps overcome solid-state diffusion to enable reactivity at lower temperatures. For example, pow-

dered iron selenide can be made solvothermally using ethylene glycol and ammonium chloride as

solvents. [10] This reaction requires placing all the starting materials in an autoclave and heating

to 200 ◦C for 5-10 days, which is much simpler than the traditional reaction shown in Figure 1.2.

The solvents in this reaction were chosen to optimize their coordinating ability for iron and sele-

nium. Reactions using just ethylene glycol had remaining starting materials indicating the solvent

was not completely dissolving the reactants. The introduction of ammonium chloride allowed for

complete solvation of reactants and the ratio of iron and selenium starting materials is then var-

ied to purify the product. Solvothermal reactions are a useful tool; however, as they require an

appropriate solvent for the desired system, they are not applicable for all reactions.
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Figure 1.3: Solvothermal reaction set up scheme adapted from Yang et al.. [3]

Metathesis reactions are another synthetic tool for solid-state materials. Metathesis reactions

are double exchange reactions that use the formation of a highly stable salt side-product to drive the

reaction to completion. [4] For example, Li7NbN4 can be synthesized through a reaction between

NbCl5 and Li3N. In this case, the formation of the LiCl side product drives the reaction and

since this is a self propagating reaction, it only requires an initial ignition to complete. Once this

reaction is ignited with a hot plate, it will go to completion. These reactions often occur quickly

and exothermically as seen in Figure 1.4. Therefore, metathesis reactions can be difficult to control

and finding appropriate starting materials to produce both the desired phase and a stable salt can

be challenging.

Both solvothermal and metathesis reactions are useful techniques in solid-state synthesis; how-

ever, the library of known syntheses is still very limited. Finding more synthetic techniques that

can access a wide variety of phase would be valuable in simplifying known syntheses and enabling

materials discovery. Flux reactions are another technique used to promote reactivity at lower tem-

peratures. As the focus of this thesis, flux reactions are discussed in more detail below.

1.2.1 Flux-based low-temperature materials synthesis

Similar to solvothermal reactions, fluxes promote reactivity at lower temperatures by providing

a solvent that helps overcome solid-state diffusion. Instead of this solvent being a liquid at room

temperature as is used in solvothermal reactions, a flux is solid at room temperature, but molten at
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Figure 1.4: Photos taken every 0.04 s during the metathesis reaction between NbCl5 and Li3N. Figure from
Meyer. [4]

the reaction temperature. Fluxes can either provide only a molten medium to encourage mixing, or

they can also be reactive. Additionally, since fluxes often melt at a lower temperature than would be

otherwise required for the reaction, flux reactions can occur at a lower temperature than traditional

solid-state syntheses and can be used to target low-temperature phases. The low-temperature phase

of iron selenide can also be made using a flux reaction where the flux only provides a molten

medium. [11] In this case, a molar excess of KCl is mixed with iron and selenium and heated.

Since KCl melts at 770 ◦C and acts as a solvent, the reaction only needs to be heated to a maximum

temperature of 850 ◦C and takes 4 days. Again, this is much simpler than the traditional iron

selenide reaction scheme shown in Figure 1.2. Reactive fluxes are also often used to make solid-

state materials, such as in the reaction to form VSn2 from vanadium and tin. [12] For this reaction,

an excess of tin acts as a self-flux where it is both a solvent and a reactant that becomes part of the

product. In this way, the barrier of solid-state diffusion can be overcome while also providing a

reactant. In both of these cases, the use of a flux enables a lower reaction temperature which can

stabilize low-temperature phases easier than traditional solid-state synthesis.

Generally fluxes consist of metallic melts, metal chlorides, or alkali chalcogenides as the

molten phase. [8, 13] Since the fluxes act as solvents, difficulties with solubility, similar to those

with solvothermal reactions, can occur. As you need a solvent that will coordinate the reactants,

finding a flux that is appropriate for a given system can be challenging. Therefore, new fluxes are

essential for progressing solid-state flux synthesis. Additionally, the temperature of these reactions
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is often dictated by the temperature at which the flux melts. So to target materials that are only

stable at low temperatures, fluxes that are molten at lower temperatures, coordinate the reactants,

and are easy to separate from the products are necessary.

This thesis will focus on organic fluxes as a tool for low-temperature solid-state synthesis.

Organic materials have been used in solid-state synthesis as solvents, reactants, and selectivity

agents. Previously, triphenylphosphine was used to promote reactivity in a metathesis reaction

between CuCl2 and Na2Se2 to form a metastable phase of CuSe2. [14] In this synthesis, the

triphenylphosphine lowers the activation barrier for the reaction, allowing for the selective for-

mation of the metastable phase before it can convert to the more stable polymorph. The success of

triphenylphophine-mediated metathesis reactions suggests the potential for organic flux reactions.

1.3 Organic flux synthesis

This work represents the first example, to our knowledge, of an organic flux synthesis. Organic

fluxes use organic materials as the molten material to enable reactivity. Since organic materials

are made of molecules that can be carefully tuned to control the chemistry, these reactions can be

used to selectively target low temperature phases. This work explores the idea of using organic

compounds that act as reactive fluxes. Rather than the tin self-flux example provided above, these

organic fluxes do not generally become a part of the primary product. The organic fluxes inter-

act with the reactants, forming an intermediate that enables selective product formation. Excess

of this intermediate may remain as a side product; however, the organic flux generally does not

incorporate into the main product. This thesis discusses how triphenylphosphine flux reactions

are selective, the guiding principles behind whether or not a given reaction is successful, a new

material discovered through a triphenylphosphine flux reaction, and the prospect of controlling

reactivity through changing the flux.

In the second chapter, the idea of an organic flux is introduced through a case study of using

triphenylphosphine to make the low-temperature phase of iron selenide. [15] As described above,

this phase is traditionally synthesized through a multi-step, 10 day reaction that requires a special-
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ized furnace capable of reaching over 1000 ◦C. Using triphenylphosphine simplifies the reaction

to a single-step, low-temperature, 5-day reaction. Triphenylphosphine was found to react with se-

lenium, changing the reactivity of the selenium, and enabling selective reactivity between the iron

and the triphenylphosphine selenide to form iron selenide at a low temperature. This provides a

proof of concept that triphenylphosphine flux reactions can be used for selective low-temperature

synthesis in the solid state.

The third chapter further explores the use of a triphenylphosphine flux, expanding it to the syn-

thesis of other metal chalcogenides and explaining the guiding principals behind reactivity. Triph-

enylphosphine flux reactions were shown to enable selective reactivity in a number of different

binary metal chalcogenide systems. A combination of thermodynamic properties and properties

such as metal density as proxies for kinetic behavior are demonstrated to be predictors for how a

given system will react. This provides more knowledge on how triphenylphosphine flux reactions

can be used in the future for targeted synthesis.

The fourth chapter discusses a new cobalt-selenium-triphenylphosphine material that was syn-

thesized using a triphenylphosphine flux, demonstrating the potential of organic fluxes for ma-

terials discovery. The data presented support the identification of the material to be a cluster of

approximately Co12Se16(PPh3)10 size. Alternate hypotheses for the identification of this material

are also discussed as a smoking gun for phase assignment is lacking. Regardless, it is clear that

this material is a new cobalt-selenium-triphenylphosphine compound, which shows the ability of

organic fluxes to discover new solid-state materials.

In the fifth chapter, preliminary results exploring another organic flux are discussed. The impact

of using a flux that is a Lewis acid instead of a Lewis base was explored through the use of boric

acid. Boric acid selectively forms FeSe2 demonstrating how changing the flux can change which

product is targeted. This demonstrates the potential for tunable solid-state synthesis.

The concluding chapter discusses the future prospects of this work including exploring other

organic fluxes and targeting different materials. Future work focused on gaining an understanding
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of how to use organic fluxes for selective synthesis is proposed. Additionally, the expansion of

organic flux synthesis to ternary materials or other clusters is discussed.

Appendices include the supplemental information for chapters 2 and 3, the code for the analysis

discussed in chapter 3, an overview of my contributions to publications where I was a second

author, a list of abbreviations used throughout this thesis, a jargon-free overview of my research,

and a selection of my favorite photos I have taken during graduate school.
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Chapter 2

Low-temperature synthesis of superconducting iron

selenide using a triphenylphosphine flux1

2.1 Overview

Many functional materials have relatively low decomposition temperatures (T ≤ 400 ◦C),

which makes their synthesis challenging using conventional high-temperature solid-state chem-

istry. Therefore, non-conventional techniques such as metathesis, hydrothermal, and solution

chemistry are often employed to access low-temperature phases; the discovery of new chemistries

is needed to expand access to these phases. This contribution discusses the use of triphenylphos-

phine (PPh3) as a molten flux to synthesize superconducting iron selenide (Fe1+δSe) at low temper-

ature (T = 325 ◦C). Powder X-ray diffraction and magnetism measurements confirm the successful

formation of superconducting iron selenide while nuclear magnetic resonance spectroscopy and in

situ X-ray diffraction show that the formation of superconducting FeSe at low temperatures is en-

abled by an adduct between the triphenylphosphine and selenium. Exploration of the Fe-Se-PPh3

phase space indicate that the PPh3-Se adduct effectively reduces the chemical potential of the sele-

nium at high concentrations of triphenylphosphine. This contribution demonstrates that the use of

a poorly-solvating yet reactive flux has the potential to enable the synthesis of new low temperature

phases of solid materials.

1This chapter is a published paper with M. Jewels Fallon as primary experimenter and author (Fallon; Martinolich;
Maughan; Gallington; Neilson. Dalton Trans. 2019, 48, 16298-16303). Preliminary experiments were completed by
Andrew J. Martinolich, experiments at Argonne National Laboratory were completed with the help of Annalise E.
Maughan and Leighanne C. Gallington. James R. Neilson provided valuable guidance with experiments, data analy-
sis, and editing. This work was supported by the National Science Foundation (DMR-1653863). JRN acknowledges
partial support from a Sloan Research Fellowship and a Cottrell Scholar Award. This research used resources of the
Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE
Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
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2.2 Introduction

Many important functional inorganic materials are only stable, or are only able to be synthe-

sized, below temperatures that are typically required for traditional reactions. [8] Phases which

are only stable below T ∼ 400 ◦C are often challenging to synthesize and require complex or

non-traditional synthetic methodologies that may limit potential applications. For example, many

metal chalcogenides are only accessible with more challenging techniques such as high pressure or

multiple complex regrinding and reheating schedules. [2,16] The discovery of new synthetic meth-

ods to access materials phases with stability only at low temperatures is therefore paramount for

advancing materials discovery and will enable more widespread use of materials that are otherwise

challenging to synthesize. [8]

Flux synthesis is a synthetic technique in which a compound that is molten at the reaction tem-

perature is used to promote diffusion and enable reactivity between solid phases at lower temper-

atures. Traditionally, flux synthesis involves metallic melts (Sn, Bi), metal chlorides (LiCl, KCl),

or alkali chalcogenides (NaxSy) as the molten phases. [8, 13] For example, the eutectic mixture of

NaCl and KCl has been used to grow single crystals of FeSe at T = 850 ◦C. [17] This compliments

solvothermal synthesis, in which solvents are heated past their normal boiling points by heating in

a closed vessel designed to hold elevated pressures. A solvothermal approach using ammonium

chloride and ethane-1,2-diol has been used to prepare FeSe powders from elemental precursours at

T = 200 ◦C relative to the salt flux or reaction from the elements. [10] These methods are all used

to promote reactivity by aiding in mass transport at relatively low temperatures.

In this contribution, we illustrate the use of a hybrid approach: an organic flux that enables the

reaction between iron and selenium at low temperatures. These molecules have long been used to

control the size and morphology in the synthesis of nanocrystals. [18] Since the superconducting

phase of iron selenide, β-FeSe, is only stable below 457 ◦C [19], its synthesis requires two heating

cycles and an annealing cycle [2, 20] or a solvothermal synthesis as previously discussed. [10, 21]

Due to the presence of competing phases (β-FeSe, α-FeSe, Fe7Se8) β-FeSe provides a good sys-

tem for use as a case study to investigate alternative synthetic techniques. We previously demon-
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strated the role of triphenylphosphine in promoting reactivity between CuCl2 and Na2Se2 to form a

metastable polymorph CuSe2 in a metathesis reaction. [14] Triphenylphosphine also has a reason-

able range at which it is molten and stable making it suitable for reactions at elevated temperatures

suitable for producing extended solids (Tm = 80 ◦C, Tdecomp > 400 ◦C). The formation of β-FeSe is

confirmed by powder X-ray diffraction (PXRD) and magnetism measurements. Control reactions

without a flux and with non-Lewis basic fluxes demonstrate the necessity of a molten and reactive

flux. Nuclear magnetic resonance (NMR) and in situ X-ray diffraction (XRD) and pair distribution

function (PDF) analysis suggest that the formation of an adduct between the selenium and triph-

enylphosphine promotes mass transport between the iron and the selenium while also serving to

decrease the chemical potential of selenium. Overall, this research shows that triphenylphosphine

fluxes can enable the synthesis of low-temperature phases of solid-state materials and may aid in

the discovery of new functional materials.

2.3 Experimental

Purified iron powder (NOAH Technologies Corporation, 99.9%), selenium shot (Alfa Aesar,

99.999%) or powder (Sigma Aldrich, 99.5%), and triphenylphosphine flakes (Alfa Aesar, 99+%)

in a 1:1:1.5 mole ratio were sealed in a fused SiO2 ampoule (10 mm ID/12 mm OD) under vacuum

(p ≤ 10 mTorr). The ampoule was heated at a rate of 10 ◦C/min to 325 ◦C and dwelled for 117

h in a muffle furnace before quenching in water. Iron powder was purified of surface oxides by

sealing it in in a fused SiO2 ampoule under vacuum (p ≤ 10 mTorr). The ampoule was heated at

a rate of 10 ◦C/min to 980 ◦C and dwelled for 16 h before cooling in the furnace. The iron was

transferred to a new evacuated ampoule and the heating cycle was repeated until the iron appeared

shiny. Diffraction analysis with an internal standard reveals that the iron is ∼75 wt% amorphous.

A series of exploratory reactions were completed by varying the reaction conditions as summa-

rized in detail in the Supplemental Information†. For each reaction, purified iron powder, selenium

shot, and triphenylphosphine flakes in the desired stoichiometric quantities were sealed under vac-

uum in a SiO2 ampoule. The sealed ampoule was heated in a furnace at a ramp rate of 10 ◦C/min
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up to the final temperature for the desired reaction time. The “air-cooled" reactions were removed

from the furnace and left at room temperature; quenched reactions were taken from the furnace

and placed directly into a water bath. The reactions above 350 ◦C were sealed in 4 mm ID, 6 mm

OD ampoules and were placed in metal piping (open both ends) to contain reactions in the event of

gas formation (no ampoules failed). Several control reactions were completed: without flux, with

eicosane (Acros Organics, 99%), and with triphenylamine (TCI America, 98%). Once the reac-

tions were completed, the organic materials were mechanically removed with a steel spatula from

each reaction and set aside for additional analysis. The remaining material was washed in ∼10 mL

benzene (EMD Millipore, 99%) per 500 mg FeSe and stirred until the residual flux dissolved.

Samples for magnetic characterization were kept air-free once the reaction had completed. For

these samples, the ampoules were opened in an argon-filled glove box and rinsed with degassed,

dry benzene (deoxygenated over CaH2 and distilled) in the glovebox. For all samples, once the

triphenylphosphine dissolved, the samples were ground with a mortar and pestle for 2-3 min until

homogenous.

Laboratory powder X-ray diffraction data were collected on a Bruker D8 Discover diffractome-

ter with CuKα radiation and a Lynxeye XE-T position-sensitive detector. Samples were prepared

on a zero-diffraction Si wafer. Ex situ total X-ray scattering data sets for pair distribution function

(PDF) analysis were collected on a Panalytical Empyrean Diffractometer with the GaliPIX 2D de-

tector using AgKα radiation. Samples were packed in 0.0395 in outer diameter kapton capillaries

sealed with modeling clay.

The samples for in situ analysis were prepared for analysis by ball milling iron, selenium, and

triphenylphosphine in a 1:1:0.5 mole ratio at T = 77 K using a Retsch cryomill. The samples were

milled in a stainless steel jar with stainless steel ball bearings at 30 Hz for 15 min after cooling.

Milling was performed to provide an intimate mixture and to facilitate capillary packing. The

mixture was then packed in a 1.1 mm borosilicate capillary in air and immobilized with quartz

wool and measured in a flow cell furnace [22] using the 11-ID-B beamline at the Advanced Photon

Source at Argonne National Laboratory. Surface tension of the melt kept the contents within the
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capillary. No apparent oxidation products were observed over the course of the reaction. The

reaction was heated up at 10 ◦C/min to 325 ◦C taking diffraction patterns every 25 ◦C from a

distance of 1 m for XRD and 200 mm for PDF. A CeO2 standard was also measured for sample-

detector distance calibration. The wavelength was 0.2113 Å, a Qmin of 0.5 Å-1 and a Qmax of

5.95 Å-1 for XRD or a Qmax of 23 Å-1 for PDF was used during data transformation. GSAS-II was

used to transform the raw data to PDF and PDFgui was used to analyze the data. [23, 24]

A variety of compositions were picked throughout the phase space and are discussed specifi-

cally in the results. All of these reactions were completed following the heating schedule of heating

at 10 ◦C/min up to 325 ◦C, dwelling for 72 h and slow-cooling for 45 h. After the reactions were

completed, organic residue was mechanically separated for NMR spectroscopy experiments. The

remaining product powder was ground and analyzed through PXRD. Ex situ PDF analysis as de-

scribed above was completed on the product from the reaction 8Fe + Se + PPh3 as well as the

purified iron powder. This reaction was chosen for analysis due to the lack of iron in the products

as observed by PXRD Rietveld refinement.

Magnetism measurements were completed with the Quantum Design Inc. Magnetic Properties

Measurement System (MPMS-XL). Samples were prepared for the MPMS in the glovebox by

weighing approximately 25 mg of the product into a gelatin capsule. Kapton was wrapped around

the sample to keep it air-free. Upon removal from the glovebox, the sample was placed in a straw

and loaded in the MPMS. The zero field-cooled magnetization was measured from 1.9 K to 20 K

at a field strength of H = 5 Oe. The magnetization was converted to volume susceptability using

field strength, mass, and theoretical density of ρ = 5.68 g/cm3. [2]

Room temperature 1H and 31P NMR spectra were taken of the white organic residue of several

reactions. Samples were prepared for NMR by placing approximately 10 mg of the nominal triph-

enylphosphine residue into an NMR tube and adding 700 µL of deuterated benzene (Cambridge

Isotope Laboratory Inc., 99.5%). Samples were placed in an Agilent (Varian) 400 MHz NMR.

Control room temperature 1H and 31P NMR spectra were also taken separately of the deuterated
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benzene solvent and a sample of the unreacted triphenylphosphine flakes prepared in the same way

as the post-reaction specimens.

