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Abstract 
Reliability of weather data processing systems 

is of prime importance to ensure the efficient 
operation of space-based weather monitoring systems. 
This work defines a heterogeneous weather data 
processing system that is susceptible to uncertainties 
in data set arrival times. The resource allocation must 
be robust with respect to these uncertainties. The tasks 
to be executed by the data processing system are 
classified into three broad categories: telemetry, 
tracking and control (high priority); data processing 
(medium priority); and data research (low priority). 
The high priority tasks must be completed before 
considering medium and low priority tasks. The goal 
of this research is to find a resource allocation that 
minimizes makespan of the high priority tasks, and to 
find a mapping that maximizes a function of the 
completion time and priority of the medium and low 
priority tasks. Different heuristic techniques to find 
near optimal solutions are studied, and their 
performance is evaluated. 

1. INTRODUCTION 
A space-based weather monitoring system 

consists of three major components: a satellite 
scheduling system, the satellite with its data collection 
sensors, and the data processing system (see Figure 1). 
The satellite scheduling system is responsible for 
issuing a request to the satellite about the data that 
must be collected and sends the same information to 
the data processing system. The satellite collects 
information about weather conditions on earth and 
transmits it back to the data processing system. 

The data sent down by the satellite (the data set)
must be processed before it can provide any value to 
the users. The tasks to be executed on the data set can 
be classified into three broad categories: TT&C - 
telemetry, tracking and control (high priority); data
processing (medium priority); and data research (low
priority) [21]. Currently, the computer systems used 
for processing the data sets are divided into three 

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00  © 2006



distinct sets of processing elements, each dedicated to 
process one of the three types of tasks. The result of 
this partitioning is that each set of processing elements 
must be built for the worst-case demand, leading to 
resource and cost inefficiency. 

satellite 

data collection 
 request  

tasks associated with the data 
collection request 

satellite scheduling 
system 

data sets 

data processing 
system 

Figure 1: Overview of a space-based weather 
system. 

 The goal of this research is to develop a resource 
manager so that a smaller global bank of resources can 
replace the three sets of processing elements and 
increase the ability of the system to respond to a 
mixture of different task types and reduce the cost of 
the system. This system is a heterogeneous computing 
system, where some tasks have greater affinity to 
certain machines. The act of assigning (matching)
each task to a machine and ordering (scheduling) the 
execution of the tasks in each machine is known as 
mapping, resource allocation, or resource
management. Two different types of mapping are 
static and dynamic. Static mapping is performed when 
the tasks are mapped in an off-line planning phase, 
e.g., planning the schedule for tomorrow. Dynamic
mapping is performed when the tasks are mapped in 
an on-line, real-time fashion, e.g., when tasks arrive at 
random intervals and are mapped as they arrive. In 
either case, the mapping problem has been shown, in 
general, to be NP-complete (e.g., [8, 13, 15]). Hence, 
the development of heuristic techniques to find near 
optimal solutions is an active area of research (e.g., [1, 
12, 14, and 26]). 

 The performance of computing systems is 
susceptible to degradation due to unpredictable 
circumstances. Therefore, it is necessary to allocate 
the resources to tasks such that the robustness of the 
system in response to unpredictable events is 
maximized [3]. For this study the data set arrival times 
are not accurate, and the data set may arrive earlier or 
later than the estimated arrival time. Hence it is 

necessary to develop a performance metric to evaluate 
the quality of a mapping produced by the heuristics. 
The contributions of this research are: (1) a two-phase 
approach for scheduling tasks with multiple priorities 
in an oversubscribed system, (2) design and 
comparison of the performance of several heuristics 
for the proposed HC system model, and (3) a method 
for calculating a bound on the performance of a 
resource allocation for the proposed HC environment. 

 The rest of this chapter is organized as follows. A 
detailed overview of the system model is given in 
Section 2. Section 3 discusses the related work. 
Section 4 describes the simulation setup used for the 
experiments. The heuristics for phase I and phase II 
are explained in Sections 5 and 6, respectively. The 
bounds are presented in Section 7. The experimental 
results are discussed in Section 8.  

