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ABSTRACT 

 

 

 

LIMBER PINE HEALTH IN THE SOUTHERN AND CENTRAL ROCKY MOUNTAINS 

 

 

 

White pine blister rust, bark beetles, and dwarf mistletoe are causing decline in health and 

mortality in limber pine and impacting limber pine seedlings in the central and southern Rocky 

Mountains. Ecologically valuable limber pines often grow in fragile ecosystems where few other 

trees can grow. The combined effects of mountain pine beetle, white pine blister rust, dwarf 

mistletoe, and climate change could greatly impact the biodiversity of these ecosystems. Current 

condition status and long term monitoring of limber pine trees and seedlings are needed to advise 

land managers and to implement restoration. Our study objectives were to: (1) assess site, stand, 

and health characteristics of limber pine trees and seedlings in Colorado, Wyoming, and 

Montana, (2) determine factors that influence the occurrence and incidence of white pine blister 

rust, bark beetles, and dwarf mistletoe, and (3) determine factors that impact seedlings, including 

site, stand, and meteorological characteristics.  

In 2011 and 2012, we assessed 22,700 limber pines on 508 plots in limber pine-

dominated stands in twenty-five study areas in Colorado, Wyoming, and Montana. Mean density 

of live limber pine was 311 stems/ha. Fifty percent of all standing trees were classified as 

healthy, 26% were declining or dying, and 24% were dead. White pine blister rust was the 

primary damage agent and was widespread, occurring in 23 of the 25 study areas with a mean 

incidence of 26%. Bark beetle-caused mortality occurred in all 25 study areas and 18% of 

standing limber pines were killed by bark beetles. Limber pine dwarf mistletoe occurred within 

20 study areas, on 29% of plots with an average incidence of 9%. In previously monitored study 
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areas, incidence of WPBR increased 6%, bark beetles by 17%, while dwarf mistletoe remained 

the same. Live limber pine seedling density averaged 141stems/ha. Of all standing live and dead 

limber pine seedlings, 1.5% were dying, 4.4% were dead, and white pine blister rust occurred on 

5.3% of live seedlings.  

We used statistical modeling to determine the meteorological, macro, and micro site 

factors and stand factors that influenced the occurrence and incidence of white pine blister rust, 

bark beetles, and dwarf mistletoe on limber pines. We also used statistical modeling to determine 

factors that predict density (stems/ha) of limber pine seedlings and proportion of limber pine 

seedlings with white pine blister rust. Limber pine stands heavily impacted by mountain pine 

beetle and white pine blister rust, combined with low seedling density in some study areas 

suggest that some limber pine stands may not survive.  These areas may be in need of additional 

monitoring so land managers can decide if restoration efforts are warranted.   

 

 

 

 

 

 

 

 

 

 

 

 



 

 

iv 

 

ACKNOWLEDGEMENTS 

 

 

 

I would like to thank the following individuals for their contributions: my advisor W. 

Jacobi, K. Burns, R. Means, E. Smith, A. McMahan, F. Krist, R. Flynn, R. Reich, J. zumBrunnen 

(Franklin A. Graybill Statistical Laboratory), J. Blodgett, A. Schoettle, J. Negron, M. Jackson, J. 

Duda, J. Hardin, H. Kearns, B. Goodrich, A. Norton, and D. Steingraeber. In addition, USDA 

Forest Service personnel from the Bighorn, Custer, Medicine Bow, Roosevelt, and Shoshone 

National Forests; E. Jungck (Shoshone National Forest); E. Rhodenbaugh (Wind River 

Reservation, Bureau of Indian Affairs); T. Kramer, J. Gates, J. Walker, and J. Mononi (BLM 

Wyoming); B. Hensley (BLM Montana); S. Golden and S. Milne (Boulder County Open Space), 

provided assistance. Special thanks to field crew members and data entry personnel: L. Maxwell, 

J. Miller, N. McBride, C. Heeney, W. Walker, B. Pease, M. Nelson, S. Merritt, P. Canfield, G. 

Over, and K. Jacobi. This study was funded by the U.S.D.A. Forest Service, Evaluation 

Monitoring Program, BLM Wyoming, Colorado Agricultural Experiment Station, Colorado State 

Forest Service, and Boulder County Open Space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

v 

 

TABLE OF CONTENTS 

 

ABSTRACT .................................................................................................................................... ii 

ACKNOWLEDGMENTS ............................................................................................................. iv 

CHAPTER 1: Manuscript: Limber pine stand conditions after white pine blister rust and 

mountain pine beetle-caused mortality in the central and southern Rocky Mountains  ..................1 

1. Introduction ............................................................................................................................1 

2. Materials and Methods ...........................................................................................................6 

2.1.   Study areas ..................................................................................................................6 

2.2.   Stand selection ............................................................................................................7 

2.2.1 Stands previously sampled ...............................................................................7 

2.2.2. Stands not previously sampled .........................................................................8 

2.3.   Survey methods ...........................................................................................................8 

2.3.1. Plot establishment .............................................................................................8 

2.3.2. Trees .................................................................................................................9 

2.3.3. Ground cover ..................................................................................................10 

2.3.4. White pine blister rust alternate hosts ............................................................11 

2.4.   Meteorological data ..................................................................................................11 

2.5.   Data analysis .............................................................................................................12 

3. Results ..................................................................................................................................14 

3.1.   Limber pine stand structure and characteristics ........................................................14 

3.2.   Limber pine health status ..........................................................................................15 

3.2.1.  Diseases, insects, and damages ......................................................................16 

3.3.   Model results .............................................................................................................17 

3.3.1.  Variables that predict occurrence and incidence of WPBR ...........................17 

3.3.2.  Variables that predict occurrence and incidence of dwarf mistletoe .............18 

3.3.3.  Variables that predict occurrence and incidence of dwarf mistletoe .............18 

4. Discussion ............................................................................................................................19 

4.1.   Limber pine stand conditions, health, and damage agents ........................................19 

4.2.   Statistical models ......................................................................................................21 

4.2.1.   White pine blister rust ...................................................................................21 



 

 

vi 

 

4.2.2.   Dwarf mistletoe .............................................................................................22 

4.2.3.   Bark beetles ...................................................................................................23 

4.3.  Implications for management ..................................................................................24 

Tables and Figures .....................................................................................................................27 

REFERENCES ..........................................................................................................................40 

Appendix I: Additional Tables and Figures ..............................................................................46 

CHAPTER 2: Manuscript: Limber pine regeneration in forests impacted by white pine blister 

rust and mountain pine beetle in the central and southern Rocky Mountains ...............................60 

1. Introduction .........................................................................................................................60 

2. Materials and Methods ........................................................................................................64 

2.1.   Study areas ................................................................................................................64 

2.2.   Stand selection ..........................................................................................................65 

2.2.1. Stands previously sampled ............................................................................65 

2.2.2. Stands not previously sampled......................................................................65 

2.3.  Survey methods ........................................................................................................66 

2.3.1. Plot establishment .........................................................................................66 

2.3.2. Trees ..............................................................................................................67 

2.3.3. Seedlings .......................................................................................................67 

2.3.4. Ground cover ................................................................................................68 

2.3.5. Interval plots (invasive species and WPBR alternate hosts) .........................68 

2.4.   Meteorological data ..................................................................................................69 

2.5.   Data analysis .............................................................................................................70 

3.  Results ..................................................................................................................................72 

3.1.   Seedling presence, density, and health status ...........................................................72 

3.2.   Ground cover and microsite object ...........................................................................74 

3.3.   Invasive plant species ...............................................................................................75 

3.4.   Alternate hosts of white pine blister rust ..................................................................76 

3.5.   Seedling models ........................................................................................................76 

3.5.1.   Limber pine seedling density ........................................................................76 

3.5.2.   Proportion of limber pine seedlings infected with WPBR............................77 

3.5.3.   Terminal growth............................................................................................77 



 

 

vii 

 

4. Discussion ...........................................................................................................................78 

4.1.   Seedling presence......................................................................................................78 

4.2.   Seedling density ........................................................................................................79 

4.3.   Seedling health ..........................................................................................................80 

4.4. Ground cover and microsite objects .........................................................................81 

4.5. Seedling models ........................................................................................................82 

4.5.1.  Limber pine seedling density ........................................................................82 

4.5.2. Proportion of limber pine seedlings infected with WPBR ............................84 

4.6. Other factors that potentially impact limber pine regeneration ................................86 

4.7. Management implications .........................................................................................87 

Tables and Figures .....................................................................................................................91 

REFERENCES .........................................................................................................................100 

Appendix I: Method Details .....................................................................................................106 

Appendix II: Additional Tables and Figures ............................................................................107 

Appendix III: Additional Regeneration Information and References ......................................128 

 

 

 

 

 



 

 

1 

 

CHAPTER 1: Manuscript: Limber pine stand conditions after white pine blister rust and 

mountain pine beetle-caused mortality in the central and southern Rocky Mountains 

 

 

1. Introduction 

 

Limber pines (Pinus flexilis James) are ecologically valuable five-needle white pines with 

a widespread distribution. Recent studies have indicated the growing impact white pine blister 

rust (WPBR), which is caused by the introduced fungal pathogen, Cronartium ribicola J. C. 

Fisch. Major, has had on white pine populations (Kearns and Jacobi 2007, Maloney 2011, Smith 

et al. 2008, Smith et al. 2013). Other major disturbance agents that cause dieback and mortality 

in limber pine are limber pine dwarf mistletoe (Arceuthobium cyanocarpum [A. Nelson ex 

Rydb.]) and bark beetles, including the more recent outbreak of mountain pine beetle 

(Dendroctonus ponderosae Hopk.) (Kearns and Jacobi 2007, Taylor and Mathiason 1999). Little 

is known about how these disturbance agents will impact limber pines. Understanding abiotic 

and biotic factors that influence the occurrence and incidence of WPBR, bark beetles, and dwarf 

mistletoe, will be helpful in determining appropriate management actions to sustain limber pine 

populations.  

Limber pines are broadly distributed in western North America, occurring between 34 

and 54 degrees latitude and between 870 and 3810 m in elevation (Steele 1990).  In the central 

Rocky Mountains, limber pines are found from lower to upper tree line, occur between a larger 

elevation range (1600 and 3400 m) than other 5-needle pines (Schoettle and Rochelle 2000), and 

are frequently found in association with Engelmann spruce (Picea engelmannii Parry ex 

Engelm.), subalpine fir (Abies lasiocarpa [Hook.] Nutt.), quaking aspen (Populus tremuloides 

Michx.), lodgepole pine (Pinus contorta Douglas ex Loudon), Douglas-fir (Pseudotsuga 
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menziesii [Mirb.] Franco), Rocky Mountain juniper (Juniperus scopulorum Sarg.) ponderosa 

pine (Pinus ponderosa Lawson & C. Lawson), and occasionally whitebark pine (Pinus albicaulis 

Engelm.) (Peet 1981, Steele 1990). Limber pines are a shade-intolerant species that occur in 

scattered, low-density stands and often grow on rocky, xeric sites where cold temperatures, short 

growing seasons, and soil characteristics limit the growth of other conifer species (Schoettle and 

Rochelle 2000, Schoettle 2004). At lower elevations on mesic sites with deep soils, other conifer 

species are more competitive and white pines are often considered a seral component (Kendall 

and Arno 1990, Arno and Weaver 1990).   

Limber pines are revered for their cultural, recreational, and aesthetic value, and are 

beneficial components of forest ecosystems. Limber pines often define tree lines, stabilize soil 

and snowpack, provides facilitative mechanisms such as shade and wind reduction for understory 

species (Baumeister and Callaway 2006), aid in the establishment of late successional species, 

are one of the first tree species to occupy an area after fire (Donnegan and Rebertus 1999), and 

provide a habitat and food source for animals (Schoettle 2004). Limber pine seeds are wingless 

and rely on Clark’s nutcracker (Nucifraga columbiana Wilson) and pinyon jays (Gymnorhinus 

cyanocephalus Wied) for long-distance dispersal. Clark’s nutcracker can cache seeds distances 

greater than 22 kilometers from the source (Lorenz et al. 2011) and often do so in burn areas 

(Lanner and Vander Wall 1980).  

Cronartium ribicola, the pathogen that causes WPBR, is native to Asia but has been 

present in North America since 1910, when it was introduced on nursery stock from Europe. 

Cronartium ribicola is a heteroecious rust capable of infecting all North American white pines 

(five-needled pines) and must use Ribes species (currants and gooseberries), Pedicularus species, 

or Castilleja species as alternate hosts to complete a complex life cycle requiring five spore 
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stages (McDonald et al. 2006). Infection of pines occurs through needles, during periods of high 

relative humidity in late summer and fall. The fungus then grows into the branch, causing 

swelling and ultimately, a canker that may girdle the branch and continue expanding into the 

main stem in which topkill or tree death may occur. Aeciospores, the durable spores produced on 

the white pine, are able to travel on wind currents up to several hundred kilometers to infect 

leaves of the alternate hosts (Frank et al. 2008). Basidiospores, the fragile spores produced on the 

leaves of alternate hosts in late summer to fall, are wind disseminated, traveling up to 27 

kilometers to white pines (Zambino 2010). Infection can lead to loss of vigor, a reduction in seed 

production, death of cone-bearing branches (Maloney et al. 2012), and ultimately mortality, 

which can occur several years after infection with time depending on the size of the tree. 

Seedlings are also susceptible and can die within three years of infection (Hoff and Hagle 1990). 

Since its introduction into western North America in southern British Columbia, WPBR 

has spread south and east in the Rocky Mountains during the last century. From its discovery in 

Montana in 1928 (Putnam 1931), it has moved from western Wyoming (Krebill 1964, Brown 

1970) to southeastern Wyoming (Brown 1978), and was reported in Colorado in 1998 with 

highest infection south of the Wyoming border (Johnson and Jacobi 2000). In addition, WPBR 

was first reported on Rocky Mountain bristlecone pine in the Great Sand Dunes National 

Monument in Colorado in 2003 (Blodgett and Sullivan 2004). Previous assessments in 2002-

2004 in the southern and central Rocky Mountains indicated that 55% of surveyed plots were 

infected with WPBR, with a mean overall incidence of 16% (Kearns and Jacobi 2007). There is 

concern that most limber pine populations may be at risk of infection as the pathogen continues 

to spread throughout the Rocky Mountain region (Johnson and Jacobi 2000).   
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Until the recent mountain pine beetle epidemic, limber pine dwarf mistletoe was 

considered the second most damaging agent of limber pine behind WPBR (Taylor and 

Mathiason 1999).  Arceuthobium cyanocarpum is an especially virulent dwarf mistletoe and 

known to cause widespread mortality of limber pine in the Rocky Mountains (Mathiasen and 

Hawksworth 1988). Limber pine dwarf mistletoe occurs in California, Oregon, Idaho, Nevada, 

and Utah, and is widely distributed in the Rocky Mountains from southern Colorado, throughout 

Wyoming, and up to southern Montana, and ranges in elevation from 1,600 to 3,050 m (Geils et 

al. 2002). Dwarf mistletoe is disseminated short distances by using hydrostatic pressure to 

forcefully eject sticky seeds to surrounding branches. Birds known to eat the seeds of 

A.cyanocarpum, such as Mountain Bluebirds (Sialia currucoides Bechstein) and mourning doves 

(Zenaida macroura Linnaeus) and birds and mammals that frequent limber pine stands, disperse 

the seeds long distances (Hawksworth and Wiens 1996, Geils et al. 2002).  

Mountain pine beetle has caused extensive mortality throughout the central Rocky 

Mountain region. From 1996 to 2013, 2.75 million hectares in Colorado and Wyoming have 

been affected by mountain pine beetle, with peak years occurring in 2008 and 2009 (USDA 

Forest Service, Aerial Detection Survey 2013). The northern Medicine Bow Mountains 

experienced the highest mortality and northern Wyoming forests were heavily impacted. Recent 

aerial survey reports indicate that while some areas are continuing to spread, overall, mountain 

pine beetle-caused mortality has declined dramatically, primarily due to host depletion (USDA 

Forest Service, Aerial Detection Survey 2013). 

Mountain pine beetle, the most immediate threat as compared to WPBR or dwarf 

mistletoe, prefers larger diameter trees (Safranyik and Carroll 2006) and can result in rapid and 

widespread mortality of cone-bearing trees important to regeneration during epidemic levels. 
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Smaller diameter trees and seedlings unaffected by mountain pine beetle are still at risk of 

mortality from WPBR and dwarf mistletoe. White pine blister rust (Keane and Arno 1993, 

Bockino and Tinker 2012) and drought may each predispose the tree to increased susceptibility 

to mortality by the mountain pine beetle (Six and Adams 2007). It is of primary concern that the 

mountain pine beetle may be attacking WPBR resistant trees. Mountain pine beetle, along with 

the added impacts of WPBR, which continues to spread and intensify in limber pine (Burns et al. 

2006, Kearns and Jacobi 2007, Smith and Hoffman 2001), could be devastating to some limber 

pine populations. 

Recent mortality of limber pine due to WPBR, dwarf mistletoe, and bark beetles requires 

better understanding of the characteristics that influence these major disturbance agents so land 

managers may employ effective management decisions to encourage sustainment of limber pine 

populations. Previous work has shown various site, stand, and meteorological characteristics to 

impact WPBR, dwarf mistletoe, and bark beetles, but very few studies have looked at what 

impacts these disturbance agents in limber pine, and no studies have addressed all three in limber 

pine. In addition to suitable host and inoculum source, other studies have shown that the 

distribution of WPBR is influenced by site, stand, and meteorological characteristics (Campbell 

and Antos 2000, Smith and Hoffman 2001, Duriscoe and Duriscoe 2002, Kearns and Jacobi 

2007, Larson 2010, Kearns et al. 2013). While the primary factors impacting the occurrence and 

incidence of dwarf mistletoe include an inoculum source, suitable hosts within appropriate 

distance for natural dispersal, and availability and activity of avian vectors, secondary factors, 

including site, stand, and meteorological characteristics may be important in determining the 

distribution of dwarf mistletoe (Hawksworth and Wiens 1996, Taylor and Mathiason 1999). 
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While distribution and incidence of bark beetles is largely influenced by beetle pressure, some 

stand, and meteorological characteristics have been found to influence bark beetles (Carroll et al. 

2003, Larson 2010).  

While some prior knowledge exists of the extent of impact of WPBR and limber pine 

dwarf mistletoe in the southern and central Rocky Mountains, recent impact by mountain pine 

beetle in limber pine is largely unknown. The objectives of this study were to (i) assess site, 

stand, and health characteristics of limber pine stands northern Colorado, Wyoming, and 

Montana and (ii) determine factors that influence the incidence of white pine blister rust, dwarf 

mistletoe, and mountain pine beetle in limber pine, including site, stand, and meteorological 

characteristics. 

2. Materials and Methods 

Site, stand, and health assessments of limber pine stands included measuring the size and 

determining the status of all trees, standing dead or alive within fixed area plots. Trees were 

examined for damages including, occurrence and severity of white pine blister rust, bark beetles, 

dwarf mistletoe, and any other additional damages. Site and stand features were noted along with 

the amount and type of groundcover, and occurrence of alternate hosts of WPBR. White pine 

blister rust, dwarf mistletoe, and bark beetle occurrence and incidence on limber pine were 

modeled to determine the influence of environmental factors and stand structure on each damage 

agent.  

2.1. Study areas 

The geographic range of our monitoring study included the eastern-most mountain range 

of the Rocky Mountains in northern Colorado (Front Range) and in Wyoming we included the 

eastern mountain ranges (Medicine Bow, Laramie, and Bighorn Mountains) and next mountain 



 

 

7 

 

ranges of the Rocky Mountains to the west (Sierra Madre, Wind River Range, Absaroka Range) 

with all minor mountains and basins in between and one mountain range in southern Montana 

(Pryor Mountains) and another in eastern Montana (Terry Badlands) (Figure 1.1). We conducted 

surveys on twenty-five study areas in these geographic areas that were defined by government 

management unit boundaries and geographic sections of mountain ranges (Table 1.1, Figure 1.1).  

2.2. Stand selection 

2.2.1. Stands previously sampled 

Potential plot locations in each study area were identified using USDA Forest Service 

Aerial Detection Survey data on areas with mountain pine beetle-caused mortality in limber pine 

and GPS location data from previous sampling and monitoring efforts by Kearns and Jacobi 

(2007) and Burns et al. (2011). Using the USDA Forest Service Rocky Mountain Resource 

Inventory System database to determine the presence of limber pine, Kearns and Jacobi (2007) 

poststratified to capture varying site conditions and sampled limber pine across an elevational 

gradient that reflected that of the study area. We used a random stratified sample of these 

locations so there was relatively equal number of plots with low and high rust infestation and 

presence or absence of bark beetle outbreak. A range of stands were sampled with varying 

duration since bark beetle outbreak. Where possible, a minimum of 24 plots per study area were 

installed to account for low and high WPBR infestation levels and presence or absence of bark 

beetle-caused mortality with six plots of each. If an insufficient number of stands were found for 

a particular category, then remaining plots were selected to fill the other stratification variables 

equally. Plot locations were within 300 meters of a road. The number of plots within a study area 

varied depending on the amount of the area with limber pine, previous knowledge of the 
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variation in WPBR incidence and severity, aerial detection data on MPB incidence, and 

accessibility.  

2.2.2. Stands not previously sampled 

Potential plot locations were selected in each study area where no prior surveys were 

conducted for WPBR. The areas were based on known records of host location, aerial detection 

information on mountain pine beetle-caused mortality, and local knowledge of host location. A 

stratified random sample of these locations was conducted so there were relatively equal 

numbers of plots below and above the mid elevation of the limber pine distribution in the study 

area and presence or absence of bark beetle-caused mortality. Where possible, a minimum of 24 

plots per study area were installed to account for two elevation ranges and bark beetle infestation 

and six plots of each. Remaining protocol followed that of the stands previously sampled. 

2.3. Survey methods 

2.3.1. Plot establishment 

To ensure a reasonable sample of limber pine in our monitoring study, plots were placed 

in stands with at least 40% adult limber pine (stems/ha). Plots were randomly located on a 

compass bearing that placed the plot within the limber pine stand and at least 10 m from a road.  

A plot consisted of three 60 x 6 m fixed area subplots (0.108 ha) that were used for tree 

assessments with an invasive species/alternate host plot (30 x 6 m) placed after each 60 x 6 m 

subplot (0.054 ha) and were placed contiguously at random bearings within the stand. Individual 

trees were not tagged, but one tree was tagged and marked with GPS at the beginning of each 

subplot and the end of the third subplot. Within each 60 x 6 m subplot, the following site data 

were recorded: elevation (m), aspect (degrees), slope percent, slope position (position on the 

landscape: backslope = steepest inclined surface, footslope/toeslope/valley bottom = inner, gentle 
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inclined surface at base of hillslope/gentle inclined surface at base of hillslope/wide valley 

bottom beyond toeslope, shoulder = uppermost inclined surface near the top of a hillslope, 

summit = highest level of hillslope position) (USDA Soil Conservation Service), stand structure 

(distribution of tree height classes within a stand: closed canopy multistory, closed canopy 

multistory with open individuals and/or open scattered clumps, closed canopy single story with 

open individuals and/or open scattered clumps [includes mosaic of closed canopy single and 

multistory], open canopy scattered individuals and/or open canopy scattered clumps), and 

disturbance history (fire, grazing, other human disturbance, tree cutting). 

2.3.2. Trees 

Within each subplot, the following data were recorded for all tree species, standing dead 

and alive with a dbh (diameter at breast height) at 1.37 m (no minimum diameter): species, 

crown class (description of the relative position of the tree crown with respect to competing 

vegetation near the tree: dominant/co-dominant = crown receives full light from above and partly 

from the sides/crown receives full light from above but little on the sides, intermediate = crown 

occupies a subordinate position and is subject to strong lateral competition, open = crown 

receives full light from above and all sides, overtopped/understory = crown receives no direct 

light from above), dbh to nearest cm using a Biltmore stick for efficiency, health status (healthy 

= less than 5% damage to crown or stem, declining = 6-50% of crown showing symptoms that 

indicates it is dead or will be, dying = >50% crown showing symptoms, recent dead [0-5 years] = 

no green needles but some red needles and fine twigs present, old dead [5-10 years] = no fine 

twigs or needles present, >50% bark still present, very old dead [>10 years] = no fine twigs, no 

needles, <50% bark present), percent crown dieback (percentage of dead foliage as compared to 

the entire crown), dwarf mistletoe rating (DMR) (Hawksworth 1977), bark beetle presence 
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(none, unsuccessful MPB bole attack: pitchout and beetle brood absent, MPB strip attack: 

galleries and brood present, successful MPB bole attack, unknown or other bark beetle). Within 

each subplot, the following data were recorded for all limber pine, standing dead and alive with a 

dbh at 1.37 m (no minimum diameter): WPBR canker presence and location (branch, stem, 

both), total number of WPBR branch and stem cankers, branch canker length by 12 cm size 

classes on live trees of the first ten representative cankers on live branches, as an estimate of 

canker age (<12 cm, 12-24 cm, 24.1-36 cm, 36.1-48 cm, 48.1-60 cm, 60.1-72 cm, 72.1-84 cm, 

84.1-96 cm, 96.1-108 cm, =>108.1 cm) and status of branch tip with canker for each of the first 

ten representative cankers (alive or dead), and type and severity of up to two damages affecting 

5% or more of the tree. Cankers were identified as such if two of the following were present: 

abnormal swollen branch, blistered branch or stem, aecia present, roughened resin stained bark, 

or expanding areas of squirrel bark removal. Cankers were defined as stem cankers if they were 

located on the main stem or were within 15 cm of the stem on living branches. Since mature 

limber pine have multiple leaders, a stem was defined that if girdled would remove more than 

25% of the crown. Binoculars were used to identify cankers in taller trees. Trees growing in 

clumps were considered individual stems if they forked below 1.37 m height and were growing 

at an angle greater than 45° above horizontal.  

2.3.3. Ground cover 

Two circular fixed area subplots with a 3 m radius were placed 3 m from each end within 

the 60 x 6 m subplots to record ground cover and understory vegetation. Within each circular 

subplot, the following data were recorded: percent of area occupied by each ground cover type 

(soil, litter, rock, tree/log, lichen/moss, grass/sedges, forbs, shrubs) and up to three of the most 
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prevalent shrub species and percent of area occupied by each of those species. All field crew 

members’ ocular estimates were calibrated to a single, consistent estimation. 

2.3.4. White pine blister rust alternate hosts 

At the end of each 60 x 6 m subplot, along the same bearing, an alternate host plot (30 x 6 

m) was established in which the presence and ground area occupied (cm
2
) by alternate hosts of 

WPBR,  including Ribes, Castilleja, and Pedicularis species were recorded. Presence and ground 

area occupied by Ribes species were recorded in previously non-monitored plots and these data 

were obtained from the original survey on previously monitored plots.  

2.4. Meteorological data 

Factors that may influence WPBR, dwarf mistletoe, and bark beetles, that could not be 

collected in the field included meteorological data obtained from the PRISM dataset (Daly et al. 

2002) provided by FHTET (USDA FS Forest Health Technology Enterprise Team, Fort Collins, 

CO). For each plot, meteorological data included 30-year (1981-2010) monthly averages on a 1-

km resolution grid for daily minimum and maximum temperatures (°C), precipitation (mm), 

relative humidity (%), and additional meteorological variables such as drought frequency, 

growing degree days, and seasonal moisture index, totaling 133 variables (Appendix I, Table 

1.13). We also screened each daily temperature range, precipitation, and relative humidity 

averaged for the individual months from May to September and for the two periods of May–June 

and July–September.  

Additional monthly and yearly meteorological data was extracted from Daymet Daily 

Surface Gridded Data (Thornton et al. 2012). Daymet only provides daily water vapor pressure 

ambient values (VPamb), so relative humidity calculations were produce using calculations from 

Zimmermann and Roberts (2001). For each plot, extracted meteorological data included monthly 
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and yearly averages on a 1-km resolution grid from 2000-2012 for minimum and maximum 

temperatures (°C) and relative humidity (%) and monthly and yearly totals for precipitation 

(mm) and totaled 270 variables (Appendix I, Table 1.14).  