2.4 Results and Discussion

Superconducting iron selenide forms with a 1 Fe to 1 Se ratio in a 1.5 molar excess of triph-

enylphosphine flux at 325 ◦C after 117 h. PXRD confirms the crystalline purity with only 1 mole

percent Fe detected (Figure 2.1a). Based on the onset of volume exclusion of a magnetic field,

the superconducting transition temperature is around Tc = 8.9 K (Figure 2.1b), and is a gradual

transition (in contrast to the sharp Tc = 8.5 K transition observed in the literature [2]). The Tc is ex-

tremely sensitive to the stoichiometry, Fe1+δSe, with deviations from Fe1.01Se causing a decrease

in the transition temperature. [2, 20] The positive shift in the 4πχ of the iron selenide synthesized

using a triphenylphosphine flux compared to the 4πχ reported in literature can be attributed to the

slight iron excess in the sample. Based on the observed diamagnetic transition, the superconduct-

ing volume fraction is around 70% (Figure 2.1b), which was reproducible across multiple samples.

The β-FeSe maintains the structure and properties as iron selenide synthesized without significant

oxygen contamination or stoichiometric deviation.

To explore how triphenylphosphine impacts the reaction to form β-FeSe, control reactions

with different organic molecules (NPh3, C20H42) were completed. A summary of products from

these control reactions is shown in Table S2. The reaction without a flux forms a mixture of Fe-

Se phases along with Fe, consistent with a mass transport-limited reaction (Figure 2.2a; majority

products: β-FeSe, Fe3Se4). Performing the reaction in molten eicosane wax (C20H42, a chemically

unfunctionalized alkane) also forms a variety of products indicating that a molten and reactive

flux is necessary for a complete reaction (Figure 2.2b; majority products: FeSe2, β-FeSe, Fe3Se4).

Reaction in molten triphenylamine also forms a distribution of products (Figure 2.2c; majority

products: Se, FeSe2). This suggests the Lewis basicity is an important factor for forming the

desired product. This is further supported by the successful reaction of Ph3PSe with iron to form

β-FeSe with 96 mol% purity (impurities: 3 mol% α-FeSe, and 1 mol% Fe), indicating that the
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Figure 2.1: (a) PXRD of the products of the iron selenide reactions completed with triphenylphosphine.
A Rietveld refinement modeling 99% β-FeSe and 1% Fe (starred peak) is shown in red with the difference
curve in blue. The structure of β-FeSe with iron (blue) and selenium (gold) is shown to the right. (b) Tem-
perature versus 4πχ of iron selenide prepared using a triphenylphosphine flux measured with the MPMS.

adduct is the reactive species (Figure S1). Together, these controls demonstrate the necessity of a

molten and partially reactive flux, where reactivity is dictated by Lewis basicity.

A number of test reactions completed at higher and lower temperatures as well as shorter dwell

times yielded impure products. Higher temperatures caused the flux to decompose while reactions

completed at lower temperatures showed a mixture of α-FeSe and β-FeSe. Shorter reactions as

well as reactions with shorter cool times also contained a mixture of α-FeSe and β-FeSe. Thus it

was determined that the length of time at higher temperature is important for complete reaction to

β-FeSe.

To gain more insight into the nature of reactivity, in situ XRD and PDF experiments were com-

pleted on a mixture of iron, selenium, and triphenylphosphine (Figure 2.3). Phase fractions deter-

mined through Rietveld refinements are shown in Figure S2. Based on Rietveld analysis of these

data where triphenylphosphine selenide formation is observed, triphenylphosphine selenide forms

immediately once triphenylphosphine begins to melt around 75 ◦C. The reaction goes through a

phase where everything but the iron is molten, and once a temperature of 275 ◦C is reached, iron
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Figure 2.2: PXRD of the products of the iron selenide reactions completed with (a) no flux, (b) eicosane,
and (c) triphenylamine. The peaks barely visible above the background (marked by an asterix) are from
residual PPh3. Rietveld refinement modeling β-FeSe for each diffraction pattern is shown in orange and the
fit for the remaining phases is shown in blue.

selenide begins to form. Initially, α-FeSe and Fe3Se4 form and these phases disappear as β-FeSe

forms at higher temperatures. It has been suggested that less stable products often form first (e.g.,

Ostwald’s step rule) which explains the formation of these iron selenide phases initially over the

expected FeSe product. [25] At 325 ◦C both α-FeSe and β-FeSe are present indicating that β-FeSe

is stabilized through dwelling at the reaction temperature. Incomplete conversion to β-FeSe is

observed in situ since the reaction was not kept at temperature for an extended period of time.

This supports the ex situ observation that a long reaction time (∼117 h) is required for “complete

reaction". In situ PDF of the reaction between iron, selenium, and triphenylphosphine as well as

the reaction between triphenylphosphine and selenium (Figure 2.4) support what is observed in the

in situ XRD with how the reaction progresses. Additionally the in situ PDF analysis shows no in-

dication of large amounts of amorphous materials, as assessed from analysis of the stoichiometry.

There is the possibility for small amounts of amorphous phases making up less than 2.5 mol% of

the phases present. [26]
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Figure 2.3: Diffraction patterns of a 2Fe + 2Se + PPh3 reaction collected in situ upon heating with each
temperature offset for clarity in 25 ◦C increments. The most intense peak for each phase is labeled; note the
logarithmic intensity axis.

Figure 2.4: PDF analysis of total scattering data collected in situ from the reactions of (a) iron and selenium
in a triphenylphosphine flux and (b) selenium and triphenylphosphine upon heating. Data shown in black
and fits shown in color gradient from blue to red upon heating.
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Exploring the ternary phase space demonstrated that the reaction does not follow an extension

of the Fe-Se phase diagram. A map of the ternary phase space between iron, selenium and triph-

enylphosphine is shown in Figure 2.5a. β-FeSe exists as the predominate phase for ≤ 50 mol%

Se while other phases are present depending on the ratio of the reactants (Table S2); selenium is

the primary phase for ≥ 50 mol% Se. This indicates that reaction in a triphenylphosphine flux

preferentially forms β-FeSe. The selenium-rich reactions yield more than three phases, suggesting

that the phase map does not represent a true equilibrium, as based on Gibbs’ phase rule. Based

on the phase fractions calculated from Rietveld refinements in relation to the starting composi-

tion, the reaction products are deficient in crystalline iron. PDF analysis of the starting iron as

well as a completed reaction indicate a significant fraction of diffraction amorphous iron (e.g.

nanocrystalline) present in the precursor, which accounts for the iron missing from analysis of

the diffraction data (Figures S3, S4). NMR spectroscopy performed on the post-reaction organic

residue samples from these completed reactions reveal signals consistent with triphenylphosphine

and triphenylphosphine selenide (Figure 2.6). [27] Reactions completed with excess selenium con-

tained mostly triphenylphosphine selenide, while reactions completed with excess iron contained

mostly triphenylphosphine.

The results of these reactions suggest that triphenylphosphine does not just provide a liquid

medium for accelerated mass transport, but that triphenylphosphine also reduces the reactivity

of selenium. It appears that in reactions containing more triphenylphosphine the product FeSe2

is avoided, which suggests that the chemical potential of selenium is reduced. This is shown

schematically in Figure 2.5b using calculated formation energies for the reportedly stable Fe-Se

phases from the Materials Project (Table S3). [1] Extrapolation of the T = 0 K calculations sug-

gests that the triphenylphosphine reduces the effective chemical potential by at least 0.5 eV/atom.

Chemically this is rationalized by the stability of the dative bond in the Se-PPh3 adduct, thus re-

ducing the reactivity of the selenium towards iron. This notion of a partially reactive flux provides

a handle for designing selective reactions.
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Triphenylphosphine acts as a low-temperature, molten flux for materials synthesis as exempli-

fied with β-FeSe. The optimized β-FeSe synthesis reacts the elements in a triphenylphosphine flux

at 325 ◦C for 117 h. In situ analysis of the iron selenide reaction shows formation of a Se-PPh3

adduct that reduces the chemical potential of Se in its reaction towards iron, while also forming a

high mobility, liquid phase. This synthetic approach has the potential to improve the syntheses for

many solid-state materials at lower temperatures and with chemical selectivity.

2.5 Conflicts of interest

There are no conflicts to declare
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Figure 2.5: (a) Ternary phase map between iron, selenium, and triphenylphosphine. The binary iron se-
lenide phase diagram is shown above. The dots on the ternary phase map represent completed reactions;
the red dot is the optimized reaction. (b) Formation energies (T = 0 K, DFT) [1] of computed and stable
Fe-Se species that form the convex hull without triphenylphosphine (black line) in contrast to the offset
line showing the extrapolated effective chemical potential of selenium (as to avoid FeSe2 formation) in the
presence of excess triphenylphosphine (red line).
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Figure 2.6: 31P NMR spectrum of the triphenylphosphine flux from the iron selenide reaction completed at
325 ◦C for 24 h with a 30 h cool.
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Chapter 3

The Reactivity of Triphenylphosphine fluxes in the

Synthesis of Metal Chalcogenides2

3.1 Overview

Solid-state synthesis targeting materials that are only stable at low temperatures (T ≤ 600 ◦C)

can be difficult owing to slow solid-state diffusion at lower temperatures. Slow solid-state diffusion

reduces mobility in the system which inhibits reactivity. There are a limited number of synthetic

techniques to access materials that are only stable at low temperatures. Using a material, called a

flux, that is molten at the reaction temperature to enable mobility is one technique used to overcome

solid-state diffusion at reduced temperatures. In this paper, the utility of a triphenylphosphine flux

in solid-state synthesis is explored. A series of reactions varying the metal and chalcogen were

completed to gain a better understanding of the guiding thermodynamic and kinetic properties be-

hind the reactivity. Various properties of the system that can be related to kinetic behavior, such

as densities, electronegativities, and electron affinities, were analyzed to determine what has the

largest impact on reactivity. A smaller subset of the most impactful properties were used to create

a model that predicts the outcome of future reactions. This work shows that the triphenylphos-

phine flux reaction is broadly applicable and adds to our understanding of these reactions through

exploring the kinetic and thermodynamic factors that impact reactivity.

2This chapter is a manuscript in preparation. M. Jewels Fallon completed all experiments and wrote the code and
manuscript. Anthony K. Rappe completed bond dissociation energy calculations and James R. Neilson provided
guidance with experiments, coding and editing. This work was supported by the National Science Foundation
(DMR-1653863). The authors wish to thank the Analytical Resources Core (RRID: SCR_021758) at Colorado State
University for PXRD instrument access.
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3.2 Introduction

The synthesis and discovery of solid-state materials remains challenging. [8] Organic chemistry

provides numerous well understood reactions schemes that can be used to target specific materials.

SN2 reactions, for example, provide sterospecificity and therefore can be used to synthesize ma-

terials of a specific composition. [7] In solid-state chemistry there are fewer well-understood and

selective reactions that can be used to synthesize a desired material. Additionally, there is the bar-

rier of solid-state diffusion that must be overcome for a reaction to progress, which often requires

high temperatures. This introduces a different set of challenges, specifically in accessing the nu-

merous phases that are only stable at lower temperatures (T ≤ 600 ◦C). [8] Having a larger library

of well-understood reaction techniques available to access these compounds would be helpful for

solid-state synthesis.

One technique often used to synthesize phases that are only stable at lower temperatures is flux

synthesis. [13] Flux synthesis involves the use of an element or compound that is molten at the

reaction temperature to act as a solvent and aid solid-state diffusion. Flux synthesis is a powerful

synthetic tool that has been used to make many solid-state compounds, but generally fluxes consist

of metallic melts [12], metal chlorides [11], or alkali chalcogenides [28]. Recently, the idea of

organic fluxes were introduced through the use of triphenylphosphine as a flux to make supercon-

ducting iron selenide at a low temperature. [15] That study introduced the idea of using organic

fluxes to promote low temperature reactivity and enable more tunability in solid-state synthesis.

Here, we expand the scope of organic fluxes in solid-state synthesis, looking specifically at

different binary metal chalcogenide systems to determine the guiding principles behind the reac-

tivity of triphenylphosphine fluxes. Reactions involving sulfur, selenium, and tellurium as well as

various transition metals and p-block metals reacted as predicted, demonstrating the broad applica-

bility of this reaction. A thermodynamic hypothesis for predicting product formation is discussed.

This hypothesis is based on the assumption that the adduct formation should change the chemical

potential by the same amount in every reaction involving a given chalcogen. Thus, by comparing

that approximated change in chemical potential to the phase diagrams of each reaction for a given
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chalcogen, the product can be predicted. As this does not explain all the reactions, kinetic factors

are also explored. Based on the thermodynamic hypothesis and most impactful kinetic factors, a

model for predicting reactivity is created. In this contribution, we discuss the guiding principles

behind reactivity, building off our previous work to gain a better understanding of how organic

fluxes can be employed in solid-state synthesis.

3.3 Experimental

3.3.1 Synthesis

A list of the reactants, their source, and their purity is provided in in the supplemental infor-

mation. A list of all the reactions with the mole ratio of the completed reactants along with the

dwell time and products is provided in Table 3.1. The reaction with iron and selenium was com-

pleted as previously described, and all reactions involving iron used iron powder that was purified

as explained previously. [15] To summarize the purification process, the iron powder was heated

to 980 ◦C for 16 hours in a fused SiO2 ampoule sealed under vacuum. All metal chalcogenide

reactions were set up in the same manner. The desired metal, chalcogen, and triphenylphosphine

in the specified mole ratios were sealed in a fused SiO2 ampoule (10 mm inner diameter/12 mm

outer diameter) under vacuum (p ≤ 15 mTorr). Each ampoule was heated to 325 ◦C at a rate of

10 ◦C/min and was held at 325 ◦C for the time specified in Table 3.1. Each ampoule was then

cooled to room temperature in the furnace.

Once the reaction was completed, samples were prepared for powder X-ray diffraction (PXRD).

The flux was removed by mechanically scraping most of it away with a metal spatula and then by

dissolving the rest by stirring the product in two approximately 10 mL aliquots of benzene (EMD

Milipore, 99%) per 500 mg reaction. The product was then ground with a mortar and pestle for

2-3 min until homogenous. Once rinsed and ground, samples were placed on a zero-diffraction

Si wafer and a Bruker D8 Discover diffractometer with CuKα radiation and a Lynxeye XE-T

position-sensitive detector was used to collect PXRD data. EVA V6 (Bruker) was used for phase

identification and Rietveld refinements were completed using TOPAS v6 (Bruker).
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3.3.2 High dimensional data analysis and feature selection

Scripts used here are provided as supplemental information. The minimum and maximum

change in chemical potential were calculated using the pymatgen python package to interface with

the materials project and complete grand potential hull analysis to calculate the phase diagrams.

[29, 30] Phase diagrams were calculated at a temperature of 300 ◦C using the method described

by Bartel et al.. [30] Phase diagrams were calculated using the Grand Potential, with the system

open to the relevant chalcogen. The phase boundaries resulting from these diagrams were used to

determine the minimum and maximum bounds to the chalcogen chemical potential for the stability

of a given target phase. Figure 3.1 shows the minimum and maximum chemical potential changes

for an example phase diagram.

Based on whether each reaction follows the thermodynamic hypothesis and formed the product

predicted from the phase diagram, each reaction result was manually classified as either "matches

hypothesis", "does not match hypothesis", or "unclear". In this context, "matches hypothesis"

means the reaction containing a flux reacted differently from the control reaction to selectively

form the product predicted by the thermodynamic hypothesis, "does not match hypothesis" means

the reaction with the flux did not react as predicted or reacted the same as the control, and "un-

clear" means both the flux reaction and control reaction formed the product predicted for the flux

reaction. For these categorizations, the mole percents were calculated excluding any chalcogen

present. Since the chalcogen in the flux reactions is rinsed away, at least in part, as the adduct

when the excess flux is removed at the end of the reaction, it is impossible to know the exact

amount of the chalcogen present in the products of the flux reactions. Therefore the chalcogen in

both the flux and control reactions was removed when calculating mole percents of the products

for the categorizations explained above. More information about these categorizations is included

in the discussion section. The three reactions marked as "unclear" were removed from the machine

learning analysis as they were inconclusive.

The chemical properties used in the following analysis are listed in Table B.3. Information on

where these values are from is provided in the supplemental information. The features explored
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in this analysis were chosen as they are chemical properties known to impact reactivity in other

systems and be good proxies for kinetic behavior. Additionally, emphasis was put on selecting

features that only require knowledge about the reactants so that this analysis would be applied to a

wide array of systems.

The seaborn [31] (version 0.11.2) and Scikit-learn [32] (version 1.0.2) python packages were

used for this analysis. For this analysis, the data were normalized using the standard scaler in

Scikit-learn which transforms the data to have a mean of zero and standard deviation of one. The

features that have the largest impact on whether a reaction follows the thermodynamic hypothesis

were chosen through three different approaches: a combined thermodynamic and kinetic approach,

principal component analysis (PCA), and using a random forest algorithm. For the combined ther-

modynamic and kinetic approach, the Seaborn python package [31] was used to create a series of

plots of the minimum change in chemical potential versus every other feature. These plots were

analyzed to determine the features that differentiate the most between reactions that follow the ini-

tial thermodynamic hypothesis and those that do not. To analyze each pair of variables and quickly

determine the accuracy of each classification based on the limited data set, linear support vec-

tor machine (SVM) through the Scikit-learn python package [32] was used. PCA was completed

using Scikit-learn to determine which features create the most separation between reactions that

follow the thermodynamic hypothesis and those that do not. These features were determined by

calculating which component creates the most separation and then looking at how each component

was weighted in that component. The Scikit-learn python package was also used to screen various

machine learning algorithms (listed in Table B.9) to see which algorithm was initially the best at

accurately predicting reactivity. [32] One of the most accurate models, random forest algorithm,

was chosen and the importance of each feature was calculated using Mean Decrease Impurity

(MDI). The accuracy of all the machine learning algorithms used in this analysis as well as the

PCA were determined by splitting the data into a training set and test set using Scikit-learn. The

training set of data comprised of 70% of the full sample set and the test set was the remaining 30%

of the samples. For each analysis, this was a different random 70:30 split of the data. A tool to
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Figure 3.1: Example phase diagram of tin sulfide containing just the most stable phases showing the min-
imum and maximum possible change in chalcogen chemical potential for a single phase to remain on the
hull.

predict future reactions was then created based of the limited features data set using both PCA and

machine learning. This model was used to predict the outcome of new reactions. More information

on these three analyses is provided in the SI.

3.4 Results and Discussion

Triphenylphosphine flux reactions targeting a variety of different metal chalcogenides show a

triphenylphosphine flux is widely applicable; although, it does not enable selective product for-

mation for all reactions. A summary of the triphenylphosphine flux reactions attempted, their

products, and the corresponding control reactions completed without a flux is provided in Table

3.1. Of note, the iron reactant is partially amorphous as previously discussed. [15] Many syntheses

reacted as expected by selectively forming a phase that is stable at the reaction temperature with

the specific product predictable by the phase diagram as described previously. [15] To summa-

rize the phase diagram predictions, the triphenlphosphine lowers the reactivity of the chalcogen

through forming the adduct, thus changing the convex hull such that only one product is stable

(Figure 3.2). This is the product that is selectively formed in the triphenylphosphine flux reaction.

