
DISSERTATION

FROM RNA-SEQ TO GENE ANNOTATION USING THE SPLICEGRAPHER METHOD

Submitted by

Mark F. Rogers

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2013

Doctoral Committee:

Advisor: Asa Ben-Hur

Christina Boucher
Charles Anderson
Anireddy S.N. Reddy



Copyright Mark F. Rogers 2013

All Rights Reserved



ABSTRACT

FROM RNA-SEQ TO GENE ANNOTATION USING THE SPLICEGRAPHER METHOD

Messenger RNA (mRNA) plays a central role in carrying out the instructions encoded in a

gene. A gene’s components may be combined in various ways to generate a diverse range of

mRNA molecules, or transcripts, through a process called alternative splicing (AS). This allows

each gene to produce different products under different conditions, such as different stages of

development or in different tissues. Researchers can study the diverse set of transcripts a gene

produces by sequencing its mRNA. The latest sequencing technology produces millions of short

sequence reads (RNA-Seq) from mRNA transcripts, providing researchers with unprecedented

opportunities to assess how genetic instructions change under different conditions. It is rela-

tively inexpensive and easy to obtain these reads, but one limitation has been the lack of versatile

methods to analyze the data.

Most methods attempt to predict complete mRNA transcripts from patterns of RNA-Seq

reads ascribed to a particular gene, but the short length of these reads makes transcript predic-

tion problematic. We present a method, called SpliceGrapherXT, that takes a different approach

by predicting splice graphs that capture in a single structure all the ways in which a gene’s com-

ponents may be assembled. Whereas other methods make predictions primarily from RNA-Seq

evidence, SpliceGrapherXT uses gene annotations describing known transcripts to guide its

predictions. We show that this approach allows SpliceGrapherXT to make predictions that en-

capsulate gene architectures more accurately than other state-of-the-art methods. This accuracy

is crucial not only for updating gene annotations, but our splice graph predictions can contribute

to more accurate transcript predictions as well. Finally we demonstrate that by using SpliceG-

rapherXT to assess AS on a genome-wide scale, we can gain new insights into the ways that

specific genes and environmental conditions may impact an organism’s transcriptome. Splice-

GrapherXT is available for download at http://splicegrapher.sourceforge.net.

ii



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 RNA-Seq Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Transcriptome Analysis Using RNA-Seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Cufflinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 SLIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 IsoLasso and IsoLasso/CEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 iReckon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.5 RNA-Seq Biases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Predicting Transcripts vs. Splice Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Accurate Splice Graph Prediction with SpliceGrapherXT . . . . . . . . . . . . . . . . . . . . . . 19

3.1 The SpliceGrapherXT Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Splice Graph Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Making Predictions from RNA-Seq Data . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.3 Overview of the Prediction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Methods for Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Simulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.3 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Simulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Filtering Spliced Alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 RNA-Seq Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iii



4.3 Splice site classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 SpliceGrapher methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Filtering alignments with simulated RNA-Seq data . . . . . . . . . . . . . . . . . . 41

4.4.2 Filtering alignments with real RNA-Seq data . . . . . . . . . . . . . . . . . . . . . 43

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Resolving Ambiguities Using Realignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Realignment Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1 Creating putative transcripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.2 Realigning reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.3 Resolving exons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Evaluating the pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 Paired-end vs. single-end reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Using Splice Graphs to Predict Transcripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1 PSGInfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 IsoLasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3.1 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3.2 Real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.2.1 Resolving exons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 From Splice Graphs to Biological Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1 Assessing AS Across Embryonic Developmental Stages . . . . . . . . . . . . . . . . . . . . 64

7.1.1 AS Activity Peaks Near Phylotypic Stage . . . . . . . . . . . . . . . . . . . . . . . 65

7.1.2 Old Genes Exhibit More AS Than Young Genes . . . . . . . . . . . . . . . . . . . 67

7.2 Assessing AS Between Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

iv



7.2.1 AS Within Novel Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 Visualizing Chimeras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.3.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.1.1 Gene Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.1.2 Improving IR Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.1.3 Additional Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A Original SpliceGrapher Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.1 Alternative Splicing Inference from RNA-Seq . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.1.1 Intron Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.1.2 Alternative 3’ and 5’ Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.1.3 Exon Skipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B Counting AS Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

B.1 Intron retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

B.2 Alternative 3’ and 5’ events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B.3 Exon skipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

C File formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

C.1 Gene Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

C.1.1 GFF3 Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

C.1.2 GTF Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C.2 EST Alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C.3 RNA-Seq Alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C.3.1 SAM Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

C.3.2 CIGAR Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

C.4 Splice Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

v



D Splice Site Classifier Performance

for 107 Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

E The SpliceGrapherXT Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

E.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

E.1.1 Downloading and Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

E.1.2 Brief Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

E.1.2.1 Example 1: Create Classifiers . . . . . . . . . . . . . . . . . . . . . . . . 115

E.1.2.2 Example 2: Filter Alignments . . . . . . . . . . . . . . . . . . . . . . . . 116

E.1.2.3 Example 3: Predict a Splice Graph . . . . . . . . . . . . . . . . . . . . . 116

E.2 The SpliceGrapher Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

E.2.1 Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

E.2.2 SpliceGrapher Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

E.3 Splice Site Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

E.3.1 Building Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

E.3.1.1 Identifying Splice-Site Dimers . . . . . . . . . . . . . . . . . . . . . . . 119

E.3.1.2 Generating Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . 120

E.3.1.3 Optimizing Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

E.3.1.4 Intron and Exon Sequence Lengths . . . . . . . . . . . . . . . . . . . . . 123

E.3.2 Classifier Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

E.3.3 Generating ROC Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

E.4 Predicting Splice Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

E.4.1 Filtering Spliced Alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

E.4.1.1 Collating SAM Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

E.4.2 Creating Splice Graphs from Gene Models . . . . . . . . . . . . . . . . . . . . . . 126

E.4.2.1 Converting GTF Annotations . . . . . . . . . . . . . . . . . . . . . . . . 127

E.4.3 Creating Splice Graphs from ESTs . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

E.4.4 predict graphs.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

E.4.5 predict splicegraph.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

E.4.5.1 Finding Splice Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

vi



E.5 Viewing Splice Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

E.5.1 Simple Viewing Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

E.5.1.1 Shrinking Introns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

E.5.1.2 Plot Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

E.5.1.3 Splice Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

E.5.1.4 Isoforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

E.5.1.5 Read Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

E.5.1.6 Splice Junction Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . 134

E.5.1.7 X-Y Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

E.5.2 Multiple Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

E.5.2.1 File Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

E.5.2.2 Display Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

E.5.3 High-Quality Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

E.5.3.1 Main Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

E.5.3.2 Plot Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

E.5.3.3 Source Files for Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

E.5.3.4 Output Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

E.6 File Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

E.6.1 Gene Model Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

E.6.1.1 GFF3 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

E.6.1.2 GTF Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

E.6.2 Splice Graph Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

E.6.3 SAM Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

E.6.4 BED and WIG Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

E.6.5 PSL Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

E.7 Pre-Built Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

vii



Chapter 1

Introduction

The central dogma of molecular biology states that DNA is transcribed into messenger RNA (mRNA),

which is then translated into protein [36]. However, this model does not tell the whole story. Transcrip-

tion produces a strand of precursor mRNA (pre-mRNA) that is then spliced to create the mature messenger

RNA [20]. The pre-mRNA transcript consists of two components: exons that contain the protein-encoding

message, and introns that occupy the regions between every pair of exons (Figure 1.1). The splicing process

excises the introns from the pre-mRNA and concatenates the exons together to form the final mRNA tran-

script. Splicing does not occur in the same way under all conditions; for example, exons may be omitted, or

introns retained in the final transcript, a phenomenon called alternative splicing (AS).

AS plays a critical role in cell activities that influence protein production, allowing an organism to

produce a more diverse set of proteins than the number of genes might suggest; for example, the most

recent ENSEMBL human genome database reports 20,442 protein-coding genes [56], yet human cells are

estimated to produce over 100,000 different proteins [5]. Similarly, AS can help to explain vast phenotypic

differences between organisms that have similar numbers of genes. For example, the nematode C. elegans

has 19,735 protein-coding genes—nearly as many as humans—yet is simple enough that the developmental

path of every somatic cell has been mapped out [203]. In addition, AS provides a means for regulating

gene expression, allowing cells to respond rapidly to changing conditions. For example, a gene’s expression

may be suppressed when AS yields transcripts that are degraded rather than translated into protein [104,

166, 28]. AS may shorten dramatically the protein-encoding sequence in a strand of mRNA, initiating a

process known as nonsense-mediated decay (NMD). In this process, protein complexes rapidly degrade

these shortened mRNA transcripts and prevent them from being translated into proteins. This pathway is

important because if these shortened transcripts were translated they would produce truncated proteins that

could have deleterious effects on a cell [28].

AS has also been implicated in a number of diseases such as various forms of cancer [226], spinal

muscular atrophy [197], heart disease [252], dementia [7] and other diseases [212]. For example, Syk is a

cell-signaling protein that suppresses the spread (metastasis) of cancer cells in humans. Researchers have

1



donor acceptor

3'5'pre-mRNA

mRNA

GT          AG

Figure 1.1: Diagram of the splicing process. On the left, introns (solid lines) are excised from pre-mRNA while
exons (colored bars) are merged to form mature mRNA. By convention, mRNA sequences are oriented left-to-right
from their 5’ end to their 3’ end (right). An intron has a donor splice site at its 5’ end (usually associated with a GT
dimer) and an acceptor splice site at its 3’ end (typically an AG dimer).

shown that an alternatively-spliced form of this protein found predominantly in breast tumors lacks an exon

required for correct localization and hence fails to prevent metastasis [231]. As another example, the gene

BRCA1 has a well-documented association with breast cancer in humans (see, e.g., [118, 159, 229]). A

common mutation in BRCA1 creates a novel 3’ splice site that truncates the resulting protein, inhibiting

its ability to suppress tumor growth [77]. Researchers have also shown that AS in the human gene APOE

may be associated with neurodegeneration in Alzheimer’s disease [219]. Accurate gene models and good

methods for assessing AS are therefore critical to understanding the underlying causes and progression of

these and other diseases.

Figure 1.2: Schematic description of the four main forms of AS discussed in this thesis.

Several forms of AS are described in the literature (for example, see [93]), but these may be distilled

into four canonical types: exon skipping, intron retention, alternative 5’ sites and alternative 3’ sites [151]

(see Figure 1.2). By convention we depict transcripts, introns and exons from left to right: the left end is

the 5’ or upstream end, while the right end the 3’ end or downstream end (Figure 1.1). Exon skipping, the

most common form of AS in mammals, occurs when an exon appears in some transcripts but is removed

2



2030500020305500203060002030650020307000

Gene Model

Alt. 3'
Alt. 3'/Intron Retention

Intron Retention

Figure 1.3: Example of the information depicted in a gene model for a gene from A. thaliana. This gene
has six known transcripts, each of which represents a different combination of possible exons. The blue
shaded regions represent regions that encode proteins, while the green and pink shaded regions represent
non-coding regions.

from others. Intron retention is the most common form of AS in plants [166], and occurs when an intron is

excised from some transcripts but retained in others. Alternative 5’ and alternative 3’ events occur when an

intron is excised at two or more locations on its 5’ end or its 3’ end. Note that the terms “alternative 5’ ” and

“alternative 3’ ” are applied relative to the intron involved in an event. When we refer to the corresponding

exons, we use the terms alternative donor or alternative acceptor sites, where a donor site is the splice site

at an exon’s 3’ end, and an acceptor site is the splice site at its 5’ end.

The most accurate information on the transcripts that may arise from a gene are stored in databases of

gene annotations known as gene models [89] (Figure 1.3). These databases include information about the

locations of genes within a chromosome, the locations of each gene’s exons, the transcripts in which they

participate, and the coding regions associated with different transcripts [89, 47, 206]. Gene models are vali-

dated by curators who monitor the literature for annotations that capture a gene’s important features [206].

The best evidence for updating gene models comes from biological “wet lab” assays that can determine the

transcripts present in a sample. However, these methods are relatively slow and expensive, so automated

annotation methods are used to predict the genes and transcripts to target in these assays [55, 218, 99]. For

example, when the A. thaliana annotations were upgraded from version 9 to version 10 (TAIR9 to TAIR10),

they included predictions from [55] that were confirmed using wet-lab assays.

Most research into AS relies on transcriptome sequencing as well as accurate gene annotations to capture

the distinct exons and transcripts that are expressed. Sequencing technology has evolved rapidly in recent

years, with each generation of sequencing tools producing larger volumes of data at ever-increasing speeds

and at lower cost. The growing volume of new data, combined with decades’ worth of legacy data, provide

3



an unprecedented opportunity to probe the transcriptome (the set of all possible transcripts) of many species.

Thus there is an increasing demand for tools that can process large data sets to predict the possible exons

and transcripts in a genome.

A key goal in transcriptome analysis is to predict exons or transcripts on a genome-wide basis. Genome-

wide transcriptome studies make it possible to assess, for example, changes in transcription that may occur

between different tissue types [144, 134, 204, 237, 157], across different stages of development [161, 64,

218, 248, 155], or between different organisms [242, 184, 31, 172]. The latest “next-generation” sequenc-

ing data known as RNA-Seq generates millions of sequences, or reads, that can provide evidence even for

weakly-expressed transcripts, making it possible to discover prodigious numbers of novel transcripts and

AS events. However, the relatively short length of RNA-Seq reads introduces challenges both for sequence

alignment and for interpreting evidence for novel events. For example, RNA-Seq evidence for AS in one

part of a gene may be impossible to reconcile with AS in another location. This can make it infeasible to

reconstruct complete transcripts, but may allow us to predict the exons involved.

Transcriptome prediction problems tend to fall into one of three categories based on the amount of

evidence available for predictions: de novo transcriptome assembly, reference-guided gene annotation, and

gene annotation updating. In de novo transcriptome assembly, the goal is to assemble transcriptomes using

only RNA-Seq data. Solutions to this problem are best suited to organisms without genome sequences or

whose genomic sequences are in early development. Example approaches include the Trinity suite [63] and

trans-ABySS [174]. In reference-guided annotation the goal is to predict transcripts using RNA-Seq data

aligned to a reference genome. This problem arises when researchers wish to conduct transcriptome analysis

in the absence of gene models. A typical approach is first to align RNA-Seq reads to the reference genome

and then predict the transcripts present in the data; Scripture [68] and Cufflinks [218] are two methods that

can make predictions based solely on these two kinds of evidence. Finally there is the challenge of updating

gene annotations using RNA-Seq, a reference genome and curated gene models. Tools such as Cufflinks,

IsoLasso [113] and IsoLasso/CEM [114] can predict novel transcripts based on these forms of evidence.

Because they can use more evidence than the other approaches, these solutions have greater potential for

making accurate predictions; however, the current state of the art falls well short of its potential. It is this

last problem we address in our work.

In this thesis we describe three related approaches designed to update gene annotations by predicting the

exons recapitulated in sequencing data. The first approach, called SpliceGrapherXT, uses evidence from the

4



latest “next-generation” sequencing data known as RNA-Seq to predict splice graphs that capture in a single

structure all the ways in which exons in a given gene may be assembled. In these graphs, exons are depicted

as nodes and introns are the edges that connect them, thus facilitating analysis and allowing researchers to

visualize a gene’s architecture easily. SpliceGrapherXT achieves high precision by predicting novel exons

only when the evidence for them is unambiguous, leaving exons with ambiguous boundaries unresolved.

Our second approach uses a realignment procedure to identify paths through splice graphs that are supported

by RNA-Seq data, allowing us to resolve up to 50% of the exons. Our third approach demonstrates how we

can use SpliceGrapherXT’s splice graph predictions in conjunction with other methods to generate transcript

predictions that are more accurate than those of competing methods.

Throughout this thesis we show that our approaches yield predictions for splice graphs and transcripts

that are substantially more accurate than other state-of-the-art methods. Ultimately, however, we are inter-

ested to know how our methods may contribute to biological research. Thus we finish with overviews of

three projects where SpliceGrapherXT has been used to gain insights into biological processes: changes in

AS that occur during plant embryonic development; changes in AS caused by “knocking out” an important

splicing regulatory gene, and early insights into the unusual behavior of mRNA chimeras. This work has

resulted in a number of publications that describe the methods involved [179, 169, 177], along with the

biological insights generated using these tools [99, 172, 58, 4].

5



Chapter 2

Background

We described briefly the concepts of splicing and alternative splicing in Chapter 1, but to understand

the processes that SpliceGrapherXT and other tools try to predict, it is helpful to know more about the

molecular interactions involved. Splicing is a complex process that excises an intron and splices together its

flanking exons (Figure 1.1). Each time splicing occurs, protein complexes that form the spliceosome bind

to locations close to the 5’ and 3’ sites at either end of an intron. The spliceosome consists of five small

nuclear ribonucleoprotein molecules (snRNPs), identified as U1, U2, U4, U5 and U6, that are assembled in

several stages [235]: First, the U1 snRNP binds near the 5’ site (Figure 2.1, panel I). Next, the U2 snRNP

binds near the 5’ site and folds the intron onto itself, binding at a second intronic location called the branch

point. The remaining snRNPs, U4, U5 and U6, join the complex and trigger the splicing process (Figure 2.1,

panel II). First the intron is cleaved at its 5’ site and the 5’ site is joined to the branch site to form a structure

called a lariat (Figure 2.1, panel III). Next, the intron is cleaved at its 3’ site (usually characterized by an

AG dimer), the two flanking exons are ligated (spliced) together, and the spliceosome dissociates from the

merged exons (Figure 2.1, panel IV).

In addition to the five principal snRNPs, at least 300 additional proteins participate in the process, though

their exact functions and number remain to be determined (see, e.g., [150]). Many of these proteins, notably

the serine/arginine (SR) family and heterogeneous nuclear ribonucleoproteins (hnRNPs), regulate alternative

splicing by enhancing or suppressing splicing (for reviews, see [165, 166, 30, 124, 93, 168, 172, 176]).

These proteins may operate, for example, by assisting or preventing spliceosomal snRNPs from binding to

pre-mRNA [145, 185, 223] or by competing with other splicing factors [251, 26]. Predicting the transcripts

that may occur for a given gene is thus a challenging problem with enormous potential for generating new

insights.

Most approaches attempt to predict the complete mRNA transcripts that may arise from a gene, while

SpliceGrapherXT instead predicts splice graphs (see Figure 2.6). Both of these approaches depend on

mapping query sequences to a reference genome, in effect, reverse-engineering the splicing process. Query

sequences may be produced directly, by sequencing mRNA samples, or they may be inferred by recording

6



A B
GT AG

A

B
AG

GT

A

B
A B

I

III

II

IV

Branch point

Figure 2.1: A simplified view of the splicing process. (I) This pre-mRNA transcript consists of two exons,
A and B, and an intron depicted as a dark line between them. Spliceosome assembly begins when the U1
snRNP (blue) binds near the GT 5’ site. (II) snRNP U2 is added to the complex, folding the intron onto
itself. The remaining U4, U5, and U6 snRNPs then join the complex. (III) The intron is cleaved at its 5’ site
which forms a lariat structure by binding at the branch site. (IV) Finally the intron is cleaved at its 3’ site,
the exons are spliced together, and the snRNP complex dissociates.

where mRNA fragments bind to probes on microarray slides. The data provided by different technologies

fall roughly into three categories: conventional sequences, such as expressed sequence tags (ESTs) or full-

length cDNA (fl-cDNA); “next-generation” sequencing (NGS) reads, and microarray probe intensities. In

the interest of completeness this list includes microarrays, but they have limitations that make the data

unreliable for transcriptome prediction (for details, see [143, 71, 169]), thus microarray data are not included

in this thesis.

ESTs and fl-cDNA are produced using conventional sequencing methods that are based on the Sanger

chain-termination method originally developed in 1977 [188]. fl-cDNA represent the full length of an mRNA

transcript, while ESTs can be smaller than a single exon. By convention we refer to these sequences collec-

tively as ESTs. EST sequences for mRNA are mapped to a genome using sequence alignment algorithms

that are designed for these conventional sequences. NGS reads tend to be shorter than ESTs, but are far more

plentiful: in January 2011, GenBank reported a total of nearly 67 million EST records for all species [189],

while a single NGS run can sequence up to 600 billion bases, generating up to 4 billion 150-nt reads [133].

As with ESTs, NGS sequences for mRNA (RNA-Seq) are mapped to a genome using sequence alignment,

though the algorithms are designed specifically to handle the shorter RNA-Seq reads.

2.1 RNA-Seq Data

The sequences produced by NGS methods have characteristics that complicate the task of identifying

the mRNA transcripts represented in a sample. An RNA-Seq read may shorter than a typical exon, making

7



31 2 5

4

47

13

135

Supported Junctions

20630500 20631000 20631500 20632000 20632500

100

101

102

R
e
a
d

 D
e
p

th

Read Coverage for AT1G55310

Figure 2.2: This figure generated by SpliceGrapherXT depicts read coverage for an A. thaliana gene in two
ways. The top panel shows splice junctions that were recapitulated in the RNA-Seq data with labels showing
the number of reads that aligned across each junction and novel splice junctions highlighted in green. The
bottom panel shows the distribution of reads across the gene. Here the read depths range from 1 to over
300, demonstrating that read coverage can be highly variable even within a single exon region (vertical
shaded bars). This variability can make it difficult to distinguish between weakly-expressed splice forms
and background noise.

it difficult to identify a unique origin within a reference sequence. In addition, NGS base-call error rates

tend to increase with read length, raising the chance of a mismatch when aligning a read to a reference

sequence [195]. These ambiguities are exacerbated by the presence of paralogous genes that can give rise

to reads that align well in multiple locations (called multireads). Much of the work on analyzing NGS reads

has focused on aligning reads within exonic regions, and many methods exist for the problem of aligning

reads without gaps, such as MAQ [109], BWA [107] and BowTie [102].

Accurate splice junction identification is crucial for making accurate transcript predictions, but the short

length of RNA-Seq reads makes spliced alignment especially challenging. A splice junction may occur

anywhere within a read, so the read may have just a few bases on one side of a junction. A common strategy

is to split a read into smaller parts, implicitly confining the splice junction to just one piece (Figure 2.3). If

one of the parts aligns to a unique location in the genome, these algorithms then try to align the remaining

parts in the same vicinity, applying heuristics that dictate acceptable intron lengths or splice-site dimers [216,

10, 127]. A common heuristic, shown in Figure 2.3, is to seek locations that infer an intron bounded

by GT and AG dimers. However, we demonstrated recently that algorithms that rely on these heuristics

may predict spurious junctions [179]. Instead of heuristics, MapSplice [230] predicts junctions by using

statistical measures to assess the quality of read alignments across each junction. SpliceGrapherXT [179,

177] and PALMapper [83] predict splice sites using sophisticated models that can recognize complex signals

in the mRNA sequence surrounding splice sites. The splice junctions these tools predict can be used to

8



CGGCTGATTCAGTCATCACTTT GT.......AG AAGAGCCATGGAGT  

TGATTCAGTCATCACTTT AAGAGCCATG

TGATTCAGTCATCA

CGGCTGATTCAGTCATCACTTT GT.......AG AAGAGCCATGGAGT  

AAGAGCCATGCTTT

TGATTCAGTCATCACTTT AAGAGCCATG

TGATTCAGTCATCA

CGGCTGATTCAGTCATCACTTT GT.......AG AAGAGCCATGGAGT  

AAGAGCCATGCTTTTGATTCAGTCATCA

A B

C

Figure 2.3: Depiction of a common approach to spliced alignments. Here an RNA-Seq read is split into
two parts. (A) First, one part aligns completely to a location in the reference genome. (B) Next a “best”
location is found for the second part. Normally this close to the location where the first part aligned, as
determined by a predetermined range of acceptable intron lengths. (C) Finally, the sequences in the two
parts are shifted until the two parts abut legitimate splice sites. In this case, GT and AG dimers are used to
identify legitimate splice sites.

reconstruct the transcripts represented in the original sample.

2.2 Transcriptome Analysis Using RNA-Seq

Transcriptome analysis allows us to gain insights into a variety of genomic processes such as the discov-

ery of novel AS events [144, 153, 55, 179] or the expression levels of transcripts for a particular RNA-Seq

data set [113, 68, 148, 54, 111, 140]. Given this ability to make predictions on a genome-wide scale, we

can also compare AS or transcript expression between different species [242, 184, 31]; different variants of

a species [62, 182, 84, 149]; different cell types [144, 134, 204, 237, 157], or different stages of develop-

ment [64, 218, 248, 155] (see also Chapter 7). NGS has radically changed the way researchers study the

transcriptomes of model organisms. NGS tends to be cheap, fast and more sensitive to rare splice forms

than microarrays or ESTs [232]. To investigate a transcriptome, researchers apply NGS to mRNA sam-

ples, generating datasets that consist of millions of RNA-Seq reads. In a typical study, researchers align

RNA-Seq reads to a reference genome to determine the genes and splice forms represented in a sample (see,

e.g., [144, 153, 55]). Read coverage (the distribution of reads that align within a region of interest) then

provides evidence for exons and splice junctions recapitulated in the RNA-Seq data (see Figure 2.2).

The first studies that predicted transcripts from RNA-Seq data were performed mainly in mammals and

focused on detection of exon skipping, the most common form of AS in mammals [144, 153, 204, 228, 209].

9



Reads that align across splice junctions provide evidence for junctions in a data set, so these methods focused

on finding evidence for novel combinations of known exons. This approach has been effective for detecting

novel exon-skipping events [204, 228], but it is inadequate for detecting other forms of AS. Comprehensive

transcript or exon prediction tools should be able to infer exons involved in any kind of AS and should

predict novel splice sites accurately.

Programs that predict mRNA transcripts from NGS data usually are designed to predict complete mRNA

transcripts using RNA-Seq data and a reference genome as evidence. These methods first align reads to a

genome and then assemble transcripts using the alignments as evidence. Cufflinks [216], Scripture [68],

SLIDE [111], NSMAP [239] and TAU [160] were designed to predict transcript expression levels by first

predicting mRNA transcripts and then using RNA-Seq coverage to estimate their expression. IsoLasso [113]

and IsoLasso/CEM [114] use an alternative approach that attempts to predict transcripts and expression

levels simultaneously. Cufflinks, the most popular of these tools, has been used to predict novel transcripts

in studies of various species including mammals [216, 215, 122], plants [142, 117] and insects [64, 27, 8].

TAU [160] was designed and validated using the model plant A. thaliana, and it predicted an assortment

of non-canonical splice junctions associated with splice forms that were later validated via RT-PCR [55].

However, experiments have shown that Cufflinks and TAU predictions suffer poor precision because they use

evidence from false-positive splice junctions [179, 177]. Spurious exon predictions can also hurt transcript

prediction accuracy as we discuss in Chapter 6.

In the absence of a reference genome, de novo transcriptome assembly packages such as ABySS [196]

and Trinity [63] can use NGS reads to construct a coherent model for each gene. These methods construct

de Bruijn graphs from overlapping k-mers and then trace paths through the graphs to predict genomic or

transcript sequences. ABySS [196] has been used to predict alternative splicing patterns such as exon

skipping, intron retention and alternative 5’ splice sites [19]. The Trinity suite [63, 1] assembles reads into

unique contigs that it then uses to predict alternatively spliced transcripts. These are merged into splice

graphs that encompass all splice forms for a gene. By tracing all paths through a graph it is able to report

the splice forms detected in the RNA-Seq data.

For organisms that are sparsely annotated, it may be appropriate to use a reference-guided method that

requires only RNA-Seq alignments to a reference genome to make its predictions. However, these align-

ments alone may not be sufficient to resolve splice forms unambiguously because different transcripts from

the same gene may have large proportions of their sequences in common, making it difficult to determine

10



from which transcript a read originated [101]. Thus reference-guided methods are sub-optimal for organ-

isms with sufficiently well annotated genomes, because additional information from gene models is likely

to make predictions more accurate.

Accordingly, Cufflinks was enhanced recently to incorporate gene models into its transcript predic-

tions [173]. To account for annotated transcripts, it simulates “faux reads” from gene models to ensure that

known transcripts will be represented in the data. However, this potentially introduces errors as the transcript

prediction method must reassemble the faux reads correctly in the presence of real reads that can introduce

considerable noise. SpliceGrapher was designed to use annotated gene models to establish a context for

interpreting evidence from EST or RNA-Seq alignments, and to predict novel AS events only when the

evidence for them is strong [179]. Our experiments showed that this conservative approach predicts fewer

novel AS events than tools that predict full mRNA transcripts, but makes predictions with much higher pre-

cision. It is worth noting that even mature gene models may contain errors, so a tool that relies on them may

predict novel transcripts when RNA-Seq alignments conflict with the annotations. However, curated gene

models are the closest thing to a “gold standard” for transcriptomes and they should continue to improve as

more data become available.

In this thesis we focus on methods that can update gene annotations automatically using a reference

genome, extant gene annotations and RNA-Seq data. Because they use more information than de novo

transcript assembly or reference-guided methods, we expect these methods to provide the highest accuracy

possible in predicting novel exons or transcripts. The state-of-the-art algorithms in this domain are: Cuf-

flinks [218], SLIDE [111], IsoLasso [113] IsoLasso/CEM [114], and iReckon [140]. Below we describe

each of these methods in detail.

2.2.1 Cufflinks

Cufflinks focuses on precision in identifying isoforms by using a parsimony strategy that attempts to

identify a minimum set of isoforms that explain all the reads in a data set [218]. To identify a minimal set

of isoforms, Cufflinks builds an overlap graph of compatible reads where compatibility depends on spliced

reads (Figure 2.4): if part of a read overlaps an intron inferred by another (spliced) read, then the two reads

are incompatible. For each overlap graph, Cufflinks finds a minimum path cover to infer a set of paths that

represent isoforms. To incorporate gene models into a prediction, Cufflinks uses gene models to generate

“faux-read” alignments that cover each of the splice forms in the gene models [173]. It then includes these

11



b ca

1

2

Figure 2.4: Cufflinks builds an overlap graph based on the way reads align within a region. Dark gray
bars represent ungapped read alignments and colored bars connected with dashed lines represent spliced
alignments. Here the reads in group 1 are incompatible with the reads in group 2 because part or all of each
read in group 1 falls within the splice junction in group 2. The remaining read alignments are compatible
with either group. In this case the overlap graph predicts the two paths illustrated in the splice graph at the
top of the figure.

faux alignments together with real Tophat alignments to predict a set of isoforms. Cufflinks uses these

isoforms in a second phase to predict transcript expression levels.

Trapnell et al. used Cufflinks to study transcriptional changes in mouse myoblast cell lines [218]. In

part, they identified 70 genes in which the prevalent splice forms changed as cells transitioned from myocyte

production to myotube fusion. In another study, Twine et al. used Cufflinks to find statistically significant

differences in the expression of alternative splice forms between normal and diseased brain cells that yielded

insights into the progression of Alzheimer’s disease [219].

