
Robust Resource Allocation in Weather Data Processing Systems

Mohana Oltikar1, Jeff Brateman3, Joe White4, Jon Martin5, Keith Knapp1,
Anthony A. Maciejewski1, H. J. Siegel1,2

Colorado State University
1Department of Electrical & Computer Engineering

2Department of Computer Science
Fort Collins, CO 80523-1373

{mohana, knappkei, aam, hj}@colostate.edu

This research was supported by the Colorado State University Center for Robustness in Computer Systems (funded by the Colorado
Commission on Higher Education Technology Advancement Group through the Colorado Institute of Technology), and by the Colorado State
University George T. Abell Endowment.

3Purdue University
School of Electrical and Computer Engineering

West Lafayette, IN 47907-2035
brateman@purdue.edu

4 Raytheon Company
Software Engineer I

Aurora, CO 80011-9046
JPWhite1@Raytheon.com

5 R. L. Martin & Associates, Inc.
Fort Collins, CO 80525
jrmartin@jrmartin.com

Abstract
Reliability of weather data processing systems

is of prime importance to ensure the efficient
operation of space-based weather monitoring systems.
This work defines a heterogeneous weather data
processing system that is susceptible to uncertainties
in data set arrival times. The resource allocation must
be robust with respect to these uncertainties. The tasks
to be executed by the data processing system are
classified into three broad categories: telemetry,
tracking and control (high priority); data processing
(medium priority); and data research (low priority).
The high priority tasks must be completed before
considering medium and low priority tasks. The goal
of this research is to find a resource allocation that
minimizes makespan of the high priority tasks, and to
find a mapping that maximizes a function of the
completion time and priority of the medium and low
priority tasks. Different heuristic techniques to find
near optimal solutions are studied, and their
performance is evaluated.

1. INTRODUCTION
A space-based weather monitoring system

consists of three major components: a satellite
scheduling system, the satellite with its data collection
sensors, and the data processing system (see Figure 1).
The satellite scheduling system is responsible for
issuing a request to the satellite about the data that
must be collected and sends the same information to
the data processing system. The satellite collects
information about weather conditions on earth and
transmits it back to the data processing system.

The data sent down by the satellite (the data set)
must be processed before it can provide any value to
the users. The tasks to be executed on the data set can
be classified into three broad categories: TT&C -
telemetry, tracking and control (high priority); data
processing (medium priority); and data research (low
priority) [21]. Currently, the computer systems used
for processing the data sets are divided into three

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

distinct sets of processing elements, each dedicated to
process one of the three types of tasks. The result of
this partitioning is that each set of processing elements
must be built for the worst-case demand, leading to
resource and cost inefficiency.

satellite

data collection
 request

tasks associated with the data
collection request

satellite scheduling
system

data sets

data processing
system

Figure 1: Overview of a space-based weather
system.

 The goal of this research is to develop a resource
manager so that a smaller global bank of resources can
replace the three sets of processing elements and
increase the ability of the system to respond to a
mixture of different task types and reduce the cost of
the system. This system is a heterogeneous computing
system, where some tasks have greater affinity to
certain machines. The act of assigning (matching)
each task to a machine and ordering (scheduling) the
execution of the tasks in each machine is known as
mapping, resource allocation, or resource
management. Two different types of mapping are
static and dynamic. Static mapping is performed when
the tasks are mapped in an off-line planning phase,
e.g., planning the schedule for tomorrow. Dynamic
mapping is performed when the tasks are mapped in
an on-line, real-time fashion, e.g., when tasks arrive at
random intervals and are mapped as they arrive. In
either case, the mapping problem has been shown, in
general, to be NP-complete (e.g., [8, 13, 15]). Hence,
the development of heuristic techniques to find near
optimal solutions is an active area of research (e.g., [1,
12, 14, and 26]).

 The performance of computing systems is
susceptible to degradation due to unpredictable
circumstances. Therefore, it is necessary to allocate
the resources to tasks such that the robustness of the
system in response to unpredictable events is
maximized [3]. For this study the data set arrival times
are not accurate, and the data set may arrive earlier or
later than the estimated arrival time. Hence it is

necessary to develop a performance metric to evaluate
the quality of a mapping produced by the heuristics.
The contributions of this research are: (1) a two-phase
approach for scheduling tasks with multiple priorities
in an oversubscribed system, (2) design and
comparison of the performance of several heuristics
for the proposed HC system model, and (3) a method
for calculating a bound on the performance of a
resource allocation for the proposed HC environment.

