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Abstract 

A two-level, global, spectral model using pressure as a vertical 

coordinate is developed. The system of equations describing the model 

is nonlinear and quasi-geostrophic (linear balance) (Lorenz, 1960). A 

moisture budget is calculated in the lower layer only with moist convec-

tive adjustment between the two layers. The mechanical forcing of 

topography is introduced as a lower boundary vertical velocity. Solar 

forcing is specified assuming a daily mean zenith angle. On land and 

sea ice surf aces a steady state thermal energy equation is solved to 

cal cul ate the surface temperature. Over the oceans the sea surface 

temperatures are prescribed from the climatological average of January. 

The model is integrated to simulate the January climate. 
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1. Introduction 

Numerical models are an important tool for testing many hypotheses 

concerning climate variability. During recent years a wide variety of 

models have been developed. Complexity of such models ranges between 

the simple energy balance models (e.g. Budyko, 1969; Sellers, 1973) and 

the multi-level primitive equation models (e.g. Manabe et ~-, 1965; 

Kasahara and Washington, 1971; Corby et~-, 1977; 0tto-Bleisner et~-, 

1982). 

Intermediate complexity models (Kikuchi, 1969; Salmon and 

Hendershott, 1976; Held and Suarez, 1978), with reasonable dynamical and 

physical simplifications, can simulate some aspects of the largest 

scales of atmospheric motion. The computational economy of such modeis 

provides the opportunity for longer periods of simulation and for more 

extensive testing of physical and dynamical processes. Moreover, such 

models can provide a first insight on atmospheric problems before using 

the complicated general circulation models. Al so, intermediate com-

plexity models are useful for interpreting_ the results of more compli-

cated models (Chervin, et !U·, 1980). 

In this study a two-level spectral model using pressure as aver-

tical coordinate is developed. The system of equations describing the 

model is quasi-geostrophic in linear balance (Lorenz, 1960). The choice 

of global rather than hemispheric model is due to the fact that the 

latter is believed to excite anomalous Rossby waves (Roads and 

Somerville, 1982) which could be critical when dealing with climate 

sensitivity studies. 

The physical forcing is parameterized with reasonable simplicity to 

include the major forcing mechanisms which develop the large scale 
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atmospheric circulation. The solar energy is specified as a function of 

latitude and time assuming a daily mean zenith angle (Wetherald and 

Manabe, 1972). The amount of solar energy absorbed by the model Is 

atmosphere and the earth's surface is calculated using a formula given 

by Kubota (1972). Longwave radiation forcing of the two layers and the 

surface are calculated using climatological relative humidity and sur-

face temperature. The mechanical forcing of topography is introduced in 

the form of a lower boundary vertical velocity. The differential diaba-

tic heating due to the distribution of land and sea also is included. 

The sea surface temperatures are specified using the observed January 

mean values. On continents and ice surfaces the thermal energy balance 

equation is solved for the surface temperature. 
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2. Governing Equations 

The dry flat version of the model struct~re is basically the same 

as that given by Lorenz ( 1960) which is a two level , linear balance 

model using pressure as a vertical coordinate. The system of equations 

describing the model retains the nonlinear interactions between depen-

dent variables. The equations representing the model are the vorticity 

equation, the thermodynamic equation, the thermal wind equation, the 

continuity equation and the water vapor equation. The latter is ca 1-

cul ated at the lower layer only. Static stability is a variable in the 

model Is atmosphere and the horizontal wind has both the divergent and 

nondivergent components. 

2.1 Vertical structure of the model (pressure coordinate) 

The model's atmosphere is represented by two levels; 750 mb (Q=l) 

and L50 mb (Q=3) (Fig. 1). The vertically averaged values are cal-

culated in the intermediate level 500 mb (Q=2). The lower boundary is 

at the 1000 mb (Q=O). 

For a certain level Q the set of equations describing the models 

atmosphere is given by; 

(2.1) 

the vorticity equation 
a awt 
at ~2~Q = -J(~Q' v2~Q+f) - vxt·Vf + f ap + (Fh)Q + (Fv)Q, (2.2) 

the thermodynamic energy equation 

(2.3) 
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the thermal wind equation 

(2.4) 

the continuity equation 

(2.5) 

and the water vapor equat{on 

(2.6) 

where y£ = (u£,v£) is the horizontal wind vector, w£ the vertical pres-

sure velocity, f is the coriolis parameter, ~£ is the stream function, 

x£ is the velocity potential, 0£ is the potential temperature, q is the 

water vapor mixing ratio, p£ is the pressure, p0 is the lower boundary 

pressure l eve 1 (= 1000 mb), P is the preci pi tat ion rate, E is the 
C 

surface evaporation rate, Q£/cp is the diabatic heating rate, cp is the 

specific heat at constant pressure, K = R/cp' R is the gas constant, Fh, 

Wh, Sh are the horizontal diffusion of momentum, heat and moisture 

respectively, (Fv)£ and (Wv)£ are the vertical diffusion of momentum and 

heat, respectively. 

Equations (2.1)-(2.6) are six equations in the 14 unknowns~£' x£, 

evaporation rate, E, is a result of the moisture vertical diffusion from 

the surface while, the precipitation P is calculated as the excess of 
C 

super saturated moisture in the lower layer. In order to close the set 

(2. 1)-( 2. 6) the di abat i c heating and the diffusion terms need to be 

parameterized in terms of the dependent variables. 
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2.2 Horizontal diffusion 

From the numerical stability view point the diffusive terms are not 

required when using the spectral method. There is a requirement to 

i nhi bit spurious growth of amplitude at seal es close to the point of 

truncation due to spectral blocking (Puri and Bourke, 1974). At a level 

Jl the hori zonta 1 diffusion of momentum, heat and moisture is param-

eterized, respectively. 

(Fh)Jl k v2 (V2tll + 2 
tll Jl 

(2. 7) = a2)' h Jl 

(Wh)Jl = kh v 2efl, (2.8) 

(Sh)Jl = kh v2q, (2.9) 

where kh is the lateral eddy diffusion coefficient. The value of kh is 
+5 -1 taken to be 1. OxlO m2 sec ( Phi 11 i ps, 1956). The last term to the 

right side of (2.7) is due to the effect of spherical earth. 

2.3 Vertical diffusion 

The p 1 anetary boundary layer is a transition 1 ayer in the atmo-

sphere which separates between the earth surface and the 1 arge sea 1 e 

atmospheric motions. In this 1 ayer, which is approximately 1 km, the 

fluxes are mainly a consequence of small-scale turbulence and convec-

tion. In a large scale model it is necessary to utilize the effects of 

the boundary 1 ayer to simulate a correct phase and amp 1 i tude of the 

ultra-long waves. Parameterized bulk formulas are used here to calcu-

late the friction dissipation, sensible heat flux and evaporation rate, 
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2.3.1 Parameterization of frictional dissipation 

The two assumptions used for parameterizing the frictional dissipa-

tion are as follows (Lorenz, 1961): 

a) Surface fri ct i ona 1 drag is proport iona 1 to the fl ow in the 

surface layer, 

b) Friction between the two 1 ayers is proport i ona 1 to the dif-

ference between the flow of the two layers. 