GIS layers with stream distributions from the USGS National Hydrological High 

Definition Dataset (available at http://nhd.usgs.gov/) were used to estimate the density of 

perennial and intermittent streams within a 1-km radius of each survey plot (km/km2). Stream 

density was used as a surrogate measure for the location of Ribes species that occupy moist or 

riparian sites. 

2.5. Data analyses 

Data transformations were carried out on certain mature tree data prior to any analysis. 

Stem density was calculated on the basis of the area of the three subplots established. WPBR 

disease, bark beetle, and dwarf mistletoe incidence was calculated as the number of infected 

trees/number of evaluated trees. Mean WPBR severity was calculated as the average number of 

cankers per infected pine. Species other than limber pine and aspen were combined into general 

groups: other pines included lodgepole, ponderosa, and whitebark pine, spruce-fir included 

Douglas-fir, subalpine fir, Engelmann spruce, and white spruce [Picea glauca (Moench) Voss], 

and other species included Rocky Mountain and Utah juniper [Juniperus osteosperma (Torr.) 

Little]. Stem density (stems/ha) and basal area were transformed to a log10 scale and percent 

stems with WPBR, bark beetles, and dwarf mistletoe and percent cover of Ribes inerme Rydb. 

were square root transformed to normalize skewed data. 

All data analyses were performed using SAS software, Version 9.3 of the SAS System 

for Windows, Copyright © [2002-2010] SAS Institute Inc. SAS and all other SAS Institute Inc., 

Cary, NC, USA. Simple descriptive statistics were produced for DBH, density (stems/ha), basal 
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area (m²/ha), health status, and allocation of damage to declining or dying and dead limber pine 

and are presented in Table 1.1, Figure 1.2, and 1.3. Least square means were produced using 

PROC GLIMMIX (with /s dist=binary) for occurrence and PROC MIXED for incidence of 

WPBR, bark beetles, and dwarf mistletoe, and are presented in Figure 1.4 and1. 5. Overall means 

and means by study area were determined using plot-level means, unless otherwise noted. 

Using the subplot-level variables (Appendix I, Tables 1.11-1.14), logistic regression was 

used to determine which variables can predict occurrence of each WPBR, bark beetles, and 

dwarf mistletoe, and linear regression was used to determine the variables that predict percent of 

stems with each of the three main damage agents. Stem density (stems/ha) and basal area (m²/ha) 

variables were transformed to a log10 scale to normalize skewed data. Percent stems with WPBR, 

bark beetles, dwarf mistletoe, and percent cover of Ribes inerme (Rydb.) and Castilleja spp. were 

square root transformed since a high number of values were less than 20%. Tested variables 

included those in each category: site, tree (> 1.37 m tall), groundcover, alternate host, and 

meteorological data (Appendix I, Tables 1.11 – 1.14). For all logistic and linear models, we first 

screened each category of variables using PROC GLMSELECT with selection=lasso (least 

absolute shrinkage and selection operator) (stop=sbc choose=sbc [specifies Schwarz criterion as 

a stopping criterion]) with nsamples=1000 (modifies number of samples used to 1000). Selected 

variables had to be in at least 20% of those 1000 models. Next, selected variables were 

incorporated into a model using PROC GLIMMIX (with /s dist=binary to code for the logistic 

models) with study area as a random effect. Using backward elimination, we manually decided 

which variable to remove using p<0.001 for significance and watched for large changes in 

regression coefficients, making sure that there wasn’t a problem with multicollinearity. To 

further eliminate variables, we used best subsets regression (PROC REG with /best=5 
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selection=rsquare b [computes estimated regression coefficients for each model selected]) to 

examine R-squared values for the various model combinations. For logistic models a Wilcoxon 

rank sum test, with critical level of significance set as P< 0.0001, was examined and for linear 

regression models, Pearson correlations (using PROC CORR), with critical level of significance 

set as P< 0.0001, and scatter plots were examined to review the response distribution to ensure 

lack of high leverage. For the logistic models, the relationship between fixed effect variables and 

response variable was plotted using means of all other fixed variables and the 5
th

, 25
th

, 50
th

, 75
th

, 

and 95
th

 percentiles of the plotted variable (Figures 1.6, 1.7, and 1.8). Predicted values were back 

transformed. 

3. Results 

3.1. Limber pine stand structure and characteristics 

Throughout the study, 508 plots (82.3 ha) were established in twenty-five study areas. 

Surveyed plots ranged in elevation from 826 to 3,140 m and averaged 2,376 m (Table 1.1). Most 

plots were located on backslopes (40%) and occurred on north aspects (36%) with an average 

slope of 19% (Appendix I, Table 1.6). Stands were generally open canopy with scattered 

individuals and/or scattered clumps (64%) (Appendix I, Table 1.6). Grazing was the most 

common site disturbance and occurred on 56% of plots (Appendix I, Table 1.6). Other site 

disturbances included tree cutting on 10% of plots, while other human disturbance occurred on 

10 %, and fire on 8% of plots (Appendix I, Table 1.6). 

Over 38,700 trees >1.37 m in height were examined, of those, 22,700 were limber pines. 

Limber pine was found in association with Douglas-fir on 206 plots, lodgepole pine on 185 plots, 

aspen on 170 plots, Rocky Mountain juniper on 133 plots, ponderosa pine on 98 plots, subalpine 

fir on 86 plots, Engelmann spruce on 64 plots, whitebark pine on 13 plots, and Utah juniper, 

Rocky Mountain maple, and white spruce on five or less plots. Overall, based on plot means, 
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limber pine made up 69% of total stand density (stems/ha) and 75% of the total average basal 

area (m
2
/ha). Mean DBH of live limber pine ranged from 8.0 (s.d. 1.6) to 16.3 (s.d. 5.5) cm, and 

averaged 11.9 (s.d. 4.9) cm, while mean overall DBH of all other live species was 9.5 (s.d. 6.1) 

cm (Table 1.1). Mean basal area (m²/ha) of live limber pine ranged from 2.6 (s.d. 1.7) m
2
/ha to 

10 (s.d. 4.9) m
2
/ha and averaged 5.8 (s.d. 5.0) m

2
/ha, while basal area of all other species 

averaged 4.5 (s.d. 6.1) m
2
/ha (Table 1.1). Mean density of live limber pine ranged from 222 to 

502 stems/ha and was 311 (s.d.168) stems/ha, overall, while mean density of all other species 

was 291 (s.d. 340) stems/ha (Table 1.1). 

3.2. Limber pine health status  

Only half (50%) of limber pines were classified as healthy (0 to 5% of crown or stem 

showing symptoms or was damaged), 26% were declining or dying, and 24% were dead (Figure 

1.2). For comparison, 69% of all other pines were healthy, with 14% declining or dying, and 

17% were dead (Appendix I, Figure 1.11). In ten study areas, mostly in the northern half of all 

the study areas, less than 50% of limber pines were classified as healthy, with only 16% and 20% 

of limber pines classified as healthy, compared to 85% and 51% of other pines, in the southern 

Absaroka Range and Wind River Reservation, respectively (Figure 1.2). Only one plot (Wind 

River Reservation) exhibited 100% mortality of limber pine. White pine blister rust, alone, 

accounted for 61% of declining and dying limber pine while dwarf mistletoe, alone, accounted 

for 19% (Figure 1.3). Bark beetles, alone, accounted for 52% of limber pine mortality, WPBR 

for 8% and dwarf mistletoe for 4% (Figure 1.3). An additional 17% of limber pine was dead due 

to any combination of the three damage agents and 16.9% of that included bark beetles (Figure 

1.3). Fourteen percent of limber pine was declining or dying due to other damage agents or 

unknown reasons while 19% were dead from the same (Figure 1.3).  
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3.2.1. Diseases, insects, and damages 

White pine blister rust on live limber pine was widespread and was the most common 

damage agent, occurring in 23 of the 25 study areas and on 73% of plots. In eight study areas, 

WPBR was present in 100% of plots (Figure 1.4a). Overall, 26% (± 2.3 half approx. LSD) of live 

limber pine was infected with 12.2% exhibiting stem cankers. Mean incidence ranged from 0% 

in the Sierra Madre and Terry Badlands, to 72% in the Southern Absaroka Range (Figure 1.4a). 

Evidence of bark beetle-caused mortality in limber pine was found in all 25 study areas and on 

75% of plots (Figure 1.4b). Overall, 18% (± 1.8 half approx. LSD) of limber pine (Figure 1.4b), 

and other pines at 17% (± 2.1 half approx. LSD), were successfully attacked by bark beetles, 

while 1% of limber pines exhibited pitchout (unsuccessful mountain pine beetle attack) and 0.3% 

exhibited symptoms of a strip attack. Bark beetle-caused mortality was highest in the northern 

Medicine Bow Mountains at 35%.  Limber pine dwarf mistletoe occurred within 20 study areas 

and was present on 29% of plots (Figure 1.4c). Overall, 9% (± 1.9 half approx. LSD) of live 

limber pine and 9% (± 2.3 half approx. LSD) of other pines, were infected with dwarf mistletoe. 

The highest incidence occurred in Boulder County and less than 1% of limber pines were 

infected with dwarf mistletoe in the Bighorn Mountains while no dwarf mistletoe was found on 

other pines in the same study areas. Of infected limber pines, 50% were lightly infected (DMR of 

1-3) and 50% were heavily infected (DMR of 4-6).  

When looking overall, at a comparison based on plot and study area means, of the same 

13 study areas previously monitored by Kearns and Jacobi (2007), incidence of WPBR has 

increased from 20% in 2002-2004 to 26% (p-value <0.0001) in 2011-2012 (Figure 1.5). Both 

occurrence and incidence of bark beetles increased 64% (p-value <0.0001) and 17% (p-value 

<0.0001), respectively (Figure 1.5). While dwarf mistletoe occurrence and incidence increased 
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8% (p-value <0.0280) and 2% (p-value <0.2956), respectively, the increase was not significant 

(Figure 1.5). 

Other diseases and damages on the evaluated limber pines were infrequent but did occur 

on 41% of the 508 plots and occurred in all study areas. Those that did infect or damage 5% or 

more of the tree included twig beetles which occurred in 22 study areas, on 105 plots, and on 

1.6% of trees; wild animal damage (e.g., porcupine or squirrel chewing and deer or elk rubbing) 

and abiotic damage occurred in all 25 study areas and on 104 and 93 plots, respectively, and 

1.6% of limber pine, each (Appendix I, Figure 1.12). 

3.3. Model results 

3.3.1. Variables that predict occurrence and incidence of WPBR 

We used logistic regression to determine the variables that predict the occurrence of 

WBPR on a subplot. Variables in the site (plot), tree, ground cover, alternate host, and 

meteorological categories, were selected in at least 20 percent of the 1000 models after screening 

each category. Variables selected in the final model include log10 stems/ha of limber pine and 

mean May precipitation (mm) (Table 1.2). Both log10 stems/ha of limber pine and mean May 

precipitation (mm) had a positive influence on occurrence of WPBR (Figures 1.6a and b). When 

eliminating meteorological variables, those selected in the final model included northing 

(latitude), elevation (m), and log10 stems/ha of limber pine (Table 1.2). 

Linear regression determined the variables that predict the incidence, or percent of live 

and dead limber pine stems with WPBR on a subplot. Category screening produced 126 

variables in all categories (plot, tree, ground cover, alternate host, and meteorological) that were 

selected in at least 20 percent of the 1000 models. Of those variables, 17, largely meteorological, 

were correlated with percent of limber pine stems with WPBR, with a Pearson correlation 
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coefficient (P) of at least ± 0.20 (Table 1.5). However, mean May precipitation (mm) (P = 0.39, 

p-value <0.0001) was the only variable selected in the final model (Table 1.2). 

3.3.2. Variables that predict occurrence and incidence of dwarf mistletoe 

 Using logistic regression, we were able to determine the variables that predict occurrence 

of dwarf mistletoe on live and dead limber pine in a subplot. The only variable selected in the 

final model included the positive influence of log10 stems/ha of limber pine (Table 1.3, Figure 

1.7). 

 Linear regression determined the variables that predicted the incidence, or percent of 

limber pine stems with dwarf mistletoe on a subplot. Category screening produced 64 variables, 

mostly meteorological, that were selected in at least 20 percent of the 1000 models. Of those, 

only seven variables were correlated with percent limber pine stems with dwarf mistletoe, with 

P’s of at least ± 0.15 (Table 1.5). Variables selected in the final model include log10 stems/ha of 

limber pine (P = 0.17, p-value <0.0001) and log10 stems/ha of other pines (P = -0.11, p-value 

<0.0003) (Table 1.3). 

3.3.3. Variables that predict occurrence and incidence of bark beetles 

The occurrence of bark beetles on limber pine a subplot was modeled with logistic 

regression analysis and log10 basal area (m²/ha) of limber pine was the only variable selected in 

the final model (Table 1.4.) Basal area of limber pine had a positive influence on occurrence of 

bark beetles (Figure 1.8).  

Linear regression determined the variables that predicted the incidence, or percent of 

limber pine stems with bark beetles on a subplot. Category screening produced 94 variables that 

were selected in at least 20 percent of the 1000 models. Of those, fourteen variables were 

correlated with percent limber pine stems with bark beetles, with P’s of at least ± 0.20 (Table 
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1.5). Variables selected in the final model include proportion of limber pine with DBH >20 cm 

(P = 0.44, p-value <0.0001) and log10 basal area (m²/ha) of other pines (P = -0.08, p-value 

<0.0014) (Table 1.4). No site or meteorological variables were selected in either the logistic or 

linear regression models predicting bark beetles on limber pine. 

4. Discussion 

4.1. Limber pine stand conditions, health, and damage agents 

White pine blister rust, bark beetles, and dwarf mistletoe are the major damage agents on 

limber pine in the southern and central Rocky Mountains. Each agent varies in the length of time 

between infection and mortality. While bark beetles during epidemic levels can rapidly 

overcome a tree’s defense system within one year, it takes longer for WPBR (years to decades) 

(Geils et al. 2010) and dwarf mistletoe (10 – 40 years for larger trees) (Hawksworth and Geils 

1990) and depends on severity of infection.  Limber pine decline in health and mortality in the 

southern and central Rocky Mountains increased from 2002 to 2012, primarily due to WPBR and 

bark beetles. Density of live limber pine (311 stems/ha) is low compared to 546 stems/ha, 

density of evaluated limber pine by Kearns and Jacobi (2007) in 2002-2004. Mean basal area 

(m
2
/ha) of live limber pine is also considerably lower at 5.8 m

2
/ha compared to 22 m

2
/ha from a 

study of limber pine in the Rocky Mountains of Alberta, Canada (Smith et al. 2013). Since 

Kearns and Jacobi (2007) surveyed limber pine stands in 2002-2004, limber pines classified as 

declining, dying, or dead in the same study areas has increased 28% (Appendix I, Table 1.8). A 

majority of recent mortality in limber pine is attributed to bark beetles, since bark beetles alone 

or in combination with other major damage agents were noted in 69% of dead limber pine and 

incidence has increased 17% in the same evaluated study areas by Kearns and Jacobi (2007). The 

increase in evidence of bark beetle attacks can largely be explained by the most recent mountain 
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pine beetle epidemic. Since mountain pine beetles prefer larger diameter trees (Safranyik and 

Carroll 2006), this may partially explain the 16 m
2
/ha difference in basal area of limber pine in 

Alberta (Smith et al. 2013), where bark beetles accounted for only 4% of limber pine mortality. 

However, mortality of other pines on our plots, also suitable hosts for mountain pine beetle, was 

8% less than limber pine with all mortality attributed to bark beetles, indicating that the addition 

of WPBR is causing an increase in mortality in limber pines as compare to other pines.  

White pine blister rust accounted for the majority, 67%, of declining and dying limber 

pine and incidence has increased 6% in the 13 study areas previously monitored by Kearns and 

Jacobi (2007), indicating that WPBR is intensifying in existing areas. Occurrence and incidence 

of WPBR is higher in the more northern study areas, which is consistent with WPBR being in 

these areas for longer. The southern Absaroka Range, one of the more northern study areas with 

only 16% of limber pines considered healthy, had the highest incidence of WPBR at 72% and 

had a high incidence of bark beetle mortality at 25%. Interestingly, just as Kearns and Jacobi 

(2007) did not find WPBR in the Sierra Madre Range and found very low incidence, about 1%, 

in the remainder of the Medicine Bow Mountains, we also found no WPBR in the Sierra Madre 

and only about 3% in the remaining areas of the Medicine Bow Mountains. The topography of 

Wyoming varies significantly, allowing for unique meteorological events within and among 

nearby mountain ranges, and since meteorological conditions regulate spore production and 

dissemination, it possible that the Medicine Bow Mountains lack conducive conditions for 

WPBR infection. It may also be possible that the limber pines in this area, possess some WPBR 

resistance traits, but this calls for further examination. 

Limber pine dwarf mistletoe, the third most damaging agent to limber pine with a mean 

incidence of 9%, did not show significant increase in the study areas previously monitored by 
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Kearns and Jacobi (2007). However, incidence did vary between study areas from very little 

dwarf mistletoe in the Bighorn Mountains, <1%, to 27% in Boulder County, Colorado. Taylor 

and Mathiason (1999) indicate that limber pine dwarf mistletoe is limited in dense stands due to 

lack of light available for seed production and decreased host vigor due to competition, however, 

Boulder County, with the highest mean incidence of dwarf mistletoe, also had one of the highest 

overall densities of limber pine at 435 stems/ha and all other species at 827 stems/ha. In general, 

dwarf mistletoe was only present when other species of dwarf mistletoe were present on 

lodgepole and or ponderosa pine.    

4.2. Statistical models 

4.2.1. White pine blister rust 

The results of our logistic regression model predicting WPBR occurrence indicated that 

stems/ha of limber pine and mean May precipitation (mm) were important variables in predicting 

WPBR occurrence, while our linear regression model predicting incidence of WPBR only 

indicated mean May precipitation as an important predictor variable. The positive influence of 

stems/ha of limber pine is natural, since limber pine is a primary host of WPBR. The positive 

influence of mean May precipitation may be explained by increased spring and early summer 

opportunities for infection of Ribes or other alternative hosts or possibly better aecia production 

during conditions of increased moisture. Precipitation as a predictor variable is supported by 

modeling efforts by Smith and Hoffman (2001) who indicated that mean summer precipitation 

was an important in predicting both occurrence and incidence of WPBR in whitebark pine. Since 

WPBR infection requires conditions cool, humid conditions for infection, as other studies found 

(Larson 2010, Dunlap 2012, Kearns et al. 2013), we expected addition meteorological variables, 

such as relative humidity and temperature, to predict occurrence and incidence of WPBR.  
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When eliminating meteorological variables, we found northing (latitude) and elevation to 

be important predictor variables of occurrence of WPBR. Northing was also positively correlated 

with WPBR occurrence, supporting the temporal relationship with length of time WPBR has 

been present in the study areas. Several studies have indicated that elevation is either correlated 

with or an important factor in predicting WPBR (Smith and Hoffman 2001, Duriscoe and 

Duriscoe 2002, Hunt 2005, Kearns and Jacobi 2007, Dunlap 2012). While studies by Hunt 

(2005) indicate that white pines at higher elevations are less prone to WPBR than at low 

elevations, we actually found a slight positive correlation and relationship with elevation when 

meteorological variables were left out. This could be related to the general increase in moisture 

with elevation in the Rocky Mountains and higher frequency high elevation forests within cloud 

moisture during spring or late summer infection periods. While we found no additional 

relationships with any other site or stand variables, other studies have done so. Site 

characteristics, such as topography (Duriscoe and Duriscoe 2002), slope (Kearns and Jacobi 

2007, Kearns et al. 2013), slope position (Larson 2010, Kearns et al. 2013), presence of Ribes 

(Campbell and Antos 2000, Duriscoe and Duriscoe 2002, Kearns et al. 2013), and stream density 

(Kearns et al. 2013) and stand characteristics, such as canopy cover (Campbell and Antos 2000), 

tree diameter (Smith and Hoffman 2001, Kearns and Jacobi 2007), stand density (Larson 2010), 

and percentage of large trees (Kearns et al. 2013) have been found to either be correlated with or 

impact WPBR.  

4.2.2. Dwarf mistletoe 

Occurrence of dwarf mistletoe is largely impacted by temperature restrictions on 

flowering and thus reproduction and long distance dispersal by birds, a factor we did not 

measure. In addition it is plausible that dwarf mistletoe occurrence may be a result of past fire 
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history or glacial refugia. Thus, our dwarf mistletoe models did not show strong relationships 

with any of our measured variables, likely for these reasons. Our logistic regression model, 

predicting occurrence of limber pine dwarf mistletoe, indicated that stems/ha of limber pine was 

a predictor variable. Since limber pine is an ideal host of dwarf mistletoe, we would naturally 

expect the predicted positive relationship of increased density with dwarf mistletoe occurrence. 

However, Taylor and Mathiason (1999) indicated that tree to tree spread of limber pine dwarf 

mistletoe is positively correlated with less dense, multistoried stands of suitable hosts (Taylor 

and Mathiason 1999). While we found no relationships with meteorological variables and little is 

known about the impact of climate on the distribution of limber pine dwarf mistletoe, the most 

limiting factor may be minimum temperature (Hawksworth and Wiens 1996). Barrett et al. 

(2012) found that the distribution of hemlock dwarf mistletoe (Arceuthobium tsugense 

[Rosendahl] G.N. Jones) was related to growing degree days, indirect and direct solar radiation, 

rainfall, snowfall, slope, and minimum temperatures. We also found no relationships with site 

characteristics, but Hawksworth and Wiens (1996) suggested that elevation, topographic 

position, slope steepness, and aspect may influence the distribution of dwarf mistletoe. 

Our linear regression model predicting percent limber pine stems infected with dwarf 

mistletoe indicated that stems/ha of limber pine and stems/ha of other pines were predictor 

variables. The R
2
 of the fixed effect variables was only 0.04 so we do not feel this model has 

much applicability especially since no site or meteorological variables were utilized.  

4.2.3. Bark beetles 

The results of our logistic regression model predicting bark beetle occurrence on limber 

pine indicated basal area (m²/ha) of limber pine was the only predictor variable and had a 

positive influence. The results of our linear regression model predicting incidence of bark beetles 
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on limber pine indicted that proportion of limber pine with DBH >20 cm and basal area (m²/ha) 

of other pines were important predictor variables. Since all pines are suitable host for bark 

beetles and mountain pine beetle prefers larger diameter trees (Safranyik and Carroll 2006), we 

would expect positive relationships with both basal area of limber pine and proportion of limber 

pine with DBH>20, and a positive relationship with basal area of other pines. Similarly, Negron 

et al. (2008) found a correlation between basal area of ponderosa pine with dbh > 25.4 cm and 

mountain pine beetle attacks, while Larson (2010) found a correlation between mountain pine 

beetle attacks on whitebark pine and low-density, larger diameter stands. While others have 

indicated that meteorological variables, including temperature and precipitation, may be 

important in predicting bark beetles (Carroll et al. 2003, Larson 2010), no meteorological 

variables predicted either occurrence or incidence of bark beetles on limber pine. While we did 

not find dwarf mistletoe to predict occurrence or incidence of bark beetles, Geils et al. (2002) 

alludes to the potential for dwarf mistletoe to be a predisposing factor to attack by mountain pine 

beetle and proposes that moderately infected trees may be more likely to be attacked by the 

mountain pine beetle than uninfected trees.  

4.3. Implications for management 

The increase in spread and intensification of WPBR in limber pine, combined with the 

recent mountain pine beetle epidemic have impacted limber pine stands by causing increased 

decline in health, and mortality throughout the southern and central Rocky Mountains. Potential 

loss of limber pine from some populations could have cascading ecosystem effects in these areas. 

In the northwestern U.S., where WPBR has been present longer, the native range of western 

white pine (Pinus monticola Douglas ex D. Don) has declined and allowed for replacement by 

late successional species (Schwandt et al. 2013). Our results indicate areas that may be 
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considered a priority for monitoring, management, and restoration. Areas where incidence of 

either WPBR or bark beetles is high, and particularly areas with high incidences of both, are 

areas of concern. While it may possible for limber pine stands with WPBR to recover to some 

level if genetic resistance exists, those trees may be at risk of bark beetle-induced mortality. 

Additionally, as WPBR kills both seedlings and mature trees and bark beetle induced mortality 

occurs in mature, cone-bearing limber pine, few cone and seed producing trees may be left to 

sustain the stand. Clark’s nutcracker may not return to these decimated stands. For whitebark 

pine, an estimated basal area of 5 m²/ha is required to produce the amount of cones needed for 

Clark’s nutcracker to return to a stand (McKinney et al. 2009), and while we are not sure how it 

applies to limber pine, 32% of our study areas fall below this mean. 

While our results provide meteorological variables that influence both WPBR and dwarf 

mistletoe, the added unknown of how future climate regimes may impact these damage agents 

and their host should be considered. Recent increase in mortality in western U.S. trees may be 

the result of regional warming (van Mantgem 2009). Since white pine blister rust infection is 

induced by cool temperatures and high relative humidity, if warmer and drier metrological 

conditions prevail, opportunities for WPBR infection may diminish (Sturrock et al. 2011). 

Increased temperature could allow for an increase in suitable habitat, expanding in both latitude 

and elevation, for bark beetles (Bentz et al. 2010). Predicting the impact of climate change on 

dwarf mistletoe is more difficult and depends on host movement and bird dispersal. If host 

dispersal is affected, it is possible that dwarf mistletoe may not be able to adapt (Way 2011). 

 Maintaining limber pine stands is a priority for preserving potentially genetically WPBR-

resistant trees. While our statistical models indicates a positive influence of density of limber 

pine on both WPBR and dwarf mistletoe, and a positive influence of basal area of limber pine, 
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we might suggest thinning stands to increase vigor, but taking care to leave healthy, seed 

producing trees. In stands with little impact by WPBR, stand management for multiple age 

classes may encourage regeneration (Schoettle and Sniezko 2007) and help to sustain stands 

during bark beetle attacks. Collection of seed and testing for WPBR resistance to outplant 

WPBR resistant stock has become an increasingly viable restoration option, particularly since 

complete resistance has recently been identified in limber pine (Schoettle and Sniezko 2007, 

Schoettle et al. 2014). 

Areas where occurrence and incidence of WPBR and bark beetles is low may not need 

intervention but should be monitored. In Colorado, our results indicate that occurrence and 

incidence of WPBR remains low, and while WPBR has been spreading south through Colorado, 

modeling efforts by Kearns et al. (2014) indicate that future occurrence and incidence in the 

southern Rocky Mountains may be limited due to environmental conditions. Additionally, in 

Colorado, areas of mountain pine beetle-caused mortality increased by only 3,200 ha in 2013, 

versus 12,500 ha in 2012, and 57,000 ha in 2011, indicating that the epidemic is in decline (2013 

Forest Health Aerial Survey). What drives the periodicity of mountain pine beetle outbreaks is 

not well understood, but within the last century, outbreaks appeared in Colorado limber pine 

areas on one or more pine host about 2-3 times. Thus, managing and monitoring limber pine 

stands for resiliency against future insect and disease outbreaks, keeping in mind changing 

climate regimes, should be a priority. 
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Tables and Figures 

 

Table 1.1: Summary of plots, mean elevation, diameter breast height (DBH) (cm), basal area 

(m²/ha) and stems/ha of live limber pine and all other live species in limber pine stands on 25 

study areas in Colorado, Wyoming, and Montana in 2011 and 2012. 

 

 
1
One plot = three 60 x 6 m subplots placed at random bearings with a 30 x 6 m WPBR alternate 

host plot at the end of each subplot. 
2
Diameter breast height was measured 1.37 m above the ground on the uphill side of the tree. 