Similar to the iron selenide case, reactions with excess chalcogen still showed selectivity for the

product expected according to the phase diagram. Based on the phase diagrams for many of these

materials, the expected traditional synthesis would require high temperatures (700 ◦C to 1100 ◦C)

in order to melt the reactants and encourage reactivity. For example, the reported syntheses of
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Figure 3.2: Computed formation energies (T=0 K, DFT) of compounds in the iron-sulfur system illustrat-
ing the convex hull (black line). [1] The offset red line approximates the convex hull with the addition of
triphenylphosphine which lowers the effective chemical potential of sulfur.

both GaTe and SnS require multiple heating cycles at high temperatures. [9] A triphenylphosphine

flux reaction simplifies these syntheses to a single step that can occur at a lower temperature that

is easier to access. Reactions between the elements without a flux at lower temperatures such as

325 ◦C generally do not selectively form the desired binary product as shown in Table 3.1. This

demonstrates the utility of triphenylphosphine in lowering reaction temperatures and simplifying

known syntheses of metal chalcogenides with both transition metals and p-block metals.

However, not all syntheses react as predicted by the phase diagrams. Some reactions do not

selectively form the predicted product with an initial 24 h reaction time. With longer reaction

times, conversion to the expected product is observed. This indicates that selectivity could likely

be achieved given a long enough dwell time. Lastly, some reactions did not react at all, showing

that a triphenylphosphine flux reaction is not universally applicable. Here, the overarching trends

in reactivity will be discussed and then a model will be created that predicts the reactivity of new

systems.

3.4.1 Thermodynamic hypothesis based on phase diagrams

The phase diagram can provide an initial explanation for many of the reactions. Comparing the

ranges of chemical potential change that would enable selective product formation for each reaction
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Table 3.1: Table of the attempted triphenylphosphine flux reactions, the dwell times, products, and no-flux
control reaction products. Mole percents, as determined through Rietveld analysis, are written in parentheses
for the reactions where there were multiple products. Table continued on following page.

Reaction Dwell time

(days)

Products (mole %) Control reaction

products (mole %)

Fe + Se + 1.5PPh3 5 β-FeSe (99), Fe (1) β-FeSe (46), α-FeSe (6),

Fe (8), Fe3Se4 (40)

Fe + S + PPh3 1 FeS S (81) FeS2 (10),

Fe (6), FeS (3)

Fe + 2S + PPh3 1 FeS

Fe + Te + PPh3 1 FeTe2 (92), Te (8) FeTe2 (29), Te (71)

Co + 2Se + PPh3 1 Co3Se4 (61),

Co (26), CoSe2 (13)

Co + 2Se + PPh3 5 Co3Se4 (90), CoSe2 (10)

Co + Se + PPh3 1 Co3Se4 (91), Co9Se8 (9) CoSe2 (79),

Co3Se4 (9), Co (12)

Co + Se + PPh3 5 Co3Se4 (83), Co9Se8 (17)

Co + S + PPh3 1 Co9S8 S (85), Co3S4 (7),

Co (6), Co9S8 (2)

Co + 2S + PPh3 1 CoS (52), Co9S8 (48)

Co + Te + PPh3 1 CoTe2(86), CoTe (14) CoTe2 (75),

CoTe (11), Co (14)

Ni + Te + PPh3 1 Ni (75), Te (18),

NiTe2 (4), NiTe (3)

Ni (48), Te (31),

NiTe2 (17), NiTe (4)

Ni + Te + PPh3 5 Ni (57), Te (31),

NiTe2(6), NiTe (6)

Mn + Se + PPh3 1 MnSe (62), Mn (38) Se (62), MnSe (24),

Mn (14)

Mn + S + PPh3 1 MnS (86), Mn (14) MnS (23),

Mn (17), S (60)

Mn + Te + PPh3 1 Te (89), MnTe (9),

MnTe2 (2)

MnTe2 (21), Te (33),

Mn (44), MnTe (2)

Mn + Te + PPh3 5 Mn (47), Te (44),

MnTe (5), MnTe2 (4)
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Table 3.2: Table of the attempted triphenylphosphine flux reactions, the dwell times, products, and no-flux
control reaction products. Mole percents, as determined through Rietveld analysis, are written in parentheses
for the reactions where there were multiple products. Continued from previous page.

Reaction Dwell time

(days)

Products (mole %) Control reaction

products (mole %)

Sn + S + PPh3 1 SnS (75), Sn (25) Sn (2), S (92),

SnS (6)

Sn + S + PPh3 5 SnS (73), Sn (22)

Pb + Se + PPh3 1 PbSe PbSe

Pb + S + PPh3 1 Pb PbS (95), Pb (5)

Pb + Te + PPh3 1 PbTe (80), Te (20) PbTe (82),

Te (1), Pb (17)

Ga + Te + PPh3 1 Te (80), GaTe (20) Ga (71), Te (28),

GaTe (1)

In + Te + PPh3 1 In (59), In7Te10 (2), In4Te3 (11),

In2Te5 (25), In2Te3 (3)

Te (75) In2Te5 (25)

2Ag + Se + PPh3 1 Ag2Se Ag2Se

2Ag + S + PPh3 1 Ag Ag2S (93), Ag (7)

2Ag + Te + PPh3 1 Ag2Te Ag2Te (68), Ag (29),

Ag5Te3 (3)

Mo + 2Se + PPh3 1 Mo (50), MoSe2 (48) Mo (49), MoSe2 (46),

Se (5)

Mo + 2S + PPh3 1 Mo Mo (26), S (74)

Ru + 2Se + PPh3 1 Ru Ru (9), Se (91)

Ru + 2S + PPh3 1 Ru Ru (7), S(93)

Ta + Se + PPh3 1 Ta Ta

Ta + S + PPh3 1 Ta Ta

Ta + Te + PPh3 1 Ta TaTe4 (89), Ta (11)
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gives insight into the reactivity. For each chalcogen, the adduct formation should change the

chemical potential by the same amount, regardless of the metal. Graphs of the chemical potential

ranges for each phase separated by chalcogen are shown in Figure (3.3). Comparing the chemical

potential ranges within each chalcogen allows for the determination of an approximate value for

each adduct (marked as a dashed black line on each graph). If this value intersects the chemical

potential range for a given reaction, the reaction should be selective for the predicted product.

However, if the value for the adduct is below the chemical potential range, no stable binaries would

remain on the convex hull and the reaction should instead be selective for the metal. Lastly, if the

adduct value is above the chemical potential range for a given reaction, then that reaction should

not react selectively. Most reactions are able to be explained by this hypothesis; however, there

are still some reactions that do not fit with this explanation, indicating that there are other factors

besides thermodynamics that impact reactivity. Based on this hypothesis, the reactions are able to

be categorized for further analysis based on whether or not they follow this thermodynamically-

based hypothesis as explained in the experimental. Using these categorizations, kinetic factors that

may impact reactivity can be explored.

3.4.2 Exploring kinetic factors

To determine what properties had the largest impact on whether or not a reaction follows the

thermodynamic hypothesis described above, a combined thermodynamic and kinetic approach,

PCA, and a random forest algorithm-based approach were used. A combination of these three

techniques was used as each has limitations especially given the small sample size and correlated

features being analyzed. The combined thermodynamic-kinetic approach provides a useful starting

point, but is ultimately still based on thermodynamics. PCA is not great at feature extraction, but

handles correlated data well, which is important given the number of correlated features present

used. Randomm forest algorithms are complimentary to PCA in that they do not handle correlated

features well, but are very good at feature extraction. Since all of these approaches have different
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Figure 3.3: Chemical potential range where each given phase is the only phase on the convex hull. Black
dashed lines represents the proposed chemical potential change of each adduct.
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strengths and weaknesses, using all three can provide the most complete picture of the kinetic

properties impacting reactivity.

For the combined approach, the thermodynamic hypothesis was used as a starting point for ex-

ploring the impact of the various kinetic factors. Based on the thermodynamic hypothesis discussed

above, the minimum change in chemical potential was identified as the main important factor. A

series of plots were made graphing each feature versus the minimum chemical potential change.

These graphs were then analyzed using linear support vector machine (SVM) to determine which

feature creates the most separation and consequently has the largest impact on whether or not a

reaction follows the thermodynamic hypothesis (Figure 3.4). This analysis shows that the density

of the metal is the most accurate predictor of whether or not a reaction follows the thermodynamic

hypothesis. This makes sense as more dense metals are generally less reactive. The second most

impactful features for creating separation between reactions that follow the thermodynamic hy-

pothesis and those that do not are as follows: formation energy, adduct bond dissociation energy,

metal electronegativity, chalcogen electronegativity, metal melting point, chalcogen melting point,

metal atomic number, chalcogen atomic number, and chalcogen ionization energy.

To confirm the combined thermodynamic and kinetic approach, the features were analyzed us-

ing two computational approaches: PCA (Figure 3.5) and random forest algorithm (Figure 3.6).

PCA does not fully capture the data and is only 71% accurate based on its ability to predict the out-

come of the reactions set aside to test the model. The first principal component was determined to

create the most separation in the data, thus the composition of this component was used for feature

extraction. According to PCA, the features that create the most separation between reactions that

follow the thermodynamic hypothesis and those that do not were the chalcogen atomic number,

chalcogen density, adduct bond dissociation energy, chalcogen melting point, chalcogen electron

affinity, and chalcogen ionization energy (Figure 3.5). Although this a large selection of features,

there is overlap with the features selected by the combined thermodynamic and kinetic approach.

Machine learning algorithms also do not fit the data very well with most of the algorithms being

71% accurate. The random forest algorithm was chosen as it was one of the most accurate models,
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and once it is fine-tuned it is 85% accurate. The most important features according to the random

forest algorithm (Figure 3.6) were the metal atomic number, metal electronegativity, average den-

sity, metal density, and metal melting point. The features from both PCA and the random forest

algorithm show some agreement with the features from the combined thermodynamic and kinetic

approach.

The key kinetic properties were picked based on which features are present in at least two of

the analysis techniques. Based on this, the minimum change in chemical potential, metal density,

bond dissociation energy of adduct, metal electronegativity, melting point of the metal, melting

point of the chalcogen, metal atomic number, chalcogen atomic number, and ionization energy of

the chalcogen were determined to be the most impactful properties. It is important to note that a

number of these properties are correlated, but they still provide a basis to understand the reactivity

of these systems. For example, the key properties of the metal such as density and melting point

are known proxies for kinetic behavior in reactions. Metals that are dense and have high melting

points are known to be less reactive regardless of the thermodynamics of the reaction. Additionally

the bond dissociation energy of the adduct in particular makes sense as being important. If the

chalcogen-phosphorous bond in the adduct is stronger, the adduct is less reactive and the expected

product is less likely to form. Therefore, the reactivity is based on how reactive the metal is and

how stable the adduct is. Regardless of potential correlations, the properties listed above were used

to create a model to predict the outcome of future reactions.

3.4.3 Creating a model to predict reactivity

Using the limited feature set chosen from the above analysis, a model combining PCA and a

machine learning algorithm was created. Using both techniques should provide the greatest ac-

curacy as the techniques are complimentary. A set of new reactions (Table 3.4) was analyzed

using this model to predict whether or not the reaction would be successful. The results of these

predictions are provided in Table 3.4. The reactions and their corresponding control reactions

were completed to demonstrate the efficacy of the model. The predictions align with the exper-

35



Figure 3.4: Plots of each feature graphed versus the minimum change in chemical potential analyzed using
SVM. The accuracy is written in the bottom right corner of each graph.
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Figure 3.5: (a) Visualization of the dimensionally reduced data set (from 19 to 2 dimensions) plotted along
the 2 principal component axis determined from PCA. The individual points are color coded by their classi-
fication of hypothesis supported: Yes/No. (b) Relative feature contributions to the two principle components
used to plot the data in (a).
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Figure 3.6: How well each feature separates reactions that follow the thermodynamic hypothesis from those
that do not based on the random forest algorithm.

Table 3.3: Table of test reactions including the features, predicted outcome, and actual outcome. Continued
below.

Reaction
Product according
to thermodynamics

Adduct bond dissociation
energy (kJ/mol)

Metal density
(g/cm3)

Metal
electronegativity

Nb + Se Nb2Se -64.95054178 8.57 1.6
Nb + S Nb14S5 -78.58340988 8.57 1.6
Cr + Se Cr2Se3 -64.95054178 7.19 1.66
Cr + Te Cr2Te3 -41.1625301 7.19 1.66
Cu + S Cu7S4 -78.58340988 8.96 1.9

imental outcome demonstrating the utility of this model in predicting reactivity and confirming

experimentally the importance of the minimum chemical potential change, metal density, adduct

bond dissociation energy, metal electronegativity, metal melting point, chalcogen melting point,

chalcogen atomic number, and chalcogen ionization energy.

3.5 Conclusions

A variety of metal chalcogenides were successfully synthesized at low temperature using a

triphenylphosphine flux showing the broad applicability of these reactions. The phase diagrams
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Table 3.4: Table of test reactions including the features, predicted outcome, and actual outcome. Continued
below.

Reaction
Metal melting

point (◦C)
Chalcogen

melting point (◦C)
Metal atomic

number
Chalcogen

atomic number
Nb + Se 2477 221 41 34
Nb + S 2477 115.21 41 16
Cr + Se 1907 221 24 34
Cr + Te 1907 449.51 24 52
Cu + S 1084 115.21 29 16

Table 3.5: Table of test reactions including the features, predicted outcome, and actual outcome. Continued
from above.

Reaction
Chalcogen
ionization

energy (kJ/mol)

Minimum
chemical potential
change (eV/atom)

Predicted product
Did it react

as predicted?

Nb + Se 941 -1.5045 Nb Yes
Nb + S 999.6 -2.5766 Nb Yes
Cr + Se 941 -0.3694 Cr2Se3 or Cr Yes
Cr + Te 869.3 -0.2793 Cr Yes
Cu + S 999.6 -1.036 mixture of products Yes

were found to dictate the product selected for in these reactions as was previously discussed in

the case of iron selenide. The reactivity of these systems can be explained looking at both ther-

modynamics through the phase diagrams and kinetics. The reactivity of the metal and stability of

the adduct were found to be the most impactful kinetic properties in determining whether or not

a given reaction would be selective. A model was created and its efficacy was demonstrated as it

was used to predict the outcome of new reactions. This chapter demonstrates the ability of triph-

enylphosphine to enable reactivity at low temperatures in a variety of metal chalcogenide systems

to selectively form stable low-temperature phases. It additionally explains the guiding principles

behind the reactivity, wherein a reactive metal (a metal with a lower density and higher melting

point) and a more reactive adduct are necessary. These properties are also able to predict future

reactivity. Knowing these guiding principles allows for synthesis by design and expanding this

reaction to other systems.
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Chapter 4

A New Cobalt-Selenium-Triphenylphosphine Cluster

Synthesized with a Triphenylphosphine Flux3

4.1 Overview

Metal chalcogenide clusters have shown promise for a wide array of applications including

catalysis and energy storage. Finding new clusters and new ways to make these clusters is there-

fore important for advancing these technologies. This chapter describes a new possible cobalt-

selenium-triphenylphosphine cluster synthesized in a non-traditional elemental reaction performed

in molten triphenylphosphine. While the evidence points to this material being a cluster with the

approximate size of Co12Se16(PPh3)10, the exact size and composition is yet undetermined. There-

fore, some alternate hypotheses for the identity of the material are discussed including a selenium

radical complex, and a simpler cobalt selenide based material. Regardless of the identification, this

work describes a new material, sheds light on a reaction pathway, and demonstrates the utility of

using reactions involving molten organic compounds to discover new materials.

4.2 Introduction

Monolayer protected metal chalcogenide clusters are a topic of intense contemporary research.

These species can be synthesized to atomic precision and have proven effective in an array of ap-

plications including catalysis and energy storage. [33] Cobalt selenide clusters, including cobalt-

3This chapter is a manuscript in preparation, with additional experiments still necessary. M. Jewels Fallon completed
the synthesis, most of the characterization and properties measurements, and wrote the initial manuscript. Ian D.
Anderson, under guidance of Christopher J. Ackerson, completed the MALDI-MS experiments, and provided valu-
able assistance with analysis and writing. Clara A. Tibbetts, under guidance of Amber T. Krummel, did the FTIR
experiments and analysis. James R. Neilson assisted with data analysis, editing, and provided useful discussion. This
work was supported by the National Science Foundation (DMR-1653863). The authors wish to thank the Analytical
Resources Core (RRID: SCR_021758) at Colorado State University for instrument access, training, and assistance
with sample analysis. This research used resources of the Advanced Photon Source, a U.S. Department of Energy
(DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under
Contract No. DE-AC02-06CH11357. The mail-in program at Beamline 11-ID-B contributed to the data.
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selenide-triethylphosphine (PEt3) clusters, show particular promise as recyclable sodium ion bat-

tery electrode materials, when assembled into hierarchical microporous structures. [34] Such as-

semblies differ substantially from other storage materials, as the cluster precursor affords a degree

of tunability which is generally inaccessible for bulk or amorphous counterparts. [35, 36]

The relatively high symmetry and small size of these clusters also gives rise to a concentric

series of electronic shells with a valence reminiscent of a single atom. [37,38] Molecular clusters of

this kind are generally referred to as superatoms and can be viewed as an extension of the standard

periodic table into a third dimension, wherein specific physical properties can be obtained through

judicious control of the superatom size, shape, and composition. [39, 40] This principle has been

applied recently using Co6Se8L6, where L represents various phosphine ligands. [41] Overall this

cobalt selenide cluster serves as a good model system to investigate superatomic cluster chemistry

given its high electronic stability and affinity for ligand variation.

However, there is currently a relative dearth of cobalt selenide clusters beyond this nuclearity.

In order to more completely explore the properties of cluster-assembled materials, it is of general

interest to develop pathways to additional cluster sizes and shapes. Champsaur et al. recently

demonstrated that Co6Se8(PEt3)6 can be transformed into Co12Se16(PEt3)10 through a three-step

process involving i) carbonyl-for-phosphine exchange, ii) carbene-for-carbonyl exchange, and iii)

subsequent irradiation to remove the labile carbene thereby inducing dimerization. [5] The result-

ing product retained the overall geometry of the individual cluster monomers and exhibited strong

electronic coupling and electron delocalization across the dimerized cluster.

Herein we describe the synthesis of a potential cobalt-selenium-triphenylphosphine (PPh3)

cluster, with a composition approximately matching Co12Se16(PPh3)10, but whose physical proper-

ties differ from the abovementioned case. To our knowledge, this may be the first reported example

of a direct synthetic route to this species, and therefore could represent a significant development in

metal chalcogenide cluster chemistry. The formation conditions are also rather unique for the field,

given the elemental reaction is a single step. Based on a series of characterizations we offer some

insight towards the stability of this new cluster species, as well as a putative formation pathway.
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Figure 4.1: Picture of the completed reaction in sealed tube (left) with the blue material on the top of cobalt
selenide powder. The product after solidifying and being ground (middle) and the crystals scraped from the
side of the tube (right).