2. PROBLEM STATEMENT 
 The current problem has a set of T tasks that must 

be executed on M machines for a given data set. It is 
assumed that all the tasks associated with a data set 
must arrive at a pre-determined time before the 
expected arrival time of the data set. Therefore, all the 
tasks associated with a data set are known a priori,
and the mapping problem is a static mapping problem 
[1, 7]. A new data set is expected to arrive from the 
satellite after an interval of time units. When a new 
data set arrives, all tasks associated with the old data 
set are dropped, and the machine queues are emptied. 
It is assumed that the system is oversubscribed, i.e., 
not all tasks (for the current data set) can be completed 
by the expected arrival time of the next data set.  

 The expected arrival time of the next data set, ,
is only an estimate and the next data set might arrive 
earlier or later than the expected time. The high 
priority tasks ensure the proper functioning of the 
system; therefore, it is necessary to provide a 
guarantee that these tasks will be completed, even in 
the event of early arrival of the next data set. 
Therefore, the mapping problem is divided into two 
phases. The first phase deals with minimizing the 
completion time, tc, referred to as the makespan, of the 
set of high priority tasks. For phase I, the behavior that 
makes the system robust is that all the high priority 
tasks can be completed before the next data set arrives. 
The uncertainty is arrival time of the next data set, and 
robustness for phase I, , is quantified as 
         .ctρ τ= −               (1) 

 The second phase deals with the medium and low 
priority tasks. The medium priority tasks have a 
priority (Pi) equal to , and the low priority tasks have 
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a priority Pi equal to 1. Analogous to robustness for 
phase I, the behavior of phase II to be maximized is 
the “worth” of the medium and low priority tasks that 
complete before the next data set arrives. The 
uncertainty is the arrival time of the next data set. The 
uncertainty is the arrival time of the next data set. The 
tasks are weighted based on the likelihood that they 
will complete. The likelihood li for a task ti that is 
scheduled to complete at Fi is  
        .i

i
Fl τ

τ
−=                 (2) 

The worth, wi, for the task is given by  
       i i iw l P= ⋅                (3) 
The quality of the mapping produced by the heuristics 
is compared using a worth function. Overall worth (W)
of a mapping is the summation of the worth of each of 
the medium and low priority task. If set of medium 
and low priority tasks is denoted by T1, the overall 
worth is given by  
       

1

.i
i T

W w
∈

=                (4) 

The goal of this study is to maximize the 
robustness of the system by minimizing the makespan 
of phase I and maximizing the overall worth for phase 
II. 

 The mapping heuristics must complete before the 
arrival of the next data set, and it is required that the 
high priority tasks must be completed before the next 
data set arrives. Thus, the heuristic execution time is 
limited to tc. It is assumed that tc is greater than one 
second, and heuristics must take less than one second 
to generate a mapping. Therefore, greedy and “Min-
Min” type heuristics are considered instead of slower 
evolutionary heuristics. Some of the notations used in 
this paper are summarized in Table 1. 

3. RELATED WORK 
There is a strong body of research related to the 

robustness of data processing systems. There are many 
definitions of robustness for various environments 
(e.g. [5, 9, 10, 11, and 17]). 

 The study in [5] discusses a job shop 
environment that is susceptible to sudden changes that 
render an existing schedule infeasible. It tries to 
increase the robustness of a scheduling system by 
increasing the flexibility of a schedule. It also tries to 
achieve a compromise between optimizing the 
objective function and maximizing the flexibility of a 
schedule. For this study, we use the definition of 
robustness used in [3] that focuses on the robustness of 
a resource allocation in a parallel and distributed 
computing system. It states: “A resource allocation is 

defined to be robust with respect to specified system 
performance features against perturbations in 
specified system parameters if degradation in these 
features is limited when the perturbations occur.”  