The friction dissipation, (Fv)Q, is given by 

(2.10) 

where g is the acceleration of gravity and rQ is the rotational stress 

at level Q. 

Using the above two assumptions we can have 

ro = k V2tµO, g s (2.11) 

and 

r2 = 2k v2<lfl3 - lfl1), g d (2.12) 

where Ap(=p0/2) is the pressure difference between the upper and lower 

l eve 1 s, and lflo is the surface stream function ca 1 cua l ted by linear 

extrapolation with respect to height (Salmon and Hendershott, 1976). k s 

and 2kd are the coefficients of friction at the underlying surface and 

the surface separating the two layers respectively. k is given the s 
-6 -1 -7 value 4xl0 sec (Kikuchi, 1969), and kd is given the value 5x10 

-1 sec (Charney, 1959). 

Using (2.10), (2.11) and (2.12), and assuming that r 4 at the top of 

the atmosphere is equa 1 to zero, we can find the expressions for the 

friction dissipation at the two levels, 
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(F) = - ksv2~0 + 2kdV2(~3 - ~1)' 
V 1 

(Fv)3 = - 2kdV2(~3 - ~1)' 

2.3.2 Parameterization of sensible heat 

(2.13) 

(2.14) 

Over all surfaces, whether bare land, ice or water, the vertical 

(turbulent) flux of sensible heat Q is determined using the parameteri-
s 

zation 

(2.15) 

where p is the surface air density, T is the ground or surface tern-s g 

perature (prescribed over the oceans), T the surface air temperature, a 

cd is the drag coefficient and jv
0

jis the absolute value of the surface 

wind. 

The surf ace air temperature, T , a 
is ext rapo 1 ated from the tern-

perature va 1 ues at 250 mb and 750 mb with respect to 1 ogari thm of the 

pressure level, 

(2 . 16) 

The drag coefficient, cd, is assumed constant taken to be .004 and .001 

over land and water surfaces respectively. By assuming these constant 

values for the drag coefficient we neglected its possible variations 

with the surface wind speed and the terrain height. The absolute value 

of the surface wind, jv
0 

I, is taken from the rotational part of the 750 

mb wind. -1 A minimum value is specified by 3 m sec to avoid unrealistic 

high surface temperatures (Holloway and Manabe, 1971). 
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2.3.3 Parameterization of surface evaporation rate 

The surface evaporation rate, E, is parameterized in the fuodel as 

(2.17) 

where qs(Tg) is the saturation mixing ratio using the surface tempera-

ture, qs(Ta) the saturation mixing ratio at 1000 mb. The saturation 

vapor pressure is calculated using a formula given by Bolton (1980). 

The ground wetness parameter GW is a nondimensional measure of the 

surface water ava i 1 ab 1 e for evaporation and varies between O and 1. 

Over water and ice it is taken as unity, whereas over land surfaces it 

is taken as . 25. The relative humidity in the atmosphere near the 

surface, h , s 

mixing ratio in the lower layer. h* is simply set equal to 1; the 

surface is assumed to be everywhere saturated (the "swamp" lower boun-

dary condition). 

2.4 Mechanical forcing of topography 

At the top of the model's atmosphere (p=O) the vertical pressure 

velocity w4 is taken to be zero. At the lower boundary (1000 mb) w0 

introduce the mechanical effect of topography, the kinematic condition 

is used. Here P is the pressure at the terrain height. When computing g 

P , the continental elevations smoothed over 5° latitude by 5° longitude g 

are used (Berkofs ky and Berton, 1955) assuming a standard atmosphere. 

In this relation the advection by the divergent part of the horizontal 

wind is ignored. 

Integration of the continuity equation (2.5) over the depth of the 

model's atmosphere and through its two layers gives the following pres-

sure velocities 
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WO = - ~pV2(xl + X3), (2.19) 

wl = - V2 (2x + Xl), 2 3 (2.20) 

and 

w3 = - v2<x3). (2.21) 

It is convenient to introduce the new variable x0 such that 

w = -0 (2.22) 

From (2.19) and (2.22) we get 

(2.23) 

The 1 ow order truncation used in the mode 1 ( truncate at either zona 1 

wave number 9 or wave number 15) is considered as a further filter to 

satisfy the quasi-geostrophic approximation, where the vertical velocity 

should be three orders of magnitude less than the horizontal wind 

(Haltiner, 1971). 

2.5 The model 

It is convenient to use as dependent variables the mean potential 

temperature e and the static stability o, the stream functions~ and T 

for the mean wind and wind shear, so that e3 = e+a, e1 = e-a, ~3 = ~+T, 

~l = ~-T, x1 = x. Using (2. 7) - (2.9), (2.13) and (2.14), the governing 

equations (2.1) - (2.6) become 

(2.24) 
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at = -V· ( kxV(1µ-,: )+Vx)q)+E-P C +kh V2 q, 

and 

where 

b c V2 8 = V•(f'vT), p 

- p K Po K 
Q = ½[(_Q) Q + (-) 

P3 3 pl 

is the vertically averaged 

Q 
Po K Po K 

= ½[(-) Q - (-) 
P3 3 pl 

Ql]/cp 

diabatic 

Ql]/cp 

(2.25) 

(2.26) 

(2. 27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

heating per unit mass, and 

is the difference in the diabatic heating per unit mass between the two 

1 ayers. 

The above system is a set of eight equations with eight unknowns~' 

T, e, a, x, x0 , ~O' q. This system will be transformed to the spectral 

space using the spherical harmonics as basis functions . 
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3. Thermal Forcing of the Earth-Atmosphere System 

Mechanisms that force the model's atmosphere are either external or 

internal. The upper layer is heated by short- and longwave radiation, 

by the lateral diffusion of heat, and by · the heat rel eased by a con-

vective adjustment. The lower layer is heated by short- and longwave 

radiation, lateral diffusion, sensible heat flux from the surface and by 

latent heat release, and is cooled by the heat transferred upward by the 

convective adjustment. .Evaporation provides a source of water vapor 

which is also diffused and lost through precipitation. 

