RHODIUM(III)-CATALYZED AMIDE-DIRECTED C-H ACTIVATION AND [4+2] CYCLOADDITION FOR MODULAR ASSEMBLY OF NITROGEN HETEROCYCLES

Submitted by
Natthawat Semakul
Department of Chemistry

In partial fulfillment of the requirements For the Degree of Doctor of Philosophy
Colorado State University
Fort Collins, Colorado

Summer 2017

Doctoral committee:
Advisor: Tomislav Rovis

Alan Kennan
Yian Shi
Martin McCullagh
Matt Kipper

Copyright by Natthawat Semakul 2017
All Rights Reserved

Abstract

RHODIUM(III)-CATALYZED AMIDE-DIRECTED C-H ACTIVATION AND [4+2] CYCLOADDITION FOR MODULAR ASSEMBLY OF NITROGEN HETEROCYCLES

This dissertation describes the ligand and reaction developments by amide-directed rhodium(III)-catalyzed $\mathrm{C}\left(\mathrm{sp}^{2}\right)$ - H bond activation followed by amidoannulation with alkenes to form nitrogen-containing heterocycles. Chapter 1 details the ligand development for stereoselective synthesis of [4.1.0] dihydroisoquinolones through benzamidation of cyclopropenes mediated by $\mathrm{Rh}($ III) catalysis. Quantum chemical calculations revealed the important role of heptamethylindenyl (Ind*) ligand and O-substituted ester of benzhydroxamate for achieving high diastereoselectivity in cyclopropene insertion. Efforts toward stereoselective synthesis of [4.1.0] dihydroisoquinolones have been also studied by streptavidin-based artificial metalloenzyme.

Chapter 2 presents the stereoselective synthesis of [4.2.0] dihydroisoquinolones via the benzamidation of cyclobutenes. The transformation proved to have a broad substrate scope and functional group tolerance that generates the cyclobutane-fused azacycles with excellent diastereoselectivity. The artificial metalloenzymes can render this reaction asymmetric furnishing the dihydroisoquinolone products in moderate enantioselectivity.

Chapter 3 communicates $\mathrm{Rh}(\mathrm{III})$-catalyzed $\mathrm{C}-\mathrm{H}$ activation and [4+2] annulation reaction of N-pivaloyloxy acrylamides with alkenes for an efficient synthesis of α, β-unsaturated- δ-lactams. This process offers a platform for the rapid assembly of a diverse set of δ-lactams from simple and abundant precursors. These lactams could serve as useful building blocks to access substituted piperidines.

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude to Professor Tom Rovis for his excellent supervision and guidance during my graduate study. It is the greatest honor to join his group and having Tom as an advisor. Tom always encourages and inspires students to work on the important problems. I am indebted Professor Thomas Ward (Basel) for providing streptavidin mutants and Professor Robert Paton, Dr. Kelvin Jackson (Oxford) for DFT calculations. In addition, I also thank Professors Yian Shi, Alan Kennan, Martin McCullagh and, Matt Kipper for serving as committees.

I am thankful to past and present members of the Rovis group. They are great colleagues and good friends. I learned many things from excellent people, and this situation facilitates me to think more deeply about science. I enjoy times we spent together inside and outside the lab. Moreover, I am grateful to Todd for initial results of an enantioselective [4.1.0] dihydroisoquinolone. I am thankful to Tiffany, Fedor and Rh(III) team for generously providing $\left[\mathrm{Cp}^{\mathrm{x}} \mathrm{RhCl}_{2}\right]_{2}$ precatalysts. I am indebted to many group members (Tim, Todd, Tyler, Oz, Claire, Matt, Tiffany, Darrin, Mike, Jack, and Scott) for proofreading my writing and this dissertation. In addition, I thank classmates and all of my friends for their supportive.

I must thank the Royal Thai Government (DPST graduate scholarship) for a financial support over the years. Last but not least, I would like to thank my family members, especially my mother Piranan Semakul, for her constant supportive. This dissertation is dedicated to my late father, Somnuek Semakul.

TABLE OF CONTENTS

ABSTRACT ii
ACKNOWLEDGEMENTS iii
CHAPTER 1 Development of Stereoselective Cyclopropene Benzamidation via $\mathrm{Rh}(\mathrm{III})$-Catalyzed
C-H Activation 1
1.1 Introduction 1
1.1.1 Background 1
1.1.2 Ligand Development in Rh(III) Catalysis. 10
1.2 Results and Discussion 14
1.2.1 Efforts Towards Stereoselective Benzamidation of Cyclopropenes 14
1.2.2 Ligand Development for Diastereoselective Benzanulation of Cyclopropene 19
1.2.3 Substrate Scope 21
1.2.4 Mechanistic Studies 26
1.2.5 Derivatizations of Product 30
1.3 Conclusion 31
CHAPTER 2 Development of Stereoselective [4.2.0] Dihydroisoquinolones Synthesis via Rh(III)-
Catalyzed C-H Activation and [4+2] Annulation with Cyclobutenes 32
2.1 Introduction 32
2.2 Results and Discussion 36
2.2.1 Substrate Scope 36
2.2.2 Efforts Towards Enantioselective Benzamidation of Cyclobutenes 42
2.3 Conclusion 44
CHAPTER 3 Rh(III)-Catalyzed Coupling of N -Pivaloyloxy Acrylamides with Alkenes via C-H Activation: Direct Modular Assembly of Piperidones 45
3.1 Introduction 45
3.1.1 The Importance of Nitrogen Heterocycles 45
3.1.2 Rh(III)-catalyzed C-H Activation in Nitrogen Heterocycles Syntheses 48
3.2 Results and Discussion 52
3.2.1 Reaction Discovery 52
3.2.2 Reaction Optimization 58
3.2.3 Substrate Scope 59
3.2.4 Mechanistic Studies 65
3.2.5 Product Derivatization 68
3.3 Conclusion 69
APPENDIX 1 70
APPENDIX 2 120
APPENDIX 3 148

CHAPTER 1

Development of Stereoselective Cyclopropene Benzamidation via Rh (III)-Catalyzed C-H

Activation ${ }^{1}$

1.1 Introduction

1.1.1 Background

In recent years, transition metal-catalyzed $\mathrm{C}-\mathrm{H}$ bond activation has attracted attention for streamlining organic synthesis by increasing step and atom economy. ${ }^{2}$ Since $\mathrm{C}-\mathrm{H}$ bonds are abundant in organic molecules, the transformation of specific $\mathrm{C}-\mathrm{H}$ bond to a desired functional group is challenging. Traditionally, a $\mathrm{C}-\mathrm{H}$ bond is converted to a carbon-halogen bond. The well-known cross-coupling reactions can then be used to transform the $\mathrm{C}-\mathrm{X}$ bond providing the desired functional group (Figure 1a). ${ }^{3}$ An ideal strategy would directly transform a $\mathrm{C}-\mathrm{H}$ bond to the functional group in a single step (Figure 1b). A significant challenge in achieving this goal is controlling the chemo-, regio- and enantio- selectivity of the $\mathrm{C}-\mathrm{H}$ activation as well as overcoming issues of reactivity and functional group tolerance. A strategy frequently employed to control chemoselectivity is the use of a directing group. Use of a coordinating functional

[^0]group in the organic molecule can serve as a ligand for metal catalyst and direct the $\mathrm{C}-\mathrm{H}$ activation and functionalization in a highly selective fashion (Figure 1c). Numerous directing groups have been reported for such transformations including carboxylic acids, amides, alcohols, amines, ketones, aldehydes, imines, oximes, and pyridines to overcome the selectivity issues. However, the removal of such directing groups are required after the desired transformation was achieved.
a) traditional functionalization

b) $\mathbf{C}\left(\mathbf{s p}^{2}\right)-\mathrm{H}$ bond functionalization: selectivity issues

c) direct $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ bond functionalization

> Directing group (DG)

Figure 1.1

The Miura and Satoh laboratory reported the seminal work in which rhodium/copper catalyst system efficiently mediates a coupling between benzoic acids and internal alkynes to afford isocoumarins (Scheme 1.1, eq 1). ${ }^{4}$ In this way, the heteroatom directing group also

[^1]incorporates and providing synthetically useful heterocycles. The reaction is understood to proceed by the coordination of benzoate ligand to $\mathrm{Rh}(\mathrm{III})$ and ortho $\mathrm{C}-\mathrm{H}$ activation to form a five-membered rhodacycle intermediate. Subsequent alkyne coordination, migratory insertion, and reductive elimination generate isocoumarin product and $\mathrm{Rh}(\mathrm{I})$ species. The copper cocatalyst then oxidizes $\mathrm{Rh}(\mathrm{I})$ to complete a catalytic turnover. The same group also illustrated the $\mathrm{C}-\mathrm{H}$ activation/C-N bond formation by using phenylazoles with alkynes to produce the imidazoisoquinoline products (eq 2). ${ }^{5}$ Concurrently, Fagnou group reported that the C-H activation of anilides with alkynes to deliver indoles (eq 3). ${ }^{6}$ In the same year, Jones also studied the $\mathrm{Rh}(\mathrm{III})$-mediated stoichiometric transformation by using pyridine or imine as directing groups to couple with alkynes affording quinolinium salts (eq 4). ${ }^{7}$ Along these lines, these works demonstrated that the heteroatom-directed and metal-catalyzed (or mediated) C-H activation, C-C/C-heteroatoms bond formation is an efficient tool to synthesize heterocycles from simple and readily available precursors without substrate preactivations.

[^2]
Miura and Satoh (2008):

Jones (2008):

i. $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}, \mathrm{NaOAc}$

Scheme 1.1
The Rovis lab has long been interested in N-heterocycle synthesis. ${ }^{8}$ The amide is a common functional group in organic chemistry. Hence, this directing group can serve as the nitrogen source for the synthesis of N-heterocycles via $\mathrm{C}-\mathrm{H} / \mathrm{N}-\mathrm{H}$ bond cleavages and $\mathrm{C}-\mathrm{C} / \mathrm{C}-\mathrm{N}$ bond formation. ${ }^{9}$ Our group and others utilized the amide as a directing group for Rh (III)catalyzed $[4+2]$ formal cycloaddition of benzamides with alkynes to generate isoquinolones (Scheme 1.2 eqs 5 and 6). ${ }^{10}$ However, a stoichiometric oxidant is needed to achieve a catalyst turnover (eq 2). Unfortunately, superstoichiometric amounts of oxidant and its waste limits the

[^3]substrate scope and gives undesired side products. Fagnou ${ }^{11}$ and Glorius ${ }^{12}$ independently investigated Rh (III)-catalyzed annulation of O-substituted benzhydroxamic acids with alkene coupling partners. They observed two distinct mechanisms from different directing groups. While -C(O)NHOMe was employed, an olefinated product was observed (eq 7). The transformation delivers dihydroisoquinolone when $-\mathrm{C}(\mathrm{O}) \mathrm{NHOPiv}$ was used as the internal oxidant (eq 8). The application of directing groups that contain an internal oxidant provides mild reaction conditions that do not require metallic oxidants while expanding the variety of components tolerated as a coupling partner.

Fagnou (2010):

Miura-Satoh, Rovis, Li (2010):

Glorius, Fagnou (2011):

Scheme 1.2

[^4]Proposed reaction mechanism for this transformation is outlined in Figure 1.2. The amide functional group directs ortho $\mathrm{C}-\mathrm{H}$ bond activation to afford rhodacycle I via concerted metallation-deprotonation (CMD) mechanism. TSI shows the transition state for CMD mechanism in which acetate on rhodium(III) deprotonates a $\mathrm{C}-\mathrm{H}$ bond and rhodium(III) inserts to the $\mathrm{C}-\mathrm{H}$ bond simultaneously. Consequently, the oxidation state of $\mathrm{Rh}(\mathrm{III})$ does not change during this process. Rhodacycle I can then undergo alkene or alkyne coordination followed by migratory insertion to afford rhodacycle II. Upon reductive elimination of II to form dihydroisoquinolone, reductive cleavage of the $\mathrm{N}-\mathrm{O}$ bond can oxidize $\mathrm{Rh}(\mathrm{I})$ to $\mathrm{Rh}(\mathrm{III})$ completing a catalyst turnover. In contrast, β-hydride elimination may occur when $\mathrm{C}(\mathrm{O}) \mathrm{NHOMe}$ was used as a directing group.

Figure 1.2

Rhodium(III) is a particularly effective catalyst in performing the annulation of aromatic and vinylic C-H bond bearing an amide directing group. Several coupling partners, for example, alkynes, carbon monoxide, alkenes (including cyclopropenes), and donor-acceptor diazo compound have been shown to incorporate to yield N-heterocycles via $\mathrm{C}-\mathrm{H}$ activation. The recent development of rhodium(III) catalyzed C-H activation to access N-heterocycles by our group is summarized in Figure 1.3. ${ }^{13}$ In some case, the reaction generates stereocenter(s) in which the chiral catalyst potentially render the reaction asymmetric.

Figure 1.3 Examples of heterocyclic structures accessed using Rh (III) catalyzed C - H activation annulations in the Rovis group

[^5]The ability to render rhodium(III)-catalyzed $\mathrm{C}-\mathrm{H}$ activation reaction asymmetric is an ongoing challenge in the field. Figure 1.4 depicts the structure of $\mathrm{Cp} * \mathrm{Rh}(\mathrm{III})$ three-legged pianostool complex (or half-sandwich complex). Indeed, the introduction of exogenous chiral ligand is non-productive since three coordinating sites are required for ligand attachment (two X-type ligands and one L-type ligand) during a catalytic cycle. The engineering of chiral ligand-metal complexes has been demonstrated by Cramer, ${ }^{14}$ You, ${ }^{15}$ Antonchick, and Waldmann ${ }^{16}$ to render the reaction asymmetric. However, several limitations for example, multistep synthesis, structural variability and electronic properties of those chiral Cp ligands, remain unsolved.
a)

b)

Figure 1.4 a) $\mathrm{Cp} * \mathrm{Rh}(\mathrm{III})$ piano-stool complex b) the requirement of three coordinating sites during the catalytic cycles

An alternative approach to rendering an asymmetric transformation is to anchor the catalyst to a supramolecular scaffold. An enzyme catalysis is a powerful tool since nature can use proteins to create molecules in a highly asymmetric fashion. The marriage of transition metal catalysis with an enzyme or a so-called "artificial metalloenzyme" will provide useful tools for organic synthesis. ${ }^{17}$ In addition, biology tools such as site-directed mutagenesis and directed evolution can tailor the amino acid residues in the enzyme pocket to achieve higher reactivity

[^6]and selectivity. In this vein, Rovis, Ward and coworkers explored an artificial metalloenzyme based on biotinylated rhodium(III) ligated streptavidin as a tool for asymmetric $\mathrm{C}-\mathrm{H}$ activation. The introduction of a biotin-tethered pentamethylcyclopentadienyl $\left(\mathrm{Cp}^{*}\right)$ ligand to the streptavidin (SAV) resulted in a high concentration of the metal in the enzyme. In this way, the biotinylated $\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}$ complex was anchored to streptavidin and catalyzed the coupling of O pivaloylbenzhydroxamic acid 1a with alkene 2a to furnish the dihydroisoquinolone 3aa. ${ }^{18}$ With the best mutant S112Y-K121E, dihydroisoquinolone 3aa could be accessed in high yield, high regioselectivity, and good enantioselectivity (eq 9). An engineered streptavidin with a carboxylate amino acid residue allows for greater rate of carboxylate-assisted $\mathrm{C}-\mathrm{H}$ bond cleavage which is the turnover-limiting step and accelerating the reaction.

Rovis and Ward (2012)

Hyster and Rovis also found that O-pivaloyl benzhydroxamic acid 1a could be coupled to 3,3-disubstituted cyclopropene $\mathbf{4 a}$, generating [4.1.0] dihydroisoquinolone $\mathbf{5 a a}$ in 95% yield (1.4:1 dr, Table 1.1, entry 1). ${ }^{19}$ However, the low diastereoselectivity is thought to result from a lack of facial selectivity during cyclopropene migratory insertion. Hyster also explored this reaction using SAV-based artificial metalloenzymes. In this study, the N118K-K121E SAV mutant provided the [4.1.0] dihydroisoquinolone product (5aa) in 80% yield (1.4:1 dr, 89:11 er,

[^7]entry 2). ${ }^{20}$ Additionally, the S112Y-K121E mutant gave 5aa in 60% yield (1.4:1 dr, 83:17 er, entry 3). Ongoing efforts are directed towards developing a stereoselective coupling between O pivaloyl benzhydroxamic acids with cyclopropenes.

Table 1.1

1.1.2 Ligand Development in Rh(III) Catalysis

$\mathrm{Rh}(\mathrm{III})$-catalyzed $\mathrm{C}-\mathrm{H}$ bond functionalization strategies have emerged as a powerful synthetic tool. ${ }^{21}$ The methodology allows for the functionalization of simple organic molecules and expedient synthesis of N -heterocycles from readily available precursors. Cyclopropenes constitute a class of building blocks with a special reactivity due to their high ring strain energy ($54 \mathrm{kcal} / \mathrm{mol}$). In this context, a handful of reactions utilizing transition metals has been developed for the stereoselective functionalization of cyclopropenes. ${ }^{22}$ Under the aegis of $\mathrm{Rh}(\mathrm{III})$

[^8]catalysis, Wang and coworkers have shown that cyclopropenes 7 participate in a Rh (III) catalyzed reaction with N -phenoxyacetamide $\mathbf{6}$ to give 2 H -chromenes 8 (eq 2). ${ }^{23}$

Wang (2014)

Our group reported the $\mathrm{Rh}(\mathrm{III})$-mediated coupling of O-pivaloyl benzhydroxamate 1a with 3,3-diester substituted cyclopropene 4b to afford 4-substituted isoquinolone $\mathbf{9}$ after ring opening of the three-membered ring (Scheme 1.3, eq 11). During this study, when using the less activated methyl 1-phenylcycloprop-2-ene-1-carboxylate 4a as a substrate, the $\mathrm{Cp} * \mathrm{Rh}(\mathrm{III})$ catalyst gives the [4.1.0] bicyclic product 5aa in low diastereoselectivity (Scheme 1.3, 1.4:1 dr, eq 12). We believe the lack of diastereoselectivity stems from the poor facial selectivity during coordination of the cyclopropene and the migratory insertion step of cyclopropene unit. We reasoned that creating anisotropy around the cyclopentadienyl ligand of the rhodium metal center could solve this selectivity issue.

[^9]
Rovis (2013)

Scheme 1.3

Rovis (2011)

Rovis (2015)

Scheme 1.4
Our group ${ }^{24}$ and others ${ }^{25}$ have developed several $\mathrm{Rh}($ III $)$-catalyzed transformations where the nature of the Cp ligand drastically impacts the reactivity and selectivity of the reaction. For

[^10]example, the sterically bulky di-tert-butylcyclopentadienyl $\left(\mathrm{Cp}^{t}\right)$ ligand ${ }^{26}$ has been shown to improve the regiochemistry of alkyne (11a and 11b) and alkene (12b) insertion events in the synthesis of pyridones (12aa, eq 13), pyridines (14ab and 14ab', eq 14) and dihydroisoquinolones (3ab, eq 15).

Recently, our group disclosed a cyclopropanation reaction with the coupling of N enoxyphthalimides $\mathbf{1 5}$ and electron-deficient alkenes (2c and 2d). Monoisopropylcyclopentadienyl ($\mathrm{Cp}^{i \mathrm{Pr}}$) ligand ${ }^{27}$ outperforms the more common Cp^{*} ligand, furnishing the trans-cyclopropane (16ac) in high diastereoselectivity (eq 11). Alternatively, a divergent carboamination path was identified when using a hindered tertbuyltetramethylcyclopentadienyl $\left(\mathrm{Cp}^{*}\right.$-Bu $)$ ligand delivering the acyclic adduct (16ad) with high chemoselectivity (eq 12). ${ }^{28}$

[^11]Rovis (2013)

Scheme 1.5

Motivated by these results, we believed ligand design could provide a solution to the inherent selectivity issues encountered for the coupling of benzamide $\mathbf{1}$ and 3,3-disubstituted cyclopropenes 4 (eq 13).

This work

1.2 Results and Discussion

1.2.1 Efforts Towards Stereoselective Benzamidation of Cyclopropenes

Initially, the project goal was to identify the SAV mutant needed to improve the diastereoselectivity and enantioselectivity of this transformation. Several streptavidin mutants, provided by Professor Thomas Ward (University of Basel), were screened under optimal conditions. Our main goal was to find a SAV mutant that would lead to increased diastereoselection. Coupling between O-pivaloyl benzhydroxamic acid 1a and cyclopropene $\mathbf{4 a}$ were used as the model system. A variety of SAV mutants at the S112 position were examined as
summarized in Table 1.2. We found that the S112F SAV mutant gave the desired product in 36% yield and 1.4:1 dr (entry 1). However, other mutants at the S112 position did not provide the corresponding product (entries 2-8). Utilizing the methyl acrylate as the coupling partner in the presence of metalloenzyme gave the same results as previously reported, confirming the integrity of the SAV mutant.

Table 1.2

reaction conditions: $1(10 \mu \mathrm{~mol}), 4(11 \mu \mathrm{~mol})$, AcOH buffer (pH 5.7) as a solvent yield and diastereoselectivity (dr) were obtained from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ or chiral HPLC. enantioselectivity (er) was determined by chiral HPLC

Next, mutations at the K121 position were examined (Table 1.3). We found that the desired product 5aa was afforded in modest yields when K121A, K121E, and K121F SAV mutants were employed ($44-69 \%$ yield, entries $1-3$). The K121N SAV mutant provided the product in low yield (entry 4). No reactivity was obtained from the $\mathrm{K} 121 \mathrm{C}, \mathrm{K} 121 \mathrm{H}$, and K 121 M SAV mutants (entries 5-7). This is likely due to the coordinating ability of the cysteine,
methionine, and histidine residues to the $\mathrm{Rh}(\mathrm{III})$ active site. Double mutants such as N118K/K121D SAV gave the desired product 5aa in 39\% yield (91:9 and 92:8 er) despite low level of diastereoselection (entry 8). Higher reactivity was obtained when S112Y/K121E SAV was employed (entry 9). Overall, no notable improvements in diastereoselection were observed with these mutants.

Table 1.3

reaction conditions: $\mathbf{1}(10 \mu \mathrm{~mol}), \mathbf{4}(11 \mu \mathrm{~mol}), \mathrm{AcOH}$ buffer (pH 5.7) as a solvent ${ }^{a} \mathrm{H}_{2} \mathrm{O}$ as a solvent.
yield and diastereoselectivity (dr) were obtained from ${ }^{1} \mathrm{H}-\mathrm{NMR}$ or chiral HPLC enantioselectivity (er) was determined by chiral HPLC.

We hypothesized that steric bulk of substituents on cyclopropene may assist in differentiating facial selectivity during cyclopropene insertion. To test this hypothesis, cyclopropenes $\mathbf{4 c} \mathbf{c} \mathbf{4 e}$ were prepared (Table 1.4). To our delight, we observed that increasing steric on the ester moeity ($\mathbf{4 c}$ and $\mathbf{4 d}$) substantially improves the diastereoselectivity of
cyclopropene insertion with $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ (ranging from 2:1 to $>10: 1 \mathrm{dr}$). However, cyclopropene $\mathbf{4 c}$ gave the product $5 \mathbf{5 c}$ with the same level of diastereoselectivity when the S112Y-K121E SAV mutant was employed as the catalyst (entry $1,1.5: 1 \mathrm{dr}$). Cyclopropene $\mathbf{4 d}$ was found to be ineffective under the metalloenzyme conditions, presumably due to the steric and solubility factors and the ability of the substrate to enter into the catalytic pocket (entry 2). However, cyclopropene $4 \mathbf{e}$ delivered the product with good diastereoselectivity, albeit low enantioselection (entry 3).

Table 1.4

[^12]We also found that the O-acyloxy substituent of the benzhydroxamate precursor slightly influences the diastereoselectivity of cyclopropene insertion (Table 1.5). Benzhydroxamate ester precursors $\mathbf{1 b}$ and $\mathbf{1 c}$ were found to improve the diastereoselectivity up to $5: 1 \mathrm{dr}$ of the product 5aa by using $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ precatalyst. However, O-Boc substrate 1b was hydrolyzed under metalloenzyme conditions to give a benzhydroxamic acid (entry 1). Substrate 1c, which has steric properties analogous to $\mathrm{O}-\mathrm{Boc}$, was examined. Precursor 1c delivered the corresponding product (5) in good yield (1.6:1 dr) and slightly improved enantioselectivity (93:7 er) under metalloenzyme conditions (entry 2).

Table $1.5^{a, b}$

${ }^{a}$ without SAV mutant.
${ }^{b}$ asymmetric reaction: $1(10 \mu \mathrm{~mol}), 4(11 \mu \mathrm{~mol})$.
yield and dr were obtained from ${ }^{1} \mathrm{H}-$ NMR or chiral HPLC
er (major and minor diastereomers) was determined by chiral HPLC.

Although promising levels of enantioselection were observed, we did not see an improvement of diastereoselectivity under metalloenzyme conditions. We questioned whether
steric and electronic modulations of cyclopentadienyl ligands on rhodium(III) might have a beneficial effect on the diastereoselectivity of cyclopropene insertion.

1.2.2 Ligand Development for Diastereoselective Benzanulation of Cyclopropene

We began our investigation by employing O-pivaloyl benzhydroxamate ester 1a and cyclopropene $\mathbf{4 e}$ as model substrates for the optimization of the catalytic process (Table 1.6). $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$ provides the desired product in a moderate yield and diastereoselectivity (entry 1 , 5.8:1 dr). The relative stereochemistry of the major diastereoisomer of $\mathbf{5 a e}$ was confirmed by NOESY. By modulating the steric and electronic properties of the Cp ligand, we have shown that the diastereoselectivity of the reaction is considerably affected. Sterically hindered di-tertbutylcyclopentadienyl $\left(\mathrm{Cp}^{t}\right)$ and the electron-poor trifluoromethyl tetramethylcyclopentadienyl $\left(\mathrm{Cp}^{* \mathrm{CF}}\right)$ ligands give only modest diastereoselectivity (entries 2, 3). The monoisopropylcyclopentadienyl ligand $\left(\mathrm{Cp}^{i \mathrm{Pr}}\right)$ gave the desired product in a good yield albeit with no diastereocontrol (entry 4). 3,5-(Bistrifluoromethyl)aryltetramethylcyclopentadienyl $\left(\mathrm{Cp} *{ }^{* b S C F 3 A r}\right)$ provides the desired product in good yield with slightly improved diastereoselectivity (7.0:1 dr, entry 5). Good level of diastereocontrol (8.8:1 dr) is achieved when tert-butyl tetramethylcyclopentadienyl $\left(\mathrm{Cp}^{* \mathrm{Bu}}\right)$ ligand was employed (entry 6). Gratifyingly, heptamethylindenyl ligand ${ }^{29}$ (Ind*) provides high reactivity and diastereoselectivity with 90% yield and $15.2: 1 \mathrm{dr}$ (entry 7). To demonstrate the scalability of the transformation, the reaction was performed on 2 mmol scale of substrate $\mathbf{1 a}$, which gives the expected product with comparable yield and selectivity. The catalyst loading can be lowered to $0.5 \mathrm{~mol} \%$ [$\left.\mathrm{Ind} * \mathrm{RhCl}_{2}\right]_{2}$ without affecting the reactivity.

[^13]We then examined the nature of the directing group. It was found that using O-Boc benzhydroxamate ester 1b as a substrate gave excellent diastereoselectivity ($>20: 1 \mathrm{dr}$) but with slightly lower yield (Scheme 1.6, eq 14), presumably due to a competitive Lossen rearrangement under the basic conditions (Scheme 1.6). ${ }^{30}$

Table 1.6 Ligand Optimization ${ }^{a b, c}$

${ }^{a}$ Reaction conditions: $1 \mathbf{a}(0.1 \mathrm{mmol}), 4 \mathrm{e}(0.11 \mathrm{mmol})$, Rh catalyst ($1 \mathrm{~mol} \%$), CsOPiv ($0.25 \mathrm{~mol} \%$) in $\mathrm{MeOH}\left(0.1 \mathrm{M}\right.$) at $23^{\circ} \mathrm{C}$ for 18 h .
${ }^{b}$ The yield and diastereoselectivity were measured from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the unpurified reaction mixture using 1,3,5-trimethoxybenzene as an internal standard. ${ }^{c}$ Isolated yield.