2.2.2 SLIDE

A

B

C

D

E
1

E
2

E
3

E
4

E
5

Figure 2.5: SLIDE uses sub-exons to model overlapping alternative exons in a gene. Reads that map to a
sub-exon provide evidence for all of the transcripts in which it participates. Here, the transcripts A−D are
split into sub-exons E1-E5. E2, E3 and E4 are used only in a few cases, while the remaining sub-exons
appear in all transcripts.

An alternative method called “sparse linear modeling of RNA-Seq data for isoform discovery and

12



abundance estimation” (SLIDE) uses two forms of linear regression to discover mRNA isoforms and es-

timate their expression [111]. SLIDE models the relationship between RNA-Seq reads and transcripts as a

probability of observing the reads in a data set, given a combination of transcripts. Transcripts are defined

as sequences of distinct sub-exons identified from the overlapping regions of alternative exons in a gene

(Figure 2.5). For a gene with n exons, the SLIDE method considers all 2n − 1 possible combinations when

detecting the isoforms present in a data set.

Because the number of possible isoforms is usually much larger than the number of sub-exons, the

authors use the Lasso method [213] to achieve sparsity in the number of predicted isoforms. Lasso is a

regularized regression method for cases in which the number of parameters to be estimated exceeds the

number of observations and where most of the parameters are expected to be zeros. Given a set of N

observations (Xi, yi), 1 ≤ i ≤ N , where Xi = (xi1, xi2, . . . , xiJ) are J-dimensional independent variables

and yi are dependent variables, the Lasso estimate β̂ is given by:

β̂ = argmin
β

N∑
i=1

(yi −
J∑
j=1

βjxij)
2 + λ

J∑
j=1

|βj |. (2.1)

This formulation may be solved using quadratic programming if we assume βj ≥ 0 for all j. Note that λ

controls the number of parameters in the final solution. In SLIDE, the predicted set of isoform proportions

p̂ is given by:

p̂ = argmin
p

J∑
j=1

(bj −
K∑
k=1

Fjkpk)
2 + λ

K∑
k=1

|pk|
nk

. (2.2)

If there are J sub-exons and K possible isoforms for a particular gene, then bj is the observed number of

reads for sub-exon j, pk is the relative proportion of the kth isoform, nk is the number of sub-exons in the

kth isoform and Fjk is the conditional probability of observing reads in the jth sub-exon given that the reads

are from the kth isoform. SLIDE was developed and tested with D. melanogaster but has never been used

to perform AS analysis as part of any other studies. In addition, although it has been used as a baseline for

comparison with other methods, its performance falls well below that of state-of-the-art methods [140, 17].

2.2.3 IsoLasso and IsoLasso/CEM

IsoLasso [113] and Isolasso/CEM [114] are two related methods for simultaneously predicting tran-

scripts and their abundances from RNA-Seq data. IsoLasso creates a large set of possible isoforms by

enumerating over the possible combinations of segments (or sub-exons, see Figure 2.5) in a gene. It then

uses the Lasso [213] method to minimize overall error while simultaneously minimizing the number of

13



expressed isoforms. Specifically, it minimizes the error between estimated and actual read coverage for

each isoform, while constraining the number of isoforms:

X∗ = argmin
X

M∑
i=1

(
ri
li
−

N∑
j=1

ajixj)
2 + λ

N∑
j=1

xj , s.t. xj ≥ 0, 1 ≤ j ≤ N. (2.3)

Here, X∗ is the optimum set of expression levels, where xj is the expression level for the jth isoform; ri is

the observed number of reads that mapped to segment i, li is the length of segment i and aji is an indicator

variable (aji = 1 if segment i is part of isoform j and 0 otherwise).

IsoLasso/CEM replaces the Lasso algorithm with a component elimination EM (CEM) algorithm that

solves the same optimization problem while also accounting for potential biases in the data [114]. Sec-

tion 2.2.5 outlines the biases that arise in RNA-Seq sequencing, including the non-uniform distribution of

reads across transcripts and the influence of the underlying sequence [112]. To account for these differ-

ent biases, IsoLasso/CEM uses a statistical model that leads to an expectation maximization (EM) solution

in place of the quadratic programming solution used in IsoLasso. Briefly, reads are assigned to isoforms

based on an initial estimate of each isoform’s abundance and the estimates are then recomputed based on

the reads. The CEM aspect of this algorithm combats overfitting by using a probability model that favors

solutions with a small number of highly expressed isoforms [114].

2.2.4 iReckon

Another method that simultaneously predicts transcripts and their expression from RNA-Seq data is

iReckon [140]. This method progresses in three stages: first it identifies all possible isoforms from gene

models and RNA-Seq alignments by constructing a splicing graph for each gene. Next it uses ungapped

alignment to realign reads to the isoforms, using alignment scores and paired-end insert sizes to identify the

best alignment for multireads. Finally it uses an EM algorithm that determines the isoforms present in the

data and computes their abundances simultaneously. This version of EM iteratively estimates each isoform’s

abundance based on the reads assigned to it, then reallocates reads to isoforms based on alignment scores

and estimated expression levels. The method uses a regularization term to limit the number of isoforms in

the final solution.

To model unprocessed pre-mRNA, iReckon first creates a pre-mRNA “transcript” for each gene us-

ing the entire gene sequence. The average read coverage across this transcript is then used as a baseline.

iReckon compares the read coverage across each intron in the gene with the average expression level for

14



the pre-mRNA for that gene. When the coverage across an intron is significantly different from the pre-

mRNA background distribution, it may be added as a retained intron. iReckon predicts only the most highly

significant novel retained intron in any gene.

In this work we compare SpliceGrapherXT with three methods that represent different approaches to

the transcript prediction problem: Cufflinks [218, 173], IsoLasso [113] and IsoLasso/CEM [114]. Cufflinks

is the most popular of these tools, but Cufflinks and IsoLasso have both become standards for comparisons

with algorithms that predict novel transcripts from RNA-Seq [113, 140, 236, 179, 132, 214, 80, 17]. All

of these methods for updating existing gene annotations attempt to predict complete mRNA transcripts.

Cufflinks first predicts a parsimonious set of transcripts and then predicts expression separately. IsoLasso

and IsoLasso/CEM predict transcripts and their expression levels simultaneously, using read coverage to

guide their predictions of which exons appear together in each transcript. These approaches are elegant, but

they are also vulnerable to biases that arise in RNA-Seq data.

2.2.5 RNA-Seq Biases

Next-generation mRNA sequencing introduces biases that can influence the way RNA-Seq reads map

to a genome [114, 42, 144, 111, 140]. These tend to fall into one of four categories: positional biases [42,

144, 114], sequence biases [112, 72, 114], mappability biases [193, 114] and unspliced pre-mRNA [140].

Positional biases occur when the distribution of reads across a transcript is non-uniform. For example,

using primers that bind to the poly-A sequences characteristic of transcripts’ 3’ ends will lead to higher read

coverage at those ends [144, 246]. Researchers have used positional biases to predict the strand of novel

genes associated with a set of reads [246].

Sequence biases occur when the amount of read coverage is influenced by the underlying sequence. For

example, Solexa sequencing tends to produce a higher proportion of reads for GC-rich regions [42]. These

sequence biases may be particularly problematic for methods that attempt to predict transcript expression

levels in the presence of AS. Mappability biases occur when reads fail to align to a genome due to sequencing

errors or when they are discarded for aligning to multiple locations (multireads) [193, 144]. Mappability

is an important consideration for methods that estimate expression levels from RNA-Seq. Some programs

discard multireads rather than risk attributing them to the wrong gene or splice form [67, 54], while other

approaches probabilistically allocate multireads to transcripts based on the relative expression levels of

the associated genes [144, 32, 148, 106]. Compared with estimates that use only uniquely-aligned reads,

15



expression estimates that include multireads have been found to be more consistent with expression levels

provided by other tools such as microarrays [144, 74].

Finally, samples of mRNA may include some unspliced pre-mRNA. The resulting sequences may map to

intron regions, providing spurious evidence of intron retention. All of these forms of bias have important im-

plications for algorithms that estimate transcript expression based on RNA-Seq or use transcript abundances

to inform their transcript predictions [193]. Hence methods such as IsoLasso/CEM and iReckon use statis-

tical models to address biases as they make their predictions. As described in Section 2.2.3, IsoLasso/CEM

uses a quasi-multinomial statistical model to capture positional, sequence and mappability biases in its pre-

dictions [114]. iReckon specifically models unspliced pre-mRNA, sequencing bias and mappability bias as

part of an EM approach to predicting transcripts and their abundances (see Section 2.2.4).

2.3 Predicting Transcripts vs. Splice Graphs

AT1G54390

Isoforms for AT1G54390

2030500020305500203060002030650020307000
AT1G54390

Gene Model for AT1G54390

Alt. 3' Intron Retention

Figure 2.6: Above are the splice forms for a gene from A. thaliana shown as a set of transcripts (top) and
as a splice graph (bottom). A splice graph is a compact representation that shows all the ways in which a
gene’s exons may be combined. These plots, generated by SpliceGrapherXT, use color coding to highlight
alternative splicing events.

Methods for predicting the isoforms that arise from a gene usually attempt to predict complete mRNA

transcripts (Figure 2.6). Full-length transcript prediction can provide complete information for updating an

organism’s gene models. For example, many of the predictions given by TAU using the TAIR9 version of the

A. thaliana genome were incorporated into the subsequent TAIR10 annotations [208]. In addition, programs

that estimate gene or transcript expression levels must have complete transcripts for making predictions [217,

16



68]. Shorter sequences will provide evidence for AS at specific locations within a gene, but it may be

impossible to reconcile AS evidence at one locus with evidence at another locus.

A

B

C

D

Figure 2.7: This example demonstrates that it may not be possible to ascribe RNA-Seq evidence to specific
splice forms. Here, an intron retention event and an exon skipping event are represented in four distinct
splice forms. Each splice form may be represented by a unique combination of exons and splice junctions,
but it may not be possible to distinguish between the evidence from different combinations of splice forms.

To illustrate the difficulties in predicting full-length transcripts from RNA-Seq data, Figure 2.7 gives

an example of a gene with two AS events (intron retention and exon skipping) that result in four splice

forms. Here we assume that all four splice forms are present in a comprehensive data set. To predict

transcripts, Cufflinks constructs a graph of gene features predicted from ungapped alignments (exons) and

spliced alignments (introns). It then uses a minimum path cover algorithm to find a minimal set of paths

through the graph that encompass all features. With our hypothetical data set, Cufflinks would select two

of the splice forms that satisfy its minimum path cover algorithm, giving the false impression that only

two splice forms could be represented in the data. In general this approach may make spurious predictions

whenever two or more splice forms share the same elements.

For this reason, some methods focus instead on predicting splice graphs. Splice graph prediction is

a fundamental problem in the analysis of RNA-Seq. It is a basis for downstream analysis and provides

sufficient information for predicting AS. Sircah is an example of a package that can produce splice graphs

from conventional EST or cDNA alignments [73]. We enhanced Sircah’s AS detection rules and extended

the package to provide statistics and protein predictions for genome-wide studies of AS [99, 172], but it

is inadequate for making predictions from RNA-Seq data. Consequently we designed SpliceGrapher [179]

to integrate RNA-Seq data, annotated gene models and EST alignments to produce comprehensive splice

graph predictions. It uses inference rules (Appendix A) to predict AS events that are compatible with all

available evidence.

17



In this thesis we focus on predicting gene architectures using the latest RNA-Seq data, but there is a

considerable amount of EST and fl-cDNA data available as well. These data provide valuable evidence for

developing accurate splice-site models [250, 192, 128, 179] and for studying transcriptomes [99, 172, 179].

Early studies relied primarily on visual inspection of EST alignments to resolve AS events [70, 194], but

methods such as the Transcription Assembly Program (TAP) [88], the Program to Assemble Spliced Align-

ments (PASA) [69] and Sircah [73] helped to automate transcript prediction from ESTs. Both Sircah [73, 53]

and SpliceGrapher [179, 178] can use EST alignments to produce splice graphs. However, Sircah is lim-

ited to using EST alignments for its predictions, while SpliceGrapher can use both EST alignments and

RNA-Seq data. Thus SpliceGrapher is well positioned to take advantage of sequencing technologies such

as RNA-Seq that yield ever-increasing read lengths.

The original SpliceGrapher method achieves high precision in predicting novel AS events, but it may

miss some predictions when evidence for multiple AS events occurs in the same region of a gene. Thus

we designed SpliceGrapherXT, described in Chapter 3, that replaces SpliceGrapher’s AS inference rules

with a comprehensive inference method for predicting novel exons. This new method provides much higher

sensitivity to novel exons than the original method without sacrificing precision. In Chapter 5 we describe

how we can improve sensitivity even further using a procedure for realigning RNA-Seq reads to a putative

transcriptome generated from our splice graph predictions. Chapter 6 shows how these accurate splice

graph predictions may be leveraged to make full transcript predictions more accurately than state-of-the-art

methods. Finally, Chapter 7 describes several projects in which SpliceGrapherXT’s predictions have helped

to gain insights into biological processes at the forefront of modern transcriptome research.

18



Chapter 3

Accurate Splice Graph Prediction with Splice-
GrapherXT

In our early work on SpliceGrapher, we used separate inference rules to predict each of the four canonical

AS types: exon skipping, intron retention, alternative 5’ sites and alternative 3’ sites (see Appendix A).

These rules yield highly accurate predictions [179], but sensitivity is limited because in many cases the

separate inference rules cannot disambiguate evidence for different kinds of AS that may occur in the same

gene region. To increase SpliceGrapher’s sensitivity and to simplify its implementation, we developed a

single, comprehensive inference method for predicting novel exons that covers all types of AS events at

once. The new method provides dramatically improved sensitivity without sacrificing the accuracy we

achieved with our original method.

3.1 The SpliceGrapherXT Pipeline

SpliceGrapherXT is designed to enhance existing gene models using RNA-Seq and EST data, in contrast

with tools like Cufflinks [218, 173] or IsoLasso [113] that use existing annotations in a limited way. Relying

on existing annotations as a baseline provides SpliceGrapherXT with a context in which to interpret RNA-

Seq data. SpliceGrapherXT accepts as input a set of RNA-Seq alignments and annotated gene models,

and predicts splice graphs and transcripts based on these data. SpliceGrapherXT’s splice graph prediction

pipeline consists of the following steps for each gene (Figure 3.1):

1. Align RNA-Seq reads to a reference genome.

2. Filter spliced alignments using splice-site classifiers.

3. Build an initial splice graph from the gene model.

4. Identify clusters of reads that overlap the gene.

5. Use patterns of donor and acceptor sites to predict novel exons.

6. Use spliced alignments to connect exons in the graph.

19



Optional ESTs (PSL)

Gene Models (GTF/GFF3)

RNA-Seq (SAM)

Splice site filters

SpliceGrapher

Splice Graphs

Figure 3.1: The SpliceGrapherXT prediction pipeline. SpliceGrapherXT predicts splice graphs using gene
models, EST alignments and RNA-Seq data. RNA-Seq alignments may be provided from any RNA-Seq
alignment tool that produces SAM or BAM output, such as Tophat or MapSplice. This is followed by
filtering using highly accurate splice-site classifiers. SpliceGrapherXT incorporates the gene models, EST
alignments and RNA-Seq alignments to produce a comprehensive splice graph prediction.

7. Save information about ambiguous regions that cannot be resolved.

8. (Optional) Resolve ambiguous regions in the splice graph by realigning the reads to a putative tran-

scriptome.

9. (Optional) Employ PSGInfer or IsoLasso to predict isoforms from the resulting splice graph.

Figure 3.2 provides an example of a splice graph that SpliceGrapherXT predicted for a gene in A. thaliana,

along with the graph constructed from the original gene model, the splice junctions that were recapitulated in

the RNA-Seq data, and the read depth along the genomic region. SpliceGrapherXT combined these different

forms of evidence and predicted only those novel exons it could resolve unambiguously.

The key differences between SpliceGrapherXT and the original SpliceGrapher lie in the algorithm used

to predict novel exons (step 5 in our pipeline above), a realignment procedure designed to resolve ambiguous

regions in the splice graph (step 8, discussed in Chapter 5), and a method for using predicted splice graphs

to predict novel transcripts (step 9, discussed in Chapter 6). The original SpliceGrapher inference rules

are discussed in detail in Appendix A, while RNA-Seq alignment and filtering (step 2) are discussed in

20



Gene Model for AT5G22640

SpliceGrapher Prediction for AT5G22640

18 16 13 8 34 39 2

93

11 9 6

Supported Junctions

7530000 7531000 7532000 7533000
100

101

102

R
e
a
d

 D
e
p

th

Read Coverage

Alt. 3' Intron Retention

Figure 3.2: Example of a predicted splice graph in A. thaliana where RNA-Seq data were loaded along
with gene model annotations to create a composite model that incorporates all available evidence. Here
RNA-Seq coverage across an intron allowed SpliceGrapherXT to identify an intron retention event (exon
outlined in blue). In addition, a novel splice junction (highlighted in green) provided SpliceGrapherXT with
evidence for an alternative 3’ splicing event (exons highlighted in orange). The numbers associated with
splice junctions indicate the number of reads that aligned across them. Vertical bands in the background
depict exon boundaries in the original gene model.

Chapter 4. Here we describe each of the remaining steps in the pipeline, beginning with building initial

splice graphs from gene models.

3.1.1 Splice Graph Initialization

Each of the data sources used by SpliceGrapherXT—genome annotations, EST alignments and RNA-

Seq data—requires a distinct interpretation for splice graph construction. Gene models and EST alignments

are treated in a similar fashion and are used to establish the context for interpreting the evidence from

RNA-Seq data.

Gene models are usually provided in the Gene Transfer Format (GTF) or the General Feature For-

mat (GFF3) and may be obtained from centralized web repositories such as NCBI [2], UCSC [222] or

EMBL [50]. These files provide details on every known exon in a genome, including the chromosome

where it is found; its start and end coordinates; its strand, and the transcripts that include it. SpliceG-

rapherXT creates an initial splice graph from the information found in a gene model file: it incorporates

exons directly into a splice graph and infers an intron whenever the corresponding exons are adjacent in a

transcript.

21



Figure 3.3: Example where evidence for novel exons is ambiguous and difficult to interpret. We simulated
reads from the complete gene model, then provided a reduced model to Cufflinks and SpliceGrapherXT to
make predictions. Cufflinks fails to make any novel predictions in this example. IsoLasso/CEM outper-
forms Cufflinks and IsoLasso, correctly predicting several novel exons, but an incomplete isoform. Distinct
inference rules in the original SpliceGrapher method are able to resolve novel exons for an alternative 5’
event and an alternative 3’ event, but cannot make predictions for combinations of events. Using a single
comprehensive inference rule, SpliceGrapherXT is able to resolve more of the novel exons recapitulated in
the data and makes a more complete prediction than any other method.

22



ESTs are longer than RNA-Seq reads and thus provide more reliable transcriptional evidence. These se-

quences may be obtained from sites such as GenBank [146, 16] and are provided in the FASTA format [121].

Gapped alignment tools such as BLAT [92] or GMAP [238] align ESTs to a genomic reference sequence

and store the alignments in Pattern Space Layout (PSL) files. Similarly to gene model files, PSL files pro-

vide details on the exons and introns inferred by each gapped EST alignment. SpliceGrapherXT converts

this alignment information directly into splice graphs using the same procedures described above for gene

models. See Appendix C for more details on the file formats.

3.1.2 Making Predictions from RNA-Seq Data

Read Clusters

4000 4500 5000 55000

5

10

15

20

25

30

R
e
a
d
 D

e
p
th

Read Coverage

Figure 3.4: Depiction of the method SpliceGrapherXT uses to convert read coverage into read clusters. The
top panel shows the novel read clusters inferred from the read coverage, while the bottom panel shows read
coverage across a gene. Vertical shaded regions depict known exons. One region of contiguous coverage
falls completely within the second intron (genomic position 4500), while two other coverage regions extend
past known boundaries for the third and fourth exons. Each of these regions is converted into a read cluster
(top panel) that may be used to make predictions.

To incorporate RNA-Seq data into a splice graph, SpliceGrapherXT loads read alignments in Sequence

Alignment/Map (SAM) format [108] for all reads that map within the boundaries of some annotated gene.

It then constructs putative exons from clusters of contiguous ungapped alignments (Figure 3.4) where the

read depth remains above a minimum threshold (the default is 0). If a putative exon is contained within an

existing exon, it is considered redundant and is discarded. SpliceGrapherXT resolves the remaining putative

exons by applying a concise set of constraints on the splice junction evidence in the RNA-Seq data.

There are major differences between SpliceGrapherXT and the original SpliceGrapher in the algorithm

used to predict novel exons (step 5 above). The original SpliceGrapher focused on predicting alternative

splicing (AS) events and thus used separate inference rules for different kinds of AS. These isolated rules

23



are sometimes unable to resolve all the evidence for a gene, as shown in Figure 3.3. SpliceGrapherXT

predicts novel exons using a cohesive set of constraints that derive from the following observation: when

two or more acceptor sites appear upstream of two or more donor sites in the same cluster, the choice of

exon boundaries is not well defined. We specify these criteria as two constraints imposed on the splice sites

within any cluster of reads before we will predict an exon:

1. At most one donor site can be downstream of multiple acceptor sites.

2. At most one acceptor site can be upstream of multiple donor sites.

Each of these constraints must hold for SpliceGrapherXT to make a prediction.

The RNA-Seq spliced alignments that fall within a genomic region form a sequence of confirmed donor

and acceptor sites. To apply the above criteria to these sequences, we use the symbols a and d to denote

acceptors and donors, respectively, and convert sequences of confirmed splice sites within a read cluster into

strings of a’s and d’s. For every such string, we express the constraints above as follows:

1. At most one a precedes one or more d’s, which may be expressed using a pattern of the form a+d.

2. At most one d follows one or more a’s, which may be expressed using the pattern ad+.

Scenario 1:   a+d

daaa

Scenario 2:   ad+

ddda

Predicted Exons

Figure 3.5: Correspondence between regular expression rules for sequences of acceptor and donor sites
within read clusters, and the exon predictions that follow. Scenario 1 predicts splice sites at the 3’ end of a
putative exon, while scenario 2 predicts splice sites at the 5’ end. We combine these expressions to predict
the four primary AS events.

We define a simple regular language to recognize strings that obey these constraints and thus use a regu-

lar expression to identify sequences of acceptor and donor sites that meet our requirements (see Figure 3.5).

For those sequences accepted by the regular expression, predicting novel exons then becomes a simple mat-

ter of pairing every acceptor site with every donor site within the corresponding sequence of splice sites.

The original implementation applies these constraints implicitly in the way it resolves putative exons [179].

24



Using a regular language allows us to make these constraints explicit and eliminates the need for having

separate inference rules for each type of AS event.

3.1.3 Overview of the Prediction Algorithm

Algorithm 1: SG Predict(G,C, J,R)
Input: splice graph G = (V,E) initialized from gene models and ESTs

read clusters C that overlap G
splice junctions J that overlap G
regular languageR

Output: updated graph G
unresolved nodes U

Novel exons N ← ∅
Unresolved exons U ← ∅
for all regions r ∈ C ∪ V do

Create site string S from the donor and acceptor sites within r
for all acceptors a ∈ r do

for all donors d ∈ r downstream of a do
Create exon ead with boundaries [a, d]
if ead /∈ V then

ifR accepts S then
N ← N ∪ ead

else
U ← U ∪ ead

end if
end if

end for
end for

end for
for all ead ∈ N do

add edges using junctions that end with a or start with d
end for
V ← V ∪ N

The core of the SpliceGrapherXT method is the algorithm for updating splice graphs (Algorithm 1).

Given an initial splice graph G, a set of read clusters C that overlap the gene, a set of confirmed splice

junctions J that overlap the gene, and a regular languageR that accepts resolvable patterns of acceptor and

donor sites, the algorithm adds novel exons to the graph and stores unresolved exons for later processing.

The algorithm iterates over every exon in a graph, plus every cluster that is not contained within an exon.

Within these regions it finds all acceptor and donor sites associated with splice junctions from the gene

models and from the filtered RNA-Seq alignments. Using the relative positions of acceptor and donor sites,

25



it creates a splice site string. It then creates exons from pairs of acceptor and donor sites and adds those not

in the graph as novel or unresolved exons, depending on whether the regular language R accepts the splice

site string. Finally the algorithm resolves the edges associated with novel exons and returns the updated

graph along with any unresolved exons.

By running this procedure for every gene in an organism, SpliceGrapherXT can generate splice graph

predictions for a complete genome-wide assessment of AS. The graphs can help to generate biologically-

relevant insights by facilitating statistical analysis [99, 172], and by providing visualizations that are easy to

interpret [73, 179].

3.2 Performance Evaluation

In this chapter we evaluate SpliceGrapherXT and other methods at the exon level. It is challenging to

validate methods that predict novel exons because there is no “gold standard” for the exons in a genome.

Even well-annotated gene models are likely to be missing exons and transcripts that simply have not yet been

observed. Thus to evaluate prediction methods we use two similar approaches that we apply to simulated

data and real data [140, 177, 9]: A subset of splice forms are removed (or “left out”) from a set of gene

models, and the reduced models are provided to each method to make predictions. Predictions are then

evaluated using the left-out set that we also call our test set. This approach is a more formal version of an

experiment we reported in [179] in which we made predictions for A. thaliana using one version of the gene

models (TAIR9) and compared those predictions with a more recent version of the gene models (TAIR10).

Simulating reads provides us with a suitable “gold standard” of splice forms and exons that are repre-

sented in a test set, allowing us to compute recall, precision and accuracy for each method. Real data poses

more significant challenges: first, there may be many splice forms in real data that are unknown to the gene

models. Second, real data is usually noisier than simulated data and may contain errors or biases related to

the sequencing process [152, 86]. However, we can use a similar approach to the one we use for simulated

data. Again we create a left-out set, provide reduced gene models to each prediction method, and then es-

timate precision and recall for their predictions relative to splice forms in the left-out set. Throughout this

thesis we use these two approaches to compare SpliceGrapherXT with Cufflinks and IsoLasso.

In all of our experiments described in this chapter we run steps 1 through 7 in the SpliceGrapherXT

pipeline described in Section 3.1. This includes a filtering step that helps to make SpliceGrapherXT

more precise by removing novel splice junctions that may be spurious. However, it may also reduce

26



SpliceGrapherXT’s sensitivity if it removes false-negative junctions. The filtering step is described in detail

in Chapter 4, where we also compare our results with and without filtering.

We ran our comparisons on two different species: human and the model plant A. thaliana that has a small,

compact genome with short introns. Although both species have well-annotated gene models, H. sapiens

has much more complex gene models with many more isoforms per gene: on average, 6.85 annotated splice

forms per gene compared with 1.24 per gene for A. thaliana.

3.2.1 Methods for Comparison

We selected Cufflinks [218, 173], IsoLasso [113] and IsoLasso/CEM [114] as competitive methods for

comparison in our experiments. Cufflinks and IsoLasso have become de facto standards for comparisons

with algorithms that predict and quantify novel transcripts from RNA-Seq [113, 140, 236, 179, 132, 214,

80, 17]. In earlier work on A. thaliana we also compared SpliceGrapher with TAU [55], because it was

developed for A. thaliana (in contrast to Cufflinks that was developed using mammalian genomes). However,

TAU tends to produce a large number of potentially spurious predictions [179], so we no longer consider it

a competitive comparison.

As described in Chapter 2, Cufflinks uses a parsimony strategy that attempts to identify a minimum set

of isoforms that explain all the reads in a data set. When provided with gene models, Cufflinks combines

Tophat alignments with faux-read alignments based on the gene models to predict a set of isoforms. IsoLasso

and IsoLasso/CEM use methods that construct isoforms and estimate their abundances simultaneously [113,

114]. IsoLasso creates a large set of possible isoforms by enumerating over the possible combinations of

exons inferred from read alignments or imported from gene models. It minimizes the sum of squared errors

between estimated and actual read coverage for each isoform, while simultaneously constraining the number

of isoforms. IsoLasso/CEM solves a similar optimization problem while also accounting for potential biases

in the data [114]. These IsoLasso methods will accept gene models to augment the exons recapitulated in a

data set, but we found that both methods make better predictions without gene models.

Both Cufflinks and IsoLasso have parameters that require tuning. Cufflinks uses a threshold on the

predicted expression level to determine when to predict a transcript. The threshold is given as a fraction of

the most abundant isoform for a gene, below which other isoforms will not be predicted. Set to 0, Cufflinks

will predict any isoform with read coverage and should provide maximum sensitivity; we also found that

when we set it to 10% (0.1), Cufflinks achieves a good balance between recall and precision. We refer to

27



these two settings as CufflinksS (sensitive, threshold 0) and CufflinksB (balanced, threshold 0.1). IsoLasso

performance varies primarily with two parameters: a minimum expression value cutoff (minexp) similar

to Cufflinks’ threshold, and a coverage fraction cutoff (u) that controls its sensitivity to multiple isoforms.

After extensive testing on simulated data we achieved the best performance using minexp=0.0034 and

u=0.98 for IsoLasso and minexp=0.002 and u=0.78 for IsoLasso/CEM.

3.2.2 Simulation experiments

In our simulation experiments we generate paired-end reads, align them to a reference genome using

Tophat, and provide the alignments to each method to make its predictions. We use an organism’s complete

set of gene models as the reference for generating the paired-end reads, then select a single representative

transcript from every gene as input to the prediction methods. We then compare each method’s predictions

with the set of left-out transcripts to assess performance. Preliminary experiments showed that providing

SpliceGrapherXT and Cufflinks with multiple isoforms instead of a single isoform led to similar perfor-

mance, so we chose to highlight these methods’ success in this somewhat more challenging task. As noted

in Section 3.2.1, IsoLasso performed better without gene models.

SpliceGrapherXT

CufflinksIsoLasso

(A) (B) (C)

Figure 3.6: Experimental protocol for our simulation experiments. (A) We provide a complete set of gene
models to the FluxSimulator to simulate RNA-Seq reads for each transcript. (B) Next we select a single
representative transcript for the gene and provide it to the prediction methods as a baseline. (C) Each
method then makes its predictions based on the representative transcript and the simulated reads.

In these experiments (Figure 3.6) we randomly select 1000 genes that produce multiple isoforms and

use the FluxSimulator [66] to generate 1 million paired-end reads (500,000 pairs) from those genes. We

then use each method’s pipeline to generate predictions. The SpliceGrapherXT pipeline uses Tophat [216]

for RNA-Seq alignments and then filters the output. The Cufflinks and IsoLasso pipelines use Tophat for

RNA-Seq alignments and make predictions from alignments without any filtering steps. We have compared

28



Tophat with MapSplice [230] and found that MapSplice yields higher sensitivity to novel splice junctions

than Tophat. However, Cufflinks does not perform well with MapSplice output, as it relies on meta-data

that Tophat includes in its alignments. In addition, we wanted to focus our comparisons on exon prediction

methods without any possible bias due to the choice of alignment algorithms. Hence we selected Tophat for

all alignments in our experiments.

The FluxSimulator provides a detailed simulation for each step in the RNA-Seq generation process [66].