 The rest of this chapter is organized as follows. A
detailed overview of the system model is given in
Section 2. Section 3 discusses the related work.
Section 4 describes the simulation setup used for the
experiments. The heuristics for phase I and phase II
are explained in Sections 5 and 6, respectively. The
bounds are presented in Section 7. The experimental
results are discussed in Section 8.

2. PROBLEM STATEMENT
 The current problem has a set of T tasks that must

be executed on M machines for a given data set. It is
assumed that all the tasks associated with a data set
must arrive at a pre-determined time before the
expected arrival time of the data set. Therefore, all the
tasks associated with a data set are known a priori,
and the mapping problem is a static mapping problem
[1, 7]. A new data set is expected to arrive from the
satellite after an interval of time units. When a new
data set arrives, all tasks associated with the old data
set are dropped, and the machine queues are emptied.
It is assumed that the system is oversubscribed, i.e.,
not all tasks (for the current data set) can be completed
by the expected arrival time of the next data set.

 The expected arrival time of the next data set, ,
is only an estimate and the next data set might arrive
earlier or later than the expected time. The high
priority tasks ensure the proper functioning of the
system; therefore, it is necessary to provide a
guarantee that these tasks will be completed, even in
the event of early arrival of the next data set.
Therefore, the mapping problem is divided into two
phases. The first phase deals with minimizing the
completion time, tc, referred to as the makespan, of the
set of high priority tasks. For phase I, the behavior that
makes the system robust is that all the high priority
tasks can be completed before the next data set arrives.
The uncertainty is arrival time of the next data set, and
robustness for phase I, , is quantified as
 .ctρ τ= − (1)

 The second phase deals with the medium and low
priority tasks. The medium priority tasks have a
priority (Pi) equal to , and the low priority tasks have

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

a priority Pi equal to 1. Analogous to robustness for
phase I, the behavior of phase II to be maximized is
the “worth” of the medium and low priority tasks that
complete before the next data set arrives. The
uncertainty is the arrival time of the next data set. The
uncertainty is the arrival time of the next data set. The
tasks are weighted based on the likelihood that they
will complete. The likelihood li for a task ti that is
scheduled to complete at Fi is
 .i

i
Fl τ

τ
−= (2)

The worth, wi, for the task is given by
 i i iw l P= ⋅ (3)
The quality of the mapping produced by the heuristics
is compared using a worth function. Overall worth (W)
of a mapping is the summation of the worth of each of
the medium and low priority task. If set of medium
and low priority tasks is denoted by T1, the overall
worth is given by

1

.i
i T

W w
∈

= (4)

The goal of this study is to maximize the
robustness of the system by minimizing the makespan
of phase I and maximizing the overall worth for phase
II.

 The mapping heuristics must complete before the
arrival of the next data set, and it is required that the
high priority tasks must be completed before the next
data set arrives. Thus, the heuristic execution time is
limited to tc. It is assumed that tc is greater than one
second, and heuristics must take less than one second
to generate a mapping. Therefore, greedy and “Min-
Min” type heuristics are considered instead of slower
evolutionary heuristics. Some of the notations used in
this paper are summarized in Table 1.

3. RELATED WORK
There is a strong body of research related to the

robustness of data processing systems. There are many
definitions of robustness for various environments
(e.g. [5, 9, 10, 11, and 17]).

 The study in [5] discusses a job shop
environment that is susceptible to sudden changes that
render an existing schedule infeasible. It tries to
increase the robustness of a scheduling system by
increasing the flexibility of a schedule. It also tries to
achieve a compromise between optimizing the
objective function and maximizing the flexibility of a
schedule. For this study, we use the definition of
robustness used in [3] that focuses on the robustness of
a resource allocation in a parallel and distributed
computing system. It states: “A resource allocation is

defined to be robust with respect to specified system
performance features against perturbations in
specified system parameters if degradation in these
features is limited when the perturbations occur.”

Table 1: Notations used in the study.

parameter significance Value
τ approximate

arrival time of
next data set

5 minutes

α Pi of medium
priority tasks

256

ETC(i,j) estimated time
to compute task
ti on machine j

computed
using COV

method
tc makespan of

phase I tasks
heuristic

dependent
ρ robustness of

phase I tasks
heuristic

dependent
li likelihood that

task ti will
complete before

next data set
arrives

heuristic
dependent

wi worth of task ti heuristic
dependent

W worth of phase II
tasks

heuristic
dependent

The work in [23] defines a robustness metric for
systems that use a stochastic model for task execution
times. However, in our study, the task execution time
estimates are deterministic.

