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ABSTRACT 

 

DEVELOPMENT OF A NOVEL ENDOPROSTHESIS FOR CANINE LIMB-

SPARING USING A FINITE ELEMENT APPROACH  

 

Osteosarcoma is the most prevalent bone tumor in the canine population and the 

distal radius is the most commonly affected site. To date, amputation has been the 

preferred treatment option among veterinarians for distal radius osteosarcoma. However, 

with the advent of better chemotherapy protocols and the subsequent increasing survival 

rates, interest has now turned towards saving the legs of dogs with osteosarcoma. The 

current endoprosthesis used for limb-sparing is associated with a high failure rate, and 

hence, the design of a novel endoprosthesis is warranted. 

To aid in the development of a new endoprosthesis for canine limb-sparing a 

finite element model of the canine forelimb was generated. Accurate mechanical 

properties of soft tissues are essential to build a reliable finite element model. Since no 

data exists regarding the mechanical properties of canine carpal ligaments, six primary 

stabilizing ligaments of the canine carpus were identified and their mechanical properties 

were investigated by uniaxial testing in a materials testing machine. 

Convergence and validation are two crucial steps in the development of a finite 

element model. Convergence was investigated by generating three models with 

increasing mesh resolution. For the purposes of validation, eight intact canine forelimbs 

were tested in a materials testing machine. The limbs were instrumented to record bone 
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strains and relative displacements. The acquired data were used to validate the canine 

forelimb model. 

The current endoprosthesis was evaluated to determine the mechanical 

underpinnings of clinical failures associated with these implants using the canine 

forelimb finite element model. The implant failure locations predicted by the model were 

similar to those observed clinically. The use of a locking plate in place of the current non-

locking plate was also investigated. Several stress redistribution strategies were also 

examined. 

A novel modular design was developed in collaboration with the Colorado State 

University’s Veterinary Teaching Hospital oncology surgeons. The design was 

extensively evaluated with the use of the validated and converged finite element of the 

canine antebrachium. The design was modified and improved based on the results. 

Significant stress reduction was achieved within the proximal radial screws and the distal 

metacarpal screws. Off-axis loading of the construct was also eliminated. The final 

design was approved for prototype development, biomechanical testing and cadaveric 

evaluation. 
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1    Background 

1.1    Anatomy of the Canine Antebrachium 

1.1.1 Geometry 

The canine thoracic limb consists of the scapular, axillary, brachial, cubital, antebrachial, carpal, 

metacarpal and phalangeal regions [Figure 1]. The current study focuses on the 

antebrachiocarpal, carpal and metacarpal regions. The antebrachial region consists of the radius 

and ulna [Figure 2]. The carpal region consists of a total of seven bones divided into two 

transverse layers. The proximal layer consists of the radial carpal, ulnar carpal and the accessory 

carpal bones and the distal layer in the carpal region consists of the numbered carpal bones I-IV 

[Figure 3]. The metacarpal region consists of the numbered metacarpal bones I-V [Figure 4]. 

 

Figure 1-Canine forelimb regions. 
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Figure 2-Canine antebrachial region bones (adapted from [1]). 

The radius is the main weight-supporting bone of the forearm. It articulates proximally with the 

humerus bone forming the elbow joint and distally with the radial carpal bone. The radius also 

articulates with the ulna proximally (by its caudal surface) and distally (by its lateral border) [3].  

 

Figure 3-Canine carpal region bones (two layers) (adapted from [1]). 

Trochlear notch for 

articulation with the humerus. 
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Figure 4-Canine metacarpal region bones (adapted from [1]). 

The ulna, which is the longest bone of the canine skeleton, extends from the elbow to the 

carpus. A large trochlear notch [Figure 2] at the proximal end of the ulna articulates with the 

humerus. At the distal end, the lateral styloid process of the ulna articulates with the ulnar 

carpal and the accessory carpal bones and also with the ulnar notch of the radius [3].  

The radius and ulna bones articulate proximally with the humerus. The load transferred through 

the humerus is shared equally at the proximal end of both bones [4]. Both the radius and ulna 

consist of a raised, oval rough area at the middle third of the bones. This is where the 

interosseous ligament attaches. As compared to the interosseous ligament present in the 

human forearm, this ligament is much shorter (~2cm) [5]. An interosseous membrane exists on 

both sides of the ligament and attaches to the opposed interosseous crests of the radius and 

ulna [3]. This membrane is perforated at various points for the passage of various arteries, veins 
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and the interosseous nerve. As compared to the human forearm, only a small amount of 

rotational movement is allowed between these two bones.  

The carpus represents the region between the forearm and the metacarpus. The radial carpal 

bone is the largest of all the carpal bones. It articulates proximally with the radius and distally 

with the four numbered carpal bones. Laterally, the radial carpal bone articulates extensively 

with the ulnar carpal bone. The ulnar carpal bone, which is smaller than the radial carpal bone, 

articulates proximally with the radius and ulna, distally with the fourth and fifth metacarpal, 

medially with the radial carpal and on the palmar side with the accessory carpal.  

The metacarpal bones II-V are the primary load-bearing bones of the metacarpus. The 

Metacarpal I bone is quite small and slender, and does not bear any load. 

1.1.2 Joints and Ligaments 

The radius and the ulna are joined together with the proximal and distal radioulnar synovial 

joints and the strong intersosseous ligament along with the weak interosseous membrane [3]. 

The triangular fibrocartilage present at the distal end of the ulna and radius in humans is 

referred to as the articular disc in canine anatomy [6-8]. The smooth distal end of this articular 

disc forms 10% of the articular surface of the antebrachiocarpal joint [7].  

The antebrachiocarpal joint exists between the distal part of the radius and ulna and the 

proximal row of carpal bones [3]. The middle carpal joint is defined between the two rows of 

carpal bones and the carpometacarpal joint is located between the distal row of the carpal 

bones and the metacarpus.  The whole carpal joint acts like a hinge joint (ginglymus), allowing 

flexion and extension with limited lateral movement [5]. The intermetacarpal joints are close-

fitting joints between the proximal ends of the metacarpal bones. The bones are joined together 

by fibrous tissues called the interosseous metacarpal ligaments [3]. 
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Numerous ligaments exist to ensure stability of the carpal joint. The flexor retinaculum and the 

palmar carpal fibrocartilage are two primary structures that ensure the integrity of the carpal 

joint. The flexor retinaculum has two sleeves (superficial and deep) with tendons located 

between them [3]. The palmar  carpal fibrocartilage is a thick cartilageous structure that covers 

the palmar aspect of all carpal bones and the proximal parts of metacarpals III, IV and V. It 

smoothes the irregularities at the carpo-metacarpal joint and provides a smooth surface for the 

carpal canal [3].  It is also the primary structure that prevents hyperextension of the carpal joint.  

The medial and lateral collateral ligaments (MC, LC) of the carpus limit valgus and varus 

movement of the carpal joint, respectively. These ligaments are primarily stabilizing ligaments. 

The medial collateral ligament originates from a tubercle above the styloid process of the radius 

and terminates at the most medial part of the radial carpal bone. A second oblique part, after 

originating from the styloid process, runs obliquely to the palmaromedial surface of the radial 

carpal bone [3]. The lateral collateral ligament originates at the styloid process of the ulna and 

inserts at the most lateral aspect of the ulnar carpal bone[ Figure 5]. 

Along with the palmar carpal fibrocartilage, the palmar radiocarpal (PR) and the palmar 

ulnocarpal (PU) intra-articular ligaments prevent hyper-extension of the carpal joint [9] [Figure 

5]. The palmar ulnocarpal ligament connects the ulna with the radial carpal bone. A short leaf of 

this ligament also connects with the accessory carpal bone. The palmar radiocarpal bone 

connects the radius with the radial carpal bone. The primary ligaments that prevent hyper-

extension of the carpo-metacarpal joint are the accessorometacarpal ligaments [9]. Both 

originate from the accessory carpal bone. The accessorometacarpal-IV (AMC-IV) ligament, after 

originating from the accessory carpal bone, inserts in the metacarpal-IV bone and the 

accessorometacarpal-V (AMC-V) ligament attaches with the metacarpal-V bone [Figure 5]. 
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Numerous other short ligaments unite the carpal bones transversely holding them together in 

the two rows [3].  

Many published papers have investigated the canine carpal joint anatomically. Mikic et al. [6] 

provided a detailed analysis of the antebrachiocarpal joint in dogs using radiographs and gross 

dissection. Nordberg et al. [10] used magnetic resonance imaging to investigate the anatomy of 

normal canine carpal ligaments. Turan et al. [11] used computed tomography to examine the 

morphology of the carpal tunnel. Warnock et al. [12] used arthroscopy to comprehensively 

examine the ligaments and bones of the canine antebrachiocarpal joint.  

 

1.2 Material Properties 

1.2.1 Bone 

Bone has a complex hierarchical structure [Figure 6].  At the nanostructural level, it is composed 

of apatite crystals and collagen fibrils [13]. These fibrils combine to form collagen fiber bundles. 

At the microstructural level, the collagen fibers form into lamellae or haversian canals with 

Figure 5—Illustrations of the palmar (A) and lateral (B) views of the left forelimb of a dog 

that indicates the anatomic locations of the 6 ligaments harvested for testing. V = 

Metacarpal bone V. 

V = Metacarpal bone V. CA = Accessory carpal bone. 
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concentric layers of lamellae. Groups of haversian canals are referred to as osteons which are 

approximately 10-500µm in diameter [1]. Hydrated bone consists of around 20% water with the 

mineral phase constituting 77% of the remainder [14]. 90-95% of the organic phase consists of 

Type I collagen [15]. Collagen fibrils contribute significantly to the anisotropy of bone [16]. From 

a macrostructural point of view, bone can be broadly classified as cortical (dense) or trabecular 

(porous) bone. All long bones have a dense cortical shell and trabecular bone exists interiorly 

within this shell. These two types of bone can be generally distinguished by the relative amount 

of porosity they exhibit, however, there exists some controversy as to whether they both have 

the same microstructure [1, 17, 18].  

Bone exhibits a capacity for self repair. Trabecular bone is generally more active and gets 

remodeled faster as compared to cortical bone [1]. Osteoclasts are primarily responsible for 

bone resorption and osteoblasts are responsible for bone formation. The disruption of the 

functions of these bone cells can cause osteoporosis, osteopenia and other related diseases.  

The macrostructural mechanical properties of cortical bone have been reported in various 

studies . The longitudinal moduli of cortical bone ranges from 5 to 22 GPa and also varies with 

respect to age, species and orientation [19-22]. There is a positive correlation between elastic 

modulus of bone and the applied strain rate [23]. The macrostructural mechanical properties of 

cancellous bone are significantly lower as compared to the microstructural properties. The 

Young’s moduli of trabecular bone range from 100-4000 MPa [14, 24]macrostructurally, 

however, nanoindentation of trabecular struts have reported  
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Young’s moduli of 15-20 GPa [25]. Cortical and trabecular bone exhibit anisotropy [21]. The 

orientation of trabecular spicules is preferentially along the primary mechanical loading 

configuration [21]. 

Care must be taken when using canine trabecular bone as a model for human bone. Kuhn et al. 

[26] showed qualitative similarities between canine cancellous bone and human bone, however 

some quantitative differences were observed. Several studies have investigated the material 

properties of canine cortical and trabecular bone [26-29]. Kaneps et al. [29] investigated the 

changes that occurred in canine cortical bone following immobilization and consequent 

remobilization with exercise. They showed decreased mechanical properties following 

immobilization for canine cortical and cancellous bone. 

1.2.2 Articular Cartilage 

Cartilage is an avascular, connective tissue and is present in all diarthrodial joints. Articular 

cartilage is composed of 68-85% water, 10-20% collagen and 5-10% of proteoglycan by weight 

[30]. The most common form of cartilage is hyaline cartilage. Other forms of cartilage include 

fibrocartilage (intervertebral disc, meniscus) and elastic cartilage (ear, larynx) [30]. Hyaline 

Figure 6- Hierarchical structure of bone (adapted from Rho et al. [1]). 
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cartilage is most generally found at the articulating ends of long bones and on bones within a 

synovial joint. Cartilage degeneration is a major cause for the onset of osteoarthritis in joints.  

Articular cartilage is a multiphasic structure with two phases: a fluid phase which consists of 

water and electrolytes and a solid phase consisting of collagen, proteoglycans, chondrocytes and 

proteins. It is generally regarded in literature as a layered medium with four zones as shown in 

Figure 7 [2].  

 

Initial attempts at finite element modeling of articular cartilage modeled the tissue as isotropic 

and linearly elastic. Later, numerous viscoelastic models were proposed, however they failed to 

take into account the interstitial fluid flow. When cartilage is compressed, water is pushed out 

and when soaked in fluid, it absorbs water [31]. Currently, the most popular theories for 

cartilage behavior have been the biphasic theory proposed by Mow et al. [2] and the triphasic 

theory proposed by Lai et al. [32] that takes into account the Donnan osmotic pressure effects.  