It applies a modified version of Zipf’s Law [59] to randomly assign an expression level to each transcript

in a gene. This means that a couple of isoforms may be highly expressed in a gene, while other isoforms

may have expression levels that are orders of magnitude lower. Thus some exons from the gene models may

have no read coverage and may be impossible to predict from the generated reads. With this in mind, our

test set includes any exon from the left-out set that can be identified from the simulated read information.

All simulated reads have headers that include information about where the read originated. This allows us

to determine which sequences, and thus which exons, are represented in the simulated reads.

3.2.3 Real data

Evaluation on real data is challenging because gene model annotations are incomplete and because we

have no a priori knowledge of which genes and transcripts are represented in an RNA-Seq data set. As in our

simulation experiments, we provide Cufflinks, SpliceGrapher and SpliceGrapherXT with a representative

isoform from each gene, and then compare all methods’ predictions with the rest of the isoforms.

As with our simulated data, to assess each method’s performance we establish test sets of exons and

isoforms by removing all but one isoform from every gene model. We then use Cufflinks to determine

the isoforms from the left-out set that are represented in the data. To do this, we provide Cufflinks with

the complete set of gene models and ask it to estimate expression levels only for isoforms from the gene

models (i.e., without predicting any novel splice forms). Cufflinks provides 95% confidence intervals on the

estimated expression levels that we can use to determine which isoforms are likely to be expressed in the

data. Our test set thus includes just the isoforms whose estimated expression levels have strictly positive

lower bounds.

To evaluate our precision results for real data in more detail, we also look at how the exons predicted by

each method are distributed between those found in the complete gene models (test set) and those that are

novel or possibly spurious predictions (unknown). For well-annotated species like human, we expect that a

29



higher proportion of predicted exons should come from the left-out set. For A. thaliana that is more sparsely

annotated, we expect a higher proportion to be novel.

We used RNA-Seq data sets with read lengths of at least 75nt to reflect the current technology. Our

reads come from two different species: H. sapiens and the model plant A. thaliana. For H. sapiens we

downloaded RNA-Seq data that were used as a control for comparison with CLIP-seq reads[240] (NCBI

accession SRP009861, sample SRX111920). This control set consists of 28M 75-nt read pairs (56M reads)

sequenced from RNA isolated from untreated HeLa cells. The authors used these data explicitly to detect

alternative splicing in those cells. For A. thaliana we used 76-nt data consisting of approximately 32.5M

read pairs (65M reads, NCBI accession SRA047499) [135]. We expected these reads to yield good results

as they were derived from a cDNA library that was normalized to increase coverage across genes.

3.3 Results

For each method we report the number of true positive predictions, precision and recall. In the case of

real data however, precision is under-estimated, since a prediction that is not part of the known gene models

may be a novel exon or an isoform that is as-of-yet, unknown. This phenomenon is more pronounced in

A. thaliana, whose genome is not as well annotated as the human genome.

3.3.1 Simulation experiments

Table 3.1: Performance averaged over 10 simulation runs for H. sapiens (left) and A. thaliana (right) with
1,000 randomly-selected AS genes. Approximately 1 million paired-end reads were generated for each run
(500,000 pairs). Gene models were reduced to a single isoform before being supplied to each method.
Reference shows the number of exons present in the full gene models for the randomly selected genes; the
test set shows the number of exons removed from gene models. CufflinksS is Cufflinks at the sensitive
setting that reports any transcript, while CufflinksB reports transcripts with the threshold set to 0.1. Results
show the number of correctly predicted exons (TP), and the recall and precision for each method.

H. sapiens A. thaliana
Method TP Recall Precision TP Recall Precision
Reference 19,956 — — 10,168 — —
Test set 9,349 — — 2,623 — —
SpliceGrapher 573 0.06 0.95 816 0.31 0.96
SpliceGrapherXT 1,053 0.11 0.93 1,207 0.46 0.95
CufflinksS 590 0.06 0.32 620 0.24 0.32
CufflinksB 574 0.06 0.31 571 0.22 0.33
IsoLasso 550 0.06 0.13 520 0.20 0.22
IsoLasso/CEM 546 0.06 0.12 607 0.23 0.24

30



In our experiments on simulated data, SpliceGrapherXT achieves approximately twice the recall of any

other method and three times the precision at the exon level (Table 3.1). CufflinksS achieves higher exon

recall than CufflinksB in both species, with approximately the same precision. IsoLasso’s recall is slightly

lower than Cufflinks, and with much lower precision. In general we found that IsoLasso had difficulty

constructing any novel isoforms even when we provided it with gene models, and overall its performance

was better without them. Our experiments also illustrate the improvement of SpliceGrapherXT over the

original SpliceGrapher as it yields much higher recall with nearly the same precision. A representative

example is shown in Figure 3.3.

Table 3.2: Prediction results on simulated data for the four kinds of alternative splicing. Overall, SpliceGra-
pherXT is able to predict correctly up to 33% more AS events than SpliceGrapher, with the most dramatic
improvement in IR events. SpliceGrapherXT is able to recall fully 69% of the left-out AS events in A.
thaliana and more than 21% of events in H. sapiens. The two SpliceGrapher methods have much higher
precision than any of the other methods.

AS Statistics for 1,000 Genes (A. thaliana)
IR ES Alt. 5’ Alt. 3’ Overall

Method Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec.
SpliceGrapher 0.33 0.98 0.54 0.98 0.54 0.98 0.65 0.99 0.52 0.98
SpliceGrapherXT 0.65 0.95 0.70 0.98 0.67 0.98 0.73 0.99 0.69 0.97
CufflinksS 0.51 0.24 0.88 0.91 0.62 0.19 0.69 0.27 0.64 0.27
CufflinksB 0.34 0.41 0.62 0.98 0.40 0.61 0.45 0.80 0.43 0.64
IsoLasso 0.03 0.18 0.45 0.49 0.17 0.30 0.22 0.44 0.18 0.38
IsoLasso/CEM 0.04 0.18 0.62 0.63 0.24 0.35 0.37 0.53 0.28 0.46

AS Statistics for 1,000 Genes (H. sapiens)
IR ES Alt. 5’ Alt. 3’ Overall

Method Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec.
SpliceGrapher 0.04 0.96 0.27 0.95 0.12 0.94 0.12 0.93 0.17 0.95
SpliceGrapherXT 0.07 0.86 0.32 0.93 0.13 0.93 0.13 0.93 0.21 0.93
CufflinksS 0.07 0.37 0.33 0.86 0.11 0.17 0.16 0.21 0.21 0.42
CufflinksB 0.05 0.57 0.22 0.99 0.07 0.50 0.10 0.61 0.14 0.79
IsoLasso 0.00 0.12 0.18 0.38 0.03 0.20 0.05 0.30 0.09 0.35
IsoLasso/CEM 0.00 0.11 0.20 0.41 0.03 0.22 0.06 0.32 0.11 0.37

We find a similar pattern when we break performance down across AS types: SpliceGrapherXT again

achieves higher recall and precision than any other method, predicting more AS events than the original

SpliceGrapher at nearly the same level of precision (Table 3.2). Of note is the fact that SpliceGrapherXT’s

recall for IR events is approximately twice as high as SpliceGrapher IR events in both species. As noted

in [179], IR is arguably the most difficult form of AS to predict from RNA-Seq. By contrast, IsoLasso and

31



IsoLasso/CEM yield very low recall and precision for IR events. IsoLasso/CEM achieves higher precision,

but neither method achieves even half the recall or precision of SpliceGrapherXT. CufflinksS recalls more

ES events in both species than SpliceGrapherXT, and more alternative 3’ events in H. sapiens, but it suffers

from extremely low precision because it uses unfiltered spliced alignments (see Chapter 4). CufflinksB

raises Cufflinks’ precision considerably, but at the cost of lower recall. Cufflinks’ susceptibility to parameter

settings is especially noticeable for alternative 3’ and alternative 5’ events, where raising the threshold from

0 to 0.1 can increase precision by a factor of three but decreases recall by up to 60%.

In our simulations, recall and precision are both higher for AS events than for exons overall. Recall is

considerably higher because approximately 75% of the missing exon predictions in our simulations (counted

as false-negatives) are not counted as AS (see Appendix B for details on counting AS events). These

typically are alternative initial or terminal exons that are difficult to predict. Precision also increases slightly

as a small proportion (15%) of false-positive exon predictions also are not counted as AS. Similar to the

false-negatives, these are due to incorrectly predicted initial or terminal exons.

3.3.2 Real data

Table 3.3: Prediction performance for all methods on real data for H. sapiens (left) and A. thaliana (right).
Shown are the number of exons removed from the original gene models (left out) followed by the statistics
for each method.

H. sapiens A. thaliana
Method TP Recall Precision TP Recall Precision
Left out 87,799 — — 14,617 — —
SpliceGrapher 2,173 0.025 0.67 2,246 0.15 0.22
SpliceGrapherXT 3,965 0.045 0.59 2,413 0.17 0.16
CufflinksS 2,006 0.023 0.16 1,636 0.11 0.02
CufflinksB 2,015 0.021 0.10 996 0.07 0.04
IsoLasso 1,308 0.013 0.04 890 0.06 0.03
IsoLasso/CEM 1,359 0.014 0.04 990 0.07 0.03

We tested the ability of each of the methods to identify novel exons and isoforms with real paired-end

RNA-Seq data using 75-nt H. sapiens reads [240] and 76-nt A. thaliana reads [135] (see Table 3.3). In

H. sapiens SpliceGrapherXT predicts almost twice as many of the left-out exons as either of the Cufflinks

runs, with up to six times the precision. In A. thaliana SpliceGrapherXT predicts nearly 50% more of the

left-out exons than Cufflinks with up to eight times the precision. IsoLasso and IsoLasso/CEM both exhibit

the worst performance of all the methods, predicting less than half as many left-out exons as SpliceGra-

pherXT in either species, and at very low precision.

32



Table 3.4: Novel exons predicted by each method for A. thaliana and H. sapiens, where exons are novel
relative to the reduced gene models. Predictions are split into two categories: those in the test set (complete
gene models) and those that are either novel or spurious predictions (unknown). SpliceGrapherXT predicts
more exons in the test set than the other methods. Cufflinks predicts up to 20 times as many unknown exons
as SpliceGrapherXT. The IsoLasso methods perform as poorly as Cufflinks, but with fewer novel exons
overall.

Category SpliceGrapherXT CufflinksS CufflinksB IsoLasso IsoLasso/CEM
A. thaliana

Test set 2,413 1,636 996 890 990
Unknown 13,184 104,350 13,187 35,152 37,433

H. sapiens
Test set 3,965 2,006 2,015 1,308 1,359
Unknown 2,717 55,273 17,875 31,971 32,578

To investigate these results in more detail, we take a closer look at the distributions of predicted exons for

each method (Table 3.4). For each species we present the number of novel predicted exons that were in the

test set (analogous to true positives) and the number that were either false positives or as-yet-unknown. As

noted above, we expect H. sapiens to be more completely annotated than A. thaliana. Each of the methods’

predictions are consistent with this hypothesis. In H. sapiens SpliceGrapherXT predicts a majority of exons

from the test set while in A. thaliana there are a majority of unknown exons. Both Cufflinks versions also

predict a higher proportion of left-out exons in H. sapiens than A. thaliana, though CufflinksS predicts vast

numbers of unknown exons in both cases. IsoLasso and IsoLasso/CEM, which had the worst performance,

also predict a higher proportion of left-out exons in H. sapiens than A. thaliana.

3.4 Conclusion

We developed SpliceGrapher, a Python package designed to enhance existing gene annotations by pre-

dicting splice graphs from RNA-Seq and EST data. We replaced our initial SpliceGrapher implementation

with SpliceGrapherXT, a novel method that predicts AS from RNA-Seq data by applying a simple set of

constraints to patterns of acceptor and donor sites. Our results show that this approach gives SpliceGra-

pherXT much greater sensitivity than the original SpliceGrapher when predicting novel AS events, without

sacrificing precision. In addition, SpliceGrapherXT is efficient: in our experiments with real data from

H. sapiens and A. thaliana we were able to generate a complete set of predictions for either species in little

more than an hour.

We compared SpliceGrapherXT to Cufflinks and IsoLasso; where the other methods make limited use

of gene models, SpliceGrapherXT uses gene annotations as a basis on which to construct its splice graphs.

33



This allows SpliceGrapherXT to make meaningful predictions even for genes that have low read coverage,

and helps it resolve AS events that are otherwise hard to detect from RNA-Seq data. When patterns of

acceptor and donor sites are unresolvable, SpliceGrapherXT stores the information for later evaluation.

Both Cufflinks and IsoLasso were sensitive to the parameter settings we selected, so both required

extensive tuning to obtain the best performance on all of our data sets. SpliceGrapherXT has parameters

that it uses to filter incoming alignment data, such as a read coverage threshold for accepting read clusters

or spliced alignments, but these do not impact its performance greatly, and we were able to use the default

settings for all experiments.

Prediction of AS requires accurate alignment across splice junctions, which is a difficult task, especially

when the junction falls near one end of a read. In the experiments in this chapter, SpliceGrapherXT included

a filtering step that improved its precision by removing novel splice junctions that were possibly spurious. In

the next chapter we will see how SpliceGrapherXT uses a machine learning approach to recognize spurious

junctions and to filter the output of spliced alignment tools. In later chapters we explore ways to resolve some

cases of unresolvable splice site patterns by realigning the RNA-Seq reads to a set of putative transcripts. We

will also look at how SpliceGrapherXT’s predictions may be used to predict complete mRNA transcripts.

34



Chapter 4

Filtering Spliced Alignments

In Chapter 3 we showed that SpliceGrapherXT can make accurate and sensitive splice-graph predictions

from RNA-Seq evidence. However, because SpliceGrapherXT bases its novel AS predictions largely on

evidence from spliced alignments, its predictions will be only as accurate as the alignments themselves (see

Figure 4.1). Our goal, then, is to ensure that the spliced alignments we provide to SpliceGrapher are as

accurate as possible. To achieve this, we develop splice-site models that can discriminate between real and

spurious splice junctions and use these models to filter spliced alignments.

4.1 Related Work

Reads that span splice junctions create significant challenges for alignment tools. A splice junction may

occur anywhere within a read, so the read may have just a few bases on one side of a junction. Such a short

sequence may align in multiple locations, making it difficult to identify its true origin. Many alignment

tools use heuristics to restrict the number of candidate locations: for example, by establishing limits for

permissible intron lengths, or by focusing on locations that are bounded by canonical (GT-AG) or semi-

canonical (GC-AG) splice-site dimers [10, 12, 216, 23, 79].

Heuristics that look for GT-AG and GC-AG junctions can work reasonably well, as up to 99% of splice

junctions in mammals are flanked by these dimers [25]. Coupled with an organism-specific distribution of

known intron lengths, and anchor sizes of 8-10nt, the chances of a spurious alignment become relatively

small. Our experiments have shown that Tophat [216] can report correct splice junctions up to 97% of

the time [179], but even a 3% error rate with tens of thousands of spliced reads can result in hundreds of

spurious junctions. Further, if we consider only novel spliced alignments, Tophat’s accuracy drops as low

as 32% [179]. It is these novel splice junctions we require to make novel exon predictions, so we need more

accurate splice-site models than these simple heuristics to discriminate between real and spurious splice

junctions (Figure 4.1).

The first studies that filtered RNA-Seq data for predicting novel transcripts used splice-site models that

were developed for a specific set of experiments [153, 246]. For example, Pan et al. developed a logistic

35



Correct AT3G02870 Model

Reduced AT3G02870 Model

SpliceGrapherXT AT3G02870 Prediction

Unfiltered AT3G02870 Prediction

Spliced Alignments

627500628000628500629000629500

100

101

102

R
e
a
d

 D
e
p

th

Read Coverage

Alt. 3' Alt. 5'

Figure 4.1: Example of a SpliceGrapherXT prediction based on unfiltered spliced alignments for simulated
RNA-Seq data. By using simulated reads we can identify real and spurious junctions in the alignments.
With filtered alignments, SpliceGrapherXT makes the correct prediction (third panel), but a false-positive
splice junction in the unfiltered data (fourth and fifth panels, highlighted in red) causes SpliceGrapherXT to
make a spurious prediction.

36



regression model that could discriminate between true and false spliced alignments in H. sapiens [153].

They achieved high accuracy using features of the spliced alignments such as the number of reads uniquely

aligned to a sequence; the distribution of mismatches and gaps in the alignments, and how many aligned

bases fell on either side of a junction. Yassour et al. [246] used a position-specific scoring matrix (PSSM)

to learn motifs in the DNA sequence around known splice sites in S. cerevisiae, then accepted novel splice

sites whose PSSM scores fell into the 95th percentile for their data. These studies illustrate two kinds of

features that can help characterize correct spliced alignments: those based on alignment statistics and those

based on sequence characteristics.

Spliced alignment algorithms have since been developed that use sophisticated splice site models to

validate their spliced read alignments [39, 216, 41, 83, 230, 23, 210]. Most of these tools perform spliced

alignments by splitting the reads into smaller segments and aligning the segments to genomic sequences

(see Figure 2.3). When a segment maps to a unique location these methods next try to align the read’s

remaining segments to a location nearby (usually constrained by a bound on intron length). Tophat [216]

is arguably the most popular of these tools. It accepts spliced alignments when they infer introns that are

bounded by canonical GT-AG splice-site dimers and have lengths within specified limits. Another tool,

PalMapper [192, 39, 83], is an example of a sequence-based method that incorporates support vector ma-

chine (SVM) classifier scores into its alignment scores. These SVM classifiers use sequence-based kernels to

recognize signals in the short sequences flanking GT or AG dimers. MapSplice [230], computes alignment

statistics for the set of reads aligned across a junction. These include an anchor significance statistic that

reflects how far reads extend on either side of a junction, and Shannon’s entropy to measure how uniformly

reads are aligned across a junction. In our experiments we found that MapSplice can provide high sensi-

tivity, resolving 6-8% more alignments than Tophat, but in practice its results tend to be inconsistent, often

failing to align paired-end reads, and providing inadequate alignment information for subsequent processing

with tools such as Cufflinks.

We want SpliceGrapherXT to work with a variety of alignment tools including the most popular, Tophat

[217]. At the same time we want to trust the spliced alignments SpliceGrapherXT uses for its predictions.

Our solution was to add to SpliceGrapher sequence-based SVM classifiers similar to [192, 39] that it can

use to filter spliced alignments from other tools.

37



4.2 RNA-Seq Alignment

Accurate RNA-Seq alignment—particularly spliced alignment—is critical for making accurate splice

graph predictions. In earlier work we performed spliced alignment by creating a database of putative splice

junction sequences and aligning reads to the database with an ungapped alignment tool [179]. To build our

database, we first used splice-site classifiers to predict all possible donor and acceptor sites within a genome

(recall that a donor site is the splice site that defines an exon’s 5’ end, while an acceptor site marks its 3’

end). We then constructed putative junction sequences by pairing every known or predicted donor site in

a gene with all known and predicted acceptor sites downstream of it in the same gene. Alignment then

consisted of two phases: first we aligned all reads to a reference genome. Those reads that did not align in

the first phase we aligned to the splice junction database in the second phase (similar approaches have been

used in other studies [144, 153, 204]).

This approach worked well for a relatively simple and compact genome such as A. thaliana, but the

splice site database can become too large to be practical for complex genomes with many possible com-

binations of donor and acceptor sites. A more efficient approach is instead to perform alignments with a

spliced alignment tool and use our splice-site classifiers to filter out alignments with spurious splice sites.

This eliminates the need for a splice site database and means that classifiers will be applied only to the

relatively small fraction of novel splice-sites accepted by the alignment tool. We demonstrated this method

successfully on Tophat alignments for H. sapiens [179].

We selected Tophat for performing RNA-Seq alignments in our experiments for several reasons: First,

Cufflinks, one of our benchmarks (Section 3.2.1), relies on meta-data that Tophat provides in its alignment

files, so Tophat was required to achieve the best possible Cufflinks performance. Tophat was also used

in the development of IsoLasso [113], the other method we use as a benchmark. Second, by using the

same alignment tool for all methods, our results reflect only the differences in the exon prediction methods.

Finally, Tophat is arguably the most popular spliced alignment tool (see, e.g., [22, 129, 33, 243, 126, 120,

18]), so our results could have implications for a broad variety of other studies.

4.3 Splice site classifiers

Researchers have used various machine learning approaches to model splice sites, including linear dis-

criminants [199], quadratic discriminants [249], neural networks [21, 76, 156], Hidden Markov Models

38



(HMMs) [170], and SVMs [205, 40, 163, 164, 200, 14]. In general, the problem of splice site recognition

is relatively easy for discriminative classifiers; ROC scores for predicting GT or AG sites often exceed 95%

(for examples, see [200, 163, 179] and Figure 4.2). The most successful methods use SVM classifiers with

string kernels applied to DNA sequences [85]. These kernels use features based on combinations of k-mers:

strings of length k taken from the sequences on either side of a splice site (for a complete exposition of

string kernels, see [14, 191]). These kernels can map nucleotide sequences into a high-dimensional space

that allows classifiers to learn the intricate nucleotide patterns characteristic of splice sites.

4.3.1 SpliceGrapher methods

For a particular organism we create a classifier for each kind of splice site, as each site’s splicing signals

may be distinct. For example, the GT and GC dimers both correspond to donor sites, but they are recognized

by different splicing protein complexes [25]. To create splice site classifiers, SpliceGrapher extracts positive

and negative example sequences for splice site donor and acceptor dimers such as GT, GC and AG, following

the procedure described in [163]. Briefly, we use known splice sites as positive examples for a given dimer

and for negative examples we use all other occurrences of the dimer found within genes. Training examples

then consist of intronic and exonic sequences taken from either side of a site.

SpliceGrapher’s classifiers discriminate sequences using an implementation of the weighted-degree ker-

nel [163]. This kernel represents a sequence in a feature space of k-mers associated with positions in the

sequence. Kernel parameters include exon and intron sequence lengths on either side of a splice site, k-mer

length, number of mismatches to allow within a k-mer, and whether to allow shifts in k-mer position (for

a detailed overview, see [14]). SpliceGrapher iterates over combinations of these parameters to identify the

best-performing combination. It uses the PyML package [15] to train and test these SVMs using the training

examples described above. For each classifier we generate training data, select the best parameters for the

model and store the final model in a portable format used by SpliceGrapher scripts. Here we describe the

pipeline that automates this process using GT dimers as an example, but the process is the same for any

dimer.

To build a classifier for GT dimers we generate a balanced set of training data using N positive and N

negative examples, where N is a pipeline parameter (the default is 1000). We create a training example

using the intronic and exonic sequences flanking GT dimers. For positive examples we find all splice sites

in the gene models that are associated with a GT dimer and randomly select N sites. To generate a negative

39



0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r

a
te

A. thaliana GT Site Classifier ROC (AUC=0.96)

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r

a
te

H. sapiens GT Site Classifier ROC (AUC=0.97)

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r

a
te

A. thaliana GC Site Classifier ROC (AUC=0.97)

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r

a
te

H. sapiens GC Site Classifier ROC (AUC=0.89)

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r

a
te

A. thaliana AG Site Classifier ROC (AUC=0.94)

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 p

o
si

ti
v
e
 r

a
te

H. sapiens AG Site Classifier ROC (AUC=0.94)

Figure 4.2: ROC curves that demonstrate the accuracy of the SVM classifiers SpliceGrapher generated for
GT and GC donor sites and AG acceptor sites in A. thaliana (left), H. sapiens (right).

40



example, we first select a gene at random from the gene models. Within that gene we select a GT dimer at

random that is not associated with a known splice site and create an example from the sequences flanking

that dimer. We repeat this procedure until we have N negative examples.

Given a set of sequences as our training data, the next step is to select the parameters that will yield the

best classifier performance. The user provides a range of possible values for each of the model parameters

outlined above. The algorithm iterates over all possible combinations, using 5-fold cross-validation to eval-

uate the classifier on each combination. The classifier with the best ROC score is selected and its associated

parameters and data are stored in a file.

4.4 Performance evaluation

Several studies have demonstrated the accuracy of SVM classifiers for predicting splice sites [163, 164,

39, 83]. As we reported in [179], the classifiers we generated for A. thaliana, V. vinifera and H. sapiens

all achieve high accuracy. To assess the effectiveness of our pipeline for building classifiers for different

species, we downloaded gene models for 107 different species from the ENSEMBL website [51]. We used

the SpliceGrapher pipeline to generate classifiers for GT donor sites and AG acceptor sites for each of the

species. On average, our GT donor site classifiers achieved ROC scores over 0.96, while AG acceptor site

classifiers achieved scores over 0.94 (see Figure 4.2 and Appendix D for details). This demonstrates that

SpliceGrapher’s splice-site classifiers can be used to filter alignments in nearly any species that has enough

gene model annotations to generate a training set.

Our objective in developing accurate splice site models is to ensure that the spliced alignments we

provide to SpliceGrapher are as accurate as possible. As explained in Chapter 3, simulated RNA-Seq data

allows us to establish a ground truth for evaluating our results, but lacks much of the noise we find in real

data. Real data allows us to evaluate different methods in the presence of noise, but inevitably will include

novel splice sites that we cannot verify without running expensive assays. Thus we used both real and

simulated data to evaluate our classifiers’ effectiveness in predicting valid splice junctions.

4.4.1 Filtering alignments with simulated RNA-Seq data

For our simulation experiments we used FluxSimulator to generate 1 million paired-end reads in A.

thaliana and H. sapiens as described in Chapter 3. We used Tophat to align the simulated reads to a reference

genome, creating a set of unfiltered alignments, then used SpliceGrapherXT’s classifiers to obtain filtered

41



alignments from the unfiltered alignments. We used SpliceGrapherXT to predict splice graphs from the

unfiltered alignments and from the filtered alignments, and collected statistics for the number of correctly

predicted exons, recall and precision for both sets of predictions. We repeated the experiments ten times to

obtain average measurements.

Table 4.1: Exon prediction statistics using filtered or unfiltered splice junctions with alignments from sim-
ulated data. Shown are the number of correctly predicted exons, along with recall and precision statistics
for the predictions. When SpliceGrapherXT makes predictions with filtered alignments, the number of cor-
rectly predicted exons can drop by more than 20% compared with predictions using unfiltered data, while
precision increases by just 1.4%.

A. thaliana H. sapiens
Method TP Recall Precision TP Recall Precision
Test set 2,627 — — 9,504 — —
Filtered 1,189 0.453 0.951 1,042 0.110 0.927
Unfiltered 1,320 0.503 0.938 1,319 0.139 0.920

In our simulations, we observe a clear tradeoff between precision and recall when we apply the filters:

predictions from unfiltered data yield higher recall than predictions from filtered data, but the filtered data

yields higher precision (Table 4.1). However, in these simulations, small increases in precision incur rel-

atively large decreases in recall. In A. thaliana precision increases by just 1% while recall decreases by

nearly 10%.; in H. sapiens precision increases by less than 1% while recall decreases by over 20%. Thus

we investigated our filtering process more closely.

Table 4.2: Evaluation of SpliceGrapherXT’s classifiers on simulated data. The classifiers give us very
high precision in predicting real splice sites, but we find that a large proportion of the splice junctions our
classifiers reject are false-negatives.

Species TP FP TN FN Precision Accuracy
A. thaliana 1,134 43 41 169 0.96 0.85
H. sapiens 2,906 29 87 643 0.99 0.82

Because our simulated reads are generated from the complete gene models, assessing the filtering pro-

cess is relatively straightforward: We count as true-positive predictions those junctions accepted by the

filters that are present in the complete gene models; true negatives are junctions rejected by the filters that

are not in the gene models; false positives are predictions accepted by the filters but not in the gene models,

and false negatives are those rejected by the filters but present in the gene models. From this evaluation we

found that up to 88% of the splice junctions SpliceGrapherXT’s classifiers rejected are false-negatives in

the simulated data (Table 4.2). However, we also found that the classifiers give us extremely high precision:

42



fully 96% to 99% of of positive predictions are real junctions. One possible reason for these results is the

way we generate our training data. We have good evidence for the positive examples in our training sets,

as they use sequences flanking donor or acceptor sites from curated gene models. However, for negative

examples we use the sequences flanking random donor or acceptor dimers found in the genes. As a result,

our negative examples may include some as-yet undiscovered splice sites, so our classifiers may learn to

predict some real splice sites as spurious.

4.4.2 Filtering alignments with real RNA-Seq data

Table 4.3: Exon prediction statistics for filtered and unfiltered splice junctions. Shown are the number of
correctly predicted exons from the gene models, along with recall and precision statistics for the predictions
relative to known exons. When SpliceGrapherXT makes predictions with filtered alignments, the number
of correctly predicted exons drops by no more than 11% compared with predictions using unfiltered data,
while precision increases by up to 23%.

A. thaliana H. sapiens
Method TP Recall Precision TP Recall Precision
Test set 14,617 — — 97,504 — —
Filtered 2,413 0.165 0.155 3,956 0.041 0.593
Unfiltered 2,465 0.169 0.126 4,506 0.046 0.516

As discussed earlier, simulated RNA-Seq data lacks much of the noise present in real data, so we in-

vestigated the impact of SpliceGrapherXT’s filters on its predictions using the real data for A. thaliana and

H. sapiens described in Chapter 3. As in our simulation experiments, we ran SpliceGrapherXT on both fil-

tered and unfiltered data and used the same methods described in Chapter 3 to measure recall and precision

relative to splice forms in the left-out set. In this case the results are far more encouraging (Table 4.3). In

A. thaliana, SpliceGrapher’s predictions with filtered data incur a mere 2.1% drop in recall but provide a

dramatic 23% increase in precision. In H. sapiens, predictions using filtered data yield a 15% increase in

precision with an 11% drop in recall. Thus on real data we find a much more appealing tradeoff between

recall and precision from our filtering. In addition, we argue that results for real data provide a more realistic

picture of the advantages of filtering than results from simulated data that may make the spliced alignment

task much easier.

In earlier work we found that up to 68% of Cufflinks novel AS predictions were associated with false-

positive splice junctions [179]. These false-positive junctions can have a strong impact on the accuracy of

the novel exon and transcript predictions Cufflinks produces (Figure 4.3). By filtering spliced alignments,

SpliceGrapherXT is able to avoid using possibly spurious splice junctions in its predictions. The success of

43



Gene Model for AT3G16400

Cufflinks AT3G16400 Prediction (no gene models)

Cufflinks AT3G16400 Prediction (with gene models)

18 2
2
13

5
20

3

6
4
2

4

2
66

2
9

4

3
2
2
2
7

3

TopHat Spliced Alignments

5566500 5567000 5567500 5568000 5568500
100
101
102
103

R
e
a
d

 D
e
p

th

Bowtie Alignments

Figure 4.3: Cufflinks prediction for a gene in A. thaliana. Cufflinks attempts to find a set of transcripts that
are consistent with the preponderance of false-positive splice junction evidence (highlighted in red). The
resulting predictions likely contain spurious exons.

44



this approach is evident from our results filtering real data as discussed above, along with the exon prediction

results discussed in Chapter 3.