Robustness of a system to uncertainties in
execution time estimates is widely researched. The
works in [19, 20, 22, and 24] describe a mapping
environment where the robustness of a mapping for a
set of tasks has to be maximized when the task
execution times are inaccurate. Other studies such as
[9, 10, and 17] explore the robustness of a job shop
environment to such uncertainties. The work in [2]
discusses a heterogeneous system that deals with
uncertainties in load, while the studies in [3 and 10]
explore the robustness of a system in the event of
machine failures. In our work, the uncertainty is the
data set arrival time, not execution times, load or
machine failures.

The research in [6] describes an oversubscribed
system for scheduling communications using antennas
for a satellite range scheduling problem. For this
study, each task has a priority and a deadline
associated with it, and not all tasks can be scheduled
before their deadlines. The goal is to minimize the
number of tasks that cannot be completed before their

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

deadline. Our work differs from [6], as the individual
tasks do not have a deadline, however, the execution
of all the tasks in a data set is constrained by the
estimated arrival of the next data set. Also, the time
for the scheduler to generate a schedule in this study is
much less. The work in [18] also discusses an
oversubscribed environment of tasks with multiple
priorities, but the work emphasizes that task priorities
must be rigidly respected, i.e., a higher priority task
can never be traded for a set of low priority tasks.
However, in our study, the problem is divided into a
two-phase scheduling problem, where, the higher
priority tasks must be completed before the medium
and low priority tasks can be considered, but the
priorities within the medium and low priority tasks are
not rigid.

4. SIMULATION SETUP
The simulation studies used to evaluate and

compare the heuristics had 128 TT&C tasks (phase I
tasks), 512 medium and low priority tasks (phase II
tasks), and M = 8. The expected time to compute a
task ti on machine j (ETC(i,j)) was calculated using the
coefficient of variance (COV) based method, as
described in [4]. The ETCs generated here were
partially consistent. For a consistent ETC matrix, if
machine x has a lower execution time than machine y
for a task ti then the same is true for any task tk. In
inconsistent ETC matrices, the relationships among the
task computational requirements and machine
capabilities are such that no structure as that in the
consistent case is enforced. A combination of these
two cases, which may be more realistic in many
environments, is the partially consistent ETC matrix,
which is an inconsistent matrix with a consistent sub-
matrix [4]. In this study, the consistent sub-matrix
was 25% of the tasks for 25% of the machines.

To simulate the diverse task mixtures in a real
system, the COV for task and machine heterogeneity
was set to 0.8. To ensure an oversubscribed system,
and to provide a sufficient challenge for the mapping
heuristics, the mean time to execute the tasks was set
to 15 seconds. Also, the estimated arrival time of a
new data set was set to five minutes, i.e., τ = 5
minutes. Four different weighting of (Pi for the
medium priority tasks) were used in the experiments
(1, 16, 256, and 4096) and 100 different ETCs were
generated.

5. HEURISTICS FOR PHASE I

5.1 Overview
Six heuristics are discussed here. Genitor, a

genetic algorithm approach that cannot be used in
practice due to its long run time, was also
implemented for comparison purposes.

5.2 Minimum Execution Time (MET)
 The MET heuristic considers tasks in an arbitrary

order, and maps the task ti under consideration to the
machine that has the smallest value of ETC(i,j) for that
task. The makespan using this heuristic remains
unaltered if the ordering is changed.

5.3 Minimum Completion Time (MCT)
 MCT considers the tasks in a given order. Each
task is mapped to the machine that completes the task
soonest, where, the completion time of the task ti on
machine j is the machine ready time for machine j plus
the ETC(i,j).
 Because this heuristic considers the ready times of
the machines, the order in which the tasks are
considered for mapping influences the machine that a
task is mapped on, effectively altering the finishing
time of the individual machines, and the makespan.
The average execution time of a task was calculated
as:

1
(,)

.j M
i

ETC i j
avg

M
≤ ≤= (5)

Three variations are used to order the tasks: ascending
and descending order of their average execution times,
and arbitrary order.