[^14]

Scheme 1.6

1.2.3 Substrate Scope

Both benzamide directing groups, O-Piv (condition A) and O-Boc (condition B), were used for studying the scope of the transformation (Table 1.7). Substituents at the para position of the benzamide are tolerated in the reaction $(\mathbf{1 d} \mathbf{- 1 h})$. The O-Piv directing group with an electron rich para-methoxy substituent (OMe) gave excellent diastereoselectivity ($>20: 1 \mathrm{dr}$, product 5ee) compared to electron deficient substituents ($\sim 10: 1 \mathrm{dr}$, products 5fe, 5ge and 5he). The electronrich benzamide derived from gallic acid furnishes the desired product with good yield and excellent diastereoselectivity ($>20: 1 \mathrm{dr}$, product $\mathbf{5 j e}$). The O-Boc directing group gives the products in good to excellent diastereoselectivity (5de-5ge). Of interest are halogen substituents at the para positions $(\mathrm{Cl}$ and Br$)$ which provide a functional group handle for further chemical modification. The ortho-methyl arylbenzhydroxamate substrate retards the transformation presumably due to steric hindrance. Substituents at the meta position on the arylhydroxamates can potentially deliver two regioisomeric products arising from the selectivity of C-H activation. Meta-trifluoromethyl arylhydroxamate exclusively provides the 6 -substituted product ($\mathbf{5 j e}$) in good yield and diastereoselectivity. Tetrahydronaphthalene-derived arylhydroxamate underwent the transformation with good regioselective at the less hindered position (8.6:1 ratio) to give the desired product (5ke) in good yield and high diastereoselectivity. However, meta-methyl
arylhydroxamate gave $\sim 3.6: 1$ regioisomeric ratio of $\mathrm{C}-\mathrm{H}$ activation in good yield and diastereoselectivity (5le). meta-Methoxy arylhydroxamate provided 1:1 mixture of regioisomeric products (5me and 5me') in good diastereocontrol, presumably a consequence of a combination of steric effects and kinetic acidity issues. In addition, X-ray structure of 5me unambiguously confirmed the relative stereochemistry of trans-diastereomer.

Table 1.7 Benzamide Scope ${ }^{a, b, c}$

condition B: R = Boc

A 85\%
single regioisomer (19:1 dr)

A 86\%
8.2:1 rr (15.3:1 dr)

A 92\%
3.6:1 rr ($>20: 1 \mathrm{dr}$)

${ }^{\text {a }}$ Conditions: OPiv for condition A or OBoc for condition $\mathrm{B}(0.1 \mathrm{mmol}), \mathbf{4 e}$ (0.11 mmol), Rh catalyst ($1 \mathrm{~mol} \%$), CsOPiv ($25 \mathrm{~mol} \%$) in $\mathrm{MeOH}(0.1 \mathrm{M})$ at $23^{\circ} \mathrm{C}$ for 18 h .
${ }^{b}$ Isolated yield of the major diastereomer after silica gel column chromatography.
${ }^{c}$ Diastereoselectivity was measured by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the unpurified material.

Variations of the cyclopropene coupling partner were explored for the transformation using the O-Boc benzhydroxamate 1b (Table 1.8). Cyclopropenes bearing substituents at the para position gave the desired products in moderate yields and excellent diastereoselectivity regardless of the electronic nature of substituents $(\mathbf{5 b f}, \mathbf{5 b g}$ and $\mathbf{5 b h})$. Cyclopropene with a metamethoxy group $\mathbf{4 i}$ undergoes the transformation with slightly lower diastereoselectivity relative to the para-methoxy group $(\mathbf{4 g})$. A naphthalene-substituted cyclopropene $\mathbf{4 j}$ and a spiro-tetralin containing substrate $\mathbf{4 k}$ each furnish the desired products $\mathbf{5 b j}$ and $\mathbf{5 b} \mathbf{k}$ in good yield and excellent diastereoselectivity. In our previous studies, we found that methyl 1-phenylcycloprop-2-ene-1-carboxylate 4a reacts with benzamide 1a and gives the desired product $\mathbf{5 a} \mathbf{a}$ with low diastereoselectivity (1.4:1 dr) using $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ as the precatalyst. With the $\left[\mathrm{Ind}^{*} \mathrm{RhCl}_{2}\right]_{2}$ ligand, we were pleased to find that cyclopropene $\mathbf{4 a}$ affords the dihydroisoquinolone $\mathbf{5 a} \mathbf{a}$ with improved diastereoselectivity (8.7:1 dr). The relative stereochemistry of the major diastereomer of 5aa was confirmed by NOESY. The observed major diastereomer can be rationalized by the size of the substituents on the cyclopropane ring. Thus, the phenyl group is larger than the carboxylate ester (A-values for Ph - and $-\mathrm{CO}_{2} \mathrm{Me}$ are 3.0 and 1.3, respectively) leading to higher diastereoselectivity observed in these reactions. The amidoarylation with benzyl substituted cyclopropene $\mathbf{4 l}$ affords the desired product $\mathbf{5 b l}$ in good yield but with lower diastereoselectivity. This observation can be explained by the steric differences of phenyl vs benzyl groups (A-values for Ph and Bn are 3.0 and 1.75, respectively). 2,3,3-Trisubstituted cyclopropenes did not participate in the $\mathrm{Rh}(\mathrm{III})$-catalyzed coupling with benzamides.

Table 1.8 Cyclopropene Scope ${ }^{a, b, c}$

[^15]
1.2.4 Mechanistic Studies

We then investigated the mechanism of the transformation (Scheme 1.7). The reversibility of C-H activation was first examined. Trace deuterium incorporation ($<5 \%$) was observed when the reaction was run in $\mathrm{CD}_{3} \mathrm{OD}$, suggesting the $\mathrm{C}-\mathrm{H}$ activation is largely irreversible (eq 15). The competitive reaction between p-bromobenzamide (1h) and unsubstituted benzamide (1a) was conducted to probe the electronic preference of reaction (eq 16). The product formation favors an electron deficient substrate in a $3: 1$ ratio. Kinetic isotope studies revealed KIE values of 6.7 and 5.7 for the parallel and competition experiments, respectively (eq 17). These studies together suggest that the C-H activation occurs via concerted metallation-deprotonation (CMD) mechanism and is the rate-determining step, as seen in several previous examples of $\mathrm{C}-\mathrm{H}$ activation with $\mathrm{Rh}(\mathrm{III})$. To determine if epimerization of the product occurs under the reaction conditions, we independently prepared product 5ae (1:1 dr) and resubjected it to the reaction conditions of benzamide $\mathbf{1 f}^{\prime}$ and cyclopropene $\mathbf{4 e}$. After full conversion to $\mathbf{5 f e}(70 \%$ yield, $17: 1 \mathrm{dr}$), we did not observe any change of the dr of 5ae, indicating the products are not epimerized under the reaction conditions (eq 18).

Scheme 1.7 Mechanistic experiments
Based on literature precedent ${ }^{31}$ and our mechanistic studies, the mechanism of the transformation is proposed in Figure 1.5. The Ind*Rh(OPiv) ${ }_{2}$ species is generated in situ by an anion exchange of $\left[\mathrm{Ind} * \mathrm{RhCl}_{2}\right]_{2}$ and CsOPiv. The amide directed C-H activation occurs via a CMD mechanism to give the five-membered rhodacycle intermediate \mathbf{I}, which then coordinates

[^16]the cyclopropene giving intermediate II. Migratory insertion of cyclopropene gives intermediate III. Reductive elimination (C-N bond formation) occurs to generate a $\mathrm{Rh}(\mathrm{I})$ species. The saturated coordination of acyl directing group to Rh (III) of intermediate III is important for the reductive elimination step since O-methyl benzhydroxamate is not reactive for the transformation. Finally, the $\mathrm{Rh}(\mathrm{I})$ is oxidized by insertion into the $\mathrm{N}-\mathrm{O}$ bond to regenerate the active $\mathrm{Rh}(\mathrm{III})$ catalyst species and liberate the dihydroisoquinolone product. The $\mathrm{Rh}(\mathrm{V})$-nitrenoid intermediate, after the migration of $\mathrm{O}-\mathrm{Boc}$ to Rh , was invoked from several computational studies. Finally, reductive elimination (C-N bond formation) occurs to generate $\mathrm{Rh}(\mathrm{III})$ species and liberate the dihydroisoquinolone product.

Figure 1.5 Proposed reaction mechanism

We performed density functional theory (DFT) calculations in collaboration with Kelvin Jackson and Professor Robert Paton (University of Oxford) to understand diastereoselectivity and the effect of the Ind* ligand for this transformation. ${ }^{32}$ We hypothesized that the diastereoselectivity arises from the facial selectivity during the coordination and migratory insertion of the cyclopropene. The calculations indicate that the migratory insertion step is largely irreversible step, hence this step determines the diastereoselectivity of the transformation. The coordination and the insertion step of the cyclopropene can occur through four possible transition states i.e. trans-endo, trans-exo, cis-endo and cis-exo TSs as depicted in Figure 1.6. It should be noted that trans- and cis- nomenclature was adopted from the trans- and cis- products that observed experimentally. In addition, two conformers exist in which the cyclopropene oriented towards (endo) or away (exo) from the benzamide moiety. The observed trans-product agrees with the calculation in which trans-exo TS is the most favorable. In this transition state, the methyl group oriented towards the Ind* ligand. However, trans-endo is less favorable due to the H---H clash $(2.16 \AA)$ about the incipient $\mathrm{C}-\mathrm{C}$ bond. In contrast, the cis-diastereomer results from the unfavorable steric interaction resulting by the phenyl group pointed towards the Ind* ligand (cis-exo TS) or towards the benzamide and directing group (cis-endo TS). These calculations also confirmed the synergistic steric interactions involving the Ind* ligand and directing group on the facial selectivity.

[^17]

Figure 1.6 Stereochemical model for diastereoselectivity. Gibbs energies in $\mathrm{kcal} / \mathrm{mol}$.

1.2.5 Derivatizations of Product

The prevalence of nitrogen-containing heterocycles in pharmaceuticals led us to investigate the derivatization of the dihydroisoquinolones bearing [4.1.0] bicycles. ${ }^{33}$ For example, the chloro- and O-triflate substituted dihydroisoquinolines (17 and 18), which are versatile functional group handles for further cross-coupling reactions could be easily prepared from the dihydroisoquinolone products in good yields, allowing for easy incorporation of these bicycles into pharmaceuticals or bio-active molecules.

[^18]

Scheme 1.7 Derivatization of Product

1.3 Conclusion

In summary, we have developed a heptamethylindenyl (Ind*) ligand that enables high diastereoselectivity for cyclopropene insertion in the $\mathrm{Rh}(\mathrm{III})$-catalyzed synthesis of cyclopropa[c]dihydroisoquinolone. The steric interaction of the ligand on rhodium and the ester substitution of O-substituted benzhydroxamate work cooperatively to improve the diastereoselectivity of cyclopropene insertion. ${ }^{34}$ Mechanistically, the $\mathrm{C}-\mathrm{H}$ activation proceeds via a concerted metallation-deprotonation pathway and is the turnover-limiting step. This methodology is useful for the rapid synthesis of nitrogen-containing heterocycles with a [4.1.0] motif and their derivatives.

[^19]
CHAPTER 2

Development of Stereoselective [4.2.0] Dihydroisoquinolones Synthesis via Rh(III)-Catalyzed C-H Activation and [4+2] Annulation with Cyclobutenes

2.1 Introduction

Since cyclobutane frameworks are occasionally found in natural products and bioactive molecules (Figure 2.1), the synthesis of these motifs has become the topic of some interest. ${ }^{35}$ Specifically, these motifs have been utilized in the drug discovery and development, partly due to the structural rigidity and the defined spatial arrangement and of the cyclobutane ring. ${ }^{36}$ In addition, nitrogen heterocycles such as isoquinolones and pyridones are of particular interest due to their prevalence in natural products and drug-like molecules. Targeting new synthetic methods towards these cyclobutane-fused nitrogen heterocycles would be potentially useful.

[^20]

(-)-Annotinine

Figure 2.1
In this regard, Yudin and coworkers investigated the [3,3]-sigmatropic rearrangement of N-vinyl- β-lactams 1 to generate eight-membered lactams 2 (eq 1). ${ }^{37}$ During this study, the formation of a fused [4.2.0] aminocyclobutane-containing δ-lactam was observed as a byproduct, which is thought to proceed through a 6π-electrocyclization of the eight-membered lactam 3 (Scheme 2.1). After extensive optimization, the latter product could be obtained by using CuI and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ as additives under microwave heating. However, harsh reaction conditions limited functional group tolerance.

[^21]Yudin (2008)

Mechanism of cyclobutane formation

Scheme 2.1
Bach and coworkers have demonstrated the enantioselective synthesis of [4.2.0] dihydroisoquinolones (eq 2). ${ }^{38}$ They employed a chiral hydrogen-bonding template \mathbf{T} to render the intermolecular [2+2] photocycloaddition of isoquinolones (4) and alkenes (5) enantioselective to generate enantioenriched fused [4.2.0] dihydrosioquinolones (6). However, the superstoichiometric amount of the chiral template (2.5 equiv.) and alkene (10 equiv.) are required to attain good reactivity and selectivity.

Bach (2013)

[^22]
Tortosa (2016)

9

Marek (2017)

Scheme 2.2
Cyclobutenes have been utilized as monomers in polymer chemistry due to their high strain energy ($30.6 \mathrm{kcal} / \mathrm{mol}$). ${ }^{39}$ These molecules can be accessible in a few steps from cheap starting materials. In contrast, the use of cyclobutenes to access functionalized cyclobutanes has been underexplored. ${ }^{40}$ Only a few groups have demonstrated that cyclobutenes can be used to provide decorated cyclobutanes (Scheme 2.2). In this vein, RajanBabu found that cyclobutene 7 is an effective substrate for the nickel-catalyzed hydrovinylation to generate vinylated cyclobutane 8 in moderate yield (eq 3). ${ }^{41}$ Tortosa and coworkers demonstrated an elegant enantioselective and diastereoselective copper-catalyzed hydroboration of cyclobutene 9 to

[^23]furnish chiral cyclobutylboronate $\mathbf{1 0}$ (eq 4). ${ }^{42}$ More recently, Marek and coworkers developed a highly regio- and diastereoselective zirconocene-catalyzed carbomagnesiation of cyclobutene 11 to afford cyclobutylmagnesium intermediate. This intermediate is configurationally stable for transmetallation to a metal catalyst. Thus, this process allows subsequent functionalization to generate polysubstituted cyclobutanes 12 (eq 3). ${ }^{43}$

Strained alkenes such as cyclopropene are effective coupling partners with O-pivaloyl benzhydroxamates to generate [4.1.0] dihydroisoquinolones (Chapter 1). ${ }^{44}$ Expanding on this, we felt that Rh (III)-catalyzed C -H activation of O-pivaloyl benzhydroxamate and N-pivaloyloxy acrylamide precursor (13) with cyclobutene (14) would provide an efficient route for accessing [4.2.0] dihydroisoquinolones and dihydropyridones (15) (eq 6). In addition, an enantioselective variant could be developed by using a streptavidin-based metalloenzyme.

This work

2.2 Results and Discussion

2.2.1 Substrate Scope

We began our study by examining the $\mathrm{Rh}(\mathrm{III})$-catalyzed coupling of O-pivaloyl benzhydroxamate $\mathbf{1 3 a}$ with cyclobutene $\mathbf{1 4 a}$ in the presence of $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(1 \mathrm{~mol} \%)$, CsOPiv ($0.25 \mathrm{~mol} \%$) in MeOH . To our delight, cyclobutene 14 a underwent the [4+2] annulation and delivered [4.2.0] dihydroisoquinolone 15aa in an excellent yield and diastereoselectivity ($>20: 1$

[^24]dr). This transformation was applied to a broad scope of O-pivaloyl arylhydroxamate substrates (Table 2.1). para-Substituents with electron donating group and electron withdrawing group ($\mathrm{OMe}(\mathbf{1 3 b}),-\mathrm{Cl}(\mathbf{1 3 c}),-\mathrm{Br}(\mathbf{1 3 d})$, and $\left.-\mathrm{CF}_{3}(\mathbf{1 3 e})\right)$ fare well in the transformation providing good yields of products ($\mathbf{1 5 b a - 1 5 e a}$). Of note, the halogen functional groups (15ca and $\mathbf{1 5 d a}$) are a handle for further cross coupling reactions. The relative trans diastereomer of the product $\mathbf{1 5 e a}$ was confirmed by X-ray single crystal structure analysis.

Table 2.1 O-Pivaloyl Arylhydroxamate Scope

Reaction condition: 13 (0.1 mmol), 14 (0.11 mmol), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ ($1 \mathrm{~mol} \%$), CsOPiv (25 $\mathrm{mol} \%$) in $\mathrm{MeOH}(0.1 \mathrm{M})$ at $23^{\circ} \mathrm{C}$ for 18 h . Isolated yield was reported.

The reaction is robust since ortho-substituent (13f) was also capable of furnishing the product $\mathbf{1 5 f} \mathbf{a}$ in 42% yield. meta-Methyl and trifluoromethyl substituted benzamides ($\mathbf{1 3 g}$ and $\mathbf{1 3 h}$) gave the dihydroisoquinolone products $\mathbf{1 5 g a}$ and $\mathbf{1 5 g h}$ in good yield. These products arise from the CH activation at the less sterically hindered position. However, the mixture of regioisomeric products (15ia:15ia' ca. 1.5:1 ratio) was obtained when meta-methoxy substrate $\mathbf{1 3 i}$ was used. This result may be explained by a combination of steric effects and kinetic acidity issues. Benzamide derived from gallic acid derivative $\mathbf{1 3} \mathbf{j}$ also provides the corresponding product $\mathbf{1 5 j} \mathbf{a}$ in good yield. In addition, we were pleased to find that O-pivaloyl heteroarylhydroxamate substrates such as furan (13k and 13I) and thiophene (13m) were capable substrates furnishing the corresponding products ($\mathbf{1 5 k a - 1 5 m a}$) in yields ranging from $45-87 \%$. However, pyridine derivatives such as N -pivaloyloxy nicotinamide and N -pivaloyloxy isonicotinamide were found to be inactive, presumably due to the coordinative inhibition of pyridine moiety to Rh (III) catalyst. Attempts to heating the reaction (up to $60{ }^{\circ} \mathrm{C}$) led to the decomposition of the cyclobutene 14 to diene product via [2+2]-cycloreversion (Scheme 2.3). ${ }^{45}$

Scheme 2.3

[^25]The substrate scope regarding 3,4-disubstituted cyclobutenes was then investigated (Table 2.2). Tolerance of unprotected alcohols was demonstrated by the good reactivity of cyclobutene 14b, providing the product 15ab in good yield. Protected alcohols derived from cyclobutene 14b (i.e. methyl ether 14c, benzyl ether 14d, acetyl 14 e and silyl protected alcohols 1f) furnished the corresponding products $\mathbf{1 5 a c - 1 5 a g}$ in $86-99 \%$ yields. Finally, cyclobutene $\mathbf{1 4 g}$ provided the product 15ag in 95% yield.

Table 2.2 Cyclobutene Scope

Reaction condition: $13(0.1 \mathrm{mmol}), 14(0.11 \mathrm{mmol})$. Isolated yield was reported.
We also found that N-pivaloyloxy acrylamides and cyclobutenes react to give [4.2.0] dihydropyridone products in excellent diastereoselectivity (Table 2.3). The preliminary scope demonstrates that the α-substituted substrates (alkyl 16a-b and aryl 16c) react to give corresponding dihydropyridone products $\mathbf{1 7 a a - 1 7} \mathbf{c a}$ in moderate to good yields (49-86\%). This example demonstrates that Rh (III)-catalyzed $\mathrm{C}-\mathrm{H}$ activation can be used as an efficient tool for synthesizing cyclobutane-fused N-heterocycles which are difficult to access by other means.

Table 2.3 N -Pivaloyloxy Acrylamide Scope

Reaction condition: 16 (0.1 mmol), 14 (0.11 mmol$)$. Isolated yield was reported.
It should be noted that the observed trans-derived product agrees with the explanation that benzamidation preferentially occurs at the less sterically hindered alkene face. The high diastereoselectivity of trans product is thought to proceed through trans-exo or trans-endo transition states as the stereochemical model was proposed in Figure 2.2.

trans-exo

cis-exo

Figure 2.2 Proposed stereochemical model for the observed diastereoselectivity

2.2.2 Efforts Towards Enantioselective Benzamidation of Cyclobutenes

We were interested in developing an asymmetric transformation by using a streptavidinbased metalloenzyme technology (Table 2.3). ${ }^{46}$ When the O-pivaloyl benzhydroxamate 13 and cyclobutene 14a were subjected to the optimal conditions for the metalloenzyme, we found the dihydroisoquinolone product $\mathbf{1 5 a}$ a formation in $<5 \%$ yield. We inspected the crude reaction mixture by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy. However, we did not see cyclobutene 14a. Instead, we detected the full conversion of cyclobutene 14a to cyclobutene epimer epi-14a. We speculate that the formation of thermodynamically stable cyclobutene epimer epi-14a occurs via the basemediated epimerization. In addition, the cyclobutene epi-14a was found to be an ineffective substrate in the transformation. To circumvent the problem, we used a cyclobutene that cannot epimerize to study the reaction. Gratifyingly, cyclobutene 14b with unprotected alcohols undergoes the benzamidation and provides the product $\mathbf{1 5 a b}$ in 70% yield and $72: 28 \mathrm{er}$. Cyclobutene with diacetyl groups $\mathbf{1 4 e}$ also furnished the products in an excellent yield and the same level of enantioselectivity. Cyclobutene with dimethoxy groups $\mathbf{1 4 c}$ also reacts to give the product 15ac in good yield with a slightly increased enantioselectivity (80:20 er). However, cyclobutene with dibenzyl broups $\mathbf{1 4 d}$ was found to be inactive, probably due to its inherent lipophilicity or the sterically hindered dibenzyl groups that limited entrance into the active site of the metalloenzyme.

[^26]Table 2.3 Enantioselective Benzamidation Scope ${ }^{a}$

${ }^{a}$ reaction conditions: $13(10 \mu \mathrm{~mol}), 14(11 \mu \mathrm{~mol})$. See Appendix for more details. yield was obtained from ${ }^{1} \mathrm{H}$-NMR or chiral HPLC. er was determined by chiral HPLC.

Scheme 2.4

2.3 Conclusion

In summary, we have successfully developed an efficient route to access [4.2.0] nitrogen heterocycles via $\mathrm{Rh}(\mathrm{III})$-catalyzed $\mathrm{C}-\mathrm{H}$ activation of benzamide and acrylamide substrates followed by the $[4+2]$ annulation with cyclobutenes. The transformation appears to be highly diastereoselective with a good degree of functional group tolerant. Furthermore, an asymmetric variant was preliminarily investigated using a streptavidin-based metalloenzyme to provide the enantioenriched dihydroisoquinolone products in up to 80:20 er.

CHAPTER 3

Rh(III)-Catalyzed Coupling of N -Pivaloyloxy Acrylamides with Alkenes via C-H Activation:

Direct Modular Assembly of Piperidones

3.1 Introduction

3.1.1 The Importance of Nitrogen Heterocycles

The α, β-unsaturated- δ-lactam (or piperidone) motif is present in an array of complex molecules and serves as a key intermediate towards accessing other alkaloids including piperidine (Figure 3.1). ${ }^{47}$ Of interest is that among 640 FDA approved small molecule drugs that containing N -heterocycle, piperidine is the most common N -heterocycles, outcompeting even the ubiquitous pyridine. ${ }^{48}$ In addition, recent studies found that the degree of saturation (complexity) as well as the presence of stereocenters correlate with the success rate of drug discovery. ${ }^{49}$

Figure 3.1

[^27]Because of aforementioned reasons, extensive efforts targeting α, β-unsaturated- δ-lactams have been demonstrated (Figure 3.2). ${ }^{50}$ Among intramolecular cyclizations that involve nucleophilic attack by the nitrogen atom, one of the synthetic strategies for α, β-unsaturated- δ lactam formation is C-C double bond construction. This avenue has been exploited by ring closing metatheses, ${ }^{51}$ McMurry couplings, ${ }^{52}$ and aldol condensations. ${ }^{53}$ Nevertheless, there are still limitations associated with the availability of these precursors, the harsh reaction conditions, and elevated temperatures. Two-component approaches such as cycloadditions or annulations are inherently more attractive. Recently, organocatalytic [4+2] cycloaddition approaches have been devised, as exemplified by transformations with N-heterocyclic carbene, ${ }^{54}$ cinchona alkaloid, ${ }^{55}$ and chiral phosphoric acid catalysis. ${ }^{56}$ However, these strategies are limited to specific classes of precursors as well as practicality issues. To address these drawbacks, a new and efficient methodology that enables access to α, β-unsaturated- δ-lactams from simple precursors would prove useful and open many avenues to the field.

[^28]

Figure 3.2

In this context, the $\mathrm{C}-\mathrm{H}$ activation and annulation approach would provide direct access to α, β-unsaturated- δ-lactams from acrylamide and alkene precursors. This strategy is attractive because of easily accessible acrylamides and the abundance of alkenes. Daugulis developed a cobalt-catalyzed aminoquinoline-directed C-H activation of acrylamides and styrene to provide δ-lactams (Scheme 3.1). ${ }^{57}$ Nonetheless, an extra step is required for the removal of a directing group to reveal free lactams. Despite progress in this area, a practical synthesis of piperidones from simple starting materials has not been developed.

Daugulis (2014)

Scheme 3.1

[^29]
3.1.2 Rh(III)-catalyzed C-H Activation in Nitrogen Heterocycles Syntheses

$\mathrm{Rh}(\mathrm{III})$-catalyzed $\mathrm{C}-\mathrm{H}$ activation annulation has been used to synthesize several N heterocycles and has become an important tool in synthesis. ${ }^{58}$ Seminal work by Fagnou, ${ }^{59}$ Miura, Satoh, ${ }^{60}$ Rovis ${ }^{61}$ and Li ${ }^{62}$ have demonstrated the directed C-H activation of benzamides with alkynes to deliver isoquinolones (Scheme 3.2, eqs 3 and 4). Furthermore, Glorius, ${ }^{63}$ and Fagnou ${ }^{64}$ have developed the N-acyloxy hydroxamate directing group, which allows for alkene insertion and subsequent N-O bond cleavage/C-N bond formation to deliver dihydroisoquinolone (eq 5). In addition, this process generates a stereocenter for which the catalytic asymmetric variants were developed by Rovis and Ward ${ }^{65}$ as well as Cramer. ${ }^{66}$

[^30]

Miura-Satoh, Rovis, Li (2010)

Glorius, Fagnou (2011) Asymmetric: Rovis-Ward, Cramer (2012)

Scheme 3.2
The above strategies effectively deliver bicyclic nitrogen heterocycles, with a disproportionate emphasis on aromatic structures. Vinylic C-H activation of acrylamides with alkenes would provide access to valuable monocyclic heterocycles with a stereocenter. Several examples regarding to vinylic $\mathrm{C}-\mathrm{H}$ bond activation of acrylamides are documented. Specifically, $\mathrm{Li},{ }^{67}$ and Rovis ${ }^{68}$ have reported the directed C-H activation annulation between acrylamides with alkynes to access pyridones (Scheme 3.3, eq 6). ${ }^{69}$ However, transformations between acrylamide derivatives with alkenes only proceed through β-elimination pathways to generate β functionalization products (eqs $7-12$)..70 Inspired by the use of the N-acyloxy directing group that

[^31]prevents β-hydride elimination and promotes $\mathrm{C}-\mathrm{N}$ bond formation, $\mathrm{Rh}(\mathrm{III})$-catalyzed $\mathrm{C}-\mathrm{H}$ activation of N-pivaloyloxy acrylamides with alkene coupling partners was seen as an attractive strategy as this would generate unprotected α, β-unsaturated- δ-lactams (eq 13). However, this particular approach has proven challenging as no examples of this transformation have been reported to date. The challenges that are inherent with N-pivaloyloxy acrylamides may be attributed to the reactivity of acrylamide as a good Michael acceptor and their decomposition under the reaction conditions relative to their more stable N-alkyl and N-methoxy counterparts. Herein, we disclose an intermolecular $\mathrm{Rh}(\mathrm{III})$-catalyzed redox-neutral [4+2] annulation between N-pivaloyloxy α-substituted acrylamides and simple alkene coupling partners to generate synthetically useful α, β-unsaturated- δ-lactams.

[^32]
Li, Rovis (2011)

(6)

Loh (2012)

Wang (2014)

Wang (2015)

Zhang, Zhong (2017)

This work:

Scheme 3.3

3.2 Results and Discussion

3.2.1 Reaction Discovery

Thanks to the cyclopropene's reactivity, the $\mathrm{Rh}(\mathrm{III})$-catalyzed [4+2] annulation of N pivaloyloxy acrylamide $\mathbf{1}$ with cyclopropene $\mathbf{2}$ provided the dihydropyridone product $\mathbf{3}$ in 30\% yield (2:1 dr, eq 14).

The reaction conditions were optimized using high-throughput experimentations (HTE) with different bases (CsOAc, CsOPiv) and solvents (MeOH, EtOH, tAmylOH, DCE, dioxane, MeCN, TFE, HFIP). The product formation was analyzed by LC/MS with multiple injections in a single experimental run (MISER). The optimal condition, $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ ($2 \mathrm{~mol} \%$), CsOPiv (0.25 equiv), $\mathrm{MeCN}(0.2 \mathrm{M})$ at $60^{\circ} \mathrm{C}$, gave a product in 37% yield (Table 3.1, entry 1). Increasing the concentration to 0.3 M gave the similar yield (entry 2). Other precatalysts such as $\mathrm{Cp} * \mathrm{Rh}(\mathrm{OAc})_{2}$ and $\left[\mathrm{Cp} * \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}$ are also effective (entry 3, 4). To prevent the decomposition of N-pivaloyloxy acrylamide, the reaction was conducted at room temperature, which revealed the product with slightly improved yield (entry 5,6). The use of excess amount of N-pivaloyloxy acrylamide (2 equiv.) provided 49% yield of product (entry 7).