To date, the compressive mechanical properties of canine carpal cartilage have not been 

investigated. Elliot et al. [33] investigated the tensile properties of canine knee articular 

cartilage. Instantaneous moduli for human articular cartilage (knee) vary from 5-14 MPa [34, 35] 

which is highly dependent upon strain magnitude and orientation. Physiological strains above 

Figure 7- Layered structure of cartilage (adapted from Mow et al. [2]). 
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15% have been reported in articular cartilage [36], which is expected given its relatively low 

modulus. Proteoglycan-induced swelling pressures and interstitial fluid contribute heavily to the 

hyperelastic response, preventing excessive compressive strains [14].  

1.2.3 Ligaments 

Ligaments are soft connective tissues that support load only in tension. They aid in the stability 

of diarthrodial joints and guide motion. Rupture of ligaments generally leads to abnormal joint 

kinematics, pain and osteoarthritis [30]. Immobilization of joints has been shown to adversely 

affect the connected soft tissues in terms of their mechanical properties and mass [37].  

Ligaments are mainly composed of parallel bundles of type I collagen, elastin, proteoglycans, 

glycolipids and water (65-70% of total weight). Ligaments have a hierarchical structure 

composed of fibrils, fibers, subfascicular units, fascicule and the tissue level structure [30]. The 

ligament insertions to bone are of two types: direct and indirect. In a direct insertion, the 

transition from ligament to bone occurs in four phases: ligament, fibrocartilage, mineralized 

fibrocartilage and bone [30]. Indirect insertions consist of superficial fibers connected to the 

periosteum and deep fibers (Sharpey fibers) connected to the bone.  

There exist numerous standardized protocols for obtaining the mechanical properties of 

ligaments. Since ligaments connect bone to bone, the whole bone-ligament-bone complex is 

excised for uniaxial testing. The load-deflection curve obtained can be used to determine the 

structural properties [Figure 8] of the ligament substance. Various techniques have been used 

for the measurement of the cross-sectional area of ligaments [30, 38, 39] which is needed for 

stress calculations. The resultant stress-strain curve can be used to obtain the mechanical 

properties of the ligament substance. Controversy exists in methods used for measuring the 

strain in the ligament. Crosshead displacement generally does not provide accurate local 
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deformation measurement of the ligament substance. In contrast, extensometers and 

stereophotogrammetry techniques have been used to obtain high fidelity local strain values. 

 

Nearly all ligaments display nonlinear elastic behavior. The stretching of crimped collagen fibers 

contribute to the nonlinear toe region observed in the initial part of the load-deformation curve. 

To this date, no published literature exists that has investigated the mechanical properties of 

canine carpal ligaments. 

1.3 History of Canine Limb-sparing 

Osteosarcoma (OSA) is a debilitating disease afflicting nearly 8000 dogs every year in the USA 

[40]. It selectively affects large and giant breed dogs with occurrences increasing with age [40-

42].  Males have a slightly higher predilection than females towards the development of 

osteosarcoma [40, 42]. However, neutered dogs have twice the risk when compared to sexually 

intact dogs [42]. Increasing weight and height have also been shown to be associated with an 

increased risk of osteosarcoma [42]. The metaphyseal region of long bones is the most 

frequently affected site, with front limbs affected twice as often as rear limbs [40]. Pure-breed 

dogs have a higher predilection for osteosarcoma as compared to mixed-breed dogs [43]. 

Figure 8- Representative graphs depicting stiffness obtained from a load-displacement curve (A) and elastic 

modulus obtained from a stress-strain curve (B). 
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Canine osteosarcoma which has many similarities to human osteosarcoma, also serves well as a 

model to study the etiology, behavior and treatment of osteosarcoma [44, 45]. It is more 

common among dogs than humans. Also, the disease progresses faster in dogs and hence the 

efficacy of various treatment protocols can be reported earlier in the treatment period. 

Furthermore, the costs associated with clinical trials of dogs are considerably less as compared 

to human clinical trials. Osteosarcoma is a relative uncommon disease among humans. It affects 

children and young adolescents. Approximately 400 cases of osteosarcoma are reported every 

year [46]. The current survival rate for human osteosarcoma patients is around 60% [45]. 

Historically, the gold standard for the treatment of canine osteosarcoma has been amputation 

[44, 47-50]. For dogs treated with amputation alone, metastasis caused early death with a 

survival rate of merely 10% after one year [40]. The addition of adjuvant chemotherapy 

protocols has improved the survival rate up to 60% [40]. The chemotherapy drug, cisplatin has 

been shown to increase the median survival time after amputation. Carboplatin and doxorubicin 

are second-generation drugs that have been used for adjuvant chemotherapy, however, they 

have not shown greater or equal survival rates as compared to cisplatin [49, 51]. Recently, 

several studies have investigated combination chemotherapy protocols which involve a 

combined use of cisplatin or carboplatin and coxorubicin [50]. Studies have also investigated the 

use of radiation therapy in place of chemotherapy [45, 52]. However, the use of radiation 

therapy alone is highly detrimental and results in poor local tumor control [52]. 

Generally, the mobility and quality of life after amputation is acceptable to the owners and even 

large and giant breed dogs often function satisfactorily [47]. However, there are some instances 

where limb-sparing is preferred over amputation. Dogs with severe orthopaedic conditions and 
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giant breeds can benefit greatly from limb-sparing. Also, some owners absolutely refuse 

amputation. 

Owing to the good results obtained from amputation along with adjuvant chemotherapy 

protocols, the interest has now turned to saving the legs of the dogs afflicted with 

osteosarcoma. No differences in survival rates have been found between amputation with 

cisplatin and limb-sparing with cisplatin [48]. Dogs with osteosarcoma in the distal radius are an 

ideal candidate for limb-sparing treatment since arthrodesis of the antebrachiocarpal joint does 

not affect the overall function of the limb. In contrast, arthrodesis of the elbow joint has 

resulted in poor limb function [53]. Limb-sparing is recommended when the tumor is limited to 

less than 50% of the diaphysis of the afflicted bone [40]. Dogs undergoing limb-sparing are 

commonly treated with some form of preoperative treatment such as intra-arterial cisplatin and 

radiation therapy [40, 54]. Currently, dogs are also treated with some local chemotherapy 

implantation during surgery.  

Traditionally, limb-sparing has utilized a massive cortical allograft in conjunction with a dynamic 

compression plate [52]. The allograft is filled with polymethylmethacrylate to enhance screw 

union within the intramedullary canal. The effect of polymethylmethacrylate on allograft union 

in a canine model has been investigated by Straw et al. [55] and no adverse effects on allograft 

healing were reported. However, the management of massive cortical bone allografts is a costly 

and time-consuming process. The maintenance of a bone bank requires personnel and the non-

availability of allografts is also a cause for concern.  

Owing to the above mentioned issues related to cortical allografts, a metal endoprosthesis was 

developed [56] [Figure 9, Figure 10]. However, the failure rates (40%) associated with these 

endoprostheses have been reported to be similar to those observed with massive cortical 
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allografts [56]. The major contributing factors for failure observed in the metal endoprosthesis 

design were loss of screw purchase in the proximal radius and shear failure of the screw. These 

were attributed to the high discrepancy between the stiffness of the metal spacer compared to 

bone and the weight of the metal endoprosthesis. Interestingly, the cortical allograft implants 

demonstrated failure at the interface between the metacarpal bone and screws [56].  

 

Figure 9-Endoprosthesis and dedicated limb-sparing bone plate available for distal radial limb-sparing surgery in 

dogs. (A) Disassembled view; (B) assembled view, top; (C) assembled view, side. Note the flared distal end of the 

endoprosthesis (arrow). (Adapted from Liptak et al.) 



15 

 

 

Figure 10-(A) Endoprosthesis implanted in patient (B) Radiograph of canine forelimb with implanted 

endoprosthesis. 

A second generation metal endoprosthesis [Figure 11] was developed which employed 

significant weight reduction strategies to combat the high failures rates associated with the first 

generation model. However, this design has not been clinically or biomechanically tested. 

Another important, yet uninvestigated, issue related to canine limb sparing is the resection of 

the ulna. Traditional surgery practice dictates the partial resection of the ulna if the tumor is 

adherent to it [40]. Practically, the resection of the ulna makes it easier for the surgeon to 

perform the limb sparing surgery effectively. A biomechanical study [57] investigated the effect 

of ulna resection along with limb-sparing.  
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Figure 11- 2nd (current) generation endoprosthesis employing significant weight reductions. 

They found no significant difference between failure loads for forelimbs with or without ulna 

resection. However, local stress redistribution to the radius was not examined. Therefore, 

discordance between these biomechanical test results and those observed clinically by 

veterinarians exists. 

1.4 Finite Element Modeling 

The first recorded application of the finite element method in orthopaedic tissue was by 

Brekelmans et al. [58, 59] wherein it was applied as a two-dimensional analysis of the human 

femur. Since that seminal paper, the finite element method has been applied to numerous 

biological tissues.  Multiple studies have used the finite element method to analyze the human 

wrist joint [60-67]. Ulrich et al. [66] used an FE model of the radius, scaphoid and lunate to 

analyze the load transfer characteristics of the distal radius. Rogge et al. [67] used an FE model 

of the distal radius to investigate the fixation stability of pins used in distal radius fractures. 

More recently, Troy and Garbiner [65] investigated the failure of the distal radius caused by off-

axis loads using an FE model of the human wrist. The mechanical behavior of the carpal bones 

after transaction of the transverse carpal ligament was investigated by Guo et al. [68] using a 

sophisticated finite element model of the human wrist. A very comprehensive model of the 
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human wrist has been developed by Gislason et al. [63] to investigate maximal grip loading in 

the human wrist. Interestingly, most of the aforementioned models have used tetrahedral 

elements for simulating the contact surfaces. The only FE study involving canine antebrachial 

bones was performed by Coleman et al. [69] which investigated the required epiphyseal loads to 

simulate in vivo strain fields. 

1.4.1 Material Properties 

Cortical bone has been modeled as an isotropic and linearly elastic material with a Young’s 

modulus (E) 10-20.1GPa and a Poisson’s ratio ν=0.2-0.4 [60, 63, 65, 68] in FE models of the 

human wrist.  Trabecular bone has been generally modeled as a single block of elements with 

E=100-4000 MPa [14, 24] and ν=0.2-0.4 [60, 63, 65]. Some studies have used CT-based density 

data to incorporate local variation in mechanical properties of trabecular bone [14, 70]. 

Cartilage has been modeled as linearly elastic and isotropic with E=1-48 MPa and ν=0.3-0.49 [60, 

63, 65]. Some later studies have modeled cartilage as a non-linear hyperelastic material. 

Ligaments have been traditionally modeled as either linearly elastic, hyperelastic and as discrete 

linear and non-linear one-dimensional spring elements [65, 71]. Some have also included the 

nonlinear toe region and ligament pretension in their formulae [14]. 

1.4.1.1 Metallic Biomaterials 

The two most common metallic alloys used in the manufacturing of metallic biomedical implants 

are 316L surgical stainless steel and Ti6Al4V titanium alloy. Both have been shown to be well-

tolerated in a biological environment after implantation. ASTM recommends 316L stainless steel 

which exhibits better corrosion resistance as compared to 316 steel [72]. Both 316L (cold 

worked) and Ti6Al4V have similar tensile strengths of approximately 860MPa [73]. 316L has 

yield strength of 695MPa and Ti6Al4V has yield strength of 795MPa [73]. The advantage of using 

titanium alloys is the absence of artifacts during post-operative radiographic evaluation of 
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fracture healing. However, the cost of titanium implants is significantly higher as compared to 

stainless steel implants. The fatigue limit of Ti6Al4V at 10 million cycles (500MPa) is significantly 

higher than 316L (200MPa) in a simulated body environment [73, 74]. However, the fretting 

endurance limits of both materials are comparable [74].  Most of the commercially available 

316L cortical screws are cold worked [73] and hence the material properties are approximately 

the same. Figure 12 shows atypical stress-strain curve for austenitic 316L stainless steel. 

 

Figure 12-A typical stress-strain curve for 316L type stainless steel (cold worked). 

 

1.4.2 Convergence and Validation 

Convergence and validation are two often neglected steps needed for the development of a 

reliable finite element model. Most of the above mentioned FE models fail to provide any 

convergence data. Previous literature [75, 76] has made it clear that approximate analyses, like 

the FE method should provide a rigorous accounting of the reported mesh refinement results. 

The tolerance used for convergence should also be provided. It is generally accepted that no 

finite element model can be considered completely validated when simulating biological tissue 

695MPa (Yield Strength) 
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[77], however, it is critically important to experimentally validate the specific parameters of 

interest. It is also important to validate the numerical model under a variety of loads to exclude 

any possibility of coincidental agreement.  