5.4 K-Percent Best (KPB)
For this heuristic, a subset of the ‘K Percent’

fastest machines for a given task is selected, and the
task is mapped to the machine in this subset that has
the least completion time. A ‘K’ value of 0% causes
this heuristic to coincide with MET, while 100%
implies that the heuristic is same as MCT. Different
values of K were explored, and it was found that the
best results are obtained when K equal to 25%.
 Because this heuristic makes the final decision
based on MCT, different ordering of the tasks leads to
different mappings, and effectively different
makespan. Different orderings of tasks were
considered as explained for the MCT heuristic.

5.5 Min-Min
Min-Min is a two-phase heuristic based on the

completion time of the tasks. It can be described as
follows:
1. Generate a task list of all the unmapped tasks.

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

2. For each task in the task list, find the machine that
has the minimum completion time for that task
(ignoring the other unmapped tasks).

3. For all the task-machine pairs found in step 2,
select the pair that has the smallest minimum
completion time.

4. Assign the selected task, remove it from the list of
unmapped tasks, and update the ready time of the
machine.

5. Repeat steps 2-4 until all the tasks have been
mapped.

5.6 Max-Min
The Max-Min heuristic is similar to the Min-Min

heuristic. However, instead of selecting the task-
machine pair with the smallest minimum completion
time, this heuristic selects the task-machine pair that
has the largest of the minimum completion times. The
intuition behind selecting the tasks with larger
execution times is to decrease the penalty that such
tasks would incur if they are not mapped on the best
machines [7].

5.7 Genitor
The Genitor heuristic implemented here is a

variation of Genitor described in [25]. The population
size use for this study is 200 chromosomes, where a
chromosome represents a valid mapping. The
population is seeded with one chromosome generated
using KPB “descending” variation, while the rest of
the chromosomes are generated randomly. The
population is sorted in the ascending order of
makespan. For crossover, two parents are randomly
selected, where the probability of selecting a
chromosome is 10%, and a random cut-off point is
generated. The machine assignments for the tasks
from the bottom half of the chromosome are
exchanged, and two new offspring are generated. For
mutation, a single parent is selected (probability of
selecting a chromosome is 25%) and the machine
assignment of a single task is randomly changed. The
offspring are inserted into the population and the worst
chromosomes are taken out. The heuristic is stopped
after one hour, and the best solution is selected.

6. HEURISTICS FOR PHASE II

6.1 Overview
 For second phase of the problem, each machine
ready time is the finishing time from phase I heuristic
that minimizes tc. Six heuristics were implemented for
this phase. Of these, MET, MCT, KPB, Min-Min are
the same as described in Section 4. The Max-Max
heuristic uses the same concept as the Min-Min

heuristic. A Genitor based heuristic was also
implemented for comparison.

6.2 Greedy Heuristics
 For the greedy heuristics, (MET, MCT, KPB),
several different orderings of tasks were used. Because
the finishing time of the individual task governs the
likelihood, and hence the value of a task, different
orderings can potentially produce different results for
worth. The different orderings used for these heuristics
are:

Random ordering of tasks.
Map the set of the medium priority tasks before
the set of low priority tasks. Within each set of
this partitioning, the tasks are considered for
mapping in a random order.
Tasks are ordered in descending order of priority
per unit time (PTi). To calculate the priority per
unit time, the priority of the task ti is divided by
the smallest ETC(i,j) time for that task.

1

.
min ((,))

i
i

j M

P
PT

ETC i j
≤ ≤

= (6)

For each greedy heuristic, the variation that orders
the tasks based on priority per unit time outperforms
the other variations.

6.3 Max-Max
This heuristic uses the Min-Min concept, but

based on value.
1. Generate a task list of all the unmapped tasks.
2. For each task in the task list, find the machine j

that gives the maximum wi based on the tasks that
have been mapped already. Call this wi value for
machine j, Vi,j

3. For all the task-machine pairs found in step 2,
select the pair that has the maximum value Vi,j.

4. Assign the selected task and remove it from the
list of unmapped tasks, and update the finishing
time of the machine.

5. Repeat steps 2 - 4 until all the tasks have been
mapped.
Two variations of this heuristic are implemented.

The first variation selects the task-machine pairs in
step 2 by selecting the minimum completion time
machine for each unmapped task. The second
variation calculates value per unit time (VTi,j).

,
, .

(,)
i j

i j

V
VT

ETC i j
= (7)

VTi,j is then used in steps 2 and 3 to map the tasks that
complete before τ, while, for tasks that complete after
τ, Vi,j is used. The results for both the variations are
comparable to result of Max-Max heuristic.