3
Cross sectional area of a tree at DBH (1.37 m above the ground). 

*Indicates previously monitored stands. 
4
Includes Beaver Rim, Crooks Mountain, and the Rattlesnake Range. 

5
Includes Cedar Mountain, Rattlesnake Mountain, and Sheep Mountain. 

 

 

 

 

Plots¹ n mean std mean std mean std n mean std mean std mean std

Colorado

Front Range

Boulder County (Boulder County) 14 2735 14 11.8 3.3 6.9 4.3 435 188 14 12.7 3.1 12.6 6.1 827 572

North (NF)* 25 2669 24 12.5 5.4 8.1 11.1 328 228 24 12.6 5.0 11.4 7.8 551 350

Wyoming

Laramie Mtns

Pole Mtn (NF)* 24 2544 24 9.0 3.1 3.3 2.6 302 177 22 11.0 4.7 11.0 7.1 625 292

East (NF)* 24 2347 24 9.4 2.4 3.7 2.2 312 163 24 11.8 6.2 9.1 9.2 388 386

West  (NF)* 24 2482 24 12.3 3.8 4.5 3.1 245 137 22 11.2 4.9 9.2 7.3 509 378

Muddy Mtn (BLM)* 21 2339 21 12.0 4.2 6.6 4.3 293 132 19 8.0 4.5 2.6 2.8 285 355

Medicine Bow Mtns

South (NF)* 24 2633 24 10.2 3.7 3.4 2.5 246 94 21 10.3 6.9 2.8 3.1 230 212

North  (NF)* 24 2797 24 12.8 4.6 6.1 4.8 264 121 20 10.1 4.1 3.7 3.0 230 170

Sierra Madre  (NF)* 24 2736 24 11.1 4.2 5.0 5.3 263 160 18 10.3 7.7 2.6 4.1 191 303

Sweetwater Basin

Shirley Mtns (BLM)* 24 2424 24 10.0 2.5 5.7 2.2 425 196 11 7.8 4.4 0.5 0.6 51 40

Ferris Mtns (BLM)* 6 2293 6 16.3 5.5 9.0 3.8 256 32 5 9.8 9.5 1.4 2.0 33 32

Green Mtns (BLM)* 24 2516 24 10.5 3.8 7.4 4.5 472 188 15 14.0 7.4 3.0 3.5 169 250

Beaver Divide
5
 (BLM) 16 2287 16 11.5 4.2 6.8 5.5 367 123 6 8.1 8.3 0.6 0.7 73 92

Wind River Range

South (NF) 27 2599 27 12.7 4.4 6.5 4.9 297 168 21 10.5 8.8 2.4 2.6 194 239

Reservation (Tribal)* 18 2654 17 10.0 3.4 4.7 6.9 222 140 16 11.0 8.2 3.8 7.1 186 308

North (NF) 28 2503 28 10.1 4.7 4.1 3.8 255 129 25 8.9 5.1 3.8 5.1 306 474

Absaroka Range

South (NF)* 20 2462 20 15.0 3.4 5.8 3.3 230 107 17 6.2 4.0 2.6 4.9 259 213

Shoshone Canyon
6
 (BLM) 17 2083 17 8.7 4.3 2.6 1.7 301 146 14 4.1 3.9 0.8 1.7 104 84

North (NF) 24 2054 24 14.9 7.4 5.5 3.8 269 150 18 9.6 6.4 1.5 2.1 126 157

Bighorn Basin (BLM) 11 1918 11 11.0 3.2 5.0 2.9 322 110 11 4.8 2.1 1.2 2.2 230 245

Bighorn Mtns

East (BLM) 17 2404 17 11.8 4.5 5.9 4.0 328 193 16 10.4 8.0 4.1 7.9 209 314

South (NF) 20 2518 20 14.6 5.0 7.9 4.3 290 153 19 10.4 6.4 3.0 3.6 144 93

North  (NF) 24 2478 24 16.0 7.0 9.1 6.5 349 213 24 6.7 4.4 1.7 2.0 223 291

Montana

Pryor Mtns (NF, BLM) 20 2076 20 16.3 6.4 10.0 4.9 331 116 20 6.3 3.7 2.3 3.1 290 260

Terry Badlands (BLM) 8 858 8 8.0 1.6 3.9 1.6 502 137 7 4.3 1.9 0.6 0.8 164 126

Total 508 2376 506 11.9 4.9 5.8 5.0 311 168 429 9.5 6.1 4.5 6.1 291 340

State, geographic range, and study 

area (Ownership)

Mean 

elevation 

(m)

Stems/haDBH
2
 (cm) Basal area

3
 (m

2
/ha) Stems/ha DBH (cm) Basal area (m

2
/ha)

Live limber pine Live all other species 
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Table 1.2: Logistic regression predicting occurrence (y/n) of WPBR on limber pine on a subplot 

and linear regression for predicting percent limber pine stems with WPBR on a subplot. Models 

fit using PROC GLIMMIX (with /s dist=binary for the logistic model) with study area as a 

random effect. R² value obtained using PROC REG with /best=5 selection = rsquare b, and 

applies only to the fixed effects. The critical level of significance is set at p<0.001. 

 

 

 

 

Table 1.3: Logistic regression predicting occurrence (y/n) of dwarf mistletoe on limber pine on a 

subplot and linear regression for predicting percent limber pine stems with dwarf mistletoe on a 

subplot. Models fit using PROC GLIMMIX (with /s dist=binary for the logistic model) with 

study area as a random effect. R² value obtained using PROC REG with /best=5 selection = 

rsquare b, and applies only to the fixed effects. The critical level of significance is set at p<0.001. 

 

Occurrence of WPBR on a subplot Intercept -9.8932 1.1612 0.70 0.73

Log10 stems/ha of limber pine 1.5812 0.2349

Mean May precipitation (mm) 0.2789 0.0390

Occurrence of WPBR on a subplot Intercept -41.6886 10.6808 0.65 0.64

 (no meteorological variables) Northing (m) 0.0730 0.0220

Elevation (m) 0.0017 0.0004

Log10 stems/ha of limber pine 1.5803 0.2344

Percent stems infected with WPBR (sqrt) Intercept -5.9398 1.0298 0.15

Mean May precipitation (mm) 0.3972 0.0388

R² 

Standard 

errorEstimateParameterModel AUC

Classification 

accuracy

Occurrence of dwarf mistletoe on a subplot Intercept -6.1202 0.7889 0.60 0.55

Log10 stems/ha of limber pine 1.6588 0.2736

Percent stems with dwarf mistletoe (sqrt) Intercept -1.3774 0.7499 0.04

Log10 stems/ha of limber pine 1.3431 0.2768

Log10 stems/ha of other pines -0.4202 0.0947

Standard 

error R² AUC

Classification 

accuracyModel Parameter Estimate
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Table 1.4: Logistic regression predicting occurrence (y/n) of bark beetles on limber pine on a 

subplot and linear regression for predicting percent limber pine stems with bark beetles on a 

subplot. Models fit using PROC GLIMMIX (with /s dist=binary for the logistic model) with 

study area as a random effect. R² value obtained using PROC REG with /best=5 selection = 

rsquare b, and applies only to the fixed effects. The critical level of significance is set at p<0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Occurrence of bark beetles on a subplot Intercept -1.9717 0.1817 0.55 0.58

Log10 basal area (m²/ha) of limber pine 6.9580 0.4353

Percent stems with bark beetles (sqrt) Intercept 0.1423 0.2266 0.24

Proportion of limber pine with dbh >20 cm 0.0376 0.0035

Log10 basal area (m²/ha) of all pines 4.6262 0.4257

R² Model Parameter Estimate

Standard 

error AUC

Classification 

accuracy
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Table 1.5: Variables selected in at least 20% of 1000 models during category screening using 

PROC GLMSELECT, with Pearson correlation coefficients (P) of at least ± 0.2, except square 

root (percent stems infected with dwarf mistletoe) where correlations are at least ± 0.15.  

 

 
* Based on 30-year averages 

** Based on 2000-2012 averages 

Model and variables P p-value

Square root (Percent stems with WPBR)

northing 0.22 <.0001

log10 stems/ha of other pine -0.20 <.0001

12 month moderate or greater drought frequency -0.28 <.0001

mean May precipitation* 0.39 <.0001

mean June precipitation* 0.21 <.0001

average minimum temperature in January * -0.28 <.0001

average maximum temperature in January* -0.23 <.0001

average temperature in November * -0.21 <.0001

average relative humidity in April* 0.38 <.0001

average relative humidity in May* 0.33 <.0001

average relative humidty in June* 0.32 <.0001

average relative humidity in November* 0.24 <.0001

diffuse short-wave radiation 0.28 <.0001

average relative humidity July-September** 0.20 <.0001

average maximum temperature May-June** -0.21 <.0001

total precipitation in 2000 -0.20 <.0001

total precipitation in 2006 -0.24 <.0001

Square root (Percent stems with bark beetles)

proportion of limber pine with dbh ≤ 5 cm -0.37 <.0001

proportion of limber pine dbh > 20 cm 0.44 <.0001

proportion of limber pine with codominant crown class 0.21 <.0001

log10 basal area (m²/ha) of limber pine 0.50 <.0001

spring frost day* 0.25 <.0001

average temperature in June* -0.25 <.0001

maximum temperature in the warmest month* -0.23 <.0001

average temperature in the warmest month* -0.25 <.0001

average maximum temperature May-June** -0.21 <.0001

average maximum temperature July-September** -0.21 <.0001

average minimum temperature July-September** -0.21 <.0001

average minimum temperature in 2005 -0.21 <.0001

average minimum temperature in 2006 -0.23 <.0001

average minimum temperature in 2010 -0.21 <.0001

Square root (Percent stems with dwarf mistletoe)

presence of bark peetles on limber pine 0.15 <.0001

presence of WPBR on limber pine -0.17 <.0001

log10 stems/ha of limber pine 0.17 <.0001

log10 basal area (m²/ha) of limber pine with WPBR -0.18 <.0001

mean May precipitation* -0.16 <.0001

2nd principle component monthly precipitation 0.18 <.0001

average precipitation May-June* -0.15 <.0001
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Figure 1.1:  Location of limber pine monitoring plots in 25 study areas in Colorado, Wyoming, 

and Montana in 2011 and 2012. 
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Figure 1.2:  Health status of limber pine in 25 study areas in Colorado, Wyoming, and Montana 

in 2011 and 2012. Healthy stems include stems with a health status of 1 and have no visual 

damage to crown or stem up to 5% damage. Declining stems include stems with a health status 

of 2 and are categorized as such if 6-50% of crown showing symptoms that indicates it is dead or 

will be; and dying stems include stems with a health status of 3 and are categorized as such if  

>50% of crown showing symptoms or is damaged. Dead stems include stems with a health status 

of 4, recent dead, no green needles, red needles but fines still present, health status of 5, old dead, 

no fine twigs, no needles, >50% bark still present, or health status of 6, very old dead, no fine 

twigs, no needles, <50% of bark present. 
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Figure 1.3: Allocation of damage to declining or dying and dead limber pine in 25 study areas in 

Colorado, Wyoming, and Montana in 2011 and 2012. Declining stems include stems with a 

health status of 2 and are categorized as such if 6-50% of crown showing symptoms that 

indicates it is dead or will be; and dying stems include stems with a health status of 3 and are 

categorized as such if  >50% of crown showing symptoms or is damaged. Dead stems include 

stems with a health status of 4, recent dead, no green needles, red needles but fines still present, 

health status of 5, old dead, no fine twigs, no needles, >50% bark still present, or health status of 

6, very old dead, no fine twigs, no needles, <50% of bark present. Error bars are ± 2 standard 

errors of the percent. 
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(a)  

 
 

(b)  
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(c)  

 
 

Figure 1.4: Occurrence (percent of plots) (least square means using PROC GLIMMIX) and 

incidence (percent of stems) (least square means using PROC MIXED) of a) white pine blister 

rust on live limber pine, b) bark beetles on live and dead limber pine, and c) dwarf mistletoe on 

live limber pine in 25 study areas in Colorado, Wyoming, and Montana in 2011 and 2012. 

Values are adjusted for study area. Error bars are ± half approximate LSD. 
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Figure 1.5: A comparison of occurrence (percent of plots) (least square means using PROC 

GLIMMIX with study area as a random effect) and incidence (percent of stems) (least square 

means using PROC MIXED with study area as a random effect) of WPBR on live limber pine, 

bark beetles on live and dead limber pine, and dwarf mistletoe on live limber pine at the study 

area level (n=13) from a 2002-2004 survey (Kearns and Jacobi 2007) and a survey of limber pine 

stands in 25 study areas in Colorado, Wyoming, and Montana in 2011 and 2012. Values are 

adjusted for study area. Error bars are ± half approximate LSD. 
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(a) 

 
 

(b) 

 
 

Figure 1.6: Logistic regression analysis predicting occurrence (y/n) of WPBR on limber pine on 

a subplot using variables selected in the final model (fit using PROC GLIMMIX with study area 

as a random effect, in SAS) from a monitoring study of limber pine stands in 25 study areas in 

Colorado, Wyoming, and Montana in 2011 and 2012. Relationship with response variable was 

plotted using the 5th, 25th, 50th, 75th, and 95th percentiles of the variable of interest and mean 

values for the other variables. Predicted values were back transformed. Positive relationships 

exist between (a) occurrence of WPBR and stems/ha of limber pine and (b) mean May 

precipitation (mm).  
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Figure 1.7: Logistic regression analysis predicting occurrence (y/n) of dwarf mistletoe on limber 

pine on a subplot using variables selected in the final model (fit using PROC GLIMMIX with /s 

dist=binary and study area as a random effect, in SAS) from a monitoring study of limber pine 

stands in 25 study areas in Colorado, Wyoming, and Montana in 2011 and 2012 Relationship 

with response variable was plotted using the 5th, 25th, 50th, 75th, and 95th percentiles of the 

variable of interest and mean values for the other variables. Predicted values were back 

transformed.  Positive relationships exist between occurrence of dwarf mistletoe and stems/ha of 

limber pine. 
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Figure 1.8: Logistic regression analysis predicting occurrence (y/n) of bark beetles on limber 

pine on a subplot using variables selected in the final (fit using PROC GLIMMIX with /s 

dist=binary and study area as a random effect, in SAS) from a monitoring study of limber pine 

stands in 25 study areas in Colorado, Wyoming, and Montana in 2011 and 2012. Relationship 

with response variable was plotted using the 5th, 25th, 50th, 75th, and 95th percentiles of the 

variable of interest and mean values for the other variables. Predicted values were back 

transformed.  A positive relationship exists between occurrence of bark beetles on limber pine on 

a subplot and basal area (m²/ha) of limber pine.  
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Appendix I: Additional Tables and Figures 

Table 1.6: Plot summary data from a monitoring study of limber pine stands in Colorado, 

Wyoming, and Montana in 2011 and 2012. 

 

 

1
One plot = three 60 x 6 m subplots placed at random bearings with a 30 x 6 m WPBR alternate 

host plot at the end of each subplot. 
2
Aspect: east ≥ 45 and < 135 degrees, south ≥ 135 and < 225 degrees, west ≥ 225 and < 315 

degrees, north ≥ 315 and < 45 degrees. 
3
Closed canopy multistory. 

4
Closed canopy multistory with open individuals and/or open scattered clumps. 

5
Closed canopy single story with open individuals and/or open scattered clumps (includes mosaic 

of closed canopy single and multistory). 
6
Open canopy, scattered individuals and/or scattered clumps. 
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Colorado

Front Range

Boulder County 14 16 9 3 33 16 20 27 38 2735 117 2568 2947 31 14 43 5 - 7 7 33 45 14 38 - 34 7

North 25 16 11 3 37 20 24 37 19 2669 147 2484 3129 39 11 31 12 5 3 - 33 1 65 33 23 4 52

Wyoming

Laramie Mtns

Pole Mtn 24 12 8 3 33 8 11 33 47 2544 80 2440 2700 18 13 53 10 6 1 - 19 8 72 10 7 17 88

East 24 18 9 6 46 13 15 15 58 2347 83 2116 2456 36 19 24 8 8 4 8 11 44 36 - 2 13 40

West 24 19 8 4 33 23 25 16 36 2482 110 2326 2717 39 13 26 13 - 10 11 8 26 54 - - 6 42

Muddy Mtn 21 17 14 3 62 10 19 26 45 2339 150 1969 2521 37 11 33 17 - 2 2 10 17 71 2 4 24 40

Medicine Bow Mtns

South 24 11 8 2 30 17 24 28 32 2633 140 2398 2907 7 6 44 36 6 1 - 38 1 61 17 11 3 67

North 24 19 10 6 39 22 28 38 13 2797 176 2490 3084 29 - 49 22 - - 24 11 - 65 6 19 7 13

Sierra Madre 24 17 8 6 36 13 36 33 18 2736 119 2459 2937 29 1 44 14 7 4 - 24 4 72 11 18 4 71

Sweetwater Basin

Shirley Mtns 24 15 8 2 33 19 28 32 21 2424 117 2241 2690 24 13 33 11 14 6 - 14 3 83 - 4 - 88

Ferris Mtns 6 18 10 10 34 - 28 39 33 2293 81 2157 2381 17 33 28 6 6 11 - - - 100 - - - 100

Green Mtns 24 18 13 1 54 22 31 26 21 2516 244 2177 3269 39 11 28 22 - - 1 11 6 82 15 6 - 90

Beaver Divide 16 21 13 3 49 23 13 14 50 2287 143 2060 2491 42 21 21 13 - 4 - - 23 77 - - 13 66

Wind River Range

South 27 14 9 5 45 16 36 12 36 2599 117 2348 2911 38 14 37 10 1 - 2 - 37 60 12 3 8 56

Reservation 18 27 11 11 44 22 26 15 36 2654 170 2320 2915 59 13 24 2 - 2 - - 28 72 6 11 10 67

North 28 24 15 4 66 16 28 21 36 2503 115 2328 2719 52 5 30 10 2 1 6 2 48 44 10 6 1 56

Absaroka Range

South 21 28 16 3 64 26 30 15 29 2462 231 1763 2690 68 5 10 10 - 8 - 19 38 43 1 17 11 29

Shoshone Canyon 16 23 14 5 52 25 19 5 52 2083 367 1594 2680 46 17 23 8 4 2 - 6 10 83 11 5 6 38

North 24 23 14 3 60 18 24 20 39 2054 184 1799 2550 54 18 8 14 6 - - 4 35 61 5 1 14 56

Bighorn Basin 11 25 21 5 64 2 18 30 50 1918 284 1558 2389 30 6 33 15 12 3 6 - 24 70 7 - 7 52

Bighorn Mtns

East 17 22 10 6 41 18 24 16 43 2404 131 1941 2512 61 29 8 - 2 - 10 - 39 51 4 4 - 57

South 20 22 9 6 40 15 26 26 33 2518 227 2069 2819 55 12 10 20 3 - - 10 27 63 3 3 5 49

North 24 25 12 6 67 18 32 17 33 2478 240 2013 2855 63 3 21 14 - - - 1 32 67 1 5 7 58

Montana

Pryor Mtns 20 18 10 7 43 13 24 26 38 2076 377 1493 2601 47 13 15 15 10 - 5 3 32 60 4 - 16 49

Terry Badlands 8 15 9 5 24 13 16 22 50 858 15 835 874 29 17 38 13 4 - - - 42 58 - - 6 75

508 19 17 24 24 36 2376 40 13 29 13 6 4 7 14 25 64 10 8 10 56

State, geographic 

range, and study area

Slope (%) Aspect
2
 (% of plots) Elevation (m) Slope position (% of plots) Stand structure (% of plots)

Disturbance history 

(% of plots)
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Table 1.7: Limber pine tree summary data from a monitoring study of limber pine stands in 

Colorado, Wyoming, and Montana in 2011 and 2012. 

 

 

1
One plot = three 60 x 6 m subplots placed at random bearings with a 30 x 6 m WPBR alternate 

host plot at the end of each subplot. 

 

 

 

 

 

 

 

n
1

mean std min max mean std min max mean std min max mean std min max mean std min max mean std min max

Colorado

Front Range

Boulder County 14 47 8 9 0 30 37 13 11 55 3 1 1 5 40 15 11 65 16 21 2 78 9 5 3 19

North 24 35 6 5 0 17 30 17 4 77 5 3 2 9 53 21 16 100 16 11 1 49 11 8 3 36

Wyoming

Laramie Mtns

Pole Mtn 24 33 11 5 3 22 24 14 3 50 4 1 3 5 56 19 8 88 17 14 4 46 10 7 3 26

East 24 34 7 5 0 17 32 10 15 48 7 5 3 14 43 20 4 71 17 15 3 59 16 10 4 34

West 24 27 2 3 0 14 30 17 5 76 7 2 5 13 30 15 4 60 39 28 3 100 10 9 4 38

Muddy Mtn 21 32 6 5 0 18 27 20 3 77 5 4 2 13 24 12 6 45 54 28 7 100 10 6 2 21

Medicine Bow Mtns

South 24 27 6 11 0 49 21 11 3 41 4 2 2 7 50 22 8 89 25 21 2 67 11 8 3 35

North 24 29 7 7 0 25 20 11 6 46 3 1 2 4 59 16 36 88 18 13 4 48 9 5 4 22

Sierra Madre 24 28 2 4 0 19 17 11 3 38 5 2 3 8 59 20 6 100 25 15 1 63 8 4 3 18

Sweetwater Basin

Shirley Mtns 24 46 8 7 1 27 25 15 3 57 6 5 2 14 49 18 8 84 20 11 4 43 6 3 2 12

Ferris Mtns 6 28 8 9 0 21 23 12 3 41 6 4 4 11 34 15 7 53 32 14 7 46 10 4 6 14

Green Mtns 24 51 11 11 1 53 14 5 5 24 2 1 1 3 56 14 29 88 19 12 1 41 12 9 2 36

Beaver Divide 16 40 8 10 0 32 20 13 3 40 4 2 3 6 36 24 14 93 54 25 8 93 7 5 2 21

Wind River Range

South 27 32 6 5 0 18 31 16 6 63 4 1 2 4 29 12 6 58 45 31 3 100 8 5 1 24

Reservation 17 24 11 7 0 28 26 10 13 39 4 2 2 6 28 18 3 60 57 29 17 100 14 11 2 40

North 28 28 3 2 0 9 34 20 7 67 1 - 1 1 36 22 4 81 40 34 3 100 14 12 3 36

Absaroka Range

South 21 27 18 10 1 36 33 20 8 61 5 3 3 9 37 24 6 83 37 29 6 100 7 5 2 19

Shoshone Canyon 16 31 8 7 0 25 11 10 4 38 - - - - 58 24 10 93 44 30 16 100 5 2 2 8

North 24 29 11 16 0 61 44 26 6 86 7 4 4 11 31 29 3 94 41 33 4 100 6 4 2 17

Bighorn Basin 11 35 7 5 0 16 36 28 6 75 3 1 2 4 23 25 2 65 56 38 3 100 7 3 2 12

Bighorn Mtns

East 17 35 11 8 3 29 34 18 14 69 14 9 7 20 31 22 5 80 34 21 2 71 11 5 2 20

South 20 31 11 6 4 24 33 19 4 70 9 5 6 13 39 26 7 88 28 24 4 88 12 5 4 22

North 24 38 6 5 0 25 46 20 4 76 10 11 2 18 27 23 5 95 29 18 5 64 6 4 2 15

Montana

Pryor Mtns 20 36 7 6 0 19 43 24 4 76 4 0 4 4 17 12 2 42 55 37 4 100 9 6 3 25

Terry Badlands 8 54 5 4 0 11 40 14 17 56 3 - 3 3 22 10 13 41 30 14 15 56 9 5 3 18

506 34 8 29 5 39 34 9

crown class

mean # 

trees

State, geographic 

range, and study area

crown dieback (%) codominant dominant intermediate overtoppedopen
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Table 1.8: A comparison of health status of limber pine at the stand level in 2002 - 2004 (Kearns 

and Jacobi 2007) and a monitoring study of limber pine stands in 2011 - 2012 at 13 study areas 

in Colorado and Wyoming. 

 

1
2002 – 2004 (Kearns and Jacobi 2007): one plot = 2 - 5 transects each 61 x 4.6 m, placed at 

random bearings with a 30.5 x 4.6 m Ribes transect at the end of each main transect. 

Year n
1, 2

healthy
3 

p-value declining
4

p-value dead
5

p-value

Colorado

Front Range

North 2003 75 85.56 0.0136 10.3 0.1053 4.1 0.0212

2011 24 74 16 11

Wyoming

Laramie Mtns

Pole Mtn 2002 93 82 <0.0001 15 <0.0001 3 0.0002

2011 24 55 27 18

East 2002 29 73 0.0029 16 0.0508 11 0.0106

2012 24 56 23 21

West 2002 30 87 0.0056 7 0.0500 5 0.0510

2012 24 75 12 13

Muddy Mtn 2003 20 81 <0.0001 16 0.0016 4 0.0340

2012 21 55 33 12

Medicine Bow Mtns

South 2002, 2003 69 80 0.0003 14 0.6371 6 <0.0001

2011 24 57 16 27

North 2002, 2003 60 85 <0.0001 10 0.0118 6 <0.0001

2011 24 43 19 38

Sierra Madre 2002, 2003 31 86 0.0002 8 0.0110 6 <0.0001

2011 24 63 3 33

Sweetwater Basin

Shirley Mtns 2002 33 80 0.0007 15 0.0039 5 0.0069

2011 24 59 28 13

Ferris Mtns 2003 7 64 0.6221 29 0.8948 7 0.3083

2011 6 54 31 15

Green Mtns 2002 22 83 <0.0001 14 0.0004 4 0.0040

2011 24 49 34 18

Wind River Range

Reservation 2004 15 59 <0.0001 35 0.9935 6 <0.0001

2012 18 18 35 47

Absaroka Range

South 2003 20 93 <0.0001 5 <0.0001 2 <0.0001

2012 20 16 44 40

2002-2004 80 15 5

2011-2012 52 25 23

Health status 
State, geographic 

range, and study 

area 
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2
2011 – 2012: one plot = three 60 x 6 meter subplots placed at random bearings with a 30 x 6 

meter WPBR alternate host subplot at the end of each main subplot. 
3
Percent of stems with health status = 1, no visual damage to crown or stem up to 5% damage. 

4
Percent of stems with health status = 2, declining, 6-50% of crown showing symptoms that 

indicates it is dead or will be or health status = 3, dying, >50% of crown showing symptoms or is 

damaged. 
5
Percent of stems with health status = 4, recent dead, no green needles, red needles but fines still 

present, health status = 5,  old dead, no fine twigs, no needles, >50% bark still present, or health 

status = 6, very old dead, no fine twigs, no needles, <50% of bark present. 
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Table 1.9: A comparison of occurrence and incidence of live and dead limber pine at the stand 

level in 2002 - 2004 (Kearns and Jacobi 2007) and a monitoring study of limber pine stands in 

2011 - 2012 at 12 study areas in Colorado and Wyoming. 

 

1
2002 – 2004 (Kearns and Jacobi 2007): one plot = 2 - 5 transects each 61 x 4.6 m, placed at 

random bearings with a 30.5 x 4.6 m Ribes transect at the end of each main transect. 
2
2011 – 2012: one plot = three 60 x 6 meter subplots placed at random bearings with a 30 x 6 

meter WPBR alternate host subplot at the end of each main subplot. 