Table 1: Notations used in the study. 

parameter significance Value 
τ approximate 

arrival time of 
next data set 

5 minutes 

α Pi of medium 
priority tasks 

256

ETC(i,j) estimated time 
to compute task 
ti on machine j

computed 
using COV 

method 
tc makespan of 

phase I tasks 
heuristic 

dependent 
ρ robustness of 

phase I tasks 
heuristic 

dependent 
li likelihood that 

task ti will 
complete before 

next data set 
arrives 

heuristic 
dependent 

wi worth of task ti heuristic 
dependent 

W worth of phase II 
tasks 

heuristic 
dependent 

The work in [23] defines a robustness metric for 
systems that use  a stochastic model for task execution 
times. However, in our study, the task execution time 
estimates are deterministic.  

Robustness of a system to uncertainties in 
execution time estimates is widely researched. The 
works in [19, 20, 22, and 24] describe a mapping 
environment where the robustness of a mapping for a 
set of tasks has to be maximized when the task 
execution times are inaccurate. Other studies such as 
[9, 10, and 17] explore the robustness of a job shop 
environment to such uncertainties. The work in [2] 
discusses a heterogeneous system that deals with 
uncertainties in load, while the studies in [3 and 10] 
explore the robustness of a system in the event of 
machine failures.  In our work, the uncertainty is the 
data set arrival time, not execution times, load or 
machine failures. 

The research in [6] describes an oversubscribed 
system for scheduling communications using antennas 
for a satellite range scheduling problem. For this 
study, each task has a priority and a deadline 
associated with it, and not all tasks can be scheduled 
before their deadlines. The goal is to minimize the 
number of tasks that cannot be completed before their 
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deadline. Our work differs from [6], as the individual 
tasks do not have a deadline, however, the execution 
of all the tasks in a data set is constrained by the 
estimated arrival of the next data set. Also, the time 
for the scheduler to generate a schedule in this study is 
much less. The work in [18] also discusses an 
oversubscribed environment of tasks with multiple 
priorities, but the work emphasizes that task priorities 
must be rigidly respected, i.e., a higher priority task 
can never be traded for a set of low priority tasks. 
However, in our study, the problem is divided into a 
two-phase scheduling problem, where, the higher 
priority tasks must be completed before the medium 
and low priority tasks can be considered, but the 
priorities within the medium and low priority tasks are 
not rigid.    

4. SIMULATION SETUP 
The simulation studies used to evaluate and 

compare the heuristics had 128 TT&C tasks (phase I 
tasks), 512 medium and low priority tasks (phase II 
tasks), and M = 8. The expected time to compute a 
task ti on machine j (ETC(i,j)) was calculated using the 
coefficient of variance (COV) based method, as 
described in [4]. The ETCs generated here were 
partially consistent. For a consistent ETC matrix, if 
machine x has a lower execution time than machine y
for a task ti then the same is true for any task tk. In 
inconsistent ETC matrices, the relationships among the 
task computational requirements and machine 
capabilities are such that no structure as that in the 
consistent case is enforced. A combination of these 
two cases, which may be more realistic in many 
environments, is the partially consistent ETC matrix, 
which is an inconsistent matrix with a consistent sub-
matrix [4].  In this study, the consistent sub-matrix 
was 25% of the tasks for 25% of the machines.  

To simulate the diverse task mixtures in a real 
system, the COV for task and machine heterogeneity 
was set to 0.8. To ensure an oversubscribed system, 
and to provide a sufficient challenge for the mapping 
heuristics, the mean time to execute the tasks was set 
to 15 seconds. Also, the estimated arrival time of a 
new data set was set to five minutes, i.e., τ  = 5 
minutes. Four different weighting of (Pi for the 
medium priority tasks) were used in the experiments 
(1, 16, 256, and 4096) and 100 different ETCs were 
generated. 

5. HEURISTICS FOR PHASE I

5.1 Overview 
Six heuristics are discussed here. Genitor, a 

genetic algorithm approach that cannot be used in 
practice due to its long run time, was also 
implemented for comparison purposes. 