1.5 Force Plate Analysis of Canine Gait 

Force plates are used for the kinetic analysis of gait. The first ever recorded force plate 

application was in 1916 [78]. The initial force plates used only mechanical systems for force 

measurement, and hence, required very large forces to obtain adequate displacement. Since the 

late 1950’s most force plate systems have used strain gauges for measurement of force. The 

first study to use the force plate system on canines used it to compare the gait of dogs treated 

with total hip replacements or excisional arthroplasty for the treatment of hip dysplasia [79]. 

Later, the seminal work of Budsberg et al. [80] analyzed the kinetics of the walking gait in 

healthy dogs. They reported that the forelimb encounters 70% BW of vertical load at the peak of 

the walking gait cycle as compared to 43% BW at the hind limb. A later study by Budsberg et al. 

[81] evaluated the kinetics of gait in healthy dogs at trot. At trot, the forelimb encounters 110% 

BW of vertical load, as compared to 70% BW at the hind limb. Extensive kinematic analyses have 

also been performed using force plates and stereophotogrammetry [82-87]. Hottinger et al. [84] 

analyzed the kinematics of walking in healthy large breed dogs. They provided extensive data on 

joint angles at the cubital and the antebrachiocarpal joint during a normal gait cycle. More 

recently, Nielsen et al. [85] provided a comprehensive kinetic and kinematic gait assessment of a 

healthy canine thoracic limb at  walk.  
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2 Specific Aims 

From the preceding it is clear that the current endoprosthesis is not an acceptable solution for 

limb-sparing of dogs afflicted with distal radius osteosarcoma. Our overarching goal is to design 

a novel endoprosthesis which has improved mechanical integrity and provides a functional limb 

to the dog. In order to achieve this goal, we propose the following specific aims. 

2.1 Specific Aim #1: Determine the mechanical properties of canine 

carpal ligaments 

Accurate mechanical properties of soft tissue such as ligaments and cartilage are required for 

the development of an accurate finite element model. No data is currently available regarding 

the mechanical properties of canine carpal ligaments, Therefore, in this aim, six primary 

stabilizing ligaments of the canine carpal joint under uniaxial tensile loading will be tested. The 

force-displacement data will be implemented in the FE model of the canine forelimb in the 

subsequent specific aim. 

2.2 Specific Aim #2: Develop a validated and converged model of the 

canine forelimb 

Clinical evaluation of novel prostheses design involves a significant financial and time 

investment. Finite element modeling provides a faster and cheaper alternative to clinical trials. 

We propose to develop, validate and converge a finite element model of the canine forelimb 

which will aid in the evaluation of the current generation endoprosthesis (Specific Aim #3) as 

well facilitate in the development of novel designs (Specific Aim #4). Comprehensive mechanical 

data will be collected from the in vitro testing of intact canine forelimbs in order to achieve 

thorough validation of the finite element model. Three models with increasing mesh resolutions 

will also be created for establishing model convergence. 
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2.3 Specific Aim #3: Evaluate the endoprosthesis currently used for 

canine limb sparing 

The current endoprosthesis used in canine limb-sparing is associated with a failure rate of 40%. 

However, the exact mechanical underpinnings associated with these high clinical failure rates 

remain unknown. It is proposed to evaluate this endoprosthesis using the finite element model 

of the canine antebrachium. Finite element models of the current generation endoprosthesis 

will be created using ABAQUS (SIMULIA, Providence, RI) and implanted in the intact FE model as 

per standard surgical protocols. The efficacy of the implant will be evaluated by applying 

physiological loads that are equivalent to the force experienced by the canine forelimb during 

trot. 

2.4 Specific Aim #4: Design a novel endoprosthesis using the finite 

element model of the canine forelimb 

Considering the mechanical limitations of the current generation endoprosthesis learnt from 

Specific Aim 3, we propose to develop a novel endoprosthesis for canine limb-sparing. The finite 

element model of the canine forelimb will be a critical element in the development of this 

implant. Two novel prostheses will be developed and designed within the size, weight and 

physiological limitations associated with the canine forelimb. The finite element models of the 

novel endoprostheses designs will be implanted in the validated and converged finite element 

model of the canine forelimb and tested under a load of 110% BW (trot).  
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3 Mechanical Properties of Canine Carpal Ligaments (Original 

Publication: Shetye SS, Malhotra K, Ryan SD, Puttlitz CM, Determination of 

Mechanical Properties of Canine Carpal Ligaments, American Journal of 

Veterinary Research, August, 2009) 

3.1 Introduction 

The antebrachium in dogs is prone to several conditions that can adversely affect function. 

These include ligamentous injury, fracture, luxation, osteoarthritis, and primary bone neoplasia. 

Treatment of these conditions often requires pancarpal arthrodesis. Implants used in pancarpal 

arthrodesis must withstand substantial loads, especially because plates are most often applied 

to the compression side of  the radiocarpal joint [88]. In dogs with osteosarcoma of the distal 

portion of the radius, limb-sparing surgery has been successfully performed by means of 

primary tumor resection and placement of an allograft or metal endoprosthesis during 

pancarpal arthrodesis. Many currently used metal limb-sparing endoprostheses are large [56, 

89] and composed of stainless steel. It has been hypothesized that these implants are affected 

by factors such as excessive weight, which may contribute to fixation failure. Investigators have 

compared the metal endoprosthesis and allograft limb-sparing techniques in a prospective 

clinical study [56] and a biomechanical study [57]. There was discordance between failure-mode 

results for the acute biomechanical testing and for the dogs in the clinical study. The most 

common failure mode of these endoprostheses in clinical situations is loss of screw purchase in 

the proximal radius bone, which leads to loosening of the device and the need for further 

surgical intervention, such as revision surgery or limb amputation [56]. To date, design 

modifications to the endoprosthesis have not been evaluated with rigorous biomechanical 

testing or prospective clinical trials. From the standpoint of design development of an implant, 

testing these implant modifications in vivo requires a substantial investment of resources 

(namely, time, money, and cadaveric tissue). The finite element method has been used to 

develop computational models of the human carpus [65, 68]. A finite element model of the 
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canine radius has been developed to determine loading conditions that result in replication of in 

vivo strain fields [69]. However, to our knowledge, development of a comprehensive finite 

element model of the canine carpal joint has not been reported. Our laboratory group has 

developed a computational (finite element) model of the canine antebrachium from the elbow 

joint to the metacarpal bones to enable virtual evaluation of prostheses and modifications to 

surgical procedures used in the canine antebrachium to predict failure modes and optimize 

implant design. The key steps in developing an accurate finite element model include simulating 

the anatomic structures (geometric aspects) and assigning the appropriate material properties 

to the constituent components of the model. Stiffness of the ligaments in the human wrist has 

been reported [90]. However, fundamental anatomic differences exist between the antebrachial 

joints of humans and dogs [6]; therefore, these data cannot be directly extrapolated to canine 

tissues. Additionally, we are not aware of any published reports that provide descriptions of the 

mechanical properties of canine carpal ligaments. Therefore, the objective of the study reported 

here was to establish a relevant dataset of the force-displacement and stress-strain 

relationships of the ligaments in the canine forelimb to provide data for incorporation into a 

finite model of the canine antebrachium. 

3.2 Methods 

Sample population—Twenty-six carpal sections were collected from the cadavers of 13 dogs. 

The mean (± SD) body weight of the dogs (7 females and 6 males) was 28.7 ± 5.69 kg. The dogs 

were euthanized for reasons unrelated to this study. 

Sample collection and preparation—Six ligaments of interest (AMC-IV, AMC-V, PR, PU, MC, and 

LC) were collected. Because of size and anatomic limitations, all 6 ligaments were unable to be 

harvested from each dog. The forelimbs were disarticulated at the shoulder joint and frozen (–

20°C) until dissection. For dissection, forelimbs were thawed; ligaments were then isolated as 
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bone-ligament-bone preparations (with at least 10 mm of bone included on each side of each 

ligament), wrapped in gauze soaked in saline (0.9% NaCl) solution, and stored again at –20°C 

until the day of testing. Specimens were thawed at ambient temperature for 8 hours prior to 

mechanical testing. The bone-ligament-bone preparations were potted in PMMA and coupled to 

custom-designed mechanical fixtures. All possible care was used to ensure that the long axis of 

the ligament was aligned with the tensile axis of a servohydraulic materials testing machine. In 

addition, the PMMA pot at one end of each ligament was attached to a universal joint that 

allowed orientation of the ligament along the tensile axis when tension was applied.  

Measurement of cross-sectional area and length— To transform the load data into stress 

variables, the cross-sectional area of each ligament was measured by use of a custom-designed 

apparatus that included a high-resolution micrometer [Figure 13]. A compressive load was 

applied across the cross-sectional area, which resulted in a constant pressure of 0.12MPa [39]. 

Because of the shape of the fixture, the cross-sectional area under consideration was modeled 

as a rectangle and its corresponding dimensions were the height of the specimen (as 

determined by the value obtained by use of the micrometer) and the width of the fixture 

occupied by the ligament.  

 

Figure 13-Photographs of the area micrometer (A) and the experimental apparatus containing a ligament specimen 

with 3 reflective markers (arrows) affixed to it (B). 
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Cross-sectional areas for the PR, MC, and LC ligaments were measured with handheld Vernier 

calipers because of the small dimensions of these ligaments. 

Mechanical testing—Quasi-static tensile tests were performed on all specimens (n = 8 

specimens/ligament) by use of a servohydraulic MTS in conjunction with a six degree-of-

freedom load cell. Each specimen was preconditioned for 10 cycles by applying a 2% maximum 

strain via a Haversine waveform. Tension was subsequently applied at a strain rate of 0.5%/s to 

each specimen until ligament failure, which was defined as a sharp reduction in the 

monotonically increasing load-displacement data. Stereophotogrammetry was used to ensure 

there was no slippage between the fixtures and PMMA during testing. Specifically, 3 reflective 

markers were affixed to specimens in the experimental apparatus (1 was affixed on each of the 

2 mechanical fixtures, and the third was sutured to the midpoint of the ligament; Figure 13). 

These markers were tracked via real-time monitoring by use of a 3-camera system. When 

slippage was detected during any portion of the testing, the resultant specimen data were 

excluded from the analysis.  

Data analysis—Force and displacement data were synchronized by use of a light-emitting diode 

that was triggered by the MTS software and recorded by means of the stereophotogrammetry 

cameras during testing. Data were recorded at the same rate (60 Hz) by use of the MTS and 

camera system. Displacement data were obtained from the MTS, and the resultant strain was 

calculated by use of the equation ε = (lf – lo)/lo, where ε is the engineering strain, lf is the final 

ligament length, and lo is the initial ligament length. Force data obtained by use of the MTS were 

divided by the cross-sectional area of the specimen to obtain the engineering normal stress (i.e., 

σ). The resultant stress-strain data were plotted, and the stiffness coefficient was obtained as 

the slope of the linear region of the associated force-displacement curve. In addition, slope of 

the linear region was used to obtain the elastic modulus (i.e., Young’s modulus) of the ligament. 
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Failure load for each specimen was obtained at the maximum point in the load-displacement 

plot from the MTS. The failure mode for each ligament was also recorded. Stiffness, elastic 

modulus, ultimate strength, and cross-sectional area were compared across the ligament 

population by use of a one-way ANOVA with the Student-Newman-Keuls post hoc test for 

multiple comparisons. All data were evaluated for normality. A rank transformation was 

performed on data that were not normally distributed. Ligaments were also stratified into 3 

groups: the AMC ligaments [AMC-IV and AMC-V], the intra- articular ligaments [PR and PU], and 

the palmar carpal ligaments [MC and LC]). Value of p < 0.05 was considered significant. 

3.3 Results 

Mean values of elastic modulus for each ligament were determined [ Figure 14]. The mean 

modulus did not differ significantly (p = 0.142) between AMC-IV and AMC-V ligaments. The 

AMC-IV ligament had the highest mean (± SD) elastic modulus of all ligaments tested with a 

value of 546.06 ± 106.97 MPa, followed by the MCV ligament with a mean modulus of 382.38 ± 

180.50 MPa. Elastic moduli did not differ significantly between the PU and PR ligaments (p = 

0.856) or between the MC and LC ligaments (p = 0.196). Values for elastic modulus differed 

significantly (p < 0.001) among the 3 ligament groups. Mean stiffness coefficients for each 

ligament were determined. Mean ± SD stiffness did not differ significantly (p = 0.095 or greater 

for all comparisons) among the MC (72.65 ± 10.86 N/mm), LC (61.10 ± 30.42 N/mm), PR (80.20 ± 

41.21 N/mm), PU (94.70 ± 14.43 N/mm), and AMC-IV (72.33 ± 14.66 N/mm) ligaments. Mean 

stiffness of the AMC-V ligament (145.864 ± 49.44 N/mm) was significantly (p = 0.014 or greater 

for all comparisons) higher than that for all other ligaments. Mean failure loads for each 

ligament were determined. Mean (± SD) failure loads did not differ significantly (p = 0.84 or 

greater for all comparisons) among the AMC-IV (426.15 ± 100.79 N), MC (392.45 ± 132.61 N), 

and PU (414.66 ± 72.29 N) ligaments.  
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Figure 14-Mean ± SD elastic modulus for each of the 6 canine ligaments (n = 8 specimens/ ligament) evaluated. 