4.5 Conclusion

SpliceGrapherXT’s novel splicing predictions rely heavily on evidence for novel junctions from spliced

alignments, but some spliced alignment tools may detect a large amount of false-positive novel junctions. A

number of splice-site models have been developed that can predict legitimate splice sites with high accuracy.

Spliced alignment tools such as PalMapper [83] use sophisticated splice site models to eliminate false-

positives from their alignments, but these tools are slow and rarely used. Instead we have incorporated

a similar model into a method for filtering spliced alignments. SpliceGrapherXT can use its splice-site

classifiers in two different ways. By applying the classifiers to every donor or acceptor site in a genome, it

can build a database of predicted splice junction sequences for every gene. This database can then be used

as a set of reference sequences to perform spliced alignments using ungapped alignment tools. This was the

method used in our original work [179]. Building a database of predicted junctions allows users to bypass

the difficulties associated with spliced alignment programs, but these databases may become prohibitively

large for complex genomes such as H. sapiens. Alternately, SpliceGrapherXT can use its classifiers to filter

output from spliced alignment tools as described in this chapter. This allows us to use SpliceGrapherXT

with a variety of spliced alignment tools while assuring the accuracy of our predictions. We have evaluated

SpliceGrapher’s classifiers using both of these approaches and found that they yield similar results.

Our method is able to recognize legitimate splice sites in the alignments while reliably rejecting false-

positives. However, our method sacrifices some sensitivity to achieve its high precision. We accept this

trade-off because we want SpliceGrapherXT to generate as few false-positive predictions as possible, and

because there is as yet no known “gold standard” for dimers associated with known non-splicing sites.

Despite this tradeoff, as we demonstrated in Chapter 3, SpliceGrapher’s recall in predicting novel exons is

still much higher than other methods. Thus our classifiers are a key reason that SpliceGrapher is able to

combine a high level of recall with high precision as well.

45



Chapter 5

Resolving Ambiguities Using Realignment

When SpliceGrapherXT is unable to resolve a prediction from RNA-Seq evidence, it stores the exons

that might be inferred from the evidence, and labels each one unresolved. Labeling these putative exons as

unresolved serves two purposes: First, it allows SpliceGrapherXT to annotate graphs with evidence of novel

AS even when it cannot resolve specific events. Second, the stored information makes it possible to resolve

some of the putative exons if new evidence becomes available.

One way to extract additional information from a set of RNA-Seq reads is to realign them to a set

of putative transcripts. Similar approaches have been used successfully in other domains such as genome

assembly [44, 96, 29, 181] and isoform prediction [140]. This chapter describes a method we developed

that realigns RNA-Seq reads to a set of putative transcripts we compile from unresolved exons. We find that

in some cases, reads that align to these putative transcripts provide enough evidence that SpliceGrapherXT

can resolve up to 30% of the exons that the inference method alone could not.

5.1 Realignment Pipeline

Initially, SpliceGrapherXT predicts novel exons conservatively and records information about those

it could not resolve due to ambiguous combinations of acceptor and donor sites. We wish to resolve those

ambiguous loci by realigning RNA-Seq reads to a database of putative transcripts in order to find compelling

evidence for exons that SpliceGrapherXT could not resolved in its inference step. We thus created a pipeline

that constructs putative transcripts from unresolved exons, aligns reads to these transcripts, and resolves

exons that have sufficient coverage from the alignments (see Figure 5.1).

5.1.1 Creating putative transcripts

When SpliceGrapherXT encounters unresolvable evidence during its initial splice graph predictions, it

constructs putative exons from each combination of ambiguous acceptor and donor sites and inserts them

into the predicted graph, labeling each of them as unresolved. In addition, it records all possible edges be-

tween these unresolved exons and neighboring exons in the graph using splice junctions from the gene mod-

els and from the RNA-Seq alignments. For each predicted graph with unresolved exons, SpliceGrapherXT

46



BWA

Alignments

RNA-Seq
Putative Transcript

Sequences

Unresolved Exons Reference
Sequences

SpliceGrapherXT
Transcript
Generator

SpliceGrapherXT
Exon Resolution

Updated Splice Graphs

Splice Graphs

(a)

(b)

(c)

Figure 5.1: Flow of data through the SpliceGrapherXT realignment pipeline: (a) unresolved exons from
predicted splice graphs are used to generate a putative transcriptome; (b) RNA-Seq reads are aligned to
the transcriptome using BWA, and (c) aligned reads are used as evidence to resolve exons and that are
incorporated into the splice graphs.

47



generates transcripts as follows: First it inserts all unresolved exons into the graphs, connecting edges to

their putative neighboring exons. Next, it constructs putative transcripts by traversing all paths through the

graph and concatenating the DNA sequences for the exons along each path. Traversing all possible paths

in every graph for an organism can potentially yield an intractably large putative transcriptome, but in our

experiments with human and Arabidopsis the full realignment procedure takes slightly longer than the initial

predictions; a single run on real data for H. sapiens or A. thaliana took at most 75 minutes.

5.1.2 Realigning reads

A

B

insert

Figure 5.2: Depiction of a paired-end read alignment. The two reads in the pair,A andB, should align to the
same sequence (green) and on opposite strands. The distance between the two reads infers an insert distance
that must fall within an acceptable range for BWA alignments. BWA determines this range by estimating
the insert size distribution from the RNA-Seq data.

Spliced alignment tools such as Tophat and MapSplice use the Bowtie ungapped alignment tool as a

backend. However, we obtained more alignments, more resolved exons and more accurate realignment

predictions using BWA [107] in the realignment step. Our pipeline thus uses BWA to realign reads to the

putative transcript sequences and uses the following procedures to remove potentially spurious alignments.

For single-end reads we simply remove any reads that align to two or more transcripts, but paired-end reads

are handled differently. In paired-end sequencing, reads are obtained starting from either end of an RNA

fragment, so that the sequences are oriented in opposite directions (Figure 5.2). This process usually leaves

a gap between the reads; the distance between them is called the insert size. Studies have shown that these

sizes tend to be normally distributed in RNA-Seq samples (see, e.g., [107, 90]). Accordingly, to filter

paired-end data, we require that both reads in a pair align uniquely to the same transcript but on opposite

strands. In addition, the BWA alignment tool estimates the insert size distribution from the RNA-Seq data

and accepts only pairs with insert sizes in that range [107].

48



5.1.3 Resolving exons

We use the reads aligned to a putative transcript to resolve exons. For each transcript associated with a

splice graph, SpliceGrapherXT looks for read coverage across unresolved exons. Whenever reads cover an

entire exon plus anchor regions on either side (the default being 10 bases), SpliceGrapherXT adds the exon

to the graph along with the junctions associated with that transcript. Recall that unresolved exons arise from

regions with multiple choices for acceptor and donor sites, so the anchor regions allow us to discriminate

between them. In addition, there may be many possible graph edges that could connect a putative exon to

other exons in a graph. By adding only the junctions inferred by a transcript, we ensure that only edges

supported by read coverage are added to the graph.

5.2 Related Work

iReckon uses a realignment procedure similar to ours to improve the accuracy of its isoform expression

estimates [140]. The main difference in our approach is that we generate putative transcripts only for those

genes that contain unresolved exons. To our knowledge, these are the only two AS discovery methods

that use this procedure. Realignment methods have been used successfully in the area of DNA sequence

assembly to verify or refine assemblies [44, 96, 29, 181].

Sequence assembly methods that work with next generation sequencing (NGS) data often rely on re-

alignment procedures to correct errors in initial assemblies. For example, Meraculous [29] performs de

novo assembly from NGS paired-end reads. It builds an initial set of contigs from the reads, then realigns

the reads to these contigs to resolve gaps between them. SEQuel [181] is a post-processing tool designed

to correct errors in genome assemblies. A genome assembler constructs an initial set of contigs based on

NGS reads, then SEQuel realigns reads to these contigs and uses the realignment information to augment the

original contigs. Finally, “assisted assembly” [61] is an algorithm designed to perform assembly when cov-

erage is weak. It generates a de novo assembly from the reads, aligns the reads to a homologous reference

genome, and uses the alignment information to enlarge the initial contigs.

In each of these scenarios, realigning reads to a set of putative sequences provides evidence for refining

assemblies or isoform predictions. For SpliceGrapherXT, the realignment procedure allows it to refine its

splice graph predictions. By generating putative transcripts it can perform realignment using an ungapped

alignment tool, bypassing some of the challenges associated with spliced alignment.

49



5.3 Evaluating the pipeline

Now we can determine how many unresolved exons our realignment pipeline can resolve, and how these

predictions might change SpliceGrapher’s ability to predict novel exons and AS events. Using the same pro-

tocols for real and simulated data outlined in Chapter 3, we evaluate the performance of SpliceGrapherXT’s

realignment pipeline and compare it to SpliceGrapher’s initial predictions and to Cufflinks.

Table 5.1: Exon prediction results averaged over 10 simulation runs for H. sapiens (left) and A. thaliana
(right) with 1,000 randomly-selected AS genes. Approximately 1 million paired-end reads were generated
for each run (500,000 pairs). Gene models were reduced to a single isoform before being supplied to each
method. Reference shows the number of exons present in the full gene models for the randomly selected
genes; the test set shows the number of exons removed from gene models. Results show the number of
correctly predicted exons (TP), and the recall and precision for each method.

H. sapiens A. thaliana
Method TP Recall Precision TP Recall Precision
Reference 19,956 — — 10,323 — —
Test set 9,349 — — 2,655 — —
SpliceGrapherXT 1,053 0.11 0.93 1,198 0.45 0.95

Realigned 1,086 0.12 0.93 1,299 0.49 0.93
CufflinksS 590 0.06 0.32 620 0.24 0.32
CufflinksB 574 0.06 0.31 571 0.22 0.33
IsoLasso 550 0.06 0.13 520 0.20 0.22
IsoLasso/CEM 546 0.06 0.12 607 0.23 0.24

In our simulation experiments, the realignment procedure provides increased recall, especially in A.

thaliana, at the cost of a slight decrease in precision (Table 5.1): recall increased by 3% in H. sapiens with

a 0.2% reduction in precision, while in A. thaliana recall increased by 8% while precision dropped by 2%.

Cufflinks predicts far fewer exons in both species, with low precision owing to a large number of false-

positives. In addition, we confirmed that when SpliceGrapherXT cannot predict a definite set of exons, the

realignment procedure can resolve them in many cases (Figure 5.3).

To assess the ability of each method to predict novel AS events accurately, we compared the AS events

in the predicted graphs with those in the complete gene models (see Table 5.2). Note that since these predic-

tions are based on reduced gene models, any predicted AS is considered novel. SpliceGrapherXT’s initial

predictions capture 69% of the AS events in A. thaliana, and 21% in H. sapiens, while CufflinksS predicts

64% and 21%, respectively, though with much lower precision. The realignment procedure improves Splice-

GrapherXT’s sensitivity, predicting 76% of the events in A. thaliana with no appreciable drop in precision.

The largest improvement is with intron retention events in A. thaliana, where the realignment procedure

50



Table 5.2: Recall and precision statistics for SpliceGrapherXT initial predictions (SpliceGrapherXT), re-
alignment procedure predictions (Realigned) and Cufflinks across the four types of AS events. Overall,
the realignment procedure correctly predicts up to 7% more AS events than the initial predictions without
sacrificing precision. The procedure correctly predicts 76% of the AS events in A. thaliana and 21% in H.
sapiens, with the largest increase in intron retention events for A. thaliana. Cufflinks performance does not
match either the initial predictions nor the realigned predictions.

AS Statistics for 1,000 Genes (A. thaliana)
IR ES Alt. 5’ Alt. 3’ Overall

Method Recall Prec. Recall Prec. Recall Prec. Recall Prec. Recall Prec.
SpliceGrapherXT 0.65 0.95 0.70 0.98 0.67 0.98 0.73 0.99 0.69 0.97
Realigned 0.75 0.90 0.75 0.98 0.73 0.97 0.80 0.97 0.76 0.95
CufflinksS 0.51 0.24 0.88 0.91 0.62 0.19 0.69 0.27 0.64 0.27
CufflinksB 0.34 0.41 0.62 0.98 0.40 0.61 0.45 0.80 0.43 0.64
IsoLasso 0.03 0.18 0.45 0.49 0.17 0.30 0.22 0.44 0.18 0.38
IsoLasso/CEM 0.04 0.18 0.62 0.63 0.24 0.35 0.37 0.53 0.28 0.46

AS Statistics for 1,000 Genes (H. sapiens)
IR ES Alt. 5’ Alt. 3’ Overall

Method Recall Prec. Recall Prec. Recall Prec. Recall Prec. Recall Prec.
SpliceGrapherXT 0.08 0.86 0.32 0.93 0.13 0.93 0.13 0.93 0.21 0.93
Realigned 0.08 0.84 0.33 0.93 0.14 0.92 0.14 0.92 0.21 0.92
CufflinksS 0.07 0.37 0.33 0.86 0.11 0.17 0.16 0.21 0.21 0.42
CufflinksB 0.05 0.57 0.22 0.99 0.07 0.50 0.10 0.61 0.14 0.79
IsoLasso 0.00 0.12 0.18 0.38 0.03 0.20 0.05 0.30 0.09 0.35
IsoLasso/CEM 0.00 0.11 0.20 0.41 0.03 0.22 0.06 0.32 0.11 0.37

51



Correct AT1G74560 Model

Reduced AT1G74560 Model

SpliceGrapherXT AT1G74560 Prediction

Realigned AT1G74560 Prediction

Spliced Alignments

2801800028018500280190002801950028020000
100
101

R
e
a
d

 D
e
p

th Read Coverage

Alt. 3'/Alt. 5' Novel Junction

Figure 5.3: An example of the success of the realignment procedure using simulated data for A. thaliana. In
this case, novel splice junctions (highlighted in green) can give rise to four possible novel exons that cannot
be distinguished. SpliceGrapherXT stores information about this evidence for the realignment procedure,
which finds compelling evidence for three of the possible exons and makes the correct prediction.

52



increases the number of correct predictions by over 15%. Realignment does not have any noticeable effect

on AS prediction in H. sapiens for our simulated data.

Table 5.3: Prediction performance for the realignment procedure on real data for H. sapiens (left) and
A. thaliana (right). Shown are the number of exons removed from the original gene models (left out)
followed by the statistics for each method. SpliceGrapherXT made the initial predictions using filtered
MapSplice alignments, then the realignment procedure used BWA alignments to putative transcripts to aug-
ment the initial predictions. The Cufflinks and IsoLasso predictions were made using unfiltered Tophat
alignments.

H. sapiens A. thaliana
Method TP Recall Precision TP Recall Precision
Left out 87,799 — — 14,038 — —
SpliceGrapherXT 3,965 0.045 0.59 2,413 0.17 0.16

Realigned 4,367 0.050 0.58 2,833 0.20 0.16
CufflinksS 2,006 0.023 0.16 1,636 0.11 0.02
CufflinksB 2,015 0.021 0.10 996 0.07 0.04
IsoLasso 1,308 0.013 0.04 890 0.06 0.03
IsoLasso/CEM 1,359 0.014 0.04 990 0.07 0.03

Our results for real data show that the realignment procedure again increases exon recall while maintain-

ing the same level of precision (Table 5.3). It increases the number of correctly predicted exons in H. sapiens

by more than 10% and in A. thaliana by more than 22%, again, with no appreciable loss in precision. The

realignment procedure correctly predicts more than twice as many exons as CufflinksS in A. thaliana and

73% more in H. sapiens, while it predicts nearly three times as many exons as the IsoLasso methods.

Table 5.4: Comparison of paired-end and single-end read performance averaged over 10 runs for H. sapiens
(left) and A. thaliana (right) with 1,000 randomly-selected AS genes. Results show the recall and precision
for predictions made using either paired-end reads or single-end reads. Only with Cufflinks is there a
noticeable difference in recall and precision between the two kinds of reads.

H. sapiens A. thaliana
Method Recall Precision Recall Precision
SpliceGrapherXT

single-end 0.113 0.931 0.457 0.970
paired-end 0.113 0.930 0.452 0.948

Realigned
single-end 0.117 0.927 0.493 0.937
paired-end 0.116 0.928 0.489 0.925

Cufflinks
single-end 0.066 0.267 0.233 0.323
paired-end 0.063 0.318 0.219 0.334

53



5.3.1 Paired-end vs. single-end reads

We expected the realignment procedure to leverage information from paired-end reads to resolve exons

that the inference method could not. To test the hypothesis that paired-end reads provide better evidence

for exon resolution than single-end reads, we performed simulations using the same protocol as before. The

only difference is that instead of simulating 1 million read pairs, we simulated 2 million single-end reads for

1,000 randomly-selected multi-isoform genes. The results (Table 5.4) show almost no difference between

the results for single-end and paired-end reads. Cufflinks precision increases with paired-end data, as its

overlap graphs make explicit use of paired-end data when it is available.

The reason SpliceGrapherXT’s realignment procedure does not appear to benefit from paired-end reads

may be traced to the constraints on paired-end reads: both reads in a pair come from the same mRNA

fragment; both reads in a pair must align to the same reference sequence; they must align on opposite

strands, and the alignment positions must infer an insert size that is compatible with the distribution for the

data set. Altogether, these constraints reduce read coverage for a paired-end experiment but do not appear

to hurt prediction performance.

5.4 Discussion

Here we have presented a realignment procedure that is robust, and can increase SpliceGrapherXT’s

sensitivity to novel exons and AS events while maintaining high precision. The procedure is also efficient,

since it is only applied to a small set of genes and the procedure relies on ungapped alignments that tend

to be more efficient than spliced alignment. We found the realignment procedure required just an hour on

average for the five sets of 76-nt A. thaliana reads, about the same as the original predictions.

In the last three chapters we have shown that RNA-Seq data makes accurate splice graph prediction

challenging. The relatively short read lengths can make it difficult to disambiguate evidence for many

different AS events that may appear in the same genomic region. SpliceGrapherXT uses three different

methods to address these ambiguities: the inference method described in Chapter 3 provides an efficient

approach for making accurate predictions when the evidence is definitive; the filtering method described in

Chapter 4 limits the number of spurious junctions that find their way into SpliceGrapherXT’s predictions,

and the realignment procedure described here allows it to resolve exons in some cases even in the presence

of conflicting evidence. In Chapter 6 we will now show how SpliceGrapherXT’s splice graph predictions

may be used to predict complete mRNA transcripts.

54



Chapter 6

Using Splice Graphs to Predict Transcripts

We now turn our attention to converting SpliceGrapherXT’s splice graph predictions into predictions

for complete mRNA transcripts. To date, most methods that predict mRNA transcripts have focused on

predicting the transcripts and their expression levels simultaneously [113, 68, 148, 54, 111, 140]. However,

comparisons on both simulated and real data show that these methods suffer from poor accuracy [179, 140].

With SpliceGrapherXT we have shown that by focusing on accurate exon prediction rather than whole

transcript prediction, we can predict splice graphs with high sensitivity and precision. A relevant question,

then, is whether we can use our predicted splice graphs to improve the accuracy of transcript predictions in

other methods.

Accordingly, we present two procedures for predicting transcripts from SpliceGrapherXT’s predicted

splice graphs: one uses PSGInfer [103] to estimate the relative frequency for each path in a splice graph,

and a second uses IsoLasso [113] to predict expression levels for a set of transcripts. Both tools are designed

to identify transcripts recapitulated in RNA-Seq data and quantify their expression, but each is limited in its

capacity to predict novel transcripts. PSGInfer does not try to predict novel exons, but may predict novel

isoforms from novel combinations of known exons. IsoLasso is able to predict novel exons and isoforms,

but as our experiments in Chapters 3 and 5 demonstrate, its sensitivity falls below that of SpliceGrapherXT

or Cufflinks. Here we show that we can improve transcript prediction accuracy for tools like PSGInfer and

IsoLasso when we provide them with SpliceGrapherXT predictions.

The basis of our method is to use predicted splice graphs to generate a set of putative transcripts that we

can provide to these other methods to predict transcript frequencies or expression levels. We then predict

novel transcripts whenever a putative transcript has a substantial frequency or estimated expression level. We

use an approach that is similar to our realignment procedure, but instead of generating putative transcripts

only for graphs with unresolved nodes, we generate transcripts by traversing all the paths in every graph that

has multiple paths. In this case, we store the putative transcripts as a set of gene models that we can provide

to these other tools to predict either probabilistic splice graphs or transcript expression levels.

55



6.1 PSGInfer

A

D E

CB
0.2

0.8

0.3

0.7

1.0 1.0 1.0

1.0

source sink

Figure 6.1: A probabilistic splice graph (PSG) with edge weights. A PSG is an augmented splice graph with
two additional nodes (source and sink) and weights along each edge. The relative frequency of a transcript
is given by the product of its edge weights. In this example, the relative frequency of the transcript ABC
is 0.2 × 1 × 1 × 1 = 0.2, for transcript DE it is 0.8 × 0.7 × 1 = 0.56, and for transcript DBC it is
0.8× 0.3× 1× 1 = 0.24. Note that the transcript relative frequencies sum to 1.

In our first approach we provide our putative gene models to PSGInfer [103], a method designed to

predict the relative frequency for each path through a splice graph based on the read coverage associated

with the edges along the path. We then predict the transcripts given by the paths whose relative frequency

exceeds a predetermined threshold.

PSGInfer performs its optimization over a probabilistic splice graph (PSG), an augmented splice graph

that includes source and sink nodes as well as weights along every edge (Figure 6.1). PSGInfer relies on

gene models for its exon and intron coordinates and thus is not designed to predict novel exons. However,

putative gene models based on SpliceGrapherXT predictions can provide it with novel exons and thus allow

it to predict frequencies for novel transcripts. Note that PSGInfer predictions also allow us to resolve exons

in some cases. If PSGInfer predicts a high enough frequency for a transcript, we predict the transcript along

with every exon in it; if one of the exons is unresolved, we can now resolve it.

PSGInfer begins by converting a set of gene models into a splice graph in the same manner as SpliceG-

rapher. A source node is added to each graph with edges leading to every root node (one without incoming

edges) in the graph (Figure 6.1); similarly, a sink node is added with edges leading from every leaf node

(one without outgoing edges) in the graph. Initially edges are assigned uniform weights: if there are n

edges exiting a node in the graph, the initial weight for each outgoing edge is set to w = 1
n . PSGInfer then

uses the expectation maximization (EM) algorithm to converge to a set of edge weights that maximizes the

likelihood of the observed read coverage. Once weights have been predicted for the edges in a graph, every

56



path through the graph is assigned a frequency that is the product of the edge weights along the path (see

the examples in Figure 6.1).

To predict transcripts we select a suitable threshold and predict those paths whose frequency exceeds the

threshold. For the example in Figure 6.1, if we set a frequency threshold of f = 0.3, then we would predict

the transcript given by the path DE but not the other paths.

6.2 IsoLasso

Our second approach is similar to the first: we provide our putative transcripts to a tool that can predict

expression levels for a set of transcripts. We use IsoLasso [113] and IsoLasso/CEM [114] for this proce-

dure due to their popularity as standard benchmarks [113, 132, 140] and the ease of integrating them with

our method. Recall from Chapter 3 that the IsoLasso methods are designed to predict transcripts and their

expression levels simultaneously from RNA-Seq data. The main difference between them is the optimiza-

tion method being used: IsoLasso uses the LASSO [213] method, while IsoLasso/CEM uses component

elimination EM (CEM).

Compared with other methods, the IsoLasso methods exhibit poor sensitivity in predicting novel exons,

regardless of whether we provide them with gene models (see Chapters 3 and 5). However, these methods

optionally may be freed from predicting exons or transcripts and used solely to predict expression levels

for a given set of transcripts. Thus their role here will be to use the putative gene models we provide them

to estimate expression levels for isoforms that are recapitulated in RNA-Seq data. We can then predict

transcripts by accepting those whose expression level exceeds some threshold.

6.3 Performance Evaluation

In our experiments we compare the transcripts predicted by each method with a set of left-out transcripts.

To compare transcripts, we use the same procedure described in [113, 218, 132]: two transcripts match if and

only if their sets of splice junctions match. This rule implicitly matches every exon in the two transcripts

except for the beginning of the first exon and the end of the last exon. We use this approach to match

transcripts because it is extremely difficult for these methods to predict exon boundaries without evidence

for splice junctions, which will not occur at the start or end of a transcript.

Our methods use threshold values on two different kinds of values: estimated expression levels (FPKM)

for the IsoLasso methods and relative frequencies for PSGInfer. For expression levels we need only choose

57



Correct ENSG00000136270 Model

Reduced ENSG00000136270 Model

SpliceGrapherXT ENSG00000136270 Prediction

SpliceGrapherXT/PSGInfer ENSG00000136270 Prediction

910951959121962
4
3

Spliced Alignments

4513969945151646
0
5

10
15
20
25
30
35

R
e
a
d

 D
e
p

th

Read Coverage

Alt. 3'

Alt. 3'/Alt. 5'/Intron Retention

Alt. 3'/Intron Retention

Alt. 5'

Novel Junction

Skipped Exon

Figure 6.2: Example of an updated prediction for a gene in H. sapiens using PSGInfer with simulated data.
SpliceGrapherXT is able to predict an alternative 5’ event on the left side of the graph (third panel down),
but there is also a a pattern of acceptor and donor sites (aaadad) that does not satisfy the SpliceGrapherXT
criteria. By providing several unresolved splice forms to PSGInfer it is able to disambiguate these events
correctly. With the relative frequency threshold set to the higher threshold of 0.15, PSGInfer added two
transcripts with frequencies 0.23 and 0.24; two additional unresolved transcripts had frequencies of 0.04
and 0.03 and were omitted from this prediction. Human genes are difficult to predict due to complexity that
is exacerbated by numerous alternative initial and terminal exons.

58



a reasonable value for identifying any isoform as being expressed. Values of FPKM ≥ 1 [27, 37, 34],

FPKM ≥ 3 [233] and FPKM ≥ 5 [34] are used in the literature, so we chose FPKM ≥ 1 as it is the most

sensitive of these. For PSGInfer predictions, we expect expect relative isoform frequencies to obey Zipf’s

Law (see, e.g., [59, 35, 186]), meaning that one or two isoforms may have high relative frequencies in a

gene, while other isoforms can have frequencies that are orders of magnitude lower. We must balance this

behavior against the high false-positive rate we are likely to get if we set our threshold too low. Thus for

our experiments we selected two thresholds for PSGInfer predictions: f ≥ 0.01 (PSGInfer.01) to allow

detection of weakly expressed isoforms, and f ≥ 0.15 (PSGInfer.15) to provide higher precision.

We found that these methods yield various levels of precision and recall that can make it difficult to

determine which method is best overall. Thus in these experiments we include the F1 score [225] in addition

to recall and precision. Given precision P and recall R, the F1 measure is defined as:

F1 =
2PR

P +R
(6.1)

This measure provides a single metric for comparing prediction methods that gives equal weighting to recall

and precision [105].

6.3.1 Simulated data

Table 6.1: Transcript prediction performance averaged over 10 simulated runs in A. thaliana and H. sapiens.
Shown are the number of true-positive and false-positive predicted isoforms along with the recall, precision
and F1 score. Results are shown for SpliceGrapherXT with PSGInfer, SpliceGrapherXT with IsoLasso and
SpliceGrapherXT with IsoLasso/CEM. Also shown are results for the high-sensitivity version of Cufflinks
(CufflinksS) and the balanced performance version (CufflinksB).

A. thaliana H. sapiens
Method TP Recall Precision F1 TP Recall Precision F1

SpliceGrapherXT updates
PSGInfer.01 942 0.74 0.65 0.69 282 0.16 0.10 0.12
PSGInfer.15 796 0.63 0.86 0.72 180 0.10 0.13 0.11
IsoLasso 665 0.52 0.71 0.60 187 0.10 0.09 0.10
CEM 920 0.72 0.64 0.68 264 0.15 0.10 0.12

Unassisted methods
IsoLasso 501 0.39 0.40 0.40 233 0.13 0.05 0.07
CEM 629 0.49 0.43 0.46 281 0.16 0.05 0.08
CufflinksS 546 0.43 0.26 0.33 250 0.14 0.09 0.11
CufflinksB 617 0.49 0.56 0.52 239 0.13 0.15 0.14

For our simulation experiments we used the same data described in Chapter 3: ten sets of simulated

data each for human and A. thaliana. In our simulations, all of the SpliceGrapherXT update procedures

59



except IsoLasso provide much higher recall than Cufflinks and all yield higher precision in A. thaliana

(Table 6.1). In H. sapiens the results are mixed, as both PSGInfer.01 and the unassisted IsoLasso/CEM

achieve the highest recall, while CufflinksB achieves the highest precision and F1 scores. The PSGInfer.01

update procedure provides the highest recall of any method in both species, while PSGInfer0.15 consistently

yields the highest precision of the update procedures.

The differences between making predictions in A. thaliana and in H. sapiens are clear from these simula-

tions: all of the SpliceGrapherXT update methods have recall that is much higher in the less well-annotated

A. thaliana than in human, with a similar increase in precision. With fewer transcripts per gene in the

A. thaliana gene models, fewer transcripts are represented in the simulated RNA-Seq data, making the

prediction task much easier than it is for human.

We also used our simulations to confirm that these update procedures may be used to resolve exons. The

example in Figure 6.2 illustrates how PSGInfer may be used for this purpose. SpliceGrapherXT provides

several unresolved splice forms from a gene in H. sapiens for PSGInfer to use in its predictions. Using

the frequency threshold of 0.15, PSGInfer is able to correctly predict two transcripts from a set of four

unresolved transcripts. This example also illustrates the complexity of many genes in H. sapiens that can

make it challenging to predict novel transcripts or novel exons. Not only are there a large number of AS

events confined to relatively small regions, but there are also numerous alternative initial and terminal exons

across the gene.

6.3.2 Real data

We tested our isoform prediction procedure on the real data from A. thaliana and H. sapiens described

in Chapter 3, using PSGInfer and IsoLasso to predict the isoforms recapitulated in the data (Table 6.2). The

results for real data are more subtle than for simulated data. In A. thaliana, the PSGInfer and CEM update

methods have better recall than the Cufflinks methods, but with lower precision than CufflinksB . PSGInfer

at the high threshold exceeds the precision of CufflinksB substantially, and achieves the highest F1 score of

any method in that organism. On human data the differences between the update procedures and Cufflinks

are more noticeable, where the update procedures yield precision up to five times as high and combined F1

scores roughly double those of Cufflinks.

Prediction is much harder with real data than with simulated data. Real data can include a considerable

amount of noise generated during the sequencing process, as well as evidence for novel transcripts. As a

60



Correct AT1G22700 model

Reduced AT1G22700 model

SpliceGrapherXT AT1G22700 prediction

SpliceGrapherXT/IsoLasso AT1G22700 prediction

SpliceGrapherXT/CEM AT1G22700 prediction

SpliceGrapherXT/PSGInfer AT1G22700 prediction

429416296

2

231

14

Spliced alignments (filtered)

802820080284008028600802880080290008029200802940080296008029800

100

101

102

R
e
a
d

 D
e
p

th

Ungapped alignments

Alt. 3'

Alt. 3'/Intron Retention

Intron Retention

Figure 6.3: Example of predictions made from real RNA-Seq data in A. thaliana. In this gene from the
reverse strand, a large read cluster runs for approximately 1,400 positions (from genomic position 8,029,600
down to 8,028,200), making the evidence within the cluster unresolvable for SpliceGrapherXT. Each of the
three transcript prediction methods produces a slightly different prediction. The two IsoLasso methods
predict novel IR events, some of which could be spurious. PSGInfer makes a more conservative prediction
that matches the gene models but does not predict any novel IR.