5.2 Minimum Execution Time (MET) 
 The MET heuristic considers tasks in an arbitrary 

order, and maps the task ti under consideration to the 
machine that has the smallest value of ETC(i,j) for that 
task. The makespan using this heuristic remains 
unaltered if the ordering is changed.   

5.3 Minimum Completion Time (MCT) 
 MCT considers the tasks in a given order. Each 
task is mapped to the machine that completes the task 
soonest, where, the completion time of the task ti on 
machine j is the machine ready time for machine j plus 
the ETC(i,j).
 Because this heuristic considers the ready times of 
the machines, the order in which the tasks are 
considered for mapping influences the machine that a 
task is mapped on, effectively altering the finishing 
time of the individual machines, and the makespan. 
The average execution time of a task was calculated 
as: 

1
( , )

.j M
i

ETC i j
avg

M
≤ ≤=            (5) 

Three variations are used to order the tasks: ascending 
and descending order of their average execution times, 
and arbitrary order.  

5.4 K-Percent Best (KPB) 
For this heuristic, a subset of the ‘K Percent’ 

fastest machines for a given task is selected, and the 
task is mapped to the machine in this subset that has 
the least completion time. A ‘K’ value of 0% causes 
this heuristic to coincide with MET, while 100% 
implies that the heuristic is same as MCT. Different 
values of K were explored, and it was found that the 
best results are obtained when K equal to 25%. 
 Because this heuristic makes the final decision 
based on MCT, different ordering of the tasks leads to 
different mappings, and effectively different 
makespan. Different orderings of tasks were 
considered as explained for the MCT heuristic. 

5.5 Min-Min 
Min-Min is a two-phase heuristic based on the 

completion time of the tasks. It can be described as 
follows: 
1. Generate a task list of all the unmapped tasks. 
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2. For each task in the task list, find the machine that 
has the minimum completion time for that task 
(ignoring the other unmapped tasks). 

3. For all the task-machine pairs found in step 2, 
select the pair that has the smallest minimum 
completion time. 

4. Assign the selected task, remove it from the list of 
unmapped tasks, and update the ready time of the 
machine. 

5. Repeat steps 2-4 until all the tasks have been 
mapped. 

5.6 Max-Min 
The Max-Min heuristic is similar to the Min-Min 

heuristic. However, instead of selecting the task-
machine pair with the smallest minimum completion 
time, this heuristic selects the task-machine pair that 
has the largest of the minimum completion times. The 
intuition behind selecting the tasks with larger 
execution times is to decrease the penalty that such 
tasks would incur if they are not mapped on the best 
machines [7].   

5.7 Genitor 
The Genitor heuristic implemented here is a 

variation of Genitor described in [25]. The population 
size use for this study is 200 chromosomes, where a 
chromosome represents a valid mapping. The 
population is seeded with one chromosome generated 
using KPB “descending” variation, while the rest of 
the chromosomes are generated randomly. The 
population is sorted in the ascending order of 
makespan. For crossover, two parents are randomly 
selected, where the probability of selecting a 
chromosome is 10%, and a random cut-off point is 
generated. The machine assignments for the tasks 
from the bottom half of the chromosome are 
exchanged, and two new offspring are generated. For 
mutation, a single parent is selected (probability of 
selecting a chromosome is 25%) and the machine 
assignment of a single task is randomly changed. The 
offspring are inserted into the population and the worst 
chromosomes are taken out. The heuristic is stopped 
after one hour, and the best solution is selected.  

6. HEURISTICS FOR PHASE II

6.1 Overview
 For second phase of the problem, each machine 
ready time is the finishing time from phase I heuristic 
that minimizes tc. Six heuristics were implemented for 
this phase. Of these, MET, MCT, KPB, Min-Min are 
the same as described in Section 4. The Max-Max 
heuristic uses the same concept as the Min-Min 

heuristic. A Genitor based heuristic was also 
implemented for comparison. 