Alternate hypotheses for what this material could be are also discussed, as structure determination

via diffraction remains elusive. This work provides evidence of a new metal chalcogenide cluster

as well as insight into the synthesis of these materials.

4.3 Experimental

4.3.1 Synthesis

Cobalt powder (NOAH Technologies Corporation, 99.9%), selenium powder (Sigma Aldrich,

99.5%) and triphenylphosphine flakes (Alfa Aesar, 99+%) were used for this reaction. A 6:6:1

mole ratio of cobalt:selenium:triphenylphosphine was sealed under vacuum (p ≤ 15 mTorr) in a

fused SiO2 ampoule (10 mm ID/12 mm OD). The ampoule was heated at a rate of 10 ◦C/min to

325 ◦C and dwelled at that temperature for 5 days. After 5 days at 325 ◦C, the furnace was turned

off and the ampoule was cooled in the furnace. After the reaction was completed, the blue liquid

poured off the top and collected and the blue crystals (Figure 4.1) were scraped off the inside of

the tube using a metal spatula leaving the black cobalt selenide powder behind in the tube.

A control reaction between cobalt and triphenylphosphine was completed in the same way as

described above but with a 1:1 mole ratio of cobalt:triphenylphosphine.

4.3.2 Crystallization attempts

To attempt crystallization through reheating, the blue powder was sealed in a fused SiO2 am-

poule (10 mm ID/12 mm OD) under vacuum (p ≤ 15 mTorr). The ampoule was heated at a rate of
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Figure 4.2: Picture of the crystals formed after slow-evaporation of Benzene.

10 ◦C/min to 500 ◦C where it dewelled for 24 h before being cooled in the furnace. An additional

attempt repeated this same process heating up to 400 ◦C.

To attempt crystallization through solvent-based dissolution and evaporation, the blue mate-

rial was placed in several different solvents. Benzene, dichloromethane, tetrahydrofuran, ace-

tone, toluene, isopropanol, and chloroform were used in an attempt to dissolve the material, and

each showed partial dissolution. The sample added to Benzene was from a 1:1:1 molar ratio

of Co:Se:PPh3 which was a lighter blue color likely due to the dilution caused by excess triph-

enylphosphine. This sample was left loosely capped to evaporate over the course of a week. This

sample formed crystals of triphenylphosphine surrounded by an amorphous, blue, gel-like material

(Figure 4.2).

4.3.3 Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-

MS)

0.2 mg of the matrix trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile

(Sigma Aldrich, 99.0% [HPLC])) was dissolved in 0.2 mL dichloromethane (Sigma Aldrich,

99.5%, stabilized with 40-150 ppm amylene). 2.0 µL of the cluster sample suspended in dichloromethane

was added to the solution to produce a mixture of approximate 1:100 sample to matrix ratio. 0.2 µL

of this combined solution was spotted on a steel MALDI plate and allowed to dry for one hour.
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Data was collected using a Bruker Microflex LFR MALDI-TOF. Positive mode spectra were col-

lected as they provided better signal-to-noise ratios relative to negative mode spectra.

4.3.4 X-ray diffraction

For powder X-ray diffraction (PXRD), a mortar and pestle was used to grind the products for

2-3 min until homogeneous. Of note, the blue cluster proved challenging to grind, and tended to

clump together rather than grind into a powder. The samples were then placed on a zero-diffraction

Si wafer and PXRD was collected using a Bruker D8 Discover diffractometer with CuKα radiation

and a Lynxeye XE-T position-sensitive detector.

Some crystals collected from the inside of the ampoule were set aside for single crystal X-

ray diffraction (SCXRD). The crystals were measured on a Bruker D8 Advance QUEST at room

temperature. These crystals were found to be amorphous according to diffraction and attempts to

recrystallize them were unsuccessful. Information on re-crystallization attempts is provided in the

SI

Due to the large amount of diffuse scattering observed in PXRD, Pair Distribution Function

(PDF) analysis of synchrotron total scattering data was used to investigate local order. The material

was packed in a 0.0395" inner diameter x 0.0435" outer diameter kapton capillary and sealed using

epoxy. Data were collected on the 11-ID-B beamline at the Advanced Photon Source at Argonne

National Laboratory. All samples were collected with a detector distance of around 200 mm. To

calibrate the sample-detector distance, a CeO2 standard was measured, and to calibrate instrument

parameters in qunatitative modeling of the PDF, a Ni standard was also measured. The wavelength

was 0.2115 Å and a Qmax of 23 Å-1 for PDF was used during data transformation. The raw data

was transformed to PDF using GSAS-II and then PDFgui was used to analyze the transformed

data. [23, 24]

4.3.5 Fourier transform infrared spectroscopy

All attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR) mea-

surements were made on a Bruker Optics Hyperion 3000 spectrometer with a germanium crystal
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tipped ATR attachment. Samples for FTIR were all ground as explained above before measure-

ment. Samples were placed on a glass microscope slide and flattened with a scoopula before

measurement. Pressure level 1 (contact pressure equal to 0.5 N) was used, the spectral resolution

is 2 cm−1, and 64 scans were averaged together. The detector used was a single element mercury

cadmium telluride (MCT) detector.

4.3.6 Magnetism

Approximately 10 mg of the material was placed into a Vibrating Sample Magnetometetry

(VSM) capsule. The capsule was loaded onto a Quantum Design Inc. Magnetic Properties Mea-

surement System (MPMS3). VSM was used to collect the zero field cooled magnetization from

1.8 K to 300 K at a field strength of H = 100 Oe.

4.3.7 Ultraviolet-Visible spectroscopy

The sample was prepared for UV-Visible spectroscopy (UV-Vis) by mixing 5 wt% of the pow-

dered cluster with 95 wt% of barium sulfate (Baker Chemical Co., 99+%). UV-Vis data was

collected on the sample in a scintillation vial using an Ocean Insight Flame miniature spectrom-

eter with an Ocean Optics halogen light source HL-2000-FHSA. A dark measurement and light

measurement of a barium sulfate standard in a scintillation vial were also collected.

4.4 Results

The blue material recovered from the Co-Se-PPh3 reaction was characterized using a number of

different techniques. MALDI-MS shows the upper bound of the envelope being around 6000 m/z

with the center being at 4214.9 m/z. The matrix for this sample does not have any signal above

1000 m/z and therefore is not seen in this data. Looking at the differences between peaks, there

are changes in m/z that correspond to both the loss of selenium and the loss of cobalt, indicating

the presence of both elements.
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Figure 4.3: Complete MALDI-MS spectrum of the blue material (top) and zoomed in section of the spec-
trum (bottom) labelled with the hypothesized cluster size and peak differences corresponding to loss of
selenium and loss of cobalt.
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Figure 4.4: PXRD of the blue material

PXRD (Figure 4.4) shows that the material is largely amorphous with weak peaks visible in

the powder pattern corresponding to cobalt selenide. SCXRD of the crystals shown in Figure 4.2

formed through slow-evaporation of benzene indicate that the clear crystals are triphenylphosphine.

SCXRD of the needle-like blue material scraped directly from the tube shown in Figure 4.1 was

unsuccessful, as the material did not diffract. Thus, pair distribution function (PDF) analysis was

used as a tool to explore the atomic structure. The PDF analysis is able to be mostly fit by CoSe

with some peaks being fit by triphenylphosphine and some peaks at shorter r values are not well

fit (Figure 4.5). Explanations for these peaks are explored in the discussion section.

Attempts to recrystallize the material through heating or through dissolution and slow-evaporation

were unsuccessful. For all the solvents attempted, the blue material was only partially soluble, cre-

ating a slurry instead of fully dissolving. Slow evaporation of benzene did not produce any crystals.

Heating the blue material up to 500 ◦C caused it to decompose into Co3Se4, Co2P, and CoP as well

as turned the ampoule a gold color (Figure 4.6). The recrystallization attempt at 400 ◦C also

seemed to decompose the blue material. The decomposition products at this temperature were not

able to be identified as they produced a large number of weaker peaks at lower angle in the diffrac-

tion pattern (Figure 4.7). As a wide array of materials could fit these peaks it was not possible to

identify the decomposition products; although, the presence of peaks at low angle suggests a large

complex unit cell which could be organic in nature.
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Figure 4.5: PDF analysis of the blue material fit with CoSe (red line) with the difference curve in blue.

Figure 4.6: Diffraction pattern of the products from the attempted recrystallization reaction at 500 ◦C.
Rietveld refinement (red line) includes the materials listed in the upper right with their weight percents.
Inset shows the tube when it was removed from the furnace.

Figure 4.7: Diffraction pattern of the products from the attempted recrystallization reaction at 400 ◦C. Tick
marks show the peaks for the phases listed in the top right.
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Figure 4.8: Full FTIR spectra (left) and spectra zoomed in on the lower wavenumber peaks (right) of
triphenylphosphine (orange) and the blue material (blue).

Attempts to acquire characteristic Nuclear Magnetic Resonance (NMR) spectra of the blue ma-

terial were unsuccessful due to the difficulty getting the material to dissolve. NMR was attempted

in both benzene and chloroform and the partial solubility in both these solvents was not enough to

produce a signal in the measurement.

FTIR shows differences between the spectra for triphenylphosphine and the blue material. The

numerous vibrational modes associated with triphenylphosphine have been laid out in prior re-

search by Clark et al.. [42] The peaks in the spectra of both triphenylphosphine and the blue mate-

rial align with peak identifications for triphenylphosphine described by Clark et al.. [42] There are

some peak shifts to higher wavenumber in the blue material.

Magnetism measurements show that the blue material is paramagnetic based on the decrease

in magnetic susceptibility with increased temperature, which is characteristic of paramagnetism

(Figure 4.9).

The UV-Vis spectrum shows a broad absorbance range from 500-700 nm. It appears to contain

a series a peaks with centered around 600 nm which aligns with the blue color of the compound.
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Figure 4.9: Magnetic susceptibility (left) and inverse magnetic susceptibility (right) versus temperature of
the blue material.

Figure 4.10: Kubelka Monk function converting the reflectance data into absorbance of the blue material
from diffuse reflectance data.
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Figure 4.11: Sealed ampoule containing the cobalt-triphenylphosphine reactions (left) and the blue material
from this reaction after being removed from the ampoule (right).

Completing the reaction without selenium also forms a liquid, but a more teal color instead of

blue (Figure 4.11). Additionally, the liquid did not solidify like the blue material did upon opening

the tube.

4.5 Discussion

4.5.1 Hypothesis: Co12Se16(PPh3)10 Cluster

MALDI-MS is capable of identifying cluster products, as it provides detail regarding formula-

tion and surface chemistry. [43–46] Figure 4.3 shows the MALDI mass spectrum of the obtained

synthetic product, which features a single envelope roughly 3000 m/z in width with a center near

4214.9 m/z. The best match for this data corresponds to the formula Co12Se16(PPh3)10 (calculated:

4593.65 m/z). Given the sub-ideal matrix-sample combination used due to the difficulty dissolv-

ing the samples, this difference of 300 m/z is within the expected error for this measurement. A

peak corresponding to this formula, as well as several peak differences corresponding to the loss

of selenium or cobalt, can be observed within the upper bound of the envelope (Figure 4.3).

Envelopes such as this one are generally indicative of i) impure sample containing multiple

closely-spaced nuclearities, ii) a high degree of fragmentation resulting from suboptimal matrix-

sample interaction, or iii) a combination of the two. Due to the high sensitivity towards impurities

in clusters particularly inherent to magnetism measurements (Figure 4.9), we rule out the likelihood

of a complex product mixture. Previous research has demonstrated that product mixtures lead
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Figure 4.12: Structure of the Co12Se16(PEt3)10 cluster with blue being cobalt, green being selenium, orange
being phosphorous, and grey being carbon. Hydrogens omitted for clarity. Figure from Champsaur et al.. [5]

to complex magnetism data. [47] The novel nature of this sample renders direct comparison to

other studies tenuous, as MALDI-MS is known to be sensitive to the specific cluster identity.

[48] Co12Se16(PEt3)10, the most related reported cluster, unfortunately does not currently have any

available mass spectrometric data. [5] This may be due in part to the lack of an optimal matrix

pairing for cobalt selenide clusters, as this area to date has almost exclusively been advanced for

coinage metal clusters. [49]

Additional evidence supporting the blue material being a cluster is provided through total scat-

tering studies. Although the PDF analysis is largely fit by cobalt selenide and triphenylphosphine,

the peaks at lower r that are not well fit are consistent with a cluster. Due to their size, clusters

tend to have more intense peaks at short r values. The PDF analysis compared to a calculation of

the Co12Se16(PEt3)10 cluster shows some overlap in the peaks although it does not fit the data well.

(Figure 4.13). The inability to fit the data better is possibly due to the fact that the comparison was

attempted with the triethylphosphine cluster as an approximation which would fit differently than

the triphenylphosphine cluster. It is also possible that the blue material is a cluster of a different

size. The fact that the PDF analysis shows peaks at lower r supports the conclusion from the mass

spec data of the blue material being a cluster potentially around the size of Co12Se16(PPh3)10.

The FTIR (Figure 4.8) data supports the hypothesis that the blue material is a cluster similar

to the Co12Se16(PEt3)10 cluster. In this cluster, triphenylphosphine is bound to cobalt and then se-
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Figure 4.13: PDF analysis of the blue material compared with a calculation of the Co12Se16(PEt3)10 cluster
(red line) with the difference curve in blue.

lenium, thus, it is likely that some observed differences in the spectra stem from mass dependent

shifts. Clark et al. showed for a series of mass-sensitive modes that increased substituent mass led

to a decreases in frequency. [42] For example, one of three C-X stretching motions in unsubstituted

triphenylphosphine shows up around 1098 cm−1. [42] [50] In the FTIR spectrum of triphenylphos-

phine we see a significant peak centered at 1096 cm−1 and in the cobalt cluster spectrum there is

only a very weak peak. However, in the FTIR spectrum of the blue material, there is a large new

peak at 1050 cm−1 (Figure 4.14). It is possible that this new peak is from a C-X stretching mo-

tion with X being the cobalt selenide unit that the triphenylphosphine is bound to. This provides

additional evidence for cluster formation.

The difficulty with solubility also supports the hypothesis that the blue material is a cluster.

Previous work on cobalt chalcogenide triphenylphosphine clusters has shown they have limited

solubility in all common solvents. [51] This lack of solubility also causes a lack of NMR data

on these compounds. Additionally, many metal chalcogenide clusters are paramagnetic and have

broad absorbance as observed with this material. [51, 52]
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Figure 4.14: Section of the FTIR spectra of triphenylphosphine (orange) and the blue material (grey).
Arrows show the mass-dependant peak shift

It is worth noting that while a cluster seems likely, the exact size of the cluster is undetermined,

although comparison to the Co12Se16(PEt3)10 cluster provides a good estimation. This prompts

the alternate hypothesis that the material is a cluster of a different size. Transmission electron

microscopy (TEM) and Energy dispersive X-ray Spectroscopy (EDS) would be useful tools to help

identify whether the material is a cluster and what the composition is. TEM would enable high-

resolution imaging of the material on a small scale, which would show the presence of any clusters,

and EDS would provide elemental analysis of these clusters. Since a confident identification of the

blue material was not achieved, some alternate hypotheses are discussed below.

4.5.2 Alternate Hypothesis 1: Selenium radical

One alternate hypothesis to the cluster discussed above is the presence of a selenium radical

nested in a cobalt-triphenylphosphine complex. Previous research on selenium radicals in a aryl-

containing complex has shown that they are blue and paramagnetic, which matches the blue mate-

rial in this work. [6] Additionally, the UV-Vis data on the selenium radical (Figure 4.15) roughly

matches what is observed in the blue material. The UV-Vis spectrum shows a broad absorbance
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from 400 nm to 800-nm that seems to be comprised of multiple peaks centered around 600 nm,

which is the same as the blue material. For the presence of a selenium radical to be consistent

with the MALDI-MS data, it would need to be part of a larger complex similar in size to the one

discussed above. Additionally, the presence of a selenium radical would not have a large impact on

the FTIR, and the PDF analysis would still contain the low r peaks observed in the blue material,

therefore, this is a plausible hypothesis.

This hypothesis does seem less likely than the cluster due to the difficulty forming a selenium

radical and the control reaction without selenium. Based on the reaction between cobalt and triph-

enylphosphine, the blue material is unlikely to be a selenium radical since a blue color was still

observed without selenium present (Figure 4.11). Additionally, the difficulty with selenium bind-

ing to the phenyl ring makes this hypothesis less likely. However, more data needs to be collected

to confidently disprove the presence of a selenium radical. Electron Paramagnetic Resonance

(EPR) spectroscopy would be a valuable experiment to demonstrate the presence of a selenium

radical and can be completed on a powder sample. EPR data could be compared to the data for the

selenium radical and should show multiple peaks indicative of a selenium radical if there is one

present. Without this additional data, the presence of a selenium radical cannot be fully ruled out.

4.5.3 Alternate Hypothesis 2: Cobalt Selenide

Due to the appearance of cobalt selenide in the X-ray diffraction and PDF analysis, the possi-

bility of the blue material being cobalt selenide in triphenylphosphine remains. This is a less likely

option when considering the rest of the data. Cobalt selenide absorbs most of the visible spectrum

and appears black even when in nanoparticle form. [53] Additionally, the FTIR shows shifts in the

triphenylphosphine peaks which indicates the presence of a bond triphenylphosphine that would

not exist in cobalt selenide. Therefore, despite the presence of cobalt selenide in diffraction data,

the material is not likely just cobalt selenide.
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Figure 4.15: Structure (top) and absorbance spectrum (bottom) of the selenium radical complex. Figures
from Zhang et al.. [6]
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4.6 Conclusions

This study provides evidence for a novel cobalt-selenium-triphenylphosphine cluster. MALDI-

MS, PDF analysis, FTIR, and solubility experiments support the hypothesis that this material is

a cluster of approximately the size of Co12Se16(PPh3)10. Further experimentation including TEM

and elemental analysis would need to be completed to confirm that the material is a cluster and

determine the approximate size. Based on the hypothesis that the material is a cluster, this work

demonstrates a non-standard synthetic approach to metal chalcogenide clusters. Additionally, this

cluster can be explored for use in superatoms and the synthesis expanded to other metal chalco-

genide clusters. This also demonstrates the utility of molten organic compounds in discovering

new materials.
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Chapter 5

Preliminary Results Exploring Other Organic

Fluxes4

5.1 Overview

Synthesis by design is essential for materials discovery; however, controlling reactivity can

be difficult in the solid state. Expanding the number of selective and tunable reaction schemes

available for solid-state synthesis would aid materials discovery. This preliminary work exploring

the tunablity of organic flux reactions demonstrates their ability for targeted synthesis. This proof

of concept introduces the prospect of using the tunablity of organic compounds to control reactivity

in the solid-state through the use of organic fluxes.

5.2 Introduction

The ability for targeted synthesis is necessary for materials discovery in any field of chemistry.

However, in solid-state chemistry, synthesis by design has been challenging to achieve. [8] There

are limited tools for controlling reactivity in the solid-state and tuning reactions to target different

products can be difficult. Expanding these synthetic tools would aid in the discovery of solid-state

materials.