3.1 Solar radiation 

The incoming solar radiation at the top of the model's atmosphere 

is calculated as a function of daily mean zenith angle (Wethera·ld and 

Manabe, 1972). Diurnal variation of the solar energy is excluded. The 

mean zenith angle z is given by 

cos z = sin~ sino + (cos~ coso sin H )/H , (3.1) 
0 0 

where~ is the latitude angle, o is the declination angle, and H is the 
0 

hour angle given by 

H 
-1 (-tan~ tano), (3.2) = cos 

0 

0 = 23.45 sin 2n (N-80) (3.3) 360 

N is the number of days measured from day O at OOZ at the first of 

January. 

The incoming solar radiation at the top of the atmosphere is given 

by 
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-s = s H In, (3.4) 
00 0 

a 2 - ( _II!) 7t s = s cosz, <t> - 0 < a C 2 s 

0 <t> 0 7t - > 2 

S is the solar constant taken to be 1400 w/m2 • Recent measurements of 
C 

solar irradiance from earth orbiting satellites (Smith, et~-, 1982) 

give an average va 1 ue about 1375 w/m2 . This value is about 1. 8% less 

than the assumed value. Parameters a and a are the instantaneous and s m 

mean distance of the earth from the sun, respectively, 

a s 
a m 

= 1 + .01676 sin 2n (N-94) 
360. (3.5) 

The amount of solar radiation absorbed by the earth's atmosphere system 

is calculated using a formulae given by Kubota (1972). The solar radi-

ation absorbed by the atmosphere S is given by r 

S = x(l-r )S , r a oo 
(3.6) 

where x is the absorptivity of the atmosphere taken to be constant = 

. 26. The albedo of the atmosphere, r , is calculated taking into con-
a 

sideration the observed mean zonal amount of clouds (Berliand, 1960), 

r =(a+ f3c)c, 
a 

(3. 7) 

where~ is a constant equal to . 38, c is the amount of low and medium 

c 1 ouds in tenths of sky cover . Although the mode 1 has no exp 1 ic it 

modulation of the clouds, they are implicitly included through the 

atmospheric albedo which affects the solar energy budget. The parameter 

a is a function of latitude. 
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Fig. 2. The zonal average of the calculated solar radiation (w/m2 ) 
absorbed by the atmosphere (dotted line) and the earth 
(full line) for the first of January. 



- - -----

15 

The net so 1 ar energy absorbed by the earth's surf ace is given by 

S = (1-x) (1-r ) (1-r )S , s a s oo 
(3.8) 

where r is the January zona 1 average a 1 bedo of the earth's surf ace 
s 

(oceans are not included). The surface albedos are categorized as areas 

of permanent ice (albedo= .8), partial snow in middle and low latitudes 

(albedo= .2 to .3), and dense forests (albedo= .15). The values of 

different parameters used for the January so 1 ar radiative ca 1 cul at ion 

are shown in Table 1. 

The above formulae give a global average planetary albedo 34%. 

Stephens et ~., (1981), using satellite observations, estimated the 

global average planetary albedo for January to be 31%. Fig. 2 reveals 

the calculated solar radiation absorbed by the atmosphere and the earths 

surface at the first of January. 

3.2 Longwave radiation 

The calculation of the longwave radiative cooling of the atmosphere 

makes use of a parameterization of the outgoing infrared radiation 

(Thompson and Warren, 1982). The parameterization comprises clear sky. 

Only two parameters are used to predict clear-sky outgoing infrared 

irradiance: surface air temperature (T) 
a 

and climatological vertical 

mean relative humidity (RH). 

The clear sky outgoing infrared irradiance at the top of the 

atmosphere is given by 

L4 = a + a T + a T 2 + a T 3 
o 1 a 2 a 3 a ' (3.9) 

where 

(3.10) 
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The values of the b's are given by, 

boo = 2.34414 X 102 , 

blO = -3.47968 X 10 1 , 

b20 = 1.02790 X 10 1 , 

bOl = 2.60065 X 100 , 

bll = -1. 62064 X 100 , 

b21 = 6.34856 X 10-1, 

b02 = 4.40272 X 10- 3 , 

bl2 = -2.26092 X 10-2 , 

b22 = 1.12265 X 10-2 , 

b03 = -2.05237 X 10-5 , 

bl3 = -9.670 X 10-s , 

b23 = 5.62925 X 10-5 . 

The values of RH used for the January simulation are shown in Table 1. 

These values are interpolated from the values given by Thompson and 

Warren (1982). 

The model's longwave emissivity is divided between the upper and 

lower layer by fraction . 4 and . 6 respective 1 y. The net l ongwave i r-

radi ance at the earth's surface (Deardorff, 1978) is given by 

where B is the Stephen Boltzman constant, E is the emissivity of the g 

ground surface in the infrared taken to be equal to .95, and y is the 

parameterization for the effective emissivity of the air which is cal-

culated from the relation 
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Table 1 

Parameters Used for Solar and Longwave Radiation Calculations 

Parameter Clouds · Atmospheric Surface Average rela-

Latitude C Albedo (r) Albedo (r) tive humidity a s 
RH 

84.1 0.35 0.096 0.8 .48 

76.5 0.41 0.129 0.8 .53 

68.9 0.48 0.179 0.8 .58 

61. 3 0.54 0.305 0.4 .6 

53.6 0.56 0.343 0.3 .59 

45.9 0.54 0.316 0.2 .58 

38.3 0.45 0.248 0.2 .54 

30.6 0.37 0.185 0.18 .46 

23. 0.28 0.131 0.15 .41 

15.3 0.29 0.145 0.14 .38 

7.7 0.32 0.167 0.14 .43 

0. 0.38 0.207 0.14 .57 

-7.7 0.36 0.193 0.12 .53 

-15.3 0.35 0.183 0.1 .46 

-23.0 0.34 0.166 0.1 .38 

-30.6 0.36 0.179 0.1 .35 

-38.3 0.42 0.227 0.1 .4 

-45.9 0.51 0.293 0.1 .46 

-53.6 0.60 0.377 0.5 .50 

-61. 3 0.62 0.369 0.5 .53 

-68.9 0.55 0.8 0.8 .51 

-76.5 0.47 0.8 0.8 .46 

-84.1 0.40 0.8 0.8 .41 
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y = (c + (1-c)x.67x(1670 q )· 08), 
a 

(3.12) 

here the value of c, the cloud fraction, is assumed as a global average 

equal to .5 and qa is the water vapor mixing ratio near the surface. 

3.3 Large scale precipitation and latent heat release 

The model has a moisture content in the lower layer (level 1) only. 

The procedure for large seal e precipitation and convective adjustment 

starts after completing each time step of integration. The mixing ratio 

at each grid point of the 750 mb level is examined for super-saturation. 

If q(T1 ) < yqs(T1 ), then no precipitation or convective adjustment 

takes place. The parameter y represents a specified critical relative 

humidity (y = .85 in this study). T1 is the temperature at any grid 

point in level 1, and q and q are the mixing ratio and the saturation 
s 

mixing ratio, respectively. 