Table 3.1 Reaction Condition Optimizations ${ }^{a, c}$

	2	$\xrightarrow[\mathrm{MeCN}]{$$\text { Rh cat. (} 2 \mathrm{~mol} \%)$ additive $(25 \mathrm{~mol} \%)$$}$			
	precatalyst	additive	conc. (M)	temp (${ }^{\circ} \mathrm{C}$)	yield ${ }^{\text {a }}$
1	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	CsOPiv	0.2	60	36
2	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	CsOPiv	0.3	60	36
3	$\mathrm{Cp}{ }^{*} \mathrm{Rh}(\mathrm{OAc})_{2}$		0.3	60	33
4	$\left[\mathrm{Cp}^{*} \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}$	CsOPiv	0.3	60	36
5	$\left[\mathrm{Cp}^{*} \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}$	CsOPiv	0.3	23	39
6	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	CsOPiv	0.3	23	39
$7^{\text {b }}$	$\left[\mathrm{Cp}{ }^{*} \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left(\mathrm{SbF}_{6}\right)_{2}$	CsOPiv	0.3	23	49

Reaction conditions: N-pivaloyloxy acrylamide (0.10 mmol), cyclopropene (0.11 mmol).
${ }^{\text {a }}$ NMR yield and diastereoselectivity were determined by ${ }^{1} \mathrm{H}$-NMR using 1,3,5trimethoxybenzene as an internal standard. The 2:1 dr was obtained in all cases. ${ }^{b} \mathrm{~N}$-pivaloyloxy acrylamide (0.20 mmol), cyclopropene (0.11 mmol) were used.

Previous works in the field demonstrated that the reactivity and selectivity of $\mathrm{Rh}(\mathrm{III})$ catalyzed reaction could be improved using the ligand development (cf. Chapter 1). Again, the similar approach should solve the reactivity and diastereoselectivity problems in this case. The representative library of Cp ligands was examined and the results are summarized in Table 3.2. We observed the reactivity of the transformation is affected by the steric and electronic properties of Cp ligand. The electron-deficient Cp ligands $\left(\mathrm{Cp}\right.$ *bisCF3Ar, $\mathrm{Cp}^{\mathrm{C} 6 \mathrm{H} 5}$, and $\mathrm{Cp}{ }^{* \mathrm{CF} 3}$) are less reactive and gave little or no yield. We also found that heptamethylindenyl (Ind*), 1,3-di-tert-butylcyclopentadienyl $\left(\mathrm{Cp}^{\mathrm{t}}\right)$, and 1,3-dimethyl-2,4,5-triphenylcyclopentadienyl $\left(\mathrm{Cp}^{\text {Ph3Me2 }}\right)$ ligands were unsuccessful in this transformation. Among the Cp precatalysts investigated in the study $, \mathrm{Cp}^{* \mathrm{Ph}}, \mathrm{Cp}^{* \text { chex }}, \mathrm{Cp} * \mathrm{Pr}, \mathrm{Cp} * \mathrm{tBu}, \mathrm{Cp}^{* 1,3-\text { diPh }}, \mathrm{Cp}^{* \mathrm{p}-\mathrm{OMeAr}}, \mathrm{Cp}^{* \mathrm{Bn}}$ and $\mathrm{Cp}^{* \mathrm{Ar}}$ are the most effective ligands which provide the corresponding product in $46-70 \%$ yield. Other ligands i.e.
$\mathrm{Cp}^{\mathrm{Me}, t \mathrm{Bu}-\mathrm{Cy}}, \mathrm{Cp}^{* 1,2-\text { diPh }}, \mathrm{Cp}^{\mathrm{Me}, \text { chex-Cy }}$ and $\mathrm{Cp}^{\mathrm{TM}}$ delivered the product in low yields (27-39\%).
Disappointingly, the diastereoselectivity did not improve by tuning steric or electronic properties of the Cp ligands.

Table 3.2 Cp Ligand Optimizations ${ }^{a, b}$

[^33]After obtaining the optimal condition for reactivity, a preliminary scope of substituted N pivaloyloxy acrylamides was studied (Table 3.3). α-substituted N-pivaloyloxy acrylamides (1b and 1c) performed well, generating the products 3ba and 3ca in moderate to good yields. Cyclohexenyl carboxamide 1d delivered the product 3da with excellent diastereocontrol. The steric properties of the substrate 1d may render the diastereoselectivity similar to the aryl counterpart. However, other α, β-substituted N-pivaloyloxy acrylamides (1e and 1f) only gave trace product. β-Substituted N-pivaloyloxy acrylamides $(\mathbf{1 g}, \mathbf{1 h}$, and $\mathbf{1 i})$ are unreactive substrates in this transformation.

Table 3.3 Preliminary Substrate Scope

[^34]Next, we explored less strained cycloalkenes and acyclic olefin partners using optimal conditions (Table 3.4). We chose N-pivaloyloxy α-benzylacrylamide 4 as a model substrate. We were pleased to see that norbornadiene (5a), norbornene (5b), and cyclopentene (5c) reacted under the optimal condition generating the δ-lactam products in low yield (19-28\% yield). However, cyclohexene (5d) is unreactive. Acyclic alkenes were also investigated (entries 5-10). Styrene (5e), ethyl acrylate (5f), dimethyl fumarate (5g) and dimethyl maleate (5h) were not reactive coupling partners, however, we were excited to see that aliphatic alkenes (i.e. allyl benzene ($\mathbf{5 i}$) and 1-heptene ($\mathbf{5} \mathbf{j}$)) underwent the transformation and provided the products $\mathbf{6 a i}$ and 6aj in low yields with $c a .2: 1$ regioisomeric ratio. We noticed the reactant decomposed under the reaction conditions during these studies. However, attempts at isolation and identification of the side products were unsuccessful.

We next prepared acrylamide precursor 4a which contains para-bromo group to aid in the characterization of byproducts (eq 15). After subjecting $\mathbf{4 a}$ to the optimal conditions, $\mathbf{4 a}$ partially decomposed to methyl benzyl ketone 7 and $\mathrm{N}-\mathrm{O}$ bond cleavage product $\mathbf{8}$. Methyl benzyl ketone 7 may be produced through the base-mediated Lossen rearrangement/hydrolysis. The formation of byproduct $\mathbf{8}$ may be argued by the formation of $\mathrm{Rh}(\mathrm{I})$ species via the oxidation of dihydropyridone $\mathbf{6}$ to form the corresponding pyridone as detected by UPLC/MS. Then, $\mathrm{Rh}(\mathrm{I})$ oxidizes $\mathrm{N}-\mathrm{O}$ bond to generate amide $\mathbf{8}$.

Table 3.4 Investigations of cycloalkenes and acyclic alkenes ${ }^{\mathrm{a}, b}$

${ }^{\text {a }}$ Reaction conditions: N -pivaloyloxy acrylamide 4 (0.1 mmol), alkene 5 (0.11 mmol)
b isolated yield

4a
5
6, 17\%
1:2 rr

7

3.2.2 Reaction Optimization

Table 3.5 Optimization of Reaction Conditions ${ }^{\text {a }}$

Bn	 9a					
Cp*R	- OAc $(\mathrm{OAc})_{2}$		Ph	deco Bn	osition	products 13
entry	alkene	precatalyst	additive	solvent	yield ${ }^{\text {b }}$	$\mathrm{rr}^{\text {c }}$
1	10a	$\mathrm{Cp} * \mathrm{Rh}(\mathrm{OAc})_{2}$	-	MeCN	17	1:2
2	10a	Cp * $\mathrm{Rh}(\mathrm{OAc})_{2}$	-	HFIP	44	1:2
3	10a	$\mathrm{Cp} * \mathrm{Rh}(\mathrm{OAc})_{2}$	-	TFE	84	$1: 2$
4	10a	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	CsOAc	TFE	85	1:2
5	10b	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	CsOAc	TFE	88 (85)	>10:1
6^{d}	10b	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	CsOAc	TFE	83	>10:1
7^{e}	10b	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	CsOAc	TFE	60	>10:1
8^{f}	10b	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$	CsOAc	TFE	52	>10:1

${ }^{\text {a }} 9 \mathrm{a}$ (0.10 mmol), alkene (0.11 mmol), $5 \mathrm{~mol} \% \mathrm{Rh}, 25 \%$ additive in a solvent (0.3 M).
${ }^{b}$ yield was determined by ${ }^{1} \mathrm{H}$-NMR using phenyltrimethylbenzene as an internal standard and the isolated yield was given in parenthesis
${ }^{c}$ The regioisomeric ratio (rr) was obtained by ${ }^{1} \mathrm{H}-\mathrm{NMR}$.
${ }^{d} 4 \mathrm{~mol} \% \mathrm{Rh} .{ }^{e} 2 \mathrm{~mol} \% \mathrm{Rh} .{ }^{f} 1 \mathrm{~mol} \% \mathrm{Rh}$.
We reoptimized the reaction conditions by using $\mathrm{Cp} * \mathrm{Rh}(\mathrm{OAc})_{2}$ as the precatalyst to avoid any excess base that may result in the decomposition of $\mathbf{1 a}$. Under this reaction condition, $\mathbf{9 a}$ reacts with 10a to provide 11aa in low yield (Table 3.5, entry 1). However, we also observed decomposition of reactant 9a to byproducts $\mathbf{1 2}$ and 13. In addition, we surmised that solvent acidity may alleviate the starting material decomposition. The yield was substantially improved
when the hexafluoroisopropanol (HFIP, $\mathrm{pK}_{\mathrm{a}}=9.3$) was employed as the solvent (entry 2). We were pleased to find that trifluoroethanol $\left(\mathrm{TFE}, \mathrm{pK}_{\mathrm{a}}=12.5\right)$ was the optimal solvent as dihydropyridones were furnished in high yield (entry 3). Additionally, less decomposition byproducts were observed. The use of $\mathrm{Cp} * \mathrm{Rh}(\mathrm{OAc})_{2}$ as a precatalyst proved problematic due to its inherent hygroscopicity and practicality when extending to other Cp^{x} ligands. Fortunately, $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2} / \mathrm{CsOAc}$ combination also works comparatively well (entry 4). Next, styrene 10b was found to be an amenable coupling partner, providing the corresponding product $11 \mathbf{a b}$ in good yield and regioselectivity (entry 5). The optimal catalyst loading remained at $2.5 \mathrm{~mol} \%$ $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$, as lowering the catalyst loading resulted in incomplete conversion after 24 h (entries 6-8). It should be noted that the process is practical and operationally simple, as it is not sensitive to air or moisture.

3.2.3 Substrate Scope

Having optimized the reaction conditions, we next explored the N-pivaloyloxy acrylamides scope using styrene $\mathbf{1 0 b}$ as the coupling partner (Table 3.6). An array of α-alkyl substituted acrylamides $(\mathbf{9 a - 9 d})$ engaged in reactivity, providing the corresponding δ-lactams in good to high yields (11ab-11db). More specifically, N-pivaloyloxy α-benzyl (9a) and α-(para-bromo)-benzyl acrylamides ($\mathbf{9 b}$) underwent the annulation to deliver 11ab and 11bb in high yields. N-pivaloyloxy methacrylate ($\mathbf{9 c}$) also proved fruitful as the desired annulation product 11cb was afforded in good yield. N-pivaloyloxy acrylamide 9d, derived from the itaconic acid, provided the product $\mathbf{1 1 d b}$ in 94% yield. Next, N-pivaloyloxy α-arylacrylamides $(\mathbf{9 e - 9 j})$ were found to be reactive, providing the products (11-b-11jb) in moderate to high yield. Substituents at para- $(\mathbf{9} \mathbf{e}-9 \mathbf{h})$, meta- $(\mathbf{9 i})$, and ortho- $(\mathbf{9} \mathbf{j})$ positions were well tolerated. Bromoarene derived products ($\mathbf{1 1 \mathbf { b b }}$ and $\mathbf{1 1 \mathbf { h b }}$) are of considerable interest as the halogen provides a handle for cross-
coupling reactions. Interestingly, N-pivaloyloxy α-ethoxyacrylamide ($\mathbf{9 k}$) was also competent as the corresponding product ($11 \mathbf{k b}$) was acquired in 58% yield. α, β-disubstituted N-pivaloyloxy acrylamides ($\mathbf{9 1}$ and $\mathbf{9 m}$) gave only trace amount of product according to UPLC/MS analysis. N pivaloyloxy acrylamide (9n) and β-substituted acrylamides ($\mathbf{9 0}$ and $\mathbf{9 p}$) did not react under the optimal conditions.

Table 3.6 Acrylamide Scope ${ }^{a}$

11ab, 85%

11db, 94\%

11mb, trace

11bb, 90\%

11eb, 55\%

11hb, 60\%

11kb, 58%

9n

11cb, 78\%

11fb, 80\%

11lb, trace

90 and $9 p$
${ }^{a}$ Reaction conditions: 9 (0.10 mmol), 10 (0.11 mmol), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%), \mathrm{CsOAc}$ $(25 \mathrm{~mol} \%)$ in TFE $(0.3 \mathrm{M})$ for $24-48 \mathrm{~h}$. The isolated yield was reported.

A styrene scope was next investigated with substrate 1a as the coupling partner (Table 3.6). Good regioselectivity could be obtained in all cases, partly due to the electronic bias of styrene substrates. First, para-substituted styrene derivatives (10c-10h) were examined. The electronic nature of the substituents influenced product yield. More specifically, electrondonating groups at the para-position (10c and $\mathbf{1 0 d}$) provided higher yields compared to electronwithdrawing substituents (10e and 10h). Meta-substituted styrenes (10i-10n) were also tolerated as the corresponding δ-lactams (11ai-11an) were furnished in modest to good yields (35-88\%). 3-Vinylbenzaldehyde (10n) was compatible as 11an was provided in 30% yield. This example demonstrates that the transformation can tolerate an unprotected carboxaldehyde functional group. 2-Vinylnapthalene (100) also reacted to provide 11ao in good yield. Most orthosubstituted styrenes proved fruitless. These substrates may be too sterically cumbersome to promote the reactivity. However, less sterically hindered 2-fluorostyrene (10p) furnished the product 11ap in moderate yield. Electron-deficient pentafluorostyrene $\mathbf{1 0 q}$ was a capable coupling partner as $11 \mathbf{a q}$ was provided in a moderate yield. 4-Vinylpyridine was an ineffective substrate, likely due to the inhibitory coordination of pyridine on $\mathrm{Rh}(\mathrm{III})$. It should also be noted that electron-deficient ethyl acrylate was unsuccessful for the transformation.

Table 3.7 Vinyl Arene Scope ${ }^{a, b}$

11ac, 92%

11af, 70%

11ai, 84%

11al, 71%

11ao, 70\%

11ad, 89% ($83 \%{ }^{\text {b }}$)

11ag, 71%

11aj, 88%

11am, 58\%

11ap, 60\%

11ae, 78%

11ah, 57%

11ak, 44\%

11an, 35%

11aq, 50\%
${ }^{\text {a }}$ Reaction conditions: $9(0.10 \mathrm{mmol}), 10(0.11 \mathrm{mmol}),\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%), \mathrm{CsOAc}$ ($25 \mathrm{~mol} \%$) in TFE (0.3 M) for $24-48 \mathrm{~h}$. The isolated yield was reported. ${ }^{b}$ The reaction was performed in 1 mmol scale.

Interestingly, this reaction showed generality for a variety of cyclic alkenes that efficiently generate fused- δ-lactams (Table 3.8). Strained cyclic alkenes such as norbornadiene (12a) and norbornene (12b) engaged under optimal conditions providing fused-bicyclic structures (13aa and 13ab) in high yield. Less strained cyclic alkenes such as cyclopentene (12c) and indene (12d) were also competent substrates as they delivered useful fused- δ-lactams (13ac and 13ad) in good yields. Furthermore, 1,3-cyclohexadiene (12e) reacted to give a fused-lactam product 13ae in good yield. However, the less strained cyclohexene coupling partner (12f) provided only trace product 13af. Dihydronaphthalene (12g) was also a competent substrate and afforded product 13ag in 63% yield. Cyclooctene (12h) also reacted to give 75% yield of product

13ah.

Table 3.8 Cyclic Alkene Scope ${ }^{\text {a,b }}$

[^35]So far, unactivated alkenes have proven to be challenging substrates in the selective functionalization due to the lack of the electronic bias relative to styrenes (Table 3.9). ${ }^{71}$ These alkenes, in theory, should produce a regioisomeric mixture of 5- and 6-substituted α, β -unsaturated- δ-lactams. Vinyl cyclohexane 10r gave predominantly the 6 -substituted product 11ar when subjected to optimized reaction conditions. To our surprise, vinyl cyclopentane 10s gave the 5 -substitued product 11as' as the major regioisomer under optimal conditions. The steric bulk of the di-1,3-di-tert-butylcyclopentadienyl ligand $\left(\mathrm{Cp}^{\mathrm{t}}\right)^{72}$ improved the regioselectivity of product 11as' to $>10: 1 \mathrm{rr}$. Allylbenzene (10a) gave 5 -substituted product 11aa' as a major regioisomer ($2: 1 \mathrm{rr}$). Again, the Cp^{t} ligand improved the regioisomeric ratio substantially to $>10: 1 \mathrm{rr}$ favoring 11aa'. Other aliphatic alkenes such as 4-phenyl-1-butene (10t) and 1-heptene (11u) gave the corresponding products (11at' and 11au') in sufficient yields. Bromo- (10v), ester- (10w) functional groups were tolerated as the corresponding annulation products (11av' and 11aw') were afforded in moderate yields. These results demonstrate a dichotomy of alkene insertion to access regioisomeric products from different alkenes. However, the reason for this anomaly of regioselectivity is unclear at this moment.

[^36]Table 3.9 Unactivated Alkene Scope ${ }^{\text {a }}$

3.2.4 Mechanistic Studies

During the investigation of the scope, N-pivaloyloxy acrylamide 9 n and ethyl acrylate 10x were found to be incompetent substrates under the optimal condition. We speculate that they might be a good ligand on rhodium. Control experiments employing N-pivaloyloxy acrylamide 9a and ethyl acrylate 10a as additives under the optimal condition (using 9n and 10x) completely shut down the reaction, no annulation products 11aa and 11aa' were observed in both cases (Table 3.10). These results indicate that an inhibitory effect of the N-pivaloyloxy acrylamide $\mathbf{9 n}$ and ethyl acrylate 10x in this reaction.

Table 3.10

An isotope experiment was performed to investigate the reaction mechanism (Scheme 3.4). The reversibility of the $\mathrm{C}-\mathrm{H}$ activation was determined by running the reaction in the absence of any alkene coupling partner in TFE- d_{1}. After $1 \mathrm{~h}, 65 \%$ deuterium incorporation at the C-H bond cis to amide was observed, as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (eq 16). Additionally, an experiment with styrene 10b was conducted using TFE-d ${ }_{1}$. After 1 h (ca. 60% conversion), 51% deuterium incorporation to $9 \mathbf{a}-\mathrm{d}$ at the $\mathrm{C}-\mathrm{H}$ bond cis to the amide was observed. The KIE value $\left(\mathrm{P}_{\mathrm{H}} / \mathrm{P}_{\mathrm{D}}\right)$ of 2.3 was calculated (eq 17). However, the reversibility of C-H activation may be taken into account for KIE value. The results together suggest that the $\mathrm{C}-\mathrm{H}$ activation is fast, reversible, and may not be involved in the turnover-limiting step. Finally, N-methoxy α-benzyl acrylamide $\mathbf{9 q}$ did not give any product, implying that the N-pivaloyloxy group is essential for this reaction (eq 19).

Scheme 3.4 Mechanistic experiments
With these preliminary mechanistic results, a plausible catalytic cycle for this reaction is proposed in Figure 3.3. Initially, coordination of the amide to rhodium by deprotonation of the N-H bond by acetate base generates intermediate \mathbf{I}. This brings the rhodium in proximity to the vinylic C-H bond. The reversible C-H activation occurs, presumably via the concertedmetallation deprotonation (CMD) mechanism, providing five-membered rhodacycle II. Subsequent alkene coordination and irreversible migratory insertion give seven-membered rhodacycle IV. N-Acyloxy coordination to $\mathrm{Rh}(\mathrm{III})$ precludes the β-hydride elimination. Instead, N-O bond cleavage occurs via the transient $\mathrm{Rh}(\mathrm{V})$ nitrenoid intermediate $V{ }^{73}$ Finally, reductive

[^37]elimination and $\mathrm{C}-\mathrm{N}$ bond formation regenerates $\mathrm{Rh}(\mathrm{III})$ to close the catalytic cycle. An alternative mechanism involving C-N bond formation to generate $\mathrm{Rh}(\mathrm{I})$ intermediate $\mathbf{V}^{\mathbf{\prime}}$ and $\mathrm{N}-\mathrm{O}$ bond cleavage to restore $\mathrm{Rh}(\mathrm{III})$ can be invoked as well. ${ }^{8 \mathrm{~b}}$

Figure 3.3 Proposed reaction mechanism

3.2.5 Product Derivatization

The derivatization of these δ-lactams highlights their synthetic utility to access other nitrogen heterocycles (Scheme 3.4). The Pd/C-catalyzed hydrogenation of C-C double bond of 11ad and 13ad afforded piperidones 14ad and 14ac in good diastereoselectivity. In addition, the piperidine derivatives would be accessed by the reduction of the corresponding δ-lactams.

Scheme 3.4

3.3 Conclusions

In summary, we have developed an intermolecular $\mathrm{Rh}(\mathrm{III})$-catalyzed $\mathrm{C}-\mathrm{H}$ activation reaction for the synthesis of α, β-unsaturated- δ-lactams from N-pivaloyloxy α-substituted acrylamides and alkenes. Preliminary mechanistic studies suggest that the reaction proceeds through the reversible $\mathrm{C}-\mathrm{H}$ activation, irreversible alkene migratory insertion, and $\mathrm{N}-\mathrm{O}$ bond cleavage/C-N bond formation pathways. We believe that this transformation should not only provide applications for expedient access of α, β-unsaturated- δ-lactams and related alkaloids from simple manipulations, but also serve as a starting point for the development of regioselective and enantioselective variants.

APPENDIX 1

Development of Stereoselective Cyclopropene Benzamidation via $\mathrm{Rh}($ III $)$-Catalyzed C-H Activation ${ }^{74}$

1. General methods

Unless otherwise noted, reactions were performed in flame-dried glassware and carried out under an atmosphere of nitrogen with magnetic stirring. Tetrahydrofuran (THF), diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), and dichloromethane (DCM) were degassed with argon and passed through two columns of neutral alumina. Toluene was degassed with argon and passed through one column of neutral alumina and one column of Q5 reagent. Flash column chromatography was performed on SiliCycle Inc.® silica gel 60 (230-400 mesh). Thin Layer chromatography was performed on SiliCycle Inc. ${ }^{\circledR} 0.25 \mathrm{~mm}$ silica gel $60-\mathrm{F}$ plates. Visualization was accomplished with UV light (254 nm), KMnO_{4}, or CAM. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Varian 400 MHz spectrometers or a Bruker Avance III 500 (500 MHz) at ambient temperature. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data are reported as the following: chemical shift in parts per million (δ, ppm) from chloroform $\left(\mathrm{CHCl}_{3}\right)$ taken as 7.26 ppm , integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets) and coupling constant (J in Hz unit). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ is reported as the following: chemical shifts are reported in ppm from CDCl_{3} taken as 77.0 ppm . Several spectra contain a probe-shielding artifact that consistently appeared on all spectra taken at that instrument over a period of months. Mass spectra were obtained on an Agilent Technologies 6130 Quadrupole Mass Spec (LRMS, ESI+APCI). Infrared spectra (IR) were obtained on Bruker Tensor 27 FT-IR spectrometer.
2. Preparation of starting materials and rhodium precatalysts
O-pivaloyl arylhydroxamates, ${ }^{75} \mathrm{O}$-Boc arylhydroxamates ${ }^{76}$ and 3,3-disubstituted cyclopropenes ${ }^{77-}$ ${ }^{78}$ were prepared by previously reported procedure. Catalyst Synthesis: $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}{ }^{79},\left[\mathrm{Cp}^{* t-\mathrm{Bu}} \mathrm{RhCl}_{2}\right]_{2}{ }^{80}$,
${ }^{74}$ Adapted from: Semakul, N.; Jackson, K. E.; Paton, R. P.; Rovis, T. Chem. Sci. 2017, 8, 1015-1020.
${ }^{75}$ (a) Guimond, N,; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2011, 133, 6449-6457. (b) Wang, H.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 7318-7322. (c) Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 5364-5367.
${ }^{76}$ (a) Guimond, N,; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2011, 133, 6449-6457. (b) Ye, B.; Cramer, N. Science 2012, 338, 504-506.
${ }^{77}$ Rubin, M.; Gevorgyan, V. Synthesis 2004, 796-800.
${ }^{78}$ Phan, D. H. T.; Kou, K. G. M.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 16354-16355.
${ }^{79}$ Fujita, K.; Takahashi, Y.; Owaki, M.; Yamamoto, K.; Yamaguchi, R. Org. Lett. 2004, 6, 2785-2788.
${ }^{80}$ Piou, T.; Rovis, T. Nature 2015, 527, 86-90.
$\left[\mathrm{Cp}^{* \mathrm{CF}^{3}} \mathrm{RhCl}_{2}\right]_{2}{ }^{81},\left[\mathrm{Cp}^{\left.*{ }^{\text {bisCF3Ar }} \mathrm{RhCl}_{2}\right]_{2}{ }^{82} \text { and }\left[\mathrm{Cp}^{i \mathrm{Pr}} \mathrm{RhCl}_{2}\right]_{2}{ }^{83} \text { were synthesized by reported procedures. }}\right.$ $\left[\mathrm{Cp}^{t} \mathrm{RhCl}_{2}\right]_{2}$ was purchased from Sigma-Aldrich (RNI00147).

Synthesis of heptamethylindenyl rhodium chloride dimer [Ind*RhCl $\left.2_{2}\right]_{2}$

To a flame-dried round bottom flask charged with a stir bar, 2,3,4,5,6,7-hexamethylindan-1-one ${ }^{84}$ ($700 \mathrm{mg}, 3.23 \mathrm{mmol}$, 1 equiv.), $\mathrm{Et}_{2} \mathrm{O}(11 \mathrm{~mL}, 0.3 \mathrm{M})$ were added and cooled to $0^{\circ} \mathrm{C} .3 \mathrm{M} \mathrm{MeMgBr}(2.16$ $\mathrm{mL}, 6.47 \mathrm{mmol}, 2$ equiv.) was added to the solution dropwise. The reaction was mixture was warmed to room temperature and refluxed for 2.5 h . At $0^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}$ was added to the reaction mixture following by conc HCl and stirred at room temperature for 12 h . The reaction was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($\times 3$ times), washed with satd $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, brine, dried over MgSO_{4}, filtered and solvent was evaporated under reduced pressure. The crude product was purified by column chromatography using $5 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane as an eluent to afford heptamethylindene $(\operatorname{Ind} * \mathrm{H})^{85}(334 \mathrm{mg}, 48 \%$ yield). The characterizations were agreed with the previously report. ${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.28(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.35$ (s, 9H), $2.05(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 144.9,142.9,140.9,133.8$, 132.0, 130.8, 128.4, 126.5, 46.4, 16.7, 16.4, 16.2, 16.1, 16.0, 15.3, 12.3.

Heptamethylindene (Ind*H) (1.26 equiv., $1.2 \mathrm{mmol}, 260 \mathrm{mg}$) was dissolved in EtOH ($0.063 \mathrm{M}, 15$ mL) and a few drops of water. $\mathrm{RhCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (1 equiv., $0.95 \mathrm{mmol}, 250 \mathrm{mg}$) was added to the reaction mixture which was subsequently refluxed for 72 h . The mixture was cooled to room temperature and the solvent was evaporated to dryness. The crude product was washed several times with hexane to remove excess ligand. The crude solid was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through Celite. The filtrate was concentrated which give $\left[\text { Ind } * \mathrm{RhCl}_{2}\right]_{2}$ complex as a red-brown solid ($60 \mathrm{mg}, 48 \%$ yield). The characterizations were agreed with the previously report ${ }^{86} .{ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.54(\mathrm{~s}, 6 \mathrm{H})$,

[^38]$2.07(\mathrm{~s}, 6 \mathrm{H}), 1.97(\mathrm{~s}, 6 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 143.7,130.4,102.6,95.2$ (d), 81.0(d), 18.5, 17.8, 13.4, 10.3. IR (neat, cm^{-1}) 2922.6, 2852.3.
3. General procedures for Rh(III)-catalyzed amidoarylation O-substituted arylhydroxamate with cyclopropene

Without any precaution of air and moisture, O-substituted arylhydroxamate ($0.1 \mathrm{mmol}, 1 \mathrm{eq}$), [ind* $\left.\mathrm{RhCl}_{2}\right]_{2}$ ($0.001 \mathrm{mmol}, 1 \mathrm{~mol} \%$), CsOPiv ($0.025 \mathrm{mmol}, 0.25$ equiv) and $\mathrm{MeOH}(1 \mathrm{~mL}, 0.1 \mathrm{M})$ were weighed into a dram vial charged with a stir bar. The mixture was stirred for 30 seconds and cyclopropene ($0.11 \mathrm{mmol}, 1.1$ equiv) was then added. The reaction was stirred at room temperature for 16 h until the starting material was consumed (monitoring by TLC). The reaction was quenched with saturated NaHCO_{3} and extracted 3 times with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, filtered, and solvent was evaporated to obtain crude product. The crude product was purified by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} /$ hexane to obtain the desired product.
Condition A: using O-pivaloyl arylhydroxamate
Condition B: using O-Boc arylhydroxamate

4. Product characterizations

(1S,1aR,7bR)-1-methyl-1-phenyl-1,1a,2,7b-tetrahydro-3H-cyclopropa[c]isoquinolin-3-one

General procedure B, O-Boc arylhydroxamate ($0.1 \mathrm{mmol}, 23.7 \mathrm{mg}$) reacted with cyclopropene ($0.11 \mathrm{mmol}, 14.3 \mathrm{mg}$) gives the desired dihydroisoquinolone ($>20: 1 \mathrm{dr}$ of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} /$ hexane as a white solid $(17.9 \mathrm{mg}$, 68% yield).
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 6 \mathrm{H})$, $7.28-7.24$ (m, 1H), 6.99 (br. s, NH), 3.49 (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.13 (s, 3H)
${ }^{13} \mathbf{C}$ - NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.1,144.8,136.4,132.5,129.5,128.7,128.2,126.95,126.86,126.78$, 126.5, 40.7, 26.7, 24.9, 13.1

IR (neat, cm^{-1}) 3174, 2923, 1658, 1599
LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}[\mathrm{M}+\mathrm{H}]: 250.1$; Found: 250.1
($1 S, 1 \mathrm{a} R, 7 \mathrm{~b} R$)-1,6-dimethyl-1-phenyl-1,1a,2,7b-tetrahydro-3H-cyclopropa[c]isoquinolin-3-one

General procedure A, O-Piv arylhydroxamate ($0.1 \mathrm{mmol}, 23.5 \mathrm{mg}$) reacted with cyclopropene ($0.11 \mathrm{mmol}, 14.3 \mathrm{mg}$) gives the desired dihydroisoquinolone ($>20: 1 \mathrm{dr}$ of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} /$ hexane as an off-white solid ($21.0 \mathrm{mg}, 90 \%$ yield).