 

 

 

Year n
1, 2

p-value p-value p-value p-value p-value p-value

Colorado

Front Range

North 2003 75 26.7 0.0066 4.08 0.1062 12 <0.0001 0.7 0.0010 28.0 0.6155 8.4 0.7675

2011 24 58 8.0 71 14 33 7.0

Wyoming

Laramie Mtns

Pole Mtn 2002 93 91 0.2038 30.1 0.4006 3 <0.0001 0 0.0002 15 1.0000 2.9 0.7199

2011 24 100 34.2 88 14.8 13 4.0

East 2002 29 97 0.5841 26.1 0.1820 17 <0.0001 1 0.0029 24 0.7351 9.3 0.4056

2012 24 92 19.5 75 7 17 4.8

West 2002 30 60 0.7837 6.4 0.3677 20 0.2228 1 0.0922 13 0.3111 1.4 0.1130

2012 24 54 8.9 38 6 25 7.5

Muddy Mtn 2003 20 100 0.4878 37.1 0.8008 15 0.2772 1 0.0964 10 1.0000 3.4 0.2299

2012 21 95 35.4 33 6 10 0.3

Medicine Bow Mtns

South 2002, 2003 69 7 0.0304 0.9 0.1822 29 <0.0001 2 <0.0001 58 1.0000 22.4 0.9793

2011 24 25 3.4 96 23 58 22.6

North 2002, 2003 60 22 0.5719 1.2 0.1060 8 <0.0001 0 <0.0001 33 0.0491 10.8 0.1033

2011 24 29 2.6 96 35 58 20.5

Sierra Madre 2002, 2003 31 0 1.0000 0.0 35 0.0023 2 <0.0001 13 0.1234 1.8 0.1177

2011 24 0 0.0 79 31 0 0.0

Sweetwater Basin

Shirley Mtns 2002 33 91 0.2556 19.3 0.0001 24 <0.0001 1 0.0003 27 0.0285 9.7 0.9939

2011 24 100 38.9 79 10 58 9.8

Ferris Mtns 2003 7 57 1.0000 22.7 0.9711 57 0.5594 1 0.0987 57 1.0000 22.8 0.9209

2011 6 50 23.3 83 12 67 20.7

Green Mtns 2002 22 100 1.0000 35.7 0.4783 9 <0.0001 0 0.0016 27 0.1405 5.4 0.1833

2011 24 100 40.2 83 13 50 15.3

Wind River Range

Reservation 2004 15 100 1.0000 55.8 0.6521 20 <0.0001 1 <0.0001 27 0.4719 9.4 0.6161

2012 18 100 52.1 89 29 41 13.5

Absaroka Range

South 2003 20 95 1.0000 18.6 <0.0001 0 <0.0001 0 <0.0001 0 1.0000 0.0 0.3299

2012 20 100 72.2 90 31 5 2.3

2002-2004 65 20 19 1 26 8

2011-2012 69 26 77 18 33 10

WPBR Bark beetles Dwarf mistletoe

% 

plots

% 

stems

% 

plots

% 

stems

% 

plots

% 

stems

State, geographic 

range, and study 

area 
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Table 1.10: Canker data from a monitoring study of limber pine stands in Colorado, Wyoming, 

and Montana in 2011 and 2012. Cankers/tree is of limber pines infected with WPBR. 

 

 

 

 

 

 

 

 

 

 

mean std min max mean std min max
0-12 >12-24 >24-36 >36-48 >48-60 >60-72 >72-84 >84-96 >96-108 >108

Colorado

Front Range

Boulder County 0.0 0.1 0.0 0.5 2 7 0 28 500 500 0 0 0 0 0 0 0 0

North 1.0 1.4 0.0 6.0 53 93 0 333 1250 729 375 125 21 21 21 0 0 0

Wyoming

Laramie Mtns

Pole Mtn 4.0 2.9 0.5 13.6 517 471 28 1704 754 873 795 496 295 209 134 101 15 194

East 1.5 1.1 0.0 3.9 124 112 0 333 291 440 291 172 112 45 22 7 0 0

West 0.5 0.7 0.0 3.0 30 41 0 120 311 400 467 200 67 22 22 0 0 0

Muddy Mtn 5.0 4.4 0.7 17.0 629 758 65 3324 906 1075 953 518 200 129 51 16 8 0

Medicine Bow Mtns

South 0.3 0.8 0.0 3.4 27 84 0 380 550 1050 500 500 150 100 0 100 0 0

North 0.4 0.9 0.0 3.0 25 57 0 231 423 731 538 423 115 0 0 0 0 38

Sierra Madre - - - - - - - - - - - - - - - - - -

Sweetwater Basin

Shirley Mtns 3.7 1.9 1.2 9.4 685 613 176 3083 915 1044 887 424 213 44 46 36 13 64

Ferris Mtns 6.1 7.5 0.0 18.0 685 904 0 2065 1486 2162 1757 676 405 54 0 0 0 54

Green Mtns 5.0 2.6 1.3 12.3 983 749 37 2963 1248 1386 866 329 178 81 38 21 6 28

Beaver Divide 3.3 3.4 0.0 12.3 500 593 0 1833 1915 1201 476 146 37 6 6 0 0 0

Wind River Range

South 3.0 3.4 0.0 11.0 400 628 0 2231 1258 1949 882 185 22 6 0 0 0 0

Reservation 6.9 7.4 0.7 31.1 822 761 19 2565 2069 1250 667 241 79 32 14 0 0 0

North 1.5 1.2 0.0 4.3 155 164 0 685 966 701 339 75 52 17 0 11 0 0

Absaroka Range

South 5.4 2.5 1.2 10.5 941 763 93 3380 1797 1489 657 206 40 11 0 3 0 0

Shoshone Canyon 0.8 1.3 0.0 4.3 107 193 0 694 781 797 656 219 94 16 0 0 0 0

North 2.6 2.4 0.0 11.0 299 308 0 880 862 966 552 217 64 30 0 0 0 0

Bighorn Basin 2.1 1.8 0.0 5.0 287 289 0 769 804 784 773 299 124 62 10 21 0 10

Bighorn Mtns

East 4.8 2.2 2.8 10.3 758 739 167 2731 847 1200 1012 463 125 35 12 8 0 4

South 4.0 1.4 1.6 6.6 520 354 93 1514 621 799 810 413 204 52 15 15 0 4

North 2.1 1.6 0.0 6.4 337 445 0 1819 867 931 508 222 69 16 0 4 0 0

Montana

Pryor Mtns 2.8 2.5 0.0 9.7 390 390 0 1139 696 991 871 313 166 37 0 5 0 0

Terry Badlands - - - - - - - - - - - - - - - - - -

Number of cankers per size class (cm) per infected live limber pine x 1000State, geographic 

range, and study 

area

Cankers/tree Cankers/ha
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Table 1.11: Site (plot), ground cover, and WPBR alternate host variables used during statistical 

modeling from a monitoring study of limber pine stands in Colorado, Wyoming, and Montana in 

2011 and 2012.  

 

 

 

 

 

 

 

 

 

 

Ground cover variables WPBR alternate host variables

Northing (latituide) Soil (percent cover) Stream density within 1 km

Elevation (m) Litter (percent cover) Area (m²) occupied by Ribes  spp.

Aspect North Rock (percent cover) Area (m²) occupied by Castilleja  spp.

South Tree/log (percent cover)

East Lichens/moss (percent cover)

West Grass (percent cover)

Slope (percent) Forbs (percent cover)

Slope position Summit Shrubs (percent cover)

Shoulder Common juniper (percent of shrub cover)

Backslope (includes footslope and toeslope) Kinnikinnick (percent of shrub cover)

Valley bottom Fringed sagebrush (percent of shrub cover)

Stand structure Closed canopy multistory Big sagebrush (percent of shrub cover)

Closed canopy multistory with open individuals Bog birch (percent of shrub cover)

   and/or open scattered clumps Mountain mahogany (percent of shrub cover)

Closed canopy single story with open individuals Service berry (percent of shrub cover)

   and/or open scattered clumps Shrubby cinquefoil (percent of shrub cover)

Open canopy, scattered individuals Bitterbrush (percent of shrub cover)

   and/or scattered clumps Skunkbush (percent of shrub cover)

Disturbance history Site preparation (tillage) Rabbitbrush (percent of shrub cover)

Artificial regeneration False rasberry (percent of shrub cover)

Natural regeneration (after disturbance) Wild red rasberry (percent of shrub cover)

Stand improvement Rose (percent of shrub cover)

Tree cutting Ribes cereum (percent of shrub cover)

Fire Ribes inerme (percent of shrub cover)

Other silvicultural treatments Vaccinium  spp. (percent of shrub cover)

Other human disturbance Dogwood (percent of shrub cover)

Natural disturbance Snowberry (percent of shrub cover)

Land clearing

Animal damage

Type conversion 

Mining

Grazing

Total 29 27 3

Site (plot) variables
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Table 1.12: Seedling and stand (tree) variables used in statistical modeling from a monitoring 

study of limber pine stands in Colorado, Wyoming, and Montana in 2011 and 2012.  

 

Seedling variables Stand (tree) variables

Limber pine seedling height (cm) Presence of beetles in limber pine

Average terminal growth (mm) of the previous 2 years Presence of dwarf mistletoe  in limber pine

sqrt proportion of limber pine seedlings with wpbr Presence of wpbr in limber pine

log10 stems/ha of limber pine seedlings Percent limber pine with bark beetles

log10 stems/ha of all other seedlings Percent limber pine with dwarf mistletoe

log10 stems/ha of other pine seedlings Percent limber pine with wpbr

log10 stems/ha of aspen seedlings Proportion of limber pine with dbh < 5 cm

log10 stems/ha of spruce-fir seedlings Proportion of limber pine with dbh > 5 - 10 cm

log10 stems/ha of all seedlings Proportion of limber pine with dbh > 10 - 20 cm

Limber pine seedling presence on a subplot Proportion of limber pine with dbh >20 cm 

Presence of wpbr on a limber pine seedling Proportion of limber pine in the codominant (includes dominant) crown class

Presence of dwarf mistletoe on a limber pine seedling Proportion of limber pine in the intermediate crown class

Dead top on limber pine seedlings Proportion of limber pine in the open-grown crown class

Forbs as dominant groundcover next to seedling Proportion of limber pine in the overtopped

Grass as dominant groundcover next to seedling Crown dieback (percent)

Lichens/moss as dominant groundcover next to seedling log10 stems/ha of limber pine

Litter as dominant groundcover next to seedling log10 basal area (m²/ha) of limber pines

Rock as dominant groundcover next to seedling log10 basal area (m²/ha) of limber pines with bark beetles

Shrubs as dominant groundcover next to seedling log10 basal area (m²/ha) of limber pines with dwarf mistletoe

Soil as dominant groundcover next to seedling log10 basal area (m²/ha) of limber pines with wpbr

Tree/log as dominant groundcover next to seedling log10 basal area (m²/ha) of limber pines with bark beetles and dwarf mistletoe

Log as a seedling microsite object log10 stems/ha of other pines 

Rock as a seedling microsite object log10 basal area (m²/ha) of other pines

Shrub as seedling microsite object log10 basal area (m²/ha) of other pines with bark beetles

Stump as a seedling microsite object log10 basal area (m²/ha) of other pines with dwarf mistletoe

Tree/log as a seedling microsite object log10 stems/ha of all pines 

log10 basal area (m²/ha) of all pines

log10 basal area (m²/ha) of all pines with bark beetles

log10 basal area (m²/ha) of all pines with dwarf mistletoe

log10 stems/ha of all other species

log10 basal area (m²/ha) of all other species

log10 stems/ha all live trees

log10 basal area (m²/ha) all live trees

log10 dbh of all live trees

log10 stems/ha of aspen

log10 basal area (m²/ha) of aspen

log10 stems/ha of spruce-fir

log10 basal area (m²/ha) of spruce-fir

log10 stems/ha of spruce-fir

log10 tree cankers/ha

proportion of basal area (m²/ha) of limber pine trees

log10 stems/ha all trees

log10 basal area (m²/ha) all trees

log10 stems/ha all dead trees

log10 basal area (m²/ha) all dead trees

log10 dbh of all dead trees

Total: 26 Total: 46
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Table 1.13: Meteorological variables obtained from the PRISM dataset (Daly et al. 2002) 

provided by FHTET (USDA FS Forest Health Technology Enterprise Team, Fort Collins, CO) 

used in statistical modeling from a monitoring study of limber pine stands in Colorado, 

Wyoming, and Montana in 2011 and 2012.  

 

 

 

 

 

30 m data

12 month moderate or greater drought frequency Average minimum temperature in July - September Growing season precipitation (mm)

36 month moderate or greater drought frequency Average maximum temperature in the warmest month Annual precipitation  (mm)

60 month moderate or greater drought frequency Average maximum temperature for year Mean annual temperature - tenths of degrees C

Autumn frost date Average maximum temperature in January Maximum temperature in the warmest month - tenths of degrees C

Spring frost day Average maximum temperature in February Minimum temperature in the coldest month - tenths of degrees C

Frost free period Average maximum temperature in March Average temperature in the coldest month - tenths of degrees C

Growing degree days Average maximum temperature in April Average temperature in the warmest month - tenths of degrees C

Three-year (2006 - 2008) standardized moisture difference z-score Average maximum temperature in May 1st principle component monthly precipitation

Three-year (2007 - 2009) standardized moisture difference z-score Average maximum temperature in June 2nd principle compoent monthly precipitation

Five-year (2004 - 2008) standardized moisture difference z-score Average maximum temperature in July Ratio of growing season precip to annual precip - No units (index)

Five-year (2005 - 2009) standardized moisture difference z-score Average maximum temperature in August Seasonal moisture index, the ratio of degree-days >5 °C 

growing season precipitation (mm) Average maximum temperature in September    accumulating within the frost-free period to seasonal precipitation

Annual moisture index: the ratio of degree-days > 5 degrees Average maximum temperature in October Direct short-wave radiation

    celsius to annual precipitation in millimeters. Average maximum temperature in November Diffuse short-wave radiation

Mean annual ppt Average maximum temperature in December Derived short-wave radiation

Mean January precipitation (mm) Average maximum temperature in May - June Short-wave radiation 

Mean February precipitation (mm) Average maximum temperature in July - September 1st principle component average temperature

Mean March precipitation (mm) Average temperature in the warmest month 1st principle component maximum temperature 

Mean April precipitation (mm) Average temperature for year (mean annual temp) 1st principle component minimum temperature 

Mean May precipitation (mm) Average temperature in January 2nd principle compoent minimum temperature 

Mean June precipitation (mm) Average temperature in February Water vapor pressure

Mean July precipitation (mm) Average temperature in March Soil component dominance

Mean August precipitation (mm) Average temperature in April Soil component frequency

Mean September precipitation (mm) Average temperature in May Julian date when the sum of degree-days >5 °C reaches 100 - Date

Mean October precipitation (mm) Average temperature in June Degree-days <0 °C - degree days

Mean November precipitation (mm) Average temperature in July Degree-days >5 °C - degree days

Mean December precipitation (mm) Average temperature in August Soil drainage index - derived from SSURGO/STATSGO/NFS

Mean May - June precipitation (mm) Average temperature in September Soil data source - SSURGO/STATSGO/USFS

Mean July - September precipitation (mm) Average temperature in October Frost-free days - # Days

Ratio GS ppt : Mean annual ppt Average temperature in November Julian date of the first freezing date of autumn - Date

Seasonal moisture index, the ratio of degree-days >5 °C Average temperature in December Length of the frost-free period - # Days

   accumulating within the frost-free period to seasonal precipitation Average temperature in May - June Fertility index - derived from SSURGO/STATSGO/NFS

Short wave radiation Average temperature in July - September Growing-degree days 

Average temperature in the coldest month Water vapor pressure Degree-days >5 °C accumulating within the frost-free period

Average minimum temperature in the coldest month Annual average relative humidity Julian date of the last freezing date of spring - Date

Average minimum temperature in January Average relative humidity in January Topographic Relative Moisture Index

Average minimum temperature in February Average relative humidity in February Topographic Relative Moisture Index - Modified

Average minimum temperature in March Average relative humidity in March Topographic scale

Average minimum temperature in April Average relative humidity in April

Average minimum temperature in May Average relative humidity in May

Average minimum temperature in June Average relative humidity in June

Average minimum temperature in July Average relative humidity in July

Average minimum temperature in August Average relative humidity in August

Average minimum temperature in September Average relative humidity in September

Average minimum temperature in October Average relative humidity in October

Average minimum temperature in November Average relative humidity in November

Average minimum temperature in December Average relative humidity in December

Average minimum temperature in May - June Average relative humidity in May - June

Average relative humidity in July - September

240 m data

Total: 133
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Table 1.14: Meteorological variables extracted from Daymet Daily Surface Gridded Data used in 

statistical modeling from a monitoring study of limber pine stands in Colorado, Wyoming, and 

Montana in 2011 and 2012. 

 

Total precipitation (mm) 2007-2010 Average relative humdity in January 2007 Total precipitation (mm) in January 2007 Maximum temperature in January 2007 Minimum temperature in January 2007

May precipitation (mm) 2007-2010 Average relative humdity in February 2007 Total precipitation (mm) in February 2007 Maximum temperature in February 2007 Minimum temperature in February 2007

May-June precipitation (mm) 2007-2010 Average relative humdity in March 2007 Total precipitation (mm) in March 2007 Maximum temperature in March 2007 Minimum temperature in March 2007

July-September precipitation (mm) 2007-2010 Average relative humdity in April 2007 Total precipitation (mm) in April 2007 Maximum temperature in April 2007 Minimum temperature in April 2007

Average relative humidty 2007-2010 Average relative humdity in May 2007 Total precipitation (mm) in May 2007 Maximum temperature in May 2007 Minimum temperature in May 2007

May relative humidty 2007-2010 Average relative humdity in June 2007 Total precipitation (mm) in June 2007 Maximum temperature in June 2007 Minimum temperature in June 2007

May-June relative humidity 2007-2010 Average relative humdity in July 2007 Total precipitation (mm) in July 2007 Maximum temperature in July 2007 Minimum temperature in July 2007

July-September relative humidty 2007-2010 Average relative humdity in August 2007 Total precipitation (mm) in August 2007 Maximum temperature in August 2007 Minimum temperature in August 2007

Average maximum temperature 2007-2010 Average relative humdity in September 2007 Total precipitation (mm) in September 2007 Maximum temperature in September 2007 Minimum temperature in September 2007

May maximum temperature 2007-2010 Average relative humdity in October 2007 Total precipitation (mm) in October 2007 Maximum temperature in October 2007 Minimum temperature in October 2007

May-June maximum temperature 2007-2010 Average relative humdity in November 2007 Total precipitation (mm) in November 2007 Maximum temperature in November 2007 Minimum temperature in November 2007

July-September maximum temperature 2007-2010 Average relative humdity in December 2007 Total precipitation (mm) in December 2007 Maximum temperature in December 2007 Minimum temperature in December 2007

Average minimum temperature 2007-2010 Average relative humdity in January 2008 Total precipitation (mm) in January 2008 Maximum temperature in January 2008 Minimum temperature in January 2008

May minimum temperature 2007-2010 Average relative humdity in February 2008 Total precipitation (mm) in February 2008 Maximum temperature in February 2008 Minimum temperature in February 2008

May-June minimum temperature 2007-2010 Average relative humdity in March 2008 Total precipitation (mm) in March 2008 Maximum temperature in March 2008 Minimum temperature in March 2008

July-September minimum temperature 2007-2010 Average relative humdity in April 2008 Total precipitation (mm) in April 2008 Maximum temperature in April 2008 Minimum temperature in April 2008

Total precipitation (mm) 2010-2011 Average relative humdity in May 2008 Total precipitation (mm) in May 2008 Maximum temperature in May 2008 Minimum temperature in May 2008

Total precipitation (mm) 2009-2010 Average relative humdity in June 2008 Total precipitation (mm) in June 2008 Maximum temperature in June 2008 Minimum temperature in June 2008

May-September total precipitation 2010-2011 Average relative humdity in July 2008 Total precipitation (mm) in July 2008 Maximum temperature in July 2008 Minimum temperature in July 2008

May-September total precipitation 2009-2010 Average relative humdity in August 2008 Total precipitation (mm) in August 2008 Maximum temperature in August 2008 Minimum temperature in August 2008

October-April total precipitation 2010-2011 Average relative humdity in September 2008 Total precipitation (mm) in September 2008 Maximum temperature in September 2008 Minimum temperature in September 2008

October-April total precipitation 2009-2010 Average relative humdity in October 2008 Total precipitation (mm) in October 2008 Maximum temperature in October 2008 Minimum temperature in October 2008

May-September maximum temperature 2010-2011 Average relative humdity in November 2008 Total precipitation (mm) in November 2008 Maximum temperature in November 2008 Minimum temperature in November 2008

May-September maximum temperature 2009-2010 Average relative humdity in December 2008 Total precipitation (mm) in December 2008 Maximum temperature in December 2008 Minimum temperature in December 2008

May-June maximum temperature 2010-2011 Average relative humdity in January 2009 Total precipitation (mm) in January 2009 Maximum temperature in January 2009 Minimum temperature in January 2009

May-June maximum temperature 2009-2010 Average relative humdity in February 2009 Total precipitation (mm) in February 2009 Maximum temperature in February 2009 Minimum temperature in February 2009

July-September maximum temperature 2010-2011 Average relative humdity in March 2009 Total precipitation (mm) in March 2009 Maximum temperature in March 2009 Minimum temperature in March 2009

July-September maximum temperature 2009-2010 Average relative humdity in April 2009 Total precipitation (mm) in April 2009 Maximum temperature in April 2009 Minimum temperature in April 2009

May-September minimum temperature 2010-2011 Average relative humdity in May 2009 Total precipitation (mm) in May 2009 Maximum temperature in May 2009 Minimum temperature in May 2009

May-September minimum temperature 2009-2010 Average relative humdity in June 2009 Total precipitation (mm) in June 2009 Maximum temperature in June 2009 Minimum temperature in June 2009

May-June minimum temperature 2010-2011 Average relative humdity in July 2009 Total precipitation (mm) in July 2009 Maximum temperature in July 2009 Minimum temperature in July 2009

May-June minimum temperature 2009-2010 Average relative humdity in August 2009 Total precipitation (mm) in August 2009 Maximum temperature in August 2009 Minimum temperature in August 2009

July-September minimum temperature 2010-2011 Average relative humdity in September 2009 Total precipitation (mm) in September 2009 Maximum temperature in September 2009 Minimum temperature in September 2009

July-September minimum temperature 2009-2010 Average relative humdity in October 2009 Total precipitation (mm) in October 2009 Maximum temperature in October 2009 Minimum temperature in October 2009

Average relative humidity in 2000 Average relative humdity in November 2009 Total precipitation (mm) in November 2009 Maximum temperature in November 2009 Minimum temperature in November 2009

Average relative humidity in 2001 Average relative humdity in December 2009 Total precipitation (mm) in December 2009 Maximum temperature in December 2009 Minimum temperature in December 2009

Average relative humidity in 2002 Average relative humdity in January 2010 Total precipitation (mm) in January 2010 Maximum temperature in January 2010 Minimum temperature in January 2010

Average relative humidity in 2003 Average relative humdity in February 2010 Total precipitation (mm) in February 2010 Maximum temperature in February 2010 Minimum temperature in February 2010

Average relative humidity in 2004 Average relative humdity in March 2010 Total precipitation (mm) in March 2010 Maximum temperature in March 2010 Minimum temperature in March 2010

Average relative humidity in 2005 Average relative humdity in April 2010 Total precipitation (mm) in April 2010 Maximum temperature in April 2010 Minimum temperature in April 2010

Average relative humidity in 2006 Average relative humdity in May 2010 Total precipitation (mm) in May 2010 Maximum temperature in May 2010 Minimum temperature in May 2010

Average relative humidity in 2007 Average relative humdity in June 2010 Total precipitation (mm) in June 2010 Maximum temperature in June 2010 Minimum temperature in June 2010

Average relative humidity in 2008 Average relative humdity in July 2010 Total precipitation (mm) in July 2010 Maximum temperature in July 2010 Minimum temperature in July 2010

Average relative humidity in 2009 Average relative humdity in August 2010 Total precipitation (mm) in August 2010 Maximum temperature in August 2010 Minimum temperature in August 2010

Average relative humidity in 2010 Average relative humdity in September 2010 Total precipitation (mm) in September 2010 Maximum temperature in September 2010 Minimum temperature in September 2010

Total precipitation (mm) in 2000 Average relative humdity in October 2010 Total precipitation (mm) in October 2010 Maximum temperature in October 2010 Minimum temperature in October 2010

Total precipitation (mm) in 2001 Average relative humdity in November 2010 Total precipitation (mm) in November 2010 Maximum temperature in November 2010 Minimum temperature in November 2010

Total precipitation (mm) in 2002 Average relative humdity in December 2010 Total precipitation (mm) in December 2010 Maximum temperature in December 2010 Minimum temperature in December 2010

Total precipitation (mm) in 2003 Maximum temperature in 2000 Minumum temperature in 2000

Total precipitation (mm) in 2004 Maximum temperature in 2001 Minumum temperature in 2001

Total precipitation (mm) in 2005 Maximum temperature in 2002 Minumum temperature in 2002

Total precipitation (mm) in 2006 Maximum temperature in 2003 Minumum temperature in 2003

Total precipitation (mm) in 2007 Maximum temperature in 2004 Minumum temperature in 2004

Total precipitation (mm) in 2008 Maximum temperature in 2005 Minumum temperature in 2005

Total precipitation (mm) in 2009 Maximum temperature in 2006 Minumum temperature in 2006

Total precipitation (mm) in 2010 Maximum temperature in 2007 Minumum temperature in 2007

Maximum temperature in 2008 Minumum temperature in 2008

Maximum temperature in 2009 Minumum temperature in 2009

Maximum temperature in 2010 Minumum temperature in 2010

Total: 270
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Figure 1.9: Plot diagram from a monitoring study of limber pine stands in Colorado, Wyoming, 

and Montana in 2011 and 2012. 

 

 

Figure 1.10: Density (stems/ha) of tree species (N = 38,595) from a monitoring study of limber 

pine stands in Colorado, Wyoming, and Montana in 2011 and 2012. 
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Figure 1.11: Health status of each species group (N = 508) from a monitoring study of limber 

pine stands in Colorado, Wyoming, and Montana in 2011 and 2012. Healthy includes stems with 

no visual damage to crown or stem up to 5% damage. Declining includes stems with 6-50% of 

crown showing symptoms that indicates it is dead or will be and dying includes stems with 

>50% of crown showing symptoms or is damaged. Dead includes all standing dead stems. 

 

 

 

 
 

Figure 1.12: Other insects or damages (abiotic and biotic) on live and dead limber pine (N = 508) 

in Colorado, Wyoming, and Montana in 2011 and 2012.  
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(c)  

 

Figure 1.13: Receiver operating characteristic (ROC) curve produced to analyze the logistic 

regression models predicting occurrence (y/n) of (a) WPBR, (b) bark beetles, and (c) dwarf 

mistletoe on limber pine on a subplot from a monitoring study of limber pine stands in Colorado, 

Wyoming, and Montana in 2011 and 2012. 
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CHAPTER 2: Manuscript: Limber pine regeneration in forests impacted by white pine blister 

rust and mountain pine beetle in the central and southern Rocky Mountains 

 

1. Introduction 

White pine blister rust (WPBR), caused by the introduced fungal pathogen, Cronartium 

ribicola J. C. Fisch. Major, and more recently, mountain pine beetle (Dendroctonus ponderosae 

Hopk.) are impacting regeneration in limber pine (Pinus flexilis James) populations in the Rocky 

Mountains (Kearns and Jacobi 2007, USDA Forest Service, Rocky Mountain Region 2010). 

Mountain pine beetle does not directly affect regeneration since the native bark beetle prefers 

larger diameter trees (Safranyik and Carroll 2006), but mortality of seed-producing trees may 

limit the opportunity for reproduction.  

White pine blister rust may also prevent regeneration by killing cone bearing branches on 

mature trees (Maloney et al. 2012) and infecting and rapidly killing seedlings which may occur 

within three years after initial infection (Hoff and Hagle 1990). Heavily infected stands with 

WPBR are at risk of not regenerating (McKinney and Tomback 2007). In Alberta, low limber 

pine seedling density in stands heavily impacted by WPBR indicates that populations of limber 

pine are declining (Langor 2007). While a complete loss of limber pine is not expected from 

WPBR and mountain pine beetle, these disturbance agents threaten species distribution, genetic 

diversity, and ecosystem function (Schoettle 2004, Tomback and Achuff 2010). 