Triphenylphosphine fluxes open the door for studies involving other organic fluxes in solid-

state synthesis. Introducing an organic material into solid-state synthesis increases the tunability of

solid-state reactions. Preliminary results show that different fluxes selectively target different iron

selenide phases. As discussed previously, in the case of a triphenylphosphine flux, iron selenide is

selectively formed. [15] This selectivity is owing to the Lewis basicity of the triphenylphosphine

enabling it to react with the selenium and change the convex hull such that iron selenide is the

4This chapter describes initial work that could be the start of a future publication. Experiments and writing were
completed by M. Jewels Fallon with guidance from James R. Neilson.
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only remaining phase. Since the selectivity of these reactions is based on the Lewis basicity of

triphenylphosphine, this introduces the question of how a Lewis acid impacts the reaction. Boric

acid is a good system for exploring this question as it is generally considered a Lewis acid with a

melting point around 170 ◦C. Preliminary reactions with boric acid show the potential for targeting

different materials by changing the flux.

5.3 Experimental

Iron powder (NOAH Technologies Corporation, 99.9%) was purified by heating it for 16 hours

at 980 ◦C in a fused SiO2 ampoule sealed under vacuum as explained previously. [15] Iron selenide

was synthesized in a triphenylphosphine flux as described previously. [15] Purified iron, selenium

powder (Sigma Aldrich, 99.5%), and boric acid (Alfa Aesar, 99.5%) in a 1:1:1 mole ratio were

sealed in a fused SiO2 ampoule (10 mm ID/12 mm OD) under vacuum (p ≤ 15 mTorr). The

ampoule was heated at a rate of 10 ◦C/min to 200 ◦C and held there for 24 h. The ampoule was

then allowed to cool in the furnace to room temperature.

To prepare the sample for powder X-ray diffraction (PXRD), the flux was removed. A metal

spatula was used to mechanically scrape away most of the flux and the rest was rinsed away by

stirring the product in two approximately 10 mL aliquots of benzene (EMD Milipore, 99%) per

500 mg reaction. The remaining product was ground until homogeneous (approximately 2-3 min)

with a mortar and pestle. The powder sample was then placed on a zero-diffraction Si wafer

and PXRD data was collected on a Bruker D8 Discover diffractometer with CuKα radiation and

a Lynxeye XE-T position-sensitive detector. Phase identification was completed using EVA V6

(Bruker) and Rietveld refinements were completed using TOPAS v6 (Bruker).

5.4 Results and discussion

While the triphenylphosphine flux reaction forms β-FeSe, the reaction with a boric acid flux

selectively forms FeSe2 (Figure 5.1). These reactions demonstrate how different fluxes are selec-

tive for different materials as Boric acid has the opposite reactivity to triphenylphosphine. Triph-
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Figure 5.1: PXRD of the products of the iron selenide reactions completed with triphenylphosphine (left)
and boric acid (right). Rietveld refinements are shown in red with tick marks below indicating the peak
locations for each phase. The phases used for the refinement are in the upper right with mole percents. The
difference curve is below each graph in blue.

enylphosphine reacts with selenium and changes the convex hull such that iron selenide is the only

remaining phase. More analysis, such as in situ XRD, would be necessary to confirm the mech-

anism of reactivity for boric acid. However, based on the reaction products, boric acid seems to

interact with the iron to change the convex hull in the opposite way of triphenylphosphine as shown

in Figure 5.2. A boric acid-iron adduct analogous to the triphenylphosphine selenide adduct does

not, to our knowledge, exist in the literature. Therefore, it is more likely that a complex containing

iron, boron, and oxygen forms, changing the reactivity of the iron. This causes FeSe2 to be the only

phase remaining on the convex hull. Since it is the only stable phase, the boric acid flux reaction

is selective for FeSe2. This promising initial reaction demonstrates the potential to tune reactivity

in organic flux synthesis by changing the Lewis basicity and acidity of the flux.

5.5 Conclusion

This preliminary work demonstrates the utility of organic fluxes for synthesis by design and

opens the door for exploring other fluxes for targeted synthesis in the solid-state. This provides a

proof of concept for the prospect of changing the organic flux to target different materials. The

tunability of organic compounds means that this reaction scheme is also highly tunable and thus

60



Figure 5.2: Formation energies (T = 0 K, DFT) [1] of computed and stable Fe–Se species that form the
convex hull without triphenylphosphine (black line). Extrapolated effective chemical potential of selenium
in the presence of excess triphenylphosphine (red) and boric acid (blue).

provides a new tool for synthesis by design in the solid state. Through expanding the known

synthetic tools, organic fluxes can aid in solid-state materials discovery.
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Chapter 6

Conclusions and Future Directions

6.1 Summary of organic flux reactions

This thesis demonstrates the utility of triphenylphosphine flux reactions to synthesize known

materials and enable materials discovery. Beginning with iron selenide as a proof of concept

for using triphenylphosphine as a reactive flux to target materials that are stable at low tempera-

tures. The traditional synthesis of the low-temperature phase of iron selenide requires 12 days,

specialized equipment to reach the high temperatures, and a multi-step reaction. [2] Using a triph-

enylphosphine flux simplified this to a single-step, 5-day reaction that occurs at much lower tem-

peratures. [15] Triphenylphosphine initially reacts with the selenium to form the triphenylphos-

phine selenide adduct. This adduct changes the convex hull such that the desired iron selenide

compound is the only stable phase remaining. Then, when the adduct reacts with the iron, it

selectively forms that desired iron selenide phase. This proof of concept shows the ability of

triphenylphosphine fluxes to simplify the synthesis of known materials that are only stable at low

temperatures.

Knowing the guiding principals behind the triphenylphosphine flux reaction allows for the de-

sign of future syntheses using this reaction. To determine these principals, this reaction scheme was

used to target a range of other metal chalcogenide binary systems. Based on the phase diagrams

for these systems, the product for each reaction can be predicted. Most reactions were selective

for the product predicted based on thermodynamics, however some reactions were not. Based on

a combined thermodynamic and kinetic approach, principal component analysis, and a machine

learning algorithm, the minimum chemical potential change, metal density, adduct bond disso-

ciation energy, metal electronegativity, metal melting point, chalcogen melting point, chalcogen

atomic number, and chalcogen ionization energy were found to be useful predictors for selectivity.

Based on this, reactions that involve metals that are more reactive owing to their lower melting
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point and lower density are more likely to be able to be synthesized using a triphenylphosphine

flux. Additionally, changing the chalcogen down the periodic table lowers the bond dissocia-

tion energy which means a given reaction is more likely to be selective for the expected product.

This work shows the broader applicability triphenylphosphine flux reactions in synthesizing binary

metal chalcogenides, providing a tool for predicting the outcome of future reactions.

The utility of triphenylphosphine fluxes in materials discovery has also been demonstrated

through the synthesis of the blue complex discussed in the fourth chapter. New solid-state mate-

rials are necessary to improve modern technologies such as solar cells, batteries, and hard drives.

The more synthetic tools available to solid-state chemists, the more potential to discover new mate-

rials. The discovery of the blue material shows the potential for materials discovery using organic

flux reactions. Additionally, the material is likely a cluster which would represent the first, to

out knowledge, example of a metal chalcogenide cluster synthesized using an organic flux. Metal

chalcogenide clusters have widespread applications in ranging from catalysis to energy storage.

These widespread applications often stem from their ability to be organized into hierarchical struc-

tures which offer more tunability. Discovering new clusters enables progress in a vast array of

modern technologies. Although a positive identification was not achieved for the blue material, it

is evident that this material has not been made before. The discovery of this blue material demon-

strates that organic fluxes can be used to synthesize new metal chalcogenide clusters and enable

materials discovery.

Preliminary experiments exploring other organic fluxes have demonstrated their broader utility

in targeted synthesis. Boric acid impacted the convex hull in the opposite way of triphenylphos-

phine allowing for FeSe2 to be targeted as opposed to FeSe. This reaction shows the potential

for synthesis by design through changing the flux in a given reaction and expands the number of

materials able to be targeted using organic fluxes.
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Figure 6.1: Formation energies (T = 0 K, DFT) [1] of computed and stable Cu–S species that form the
convex hull.

6.2 Future directions for organic fluxes

The preliminary work exploring other fluxes prompts further questions regarding how to con-

trol product formation using organic fluxes. The prospect of using a mixture of organic compounds

as a flux to target materials that are not the most metal-rich or chalcogen-rich phases on the convex

hull is possible. For example, in the copper-sulfur system there are three phases on the convex hull

(Figure 6.1). Based on the current knowledge of organic flux reactions, triphenylphosphine should

selectively form Cu7S4 and boric acid should selectively form CuS2 regardless of the initial ratio

of reactants. However, CuS is also a stable phase on the convex hull. This leads to the question

of whether a different flux or mixture of organic compounds as a flux could be used to selec-

tively target CuS. Synthesis by design is difficult in solid-state chemistry and introducing organic

compounds, which allow tunable reactivity, promises the idea of synthesis by design.

Along with exploring other fluxes, attempting to target other materials is also intriguing. Specif-

ically, applying this synthesis to ternary systems and targeting new materials using this technique
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is intriguing. Thus far, primarily binary metal chalcogenides have been formed. It seems likely that

if organic fluxes can selectively target metal chalcogenide binaries, they can be applied to ternary

chalcogenides with multiple metals. As ternary materials are also often challenging to make, find-

ing new synthetic pathways to target these materials would be helpful. Additionally, the formation

of the blue material discussed in the fourth chapter shows that this synthesis can be expanded to

form other clusters or hybrid materials. Exploring the synthesis of more complicated materials and

attempting to target new materials is a promising direction for organic flux research.

Overall, this work provides a promising new synthetic technique for solid-state materials. Syn-

thesis by design is difficult with the limited library of tools available in solid-state chemistry. [8]

Finding new techniques for targeted synthesis and understanding the guiding principals behind

these techniques is therefore essential for advancing solid-state materials. The more synthetic tools

and greater understanding available surrounding how these tools work, the easier it is to design a

synthesis to target a specific material. With solid-state materials having such a huge impact on our

society, advancing modern technologies hinges on our abilities to make and discover solid-state

materials.
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Appendix A

Supplemental Information: Low-Temperature

Synthesis of Superconducting Iron Selenide Using a

Triphenylphosphine Flux

Reactions were completed with varying mole ratios of FeSe:PPh3 (1:0.5, 1:1, 1:1.5, and 1:2),

reaction temperatures (150, 200, 250, 275, 325, 350, 375, and 400 ◦C), reaction times (16, 24, 72,

117, and 168 h), and cooling times (water quench, air quench, 30 h, 45 h, 60 h).

Phase fractions calculated from in situ XRD (Figure A.2) do not take into account amorphous

phases. Triphenylphosphine is also not included in this analysis as the peaks for this phase are

barely observable due to the large X-ray scattering cross-section of iron. Additionally, spots ob-

served in the diffraction pattern before data reduction indicate iron single crystal formation that

could impact the phase fractions. Triphenylphosphine selenide is observed in the room tempera-

ture PDF indicating that ball milling initiated adduct formation which accounts for the excess iron

compared to selenium observed in the diffraction at room temperature.

Laboratory ex situ PDF analysis of the reaction 8Fe + Se + PPh3 (Figures A.3, A.4) was com-

pleted using HighScore Plus to reduce the data and PDFgui to model the data. Each of these PDF

data sets were modeled with two iron phases along with the other phases present. The crystalline

iron phase was modeled through refining lattice parameters, thermal parameters, correlated mo-

Table A.1: Phase fraction (mol%) determined through Rietveld analysis of PXRD patterns of products
formed from reactions with varying fluxes.

β-FeSe α-FeSe Fe3Se4 FeSe2 Fe Se
Triphenylamine 0.9 4.7 21.9 7.8 64.7

Eicosane 7.2 2.5 7.5 82.8
No flux 46.3 6.1 39.4 8.2

75



Figure A.1: Diffraction pattern of products from the reaction between PPh3Se and Fe. Rietveld analysis is
shown in red and difference curve in blue. The tick marks indicate peak locations for β-FeSe (grey), α-FeSe
(green), and Fe (pink) and the phase fraction (mol%) is shown in the upper righthand corner.

Figure A.2: Phase fraction (mol%) of each phase determined from Rietveld analysis of PXRD data collected
in situ during the iron selenide reaction.
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Table A.2: Inorganic reaction products across the ternary Fe-Se-PPh3 phase space. Phase fraction (mol%)
are written in parentheses.

Ratio Fe:Se:PPh3 Product 1 Product 2 Product 3 Product 4 Product 5 Product 6
3:1:6 β-FeSe (88) Fe (12)
1:3:6 β-FeSe (95) α-FeSe (5)
1:1:8 β-FeSe (98) Fe (2)
8:1:1 β-FeSe (61) Fe (39)
6:3:1 β-FeSe (93) Fe (7)
6:1:3 β-FeSe (71) Fe (29)
1:8:1 Se (93) β-FeSe (4) FeSe2 (3)
3:6:1 Se (48) FeSe2 (27) β-FeSe (16) Fe3Se4 (7) α-FeSe (2)
1:6:3 Se (57) FeSe2 (14) Fe (18) β-FeSe (6) Fe3Se4 (4) α-FeSe (1)
4:2:4 β-FeSe (93) Fe (7)
2:4:4 β-FeSe (84) α-FeSe (16)
4:4:2 β-FeSe (93) α-FeSe (7)

Table A.3: Formation energies accessed from the Materials Project (Date: 5/16/2019). [1]

Compound Formation energy (eV/atom) Materials project ID
Fe 0 mp-13

FeSe -0.276 mp-20311
FeSe2 -0.348 mp-760

Se 0 mp-570481

tion parameters, and the scale factor. The amorphous iron phase was modeled by duplicating the

crystalline iron phase but with a spherical particle size cut-off which refined to 7 Å.
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Figure A.3: Ex situ PDF analysis of of 8Fe + Se + PPh3 reaction product. The phase fractions (mol%) of
the refined phases are included in the top right corner. The data are shown as black circles, the fit is the red
line, and the difference is the blue line.

Figure A.4: Ex situ PDF analysis of the iron starting material. The phase fractions (mol%) of the refined
phases are included in the top left corner. The data are shown as black circles, the fit is the red line, and the
difference is the blue line.
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Appendix B

Supplemental Information: The Reactivity of

Triphenylphosphine Fluxes in the Synthesis of Metal

Chalcogenides

A table of the reactants used and their information is provided in table B.1

The table of the features for each metal chalcogenide reaction that were used in the machine

learning analysis is provided in table B.3. The product expected is the product that would be

predicted based on the phase diagram. The formation energy and density of that product are from

the Materials Project Database. [1] The bond dissociation energies were calculated using density

functional theory. Reported geometry optimizations used the 6-311g(2d) basis set (except Te) [54],

the TPSS functional [55], and the Gaussian 16 electronic structure package [56]. For Te the LANL

basis [57], with 2 augmented d functions (zeta=0.433, 0.144). Total energies (Hartree) and binding

energies (kcal/mol) are collected in Table B.2. For all analyses involving principal component

analysis (PCA) or machine learning algorithms, the "Did it work" column was converted to integer

values.

79



Table B.1: List of the sources and purity of each reactant used.

Reactant Source Purity
Triphenylphosphine flakes Alfa Aesar 99+

Selenium powder Sigma Aldrich 99.5
Sulfur powder NOAH Technologies Corporation 99.5

Tellurium broken ingot Alfa Aesar 99.9
Iron powder NOAH Technologies Corporation 99.9

Cobalt powder NOAH Technologies Corporation 99.9
Manganese metal flakes NOAH Technologies Corporation 99.99

Tin powder TT Baker Chemical Co. 99.9
Lead shot Alfa Aesar 97

Nickel powder Aldrich Chem Co. 99
Gallium Sigma Aldrich 99.99
Indium Sigma Aldrich 99.9
Silver Sigma Aldrich 99.9

Molybdenum Alfa Aesar 99.95
Ruthenium Alfa Aesar 99.99
Tantalum Alfa Aesar 99.98

Table B.2: Energies of the chalcogen and chalcogen adducts from DFT calculations.

Compound Total energies (Hartree)
Binding energies

(kcal/mol)
S -398.1
Se -2401.4
Te -8.0

PPh3 -1036.6
SPPh3 -1434.9 -78.6
SePPh3 -3438.1 -65.0
TePPh3 -1044.7 -41.2
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Table B.3: Table of the chemical properties used to analyze the reactivity of these systems. Continued on
following pages.

Reaction
Product
expected

Purity
with flux

Purity
without flux

Purity
difference

Hypothesis
supported?

Formation
energy (eV)

Fe-Se FeSe 99 46 53 Yes -0.2804
Fe-S FeS 100 16 84 Yes -0.8404
Fe-Te FeTe2 100 100 0 unclear -0.1768
Co-Se Co9Se8 9 0 9 Yes -0.2759
Co-S Co9S8 100 13 87 Yes -0.7809
Co-Te CoTe2 86 75 11 Yes -0.2034
Mn-Se MnSe 62 60 2 No -0.3676
Mn-S MnS 86 57 29 Yes -0.875
Mn-Te MnTe 82 3 79 Yes -0.0808
Ni-Te mixture mixture mixture NA Yes -0.1825
Sn-S SnS 75 75 0 No -0.7978
Pb-Se PbSe 100 100 0 unclear -0.5481
Pb-S PbS 0 95 -95 No -0.8561
Pb-Te PbTe 80 83 -3 No -0.4033
Ga-Te GaTe 100 1 99 Yes -0.3717
In-Te mixture mixture mixture NA Yes -0.2582
Ag-S Ag 100 7 93 Yes -0.2689
Ag-Se Ag 0 0 0 No -0.0689
Ag-Te Ag2Te 100 68 32 Yes -0.0736
Mo-S MoS2 0 0 0 No -1.3652
Mo-Se MoSe2 50 52 -2 No -0.7251
Ru-Se RuSe2 0 0 0 No -0.4382
Ru-S Ru 100 100 0 unclear -0.9908
Ta-Se mixture unreacted unreacted NA No -0.4615
Ta-S mixture unreacted unreacted NA No -1.0118
Ta-Te mixture unreacted TaTe4 NA No -0.2832
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Table B.4: Table of the chemical properties used to analyze the reactivity of these systems. Continued from
the previous page.