On the other hand, if q(T1 ) yqs(T1 ), condensation occurs with the 

associated latent heat release. The temperature T1 will be agumented by 

an increment ~T, such that 

(3.13) 

where q 1 is the new saturation mixing ratio at the temperature T+~T, 
s 

Using the Clausius-Clapeyron equation, (3.14) takes the form 

Lq 
s q' = yq + y ~T s s R T2 

V 

(3.14) 

(3.15) 

where R is the water vapor gas constant and L is the la tent heat of 
V 

condensation. 

P , is given by 
C 

The rate of condensation (precipitation) per unit mass, 
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(3.16) 

where ~t is the time step of integration. Using (3. 13), (3.15) and 

(3.16) 

(3. 17) 

It is clear that a relevant form of (3.13) is 

L ~T = p ~t. 
C C 

(3.18) 
p 

After the release of latent heat in the lower layer as a result of 

the condensation of water vapor, the atmosphere is tested to see if 

convective adjustment is required. Convection is assumed to develop if 

the atmosphere is unstable relative to the moist adiabatic lapse rate 

r, then the temperature of the two levels is adjusted to stabilize the s 

model's atmosphere by cooling the lower layer and warming the upper 

layer, with the vertically averaged temperature conserved. 

lapse rate is the same as r. 
s 

3.4 Net heating of the Earth-Atmosphere system 

The new 

The way in which the model responds to heating and how it simulates 

the observed atmospheric heat balance are fundamental aspects of its 

ability to reproduce the seasonal distributions of global climate. From 

the previous discussions we can calculate the different partitions of 

the heating function. 

Of basic importance is the net radiation at the top of the atmo-

sphere which represents the net gain or loss of both solar and longwave 

radiative energy this may be written as 

N = S - r S - r (1 - x) (1 - r) S L 
00 00 a 00 s a 00 - 4· (3.19) 
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On the right side of ( 3. 19) the second and third terms represent the 

amount of solar radiation reflected by the atmosphere · and the earth's 

surface, respectively, while the last term is the net outgoing longwave 

radiation at the top of the model atmosphere. 

The net radiation at the earth's surface N may be written using 
s 

(3.8) and (3.11) as 

N = (1-x) (1-r ) (1-r )S - LO. s a s 00 
(3.20) 

The net surface heating, B s, is given by 

B = N - Qs - LE, s s (3.21) 

It is assumed that B =O, and the resulting equation is used to determine 
s 

the surface ground temperature T . g Over the water surf aces, on the 

other hand, the surface temperature is assigned and B is not required s 

to be zero. 

The net atmospheric heating may be considered by combining the net 

radiation at the top of the atmosphere (3.19), the net surface heat flux 

( 3. 21), and the i nterna 1 rel ease of 1 a tent heat accompanying condensa-

tion (here precipitation). Recognizing that the surf ace evaporation 

removes heat from the water source and therefore it is not a part of the 

atmospheric heating, we may write the net heating of the atmosphere, B , a 

as 

This expression for B 
a 

(3.22) 

is a 1 so equa 1 to the sum of the atmospheric 

storage of total energy and the divergence of the atmospheric tota 1 

energy flux. 

Finally, we may combine the net surface heating (3.21) and the net 

atmospheric heating (3.22) in order to get the net heating of the 
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combined earth-atmosphere system. This heating is given by 

B = N + L(P -E) ea oo c (3.23) 

This may be regarded as the balance of total energy in the earth-

atmosphere system. 

3.5 Surface temperature 

The surface temperature, T , is used to calculate the bulk formulae g 

(2.15) and (2.17). As mentioned before the surface temperatures of the 

water are specified as the climatological values of January. On land 

and ice surfaces the temperature is calculated from the surface thermal 

energy balance (3.21) assuming negligible heat capacity of the earth 

(B =O) (Holloway and Manabe, 1971). Over oceanic locations assumed to s 

be covered with ice, B =O is also assumed, but with a term representing 
s 

the heat conduction through the ice (depending on the difference between 

the ice surface temperature and the freezing point of water) added to 

the right hand side of (3. 21). Over al 1 ice and snow covered surfaces 

the computed surface temperature is not permitted to rise above 0°C. In 

such a case the excess heat is assumed to be used in melting. Equation 

(3.21) can take the form 

B = N -Q - LE+ I(T - 271.2). s s s g (3.24) 

The last term on the right hand side represent the effect of heat con-

duction from unfrozen water below sea ice in the polar latitudes of the 

Northern Hemisphere. Assuming the thermal conductivity of ice, T = 2.1 
C 

-1 -1 -1 J m °K sec , the temperature of the underlying water is 271.2°K and 

the ice 1 ayer thickness d = 2 m, then the constant I=T /d=l. 05 w/m2 
C 

°K- 1 . This term is needed to prevent unrealistically cold temperatures 

in the Northern Hemisphere polar regions during winter. 



22 

Appendix I explains the method of s o lving (3 . 24). The Newton 

iteration method is used and is found to be efficient in solving such 

type of equations. 
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4. Numerical Simulation 

The conventional spectral method is Galerkin's method based on ex-

panding the different variables with a truncated series of surface 

spherical harmonics. The method is used for the numeri ca 1 · integration 

of the hydrodynamical equations. Two types of expansion are often used, 

the triangular and rhomboidal truncations. The advantages of the spec-

tral method over the usual finite difference methods are summarized as 

follows (Machenhauer, 1974): 

1) The nonlinear terms are alias free, which prohibits the exis-

tence of the nonlinear instability described by Phillips (1959). 

2) Quadratic area integral invariants like the kinetic energy and 

enthalpy also are invariant for the truncated system, since the 

error fields are ortho~onal to the variables. 

3) Linear terms are computed without any truncation error. 

4) No special treatment is required for _ dealing with the polar 

region when using the vorticity and divergence fields. By con-

trast, in the finite difference method the hori zonta 1 wind com-

ponents are discontinuous at the pole. 

5) The friction term of the finite difference methods is necessary 

to prevent aliasing instability. It a 1 so is necessary for the 

removal of energy from the shortwave end of the spectrum. When 

using the spectral method, it also is important to prevent blocking 

of energy at the highest wave numbers retained, but in this case 

the purpose is only a simulation of the effect of the small scales 

not retained in the representation. 
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A study by Hoskins and Simmons (1974) compared finite difference 

and spectral models. The study showed that no one method has a super-

iority in all respects. In comparison with the finite difference model, 

the spectral model gave much improved solutions for the amplitudes and 

phases of the predicted waves. On the other hand, the finite difference 

model gave a more accurate representation of the frontal systems. 