6.2 Greedy Heuristics 
 For the greedy heuristics, (MET, MCT, KPB), 
several different orderings of tasks were used. Because 
the finishing time of the individual task governs the 
likelihood, and hence the value of a task, different 
orderings can potentially produce different results for 
worth. The different orderings used for these heuristics 
are: 

Random ordering of tasks.  
Map the set of the medium priority tasks before 
the set of low priority tasks. Within each set of 
this partitioning, the tasks are considered for 
mapping in a random order. 
Tasks are ordered in descending order of priority
per unit time (PTi). To calculate the priority per 
unit time, the priority of the task ti is divided by 
the smallest ETC(i,j) time for that task. 

1

.
min ( ( , ))

i
i

j M

P
PT

ETC i j
≤ ≤

=              (6) 

For each greedy heuristic, the variation that orders 
the tasks based on priority per unit time outperforms 
the other variations.  

6.3 Max-Max 
This heuristic uses the Min-Min concept, but 

based on value.
1. Generate a task list of all the unmapped tasks. 
2. For each task in the task list, find the machine j

that gives the maximum wi based on the tasks that 
have been mapped already. Call this wi value for 
machine j, Vi,j

3. For all the task-machine pairs found in step 2, 
select the pair that has the maximum value Vi,j.

4. Assign the selected task and remove it from the 
list of unmapped tasks, and update the finishing 
time of the machine.  

5. Repeat steps 2 - 4 until all the tasks have been 
mapped. 
Two variations of this heuristic are implemented. 

The first variation selects the task-machine pairs in 
step 2 by selecting the minimum completion time 
machine for each unmapped task. The second 
variation calculates value per unit time (VTi,j). 

,
, .

( , )
i j

i j

V
VT

ETC i j
=              (7) 

VTi,j is then used in steps 2 and 3 to map the tasks that 
complete before τ, while, for tasks that complete after 
τ, Vi,j is used. The results for both the variations are 
comparable to result of Max-Max heuristic.  
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6.4 Genitor 
 For phase II, the order in which tasks are executed 
on a machine is important. Each chromosome can be 
viewed as a two-dimensional array, where each 
column of the array represents a machine, and the 
tasks to be executed on a machine are listed in the 
order in which they are executed. The population 
constitutes of a seed generated by the Max-Max 
heuristic, while 199 chromosomes are generated 
randomly. The population is sorted based on the worth 
of the mapping represented by the chromosomes. For a 
crossover operation, two parents are selected using a 
linear bias function [25].  The linear bias was varied 
between 1 and 2 in steps on 0.1 and finally a bias of 
1.6 was used because it gave best results. For the 
selected parents a random cut-off point is generated, 
and the machine assignments and the positions of the 
tasks (in the machine queues) are exchanged. Consider 
a task ti that has to be moved from machine j to 
machine k. If the new position of the task is beyond 
the last task on machine k, the task is placed at the end 
of the queue for machine k. However, if there if 
already a task scheduled at the new position, all the 
tasks on machine k are moved later in the queue, and 
the task is inserted at the desired position. All tasks on 
machine j that were scheduled to be executed after ti
are moved earlier in the machine queue for j. For 
mutation, a single parent is selected (probability of 
selecting a chromosome is 25%) and the machine 
assignment of a single task is randomly changed. The 
offspring have to compete for inclusion in the 
population as described in phase I, and the heuristic is 
stopped after one hour. 

7. BOUND

7.1 Overview
 A mathematical bound was calculated for both of 
the phases to compare against the performance of the 
heuristics. The method for calculating the bounds 
assumes a homogeneous MET system [24] in which 
the execution time for each task on all machines is the 
same and is equal to the minimum time that the task 
would take to execute across the original set of 
machines. The minimum execution time of task ti,
METi, is given by the following equation 

1
min ( ( , )).i j M

MET ETC i j
≤ ≤

=         (8) 

7.2 Lower bound on Makespan 
 For a lower bound on the makespan of the phase I 
tasks, we assume a homogeneous MET system. The 
lower bound (LB) on makespan for the high priority 
tasks is given by 

i
i

MET
LB

M
∀= .            (9) 

The calculation for the bound makes an assumption 
that each task can be executed on its MET machine, 
and that a single task can be split across multiple 
machines [7]. These assumptions are unrealistic and 
the bound is fairly loose. 