Values for elastic modulus differ significantly (p < 0.001) among the 3 ligament groups (group 1 comprised the 

AMC-IV and AMC-V ligaments, group 2 comprised the PR and PU ligaments, and group 3 comprised the MC and LC 

ligaments). *Value differs significantly (p < 0.001) from the value for the AMC-IV ligament. †Value differs 

significantly (p = 0.001) from the value for the AMC-V ligament. ‡Value differs significantly (P < 0.001) from the 

value for the PU ligament. §Value differs significantly (p = 0.007) from the value for the PR ligament. Value differs 

significantly (P = 0.004) from the value for the PR ligament. 

 Type of Failure 

Ligament Midsubstance 
Bone-Ligament 

Interface 
Bony Avulsion 

AMC-IV 3 2 3 

AMC-V 1 6 1 

PR 5 1 2 

PU 7 0 1 

MC 7 0 1 

LC 5 0 3 

Table 1- Failure modes (n = 8 specimens/ligament) for each of the 6 canine ligaments, categorized on the basis of 

the location of the failure detected during load-to-failure tests. 
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The mean failure load for the AMC-IV ligament differed significantly, compared with the mean 

failure load for the PR (p < 0.001) and LC (p = 0.013) ligaments. The AMC-V ligament had the 

highest mean failure load (602.54 ± 165.22 N) and differed significantly (p = 0.005 or greater for 

all comparisons) from mean values for all other ligaments. Mean failure load did not differ 

significantly (p = 0.169) between the LC (233.11 ± 144.86 N) and PR (149.27 ± 68.61 N) 

ligaments. The PR ligament had the lowest mean failure load of all the ligaments tested. Failure 

modes for each ligament are summarized in Table 1. The highest number of midsubstance 

failures was found for the MC and the PU ligaments, with 7 of 8 specimens failing at the 

midsubstance for both of these ligaments. The LC and PR ligaments each had midligament 

failure in 5 of 8 specimens, with the remaining failures occurring via bony avulsions. Six of 8 

specimens of the AMC-V ligament failed at the bone-ligament interface. The AMC-IV ligament 

Figure 15-Mean ± SD ultimate strength for each of the 6 canine ligaments (n = 8 specimens/ligament) evaluated. 

Values for elastic modulus differ significantly (p < 0.001) among the 3 ligament groups. *Value differs significantly 

(p = 0.004) from the value for the AMC-IV ligament. †Value differs significantly (p = 0.012) from the value for the 

AMC-V ligament. ‡Value differs significantly (p < 0.001) from the value for the AMC-IV ligament. §Value differs 

significantly (P < 0.001) from the value for the AMC-V ligament. ║Value differs significantly (p = 0.024) from the 

value for the PR ligament. ¶Value differs significantly (P = 0.044) from the value for the PR ligament. #Value differs 

significantly (p = 0.003) from the value for the PU ligament. See Figure 4 for remainder of key. 
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had 3 specimens with midligament failure, 3 with bony avulsions, and 2 with failure at the bone-

ligament interface.  

Data on ultimate strength of the 6 ligaments were calculated [Figure 15]. Statistical analysis of 

the ultimate strength data yielded results similar to those for the elastic modulus. Specifically, 

significant differences were detected among the 3 ligament groups. However, ultimate strength 

did not differ significantly between the AMC-IV and AMC-V ligaments (p = 0.533), between the 

MC and LC ligaments (p = 0.892), or between the PR and PU ligaments (p = 0.197). Mean cross-

sectional area was also determined for each ligament. The MC ligament had the highest mean ± 

SD cross-sectional area (26.68 ± 11.34 mm
2
); this value was significantly (p = 0.029 or greater for 

all comparisons) higher as compared with the values for the other ligaments. Mean ± cross-

sectional area of the LC ligament (17.93 ± 11.01 mm
2
) differed significantly, compared with the 

area for the PR (6.75 ± 4.77 mm
2
) and AMC-IV (6.96 ± 1.98 mm

2
) ligaments, but did not differ 

significantly, compared with the area for the PU (10.82 ± 2.65 mm
2
) and AMC-V (12.29 ± 8.72 

mm
2
) ligaments. Mean cross-sectional area did not differ significantly among the PR, PU, AMC-

IV, and AMC-V ligaments. 

3.4 Discussion 

To our knowledge, the study reported here is the first in which mechanical properties of canine 

carpal ligaments have been described. Computational methods, such as finite element analysis, 

require accurate representation of soft tissues (including the ligaments) to reproduce the 

physiologic function of the joint or joints evaluated. Hence, we evaluated the mechanical 

properties of canine carpal ligaments for use in a finite element model of the canine 

antebrachium in this study. The AMC ligaments function to prevent hyperextension of the 

middle carpal joint [91]. In the study reported here, we found that they have relatively higher 

values for elastic modulus, compared with values for the elastic modulus of the other ligaments 



30 

 

evaluated in this study, which may correspond to their function and the forces they are 

subjected to in normal carpal extension. The PR and PU ligaments are intra-articular structures 

and restrict cranial and caudal instability. It has been postulated [12] that the PU ligament is one 

of the principal stabilizers of the canine antebrachiocarpal joint and prevents caudal 

translocation. Values for the elastic modulus of these ligaments were found to be significantly (P 

< 0.001) higher than those of the MC and LC ligaments. The MC ligament restricts valgus 

deviation, and the LC ligament prevents varus deviation [12]. These are primarily supportive 

ligaments and had the lowest values for elastic modulus of all the ligaments tested. The stiffness 

coefficients for all ligaments, excluding the AMC-V ligament, were not significantly different, 

which indicated that stiffness cannot be correlated with corresponding physiologic function of 

the ligaments. Specifically, the inherent material properties of the tissue, rather than apparent 

structural properties, appear to mimic the functionality of these ligaments.  

 

This study had certain limitations. The strain data were obtained from the displacement 

measurements of the MTS. Given the small size of these ligaments, it was not possible to obtain 

the instantaneous strain by use of stereophotogrammetry, which would have provided a more 

resolute strain measurement. Another common method for gripping soft tissue involves the use 

of cryogenic fixation via clamps. However, because of the small size of these ligaments, use of 

cryoclamps was not a viable option. Gauge lengths were approximately 15 mm for the MC, LC, 

and PR ligaments and approximately 25 mm for the PU and AMC-V ligaments. Cryoclamps would 

introduce major temperature gradients across the midsubstance of these ligaments and cause 

considerable changes in the mechanical properties. The modes of failure indicated that of the 48 

specimens tested, 28 (58.3%) failed at midsubstance, 11 (22.9%) had avulsion failure, and 9 

(18.8%) failed at the bone-ligament interface. Most of the failures at the bone-ligament 
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interface were for the AMC-V ligament. This may have been attributable to technical difficulties 

encountered in aligning this ligament along its anatomic (tensile) axis. The high SD for the elastic 

modulus of the PR ligament could have been attributable to the fact that its cross-sectional area 

was too small to be measured with an area micrometer. Handheld Vernier calipers were used to 

determine the geometric area of these ligaments, which could have induced errors in 

measurement. Other important soft tissue structures in the canine antebrachium aid in the 

stability of the joint, such as the palmar fibrocartilage and the flexor retinaculum. Harvesting 

intact specimens of these structures is inherently challenging; therefore, they were not included 

in this study. The triangular fibrocartilage and the interosseous ligament, which provide 

important stabilization of the antebrachial region should be evaluated for their mechanical 

properties. Analysis of the results obtained indicated a strong relationship between ligament 

function and elastic modulus. Because the stiffness coefficient does not take into account the 

geometry of a specimen, a relation between ligament function and stiffness cannot be expected. 

Such differences in the mechanical properties among ligaments would result in substantial 

improvements in the accuracy of a canine antebrachium finite element model. A finite element 

model will have applications in optimizing the design of endoprosthetic implants for limb 

salvage after resection of primary osteosarcoma of the distal portion of the radius. It can also be 

used when designing focused experiments to assess modifications to surgical techniques. There 

are conflicting opinions on the role of preservation or resection of the distal portion of the ulna 

in stability of the carpal region after limb-salvage surgery and use of an endoprosthesis or 

allograft, as determined on the basis of biomechanical and clinical evaluation. The closest 

oncologic margin in many dogs with osteosarcoma of the distal portion of the radius is at the 

radioulnar articulation; hence, resection of the distal portion of the ulna is preferable from a 

surgical perspective because a wide surgical margin can be obtained. The distal portion of the 



32 

 

ulna provides an insertion site for the LC, radioulnar, and PU ligaments. It also articulates with 

the distal portion of the radius, accessory carpal bone, and ulnar carpal bone. There is a nearly 

equal distribution of axial load at the proximal ends of the radius and ulna [4]. Hence, from a 

biomechanical standpoint, the ulna appears to play a major role in load transmission. The 

importance of the ulna after limb-salvage surgery can be assessed by use of a finite element 

model of the antebrachium.  

 

A total of 48 specimens of canine carpal ligaments were tested to obtain material properties, 

such as stiffness and elastic modulus, for use in development of a finite element model of the 

canine carpal joint. Quasi-static tensile tests were performed, and analysis of the results 

obtained indicated a strong function-elastic modulus relationship in the 6 ligaments evaluated. 

Future studies should evaluate the microstructure-function relationship by measuring total 

collagen content or determining the diameter of collagen fibrils by use of established protocols. 

  



 

4 Model Development

In order to evaluate the current endoprosthesis and facilitate novel designs

sparing, a finite element model of the canine antebrachium was developed

tomography data.  

4.1 Model Generation

4.1.1 Geometry 

4.1.1.1 Bony Geometry 

The bony geometry for the canine forelimb finite element model w

image data. To this end, qCT images of the forelimb of a 38Kg Chesapeake Bay retriever were 

obtained. The forelimb was scanned at 1.0mm longitudinal resolution with 0.5mmx0.5mm 

transverse (in-plane) resolution. The im

image segmentation software
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Model Development 

In order to evaluate the current endoprosthesis and facilitate novel designs

a finite element model of the canine antebrachium was developed

Model Generation 

 

 

The bony geometry for the canine forelimb finite element model was based on cadaveric CT 

data. To this end, qCT images of the forelimb of a 38Kg Chesapeake Bay retriever were 

obtained. The forelimb was scanned at 1.0mm longitudinal resolution with 0.5mmx0.5mm 

resolution. The images were then imported into a commercial

image segmentation software (AMIRA Visage Imaging, Inc., San Diego, CA) [Figure 

Figure 16-Segmentation of cortical bone in AMIRA. 

In order to evaluate the current endoprosthesis and facilitate novel designs for canine limb-

a finite element model of the canine antebrachium was developed using computed 

as based on cadaveric CT 

data. To this end, qCT images of the forelimb of a 38Kg Chesapeake Bay retriever were 

obtained. The forelimb was scanned at 1.0mm longitudinal resolution with 0.5mmx0.5mm 

commercial medical 

Figure 16]. 
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Owing to the complicated geometry and contact surfaces present in the phalangeal region of 

the canine forelimb the model was limited to the antebrachial, carpal and the metacarpal 

regions. Furthermore, the first metacarpal bone, which provides no significant contribution to 

the biomechanical stability of the carpo-metacarpal joint was excluded. In the end, the model 

consisted of thirteen bones (radius, ulna, seven carpal bones and four metacarpal bones).  The 

exterior cortical shell for all bones was segmented by querying the Hounsfield unit (HU) 

attenuation values. A minimum thickness of two voxels was imposed for the cortical shell at all 

metaphyseal regions of long bones in order to reduce future computational complications. All 

voxels on the exterior with intensity values greater than 1000HU were deemed cortical bone. 

Since there exists overlap of intensity values between cancellous and trabecular bone, 

completely automated thresholding of cortical bone could not be performed. The threshold 

values for cortical bone ranged between 530-2109 HU. The remaining voxels within the 

metaphyseal regions of long bones were labeled as trabecular bone. The diaphyseal regions of 

long bones were left empty due to the absence of cancellous bone in these marrow regions. 

Owing to the difficulties of separating out trabecular bone in the small carpal bones, all voxels 

present were labeled as cortical bone. Initially, all bones were meshed with tetrahedral 

elements using the automated mesh generator in AMIRA. Each of these tetrahedral elements 

were then divided into four hexahedral elements using a custom-written program [Wes 

1 2 3 

Figure 17-Three models of the canine forelimb with increasing mesh resolutions. 1) 150785 elements 2) 288735 

elements 3) 432161 elements. 
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Womack, OBRL]. However, the extremely skewed geometry of these elements was deemed to 

be detrimental for contact resolution. Hence, surface data in the form of STL Files from AMIRA 

were imported into TrueGRID (XYZ Scientific Applications, Inc., Livermore, CA), a hexahedral 

mesh generating software program. Care was taken to ensure optimal mesh resolution at all 

contacting surfaces. A total of three models of increasing mesh resolution were generated for 

the purposes of establishing convergence [Figure 17].  