It is of interest to compare the two types of truncation mentioned 

before, namely the rhomboidal and triangular. For the same zonal wave 

number truncation, the triangular representation has fewer degrees of 

freedom than the rhomboidal and hence requires less computing time. If 

we retain the same degrees of freedom in both the triangular and rhom-

boidal truncations, the former will be more appropriate for mean zonal 

fields than the latter. At the same time the rhomboidal truncation 

could introduce higher wave numbers, namely the eddies. The same study 

by Hoskins and Simmons (1974) did not give a definite conclusion con-

cerning the comparison between rhomboidal and triangular truncation. In 

some experiments the rhomboidal truncation gave a more accurate approxi-

mation to the solution than the triangular truncation. In other experi-

ments the triangular truncation gave a more efficient description of 

Rossby wave instability. 

In this study we used the rhomboidal truncation since it gives a 

comparable resolution in both horizontal directions. 

4.1 Spectral method 

The dependent variables~, T, x, x , e, a, q are expanded in trun-o 

cated series of the form 

M Im l+J 
X(µ,A) = L L (4.1) 

m=-M n= jm I 
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where X is any variable being studied, Xm are harmonic coefficients, A n 

is longitude,µ is the sine of latitude, mis the zonal wavenumber, n is 

the degree of a spherical harmonic corhponent, n- lml is a meridional 

wavenumber in the sense that there are n- Im I zero crossings of Ym n 

between equator and pole, Mis the highest zonal wave number retained in 

the truncated series, 

the truncated series. 

and J is the highest value of n- 1ml retained in 

Ym are spherical harmonic functions defined by n 

Pm are the Associated Legendre functions of the first kind n 

A spherical harmonic coefficient is defined by 

1 2n +l m* xm = f f X y dµdA n 4n 0 -1 n 

where m* is the complex conjugate of Ym. y 
n n 

Ym are orthogonal over the surface of the sphere, i.e. n 

2n +l m* 1 for (ml,nl) = (m,n) 1 f f ym y 1 dµdA = 4n n nl 0 for (ml,nl) "I- (m,n) , 
0 -1 

and are eigenfunctions of the Laplacian operator 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

where a is the radius of the sphere. The coefficients for negative and 

positive values of mare related in the following way: 

X-m m m* = (-1) X . n n 
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Nonlinear terms are transformed from gr i d po int space to spectral space 

using the full transform method (Machenhauer and Rasmussen, 1972; 

Orszag, 1970). The method is computationally highly efficient relative 

to the interaction coefficient method fot J > 9. 

The procedure for ca 1 cul at i ng the spectra 1 coefficients of the 

nonlinear terms using the full transfo~m method is as follows: 

1) Calculate the nonlinear terms at each grid point in physical 

space. 

2) Transform to the Fourier space at each Gaussian latitude, using 

fast Fourier transform routines. 

3) Transform to the spectral space using the Gaussian quadrature 

formula. 

Highly nonlinear terms, like diabatic heating terms cause problems 

in finding their spectral transforms. This problem is resolved by using 

the full transform method. They are calculated in physical space, then 

added to the nonlinear dynamic terms, and the whole sum is transformed 

to spectral space. 

To guarantee an alias-free solution, there are two conditions that 

must be ful fi 11 ed (Machenhauer and Rasmussen, 1972). These conditions 

specify the minimum number of zonal grid points, 

number of Gaussian latitudes, I , on the sphere: 
s 

N > 3 M + 1 g 

I > M + 3/2 J . s 

N, and the minimum g 

In case of the rhomboidal truncation (M = J) used here, the latter 

condition is 

I > 5/2 M. s 
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For the simulation with wavenumber 9, N = 32 and I = 23. On the other g s 

hand, for wave number 15 simulation, N = 48 and I = 40. g s 

To transform the system (2. 24 - 2. 31) to its spectral form, each 

variable is expanded using (4.1). The resulting equations are mul -
m* tip lied by Y and integration of both sides is performed using equa-n 

tions (4.4 - 4.6). The nonlinear terms are calculated using the trans-

form method mentioned before. 

The system of equations in its spectral form is given by 

= a2 m 2nm m {-J(~,V2 ~) - J(t,V2t)} + --- i n(n+l) n n(n+l) n 

n+2 
0m ( )m n-1 

D~Cxo)~-1) (4. 7) n (n+l + --n+l Xo n+l n 

k 
n (n+l) ~m 2kh m s m - K - 2<~o)n +-~ h a2 n a 2 n 

•m -a2 
{(-J(i:,V2~) - J(~,V2-r))}m 2nm m 

T = + --- i T n n(n+l) n n(n+l) n 

n+2 
0m ( )m n-1 

D~Cxo)~-1) n (n+l + --n+l Xo n+l n 

k i!!!!2. 2kh s m - 2k m 
kh n 

m m + 2<~o)n T - T + -- 1: d n a2 n a2 n 

(4.8) 

(4.9) 
- n (n+l) k em+ (V·(aVx))m + Q-m 

a 2 h n n n ' 



and 
m 

(xo)n 

= tt,m - 1. 6 n 

p 

28 

2a2 

n(n+l) ( _gm 
{ J tt,- T ) , p } n , 

0 

( 4. 10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

where i = The spectral transform of terms of the form V·(fV-r) or 

V·(fVx) is shown in Appendix (II). 

It must be noted that by solving (4.8), (4.9) and (4.12) we can 

obtain an equation for x. The equations are simplified and solved as a 

system of tridiagonal matrices (Appendix III) to find the spectral 

coefficients of x that satisfy the linear balance approximation. The 

simplification is needed to treat the term (V·aVx) in (4.9). To do 

this, we split a into its global average [a], and the deviation from 

this average a' , 

a = [a] + a'. 

Then 

The first term on the right side of the abdve equation is of a larger 
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order of magnitude and is added to the other unknown terms, which in-

clude x. The smaller, second term, is considered as a known parameter 

and calculated using the values of x at the previous time step. The 

method is found to be stab 1 e. It significantly reduces the number of 

calculations at this stage. 

4.2 Energetics of the model 

The two layer model discussed here conserves the sum of kinetic and 

available potential energy under reversible adiabatic processes (Lorenz, 

1960). If one introduces the topographical forcing as a lower boundary 

vertical velocity, it is hard to verify the energy conservation (Burger 

and Riphagen, 1979). It is only the very simple lower boundary condi-

tion w0 = 0 (used by Lorenz) at p = 1000 mb that guarantees an energy-

conserving system. 

The kinetic and available potential energies, KE and AP, respec-

tively, are expressed in the forms 

and 

AP= 
2b c ~p p 

g 

(4.15) 

(4.16) 

The square brackets [ ] indicate the global area average and the dashes 

indicate the deviation from that average. 