61



Table 6.2: Transcript prediction performance on real data from A. thaliana and H. sapiens. Shown are the
number of left-out isoforms correctly predicted, the proportion correctly predicted (recall), the proportion
of true-positives (precision), and the F1 score. Here the differences are more subtle than for simulated data;
the PSGInfer update method achieves the highest F1 score in A. thaliana while the CEM update method
achieves the best score in H. sapiens.

A. thaliana H. sapiens
Method TP Recall Precision F1 TP Recall Precision F1

SpliceGrapherXT updates
PSGInfer.01 1,388 0.269 0.047 0.081 1,675 0.060 0.059 0.060
PSGInfer.15 991 0.192 0.162 0.176 1,270 0.046 0.058 0.051
IsoLasso 999 0.194 0.064 0.096 1,355 0.049 0.091 0.064
CEM 1,283 0.249 0.067 0.106 1,569 0.057 0.101 0.072

Unassisted methods
IsoLasso 627 0.122 0.025 0.042 709 0.026 0.006 0.010
CEM 749 0.145 0.028 0.047 832 0.030 0.004 0.007
CufflinksS 1,143 0.221 0.019 0.035 2,825 0.102 0.023 0.037
CufflinksB 1,004 0.195 0.097 0.129 1,594 0.057 0.022 0.032

result, recall and precision on real data are much lower for all methods than with the simulated data. This is

especially evident in A. thaliana: the methods predict a large number of novel transcripts, so precision and

recall are low relative to the gene models.

6.3.2.1 Resolving exons

Table 6.3: Comparison of the number of unresolved nodes that were resolved by the realignment procedure
and each of the three update procedures on real data from A. thaliana and H. sapiens. The PSGInfer update
procedure is able to resolve more nodes than any other method. Whereas the realignment procedure is able
to resolve 25-29% of unresolved nodes, the PSGInfer update procedure can resolve up to 59%, or twice as
many unresolved nodes.

Unresolved Update Procedure
Organism Nodes Realignment IsoLasso IsoLasso/CEM PSGInfer.01 PSGInfer.15
A. thaliana 21,999 5,474 7,782 8,901 12,072 2,139
H. sapiens 2,854 823 1,273 1,289 1,680 532

We also used the real data to investigate each method’s potential to predict novel exons and to resolve

exons that SpliceGrapherXT’s initial predictions left unresolved (Table 6.3). We first note that there are

approximately ten times as many unresolved exons in A. thaliana as in H. sapiens. This may be traced

again to the relatively sparse A. thaliana annotations; it is evident that there are a large number of novel

exons that remain to be resolved and added to the gene models (one of the key motivations for developing

SpliceGrapherXT in the first place). We find that the update procedures are able to resolve even more

62



Table 6.4: Comparison of novel exon predictions from the update procedures along with the original pre-
dictions and the results of realignment on the real data from human and A. thaliana. The combination of
SpliceGrapherXT with sophisticated transcript prediction algorithms is able to predict more novel exons
than the simple realignment procedure at comparable precision levels.

H. sapiens A. thaliana
Method TP Recall Precision TP Recall Precision
Test set 97,504 — — 14,617 — —
SpliceGrapherXT 3,956 0.041 0.59 2,413 0.17 0.16
Realigned 4,362 0.045 0.58 3,062 0.21 0.15
SpliceGrapherXT updates

PSGInfer0.01 4,653 0.048 0.56 3,483 0.24 0.13
PSGInfer0.15 4,301 0.044 0.60 3,112 0.21 0.18
IsoLasso 4,506 0.046 0.57 3,248 0.22 0.14
IsoLasso/CEM 4,539 0.047 0.57 3,396 0.23 0.14

exons than the realignment procedure. Given the relative simplicity of the SpliceGrapherXT realignment

procedure (Chapter 5), it is not too surprising that more sophisticated transcript prediction methods like

PSGInfer or IsoLasso are able resolve more exons. In particular, PSGInfer is able to resolve nearly 30% of

unresolved exons in H. sapiens. When we compare the accuracy of these predictions (Table 6.4) we find

the precision across all the update methods to be comparable to the initial predictions and the realignment

procedure, while the number of novel exon predictions may increase by more than 10%.

6.4 Conclusion

We have presented two methods for predicting novel transcripts by using SpliceGrapherXT to construct

putative gene models from predicted splice graphs. We then provide these gene models to tools that can use

them to predict transcript frequencies or expression levels. Both tools we selected, PSGInfer and IsoLasso,

are extremely limited in the transcript predictions they can make without the benefit of good gene models.

When we provide these tools with SpliceGrapherXT predictions, they are able to predict novel transcripts

with much higher fidelity than Cufflinks. In addition, we found that these update procedures can resolve

novel exons with higher sensitivity than our realignment procedure, and with similar precision.

Recently iReckon has been shown to provide higher precision and sensitivity than IsoLasso [140] for

transcript prediction, so we plan to compare our results with iReckon. Incorporating iReckon into our

pipeline may also be a promising direction for future work. Together, our results suggest that an approach

that combines SpliceGrapherXT’s accurate splice graph predictions with transcript expression estimation

methods may give us the most complete picture of a gene’s splicing behavior from RNA-Seq data.

63



Chapter 7

From Splice Graphs to Biological Insights

We have shown that SpliceGrapherXT can predict novel exons from RNA-Seq data more accurately

than other methods and that it can improve transcript predictions, but ultimately we want to know how we

can use the tool to derive insights from NGS experiments. In earlier studies with ESTs and RNA-Seq data

we showed that splice graphs can aid statistical analysis of alternative splicing across a genome [99, 179],

and that they can facilitate comparisons between gene families [172]. Here we discuss three studies that

highlight the benefits and limitations of using SpliceGrapherXT to analyze RNA-Seq data.

Each of the projects has involved many different kinds of analysis including computational analysis and

wet-lab assays. In the descriptions that follow we focus on the unique contributions that SpliceGrapherXT

has provided to each project. We begin by showing how SpliceGrapherXT’s genome-wide AS statistics

may lead to insights about the subtleties of embryonic development in plants. Next we discuss a method for

using splice graphs to address the differences in RNA-Seq data for biological or technical replicates, along

with a method for comparing AS activity between two different variants of the same organism. Finally we

show how the compact form of a splice graph may be used to create intuitive visualizations for complex

chimeric mRNA. The first two projects are ongoing collaborations with Dr. Reddy’s lab at Colorado State

University. The third project was a collaboration with Dr. Valencia’s lab at the Spanish National Cancer

Research Center and was published earlier this year [58].

7.1 Assessing AS Across Embryonic Developmental Stages

A key concept in embryonic development is the notion of the hourglass model. In the early 19th century,

Karl von Baer proposed a set of four evolutionary “laws” pertaining to embryonic development. According

to von Baer’s third law, young embryos from different species resemble one another, but as development pro-

ceeds, species-specific features begin to appear and the embryos of different species progressively diverge

from one another. By the late 20th century this law had evolved into the hourglass model [48, 162]: dis-

tinct species appear markedly different from one another at the earliest developmental stages, they proceed

through a phylotypic stage in which their characteristics are more similar, and then diverge progressively

64



again as they complete embryonic development.

Recent studies have provided evidence supporting the hourglass model in metazoan embryos [43, 87]

and in plants [161]. To date these studies have focused on the relative expression levels of “young” and “old”

genes, where young genes are recent evolutionary developments common only to closely-related species

while old genes are common even among distantly related species. These studies provide evidence that

expression levels for old genes peak during the phylotypic stage while the levels for young genes peak in

earlier and later stages [43, 161].

Following the work of Quint et al. [161] Dr. Reddy obtained RNA-Seq data for the model plant A. thaliana

across seven developmental stages and we assessed the amount of AS detected in each stage. For this project

we aligned the RNA-Seq reads using MapSplice [230] and used SpliceGrapher’s splice-site filters to remove

potentially false-positive splice junctions. The number of aligned reads across the seven stages ranged from

12.9 million (Mature stage) to 26.4 million (Torpedo stage). To eliminate possible bias due to these differ-

ences in read coverage, we sampled 12 million aligned reads at each stage before performing our analysis.

We then used SpliceGrapherXT to predict splice graphs for each developmental stage using only the preva-

lent splice form for each gene in the TAIR10 annotations. Using the prevalent forms not only provides us

with evidence for AS specific to these RNA-Seq data sets, it also helps to eliminate possible biases owing

to variation in the extent to which different genes are annotated.

7.1.1 AS Activity Peaks Near Phylotypic Stage

Zygote Octant Globular Heart Torpedo Bent Mature

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

AS for All Genes

IR SE A5 A3 Total Genes

#
A
S
E
v
e
n
t s

Zygote Octant Globular Heart Torpedo Bent Mature

0

20

40

60

80

100

120

AS for Splicing Regulatory Genes

IR SE A5 A3 Total Genes

#
A
S
E
v
e
n
t s

Figure 7.1: AS events predicted across seven embryonic development stages in A. thaliana. We find that
AS activity appears to peak in the Heart stage, and remains relatively high into the Torpedo stage that is
presumed to be the phylotypic stage (left). Splicing regulatory genes exhibit the same pattern of AS activity,
suggesting a possible role before and during the phylotypic stage (right).

Comparing the amount of predicted AS across all stages, we find that AS activity appears to peak in the

Heart stage (Figure 7.1, left), and is dominated by IR events (blue line). Previous studies have shown that

65



the Torpedo stage in A. thaliana appears to be the phylotypic stage [161]. Thus AS activity peaks just before

the phylotypic stage and remains relatively high through the Bent stage before returning to pre-phylotypic

levels. This same trend is evident in splicing regulatory genes (Figure 7.1, right), suggesting a possible role

during the phylotypic stage.

Zygote Octant Globular Heart Torpedo Bent Mature

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

AS Events by Stage
Junction threshold = 2

1 2 4 8

Depth Threshold

T
o

ta
l
A

S
E

v
e

n
ts

Zygote Octant Globular Heart Torpedo Bent Mature

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

AS Events by Stage
Junction threshold = 4

1 2 4 8

Depth Threshold

T
o

ta
l
A

S
E

v
e

n
ts

Figure 7.2: AS predictions across the embryonic stages in A. thaliana at low splice junction thresholds (left)
and higher thresholds (right). The prediction depth threshold was increased from 1 to 8 to illustrate the effect
of more stringent thresholds on the amount of AS predicted at each stage. At low thresholds we predict more
AS for the Heart stage, but at higher thresholds we predict more AS in the Torpedo stage.

SpliceGrapherXT uses two thresholds to filter the RNA-Seq data it uses to make its predictions. The

first is a threshold on the minimum average read depth required for a cluster of aligned reads to be used as

evidence; The second is a threshold on the minimum number of spliced reads that support a novel splice

junction before it is used as evidence. By default, SpliceGrapherXT accepts all read clusters and novel

junctions with at least two supporting reads. These thresholds have the potential to change the amount of

AS predicted for a particular data set. and hence could result in patterns of AS activity different from those

we observe in Figure 7.1.

Zygote Octant Globular Heart Torpedo Bent Mature

5000

7000

9000

11000

13000

15000

17000

19000

21000

23000

25000

Gene Expression Levels By Stage

0 1 3 5 10

FPKM Threshold

#
G
e
n
e
s
A
b
o
v
e
T
h
re
s
h
o
ld

Figure 7.3: Number of genes expressed across embryonic development stages at different FPKM levels. We
provided Cufflinks with the complete Arabidopsis gene models for it to provide estimated expression levels.
We then counted those genes whose predicted expression levels exceeded a given FPKM threshold. There
are more genes in the Heart stage expressed at low thresholds, but more genes in the Torpedo stage are
expressed at higher thresholds.

66



To account for this possibility, we ran SpliceGrapherXT several more times using different thresholds

each time and looked at the pattern for each run (Figure 7.2). The number of AS events predicted at each

stage drops substantially as we increase the depth threshold, most noticeably in the Heart stage. At relatively

high thresholds we predict more AS in the Torpedo stage than in the Heart stage. Thus although we have

more evidence for AS in the Heart stage than in the Torpedo stage, the evidence appears to come from

relatively weakly expressed transcripts.

We see similar trends when we consider the number of genes at different expression levels across the

stages (Figure 7.3). To estimate the number of genes expressed at each stage, we first used Cufflinks to

estimate expression levels for all known Arabidopsis genes by providing it with the complete set of gene

models. We then counted those genes at each stage whose predicted expression levels exceeded a given

FPKM threshold. By increasing the threshold we can assess the number of strongly expressed genes detected

at each stage. At low FPKM thresholds we find many more expressed genes at the Heart stage, but at higher

FPKM thresholds we find more genes in the Torpedo stage.

From these results it appears that many genes are both weakly expressed and alternatively spliced in

the Heart stage, just prior to the phylotypic Torpedo stage. Whether this AS activity helps to initiate the

phylotypic stage or whether it is a side-effect of other regulatory processes will require further analysis.

7.1.2 Old Genes Exhibit More AS Than Young Genes

Recently Quint et al. reported that the relative expression levels of young and old genes change across

developmental stages, with old genes exhibiting the highest expression levels in the phylotypic Torpedo

stage [161]. In their analysis they established a set of 13 phylostrata in which they assigned an evolution-

ary age to the genes in the A. thaliana genome. For each gene they used sequence similarity to identify

homologs (genes with common ancestry) in other species. The resulting phylogenetic tree contained 13

nodes representing evolutionary distance from A. thaliana; its closest neighbors are other plants in the genus

Arabidopsis, while the most distant neighbors are prokaryotes (mostly single-celled organisms such as bac-

teria). They defined a phylostratum as the most distant phylogenetic node containing at least one species

with a detectable homolog for a given gene. The resulting phylostratigraphic map contains 13 phylostrata

denoted PS1 through PS13. PS1 includes the evolutionarily oldest genes with homologous sequences in

prokaryotes, and PS13 includes the evolutionarily youngest genes with no homolog in any other species. To

distinguish between young and old genes, the authors established a cutoff: genes in PS1-PS3 are considered

67



old, while those in phylostrata PS4-PS13 are considered young. This yielded phylostratum identifiers for

25,371 genes, of which 10,800 (42.6%) are considered old while the rest are young.

Zygote Octant Globular Heart Torpedo Bent Mature

0

500

1000

1500

2000

2500

3000

AS Activity for Young/Old Genes by Stage

Young Old

#
A
S
G
e
n
e
s

Zygote Octant Globular Heart Torpedo Bent Mature

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

Proportional AS Activity for Young/Old Genes by Stage

Young Old

A
S
E
v
e
n
ts
p
e
r
G
e
n
e

Figure 7.4: AS events predicted for young and old genes across the developmental stages in A. thaliana.
Old genes represent just 42.6% of all genes, but have the most evident AS across all stages (left). This is
especially evident when we look at the average amount of AS per gene in each group (right).

Using these same phylostrata, we compared the relative levels of AS activity for young and old genes

across the developmental stages (Figure 7.4). Although old genes represent the smaller proportion of genes,

they have more evidence of AS than young genes. This is especially evident when we look at the proportion

of AS that occurs within each group (Figure 7.4, right). This evidence suggests that old genes undergo about

twice as much AS activity per gene as young genes at the Heart stage. There is evidence that old genes sim-

ply have more splice forms than young genes [183], and that they are more sensitive to AS regulation [234].

Thus when an environment is conducive to AS, old genes may react more sensitively than young genes.

Overall our results suggest that there is indeed a dramatic increase in AS activity during embryonic de-

velopment, and that this activity occurs disproportionally in old genes. Additional analysis will be required

to determine how AS changes between stages and which AS events may be unique to each stage.

7.2 Assessing AS Between Variants

The serine/arginine-rich (SR) family of proteins plays a key role in mediating alternative splicing [165,

166, 65, 187, 172, 38] in a multitude of organisms (see, e.g., [247, 211, 125, 172, 165, 167]). However, the

evidence to date suggests that plants possess the greatest variety of SR proteins of any organism studied [172,

13]. Hence investigating SR-protein genes in plants such as A. thaliana provides opportunities to investigate

a wide array of SR gene behaviors, and could yield insights that apply across a broad spectrum of organisms.

In our collaboration with Dr. Reddy’s lab at CSU, we are investigating the influence of a particular SR gene,

SR45, that has been associated with regulation of other SR genes [6], and in particular with recognition

68



of intronic 5’ splice sites [38]. We are using RNA-Seq data based on mRNA samples from two different

A. thaliana variants: one variant in which the SR45 gene has been knocked out (manipulated to render it

inactive) and a wild-type (unmodified) variant.

When comparing two variants in the same species, it is important to understand whether the differences

we see between data sets are due to differences between the variants themselves or if it is due to the vari-

ability inherent in RNA-Seq data. Because of this variability, and due to the relatively low cost of RNA-Seq

data, technical or biological replicates have become an important component in these comparative stud-

ies [60, 138, 18, 46]. The data for our SR45 study consist of two replicates each for the wild-type variant

(21.6 million and 22.5 million 76-nt reads) and the SR45 knock-out (18.3 million and 20.5 million 76-nt

reads).

We first aligned the reads to the TAIR10 version of the genome, which yielded between 17.4 million

and 21.3 million reads aligned per sample. To eliminate any possible bias due to read coverage, we sampled

17 million alignments from each data set. We used SpliceGrapherXT [179, 177] to predict splice graphs

from the RNA-Seq alignments for each of the replicates. To assess the alternative splicing in our samples,

we provided a reduced set of gene models to SpliceGrapherXT to make its predictions. Following the same

protocol described in previous chapters, we created a reduced set of gene models from the TAIR10 version

of the Arabidopsis gene models by removing all but the prevalent splice form for each gene. By using these

reduced gene models as a reference, we ensured that any AS events in our predicted splice graphs were due

to AS activity in the RNA-Seq samples.

Due to inherent variation in the RNA-Seq coverage, the evidence for AS may vary considerably from

one sample to the next, even for samples from the same organism under the same conditions. Consequently,

splice graph predictions may also vary widely across any set of replicates. Thus to produce a consistent

set of predictions, we computed the intersections of the predicted splice graphs for every pair of replicates

in each variant. The intersection of two splice graphs is the intersection of their vertex and edge sets (see

Figure 7.5). The intersection of predicted graphs from two replicates will thus contain only those AS events

that are common to both replicates.

To identify AS events that were unique to each variant, we ran SpliceGrapherXT using two different

thresholds for RNA-Seq evidence. A high threshold (τ = 4) meant that SpliceGrapher only accepted

clusters of reads with an average depth at least 4 and splice junctions with at least 4 supporting reads. A low

threshold (τ = 1) meant that SpliceGrapher accepted all read clusters and all supported splice junctions. An

69



Complete AT1G01490 Model

Reduced AT1G01490 Model

Replicate 1 AT1G01490 Prediction

1071174

Replicate 1 Spliced Alignments

100
101
102

R
e
a
d

 D
e
p

th Replicate 1 Read Coverage

Replicate 2 AT1G01490 Prediction

10711422

Replicate 2 Spliced Alignments

100
101
102

R
e
a
d

 D
e
p

th Replicate 2 Read Coverage

180500181000181500182000

Intersection Graph

Intron Retention

Figure 7.5: Example of a graph intersection based on two SR45 knockout gene replicates. The top panel
shows the prevalent form of the gene provided to SpliceGrapherXT. The middle two panels show the result-
ing predicted graphs for the two SR45 knockout replicates. The bottom panel shows the intersection graph
consisting of the exons (vertices) and introns (edges) common to both of the replicates.

70



Table 7.1: AS statistics based on RNA-Seq data for wild-type A. thaliana and SR45 mutants. Predictions
were made by removing all but the prevalent isoform from the gene models for each gene, so the number of
AS events is relative to the prevalent isoforms. Predictions were generated for each run separately (two lanes
for SR45, two lanes for wild-type), then intersections of the predicted graphs were created for the SR45 and
wild-type variants to identify AS events that were consistent within each variant. Shown are the total AS
events found in the wild-type replicates and the SR45 mutant replicates, along with the number of exons
that SpliceGrapherXT was unable to resolve. Also shown are AS events unique to each replicate along with
AS events found in both (SR45 ∩Wild-type).

Alternative Splicing
Unresolved Events

Source Exons Genes IR ES Alt. 5’ Alt. 3’ Total
Total Wild-type 7,984 2,910 1,970 (59%) 170 (5%) 377 (11%) 834 (25%) 3,351
Total SR45 5,141 2,973 2,027 (58%) 230 (7%) 379 (11%) 856 (25%) 3,492
Unique Wild-type 4,689 940 885 (85%) 45 (4%) 41 (4%) 68 (7%) 1,039
Unique SR45 1,846 1,003 942 (80%) 105 (9%) 43 (4%) 90 (8%) 1,180
SR45 ∩Wild-type 3,295 1,970 1,085 (47%) 125 (5%) 336 (15%) 766 (33%) 2,312

AS event was then considered unique to a variant if it was predicted at the high threshold for that variant

but not predicted even at the low threshold for the other variant. These thresholds yielded predictions that

we consider unambiguous for each of the variants (Table 7.1). Overall SpliceGrapherXT was able to predict

slightly more AS events in the SR45 knockout than in the wild-type, with the biggest difference (35%) in

exon-skipping events. However, these predictions omit a large number of unresolved exons: there are more

than twice as many unresolved exons unique to the wild-type data, suggesting that there is more evidence

for AS in wild-type. Hence we must be cautious about using these AS statistics to compare results from

two different species or variants as they reflect only those AS events SpliceGrapherXT was able to predict

unequivocally.

7.2.1 AS Within Novel Genes

To identify possible alternative splicing within novel genes, we first used Cufflinks to predict genes

and transcripts. This gave us an initial set of 198 putative novel genes, of which 77 overlapped existing

gene models, leaving 121 putative novel genes. Cufflinks did not assign a strand to any of the putative

genes, so we inferred the strand using spliced alignments for those genes that contained them. This yielded

just 9 candidates for which we could infer a strand. Despite the presence of spliced alignments, Cufflinks

predicted each of these as single-exon genes. Using these Cufflinks predictions as gene models, we ran

SpliceGrapherXT on both the wild-type and the mutant RNA-Seq alignments to predict splice graphs for

these novel genes. Figure 7.6 shows an example of a novel gene that has well-supported evidence for

71



Cufflinks Proposed Gene Model for AT1GCUFF0182 (+)

SpliceGrapher Prediction for WTDE AT1GCUFF0182

18

WTDE Spliced Reads

05
1015202530

R
e
a
d
 D

e
p
th WTDE Read Coverage

SpliceGrapher Prediction for SR45 AT1GCUFF0182

4
2

8

SR45 Spliced Reads

2444600 2444800 2445000 244520005
1015202530

R
e
a
d
 D

e
p
th SR45 Read Coverage

Alt. 3' Intron Retention

Figure 7.6: This figure depicts a novel single-exon gene predicted by Cufflinks. We resolved the gene strand
using spliced alignments that fell within the gene boundaries and predicted splice graphs using the Cufflinks
gene model as a reference. The alignment data for this novel gene provide evidence for AS events in the
SR45 mutant that do not appear in the wild-type data.

72



different splice forms in the wild-type and SR45 mutant data. In this case we were able to use Cufflinks

predictions to bootstrap SpliceGrapherXT so that it could predict AS for genes that do not have annotations

in the TAIR10 gene models. In the future we would like to enable SpliceGrapherXT to predict novel genes

and the splice forms within them without having to use Cufflinks to bootstrap the process.

7.3 Visualizing Chimeras

In mythology, a chimera is a monster with the head of a lion, the body of a goat and a serpent’s tail. Like

these mythical creatures, chimeric mRNA transcripts are cobbled together from mRNA molecules that come

from different genomic locations [198, 244, 115] (Figure 7.7). These transcripts can be composed of distinct

elements from within a gene 1; from gene elements on opposite strands [100]; from distinct genes on the

same chromosome [180], or from distinct genes on different chromosomes (see, e.g., [91, 45, 244, 175]).

Initially these chimeric transcripts were perceived primarily to be products of gene fusions associated with

cancerous cells [158, 98, 141] or mere alignment artifacts [94, 139]. However, recent evidence suggests that

chimeric splicing also occurs in normal cells and may be subject to regulatory processes [3, 110].

Several models have been proposed to explain how chimeric transcripts form. Originally chimeras were

associated with gene fusion events that occur when genetic DNA is translocated, or moved to a distant

location in a genome from its original position. In this way, components from two genes may fuse into

a single gene that, when expressed, produces chimeric transcripts [158, 98, 141]. More recent models of

chimeric mRNA fall under the category of trans-splicing, defined as splicing that occurs between exon

acceptor and donor sites from two separate pre-mRNA molecules [244]. For example, exons from tandem

genes may be joined in the same transcript or spliced together to form a chimera [154]. Although trans-

splicing has been found in numerous studies [91, 45, 100, 78, 244, 154, 245, 175], it remains unclear how

the cell’s splicing machinery may select exons to join from distinct pre-mRNA transcripts. Obtaining a

better understanding of chimeras is a challenging task: not only are chimeric transcripts relatively rare, but

it can be difficult to distinguish real chimeras from experimental artifacts [139]. Despite these challenges,

there is evidence that chimeras may be more common than previously believed [139, 57, 58].

1Horiuchi et al. have shown that chimeric mRNA from the longitudinals lacking (lola) gene may arise from trans-splicing of
exons at distinct locations within the gene [78]. They provide evidence that at least one alternatively selected exon has its own
promoter region and can thus be transcribed independently. It may then be trans-spliced to other transcripts from the same gene.

73



223064607223163715

U02368.1

U02308.1

EU446645.1

Supporting ESTs -- First Part

223064607223163715

Chimera First Part PAX3 Chr2 (-)

4112981741240734

Chimera Second Part FOXO1 Chr13 (-)

4112981741240734

U02368.1

U02308.1

EU446645.1

Supporting ESTs -- Second Part

Alt. 3'

Chimera Junction

Chimeric Exon

Intron Retention

Figure 7.7: Splice graph visualization of an mRNA chimera from H. sapiens that involves genes on two
different chromosomes. The top panel shows the first parts of three ESTs that aligned to the first gene. Each
EST is labeled with its unique identifier. The second panel shows the gene model for the first gene with the
chimeric junction highlighted in red. The third panel shows the gene model for the second gene with the
second part of the chimeric junction highlighted in red (start of second exon). The bottom panel shows the
ends of the ESTs that align to the second gene. Note that the 3’ ends of the ESTs in the top panel align with
the first half of the junction while the 5’ ends of the ESTs in the bottom panel align with the second half of
the junction.

74



To aid in interpreting these data, we used SpliceGrapher modules to develop methods for visualizing

chimeric transcripts inferred from EST data [58]. In our visualizations we included several features to aid in

analysis (Figure 7.7). Each chimera is characterized by a splice junction that begins in one gene and ends in

another. We highlight these locations using bold red markers on the graphs. The gene features that may take

part in a chimera will be upstream of the first part of the chimeric junction and downstream of the second

part. Those gene regions that are not included in a chimera are obscured by rendering them with grey dashed

lines.

ESTs provide supporting evidence for the chimeras in the study. We depict each EST as a separate tran-

script along with its unique identifier. Displaying the ESTs and the genes in this manner makes it easy to see

the extent of the EST evidence for a chimera, what parts of each gene are likely to participate in a chimera,

and the potential transcripts that could arise from each chimera. These SpliceGrapher visualizations are now

part of an extensive database (ChiTaRS, now at UniProt [224]) of well-supported chimera examples from

fruit fly, mouse and human [58].

7.3.1 Future Work

Our work has demonstrated the value of having good visualization tools for interpreting the evidence for

chimeras based on ESTs. The ChiTaRS database also includes chimeras predicted from RNA-Seq data [58,

130, 131]. In addition, several tools have been developed that can predict chimeras recapitulated in RNA-

Seq data [190, 95, 82, 116]. Thus an obvious next step will be to provide visualizations that include this

RNA-Seq evidence.

Most methods for predicting chimeras from RNA-Seq rely on paired-end reads to detect chimeric events

by looking for read pairs that map to exons within distinct genes. They then filter candidates by removing

pairs of paralogous genes from their candidate sets [190, 95, 82, 116]. However, the trans-splicing model

associated with chimeras is slightly different than the model associated with normal splicing [137], raising

the possibility that the two processes are mediated by different splicing signals. Thus it is possible that more

accurate predictions may be obtained by instead training classifiers to recognize patterns that are unique

to chimeric sequences. As a first step one could use an an approach similar to the approach described

for classifying splice sites in Chapter 4. A key difference will be the way in which positive and negative

training examples are obtained. The ChiTaRS database provides information about chimeras that have been

confirmed using mass spectrometry [57, 58] and should provide good evidence for known chimeric splice

75



sites.

7.4 Conclusion

In this chapter we have surveyed three projects in which SpliceGrapher has been used to generate biolog-

ical insights. It has played a key role in our analysis of AS across different stages of embryonic development,

providing compelling evidence that vibrant AS activity precedes the key phylotypic stage, and raising ques-

tions about how this AS activity may influence gene products in later stages. Splice graphs also provide an

efficient structure for comparing the splicing activity between two samples. This means that we can com-

pensate for high variability between biological or technical replicates by accepting only those predictions

that are common to all replicates. By using graph intersections to identify predictions common to repli-

cates allows us to make confident predictions across replicates, but other comparisons are more challenging.

Finally, splice graphs provide compact representations of genes that make it easy to visualize complex phe-

nomena such as complex gene models and trans-spliced chimeras. By including annotations for supporting

evidence such as ESTs or RNA-Seq data, these visualizations can aid in developing and evaluating methods

for predicting different kinds of chimeras.

76



Chapter 8

Conclusion

We have presented SpliceGrapherXT, a Python package designed to enhance existing gene annotations

by predicting splice graphs from RNA-Seq and EST data. SpliceGrapherXT predicts AS from RNA-Seq

data by applying a simple set of constraints to patterns of acceptor and donor sites. We have shown that

this approach gives SpliceGrapherXT much greater precision and greater sensitivity than other state-of-the-

art methods when predicting novel exons. SpliceGrapherXT uses gene annotations as a basis on which

to construct its splice graphs, allowing it to make meaningful predictions even for genes with low read

coverage, and to resolve AS events that are otherwise hard to detect from RNA-Seq data. In addition, it

uses highly accurate splice-site models to filter out potentially spurious evidence for novel splice junctions

provided by spliced alignment tools. When SpliceGrapherXT is unable to resolve patterns of acceptor and

donor sites unequivocally, it saves information about potential novel exons. It can then use a realignment

procedure to resolve up to 50% of unresolved exons while maintaining its high precision. These methods are

highly efficient: predictions for a whole genome along with realignments to resolve exons will take about

two hours on a typical workstation.