The fungal rust pathogen, C. ribicola, has a complex life cycle with two hosts required 

and five spore stages. The fungus is capable of infecting five-needle white pines in the subgenus 

Strobus and using species of Ribes, Castilleja, and Pedicularis as alternate hosts (McDonald et 

al. 2006, Mulvey and Hansen 2011). Infection occurs through the needles of susceptible white 
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pines during late summer and fall under conditions of high relative humidity and the fungus then 

continues to grow into the branch, ultimately resulting in cankers which may girdle the branch or 

main stem. Aeciospores produced on the pine tree are fairly durable and can occasionally be 

windblown several hundred kilometers via atmospheric transport to infect alternate hosts leaves 

(Frank et al. 2008). Infective, less durable basidiospores produced in late summer to fall on the 

leaves of the alternate hosts are windblown up to 27 kilometers to the susceptible pines 

(Zambino 2010). 

Limber pine occupies a patchy but extensive, native latitudinal range, reaching from 

southern California to Alberta, Canada and a broad elevational distribution, from 900 m in North 

Dakota to 3800 m in Colorado (Gundell 1974, Steele 1990). Stress-tolerant limber pines can be 

found from lower to upper treeline, but frequent rocky, windswept areas and prevail on xeric 

sites where competition from other species is minimal (Schoettle and Rochelle 2000). In the 

central and southern Rocky Mountains, shade-intolerant limber pine occurs in pure stands or may 

occur in association with lodgepole pine (Pinus contorta Douglas ex Loudon), Ponderosa pine 

(Pinus ponderosa Lawson & C. Lawson), Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco], 

Engelmann spruce (Picea engelmannii Parry ex Engelm.), subalpine fir (Abies lasiocarpa 

(Hook.) Nutt.), quaking aspen (Populus tremuloides Michx.), Rocky Mountain juniper 

(Juniperus scopulorum Sarg.), and occasionally whitebark pine (Pinus albicaulis Engelm.) (Peet 

1981, Steele 1990).  

Limber pine is valued for its ecological, aesthetic, and cultural importance. They are 

long-lived, stress-tolerant trees that aid in erosion and avalanche reduction, and often grow in 

sites that other species cannot (Schoettle 2004). Limber pine is frequently the first species to 

colonize a burn area, via long-distance dispersal by birds in the family Corvidae which include 
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Clark’s nutcrackers (Nucifraga columbiana Wilson) and pinyon jays (Gymnorhinus 

cyanocephalus Wied) and may aid in the establishment of understory species (Baumeister and 

Callaway 2006) or spruce and fir at high elevations by providing shelter (Rebertus et al. 1991, 

Donnegan and Rebertus 1999). Limber pines provide wildlife habitat and the seeds are a food 

source for corvids, pine squirrels (Hutchins and Lanner 1982), and bears (McCutchen 1996).  

Availability of limber pine seed may be affected by dispersal mechanisms, seed 

predation, and damage agents. Like other stone pines of the subgenus Strobus, limber pine seeds 

are wingless, but lack indehiscent cones like other stone pines, thus limber pine cones scales will 

open readily when dry and seeds or whole cones may fall to the ground providing a source of 

regeneration in existing stands. Long distance seed dispersal by Clark’s nutcrackers (Lanner and 

Vander Wall 1980) facilitates regeneration by permitting germination of a small percentage of 

viable seeds that remain in the bird’s caches (Tomback 1982, Lorenz et al. 2011). Regeneration 

may be inhibited by seed predation by pine squirrels (Benkman, Balda, and Smith 1984, 

Benkman 1995, Siepielski and Benkman 2007) and by cone and seed insects (Potter and Green 

1964, Benkman, Balda, and Smith 1984, Schoettle and Negron 2001). 

Several factors may influence limber pine regeneration during seedling establishment, 

including site factors, soil, ground cover type, microsite or “nurse” objects, competition, growth 

rate, overstory composition, damage agents, and meteorological conditions. Regenerating stands 

may occur on xeric sites, favor a windswept, shelter-less environment, are resistant to major 

abiotic disturbance events (Shankman and Daly 1988, Rebertus et al. 1991). Understory 

vegetation may act as competition and limit limber pine regeneration (Looney and Waring 2012) 

or may facilitate establishment by providing protection for the seedling (Maher et al. 2005). 

Microsite or “nurse” objects such as logs or rocks may also offer physical protection to 
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developing seedlings (Tomback, Sund, and Hoffmann 1993, Coop and Schoettle 2009). Due to a 

low density and bare soil surface, open-canopy stands of limber pine offer suitable habitat for 

recruitment (Webster and Johnson 2000). Mortality of overstory trees due to bark beetles can 

create gaps in the canopy (Raffa et al. 2008) which may promote regeneration (Larson and 

Kipfmueller 2010). Seedling survivorship at high elevations may benefit from closed canopy 

stands by protecting existing seedlings from daytime solar radiation and night time heat loss 

(Casper 2013, Germino and Smith 1999). The slow growth rate of seedlings, typically when 

suppressed (Veblen 1986), allows for longer vulnerability to biotic and abiotic disturbance 

agents, including WPBR, temperature extremes, and drought, and it may take many years until 

reproductive maturity is reached (McCaughey and Schmidt 1990). 

Knowledge of the density and health of limber pine seedlings is a major factor in 

managing for the continued existence of limber pine in pure and mixed conifer stands in the 

central and southern Rocky Mountains. Only one study (Smith et al. 2013) has addressed the 

status of limber pine seedlings in established stands, and the study area was in the Northern 

Rocky Mountains of Alberta and British Columbia. However, no studies have addressed the 

status of limber pine seedlings, density, impact of white pine blister rust, or factors that influence 

limber pine regeneration in the central and southern Rocky Mountains. Thus, the objectives of 

this study were to (i) assess site, stand, and health characteristics of limber pine seedlings in 

areas impacted by white pine blister rust and mountain pine beetle in northern Colorado, 

Wyoming, and Montana and (ii) determine factors that impact limber pine seedlings, including 

site, stand, groundcover, and meteorological characteristics.  An additional objective was to 

establish an extensive set of plots that could be used to monitor the status of limber pine 

seedlings over time. 
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2. Materials and Methods 

Site, stand, and health characteristics of limber pines were assessed by determining the 

size and status of all living and standing dead mature trees and seedlings in fixed area plots 

within limber pine dominated stands. Recorded data included the occurrence and severity of 

white pine blister rust (WPBR), bark beetles, and other damages on the trees. Site features 

(elevation, aspect, slope percent, slope position, stand structure, and disturbance history) were 

noted within plots along with the amount and type of groundcover, invasive plant species, and 

occurrence of alternate hosts of WPBR. Plots were established in stands previously sampled and 

stands not previously sampled. Previously sampled stands were included in the study to address 

change since the most recent mountain pine beetle outbreak. Limber pine seedling density and 

proportion of seedlings with WPBR were modeled to determine the influence of site, stand, and 

climate characteristics. 

2.1. Study areas 

The geographic range of our monitoring study in the southern Rocky Mountains included 

the eastern most mountain range of the Rocky Mountains in northern Colorado (Front Range) 

and in Wyoming we included the southeastern mountain ranges (Medicine Bow and Laramie) 

and next mountain range of the Rocky Mountains to the west (Sierra Madre). The central Rocky 

Mountains included additional mountain ranges of the Rocky Mountains to the west (Wind River 

Range, Absaroka Range) and the northeastern mountain range (Bighorn Mountains), with all 

minor mountains and basins in between and one mountain range in southern Montana (Pryor 

Mountains) and another in eastern Montana (Terry Badlands) (Figure 2.1). We conducted 

surveys on twenty-five study areas in these geographic areas that were defined by government 

management unit boundaries and geographic sections of mountain ranges (Table 2.1, Figure 2.1).  
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2.2. Stand selection 

2.2.1. Stands previously sampled 

Potential plot locations in each study area were developed from the USDA Forest Service 

Aerial Detection Survey data on areas with mountain pine beetle-caused mortality in limber pine 

and GPS location data from previous sampling and monitoring efforts by Kearns and Jacobi 

(2007) and Burns et al. (2011). Using the USDA Forest Service Rocky Mountain Resource 

Inventory System database to determine the presence of limber pine, Kearns and Jacobi (2007) 

poststratified to capture varying site conditions and sampled limber pine across an elevational 

gradient that reflected that of the study area. We used a random stratified sample of these 

locations so there was relatively equal number of plots with low and high rust infestation and 

presence or absence of bark beetle outbreak. A range of stands were sampled with varying 

duration since bark beetle outbreak. Where possible, a minimum of 24 plots per study area were 

installed to account for low and high WPBR infestation levels and presence or absence of bark 

beetle-caused mortality with six plots of each. If an insufficient number of stands were found for 

a particular category, then remaining plots were selected to fill the other stratification variables 

equally. Plot number within a study area varied depending on the amount of the area with limber 

pine, previous knowledge of the variation in WPBR incidence and severity, aerial detection data 

on mountain pine beetle incidence, and accessibility.  

2.2.2. Stands not previously sampled 

Potential plot locations were selected in each study area where no prior surveys were 

conducted for WPBR. The areas were based on known records of host location, aerial detection 

information on MPB-caused mortality, and local knowledge of host location. A stratified random 

sample of these locations was conducted so there were relatively equal numbers of plots below 
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and above the mid elevation of the limber pine distribution in the study area and presence or 

absence of bark beetle-caused mortality. Where possible, a minimum of 24 plots per study area 

were installed to account for two elevation ranges and bark beetle infestation and six plots of 

each. Remaining protocol followed that of the stands previously sampled. 

2.3. Survey methods 

2.3.1. Plot establishment 

To ensure a reasonable sample of limber pine in our monitoring study, plots were placed 

in stands with at least 40% adult limber pine (stems/ha). Plots were randomly located at least 10 

m from a road within limber pine stands. A plot consisted of three 60 x 6 m fixed area subplots 

(0.108 ha) that were used for tree assessments with an invasive species/alternate host plot (30 x 6 

m) placed after each 60 x 6 m subplot (0.054 ha) and were placed contiguously at random 

bearings within the stand. Two circular fixed area subplots with a 3 m radius were placed 3 m 

from each end within the 60 x 6 m subplots to record ground cover and understory vegetation. 

The series of three 60 x 6 m subplots containing the two 3 m radius circular fixed area plots and 

30 x 6 m interval plots in an area defined the plot.  The beginning of each subplot and the end of 

the third subplot were identified by tagging one tree at the center of the plot width and by GPS so 

the plots can be monitored in the future. Using these methods, 508 plots were established in 

2011-2012.  

Within each 60 x 6 m subplot, the following data were recorded: elevation (m), aspect 

(degrees), slope percent, slope position (backslope, footslope [included toeslope and valley 

bottom], shoulder, summit), stand structure (closed canopy multistory, closed canopy multistory 

with open individuals and/or open scattered clumps, closed canopy single story with open 

individuals and/or open scattered clumps [includes mosaic of closed canopy single and 
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multistory], open canopy scattered individuals and/or open canopy scattered clumps), and 

disturbance history (fire, grazing, other human disturbance, tree cutting). 

2.3.2. Trees 

Trees were defined as being >1.37 m in height, with no minimum diameter. Within each 

subplot, the following data were recorded for all tree species, standing dead and alive with a dbh 

(diameter at breast height) at 1.37 m in height: species, crown class (dominant/co-dominant, 

intermediate, open, overtopped/understory), dbh to nearest cm using a Biltmore stick, dead or 

live, percent crown dieback (percentage of dead foliage as compared to the entire crown), dwarf 

mistletoe rating (DMR) (Hawksworth 1977), bark beetle presence (none or successful bark 

beetle bole attack). Within each subplot, total number of WPBR cankers was recorded for all 

limber pine, standing dead and alive with a dbh at 1.37 m (no minimum diameter). Cankers were 

identified as such if two of the following were present: abnormal swollen branch, blistered 

branch or stem, aecia present, roughened resin stained bark, or expanding areas of squirrel bark 

removal. Binoculars were used to identify cankers in taller trees. Trees growing in clumps were 

considered individual stems if they forked below 1.37 m height and were growing at an angle 

greater than 45° above horizontal. 

2.3.3. Seedlings 

Seedlings were defined as being <1.37 m tall, regardless of age. Within each subplot, the 

following data were recorded for all seedlings, counts of standing dead and alive stems <1.37 m 

tall (stems in clusters were counted as individuals): species, health status (healthy = less than 5% 

damage to crown or stem, declining = 6-50% of crown showing symptoms that indicates it is 

dead or will be, dying = >50% crown showing symptoms, recent dead [0-5 years] = no green 

needles but some red needles and fine twigs present, old dead [5-10 years] = no fine twigs or 
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needles present, >50% bark still present), and height to the nearest cm. Within each subplot, the 

following data were recorded for all limber pine seedlings: presence of WPBR, up to two 

microsite objects that were at least 10 x 10 cm and within 1 m of limber pine seedling (tree, 

stump, log, rock, shrub), up to two most prevalent ground cover types within 1 m of limber pine 

seedling (soil, litter, rock, tree/log, lichen/moss, graminoids, shrubs, forbs), type of up to two 

damages affecting 5% or more of the seedling, and terminal growth, in millimeters, of terminal 

leader for the previous two years. 

2.3.4. Ground cover 

Within each circular 3 m subplot, the following data were recorded: percent of area 

occupied by ground cover type and up to three of the most prevalent shrub species with percent 

of area occupied by each of those species. To test our analysis of microsite object and 

groundcover around limber pine seedlings, we used the center point of each circular fixed area 

subplot as a control point and recorded up to two microsite objects and within 1 m of the center 

point and up to two most prevalent ground cover types within 1 m of the center point. 

2.3.5. Interval plots (invasive species and WPBR alternate hosts) 

In the invasive species/alternate host plot (30 x 6 m), the presence and size in m
2
 of the 

ground area occupied by any invasive weed species from the USDA Natural Resources 

Conservation Service Introduced, Invasive, and Noxious Plants for Colorado, Wyoming, and 

Montana (plants.usda.gov) and WPBR alternate hosts (Ribes, Castilleja, and Pedicularis) were 

recorded. Presence and ground area occupied by Ribes species were only recorded in previously 

non-monitored plots.  
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2.4. Meteorological data 

Meteorological data were obtained from the PRISM dataset (Daly et al. 2002) provided 

by FHTET (USDA FS Forest Health Technology Enterprise Team, Fort Collins, CO). For each 

plot, meteorological data included 30-year (1981-2010) monthly averages on a 1-km resolution 

grid for daily minimum and maximum temperatures (°C), precipitation (mm), relative humidity 

(%), and additional meteorological variables such as drought frequency, growing degree days, 

and seasonal moisture index, totaling 133 variables (Appendix II, Table 2.14). We also screened 

each daily temperature minimum, maximum, precipitation, and relative humidity averaged for 

the individual months from May to September and for the two periods of May–June and July–

September.  

Additional monthly and yearly meteorological data was extracted from Daymet Daily 

Surface Gridded Data (Thornton et al. 2012). Daymet only provides daily water vapor pressure 

ambient values (VPamb), so relative humidity calculations were produce using calculations from 

Zimmermann and Roberts (2001). For each plot, extracted meteorological data included monthly 

and yearly averages on a 1-km resolution grid from 2000-2012 for minimum and maximum 

temperatures (°C) and relative humidity (%) and monthly and yearly totals for precipitation 

(mm), totaling 270 variables (Appendix II, Table15). For meteorological data that would be 

potentially related to recent WPBR infection on limber pine seedlings, we formulated variables 

from the extracted Daymet data for average minimum and maximum temperature and relative 

humidity, and average total precipitation for the two periods of May–June and July–September 

for 2005-2011. For meteorological variables that would be potentially related to the last two 

years of terminal growth (prior to the years sampled, 2011 and 2012) in limber pine seedlings, 

we formulated average minimum and maximum temperature for May-September, May-June, and 
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July-September, as well as average total precipitation for May-September, winter (October-

April), and total year for each pair of years: 2006-07, 2007-08, 2008-09, and 2009-10.   

GIS layers with stream distributions from the USGS National Hydrological High 

Definition Dataset (available at http://nhd.usgs.gov/) were used to estimate the density of 

perennial and intermittent streams within a 1-km radius of each survey plot (km/km2). Stream 

density was used as a surrogate measure for the location of Ribes species that occupy moist or 

riparian sites. 

2.5. Data analyses 

Data transformations were carried out on certain tree and seedling data prior to any 

analysis. Stem density was calculated on the total count of live plants in the area of the three 

subplots established. WPBR incidence was calculated as the number of live infected 

seedlings/number of live evaluated seedlings. Species other than limber pine and aspen were 

combined into general groups: other pines included lodgepole, ponderosa, and whitebark pine, 

spruce-fir included Douglas-fir, subalpine fir, Engelmann spruce, and white spruce [Picea glauca 

(Moench) Voss], and other species included Rocky Mountain (Juniperus scopulorum Sarg.) and 

Utah juniper [Juniperus osteosperma (Torr.) Little].  

All data analyses were performed using SAS software, Version 9.3 of the SAS System 

for Windows. Copyright © [2002-2010] SAS Institute Inc., Cary, NC, USA. Simple descriptive 

statistics were produced for seedling density (stems/ha), basal area, dbh, mean height, health 

status, other damages, and incidence of WPBR by study area and presented in Table 2.1 and 

Figures 2.2 and 2.3. Overall means and means by study area were determined using plot-level 

means. Least square means for occurrence of live limber pine seedlings on a plot in three height 

classes (s: small 0-45.7 cm, m: medium 45.7-91.4 cm, and t: tall 91.4-137 cm) were produced 
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using PROC GLIMMIX with values adjusted for study area and height class. Error bars are ± 

half approximate LSD. Due to skewed data, we report both the median and mean value for 

seedling density (stems/ha). To establish percent cover of Ribes, we combined our collected 

Ribes data for plots not previously monitored with data from Kearns and Jacobi (2007) for the 

previously monitored plots. 

To determine the most prevalent ground cover types and microsite objects within a 1 m 

radius of limber pine seedlings, mean probability of occurrence of groundcover type and 

microsite objects next to seedlings were compared to that of the control points using a paired t-

test (PROC TTEST) with a critical level of significance set as P< 0.0001.  

Using the subplot-level variables and using only subplots with limber pine seedlings 

(N=1087), linear regression was used to determine which variables can predict (a) density 

(stems/ha) of limber pine seedlings, (b) proportion of limber pine seedlings with WPBR, and (c) 

terminal growth (mm) of limber pine seedlings. Stem density (stems/ha) and basal area (m²/ha) 

variables were transformed to a log10 scale and proportion of seedlings infected with WPBR and 

percent cover of Ribes were square root transformed to normalize skewed data. Tested variables 

included those in each category: plot, trees (stems > 1.37 m tall), seedlings (stems ≤ 1.37 m tall), 

ground cover, WPBR alternate host, and meteorological data. For (a), (b), and (c), we screened 

each category of variables using PROC GLMSELECT with selection=lasso (least absolute 

shrinkage and selection operator) (stop=sbc choose=sbc [specifies Schwarz criterion as a 

stopping criterion]) with nsamples=1000 (modifies number of samples used to 1000). Selected 

variables had to be in at least 20% of those 1000 models. Next, selected variables were 

incorporated into a model using PROC MIXED with ddfm=kr (requests that degrees of freedom 

method is Kenward-Roger) for (a), (b), and (c) with study area as a random effect. Using 
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backward elimination, we manually decided which variable to remove, ultimately using p=0.001 

for significance, and watched for large changes in regression coefficients, making sure that there 

wasn’t a problem with multicollinearity. For (a), (b), and (c), Pearson correlations (using PROC 

CORR), with critical level of significance set as P< 0.0001, and scatter plots were examined to 

review the response distribution to ensure lack of high leverage. Final models were fit using 

PROC MIXED with ddfm=kr with study area as a random effect. For (a) and (b), relationship 

between fixed effect variables and response variable were plotted using mean values for the other 

fixed variables and the 5
th

, 25
th

, 50
th

, 75
th

, and 95
th

 percentiles of the variable being plotted 

(Figures 2.5 and 2.6). Predicted values were back transformed. 

3. Results 

3.1. Seedling presence, density, and health status  

Throughout the study, 508 plots (82.3 ha) were established in twenty-five study areas. 

Surveyed plots ranged in elevation from 826 to 3,140 m and averaged 2,376 m (Table 2.1). We 

examined 24,597 seedlings ≤ 1.37 m in height; of those, 8,013 or 33% were limber pines, 14% 

were other pines and juniper which include lodgepole pine, ponderosa pine, whitebark pine, 

Rocky Mountain juniper, and Utah juniper, 34% were aspen, 19% were spruce-fir which 

included Douglas-fir, subalpine fir, Engelmann spruce, and white spruce. Mean height of limber 

pine regeneration was 72.5 cm, while mean height of other pines was 72.9 cm and both aspen 

and spruce-fir were 66.8 cm. 

Overall, live seedlings were present in 97% of plots and 84% of subplots, while live 

limber pine seedlings were found in 91% of plots and 71% of subplots. Live limber pine seedling 

presence was lowest and found in only 29% and 42% of subplots in the northern and southern 

Absaroka Range. When dividing live limber pine seedlings into three height classes: small 0-

45.7 cm, medium 45.7-91.4 cm, and tall 91.4-137 cm, overall, live limber pine seedlings in the 
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small height class were present in (Means ± ½ LSD) 68 ± 2.6% of plots, while live limber pine 

seedlings in the medium and tall height classes were present in 78 ± 2.6% and 79 ± 2.6% of plots 

(Appendix II, Figure 2.7a and b). Six study areas (Ferris Mountains, Absaroka south and north, 

Bighorn Mountains south and north, and the Pryor Mountains) fell below this average in all three 

height classes (Appendix II, Figure 2.7a and b). 

Live limber pine seedling density (n = 508 plots) ranged from 0 to 1,935 stems/ha with a 

mean (± standard deviation, median) of 141 (± 201, 74) stems/ha (Table 2.1). Live seedling 

density of other pines was 64 (± 274, 0) stems/ha, aspen 136 (± 370, 0) stems/ha, and spruce-fir 

83 (± 300, 0) stems/ha (Table 2.1). Mean live limber pine seedling density, including plots with 

no live limber pine seedlings, for small, medium, and tall seedlings was 55 (± 117, 19), 52 (± 78, 

28) stems/ha, and 34 (± 44, 19) stems/ha, respectively (Table 2.2). Over half (13) of all of the 

study areas fell below this average in all three height classes (Table 2.2). Live limber pine 

seedlings were divided into density classes (zero: no seedlings, low: >0 – 55 stems/ha, medium: 

>55 – 140 stems/ha, and high: >140 stems/ha). Overall, 9% of plots lacked any live limber pine 

seedlings and 29%, 32%, and 30% of plots have low, medium, and high densities, respectively 

(Figure 2.2). Study areas with greater than 1/3 of plots in each the medium and high density 

classes include those in the Laramie Mountains, Sweetwater Basin, and Montana (Figure 2.2). 

Those with greater than 9% plots with no seedlings and/or 1/3 of plots in the low density 

category include those in the Wind River Range, Absaroka Range, Bighorn Basin and Mountains 

(Figure 2.2). 

Most (85%) limber pine seedlings were considered healthy, while 11% were declining or 

dying, and 4% were dead (Appendix II, Table 2.7). Only mortality of aspen was higher at 10%, 

while mortality of other pines and spruce-fir was 1%. Absaroka north contained highest percent 
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of limber pine seedling mortality at 13%, followed by Bighorn east at 11% and the Green 

Mountains at 10%. White pine blister rust was the primary damage agent on live and dead limber 

pine seedlings and occurred in 20 of the 25 study areas and on 30% of the 508 surveyed plots. 

Overall, 5.3% of live and 1.6% of dead limber pine seedlings were infected with WPBR. Mean 

incidence of live and dead seedlings ranged from 0% in Laramie Peak west, the Medicine Bow 

Mountains, and the Terry Badlands, to 33% in Absaroka south. Incidence of WPBR on live 

limber pine in the small, medium, and tall height classes increased with height and was 0.8%, 

5.4%, and 9.2%, respectively (Figures 2.3a and b). 

Other diseases and damages on the evaluated limber pine seedlings were infrequent but 

did occur in all study areas and on 49% of the 465 plots with limber pine seedlings. Those that 

did infect or damage 5% or more of the seedling included physical damage (includes broken or 

dead top) which occurred in 24 study areas, on 178 plots, and on 4.5% of all evaluated limber 

pine seedlings, dwarf mistletoe occurred in 16 study areas, on 35 plots, and on 2.8% of seedlings; 

abiotic damage occurred in 10 study areas, on 24 plots, and on 0.4% of seedlings; and insects 

occurred in 6 study areas, on 23 plots and on 0.6% of seedlings (Appendix II, Figure 2.10).  

3.2. Ground cover and microsite object 

Across all study areas, grass, with a mean of 23.7%, occupied the greatest area within the 

ground cover plots, followed by shrubs at 18.8%, and litter at 13.4%. Thirty-two different shrub 

species were noted on the plots and the most common shrub species was big sagebrush 

(Artemisia tridentata Nutt.) (9.2%), followed by common juniper (Juniperus communis L. ) 

(4.1%), and bitterbrush (Purshia tridentata (Pursh) DC.) (1.3%). Other common shrub species 

included snowberry (Gaultheria L.) (0.8%), fringed sagebrush (Artemisia frigida Willd.) (0.7%), 
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kinnikinnick (Arctostaphylos uva-ursi (L.) Spreng. ) (0.6%), and wax current (Ribes cereum 

Douglas) (0.53%).  

When compared to control points ( P<0.0001), limber pine seedlings were 19% more 

likely to occur with litter and 18% more likely to occur with rock, and 4% less likely to occur 

with forbs, 14% less likely with grass, and 6% less likely with bare soil (Figure 2.4a). There was 

no significant difference in ground cover type between seedlings and control points for lichens, 

shrubs, or trees (Figure 2.4a). Seventy-two percent of limber pine seedlings were next to objects 

while 63% of control points were next to objects. When compared to control points ( P<0.0001) , 

seedlings were 6% more likely to be next to a rock and 11% more likely to be next to a tree and 

11% less likely not occur next to a microsite object (Figure 2.4b). There was no significant 

difference in microsite object type between seedlings and control points for logs, shrubs, or 

stumps (Figure 2.4b). 

3.3. Invasive plant species 

Invasive plant species were observed on 19% of plots in 68% of study areas. The study 

areas with the greatest number of plots with invasive plant species included the Bighorn 

Mountains (eastern, southern, and northern) with 28 plots followed by Muddy Mountain with 10 

plots. Over all the study areas, 10 different invasive species were noted: Canada thistle (Cirsium 

arvense [L.] Scop.), cheatgrass (Bromus tectorum L.), musk thistle (Carduus nutans L.), salsify 

(Tragopogon porrifolius L.), Scotch thistle (Onopordum acanthium L.), bull thistle (Cirsium 

vulgare [Savi] Ten.), yellow toadflax (Linaria vulgaris Mill.), common mullein (Verbascum 

thapsus L.), myrtle spurge (Euphorbia myrsinites L.), and golden rod (Solidago L.). Bull thistle, 

listed as a noxious weed in Colorado but measured in all three states for consistency, was the 

most commonly observed invasive species and was found on 32 plots, followed by musk thistle 
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on 20 plots, Canada thistle on 11 plots, and cheatgrass on 9 plots. Across all study areas, ground 

area occupied by invasive species was an average of 261.6 m
2
. Cheatgrass occupied the greatest 

area with a mean of 2,212.0 m
2
, followed by yellow toadflax (416.7 m

2
), and common mullein, 

Canada thistle, musk thistle, Scotch thistle, and bull thistle (decreasing from 50.0 - 23.8 m
2
, 

respectively).  