In spectral space the kinetic and available potential energy within 

a spherical harmonic mode are given by 

( 4. 17) 

and 
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for n 1 0 m> 0, where 000 = 1 and o0m = 0 form > 0. 

4.3 Initial conditions and time integrations 

(4.18) 

The model integration starts from a hypothetical, horizontally 

isothermal, atmosphere at rest with a moist adiabatic lapse rate. The 

model runs for 120 days assuming perpetual solar forcing (first of 

January). This initialization procedure is used in order to reach a 

statistically steady state. After that the solar declination is changed 

daily to simulate the climates of January (days 121-150), February (days 

151-180), and March (days 181-210). These runs are considered as con-

trol runs for the comparable periods within the experiments. 

The time difference method used is the centered (Jeap-frog) scheme. 

To avoid the growth of unnecessary computational modes, a time smoother 

was used on the prognostic variables (Asselin, 1972) at every time step. 

The diffusion are calculated using values at the previous time step to 

ensure computational stability. The time step used is 2 hours. Appen-

dix IV shows a flow diagram of the calculation procedure. 
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5. Summary 1 ' •·· 

In this report a two-level global spectral model is 'developed. In 

spite of the dynamical and physical simplifications, the model could be 

used to simulate the atmospheric large scale circulation. The model is 

suitable for climate sensitivity expefiments in middle and high lati-

tudes of both hemispheres. The efficieht computer runs of the model (30 

day integration, for wave number 9 truncation, requires about 50 sec of 

CPU time using CRAY-I machine) enable us to perform many experiments and 

test severa 1 hypotheses before using the comp 1 i cated mu 1 ti 1 eve 1 pri mi -

tive equation models. 

The two levels representing the model's atmosphere are 750 mb and 

250 mb. The surface is assumed at 1000 mb. The model retains the 

nonlinear interactions between dependent variables. Nonlinear inter-

actions are important components of midlatitude synoptic motions. 

Additionally, for climate sensitivity studies nonlinear interactions are 

potentially significant since linear solutions are resonant or nearly 

resonant while nonlinear solutions are not. The present model uses a 

moisture budget equation at the 750 mb 1 eve 1 with moist convective 

adjustment between the two layers. The advection by the divergent wind 

is retained. Temperature and heat fluxes in each layer can differ 

through a variable static stability. 

The physical forcing is parameterized with reasonable simplicity to 

include the major forcing mechanisms which develop the large scale 

atmospheric circulation. The solar energy is specified as a function of 

latitude and time assuming a daily mean zenith angle. Longwave radi-

ation forcing of the two layers and the surface are calculated. The 

mechani ca 1 effects of orography are introduced in the form of a 1 ower 



32 

boundary vertical ve l oc i ty. The differential diabatic heating due to 

the distribution . of land and sea also is included. The sea surf ace 

temperatures are specified using the observed January mean values. On 

continents and ice surfaces the thermal energy balance equation is 

so 1 ved for the surf ace temperature. Both orography and different i a 1 

heating between land and sea are importnat for producing a correct phase 

and amplitude of the middle latitudes ultralong waves in linear atmo-

spheric models. 

A relatively straightforward extension, not yet attempted, is the 

parameterization of upper level clouds and their associated radiative 

effects. Such future work is envisaged for studying the role of high 

clouds for short-term climate and the earth's radiation budget. 
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APPENDIX! 

The Solution of the Surface Thermal 

Energy Balance Equation 

Using equations (3.8), (3.11), (3.20), (3.21) and (3.24), the steady-

state surface thermal energy balance is represented by 

B = S - c BT 4 + £ yBT 4 - Q - LE+ I (T - 271.2)t s s g g g a s g 

where 

We define I 1 and 12 such that 

and 

The above equation can be written in the form 

4 F(T) = S - £ BT + £ yBT 4 - I 1(Tg - T) - I 2(q (T) . g s g g g a a s g 
- hq (T )) - I(T - 271.2). s a g 

(Al.1) is solved for T , using Newtons iteration method. g 

Differentiating (Al.1) with respect to T we obtain g 

F'(T) = -4£ BT 3 - I - I q'(T) - I. g g g 1 2 s g 

(Al.I) 

(Al. 2) 

To cal cul ate the saturation mixing ratio, q (T ), and its derivative, 
s g 

q'(T
9
), we use a formula for the saturation vapor pressure, es (Bolton, 

1979). This formula provides an accuracy of 0.1% in the range -30°C < 

T < 35°C. g 

e (T) = 6.112 exp (17.67 (T - 273.15)/(T - 29.65)) s g g g 
(Al. 3) 



q (T ) = s g 

.622 e (T) s g 
p - e (T ) s g 
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Differentiating (Al.4) with respect to T , g 

q pe I (T ) 
'(T) _ s s g 

qs g - (P - e) 
s 

and using (Al.3), one obtains 

e'(T) = 
s g 

17.67 X 243.15 
(T - 29.65) 2 

g 

Substituting (Al.5) into (Al.2), we arrive at 

F' (T ) g 

q p X 4302.645 
= - 4t BT 3 - I - I s - I g g 1 2 (p-e (T ))(T -29.65) 2 • s g g 

Using (Al.l) and (Al.7), the solution is convergent in the form 

v+l 
T g 

V 

= T g 

F(T v) 
g 

(Al.4) 

(Al. 5) 

(Al. 6) 

(Al. 7) 

(Al. 8) 

where the superscripts v and v+l indicate successive iteration steps. 

Iteration is performed until F(T) is less than a small, predetermined g 

value. 
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APPENDIX II 

Spectral Transform of (V·fVx) 

The term (V•tvx) can be expanded in the form 

Since t = 2nµ, 

(A2 . l) 

If we expand x in terms of spherical harmonics defined by (4.1), then 

"v· tvx 2n n(n+l) xm µYm 
a 2 m~ n n' (A2.2) 

or 

(A2.3) 

where we have used the two recurrence relations 

(A2.4) 

and 

(A2.5) 

with 

Applying the transform operator (4.4) on (A2.3) and using (4.5), 

we obtain 

(A2.6) 
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APPENDIX EI 

Calculation of the Velocity Potential 

To establish the linear balance · approximation, equations (4.8), 

(4. 9) and (4.12) need to be solved in order to calculate the array x 

that satisfy the linear balance relation. This appendix describes the 

calculation procedure to find x-

Us i ng the recurrence f ormu 1 a described in Appendix II, equation 

(4.8) can be written in the form 

(A3.l) 

where (R )mis the spherical harmonics of the linear and nonlinear terms 
T n 

that does not contain x. 

Similarily, equation (4.9) can be written in the form 

(A3.2) 

where (R
8

)~ is the same as the definition of (Rt)~ but for the thermodynamic 

equation. 