Reaction
Adduct bond dissociation

energy (kJ/mol)
Metal density

(g/cm3)
Chalcogen

density (g/cm3)
Average

density (g/cm3)
Fe-Se -271.4932646 7.874 4.819 6.3465
Fe-S -328.4786533 7.874 1.96 4.917
Fe-Te -172.0593758 7.874 6.24 7.057
Co-Se -271.4932646 8.9 4.819 6.8595
Co-S -328.4786533 8.9 1.96 5.43
Co-Te -172.0593758 8.9 6.24 7.57
Mn-Se -271.4932646 7.47 4.819 6.1445
Mn-S -328.4786533 7.47 1.96 4.715
Mn-Te -172.0593758 7.47 6.24 6.855
Ni-Te -172.0593758 8.908 6.24 7.574
Sn-S -328.4786533 7.31 1.96 4.635
Pb-Se -271.4932646 11.34 4.819 8.0795
Pb-S -328.4786533 11.34 1.96 6.65
Pb-Te -172.0593758 11.34 6.24 8.79
Ga-Te -172.0593758 5.904 6.24 6.072
In-Te -172.0593758 7.31 6.24 6.775
Ag-S -328.4786533 10.49 1.96 6.225
Ag-Se -271.4932646 10.49 4.819 7.6545
Ag-Te -172.0593758 10.49 6.24 8.365
Mo-S -328.4786533 10.28 1.96 6.12
Mo-Se -271.4932646 10.28 4.819 7.5495
Ru-Se -271.4932646 12.37 4.819 8.5945
Ru-S -328.4786533 12.37 1.96 7.165
Ta-Se -271.4932646 16.65 4.819 10.7345
Ta-S -328.4786533 16.65 1.96 9.305
Ta-Te -172.0593758 16.65 6.24 11.445
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Table B.5: Table of the chemical properties used to analyze the reactivity of these systems. Continued from
the previous page.

Reaction
Product

density (g/cm3)
Metal

electronegativity
Chalcogen

electronegativity
Electronegativity

difference
Fe-Se 5.71 1.83 2.55 0.72
Fe-S 4.84 1.83 2.58 0.75
Fe-Te 8.06 1.83 2.1 0.27
Co-Se 6.8 1.88 2.55 0.67
Co-S 5.34 1.88 2.58 0.7
Co-Te 7.94 1.88 2.1 0.22
Mn-Se 5.49 1.55 2.55 1
Mn-S 4.02 1.55 2.58 1.03
Mn-Te 6.75 1.55 2.1 0.55
Ni-Te 8.23 1.91 2.1 0.19
Sn-S 5.17 1.96 2.58 0.62
Pb-Se 8.26 2.33 2.55 0.22
Pb-S 6.66 2.33 2.58 0.25
Pb-Te 8.24 2.33 2.1 -0.23
Ga-Te 5.47 1.81 2.1 0.29
In-Te 6.33 1.78 2.1 0.32
Ag-S 8.79 1.93 2.58 0.65
Ag-Se 8.21 1.93 2.55 0.62
Ag-Te 8.42 1.93 2.1 0.17
Mo-S 5 2.16 2.58 0.42
Mo-Se 6.96 2.16 2.55 0.39
Ru-Se 8.23 2.2 2.55 0.35
Ru-S 6.21 2.2 2.58 0.38
Ta-Se 12.22 1.5 2.55 1.05
Ta-S 10.89 1.5 2.58 1.08
Ta-Te 10.22 1.5 2.1 0.6
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Table B.6: Table of the chemical properties used to analyze the reactivity of these systems. Continued from
the previous page.

Reaction
Metal melting

point (◦C)
Chalcogen

melting point (◦C)
Metal atomic

number
Chalcogen

atomic number
Fe-Se 1538 221 26 34
Fe-S 1538 115.21 26 16
Fe-Te 1538 449.51 26 52
Co-Se 1495 221 27 34
Co-S 1495 115.21 27 16
Co-Te 1495 449.51 27 52
Mn-Se 1246 221 25 34
Mn-S 1246 115.21 25 16
Mn-Te 1246 449.51 25 52
Ni-Te 1455 449.51 28 52
Sn-S 231.93 115.21 50 16
Pb-Se 327.46 221 82 34
Pb-S 327.46 115.21 82 16
Pb-Te 327.46 449.51 82 52
Ga-Te 29.76 449.51 31 52
In-Te 156.6 449.51 49 52
Ag-S 961.78 115.21 47 16
Ag-Se 961.78 221 47 34
Ag-Te 961.78 449.51 47 52
Mo-S 2623 115.21 42 16
Mo-Se 2623 221 42 34
Ru-Se 2334 221 44 34
Ru-S 2334 115.21 44 16
Ta-Se 3017 221 73 34
Ta-S 3017 115.21 73 16
Ta-Te 3017 449.51 73 52
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Table B.7: Table of the chemical properties used to analyze the reactivity of these systems. Continued from
the previous page.

Reaction
Metal ionization
energy (kJ/mol)

Chalcogen ionization
energy (kJ/mol)

Metal electron
affinity (kJ/mol)

Chalcogen electron
affinity (kJ/mol)

Fe-Se 762.5 941 15.7 195
Fe-S 762.5 999.6 15.7 200
Fe-Te 762.5 869.3 15.7 190.2
Co-Se 760.4 941 63.7 195
Co-S 760.4 999.6 63.7 200
Co-Te 760.4 869.3 63.7 190.2
Mn-Se 717.3 941 0 195
Mn-S 717.3 999.6 0 200
Mn-Te 717.3 869.3 0 190.2
Ni-Te 737.1 869.3 112 190.2
Sn-S 708.6 999.6 107.3 200
Pb-Se 715.6 941 35.1 195
Pb-S 715.6 999.6 35.1 200
Pb-Te 715.6 869.3 35.1 190.2
Ga-Te 578.8 869.3 28.9 190.2
In-Te 558.3 869.3 28.9 190.2
Ag-S 731 999.6 125.6 200
Ag-Se 731 941 125.6 195
Ag-Te 731 869.3 125.6 190.2
Mo-S 684.3 999.6 71.9 200
Mo-Se 684.3 941 71.9 195
Ru-Se 710.2 941 101.3 195
Ru-S 710.2 999.6 101.3 200
Ta-Se 761 941 31 195
Ta-S 761 999.6 31 200
Ta-Te 761 869.3 31 190.2
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Table B.8: Table of the chemical properties used to analyze the reactivity of these systems. Continued from
the previous page.

Reaction
Minimum chemical

potential change (eV/atom)
Maximum chemical

potential change (eV/atom)
Fe-Se -0.4955 -0.5586
Fe-S -1.1532 -1.6757
Fe-Te 0 -0.2613
Co-Se -0.3423 -0.5856
Co-S -0.9189 -1.6577
Co-Te 0 -0.2973
Mn-Se -0.1532 -0.7297
Mn-S -1.4144 -1.6126
Mn-Te 0 -0.1712
Ni-Te -0.2703 -0.4505
Sn-S -0.8829 -1.5766
Pb-Se 0 -1.0901
Pb-S 0 -1.7117
Pb-Te 0 -0.8018
Ga-Te -0.1622 -0.7387
In-Te -0.4505 -0.5946
Ag-S 0 -0.8018
Ag-Se 0 0.1982
Ag-Te -0.009 -0.2162
Mo-S 0 -2.045
Mo-Se 0 -1.0811
Ru-Se 0 -0.6577
Ru-S 0 -1.4775
Ta-Se -1.2432 -1.3784
Ta-S -2.2432 -2.5225
Ta-Te -0.5676 -0.7387

Table B.9: Table of all the algorithms explored and their accuracy.

Model Accuracy
Decision Tree 0.57

Neural Net 0.57
Naive Bayes 0.57

QDA 0.57
Nearest Neighbors 0.71

Linear SVM 0.71
RBF SVM 0.71

Gaussian Process 0.71
L1 Logistic 0.71

Random Forest 0.71
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Appendix C

Python Code: The Reactivity of Triphenylphosphine

Fluxes in the Synthesis of Metal Chalcogenides

The following pages contain the python code used for the analysis in chapter 3. The code was

written in jupyter notebook and the output of the code is also included.
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MetalChalc_coding

May 28, 2022

[1]: import numpy as np

import pandas as pd

from copy import deepcopy

from sklearn.preprocessing import normalize

import seaborn as sns

sns.set_style('darkgrid')

import matplotlib.pyplot as plt

%matplotlib inline

from matplotlib.colors import ListedColormap

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import classification_report, confusion_matrix,␣

→֒accuracy_score

from sklearn.neural_network import MLPClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.svm import SVC

from sklearn.gaussian_process import GaussianProcessClassifier

from sklearn.gaussian_process.kernels import RBF

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

from sklearn.decomposition import PCA

from sklearn.linear_model import LogisticRegression

from time import time

1 Prepping the data:

[2]: # import data

df_all = pd.read_csv("MetalChalcogenideRxns_updated.csv")

df = deepcopy(df_all)

[3]: # prep data

# remove all rows that had a "unclear" under 'Hypothesis supported'
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df = df[df['Hypothesis supported?'] != 'unclear']

# change 'did it work' column to integer

diditwork={"Yes":1,"No":0}

df['HypothesisSupportedInt']=df["Hypothesis supported?"].map(diditwork)

df

[3]: Reaction Product expected Purity with flux Purity without flux \

0 Fe-Se FeSe 99 46

1 Fe-S FeS 100 16

3 Co-Se Co9Se8 9 0

4 Co-S Co9S8 100 13

5 Co-Te CoTe2 86 75

6 Mn-Se MnSe 62 60

7 Mn-S MnS 86 57

8 Mn-Te MnTe 82 3

9 Ni-Te mixture mixture mixture

10 Sn-S SnS 75 75

12 Pb-S PbS 0 95

13 Pb-Te PbTe 80 83

14 Ga-Te GaTe 100 1

15 In-Te mixture mixture mixture

16 Ag-S Ag 100 7

17 Ag-Se Ag 0 0

18 Ag-Te Ag2Te 100 68

19 Mo-S MoS2 0 0

20 Mo-Se MoSe2 50 52

21 Ru-Se RuSe2 0 0

23 Ta-Se mixture unreacted unreacted

24 Ta-S mixture unreacted unreacted

25 Ta-Te mixture unreacted TaTe4

Purity difference Hypothesis supported? Formation energy (eV) \

0 53.0 Yes -0.2804

1 84.0 Yes -0.8404

3 9.0 Yes -0.2759

4 87.0 Yes -0.7809

5 11.0 Yes -0.2034

6 2.0 No -0.3676

7 29.0 Yes -0.8750

8 79.0 Yes -0.0808

9 NaN Yes -0.1825

10 0.0 No -0.7978

12 -95.0 No -0.8561

13 -3.0 No -0.4033

14 99.0 Yes -0.3717
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15 NaN Yes -0.2582

16 93.0 Yes -0.2689

17 0.0 No -0.0689

18 32.0 Yes -0.0736

19 0.0 No -1.3652

20 -2.0 No -0.7251

21 0.0 No -0.4382

23 NaN No -0.4615

24 NaN No -1.0118

25 NaN No -0.2832

Adduct bond dissociation energy (kJ/mol) Metal density (g/cmˆ3) \

0 -271.493265 7.874

1 -328.478653 7.874

3 -271.493265 8.900

4 -328.478653 8.900

5 -172.059376 8.900

6 -271.493265 7.470

7 -328.478653 7.470

8 -172.059376 7.470

9 -172.059376 8.908

10 -328.478653 7.310

12 -328.478653 11.340

13 -172.059376 11.340

14 -172.059376 5.904

15 -172.059376 7.310

16 -328.478653 10.490

17 -271.493265 10.490

18 -172.059376 10.490

19 -328.478653 10.280

20 -271.493265 10.280

21 -271.493265 12.370

23 -271.493265 16.650

24 -328.478653 16.650

25 -172.059376 16.650

Chalcogen density (g/cmˆ3) ... Chalcogen melting point (C) \

0 4.819 ... 221.00

1 1.960 ... 115.21

3 4.819 ... 221.00

4 1.960 ... 115.21

5 6.240 ... 449.51

6 4.819 ... 221.00

7 1.960 ... 115.21

8 6.240 ... 449.51

9 6.240 ... 449.51

10 1.960 ... 115.21
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12 1.960 ... 115.21

13 6.240 ... 449.51

14 6.240 ... 449.51

15 6.240 ... 449.51

16 1.960 ... 115.21

17 4.819 ... 221.00

18 6.240 ... 449.51

19 1.960 ... 115.21

20 4.819 ... 221.00

21 4.819 ... 221.00

23 4.819 ... 221.00

24 1.960 ... 115.21

25 6.240 ... 449.51

Metal atomic number Chalcogen atomic number \

0 26 34

1 26 16

3 27 34

4 27 16

5 27 52

6 25 34

7 25 16

8 25 52

9 28 52

10 50 16

12 82 16

13 82 52

14 31 52

15 49 52

16 47 16

17 47 34

18 47 52

19 42 16

20 42 34

21 44 34

23 73 34

24 73 16

25 73 52

Metal ionization energy (kJ/mol) Chalcogen ionization energy (kJ/mol) \

0 762.5 941.0

1 762.5 999.6

3 760.4 941.0

4 760.4 999.6

5 760.4 869.3

6 717.3 941.0

7 717.3 999.6
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8 717.3 869.3

9 737.1 869.3

10 708.6 999.6

12 715.6 999.6

13 715.6 869.3

14 578.8 869.3

15 558.3 869.3

16 731.0 999.6

17 731.0 941.0

18 731.0 869.3

19 684.3 999.6

20 684.3 941.0

21 710.2 941.0

23 761.0 941.0

24 761.0 999.6

25 761.0 869.3

Metal electron affinity (kJ/mol) Chalcogen electron affinity (kJ/mol) \

0 15.7 195.0

1 15.7 200.0

3 63.7 195.0

4 63.7 200.0

5 63.7 190.2

6 0.0 195.0

7 0.0 200.0

8 0.0 190.2

9 112.0 190.2

10 107.3 200.0

12 35.1 200.0

13 35.1 190.2

14 28.9 190.2

15 28.9 190.2

16 125.6 200.0

17 125.6 195.0

18 125.6 190.2

19 71.9 200.0

20 71.9 195.0

21 101.3 195.0

23 31.0 195.0

24 31.0 200.0

25 31.0 190.2

Minimum chemical potential change (eV/atom) \

0 -0.4955

1 -1.1532

3 -0.3423

4 -0.9189
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5 0.0000

6 -0.1532

7 -1.4144

8 0.0000

9 -0.2703

10 -0.8829

12 0.0000

13 0.0000

14 -0.1622

15 -0.4505

16 0.0000

17 0.0000

18 -0.0090

19 0.0000

20 0.0000

21 0.0000

23 -1.2432

24 -2.2432

25 -0.5676

Maximum chemical potential change (eV/atom) HypothesisSupportedInt

0 -0.5586 1

1 -1.6757 1

3 -0.5856 1

4 -1.6577 1

5 -0.2973 1

6 -0.7297 0

7 -1.6126 1

8 -0.1712 1

9 -0.4505 1

10 -1.5766 0

12 -1.7117 0

13 -0.8018 0

14 -0.7387 1

15 -0.5946 1

16 -0.8018 1

17 0.1982 0

18 -0.2162 1

19 -2.0450 0

20 -1.0811 0

21 -0.6577 0

23 -1.3784 0

24 -2.5225 0

25 -0.7387 0

[23 rows x 26 columns]
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[4]: # remove columns

columnstodrop=['Purity with flux', 'Purity without flux','Purity difference',

'Product expected', "Hypothesis supported?", 'Reaction']

df = df.drop(columns=columnstodrop)

df

[4]: Formation energy (eV) Adduct bond dissociation energy (kJ/mol) \

0 -0.2804 -271.493265

1 -0.8404 -328.478653

3 -0.2759 -271.493265

4 -0.7809 -328.478653

5 -0.2034 -172.059376

6 -0.3676 -271.493265

7 -0.8750 -328.478653

8 -0.0808 -172.059376

9 -0.1825 -172.059376

10 -0.7978 -328.478653

12 -0.8561 -328.478653

13 -0.4033 -172.059376

14 -0.3717 -172.059376

15 -0.2582 -172.059376

16 -0.2689 -328.478653

17 -0.0689 -271.493265

18 -0.0736 -172.059376

19 -1.3652 -328.478653

20 -0.7251 -271.493265

21 -0.4382 -271.493265

23 -0.4615 -271.493265

24 -1.0118 -328.478653

25 -0.2832 -172.059376

Metal density (g/cmˆ3) Chalcogen density (g/cmˆ3) \

0 7.874 4.819

1 7.874 1.960

3 8.900 4.819

4 8.900 1.960

5 8.900 6.240

6 7.470 4.819

7 7.470 1.960

8 7.470 6.240

9 8.908 6.240

10 7.310 1.960

12 11.340 1.960

13 11.340 6.240

14 5.904 6.240
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15 7.310 6.240

16 10.490 1.960

17 10.490 4.819

18 10.490 6.240

19 10.280 1.960

20 10.280 4.819

21 12.370 4.819

23 16.650 4.819

24 16.650 1.960

25 16.650 6.240

Average density (g/cmˆ3) Product density (g/cmˆ3) \

0 6.3465 5.71

1 4.9170 4.84

3 6.8595 6.80

4 5.4300 5.34

5 7.5700 7.94

6 6.1445 5.49

7 4.7150 4.02

8 6.8550 6.75

9 7.5740 8.23

10 4.6350 5.17

12 6.6500 6.66

13 8.7900 8.24

14 6.0720 5.47

15 6.7750 6.33

16 6.2250 8.79

17 7.6545 8.21

18 8.3650 8.42

19 6.1200 5.00

20 7.5495 6.96

21 8.5945 8.23

23 10.7345 12.22

24 9.3050 10.89

25 11.4450 10.22

Metal electronegativity Chalcogen electronegativity \

0 1.83 2.55

1 1.83 2.58

3 1.88 2.55

4 1.88 2.58

5 1.88 2.10

6 1.55 2.55

7 1.55 2.58

8 1.55 2.10

9 1.91 2.10

10 1.96 2.58
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12 2.33 2.58

13 2.33 2.10

14 1.81 2.10

15 1.78 2.10

16 1.93 2.58

17 1.93 2.55

18 1.93 2.10

19 2.16 2.58

20 2.16 2.55

21 2.20 2.55

23 1.50 2.55

24 1.50 2.58

25 1.50 2.10

Electronegativity difference Metal melting point (C) \

0 0.72 1538.00

1 0.75 1538.00

3 0.67 1495.00

4 0.70 1495.00

5 0.22 1495.00

6 1.00 1246.00

7 1.03 1246.00

8 0.55 1246.00

9 0.19 1455.00

10 0.62 231.93

12 0.25 327.46

13 -0.23 327.46

14 0.29 29.76

15 0.32 156.60

16 0.65 961.78

17 0.62 961.78

18 0.17 961.78

19 0.42 2623.00

20 0.39 2623.00

21 0.35 2334.00

23 1.05 3017.00

24 1.08 3017.00

25 0.60 3017.00

Chalcogen melting point (C) Metal atomic number Chalcogen atomic number \

0 221.00 26 34

1 115.21 26 16

3 221.00 27 34

4 115.21 27 16

5 449.51 27 52

6 221.00 25 34

7 115.21 25 16
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8 449.51 25 52