4.1.1.2 Articular cartilage 

Since no published data exists regarding the spatially varying thickness of articular cartilage in 

the canine carpal joint, cartilage was extruded as a three-element thick layer from all 

osteochondral surfaces with a constant thickness. The articular cartilage at the distal end of the 

radius was ascribed a thickness of 0.6mm. The cartilage on the radial carpal bone was assigned a 

thickness of 0.5 mm. All other cartilage was assigned a thickness of 0.2 mm. Care was taken to 

ensure no overlap of cartilage elements occurred between any articulating surfaces.  

4.1.1.3 Ligaments 

Ligaments were modeled as one-dimensional, non-linear spring elements [Figure 18]. The origin 

and insertion points of all ligaments were determined by comparison to published anatomical 

data [3]. A custom MATLAB (The Mathworks Inc., Natick, MA) program ensured accurate 

placement of ligaments for all three models. After accurate positioning of all ligaments in the 

mid-resolution model the program recorded the three-dimensional positions of all ligament-

insertion nodes and detected the closest corresponding nodes in the target model.  
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Figure 18-Ligaments represented as nonlinear one-dimensional spring elements (arrows). 

4.1.2 Material Properties 

4.1.2.1 Cortical and Trabecular Bone 

Because the primary loading of all bones in the canine forelimb is in the axial direction both the 

cortical and trabecular bone were modeled as linearly elastic and isotropic [14]. The Young’s 

modulus of cortical bone was set at 15GPa with a Poisson’s ratio of 0.3. The Young’s modulus of 

trabecular bone was set at 4000MPa with a Poisson’s ratio of 0.3. Since all carpal bones had 

minimal amount of trabecular bone and the long bones had trabecular bone only in the 

metaphyseal region it was concluded that custom-designed trabecular bone properties using 

qCT attenuation values, would provide an insignificant, yet time-consuming, result on the model 

predictions. 
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4.1.2.2 Articular Cartilage 

Articular cartilage was modeled as a Mooney-Rivlin hyperelastic material [Figure 19]. The 

specific coefficients are provided in Table 2 where the C01 and C10 define the deviatoric response 

of the material and D defines the volumetric response of the material. The slope in the 

operating range of the nonlinear curve was approximated to be 15MPa. This value was based on 

the Young’s modulus of human knee cartilage [35, 92] since no literature exists that has 

investigated the compressive mechanical properties of articular cartilage in the canine carpal 

joint. Considering the short time scales involved in the loading of cartilage within the carpal 

joint, a single phase representation was deemed appropriate [14].  

 

Figure 19-Nonlinear hyper elastic material behavior applied to all cartilage layers. 

    

C10 C01 D1 

0.22MPa 2.5MPa 0.06 

Table 2-Mooney-Rivlin coefficients for the hyperelastic cartilage behavior used in this model (D1 is 

unitless). 
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4.1.2.3 Ligaments 

Force-displacement data is required to model ligaments as nonlinear springs in ABAQUS. For the 

six important stabilizing ligaments described, the data were obtained from uniaxial tensile tests. 

The toe region was also included in the force-displacement data for all six ligaments, and the 

ligaments were constrained to support no load under compression [Figure 20]. The remaining 

ligaments excluding the interosseous ligament were also modeled as nonlinear springs which did 

not support load under compression. The interosseous ligament was modeled as a linear spring 

with a high stiffness coefficient (k=100000N/mm) to represent the extremely stiff nature of this 

ligament. 

 

Figure 20-Non-linear force-displacements curves for the six primary carpal ligaments obtained from in vitro 

experiments. 

 

4.1.2.4 Endoprosthesis 

The spacer, DCP and cortical screws were made of stainless steel grade 316L. The Young’s 

modulus was set at 193GPa and the Poisson’s ratio was defined as 0.3 for all three parts. 
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4.2 Model Convergence 

A total of three models with increasing mesh resolution were created using TrueGrid and 

ABAQUS. The total number of elements ranged from 150785 to 432161 and the total number of 

nodes ranged from 215320 to 589367 [  

Figure 21]. Model convergence was examined throughout the complete load range. The 

parameters examined were bone strains (proximal [location 1], mid-diaphyseal [location 2] and 

distal [location 3] regions of the radius and the mid-diaphyseal region [location 4] of the ulna) 

[Figure 27], total area in contact within the radiocarpal joint and displacement of the radial 

carpal bone. The convergence data summary is provided in Figure 22 as a percentage difference 

as compared with the high resolution model and data over the full load range is provided in 

Figure 23, Figure 24, Figure 25 and Figure 26 for the medium and high resolution models. The 

convergence threshold was set at 10%.  

  

Figure 21-Convergence model parameters. 

 
Location 1 (Strain) Location 2 (Strain) Location 3 (Strain) Location 4 (Strain) Radial Carpal Bone 

Strain 

Energy 

Mesh 
Maximum 

Principal 

Minimum 

Principal 

Maximum 

Principal 

Minimum 

Principal 
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Principal 

Minimum 

Principal 

Maximum 

Principal 

Minimum 

Principal 

Contact 

Area 

Displacement Whole 

Model 

Mid 7.9% 12.66% -5.18% -6.94% 4.38% 11.55% 4.99% 3.5% -0.712 -1.68% 7.05% 

Figure 22-Convergence data summary. All values are presented as percentage difference compared to the high 

resolution model. 
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For the medium resolution model, all parameters were with the 10% threshold, except the 

minimum principal strain predictions at the distal and proximal regions of the radius. These 

locations were observed to have significant strain gradients. Owing to the coarse mesh of the 

low resolution model, contact convergence was difficult to achieve. Hence, the low resolution 

model was not included in this study. 

Inter-model variability in the maximum principal strains for all four investigated locations was 

within 7.9%. The displacement of the radial carpal bone was within 1.68% and the total area in 

contact for the radiocarpal joint (radius and radial carpal bone) was within 0.72%. The total 

strain energy of the medium resolution model was within 7.05% of the high resolution model 

predictions. Based on the above presented convergence data, the medium resolution mesh was 

considered converged for the parameters being investigated. 

 

Figure 23-Principal strains at location 1. 
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Figure 24-Principal strains at Location 2. 

 

Figure 25-Principal strains at Location 3. 

-2.00E-04

-1.00E-04

0.00E+00

1.00E-04

2.00E-04

3.00E-04

4.00E-04

5.00E-04

0 50 100 150 200 250 300 350 400 450

S
tr

a
in

 (
m

m
/m

m
)

Force (N)

Principal Strains (Location 2)

Maximum Principal (High)

Minimum Principal (High)

Maximum Principal (Mid)

Minimum Principal (Mid)

-1.00E-04

-5.00E-05

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

0 50 100 150 200 250 300 350 400 450

S
tr

a
in

 (
m

m
/m

m
)

Force (N)

Principal Strains (Location 3)

Maximum Principal (High) Location 3

Minimum Principal (High) Location 3

Maximum Principal (Mid) Location 3

Minimum Principal (Mid) Location 3



42 

 

 

 

Figure 26-Total contact area for the radiocarpal joint. 

 

4.3 Model Validation 

4.3.1 Cadaver Experiments 

Eight forelimbs were obtained from the Colorado State University’s Veterinary Teaching Hospital 

for the purposes of model validation. All extraneous soft tissue was excised from the limbs. Care 

was taken to not damage any tendons which support load under extension. Care was also taken 

to not damage any ligaments present in the carpal joint. The cranial surfaces of both the radius 

and ulna were cleared of any soft tissue to attain a clean surface for strain gauge attachment. 

The strain gauges were used to measure surface strain at three locations (proximal, mid-

diaphyseal, distal) on the radius [Figure 27] and the mid-diaphyseal region on the ulna [Figure 

27]. The distal ends of metacarpals II-IV were potted in polymethylmethacrylate.  
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Figure 27-Location of strain gauge rosettes on the radius and ulna. 

 

 

Figure 28-Construct for testing of canine forelimbs (H=Humerus, C=Radius, P=Bottom potting box). 
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The humerus was freed of any extraneous soft tissue and muscle attachments and was potted in 

a 2 inch diameter Poly Vinyl Chloride (PVC) pipe. The complete construct was fixed in a custom-

designed apparatus for testing canine forelimbs [57] [Figure 28]. The angle between the 

antebrachial region and the humerus was set at 135 degrees with the aid of a goniometer. The 

angle between the metacarpal region and the antebrachial region was set at 10 degrees (from 

vertical) of extension [93]. Motion analysis marker triads were attached at the mid-diaphyseal 

region of the radius and the mid-diaphyseal region of the metacarpal-III bones to measure 

relative motion between the two regions. A single marker was attached to the caudal end of the 

radial carpal bone to measure its total displacement through the loading cycle. The limb was 

loaded to 110% BW, which is the load observed in the forelimb at trot [81]. A total of two 

loading regimes were established for each forelimb tested. The forelimb was first loaded with all 

extensor tendons intact. In the second regime all tendons supporting load under extension were 

resected. This was performed since the finite element model did not include any of these 

tendons. The specimen was hydrated with liberal saline spray at every 15 minute intervals. All 

data was collected at a frequency of 60Hz.  

4.3.2 Validation Results and Discussion 

Several studies have reported the development of finite element models of the human wrist 

joint [60, 62, 65, 68]. However, most of these studies fail to report any validation data which is a 

crucial step in the development of any finite element. It is generally agreed that complete 

validation of any biological finite element model is impossible. Specifically, the model must be 

validated for the parameters being investigated in order to establish confidence in the model’s 

predictions.  
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The validation parameters investigated in this study were: bone surface strains and radial carpal 

bone motion. 

The results comparing surface principal strains obtained from the validation experiments and 

the model can be seen in Figure 29. A 4x4 array of nodes were selected from the model in the 

approximate area where the experimental strain gauges were attached. The strain predictions 

for each of the 16 nodes were then averaged for comparison with the experimental results. The 

error bars for model predictions in Figure 29 represent the standard deviation of the 16 nodes 

probed from the model. All strain predictions fell within one standard deviation of the 

experimental strain results with the lone exception being strain gauge #3. Previous studies have 

measured in vivo strains at the mid-shaft of the radius. Turner et al. [94] investigated the high 

frequency components of bone strain for dogs at a walk. However, they report peak microstrain 

values for only a single dog. Coleman et al. [95] report in vivo strain values of 1000 microstrain 

at the mid-shaft of the radius. Again, this value is for a single dog. Both these studies do not 

provide strain values over a statistically significant canine population and hence the data cannot 

be directly compared to those obtained in this study.  The distal radius cranial surface has a 

significant strain gradient and owing to the difficulties associated with finding the exact location 

of the strain gauges in the model the strain gauge 3 predictions did not fall within one standard 

deviation of the experimental results. It is to be noted that the experimental strain values were 

obtained from the excised tendons loading regime. These strain values tended to be lower as 

compared to the intact values indicating the significant contribution of tendons to bone strain.  

Comparison of minimum principal strain predictions between the model and the experimental 

results is shown in Figure 30.  The difference in maximum principal strain values between 
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loading the specimen in the intact condition as compared to all extensor tendon resection is 

shown in Figure 31.  

  

Figure 29-Comparison of strain predictions from the model with values from the validation experiments. 

Interestingly, a decreasing trend in the values of maximum principal strains was observed for 

the strain gauges on the radius, while the maximum principal strain values increased at the mid-

diaphysis of the ulna, indicating a biomechanical change in the joint after tendon resection.  

The displacement of the radial carpal bone predicted by the model was within one standard 

deviation of the experimental results. The model predicted a displacement of 11.45mm and the 

average±SD value obtained from the validation tests was 10.1±1.55mm.  
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Figure 30-Comparison of minimum principal strain predictions from the model with values from the validation 

experiments. 

 

Figure 31-Comparison of maximum principal strains between the two loading regimes (Intact Vs. Tendon 

Resection). 
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5 Evaluation of Current Generation Endoprosthesis 

5.1 Introduction 

The design process for the current generation endoprosthesis skipped the crucial step of 

computational model evaluation. Biomechanical cadaveric testing is an important step in 

implant evaluation. However, it can only provide knowledge regarding the global failure 

mechanisms of the implant and cannot provide specific stress values and locations of high 

stresses which could be crucial in determining the efficacy and stability of the implant. 

Computational modeling is a very useful tool in comprehensively evaluating the proposed 

design before biomechanical testing is performed.  

Results from the biomechanical cadaveric testing of the current generation endoprosthesis did 

not predict failure within the radial or metacarpal screws [57]. A quasi-static ramp to failure test 

predicted failure of the dynamic compression plate in most cases and metacarpal screw pullout 

in the rest. Based on the results obtained in the biomechanical study, the endoprosthesis was 

recommended for clinical trials. However, the effects of long-term cyclic loading on this implant 

were not investigated.  The results for the clinical trials conducted with this current generation 

endoprosthesis yielded different results. In no cases was bending of the plate observed. 