General procedure B, O-Boc arylhydroxamate $(0.1 \mathrm{mmol}, 25.1 \mathrm{mg}$) reacted with cyclopropene (0.11 $\mathrm{mmol}, 14.3 \mathrm{mg}$) gives the desired dihydroisoquinolone ($>20: 1 \mathrm{dr}$ of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using $1 / 3$ to $2 / 1$ $\mathrm{EtOAc} /$ hexane as a white solid ($17.9 \mathrm{mg}, 68 \%$ yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.28-2.22(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ (br. s, 1H), 3.47 (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.13$ (s, 3H)
${ }^{13} \mathbf{C}$ - NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.3,144.9,143.1,136.3,130.0,128.7,128.2,127.9,126.8,126.4$, 124.3, 40.7, 26.7, 25.0, 21.6, 13.2

IR (neat, cm^{-1}) 3176, 3024, 2919, 1575, 1614
LRMS m / z (ESI +APCI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]$: 264.1; Found: 264.2
(1S,1aR,7bR)-6-methoxy-1-methyl-1-phenyl-1,1a,2,7b-tetrahydro-3H-cyclopropa[c]isoquinolin-3one

General procedure A, O-Piv arylhydroxamate $1 \mathbf{e}(0.1 \mathrm{mmol}, 25.1 \mathrm{mg})$ reacted with cyclopropene 2c ($0.11 \mathrm{mmol}, 14.3 \mathrm{mg}$) gives the desired dihydroisoquinolone ($>20: 1 \mathrm{dr}$ of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} /$ hexane as an off-white solid ($24.9 \mathrm{mg}, 89 \%$ yield).
General procedure B, using O-Boc arylhydroxamate $\mathbf{1 e}{ }^{\prime}(0.1 \mathrm{mmol}, 26.7 \mathrm{mg})$ gives the desired dihydroisoquinolone ($>20: 1 \mathrm{dr}$ of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} /$ hexane as an off-white solid (17.9 mg , 64\% yield).
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.83$ (m, 2H), 6.83 (br. s, 1H), 3.88 ($\mathrm{s}, 3 \mathrm{H}$), 3.47 (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (d, $J=8 \mathrm{~Hz}$), 1.15 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}$ - NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.1,162.8,144.9,138.5,130.4,128.7,126.7,126.4,119.9,114.0$, 112.9, 55.4, 41.0, 27.0, 25.2, 13.1

IR (neat, cm^{-1}) 3189, 3024, 2927, 1445, 1603, 1445, 1266
LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}$ [M+H]: 280.1; Found: 280.1
(1S,1aR,7bR)-1-methyl-1-phenyl-6-(trifluoromethyl)-1,1a,2,7b-tetrahydro-3Hcyclopropa $[c]$ isoquinolin-3-one

General procedure A, O-Piv arylhydroxamate ($0.1 \mathrm{mmol}, 28.9 \mathrm{mg}$) reacted with cyclopropene ($0.11 \mathrm{mmol}, 14.3 \mathrm{mg}$) gives the desired dihydroisoquinolone (10.2:1 dr of the crude reaction mixture). The major diastereomer was obtained
after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} /$ hexane as an off-white solid (25.1 $\mathrm{mg}, 77$ \% yield).
General procedure B, using O-Boc arylhydroxamate ($0.1 \mathrm{mmol}, 30.0 \mathrm{mg}$) gives the desired dihydroisoquinolone ($17: 1 \mathrm{dr}$ of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} /$ hexane as an off-white solid (21.2 mg , 67% yield).
${ }^{1} H-N M R\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.32(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35$ (m, 5H), 7.30-7.27 (m, 1H), $3.56(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.14$ (s, 3H)
${ }^{13} \mathbf{C}$ - NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 163.1,144.1,140.4,130.1,129.4$ (q), 128.8, 128.8 (q), 127.5, 126.9, 126.8, 126.3 (q), 125.4 (q), 40.8, 26.4, 25.9, 13.2
${ }^{19}$ F-NMR ($\mathrm{CDCl}_{3}, 386 \mathrm{MHz}$): $\delta-63.1$
IR (neat, cm^{-1}) 3200, 1560, 1311, 1168, 1127
LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]$: 318.1; Found: 318.1
(1S,1aR,7bR)-6-chloro-1-methyl-1-phenyl-1,1a,2,7b-tetrahydro-3H-cyclopropa [c]isoquinolin-3-one

General procedure A, O-Piv arylhydroxamate ($0.1 \mathrm{mmol}, 25.6 \mathrm{mg}$) reacted with cyclopropene ($0.11 \mathrm{mmol}, 14.3 \mathrm{mg}$) gives the desired dihydroisoquinolone (8.5:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc}$ /hexane as an offwhite solid ($20.8 \mathrm{mg}, 73 \%$ yield).

General procedure B, using O-Boc arylhydroxamate ($0.1 \mathrm{mmol}, 27.2 \mathrm{mg}$) gives the desired dihydroisoquinolone ($>20: 1 \mathrm{dr}$ of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} /$ hexane as an off-white solid (17.6 mg , 63% yield).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 7.41-7.23(\mathrm{~m}, 7 \mathrm{H}), 6.79$ (br. s, 1H), 3.48 (dd, $J=8.0$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ - NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 163.2,144.3,138.7,138.2,129.9,129.3,128.8,127.4,126.9,126.7$, 125.4, 40.7, 26.2, 25.7, 13.3

IR (neat, cm^{-1}) 3173, 2921, 1490, 1596
LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]: 284.1$; Found: 284.1
($1 S, 1 \mathrm{aR}, 7 \mathrm{~b} R$)-6-bromo-1-methyl-1-phenyl-1,1a,2,7b-tetrahydro-3H-cyclopropa[c]isoquinolin-3-one

General procedure A, O-Piv arylhydroxamate ($0.1 \mathrm{mmol}, 30.0 \mathrm{mg}$) reacted with cyclopropene ($0.11 \mathrm{mmol}, 14.3 \mathrm{mg}$) gives the desired dihydroisoquinolone (11.2:1 dr of the crude reaction mixture). The major diastereomer was obtained
after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} /$ hexane as an off-white solid (27.3 $\mathrm{mg}, 83$ \% yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.30$ (m, 4H), 7.27 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ (br. s, 1H), $3.50(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.14 (s, 3H)
${ }^{13} \mathbf{C}$ - NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 163.4,144.3,138.4,132.2,130.4,130.0,128.8,127.3,126.9,126.7$, 125.8, 40.7, 26.2, 25.7, 13.3

IR (neat, cm^{-1}) 2924, 1668, 1591, 1469, 1444, 1371, 765, 700
LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]$: 328.0; Found: 328.0, 330.0
(1S,1aR,7bS)-5,6,7-trimethoxy-1-methyl-1-phenyl-1,1a,2,7b-tetrahydro-3Hcyclopropa [c]isoquinolin-3-one

General procedure A, O-Piv arylhydroxamate $(0.1 \mathrm{mmol}, 31.1 \mathrm{mg})$ reacted with cyclopropene ($0.11 \mathrm{mmol}, 14.3 \mathrm{mg}$) gives the desired dihydroisoquinolone ($>20: 1 \mathrm{dr}$ of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} /$ hexane as an off-white solid ($20.5 \mathrm{mg}, 62 \%$ yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.97$ (s, 3H), 3.93 (s, 3H), 3.91 (s, 3H), 3.39 (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.87 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.13$ (s, 3H)
${ }^{13} \mathbf{C}$ - NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 163.7,152.3,151.9,145.9,144.9,128.7,127.1,126.5,123.7,122.3$, 106.7, 61.1, 61.0, 56.1, 40.6, 23.9, 21.2, 13.6

IR (neat, cm^{-1}) 3200, 2937, 1575, 1597, 1576, 1479, 1113
LRMS $\mathrm{m} / \mathrm{z}(\mathrm{ESI}+\mathrm{APCI})$ calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]: 340.2$; Found: 340.2
($1 \mathbf{S , 1 a R}, 7 \mathrm{bR}$)-1-methyl-1-phenyl-5-(trifluoromethyl)-1,1a,2,7b-tetrahydro-3H-cyclopropa[c]isoquinolin-3-one

General procedure A, O-Piv arylhydroxamate $(0.1 \mathrm{mmol}, 28.5 \mathrm{mg})$ reacted with cyclopropene ($0.11 \mathrm{mmol}, 14.3 \mathrm{mg}$) gives the desired dihydroisoquinolone (single regioselectivity, $>20: 1 \mathrm{dr}$ of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} /$ hexane as an off-white solid ($28.3 \mathrm{mg}, 85 \%$ yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{br} . \mathrm{s}, \mathrm{NH}), 7.75(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42-7.33$ (m, 4H), 7.29 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.58 (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 1.14$ (s, 3H)
${ }^{13} \mathbf{C}$ - NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 163.1,144.1,140.4,130.1,129.4$ (q), 128.8, 128.8 (q), 127.5 (q), 126.9 (q), 126.8, 125.4, 123.8, 40.8, 26.4, 25.9, 13.2.
${ }^{19}$ F-NMR ($\mathrm{CDCl}_{3}, 386 \mathrm{MHz}$): $\delta-61.8$
IR (neat, cm^{-1}) 3193, 3060, 2928, 1669, 1617, 1502, 1167, 1125
LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]$: 318.1; Found: 318.1
($1 S, 1 \mathrm{aR}, 9 \mathrm{~b} R$)-1-methyl-1-phenyl-1,1a,2,5,6,7,8,9b-octahydro-3H-benzo[g]cyclopropa[c]isoquinolin-3-one

A 86\%
8.2:1 rr
(15.3:1 dr)

General procedure A, O-Piv arylhydroxamate $(0.1 \mathrm{mmol}, 27.5 \mathrm{mg})$ reacted with cyclopropene ($0.11 \mathrm{mmol}, 14.3 \mathrm{mg}$) gives the desired dihydroisoquinolone (8.5:1 regioselectivity, $>20: 1 \mathrm{dr}$ of the crude reaction mixture). The mixture of product (8.5:1 regioselectivity, $>20: 1 \mathrm{dr}$) was obtained after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} /$ hexane as an off-white solid ($28.6 \mathrm{mg}, 94 \%$ yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.22(\mathrm{~m}$, $1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~m}, 4 \mathrm{H}), 2.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~m}, 4 \mathrm{H})$, 1.13 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}$ - NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.7,145.1,142.4,136.2,133.1,129.9,128.7,128.6,126.8$, 126.7, 126.3, 40.7, 29.5, 29.0, 26.5, 24.6, 23.0, 22.9, 13.1

IR (neat, cm^{-1}) 3190, 2926, 1660, 1613, 1445, 909, 731
LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+\mathrm{H}]: 303.2$; Found: 303.2

General procedure A, O-Piv arylhydroxamate $(0.1 \mathrm{mmol}, 23.5 \mathrm{mg})$ reacted with cyclopropene ($0.11 \mathrm{mmol}, 14.3 \mathrm{mg}$) gives the desired dihydroisoquinolone ($3: 1$ regioselectivity, $>20: 1 \mathrm{dr}$ of the crude reaction mixture). The mixture of products (3:1 regioselectiviy, $>20: 1 \mathrm{dr}$) was obtained after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} /$ hexane as an off-white solid $(25.5 \mathrm{mg}$, 92 \% yield).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: (See spectra)
${ }^{13} \mathbf{C}$ - NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: (See spectra)
IR (neat, cm^{-1}) 3196, 3025, 2923, 1665, 1613, 1500
LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]$: 264.1; Found: 264.1

General procedure A, O-Piv arylhydroxamate (0.1 mmol , 25.1 mg) reacted with cyclopropene ($0.11 \mathrm{mmol}, 14.3$ mg) gives the desired dihydroisoquinolone (1:1 regioselectivity, $>20: 1 \mathrm{dr}$ of the crude reaction mixture). The mixture of product was obtained after purification by
column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} /$ hexane as an off-white solid ($25.1 \mathrm{mg}, 86 \%$ yield).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$): (See spectra)
${ }^{13} \mathbf{C}$ - NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: (See spectra)
IR (neat, cm^{-1}) 3187, 2932, 1668, 1581, 1494, 1263, 1057, 1032, 752
LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}$ [M+H]: 280.1; Found: 280.1
(1S,1aR,7bR)-1-methyl-1-(p-tolyl)-1,1a,2,7b-tetrahydro-3H-cyclopropa[c]isoquinolin-3-one General procedure B, O-Boc arylhydroxamate ($0.1 \mathrm{mmol}, 23.7 \mathrm{mg}$) reacted with cyclopropene ($0.11 \mathrm{mmol}, 15.9 \mathrm{mg}$) gives the desired dihydroisoquinolone ($>20: 1 \mathrm{dr}$ of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc}$ /hexane as an off-white solid (15.3 $\mathrm{mg}, 58$ \% yield).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.91$ (br. s, 1 H), 3.45 (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ - NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.1,141.8,136.5,136.2,132.4,129.44,129.39,128.2,126.87$, 126.85, 126.7, 40.6, 26.6, 24.7, 21.0, 13.2

IR (neat, cm^{-1}) 3188, 3028, 2919, 1662, 1597, 1479, 1341, 777
LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]: 264.1$; Found: 264.2
(1S,1aR,7bR)-1-(4-methoxyphenyl)-1-methyl-1,1a,2,7b-tetrahydro-3H-cyclopropa[c]isoquinolin-3one

5bg

General procedure B, O-Boc arylhydroxamate $\mathbf{1 d}(0.1 \mathrm{mmol}, 23.7 \mathrm{mg})$ reacted with cyclopropene $\mathbf{2 e}(0.11 \mathrm{mmol}, 17.6 \mathrm{mg}$) gives the desired dihydroisoquinolone ($>20: 1$ dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} /$ hexane as an offwhite solid ($18.7 \mathrm{mg}, 67 \%$ yield).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.19(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}$, $\mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{brs}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}$ $=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{dd}, \mathrm{J}=4,8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ - NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.2,158.2,137.0,136.6,132.4,129.4,128.1,128.1,126.8,114.1$, 55.3, 40.5, 26.4, 24.5, 13.6

IR (neat, cm^{-1}) 3196, 3039, 2929, 2830, 1662, 1513, 1240, 1178, 1030, 777, 737
LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}$ [M+H]: 280.1; Found: 280.1

5bh General procedure B, O-Boc arylhydroxamate ($0.1 \mathrm{mmol}, 23.7 \mathrm{mg}$) reacted with cyclopropene ($0.11 \mathrm{mmol}, 23.0 \mathrm{mg}$) gives the desired dihydroisoquinolone ($>20: 1 \mathrm{dr}$ of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} /$ hexane as an off-white solid (17.1 $\mathrm{mg}, 52$ \% yield).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.19$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.51 (t, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.48$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.42-7.34$ (m, 2H), 7.20 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.10 (br. s, 1H), 6.90 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.46 (dd, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.67 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ - NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 164.0,143.9,136.0,132.5,131.8,129.4,128.6,128.2,127.1,126.8$, 120.3, 40.6, 26.7, 24.6, 13.0

IR (neat, cm^{-1}) 3171, 3028, 2921, 1662, 1490, 1437
LRMS m / z (ESI +APCI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]$: 328.0, 330.0; Found: 328.0, 330.1
(1S,1aR,7bR)-1-(3-methoxyphenyl)-1-methyl-1,1a,2,7b-tetrahydro-3H-cyclopropa[c]isoquinolin-3one

5bi

General procedure B, O-Boc arylhydroxamate $(0.1 \mathrm{mmol}, 23.7 \mathrm{mg})$ reacted with cyclopropene ($0.11 \mathrm{mmol}, 17.6 \mathrm{mg}$) gives the desired dihydroisoquinolone (13.5:1 dr of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using $1 / 3$ to $2 / 1$ EtOAc/hexane as an offwhite solid ($16.2 \mathrm{mg}, 58 \%$ yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ - NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.1,159.9,146.5,136.3,132.5,129.7,129.5,128.2,126.95,126.89$, 119.0, 113.2, 111.2, 55.3, 40.8, 26.8, 24.9, 13.0

IR (neat, cm^{-1}) 2952, 1633, 1560, 1482, 1341, 1291, 1039, 773, 699
LRMS $\mathrm{m} / \mathrm{z}(\mathrm{ESI}+\mathrm{APCI})$ calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}$ [M+H]: 280.1; Found: 280.1
(1S,1aR,7bR)-1-methyl-1-(naphthalen-2-yl)-1,1a,2,7b-tetrahydro-3H-cyclopropa[c]isoquinolin-3one

5bj

General procedure B, O-Boc arylhydroxamate $(0.1 \mathrm{mmol}, 23.7 \mathrm{mg})$ reacted with cyclopropene ($0.11 \mathrm{mmol}, 19.8 \mathrm{mg}$) gives the desired dihydroisoquinolone ($>20: 1 \mathrm{dr}$ of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} /$ hexane as an offwhite solid ($23.3 \mathrm{mg}, 78 \%$ yield).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.23(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}), 7.87-7.79(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.45(\mathrm{~m}$, 5 H), $7.39(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{brs}, 1 \mathrm{H}), 3.61(\mathrm{dd}, \mathrm{J}=4,8 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, \mathrm{~J}=8$
$\mathrm{Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ - NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.1,142.1,136.4,133.4,132.5,132.1,129.5,128.6,128.2,127.6$, 127.0, 126.9, 126.4, 125.8, 125.38, 125.36, 40.5, 26.5, 25.4, 13.4

IR (neat, cm^{-1}) $3185,3042,2924,1665,1600,777$
LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]: 300.1$; Found: 300.2
methyl (1R,1aR,7bR)-3-oxo-1-phenyl-1a,2,3,7b-tetrahydro-1H-cyclopropa[c]isoquinoline-1carboxylate

General procedure B, O-Boc arylhydroxamate ($0.1 \mathrm{mmol}, 23.7 \mathrm{mg}$) reacted with cyclopropene ($0.11 \mathrm{mmol}, 19.2 \mathrm{mg}$) gives the desired dihydroisoquinolone ($8: 1 \mathrm{dr}$ of the crude reaction mixture). The major diastereomer ($>10: 1 \mathrm{dr}$ purity) was obtained after purification by column chromatography using $1 / 3$ to $2 / 1$
$\mathbf{5 a a}=\mathbf{5 b a} \quad \mathrm{EtOAc} /$ hexane as an off-white solid ($22.0 \mathrm{mg}, 75 \%$ yield).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.19(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{~Hz}), 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.30(\mathrm{~m}, 5 \mathrm{H}), 3.48(\mathrm{dd}$, $J=8.0,4.0 \mathrm{~Hz}$), $3.36(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ - NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 167.5,163.8,138.0,134.2,133.4,132.5,129.2,129.1,128.8,127.9$, 127.7, 127.0, 52.2, 41.7, 35.6, 28.2

IR (neat, cm^{-1}) 3057, 2950, 1726, 1670, 1445, 909, 731
LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{3}$ [M+H]: 293.1; Found: 293.1
(1S,1aR,7bR)-1a,3',4',7b-tetrahydro-2'H-spiro[cyclopropa[c]isoquinoline-1,1'-naphthalen]-3(2H)one

5bk

General procedure B, O-Boc arylhydroxamate ($0.1 \mathrm{mmol}, 23.7 \mathrm{mg}$) reacted with cyclopropene ($0.11 \mathrm{mmol}, 17.2 \mathrm{mg}$) gives the desired dihydroisoquinolone ($>20: 1 \mathrm{dr}$ of the crude reaction mixture). The major diastereomer was obtained after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} /$ hexane as an off-white solid (19.8 mg , 72% yield).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.24-7.12 (m, 3H), 6.79 (br. s, NH), 6.68 (d, $J=8.0 \mathrm{~Hz}$), 3.50 (dd, $J=8.0,4.0 \mathrm{~Hz}$), $2.83(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.26$ (m, 2H)
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.0,139.1,137.9,136.0,132.5,129.5,129.0,128.1,127.04,127.00$, 126.6, 125.3, 119.6, 43.7, 30.7, 30.2, 22.9, 21.6, 21.3

IR (neat, cm^{-1}) 2920, 1657, 1598, 1479, 1344, 751
LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]$: 275.1; Found: 276.1
(1R,1aR,7bR)-1-benzyl-1-methyl-1,1a,2,7b-tetrahydro-3H-cyclopropa[c]isoquinolin-3-one

General procedure B, O-Boc arylhydroxamate ($0.1 \mathrm{mmol}, 23.7 \mathrm{mg}$) reacted with cyclopropene $\mathbf{2} \mathbf{j}(0.11 \mathrm{mmol}, 15.9 \mathrm{mg}$) gives the desired dihydroisoquinolone ($2.3: 1 \mathrm{dr}$ of the crude reaction mixture). The mixture of product was obtained after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} /$ hexane as an off-white solid (16.8 $\mathrm{mg}, 64 \%$ yield).
${ }^{1} \mathbf{H}$-NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): (See spectra)
${ }^{13} \mathbf{C}$ - NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$: (See spectra)
LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}$ [M+H]: 264.1; Found: 264.1

5. Mechanistic studies

C-H activation reversibility

A 1-dram vial was charged with a stir bar, O-pivaloyl benzhydroxamate ($0.1 \mathrm{mmol}, 1$ equiv., 22.1 mg), $\left[\mathrm{Ind} * \mathrm{RhCl}_{2}\right]_{2}(0.001 \mathrm{mmol}, 1 \mathrm{~mol} \%, 0.7 \mathrm{mg})$ and CsOPiv ($0.025 \mathrm{mmol}, 0.25$ equiv., 5.9 mg) were weighed. The mixture was dissolved in $\mathrm{CD}_{3} \mathrm{OD}(0.1 \mathrm{M}, 1 \mathrm{~mL})$ and stirred for 1 min . The mixture was
determined the deuterium incorporation by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.

Electronic preference of the reaction

A 1-dram vial charged with a stir bar, O-pivaloyl benzhydroxamate ($0.05 \mathrm{mmol}, 0.5$ equiv., 11.1 mg), O pivaloyl p-bromo benzhydroxamate ($0.05 \mathrm{mmol}, 0.5$ equiv., 15.0 mg), $\left[\mathrm{Ind}^{*} \mathrm{RhCl}_{2}\right]_{2}(0.001 \mathrm{mmol}, 1$ $\mathrm{mol} \%, 0.7 \mathrm{mg}$) and CsOPiv ($0.025 \mathrm{mmol}, 0.25$ equiv., 5.9 mg) were weighed. The mixture was dissolved in $\mathrm{CH}_{3} \mathrm{OH}$ and stirred for 30 sec at $0^{\circ} \mathrm{C}$. Then, cyclopropene ($0.1 \mathrm{mmol}, 0.5$ equiv., 5.9 mg) was added and stirred for 30 sec at $0^{\circ} \mathrm{C}$. The reaction was quenched using satd. NaHCO_{3} and extracted 3 times with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and solvent was evaporated. The crude mixture was characterized by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy using 1,3,5trimethoxybenzene as an internal standard.

Kinetic isotope study

D_{5}-benzoic acid was prepared according to the reported procedure. ${ }^{87}$ Then, O-pivaloyl D_{5} benzhydroxamate was prepared.
O-pivaloyl D_{5}-benzhydroxamate ($0.1 \mathrm{mmol}, 0.1$ equiv., 22.6 mg), cyclopropene ($0.11 \mathrm{mmol}, 0.11$ equiv., 14.3 mg), [$\left.\mathrm{Ind}^{*} \mathrm{RhCl}_{2}\right]_{2}(0.001 \mathrm{mmol}, 1 \mathrm{~mol} \%, 0.7 \mathrm{mg})$ and CsOPiv ($0.025 \mathrm{mmol}, 0.25$ equiv., 5.9 mg) were weighed in a dram vial. The reaction mixture was stirred at room temperature for 16 h . The major diastereomer was obtained after purification by column chromatography using $1 / 3$ to $2 / 1 \mathrm{EtOAc} / \mathrm{hexane}$ as an off-white solid (82% yield, $>20: 1 \mathrm{dr}$).
${ }^{1} \mathbf{H}-N M R\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.37-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 1.11(\mathrm{~s}, 3 \mathrm{H})$

LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{D}_{4} \mathrm{NO}[\mathrm{M}+\mathrm{H}]: 254.1$; Found: 254.1

[^39]

$$
\mathbf{1 a}: \mathbf{1 a}-\mathrm{d}_{5}(H: D)=1: 1 \quad \mathbf{4 e}
$$
\[

$$
\begin{aligned}
& \mathrm{KIE}=6.7 \text { (parallel) } \\
& \mathrm{KIE}=5.7 \text { (competition) }
\end{aligned}
$$
\]

Parallel experiment: Two 1-dram vials were charged with a stir bar, proteo- and deutero- benzamide substrate ($0.1 \mathrm{mmol}, 1$ equiv), $\left[\mathrm{Ind}^{*} \mathrm{RhCl}_{2}\right]_{2}(1 \mathrm{~mol} \%)$ and CsOPiv (0.25 equiv) were weighed. The mixture was dissolved in $\mathrm{CD}_{3} \mathrm{OD}(0.1 \mathrm{M}, 1 \mathrm{~mL})$ and stirred for 30 sec at $0^{\circ} \mathrm{C}$. Then, cyclopropene $(0.1$ mmol, 0.5 equiv., 5.9 mg) was added and stirred for 30 sec . The reaction was quenched using satd. NaHCO_{3} and extracted 3 times with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and solvent was evaporated. The crude mixture was characterized by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.

Competition experiment: A 1-dram vial were charged with a stir bar, proteo- and deutero- benzamide substrate ($0.05 \mathrm{mmol}, 0.5$ equiv), $\left[\mathrm{Ind}^{*} \mathrm{RhCl}_{2}\right]_{2}(0.001 \mathrm{mmol}, 1 \mathrm{~mol} \%, 0.7 \mathrm{mg})$ and CsOPiv $(0.025,0.25$ equiv., 5.9 mg) were weighed. The mixture was dissolved in $\mathrm{CD}_{3} \mathrm{OD}(0.1 \mathrm{M}, 1 \mathrm{~mL})$ and stirred for 30 sec at $0^{\circ} \mathrm{C}$. Then, cyclopropene ($0.1 \mathrm{mmol}, 0.5$ equiv., 5.9 mg) was added and stirred for 30 sec . The reaction was quenched using satd. NaHCO_{3} and extracted 3 times with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and solvent was evaporated. The crude mixture was characterized by ${ }^{1} \mathrm{H}$-NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.

Epimerization study

A diastereomeric mixture of dihydroisoquinolone 5ae (1:1 dr), substrate $\mathbf{1 f}^{\prime}$ ($0.1 \mathrm{mmol}, 1$ equiv., 30.2 $\mathrm{mg}),\left[\mathrm{ind} * \mathrm{RhCl}_{2}\right]_{2}(0.001,1 \mathrm{~mol} \%, 0.8 \mathrm{mg}) \operatorname{CsOPiv}(0.025 \mathrm{mmol}, 0.25$ equiv., 5.9 mg$)$ were weighed in a dram vial charged with a stir bar. $\mathrm{MeOH}(1 \mathrm{~mL}, 0.1 \mathrm{M})$ was added and the mixture was stirred for 30 seconds and cyclopropene $\mathbf{4 e}(0.11 \mathrm{mmol}, 14.9 \mu \mathrm{~L}, 1.1$ equiv to $\mathbf{1 e})$ was then added. The reaction was stirred at room temperature for 16 hours and the starting material $\mathbf{1 f}$ ' was monitored by TLC. The reaction was quenched using satd. NaHCO_{3} and extracted 3 times with EtOAc. The combined organic layers were
washed with brine, dried over MgSO_{4}, filtered and the solvent was evaporated. The crude mixture was characterized by ${ }^{1} \mathrm{H}$-NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard.