9 449.51 28 52

10 115.21 50 16

12 115.21 82 16

13 449.51 82 52

14 449.51 31 52

15 449.51 49 52

16 115.21 47 16

17 221.00 47 34

18 449.51 47 52

19 115.21 42 16

20 221.00 42 34

21 221.00 44 34

23 221.00 73 34

24 115.21 73 16

25 449.51 73 52

Metal ionization energy (kJ/mol) Chalcogen ionization energy (kJ/mol) \

0 762.5 941.0

1 762.5 999.6

3 760.4 941.0

4 760.4 999.6

5 760.4 869.3

6 717.3 941.0

7 717.3 999.6

8 717.3 869.3

9 737.1 869.3

10 708.6 999.6

12 715.6 999.6

13 715.6 869.3

14 578.8 869.3

15 558.3 869.3

16 731.0 999.6

17 731.0 941.0

18 731.0 869.3

19 684.3 999.6

20 684.3 941.0

21 710.2 941.0

23 761.0 941.0

24 761.0 999.6

25 761.0 869.3

Metal electron affinity (kJ/mol) Chalcogen electron affinity (kJ/mol) \

0 15.7 195.0

1 15.7 200.0

3 63.7 195.0

4 63.7 200.0
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5 63.7 190.2

6 0.0 195.0

7 0.0 200.0

8 0.0 190.2

9 112.0 190.2

10 107.3 200.0

12 35.1 200.0

13 35.1 190.2

14 28.9 190.2

15 28.9 190.2

16 125.6 200.0

17 125.6 195.0

18 125.6 190.2

19 71.9 200.0

20 71.9 195.0

21 101.3 195.0

23 31.0 195.0

24 31.0 200.0

25 31.0 190.2

Minimum chemical potential change (eV/atom) \

0 -0.4955

1 -1.1532

3 -0.3423

4 -0.9189

5 0.0000

6 -0.1532

7 -1.4144

8 0.0000

9 -0.2703

10 -0.8829

12 0.0000

13 0.0000

14 -0.1622

15 -0.4505

16 0.0000

17 0.0000

18 -0.0090

19 0.0000

20 0.0000

21 0.0000

23 -1.2432

24 -2.2432

25 -0.5676

Maximum chemical potential change (eV/atom) HypothesisSupportedInt

0 -0.5586 1
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1 -1.6757 1

3 -0.5856 1

4 -1.6577 1

5 -0.2973 1

6 -0.7297 0

7 -1.6126 1

8 -0.1712 1

9 -0.4505 1

10 -1.5766 0

12 -1.7117 0

13 -0.8018 0

14 -0.7387 1

15 -0.5946 1

16 -0.8018 1

17 0.1982 0

18 -0.2162 1

19 -2.0450 0

20 -1.0811 0

21 -0.6577 0

23 -1.3784 0

24 -2.5225 0

25 -0.7387 0

2 Plotting Pairplots:

We know minimum change in chemical potential should be important

By plotting minimum change in chemical potential vs all the other features we can visualize cor-
relations as clusters

We can then analyze these plots with SVM to determine what other features are most important

[5]: h = 0.02 # step size in the mesh

names = [

"Formation energy (eV)",

"""Adduct bond disociation

energy (kJ/mol)""" ,

"Metal density ($\mathregular{g/cm^{3}}$)",

"Chalcogen density ($\mathregular{g/cm^{3}}$)",

"Average density ($\mathregular{g/cm^{3}}$)",

"Product density ($\mathregular{g/cm^{3}}$)",

"Metal electronegativity",

"Chalcogen electronegativity",

"Electronegativity difference",

"Metal melting point ($\u2103$)",

"Chalcogen melting point ($\u2103$)",

"Metal atomic number",
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"Chalcogen atomic number",

"""Metal ionization

energy (kJ/mol)""" ,

"""Chalcogen ionization

energy (kJ/mol)""" ,

"""Metal electron

affinity (kJ/mol)""" ,

"""Chalcogen electron

affinity (kJ/mol)""" ,

"""Minimum chemical potential

change (eV/atom)""" ,

"""Maximum chemical potential

change (eV/atom)"""

]

Xvalues = [

df["Formation energy (eV)"],

df["Adduct bond dissociation energy (kJ/mol)"],

df["Metal density (g/cm^3)"],

df["Chalcogen density (g/cm^3)"],

df["Average density (g/cm^3)"],

df["Product density (g/cm^3)"],

df["Metal electronegativity"],

df["Chalcogen electronegativity"],

df["Electronegativity difference"],

df["Metal melting point (C)"],

df["Chalcogen melting point (C)"],

df["Metal atomic number"],

df["Chalcogen atomic number"],

df["Metal ionization energy (kJ/mol)"],

df["Chalcogen ionization energy (kJ/mol)"],

df["Metal electron affinity (kJ/mol)"],

df["Chalcogen electron affinity (kJ/mol)"],

df["Minimum chemical potential change (eV/atom)"],

df["Maximum chemical potential change (eV/atom)"]

]

yvalue1 = df["Minimum chemical potential change (eV/atom)"].to_numpy()

yvalue = df['HypothesisSupportedInt'].to_numpy()

figure = plt.figure(figsize=(30, 30))

i = 1

# iterate over Xvalues

for name, Xvalue in zip(names, Xvalues):
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# Prep datasets

X = np.dstack((Xvalue.values, yvalue1))[0]

y= yvalue

X = StandardScaler().fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=42)

x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5

y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5

xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

# Create the model

clf = SVC(kernel='linear', C=1000)

clf.fit(X_train, y_train)

score = clf.score(X_test, y_test)

# Predict values based on the model

y_pred = clf.predict(X_test)

# Determine accuracy of predictions/model

print("Accuracy for", name, "is:", accuracy_score(y_test, y_pred))

# Graph the model

ax = plt.subplot(4, 5, i)

if i==1 or i==6 or i==11 or i==16:

ax.set_ylabel("""Minimum chemical potential

change (eV/atom)""", fontsize=30)

clf.fit(X_train, y_train)

# Plot the decision boundary. For that, we will assign a color to each point

#in the mesh [x_min, x_max]x[y_min, y_max].

if hasattr(clf, "decision_function"):

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])

else:

Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

# Put the result into a color plot

cm = plt.cm.RdBu

cm_bright = ListedColormap(["#FF0000", "#0000FF"])

Z = Z.reshape(xx.shape)

ax.contourf(xx, yy, Z, cmap=cm, alpha=0.8)

# Plot the training points

ax.scatter(

X_train[:, 0], X_train[:, 1], s=300, c=y_train, cmap=cm_bright,␣

→֒edgecolors="k"
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)

# Plot the testing points

ax.scatter(

X_test[:, 0], X_test[:, 1], s = 300, c=y_test, cmap=cm_bright,␣

→֒edgecolors="k",

alpha=0.5,

)

ax.set_xlim(xx.min(), xx.max())

ax.set_ylim(yy.min(), yy.max())

ax.set_xticks(())

ax.set_yticks(())

ax.set_title(name, fontsize=30)

ax.text(

xx.max() - 0.3,

yy.min() + 0.3,

("%.2f" % score).lstrip("0"),

size=40, weight='bold',

horizontalalignment="right",

)

i+=1

plt.tight_layout()

plt.show()

Accuracy for Formation energy (eV) is: 0.7142857142857143

Accuracy for Adduct bond disociation

energy (kJ/mol) is: 0.7142857142857143

Accuracy for Metal density ($\mathregular{g/cmˆ{3}}$) is: 0.8571428571428571

Accuracy for Chalcogen density ($\mathregular{g/cmˆ{3}}$) is: 0.0

Accuracy for Average density ($\mathregular{g/cmˆ{3}}$) is: 0.5714285714285714

Accuracy for Product density ($\mathregular{g/cmˆ{3}}$) is: 0.5714285714285714

Accuracy for Metal electronegativity is: 0.7142857142857143

Accuracy for Chalcogen electronegativity is: 0.7142857142857143

Accuracy for Electronegativity difference is: 0.2857142857142857

Accuracy for Metal melting point ($℃$) is: 0.7142857142857143

Accuracy for Chalcogen melting point ($℃$) is: 0.7142857142857143

Accuracy for Metal atomic number is: 0.7142857142857143

Accuracy for Chalcogen atomic number is: 0.7142857142857143

Accuracy for Metal ionization

energy (kJ/mol) is: 0.42857142857142855

Accuracy for Chalcogen ionization

energy (kJ/mol) is: 0.7142857142857143

Accuracy for Metal electron

affinity (kJ/mol) is: 0.14285714285714285

Accuracy for Chalcogen electron

affinity (kJ/mol) is: 0.42857142857142855

Accuracy for Minimum chemical potential
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change (eV/atom) is: 0.42857142857142855

Accuracy for Maximum chemical potential

change (eV/atom) is: 0.5714285714285714

Based on this chemical intuition approach the following features are the most important: - Mini-
mum chemical potential change (eV/atom) - Metal density (g/cmˆ3)

second most - Formation energy (eV) - Adduct bond dissociation energy (kJ/mol) - Metal elec-
tronegativity - Chalcogen electronegativity - Metal melting point (C) - Chalcogen melting point
(C) - metal atomic number - Chalcogen atomic number - Chalcogen ionization energy (kJ/mol)

Lets confirm this with machine learning
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3 Machine learning with all features:

3.0.1 Comparing different models:

[6]: # Split the data into a train and test set

y = df['HypothesisSupportedInt']

X = df.select_dtypes(include=np.number).drop(columns=['HypothesisSupportedInt'])

X_train_unscaled, X_test_unscaled, y_train, y_test = train_test_split(X, y,

␣

→֒test_size=0.3,

␣

→֒random_state=765)

# scaled data for better results with the models

scaler = StandardScaler()

X_train = pd.DataFrame(scaler.fit_transform(X_train_unscaled),

columns = X_train_unscaled.columns)

X_test = pd.DataFrame(scaler.transform(X_test_unscaled),

columns = X_test_unscaled.columns)

X_train = pd.DataFrame(normalize(X_train),columns = X_train.columns)

X_test = pd.DataFrame(normalize(X_test),columns = X_test.columns)

[7]: # state all the models you want to test

names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process",

"Decision Tree", "Random Forest", "Neural Net",

"Naive Bayes", "QDA","L1 Logistic"]

# base algorithms

classifiers = [

KNeighborsClassifier(),

SVC(kernel="linear",random_state=1),

SVC(kernel="rbf",random_state=1),

GaussianProcessClassifier(random_state=1),

DecisionTreeClassifier(random_state=1),

RandomForestClassifier(random_state=1),

MLPClassifier(random_state=1),

GaussianNB(),

QuadraticDiscriminantAnalysis(),

LogisticRegression(random_state=1)]

[8]: # test accuracy of each model and time it takes to calculate

result_dict={}

for name, clf in zip(names, classifiers):

ti = time()

clf.fit(X_train, y_train)

score = clf.score(X_test, y_test)

print(f'Now fitting and evaluating model {name}, Score: {score}')

dt = time() - ti
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result_dict[name] = {

'model_params': clf.get_params(),

'score': score,

'time': dt}

Now fitting and evaluating model Nearest Neighbors, Score: 0.7142857142857143

Now fitting and evaluating model Linear SVM, Score: 0.7142857142857143

Now fitting and evaluating model RBF SVM, Score: 0.7142857142857143

Now fitting and evaluating model Gaussian Process, Score: 0.7142857142857143

Now fitting and evaluating model Decision Tree, Score: 0.5714285714285714

Now fitting and evaluating model Random Forest, Score: 0.7142857142857143

Now fitting and evaluating model Neural Net, Score: 0.5714285714285714

Now fitting and evaluating model Naive Bayes, Score: 0.5714285714285714

Now fitting and evaluating model QDA, Score: 0.5714285714285714

Now fitting and evaluating model L1 Logistic, Score: 0.7142857142857143

C:\ProgramData\Anaconda3\lib\site-

packages\sklearn\neural_network\_multilayer_perceptron.py:614:

ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and

the optimization hasn't converged yet.

warnings.warn(

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\discriminant_analysis.py:808:

UserWarning: Variables are collinear

warnings.warn("Variables are collinear")

Variables are collinear- which is not surprising based on the features chosen

[9]: # look at results in a table

results_df = pd.DataFrame.from_dict(result_dict)

results_df = results_df.sort_values('score',axis=1).transpose()

results_df

[9]: model_params \

Decision Tree {'ccp_alpha': 0.0, 'class_weight': None, 'crit...

Neural Net {'activation': 'relu', 'alpha': 0.0001, 'batch...

Naive Bayes {'priors': None, 'var_smoothing': 1e-09}

QDA {'priors': None, 'reg_param': 0.0, 'store_cova...

Nearest Neighbors {'algorithm': 'auto', 'leaf_size': 30, 'metric...

Linear SVM {'C': 1.0, 'break_ties': False, 'cache_size': ...

RBF SVM {'C': 1.0, 'break_ties': False, 'cache_size': ...

Gaussian Process {'copy_X_train': True, 'kernel': None, 'max_it...

Random Forest {'bootstrap': True, 'ccp_alpha': 0.0, 'class_w...

L1 Logistic {'C': 1.0, 'class_weight': None, 'dual': False...

score time

Decision Tree 0.571429 0.0

Neural Net 0.571429 0.206904

Naive Bayes 0.571429 0.004516

QDA 0.571429 0.010778
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Nearest Neighbors 0.714286 0.074535

Linear SVM 0.714286 0.008022

RBF SVM 0.714286 0.005762

Gaussian Process 0.714286 0.018182

Random Forest 0.714286 0.183304

L1 Logistic 0.714286 0.010528

3.0.2 Fine tuning the model

[10]: # define the model

classifier = RandomForestClassifier(random_state=1)

classifier.fit(X_train, y_train)

# show accuracy

y_pred = classifier.predict(X_test)

y_pred

print(confusion_matrix(y_test,y_pred))

print(classification_report(y_test,y_pred))

print(accuracy_score(y_test, y_pred))

[[3 1]

[1 2]]

precision recall f1-score support

0 0.75 0.75 0.75 4

1 0.67 0.67 0.67 3

accuracy 0.71 7

macro avg 0.71 0.71 0.71 7

weighted avg 0.71 0.71 0.71 7

0.7142857142857143

[11]: from sklearn.model_selection import GridSearchCV

classifier = RandomForestClassifier(random_state=1)

classifier.fit(X_train, y_train)

y_pred = classifier.predict(X_test)

# Parameters to explore

parameters = {'n_estimators':range(10,100),'max_depth':range(2,20),

'min_samples_split':range(2,3), 'min_samples_leaf':range(1,3)}

# make model with those parameters

clf_GridCV = GridSearchCV(RandomForestClassifier(random_state=1), parameters,␣

→֒cv=3)

clf_GridCV.fit(X=X_train, y=y_train)

print(clf_GridCV.best_score_, clf_GridCV.best_params_)
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1.0 {'max_depth': 3, 'min_samples_leaf': 1, 'min_samples_split': 2,

'n_estimators': 13}

[12]: classifier = RandomForestClassifier(n_estimators=13, max_depth=3,␣

→֒min_samples_split=2,

min_samples_leaf=1, random_state=1)

classifier.fit(X_train, y_train)

# predict values

y_pred = classifier.predict(X_test)

y_pred

print(confusion_matrix(y_test,y_pred))

print(classification_report(y_test,y_pred))

print(accuracy_score(y_test, y_pred))

[[3 1]

[0 3]]

precision recall f1-score support

0 1.00 0.75 0.86 4

1 0.75 1.00 0.86 3

accuracy 0.86 7

macro avg 0.88 0.88 0.86 7

weighted avg 0.89 0.86 0.86 7

0.8571428571428571

3.0.3 Figuring out which features are the most important

[13]: # plot the feature importances using MDI

classifier = RandomForestClassifier(n_estimators=13, max_depth=3,␣

→֒min_samples_split=2,

min_samples_leaf=1, random_state=1)

classifier.fit(X_train, y_train)

importances = classifier.feature_importances_

sorted = np.argsort(importances)[::-1]

feature_names = [X_train.columns[i] for i in sorted]

plt.figure()

plt.ylabel("Mean decrease in impurity")

plt.bar(range(X.shape[1]), importances[sorted])

plt.xticks(range(X.shape[1]), feature_names, rotation=90)

plt.tight_layout()

plt.show()
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Based on this the most important features according to machine learning are as follows:

• Metal atomic number
• Average density (g/cmˆ3)
• Metal melting point (C)
• Chalcogen elctron affinity (kJ/mol)
• Metal electronegativity

Reminder: the most important features according to the chemical intuition approach were

• Minimum chemical potential change (eV/atom)
• Metal density (g/cmˆ3)

second most - Formation energy (eV) - Adduct bond dissociation energy (kJ/mol) - Metal elec-
tronegativity - Chalcogen electronegativity - Metal melting point (C) - Chalcogen melting point
(C) - Chalcogen atomic number - Chalcogen ionization energy (kJ/mol)

So in common they have - metal density - metal electroneg - metal melting point
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3.0.4 Principal component Analysis

[16]: # scale/split the data

HypothsisSupported={1:"Yes",0:"No"}

df['Hypothsis supported?']=df['HypothesisSupportedInt'].map(HypothsisSupported)

X = df.select_dtypes(include=np.number).drop(columns=['HypothesisSupportedInt'])

X = X.reset_index(drop=True)

y = df['Hypothsis supported?']

y = y.reset_index(drop=True)

X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.

→֒3,random_state=0)

scaler = StandardScaler()

scaler.fit(X_train)

scaled_data = scaler.transform(X_train)

scaler.fit(X_test)

scaled_data_test = scaler.transform(X_test)

[17]: # Complete PCA and print some potentially important values

pca = PCA(n_components=2)

pca.fit(scaled_data)

print(pca.explained_variance_ratio_)

print(pca.singular_values_)

x_pca = pca.transform(scaled_data)

df_pca = pd.DataFrame(data=x_pca,columns=["PC1","PC2"])

df_pca['Hypothesis supported?'] = y

[0.51872644 0.18558464]

[12.55758083 7.51117368]

[18]: # determine accuracy of PCA through regression

from sklearn.linear_model import LogisticRegression

train_data = pca.transform(scaled_data)

test_data = pca.transform(scaled_data_test)

logisticRegr = LogisticRegression()

logisticRegr.fit(train_data, y_train)

y_test_hat=logisticRegr.predict(test_data)

test_accuracy=accuracy_score(y_test,y_test_hat)*100

test_accuracy

print("Accuracy for our testing dataset is : {:.3f}%".format(test_accuracy) )

Accuracy for our testing dataset is : 71.429%

[19]: # plots the PCA

sns.set(font_scale=1.3)
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sns.lmplot( x="PC1", y="PC2",

data=df_pca,

fit_reg=False,

hue='Hypothesis supported?', # color by cluster

legend=True,

scatter_kws={"s": 80}) # specify the point size

plt.savefig('PCA.png', dpi=600)

[20]: # Plots which component accounts for the most variance

dfpc = pd.DataFrame({'var':pca.explained_variance_ratio_,

'PC':['PC1','PC2']})

sns.barplot(x='PC',y="var",

data=dfpc, color="c");
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[21]: # plots how much each feature contributed to each component

indices = np.argsort(pca.components_[0])

fig,ax=plt.subplots(nrows=2, ncols=1, sharey=True, sharex=True, figsize=(18,9))

ax[0].bar(range(X.shape[1]), pca.components_[0][indices],

color="r", align="center",alpha=.9)

ax[1].bar(range(X.shape[1]), pca.components_[1][indices],

color="b", align="center",alpha=0.9)

plt.xticks(range(X.shape[1]), X.columns[indices],rotation='vertical', fontsize=␣

→֒22)

fig.text(0.085, 0.5, 'Feature Contribution (relative)', fontsize= 22,

va='center', rotation='vertical')

ax[0].legend()

ax[1].legend()

No handles with labels found to put in legend.