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

6.4 Genitor
 For phase II, the order in which tasks are executed
on a machine is important. Each chromosome can be
viewed as a two-dimensional array, where each
column of the array represents a machine, and the
tasks to be executed on a machine are listed in the
order in which they are executed. The population
constitutes of a seed generated by the Max-Max
heuristic, while 199 chromosomes are generated
randomly. The population is sorted based on the worth
of the mapping represented by the chromosomes. For a
crossover operation, two parents are selected using a
linear bias function [25]. The linear bias was varied
between 1 and 2 in steps on 0.1 and finally a bias of
1.6 was used because it gave best results. For the
selected parents a random cut-off point is generated,
and the machine assignments and the positions of the
tasks (in the machine queues) are exchanged. Consider
a task ti that has to be moved from machine j to
machine k. If the new position of the task is beyond
the last task on machine k, the task is placed at the end
of the queue for machine k. However, if there if
already a task scheduled at the new position, all the
tasks on machine k are moved later in the queue, and
the task is inserted at the desired position. All tasks on
machine j that were scheduled to be executed after ti
are moved earlier in the machine queue for j. For
mutation, a single parent is selected (probability of
selecting a chromosome is 25%) and the machine
assignment of a single task is randomly changed. The
offspring have to compete for inclusion in the
population as described in phase I, and the heuristic is
stopped after one hour.

7. BOUND

7.1 Overview
 A mathematical bound was calculated for both of
the phases to compare against the performance of the
heuristics. The method for calculating the bounds
assumes a homogeneous MET system [24] in which
the execution time for each task on all machines is the
same and is equal to the minimum time that the task
would take to execute across the original set of
machines. The minimum execution time of task ti,
METi, is given by the following equation

1
min ((,)).i j M

MET ETC i j
≤ ≤

= (8)

7.2 Lower bound on Makespan
 For a lower bound on the makespan of the phase I
tasks, we assume a homogeneous MET system. The
lower bound (LB) on makespan for the high priority
tasks is given by

i
i

MET
LB

M
∀= . (9)

The calculation for the bound makes an assumption
that each task can be executed on its MET machine,
and that a single task can be split across multiple
machines [7]. These assumptions are unrealistic and
the bound is fairly loose.

7.3 Upper Bound on Worth
The method to find an upper bound on the worth

of the medium and low priority tasks uses the
following four steps:

Step 1: Assume a homogeneous MET system.

Let j be the initial ready time of machine j, and j be
the summation of the execution time for tasks mapped
on machine j before task ti is mapped. The likelihood
for ti is given by

(())j j i

i

MET
l

τ δ β
τ

− + +
= . (10)

The value of j for the homogeneous MET system is
lesser than or equal to j for the original system
(because of equation (8)), and therefore, the likelihood
for the homogeneous MET system is greater than or
equal to the likelihood of the original system.

Step 2: Assume that all machines are available as soon
as the first machine to finish all its phase 1 tasks and
that every task can be split into M equal parts that are
executed in parallel across the M machines.

For phase II tasks, the initial machine ready time for
each machine is given by the finishing time of that
machine from phase I. Let machine k have the earliest
ready time, i.e., mink jj M

δ δ
∈

= . Hence, if one assumes

that each machine is available at time k, the worth of
all the tasks mapped on a machine will be greater than
or equal to the worth if the ready time of that machine
is equal to j. Likewise, if a task ti is split across M
machines, its effective execution time becomes METi /
M so that its likelihood, li, is greater than the
likelihood for that task if it is executed on a single
machine.

Step 3: Assume that each medium priority task ti is
composed of low priority tasks, each having
execution time equal to METi / .

Consider a medium priority task, ti, whose priority, by
definition, is equal to . Let j be the ready time of
machine j. The worth of ti on machine j is

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

()j i
i

MET
w

τ δ
α

τ
− +

= ⋅ . (11)

If a medium priority task is broken into low priority
tasks and executed sequentially on a single machine,
its worth iw is given by

1

(1)()(/) 2j i
j i

i
k

METk MET
w

α
ατ δτ δ α α α

τ τ=

+− +− + ⋅
= = ⋅

i.e., that i iw w> for 1α ≥ .

Step 4: Let S be the sorted list of the medium priority
tasks (each divided into low priority tasks) and low
priority tasks, arranged in ascending order of MET
time. The tasks from this list are executed on the
machines in the sorted order, and the worth is
calculated.