Proximal radial screw pullout or complete shear failure was observed in all cases of construct 

failure indicating the mechanism of failure was fatigue loading as compared to trauma.  

The mechanical underpinning of clinical failures observed with the implant could not be 

conclusively determined from the biomechanical testing results. Successful design of a new 

endoprosthesis could not be achieved without determining the exact structural causes for 

failure of the current generation endoprosthesis. To this end, the validated and converged 

model of the canine antebrachium was used in evaluating the current implant. The results 

obtained would be essential in the development of the new endoprosthesis.    
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5.2 Model Development 

The geometry of the 2
nd

 generation endoprosthesis was obtained from engineering drawings. 

Since no engineering drawings were available for the dynamic compression plate (DCP), the 

dimensions were obtained by the use of Vernier calipers. The normal angle between the 

antebrachial and metacarpal region when the dog is standing is 10 degrees (with respect to the 

vertical) in extension [93]. Hence, the DCP was implanted with a 10 degree angulation at the 

radiocarpal junction. Both the spacer [Figure 32] and the DCP [Figure 33] were modeled in 

ABAQUS and meshed with linear hexahedral elements.  

 

Figure 34-Radius with holes created in TrueGrid for insertion of proximal screws. 

Figure 32-Endoprosthesis spacer. Figure 33-Dynamics Compression Plate (DCP). 

170° 
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Three models of the spacer were developed for determining convergence. Potential areas of 

failure were investigated by evaluating the endoprosthesis spacer under a load of 400N in 

compression. The cortical screws were also modeled in ABAQUS. Since we were only interested 

in the global mechanical behavior of the endoprosthesis, threads on the cortical screws were 

not modeled. A typical surgical limb salvage protocol requires 50% of healthy bone (radius) to be 

present. Hence, the radius was resected by 50% from the distal end by deleting the 

corresponding elements. Screw holes in the radius were created using TrueGrid by deleting 

elements and projecting the ensuing element faces to a cylindrical surface with a radius of 

3.5mm [Figure 34]. 

 Figure 35-Final model incorporating the current endoprosthesis construct. 
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Figure 36-Non-locking plate and screw design used for evaluating the current generation endoprosthesis. A 

coefficient of friction value of 0.25 was set between the plate and screw heads. 

The complete construct [Figure 35] was imported into ABAQUS and incorporated with the intact 

canine forelimb model. To simulate fusion of all carpal bones, the ligaments connecting these 

carpal bones were given a high spring stiffness coefficient (k=10,000N/mm). The screw 

insertions in the metacarpal-III bone were simulated using tie constraints. To simulate complete 

union between the screws inserted in the proximal radius a friction coefficient of 0.99 was 

established between the two contacting surfaces. The friction coefficient between the screw 

heads and the non-locking plate was set at 0.25 [96] [Figure 36].  

The effect of using a locking plate in place of the current non-locking plate was also investigated. 

A tie-constraint between the screw heads and plate simulated the locking mechanism. The 

effect of distal support to the endoprosthesis was also examined. Support at the distal end of 

the spacer was simulated with a tie constraint between the spacer and the proximal surface of 

the radial carpal bone. 
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Figure 37-An ulnar pin was inserted to evaluate the possible biomechanical contribution of the ulna. 

The effect of providing ulnar support was investigated by inserting a pin through the ulna and 

carpal bones [Figure 37]. All models were loaded to 110% BW in axial compression, which 

equated to 400N for a 38Kg dog. 

5.3 Endoprosthesis Evaluation Results 

A maximum von Mises stress of 405.3MPa was predicted within the proximal radial screws for 

the model with a non-locking plate construct. Ignoring stress concentrations arising from point 

contact between the screw head and the dynamic compression plate, a maximum average 

stress of 210MPa was predicted at the third radial screw [Figure 38]. The maximum stress 

predicted in the radius bone was 559MPa [Figure 39]. The maximum von Mises stress prediction 

within the distal metacarpal screws was 128MPa [Figure 40] and within the 3
rd

 metacarpal was 

76MPa [Figure 41]. The maximum von Mises stress prediction within the screws connecting the 

metal endoprosthesis spacer to the dynamic compression plate was 340.7MPa [Figure 42]. The 
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endoprosthesis spacer reported a maximum von Mises stress of 124.1MPa [Figure 43]. The 

maximum von Mises stress within the dynamic compression plate was 126.2MPa [Figure 44].  

 

Figure 38-von Mises stress distribution within the proximal radial screws. Arrow indicates location of maximum 

stress (405.3MPa). 

 

Figure 39-von Mises stress distribution within the radius. Arrow indicates location of maximum stress (559MPa). 
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Figure 40-von Mises stress distribution within the distal metacarpal screws. Arrow indicates location of maximum 

stress (128MPa). 

 

Figure 41-von Mises stress distribution within the 3rd metacarpal bone. Arrow indicates location of maximum 

stress (76MPa). 
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Figure 42-von Mises stress distribution within the endoprosthesis spacer screws. Arrow indicates location of 

maximum stress (340.7MPa). 

 

Figure 43-von Mises stress distribution within the endoprosthesis spacer. Arrow indicates location of maximum 

stress (124.2MPa). 
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Figure 44-von Mises stress distribution within the dynamic compression plate. 

 

For the model with the locking plate construct the maximum von Mises stress predicted within 

the proximal radial screws decreased slightly to 397MPa as compared to the non-locking 

construct. The maximum stress within the radius remained similar (574MPa). The maximum 

stresses within the distal metacarpal screws decreased by 20MPa to a value of 109.7MPa as 

compared to the non-locking plate construct.  Stresses within the spacer screws decreased to 

299.9MPa (340MPa). The maximum stresses within the endoprosthesis spacer were predicted 

to be 114.4MPa. A comparison of maximum stress predictions between the locking and non-

locking plate constructs is shown in Figure 45.  
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Figure 45-Comparison of von Mises stress predictions between the non-locking and locking constructs. 

 

5.4 Discussion 

High stresses (maximum von Mises stress = 559MPa) were observed at the bone-screw interface 

in the proximal radius. High bending stresses (maximum von Mises stress = 405 MPa) were also 

observed within the radial screws. Considering the fatigue limit of 316L stainless in the body 

environment is 200MPa for 10 million cycles [74] of loading the predicted stresses are too high 

for sustained performance of this endoprosthesis. Furthermore, the predicted maximum 

stresses are close to the reported yield stress of 316L stainless steel of 695MPa, which can be 

easily approached or exceeded under an impact loading scenario. The observed failure of the 

proximal screws in the clinical setting is congruent with the findings in this finite element study. 
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Due to the offset loading of the construct, bending of the DCP was also observed. A maximum 

displacement of 0.57mm was observed at the distal end of the radius.  

The removal of distal support to the spacer tended to mitigate the stresses at the bone-screw 

interface (a decrease of 19%). However, the stresses within the screws remained unchanged 

indicating that ensuring support at the distal end of the prosthesis cannot guarantee the 

stability of the implant. The addition of distal ulnar support also greatly reduced the stresses at 

both of these locations. The stresses at the bone-screw interface were reduced by 28% while 

the stresses within the radial cortical screws were decreased by 26%. However, in many cases 

the ulna has to be necessarily resected to stem the propagation of metastasis. Hence, this 

solution cannot be recommended for the current generation implant. The use of a locking plate 

in place of the current non-locking plate did not induce a significant change in the stresses 

observed at the bone-screw interface (574MPa) or within the radial screws (404MPa). However, 

a greater dissipation of stress was observed in the proximal radius around the screw holes [ 

Figure 46]. This is consistent with the observed clinical effects with the use of a locking plate and 

constitutes a major rationale for recommending implantation of locking plate constructs for 

osteoporotic patients. The clinical study which evaluated the first generation endoprosthesis 

reported the major causes of failure were screw pullout and shear failure of the cortical screws. 

This prospective clinical study conducted by Liptak et al. [56] reported 40% failure rate for dogs 

(n=10) implanted with the first generation endoprosthesis. All implant failures were associated 

with screw loosening in the proximal radius. The most severe case had shear failure of all five 

proximal screws within the radius. The high stresses predicted by the model in the proximal 

radius bone-screw interface are congruent with the screw loosening observed clinically. 
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Furthermore, the high stresses predicted within the radial screws are in line with the shear 

failure of these screws observed in the clinical milieu. 

 

Figure 46-Greater stress dissipation can be observed within the radius for the locking plate construct (B) as 

compared to the non-locking plate construct (A). 

  

A B 
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6 Novel Endoprosthesis Design 

6.1 Introduction 

Novel design strategies of limb sparing prostheses for human osteosarcoma patients have been 

well documented. However, the design methodologies employed in the development of canine 

distal radius osteosarcoma limb sparing implants have not been widely reported. A particular 

second generation endoprosthesis design for canine limb sparing is based on the cortical 

allograft implant used by oncology surgeons at the Colorado State University Veterinary 

Teaching Hospital. The massive cortical allograft was replaced by a replica metal spacer attached 

to an identical dynamic compression plate.  Unfortunately, a comprehensive and rigorous 

engineering-based design procedure was not employed during its development. The results 

from an extensive computational modeling-based evaluation of the 2
nd

 generation 

endoprosthesis (Chapter 5) mirrored the unfavorable results observed clinically [56], thus 

emphasizing the need for an engineering-specific approach in the design of the next iteration of 

this limb-sparing endoprosthesis.  

Diverse limb-sparing strategies have been employed in the treatment of distal radius 

osteosarcoma [97, 98], which deviate from the conventional compression plate and 

allograft/metal spacer approach [48, 56]. Séguin et al. [97] investigated the use of an ipsilateral 

vascularized ulnar transposition autograft for limb sparing in two dogs. Ehrhart et al. [98] have 

investigated the use of transverse ulnar bone transport distraction osteogenesis for limb-

sparing, which inherently requires multiple daily distractions and an external ring fixator. Both 

techniques provide a viable alternative; however, these techniques also require a highly-skilled 

team of surgeons and involve complicated post-surgical procedures. Development of a metal 

endoprosthesis with efficient implementation schema can potentially reduce the costs 
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associated with expensive external fixator equipment, extensive clinician training and bone bank 

maintenance and inventory. 

6.1.1 Locking Vs. Non-locking Plates 

Conventional non-locking plates rely on completely different biomechanical principles for 

fracture healing as compared to locking plates [99]. When loaded axially, non-locking plates 

create significant shear stresses at the plate-bone interface [99]. Resultantly, non-locking plates 

require 2000-3000N of compressive contact force with the underlying bone surface during 

implantation [100, 101]. This is achieved by applying 3.5-5Nm of insertion torque to each of the 

non-locking screws [99]. Due to these high compressive forces, one of the major drawbacks of 

non-locking plates is the loss of periosteal perfusion under the compression plate, which can 

lead to bone and periosteum necrosis and resorption. Clinically, radiolucency at the screw 

threads is commonly seen, with concomitant loosening of the screws and plate. Additionally, 

non-locking plates perform poorly when implanted in patients with osteoporotic bone [102] due 

to compromised screw purchase and their reliance on the shear forces generated between bone 

and screws for stability.  

Locking plates provide a single beam construct (no motion between the individual components 

of the beam) when used for fracture fixation [99, 101]. It has been shown that a single-beam 

construct can provide four times more strength as compared to non-locking plate constructs 

[99]. Locking plates reduce the relevant shear stresses by placing compressive stresses at the 

screw-bone interface. This results in a stronger construct since bone can withstand more load 

under compression [101]. Thus, locking plates also perform better when used with osteoporotic 

bone [103]. Furthermore, periosteal perfusion is left unhindered since locking plates do not rely 

on frictional contact with the underlying bone to achieve stability. An intact periosteal blood 
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supply system is necessary for rapid bone healing and is proposed to play a role in the decreased 

incidence of infection seen with locking plate constructs [100].  

Another major difference between the two plate designs is the mode of fracture healing. 

Conventional non-locking plate constructs are stiffer, which translates to greater 

interfragmentary stability (< 2% strain). The resulting healing pathway is commonly devoid of an 

endochondral ossification mechanism and intramembranous ossification of the fracture is the 

normal functional outcome. Locking plates are more flexible (< 10% strain) as compared to non-

locking plates resulting in indirect bone healing including the formation of a callus [101, 104]. A 

comprehensive study of the locking compression plate by Stoffel et al. [105] recommends at 

least three screws on either side of the fracture site (in the present study, this would equate to 

the carpal joint space) for added rigidity. For gap sizes larger than 6mm, the placement of the 

innermost screws should be as close as posssible to the fracture site (joint space). 

6.1.2 Locking & Non-locking Screws 

Multiple options are available for cortical screws for use in conjunction with a locking 

compression plate (LCP). An LCP can accommodate both locking and non-locking screw designs. 