No handles with labels found to put in legend.

[21]: <matplotlib.legend.Legend at 0x1c4d1a8b970>
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Can we write code to take into accound ratio of component 1 and 2 and feature contribution to
each component to calculate which features create the most separation

Features that create the most separation according to PCA:

• Chalcogen atomic number
• Chalcogen density
• Adduct BDE
• Chalcogen melting point
• Chalcogen electron affinity
• Chalcogen ionization energy

Reminder: the most important features according to the chemical intuition approach were

• Minimum change in chemical potential
• Metal density

second most - Formation E - BDE of adduct - M electroneg - Ch electroneg - m.p. of metal - m.p.
of chalc - chalc atomic # - IE of chalc
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And according to machine learning:

• metal electroneg
• metal atomic number
• metal density
• avg density
• m.p. of metal

The limited feature set chosen is as follows: - Minimum change in chemical potential - Metal
density - BDE of adduct - M electroneg - m.p. of metal - m.p. of chalc - chalc atomic # - IE of chalc

4 Analysis with limited features:

[23]: # create a dataframe with a reduced number of features

# features included are Metal density, BDE of adduct, M electroneg, m.p. of␣

→֒metal,

#m.p. of chalc, chalc atomic #, IE of chalc, min change in chem pot

columnstodrop_limitedFeatures=["Product density (g/cm^3)",

"Chalcogen density (g/cm^3)",

"Chalcogen electronegativity",

"Electronegativity difference",

"Metal atomic number",

"Metal ionization energy (kJ/mol)",

"Metal electron affinity (kJ/mol)",

"Chalcogen electron affinity (kJ/mol)",

"Maximum chemical potential change (eV/atom)",

"Formation energy (eV)",

"Average density (g/cm^3)"]

df3 = deepcopy(df)

df3 = df3.drop(columns=columnstodrop_limitedFeatures)

df3.head

[23]: <bound method NDFrame.head of Adduct bond dissociation energy (kJ/mol)

Metal density (g/cmˆ3) \

0 -271.493265 7.874

1 -328.478653 7.874

3 -271.493265 8.900

4 -328.478653 8.900

5 -172.059376 8.900

6 -271.493265 7.470

7 -328.478653 7.470

8 -172.059376 7.470

9 -172.059376 8.908

10 -328.478653 7.310

12 -328.478653 11.340

13 -172.059376 11.340
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14 -172.059376 5.904

15 -172.059376 7.310

16 -328.478653 10.490

17 -271.493265 10.490

18 -172.059376 10.490

19 -328.478653 10.280

20 -271.493265 10.280

21 -271.493265 12.370

23 -271.493265 16.650

24 -328.478653 16.650

25 -172.059376 16.650

Metal electronegativity Metal melting point (C) \

0 1.83 1538.00

1 1.83 1538.00

3 1.88 1495.00

4 1.88 1495.00

5 1.88 1495.00

6 1.55 1246.00

7 1.55 1246.00

8 1.55 1246.00

9 1.91 1455.00

10 1.96 231.93

12 2.33 327.46

13 2.33 327.46

14 1.81 29.76

15 1.78 156.60

16 1.93 961.78

17 1.93 961.78

18 1.93 961.78

19 2.16 2623.00

20 2.16 2623.00

21 2.20 2334.00

23 1.50 3017.00

24 1.50 3017.00

25 1.50 3017.00

Chalcogen melting point (C) Chalcogen atomic number \

0 221.00 34

1 115.21 16

3 221.00 34

4 115.21 16

5 449.51 52

6 221.00 34

7 115.21 16

8 449.51 52

9 449.51 52
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10 115.21 16

12 115.21 16

13 449.51 52

14 449.51 52

15 449.51 52

16 115.21 16

17 221.00 34

18 449.51 52

19 115.21 16

20 221.00 34

21 221.00 34

23 221.00 34

24 115.21 16

25 449.51 52

Chalcogen ionization energy (kJ/mol) \

0 941.0

1 999.6

3 941.0

4 999.6

5 869.3

6 941.0

7 999.6

8 869.3

9 869.3

10 999.6

12 999.6

13 869.3

14 869.3

15 869.3

16 999.6

17 941.0

18 869.3

19 999.6

20 941.0

21 941.0

23 941.0

24 999.6

25 869.3

Minimum chemical potential change (eV/atom) HypothesisSupportedInt \

0 -0.4955 1

1 -1.1532 1

3 -0.3423 1

4 -0.9189 1

5 0.0000 1

6 -0.1532 0
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7 -1.4144 1

8 0.0000 1

9 -0.2703 1

10 -0.8829 0

12 0.0000 0

13 0.0000 0

14 -0.1622 1

15 -0.4505 1

16 0.0000 1

17 0.0000 0

18 -0.0090 1

19 0.0000 0

20 0.0000 0

21 0.0000 0

23 -1.2432 0

24 -2.2432 0

25 -0.5676 0

Hypothsis supported?

0 Yes

1 Yes

3 Yes

4 Yes

5 Yes

6 No

7 Yes

8 Yes

9 Yes

10 No

12 No

13 No

14 Yes

15 Yes

16 Yes

17 No

18 Yes

19 No

20 No

21 No

23 No

24 No

25 No >
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4.0.1 Principal component analysis:

[25]: # scale the data- this is scaling the unsplit data so this uses all the samples␣

→֒available

diditwork={1:"Yes",0:"No"}

df['Hypothsis supported?']=df['HypothesisSupportedInt'].map(diditwork)

X = df3.select_dtypes(include=np.number).drop(columns=['HypothesisSupportedInt'])

diditworkInt = df3['HypothesisSupportedInt']

X = X.reset_index(drop=True)

y = df['Hypothsis supported?']

y = y.reset_index(drop=True)

scaler = StandardScaler()

scaler.fit(X)

scaled_data = scaler.transform(X)

[26]: # Complete PCA and print some potentially important values

pca = PCA(n_components=2)

pca.fit(scaled_data)

print(pca.explained_variance_ratio_)

print(pca.singular_values_)

x_pca = pca.transform(scaled_data)

df_pca = pd.DataFrame(data=x_pca,columns=["PC1","PC2"])

df_pca['Hypothesis supported?'] = y

[0.5387647 0.25258068]

[9.95654081 6.81724617]

[27]: # plots the PCA

sns.set(font_scale=1.3)

sns.lmplot( x="PC1", y="PC2",

data=df_pca,

fit_reg=False,

hue='Hypothesis supported?', # color by cluster

legend=True,

scatter_kws={"s": 80}) # specify the point size

plt.savefig('PCA.png', dpi=600)
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4.0.2 Applying all the machine learning models to the PCA:

[30]: # Put together dataset from PCA

X1 = x_pca

y = diditworkInt

y1 = y.to_numpy()

datasets = (X1,y1)

[31]: # Code source: Gaël Varoquaux

# Andreas Müller

# Modified for documentation by Jaques Grobler

# License: BSD 3 clause

# Furthur modified by M. Jewels Fallon

# scikit-learn.org/stable/auto_examples/classification/

→֒plot_classifier_comparison.html

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.datasets import make_moons, make_circles, make_classification
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from sklearn.neural_network import MLPClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.svm import SVC

from sklearn.gaussian_process import GaussianProcessClassifier

from sklearn.gaussian_process.kernels import RBF

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

h = 0.02 # step size in the mesh

names = [

"Nearest Neighbors",

"Linear SVM",

"RBF SVM",

"Gaussian Process",

"Decision Tree",

"Random Forest",

"Neural Net",

"AdaBoost",

"Naive Bayes",

"QDA"

]

classifiers = [

KNeighborsClassifier(3),

SVC(kernel="linear", C=0.025),

SVC(gamma=2, C=1),

GaussianProcessClassifier(1.0 * RBF(1.0)),

DecisionTreeClassifier(max_depth=5),

RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),

MLPClassifier(alpha=1, max_iter=1000),

AdaBoostClassifier(),

GaussianNB(),

QuadraticDiscriminantAnalysis()

]

figure = plt.figure(figsize=(32, 21))

i = 1

# preprocess dataset, split into training and test part

X, y = datasets

X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=.3, random_state=42

)
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ds_cnt = 0

x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5

y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5

xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

# just plot the dataset first

cm = plt.cm.RdBu

cm_bright = ListedColormap(["#FF0000", "#0000FF"])

#ax = plt.subplot(len(datasets), len(classifiers) + 1, i)

ax = plt.subplot(3, 4, i)

if ds_cnt == 0:

ax.set_title("Input data", fontsize=30)

# Plot the training points

ax.scatter(X_train[:, 0], X_train[:, 1], s=500, c=y_train,

cmap=cm_bright, edgecolors="k")

# Plot the testing points

ax.scatter(

X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6,␣

→֒edgecolors="k"

)

ax.set_xlim(xx.min(), xx.max())

ax.set_ylim(yy.min(), yy.max())

ax.set_xticks(())

ax.set_yticks(())

i += 1

# iterate over classifiers

for name, clf in zip(names, classifiers):

# ax = plt.subplot(len(datasets), len(classifiers) + 1, i)

ax = plt.subplot(3, 4, i)

clf.fit(X_train, y_train)

score = clf.score(X_test, y_test)

print("Accuracy for", name, "is:", score)

# Plot the decision boundary. For that, we will assign a color to each

# point in the mesh [x_min, x_max]x[y_min, y_max].

if hasattr(clf, "decision_function"):

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])

else:

Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

# Put the result into a color plot

Z = Z.reshape(xx.shape)

ax.contourf(xx, yy, Z, cmap=cm, alpha=0.8)
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# Plot the training points

ax.scatter(

X_train[:, 0], X_train[:, 1], s = 500, c=y_train, cmap=cm_bright,␣

→֒edgecolors="k"

)

# Plot the testing points

ax.scatter(

X_test[:, 0],

X_test[:, 1],

s = 500,

c=y_test,

cmap=cm_bright,

edgecolors="k",

alpha=0.5,

)

ax.set_xlim(xx.min(), xx.max())

ax.set_ylim(yy.min(), yy.max())

ax.set_xticks(())

ax.set_yticks(())

if ds_cnt == 0:

ax.set_title(name, fontsize=30)

ax.text(

xx.max() - 0.3,

yy.min() + 0.3,

("%.2f" % score).lstrip("0"),

size=40, weight='bold',

horizontalalignment="right",

)

i+=1

plt.tight_layout()

plt.show()

Accuracy for Nearest Neighbors is: 0.5714285714285714

Accuracy for Linear SVM is: 0.5714285714285714

Accuracy for RBF SVM is: 0.42857142857142855

Accuracy for Gaussian Process is: 0.42857142857142855

Accuracy for Decision Tree is: 0.42857142857142855

Accuracy for Random Forest is: 0.42857142857142855

Accuracy for Neural Net is: 0.5714285714285714

Accuracy for AdaBoost is: 0.42857142857142855

Accuracy for Naive Bayes is: 0.7142857142857143

Accuracy for QDA is: 0.5714285714285714
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Seems like RBF SVM is the most accurate so this will be used for predictions

5 Predicting other reactions:

[36]: # import data on reactions to predict

df_test = pd.read_csv("ToTest_Updates.csv")

df2 = deepcopy(df_test)

df2['HypothesisSupportedInt'] = 3

X_test = df2.select_dtypes(include=np.number).

→֒drop(columns=['HypothesisSupportedInt'])

X_test = X_test.reset_index(drop=True)

y_test = df3['HypothesisSupportedInt']

y_test = y_test.reset_index(drop=True)

scaler = StandardScaler()

scaler.fit(X_test)

scaled_test_data = scaler.transform(X_test)

# scale the data- this is scaling the unsplit data so this uses all the samples␣

→֒available

X = df3.select_dtypes(include=np.number).drop(columns=['HypothesisSupportedInt'])
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X_train = X.reset_index(drop=True)

y = df3['HypothesisSupportedInt']

y_train = y.reset_index(drop=True)

scaler = StandardScaler()

scaler.fit(X_train)

scaled_train_data = scaler.transform(X_train)

# Complete PCA and print some potentially important values

pca = PCA(n_components=2)

pca.fit(scaled_train_data)

x_pca = pca.transform(scaled_train_data)

df_pca = pd.DataFrame(data=x_pca,columns=["PC1","PC2"])

df_pca['Class'] = y

# determine accuracy of PCA through regression

classifier = SVC(gamma=2, C=1)

classifier.fit(scaled_train_data, y_train)

y_pred = classifier.predict(scaled_test_data)

# print table of the predicted reactions and the predicted outcome

reaction = df2["Product expected"]

df4 = pd.DataFrame(y_pred, columns = ['HypothesisSupportedInt'])

diditwork={1:"Yes",0:"No"}

df4['Should it work']=df4["HypothesisSupportedInt"].map(diditwork)

df4 = df4.drop(columns='HypothesisSupportedInt')

predictions = pd.concat([reaction, df4], axis=1, join='inner')

print (predictions)

Product expected Should it work

0 Nb2Se No

1 Nb14S5 No

2 Cr2Se3 Yes

3 Cr2S3 No

4 Cr2Te3 Yes

5 V5Se4 No

6 V3S Yes

7 V5Te4 Yes

8 Cu3Se2 No

9 Cu7S4 No

10 CuTe No
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Appendix D

Overview of Other Contributions

Outside of my work with organic fluxes, I have had the opportunity to collaborate on projects

involving metathesis reactions to target ternary metal nitrides. [58, 59] Ternary metal nitrides have

widespread applications including catalysts [60, 61], magnets [62], and battery materials [63, 64],

so making new ternary metal nitrides could advance these technologies. However, they are an

under-explored materials class as they can be difficult to make owing to nitrogen’s relative inert-

ness. [65] Therefore, non-traditional synthetic techniques are necessary. In these cases, metathesis

reactions were used. Metathesis reactions are double exchange reactions that use the formation of

a stable salt to drive product formation. Through the use of metathesis reactions in these systems,

ternary nitrides are able to be made in bulk.

The first publication, authored by Christopher L. Rom, reported the synthesis of bulk MgxZr2xN2

powders (0 < x < 1) from metathesis reactions involving ZrCl4 and Mg2NCl or Mg3N2. [58] As

second author for this publication, I assisted with the collection of in situ X-ray Diffraction (XRD)

data which helped elucidate the mechanism of reactivity. Since the Panalytical Empyrean diffrac-

tometer arrived at Colorado State University in 2017, I have been in charge of maintaining the

instrument and training others. This means I was able to contribute expertise in collecting the in

situ XRD data which was valuable for exploring the reaction mechanism and comparing the two

precursors. It was found that both precursors progressed through the same reaction pathway with

the same intermediates. The Mg2NCl reaction initially reacted sooner than the Mg3N2 reaction but

the product did not crystallize until 600 ◦C for either reaction. This work demonstrates the use of

metathesis reactions to target ternary metal nitrides.

The second publication, authored by Paul K. Todd, discusses the synthesis of MgZrN2, Mg2NbN3,

and MgMoN2 using metathesis reactions. [59] In these reactions, Mg2NCl was reacted with the

metal chloride corresponding to the desired product. For this research, I ran the magnetism mea-

surements and completed the analysis on those data. These measurements were used to confirm the
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product composition and purity as the magnetic properties of these materials are highly sensitive

to impurities. This research provides additional examples of the utility of metathesis reactions to

target ternary metal nitride materials.

These projects both demonstrate progress in making ternary metal nitrides. They provide ex-

amples of how metathesis reactions can be used to target phases that are traditionally difficult to

make, which shows the utility of alternate synthetic techniques in solid-state chemistry. The reac-

tion schemes explained in these publications could be expanded to other ternary metal nitrides and

enable the discovery of new materials.
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Appendix E

Jargon-Free Research Overview

Most of us would probably prefer a diamond ring to a graphite pencil. But both diamond and

graphite are made of the same thing, carbon. How we make things is just as important as what we

make them from. This is true for pretty much all solid-state materials. Solid-state materials allow

us to charge our phones, harvest energy from the sun, and go to all of our zoom meetings. In order

to advance these technologies we need to improve our abilities to make new solid-state materials.

One big challenging preventing us from moving forward is the limited number of techniques we

have to make these materials.

Imagine taking two chunks of metal, like iron and selenium, and trying to get them to combine

to form a new material. Bashing them together is just going tire you out. Solid materials by nature

are not very reactive unless under extreme temperatures. For iron and selenium, you would need

a specialized furnace capable of 2000 ◦F, which is literally the temperature of lava. Even once

you achieve this temperature, simply pulling the mixture out of the furnace to cool on the counter

would cause it to cool too quickly producing a useless blob similar to our metaphorical graphite.

Instead, to produce the diamond we want, iron selenide must cool over the course of 4 days in the

furnace. Like iron selenide and diamonds, many materials can only be made through a complex

reaction scheme.

This is where my research comes in. My research focuses on using an organic compound acting

as sort of a molecular mixer to enable reactivity at lower temperatures thus reducing the steps

necessary to form your metaphorical diamond. Instead of taking my starting materials and heating

them up to extreme temperatures, I take my starting materials along with an organic compound

and heat them up to much lower temperatures around what your standard kitchen oven can reach.

Once the reaction is completed it is easy to remove that organic compound leaving me with my

desired material.
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In the case of iron selenide, I found that the key to low-temperature reactivity was the organic

compound interacting with the selenium. This simplified the preparation of iron selenide from a

multi-step, 12 day process to a single-step, 5 day reaction. From this, I was able to expand to other

systems showing that this reaction scheme is broadly applicable. Additionally, I demonstrated that

changing the organic compound changes which material forms, which introduces tunability into

solid-state reactions.

This provides solid-state chemists a new tool that can simplify the preparation of many materi-

als and potentially enable the discovery of new materials that were previously unable to be made.

This opens the door to new materials with widespread applications such as batteries with longer

lifetimes, more efficient solar cells or other metaphorical diamonds we have yet to even think of.
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Appendix F

Photos of Colorado

Here are a few of my favorite photos I’ve taken during graduate school. Enjoy!
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LIST OF ABBREVIATIONS

PPh3 - Triphenylphosphine

XRD - X-ray Diffraction

PXRD - Powder X-ray Diffraction

SCXRD - Single Crystal X-ray Diffraction

NMR - Nuclear Magnetic Resonance

PDF - Pair Distribution Function

MPMS - Magnetic Properties Measurement

PCA - Principal Component Analysis

DFT - Density Functional Theory

SVM - Support Vector Machine

MDI - Mean Decrease in Impurity

MALDI-MS - Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

FTIR - Fourier Transform Infrared

ATR - Attenuated Total Reflectance

VSM - Vibrating Sample Magnetometry

UV-Vis - Ultraviolet Visible

TEM - Transmission Electron Microscopy

EDS - Energy-Dispersive X-ray Spectroscopy

EPR - Electron Paramagnetic Resonance
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