6. Derivatizations of dihydroisoquinolone products
(1S,1aR,7bR)-3-chloro-1-methyl-1-phenyl-1a,7b-dihydro-1H-cyclopropa[c]isoquinoline

To a flamed dried round-bottom flask equipped with a stir bar and reflux condenser, dihydroisoquinolone ($0.39 \mathrm{mmol}, 97 \mathrm{mg}$), dry benzene and POCl_{3} were added. The reaction mixture was refluxed for 6 h . After the completion, the reaction mixture was evaporated under reduced pressure at $60^{\circ} \mathrm{C}$ and treated with 5% $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{Et}_{2} \mathrm{O}$ at $-30^{\circ} \mathrm{C}$. After stirring for 10 minutes, the crude was passed through alumina column chromatography using $1: 1 \mathrm{Et}_{2} \mathrm{O}$ /hexane as an eluent to give a crude imidoyl chloride as a white solid (85 $\mathrm{mg}, 82 \%$ yield).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 151.9,145.3,136.2,132.5,129.2,128.8,127.9,127.8,127.0,126.8$, 125.0, 50.7, 31.4, 22.2, 13.4

IR (neat, cm^{-1}) 3024, 1614, 1599, 1567, 1218
LRMS $\mathrm{m} / \mathrm{z}(\mathrm{ESI}+\mathrm{APCI})$ calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClN}[\mathrm{M}+\mathrm{H}]$: 268.1; Found: 268.1
(1S,1aR,7bR)-1-methyl-1-phenyl-1a,7b-dihydro-1H-cyclopropa[c]isoquinolin-3-yl trifluoromethanesulfonate

To a flamed-dried round equipped with a stir bar, dihydroisoquinolone ($0.5 \mathrm{mmol}, 125 \mathrm{mg}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 $\mathrm{mL})$ was added. The reaction mixture was cooled at $-0^{\circ} \mathrm{C}$. Then, $\mathrm{Tf}_{2} \mathrm{O}(0.77 \mathrm{mmol}, 0.13 \mathrm{~mL})$ and pyridine $(0.765 \mathrm{mmol}, 61 \mu \mathrm{~L})$ was slowly added to the reaction mixture which was then stirred at the same temperature for 10 mins. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with satd. NaHCO_{3}. The combined organic extracts were dried over MgSO_{4} and concentrated to give a crude product. The crude was purified by alumina column chromatography using EtOAc as an eluent to give the desired product as a purple solid ($152 \mathrm{mg}, 80 \%$ yield).
${ }^{1} \mathbf{H}$-NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H})$, 7.47-7.38 (m, 3H), $7.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}$, $3 \mathrm{H})$
${ }^{13}$ C- NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 161.7,143.4,136.1,134.8,129.8,129.7,129.0,128.0,127.9,127.5$, 125.4, 121.2 (q), 44.7, 29.2, 25.9, 15.5
${ }^{19} \mathbf{F}$ - NMR ($\mathrm{CDCl}_{3}, 381 \mathrm{MHz}$): 72.3
IR (neat, cm^{-1}) 3061, 1078, 1603, 1492, 1466, 1291, 1093, 792, 720, 688
LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}$ [M+H]: 382.1; Found: 382.1
7. X-ray Structure

CCDC 1472771

Table 1 Crystal data and structure refinement.

Identification code	Rovis227-1
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}$
Formula weight	279.32
Temperature/K	99.77
Crystal system	monoclinic
Space group	$\mathrm{P}_{1} / \mathrm{n}$
a / \AA	$8.5035(2)$
b / \AA	$7.1303(2)$
c / \AA	$23.6793(6)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$95.7420(12)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1428.53(6)$
Z	4
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.299
μ / mm^{-1}	0.085
$\mathrm{~F}(000)$	592.0
Crystal size $/ \mathrm{mm}^{3}$	$0.25 \times 0.124 \times 0.107$
Radiation	$\mathrm{MoK} \alpha(\lambda=0.71073)$

2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[I>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
5.97 to 66.776
$-13 \leq h \leq 12,-7 \leq k \leq 10,-36 \leq 1 \leq 36$
30307
$5464\left[\mathrm{R}_{\text {int }}=0.0926, \mathrm{R}_{\text {sigma }}=0.0945\right]$
5464/0/192
1.033
$\mathrm{R}_{1}=0.0685, \mathrm{wR}_{2}=0.1558$
$\mathrm{R}_{1}=0.1350, \mathrm{wR}_{2}=0.1811$
0.54/-0.29

Table 2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$. U_{eq} is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
O1	$6707.2(13)$	$3443.8(17)$	$54.8(5)$	$18.0(3)$
O2	$9731.6(14)$	$-2398.8(19)$	$511.4(6)$	$23.2(3)$
N3	$4408.4(16)$	$3146(2)$	$448.1(6)$	$15.5(3)$
C4	$7791.1(18)$	$-66(2)$	$452.3(7)$	$15.0(3)$
C5	$6334.4(18)$	$637(2)$	$575.3(6)$	$13.0(3)$
C6	$5347.7(18)$	$-415(2)$	$898.4(6)$	$13.7(3)$
C7	$3777.6(18)$	$313(2)$	$1014.8(6)$	$13.6(3)$
C8	$3308.6(18)$	$2188(2)$	$768.8(7)$	$14.4(3)$
C9	$5837.4(18)$	$2508(2)$	$341.3(7)$	$13.5(3)$
C10	$8283.4(19)$	$-1830(2)$	$653.3(7)$	$15.8(3)$
C11	$3616.3(18)$	$2012(2)$	$1415.3(7)$	$14.6(3)$
C12	$2168.9(18)$	$2069(2)$	$1732.1(7)$	$14.2(3)$
C13	$7307.4(19)$	$-2900(3)$	$968.6(7)$	$17.5(3)$
C14	$5853.7(19)$	$-2186(2)$	$1085.9(7)$	$16.7(3)$
C15	$5107.6(19)$	$2856(3)$	$1709.6(7)$	$17.1(3)$
C16	$765.3(19)$	$1151(3)$	$1531.6(7)$	$18.4(4)$
C17	$2171(2)$	$3097(3)$	$2237.5(8)$	$19.7(4)$
C18	$-578(2)$	$1240(3)$	$1825.7(8)$	$23.0(4)$
C19	$-552(2)$	$2286(3)$	$2321.1(8)$	$24.0(4)$
C20	$826(2)$	$3196(3)$	$2525.4(8)$	$23.1(4)$
C21	$10328(2)$	$-4149(3)$	$736.9(10)$	$31.4(5)$

Table 3 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \mathrm{U}_{11}+2 h k a^{*} b^{*} \mathrm{U}_{12}+\ldots\right]$.

Atom	\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	\mathbf{U}_{13}	U_{12}
O1	18.0(6)	14.9(6)	21.8(6)	4.6(5)	5.8(5)	2.3(5)
O2	19.8(6)	20.0(7)	31.6(7)	5.7(5)	10.4(5)	7.9(5)
N3	17.4(6)	12.7(7)	16.8(7)	6.0(5)	4.3(5)	4.8(5)
C4	14.7(7)	14.6(8)	16.0(7)	-1.0(6)	2.9(6)	0.7(6)
C5	15.9(7)	10.4(8)	12.8(7)	0.5(6)	1.5(6)	1.2(6)
C6	15.9(7)	12.2(8)	13.1(7)	-2.1(6)	2.0(6)	1.0(6)
C7	14.0(7)	13.2(8)	13.8(7)	0.3(6)	2.4(6)	1.0(6)
C8	14.7(7)	14.4(8)	14.3(7)	2.5(6)	3.5(5)	2.7(6)
C9	16.1(7)	10.8(8)	13.6(7)	-0.8(6)	1.8(6)	1.1(6)
$\mathrm{C} 10$	14.7(7)	15.7(9)	17.2(8)	-2.0(6)	2.8(6)	3.3(6)
C11	16.3(7)	14.5(8)	13.3(7)	0.7(6)	2.9(6)	1.9(6)
C12	16.9(7)	11.9(8)	14.1(7)	0.6(6)	2.7(6)	2.1(6)
C13	19.9(8)	13.8(8)	19.1(8)	2.6(7)	3.0(6)	$3.2(7)$
C14	19.1(7)	14.1(8)	17.5(8)	2.2(6)	5.0(6)	1.6(6)
C15	17.1(7)	17.8(9)	16.5(8)	-2.5(7)	2.9(6)	-0.7(7)
$\mathrm{C} 16$	18.0(8)	22.7(10)	14.7(8)	-2.7(7)	1.9(6)	1.2(7)
$\mathrm{C} 17$	19.7(8)	18.4(9)	21.5(8)	-4.2(7)	4.5(6)	-2.4(7)
C18	16.5(8)	29.6(11)	23.1(9)	-3.8(8)	2.4(7)	-0.6(7)
C19	20.8(8)	29.1(11)	23.4(9)	-2.4(8)	8.5(7)	1.6(8)
C20	26.5(9)	23.8(10)	20.4(9)	-7.9(7)	8.9(7)	-2.8(7)
C21	24.9(9)	26.1(11)	45.0(12)	8.2(10)	12.8(8)	14.1(8)

Table 4 Bond Lengths

Atom	Atom	Length $/ \AA$
O1	C9	$1.2461(19)$
O2	C10	$1.3700(19)$
O2	C21	$1.430(2)$
N3	C8	$1.435(2)$
N3	C9	$1.345(2)$

Atom	Atom	Length $/ \AA$
C 7	C 11	$1.553(2)$
C 8	C 11	$1.532(2)$
C 10	C 13	$1.398(2)$
C 11	C 12	$1.505(2)$
C 11	C 15	$1.510(2)$

C 4	C 5	$1.394(2)$
C 4	C 10	$1.394(2)$
C 5	C 6	$1.407(2)$
C 5	C 9	$1.489(2)$
C 6	C 7	$1.484(2)$
C 6	C 14	$1.392(2)$
C 7	C 8	$1.497(2)$

Table 5 Bond Angles

Atom	Atom	Atom	Angle $^{\circ}$
C10	O2	C21	$117.45(13)$
C9	N3	C8	$125.98(14)$
C10	C4	C5	$119.75(15)$
C4	C5	C6	$120.82(15)$
C4	C5	C9	$118.01(14)$
C6	C5	C9	$121.15(14)$
C5	C6	C7	$120.72(15)$
C14	C6	C5	$118.35(14)$
C14	C6	C7	$120.88(14)$
C6	C7	C8	$116.74(13)$
C6	C7	C11	$121.50(14)$
C8	C7	C11	$60.29(11)$
N3	C8	C7	$117.95(13)$
N3	C8	C11	$120.84(14)$
C7	C8	C11	$61.67(11)$
O1	C9	N3	$121.19(15)$
O1	C9	C5	$121.36(14)$
N3	C9	C5	$117.45(14)$
O2	C10	C4	$115.48(14)$

Atom	Atom	Atom	Angle $^{\circ}$
O 2	C 10	C 13	$124.44(15)$
C 4	C 10	C 13	$120.07(14)$
C 8	C 11	C 7	$58.03(10)$
C 12	C 11	C 7	$116.89(14)$
C 12	C 11	C 8	$115.43(13)$
C 12	C 11	C 15	$116.76(14)$
C 15	C 11	C 7	$118.13(13)$
C 15	C 11	C 8	$118.68(14)$
C 16	C 12	C 11	$121.99(15)$
C 16	C 12	C 17	$117.46(15)$
C 17	C 12	C 11	$120.53(15)$
C 14	C 13	C 10	$119.60(16)$
C 13	C 14	C 6	$121.41(15)$
C 18	C 16	C 12	$121.38(16)$
C 20	C 17	C 12	$120.91(16)$
C 19	C 18	C 16	$120.08(17)$
C 20	C 19	C 18	$119.22(16)$
C 19	C 20	C 17	$120.94(17)$

Table 6 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
H3	4122	4252	309	19
H4	8446	653	232	18
H7	2913	-640	1006	16
H8	2172	2310	618	17
H13	7635	-4109	1102	21
H14	5192	-2922	1299	20
H15A	5395	2196	2068	26
H15B	4930	4186	1787	26
H15C	5966	2735	1465	26
H16	726	455	1189	22
H17	3104	3734	2385	24
H18	-1509	584	1687	28
H19	-1470	2376	2518	29
H20	854	3899	2867	28
H21A	11371	-4387	609	47
H21B	9603	-5160	604	47
H21C	10420	-4100	1153	47

Experimental

Single crystals of $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}$ were obtained by the vapor diffusion method using $\mathrm{CH}_{3} \mathrm{Cl}$ and pentane. A suitable crystal was selected and collected on a Bruker APEX-II CCD diffractometer. The crystal was kept at 99.77 K during data collection. Using Olex 2^{88}, the structure was solved with the XS^{89} structure solution program using Direct Methods and refined with the XL^{90} refinement package using Least Squares minimisation.

Crystal structure determination

Crystal Data for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}(M=279.32 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P}_{1} / \mathrm{n}$ (no. 14), $a=$ $8.5035(2) \AA, b=7.1303(2) \AA, c=23.6793(6) \AA, \beta=95.7420(12)^{\circ}, V=1428.53(6) \AA^{3}, Z=4, T=$ $99.77 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.085 \mathrm{~mm}^{-1}$, Dcalc $=1.299 \mathrm{~g} / \mathrm{cm}^{3}, 30307$ reflections measured $\left(5.97^{\circ} \leq 2 \Theta \leq\right.$ 66.776°), 5464 unique ($R_{\text {int }}=0.0926, \mathrm{R}_{\text {sigma }}=0.0945$) which were used in all calculations. The final R_{1}

[^40]was $0.0685(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1811 (all data).
8. NMR Spectra

[^41]

$\begin{array}{llllllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

\qquad

[^42]

$\begin{array}{llllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

$\begin{array}{lllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

APPENDIX 2

Development of Stereoselective [4.2.0] Dihydroisoquinolones Synthesis via Rh(III)-Catalyzed C-H Activation and [4+2] Annulation with Cyclobutenes

1. General Methods

When necessary, organic solvents were dried and/or distilled prior to use under argon. Air and moisture sensitive reactions were carried out in oven or flame-dried glassware. Column chromatography was performed on Silicycle® SilicaFlash \circledR P60 (230-400 mesh) silica gel. Thin layer chromatography was performed on Silicycle ${ }^{\circledR} 250 \mu \mathrm{~m}$ silica gel 60A plates. Visualization was accomplished with UV light (254 nm) or potassium permanganate. ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$, and ${ }^{13} \mathrm{C}$ NMR spectra were collected at ambient temperature in CDCl_{3} on a Varian 400 MHz or a Bruker 300 or 500 MHz spectrometers. Chemical shifts are reported as parts per million (δ, ppm) and are referenced to the residual solvent peaks of the deuterated solvents employed. Coupling constants (J) are reported in Hz. Coupling uses the following abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, and $\mathrm{m}=$ multiplet. Mass spectra were obtained on an Agilent Technologies 6130 Quadropole Mass Spec (LRMS) or ACQUITY Waters UPLC/mass spectrometer equipped with electrospray ionization. Infrared (IR) spectra were recorded with neat samples on a Bruker Tensor 27 FT-IR or Perkin Elmer Paragon 1000 FT-IR spectrometer.
2. General procedures for Rh(III)-catalyzed reaction

Without any precaution of air and moisture, O-pivaloyl arylhydroxamic acid ($0.1 \mathrm{mmol}, 1$ equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(0.001 \mathrm{mmol}, 1 \mathrm{~mol} \%)$, CsOPiv ($0.025 \mathrm{mmol}, 0.25$ equiv), cyclobutene ($0.11 \mathrm{mmol}, 1.1$ equiv), and $\mathrm{MeOH}(1 \mathrm{~mL}, 0.1 \mathrm{M})$ were charged into a dram vial with a stir bar. The reaction was stirred at room temperature until the starting material was consumed (monitoring by TLC). The reaction was quenched with saturated NaHCO_{3} and extracted 3 times with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, filtered, and solvent was evaporated to obtain crude product. The crude product was purified by column chromatography using 25% to $75 \% \mathrm{EtOAc} /$ hexane $/ 1 \% \mathrm{Et}_{3} \mathrm{~N}$ to obtain the corresponding product.
3. Preparations of Starting Materials
O-pivaloyl arylhydroxamates ${ }^{91}$ were prepared by previously reported procedures.
Cyclobutenes were prepared by previously reported procedures.

[^43]
4. Characterizations of New Compounds

dimethyl (1S,2S,2aS,8bR)-4-oxo-1,2,2a,3,4,8b-hexahydrocyclobuta[c]isoquinoline-1,2-dicarboxylate Off-white solid ($28.8 \mathrm{mg}, 99 \%$ yield)
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.37 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, \mathrm{NH}), 4.70(\mathrm{ddd}, J=$ $9.3,7.0,4.1,1 \mathrm{H}), 4.07$ (dd, $J=9.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (s, 3H), 3.70 (s, 3H), 3.56 (ddt, $J=9.1,6.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.33(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.35,171.12,163.62,138.35,133.16,128.39$, 127.85, 127.69, 126.61, 52.43, 52.17, 49.31, 49.17, 47.12, 36.53.

LRMS (ESI) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 290.1$, found: 290.1.
dimethyl (1S,2S,2aS,8bR)-7-methoxy-4-oxo-1,2,2a,3,4,8b-hexahydrocyclobuta[c]isoquinoline-1,2dicarboxylate

Off-white solid ($29.3 \mathrm{mg}, 92 \%$ yield)
${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.8$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.55$ (s, NH), 4.66 (dddt, $J=7.9$, $6.1,4.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.69$ (s, 3H), 3.55 (ddd, $J=9.8,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.39 (ddd, $J=9.8,4.2,1.0$ Hz, 1H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.33,171.13,163.62,163.32,140.45,130.62,119.45,113.62,112.30$, 55.50, 52.42, 52.15, 49.32, 49.23, 47.02, 36.86.

LRMS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 320.1$, found: 320.1.
dimethyl (1S,2S,2aS,8bR)-7-chloro-4-oxo-1,2,2a,3,4,8b-hexahydrocyclobuta[c]isoquinoline-1,2dicarboxylate

Off-white solid ($29.3 \mathrm{mg}, 92 \%$ yield)
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, J=8.4, \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4$
$\mathrm{Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, \mathrm{NH}), 4.68$ (dddt, $J=8.9,6.8,4.1,0.9 \mathrm{~Hz}$,
1 H), 4.05 (ddd, $J=9.4,4.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.77 (s, 3H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.55$
(ddd, $J=9.8,6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.41$ (ddd, $J=9.8,4.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.93,172.01,170.88,162.79,162.77$,
140.02 , 139.36, 130.15, 128.22, 127.78, 125.10, 52.54, 52.25, 49.34, 49.19, 46.88, 36.36.

LRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 324.1$, found: 324.1.
dimethyl (1S,2S,2aS,8bR)-7-bromo-4-oxo-1,2,2a,3,4,8b-hexahydrocyclobuta[c]isoquinoline-1,2dicarboxylate

15da

Off-white solide ($36.8 \mathrm{mg}, 90 \%$ yield)
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4$
$\mathrm{Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, \mathrm{NH}), 4.69(\mathrm{dddt}, J=9.1,6.4,4.1,1.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.11-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{ddd}, J=9.8,6.9$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.41$ (ddd, $J=9.8,4.2,1.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 172.00,170.85,162.85,140.15,131.20$, $130.78,130.23,127.97,125.51,52.55,52.26,49.35,49.19,46.88,36.27$.

LRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 368.0,370.0$, found: 368.0, 370.0.
dimethyl
(1S,2S,2aS,8bR)-4-oxo-7-(trifluoromethyl)-1,2,2a,3,4,8b-
hexahydrocyclobuta[c]isoquinoline-1,2-dicarboxylate
Off-white solid ($32.0 \mathrm{mg}, 90 \%$ yield)

15ea ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~d}, J=8.1,1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54-7.50(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=4.0 \mathrm{~Hz}, \mathrm{NH}), 4.73(\mathrm{dddd}, J=9.2$, $6.8,4.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.72$ (s, $3 \mathrm{H}), 3.56(\mathrm{ddd}, J=9.8,6.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{ddd}, J=9.8,4.4,1.0 \mathrm{~Hz}$, $1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.89,170.79,162.29,139.06,134.59$ (q), 129.62, $129.24,124.96$ (m), 124.52 (m), 123.38 (q), 52.58, 52.30, 49.42, 49.04, 46.91, 36.32 .
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.18$.
LRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 358.1, found: 358.1.

dimethyl (1S,2S,2aS,8bR)-5-methyl-4-oxo-1,2,2a,3,4,8b-hexahydrocyclobuta[c]isoquinoline-1,2dicarboxylate

15fa
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}, \mathrm{NH}), 4.64-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=9.2$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{ddd}, J=9.6,6.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.39$ (ddd, $J=9.7,4.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, cdcl_{3}) $\delta 172.39,171.20,164.72,142.17,139.81,132.28$, $131.80,126.19,124.56,52.37,52.15,49.07,48.86,47.41,37.24,23.59$.

LRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 304.1$, found: 304.1.
dimethyl (1S,2S,2aS,8bR)-6-methyl-4-oxo-1,2,2a,3,4,8b-hexahydrocyclobuta[c]isoquinoline-1,2dicarboxylate

Off-white solid ($30.5 \mathrm{mg}, 99 \%$ yield)
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, \mathrm{NH}), 4.74-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=9.4$, $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{ddd}, J=9.8,7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.36 (ddd, $J=9.7,3.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 172.44,171.17,163.81,137.61,135.38$, $134.02,128.63,127.80,126.35,52.40,52.14,49.26,49.21,47.18,36.37,21.08$.

LRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 304.1$, found: 304.1.
dimethyl
(1S,2S,2aS,8bR)-4-oxo-6-(trifluoromethyl)-1,2,2a,3,4,8b-
hexahydrocyclobuta[c]isoquinoline-1,2-dicarboxylate

15ha

Off-white solid ($31 \mathrm{mg}, 87 \%$ yield)
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, \mathrm{NH}), 4.72(\mathrm{dddd}, J=9.2,6.7,4.0,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.20-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{ddd}, J=9.8$, $6.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{ddd}, J=9.8,4.5,1.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 171.88,170.79,162.26,141.96,130.37$ $(\mathrm{q}, J=33.3 \mathrm{~Hz}), 129.52(\mathrm{q}, J=3.6 \mathrm{~Hz}), 128.67,127.30,125.70(\mathrm{q}, J=4.0 \mathrm{~Hz}), 123.54(\mathrm{q}, J=272.2 \mathrm{~Hz})$, 52.57, 52.31, 49.44, 49.06, 46.89, 36.33.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.90$.

$15 i a / 15 i a '$

LRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+}: 358.1$, found: 358.1

Off-white solid ($18.8 \mathrm{mg}, 59 \%$ yield) $c a$. 1.5:1 regioisomeric ratio
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl_{3}) see ${ }^{1} \mathrm{H}$ NMR spectra
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.99,172.45,171.20,171.18,163.55,163.49,159.07,156.56,130.41$, $129.16,128.35,127.70,127.66,126.64,121.20,120.18,114.05,111.03,55.69,55.60,52.40,52.32$, 52.15, 52.07, 49.23, 49.21, 48.86, 47.21, 45.79, 36.18, 33.55.

LRMS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 320.1$, found: 320.1
dimethyl (1S,2S)-6,7,8-trimethoxy-4-oxo-1,2,2a,3,4,8b-hexahydrocyclobuta[c]isoquinoline-1,2dicarboxylate

Off-white solid ($34.5 \mathrm{mg}, 91 \%$ yield)
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, \mathrm{NH}), 4.76(\mathrm{dddt}, J=$ $9.1,8.3,4.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.85(\mathrm{~m}, 10 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}$, $3 \mathrm{H}), 3.55$ (ddd, $J=9.6,8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{ddd}, J=10.1,3.0,1.0 \mathrm{~Hz}$, $1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 172.88,171.21,163.24,153.25,150.50$, $145.66,124.79,122.09,106.28,60.82,60.61,56.15,52.36,52.06,49.04,48.96,46.46,33.59$.

LRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{8}[\mathrm{M}+\mathrm{H}]^{+}: 380.1$, found: 380.2
dimethyl (5aS,6S,7S,7aS)-4-oxo-4,5,5a,6,7,7a-hexahydrocyclobuta[b]furo[2,3-d]pyridine-6,7dicarboxylate

Off-white solid ($22.0 \mathrm{mg}, 79 \%$ yield)
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.12 (s, NH), 4.87 (dddd, $J=9.6,8.9,4.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.76$ $(\mathrm{s}, 3 \mathrm{H}), 3.69(\mathrm{~m}, 4 \mathrm{H}), 3.46(\mathrm{ddd}, J=9.9,2.3,1.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.91,170.73,162.88,156.74,144.11,115.51$, 108.03, 52.61, 52.20, 50.56, 49.34, 43.10, 34.80.

LRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 280.1$, found: 280.1 .
dimethyl (5aS,6S,7S,7aR)-2-bromo-4-oxo-4,5,5a,6,7,7a-hexahydrocyclobuta[b]furo[3,2-d]pyridine-6,7-dicarboxylate

Off-white solid ($16.3 \mathrm{mg}, 45 \%$ yield)
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~s}, \mathrm{NH}), 4.78(\mathrm{tdd}, J=8.9$, $4.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{ddd}, J=9.1,2.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.73(\mathrm{~m}, 4 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.32$ (ddd, $J=9.9,2.6,1.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.00,170.73,155.69,143.36,131.58$, $129.69,111.95,52.60,52.25,51.09,49.03,45.13,34.62$.
LRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{BrNO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 358.0,360.0$ found: 358.0, 360.0.

dimethyl (5aS,6S,7S,7aR)-4-oxo-4,5,5a,6,7,7a-hexahydrocyclobuta[b]thieno[3,2-d]pyridine-6,7dicarboxylate

Off-white solid ($25.6 \mathrm{mg}, 87 \%$ yield)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.59(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.38$ (s, NH), 4.82 (dddd, $J=9.3,8.3,4.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.97 (ddd, $J=9.3$, $2.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 4 \mathrm{H}), 3.32$ (ddd, $J=9.9,2.9,1.0$ $\mathrm{Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 172.30,171.01,160.67,143.59,132.97,130.95$, 126.74, 52.50, 52.15, 51.09, 49.09, 45.84, 36.12.

LRMS (ESI) m/z calcd for C13H13NO5S [M+H] ${ }^{+}: 296.1$ found: 296.1.