7.3 Upper Bound on Worth
The method to find an upper bound on the worth 

of the medium and low priority tasks uses the 
following four steps: 

Step 1: Assume a homogeneous MET system. 

Let j be the initial ready time of machine j, and j be 
the summation of the execution time for tasks mapped 
on machine j before task ti is mapped. The likelihood 
for ti is given by  

     
(( ) )j j i

i

MET
l

τ δ β
τ

− + +
= .      (10) 

The value of j for the homogeneous MET system is 
lesser than or equal to j for the original system 
(because of equation (8)), and therefore, the likelihood 
for the homogeneous MET system is greater than or 
equal to the likelihood of the original system.  

Step 2: Assume that all machines are available as soon 
as the first machine to finish all its phase 1 tasks and 
that every task can be split into M equal parts that are 
executed in parallel across the M machines.  

For phase II tasks, the initial machine ready time for 
each machine is given by the finishing time of that 
machine from phase I. Let machine k have the earliest 
ready time, i.e., mink jj M

δ δ
∈

= . Hence, if one assumes 

that each machine is available at time k, the worth of 
all the tasks mapped on a machine will be greater than 
or equal to the worth if the ready time of that machine 
is equal to j. Likewise, if a task ti is split across M 
machines, its effective execution time becomes METi / 
M so that its likelihood, li, is greater than the 
likelihood for that task if it is executed on a single 
machine.  

Step 3: Assume that each medium priority task ti is 
composed of low priority tasks, each having 
execution time equal to METi / .

Consider a medium priority task, ti, whose priority, by 
definition, is equal to . Let j be the ready time of 
machine j. The worth of ti on machine j is 
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( )j i
i

MET
w

τ δ
α

τ
− +

= ⋅ .         (11) 

If a medium priority task is broken into low priority 
tasks and executed sequentially on a single machine, 
its worth iw  is given by  

1

( 1)( )( / ) 2j i
j i

i
k

METk MET
w

α
ατ δτ δ α α α

τ τ=

+− +− + ⋅
= = ⋅

i.e., that i iw w> for 1α ≥ .

Step 4: Let S be the sorted list of the medium priority 
tasks (each divided into  low priority tasks) and low 
priority tasks, arranged in ascending order of MET
time. The tasks from this list are executed on the 
machines in the sorted order, and the worth is 
calculated. 

From step 3, all the tasks have an equal priority, i.e., Pi
=1. Let t0, t1, …, tn-1 represent the tasks in the sorted 
list S, such that, MET0 < MET1 < … < METn-1. Because 
of the impact of the finishing time of the task on its 
likelihood, a task that is completed sooner has a higher 
likelihood. Therefore, 0 1 1... nl l l −> > > , where, the 
likelihood, lx, of a task tx is given by 

0 1( ... )
.j x

x

MET MET MET
l

τ δ
τ

− + + + +
=   (12) 

Therefore, there cannot be a higher worth if the tasks 
are sorted in any other order. 
 If Ex is equal to the execution time of task tx in the 

list S, find the largest y such that 
1

0
( )

y

x k
x

E M τ δ
−

=
≤ ⋅ − .

These y elements of S define the upper bound (UB). 
The other elements of S correspond to tasks that do not 
“fit” before the expected arrival time of the next data 
set, and are ignored. The likelihood, xl ′ , of each task in 
S is calculated as  

( ( / ))
.k k x

x
E M

l
τ δ β

τ
− + +′ =          (13) 

Recall that all tasks are now low priority tasks (using 
step 3), and x xw l′ ′= . The upper bound on the worth of 
the medium and low priority tasks is  

0
.x

x y
UB w

≤ <

′=                (14) 

8. EXPERIMENTAL RESULTS 
All heuristics were run for 100 different trials 

(ETCs). The average values and 95% confidence 

intervals [16] were plotted. Heuristic execution times 
are shown in Tables 2 and 3. 