From step 3, all the tasks have an equal priority, i.e., Pi
=1. Let t0, t1, …, tn-1 represent the tasks in the sorted
list S, such that, MET0 < MET1 < … < METn-1. Because
of the impact of the finishing time of the task on its
likelihood, a task that is completed sooner has a higher
likelihood. Therefore, 0 1 1... nl l l −> > > , where, the
likelihood, lx, of a task tx is given by

0 1(...)
.j x

x

MET MET MET
l

τ δ
τ

− + + + +
= (12)

Therefore, there cannot be a higher worth if the tasks
are sorted in any other order.
 If Ex is equal to the execution time of task tx in the

list S, find the largest y such that
1

0
()

y

x k
x

E M τ δ
−

=
≤ ⋅ − .

These y elements of S define the upper bound (UB).
The other elements of S correspond to tasks that do not
“fit” before the expected arrival time of the next data
set, and are ignored. The likelihood, xl ′ , of each task in
S is calculated as

((/))
.k k x

x
E M

l
τ δ β

τ
− + +′ = (13)

Recall that all tasks are now low priority tasks (using
step 3), and x xw l′ ′= . The upper bound on the worth of
the medium and low priority tasks is

0
.x

x y
UB w

≤ <

′= (14)

8. EXPERIMENTAL RESULTS
All heuristics were run for 100 different trials

(ETCs). The average values and 95% confidence

intervals [16] were plotted. Heuristic execution times
are shown in Tables 2 and 3.

Table 2: Average heuristic execution time per
ETC for phase I.

heuristic time (milliseconds)
MET 17
MCT 16
KPB 19

Min-Min 21
Max-Min 20
Genitor 3,600,000

 Four different weighting of (1, 16, 256, and
4096) were studied. All the results presented here are
for = 256. The relative performance of all the
heuristics for all other values of is similar.

Table 3: Average heuristic execution time per ETC
for phase II.

heuristic time (milliseconds)
MET 19
MCT 19
KPB 19

Min-Min 57
Max-Max 75
Genitor 3,600,000

 The phase I results are shown in Figure 2. Among
all the heuristics, the “descending” variation for KPB
gave the best results. KPB “random,” Min-Min, and
MCT “descending” performed comparably to each
other. The high makespan for MET can be accounted
for by the partial consistency in the ETC matrices.

0

40

80

120

160

MET

KPBran
do

m

KPB
as

ce
nd

ing

KPB de
sc

en
din

g

MCT ra
nd

om

MCT as
ce

nd
ing

MCT de
sc

en
din

g

Min-
Min

Max
-M

in

m
ak

es
pa

n
(s

ec
.)

Figure 2: Makespan of the phase I tasks.

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

Figure 3 shows the worth of the phase II tasks for
the greedy heuristics using different orderings and
Figure 4 the compares makespan. For each heuristic,
the variation that orders tasks based on priority per
unit time outperformed the other two variations in
terms of worth. The makespan for all three variations
of MET was the same because the different orderings
do not change the finishing time of the machines. The
worth (Figure 3) is the performance metric. The
makespan (Figure 4) is shown to contrast the heuristic
makespan and worth properties.

0

10000

20000

30000

40000

MET R
an

do
m

MET Part
itio

ne
d

MET Orde
red

MCT R
an

do
m

MCT Partit
ion

ed

MCT O
rde

red

KPB
Ran

do
m

KPB P
artit

ion
ed

KPB O
rde

red

w
or

th

Figure 3: Variation in worth of greedy heuristics
for phase II tasks by using different orderings (=
256).

The worth results of the best greedy variations
and the three other heuristics, and the upper bound are
shown in Figure 5. Relative performance of all the
heuristics (in terms of worth) for only the tasks that
complete before τ was also studied, and was found to
be similar to that using equation 4. Based on averages,
Max-Max, MET “ordered,” and KPB “ordered”
performed the best. It can be noted that the Genitor
heuristic performs comparably to Max-Max (which is
used to seed Genitor), and does not significantly
increase the worth of the seed. We hypothesize that
this is because the Max-Max heuristic produces a near
optimal schedule. As an example of Max-Max, for one
of the trials, we measured what percentage of the tasks
are assigned to their MET machines, and what was the
load balance index for the mapping, defined as the
ratio of the finishing times for the machine that
finishes first to the machine that finishes last. The
result was that 89% of the tasks were mapped to their
MET machines, and the load balance index had a high
value of 0.91.