5. X-ray Structure

15ea

Computing details: Program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2014); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).
Crystal data
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{5}$
$M_{r}=357.28$

$$
\begin{aligned}
& V=1539.33(7) \AA^{3} \\
& Z=4
\end{aligned}
$$

Monoclinic, $P 2_{1} / c$
$a=13.9171$ (4) \AA
$b=8.4431(2) \AA$
$c=13.1482(4) \AA$
$\mathrm{b}=94.892(3)^{\circ}$

$$
F(000)=736
$$

$D_{\mathrm{x}}=1.542 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K a radiation, $1=0.71073 \AA$
$\mathrm{m}=0.14 \mathrm{~mm}^{-1}$
$T=140 \mathrm{~K}$

Data collection

10791 measured reflections
3139 independent reflections
2717 reflections with $I>2 \mathrm{~s}(I)$
$\mathrm{q}_{\text {max }}=26.4^{\circ}, \mathrm{q}_{\text {min }}=3.3^{\circ}$
$h=-17$ 』 15
$k=-10$ 』 10
$R_{\text {int }}=0.029 \quad l=-16$ 』 16

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \mathrm{~s}\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.103$
$S=1.01$
3139 reflections
263 parameters
Special details

58 restraints
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\mathrm{s}^{2}\left(F_{0}{ }^{2}\right)+(0.0376 P)^{2}+0.9964 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\mathrm{D} / \mathrm{s})_{\text {max }}=0.004$
$\mathrm{D} \rho_{\text {max }}=0.24 \mathrm{e} \AA^{-3}$
$D \rho_{\text {min }}=-0.34$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
N1	$0.07832(10)$	$0.84066(17)$	$0.45335(10)$	$0.0232(3)$	
H1	$0.0543(15)$	$0.938(3)$	$0.4379(15)$	$0.037(6)^{*}$	
C2	$0.04648(11)$	$0.77335(19)$	$0.53671(12)$	$0.0214(3)$	
O3	$-0.01448(9)$	$0.83843(14)$	$0.58590(9)$	$0.0295(3)$	
C4	$0.08745(11)$	$0.61582(19)$	$0.56979(12)$	$0.0201(3)$	
C5	$0.04998(12)$	$0.53810(19)$	$0.65090(12)$	$0.0225(3)$	
H5	-0.0030	0.5829	0.6818	0.027^{*}	
C6	$0.08915(12)$	$0.3958(2)$	$0.68711(12)$	$0.0238(4)$	
H6	0.0647	0.3446	0.7439	0.029^{*}	
C7	$0.16490(12)$	$0.32893(19)$	$0.63898(13)$	$0.0240(4)$	
C8	$0.20716(14)$	$0.1751(2)$	$0.67837(14)$	$0.0321(4)$	
F9	$0.14043(12)$	$0.06734(18)$	$0.69384(19)$	$0.0584(6)$	$0.876(4)$
F10	$0.2574(2)$	$0.1918(2)$	$0.76757(17)$	$0.0881(10)$	$0.876(4)$
F11	$0.26380(17)$	$0.1061(2)$	$0.61550(16)$	$0.0681(8)$	$0.876(4)$

F9B	0.1743 (10)	0.1237 (17)	0.7567 (10)	0.059 (4)	0.124 (4)
F10B	0.3012 (6)	0.1870 (13)	0.6930 (11)	0.049 (3)	0.124 (4)
F11B	0.1955 (13)	0.0674 (14)	0.6095 (11)	0.073 (4)	0.124 (4)
C12	0.20147 (12)	0.40372	0.55634 (12)	0.0230 (4)	
H12	0.2519	0.3555	0.5230	0.028*	
C13	0.16424 (11)	0.54922 (19)	0.52237 (12)	0.0197 (3)	
C14	0.20753 (11)	0.64058 (19)	0.44055 (12)	0.0198 (3)	
H14	0.2318	0.5670	0.3889	0.024*	
C15	0.14648 (11)	0.77373 (19)	0.38716 (12)	0.0210 (3)	
H15	0.1174	0.7456	0.3173	0.025*	
C16	0.23835 (12)	0.87736 (19)	0.38790 (12)	0.0211 (3)	
H16	0.2289	0.9890	0.4104	0.025*	
C17	0.28992 (12)	0.86320 (19)	0.29211 (12)	0.0225 (3)	
O18	0.26835 (9)	0.77748 (15)	0.22116 (9)	0.0311 (3)	
O19	0.36832 (9)	0.95671 (15)	0.29989 (9)	0.0321 (3)	
C20	0.43194 (15)	0.9444 (3)	0.21848 (15)	0.0433 (5)	
H20A	0.4483	0.8330	0.2083	0.065*	
H20B	0.4910	1.0048	0.2368	0.065*	
H20C	0.3995	0.9871	0.1553	0.065*	
C21	0.28569 (11)	0.76587 (18)	0.47463 (12)	0.0198 (3)	
H21	0.2760	0.8086	0.5439	0.024*	
C22	0.38933 (12)	0.71896 (19)	0.46671 (12)	0.0216 (3)	
O23	0.41443 (9)	0.61002 (15)	0.41611 (10)	0.0315 (3)	
O24	0.45003 (8)	0.81568 (14)	0.52093 (9)	0.0274 (3)	
C25	0.55146 (12)	0.7847 (2)	0.51169 (16)	0.0362 (5)	
H25A	0.5670	0.6766	0.5346	0.054*	
H25B	0.5906	0.8602	0.5540	0.054*	
H25C	0.5652	0.7965	0.4402	0.054*	

Atomic displacement parameters (A^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0229(7)$	$0.0234(7)$	$0.0238(7)$	$0.0065(6)$	$0.0053(6)$	$0.0039(6)$
C2	$0.0191(8)$	$0.0243(8)$	$0.0209(8)$	$0.0001(7)$	$0.0027(6)$	$-0.0010(6)$
O3	$0.0304(7)$	$0.0282(6)$	$0.0318(6)$	$0.0077(5)$	$0.0140(5)$	$0.0033(5)$
C4	$0.0202(8)$	$0.0209(8)$	$0.0192(7)$	$-0.0022(6)$	$0.0012(6)$	$-0.0021(6)$

C5	$0.0216(8)$	$0.0239(8)$	$0.0227(8)$	$-0.0024(7)$	$0.0055(7)$	$-0.0038(7)$
C6	$0.0262(8)$	$0.0239(8)$	$0.0219(8)$	$-0.0056(7)$	$0.0056(7)$	$0.0012(7)$
C7	$0.0250(8)$	$0.0210(8)$	$0.0262(8)$	$-0.0025(7)$	$0.0026(7)$	$0.0011(7)$
C8	$0.0344(10)$	$0.0272(9)$	$0.0363(10)$	$0.0020(8)$	$0.0113(8)$	$0.0068(8)$
F9	$0.0483(10)$	$0.0251(8)$	$0.1048(17)$	$0.0000(7)$	$0.0247(10)$	$0.0228(9)$
F10	$0.134(2)$	$0.0387(9)$	$0.0795(15)$	$0.0130(11)$	$-0.0630(16)$	$0.0088(9)$
F11	$0.0830(16)$	$0.0425(10)$	$0.0877(14)$	$0.0354(10)$	$0.0585(13)$	$0.0312(10)$
F9B	$0.066(8)$	$0.056(8)$	$0.059(6)$	$0.022(6)$	$0.033(6)$	$0.032(6)$
F10B	$0.036(4)$	$0.039(6)$	$0.071(8)$	$0.012(3)$	$0.007(4)$	$0.037(5)$
F11B	$0.095(9)$	$0.041(6)$	$0.082(6)$	$0.021(6)$	$-0.001(6)$	$-0.015(5)$
C12	$0.0226(8)$	$0.0214(8)$	$0.0258(8)$	$0.0005(7)$	$0.0067(7)$	$-0.0009(7)$
C13	$0.0200(8)$	$0.0205(8)$	$0.0189(7)$	$-0.0024(6)$	$0.0024(6)$	$-0.0011(6)$
C14	$0.0209(8)$	$0.0203(8)$	$0.0186(7)$	$0.0016(6)$	$0.0043(6)$	$-0.0010(6)$
C15	$0.0225(8)$	$0.0240(8)$	$0.0170(7)$	$0.0015(7)$	$0.0037(6)$	$0.0010(6)$
C16	$0.0245(8)$	$0.0202(8)$	$0.0188(8)$	$0.0024(7)$	$0.0042(6)$	$0.0018(6)$
C17	$0.0251(8)$	$0.0230(8)$	$0.0196(8)$	$0.0034(7)$	$0.0033(7)$	$0.0045(7)$
O18	$0.0338(7)$	$0.0386(7)$	$0.0211(6)$	$-0.0004(6)$	$0.0042(5)$	$-0.0035(5)$
O19	$0.0342(7)$	$0.0364(7)$	$0.0276(6)$	$-0.0089(6)$	$0.0127(6)$	$-0.0005(5)$
C20	$0.0405(11)$	$0.0587(14)$	$0.0335(10)$	$-0.0104(10)$	$0.0199(9)$	$0.0017(10)$
C21	$0.0236(8)$	$0.0197(8)$	$0.0163(7)$	$0.0008(6)$	$0.0035(6)$	$0.0008(6)$
C22	$0.0241(8)$	$0.0218(8)$	$0.0190(7)$	$-0.0005(7)$	$0.0028(6)$	$0.0035(6)$
O23	$0.0259(6)$	$0.0319(7)$	$0.0370(7)$	$0.0037(5)$	$0.0055(5)$	$-0.0106(6)$
O24	$0.0213(6)$	$0.0260(6)$	$0.0350(7)$	$-0.0013(5)$	$0.0020(5)$	$-0.0041(5)$
C25	$0.0194(8)$	$0.0346(10)$	$0.0545(12)$	$-0.0011(8)$	$0.0020(8)$	$-0.0052(9)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{N} 1-\mathrm{H} 1$	$0.90(2)$	$\mathrm{C} 14-\mathrm{H} 14$	1.0000
$\mathrm{~N} 1-\mathrm{C} 2$	$1.343(2)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.542(2)$
$\mathrm{N} 1-\mathrm{C} 15$	$1.455(2)$	$\mathrm{C} 14-\mathrm{C} 21$	$1.556(2)$
$\mathrm{C} 2-\mathrm{O} 3$	$1.2383(19)$	$\mathrm{C} 15-\mathrm{H} 15$	1.0000
$\mathrm{C} 2-\mathrm{C} 4$	$1.497(2)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.549(2)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.391(2)$	$\mathrm{C} 16-\mathrm{H} 16$	1.0000
$\mathrm{C} 4-\mathrm{C} 13$	$1.400(2)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.507(2)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9500	$\mathrm{C} 16-\mathrm{C} 21$	$1.579(2)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.387(2)$	$\mathrm{C} 17-\mathrm{O} 18$	$1.199(2)$

C6-H6	0.9500	C17-O19	1.344 (2)
C6-C7	1.395 (2)	O19-C20	1.450 (2)
C7-C8	1.500 (2)	C20-H20A	0.9800
C7-C12	1.390 (2)	C20-H20B	0.9800
C8-F9	1.328 (2)	C20-H20C	0.9800
C8-F10	1.321 (3)	C21-H21	1.0000
C8-F11	1.325 (2)	C21-C22	1.508 (2)
C8-F9B	1.241 (9)	$\mathrm{C} 22-\mathrm{O} 23$	1.204 (2)
C8-F10B	1.311 (9)	C22-O24	1.336 (2)
C8-F11B	1.283 (11)	O24-C25	1.451 (2)
C12-H12	0.9500	C25-H25A	0.9800
C12-C13	1.392 (2)	C25-H25B	0.9800
C13-C14	1.492 (2)	C25-H25C	0.9800
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1$	115.3 (13)	C15-C14-C21	88.85 (12)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 15$	126.95 (14)	C21-C14-H14	110.4
C15-N1-H1	117.8 (13)	N1-C15-C14	111.90 (12)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 4$	117.97 (14)	N1-C15-H15	114.1
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{N} 1$	121.80 (15)	N1-C15-C16	110.90 (13)
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 4$	120.23 (14)	C14-C15-H15	114.1
C5- $\mathrm{C} 4-\mathrm{C} 2$	118.91 (14)	C14-C15-C16	89.23 (12)
C5-C4-C13	120.15 (15)	C16-C15-H15	114.1
C13-C4-C2	120.91 (14)	C15-C16-H16	113.9
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.7	C15-C16-C21	87.77 (11)
C6-C5-C4	120.65 (15)	C17-C16-C15	113.70 (13)
C6-C5-H5	119.7	C17-C16-H16	113.9
C5-C6-H6	120.5	C17-C16-C21	110.93 (13)
C5-C6-C7	119.04 (15)	C21-C16-H16	113.9
C7-C6- H 6	120.5	O18-C17-C16	126.37 (15)
C6- $\mathrm{C} 7-\mathrm{C} 8$	118.91 (15)	O18-C17-O19	124.19 (15)
C12-C7-C6	120.80 (15)	O19-C17-C16	109.36 (14)
C12-C7-C8	120.29 (15)	C17-O19-C20	116.41 (14)
F9-C8-C7	112.79 (16)	O19-C20-H20A	109.5
F10-C8-C7	112.12 (16)	O19-C20-H20B	109.5

F10-C8-F9	105.14 (19)	O19-C20-H20C	109.5
F10-C8-F11	107.6 (2)	H20A-C20-H20B	109.5
F11-C8-C7	113.70 (15)	H20A-C20-H20C	109.5
F11-C8-F9	104.79 (18)	H20B-C20-H20C	109.5
F9B-C8-C7	115.4 (5)	C14-C21-C16	87.65 (11)
F9B-C8-F10B	109.8 (8)	C14-C21-H21	111.2
F9B-C8-F11B	107.7 (10)	C16-C21-H21	111.2
F10B-C8-C7	110.0 (4)	C22-C21-C14	116.81 (13)
F11B-C8-C7	110.4 (6)	C22-C21-C16	116.71 (12)
F11B-C8-F10B	102.8 (9)	C22-C21-H21	111.2
C7- $\mathrm{C} 12-\mathrm{H} 12$	120.0	O23-C22-C21	124.26 (15)
C7-C12-C13	120.04 (15)	$\mathrm{O} 23-\mathrm{C} 22-\mathrm{O} 24$	124.16 (15)
C13-C12-H12	120.0	O24-C22-C21	111.56 (13)
C4-C13-C14	118.94 (14)	C22-O24-C25	114.86 (13)
C12-C13-C4	119.27 (14)	$\mathrm{O} 24-\mathrm{C} 25-\mathrm{H} 25 \mathrm{~A}$	109.5
C12-C13-C14	121.70 (14)	O24-C25-H25B	109.5
C13-C14-H14	110.4	O24-C25-H25C	109.5
C13-C14-C15	117.68 (13)	H25A-C25-H25B	109.5
C13-C14-C21	117.35 (13)	H25A-C25-H25C	109.5
C15-C14-H14	110.4	H25B-C25-H25C	109.5
N1-C2-C4-C5	-174.88 (15)	C12-C7-C8-F11B	-62.6 (10)
N1-C2-C4-C13	7.1 (2)	C12-C13-C14-C15	163.16 (15)
N1-C15-C16-C17	-153.98 (13)	C12-C13-C14-C21	-92.61 (19)
N1-C15-C16-C21	94.09 (13)	C13-C4-C5-C6	1.3 (2)
C2-N1-C15-C14	-20.0 (2)	C13-C14-C15-N1	27.7 (2)
C2-N1-C15-C16	-117.89 (17)	C13-C14-C15-C16	139.96 (14)
C2-C4-C5-C6	-176.77 (15)	C13-C14-C21-C16	-139.88 (14)
$\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 13-\mathrm{C} 12$	178.95 (14)	C13-C14-C21-C22	101.22 (16)
C2-C4-C13-C14	2.3 (2)	C14-C15-C16-C17	92.81 (14)
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 5$	5.5 (2)	C14-C15-C16-C21	-19.12 (11)
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 13$	-172.51 (15)	C14-C21-C22-O23	17.4 (2)
C4-C5-C6-C7	-2.0 (2)	C14-C21-C22-O24	-164.05 (13)
C4-C13-C14-C15	-20.3 (2)	C15-N1-C2-O3	-177.39 (16)

$\mathrm{C} 4-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 21$	$83.94(19)$	$\mathrm{C} 15-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 4$	$3.0(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 13-\mathrm{C} 12$	$1.0(2)$	$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 21-\mathrm{C} 16-19.03(11)$	
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 13-\mathrm{C} 14$	$-175.68(14)$	$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 21-\mathrm{C} 22-137.93(13)$	
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$179.95(16)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{O} 18$	$-3.1(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 12$	$0.5(2)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{O} 19$	$-179.91(13)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{F} 9$	$47.5(3)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 21-\mathrm{C} 14$	$18.96(11)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{F} 10$	$-70.9(3)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 21-\mathrm{C} 22$	$137.94(14)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{F} 11$	$166.7(2)$	$\mathrm{C} 16-\mathrm{C} 17-\mathrm{O} 19-\mathrm{C} 20$	$173.68(15)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{F} 9 \mathrm{~B}$	$-4.5(10)$	$\mathrm{C} 16-\mathrm{C} 21-\mathrm{C} 22-\mathrm{O} 23$	$-84.3(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{F} 10 \mathrm{~B}$	$-129.3(7)$	$\mathrm{C} 16-\mathrm{C} 21-\mathrm{C} 22-\mathrm{O} 24$	$94.26(16)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{F} 11 \mathrm{~B}$	$117.9(10)$	$\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 21-\mathrm{C} 14$	$-95.61(14)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 13$	$1.7(2)$	$\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 21-\mathrm{C} 22$	$23.38(19)$
$\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 4$	$-2.4(2)$	$\mathrm{O} 18-\mathrm{C} 17-\mathrm{O} 19-\mathrm{C} 20$	$-3.2(2)$
$\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$174.10(15)$	$\mathrm{C} 21-\mathrm{C} 14-\mathrm{C} 15-\mathrm{N} 1$	$-92.88(14)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 13$	$-177.73(16)$	$\mathrm{C} 21-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$19.40(11)$
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8-\mathrm{F} 9$	$-133.0(2)$	$\mathrm{C} 21-\mathrm{C} 16-\mathrm{C} 17-\mathrm{O} 18$	$93.9(2)$
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8-\mathrm{F} 10$	$108.5(2)$	$\mathrm{C} 21-\mathrm{C} 16-\mathrm{C} 17-\mathrm{O} 19$	$-82.88(16)$
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8-\mathrm{F} 11$	$-13.9(3)$	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{O} 24-\mathrm{C} 25$	$-176.05(14)$
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8-\mathrm{F} 9 \mathrm{~B}$	$175.0(10)$	$\mathrm{O} 23-\mathrm{C} 22-\mathrm{O} 24-\mathrm{C} 25$	$2.5(2)$
$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8-\mathrm{F} 10 \mathrm{~B}$	$50.1(8)$		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 3^{\mathrm{i}}$	$0.90(2)$	$1.98(2)$	$2.8842(18)$	$173.4(19)$

Symmetry code: (i) $-x,-y+2,-z+1$.
Document origin: publCIF [Westrip, S. P. (2010). J. Apply. Cryst., 43, 920-925.
6. NMR Spectra

APPENDIX 3

Rh(III)-Catalyzed Coupling of N-Pivaloyloxy Acrylamides with Alkenes via C-H Activation:

Direct Modular Assembly of Piperidones

1. General methods

Unless otherwise noted, reactions were performed in flame-dried or oven-dried glassware and carried out under an atmosphere of nitrogen with magnetic stirring. Dichloromethane (DCM) were degassed with argon and passed through two columns of neutral alumina. Flash column chromatography was performed on SiliCycle Inc. ${ }^{\circledR}$ silica gel 60 (230-400 mesh). Thin Layer chromatography was performed on SiliCycle Inc.® 0.25 mm silica gel $60-\mathrm{F}$ plates. Visualization was accomplished with UV light (254 nm) or KMnO_{4} staining.
${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on Bruker 300,400 or 500 MHz spectrometers at ambient temperature. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data are reported as the following: chemical shift in parts per million $(\delta$, ppm) from chloroform $\left(\mathrm{CDCl}_{3}\right)$ taken as 7.26 ppm , integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ =triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets) and coupling constant (J in Hz unit). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ is reported as the following: chemical shifts are reported in ppm from CDCl_{3} taken as 77.0 ppm . Lowresolution mass spectra (LSMS) were obtained on ACQUITY Waters UPLC/mass spectrometer equipped with electrospray ionization. Infrared spectra (IR) were recored on a Perkin Elmer Paragon 1000 FT-IR spectrometer.

2. Preparation of starting materials

2-substituted acrylic acids ${ }^{92}$ (for $\mathbf{9 a}$ and $\mathbf{9 b}$), partial esterification of itaconic acid ${ }^{93}$ (for $\mathbf{9 d}$), 2-aryl acrylic acids ${ }^{94}(\mathbf{9} \mathbf{e}-\mathbf{9 j})$ and 2-ethoxy acrylic acid ${ }^{95}$ for $(\mathbf{9 k})$ were prepared according to the procedure. All alkenes in this study were purchased from commercial sources and used without further purification.

N-pivaloyloxy α-substituted acrylamides

[^44]i. To a solution of 2-substituted acrylic acid (1 equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.17 \mathrm{M})$ at $0^{\circ} \mathrm{C}$ (ice bath) under N_{2} was added dropwise oxalyl chloride (1.1 equiv) and a few drops of DMF. The reaction was then stirred at $0{ }^{\circ} \mathrm{C}$ to room temperature (typically 2-3 h). The volatile was removed under reduced pressure to give a crude acid chloride.
ii. To the solution of $\mathrm{NH}_{2} \mathrm{OPiv} \cdot \mathrm{TfOH}$ (1.1 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv) and EtOAc/ $\mathrm{H}_{2} \mathrm{O}(2 / 1 \mathrm{by} \mathrm{v} / \mathrm{v}$, 0.1 M) at $0^{\circ} \mathrm{C}$ (ice bath), the crude acid chloride was added dropwise (while a small amount of EtOAc can be used as a solvent). The mixture was stirred at the same temperature for 1 h (prolong the reaction time led to the decomposition of the N-pivaloyloxy acrylamide). Upon the completion (monitored by TLC), a saturated NaHCO_{3} was added. The aqueous layer was extracted with EtOAc ($\times 3$), washed with brine, dried with MgSO_{4}, filtered. The solvent was removed under reduced pressure to give a crude N (pivaloyloxy) α-substituted acrylamide, which was purified by a flash column chromatography (5% to 25% EtOAc/hexane).

2-benzyl-N-(pivaloyloxy)acrylamide

IR (neat, cm^{-1}) 3217, 2981, 1780, 1668, 1080.
LRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 262.1$, found: 262.2.

2-(4-bromobenzyl)-N-(pivaloyloxy)acrylamide

9b $\quad{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.77,166.75,140.84,136.60,131.78$, 130.74, 122.28, 120.69, 38.39, 37.57, 26.98.

IR (neat, cm^{-1}) 3221, 29675, 1779, 1668, 1624, 1487, 1073, 1032, 1012.
LRMS (ESI) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 340.1,342.1$, found: 340.0, 342.0.
N -(pivaloyloxy)methacrylamide

9c IR (neat, cm^{-1}) 3225, 2977, 1782, 1671, 1629, 1481, 1055, 1033, 1015.

${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.22(\mathrm{~s}, \mathrm{NH}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.50-5.47(\mathrm{~m}, 1 \mathrm{H}), 1.99$
($\mathrm{t}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}$), 1.34 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.90,167.26,136.91,121.97,38.39,26.98,18.29$

LRMS (ESI) m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 186.1, found: 186.2.
methyl 3-((pivaloyloxy)carbamoyl)but-3-enoate
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.77$ (s, NH), $6.07(\mathrm{~s}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 3.74$

9d
$(\mathrm{s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) δ 176.49, 171.40, 166.39, 134.56, 125.32, 52.48, 38.39, 37.77, 27.02.

IR (neat, cm^{-1}) 2972, 1741, 1055, 1033, 1013.
LRMS (ESI) m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}$: 244.1, found: 244.1, 266.1.
2-phenyl-N-(pivaloyloxy)acrylamide

9 e $127.77,123.06,38.36,27.00$.

IR (neat, cm^{-1}) 3205, 2975, 1779, 1668, 1480, 1077, 1031, 701.
LRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 248.1$, found: 248.1.
\mathbf{N}-(pivaloyloxy)-2-(p-tolyl)acrylamide

$9 f$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.32(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.15$
$(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 176.41, 166.31, 141.43, 138.71, 132.74, $129.38,127.59,121.94,38.30,26.99,21.20$.

IR (neat, cm^{-1}) 3195, 2975, 1781, 1667, 1612, 1077, 826.
LRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 262.1$, found: 262.1.

2-(4-methoxyphenyl)-N-(pivaloyloxy)acrylamide

9 g
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.23(\mathrm{~s}, \mathrm{NH}), 7.38(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.60,166.48,160.04,141.04,129.00$, $127.96,121.19,114.11,55.29,38.34,26.99$.

IR (neat, cm^{-1}) 3229, 2973, 1780, 1670, 1608, 1513, 1252, 1181, 1076, 1033, 837.
LRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}$: 278.1, found: 278.1.
2-(4-bromophenyl)-N-(pivaloyloxy)acrylamide
${ }^{1} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.05(\mathrm{~s}, \mathrm{NH}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 176.65,165.79,140.66,134.39,131.93$, $129.33,123.24,123.10,38.38,26.99$.
9h
IR (neat, cm^{-1}) 3200, 2975, 1781, 1670, 1489, 1074, 1033, 1011, 833.

LRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 326.0$, found: 326.0, 328.0.
2-(3-methoxyphenyl)-N-(pivaloyloxy)acrylamide

9i
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.30(\mathrm{~s}, \mathrm{NH}), 7.25(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$
(d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H})$, 5.71 (s, 1H), 3.77 (s, 3H), 1.30 (s, 9H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.42,171.28,159.65,141.45,136.96$, 129.77, 120.10, 114.59, 113.14, 55.23, 38.30, 26.96.

IR (neat, $\mathbf{c m}^{-1}$) 3203, 2974, 1779, 1670, 1600, 1579, 1484, 1462, 1247, 1034, 1075.
LRMS (ESI) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 278.1, found: 278.1.
\mathbf{N}-(pivaloyloxy)-2-(o-tolyl)acrylamide

9j
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.91(\mathrm{~s}, \mathrm{NH}), 7.53-6.95(\mathrm{~m}, 4 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H})$, $5.52(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.23,171.06,140.80,136.74,135.57,130.44$, 129.73, 128.89, 126.61, 126.13, 53.47, 38.22, 26.91.

IR (neat, cm^{-1}) 3207, 2974, 1780, 1671, 1480, 1459, 1074, 1033, 768, 729.
LRMS (ESI) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 262.1$, found: 262.1 .
2-ethoxy-N-(pivaloyloxy)acrylamide
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.70(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 59 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{q}, J=$

$6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.0 \mathrm{~Hz}, 5 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.18,160.01,151.78,91.76,64.25,38.35,26.95$, $9 k \quad 14.18$.

IR (neat, cm^{-1}) 3245, 2979, 2937, 1782, 1693, 1628, 1479, 1300, 1059, 1081.
LRMS (ESI) m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 216.1$, found: 216.2.
3. General procedures for dihydropyridone synthesis

Without any precaution of air and moisture, substituted N-(pivaloyloxy) acrylamide ($0.1 \mathrm{mmol}, 1$ eq), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(0.0025 \mathrm{mmol}, 2.5 \mathrm{~mol} \%), \mathrm{CsOAc}(0.025 \mathrm{mmol}, 0.25$ equiv) and alkenes $(0.11 \mathrm{mmol}$, 1.1 equiv) were charged into a dram vial charged with a stir bar. Trifluoroethanol (TFE) ($0.33 \mathrm{~mL}, 0.3 \mathrm{M}$) was added and the mixture was stirred at room temperature until the starting material was consumed (monitoring by TLC). The reaction was quenched with saturated NaHCO_{3} and extracted 3 times with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, filtered, and solvent was evaporated to obtain crude product. The crude product was purified by column chromatography using gradient 10% to $50 \% \mathrm{EtOAc} /$ hexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ as an eluent to obtain the product.

4. Product characterizations

3-benzyl-6-phenyl-5,6-dihydropyridin-2(1H)-one

Off-white solid ($22.2 \mathrm{mg}, 85 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.23(\mathrm{~m}, 10 \mathrm{H}), 6.16(\mathrm{ddt}, J=5.1,3.4,1.6 \mathrm{~Hz}, 1 \mathrm{H})$,
5.71 (s, NH), 4.71 (dd, $J=10.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 2.53(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.96,141.20,139.29,135.01,134.99$, 129.35, 128.91, 128.42, 128.27, 126.45, 126.21, 55.91, 36.06, 33.41.

IR (neat, cm^{-1}) 3206, 3061, 3027, 2917, 1673, 1630, 1494, 1453, 1424, 1290, 698.
LRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 265.1$, found: 265.1.
The regiochemistry based on COSY.

3-(4-bromobenzyl)-6-phenyl-5,6-dihydropyridin-2(1H)-one

$7.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{~s}, \mathrm{NH}), 4.67(\mathrm{dd}, J=10.8,6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 2.57-2.46(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.69,141.06,138.40,135.24,134.54,131.46,131.03,128.92,128.30$, 126.42, 120.08, 55.81, 35.66, 33.35.

IR (neat, cm^{-1}) 3202, 3061, 2919, 1674, 1631, 1425, 1454, 1486, 1289, 1070, 1011, 699.
LRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}: 342.0,344.0$, found: 342.0, 344.0.

3-methyl-6-phenyl-5,6-dihydropyridin-2(1H)-one

$J=10.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H})$.
11cb $\quad{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 167.73,141.35,134.27,130.92,128.90,128.23$, 126.39, 56.21, 33.37, 16.61. IR (neat, cm^{-1}) 3214, 3063, 2923, 2886, 1676, 1633, 699.

LRMS (ESI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 188.1$, found: 188.2.
methyl 2-(2-oxo-6-phenyl-1,2,5,6-tetrahydropyridin-3-yl)acetate

11db

Off-white solid ($18.4 \mathrm{mg}, 75 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.49(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{~s}, \mathrm{NH})$, 4.77 (dd, $J=10.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (s, 3 H), 3.41 (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28$ (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.53(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 171.71,166.16,141.02,137.39,128.95,128.71,128.35,126.46,55.89$, 52.02, 35.61, 33.36.

IR (neat, cm ${ }^{-1}$) 3207, 3062, 2950, 1737, 1680, 1636.

LRMS (ESI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}: 246.1$, 268.1, found: 246.2, 268.1.

3,6-diphenyl-5,6-dihydropyridin-2(1H)-one

11eb

Off-white solid ($13.3 \mathrm{mg}, 55 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 8 \mathrm{H}), 6.71(\mathrm{dd}, J$ $=5.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~s}, \mathrm{NH}), 4.83(\mathrm{dd}, J=11.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.66(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.08,141.00,136.62,136.27,135.71,129.00$, 128.59, 128.39, 128.06, 127.81, 126.47, 55.84, 33.72.

IR (neat, cm^{-1}) 3218, 3059, 2932, 1669, 1616, 697.
LRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}: 250.1$, found: 250.2, 272.1.
6-phenyl-3-(p-tolyl)-5,6-dihydropyridin-2(1H)-one

Off-white solid ($21.1 \mathrm{mg}, 80 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.35(\mathrm{~s}, 7 \mathrm{H}), 7.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, 6.67 (dd, $J=5.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, \mathrm{NH}), 4.81(\mathrm{dd}, J=11.3,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.78-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.23,141.10,137.58,135.90,135.56$,
133.41, 128.98, 128.78, 128.46, 128.34, 126.48, 55.83, 33.70, 21.22.

IR (neat, cm^{-1}) 3182, 3056, 2921, 1665, 1511, 823, 699.
LRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}: 264.1,286.1$, found: 264.2, 286.1.