Once SpliceGrapherXT has predicted a set of splice graphs for a genome, we can use the predictions

to improve the performance of transcript prediction methods. SpliceGrapherXT constructs putative gene

models from predicted splice graphs and provides these gene models to tools such as PSGInfer and IsoLasso

that can use them to predict transcript frequencies or expression levels. Our experiments demonstrate that

when we provide IsoLasso/CEM with SpliceGrapherXT predictions, its recall and precision both improve

dramatically on real data. In addition, SpliceGrapherXT-assisted PSGInfer and IsoLasso predictions can

yield higher recall and precision than Cufflinks on both simulated and real data.

We have also used SpliceGrapherXT to generate biological insights using different experimental pro-

tocols. Our early work demonstrated the advantages of using splice graphs to assess AS in species with

limited annotations [99] and to compare AS in highly conserved genes [172]. Since then SplicegrapherXT

has played a key role in RNA-Seq based projects for comparing AS between different samples, such as

mutant and wild-type A. thaliana variants, or comparing the amount of AS across different stages of plant

77



embryonic development.

Tools that predict complete mRNA transcripts from RNA-Seq data rely on sophisticated algorithms for

mapping reads to their corresponding transcripts [218, 173, 113, 111, 114]. However, the ambiguities that

arise from biases and noise in RNA-Seq data can make this problem difficult or impossible to solve. By

addressing the slightly easier problem of predicting novel exons, we have been able to develop a relatively

simple approach that yields better recall and substantially better precision than these other methods.

8.1 Future Work

As encouraging as our results have been, there are several avenues we would like to pursue to improve

SpliceGrapherXT’s prediction accuracy and utility. These include the ability to predict novel genes and their

AS activity, establishing a model to account for noise to improve SpliceGrapherXT’s sensitivity to novel IR

events, and comparisons with other state-of-the-art methods.

8.1.1 Gene Prediction

In Chapter 7 we described an ad hoc procedure for assessing AS in novel genes: we first used Cufflinks

to predict genes and transcripts in A. thaliana, then used as gene models those Cufflinks predictions that did

not correspond to any known gene models. By combining these predicted genes with RNA-Seq we were

able to find several novel genes with evidence of AS. However, we would like to add to SpliceGrapherXT the

ability to detect novel genes and any AS that may be present in those genes. In addition, alternative initiating

and terminating exons remain a significant challenge for methods that predict novel exons or transcripts.

Tools like Cufflinks and Scripture can predict genes using heuristics such as the distance between cov-

erage regions and inferring strands using the spliced alignments within a region [218, 68]. However, there

are two key aspects to this problem that may yield better predictions: identification of gene boundaries and

identification of transcript start sites (TSS) and polyadenylation (poly-A) sites. A number of tools exist that

are designed to predict genes based on genomic sequences (see, e.g., [221, 24, 199, 75, 202]). These use a

variety of different methods including neural networks [221], linear discriminants [199] and Hidden Markov

Models [24, 75]. There are also numerous methods for TSS prediction (see, e.g., [97, 171, 201, 241]) and

poly-A site prediction (e.g., [136, 207, 123, 220]) with approaches that include neural networks [171], sup-

port vector machines [201] and hybrid approaches [97, 123]. These tools provide predictions for gene and

transcript boundaries that SpliceGrapherXT could use to provide additional context for interpreting evidence

78



from RNA-Seq data. Currently SpliceGrapherXT is able to extend genes on either end based on RNA-Seq

evidence, but the outer boundaries for exons at the 5’ and 3’ ends may not be accurate. Incorporating

evidence from a TSS or polyA site predictor might improve these predictions as well.

8.1.2 Improving IR Predictions

One of the key findings in our original work was the difficulty in predicting intron retention based on

RNA-Seq data [179]. A common problem is that read coverage can vary by orders of magnitude across

a gene. Because SpliceGrapherXT currently relies on continuous read coverage across an intron, it will

not predict IR when there are short gaps in coverage. Thus we may improve SpliceGrapherXT’s ability to

predict IR if we can identify gaps in short read coverage that constitute noise.

The challenge is illustrated in Figure 8.1, where SpliceGrapherXT fails to predict an IR event when

using only RNA-Seq alignments. EST alignments provide compelling evidence for an IR event, and the

RNA-Seq coverage across the same intron appears to support it as well. However, three small gaps in

read coverage prevent SpliceGrapherXT from predicting the event. We would like SpliceGrapherXT to

distinguish between read coverage gaps that could be merged to form exons, and disjoint clusters of reads

that result from noise in the data. It should be possible to develop a classifier that can leverage characteristics

of read coverage and splice sites to make these predictions.

Currently we identify gaps in read coverage whenever the coverage drops to 0. This serves as a proxy

for identifying when read coverage is indistinguishable from noise. However, a more rigorous approach

could give us a better idea of where clusters should be delineated or split apart, and when we may want

to merge them. We could develop a classifier that uses features we associate with noise or with legitimate

IR events. Gap size is an obvious feature to include if we wish to close gaps by merging adjacent clusters.

SpliceGrapherXT’s splice site classifiers may also provide evidence for such a model. When splice sites

are predicted between two short-read clusters, a gap between them may be due to splice junctions not

recapitulated in the spliced alignments. Conversely, the absence of predicted splice sites in the vicinity of a

gap could be evidence that the gap was an artifact of noisy data. Additional features may include relevant

statistics such as the expression levels of flanking read clusters; the variability in read depth across the gene;

and the gene’s average read depth.

79



8.1.3 Additional Comparisons

Throughout this work we have compared SpliceGrapherXT with Cufflinks, IsoLasso and IsoLasso/CEM.

Recently the iReckon method was proposed that exhibits higher precision and sensitivity than IsoLasso or

Cufflinks for transcript prediction [140]. In simulation and experiments, iReckon yielded 50% higher recall

and twice the precision of Cufflinks, IsoLasso or SLIDE in predicting left-out transcripts in a human data

set. On real data iReckon yielded recall that was just 10% higher than Cufflinks, but with more than double

the precision. The protocol for these experiments was different from our own, so it will be instructive to run

iReckon using our experiments.

CLIIQ [119] is another method recently proposed for predicting isoforms and their abundances. This

method takes advantage of multiple RNA-Seq samples using an integer linear programming formulation for

identifying and quantifying the most parsimonious set of isoforms. In experiments on simulated human data,

CLIIQ yields up to 22% higher recall than Cufflinks or IsoLasso, and up to 16% higher precision. Although

these differences are not as striking as those for iReckon or SpliceGrapherXT, the experimental protocol

was again different from our own. Hence we would like to see how well CLIIQ would perform using our

protocols.

80



Gene Model for AT1G01490

ESTs for AT1G01490

SpliceGrapher AT1G01490 Prediction

1619

258

Spliced Reads

180500181000181500182000
100
101
102

R
e
a
d

 D
e
p

th Read Coverage

Intron Retention

Figure 8.1: An example of a gene where short gaps in read coverage currently prevent SpliceGrapherXT from
predicting an IR event. Here we used SpliceGrapherXT to predict AS for this gene based only on RNA-Seq data
and compare its prediction with evidence from ESTs. The short-read coverage across the intron on the right provides
strong evidence for an IR event, but SpliceGrapherXT is unable to predict the event due to gaps in the coverage.

81



References
[1] Hoo, September 2011. http://trinityrnaseq.sourceforge.net.

[2] National Center for Biotechnology Information, April 2013. http://www.ncbi.nlm.nih.gov.

[3] P. Akiva, A. Toporik, S. Edelheit, Y. Peretz, A. Diber, R. Shemesh, A. Novik, and R. Sorek.
Transcription-mediated gene fusion in the human genome. Genome Research, 16(1):30, 2006.

[4] M. Albaqami, M. Hamilton, M.F. Rogers, S.G. Palusa, D. Xing, G.S. Ali, A. Ben-Hur, and A.S.N.
Reddy. Global analysis of gene expression and alternative splicing in a splicing regulator SR45 mu-
tant: Role of SR45 in thermotolerance. under review.

[5] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J.D. Watson. Molecular Biology of the Cell.
Garland Science, March 1994.

[6] Gul Shad Ali, Saiprasad G Palusa, Maxim Golovkin, Jayendra Prasad, James L Manley, and
Anireddy SN Reddy. Regulation of plant developmental processes by a novel splicing factor. PLoS
One, 2(5):e471, 2007.

[7] A. Andreadis. Misregulation of tau alternative splicing in neurodegeneration and dementia. Alterna-
tive Splicing and Disease, pages 89–107, 2006.

[8] P. Arensburger, R.H. Hice, J.A. Wright, N.L. Craig, and P.W. Atkinson. The mosquito Aedes ae-
gypti has a large genome size and high transposable element load but contains a low proportion of
transposon-specific piRNAs. BMC Genomics, 12(1):606, 2011.

[9] Moritz Aschoff, Agnes Hotz-Wagenblatt, Karl-Heinz Glatting, Matthias Fischer, Roland Eils, and
Rainer König. SplicingCompass: differential splicing detection using RNA-Seq data. Bioinformatics,
2013.

[10] K.F. Au, H. Jiang, L. Lin, Y. Xing, and W.H. Wong. Detection of splice junctions from paired-end
RNA-seq data by SpliceMap. Nucleic Acids Research, 38(14):4570, 2010.

[11] Jong-Min Baek, Paul Han, Alberto Iandolino, and Douglas R Cook. Characterization and compar-
ison of intron structure and alternative splicing between Medicago truncatula, Populus trichocarpa,
Arabidopsis and rice. Plant molecular biology, 67(5):499–510, 2008.

[12] Hua Bao, Yuanyan Xiong, Hui Guo, Renchao Zhou, Xuemei Lu, Zhen Yang, Yang Zhong, and Suhua
Shi. MapNext: a software tool for spliced and unspliced alignments and SNP detection of short
sequence reads. BMC genomics, 10(Suppl 3):S13, 2009.

[13] A Barta, M Kalyna, and ZJ Lorković. Plant sr proteins and their functions. In Nuclear pre-mRNA
Processing in Plants, pages 83–102. Springer, 2008.

[14] A. Ben-Hur, C.S. Ong, S. Sonnenburg, B. Schölkopf, and G. Rätsch. Support vector machines and
kernels for computational biology. PLoS Computational Biology, 4(10), 2008.

[15] Asa Ben-Hur. Pyml—a python machine learning package, 2013.

[16] Dennis A Benson, Ilene Karsch-Mizrachi, Karen Clark, David J Lipman, James Ostell, and Eric W
Sayers. GenBank. Nucleic acids research, 40(D1):D48–D53, 2012.

82



[17] Elsa Bernard, Laurent Jacob, Julien Mairal, and Jean-Philippe Vert. Flipflop: Fast lasso-based isoform
prediction as a flow problem. under review, 2013.

[18] Apurva Bhargava, Ivory Clabaugh, Jenn P To, Bridey B Maxwell, Yi-Hsuan Chiang, G Eric Schaller,
Ann Loraine, and Joseph J Kieber. Identification of Cytokinin-Responsive Genes Using Microarray
Meta-Analysis and RNA-Seq in Arabidopsis. Plant Physiology, 162(1):272–294, 2013.

[19] I. Birol, S.D. Jackman, C.B. Nielsen, J.Q. Qian, R. Varhol, G. Stazyk, R.D. Morin, Y. Zhao, M. Hirst,
J.E. Schein, et al. De novo transcriptome assembly with ABySS. Bioinformatics, 25(21):2872, 2009.

[20] D.L. Black. Mechanisms of alternative pre-messenger RNA splicing. Annual Review of Biochemistry,
72:291–336, 2003.

[21] Brunak, Sören and Engelbrecht, Jacob and Knudsen, Steen. Prediction of human mRNA donor and
acceptor sites from the DNA sequence. Journal of Molecular Biology, 220(1):49–65, 1991.

[22] V.M. Bruno, Z. Wang, S.L. Marjani, G.M. Euskirchen, J. Martin, G. Sherlock, and M. Snyder. Com-
prehensive annotation of the transcriptome of the human fungal pathogen Candida albicans using
RNA-seq. Genome Research, 20(10):1451, 2010.

[23] D.W. Bryant, R. Shen, H.D. Priest, W.K. Wong, and T.C. Mockler. Supersplat–spliced RNA-seq
alignment. Bioinformatics, 26(12):1500, 2010.

[24] C. Burge and S. Karlin. Prediction of complete gene structures in human genomic DNA. Journal of
Molecular Biology, 268(1):78–94, 1997.

[25] M Burset, IA Seledtsov, and VV Solovyev. Analysis of canonical and non-canonical splice sites in
mammalian genomes. Nucleic Acids Research, 28(21):4364–4375, 2000.

[26] Luca Cartegni and Adrian R Krainer. Disruption of an sf2/asf-dependent exonic splicing enhancer in
smn2 causes spinal muscular atrophy in the absence of smn1. Nature genetics, 30(4):377–384, 2002.

[27] Peter Chang, Joseph Dunham, Sergey Nuzhdin, and Michelle Arbeitman. Somatic sex-specific tran-
scriptome differences in Drosophila revealed by whole transcriptome sequencing. BMC genomics,
12(1):364, 2011.

[28] Yao-Fu Chang, J Saadi Imam, and Miles F Wilkinson. The nonsense-mediated decay RNA surveil-
lance pathway. Annu. Rev. Biochem., 76:51–74, 2007.

[29] Jarrod A. Chapman, Isaac Ho, Sirisha Sunkara, Shujun Luo, Gary P. Schroth, and Daniel S. Rokhsar.
Meraculous: De Novo Genome Assembly with Short Paired-End Reads. PLoS ONE, 6(8):e23501, 08
2011.

[30] Mo Chen and James L Manley. Mechanisms of alternative splicing regulation: insights from molec-
ular and genomics approaches. Nature Reviews Molecular Cell Biology, 10(11):741–754, 2009.

[31] Edward B Chuong, MA Karim Rumi, Michael J Soares, and Julie C Baker. Endogenous retroviruses
function as species-specific enhancer elements in the placenta. Nature genetics, 2013.

[32] N. Cloonan, A.R.R. Forrest, G. Kolle, B.B.A. Gardiner, G.J. Faulkner, M.K. Brown, D.F. Taylor,
A.L. Steptoe, S. Wani, G. Bethel, et al. Stem cell transcriptome profiling via massive-scale mRNA
sequencing. Nature Methods, 5(7):613–619, 2008.

83



[33] Monica Concha, Xia Wang, Subing Cao, Melody Baddoo, Claire Fewell, Zhen Lin, William Hulme,
Dale Hedges, Jane McBride, and Erik K Flemington. Identification of new viral genes and transcript
isoforms during epstein-barr virus reactivation using RNA-seq. Journal of virology, 86(3):1458–1467,
2012.

[34] Joseph D Coolon, Kraig R Stevenson, C Joel McManus, Brenton R Graveley, and Patricia J Wittkopp.
Genomic Imprinting Absent in Drosophila melanogaster Adult Females. Cell Reports, 2012.

[35] Christine M Costello, Nancy Mah, Robert Häsler, Philip Rosenstiel, Georg H Waetzig, Andreas Hahn,
Tim Lu, Yesim Gurbuz, Susanna Nikolaus, Mario Albrecht, et al. Dissection of the inflammatory
bowel disease transcriptome using genome-wide cdna microarrays. PLoS medicine, 2(8):e199, 2005.

[36] F.H.C. Crick. The biological replication of macromolecules. In Symposia of the Society for Experi-
mental Biology, volume 12, pages 138–163, 1958.

[37] Rebecca M Davidson, Malali Gowda, Gaurav Moghe, Haining Lin, Brieanne Vaillancourt, Shin-Han
Shiu, Ning Jiang, and C Robin Buell. Comparative transcriptomics of three Poaceae species reveals
patterns of gene expression evolution. The Plant Journal, 71(3):492–502, 2012.

[38] Irene S Day, Maxim Golovkin, Saiprasad G Palusa, Alicia Link, Gul S Ali, Julie Thomas, Dale N
Richardson, and Anireddy SN Reddy. Interactions of SR45, an SR-like protein, with spliceosomal
proteins and an intronic sequence: insights into regulated splicing. The Plant Journal, 71(6):936–947,
2012.

[39] F. De Bona, S. Ossowski, K. Schneeberger, and G. Rätsch. Optimal spliced alignments of short
sequence reads. BMC Bioinformatics, 9(Suppl 10):O7, 2008.

[40] Degroeve, Sven and Saeys, Yvan and De Baets, Bernard and Rouzé, Pierre and Van de Peer, Yves.
SpliceMachine: predicting splice sites from high-dimensional local context representations. Bioin-
formatics, 21(8):1332–1338, 2005.

[41] M.T. Dimon, K. Sorber, and J.L. DeRisi. HMMSplicer: a tool for efficient and sensitive discovery of
known and novel splice junctions in RNA-Seq data. PloS one, 5(11):e13875, 2010.

[42] J.C. Dohm, C. Lottaz, T. Borodina, and H. Himmelbauer. Substantial biases in ultra-short read data
sets from high-throughput DNA sequencing. Nucleic Acids Research, 36(16):e105, 2008.

[43] Tomislav Domazet-Lošo and Diethard Tautz. A phylogenetically based transcriptome age index mir-
rors ontogenetic divergence patterns. Nature, 468(7325):815–818, 2010.

[44] Nilgun Donmez and Michael Brudno. Hapsembler: an assembler for highly polymorphic genomes.
In Proceedings of the 15th Annual international conference on Research in computational molecular
biology, RECOMB’11, pages 38–52, Berlin, Heidelberg, 2011. Springer-Verlag.

[45] R. Dorn, G. Reuter, and A. Loewendorf. Transgene analysis proves mRNA trans-splicing at the
complex mod (mdg4) locus in Drosophila. Proceedings of the National Academy of Sciences,
98(17):9724, 2001.

[46] Philipp Drewe, Oliver Stegle, Lisa Hartmann, André Kahles, Regina Bohnert, Andreas Wachter,
Karsten Borgwardt, and Gunnar Rätsch. Accurate detection of differential rna processing. Nucleic
Acids Research, April 2013.

84



[47] Rachel A Drysdale, Madeline A Crosby, et al. FlyBase: genes and gene models. Nucleic acids
research, 33(suppl 1):D390–D395, 2005.

[48] Denis Duboule. Temporal colinearity and the phylotypic progression: a basis for the stability
of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development,
1994(Supplement):135–142, 1994.

[49] K. Eilbeck, C. Mungall, S. Lewis, and M. Ashburner. The Sequence Ontology Project, January 2009.
http://www.sequenceontology.org/gff3.shtml.

[50] EMBL. EMBL European Bioinformatics Institute, April 2013. http://embl.ebi.ac.uk.

[51] ENSEMBL. FTP Download, June 2011. http://uswest.ensembl.org/info/data/ftp/index.html.

[52] ENSEMBL. PSL File Format, April 2013. http://uswest.ensembl.org/info/website/upload/psl.html.

[53] P. Bork et al. Sircah, January 2009. http://www.bork.embl.de/Sircah.

[54] J. Feng, W. Li, and T. Jiang. Inference of Isoforms from Short Sequence Reads. Journal of Compu-
tational Biology, 18(3):305–321, 2011.

[55] S.A. Filichkin, H.D. Priest, S.A. Givan, R. Shen, D.W. Bryant, S.E. Fox, W.K. Wong, and T.C.
Mockler. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Research,
20(1):45, 2010.

[56] Paul Flicek et al. Ensembl 2011. Nucleic Acids Research, 39(suppl 1):D800–D806, 2011.

[57] M. Frenkel-Morgenstern, I. Ezkurdia, V. Lacroix, J. Prilusky, A. del Pozo, M. Tress, R. Guigo, and
A. Valencia. Chimeras taking shape: potential functions of proteins encoded by chimeric RNA tran-
scripts. Genome Research (accepted), May 2012.

[58] M. Frenkel-Morgenstern, A. Gorohovski, V. Lacroix, M. F. Rogers, K. Ibanez, C. Boullosa, E. Andres
Leon, A. Ben-Hur, and A Valencia. ChiTaRS: a database of human, mouse and fruit fly Chimeric
Transcripts and RNA-Sequencing data. Nucleic Acids Research, 41(D1), 2013.

[59] Chikara Furusawa and Kunihiko Kaneko. Zipfs law in gene expression. Physical review letters,
90(8):088102, 2003.

[60] Peter Glaus, Antti Honkela, and Magnus Rattray. Identifying differentially expressed transcripts from
RNA-seq data with biological variation. Bioinformatics, 28(13):1721–1728, 2012.

[61] Sante Gnerre, Eric Lander, Kerstin Lindblad-Toh, and David Jaffe. Assisted assembly: how to im-
prove a de novo genome assembly by using related species. Genome Biology, 10(8):R88, 2009.

[62] David González-Ballester, David Casero, Shawn Cokus, Matteo Pellegrini, Sabeeha S Merchant, and
Arthur R Grossman. RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of
acclimation critical for cell survival. The Plant Cell Online, 22(6):2058–2084, 2010.

[63] M.G. Grabherr, B.J. Haas, M. Yassour, J.Z. Levin, D.A. Thompson, I. Amit, X. Adiconis, L. Fan,
R. Raychowdhury, Q. Zeng, et al. Full-length transcriptome assembly from RNA-Seq data without a
reference genome. Nature Biotechnology, 2011.

[64] B.R. Graveley, A.N. Brooks, J.W. Carlson, M.O. Duff, J.M. Landolin, L. Yang, C.G. Artieri, M.J. van
Baren, N. Boley, B.W. Booth, et al. The developmental transcriptome of Drosophila melanogaster.
Nature, 471(7339):473–479, 2010.

85



[65] Brenton R. Graveley. Sorting out the complexity of sr protein functions. RNA, 6(9):1197–1211, 2000.

[66] Thasso Griebel, Benedikt Zacher, Paolo Ribeca, Emanuele Raineri, Vincent Lacroix, Roderic Guigó,
and Michael Sammeth. Modelling and simulating generic RNA-Seq experiments with the flux simu-
lator. Nucleic Acids Research, 2012.

[67] M. Griffith, O.L. Griffith, J. Mwenifumbo, R. Goya, A.S. Morrissy, R.D. Morin, R. Corbett, M.J. Tang,
Y.C. Hou, T.J. Pugh, et al. Alternative expression analysis by RNA sequencing. Nature Methods,
7(10):843–847, 2010.

[68] M. Guttman, M. Garber, J.Z. Levin, J. Donaghey, J. Robinson, X. Adiconis, L. Fan, M.J. Koziol,
A. Gnirke, C. Nusbaum, et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse
reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnology, 28(5):503–510,
2010.

[69] B.J. Haas, A.L. Delcher, S.M. Mount, J.R. Wortman, R.K. Smith Jr, L.I. Hannick, R. Maiti, C.M.
Ronning, D.B. Rusch, C.D. Town, et al. Improving the Arabidopsis genome annotation using maximal
transcript alignment assemblies. Nucleic Acids Research, 31(19):5654, 2003.

[70] B.J. Haas, N. Volfovsky, C.D. Town, M. Troukhan, N. Alexandrov, K.A. Feldmann, R.B. Flavell,
O. White, and S.L. Salzberg. Full-length messenger RNA sequences greatly improve genome.
Genome Biology, 3(6):1–0029, 2002.

[71] Martina Hallegger, Miriam Llorian, and Christopher W. J. Smith. Alternative splicing: global insights.
FEBS Journal, 277(4):856–866, 2010.

[72] Kasper D. Hansen, Steven E. Brenner, and Sandrine Dudoit. Biases in Illumina transcriptome se-
quencing caused by random hexamer priming. Nucleic Acids Research, 38(12):e131, 2010.

[73] E.D. Harrington and P. Bork. Sircah: a tool for the detection and visualization of alternative tran-
scripts. Bioinformatics, 24(17):1959, 2008.

[74] T. Hashimoto, M.J.L. de Hoon, S.M. Grimmond, C.O. Daub, Y. Hayashizaki, and G.J. Faulkner.
Probabilistic resolution of multi-mapping reads in massively parallel sequencing data using MuM-
RescueLite. Bioinformatics, 25(19):2613, 2009.

[75] David Kulp David Haussler and Martin G Reese Frank H Eeckman. A generalized hidden markov
model for the recognition of human genes in dna. In Proc. Int. Conf. on Intelligent Systems for
Molecular Biology, St. Louis, pages 134–142, 1996.

[76] Hebsgaard, Stefan M and Korning, Peter G and Tolstrup, Niels and Engelbrecht, Jacob and Rouzé,
Pierre and Brunak, Søren. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining
local and global sequence information. Nucleic Acids Research, 24(17):3439–3452, 1996.

[77] Jodi D Hoffman, Stephanie E Hallam, Vickie L Venne, Elaine Lyon, and Kenneth Ward. Implications
of a novel cryptic splice site in the BRCA1 gene. American journal of medical genetics, 80(2):140–
144, 1998.

[78] T. Horiuchi, E. Giniger, and T. Aigaki. Alternative trans-splicing of constant and variable exons of a
Drosophila axon guidance gene, lola. Genes & Development, 17(20):2496, 2003.

[79] Songbo Huang, Jinbo Zhang, Ruiqiang Li, Wenqian Zhang, Zengquan He, Tak-Wah Lam, Zhiyu Peng,
and Siu-Ming Yiu. SOAPsplice: genome-wide ab initio detection of splice junctions from RNA-Seq
data. Frontiers in Genetics, 2(46), 2011.

86



[80] Yan Huang, Yin Hu, Corbin D Jones, James N MacLeod, Derek Y Chiang, Yufeng Liu, Jan F Prins,
and Jinze Liu. A robust method for transcript quantification with RNA-seq data. Journal of Compu-
tational Biology, 20(3):167–187, 2013.

[81] K. Iida, M. Seki, T. Sakurai, M. Satou, K. Akiyama, T. Toyoda, A. Konagaya, and K. Shinozaki.
Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full-length
cDNA sequences. Nucleic Acids Research, 32(17):5096, 2004.

[82] M.K. Iyer, A.M. Chinnaiyan, and C.A. Maher. ChimeraScan: a tool for identifying chimeric tran-
scription in sequencing data. Bioinformatics, 27(20):2903–2904, 2011.

[83] G. Jean, A. Kahles, V.T. Sreedharan, F.D. Bona, and G. Rätsch. RNA-Seq Read Alignments with
PALMapper. Current Protocols in Bioinformatics, 32:11.6.1–11.6.37, 2010.

[84] Jacob K Jensen, Alex Schultink, Kenneth Keegstra, Curtis G Wilkerson, and Markus Pauly. RNA-Seq
analysis of developing nasturtium seeds (Tropaeolum majus): identification and characterization of an
additional galactosyltransferase involved in xyloglucan biosynthesis. Molecular Plant, 5(5):984–992,
2012.

[85] Byeong-Soo Jeong, ATM Golam Bari, Mst Rokeya Reaz, and Ho-Jin Choi. Survey on Nucleotide
Encoding Techniques and SVM Kernel Design for Human Splice Site Prediction. Interdisciplinary
Bio Central, 4(1):14, 2012.

[86] Daniel C. Jones, Walter L. Ruzzo, Xinxia Peng, and Michael G. Katze. A new approach to bias
correction in RNA-Seq. Bioinformatics, 2012.

[87] Alex T Kalinka, Karolina M Varga, Dave T Gerrard, Stephan Preibisch, David L Corcoran, Julia Jar-
rells, Uwe Ohler, Casey M Bergman, and Pavel Tomancak. Gene expression divergence recapitulates
the developmental hourglass model. Nature, 468(7325):811–814, 2010.

[88] Z. Kan, E.C. Rouchka, and W.R. Gish. Gene structure prediction and alternative splicing analysis
using genomically aligned ESTs. Genome Research, 11(5):889, 2001.

[89] Donna Karolchik, Angela S Hinrichs, Terrence S Furey, Krishna M Roskin, Charles W Sugnet, David
Haussler, and W James Kent. The UCSC Table Browser data retrieval tool. Nucleic acids research,
32(suppl 1):D493–D496, 2004.

[90] Y. Katz, E.T. Wang, E.M. Airoldi, and C.B. Burge. Analysis and design of RNA sequencing experi-
ments for identifying isoform regulation. Nature Methods, 7(12):1009–1015, 2010.

[91] T. Kawasaki, S. Okumura, N. Kishimoto, H. Shimada, K. Higo, and N. Ichikawa. RNA maturation of
the rice SPK gene may involve trans-splicing. The Plant Journal, 18(6):625–632, 1999.

[92] W.J. Kent. BLAT–the BLAST-like alignment tool. Genome Research, 12(4):656, 2002.

[93] H. Keren, G. Lev-Maor, and G. Ast. Alternative splicing and evolution: diversification, exon defini-
tion and function. Nature Reviews Genetics, 11(5):345–355, 2010.

[94] N. Kim, S. Shin, K.H. Cho, and S. Lee. ChimerDB-database of chimeric sequences in the GenBank.
Genomics & Informatics, 2(2):61–66, 2004.

[95] M. Kinsella, O. Harismendy, M. Nakano, K.A. Frazer, and V. Bafna. Sensitive gene fusion detection
using ambiguously mapping RNA-Seq read pairs. Bioinformatics, 27(8):1068, 2011.

87



[96] Juliane D. Klein, Stephan Ossowski, Korbinian Schneeberger, Detlef Weigel, and Daniel H. Huson.
LOCAS – A Low Coverage Assembly Tool for Resequencing Projects. PLoS ONE, 6(8):e23455, 08
2011.

[97] S. Knudsen. Promoter2.0: for the recognition of PolII promoter sequences. Bioinformatics,
15(5):356–361, 1999.

[98] P.J. Kourlas, M.P. Strout, B. Becknell, M.L. Veronese, C.M. Croce, K.S. Theil, R. Krahe, T. Ruutu,
S. Knuutila, C.D. Bloomfield, et al. Identification of a gene at 11q23 encoding a guanine nucleotide
exchange factor: evidence for its fusion with MLL in acute myeloid leukemia. Proceedings of the
National Academy of Sciences, 97(5):2145, 2000.

[99] A. Labadorf, A. Link, M.F. Rogers, J. Thomas, A.S.N. Reddy, and A. Ben-Hur. Genome-wide analy-
sis of alternative splicing in Chlamydomonas reinhardtii. BMC Genomics, 11(1):114, 2010.

[100] M. Labrador, F. Mongelard, P. Plata-Rengifo, E.M. Baxter, V.G. Corces, and T.I. Gerasimova. Protein
encoding by both DNA strands. Nature, 409(6823):1000, 2001.

[101] V. Lacroix, M. Sammeth, R. Guigo, and A. Bergeron. Exact transcriptome reconstruction from short
sequence reads. In Proceedings of the 8th International Workshop on Algorithms in Bioinformatics,
page 63. Springer, 2008.

[102] B. Langmead, C. Trapnell, M. Pop, and S.L. Salzberg. Ultrafast and memory-efficient alignment of
short DNA sequences to the human genome. Genome Biology, 10(3):R25, 2009.