440

460

480

500

520

540

MET R
an

do
m

MET P
art

itio
ne

d

MET O
rde

red

MCT R
an

do
m

MCT Partit
ion

ed

MCT O
rde

red

KPB R
an

do
m

KPB P
artit

ion
ed

KPB O
rde

red

m
ak

es
pa

n
(s

ec
.)

Figure 4: Variation in makespan of greedy
heuristics for phase II by using different orderings
(= 256).

25000

29000

33000

37000

41000

MET Orde
red

MCT O
rde

red

KPB O
rde

red

Max
-M

ax

Min-
Min

Gen
ito

r

Upp
er

Boun
d

w
or

th

Figure 5: Worth of the phase II tasks (= 256).

The makespan for different heuristics is shown in
Figure 6. The worth (Figure 5) is the performance
metric. The makespan (Figure 6) is shown to contrast
the heuristic makespan and worth properties. Min-Min
and Max-Max have comparable makespan; however,
the worth of the mapping generated by Min-Min is
lower than that of any other heuristics. This can be
explained by the fact that it ignores the value of the
individual tasks while mapping. Thus, it can be seen
from the results that low makespan does not imply
high worth and vice-versa.

9. SUMMARY
 Several heuristics and their variations were
implemented for each of the phases. The variation of
KPB that orders tasks in descending order of their
average execution time performs the best for phase I,

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

and KPB “ordered,” MET “ordered,” and Max-Max
performed best (in terms of average) for phase II. The
Genitor variations give a slight average improvement
over the seed, but run time is significantly longer.
Because the time for the scheduler is limited in this
study, KPB “descending” variation and Max-Max
heuristic are recommended for the given problem.

350

390

430

470

510

550

MET O
rde

red

MCT O
rde

red

KPB O
rde

red

Max
-M

ax

Min-
Min

Gen
ito

r

Lo
wer

Bou
nd

m
ak

es
pa

n
(s

ec
.)

Figure 6: Makespan of the phase II tasks (= 256).

ACKNOWLEDGMENT

The authors thank Mr. Ashish Mehta and Mr.
Vladimir Shestak for their valuable comments.

REFERENCES

[1] S. Ali, T. D. Braun, H. J. Siegel, A. A. Maciejewski,
N. Beck, L. Boloni, M. Maheswaran, A. I. Reuther, J.
P. Robertson, M. D. Theys, and B. Yao,
“Characterizing resource allocation heuristics for
hetserogeneous computing systems,” in Advances in
Computers Volume 63: Parallel, Distributed, and
Pervasive Computing, A. R. Hurson, ed., Elsevier,
Amsterdam, 2005, pp. 91-128.

[2] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim,
“Robust resource allocation for sensor-actuator
distributed computing systems,” 2004 International
Conference on Parallel Processing (ICPP 2004), Aug.
2004, pp. 174–185.

[3] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim,
“Measuring the robustness of a resource allocation,”
IEEE Transactions on Parallel and Distributed
Systems, Vol. 15, No. 7, July 2004, pp. 630–641.

[4] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and
S. Ali, “Representing task and machine heterogeneities
for heterogeneous computing systems,” Tamkang
Journal of Science and Engineering, Special 50th

Anniversary Issue, Vol. 3, No. 3, Nov. 2000, pp. 195–
207 (invited).

[5] C. Artigues, J. Billaut, C. Esswein, “Maximization of
solution flexibility for robust shop scheduling,”

European Journal of Operational Research, Vol. 165,
No. 2, 2005 , pp. 314–328.

[6] L. Barbulescu, A.E. Howe, L.D. Whitley, and, M.
Roberts, “Trading place: How to schedule more in a
multi-resource oversubscribed scheduling problem
system,” International Conference on Automated
Planning and Scheduling (ICAPS-04), June, 2004.

[7] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, R. F.
Freund, D. Hensgen, M. Maheswaran, A. I. Reuther, J.
P. Robertson, M. D. Theys, and Bin Yao, “A
comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous
distributed computing systems,” Journal of Parallel
and Distributed Computing, Vol. 61, No. 6, June 2001,
pp. 810–837.

[8] E. G. Coffman, Jr. ed., Computer and Job-Shop
Scheduling Theory, John Wiley & Sons, New York,
NY, 1976.

[9] R. L. Daniels and J. E. Carrilo, “ -Robust scheduling
for single-machine systems with uncertain processing
times,” IIE Transactions, Vol. 29, No. 11, Nov. 1997,
pp. 977–985.