The generalized thermal wind equation (4.12) can be differentiated 

with respect to time to give the form 

20 
be p 

n+2 0 m • m n-1 Om · m 
(n+l n+l Tn+l + -n- n Tn-1). (A3.3) 

substituting the appropriate indices of (A3.l) and (A3.2) into (A3.3), 

we can get the diagnostic equation for x in the form, 

m m m m A(n,m)x 2 + B(n,m)x + C(n,m)x 2 + E(n,m)(R) 1 n+ n n- T n+ 

m m m + G(n,m)(R) 1 = (V·(aVx)) + (R0 )n' 
T n- n 

(A3.4) 



where 

A(n,m) = 

B(n,m) = 

C(n,m) = 

E(n,m) = 

G(n,m) = 

402 n+3 Dm om 
be n+l n+l n+2' 

p 

402 n(n+22 (Om )2 ((n-+-1) 2 be n+l 
p 

402 n-2 m ---- om D 1' be p 

20 
be p 

2n 
be p 

n n n-

n+2 D m 
n+l n+l' 
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(n-l){n+l) (Dm)2) + n2 n , 

The system (A3.4) needs the transformation of (V·aVx) in order to be 

solved. In such case the gauss i an e 1 i mi nation method can be used to 

solve for x- However, by making the approximation described in the text 

the system ends to a tridiagonal matrix which is more efficient to solve 

than using the gaussian elimination method. 
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APPEND IX IV 

Program Descr i ption 

Calculations for this model are contained in three programs. Two 

of them produce input to the model: orography harmonics, ocean tem-

peratures, l egendre polynomial coefficients, gauss i an latitudes, gaus-

s i an coefficients . The results of those two programs are stored on the 

files: 

Wave number 9 

Wave number 15 

orography harmonics 

ADELHl 

ADELH2 

legendre polynomials, etc. 

ADELH4 

ADELH3 

The third program calculates the time evolution of the general cir-

culation. The results of the first 120 days of integration with fixed 

solar radiation for wave number 9 with topography, are stored on file 

ADRES2. The same but without topography is on file ADRES3. Subroutines 

for this program are compiled and stored on file ADELH9 for wave number 

9 and on ADEL15 for wave number 15. 
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Table Al. Schematic representation of the sequence of operations 

Reading input data: gaussian coefficients, sin of gaussian latitudes, 
legendre polynomials and their derivative, ocean temperatures, spectral 
coefficients of topography and results from previous runs (spectral 
coefficients) 

Initial conditions for statistical calculations 

Daily solar forcing - solar radiation absorbed by the earth, 
solar radiation absorbed by atmosphere 

Mountain effec_ t - vertical velocity of the lower boundary (surface [ >-
~------ - _ ~ ~~~!:_~nt if) ( i_n_ ~pect_ral space) _. _ J 

Humidity flux (phys. space) - transformation to spectral space 
t I 

Transformation to Fourier space ..._ _____________ _,__ ________ ---- ----- --- , 
Transformation to grid points (using FFT) 

Diabatic heating terms at gaussian latitudes 

Nonlinear terms at gaussian latitudes + 
Transformation to the Fourier, then to spherical harmonic space 

- Addi~~ l i nea; ~ontri-b-~t-i on~ - f~r- -t~~-d~nc.i ~~--( RH~ -f -prognost i c----- ----- , 
equations but without terms containing velocity potential) 

Solve for velocity potential to satisfy linear balance 

·>-

+ 

+ 

===C=e=n=t=e=r=e=d==t=i m=e===i n=t=e==r=a=t=,=· o=n==w=,=· t=h==s=m=o:o:t=h=i=n===========---~----_ -- --- -----===- ____ J 
Transformation of the vapor mixing ratio and temperature 
to grid point domain 

->-

Convective adjustment - I + 
.. _· J Transformation of the mixing ratio and temperatures to the 

spe':.._tra l space ------- ___ .,........ ___ _ 
- C;lc~l~-t -i -~f --~- from l i nea·; b-;l ;~~-e-;-qu-~ti on , with ·~( 1-,M) - --- ---- · ] ->-

calculated in subroutine TIME as a bounda,:y condition - +--- -- --------- - - ---
~-S_t_a_t_i_s_t _i _c_a_l_ c_a_l _c_u_l _a_t _i _o_n __ - ~- o- n-_t- _h- l_y ___ , f-z- o~n-_a_l __ ~_v ~ -~~-i ~9 _. ___ ___ __ _ ] 

Writing results ---------------- ~-~-- ' 

Subprograms 

RDTAPE 

SOLA 

OROG 
ADTO 

TRl 

RM1,RM2 

FFT991 

SURFT,EFAP,SNLT,FLON 

FFT991,GUASS 

SITER,ADTO 

TIME 

TR2 

CONVEC 

TRl 

BAL 

ZAV 
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Table A2: The most important variables in the program. 

Phys i ca ·1 Space: 

F = -(1-µ 2 )~ 1 aµ 

a F2 = o,\ (V2tµ) 

2 at F = -(1-µ) -5 aµ 

F6 = ~,\ (V2 t) 

F = -(1-µ 2 ) 13 aµ 

Fl4 = 

where: 41 = stream function 
t = shear 
0 = potential temperature 
a= static stability 
x = velocity potential 
q = mixing ratio 

Fl5 = 0 

a F = (1-µ 2 ) (qv) 17 aµ 

a 
F18 = 3,\ (qu) 

F = -(1-µ 2 ) 22 aµ 

F23 = 

axo 
F25 = -(1-µ2) aµ 

ax0 
F26 = o,\ 

= p /~P = normalized surface pressure 
x = ~urface velocity potential 
µ0= sinQ (Q = latitude) 
,\ = longitude 



-- -------
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Table A3: The most important variables i~ the program. 

Spectral Space: 

X = 1µ = stream function 

TO= 1 = shear 

PT= e = mean potential temperature 

SI= a= static stability 

Q = q = wake vapor mixing ratio 

RK = x = velocity potential at 750 mb 

z = v241 

ZTO = V2 t 

ZRK = V2x 
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Table A4: Catalog of subroutines. 