[103] L. LeGault and C. Dewey. Learning Probabilistic Splice Graphs from RNA-Seq data. under review,
2013.

[104] B.P. Lewis, R.E. Green, and S.E. Brenner. Evidence for the widespread coupling of alternative splic-
ing and nonsense-mediated mRNA decay in humans. Proceedings of the National Academy of Sci-
ences, 100(1):189, 2003.

[105] David D Lewis and William A Gale. A sequential algorithm for training text classifiers. In Pro-
ceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 3–12. Springer, 1994.

[106] B. Li, V. Ruotti, R.M. Stewart, J.A. Thomson, and C.N. Dewey. RNA-Seq gene expression estimation
with read mapping uncertainty. Bioinformatics, 26(4):493, 2010.

[107] H. Li and R. Durbin. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform.
Bioinformatics, 2009.

[108] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, and
R. Durbin. The sequence alignment/map format and SAMtools. Bioinformatics, 25(16):2078, 2009.

[109] H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads and calling variants using
mapping quality scores. Genome Research, 18(11):1851, 2008.

[110] H. Li, J. Wang, G. Mor, and J. Sklar. A neoplastic gene fusion mimics trans-splicing of RNAs in
normal human cells. Science, 321(5894):1357, 2008.

[111] Jingyi Jessica Li, Ci-Ren Jiang, James B. Brown, Haiyan Huang, and Peter J. Bickel. Sparse linear
modeling of next-generation mRNA sequencing (RNA-Seq) data for isoform discovery and abundance
estimation. Proceedings of the National Academy of Sciences, 108(50):19867–19872, 2011.

88



[112] Jun Li, Hui Jiang, and Wing Wong. Modeling non-uniformity in short-read rates in RNA-Seq data.
Genome Biology, 11:1–11, 2010. 10.1186/gb-2010-11-5-r50.

[113] Wei Li, Jianxing Feng, and Tao Jiang. IsoLasso: A LASSO Regression Approach to RNA-Seq Based
Transcriptome Assembly. In V. Bafna and S. Sahinalp, editors, Research in Computational Molecu-
lar Biology, volume 6577 of Lecture Notes in Computer Science, pages 168–188. Springer Berlin /
Heidelberg, 2011.

[114] Wei Li and Tao Jiang. Transcriptome assembly and isoform expression level estimation from biased
rna-seq reads. Bioinformatics, 28(22):2914–2921, 2012.

[115] X. Li, L. Zhao, H. Jiang, and W. Wang. Short homologous sequences are strongly associated with the
generation of chimeric RNAs in eukaryotes. Journal of Molecular Evolution, 68(1):56–65, 2009.

[116] Yang Li, Jeremy Chien, David I. Smith, and Jian Ma. FusionHunter: identifying fusion transcripts in
cancer using paired-end RNA-seq. Bioinformatics, 27(12):1708–1710, 2011.

[117] Z. Li, Z. Zhang, P. Yan, S. Huang, Z. Fei, and K. Lin. RNA-Seq improves annotation of protein-
coding genes in the cucumber genome. BMC Genomics, 12(1):540, 2011.

[118] Alexander Liede, Beth Y Karlan, and Steven A Narod. Cancer risks for male carriers of germline
mutations in brca1 or brca2: a review of the literature. Journal of Clinical Oncology, 22(4):735–742,
2004.

[119] Yen-Yi Lin, Phuong Dao, Faraz Hach, Marzieh Bakhshi, Fan Mo, Anna Lapuk, Colin Collins, and
S Cenk Sahinalp. CLIIQ: Accurate comparative detection and quantification of expressed isoforms in
a population. In Algorithms in Bioinformatics, pages 178–189. Springer, 2012.

[120] Zhen Lin, Adriane Puetter, Joseph Coco, Guorong Xu, Michael J Strong, Xia Wang, Claire Fewell,
Melody Baddoo, Christopher Taylor, and Erik K Flemington. Detection of murine leukemia virus in
the Epstein-Barr virus-positive human B-cell line JY, using a computational RNA-Seq-based exoge-
nous agent detection pipeline, PARSES. Journal of Virology, 86(6):2970–2977, 2012.

[121] David J Lipman and William R Pearson. Rapid and sensitive protein similarity searches. Science,
227(4693):1435–1441, 1985.

[122] R. Lister, M. Pelizzola, Y.S. Kida, R.D. Hawkins, J.R. Nery, G. Hon, J. Antosiewicz-Bourget, R. OMa-
lley, R. Castanon, S. Klugman, et al. Hotspots of aberrant epigenomic reprogramming in human
induced pluripotent stem cells. Nature, 471(7336):68–73, 2011.

[123] Huiqing Liu, Hao Han, Jinyan Li, and Limsoon Wong. An in-silico method for prediction of
polyadenylation signals in human sequences. Genome Informatics Series, pages 84–93, 2003.

[124] J Long and J Caceres. The SR protein family of splicing factors: master regulators of gene expression.
Journal of Biochemistry, 417:15–27, 2009.

[125] Zdravko J Lorković and Andrea Barta. Genome analysis: Rna recognition motif (rrm) and k homol-
ogy (kh) domain rna-binding proteins from the flowering plant arabidopsis thaliana. Nucleic acids
research, 30(3):623–635, 2002.

[126] Susan E Lott, Jacqueline E Villalta, Gary P Schroth, Shujun Luo, Leath A Tonkin, and Michael B
Eisen. Noncanonical compensation of zygotic x transcription in early drosophila melanogaster devel-
opment revealed through single-embryo rna-seq. PLoS biology, 9(2):e1000590, 2011.

89



[127] S.K. Lou, B. Ni, L.Y. Lo, S.K.W. Tsui, T.F. Chan, and K.S. Leung. ABMapper: a suffix array-based
tool for multi-location searching and splice-junction mapping. Bioinformatics, 27(3):421, 2011.

[128] D.V. Lu, R.H. Brown, M. Arumugam, and M.R. Brent. Pairagon: a highly accurate, HMM-based
cDNA-to-genome aligner. Bioinformatics, 25(13):1587, 2009.

[129] T. Lu, G. Lu, D. Fan, C. Zhu, W. Li, Q. Zhao, Q. Feng, Y. Zhao, Y. Guo, W. Li, et al. Function
annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Research,
20(9):1238, 2010.

[130] C.A. Maher, N. Palanisamy, J.C. Brenner, X. Cao, S. Kalyana-Sundaram, S. Luo, I. Khrebtukova,
T.R. Barrette, C. Grasso, J. Yu, et al. Chimeric transcript discovery by paired-end transcriptome
sequencing. Proceedings of the National Academy of Sciences, 106(30):12353, 2009.

[131] Christopher A Maher, Chandan Kumar-Sinha, Xuhong Cao, Shanker Kalyana-Sundaram, Bo Han,
Xiaojun Jing, Lee Sam, Terrence Barrette, Nallasivam Palanisamy, and Arul M Chinnaiyan. Tran-
scriptome sequencing to detect gene fusions in cancer. Nature, 458(7234):97–101, 2009.

[132] Serghei Mangul, Adrian Caciula, Sahar Al Seesi, Dumitru Brinza, Abdul Rouf Banday, and Rahul
Kanadia. An integer programming approach to novel transcript reconstruction from paired-end RNA-
Seq reads. In Proceedings of the ACM Conference on Bioinformatics, Computational Biology and
Biomedicine, pages 369–376. ACM, 2012.

[133] E.R. Mardis. Next-Generation Sequencing Platforms. Annual Review of Analytical Chemistry, 6(1),
2013.

[134] J.C. Marioni, C.E. Mason, S.M. Mane, M. Stephens, and Y. Gilad. RNA-seq: an assessment of
technical reproducibility and comparison with gene expression arrays. Genome Research, 18(9):1509,
2008.

[135] Yamile Marquez, John WS Brown, Craig Simpson, Andrea Barta, and Maria Kalyna. Transcriptome
survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome
Research, 22(6):1184–1195, 2012.

[136] Sherri Matis, Ying Xu, Manesh Shah, Xiaojun Guan, J Ralph Einstein, Richard Mural, and Edward
Uberbacher. Detection of RNA polymerase II promoters and polyadenylation sites in human DNA
sequence. Computers & chemistry, 20(1):135–140, 1996.

[137] M.G. Mayer and L.M. Floeter-Winter. Pre-mRNA trans-splicing: from kinetoplastids to mammals,
an easy language for life diversity. Memórias do Instituto Oswaldo Cruz, 100(5):501–513, 2005.

[138] Davis J McCarthy, Yunshun Chen, and Gordon K Smyth. Differential expression analysis of multifac-
tor RNA-Seq experiments with respect to biological variation. Nucleic Acids Research, 40(10):4288–
4297, 2012.

[139] C.J. McManus, M.O. Duff, J. Eipper-Mains, and B.R. Graveley. Global analysis of trans-splicing in
Drosophila. Proceedings of the National Academy of Sciences, 107(29):12975–12979, 2010.

[140] Aziz M Mezlini, Eric JM Smith, Marc Fiume, Orion Buske, Gleb L Savich, Sohrab Shah, Sam Apari-
cio, Derek Y Chiang, Anna Goldenberg, and Michael Brudno. iReckon: Simultaneous isoform dis-
covery and abundance estimation from RNA-seq data. Genome research, 23(3):519–529, 2013.

90



[141] F. Mitelman, B. Johansson, and F. Mertens. The impact of translocations and gene fusions on cancer
causation. Nature Reviews Cancer, 7(4):233–245, 2007.

[142] E. Mizrachi, C.A. Hefer, M. Ranik, F. Joubert, and A.A. Myburg. De novo assembled expressed
gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq. BMC Genomics,
11(1):681, 2010.

[143] T.C. Mockler and J.R. Ecker. Applications of DNA tiling arrays for whole-genome analysis. Ge-
nomics, 85(1):1–15, 2005.

[144] A. Mortazavi, B.A. Williams, K. McCue, L. Schaeffer, and B. Wold. Mapping and quantifying mam-
malian transcriptomes by RNA-Seq. Nature Methods, 5:621–628, 2008.

[145] Nayler, Oliver and Strätling, Wolf and Bourquin, Jean-Pierre and Stagljar, Igor and Lindemann,
Lothar and Jasper, Heinrich and Hartmann, Annette M and Fackelmayer, Frank O and Ullrich, Axel
and Stamm, Stefan. SAF-B protein couples transcription and pre-mRNA splicing to SAR/MAR ele-
ments. Nucleic Acids Research, 26(15):3542–3549, 1998.

[146] NCBI. GenBank Home, April 2013. http://www.ncbi.nlm.nih.gov/genbank.

[147] Hadas Ner-Gaon, Ronit Halachmi, Sigal Savaldi-Goldstein, Eitan Rubin, Ron Ophir, and Robert
Fluhr. Intron retention is a major phenomenon in alternative splicing in Arabidopsis. The Plant
Journal, 39(6):877–885, 2004.

[148] M. Nicolae, S. Mangul, I. Măndoiu, and A. Zelikovsky. Estimation of alternative splicing isoform
frequencies from RNA-Seq data. Algorithms in Bioinformatics, pages 202–214, 2010.

[149] Chad E Niederhuth, O Rahul Patharkar, and John C Walker. Transcriptional profiling of the Ara-
bidopsis abscission mutant hae hsl2 by RNA-Seq. BMC genomics, 14(1):37, 2013.

[150] Timothy W Nilsen. The spliceosome: the most complex macromolecular machine in the cell? Bioes-
says, 25(12):1147–1149, 2003.

[151] T.W. Nilsen and B.R. Graveley. Expansion of the eukaryotic proteome by alternative splicing. Nature,
463(7280):457–463, 2010.

[152] Alicia Oshlack and Matthew J Wakefield. Transcript length bias in RNA-seq data confounds systems
biology. Biology Direct, 4(1):14, 2009.

[153] Q. Pan, O. Shai, L.J. Lee, B.J. Frey, and B.J. Blencowe. Deep surveying of alternative splicing
complexity in the human transcriptome by high-throughput sequencing. Nature Genetics, 2008.

[154] G. Parra, A. Reymond, N. Dabbouseh, E.T. Dermitzakis, R. Castelo, T.M. Thomson, S.E. Antonarakis,
and R. Guigó. Tandem chimerism as a means to increase protein complexity in the human genome.
Genome Research, 16(1):37, 2006.

[155] Till K Pellny, Alison Lovegrove, Jackie Freeman, Paola Tosi, Christopher G Love, J Paul Knox,
Peter R Shewry, and Rowan AC Mitchell. Cell walls of developing wheat starchy endosperm: com-
parison of composition and RNA-Seq transcriptome. Plant Physiology, 158(2):612–627, 2012.

[156] Mihaela Pertea, Xiaoying Lin, and Steven L Salzberg. GeneSplicer: a new computational method for
splice site prediction. Nucleic Acids Research, 29(5):1185–1190, 2001.

91



[157] Douglas H Phanstiel, Justin Brumbaugh, Craig D Wenger, Shulan Tian, Mitchell D Probasco, Derek J
Bailey, Danielle L Swaney, Mark A Tervo, Jennifer M Bolin, Victor Ruotti, et al. Proteomic and
phosphoproteomic comparison of human ES and iPS cells. Nature methods, 8(10):821–827, 2011.

[158] M.A. Pierotti, M. Santoro, R.B. Jenkins, G. Sozzi, I. Bongarzone, M. Grieco, N. Monzini, M. Miozzo,
M.A. Herrmann, and A. Fusco. Characterization of an inversion on the long arm of chromosome 10
juxtaposing D10S170 and RET and creating the oncogenic sequence RET/PTC. Proceedings of the
National Academy of Sciences, 89(5):1616, 1992.

[159] Anouk Pijpe, Nadine Andrieu, Douglas F Easton, Ausrele Kesminiene, Elisabeth Cardis, Catherine
Noguès, Marion Gauthier-Villars, Christine Lasset, Jean-Pierre Fricker, Susan Peock, et al. Exposure
to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective
cohort study (GENE-RAD-RISK). BMJ: British Medical Journal, 345, 2012.

[160] H.D. Priest, D.W. Bryant, S.A. Givan, C. Sullivan, and T.C. Mockler. TAU-an algorithm for reference
guided assembly of transcription units from RNA-seq data. Submitted to Genome Biology, 2010.

[161] Marcel Quint, Hajk-Georg Drost, Alexander Gabel, Kristian Karsten Ullrich, Markus Bönn, and Ivo
Grosse. A transcriptomic hourglass in plant embryogenesis. Nature, 490:98–101, October 2012.

[162] Rudolf A Raff. The shape of life: genes, development, and the evolution of animal form. University
of Chicago Press, Chicago, 1996.

[163] G. Rätsch and S. Sonnenburg. Accurate splice site detection for Caenorhabditis elegans. In Bernhard
Schölkopf, Koji Tsuda, and Jean-Phillipe Vert, editors, Kernel Methods in Computational Biology,
pages 277–298. MIT Press, 2004.

[164] G. Rätsch, S. Sonnenburg, and B. Schölkopf. RASE: recognition of alternatively spliced exons in C.
elegans. Bioinformatics, 21(Suppl 1):i369–i377, 2005.

[165] A.S.N. Reddy. Plant serine/arginine-rich proteins and their role in pre-mRNA splicing. Trends in
plant science, 9(11):541–547, 2004.

[166] A.S.N. Reddy. Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annual
Review of Plant Biology, 58:267–294, 2007.

[167] A.S.N. Reddy. Extensive coupling of alternative splicing of pre-mRNAs of serine/ arginine (SR)
genes with nonsense-mediated decay. New Phytologist, page 1, 2009.

[168] A.S.N. Reddy, I.S. Day, J. Göhring, and A. Barta. Localization and dynamics of plant splicing regu-
lators. Plant Physiology, 2011.

[169] A.S.N. Reddy, M.F. Rogers, D. N. Richardson, M. Hamilton, and A. Ben-Hur. Deciphering the plant
splicing code: experimental and computational approaches for predicting alternative splicing and
splicing regulatory elements. Frontiers in Plant Genetics and Genomics, 3(0), 2012.

[170] Martin G Reese, Frank H Eeckman, David Kulp, and David Haussler. Improved splice site detection
in Genie. Journal of Computational Biology, 4(3):311–323, 1997.

[171] M.G. Reese. Application of a time-delay neural network to promoter annotation in the Drosophila
melanogaster genome. Computers & Chemistry, 26(1):51–56, 2001.

92



[172] D.N. Richardson, M.F. Rogers, A. Labadorf, A. Ben-Hur, H. Guo, A.H. Paterson, and A.S.N. Reddy.
Comparative Analysis of Serine/Arginine-Rich Proteins across 27 Eukaryotes: Insights into Sub-
Family Classification and Extent of Alternative Splicing. PLoS ONE, 6(9):e24542, 09 2011.

[173] A. Roberts, H. Pimentel, C. Trapnell, and L. Pachter. Identification of novel transcripts in annotated
genomes using RNA-Seq. Bioinformatics, 27(17):2325–2329, 2011.

[174] Gordon Robertson, Jacqueline Schein, Readman Chiu, Richard Corbett, Matthew Field, Shaun D
Jackman, Karen Mungall, Sam Lee, Hisanaga Mark Okada, Jenny Q Qian, et al. De novo assembly
and analysis of RNA-seq data. Nature methods, 7(11):909–912, 2010.

[175] H.M. Robertson, J.A. Navik, K.K.O. Walden, and H.W. Honegger. The bursicon gene in mosquitoes:
an unusual example of mRNA trans-splicing. Genetics, 176(2):1351, 2007.

[176] Xavier Roca, Adrian R Krainer, and Ian C Eperon. Pick one, but be quick: 5 splice sites and the
problems of too many choices. Genes & Development, 27(2):129–144, 2013.

[177] M. F. Rogers, C. Boucher, and A. Ben-Hur. SpliceGrapherXT: from splice graphs to transcripts using
RNA-Seq. under review.

[178] M.F. Rogers. SpliceGrapher, April 2011. http://splicegrapher.sourceforge.net.

[179] M.F. Rogers, J. Thomas, A.S.N. Reddy, and A. Ben-Hur. SpliceGrapher: Detecting patterns of alter-
native splicing from RNA-seq data in the context of gene models and EST data. Genome Biology,
13(R4), 2012.

[180] Antonello Romani, Emanuela Guerra, Marco Trerotola, and Saverio Alberti. Detection and analysis
of spliced chimeric mRNAs in sequence databanks. Nucleic Acids Research, 31(4):e17, 2003.

[181] Roy Ronen, Christina Boucher, Hamidreza Chitsaz, and Pavel Pevzner. Sequel: improving the accu-
racy of genome assemblies. Bioinformatics, 28(12):i188–i196, 2012.

[182] Tanja Dorothe Rösel, Lee-Hsueh Hung, Jan Medenbach, Katrin Donde, Stefan Starke, Vladimir
Benes, Gunnar Rätsch, and Albrecht Bindereif. RNA-Seq analysis in mutant zebrafish reveals role of
U1C protein in alternative splicing regulation. The EMBO journal, 30(10):1965–1976, 2011.

[183] Julien Roux and Marc Robinson-Rechavi. Age-dependent gain of alternative splice forms and biased
duplication explain the relation between splicing and duplication. Genome Research, 21(3):357–363,
2011.

[184] Jesse W Rowley, Andrew J Oler, Neal D Tolley, Benjamin N Hunter, Elizabeth N Low, David A Nix,
Christian C Yost, Guy A Zimmerman, and Andrew S Weyrich. Genome-wide RNA-seq analysis of
human and mouse platelet transcriptomes. Blood, 118(14):e101–e111, 2011.

[185] Barbara Ruskin, Phillip D Zamore, and Michael R Green. A factor, u2af, is required for u2 snrnp
binding and splicing complex assembly. Cell, 52(2):207–219, 1988.

[186] Marta Sanchez-Carbayo, Nicholas D Socci, Juan Jose Lozano, Wentian Li, Elizabeth Charytonowicz,
Thomas J Belbin, Michael B Prystowsky, Angel R Ortiz, Geoffrey Childs, and Carlos Cordon-Cardo.
Gene discovery in bladder cancer progression using cDNA microarrays. The American journal of
pathology, 163(2):505–516, 2003.

[187] JR Sanford, D Longman, and JF Caceres. Multiple roles of the SR protein family in splicing regula-
tion. In Regulation of Alternative Splicing, pages 33–58. Springer, 2003.

93



[188] F. Sanger, S. Nicklen, and A.R. Coulson. DNA sequencing with chain-terminating inhibitors. Pro-
ceedings of the National Academy of Sciences, 74(12):5463, 1977.

[189] E.W. Sayers, T. Barrett, D.A. Benson, E. Bolton, S.H. Bryant, K. Canese, V. Chetvernin, D.M. Church,
M. DiCuccio, S. Federhen, et al. Database resources of the national center for biotechnology infor-
mation. Nucleic Acids Research, 39(suppl 1):D38, 2011.

[190] A. Sboner, L. Habegger, D. Pflueger, S. Terry, D.Z. Chen, J.S. Rozowsky, A.K. Tewari,
N. Kitabayashi, B.J. Moss, M.S. Chee, et al. FusionSeq: a modular framework for finding gene
fusions by analyzing paired-end RNA-sequencing data. Genome Biology, 11(10):R104, 2010.

[191] B Schoölkopf, Koji Tsuda, and Jean-Philippe Vert. Kernel Methods in Computational Biology. The
MIT Press, 2004.

[192] U. Schulze, B. Hepp, C.S. Ong, and G. Rätsch. PALMA: mRNA to genome alignments using large
margin algorithms. Bioinformatics, 23(15):1892, 2007.

[193] Schraga Schwartz, Ram Oren, and Gil Ast. Detection and removal of biases in the analysis of next-
generation sequencing reads. PloS one, 6(1):e16685, 2011.

[194] M. Seki, M. Narusaka, A. Kamiya, J. Ishida, M. Satou, T. Sakurai, M. Nakajima, A. Enju,
K. Akiyama, Y. Oono, et al. Functional annotation of a full-length Arabidopsis cDNA collection.
Science, 296(5565):141, 2002.

[195] J. Shendure and H. Ji. Next-generation DNA sequencing. Nature Biotechnology, 26(10):1135–1145,
2008.

[196] J.T. Simpson, K. Wong, S.D. Jackman, J.E. Schein, S.J.M. Jones, and İ. Birol. ABySS: a parallel
assembler for short read sequence data. Genome Research, 19(6):1117, 2009.

[197] N.N. Singh and R.N. Singh. Alternative splicing in spinal muscular atrophy underscores the role of
an intron definition model. RNA Biology, 8(4):600–606, 2011.

[198] D. Solnick. Trans splicing of mRNA precursors. Cell, 42(1):157–164, 1985.

[199] Victor V Solovyev, Asaf A Salamov, and Charles B Lawrence. Predicting internal exons by oligonu-
cleotide composition and discriminant analysis of spliceable open reading frames. Nucleic Acids
Research, 22(24):5156–5163, 1994.

[200] Sören Sonnenburg, Gabriele Schweikert, Petra Philips, Jonas Behr, and Gunnar Rätsch. Accurate
splice site prediction using support vector machines. BMC Bioinformatics, 8(Suppl 10):S7, 2007.

[201] Sören Sonnenburg, Alexander Zien, and Gunnar Rätsch. ARTS: accurate recognition of transcription
starts in human. Bioinformatics, 22(14):e472–e480, 2006.

[202] Mario Stanke and Stephan Waack. Gene prediction with a hidden Markov model and a new intron
submodel. Bioinformatics, 19(suppl 2):ii215–ii225, 2003.

[203] J.E. Sulston and H.R. Horvitz. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans.
Developmental Biology, 56(1):110–156, 1977.

[204] M. Sultan, M.H. Schulz, H. Richard, A. Magen, A. Klingenhoff, M. Scherf, M. Seifert, T. Borodina,
A. Soldatov, D. Parkhomchuk, et al. A global view of gene activity and alternative splicing by deep
sequencing of the human transcriptome. Science, 321(5891):956–959, 2008.

94



[205] Ying-Fei Sun, Xiao-Dan Fan, and Yan-Da Li. Identifying splicing sites in eukaryotic RNA: support
vector machine approach. Computers in Biology and Medicine, 33(1):17–29, 2003.

[206] D. Swarbreck, C. Wilks, P. Lamesch, T.Z. Berardini, M. Garcia-Hernandez, H. Foerster, D. Li,
T. Meyer, R. Muller, L. Ploetz, et al. The Arabidopsis Information Resource (TAIR): gene struc-
ture and function annotation. Nucleic Acids Research, 36(suppl 1):D1009, 2008.

[207] Jack E Tabaska and Michael Q Zhang. Detection of polyadenylation signals in human DNA se-
quences. Gene, 231(1):77–86, 1999.

[208] TAIR. TAIR Breaking News, November 2010.
http://www.arabidopsis.org/doc/news/breaking news/140.

[209] F. Tang, C. Barbacioru, Y. Wang, E. Nordman, C. Lee, N. Xu, X. Wang, J. Bodeau, B.B. Tuch, A. Sid-
diqui, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods, 6(5):377–382,
2009.

[210] S. Tang and A. Riva. PASTA: splice junction identification from RNA-Sequencing data. BMC Bioin-
formatics, 14(16), April 2013.

[211] Zhaohua Tang, Norbert F Käufer, and Ren-Jang Lin. Interactions between two fission yeast
serine/arginine-rich proteins and their modulation by phosphorylation. Biochemical Journal, 368(Pt
2):527, 2002.

[212] J. Tazi, N. Bakkour, and S. Stamm. Alternative splicing and disease. Biochimica et Biophysica Acta
(BBA)-Molecular Basis of Disease, 1792(1):14–26, 2009.

[213] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), 58(1):267–288, 1996.

[214] Alexandru I Tomescu, Anna Kuosmanen, Romeo Rizzi, and Veli Mäkinen. A novel min-cost flow
method for estimating transcript expression with rna-seq. BMC Bioinformatics, 14(Suppl 5):S15,
2013.

[215] J.M. Toung, M. Morley, M. Li, and V.G. Cheung. RNA-sequence analysis of human B-cells. Genome
Research, 21(6):991–998, 2011.

[216] C. Trapnell, L. Pachter, and S.L. Salzberg. TopHat: discovering splice junctions with RNA-Seq.
Bioinformatics, 2009.

[217] C. Trapnell and S.L. Salzberg. How to map billions of short reads onto genomes. Nature Biotechnol-
ogy, 27(5):455–457, 2009.

[218] C. Trapnell, B.A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M.J. van Baren, S.L. Salzberg, B.J.
Wold, and L. Pachter. Transcript assembly and quantification by RNA-Seq reveals unannotated tran-
scripts and isoform switching during cell differentiation. Nature Biotechnology, 28(5):511–515, 2010.

[219] N.A. Twine, K. Janitz, M.R. Wilkins, and M. Janitz. Whole transcriptome sequencing reveals gene
expression and splicing differences in brain regions affected by Alzheimer’s disease. PLoS ONE,
6(1):e16266, 2011.

[220] George Tzanis, Ioannis Kavakiotis, and Ioannis Vlahavas. PolyA-iEP: A data mining method for the
effective prediction of polyadenylation sites. Expert Systems with Applications, 38(10):12398–12408,
2011.

95



[221] Edward C Uberbacher and Richard J Mural. Locating protein-coding regions in human DNA se-
quences by a multiple sensor-neural network approach. Proceedings of the National Academy of
Sciences, 88(24):11261–11265, 1991.

[222] UCSC. UCSC Genome Bioinformatics, April 2013. http://genome.ucsc.edu.

[223] Jernej Ule, Giovanni Stefani, Aldo Mele, Matteo Ruggiu, Xuning Wang, Bahar Taneri, Terry Gaaster-
land, Benjamin J Blencowe, and Robert B Darnell. An RNA map predicting Nova-dependent splicing
regulation. Nature, 444(7119):580–586, 2006.

[224] UniProt. Uniprot release 2013-03, March 2013. http://www.uniprot.org/news/2013/03/06/release.

[225] C.J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, 2 edition, March 1979.

[226] J.P. Venables. Aberrant and alternative splicing in cancer. Cancer Research, 64(21):7647–7654,
2004.

[227] B.B. Wang and V. Brendel. Genomewide comparative analysis of alternative splicing in plants. Pro-
ceedings of the National Academy of Sciences, 103(18):7175, 2006.

[228] E.T. Wang, R. Sandberg, S. Luo, I. Khrebtukova, L. Zhang, C. Mayr, S.F. Kingsmore, G.P.
Schroth, and C.B. Burge. Alternative isoform regulation in human tissue transcriptomes. Nature,
456(7221):470–476, 2008.

[229] Furu Wang, Qiaoqiao Fang, Zhen Ge, Ningle Yu, Sanxiao Xu, and Xiangyong Fan. Common BRCA1
and BRCA2 mutations in breast cancer families: a meta-analysis from systematic review. Molecular
Biology Reports, 39(3):2109–2118, 2012.

[230] K. Wang, D. Singh, Z. Zeng, S.J. Coleman, Y. Huang, G.L. Savich, X. He, P. Mieczkowski, S.A.
Grimm, C.M. Perou, et al. MapSplice: Accurate mapping of RNA-seq reads for splice junction
discovery. Nucleic Acids Research, 2010.

[231] Lei Wang, Lindsay Duke, Peter S Zhang, Ralph B Arlinghaus, W Fraser Symmans, Aysegul Sahin,
Richard Mendez, and Jia Le Dai. Alternative splicing disrupts a nuclear localization signal in
spleen tyrosine kinase that is required for invasion suppression in breast cancer. Cancer Research,
63(15):4724–4730, 2003.

[232] Z. Wang, M. Gerstein, and M. Snyder. RNA-Seq: a revolutionary tool for transcriptomics. Nature
Reviews Genetics, 10(1):57–63, 2009.

[233] Judson A Ward, Lalit Ponnala, and Courtney A Weber. Strategies for transcriptome analysis in non-
model plants. American Journal of Botany, 99(2):267–276, 2012.

[234] Maria Warnefors and Adam Eyre-Walker. The accumulation of gene regulation through time.
Genome Biology and Evolution, 3:667, 2011.

[235] Robert F. Weaver. Molecular Biology. McGraw Hill, Boston, MA, third edition, 1999.

[236] J. Wu, M. Akerman, S. Sun, W.R. McCombie, A.R. Krainer, and M.Q. Zhang. SpliceTrap: a method
to quantify alternative splicing under single cellular conditions. Bioinformatics, 2011.

[237] Jia Qian Wu, Lukas Habegger, Parinya Noisa, Anna Szekely, Caihong Qiu, Stephen Hutchison, Deba-
sish Raha, Michael Egholm, Haifan Lin, Sherman Weissman, et al. Dynamic transcriptomes during
neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequenc-
ing. Proceedings of the National Academy of Sciences, 107(11):5254–5259, 2010.

96



[238] T.D. Wu and C.K. Watanabe. GMAP: a genomic mapping and alignment program for mRNA and
EST sequences. Bioinformatics, 21(9):1859, 2005.