3.4. Alternate hosts of white pine blister rust 

White pine blister rust alternate hosts were observed in all evaluated study areas. When 

including data from Kearns and Jacobi 2007, Ribes species were found in all 25 study areas, on 

47% of plots (338 plots, n=723) and ranged from 5% of plots in the Terry Badlands to 100% of 

plots on the Ferris Mountains. On plots in which Ribes species were measured in this survey, 

Ribes species occupied an average area of 337.9 m
2
. Castelleja species were found in 97 plots in 

21 study areas and occupied an average area of 35.8 m
2
.  Pedicularis species were the least 

abundant alternate host and were found in only 1 plot and occupied an average area of 0.3 m
2
.  

3.5. Seedling models 

3.5.1. Limber pine seedling density 

We used linear regression analysis to determine the variables that predict density 

(stems/ha) of limber pine seedlings on a subplot. Variables in all categories: plot (site features), 

trees, seedlings, ground cover, and meteorological, were selected in at least 20 percent of the 

1000 models after screening each category. Variables selected in the final model include log10 

stems/ha of limber pine trees (mean = 2.48, std = 0.45, P = 0.30, p-value < 0.0001), log10 

stems/ha of all live trees (mean = 2.62, std = 0.36, P = 0.27, p-value < 0.0001), limber pine 

seedling height (cm) (mean = 72.43, std = 26.89, P = -0.27, p-value < 0.0001) and grass (percent 

cover) (mean = 23.72, std = 15.51, P = -0.14, p-value < 0.0001) (Table 2.3). Stems/ha of limber 
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pine trees and stems/ha of all live trees had a positive influence on limber pine seedling density 

(Figures 2.5a and b) while percent area of grass and limber pine seedling height (cm) were 

negative influences (Figures 2.5c and d). Density (stems/ha) of both other pines and aspen 

seedlings were selected in at least 20 percent of models during category screening, but no 

variables that represented competition from other regenerating species were selected in the final 

model. We did not find relationships with basal area (m
2
/ha) of overstory mortality due to 

mountain pine beetle on limber pine seedling density, and for comparison, we modeled aspen 

seedling density and found the same result. 

3.5.2. Proportion of limber pine seedlings infected with WPBR 

Linear regression analysis, predicting the proportion of limber pine seedlings infected 

with WPBR on a subplot, selected two variables in the final model, including a positive 

influence of both limber pine seedling height (cm) (mean = 73.14, std = 26.71, P = 0.15, p-value 

< 0.0001) and log10 tree cankers/ha (mean = 1.62, std = 1.27, P = 0.34, p-value < 0.0001) (Table 

2.3, Figures 2.6a and b). Since cankers/ha are not data easily accessible to land managers, we ran 

the same linear regression model without canker variables. Variables selected in the final model 

included the positive influence of three variables; limber pine seedling height (cm) (mean = 

73.14, std = 26.71, P = 0.15, p-value < 0.0001), crown dieback (percent) of all standing live and 

dead trees (mean = 28.95, std = 27.59, P = 0.08, p-value = 0.0107), log10 stems/ha of limber pine 

trees with WPBR (mean = 1.29, std = 0.99, P = 0.31252, p-value < 0.0001) (Table 2.3).  

3.5.3. Terminal Growth 

We measured the average terminal growth (mm) of the previous two years (from year of 

measurement) of limber pine seedling growth to determine growth rates and to see if recent bark 

beetle-caused mortality released seedling terminal growth. The small, medium, and tall seedling 
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classes had average yearly terminal growth (means ± ½ LSD, n = 508), of 23 ± 1.6 mm, 39 ± 1.5 

mm, and 58 ± 1.5 mm, respectively. These rates did vary significantly between study areas 

(Appendix II, Figure 2.13). We did not find any relationship with basal area of recent beetle 

mortality and terminal growth.  However, linear regression analysis found positive relationships 

with sagebrush (mean = 9.15, std = 11.79, P = 0.30, p-value < 0.0001) and grass cover (mean = 

0.39, std = 0.39, P = 0.32, p-value < 0.0001)), seedling height (mean = 72.43, std = 26.89, P = 

0.58, p-value < 0.0001) and negative relationship with log10 basal area (m2/ha) of all live trees 

(mean = 0.87, std = 0.38, P = -0.23, p-value < 0.0001) (Appendix II, Table 2.11, Figure 2.12).   

4. Discussion 

Limber pine stands heavily impacted by mountain pine beetle and WPBR are at risk of 

not regenerating. To determine whether limber pine will persist on the landscape based on a 

snapshot of limber pine regeneration, three main factors were taken into consideration: 1) 

seedling occurrence 2) seedling density and 3) seedling health, along with additional factors, 

such as microsite object and competition. Determining factors that influence limber pine 

regeneration is valuable for future management decisions regarding limber pine. 

4.1. Seedling presence 

Overall, limber pine seedlings (live and dead) were present on 92% of plots, with eight 

study areas falling below the mean and four of those were between 54% and 75%. Most of the 

study areas that fell below the mean were located in the more northern areas of our study, where 

WPBR has been longer. Smith et al. (2013) found at least one live limber pine seedling in 76% 

of plots in 2003-2004 and 85% of plots in 2009, indicating that recruitment is continuing to 

occur; however, there was a reduction in seedlings in the taller height class, suggesting a 

reduction in survivorship. In another study, southwestern white pine (Pinus strobiformis 
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Engelm.) seedlings were not common but the authors suggested that existence might be 

explained by a high survivorship rate (Looney and Waring 2012).  

4.2. Seedling density 

Overall mean live limber pine seedling density, 141 stems/ha, is comparable to the results 

of a limber pine study in the Rocky Mountains of Alberta and British Columbia where mean 

density of live limber pine seedlings were 100 seedling sites/ha in 2003-2004 and increased to 

150 seedling sites/ha in 2009 (Smith et al. 2013). However, a slight variation in density exists 

between the studies considering Smith et al. (2013) counted seedling clumps as one unit 

(seedling sites) and we differentiated individual stems, even if clumped. Our seedling density is 

low in comparison with a study of limber pine regeneration in sites post-fire on the Front Range 

of Colorado, where they found two sites at about 290 stems/ha and one at 508 stems/ha 

(Shankman and Daly 1988). Since no baseline estimate exists to determine the normal or optimal 

density of limber pine seedlings needed to sustain a stand, it is difficult to determine whether 

these densities are normal, given the conditions. Limber pine is naturally slow-growing and it 

may be many years before a stem may reach reproductive maturity. The densities in this study  

appear low when compared to the density of WPBR impacted whitebark pine seedlings in 

northern Montana and the Canadian Rockies at 400 stems/ha (Smith et al. 2008). In Alberta, 

where limber pine is listed as an Endangered species under The Wildlife Act (Government of 

Alberta 2012), limber pine seedling density may also be especially low in montane areas due to 

cattle grazing (Langor 2007). 

Seedlings occurred in 12% more plots in the tall height class versus the small height 

class; however, live limber pine seedling density decreased with increasing height class, 

suggesting low survivorship. Density seemed especially low in the more northern study areas 
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(central Rocky Mountains) where stands have been exposed to WPBR infection for a longer 

period as compared to the more southern study areas (southern Rocky Mountains). In addition, 

these same mountains have had long term regional droughts that may have had an effect on 

seedling survival. 

4.3. Seedling health 

While most limber pine seedlings were considered healthy, the primary damage agent 

was WPBR. Overall incidence of WPBR on live seedlings (5.3%) was slightly less than results 

from Smith et al. (2013), where 8% of live limber pine seedlings in 2003-2004 were infected 

with WPBR, but greater than 4% when remeasured in 2009. While we did assess dead limber 

seedlings for WPBR, we found few standing dead stems, likely because of rapid girdling in 3 

years (Hoff and Hagle 1990) and a short time to when the seedling fell, which we estimated at 3-

5 years. Thus, WPBR-caused mortality is likely higher than what we are able to measure. The 

study area (Absaroka south) with the lowest live limber pine seedling density (38 stems/ha) also 

exhibited the greatest incidence of WPBR infection on live and dead seedlings at 33%.  

Other diseases, insect, and damages, such as dwarf mistletoe, on limber pine seedlings 

were not common, likely due to having less exposed surface area and exposure time compared 

with trees and the short period damaged trees remain standing. The most prevalent damages, 

aside from WPBR were physical damage, which was often associated with a WPBR infection 

that had girdled the main stem, and dwarf mistletoe. Our results of finding few additional 

damage agents are consistent with a limber pine planting study by Casper (2012), who also found 

few damage agents on limber pine seedlings, noting that herbivory affected less than 1% of 

seedlings. We might have expected abiotic damages to have affected more than our result of less 

than 1% of limber pine seedlings, since seedlings are more vulnerable to abiotic stressors such as 
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drought, flooding, temperature extremes, snow and ice, and excessive sunlight (Franklin et al. 

1987).  

4.4. Ground cover and microsite objects 

Ground cover type may aid or inhibit regeneration. Limber pine seedlings occurred more 

often with non-competing ground cover types, litter and rock, as compared to control points. 

Looney and Waring (2012) noted a positive relationship between southwestern white pine, 

another five-needle white pine in close association with limber pine, regeneration and litter 

abundance, but also with log cover. Some ground cover vegetation may act as competition for 

limber pine seedlings. Grass occupied the greatest area of our ground cover plots and limber pine 

seedlings tended to occur less often with grass, results consistent with Jones (1967), who noted a 

lack of seedlings where grass was prevalent. In addition to grass, seedlings occurred less often 

with forbs and bare soil, results consistent with a study of southwestern white pine regeneration 

in which Looney and Waring (2012) found a negative relationship between seedlings and grass, 

forbs, and bare ground. Coop and Schoettle (2009) found no positive association between ground 

cover vegetation at the seedling scale. While we found no significant association with shrubs, 

O’Brien et al. (2007) found a negative impact of shrubs on natural regeneration of Monterey pine 

(Pinus radiata D. Don). We did not look at ground cover with respect to high elevation, but in 

the subalpine environment, ground cover vegetation may protect seedlings from harsh conditions 

(Maher et al. 2005). To date, invasive plants are not impacting limber pine regeneration but some 

of the most at- risk- mountain ranges for limber pine regeneration failure also have the greatest 

invasive plant populations. 

Clark’s nutcracker tends to cache seeds near cover and will often do so within 4 m of a 

tree which is often surrounded by litter (Lorenz et al. 2011). Microsite objects have shown to 
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provide some protection for developing seedlings and may be particularly important in harsh 

sites and upper treeline (Maher and Germino 2006). Coop and Schoettle (2009) found a strong 

association between microsite objects and seedlings in sites post-fire, but object type did not 

matter. Our results were similar in that limber pine seedlings were located more often next to 

microsite objects such as rocks or trees versus the control points.  

4.5. Seedling models 

4.5.1. Limber pine seedling density  

We were able to determine variables that predict density (stems/ha) of limber pine 

seedlings using linear regression analysis. Our results indicated that stems/ha of limber pine 

trees, stems/ha of all live trees, percent area of grass, and limber pine seedling height (cm) were 

all important variables in predicting limber pine seedling density. We would naturally expect a 

positive relationship between limber pine seedling density and limber pine tree density since 

mature, cone-bearing trees provide the seed source for regeneration, and the results of the final 

model reflected that. A positive relationship between limber pine seedling density and density of 

all live trees might be explained by the increased amount of cover that an increased density of 

trees might provide for seedlings. Natural regeneration of Monterey pine benefits from overstory 

cover (O’Brien et al. 2007) and whitebark pine regeneration is positively associated with total 

stand density, as well as whitebark pine density (Larson and Kipfmueller 2010). While tree cover 

reduces sunlight availability, it can provide more stable night time microsite conditions by 

allowing for warmer and more stable temperatures, exposing seedlings to a less stressful 

environment (Germino and Smith 2000, Maher et al. 2005). In contrast, Larson and Kipfmueller 

(2010) found a positive association with MPB-caused overstory mortality and whitebark pine 

regeneration abundance, indicating a benefit from a gap in the canopy. We found no impact of 
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overstory mortality due to mountain pine beetle on either limber pine or aspen seedlings, which 

is likely due to the shorter time length between mountain pine beetle infestation (0-5 years) and 

regeneration establishment and growth. We would expect regeneration release in some impacted 

areas, given more time since overstory mortality.  

A negative relationship exists between grass and limber pine seedling density, which is 

consistent with Jones (1967), Looney and Waring (2012), and our comparison of limber pine 

seedlings and control points, with grass being less prevalent near seedlings. This further 

emphasizes that grass acts as competition and may inhibit limber pine regeneration. The negative 

relationship between limber pine seedling density and limber pine seedling height (cm) suggests 

that seedlings are more likely to reach maturity in lower densities.  

While Larson and Kipfmueller (2010) found a strong negative relationship between 

subalpline fir and whitebark pine abundance, as well as relationships with site and 

meteorological variables, while we found no relationships between limber pine seedling density, 

competing seedlings of other species, site, or meteorological variables. When looking at the three 

study areas with the lowest limber pine seedling density: Absaroka south (38 stems/ha) and north 

(62 stems/ha) and Bighorn south (60 stems/ha), competing species were abundant and greater 

than 90% healthy in both Absaroka south and Bighorn south. However, in Absaroka north, 

density of competing species was less than that of limber pine, and both limber pine and spruce-

fir regeneration exhibited the highest mortality of all 25 study areas at 13% and 12%, 

respectively. Those results indicate that in some study areas, competing seedlings are thriving, 

but in others, lack of competing seedlings may indicate a poor site quality for any regenerating 

tree species, and this supports our limber pine seedlings density model, suggesting that factors 

other than competing seedlings are more important in predicting limber pine seedling density.  
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We expected meteorological variables to impact limber pine seedling density since 

seedlings are especially vulnerable to extreme meteorological events. However, no 

meteorological variables were related in our modeling efforts. While longer, warmer growing 

seasons promote seedling establishment, but also result in higher mortality due to heat-related 

damages, cooler sites with lower regeneration density result in higher survivorship (Larson and 

Kipfmueller 2010). Increased growing season precipitation may also increase regeneration 

(Tomback et al. 1993). 

4.5.2. Proportion of limber pine regeneration infected with WPBR  

The generalized linear mixed-effects model results indicated that the most important 

variables that predict the proportion of limber pine seedlings infected with WPBR on a subplot 

include height and tree cankers/ha. Tomback et al. (1995), Smith et al. (2008), and Smith et al. 

(2013) each found a positive relationship between seedling height and incidence of WPBR in 

seedlings which is consistent with the positive relationship we found between seedling height 

and proportion of limber pine seedlings infected with WPBR. As each suggested, there is likely a 

higher probability of basidospores landing on a taller seedling due to greater needle surface area 

or assuming that taller seedlings are older, they have been potentially exposed to WPBR 

infection for a longer time period. The positive relationship between proportion of limber pine 

seedlings infected with WPBR and cankers per adult limber pine suggests that trees become 

increasingly infected, seedlings are also infected. Since basidiospores require conditions of high 

relative humidity in late summer or fall, we expected the final model to reflect this. While some 

late fall relative humidity variables (relative humidity in October and November) were selected 

in at least 20 percent of models during category screening, no meteorological variables were 

selected in the final model. When eliminating tree cankers/ha, the variables that that predicted 
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the proportion of limber pine seedlings infected with WPBR on a subplot included limber pine 

seedling height (cm), crown dieback (percent) of all standing dead and live trees, and stems/ha of 

limber pine trees with WPBR. Relationship with stems/ha of limber pine trees with WPBR 

suggests that if WPBR is present in the stand on trees, seedlings are also infected. Relationship 

of crown dieback may suggest that as crown dieback and depletion of overstory occurs, it leaves 

live seedlings more open and exposed to infection by WPBR. 

4.5.3. Terminal Growth 

Limber pines occupy areas that do not promote fast growth and seedlings may remain 

small for many years before release. Our results of average terminal growth measurement 

indicate that terminal growth rate increases as seedlings age, but on some sites, terminal growth 

may be very slow or delayed until release. In sites in Colorado and Wyoming, Casper (2012) 

found limber pine seedlings between 30 and 140 cm tall to range in age from about 12 to 41 

years. Median age of limber pine seedlings (≤ 1.4 m tall) (n=8) on a site in the front range of 

Colorado was 63 years and ranged from 47 to 115 years, supporting the typical slow growth rates 

of conifers, particularly when suppressed (Veblen 1986). Whitebark pine, also a slow-growing, 

5-needle pine, takes a minimum of about 25 years to reach reproductive maturity (McCaughey 

and Schmidt 1990).   

The results of our linear regression analysis predicting terminal growth (mm) of limber 

pine seedlings indicated that big sagebrush (percent of ground cover), limber pine seedling 

height (cm), grass (as a dominant ground cover next to limber pine seedlings), and basal area 

(m2/ha) of all live trees were all important variables in predicting terminal growth of limber pine 

seedlings. Positive relationships with big sagebrush and grass suggest that these vegetation types 

indicate a good growing site. We would naturally expect a positive relationship with height since 



 

 

86 

 

seedlings tend to grow more as they increase in age and height. The negative relationship with 

basal area of all live trees suggests an impact of canopy or competition from larger trees. While 

we found no relationships with terminal growth and latitude or meteorological variables, 

increasing latitude does offer shorter growing seasons and increase in potential for cold-related 

damages which may reduce terminal growth of seedlings (Bengtson et al. 1967).  

4.6. Other factors that potentially impact limber pine regeneration 

While we have been able to measure and analyze many factors that potentially impact 

limber pines and determine if limber pine will persist, several additional factors must be taken 

into consideration, particularly those affecting limber pine seed. Since seed production of limber 

pine may be erratic, knowledge of frequency of mast years is valuable in predicting regeneration 

success. Long-distance dispersal by Clark’s nutcracker is key to maintaining some limber pine 

populations, particularly those impacted by damage agents and with low reproductive capacity. 

Clark’s nutcracker will cache between 35,000 (Tomback 1982) and 98,000 seeds per year 

(Hutchins and Lanner 1982) and may occur at distances greater than 22 kilometers from the 

source (Lorenz et al. 2011). Forty-five percent of the cached seeds are not retrieved and 

germination may occur from remaining viable seeds situated in sites ideal for growth (Tomback 

1982). Lorenz et al. (2011) found that only 15% of whitebark pine seeds were cached in sites 

suitable for germination.  

Pine squirrels reported to be the most important seed predator of limber pine, and when 

present in a limber pine stand, they dominate seed harvest over Clark’s nutcracker (Siepielski 

and Benkman 2007). A study in Arizona by Benkman et al. (1984) found that red squirrels 

(Tamiasciurus hudsonicus) leave less than 20 percent of limber pine cones after harvest of 

unopened cones in dense stands. In sites without red squirrels, Clark’s nutcracker extracted seeds 
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from open cones which consisted of about 70 percent of the cone crop (Benkman et al. 1984). In 

mixed conifer stands that include whitebark pine, pine squirrels do not rely solely on whitebark 

seeds, thus, their populations are not affected by a decline in whitebark pine and seed harvest can 

exacerbate a reduction in seed availability for dispersal and regeneration in stands affected by 

mountain pine beetle and WPBR (McKinney and Fiedler 2010). In addition to directly reducing 

propagule availability by consumption, harvest of limber pine seeds by pine squirrels indirectly 

restricts the evolution of traits (i.e. more seeds per cone) that encourage dispersal of seeds by 

Clark’s nutcracker (Benkman 1995, Siepielski and Benkman 2007). Cone and seed insects are 

known on limber pine and may also impact seed available for regeneration but the amount of 

impact is not known and thus, should be an important  factor in future genetic work (Benkman et 

al. 1984, Potter and Green 1964, Schoettle and Negron (2001). 

Climate change, one of the more difficult factors to measure impact on regeneration, will 

likely influence future limber pine distribution, and regional warming has already been identified 

as the potential cause of increased mortality rates in western U.S. trees (van Mantgem 2009). 

Future meteorological conditions may render some limber pine habitat unsuitable for 

regeneration and also may allow for limber pine regeneration in environments that were not 

previously suitable for regeneration. Lack of precipitation can lead to drought –stress and winter 

desiccation. While we would expect increasing temperatures and drought to negatively impact 

regeneration, such conditions would also not be ideal for WPBR infection.  

4.7. Management implications 

Study areas with low limber pine seedling density and a high incidence of WPBR should 

be considered areas of high priority for restoration. A study by Maloney et al. (2012) found a 

negative relationship between whitebark pine cone production and WPBR and suggests that this 
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may result in declining whitebark pine populations. As seed sources are impacted by WPBR and 

MPB, stands with existing opportunistic seed predator populations limit opportunity for seed 

dispersal and regeneration (McKinney and Tomback 2007). In whitebark pine stands, it is 

estimated that Clark’s nutcracker requires at least 1000 cones/ha to remain in a stand and 

disperse seed, and a basal area of 5 m²/ha is estimated to produce that amount (McKinney et al. 

2009). However, Barringer et al. 2012 noted that while Clark’s nutcracker is more likely to visit 

whitebark stands with more cones, they do still visit stands with little cone production. As 

mortality increases from disturbances like white pine blister rust and the mountain pine beetle, 

propagule availability decreases and the probability that limber pine seeds may be dispersed by 

Clark’s nutcracker to newly burned areas to regenerate, decreases (Coop and Schoettle 2011).  

Facilitating and maintaining stands of limber pine is essential to promoting natural selection to 

encourage the development of resistance mechanisms to WPBR (Loo 2009). Our results indicate 

that stands should be managed to increase density of limber pine trees, however, increased 

density could make the stand more susceptible to bark beetle attacks. Managing limber pine 

stands, particularly those with little WPBR impact, for multiple age classes may allow for 

increased regeneration (Schoettle and Sniezko 2007) and would provide some insurance against 

bark beetle attacks. Since seed predators prefer mixed conifer stands as opposed to whitebark-

dominated stands, most seed dispersal may originate from whitebark-dominated stands and 

management of these stands may need not be as intensive (McKinney and Fiedler 2009). Limber 

pine regeneration may benefit from natural disturbance, such as fire, or creation of openings and 

microsite objects, but will take many years to see results (Coop and Schoettle 2009). Thinning 

treatments may not benefit seedlings as much as mature trees (Keane et al. 2007). Our findings 

indicate that seedling establishment benefits from areas surrounded by litter and rock, away from 
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competition from grass and forbs, and next to microsite objects, particularly rocks and trees. At 

high elevations, seedlings may benefit from the protection of tree cover to maintain warmer night 

time temperatures and potential reduction from freezing injury (Germino and Smith 1999). Our 

results also indicate that limber pine regeneration density benefits from an increase in overstory 

density.  

Proposed restoration efforts include identifying and collecting potentially WPBR 

resistant genotypes, testing of seed for genetic resistance, and outplanting of WPBR resistant 

stock (Schoettle and Sniezko 2007). Limber pine has shown to exhibit multiple resistance 

mechanisms to WPBR, including complete resistance in some families by way of the newly 

discovered Cr4 resistance allele, which was found in 0 to 14 percent, and averaging 5 percent, of 

limber pine in the southern Rocky Mountains (Schoettle et al. 2014). A few studies (Smith et al. 

2011, Casper 2012) have made recommendations for outplanting limber pine seedlings with 

good survival success. Smith et al. (2011) recommended outplanting seedlings, instead of seed, 

and in clusters for a greater survival rate. Planting near a microsite object, such as a rock or tree, 

particularly on higher elevations or harsh sites or may also provide protection for developing 

seedlings (Maher and Germino 2006, Smith et al. 2011). Casper (2012) recommends planting 

seedlings on the north or west side of microsite objects and under canopy cover. 

In most study areas, limber pine regeneration will likely persist, however, much 

uncertainty exists with future meteorological influence. A few study areas, including Absaroka 

south and north, and Bighorn north fall well below the overall means in each presence, density, 

and health, indicating that some local limber pine populations may be declining in these study 

areas. As WPBR continues to spread and intensify, low-risk stands and previously unaffected 

stands will be at risk of decline. It would be beneficial to employ management decisions that 
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encourage limber pine regeneration. While we present a snapshot of the current state of limber 

pine regeneration, future monitoring of our plots would provide the needed measure of 

regeneration over time, particularly in areas of declining limber pine, and thus determine the 

trajectory of these stands. 
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Tables and Figures 

 

Table 2.1: Density (stems/ha) of live seedlings in 25 study areas in Colorado, Wyoming, and 

Montana in 2011 and 2012. 

 

 
 
a
One plot consists of three 60 x 6 m subplots placed at random bearings with a 30 x 6 m invasive 

species and white pine blister rust alternate host plot at the end of each subplot.                                                                                                                                                   
b
Other pines include ponderosa pine, lodgepole pine, whitebark pine, Rocky Mountain juniper, 

and Utah juniper.     
c
Spruce-fir includes Engelmann spruce, white spruce, Douglas-fir, and subalpine fir. 

 

 

 

 

 

 

 

 

 

 

median min max mean std median min max mean std median min max mean std median min max mean std

Colorado

Front Range

Boulder County 14 2735 51 0 1019 194 326 65 0 694 129 184 139 0 3806 547 993 19 0 889 133 246

North 25 2669 65 0 509 96 118 56 0 1454 153 293 148 0 1954 307 443 9 0 176 29 46

Wyoming

Laramie Mtns

Pole Mtn 24 2544 301 28 1657 373 335 106 0 630 157 168 255 0 1352 378 385 0 0 278 29 72

East 24 2347 245 19 1083 358 328 28 0 287 59 78 93 0 2167 331 516 0 0 2537 152 523

West 24 2482 106 9 537 154 133 14 0 83 22 24 19 0 833 131 212 37 0 1620 212 389

Muddy Mtn 21 2339 65 9 509 109 127 0 0 65 11 17 28 0 546 104 150 0 0 306 35 79

Medicine Bow Mtns

South 24 2633 74 0 389 107 103 14 0 2926 222 652 9 0 3769 321 812 0 0 481 37 103

North 24 2797 74 0 417 107 107 9 0 4444 226 901 37 0 907 137 247 19 0 1167 120 254

Sierra Madre 24 2736 65 0 361 91 89 0 0 130 14 30 5 0 2528 220 534 5 0 861 61 179

Sweetwater Basin

Shirley Mtns 24 2424 97 28 1935 250 436 0 0 46 4 12 0 0 0 0 0 0 0 37 2 8

Ferris Mtns 6 2293 65 0 454 116 171 0 0 19 6 10 0 0 0 0 0 14 0 28 14 13

Green Mtns 24 2516 148 19 806 242 232 0 0 278 31 73 0 0 315 39 91 0 0 0 0 0

Beaver Divide 16 2287 79 56 213 106 51 0 0 19 2 5 0 0 944 76 242 0 0 0 0 0

Wind River Range

South 27 2599 130 0 565 135 125 0 0 333 30 68 0 0 833 139 248 0 0 37 4 10

Reservation 18 2654 60 0 583 124 160 0 0 37 6 10 5 0 833 107 234 5 0 685 80 172

North 28 2503 56 0 361 103 105 0 0 324 30 74 0 0 1102 109 262 32 0 4787 289 903

Absaroka Range

South 20 2462 23 0 148 36 45 0 0 83 12 23 0 0 1380 182 342 23 0 1120 181 323

Shoshone Canyon 17 2083 139 9 426 161 114 65 0 194 66 64 0 0 0 0 0 0 0 148 29 46

North 24 2054 5 0 333 54 93 0 0 111 10 24 0 0 0 0 0 0 0 352 25 75

Bighorn Basin 11 1918 37 0 380 88 120 19 0 157 34 47 0 0 0 0 0 0 0 28 6 10

Bighorn Mtns

East 17 2404 83 37 463 135 116 0 0 231 21 58 0 0 0 0 0 46 0 1352 161 326

South 20 2518 42 0 176 56 49 0 0 1407 129 382 0 0 315 16 70 28 0 315 52 69

North 24 2478 19 0 407 65 97 0 0 463 35 94 0 0 167 19 46 51 0 1241 121 259

Montana

Pryor Mtns 20 2076 32 0 333 67 83 0 0 370 48 99 0 0 0 0 0 46 0 861 141 216

Terry Badlands 8 858 60 9 148 80 59 28 0 83 36 32 0 0 0 0 0 0 0 0 0 0

508 2376 74 0 1935 141 201 0 0 4444 64 274 0 0 3806 136 370 0 0 4787 83 300

State, geographic 

range, and study 

area plots
a

mean 

elevation 

(m)

limber pine other pine
b aspen spruce-fir

c 
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Table 2.2: Live limber pine seedling density (stems/ha) (n = 508 plots) in three height classes in 

25 study areas in Colorado, Wyoming, and Montana in 2011 and 2012.  