3-(4-methoxyphenyl)-6-phenyl-5,6-dihydropyridin-2(1H)-one

Off-white solid $(16.5 \mathrm{mg}, 59 \%$ yield $)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 5 \mathrm{H})$,
$6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{dd}, J=5.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~s}, \mathrm{NH}), 4.81$
$(\mathrm{dd}, J=10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.98-2.54(\mathrm{~m}, 2 \mathrm{H})$. 129.75, 128.98, 128.79, 128.36, 126.47, 113.54, 55.87, 55.31, 33.71.

IR (neat, cm^{-1}) 3198, 3059, 2933, 2836, 1665, 1607, 1510, 1244, 830.
LRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}: 280.1$, found: 280.2, 302.1.

3-(4-bromophenyl)-6-phenyl-5,6-dihydropyridin-2(1H)-one

Off-white solid ($19.6 \mathrm{mg}, 60 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 4 \mathrm{H}), 7.35$ (s,
1 H), 7.36 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.71$ (dd, $J=5.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$ (s, NH), 4.82
(dd, $J=11.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.46(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 165.70,140.80,137.00,135.12,134.68$, 131.18, 130.26, 129.04, 128.46, 126.44, 122.07, 55.76, 33.68.

IR (neat, cm^{-1}) 3202, 3060, 2924, 1666, 1614, 1487, 824.
LRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}: 327.0,330.0$, found: 328.0, 330.0.
3-(3-methoxyphenyl)-6-phenyl-5,6-dihydropyridin-2(1H)-one

Off-white solid ($22.7 \mathrm{mg}, 81 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.47-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.12-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=5.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.89$ (s, NH), $4.84-4.78(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.77-2.65(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 165.98,159.25,140.99,137.65,136.79$, 135.56, 129.03, 129.00, 128.38, 126.47, 121.08, 114.25, 113.60, 55.78, 55.27, 33.69.

IR (neat, cm^{-1}) 3211, 3061, 2938, 1669, 1270, 697.
LRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}$: $280.1,302.1$, found: 280.1, 302.1.
6-phenyl-3-(o-tolyl)-5,6-dihydropyridin-2(1H)-one

11jb

Off-white solid ($26.3 \mathrm{mg}, 77 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.07(\mathrm{~m}, 9 \mathrm{H}), 6.56(\mathrm{dd}, J=5.0,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.90(\mathrm{~s}, \mathrm{NH}), 4.90(\mathrm{dd}, J=10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 165.89,141.07,137.73,136.78,136.61,136.53$, $129.92,129.78,129.00,128.37,128.05,126.46,125.63,56.01,33.59,20.21$.

IR (neat, cm^{-1}) 3206, 3061, 2924, 1669, 1622, 727.
LRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}: 264.1,286.1$, found: 264.2, 286.1.

3-ethoxy-6-phenyl-5,6-dihydropyridin-2(1H)-one

 $11 \mathbf{k b} \quad J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 163.48,146.86,140.86,128.92,128.78,128.32,126.34,104.53,63.57$, 56.00, 31.92, 14.34.

IR (neat, cm^{-1}) 3228, 2979, 2932, 1682, 1633, 1224, 700.
LRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 218.1,240.1$, found: 218.1, 240.1 .
3-benzyl-6-(p-tolyl)-5,6-dihydropyridin-2(1H)-one

11ac

Off-white solid ($25.4 \mathrm{mg}, 92 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}$, $J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.16(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.76$ (s, $\mathrm{NH}), 4.67(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 2.49(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 167.04,139.33,138.21,138.05,135.12$,
134.96, 129.55, 129.36, 128.42, 126.37, 126.20, 55.64, 36.05, 33.46, 21.11.

IR (neat, cm^{-1}) 3205, 3059, 3026, 2920, 1673, 1630, 699.
LRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}: 278.1,300.1$, found: 278.2, 300.1.
3-benzyl-6-(4-methoxyphenyl)-5,6-dihydropyridin-2(1H)-one

11ad

Off-white solid ($26.0 \mathrm{mg}, 89 \%$ yield).
1 mmol scale - 244.2, 83% yield
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{t}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=15.0$
$\mathrm{Hz}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.16$ (t, $J=5.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.71(\mathrm{~s}, \mathrm{NH}), 4.65(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 2.50-$ 2.47 (m, 1H).
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 167.02,159.50,139.33,135.16,134.95,133.18,129.34,128.41,127.67$, $126.19,114.22,55.38,55.34,36.05,33.50$.

IR (neat, cm^{-1}) 3207, 3060, 3027, 2932, 2836, 1672, 1629, 1512, 1247, 1032, 826, 700.
LRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}: 294.1,316.1$, found: 294.1, 316.1.
3-benzyl-6-(4-(trifluoromethyl)phenyl)-5,6-dihydropyridin-2(1H)-one
Off-white solid ($15.3 \mathrm{mg}, 46 \%$ yield).

11ae
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 3 \mathrm{H}), 6.16(\mathrm{~m}, 1 \mathrm{H}), 5.93(\mathrm{~s}, \mathrm{NH}), 4.78(\mathrm{dd}, J=$ $10.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 2.84-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.38(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.87,145.23,139.07,135.23,134.49$, $130.49,129.28,128.44,126.79,126.29,125.88,55.30,36.07,33.12$.

IR (neat, cm^{-1}) 3212, 3064, 2922, 1675, 1630, 1324, 1164, 1121, 1068, 826, 700.
LRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 332.1$, found: 332.1 .
3-benzyl-6-(4-fluorophenyl)-5,6-dihydropyridin-2(1H)-one
Yellow oil ($18.9 \mathrm{mg}, 67 \%$ yield).

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{t}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~m}, 1 \mathrm{H}), 5.77(\mathrm{~s}, \mathrm{NH}), 4.67(\mathrm{dd}, J=11.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ (s, 2H), 2.54-2.41 (m, 2H).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.93,162.71,139.21,136.98,135.07,134.82$, 129.31, 128.43, 128.15, 126.24, 115.88 115.69, 55.20, 36.05, 33.42.
${ }^{19} \mathbf{F}$ NMR $\left(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta 112.89$.
IR (neat, cm^{-1}) 3207, 3062, 3028, 2922, 1673, 1630, 1510, 1427, 1225, 827, 699.
LRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+}: 281.1$, found: 281.1.

3-benzyl-6-(4-chlorophenyl)-5,6-dihydropyridin-2(1H)-one

Off-white solid ($21.2 \mathrm{mg}, 71 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.10(\mathrm{~m}$, $1 \mathrm{H}), 5.88(\mathrm{~s}, \mathrm{NH}), 4.65(\mathrm{dd}, J=5.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 2.53-2.49(\mathrm{~m}$, $1 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.94,139.74,139.17,135.12,134.68,133.98$, $129.31,129.04,128.43,127.82,126.25,55.15,36.06,33.25$.

IR (neat, cm^{-1}) 3207, 3061, 3028, 2921, 1674, 1631, 1492, 1092, 1014, 822, 699.
LRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}: 298.1$, found: 298.1.
methyl 4-(5-benzyl-6-oxo-1,2,3,6-tetrahydropyridin-2-yl)benzoate

11ah
($18.3 \mathrm{mg}, 57 \%$ yield)
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37-7.29$ (m, 2H), 7.24 (m, 3H), 6.15 (ddt, $J=5.1,3.3,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.87$ (s, NH), 4.77 (dd, $J=10.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}) 3.94$ (s, 3 H), 3.67 (s, $2 \mathrm{H}), 2.60$ (dtd, $J=17.5,5.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (dddd, $J=16.3,13.3,5.2$, $2.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.84,166.55,146.24,139.11,135.17,134.56,130.19,130.09,129.30$, 128.43, 126.41, 126.26, 55.48, 52.22, 36.06, 33.10.

IR (neat, cm^{-1}) $3211,3028,2950,1720,1675,1631,1280,1111,701$.
LRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 322.1$, found 322.1.
3-benzyl-6-(m-tolyl)-5,6-dihydropyridin-2(1H)-one
Off-white solid ($23.3 \mathrm{mg}, 84 \%$ yield).

11ai
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 4 \mathrm{H})$, 7.16-7.13 (m, 3H), $6.16(\mathrm{~m}, 1 \mathrm{H}), 5.68(\mathrm{~s}, \mathrm{NH}), 4.67(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 2.52$ (m, 2H), $2.37(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.93,141.20,139.33,138.67,135.05$, 134.94, 129.33, 128.97, 128.79, 128.42, 127.12, 126.20, 123.50, 55.85, 36.07, 33.42, 21.44.

IR (neat, cm^{-1}) 3207, 3060, 3027, 1673, 1630, 1423, 1289, 780, 700.
LRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}: 278.2,300.2$, found: 278.2, 300.1.

3-benzyl-6-(3-methoxyphenyl)-5,6-dihydropyridin-2(1H)-one

11aj

Off-white solid ($25.8 \mathrm{mg}, 88 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.34-7.23 (m, 6H), 6.93-6.87 (m, 3H), 6.16
(m, 1H), $5.76(\mathrm{~m}, \mathrm{NH}), 4.68(\mathrm{dd}, J=10.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}$, $2 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.96,159.98,142.84,139.29,135.08$, $134.95,129.98,129.34,128.43,126.21,118.67,113.69,111.96,55.87$, 55.28, 36.05, 33.38.

IR (neat, cm^{-1}) 3209, 3027, 2935, 1674, 1630, 1454, 1262, 1048, 699.
LRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 294.1$, Found: 294.2.
3-benzyl-6-(3-(trifluoromethyl)phenyl)-5,6-dihydropyridin-2(1H)-one

11ak

Off-white solid ($14.5 \mathrm{mg}, 44 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-$
7.48 (m, 2H), 7.36-7.31 (m, 2H), 7.26-7.23 (m, 3H), 6.17 (m, 1H), $5.90(\mathrm{~s}$,

NH), 4.79 (dd, $J=5.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.54-$ 2.47 (m, 1H).
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.90,142.31,139.07,135.20,134.58$,
$131.46,131.20,130.94,129.80,129.46,129.28,128.46,126.28,125.11,123.27,55.43,36.02,33.21$.
${ }^{19} \mathbf{F}$ NMR $\left(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-61.82$.
IR (neat, cm^{-1}) 2939, 1676, 1631, 1328, 700.
LRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 332.1$, found: 332.1.
3-benzyl-6-(3-fluorophenyl)-5,6-dihydropyridin-2(1H)-one

11al

Yellow oil ($19.9 \mathrm{mg}, 71 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{~d}, J$ $=7.8, \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.13(\mathrm{~m}, 1 \mathrm{H}), 5.80(\mathrm{~s}, \mathrm{NH}), 4.68(\mathrm{dd}, J=$ $11.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.58-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.42(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.85,163.94,161.98,143.87,143.82,139.14$, $135.09,134.68,130.54,130.48,129.31,128.44,126.25,122.04,122.01,115.25$, 115.08, 113.58, 113.40, 55.33, 36.04, 33.18.

IR (neat, cm^{-1}) 3208, 3062, 3028, 2920, 1674, 1631, 784, 699.
LRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+}: 282.1$, found: 282.1.

3-benzyl-6-(3-chlorophenyl)-5,6-dihydropyridin-2(1H)-one

Off-white solid ($17.4 \mathrm{mg}, 58 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 4 \mathrm{H}), 6.13(\mathrm{~m}$, $1 \mathrm{H}), 5.82(\mathrm{~s}, \mathrm{NH}), 4.67$ (dd, $J=5.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 2.58-2.53(\mathrm{~m}$, $1 \mathrm{H})$, 2.49-2.43 (m, 1H).
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.84,143.33,139.13,135.11,134.78,134.64$, 130.20, 129.29, 128.45, 128.41, 126.69, 126.25, 124.57, 55.29, 36.04, 33.16.

IR (neat, cm^{-1}) 3204, 2897, 1674, 1630, 1422, 696.
LRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}: 298.1$, found: 298.1.

3-(5-benzyl-6-oxo-1,2,3,6-tetrahydropyridin-2-yl)benzaldehyde

11an

Off-white solid ($10.2 \mathrm{mg}, 35 \%$ yield).
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.99$ (s, CHO), $7.85(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.84(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.30$ $(\mathrm{m}, 2 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 3 \mathrm{H}), 6.17(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{~s}, \mathrm{NH}), 4.82(\mathrm{dd}, J=5.0$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 191.79,166.82,142.55,139.12,136.89$,
$135.26,134.45,132.33,129.67,129.58,129.29,128.45,127.48,126.28,55.26,36.09,33.13$.
IR (neat, cm^{-1}) 3211, 3060, 3027, 2918, 1696, 1673, 1629, 698.
LRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 292.1$, found: 292.1.
3-benzyl-6-(naphthalen-2-yl)-5,6-dihydropyridin-2(1H)-one

11ao

Off-white solid ($16.8 \mathrm{mg}, 60 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.35-$ $7.24(\mathrm{~m}, 5 \mathrm{H}), 6.19(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{~s}, \mathrm{NH}), 4.58(\mathrm{dd}, J=5.0,10.0 \mathrm{~Hz}), 3.72(\mathrm{~s}$, 2 H), $2.63(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.99,139.30,138.51,135.03,134.93$, 133.23, 133.11, 129.34, 128.84, 128.45, 127.96, 127.71, 126.55, 126.34, $126.23,125.40,124.16,55.87,36.14,33.26$.

IR (neat, cm^{-1}) 3209, 3057, 3027, 2919, 1672, 1629, 1424, 747, 699.
LRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 314.2$, found: 314.1.

3-benzyl-6-(2-fluorophenyl)-5,6-dihydropyridin-2(1H)-one

11ap
($16.8 \mathrm{mg}, 60 \%$ yield)
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.14$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.15(\mathrm{ddt}, J=5.2,3.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~s}$, NH), 5.08 (ddd, $J=9.7,5.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dt}, J=17.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dddt}, J=17.6,9.7,3.9,2.1 \mathrm{~Hz}$, 1 H).
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 167.00,160.92,158.95,139.16,134.96,134.71,129.60,129.53,129.34$, $128.41,128.29,128.19,127.50,127.47$, 126.23, 124.53, 124.50, 115.77, 115.60, 48.69, 48.66, 36.07, 31.35 .
${ }^{19} \mathbf{F}$ NMR $\left(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-118.24$.
IR (neat, cm^{-1}) 3207, 3063, 2922, 1676, 1632, 1491, 757, 700.
LRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}: 281.1$, found: 282.1, 304.1.
3-benzyl-6-(6,6,6,6,6-pentafluoro-6 λ_{8}-hexa-1,3,5-triyn-1-yl)-5,6-dihydropyridin-2(1H)-one
Yellow oil ($17.7 \mathrm{mg}, 50 \%$ yield).

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.32-7.29 (m, 2H), 7.24-7.20 (m, 3H), $6.42(\mathrm{~s}, \mathrm{NH})$, $6.15(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=5.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{q}, J=15.0 \mathrm{~Hz}), 2.76-2.71(\mathrm{~m}$, $1 \mathrm{H}), 2.54-2.48(\mathrm{~m}, 1 \mathrm{H})$.

11aq
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.53,138.78,135.29,134.53,129.35,128.47$, 126.33, 46.12, 35.92, 29.54.
${ }^{19}$ F NMR $\left(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-138.86--140.68(\mathrm{~m}),-151.01--153.96(\mathrm{~m}),-159.97(\mathrm{dd}, J=20.8,14.0$ Hz). IR (neat, cm^{-1}) $3207,3065,2926,1679,1633,1522,1502,1000,958,700$.
LRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~F}_{5} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 353.1$, found: 354.1.
(4aS,5S,8R,8aS)-3-benzyl-4a,5,6,7,8,8a-hexahydro-5,8-methanoquinolin-2(1H)-one

Off-white solid ($20 \mathrm{mg}, 80 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{dd}, J$ $=5.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, \mathrm{NH}), 6.01(\mathrm{dd}, J=5.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.63 (d, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ (s, $1 \mathrm{H}), 2.67(\mathrm{~s}, 1 \mathrm{H}), 2.42-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) 164.97,139.63,138.86,137.67,134.55,131.71,129.22$,
128.35, 126.07, 54.24, 52.35, 48.47, 42.83, 37.86, 36.18.

IR (neat, cm^{-1}) 3204, 3059, 2970, 1681, 1634, 1477, 1453, 1279, 700.
LRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}: 252.1$, found: 252.2, 274.1.

(4aS,5S,8R,8aS)-3-benzyl-4a,5,6,7,8,8a-hexahydro-5,8-methanoquinolin-2(1H)-one

Off-white solid ($23.2 \mathrm{mg}, 92 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 5.87$ (d, $J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~s}, \mathrm{NH}), 3.72-3.50(\mathrm{~m}, 3 \mathrm{H}), 2.64-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 1 \mathrm{H})$, $2.06(\mathrm{~s}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.14(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) 164.62,139.74,137.51,130.92$, 129.21, 128.32, 126.01, 58.25, 46.43, 43.19, 42.61, 35.93, 32.52, 29.60, 25.66.

IR (neat, cm^{-1}) 3204, 2952, 2872, 1683, 1635, 1453, 1477, 698.
LRMS m / z (ESI+APCI) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 254.2$, found: 254.2.

3-benzyl-1,4a,5,6,7,7a-hexahydro-2H-cyclopenta[b]pyridin-2-one

Off-white solid ($20.2 \mathrm{mg}, 93 \%$ yield).
1 mmol scale $-213 \mathrm{mg}, 94 \%$ yield
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.10(\mathrm{dt}, J=$ $5.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~s}, \mathrm{NH}), 3.97$ (dddd, $J=7.6,5.6,3.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{p}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-1.88(\mathrm{~m}, 2 \mathrm{H})$, $1.88-1.45(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 165.49,139.61,139.50,132.06,129.26,128.34,126.04,55.34,38.53$, 35.99, 34.93, 32.09, 23.13.

IR (neat, cm^{-1}) 3204, 3027, 2956, 1675, 1629, 1494, 1452, 699.
LRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 228.1$, found: 228.2.
3-benzyl-1,4a,5,9b-tetrahydro- $\mathbf{2 H}$-indeno[1,2-b]pyridin-2-one

Off-white solid ($17.8 \mathrm{mg}, 65 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J$ $=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~s}, \mathrm{NH}), 6.07(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=5.0,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.67 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=5.0$, $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=5.0,15.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 164.87,142.60,141.18,139.32,138.93,133.63$, 129.14, 128.33, 127.21, 126.05, 124.77, 123.81, 58.20, 38.91, 38.13, 35.98.

IR (neat, cm^{-1}) 3210, 3026, 2915, 1676, 1629, 1478, 743, 699.
LRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}: 276.1,298.1$, found: 276.1, 298.0.

(4aS,8aS)-3-benzyl-4a,5,6,8a-tetrahydroquinolin-2(1H)-one

Off-white solid ($21 \mathrm{mg}, 88 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.06(\mathrm{~d}, J$
$=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{dt}, J=8.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{ddt}, J=9.9,4.3,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.58(\mathrm{~s}$, NH), $4.04(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.37(\mathrm{~m}$, $1 \mathrm{H}), 2.15-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.53(\mathrm{~m}, 2 \mathrm{H})$.
13ae
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 165.70,139.96,139.46,133.96,131.28,129.25,128.35$, 126.08, 124.98, 76.79, 48.13, 35.98, 34.01, 24.13, 22.69.

IR (neat, cm^{-1}) 3206, 3026, 2923, 1674, 1628, 1429, 1453, 738, 700.
LRMS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}: 240.1,262.1$, found: 240.2, 262.2.
(4aS,10bR)-3-benzyl-4a,5,6,10b-tetrahydrobenzo [h]quinolin-2(1H)-one

13ag

Off-white solid ($18.3 \mathrm{mg}, 63 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37$ - $7.16(\mathrm{~m}, 9 \mathrm{H}), 6.27(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.45$ (s, NH), $4.72(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, 1 H), 2.90 (ddd, $J=17.0,5.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ (ddd, $J=17.1,11.8,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.57-2.47(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{dtd}, J=13.4,11.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{ddt}, J=13.3,5.9$, $3.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 165.54,139.87,139.32,136.54,134.30,134.25,129.48,129.29,128.64$, 128.42, 128.27, 126.87, 126.17, 51.62, 35.98, 34.83, 28.71, 22.49.

IR (neat, cm^{-1}) 3060, 2925, 1674, 1631, 1494, 1427, 741, 700.
LRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}: 290.2,312.2$, found: 290.1, 312.1.
(4aS,10aS)-3-benzyl-4a,5,6,7,8,9,10,10a-octahydrocycloocta[b]pyridin-2(1H)-one

Off-white solid ($20.1 \mathrm{mg}, 75 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.09(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}, \mathrm{NH}), 3.67(\mathrm{dt}, J=10.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=42.5,15.8 \mathrm{~Hz}, 2 \mathrm{H})$, 2.48-2.44 (m, 1H), $1.84(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.26(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 167.01,142.45,139.60,132.14,129.24,128.35$, 126.04, 54.03, 36.88, 35.72, 29.03, 28.27, 27.12, 25.29, 24.91, 23.50.

IR (neat, cm^{-1}) 3204, 2920, 2852, 1675, 1631, 1452, 1427, 698.
LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}: 270.2,292.2$, found: 270.2, 292.1.

3-benzyl-6-cyclohexyl-5,6-dihydropyridin-2(1H)-one

Off-white solid ($21.2 \mathrm{mg}, 79 \%$ yield) was obtained from $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}$ precatalyst. 1 mmol scale $-220 \mathrm{mg}, 81 \%$ yield
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 3 \mathrm{H}), 6.13(\mathrm{ddt}, J=5.0$,
$11 \mathrm{ar} \quad 3.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~s}, \mathrm{NH}), 3.65(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.34(\mathrm{dt}, J=11.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{tdt}, J=12.0,6.4,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.31-1.10(\mathrm{~m}, 4 \mathrm{H}), 1.00(\mathrm{qt}, J=12.5,2.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 167.09,139.48,135.78,134.66,129.30,128.35,126.09,55.81,41.76$, 35.95, 28.81, 28.71, 27.30, 26.28, 26.04, 26.00.

IR (neat, cm^{-1}) 3205, 3062, 2923, 2852, 1674, 1631, 1450, 1428, 698.
LRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 270.2$, found: 270.1.
The regiochemsitry based on COSY experiment.

3-benzyl-5-cyclopentyl-5,6-dihydropyridin-2(1H)-one

Off-white solid ($16.8 \mathrm{mg}, 76 \%$ yield) was obtained from $\left[\mathrm{Cp}^{t} \mathrm{RhCl}_{2}\right]_{2}$ precatalyst.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{dd}, J=7.8,2.9 \mathrm{~Hz}, 3 \mathrm{H}), 6.17$ $(\mathrm{m}, 1 \mathrm{H}), 6.10(\mathrm{~s}, \mathrm{NH}), 3.66(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{ddd}, J=$ $12.0,5.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{ddd}, J=11.7,8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.87$ $(\mathrm{dtd}, J=16.5,9.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.50(\mathrm{~m}, 2 \mathrm{H})$, $1.22-1.09(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.89,140.72,139.51,134.09,129.17,128.35,126.08,44.26,41.95$, 40.03, 36.24, 30.89, 30.20, 25.24, 25.08 .

IR (neat, cm^{-1}) 2949, 2866, 1676, 1628, 1477, 1452, 1032, 699.
LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}: 256.2$, found: 256.2, 278.2.
The regiochemsitry based on COSY experiment.

3,6-dibenzyl-5,6-dihydropyridin-2(1H)-one

11aa $\quad 8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dtd}, J=17.4,5.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{ddq}, J=16.6,11.1,2.6 \mathrm{~Hz}$, 1H).
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.86,139.32,136.55,135.26,135.05,129.29,129.12,128.94,128.39$, $127.11,126.16,52.21,41.82,35.97,30.41$.

IR (neat, cm^{-1}) 3204, 2923, 1675, 1630, 1453, 1032, 701.

LRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 278.2$, found: 278.2.

3,5-dibenzyl-5,6-dihydropyridin-2(1H)-one

Off-white solid ($13.4 \mathrm{mg}, 48 \%$ yield)
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 2 \mathrm{H})$, $6.15-6.10(\mathrm{~m}, 1 \mathrm{H}), 5.78(\mathrm{~s}, \mathrm{NH}), 3.66(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.34 (ddd, $J=12.2,5.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15$ (ddd, $J=12.2,6.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.76$ $(\mathrm{m}, 1 \mathrm{H}), 2.75-2.60(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.60,140.57$, 139.25, 138.67, 134.56, 129.27, 128.92, 128.60, 128.39, 126.55, 126.17, 43.87, 38.03, 36.28, 36.13.

IR (neat, cm^{-1}) 3217, 3061, 3027, 2921, 2851, 1675, 1627, 1477, 1452, 735, 700.
LRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 278.2$, found: 278.2.

3-benzyl-5-phenethyl-5,6-dihydropyridin-2(1H)-one

Off-white solid ($20 \mathrm{mg}, 69 \%$ yield) was obtained from $\left[\mathrm{Cp}^{t} \mathrm{RhCl}_{2}\right]_{2}$ precatalyst.
${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.11(\mathrm{~m}$, $2 \mathrm{H}), 6.11(\mathrm{~m}, 1 \mathrm{H}), 6.00(\mathrm{~s}, \mathrm{NH}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 3.47$ (ddd, $J=12.1,5.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.20$ (ddd, $J=12.1,7.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (ddd, $J=9.0,7.1,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 1.96-$ 11at' $\quad 1.66(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.70,141.24,140.83,139.33,134.37,129.25,128.52,128.41,128.27$, 126.16, 126.12, 44.47, 36.12, 33.80, 33.63, 33.08.

IR (neat, cm^{-1}) 3291, 2923, 2858, 1671, 1623, 1478, 1453, 1030, 747, 699.
LRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 292.2$, found: 292.1.
3-benzyl-5-pentyl-5,6-dihydropyridin-2(1H)-one

Off-white solid ($14.2 \mathrm{mg}, 55 \%$ yield) was obtained from $\left[\mathrm{Cp}^{\mathrm{t}} \mathrm{RhCl}_{2}\right]_{2}$ precatalyst
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 6.10-6.08$ $(\mathrm{m}, 1 \mathrm{H}), 6.02(\mathrm{~s}, \mathrm{NH}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{ddd}, J=11.9,5.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.14$ (ddd, $J=$ $12.0,8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.18(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{t}, J$ 11au' $=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.85,141.54,139.46,133.89,129.22,128.36,126.09,44.60,36.12$, 34.47, 31.99, 31.73, 26.56, 22.49, 14.00.

IR (neat, cm^{-1}) 3202, 3062, 2952, 2923, 2854, 1678, 1626, 1483, 744, 701.
LRMS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 258.2$, found: 258.2.

The regiochemsitry based on COSY experiment.

3-benzyl-5-(4-bromobutyl)-5,6-dihydropyridin-2(1H)-one

O ($21.3 \mathrm{mg}, 66 \%$ yield) was obtained from $\left.\left[\mathrm{Cp}^{\mathrm{t} R h C l}\right]_{2}\right]_{2}$ precatalyst.

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.08(\mathrm{~m}, 1 \mathrm{H})$, $6.08(\mathrm{~s}, \mathrm{NH}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{ddd}, J=12.0,5.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, 3.16 (ddd, $J=12.0,8.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ (ddt, $J=7.9,4.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 4 \mathrm{H})$, $1.46(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 166.72,140.81,139.30,134.34,129.24,128.41,126.16,44.46,36.11$, 34.29, 33.45, 32.48, 31.12, 25.43.

IR (neat, cm^{-1}) 3216, 2931, 2858, 1675, 1627, 1477, 1453, 701.
LRMS m/z (ESI+APCI) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}: 322.1$, 324.1, found: 322.0, 323.9.

ethyl 5-(5-benzyl-6-oxo-1,2,3,6-tetrahydropyridin-3-yl)pentanoate

$\left(17.2 \mathrm{mg}, 55 \%\right.$ yield) was obtained from $\left[\mathrm{Cp}^{\mathrm{t}} \mathrm{RhCl}_{2}\right]_{2}$ precatalyst.

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 3 \mathrm{H}), 6.08(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{~s}$, NH), 4.14 (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.62 (s, 2H), 3.43 (ddd, $J=12.1,5.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14$ (ddd, $J=12.0,8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.74-1.36$ $(\mathrm{m}, 4 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 173.46,166.69,141.06$, $139.35,134.16,129.22,128.38,126.13,60.30,44.51,36.12,34.28,34.05,31.68,26.39$, 24.81, 14.27.

IR (neat, cm^{-1}) 3220, 2931, 2860, 1731, 1676, 1628, 1477, 1266, 1183, 733, 701.
LRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 315.2$, found: 316.1.

5. Control Experiments and Mechanistic Studies

The reversibility of the C-H activation was determined by running the reaction in the absence of styrene in TFE-d ${ }_{1}$. After $1 \mathrm{~h}, 65 \%$ deuterium incorporation at the $\mathrm{C}-\mathrm{H}$ bond cis to amide was observed, as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$.

Additionally, an experiment with styrene was conducted using TFE-d ${ }_{1}$. After 1 h (ca. 60% conversion), 51% deuterium incorporation to $\mathbf{1 a}-\mathrm{d}$ at the $\mathrm{C}-\mathrm{H}$ bond cis to the amide was observed. These results together suggest that the $\mathrm{C}-\mathrm{H}$ activation is fast and reversible step.

N-methoxy α-benzyl acrylamide did not give any product, implies that the N-pivaloyloxy group is essential for this reaction.