Table 2: Average heuristic execution time per 
ETC for phase I. 

heuristic time  (milliseconds) 
MET 17 
MCT 16 
KPB 19 

Min-Min 21 
Max-Min 20 
Genitor 3,600,000 

 Four different weighting of (1, 16, 256, and 
4096) were studied. All the results presented here are 
for  = 256. The relative performance of all the 
heuristics for all other values of  is similar. 

Table 3: Average heuristic execution time per ETC
for phase II. 

heuristic time  (milliseconds) 
MET 19 
MCT 19 
KPB 19 

Min-Min 57 
Max-Max 75 
Genitor 3,600,000 

 The phase I results are shown in Figure 2. Among 
all the heuristics, the “descending” variation for KPB 
gave the best results. KPB “random,” Min-Min, and 
MCT “descending” performed comparably to each 
other. The high makespan for MET can be accounted 
for by the partial consistency in the ETC matrices. 
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Figure 2: Makespan of the phase I tasks. 
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Figure 3 shows the worth of the phase II tasks for 
the greedy heuristics using different orderings and 
Figure 4 the compares makespan. For each heuristic, 
the variation that orders tasks based on priority per 
unit time outperformed the other two variations in 
terms of worth. The makespan for all three variations 
of MET was the same because the different orderings 
do not change the finishing time of the machines. The 
worth (Figure 3) is the performance metric. The 
makespan (Figure 4) is shown to contrast the heuristic 
makespan and worth properties.
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Figure 3: Variation in worth of greedy heuristics 
for phase II tasks by using different orderings (  = 
256).  

The worth results of the best greedy variations 
and the three other heuristics, and the upper bound are 
shown in Figure 5. Relative performance of all the 
heuristics (in terms of worth) for only the tasks that 
complete before τ was also studied, and was found to 
be similar to that using equation 4. Based on averages, 
Max-Max, MET “ordered,” and KPB “ordered” 
performed the best. It can be noted that the Genitor 
heuristic performs comparably to Max-Max (which is 
used to seed Genitor), and does not significantly 
increase the worth of the seed. We hypothesize that 
this is because the Max-Max heuristic produces a near 
optimal schedule. As an example of Max-Max, for one 
of the trials, we measured what percentage of the tasks 
are assigned to their MET machines, and what was the 
load balance index for the mapping, defined as the 
ratio of the finishing times for the machine that 
finishes first to the machine that finishes last. The 
result was that 89% of the tasks were mapped to their 
MET machines, and the load balance index had a high 
value of 0.91.
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Figure 4: Variation in makespan of greedy 
heuristics for phase II by using different orderings 
(  = 256). 
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Figure 5: Worth of the phase II tasks (  = 256). 

The makespan for different heuristics is shown in 
Figure 6. The worth (Figure 5) is the performance 
metric. The makespan (Figure 6) is shown to contrast 
the heuristic makespan and worth properties. Min-Min 
and Max-Max have comparable makespan; however, 
the worth of the mapping generated by Min-Min is 
lower than that of any other heuristics. This can be 
explained by the fact that it ignores the value of the 
individual tasks while mapping. Thus, it can be seen 
from the results that low makespan does not imply 
high worth and vice-versa. 

9. SUMMARY
  Several heuristics and their variations were 
implemented for each of the phases. The variation of 
KPB that orders tasks in descending order of their 
average execution time performs the best for phase I, 
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and KPB “ordered,” MET “ordered,” and Max-Max 
performed best (in terms of average) for phase II. The 
Genitor variations give a slight average improvement 
over the seed, but run time is significantly longer.  
Because the time for the scheduler is limited in this 
study, KPB “descending” variation and Max-Max 
heuristic are recommended for the given problem. 
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Figure 6: Makespan of the phase II tasks (  = 256).
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