 

 
 

 

 

 

 

 

median min max mean std median min max mean std median min max mean std

Colorado

Front Range

Boulder County 19 0 630 116 217 19 0 259 51 81 14 0 130 26 36

North 19 0 444 51 95 19 0 93 27 28 19 0 93 19 19

Wyoming

Laramie Mtns

Pole Mtn 125 19 1213 189 243 130 0 324 126 94 46 0 157 58 42

East 51 0 917 185 277 97 0 306 112 85 46 0 194 61 50

West 42 0 269 66 76 42 0 194 54 50 28 0 102 33 28

Muddy Mtn 9 0 315 37 76 19 0 167 39 43 19 0 120 32 33

Medicine Bow Mtns

South 14 0 296 39 74 37 0 111 37 29 19 0 111 31 27

North 23 0 157 39 43 28 0 194 40 47 19 0 102 29 33

Sierra Madre 19 0 102 25 30 23 0 176 35 40 19 0 157 30 36

Sweetwater Basin

Shirley Mtns 9 0 546 60 136 37 0 1019 112 225 37 9 500 78 116

Ferris Mtns 9 0 157 34 62 14 0 204 51 80 28 0 93 31 34

Green Mtns 32 0 537 76 124 74 0 398 104 99 42 9 250 61 59

Beaver Divide 9 0 74 19 22 37 9 111 42 27 32 0 102 46 34

Wind River Range

South 37 0 333 54 69 28 0 148 50 41 19 0 120 31 32

Reservation 9 0 306 47 79 28 0 259 52 73 9 0 111 25 29

North 14 0 194 30 49 28 0 157 40 43 28 0 148 32 31

Absaroka Range

South 0 0 56 11 19 9 0 65 14 18 9 0 56 11 14

Shoshone Canyon 46 0 222 69 67 65 0 204 58 54 28 9 65 34 20

North 0 0 185 19 48 0 0 185 20 44 0 0 56 15 21

Bighorn Basin 0 0 102 26 36 0 0 176 31 55 19 0 130 31 39

Bighorn Mtns

East 19 0 296 44 73 37 9 194 57 48 28 0 111 35 31

South 5 0 56 14 18 9 0 93 22 26 9 0 83 20 24

North 0 0 46 12 17 9 0 176 29 47 9 0 204 24 42

Montana

Pryor Mtns 9 0 130 19 31 19 0 111 23 30 9 0 93 25 30

Terry Badlands 37 0 93 39 29 19 0 83 23 27 5 0 93 17 31

19 0 1213 55 117 28 0 1019 52 78 19 0 500 34 44

0-45.7 cm 45.7-91.4 cm 91.4-137 cm
State, geographic 

range, and study 

area
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Table 2.3: Linear regression for density (stems/ha) of limber pine seedlings, proportion of limber 

pine seedlings with WPBR, and terminal growth (mm) of limber pine seedlings from a 

monitoring study of limber pine stands in 25 study areas in Colorado, Wyoming, and Montana in 

2011 and 2012. 

 

 
 

a
Model fit using SAS Proc Mixed with study area as a random effect.

Model
a

Parameter Estimate Standard error

Log10 stems/ha of limber pine seedlings Intercept 1.0424 0.1246

Log10 stems/ha of limber pine trees 0.2943 0.0376

Log10 stems/ha of all live trees 0.2304 0.0412

Grass (percent cover) -0.0026 0.0009

Limber pine seedling height (cm) -0.0043 0.0005

Square root (Proportion of limber pine seedlings with WPBR) Intercept -0.0612 0.0269

  with canker data Limber pine seedling height (cm) 0.0012 0.0003

Log10 tree cankers/ha 0.0520 0.0070

Square root (Proportion of limber pine seedlings with WPBR) Intercept -0.0804 0.0287

  without canker data Limber pine seedling height (cm) 0.0013 0.0003

Crown dieback (percent) 0.0009 0.0003

Log10 stems/ha of trees with WPBR 0.0590 0.0090

Terminal growth (mm) of limber pine seedlings Intercept 8.8870 2.5138

Log basal area (m²/ha) of all live mature trees -8.3331 1.6224

Big sagebrush (percent of total ground cover) 0.3163 0.0511

Limber pine seedling height (cm) 0.4491 0.0218

Grass as seedling ground cover 11.7085 1.5455
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Figure 2.1: Location of limber pine monitoring plots in 25 study areas in Colorado, Wyoming, 

and Montana in 2011 and 2012. 
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Figure 2.2: Percent of plots in live limber pine seedling density classes (zero: no seedlings, low: 

>0 – 55 stems/ha, medium: >55 – 140 stems/ha, and high: >140 stems/ha) in Colorado, 

Wyoming, and Montana in 2011 and 2012.  
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(a) 

 

(b) 

 

Figure 2.3: Percent of limber pine seedlings that were dead, live and infected with WPBR, and 

live but dying (>50% of crown showing symptoms or is damaged; excludes dying with WPBR) 

in three height classes (s: small 0-45.7 cm, m: medium >45.7-91.4 cm, and t: tall >91.4-137 cm) 

in the (a) southern Rocky Mountains and (b) central Rocky Mountains from a monitoring study 

of limber pine stands in 25 study areas in Colorado, Wyoming, and Montana in 2011 and 2012.  
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(a)  

 

(b) 

 

Figure 2.4: Mean probability of occurrence of (a) ground cover type and (b) microsite object type 

within one meter of a limber pine seedling as compared to the same within one meter of a control 

point (each subplot contained two fixed control points located at the subplot midpoint, three 

meters from each end) from a monitoring study of limber pine stands in 25 study areas in 

Colorado, Wyoming, and Montana in 2011 and 2012. Error bars represent standard error of the 

mean. Comparisons between seedling and control point means were made using a paired t-test 

with the critical level of significance set as P< 0.0001 (as indicated by an asterisk).
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
 

Figure 2.5: Linear regression analysis predicting density (stems/ha) of limber pine seedlings on a 

subplot using variables selected in the final model (fit using PROC MIXED with study area as a 

random effect, in SAS) from a monitoring study of limber pine stands in 25 study areas in 

Colorado, Wyoming, and Montana in 2011 and 2012. Relationship with response variable was 

plotted using mean values and the 5
th

, 25
th

, 50
th

, 75
th

, and 95
th

 percentiles. Predicted values were 
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back transformed. Positive relationships exist between (a) stems/ha of limber pine seedlings and 

stems/ha of limber pine trees and (b) stems/ha of all live trees. Negative relationships exist 

between (c) stems/ha of limber pine seedlings and grass (percent cover) and (d) limber pine 

seedling height (cm). 

 

 

 

(a) 

 
 

(b) 

 
 

Figure 2.6: Linear regression analysis predicting proportion of limber pine seedlings infected 

with WPBR on a subplot using variables selected in the final model (fit using PROC MIXED 

with study area as a random effect, in SAS) from a monitoring study of limber pine stands in 25 

study areas in Colorado, Wyoming, and Montana in 2011 and 2012. Relationship with response 

variable was plotted using mean values and the 5
th

, 25
th

, 50
th

, 75
th

, and 95
th

 percentiles. Predicted 

values were back transformed. Positive relationships exist between (a) proportion of limber pine 

seedlings with WPBR and limber pine seedling height (cm) and (b) tree cankers/ha.  
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Appendix I: Method Details 

 Steps to extract Daymet data for Limber Pine Plots: 

 

1. Downloaded Daymet Daily Surface Gridded Data in NetCDF format from this site: 

http://daymet.ornl.gov/gridded 

 

For each of these tile ID’s: 11737, 11738, 11916, 11917, 11918, 12096, 12097, 12278 

and for years 2000 to 2012. 

 

2. Run R script called Process_Daymet_Jacobi.R to extract tmax, tmin, precip, and 

vaporpressure values from NetCDF by tile by year.  

 

3. Run R script called Process_Daymet_Jacobi_GETPOINTS_ONLY.R (see code in 

appendix) to get only Dayment x/y coordinates and with unique ID.  

 

4. Run ArcMap “nearest point” spatial join between results of step 3 and Limber Pine plot 

points to get Daymet ID and Limber Pine plot ID cross reference list. 

 

5. Run R script called Calc_Monthly_Totals_Jacobi.R (see code in appendix) to get 

monthly and yearly totals for all Daymet data nearest Limberpine plots. 

 

6. Run R script called Append_Create_Cols_Jacobi.R (see code in appendix) to merge data 

into one file, then perform cross-tabulation to put all values in columns with one row for 

each Limber Pine Plot.  

 

7. Converted results of Step 6 to Excel Spreadsheet and delivered to Jacobi. 

 

 

 

 

http://daymet.ornl.gov/gridded
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Appendix II: Additional Tables and Figures 

Table 2.4: Dispersal of limber pine seedlings across three height categories (s: small 0-45.7 cm, 

m: medium 45.7-91.4 cm, and t: tall 91.4-137 cm) in 25 study areas in Colorado, Wyoming, and 

Montana in 2011 and 2012.  

 

 

Colorado

Front Range

Boulder County 7 7 14 71

North 8 20 8 64

Wyoming

Laramie Mtns

Pole Mtn 0 0 8 92

East 0 4 17 79

West 0 8 17 75

Muddy Mtn 0 24 29 48

Medicine Bow Mtns

South 4 0 38 58

North 8 17 21 54

Sierra Madre 13 4 33 50

Sweetwater Basin

Shirley Mtns 0 4 42 54

Ferris Mtns 33 0 17 50

Green Mtns 0 0 25 75

Beaver Divide 0 6 25 69

Wind River Range

South 4 4 26 67

Wind River Res 6 17 11 67

North 4 18 21 57

Absaroka Range

South 30 25 20 25

Shoshone Canyon 0 6 12 82

North 50 21 13 17

Bighorn Basin 18 27 18 36

Bighorn Mtns

East 0 0 35 65

South 10 15 50 25

North 29 13 21 38

Montana

Pryor Mtns 10 30 20 40

Terry Badlands 0 25 38 38

9 11 23 57

State, geographic 

range, and study 

area Not present

1 height 

category

2 height 

categories

All height 

categories

Percent of limber pine seedlings
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Table 2.5: Mean height of seedlings (<137 cm) in 25 study areas in Colorado, Wyoming, and 

Montana in 2011 and 2012. 

 

 

mean std mean std mean std mean std

Colorado

Front Range

Boulder County 50.3 17.3 63.3 13.2 54.5 8.0 37.0 18.8

North 66.2 27.5 70.3 25.6 70.2 14.3 60.7 26.2

Wyoming

Laramie Mtns

Pole Mtn 57.0 12.7 64.0 21.9 70.9 15.0 62.5 34.2

East 66.9 22.6 69.0 26.3 60.5 16.2 61.0 19.9

West 67.2 19.9 80.2 21.5 52.5 13.3 62.4 11.8

Muddy Mtn 78.4 25.6 72.9 27.9 70.0 12.7 65.5 28.4

Medicine Bow Mtns

South 74.4 18.2 67.9 29.4 68.7 23.0 47.3 37.4

North 64.1 19.3 64.4 18.9 74.2 18.4 64.2 22.7

Sierra Madre 74.7 17.9 66.7 21.2 81.3 18.5 57.6 31.0

Sweetwater Basin

Shirley Mtns 85.8 19.3 95.2 46.2 . . 74.2 35.0

Ferris Mtns 76.5 12.2 74.0 . . . 75.8 42.2

Green Mtns 75.5 18.6 75.7 23.1 50.1 12.7 . .

Beaver Divide 82.3 13.4 69.3 40.0 62.3 33.5 . .

Wind River Range

South 65.6 16.3 73.4 30.5 69.5 14.2 79.4 25.4

Reservation 75.5 22.3 78.7 41.8 70.3 20.3 87.9 30.7

North 77.6 23.3 77.3 22.7 76.8 18.0 71.5 28.7

Absaroka Range

South 78.3 21.9 82.0 28.0 63.3 13.4 63.3 19.9

Shoshone Canyon 68.9 21.0 66.7 26.4 . . 59.9 28.8

North 78.8 30.8 77.0 31.6 . . 83.6 30.9

Bighorn Basin 82.9 27.6 89.8 25.7 . . 86.2 18.8

Bighorn Mtns

East 71.5 18.2 74.1 28.8 . . 72.9 22.6

South 79.8 25.7 89.4 34.1 88.1 . 78.6 18.2

North 86.3 19.7 73.3 21.8 45.7 14.9 68.4 21.6

Montana

Pryor Mtns 73.2 24.5 73.8 29.2 . . 65.6 17.2

Terry Badlands 58.6 17.3 81.6 13.4 . . . .

72.5 22.1 72.9 25.7 66.8 17.9 66.8 26.0

State, geographic 

range, and study area

Height (cm)

Limber  Other Pine Aspen Spruce-fir 
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Table 2.6: Seedling health status in 25 study areas in Colorado, Wyoming, and Montana in 2011 

and 2012. Values are percent of seedlings in each health status category. Healthy = no visual 

damage to crown or stem up to 5% damage, declining/dying =  6-50% of crown showing 

symptoms that indicates it is dead or will be or >50% of crown showing symptoms or is 

damaged, dead =  recent dead (no green needles, red needles but fines still present), old dead (no 

fine twigs, no needles, >50% bark still present), very old dead (no fine twigs, no needles, <50% 

of bark present). Means are based on plot means. 

 

 
 

 

 

 

 

 

Healthy
Declining/ 

dying
Dead Healthy

Declining/ 

dying
Dead Healthy

Declining/ 

dying
Dead Healthy

Declining/ 

dying
Dead

Colorado

Front Range

Boulder County 91 7 2 88 10 2 84 6 10 99 0 0

North 90 7 3 93 6 1 85 5 9 100 0 0

Wyoming

Laramie Mtns

Pole Mtn 89 7 3 92 5 3 74 9 17 98 2 0

East 87 10 3 86 12 2 65 20 15 94 1 5

West 93 4 3 92 5 3 77 9 15 100 0 0

Muddy Mtn 93 6 1 88 13 0 89 6 4 99 1 0

Medicine Bow Mtns

South 86 13 0 94 5 1 85 2 12 95 5 0

North 86 11 3 94 5 1 86 8 6 100 0 0

Sierra Madre 96 4 1 93 4 3 89 8 3 99 0 1

Sweetwater Basin

Shirley Mtns 83 13 4 100 0 0 - - - 100 0 0

Ferris Mtns 61 38 1 100 0 0 - - - 83 17 0

Green Mtns 76 14 10 95 4 0 77 8 15 - - -

Beaver Divide 85 12 3 100 0 0 92 5 3 - - -

Wind River Range

South 85 13 2 96 4 0 87 7 6 100 0 0

Wind River Res 79 16 5 100 0 0 78 16 6 94 5 1

North 91 4 4 99 1 0 84 5 10 96 4 0

Absaroka Range

South 65 32 3 100 0 0 83 10 7 95 1 5

Shoshone Canyon 88 9 3 99 1 0 - - - 96 2 3

North 66 22 13 99 1 0 - - - 88 0 12

Bighorn Basin 83 14 3 99 1 0 - - - 100 0 0

Bighorn Mtns

East 83 6 11 95 0 5 - - - 100 0 0

South 77 14 9 100 0 0 87 3 11 99 1 0

North 87 5 7 97 2 0 97 3 0 95 4 1

Montana

Pryor Mtns 85 12 3 97 3 0 - - - 100 0 0

Terry Badlands 91 3 6 93 7 0 - - - - - -

85 11 4 94 5 1 82 8 10 97 2 1

State, geographic 

range, and study 

area

Limber pine  Other pine Aspen Spruce-fir 
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Table 2.7: Health status of limber pine seedlings in 25 study areas in Colorado, Wyoming, and 

Montana in 2011 and 2012. Means are based on overall seedling means. 

 

 
 
a
Number of stems 

b
Health status = 1, no visual damage to crown or stem up to 5% damage. 

c
Health status = 2, declining, 6-50% of crown showing symptoms that indicates it is dead or will 

be. 
d
Health status = 3, dying, >50% of crown showing symptoms or is damaged. 

e
Health status = 4, recent dead, no green needles, red needles but fines still present.  

f
Health status = 5, old dead, no fine twigs, no needles, >50% bark still present.  

g
Health status = 6, very old dead, no fine twigs, no needles, <50% of bark present. 

 

 

 

 

 

 

 

n
a

1
b

2
c

3
d

4
e

5
f

6
g

n 1 2 3 4 5 6 n 1 2 3 4 5 6

Colorado

Front Range

Boulder County 307 81.1 14.0 0.3 2.9 1.6 0.0 235 85.1 11.5 0.0 2.1 1.3 0.0 72 68.1 22.2 1.4 5.6 2.8 0.0

North 267 90.6 5.6 1.1 1.9 0.7 0.0 177 92.1 5.1 0.6 1.7 0.6 0.0 90 87.8 6.7 2.2 2.2 1.1 0.0

Wyoming

Laramie Mtns

Pole Mtn 999 89.5 5.5 1.7 1.4 1.9 0.0 691 92.5 4.2 1.0 1.0 1.3 0.0 308 82.8 8.4 3.2 2.3 3.2 0.0

East 962 90.1 4.9 1.6 1.9 1.5 0.1 673 92.1 3.1 1.6 2.1 0.9 0.1 289 85.5 9.0 1.4 1.4 2.8 0.0

West 409 90.5 5.4 1.5 1.0 1.7 0.0 254 93.7 3.1 1.2 0.4 1.6 0.0 155 85.2 9.0 1.9 1.9 1.9 0.0

Muddy Mtn 253 91.7 5.1 0.8 2.4 0.0 0.0 131 94.7 2.3 0.8 2.3 0.0 0.0 122 88.5 8.2 0.8 2.5 0.0 0.0

Medicine Bow Mtns

South 279 91.0 7.5 1.1 0.0 0.4 0.0 153 96.1 2.6 1.3 0.0 0.0 0.0 126 84.9 13.5 0.8 0.0 0.8 0.0

North 283 87.6 8.5 1.8 1.1 1.1 0.0 162 88.3 8.6 1.2 1.2 0.6 0.0 121 86.8 8.3 2.5 0.8 1.7 0.0

Sierra Madre 238 96.2 1.7 1.7 0.0 0.4 0.0 101 99.0 1.0 0.0 0.0 0.0 0.0 137 94.2 2.2 2.9 0.0 0.7 0.0

Sweetwater Basin

Shirley Mtns 658 93.3 4.0 1.1 0.8 0.9 0.0 300 95.0 3.3 0.3 1.0 0.3 0.0 358 91.9 4.5 1.7 0.6 1.4 0.0

Ferris Mtns 78 71.8 23.1 1.3 1.3 2.6 0.0 40 77.5 20.0 0.0 2.5 0.0 0.0 38 65.8 26.3 2.6 0.0 5.3 0.0

Green Mtns 669 81.2 9.9 2.5 2.1 4.3 0.0 357 89.6 4.2 2.0 1.1 3.1 0.0 312 71.5 16.3 3.2 3.2 5.8 0.0

Beaver Divide 188 85.1 10.1 2.1 1.1 1.1 0.5 67 94.0 4.5 1.5 0.0 0.0 0.0 121 80.2 13.2 2.5 1.7 1.7 0.8

Wind River Range

South 401 87.0 9.5 1.5 1.2 0.7 0.0 246 92.7 4.9 0.8 0.8 0.8 0.0 155 78.1 16.8 2.6 1.9 0.6 0.0

Wind River Res 248 79.8 16.5 1.2 1.2 1.2 0.0 145 85.5 13.1 0.7 0.7 0.0 0.0 103 71.8 21.4 1.9 1.9 2.9 0.0

North 319 93.1 3.8 0.6 0.6 0.9 0.9 157 97.5 1.9 0.6 0.0 0.0 0.0 162 88.9 5.6 0.6 1.2 1.9 1.9

Absaroka Range

South 81 70.4 18.5 7.4 1.2 0.0 2.5 35 91.4 8.6 0.0 0.0 0.0 0.0 46 54.3 26.1 13.0 2.2 0.0 4.3

Shoshone Canyon 308 87.0 7.8 1.3 1.9 0.3 1.6 192 92.2 4.7 0.0 1.6 0.0 1.6 116 78.4 12.9 3.4 2.6 0.9 1.7

North 160 81.3 3.8 3.1 1.9 3.1 6.9 90 87.8 1.1 2.2 2.2 3.3 3.3 70 72.9 7.1 4.3 1.4 2.9 11.4

Bighorn Basin 109 90.8 4.6 0.9 1.8 0.0 1.8 52 92.3 3.8 0.0 0.0 0.0 3.8 57 89.5 5.3 1.8 3.5 0.0 0.0

Bighorn Mtns

East 271 85.6 3.3 2.6 4.4 3.3 0.7 133 91.7 2.3 1.5 3.0 1.5 0.0 138 79.7 4.3 3.6 5.8 5.1 1.4

South 130 83.8 6.2 3.1 3.1 3.1 0.8 58 91.4 3.4 0.0 3.4 1.7 0.0 72 77.8 8.3 5.6 2.8 4.2 1.4

North 173 90.8 5.2 1.2 0.0 1.2 1.7 71 93.0 1.4 2.8 0.0 1.4 1.4 102 89.2 7.8 0.0 0.0 1.0 2.0

Montana

Pryor Mtns 147 90.5 7.5 0.0 0.7 0.0 1.4 73 93.2 5.5 0.0 0.0 0.0 1.4 74 87.8 9.5 0.0 1.4 0.0 1.4

Terry Badlands 72 94.4 0.0 1.4 0.0 1.4 2.8 45 100.0 0.0 0.0 0.0 0.0 0.0 27 85.2 0.0 3.7 0.0 3.7 7.4

8009 87.0 7.7 1.7 1.4 1.3 0.9 4638 91.9 5.0 0.8 1.1 0.7 0.5 3371 81.1 10.9 2.7 1.9 2.1 1.3

Health status of limber pine seedlings (percent)

 Health status of limber pine seedlings <70 cm 

tall (percent) 

Health Status of limber pine seedlings ≥70 cm 

tall (percent)State, geographic 

range, and study area
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Table 2.8: Using logistic regression analysis predicting limber pine seedling occurrence (y/n) on 

a subplot, these variables (presented with means, standard deviations, Wilcoxon two-sided p-

values, and noted if selected for the final model) were selected in at least 20 percent of 1000 

models after screening each category using PROC GLMSELECT from a monitoring study of 

limber pine stands in 25 study areas in Colorado, Wyoming, and Montana in 2011 and 2012. 

Stand structure is a categorical variable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wilcoxon

Category Variable n mean std n mean std Two-sided Pr>|Z| final model

Plot stand structure (cc: closed canopy): - - - - - - -

  cc multistory 10 2.29 - 43 3.96 - -

  cc multistory with open individuals and/or open scattered clumps 24 5.49 - 150 13.80 - -

  cc single story with open individuals and/or open scattered clumps 

     (includes mosaic of closed canopy single and multistory).

  open canopy, scattered individuals and/or scattered clumps 283 64.76 - 670 61.64 - -

northing 437 4788973 1.70 1087 47.24 1.54 <0.0001

Trees log10 basal area (m²/ha) of limber pine trees with bark beetles 437 0.37 0.49 1087 0.41 0.52 0.0965

proportion of basal area (m²/ha) of limber pine trees 434 0.75 0.34 1085 0.76 0.32 0.3845 yes

log10 stems/ha all live trees 427 2.51 0.36 1078 2.66 0.35 <0.0001 yes

log10 basal area (m²/ha) all live trees 427 0.76 0.55 1078 0.75 0.54 0.5012

Ground cover √percent of Ribes inerme 436 0.19 0.72 1087 0.05 0.35 <0.0001

grass (percent cover) 436 26.67 17.37 1087 22.54 14.54 <0.0001

Meteorological relative humidity in January 437 58.58 4.89 1087 60.67 5.59 <0.0001

frost days 437 8339 1994 1087 7128 3517 0.0826

-

Limber pine seedling occurrence

no yes

224120 27.46 20.61- -
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Table 2.9: Using linear regression analysis predicting limber pine seedling density (stems/ha) on 

a subplot (n), these variables [presented with means, standard deviations, Pearson correlation 

coefficients (P), and noted if selected for the final model] were selected in at least 20 percent of 

1000 models after screening each category using PROC GLMSELECT from a monitoring study 

of limber pine stands in 25 study areas in Colorado, Wyoming, and Montana in 2011 and 2012. 

Aspect and stand structure are categorical variables.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Category Variable n mean std PCC p-value final model

Plot aspect: 1524

  east 316 1.35 1.01 - -

  south 458 1.38 0.99 - -

  west 418 1.49 1.02 - -

  north 332 1.69 0.98 - -

stand structure (cc: closed canopy): 1524

  cc multistory 53 1.72 0.94 - -

  cc multistory with open individuals and/or open scattered clumps 174 1.88 0.89 - -

  cc single story with open individuals and/or open scattered clumps 344 1.36 1.06 - -

     (includes mosaic of cc single and multistory)

  open canopy, scattered individuals and/or scattered clumps 953 1.42 0.99 - -

northing 1524 4742698 1.62 -0.19 <0.0001

Ground cover grass (percent cover) 1523 23.72 15.51 -0.14 <0.0001 yes

Trees log10
 
basal area (m²/ha) of limber pine 1524 0.90 0.41 0.04 0.1266

log10 basal area (m²/ha) of all live trees 1505 0.75 0.54 0.03 0.3103

log10 stems/ha of limber pine 1524 2.48 0.45 0.30 <0.0001 yes

log10 stems/ha of all live trees 1505 2.62 0.36 0.27 <0.0001 yes

log10 stems/ha of aspen 1524 0.42 0.90 0.15 <0.0001

log10 stems/ha spruce-fir 1524 0.75 1.04 -0.08 0.0014

proportion of limber pine in the intermediate crown class 1499 32.60 27.03 0.21 <0.0001

Seedlings log10 stems/ha of other pine seedlings 1524 0.60 0.94 0.19 <0.0001

log10 stems/ha of aspen seedlings 1524 0.53 1.07 0.18 <0.0001

limber pine seedling height (cm) 1087 72.43 26.89 -0.27 <0.0001 yes

shrub as seedling microsite object 1087 0.27 0.38 -0.16 <0.0001

shrubs as seedling ground cover 1087 0.36 0.39 -0.15 <0.0001

Meteorological frost days 1524 7475 3203 -0.16 <0.0001
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Table 2.10. Using linear regression analysis predicting proportion of limber pine seedlings 

infected with WPBR on a subplot, these variables (presented with means, standard deviations, 

Pearson correlation coefficients (P), and noted if selected for the final model) were selected in at 

least 20 percent of the models after screening each category using PROC GLMSELECT from a 

monitoring study of limber pine stands in 25 study areas in Colorado, Wyoming, and Montana in 

2011 and 2012. Slope position is a categorical variable. 