9a ($13.1 \mathrm{mg}, 0.05 \mathrm{mmol}, 1 \mathrm{eq}$), $9 \mathbf{9 a - d _ { 2 } (1 3 . 2 \mathrm { mg } , 0 . 0 5 \mathrm { mmol } , 1 \mathrm { eq }) , [\mathrm { Cp } * \mathrm { RhCl } _ { 2 }] _ { 2 } (1 . 5 \mathrm { mg } , 0 . 0 0 2 5}$ $\mathrm{mmol}, 2.5 \mathrm{~mol} \%$), $\mathrm{CsOAc}(4.8 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.25$ equiv) and styrene ($12.6 \mu \mathrm{~L}, 0.11 \mathrm{mmol}, 1.1$ equiv) were charged into a dram vial charged with a stir bar. Trifluoroethanol- $\mathrm{d}_{1}\left(\right.$ TFE- $\left.\mathrm{d}_{1}\right)(0.33 \mathrm{~mL}, 0.3 \mathrm{M})$ was added and the mixture was stirred at room temperature for 1 h . The reaction was quenched with saturated NaHCO_{3} and extracted 3 times with EtOAc. The organic layer was washed with brine, dried over MgSO_{4}, filtered, and solvent was evaporated to obtain crude product. The crude was analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrometer. The KIE value $\left(\mathrm{P}_{\mathrm{H}} / \mathrm{P}_{\mathrm{D}}\right)$ of 2.3 was calculated by integrating the H_{a} of the product 11ab (0.70) and H_{c} of products $1 \mathbf{1 1 a b}(0.70)$ and $11 \mathbf{a b}-\mathrm{d}(0.30)$. However the reversibility of C-H activation may be taken to account for KIE.

6. Product derivatizations

General procedure for the hydrogenation: $\mathrm{Pd} / \mathrm{C}(10 \% \mathrm{wt})$ was weighed to the N_{2}-filled round bottom flask containing the α, β-unsaturated- δ-lactams (0.1 mmol). This was evacuated and refilled with $\mathrm{N}_{2}(\times 3)$, following by adding $\mathrm{MeOH}(0.1 \mathrm{M})$. Then, the suspension was stirred under H_{2} (balloon) until completion as indicated by TLC. The resulting solution was filtered through a plug of celite and washed with EtOAc. The desired saturated lactams was obtained after the volatiles were removed under reduced pressure.

(3S,6R)-3-benzyl-6-(4-methoxyphenyl)piperidin-2-one

Off-white solid ($24.5 \mathrm{mg}, 84 \%$ yield, $13: 1 \mathrm{dr}$)
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.98(\mathrm{~s}, \mathrm{NH}), 4.62-4.50(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{dd}, J=13.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$
(dd, $J=13.5,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.63(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{dddd}, J=13.4,8.4,5.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.70$ (m, 1H), $1.71-1.52(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 174.35,159.07$, 139.45, 134.53, 129.52, 128.42, 127.18, 126.33, 114.02, 56.46, 55.32, 42.34, 37.56, 29.39, 21.80.

IR (neat, cm^{-1}) 3204, 2934, 1622, 1511, 1454, 1247.
LRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}: 295.2$, found: 296.1, 318.1.

(3S,4aS,7aS)-3-benzyloctahydro-2H-cyclopenta[b]pyridin-2-one

Off-white solid ($19.7 \mathrm{mg}, 86 \%$ yield, $>20: 1 \mathrm{dr}$)
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 3 \mathrm{H}), 6.16(\mathrm{~s}, \mathrm{NH}), 3.70(\mathrm{qd}, J=7.5,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.52 (dd, $J=13.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52$ (dd, $J=13.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39$ (ddt, $J=14.2,10.1,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.21 (dtdd, $J=12.2,8.0,5.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{dtd}, J=13.3,7.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.75$ (tdd, $J=10.2,7.6,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{tdd}, J=10.6,7.6,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{q}, J=$ $12.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 126 \mathrm{MHz}\right) \delta 175.18,140.38,129.24,128.32,126.03,55.29,42.28,36.51,36.26$, 34.32, 31.55, 30.80, 22.95.

IR (neat, cm^{-1}) 3203, 2943, 1662, 1453, 701.
LRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+},[\mathrm{M}+\mathrm{Na}]^{+}: 229.2$, found: 230.2, 252.2.
7. $N M R$ Spectra

 ns4-383-col-13C.1.fid Carbon 13
 f1 (ppm)

[^45]

11aw'

[^0]: ${ }^{1}$ The portion of this work was published, see: Semakul, N.; Jackson, K. E.; Paton, R. S.; Rovis, T. Chem. Sci. 2017, 8, 1015-1020.
 ${ }^{2}$ Reviews, see: (a) Daugulis, O.; Do, H. Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074-1086. (b) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624-655. (c) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147-1169. (d) McMurray, L.; O'Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885-1898. (e) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215-1292. (f) Ackermann, L. Chem. Rev. 2011, 111, 1315-1345. (g) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem. Int. Ed. 2012, 51, 8960-9009. (h) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879-5918 (i) Satoh, T.; Miura, M. Chem. Eur. J. 2010, 16, 11212-11222.
 ${ }^{3}$ (a) Seechurn, C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem. Int. Ed. 2012, 51, 5062-5085. (b) Meijere, A. d.; Diederich, F. Metal-Catalyzed Cross-Coupling Reactions. Wiley-VCH: 2004; Vol. 2.

[^1]: ${ }^{4}$ Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2007, 9, 1407-1409.

[^2]: ${ }^{5}$ Umeda, N.; Tsurugi, H.; Satoh, T.; Miura, M. Angew. Chem. Int. Ed. 2008, 47, 4019-4022.
 ${ }^{6}$ Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474-16475.
 ${ }^{7}$ Li, L.; Brennessel, W. W.; Jones, W. D. J. Am. Chem. Soc. 2008, 130, 12414-12419.

[^3]: ${ }^{8}$ Reviews, see: (a) Johnson, J. B.; Rovis, T. Acc. Chem. Res. 2008, 41, 327-338. (b) Perreault, S.; Rovis, T. Chem. Soc. Rev. 2009, 38, 3149-3159.
 ${ }^{9}$ (a) Zhu, C.; Wang, R.; Falck, J. R. Chem. Asian J. 2012, 7, 1502-1514. (b) Gulías, M.; Mascareñas, J. L. Angew. Chem. Int. Ed. 2016, 55, 11000-11019.
 ${ }^{10}$ (a) Mochida, S.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. Chem. Lett. 2010, 39, 744-746. (b) Hyster, T. K.; Rovis, T. J. Am. Chem. Soc. 2010, 132, 10565-10569. (b) Song, G. Y.; Chen, D.; Pan, C. L.; Crabtree, R. H.; Li, X. W. J. Org. Chem. 2010, 75, 7487-7490.

[^4]: ${ }^{11}$ (a) Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908. (b) Guimond, N.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2011, 133, 6449-6457.
 ${ }^{12}$ Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350-2353.

[^5]: ${ }^{13}$ The use of amide as a direct group, see: (a) Hyster, T. K.; Rovis, T. Chem. Sci. 2011, 2, 1606-1610. (b) Du, Y.; Hyster, T. K.; Rovis, T. Chem. Comm. 2011, 47, 12074-12076. (c) Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 5364-5367. (d) Davis, T. A.; Hyster, T. K.; Rovis, T. Angew. Chem. Int. Ed. 2013, 52, 14181-14185. (e) Hyster, T. K.; Dalton, D. M.; Rovis, T. Chem. Sci. 2015, 6, 254-258. Review, see: Zhu, R. Y.; Farmer, M. E.; Chen, Y. Q.; Yu, J. Q., Angew. Chem. Int. Ed. 2016, 55, 10578-10599.

[^6]: ${ }^{14}$ For review, see: (a) Ye, B. H.; Cramer, N. Acc. Chem. Res. 2015, 48, 1308-1318. (b) Newton, C. G.; Kossler, D.; Cramer, N. J. Am. Chem. Soc. 2016, 138, 3935-3941.
 ${ }^{15}$ Zheng, J.; Cui, W. J.; Zheng, C.; You, S. L., J. Am. Chem. Soc. 2016, 138, 5242-5245.
 ${ }^{16}$ Jia, Z. J.; Merten, C.; Gontla, R.; Daniliuc, C. G.; Antonchick, A. P.; Waldmann, H., Angew. Chem. Int. Ed. 2017, 56, 2429-2434.
 ${ }^{17}$ Heinisch, T.; Ward, T. R., Acc. Chem. Res. 2016, 49, 1711-1721.

[^7]: ${ }^{18}$ Hyster, T. K.; Knorr, L.; Ward, T. R.; Rovis, T. Science 2012, 338, 500-503.
 ${ }^{19}$ Hyster, T. K.; Rovis, T. Synlett 2013, 24, 1842-1844.

[^8]: ${ }^{20}$ Hyster, T. K. (2013) Ligand and reaction development in the rhodium(III)-catalyzed C-H activation-mediated synthesis of N -heterocycles (Doctoral dissertation).
 ${ }^{21}$ For the review of Rh(III)-catalyzed C-H activation, see: (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A., Chem. Rev. 2010, 110, 624-655. (b) Satoh, T.; Miura, M. Chem. Eur. J. 2010, 16, 11212-11222. (c) Patureau, F. W.; Wencel-Delord, J.; Glorius, F. Aldrichimica Acta 2012, 45, 31. (d) Song, G. Y.; Wang, F.; Li, X. W. Chem. Soc. Rev. 2012, 41, 3651-3678. (e) Zhu, C.; Wang, R.; Falck, J. R. Chem. Asian. J. 2012, 7, 1502-1514 (f) Song, G. Y.; Li, X. W. Acc. Chem. Res. 2015, 48, 1007-1020.
 ${ }^{22}$ For the review for the functionalization of cyclopropene, see: Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117-3179. Selected examples: (a) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2002, 124,

[^9]: 11566-11567. (b) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2003, 125, 7198-7199. (c) Rubina, M.; Rubin, M.; Gevorgyan, V. J. Am. Chem. Soc. 2004, 126, 3688-3689. (d) Phan, D. H. T.; Kou, K. G. M.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 16354-16355. (e) Tian, B.; Liu, Q.; Tong, X. F.; Tian, P.; Lin, G. Q. Org. Chem. Front. 2014, 1, 1116-1122. (f) Parra, A.; Amenos, L.; Guisan-Ceinos, M.; Lopez, A.; Ruano, J. L. G.; Tortosa, M. J. Am. Chem. Soc. 2014, 136, 15833-15836. (g) Muller, D. S.; Marek, I. J. Am. Chem. Soc. 2015, 137, 15414-15417.
 ${ }^{23}$ Zhang, H.; Wang, K.; Wang, B.; Yi, H.; Hu, F. D.; Li, C. K.; Zhang, Y.; Wang, J. B. Angew. Chem. Int. Ed. 2014, 53, 13234-13238.

[^10]: ${ }^{24}$ Electron deficient Cp*CF3 , see: (a) Neely, J. M.; Rovis, T. J. Am. Chem. Soc. 2014, 136, 2735-2738. (b) RomanovMichailidis, F.; Sedillo, K. F.; Neely, J. M.; Rovis, T. J. Am. Chem. Soc. 2015, 137, 8892-8895. Cp*bisCF3Ar, see: (c) Davis, T. A.; Wang, C. Q.; Rovis, T. Synlett 2015, 26, 1520-1524.

[^11]: ${ }^{25}$ (a) Shibata, Y.; Tanaka, K. Angew. Chem. Int. Ed. 2011, 50, 10917-10921. (b) Fukui, M.; Hoshino, Y.; Satoh, T.; Miura, M.; Tanaka, K. Adv. Synth. Catal. 2014, 356, 1638-1644. (c) Hoshino, Y.; Shibata, Y.; Tanaka, K. Adv. Synth. Catal. 2014, 356, 1577-1585.
 ${ }^{26}$ (a) Hyster, T. K.; Rovis, T. Chem. Sci. 2011, 2, 1606-1610. (b) Hyster, T. K.; Rovis, T. Chem. Commun. 2011, 47, 11846-11848. (c) Hyster, T. K.; Dalton, D. M.; Rovis, T. Chem. Sci. 2015, 6, 254-258.
 ${ }^{27}$ Piou, T.; Rovis, T. J. Am. Chem. Soc. 2014, 136, 11292-11295.
 ${ }^{28}$ Piou, T.; Rovis, T. Nature 2015, 527, 86-90.

[^12]: ${ }^{a}$ without SAV mutant.
 ${ }^{b}$ with SAV: $1(10 \mu \mathrm{~mol}), 4(11 \mu \mathrm{~mol})$.
 yield and dr were obtained from ${ }^{1} \mathrm{H}$-NMR or chiral HPLC.
 er (major and minor diastereomers) was determined by chiral HPLC.

[^13]: ${ }^{29}$ Kakkar, A. K.; Stringer, G.; Taylor, N. J.; Marder, T. B. Can. J. Chem. 1995, 73, 981-988.

[^14]: ${ }^{30}$ Webb, N. J.; Marsden, S. P.; Raw, S. A. Org. Lett. 2014, 16, 4718-4721.

[^15]: ${ }^{a}$ Conditions: 1b (0.1 mmol), 4 (0.11 mmol), Rh catalyst ($1 \mathrm{~mol} \%$), CsOPiv (25 $\mathrm{mol} \%$) in $\mathrm{MeOH}(0.1 \mathrm{M})$ at $23^{\circ} \mathrm{C}$ for 18 h .
 ${ }^{b}$ Isolated yield of the major diastereomer after silica gel column chromatography.
 ${ }^{c}$ Diastereoselectivity was measured by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the unpurified material.

[^16]: ${ }^{31}$ Concerted metallation deprotonation (CMD) mechanism in Rh (III) catalyzed C-H activation, see: (a) Lapointe, D.; Fagnou, K. Chem. Lett. 2010, 39, 1119-1126. Computational, see: (d) Guo, W.; Xia, Y. Z. J. Org. Chem. 2015, 80, 8113-8121.

[^17]: ${ }^{32}$ See full details about calculations in ref. 1.

[^18]: ${ }^{33}$ Examples of [4.1.0] dihydroisoquinolone moeity in bioactive molecules and its synthesis, see: (a) Cromarty, A.; Haque, K. E.; Proctor, G. R., J. J. Chem. Soc. 1971, 3536-3540. (b) Lantos, I.; Bhattacharjee, D.; Eggleston, D. S. J. Org. Chem. 1986, 51, 4147-4150. (c) Perchonock, C. D.; Lantos, I.; Finkelstein, J. A.; Holden, K. G. J. Org. Chem. 1980, 45, 1950-1953. (d) Pedroni, J.; Saget, T.; Donets, P. A.; Cramer, N. Chem. Sci. 2015, 6, 5164-5171.

[^19]: ${ }^{34}$ Our group studied the correlation of selectivity to Cp ligand properties. This studies reveal the ability of Ind* ligand to accommodate the slippage, thus improves the diastereoselectivity, see: Piou, T.; Romanov-Michailidis, F.; RomanovaMichaelides, M.; Jackson, K. E.; Semakul, N.; Taggart, T. D.; Newell, B. S.; Rithner, C. D.; Paton, R. S.; Rovis, T., J. Am. Chem. Soc. 2017, 139, 1296-1310.

[^20]: ${ }^{35}$ Recent comprehensive reviews in the synthesis of cyclobutane, see: (a) Xu, Y.; Conner, M. L.; Brown, M. K. Angew. Chem. Int. Ed. 2015, 54, 11918-11928. (b) Poplata, S.; Troster, A.; Zou, Y. Q.; Bach, T. Chem. Rev. 2016, 116, 9748-9815.
 ${ }^{36}$ (a) Blakemore, D. C.; Bryans, J. S.; Carnell, P.; Carr, C. L.; Chessum, N. E. A.; Field, M. J.; Kinsella, N.; Osborne, S. A.; Warren, A. N.; Williams, S. C. Bioorg. Med. Chem. Lett. 2010, 20, 461-464. (b) Marson, C. M. Chem. Soc. Rev. 2011, 40, 5514-5533.

[^21]: ${ }^{37}$ (a) Cheung, L. L. W.; Yudin, A. K. Org. Lett. 2009, 11, 1281-1284. (b) Cheung, L. L. W.; Yudin, A. K. Chem. Eur. J. 2010, 16, 4100-4109.

[^22]: ${ }^{38}$ (a) Coote, S. C.; Bach, T. J. Am. Chem. Soc. 2013, 135, 14948-14951. (b) Coote, S. C.; Pothig, A.; Bach, T. Chem. Eur. J. 2015, 21, 6906-6912. For intramolecular [2+2] photocycloaddition, see: Austin, K. A. B.; Herdtweck, E.; Bach, T. Angew. Chem. Int. Ed. 2011, 50, 8416-8419.

[^23]: ${ }^{39}$ Recent review of cyclobutenes in polymer chemistry, see: Le, D.; Morandi, G.; Legoupy, S.; Pascual, S.; Montembault, V.; Fontaine, L. Eur. Polym. J. 2013, 49, 972-983.
 ${ }^{40}$ Asymmetric synthesis of cyclobutene and its utilities, see: Misale, A.; Niyomchon, S.; Maulide, N. Acc. Chem. Res. 2016, 49, 2444-2458.
 ${ }^{41}$ Liu, W.; RajanBabu, T. V. J. Org. Chem. 2010, 75, 7636-7643.

[^24]: ${ }^{42}$ Guisan-Ceinos, M.; Parra, A.; Martin-Heras, V.; Tortosa, M. Angew. Chem. Int. Ed. 2016, 55, 6969-6972.
 ${ }^{43}$ Roy, S. R.; Eijsberg, H.; Bruffaerts, J.; Marek, I. Chem. Sci. 2017, 8, 334-339.
 ${ }^{44}$ (a) Hyster, T. K.; Rovis, T. Synlett 2013, 24, 1842-1844. (b) Semakul, N.; Jackson, K. E.; Paton, R. S.; Rovis, T. Chem. Sci. 2017, 8, 1015-1020.

[^25]: ${ }^{45}$ Binns, F.; Hayes, R.; Ingham, S.; Saengchantara, S. T.; Turner, R. W.; Wallace, T. W. Tetrahedron 1992, 48, 515530.

[^26]: ${ }^{46}$ Hyster, T. K.; Knorr, L.; Ward, T. R.; Rovis, T. Science 2012, 338, 500-503.

[^27]: ${ }^{47}$ (a) Huang, C.-G.; Chang, B.-R.; Chang, N.-C. Tetrahedron Lett. 2002, 43, 2721-2723. (b) Baran, P. S.; Burns, N. Z. J. Am. Chem. Soc. 2006, 128, 3908-3909. (c) Amat, M.; Pérez, M.; Minaglia, A. T.; Bosch, J. J. Org. Chem. 2008, 73, 6920-6923. (d) Hanessian, S.; Riber, L.; Marin, J. Synlett 2009, 1, 71-74. (e) Albrecht, D.; Vogt, F.; Bach, T. Chem. Eur. J. 2010, 16, 4284-4296.
 ${ }^{48}$ Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257-10274. For a comprehensive review on piperidine synthesis, see: Nebe, M.M.; Opatz, T. Adv. Heterocycl. Chem. 2017, 122, 191-244.
 ${ }^{49}$ Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52, 6752-6756.

[^28]: ${ }^{50}$ Weintraub, P. M.; Sabol, J. S.; Kane, J. A.; Borcherding, D. R. Tetrahedron 2003, 59, 2953-2989.
 ${ }^{51}$ (a) Huwe, C. M.; Kiehl, O. C.; Blechert, S. Synlett 1996, 1, 65-66. (b) Fiorelli; C.; Savoia, D. J. Org. Chem. 2007, 72, 6022-6028. (c) Hietanen, A.; Saloranta, T.; Rosenberg, S.; Laitinen, E.; Leino, R.; Kanerva, L. T. Eur. J. Org. Chem. 2010, 909-919. (d) Cogswell, T. J.; Donald, C. S.; Long, D.-L.; Marquez, R. Org. Biomol. Chem. 2015, 13, 717-728. (e) Han, S.-J.; Stoltz, B. M. Tetrahedron Lett. 2016, 57, 2233-2235.
 ${ }^{52}$ Momoi, Y.; Okuyama, K.; Toya, H.; Sugimoto, K.; Okano, K.; Tokuyama, H. Angew. Chem. Int. Ed. 2014, 53, 13215.
 ${ }^{53}$ Jeong, J.; Weinreb, S. M. Org. Lett. 2006, 8, 2309-2312.
 ${ }^{54}$ Xu, J.; Jin, Z.; Chi, Y. R. Org. Lett. 2013, 15, 5028-5031.
 ${ }^{55}$ Jia, W. Q.; Chen, X.-Y.; Sun, L.-H.; Ye, S. Org. Biomol. Chem. 2014, 12, 2167-2171.
 ${ }^{56}$ Weilbeer, C.; Sickert, M.; Naumov, S.; Schneider, C. Chem. Eur. J. 2017, 23, 513-518.

[^29]: ${ }^{57}$ Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4684-4687.

[^30]: ${ }^{58}$ For selected reviews, see: (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624-655. (b) Satoh, T.; Miura, M. Chem. Eur. J. 2010, 16, 11212-11222. (c) Patureau, F. W.; Wencel-Delord, J.; Glorius, F. Aldrichimica Acta 2012, 45, 31-41. (d) Song, G. Y.; Wang, F.; Li, X. W. Chem. Soc. Rev. 2012, 41, 3651-3678. (e) Song, G. Y.; Li, X. W. Acc. Chem. Res. 2015, 48, 1007-1020. (f) Zhu, C.; Wang, R.; Falck, J. R. Chem. Asian. J. 2012, 7, 1502-1514. (g) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Chem. Soc. Rev., 2016, 45, 2900. (h) Gulías, M.; Mascareñas, J. L. Angew. Chem. Int. Ed. 2016, 55, 11000-11019.
 ${ }^{59}$ Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908-6909.
 ${ }^{60}$ Mochida, S.; Umeda, N.; Hirano, K.; Satoh, T.; Miura, M. Chem. Lett. 2010, 39, 744-746.
 ${ }^{61}$ Song, G.; Chen, D.; Pan, C. L.; Crabtree, R. H.; Li, X. J. Org. Chem. 2010, 75, 7487-7490.
 ${ }^{62}$ Hyster, T. K.; Rovis, T. J. Am. Chem. Soc. 2010, 132, 10565-10569.
 ${ }^{63}$ Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350-2353.
 ${ }^{64}$ Guimond, N.; Gorelsky S. I.; Fagnou, K. J. Am. Chem. Soc. 2011, 133, 6449-6457.
 ${ }^{65}$ Hyster, T. K.; Knorr, L.; Ward, T. R.; Rovis, T. Science 2012, 338, 500-503.
 ${ }^{66}$ Ye, B. H.; Cramer, N. Science 2012, 338, 504-506.

[^31]: ${ }^{67}$ Su, Y.; Zhao, M. A.; Han, K. L.; Song, G. Y.; Li, X. W. Org. Lett. 2010, 12, 5462-5465.
 ${ }^{68}$ Hyster, T. K.; Rovis, T. Chem. Sci. 2011, 2, 1606-1610.
 ${ }^{69}$ Intramolecular annulation with alkyne, see: (a) Xu, X.; Liu, Y.; Park, C. M. Angew. Chem. Int. Ed. 2012, 51, 9372-9376. (b) Quinones, N.; Seoane, A.; Garcia-Fandino, R. Mascarenas, J. L.; Gulias, M. Chem. Sci., 2013, 4, 2874-2879.
 ${ }^{70}$ (a) Besset, T.; Kuhl, N.; Patureau, F. W.; Glorius, F. Chem. Eur. J. 2011, 17, 7167-7171. (b) Zhang, J.; Loh, T. P. Chem. Commun., 2012, 48, 11232. (c) Zhang, S.-S.; Wu, J.-Q.; Lao, Y.-X.; Liu, X.-G.; Liu, Y.; Lv, W.-X.; Tan, D.H.; Zeng, Y.-F.; Wang, H. Org. Lett. 2014, 16, 6412-6415. (d) Wu, J.-Q.; Qiu, Z.-P.; Zhang, S.-S.; Liu, J.-G.;

[^32]: Lao,Y.-X.; Gu, L.-Q.; Huang, Z.-S.; Li, J.; Wang, H. Chem. Commun., 2015, 51, 77-80. (e) Zhang, S.-S.; Wu, J.-Q.; Liu, X.; Wang, H. ACS Catal. 2015, 5, 210-214. (f) Yu, C.; Li, F. Zhang, J.; Zhong, G. Chem. Commun., 2017, 53, 533-536.

[^33]: ${ }^{\text {a }}$ Reaction conditions: N-pivaloyloxy acrylamide (0.10 mmol), cyclopropene (0.11 mmol), $\mathrm{MeCN}(0.3 \mathrm{M})$ at $23^{\circ} \mathrm{C}$ for 24 h .
 ${ }^{b}$ NMR yield and diastereoselectivity were determined by ${ }^{1} \mathrm{H}$-NMR using $1,3,5$-trimethoxybenzene as an internal standard.

[^34]: ${ }^{a}$ Reaction conditions: N-pivaloyloxy acrylamide (0.1 mmol), cyclopropene (0.11 mmol)
 ${ }^{b}$ NMR yield

[^35]: ${ }^{a}$ Reaction conditions: 9 (0.10 mmol), 12 (0.11 mmol), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(2.5 \mathrm{~mol} \%)$, $\mathrm{CsOAc}(25 \mathrm{~mol} \%)$ in TFE (0.3 M) for $24-48 \mathrm{~h}$. The isolated yield was reported.
 ${ }^{b}$ The reaction was performed in 1 mmol scale.

[^36]: ${ }^{71}$ Selected examples: (a) Tsai, A. S.; Brasse, M.; Bergman, R. G. Ellman, J. A. Org. Lett., 2011, 13, 540-542. (b) Neely, J. M.; Rovis, T. J. Am. Chem. Soc., 2013, 135, 66-69. (b) Takahama, Y.; Shibata, Y.; Tanaka, K. Chem. Eur. J., 2015, 21, 9053-9056.
 ${ }^{72}$ (a) Hyster, T. K.; Rovis, T. Chem. Sci., 2011, 2, 1606-1610. (b) Hyster, T. K.; Dalton, D. M.; Rovis, T. Chem. Sci., 2015, 6, 254-258.

[^37]: ${ }^{73}$ Xu, L.; Zhu, Q.; Huang, G.; Cheng, B.; Xia, Y. J. Org. Chem., 2012, 77, 3017-3024.

[^38]: ${ }^{81}$ Gassman, P. G.; Mickelson, J. W.; Sowa, J. R. J. Am. Chem. Soc. 1992, 114, 6942-6944.
 ${ }^{82}$ Davis, T. A.; Wang, C. Q.; Rovis, T. Synlett 2015, 26, 1520-1524.
 ${ }^{83}$ Piou, T.; Rovis, T. J. Am. Chem. Soc. 2014, 136, 11292-11295.
 ${ }^{84}$ Arnold, T. A.-Q.; Buffet, J.-C.; Turner, Z. R.; O'Hare, D. J. Organomet. Chem. 2015, 792, 55-56.
 ${ }^{85}$ O’Hare, D.; Green, J. C.; Marder, T.; Collins, S.; Stringer, G.; Kakkar, A. K.; Kaltsoyannis, N.; Kuhn, A.; Lewis, R.; Mehnert, C.; Scott, P.; Kurmoo, M.; Pugh, S. Organometallics 1992, 11, 48-55.
 ${ }^{86}$ Kakkar, A. K.; Stringer, G.; Taylor, N. J.; Marder, T. B. Can. J. Chem. 1995, 73, 981-988.

[^39]: ${ }^{87}$ Chioung, H. A.; Pham, Q.-N.; Daugulis, O. J. Am. Chem. Soc., 2007, 129, 9879-9884.

[^40]: ${ }^{88}$ Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. \& Puschmann, H. J. Appl. Cryst. 2009, 42, 339
 ${ }^{89}$ Sheldrick, G.M. Acta Cryst. 2008, A64, 112
 ${ }^{90}$ Sheldrick, G.M. Acta Cryst. 2008, A64, 112

[^41]: $\begin{array}{lllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^42]: $\left.\begin{array}{lllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 \\ (\mathrm{ppm})\end{array}\right)$

[^43]: ${ }^{91}$ (a) Guimond, N,; Gorelsky, S. I.; Fagnou, K. J. Am. Chem. Soc. 2011, 133, 6449-6457. (b) Wang, H.; Glorius, F. Angew. Chem. Int. Ed. 2012, 51, 7318-7322. (c) Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 5364-5367.

[^44]: ${ }^{92}$ Lai, Y; Sun, L; Sit, M. K.; Wang, Y.; Dai, W.-M. Tetrahedron 2016, 72, 664-673.
 ${ }^{93}$ Gowda, R. R.; Chen, E. Y.-X. Org. Chem. Front., 2014, 1, 230-234.
 ${ }^{94}$ Felpin, F. X.; Miqueu, K.; Sotiropoulos, J. M.; Fouquet, E.; Ibarguren, O.; Laudien, J. Chem. Eur. J. 2010, 16, 5191-5204.
 ${ }^{95}$ Gloegaard, C.; Berg, T. C. US Patent Application Publication 2008/0242889 A1

[^45]: $\begin{array}{lllllllllllllllllllllllllllllllll}: 20 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ \mathrm{f} 1 \\ (\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