Multiple studies [102, 103, 106] have investigated the use of hybrid locked plating (non-locking 

and locking screws used together[107]) in lieu of conventional dynamic compression plate (DCP) 

(which employs only non-locking screws). A comprehensive fatigue analysis of non-locking 

cortical screws by Zand et al. [108] reported that failure occurred most commonly at the root of 

the thread in the interface between the plate and bone. This was observed with the current 

generation endoprosthesis, which used non-locking bicortical screws. The use of locked hybrid 

bicortical fixation increases the implant stability significantly as compared to an unlocked 

bicortical configuration under anteroposterior bending loads [106].  
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6.2 Preliminary Design Iterations (Methods and Preliminary Results) 

 

For reducing the computational time involved in testing various design iterations, simplified 

models of idealized 3
rd

 metacarpal and radius bones were created [Figure 47].  The initial 

proposed designs for the endoprosthesis are shown in Figure 48 & Figure 49.  

The intramedullary stem approach in Design #1 attempted to remove the off-axis loading 

observed in the earlier endoprosthesis. An intramedullary stem theoretically provides a higher 

area in contact with the native bone, and thus, should be capable of supporting more load. The 

stem was designed to be fixed to the bone by the use of intramedullary nails similar to those 

used in tibial reconstructions.  

 

Figure 48-Proposed initial design 1 for the endoprosthesis. 

Figure 47-Idealized representations of the radius and 3rd metacarpal bones. 
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The collar approach (Design #2) attempted to reduce the load on the proximal radial screws by 

providing an additional plate on the opposing side. This was intended to eliminate the relatively 

high cantilever loading, as was observed in the earlier endoprosthesis design. The collar also 

eliminated excessive rotation of the radius and also provided support at the distal end of the 

radius.  

Both these designs retained the plate feature at the distal end of the implant. This was justified 

by the low stresses observed in this region during evaluation of the current generation 

endoprosthesis. Furthermore, limited joint space in the carpo-metacarpal region was not 

conducive to major design changes in this area.  

An investigative team consisting of Dr. Puttlitz, Dr. Stewart Ryan and Dr. Nicole Ehrhart was 

established for obtaining a combined engineering (Dr. Puttlitz) and clinical (Dr. Ryan & Dr. 

Ehrhart) perspective. The two proposed designs were presented to the investigative team. The 

issues noted by the team for design #1 were its inability to achieve consistent orientation with 

the radius and the lack of a modular design. Significant size variability of the radial 

intramedullary canal among the various dog breeds was also a concern. Design #2 shortcomings 

Figure 49-Proposed initial design 2 for the endoprosthesis. 
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were the lack of space between the radius and ulna for inserting the collar. Also, anticipated 

difficulties associated with accommodating breed size variation and the lack of a modular design 

were a concern. The following were requirements set by the surgeons on the investigative team: 

1. Modular design 

2. Ease of alignment between the proximal radius section and the carpus 

3. Stress reduction within the radial screws 

After recommendations from the VTH oncology surgeons, the next iteration merged the two 

concepts. This iteration is shown in Figure 50. It incorporated a modular design as required by 

the surgeons. The primary components consisted of three independent parts namely, the 

proximal endoprosthesis component (PEC), the mid-diaphyseal endoprosthesis component 

(MEC) and the distal endoprosthesis component (DEC). 

  

Figure 50-First iteration based on requirements of the oncology surgeons. 
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As can be seen in Figure 50, the distal endoprosthesis component (DEC) was designed with a 10 

degree bend to mimic the physiological position of the canine radiocarpal joint at maximum 

extension. The DEC plate was designed with six distal locking screw holes (2.7 mm cortical 

screws) for fixation with the 3
rd

 metacarpal and a proximal screw hole (3.5 mm cortical screw) 

for radial carpal bone fixation. The proximal endoprosthesis component (PEC) consisted of an 

intramedullary stem and a 180 degree wrap-around plate with locking screw holes at 45 degrees 

with respect to the sagittal plane of the radius. It also included a lip to provide added stability to 

the proximal end of the resected radius.  

 

Figure 51-Lip (arrow) provided at the distal end of the PEC for added stability of the distal end of the radius. 

The complete construct [Figure 52] was evaluated at a load of 1000N. All threaded interfaces 

were simulated by establishing contact with a coefficient of friction of 0.99 signifying complete 

union. The distal end of the 3
rd

 metacarpal was fixed in place. The radial carpal screw was also 

inserted in place. It, however, did not provide any support to the construct other than alleviating 

stress concentrations at the plate-screw interface.  
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Maximum von Mises stresses of 430MPa were observed within the metacarpal screws. The 

proposed design for the PEC was successful in eliminating high stresses within the proximal 

radial screws. The maximum stress observed within these screws was 83MPa (at 1000N of axial 

load). All other components reported peak stresses below 83MPa.  

Based on these preliminary results, the proposed designs for the PEC and the mid-diaphyseal 

endoprosthesis component (MEC) were deemed acceptable for implantation in the intact 

forelimb model. It was observed that the 10 degree bend incorporated in the DEC was causing 

significant offset loading, resulting in unacceptably high bending stresses (430MPa) within the 

distal screws. A second model of the DEC with zero degrees of extension was created [Figure 53]. 

Evaluation of this model reduced the maximum stress prediction within the distal screws to 

310MPa (at 1000 N), a value that is well under the reported yield strength of 316L (695MPa).  

Figure 52-Implant evaluated using the idealized bone constructs. 
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Figure 54-DEC with screws at a 15 degree angle (Iteration 3). 

A third iteration of the DEC tried to incorporate the alternating and off-axis screw design 

implemented in the PEC [Figure 54]. It was hypothesized that placement of the screws outside 

of the loading axis could potentially lower the stress predictions within the screws. The screws 

were placed at 15 degrees with respect to the mid-sagittal plane [Figure 54]. Owing to the small 

dimensions of the 3
rd

 metacarpal bone, a 45 degree offset (similar to the angle used for screw 

insertion in the PEC) was not clinically feasible from an implantation perspective. Additionally, 

Figure 53-DEC with a zero degree bend (Iteration 2). 



69 

 

this design failed to further reduce the stresses within the distal metacarpal screws. Therefore, 

iteration 2 of the DEC was chosen for further analysis using the intact canine forelimb model.  

6.3 Final Design Rationale and Evaluation 

6.3.1 Modular design 

It was determined that a modular design would facilitate continued development of the device 

and ease implantation of the endoprosthesis. Each module could be available in multiple sizes, 

which would accommodate the inherent variability of canine breed sizes. This modular aspect 

overcomes one of the main disadvantages of the older generation endoprosthesis, which was 

available in only two sizes, which did not encompass the diverse range of sizes seen in the 

canine population.  

The modular design was achieved by creating a three-part implant. It consisted of separate 

distal, proximal and mid-diaphyseal components. All components were designed with an 

elliptical profile to mimic the natural cross-sectional shape of the radius. Both the proximal and 

distal components were incorporated with a locking-screw design to reduce the stress profile 

within the bone. Locking screws were implemented to address the problem of screw loosening 

observed in older generation endoprostheses.  

The proximal endoprosthesis component (PEC) incorporated an intramedullary stem and a collar 

spanning 180 degrees of the cranial aspect of the radius [Figure 55]. The proximal radius screw 

holes were designed to be at 45 degrees on either side of the sagittal plane so as to place the 

screws away from the loading axis, thus reducing the offset bending loading on these implants 

[Figure 55]. The PEC also provided a flat surface for the distal radial surface to articulate with the 

native bone, thus providing an additional axial loading pathway and reducing stresses on the 

radial screws [Figure 55].  
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Figure 55-Final proximal component (PEC). 

The mid-diaphyseal endoprosthesis component (MEC) was designed to be simple with respect 

to its geometry so as to provide the most ease in manufacturing multiple sizes of the component 

[Figure 56]. This provides the surgeon with the ability to more accurately fit the endoprosthesis 

to the length of the patient’s limb. The MEC is rigidly fixed to the distal and proximal 

components with the use of 3.5 mm screws. 

 

Figure 56-Final mid-diaphyseal component (MEC). 
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The distal endoprosthesis component (DEC) [Figure 57] is designed similar to the distal portion 

of the 2
nd

 generation endoprosthesis since no significant mechanical stress issues were observed 

in this area as was documented in Chapter 5. 2.7 mm locking cortical screws are used owing to 

the small profile of the third metacarpal bone. A 3.5 mm screw hole is provided at the proximal 

end of the DEC plate to provide additional support through the radial carpal bone. 

 

Figure 57-Final distal endoprosthesis component (DEC). 

 

6.3.2 Ease of alignment between the proximal radius section and the carpus 

 

A clinically relevant problem associated with the second generation endoprosthesis was the 

intra-operative difficulty in obtaining proper alignment between the proximal radius and the 

carpus after tumor resection. To address this issue an intra-operative apparatus was designed to 

aid the surgeons in aligning the proximal radius and carpus [Figure 58].  

Radial carpal screw 

Zero degree bend 
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Figure 58-The intra-operative apparatus for installation of new endoprosthesis. 

The intra-operative apparatus consisted of three parts. The proximal apparatus component 

(PAC) replicated the collar design of the proximal component of the endoprosthesis. The PAC 

incorporated a sleeve with graded alignment holes which exactly corresponded to the holes on 

the distal apparatus component (DAC) [Figure 59a]. These holes were provided for exact 

alignment of the PEC and DEC in combination with the various sizes of the MEC. A set-screw was 

provided to hold the PAC and DAC together in place after proper alignment of the components. 

The apparatus was elevated in the diaphyseal section for ease of handling. The DAC replicated 

the design of the DEC. The DAC was also provided with a hinge [Figure 59b] to allow the surgeon 

to open the apparatus while keeping the PAC and DAC in place. This feature allowed the surgeon 

more space to perform resection of the radius without interference from the apparatus 

components. The intramedullary apparatus component (IAC) [Figure 59c] replicated the 

intramedullary stem of the PEC.  It enabled the surgeon to prepare the intramedullary canal of 

the radius (by use of reaming tools or hammering the IAC into place) to accurately fit the 
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intramedullary stem of the PEC. The IAC and PAC together created an exact replica of the PEC. 

The PAC also aided in drilling pilot holes for proper alignment of the PEC and DEC post-tumor 

resection. To this end, two pilot holes are provided proximally on the PAC and the PEC. During 

PEC implantation after tumor resection, these holes should be aligned exactly with the pilot 

holes in the radius, which are drilled previously with the help of the PAC.  

 

Figure 59-Individual components of the apparatus (A) PAC (B) DAC (C) IAC. 

6.3.3 Stress reduction within the radial screws 

The essential failing of the 2
nd

 generation endoprosthesis was the presence of high stresses 

within the radial screws. This was due to off-axis loading of the construct coupled with the high 

shear stresses observed by the screws due to the use of a non-locking plate design. For the 

development of a successful endoprosthesis these issues have to be resolved.  

In the current design, all screws were locking screws to reduce the shear stresses within the 

radial screws. The construct was now designed to be placed in-line with the loading axis of the 

radius, which ensures essential load distribution among the endoprosthesis components. Finally, 

the distal surface of the radius was fully supported by the PEC, potentially reducing the bending 

effects on the radial screws. 

A B C 
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6.3.4 Procedure for implantation of endoprosthesis 

The following gives a step-by-step procedure for implanting the endoprosthesis using the above 

mentioned endoprosthesis and apparatus components. 

1. After pre-operative radiographical evaluation of the cancerous forelimb, initial selection 

of the components (of the MEC in particular) is performed. 

2. The PAC and DAC are aligned with the radius and third metacarpal bones, respectively, 

and alignment holes are drilled.  

3. The apparatus is opened with the use of the hinge thus providing access to the radius. 

The radius is resected at the appropriate location. 

4. The IAC is used to prepare the intramedullary canal of the radius to accept the PEC 

stem. An additional reamer tool can be used if required. 

5. The PAC is removed and the PEC is fitted onto the radius while aligning it to the pre-

drilled holes.  

6. The DAC is removed and the DEC is fitted onto the third metacarpal. The DEC is fixed to 

the bone with the use of locking screws. 

7. The PEC is fixed to the radius with the use of locking screws. 

8. Finally, the MEC is fixed to both the PEC and DEC with the provided 3.5 mm screws. 

For a successful implant design, all components within the construct have to be evaluated for 

their contribution, efficacy and redundancy. We identified the following parameters using our 

developed and validated finite element model: 

1. The contribution of the intramedullary stem. 

2. The effect of various angle adjustments in the DEC. 

3. The effect of distal support to the DEC from the radial carpal bone. 

4. The contribution of the radial screw with respect to stress dissipation. 

5. The biomechanical contribution of the ulna. 
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The initial reference configuration for the complete construct included with the following 

contributions: 

1. Intramedullary support provided. 

2. Distal radius support provided. 

3. Ulna support not provided. 

4. Distal DEC support not provided. 

5. Radial carpal screw support provided. 

All locking interfaces were simulated with the use of tie constraints. Contact was established 

between all articulating surfaces of the implant with a coefficient of friction as 0.25 [96], and 

between the distal radius surface and the PEC with a coefficient of friction equal to 0.1. All 

metallic components were made from 316L stainless steel with a Young’s modulus of 193GPa 

and a Poisson’s ration of 0.3. All springs connecting the carpal bones were given a stiffness value 

of 110N/mm. The construct was implanted in the intact FE element model and loaded to 500N.  