Subroutines for transformations 

In the following subroutines: 
MM indicates number of points in spectral space in the 
NN indicates number of points in spectral space in the 
NG indicates number of points in physical space in the 
NK indicates number of points in physical space in the 

SUBROUTINE TRl (XI,X,MM,NN,N6,NK) 

TRl transfers variables from physical to spectral space 
Input: XI(NG,NK) = values in physical space 
Output: X(MM,NN) = spectral coefficients 

SUBROUTINE TR2(X,XI,MM,NN,N6,NK) 

TR2 transfers variables from spectral to physical space 
Input: X(MM,NN) = spectral coefficients 
Output: XI(NG,NK) = values in physical space 

SUBROUTINE GUASS (FMK,FMN,NK,MM,NN) 

longitudinal direction 
latitudinal direction 
longitudinal direction 
latitudinal direction 

GUASS transforms variables of the latitude circles from the Fourier to 
the spherical harmonic domain 

Input: FMK(MM,NK) = Fourier coefficients 
Output: FMN(MM,NN) = spherical harmonics coefficients 

SUBROUTINE RMl(X,K,MM,NN,XM) 

RMl for given latitude finds Fourier coefficient X(MM) for variable in 
physical space 

Input: X(MM,NN) = variable in spherical harmonic domain 
K = index of latitude 

Output: XM(MM) = Fourier coefficients 

SUBROUTINE RM2(X,K,NN,X,MM) 

RM2 finds Fourier coefficients of the meridional derivative for variable 
X on given latitude 

Input: X(MM,NN) variable in spherical harmonic domain 
Output: XMM(MM) = Fourier coefficient of meridional derivative of X 

SUBROUTINE FFT99l(A,WORK,TRIGS,IFAX,INC,JUMP,N,M,ISIPN) 

FFT991 performs a number of simultaneous real/half-complex Fourier transforms, 
or corresponding inverse transforms. See catalog of NCAR subroutines 
(CRAYLIB library). 
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Subroutines for physical processes 

SUBROUTINE SOLA (NK,ND) 

SOLA calculates solar radiation absorbed by the earth and atmosphere. 
Input: NK = number of gaussian latitudes 

ND= day of year 
Output: QSE = solar radiation absorbed by the earth Jin COMMON/SRENG/ 

QSR = solar radiation absorbed by atmosphere 

SUBROUTINE OROG(X,TO,ETA,XO,MM,NG,NK,ALPH) 

OROG calculates velocity potential at the surface. 
Input: X(MM,NN) = stream function harmonics 

TO(MM,NN) = shear harmonics 
ETA(MM,NN) = surface pressure divided by pressure increment 

harmonics 
ALPH = parameters regulating height of topography 

Output: XO(MM,NN) = surface velocity potential harmonics 
F24(NG,NK) = laplacian of surface velocity potential 
F25(NG,NK) = meridional derivative of surface· velocity potential 
F26(NG,NK) = zonal derivative of surface velocity potential 

SUBROUTINE ADTO (RK,COR,MM,NN) 

ADTO calculates coriolis term with velocity potential 
Input: RK(MM,NN) = velocity potential 
Output: COR(MM,NN) = V(tvx) 

FUNCTION EVAP(QS,Qll,Vl,DRAG) 

EVAP calculates evaporation from surface to the lower layer 
Input: QS = saturation mixing ratio for surface temperature 

Qll = saturation mixing ratio in the lower layer of atmosphere 
Vl = wind speed in the lower layer of atmosphere 
DRAG= drag coefficient 

SUBROUTINE SURFT(PTl,Ql,Vl,K,PTS,QS,CD,CW,EMS,SFE) 

SURFT calculates surface temperature and saturation mixing ratio for this 
temperature 

Input: 

Output: 

PTl = air temperature at 1000 mb 
Ql = relative humidity in the lower layer x saturated mixing 

ratio for PTl 
Vl = wind speed in the lower layer 
K = latitude index 
PTS = surface temperature from previous time step 
CD= drag coefficient 
CW= wetness parameter 
EMS= surface emissivity of the earth 
SFE = parameter used in calculations of longwave emissivity 

depending on cloud fraction and mixing ratio near the 
surface 

QSE = solar radiation absorbed by the earth 
QSR = solar radiation absorbed by atmosphere 

PTS = surface temperature 
QS = mixing ratio for temperature PTS 
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FUNCTION SNLT (PTS,PTLS,Vl,DRAG) 

SNLT calculates sensfole heat flux from the ground to the lower layer 
of atmosphere 

Input: PTS = surface temperature 
PTLS = temperature of the air at 1000 mb 
Vl = wind speed in th~ lower layer 
DRAG = drag coefficient 

FUNCTION FLON (PTS,K) 

FLON calculates clear sky outgoing radiation at the top of the atmosphere 
Input: PTS = surface air temperature 

RH= vertical mean relative humidity (in COMMON/RHLM/ 
K = index of latitude 

SUBROUTINE TIME (X,TO,PT,SI,Q,MM,DT,NTIME) 

TIME makes time step with smoothing 
Input: RHS of eq. 4.7-4.11 (in COMMON/RHS/) 

values of variables from N-1 time step (in COMMON/TIMES/) 
OT= time step 
NTIME = number of time step 
MM= max wave number +l 

Output: Values of variables on N+l time step 
X = stream function 
TO= shear 
PT= potential temperature 
SI= static stability 
Q = water vapor mixing ratio 

SUBROUTINE BAL(PT,TO,MM,NN,t) 

BAL calculates shear t from linear balance equation _ 
Input: PT(MM,NN) = potential temperature 

TO(l,NN) = shear calculated in subroutine TIME 
Output: TO(MM,NN) = shear satisfying linear balance 

SUBROUTINE SITER(RK,ZRK,RTO,RPT,GSl,SI,MM,NG,NK) 

SITER solves equation for velocity potential x in spherical harmonic 
Input: RK(MM,NN) = velocity potential from previous time step 

ZRK(MM,NN) = leplacian of velocity potential 

Output: 

RTO(MM,NN) = R.H.S. of equation fort but without terms 
containing velocity potential 

RPT(MM,NN) = R.H.S. of equation fore but without terms 
containing x 

SI(MM,NN) = static -stability 
RK(MM,NN) = new value of velocity potential 
ZRK(MM,NN) = new value of V2x 
GSl(MM,NN) = velocity potential term in equation fore 
F13(NG,NK) = meridional derivative of x 
F14(NG,NK) = zonal derivative of x 
F20(NG,NK) = V2 x 

domain 
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SUBROUTINE ZAV(RTT,NG,NK,AV) 

ZAV calculates zonal average of variable RTT 
Input: RTT(NG,KK) = variable in physical space 
Output: AV(NK) = zonal average of RTT 

SUBROUTINE CONVEC(QG,PTG,SIG,PRCP,NG,NK,TIM) 

CONVEC makes convective adjustment and calculates precipitation rate 
Input: QG(NG,NK) = mixing ratio before convective adjustment 

PTG(NG,NK) = potential temperature at 500 mb before convective 
adjustment 

SIG(NG,NK) = static stability before convective adjustment 
TIM = time step 

Output: PTG(NG,NK) = potential temperature at 500 mb after convective 
adjustment 

SIG(NG,NK) = static stability after convective adjustment 
PRCP(NG,NK) = precipitation rate 
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