[10] J. Davenport, C. Gefflot, and J. C. Beck, “Slack-based
techniques for robust schedules,” 6th European
Conference on Planning, Sep. 2001, pp. 7–18.

[11] J. Dorn, R. M. Kerr, and G. Thalhammer, “Reactive
scheduling: Improving the robustness of schedules and
restricting the effects of shop floor disturbances by
fuzzy reasoning,” International Journal on Human-
Computer Studies, Vol. 42, No. 6, June 1995, pp. 687–
704.

[12] M. M. Eshaghian, ed., Heterogeneous Computing,
Norwood, MA, Artech House, 1996.

[13] D. Fernandez-Baca, “Allocating modules to processors
in a distributed system,” IEEE Transaction on
Software Engineering, Vol. SE-15, No. 11, Nov. 1989,
pp. 1427–1436.

[14] I. Foster and C. Kesselman, eds., The Grid: Blueprint
for a New Computing Infrastructure, San Fransisco,
CA, Morgan Kaufmann, 1999.

[15] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for
scheduling independent tasks on non-identical
processors,” Journal of the ACM, Vol. 24, No. 2, Apr.
1977, pp. 280–289.

[16] R. Jain, The Art of Computer Systems Performance
Analysis Techniques for Experimental Design,
Measurement, Simulation, and Modeling, Wiley, New
York, 1991.

[17] P. Kouvelis, R. Daniels, and G. Vairaktarakis, “Robust
scheduling of a two-machine flow shop with uncertain
processing times,” IIE Transactions, Vol. 38, No. 5,
May 2000, pp. 421–432.

[18] L.A. Kramer and S.L. Smith, “Maximizing flexibility:
A retraction heuristic for oversubscribed scheduling
problems,” Eighteenth International Joint Conference
on Artificial Intelligence, Aug., 2003.

[19] A. M. Mehta, J. Smith, H. J. Siegel, A.A.
Maciejewski, A. Jayaseelan, and B. Ye, “Dynamic
resource allocation heuristics for maximizing
robustness with an overall makespan constraint in an
uncertain environment,” 2006 International

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

Conference on Parallel and Distributed Processing
Technologies and Applications (PDPTA 2006), June
2006, accepted to appear.

[20] A. M. Mehta, J. Smith, H. J. Siegel, A.A.
Maciejewski, A. Jayaseelan, and B. Ye, “Dynamic
resource allocation heuristics for minimizing
makespan while maintaining an acceptable level of
robustness in an uncertain environment,” 12th

International Conference on Parallel and Distributed
Systems, July 2006, accepted to appear.

[21] National Environmental Satellite Data Information
Service (NESDIS),
http://www.nesdis.noaa.gov/About/about.html,
accessed March 2, 2006.

[22] V. Shestak, J. Smith, R. Umland, J. Hale, P.
Morranville, A. A. Maciejewski, and H.J. Siegel,
“Greedy approaches to stochastic robust resource
allocation for periodic sensor driven distributed
systems,” 2006 International Conference on Parallel
and Distributed Processing Technologies and
Applications (PDPTA 2006), June 2006, accepted to
appear.

[23] V. Shestak, J. Smith, H. J. Siegel, and A.A.
Maciejewski, “A stochastic approach to measuring the
robustness of resource allocations in distributed
systems,” 2006 International Conference on Parallel
Processing (ICPP 2006), Aug. 2006, accepted to
appear.

[24] P. Sugavanam, H. J. Siegel, A. A. Maciejewski, M.
Oltikar, A. Mehta, R. Pichel, A. Horiuchi, V. Shestak,
M. Al-Otaibi, Y. Krishnamurthy, S. Ali, J. Zhang, M.
Aydin, P. Lee, K. Guru, M. Raskey, and A. Pippin,
“Robust static allocation of resources for independent
tasks under makespan and dollar cost constraints,”
Journal of Parallel and Distributed Computing,
accepted, to appear.

[25] D. Whitley, “The GENITOR algorithm and selective
pressure: Why rank based allocation of reproductive
trials is best,” 3rd International Conference on Genetic
Algorithms, June 1989, pp. 116–121.

[26] M.-Y. Wu, W. Shu, and H. Zhang, “Segmented min-
min: A static mapping algorithm for meta-tasks on
heterogeneous computing systems,” 9th IEEE
Heterogeneous Computing Workshop (HCW 2000),
May 2000, pp. 375–385.

Proceedings of the 2006 International Conference on Parallel Processing Workshops (ICPPW'06)
0-7695-2637-3/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