6.4 Results 

Using the aforementioned reference configuration, predicted a maximum von Mises stress of 

216.9MPa was predicted at the most distal screw in the third metacarpal. The average von 

Mises stress within this screw was 110MPa, located between the plate and bone interface 

[Figure 60].  
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Figure 60-von Mises stress distribution in the distal metacarpal screws. Arrow shows location of 

maximum stress (216MPa). 

A maximum von Mises stress of 205.2MPa was observed within the proximal radial screws, with 

an average von Mises stress of 95MPa predicted for all proximal radial screws [Figure 61].  

 

Figure 61-von Mises stress distribution in the proximal radius screws. Arrow shows location of 

maximum stress (205MPa). 

The maximum von Mises stress in the radius was predicted to be 42.5MPa [Figure 62] and 

57.1MPa in the third metacarpal bone [Figure 63]. The maximum von Mises stress predicted in 
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the PEC was 59.33MPa [Figure 64] and 79.3 MPa in the MEC [Figure 65]. The maximum von 

Mises stress within the DEC was 54.62MPa [Figure 66]. The 3.5 mm screws connecting the MEC 

to the PEC and DEC had a maximum von Mises stress of 46.01MPa.  

 

Figure 62-von Mises stress distribution in the radius. Arrow shows location of maximum stress 

(42.5MPa). 

 

Figure 63-von Mises stress distribution in the 3
rd

 metacarpal. Arrow shows location of maximum stress 

(57 MPa). 
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Figure 64-von Mises stress distribution in the PEC. Arrow shows the location of maximum stress 

(59.33MPa). 

 

Figure 65-von Mises stress dsitribution in the MEC. Arrow shows location of maximum stress 

(79.3MPa). 
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Figure 66-von Mises stress distribution in the DEC. Arrow shows location of maximum stress (54.6MPa). 

Support to the distal end of the DEC was simulated with tie constraints between the DEC and 

the proximal surface of the radial carpal bone. This addition resulted in relatively small changes 

to the stress predictions among all the components. The maximum stress predictions within the 

various components are tabulated in  Figure 67. It also lists the change in stress predictions 

caused by preservation of the ulna during surgery.  

Removal of the intramedullary stem from the proximal component produced large changes in 

the von Mises stress predictions within the proximal radial screws. The peak stress predictions 

remained the same, however, high bending stresses were observed in the screw area between 

the plate and the radius [Figure 68]. 
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 Figure 67-Comparison of peak von Mises stresses for three support conditions (Reference, distal 

support, ulnar support). 

 

 Figure 68-High bending stresses (arrows) due to removal of intramedullary stem support (167.6MPa). 

 

6.4 Discussion 

The major contributing factors for the failure of the 2
nd

 generation endoprosthesis were 

loosening and fatigue failure of the proximal radial screws [56]. This prosthesis was 

comprehensively investigated using our computational model in the fifth chapter of this 
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dissertation. Other potential areas of improvement (as outlined by the CSU veterinary surgeons) 

were creation of a modular implant for addressing a broader range (size) of patients and 

development of a pre-operative apparatus for ease of alignment between the proximal radius 

and carpus after tumor resection.  

The reason for high stresses in the proximal radius screws was determined to be the significant 

off-axis loading caused by the design of the 2
nd

 generation implant. Hence, the new design 

merged the compression plate and metal spacer to more closely align the loading axis of the 

implant with that of the radius. In the second generation implant, the placement of the radial 

screws along the loading plane subjected them to a pure bending load. In the latest iteration, 

the radial screws were placed at an angle of 45 degrees on either side of the sagittal plane, thus 

alleviating the bending loads. This also allowed for the replacement of the current 3.5 mm 

cortical screws with 2.7 mm cortical screws. In addition, non-locking screws were replaced with 

locking screws to reduce the stress profile within the radius. All these changes resulted in a 50% 

reduction of the peak von Mises stress within the radial screws (as compared with the previous 

implant). Furthermore, the peak stresses at the bone-screw interface were reduced by a factor 

of 50%. Distal support to the radius was also an important design element for the observed 

reduction in von Mises stresses within the radius. Removal of the intramedullary stem resulted 

in relatively high bending stresses (167.6 MPa) within the radial screws where they entered into 

the radius. This can be attributed to the cantilever loading scenario caused by the absence of 

the stem and the use of locking screws. Hence, the stem plays an integral part in reducing the 

bending stresses within the radial screws. 
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Figure 69-Location of maximum von Mises stress after ignoring the stress concentrations due to tie 

constraints (153MPa). 

With the reduction of stresses in the proximal radius and designing for a through-axis loading 

condition, the highest stresses (weakest link) in the assembly were experienced by the 2.7 mm 

distal metacarpal cortical screws. The highest bending stresses (153MPa) [Figure 69] were 

observed at the most proximal screw, which mirrors the results observed in previously 

published studies [105] evaluating locking compression plate stability under anteroposterior 

bending loads. The location of this peak stress was between the plate and the 3
rd

 metacarpal. 

This peak von Mises stress is safely below the endurance limit of 316L stainless steel, which has 

been reported to be 200 MPa (at 10 million cycles run-out, in Ringer’s solution).  

The peak stresses observed within the distal metacarpal screws and the proximal radius screws 

were relatively high. However, these peak stress values can be attributed to the tie constraints 

used in simulating the union between bone and screw. These tie constraints caused an artifact 

increase in stress predictions within a single element [Figure 70]. The average stress values 

obtained from the predictions of the surrounding elements provide a more accurate 

representation of the average peak stress within the component. Hence, it was deemed that 
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these stress anomalies could be safely disregarded when considering future failure mechanisms 

of the device.  

 

Figure 70-Abnormal stress concentration caused by tie constraints. 

The addition of support to the distal end of the DEC (by tying the distal surface with the radial 

carpal bone) resulted in reduced stresses in the most proximal screw (in the 3
rd

 metacarpal) of 

147MPa as compared to the reference configuration. Therefore, it is recommended that 

intimate contact be established between the radial carpal bone and the PEC during implantation 

of the endoprosthesis. The addition of ulnar support did not result in any change in the stress 

predictions at the proximal metacarpal cortical screw. Hence, the ulna can be safely resected if 

needed. 

A 2007 study by Ahmad et al. investigated the effect of distance between the locking plate and 

bone on implant stability. The authors recommended a distance of less than 2 mm between the 

bone and plate be established during implantation in order to produce increased axial stiffness. 

The current study, the average distance between the plate and 3
rd

 metacarpal was 2.1 mm, 

which resulted in a maximum von Mises stress in the distal metacarpal screw of 286 MPa. When 

the 3
rd

 metacarpal bone was spatially repositioned to achieve an average distance of 1.4 mm 

between the cranial surface of the 3
rd

 metacarpal bone and the DEC, the peak stress predicted 



84 

 

at this screw was 216 MPa (reduction of 70MPa). Hence, it is recommended to achieve the 

minimum possible clearance between the distal locking plate and bone. 

The proposed intra-operative apparatus design has been facilitated by extensive collaboration 

with the veterinary oncology surgical team at Colorado State University. The rigorous step-by-

step procedure was evaluated by the collective investigative team and the difficulty in aligning 

the resected proximal radius with the carpus has theoretically been eliminated. However, this 

can only be confirmed after prototypes of the apparatus are built and evaluated ina cadaveric 

model. 

The boundary conditions provided at the distal end of the metacarpals do not represent the 

physiological reality. However, the absence of extensor tendons and the phalangeal bones in the 

model restricts the application of the accurate boundary conditions present at these 

metacarpals. The effect of these physiological conditions can only be tested during laboratory 

and clinical trials of this endoprosthesis. The data indicate that the distal metacarpal screws are 

the weakest members of the entire implant. However, we hypothesize that kinematic constraint 

of the distal aspect of the metacarpus produced higher stresses in these screws than would 

ordinarily be the case had they been placed next to a flexible joint. Also, the small size of the 3
rd

 

metacarpal necessitates the use of 2.7 mm diameter cortical screws. It is definitely 

recommended that the size of these screws be increased to 3.5 mm or even 4.0 mm for large 

and giant breeds of the canine family. 

6.4.1 Tie Constraint Stress Predictions 

The stress predictions without special considerations for the tie constraints employed fall 

outside the fatigue limit of 316L stainless steel. This is a major point of contention in regards to 

the efficacy of the novel endoprosthesis design. The tie constraints used in the current study 
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employed a node-to-surface approach for coupling of bone and screw motion. The ABAQUS 

Analysis User’s Manual [109] specifies that node-to-surface constraints do not include stress 

optimization algorithms, which are only available with surface-to-surface tie constraints. The 

absence of screw holes in the third metacarpal finite element mesh negated the use of surface-

to-surface tie constraints. Therefore, the absence of stress optimization algorithms for node-to-

surface tie constraints possibly caused these von Mises stress singularities. Fan et al. [110] found 

an increase of 40% in peak stress predictions with the use of tie constraints. 

As with all studies, this study is not without its limitations. The efficacy of the new design under 

a cyclic loading scenario can only be assessed by performing biomechanical experiments under a 

rigorous cyclic regime. The stress anomalies produced due to the contact tie constraints 

employed, are a confounding factor, however, the use of the average stress value mitigates this 

effect when evaluating the peak stresses in the implant and screws. The size of the 

intramedullary stem is a simplification that will probably require attention in the future. A “one 

size fits all” approach has currently been employed; however, the validity of that approach can 

only be assessed with extensive clinical trials encompassing a wide range of patient sizes. A 

possible solution to this issue would be to provide a removable intramedullary stem. Obviously, 

this would alter the entire biomechanics of the construct, which should be investigated 

thoroughly.  
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7 Conclusion 

SUMMARY OF FINDINGS & FUTURE WORK 

Chapter 3 was devoted to the determination of mechanical properties of canine carpal 

ligaments. Six important carpal ligaments were tested uniaxially in a materials testing machine. 

Parameters such as stiffness (N/mm), modulus (N/mm
2
), failure load (N) and modes of failure 

were determined and documented. That data indicated a significant modulus-to-function 

relationship. These data filled a void in the literature regarding the properties of the canine 

carpus and aided in the development of a canine forelimb finite element model. 

Chapter 4 described the development, convergence and validation of a comprehensive finite 

element model of the canine forelimb which included the antebrachial, carpal and metacarpal 

regions. To the best of our knowledge, no previous attempts had been made to develop an FE 

model involving such a high number of contact pairs. The convergence data indicated 

convergence of relevant parameters for the medium resolution model within 10% of the high 

resolution model. Validation of the model was performed by testing 8 intact canine forelimbs 

with the use of strain gauges and a motion analysis system. All investigated parameters were 

within one standard deviation of the experimental values. Thus, a validated and converged finite 

element model of the intact canine forelimb was achieved in Chapter 4. 

Chapter 5 used the comprehensively developed finite element model of the canine forelimb 

developed in Chapter 4 to evaluate the current generation endoprosthesis. The exact 

mechanical and structural causes for failure of these implants (40% failure rate observed 

clinically) were determined. The presence of significant off-axis loading was the major cause of 

failure for these implants. Various stress reduction strategies were also investigated. These 

involved distal ulnar support and distal endoprosthesis support. The use of a locking plate in 

place of the current non-locking plate was also investigated. None of the stress reduction 
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strategies succeeded in reducing the observed stresses to acceptable values. This chapter 

provided significant insights with respect to the failure modes of the current generation 

endoprosthesis. These data were extremely valuable in the development of a new 

endoprosthesis design. 

Chapter 6 described the development of a novel endoprosthesis for canine limb-sparing by 

addressing the shortcomings associated with the current design. A highly experienced 

investigative team comprised of surgeons and engineers was established. Numerous 

requirements for the new prosthesis were established by the team. The new design ensured 

through-axis loading of the prosthesis which was not established in the previous design and 

represented a major contributing factor for failure of the current generation endoprosthesis. 

The final design consisted of a three part construct. This facilitated the achievement of a 

“custom” fit for the patients. The intact finite element model was used for a thorough 

evaluation of the proposed design. A large reduction in stresses was observed within the 

proximal radial screws and the metacarpal screws. The predicted maximum von Mises stresses 

(147MPa) fell within the endurance limit of 316L stainless steel (200 MPa). Based on these 

results, the proposed design was approved for further biomechanical testing, fatigue analysis 

and clinical trials by the investigative team. 

With regards to future work, the next step in the design process involves prototype 

development. To this end a prototype manufacture has been located and CAD drawings have 

been sent for manufacturing of the prototype implants. Biomechanical tests with the use of 

cadaveric canine forelimbs will be conducted. Longitudinal fatigue tests will also be performed 

with the use of replica bone specimens. The final step involving clinical trials will be conducted 

at the Colorado State University’s Veterinary Teaching Hospital Animal Cancer Center. 
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