 

 

Category Variable n mean std PCC p-value final model

Plot northing 1386 4754135 1.43 0.09 0.0051

grazing as historical disturbance 1386 0.67 0.47 0.14 <0.0001

slope position:

  backslope 397 0.13 0.27 - -

  footslope 158 0.11 0.23 - -

  shoulder 294 0.10 0.22 - -

  summit 140 0.09 0.23 - -

Ground cover litter (percent cover) 1385 12.94 12.59 -0.10 0.001

tree/log (percent cover) 1385 7.44 7.53 -0.11 0.0006

grass (percent cover) 1385 23.89 15.41 0.09 0.0041

Trees log10 basal area (m²/ha) of all live trees 1368 0.75 0.55 -0.07 0.0366

crown dieback (percent) 1361 28.95 27.59 0.08 0.0107

log10 tree cankers/ha 1333 1.62 1.27 0.34 <0.0001 yes

Seedlings limber pine height (cm) 988 73.14 26.71 0.15 <0.0001 yes

grass as seedling ground cover 988 0.40 0.39 0.14 <0.0001

Meteorological relative humidity in October 1386 51.55 3.11 0.17 <0.0001

relative humidity in April 1386 58.08 2.18 0.16 <0.0001

drought frequency1 1386 15.98 2.18 -0.16 <0.0001

relative humidity in November 1386 61.62 3.86 0.16 <0.0001
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Table 2.11: Using linear regression analysis predicting limber pine seedling terminal growth 

(mm) on a subplot, these variables (presented with means, standard deviations, Pearson 

correlation coefficients (P), and noted if selected for the final model) were selected in at least 20 

percent of 1000 models after screening each category using PROC GLMSELECT from a 

monitoring study of limber pine stands in 25 study areas in Colorado, Wyoming, and Montana in 

2011 and 2012. Slope position is categorical. 

 

 

 

 

 

 

 

 

 

 

 

 

Category Variable n mean std PCC p-value final model

Plot northing 1524 4742698 1.62 0.13 <0.0001

grazing as a historical disturbance 1524 0.66 0.47 0.21 <0.0001

slope position:

  backslope 410 38.39 20.86 - -

  footslope (includes toeslope and valley bottom) 169 52.57 30.13 - -

  shoulder 328 38.21 23.54 - -

  summit 152 43.43 23.45 - -

Ground cover litter (percent cover) 1523 13.43 13.32 -0.33 <0.0001

rock (percent cover) 1523 10.53 11.66 -0.21 <0.0001

grass (percent cover) 1523 23.72 15.51 0.27 <0.0001

shrubs (percent cover) 1523 18.81 14.58 0.24 <0.0001

big sagebrush (percent of shrub cover) 1523 9.15 11.79 0.30 <0.0001 yes

Seedlings limber pine seedling height (cm) 1087 72.43 26.89 0.58 <0.0001 yes

shrub as a seedling microsite object 1087 0.27 0.38 0.20 <0.0001

grass as dominant groundcover next to seedling 1087 0.39 0.39 0.32 <0.0001 yes

litter as dominant groundcover next to seedling 1087 0.46 0.41 -0.31 <0.0001

log10 stems/ha of all other seedlings 1524 1.27 1.23 -0.25 <0.0001

Metorological mean August preciptitation (derived from 30-year (1971-2000) normals) 1524 13.04 2.95 -0.24 <0.0001

seasonal (April-Sept) moisture index 1524 1397.00 343.13 0.23 <0.0001

avg max temp July-Sept for 2010 and 2011 1524 22.18 1.87 0.11 0.0004

avg min temp July-Sept for 2009 and 2010 1524 6.23 1.41 0.10 0.0011

Trees log10 basal area (m
2
/ha) all live trees 1505 0.87 0.38 -0.23 <0.0001 yes

log10 basal area (m
2
/ha) of limber pine trees with WPBR 1524 0.33 0.40 0.15 <0.0001

log10 basal area (m
2
/ha) of other pine trees 1524 0.29 0.46 -0.29 <0.0001

log10 basal area (m
2
/ha) of spruce-fir trees 1524 0.17 0.35 -0.16 <0.0001

log10 stems/ha of limber pine trees with WPBR 1500 1.34 1.13 0.13 <0.0001
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Table 2.12: Site (plot), ground cover, and WPBR alternate host variables used during statistical 

modeling from a monitoring study of limber pine stands in Colorado, Wyoming, and Montana in 

2011 and 2012.  

 

 

 

 

 

 

 

 

 

 

Ground cover variables WPBR alternate host variables

Northing (latituide) Soil (percent cover) Stream density within 1 km

Elevation (m) Litter (percent cover) Area (m²) occupied by Ribes  spp.

Aspect North Rock (percent cover) Area (m²) occupied by Castilleja  spp.

South Tree/log (percent cover)

East Lichens/moss (percent cover)

West Grass (percent cover)

Slope (percent) Forbs (percent cover)

Slope position Summit Shrubs (percent cover)

Shoulder Common juniper (percent of shrub cover)

Backslope (includes footslope and toeslope) Kinnikinnick (percent of shrub cover)

Valley bottom Fringed sagebrush (percent of shrub cover)

Stand structure Closed canopy multistory Big sagebrush (percent of shrub cover)

Closed canopy multistory with open individuals Bog birch (percent of shrub cover)

   and/or open scattered clumps Mountain mahogany (percent of shrub cover)

Closed canopy single story with open individuals Service berry (percent of shrub cover)

   and/or open scattered clumps Shrubby cinquefoil (percent of shrub cover)

Open canopy, scattered individuals Bitterbrush (percent of shrub cover)

   and/or scattered clumps Skunkbush (percent of shrub cover)

Disturbance history Site preparation (tillage) Rabbitbrush (percent of shrub cover)

Artificial regeneration False rasberry (percent of shrub cover)

Natural regeneration (after disturbance) Wild red rasberry (percent of shrub cover)

Stand improvement Rose (percent of shrub cover)

Tree cutting Ribes cereum (percent of shrub cover)

Fire Ribes inerme (percent of shrub cover)

Other silvicultural treatments Vaccinium  spp. (percent of shrub cover)

Other human disturbance Dogwood (percent of shrub cover)

Natural disturbance Snowberry (percent of shrub cover)

Land clearing

Animal damage

Type conversion 

Mining

Grazing

Total 29 27 3

Site (plot) variables
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Table 2.13: Seedling and stand (tree) variables used in statistical modeling from a monitoring 

study of limber pine stands in Colorado, Wyoming, and Montana in 2011 and 2012.  

 

Seedling variables Stand (tree) variables

Limber pine seedling height (cm) Presence of beetles in limber pine

Average terminal growth (mm) of the previous 2 years Presence of dwarf mistletoe  in limber pine

sqrt proportion of limber pine seedlings with wpbr Presence of wpbr in limber pine

log10 stems/ha of limber pine seedlings Percent limber pine with bark beetles

log10 stems/ha of all other seedlings Percent limber pine with dwarf mistletoe

log10 stems/ha of other pine seedlings Percent limber pine with wpbr

log10 stems/ha of aspen seedlings Proportion of limber pine with dbh < 5 cm

log10 stems/ha of spruce-fir seedlings Proportion of limber pine with dbh > 5 - 10 cm

log10 stems/ha of all seedlings Proportion of limber pine with dbh > 10 - 20 cm

Limber pine seedling presence on a subplot Proportion of limber pine with dbh >20 cm 

Presence of wpbr on a limber pine seedling Proportion of limber pine in the codominant (includes dominant) crown class

Presence of dwarf mistletoe on a limber pine seedling Proportion of limber pine in the intermediate crown class

Dead top on limber pine seedlings Proportion of limber pine in the open-grown crown class

Forbs as dominant groundcover next to seedling Proportion of limber pine in the overtopped

Grass as dominant groundcover next to seedling Crown dieback (percent)

Lichens/moss as dominant groundcover next to seedling log10 stems/ha of limber pine

Litter as dominant groundcover next to seedling log10 basal area (m²/ha) of limber pines

Rock as dominant groundcover next to seedling log10 basal area (m²/ha) of limber pines with bark beetles

Shrubs as dominant groundcover next to seedling log10 basal area (m²/ha) of limber pines with dwarf mistletoe

Soil as dominant groundcover next to seedling log10 basal area (m²/ha) of limber pines with wpbr

Tree/log as dominant groundcover next to seedling log10 basal area (m²/ha) of limber pines with bark beetles and dwarf mistletoe

Log as a seedling microsite object log10 stems/ha of other pines 

Rock as a seedling microsite object log10 basal area (m²/ha) of other pines

Shrub as seedling microsite object log10 basal area (m²/ha) of other pines with bark beetles

Stump as a seedling microsite object log10 basal area (m²/ha) of other pines with dwarf mistletoe

Tree/log as a seedling microsite object log10 stems/ha of all pines 

log10 basal area (m²/ha) of all pines

log10 basal area (m²/ha) of all pines with bark beetles

log10 basal area (m²/ha) of all pines with dwarf mistletoe

log10 stems/ha of all other species

log10 basal area (m²/ha) of all other species

log10 stems/ha all live trees

log10 basal area (m²/ha) all live trees

log10 dbh of all live trees

log10 stems/ha of aspen

log10 basal area (m²/ha) of aspen

log10 stems/ha of spruce-fir

log10 basal area (m²/ha) of spruce-fir

log10 stems/ha of spruce-fir

log10 tree cankers/ha

proportion of basal area (m²/ha) of limber pine trees

log10 stems/ha all trees

log10 basal area (m²/ha) all trees

log10 stems/ha all dead trees

log10 basal area (m²/ha) all dead trees

log10 dbh of all dead trees

Total: 26 Total: 46
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Table 2.14: Meteorological variables obtained from the PRISM dataset (Daly et al. 2002) 

provided by FHTET (USDA FS Forest Health Technology Enterprise Team, Fort Collins, CO) 

used in statistical modeling from a monitoring study of limber pine stands in Colorado, 

Wyoming, and Montana in 2011 and 2012.  

 

 

 

 

 

30 m data

12 month moderate or greater drought frequency Average minimum temperature in July - September Growing season precipitation (mm)

36 month moderate or greater drought frequency Average maximum temperature in the warmest month Annual precipitation  (mm)

60 month moderate or greater drought frequency Average maximum temperature for year Mean annual temperature - tenths of degrees C

Autumn frost date Average maximum temperature in January Maximum temperature in the warmest month - tenths of degrees C

Spring frost day Average maximum temperature in February Minimum temperature in the coldest month - tenths of degrees C

Frost free period Average maximum temperature in March Average temperature in the coldest month - tenths of degrees C

Growing degree days Average maximum temperature in April Average temperature in the warmest month - tenths of degrees C

Three-year (2006 - 2008) standardized moisture difference z-score Average maximum temperature in May 1st principle component monthly precipitation

Three-year (2007 - 2009) standardized moisture difference z-score Average maximum temperature in June 2nd principle compoent monthly precipitation

Five-year (2004 - 2008) standardized moisture difference z-score Average maximum temperature in July Ratio of growing season precip to annual precip - No units (index)

Five-year (2005 - 2009) standardized moisture difference z-score Average maximum temperature in August Seasonal moisture index, the ratio of degree-days >5 °C 

growing season precipitation (mm) Average maximum temperature in September    accumulating within the frost-free period to seasonal precipitation

Annual moisture index: the ratio of degree-days > 5 degrees Average maximum temperature in October Direct short-wave radiation

    celsius to annual precipitation in millimeters. Average maximum temperature in November Diffuse short-wave radiation

Mean annual ppt Average maximum temperature in December Derived short-wave radiation

Mean January precipitation (mm) Average maximum temperature in May - June Short-wave radiation 

Mean February precipitation (mm) Average maximum temperature in July - September 1st principle component average temperature

Mean March precipitation (mm) Average temperature in the warmest month 1st principle component maximum temperature 

Mean April precipitation (mm) Average temperature for year (mean annual temp) 1st principle component minimum temperature 

Mean May precipitation (mm) Average temperature in January 2nd principle compoent minimum temperature 

Mean June precipitation (mm) Average temperature in February Water vapor pressure

Mean July precipitation (mm) Average temperature in March Soil component dominance

Mean August precipitation (mm) Average temperature in April Soil component frequency

Mean September precipitation (mm) Average temperature in May Julian date when the sum of degree-days >5 °C reaches 100 - Date

Mean October precipitation (mm) Average temperature in June Degree-days <0 °C - degree days

Mean November precipitation (mm) Average temperature in July Degree-days >5 °C - degree days

Mean December precipitation (mm) Average temperature in August Soil drainage index - derived from SSURGO/STATSGO/NFS

Mean May - June precipitation (mm) Average temperature in September Soil data source - SSURGO/STATSGO/USFS

Mean July - September precipitation (mm) Average temperature in October Frost-free days - # Days

Ratio GS ppt : Mean annual ppt Average temperature in November Julian date of the first freezing date of autumn - Date

Seasonal moisture index, the ratio of degree-days >5 °C Average temperature in December Length of the frost-free period - # Days

   accumulating within the frost-free period to seasonal precipitation Average temperature in May - June Fertility index - derived from SSURGO/STATSGO/NFS

Short wave radiation Average temperature in July - September Growing-degree days 

Average temperature in the coldest month Water vapor pressure Degree-days >5 °C accumulating within the frost-free period

Average minimum temperature in the coldest month Annual average relative humidity Julian date of the last freezing date of spring - Date

Average minimum temperature in January Average relative humidity in January Topographic Relative Moisture Index

Average minimum temperature in February Average relative humidity in February Topographic Relative Moisture Index - Modified

Average minimum temperature in March Average relative humidity in March Topographic scale

Average minimum temperature in April Average relative humidity in April

Average minimum temperature in May Average relative humidity in May

Average minimum temperature in June Average relative humidity in June

Average minimum temperature in July Average relative humidity in July

Average minimum temperature in August Average relative humidity in August

Average minimum temperature in September Average relative humidity in September

Average minimum temperature in October Average relative humidity in October

Average minimum temperature in November Average relative humidity in November

Average minimum temperature in December Average relative humidity in December

Average minimum temperature in May - June Average relative humidity in May - June

Average relative humidity in July - September

240 m data

Total: 133
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Table 2.15: Meteorological variables extracted from Daymet Daily Surface Gridded Data used in 

statistical modeling from a monitoring study of limber pine stands in Colorado, Wyoming, and 

Montana in 2011 and 2012. 

 

Total precipitation (mm) 2007-2010 Average relative humdity in January 2007 Total precipitation (mm) in January 2007 Maximum temperature in January 2007 Minimum temperature in January 2007

May precipitation (mm) 2007-2010 Average relative humdity in February 2007 Total precipitation (mm) in February 2007 Maximum temperature in February 2007 Minimum temperature in February 2007

May-June precipitation (mm) 2007-2010 Average relative humdity in March 2007 Total precipitation (mm) in March 2007 Maximum temperature in March 2007 Minimum temperature in March 2007

July-September precipitation (mm) 2007-2010 Average relative humdity in April 2007 Total precipitation (mm) in April 2007 Maximum temperature in April 2007 Minimum temperature in April 2007

Average relative humidty 2007-2010 Average relative humdity in May 2007 Total precipitation (mm) in May 2007 Maximum temperature in May 2007 Minimum temperature in May 2007

May relative humidty 2007-2010 Average relative humdity in June 2007 Total precipitation (mm) in June 2007 Maximum temperature in June 2007 Minimum temperature in June 2007

May-June relative humidity 2007-2010 Average relative humdity in July 2007 Total precipitation (mm) in July 2007 Maximum temperature in July 2007 Minimum temperature in July 2007

July-September relative humidty 2007-2010 Average relative humdity in August 2007 Total precipitation (mm) in August 2007 Maximum temperature in August 2007 Minimum temperature in August 2007

Average maximum temperature 2007-2010 Average relative humdity in September 2007 Total precipitation (mm) in September 2007 Maximum temperature in September 2007 Minimum temperature in September 2007

May maximum temperature 2007-2010 Average relative humdity in October 2007 Total precipitation (mm) in October 2007 Maximum temperature in October 2007 Minimum temperature in October 2007

May-June maximum temperature 2007-2010 Average relative humdity in November 2007 Total precipitation (mm) in November 2007 Maximum temperature in November 2007 Minimum temperature in November 2007

July-September maximum temperature 2007-2010 Average relative humdity in December 2007 Total precipitation (mm) in December 2007 Maximum temperature in December 2007 Minimum temperature in December 2007

Average minimum temperature 2007-2010 Average relative humdity in January 2008 Total precipitation (mm) in January 2008 Maximum temperature in January 2008 Minimum temperature in January 2008

May minimum temperature 2007-2010 Average relative humdity in February 2008 Total precipitation (mm) in February 2008 Maximum temperature in February 2008 Minimum temperature in February 2008

May-June minimum temperature 2007-2010 Average relative humdity in March 2008 Total precipitation (mm) in March 2008 Maximum temperature in March 2008 Minimum temperature in March 2008

July-September minimum temperature 2007-2010 Average relative humdity in April 2008 Total precipitation (mm) in April 2008 Maximum temperature in April 2008 Minimum temperature in April 2008

Total precipitation (mm) 2010-2011 Average relative humdity in May 2008 Total precipitation (mm) in May 2008 Maximum temperature in May 2008 Minimum temperature in May 2008

Total precipitation (mm) 2009-2010 Average relative humdity in June 2008 Total precipitation (mm) in June 2008 Maximum temperature in June 2008 Minimum temperature in June 2008

May-September total precipitation 2010-2011 Average relative humdity in July 2008 Total precipitation (mm) in July 2008 Maximum temperature in July 2008 Minimum temperature in July 2008

May-September total precipitation 2009-2010 Average relative humdity in August 2008 Total precipitation (mm) in August 2008 Maximum temperature in August 2008 Minimum temperature in August 2008

October-April total precipitation 2010-2011 Average relative humdity in September 2008 Total precipitation (mm) in September 2008 Maximum temperature in September 2008 Minimum temperature in September 2008

October-April total precipitation 2009-2010 Average relative humdity in October 2008 Total precipitation (mm) in October 2008 Maximum temperature in October 2008 Minimum temperature in October 2008

May-September maximum temperature 2010-2011 Average relative humdity in November 2008 Total precipitation (mm) in November 2008 Maximum temperature in November 2008 Minimum temperature in November 2008

May-September maximum temperature 2009-2010 Average relative humdity in December 2008 Total precipitation (mm) in December 2008 Maximum temperature in December 2008 Minimum temperature in December 2008

May-June maximum temperature 2010-2011 Average relative humdity in January 2009 Total precipitation (mm) in January 2009 Maximum temperature in January 2009 Minimum temperature in January 2009

May-June maximum temperature 2009-2010 Average relative humdity in February 2009 Total precipitation (mm) in February 2009 Maximum temperature in February 2009 Minimum temperature in February 2009

July-September maximum temperature 2010-2011 Average relative humdity in March 2009 Total precipitation (mm) in March 2009 Maximum temperature in March 2009 Minimum temperature in March 2009

July-September maximum temperature 2009-2010 Average relative humdity in April 2009 Total precipitation (mm) in April 2009 Maximum temperature in April 2009 Minimum temperature in April 2009

May-September minimum temperature 2010-2011 Average relative humdity in May 2009 Total precipitation (mm) in May 2009 Maximum temperature in May 2009 Minimum temperature in May 2009

May-September minimum temperature 2009-2010 Average relative humdity in June 2009 Total precipitation (mm) in June 2009 Maximum temperature in June 2009 Minimum temperature in June 2009

May-June minimum temperature 2010-2011 Average relative humdity in July 2009 Total precipitation (mm) in July 2009 Maximum temperature in July 2009 Minimum temperature in July 2009

May-June minimum temperature 2009-2010 Average relative humdity in August 2009 Total precipitation (mm) in August 2009 Maximum temperature in August 2009 Minimum temperature in August 2009

July-September minimum temperature 2010-2011 Average relative humdity in September 2009 Total precipitation (mm) in September 2009 Maximum temperature in September 2009 Minimum temperature in September 2009

July-September minimum temperature 2009-2010 Average relative humdity in October 2009 Total precipitation (mm) in October 2009 Maximum temperature in October 2009 Minimum temperature in October 2009

Average relative humidity in 2000 Average relative humdity in November 2009 Total precipitation (mm) in November 2009 Maximum temperature in November 2009 Minimum temperature in November 2009

Average relative humidity in 2001 Average relative humdity in December 2009 Total precipitation (mm) in December 2009 Maximum temperature in December 2009 Minimum temperature in December 2009

Average relative humidity in 2002 Average relative humdity in January 2010 Total precipitation (mm) in January 2010 Maximum temperature in January 2010 Minimum temperature in January 2010

Average relative humidity in 2003 Average relative humdity in February 2010 Total precipitation (mm) in February 2010 Maximum temperature in February 2010 Minimum temperature in February 2010

Average relative humidity in 2004 Average relative humdity in March 2010 Total precipitation (mm) in March 2010 Maximum temperature in March 2010 Minimum temperature in March 2010

Average relative humidity in 2005 Average relative humdity in April 2010 Total precipitation (mm) in April 2010 Maximum temperature in April 2010 Minimum temperature in April 2010

Average relative humidity in 2006 Average relative humdity in May 2010 Total precipitation (mm) in May 2010 Maximum temperature in May 2010 Minimum temperature in May 2010

Average relative humidity in 2007 Average relative humdity in June 2010 Total precipitation (mm) in June 2010 Maximum temperature in June 2010 Minimum temperature in June 2010

Average relative humidity in 2008 Average relative humdity in July 2010 Total precipitation (mm) in July 2010 Maximum temperature in July 2010 Minimum temperature in July 2010

Average relative humidity in 2009 Average relative humdity in August 2010 Total precipitation (mm) in August 2010 Maximum temperature in August 2010 Minimum temperature in August 2010

Average relative humidity in 2010 Average relative humdity in September 2010 Total precipitation (mm) in September 2010 Maximum temperature in September 2010 Minimum temperature in September 2010

Total precipitation (mm) in 2000 Average relative humdity in October 2010 Total precipitation (mm) in October 2010 Maximum temperature in October 2010 Minimum temperature in October 2010

Total precipitation (mm) in 2001 Average relative humdity in November 2010 Total precipitation (mm) in November 2010 Maximum temperature in November 2010 Minimum temperature in November 2010

Total precipitation (mm) in 2002 Average relative humdity in December 2010 Total precipitation (mm) in December 2010 Maximum temperature in December 2010 Minimum temperature in December 2010

Total precipitation (mm) in 2003 Maximum temperature in 2000 Minumum temperature in 2000

Total precipitation (mm) in 2004 Maximum temperature in 2001 Minumum temperature in 2001

Total precipitation (mm) in 2005 Maximum temperature in 2002 Minumum temperature in 2002

Total precipitation (mm) in 2006 Maximum temperature in 2003 Minumum temperature in 2003

Total precipitation (mm) in 2007 Maximum temperature in 2004 Minumum temperature in 2004

Total precipitation (mm) in 2008 Maximum temperature in 2005 Minumum temperature in 2005

Total precipitation (mm) in 2009 Maximum temperature in 2006 Minumum temperature in 2006

Total precipitation (mm) in 2010 Maximum temperature in 2007 Minumum temperature in 2007

Maximum temperature in 2008 Minumum temperature in 2008

Maximum temperature in 2009 Minumum temperature in 2009

Maximum temperature in 2010 Minumum temperature in 2010

Total: 270
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 (a) 

 

b) 

 

Figure 2.7: Occurrence (least square means using PROC GLIMMIX) of live limber pine 

seedlings on a plot in three height classes (s: small 0-45.7 cm, m: medium >45.7-91.4 cm, and t: 

tall >91.4-137 cm) in the (a) southern Rocky Mountains and (b) central Rocky Mountains from a 

monitoring study of limber pine stands in 25 study areas in Colorado, Wyoming, and Montana in 

2011 and 2012. Values are adjusted for study area and height category. Error bars are ± half 

approximate LSD. 
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Figure 2.8: Density (stems/ha) of live seedlings in 25 study areas in Colorado, Wyoming, and 

Montana in 2011 and 2012. 
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Figure 2.9: Health status of limber pine seedlings in 25 study areas in Colorado, Wyoming, and 

Montana in 2011 and 2012. Healthy = no visual damage to crown or stem up to 5% damage, 

declining/dying =  6-50% of crown showing symptoms that indicates it is dead or will be or 

>50% of crown showing symptoms or is damaged, dead =  recent dead (no green needles, red 

needles but fines still present), old dead (no fine twigs, no needles, >50% bark still present), very 

old dead (no fine twigs, no needles, <50% of bark present). 
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Figure 2.10: Other damage agents (insect, abiotic, and biotic) that occurred on limber pine 

seedlings. 
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(a) 

 

(b) 

 

Figure 2.11: Logistic regression analysis predicting limber pine seedling presence on a subplot 

using variables selected in the final model (fit using PROC GLIMMIX with study area as a 

random effect, in SAS) from a monitoring study of limber pine stands in 25 study areas in 

Colorado, Wyoming, and Montana in 2011 and 2012. Relationship with response variable was 

plotted using mean values and the 5
th

, 25
th

, 50
th

, 75
th

, and 95
th

 percentiles. Predicted values were 

back transformed. Positive relationships exist between (a) limber pine seedling presence on a 

subplot and proportion of basal area (m²/ha) of limber pine trees and (b) stems/ha of all live 

trees.  
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(a) 

 
 

(b) 

 
 

(c) 
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(d) 

 
 

Figure 2.12: Linear regression analysis predicting limber pine seedling terminal growth (mm) on 

a subplot using variables selected in the final model (fit using PROC MIXED with study area as 

a random effect, in SAS) from a monitoring study of limber pine stands in 25 study areas in 

Colorado, Wyoming, and Montana in 2011 and 2012. Relationship with response variable was 

plotted using mean values and the 5
th

, 25
th

, 50
th

, 75
th

, and 95
th

 percentiles. Predicted values were 

back transformed.  A negative relationship exists between (a) limber pine seedling terminal 

growth (mm) on a subplot and basal area (m²/ha) of all live trees. Positive relationships exist 

between (b) limber pine terminal growth (mm) on a subplot and big sagebrush (percent of a 3m 

radius circular subplot), (c) limber pine seedling height (cm), and (d) grass. 
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(a) 

 

(b) 

 

Figure 2.13: Average terminal growth (mm) (least square means) of the previous two years (from 

year of measurement) of limber pine seedling growth in three height classes (s: small 0-45.7 cm, 

m: medium 45.7-91.4 cm, and t: tall 91.4-137 cm) in the (a) southern Rocky Mountains and (b) 

central Rocky Mountains from a survey of limber pine stands in 25 study areas in Colorado, 

Wyoming, and Montana in 2011 and 2012. Values are adjusted for study area and height 

category?. Error bars are ± half approximate LSD. 
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Figure 2.14: Factors that potentially affect limber pine regeneration. Factors in red were not 

addressed in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Seed source 

•Long distance 
dispersal 

•Predation 

•Damage agents 

Seedling 
establishment  

•Site factors (slope, 
elevation, etc.) 

•Soil 

•Groundcover 

•Microsite object 

•Competition 

•Damage agents 

•Meteorological 

•Slow growth rate 

Mature tree 

•Overstory 
density and basal 
area 

•Damage agents 

•Climate change 

 



 

 

128 

 

Appendix III: Additional Regeneration Information and References 

Regeneration from nutcracker caches may occur in clusters (Woodmansee 1977) since 

seeds are often cached in groups of up to 15 seeds (Tomback 1982). In the front range of 

Colorado, about 20 percent of tree sites, including higher elevations, tend to be clustered but can 

range wildly by site (5-77%) (Carsey and Tomback 1994). The clustered growth pattern aids in 

survivorship of limber pines on harsh sites but may be unfavorable on mesic sites with spruce-fir 

(Donnegan and Rebertus 1999). Clark’s nutcracker tends to cache seeds in lower-elevation 

forested areas relative to home range (Lorenz et al. 2011) but may cache seeds in microsites at 

high elevations, above ground (i.e. in trees) (Lorenz et al. 2011), in burn areas (Lanner and 

Vander Wall 1980), or windswept sites that lack snow accumulation (Vander Wall and Balda 

1977). Limber pine can regenerate on sites post-disturbance (fire) where it was once established, 

particularly if site conditions favor establishment (xeric, windswept), but if seed dispersal by 

Clark’s nutcracker is limited, some of these sites may not regenerate (Shankman and Daly 1988). 
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