[239] Z. Xia, J. Wen, C Chang, and X Zhou. NSMAP: A Method for Spliced Isoforms Identification and
Quantification from RNA-Seq. BMC Bioinformatics, 12(162), May 2011.

[240] Rui Xiao, Peng Tang, Bo Yang, Jie Huang, Yu Zhou, Changwei Shao, Hairi Li, Hui Sun, Yi Zhang,
and Xiang-Dong Fu. Nuclear Matrix Factor hnRNP U/SAF-A Exerts a Global Control of Alternative
Splicing by Regulating U2 snRNP Maturation. Molecular Cell, 45(5):656–668, March 2012.

[241] Xudong Xie, Shuanhu Wu, Kin-Man Lam, and Hong Yan. PromoterExplorer: an effective promoter
identification method based on the AdaBoost algorithm. Bioinformatics, 22(22):2722–2728, 2006.

[242] Augix Guohua Xu, Liu He, Zhongshan Li, Ying Xu, Mingfeng Li, Xing Fu, Zheng Yan, Yuan Yuan,
Corinna Menzel, Na Li, et al. Intergenic and repeat transcription in human, chimpanzee and macaque
brains measured by RNA-Seq. PLoS Computational Biology, 6(7):e1000843, 2010.

[243] Guorong Xu, Claire Fewell, Christopher Taylor, Nan Deng, Dale Hedges, Xia Wang, Kun Zhang,
Michelle Lacey, Haitao Zhang, Qinyan Yin, et al. Transcriptome and targetome analysis in mir155
expressing cells using rna-seq. Rna, 16(8):1610–1622, 2010.

[244] Y. Yang and C.E. Walsh. Spliceosome-mediated RNA trans-splicing. Molecular Therapy,
12(6):1006–1012, 2005.

[245] Z. Yang, YU HongTshi, LU Heng, YAO Kai, C. HanThua, and Z. RongTjia. Interchromosomal trans-
splicing of DMRT1 gene on chicken chromosome Z. Zoological Research, 27(2):175–180, 2006.

[246] M. Yassour, T. Kaplan, H.B. Fraser, J.Z. Levin, J. Pfiffner, X. Adiconis, G. Schroth, S. Luo, I. Khreb-
tukova, A. Gnirke, et al. Ab initio construction of a eukaryotic transcriptome by massively parallel
mRNA sequencing. Proceedings of the National Academy of Sciences, 106(9):3264, 2009.

[247] Alan M Zahler, William S Lane, John A Stolk, and Mark B Roth. SR proteins: a conserved family of
pre-mRNA splicing factors. Genes & development, 6(5):837–847, 1992.

[248] S. Zenoni, A. Ferrarini, E. Giacomelli, L. Xumerle, M. Fasoli, G. Malerba, D. Bellin, M. Pezzotti,
and M. Delledonne. Characterization of transcriptional complexity during berry development in Vitis
vinifera using RNA-Seq. Plant Physiology, 152(4):1787, 2010.

[249] Lirong Zhang and Liaofu Luo. Splice site prediction with quadratic discriminant analysis using di-
versity measure. Nucleic Acids Research, 31(21):6214–6220, 2003.

[250] X.H.F. Zhang and L.A. Chasin. Comparison of multiple vertebrate genomes reveals the birth and
evolution of human exons. Proceedings of the National Academy of Sciences, 103(36):13427, 2006.

[251] Zhi Ming Zheng, Martijn Huynen, and Carl C Baker. A pyrimidine-rich exonic splicing suppressor
binds multiple rna splicing factors and inhibits spliceosome assembly. Proceedings of the National
Academy of Sciences, 95(24):14088–14093, 1998.

[252] H. Zhu, H.M. Tucker, K.E. Grear, J.F. Simpson, A.K. Manning, L.A. Cupples, and S. Estus. A
common polymorphism decreases low-density lipoprotein receptor exon 12 splicing efficiency and
associates with increased cholesterol. Human Molecular Genetics, 16(14):1765–1772, 2007.

97



Appendix A

Original SpliceGrapher Inference Rules

In our original SpliceGrapher implementation we used a set of inference rules designed to predict spe-

cific types of AS events from RNA-Seq evidence. Each of the data sources used by SpliceGrapher—genome

annotations, short-read data, and EST alignments—requires a distinct interpretation for splice graph con-

struction. For the following discussion of the procedures used to interpret each type of data we borrow

terminology from [73] and refer to exons that have explicit acceptor and donor splice sites as bounded and

those with an undefined acceptor or donor splice site as unbounded. When one graph element (an exon or an

intron) falls completely within the genomic coordinates of another graph element, we say that it is contained

within the other element.

A.1 Alternative Splicing Inference from RNA-Seq

Because of the relatively short length of RNA-Seq reads, they cannot be unambiguously interpreted as

splice-graphs and AS events (see Figure A.1). SpliceGrapher’s original approach was to use as much data

as possible to make confident predictions, and to annotate AS events as unresolved if the evidence did not

clearly support a specific isoform. This original version of SpliceGrapher applies inference rules in the order

presented in the following sections.

A.1.1 Intron Retention

Intron retention (IR) is arguably the most challenging form of AS to infer from RNA-Seq data: the best

evidence for novel IR events comes from ungapped alignments across annotated introns, but sequencing and

alignment artifacts such as unprocessed pre-mRNA or gaps in read coverage make it difficult to discriminate

between IR events and noise [179, 140]. SpliceGrapher infers IR events from RNA-Seq evidence in two

ways that exploit information from the gene models. When short-read coverage remains above a desired

threshold across an intron’s full length, it is evidence that the intron was retained in some transcripts (see

Figure 3.2). In this case the intron is excised in the constitutive form represented by the gene model. In an

alternative scenario shown in Figure A.2, the intron is retained in the known constitutive form. We detect

this form of IR when a known exon has a novel splice junction within it.

98



Gene Model for AT1G27920

SpliceGrapher AT1G27920 Prediction

10 2 2 2 3 7 6

3

Spliced Reads

9727000 9727500 9728000 9728500 9729000 9729500

100

101

102

R
e
a
d

 D
e
p

th

Read Coverage

Alt. 5'

Figure A.1: This figure demonstrates ambiguities that arise in RNA-Seq data that make isoform prediction
challenging. Because there is read coverage across several introns, SpliceGrapher is not able to determine
whether this is a result of a single intron retention event, or several independent events.

99



Gene Model for AT1G02380

SpliceGrapher Prediction for AT1G02380

4 5 6

Supported Junctions

477000 477500 478000 478500
0
2
4
6
8

10
12
14
16

R
e
a
d

 D
e
p

th

Read Coverage

Intron Retention

Figure A.2: A. thaliana gene AT1G02380 provides an example where the known splice form is the one
with the intron retained (as opposed to the example shown in Figure 3.2 where the novel splice form has
the intron as retained). This scenario of intron retention requires different evidence, namely the novel splice
junction, shown in green in the figure. The boundaries of the exon from the gene model were used to infer
the boundaries of the exons that flank the new intron.

100



When SpliceGrapher infers a novel IR event, it must identify unique exon boundaries for three exons:

the longer exon in which the intron is retained, and the two shorter exons that flank the intron when it is

excised. Usually the gene model provides good evidence for these boundaries, but in some cases it may not

be possible to resolve them unambiguously.

 C 

A   B 

acceptor donor

Figure A.3: The method SpliceGrapher uses to resolve an alternate acceptor site when a short-read exon
(C) extends beyond another exon (B). If the exon C is not directly flanked by splice junctions (known or
predicted from RNA-Seq data), SpliceGrapher will attempt to extend the exon to the nearest splice junc-
tions, upstream and downstream. If such an extension is not supported by the data, the exon is considered
unresolved.

When short-read coverage remains high across an intron’s full length, SpliceGrapher will create a short-

read exon that spans the intron. Its next task is to determine the exon’s correct boundaries. SpliceGrapher

first finds all exons in the graph that overlap the short-read exon. If one upstream exon overlaps its 5’ end

and one downstream exon overlaps its 3’ end, SpliceGrapher creates a new exon whose boundaries are the

acceptor site from the upstream exon and the donor site from the downstream exon. If more than one exon

overlaps either end of the short-read exon, it is still possible to infer the new exon’s boundaries provided all

overlapping upstream exons share the same acceptor site and overlapping downstream exons share the same

donor site (Figure A.3). If the boundary at either end is ambiguous, SpliceGrapher creates an unresolved IR

event. When a junction is used to infer an IR event through the scenario of a splice junction within an exon,

SpliceGrapher must identify the boundaries for two new exons, which is performed in a manner analogous

to the single exon case.

In some cases read coverage may remain high across two or more introns in succession, making it

impossible to determine which of several possible splice forms is correct (see Figure A.1). In these cases,

SpliceGrapher annotates the corresponding short-read exon as unresolved.

101



A.1.2 Alternative 3’ and 5’ Events

When an intron is excised at more than one splice site, changing the boundaries of one of its flanking

exons, we have evidence of an alternate 3’ or 5’ event. SpliceGrapher uses two forms of evidence to infer

alternative 3’/5’ events. When a short-read exon overlaps an existing exon but extends beyond its 3’ or 5’

end, it provides evidence for an alternate donor or acceptor site. In addition, when a novel splice junction

appears between two exons it provides evidence for a novel intron (Figure A.3). SpliceGrapher requires

both forms of evidence to infer a novel alternative splice site. Below we describe the procedure for inferring

an alternate acceptor (3’ site). The procedure for an alternate donor (5’ site) is analogous.

When a short-read exon overlaps an existing exon and extends into its upstream intron, it is evidence

that the exon boundaries changed in some transcripts. To identify an acceptor site for the new exon, Splice-

Grapher looks for junctions that have acceptor sites within the same intron, upstream of the short-read exon

(Figure A.3). SpliceGrapher then uses the acceptor site nearest the short-read exon as its acceptor site. If it

finds no acceptor sites within the intron, SpliceGrapher annotates the short-read exon as unresolved.

If SpliceGrapher can resolve a new exon’s acceptor site, it must resolve its donor site as well. The

procedure is the same as that for identifying retained intron boundaries in the previous section. If one

downstream exon overlaps the new exon’s 3’ end, SpliceGrapher uses the downstream exon’s donor site as

the new exon’s donor site. If more than one downstream exon overlaps the new exon’s 3’ end, SpliceGrapher

can still resolve its donor site provided all overlapping exons share the same donor site (see Figure A.3). If

the overlapping exons have different donor sites, SpliceGrapher cannot resolve the new exon’s donor, and it

annotates the exon as unresolved.

A.1.3 Exon Skipping

An exon skipping event occurs when an exon is excised from some transcripts but included in others.

SpliceGrapher infers skipped exons in two different ways. In the first scenario the exon is included in the

known constitutive form represented in the gene model. If a novel splice junction spans the existing exon,

it is evidence that the exon was skipped in some transcripts (see top panel of Figure A.4). If the novel

junction’s acceptor and donor sites match those of established exons, SpliceGrapher adds the new intron to

the graph and annotates the skipped exon.

An alternate scenario is when the exon is skipped in the constitutive form (bottom panel of Figure A.4).

In this case, if a short-read exon falls within an intron and is flanked by two novel junctions, it is evidence

102



F

D   E 

A   B C 

Figure A.4: Two scenarios in which SpliceGrapher will predict a skipped exon. In the top panel, a novel
splice junction between exons A and C provides evidence that exon B is skipped in some transcripts. In
the lower panel a novel exon, F, is contained within an intron in the graph. The new exon is flanked by
novel splice junctions within the same intron, so SpliceGrapher uses the acceptor site from the upstream
junction to resolve the exon’s 5’ boundary and the donor site from the downstream junction to resolve its 3’
boundary. If SpliceGrapher is unable to resolve either boundary, the exon is unresolved.

for a novel exon that is skipped in some transcripts. These clues may not provide enough evidence to

resolve the event, so SpliceGrapher tries to associate the upstream junction’s donor site and the downstream

junction’s acceptor site with exons in the graph. If this first step is successful, SpliceGrapher uses the

upstream junction’s acceptor site as the new exon’s acceptor site and the downstream junction’s donor site

as the new exon’s donor site. If it is unable to resolve the junctions, SpliceGrapher annotates the short-read

exon as unresolved.

103



Appendix B

Counting AS Events

An important consequence of predicting splice graphs is the ability to annotate novel AS events and to

generate statistics from them. Genome-wide AS surveys can provide insights into how organisms develop

and how they respond to different conditions [99, 227, 11, 55, 81, 147]. To generate statistics we count the

AS events within each splice graph and sum over the graphs predicted for a data set.

hgf

e

d

a

b

c

II III

v

z

x

u

w

I

Figure B.1: Examples showing how SpliceGrapher counts different AS events. (I) Exon x contains the
introns from u to v and w to v. This is counted as a single IR event (plus an alternative 5’ event) because
only one exon (x) retains the introns. (II) Exons a, b and c overlap one another and have three distinct donor
sites. Together these are counted as two alternative 5’ events. (III) The intron between exons e and h skips
exon g, which is counted as an ES event. Exon f is an alternative transcription start site that we do not count
as AS.

B.1 Intron retention

Intron retention occurs when the splicing machinery refrains from excising an intron, resulting in a

single long exon comprised of the intron and its flanking exons. Thus whenever an exon contains one or

more introns in a graph, we count it as an IR event. If two or more exons contain the same introns, they are

counted as separate IR events. Example I in Figure B.1 is an example of a graph that has a single IR event

containing two distinct introns.

104



B.2 Alternative 3’ and 5’ events

An alternative 5’ event occurs when an intron is excised at two or more sites at its 5’ end. These splice

sites correspond to donor sites for different exons in a graph. Thus to count alternative 5’ events we search

a graph for overlapping exons that use different donor sites. We consider one of these sites as a baseline

representing the prevalent form, and the remaining sites as alternatives. The total count is then simply

the number of distinct donor sites in the set minus 1. Example II in Figure B.1 shows a graph with two

alternative 5’ events. One exon may be selected arbitrarily as a baseline while the other exons with distinct

donor sites are counted as alternative 5’ events. We use an analogous approach to count alternative 3’ events

using exon acceptor sites.

B.3 Exon skipping

An ES event occurs when a cell’s splicing machinery excises an exon from a transcript along with its

flanking introns. Our evidence for an ES event in a splice graph is an intron that contains one or more exons

(Figure B.1, example III). If multiple distinct introns span the same exons, we count each one as a separate

ES event.

When counting ES events we make a distinction between alternatively-spliced exons and alternate initial

or terminal exons. Initial and terminal exons are determined by a cell’s transcription process rather than its

splicing process, so we do not count them as ES events. Example III in Figure B.1 illustrates this distinction.

The grey exons e and f in this graph represent alternative transcription start sites; either one will be selected

during transcription rather than during splicing. Exon g is the only one removed during the splicing process,

so it is the only exon counted as an ES event.

105



Appendix C

File formats

SpliceGrapher uses different file formats to import data of different types. Below we describe in some

detail how these files are imported and converted into splice graphs or evidence for predicting splice graphs.

C.1 Gene Models

Gene models typically are stored as General Feature Format (GFF3) files or as Gene Transfer Format

(GTF) files. Both formats use tab-delimited files with eight or more columns. While these are both doc-

umented standards, the standards are not always followed. For example, the second column in the GTF

format is allocated for information about the source of the annotations, such as the name of the software

package used. However, many of the ENSEMBL GTF files use this column to describe the kind of gene

being annotated (e.g., “protein coding”). Thus SpliceGrapher’s interpretation of these files may incorporate

some knowledge of where they originated. In this discussion we refer to exons that have explicit acceptor

and donor splice sites as bounded and those with an undefined acceptor or donor splice site as unbounded

(see [73, 179]).

C.1.1 GFF3 Format

The GFF3 format [49] is a nine-column format, where each line in the file constitutes a record that

describes a genomic feature such as a chromosome, gene or exon. Each record has a type (third column)

that denotes its genomic feature such as chromosome, gene, exon or CDS (protein coding sequence), as

well as positions (fourth and fifth columns) that specify its genomic location (Figure C.1). Usually the

information in a file is organized in a hierarchical order: a chromosome record precedes any gene records

associated with the chromosome, a gene record precedes any exons records associated with the gene, and so

on. However, this may not not always be the case, so SpliceGrapher loads the information without regard for

order and attempts to validate gene models once they are loaded. Another issue is the fact that not all GFF3

files use the same record types. For example, untranslated regions (UTRs) may appear as UTR records in

one file and as five prime UTR or three prime UTR in another.

When SpliceGrapher accepts gene model annotations in GFF3 format it constructs graphs using the

106



Chr1 TAIR10 chromosome 1 30427671 . . . ID=Chr1;Name=Chr1
Chr1 TAIR10 gene 3631 5899 . + . ID=AT1G01010;Note=protein coding gene
Chr1 TAIR10 mRNA 3631 5899 . + . ID=AT1G01010.1;Parent=AT1G01010
Chr1 TAIR10 protein 3760 5630 . + . ID=AT1G01010.1-Protein;Name=AT1G01010.1
Chr1 TAIR10 exon 3631 3913 . + . Parent=AT1G01010.1
Chr1 TAIR10 five prime UTR 3631 3759 . + . Parent=AT1G01010.1
Chr1 TAIR10 CDS 3760 3913 . + 0 Parent=AT1G01010.1,AT1G01010.1-Protein
Chr1 TAIR10 exon 3996 4276 . + . Parent=AT1G01010.1
Chr1 TAIR10 CDS 3996 4276 . + 2 Parent=AT1G01010.1,AT1G01010.1-Protein
Chr1 TAIR10 exon 4486 4605 . + . Parent=AT1G01010.1
Chr1 TAIR10 CDS 4486 4605 . + 0 Parent=AT1G01010.1,AT1G01010.1-Protein
Chr1 TAIR10 exon 4706 5095 . + . Parent=AT1G01010.1
Chr1 TAIR10 CDS 4706 5095 . + 0 Parent=AT1G01010.1,AT1G01010.1-Protein
Chr1 TAIR10 exon 5174 5326 . + . Parent=AT1G01010.1
Chr1 TAIR10 CDS 5174 5326 . + 0 Parent=AT1G01010.1,AT1G01010.1-Protein
Chr1 TAIR10 exon 5439 5899 . + . Parent=AT1G01010.1
Chr1 TAIR10 CDS 5439 5630 . + 0 Parent=AT1G01010.1,AT1G01010.1-Protein
Chr1 TAIR10 three prime UTR 5631 5899 . + . Parent=AT1G01010.1

Figure C.1: Example of the GFF3 file format for a single gene from the A. thaliana TAIR10 annotations.
Columns from left to right are: chromosome, annotation source, record type, start location, end location,
alignment score, strand, reading frame and attributes. A period is a placeholder for missing values. At-
tributes may be specific to the record type, the application that generated the annotations, or the species.
Some records have been truncated to fit the page.

sequence coordinates found in UTR, CDS and exon records. It interprets exon records as bounded exons

and incorporates them directly into a splice graph. It infers an intron whenever the corresponding exons are

adjacent in a transcript. When an exon appears in multiple transcripts, a single exon node is created along

with edges that link it to the exons that follow or precede it in the corresponding transcripts.

In some cases gene models may yield a 0-length intron—for example, when the models describe coding

sequence (CDS) and untranslated regions (UTR) in mature mRNA. In these cases an exon that contains a

start or end codon will be annotated in the models as two exons—one associated with the UTR and one with

the CDS—with a 0-length gap between them. SpliceGrapher merges these adjacent exons into a single exon

and marks the starting location of the codon.

C.1.2 GTF Format

The GTF format uses the same columns as GFF3, but the attributes column use a different syntax. In

addition, genetic information is stored not as a hierarchy, but as a series of exons. Hierarchical information

such as the transcript or gene associated with an exon is included in the exon’s attributes. If an exon takes

part in more than one transcript, there will be multiple records for the exon. When SpliceGrapher loads a

GTF file, it stores exon or CDS records on the fly, creating structures for chromosomes, genes and transcripts

as it encounters them.

107



1 protein coding exon 3631 3913 . + . gene id ”AT1G01010”; transcript id ”AT1G01010.1”
1 protein coding CDS 3760 3913 . + 0 gene id ”AT1G01010”; transcript id ”AT1G01010.1”
1 protein coding start codon 3760 3762 . + 0 gene id ”AT1G01010”; transcript id ”AT1G01010.1”
1 protein coding exon 3996 4276 . + . gene id ”AT1G01010”; transcript id ”AT1G01010.1”
1 protein coding CDS 3996 4276 . + 2 gene id ”AT1G01010”; transcript id ”AT1G01010.1”
1 protein coding exon 4486 4605 . + . gene id ”AT1G01010”; transcript id ”AT1G01010.1”
1 protein coding CDS 4486 4605 . + 0 gene id ”AT1G01010”; transcript id ”AT1G01010.1”
1 protein coding exon 4706 5095 . + . gene id ”AT1G01010”; transcript id ”AT1G01010.1”
1 protein coding CDS 4706 5095 . + 0 gene id ”AT1G01010”; transcript id ”AT1G01010.1”
1 protein coding exon 5174 5326 . + . gene id ”AT1G01010”; transcript id ”AT1G01010.1”
1 protein coding CDS 5174 5326 . + 0 gene id ”AT1G01010”; transcript id ”AT1G01010.1”
1 protein coding exon 5439 5899 . + . gene id ”AT1G01010”; transcript id ”AT1G01010.1”
1 protein coding CDS 5439 5627 . + 0 gene id ”AT1G01010”; transcript id ”AT1G01010.1”
1 protein coding stop codon 5628 5630 . + 0 gene id ”AT1G01010”; transcript id ”AT1G01010.1”

Figure C.2: Example of the GTF file format for a gene from the A. thaliana annotations. The columns are
nearly identical to the GFF format, but the second column may have gene type information instead of the
annotation source. Note too the difference in the way attributes are listed in the last column. Records have
been truncated to fit the page.

C.2 EST Alignments

Alignment tools such as BLAT [92] and GMAP [238] can provide alignment information in the Pattern

Space Layout (PSL) format. The PSL format is a 21-column tab-delimited format that contains a wealth

of information about a gapped EST alignment. Each line in the file is a record that includes information

such as the start and end points for each aligned segment (called blocks), the number of matching and

mismatching bases, and the number of insertions and deletions. A full description of the format is provided

on the ENSEMBL website [52].

When SpliceGrapher loads a PSL file, it converts each record into a sequence of exons, but exons at the

3’ or 5’ end of an EST are considered unbounded, as the ESTs may originate from anywhere in a transcript.

Unbounded exons are merged with other exons in the graph. An exon that is unbounded at its 3’ end is

merged with another exon if they share the same acceptor site and both exons are unbounded at the 3’

end. Alternately, if one of the two exons is bounded, SpliceGrapher may merge them if the bounded exon

contains the unbounded exon. Analogous rules apply to exons unbounded at the 5’ end. SpliceGrapher

infers an intron between exons whenever they are adjacent in an EST.

C.3 RNA-Seq Alignments

Most alignment tools use the Sequence Alignment/Map (SAM) format (Figure C.5) or its cousin the

Binary Alignment/Map (BAM) format to record alignment information. These formats have detailed

108



ESTs for AT3G04910

1355000 1356000 1357000 1358000

Resulting AT3G04910 splice graph

Figure C.3: Example showing how ESTs are converted to a splice graph. Exons at either end of an EST
are considered unbounded at their extreme ends (the 5’ exon is unbounded at its 5’ end and the 3’ exon is
unbounded at its 3’ end). These are merged with exons from other ESTs when their bounded ends match.
The resulting splice graph is often far less complex than the collection of ESTs.

58 0 0 0 0 0 0 0 + E5.1 59 1 59 3 230 66 24 1 58, 1, 66,
65 1 0 0 0 0 0 0 + E3.1 84 0 66 3 230 70 36 1 66, 0, 70,
90 0 0 0 0 0 0 0 + E9.1 90 0 90 3 230 28 18 1 90, 0, 28,
249 4 0 0 0 0 0 0 + A8.1 253 0 253 3 230 26 79 1 253, 0, 26,
107 0 0 0 0 0 1 82 + E5.1 107 0 107 3 230 62 51 2 29,78, 0,29, 62,73,
94 0 0 0 0 0 1 1 + E9.1 94 0 94 3 230 98 93 2 25,69, 0,25, 98,24,

Figure C.4: Example of the PSL file format with several EST alignments.

109



specifications, but these may not be followed in the same way by all alignment tools. For example, in the

tuxedo suite (Bowtie/Tophat/Cufflinks) Tophat [216] includes information in its alignments that Cufflinks

requires to make its predictions. Thus Cufflinks may not make good predictions with alignments from

another tool.

C.3.1 SAM Format

FC:296 73 chr1 13780 255 20M * 0 0 AGCCTGGGTGAGGAAGCTGT VVVVVVVVVVVVVVVRQQQQ NM:i:2 NH:i:1
FC:14 137 chr1 13024 255 20M * 0 0 CGGCCCGGATGGGACAGGAC VVVVVVVVVVVVVVVQQQQQ NM:i:1 NH:i:1
FC:34 137 chr1 13025 255 20M * 0 0 GACCCGGATGGGACAGGAGT VVVVVVVVVVVVVVVQQQQQ NM:i:1 NH:i:1
FC:8 137 chr1 13029 255 20M * 0 0 CGGAGATGCCAGGAGTTGGG QQQQQVVVVIVVVVVVVVVV NM:i:1 NH:i:1

Figure C.5: Example of the SAM file format for alignments in H. sapiens. Records have been truncated to
fit the page. Columns are: read id, set of bit-encoded flags, chromosome, alignment start position, alignment
score, CIGAR string, mate pair identifier, mate pair alignment position, inferred insert size, read sequence,
read quality and optional tags.

A record in the standard SAM format uses a minimum of 11 tab-delimited columns containing the

alignment information for a single read (Figure C.5). From left to right, these are the unique read identifier;

a bit-encoded set of flags describing alignment characteristics such as strand; the name of the location where

it aligned (usually chromosome); the alignment start position; alignment score; a Concise Idiosyncratic

Gapped Alignment Report (CIGAR) string (described below); unique identifier for the read’s mate (paired-

end reads); the mate’s alignment position; the insert size inferred for two mates; the actual read sequence;

the base-by-base read quality, and optional coded tags. When SpliceGrapher loads SAM data, it tracks the

location and size of each read in the file. For ungapped reads it is straightforward, but spliced reads include

elaborate CIGAR strings that describe the matches and gaps in the alignment.

C.3.2 CIGAR Strings

CIGAR string Interpretation
76M 76-nt match
37M2600N38M 37-nt match / 2,600-nt gap / 38-nt match
11M780N58M1911N9M 11-nt match / 780-nt gap / 58-nt match / 1,911-nt gap / 9-nt match

Figure C.6: Some examples of typical CIGAR strings taken from a set of SAM alignments for H. sapi-
ens. The first example shows a typical ungapped alignment; the second example shows a typical spliced
alignment, and the last example is a read that crosses two junctions.

The CIGAR string is the primary source of gapped alignment information for a read. The format uses

letter codes to convey matches (M), gaps (N), insertions (I), deletions (D) and other information about

a spliced alignment. A string is simply a concatenation of sizes and codes; for example, “35M” means a

110



35-character match between a read and a reference sequence. Some typical examples are given in Figure C.6.

The first example shows a typical ungapped alignment where 76 characters from the read matched the

reference sequence. The second example shows a typical spliced alignment with a single intron gap and

anchors of 37nt and 38nt on either side. The last example is from a read that crosses two junctions: a 780-nt

intron followed by a 1,911-nt intron.

C.4 Splice Graphs

4 SG graph 7252 7384 . - . ID=G180;Name=G180;Note=protein coding gene
4 SG parent 7497 7584 . - . ID=G180 7;AltForm=IR;Isoforms=G180.2;disposition=known
4 SG parent 7476 7584 . - . ID=G180 8;Isoforms=G180.1;disposition=known
4 SG parent 7468 7487 . - . ID=pred 123;putative children=G180 4;disposition=unresolved
4 SG parent 7468 7534 . - . ID=pred 121;putative children=G180 4;disposition=unresolved
4 SG child 7290 7307 . - . ID=G180 2;Parent=G180 3;Isoforms=G180.1,G180.2;disposition=known
4 SG child 7369 7377 . - . ID=G180 4;Parent=G180 5;AltForm=A3;Isoforms=G180.1,G180.2;disposition=known
4 SG child 7467 7487 . - . ID=G180 6;Parent=G180 8;Isoforms=G180.1;disposition=known
4 SG child 7252 7288 . - . ID=G180 1;Parent=G180 2;Isoforms=G180.1,G180.2;disposition=known
4 SG child 7369 7370 . - . ID=pred 118;Parent=G180 5;AltForm=A3;disposition=predicted
4 SG child 7428 7447 . - . ID=G180 5;Parent=G180 7,G180 6;Isoforms=G180.1,G180.2;disposition=known
4 SG child 7348 7353 . - . ID=G180 3;Parent=G180 4,pred 118;Isoforms=G180.1,G180.2;disposition=known

Figure C.7: Example of SpliceGrapherXT GFF output format. The columns are the same as for GFF3 gene
models, but the hierarchical structure is more compact. After the requisite graph record, every node (exon)
is listed exactly once along with annotations with the identifiers for the isoforms in which it participates
along with the AS events associated with the node. Child nodes include a Parent annotation that lists the
parent nodes connected to the child.

When SpliceGrapherXT predicts a splice graph, it stores the graph in a file that uses the GFF format

(Figure C.7). These files are similar to the gene model files described in section C.1.1, but with the fol-

lowing modifications. Every file begins with a graph record, similar to a gene, that records the graph’s

chromosome, start and ane locations, strand and name. Additional information may be copied from the gene

models. The remaining records describe parent and child nodes in the graph. In addition to the usual

chromosome, strand and position information, transcript and AS attributes are included in the attribute list

in the last column. These include the isoforms in which a node participates and the AS events associated

with it. Parent-child relationships are annotated for child nodes using the Parent attribute in the last column.

Finally, every node has a disposition that tells whether the associated exon originated from the gene

models (known), was predicted by SpliceGrapherXT or is still unresolved.

111



Appendix D

Splice Site Classifier Performance
for 107 Species

We downloaded the gene models and reference genome sequences for 107 species from the ENSEMBL

website and used SpliceGrapherXT to create classifiers for GT donor sites and AG acceptor sites for each

species (Table D.1). These classifiers are all highly accurate, with ROC scores ranging from .90 to .99. In

generalGT donor sites are easier to classify as indicated by an average ROC score of .97 and lower variance

across species (Figure D.1, right). For AG acceptor sites the average score is .95 and the distribution across

the species varies considerably more.

0.90 0.92 0.94 0.96 0.98 1.00
Classifier ROC Score

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
ro

p
o
rt

io
n
 o

f 
S
p
e
ci

e
s

Distribution of GT Classifier Scores for 109 Species

0.90 0.92 0.94 0.96 0.98 1.00
Classifier ROC Score

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

P
ro

p
o
rt

io
n
 o

f 
S
p
e
ci

e
s

Distribution of AG Classifier Scores for 109 Species

Figure D.1: Distributions of classifier scores across 107 species. Both GT and AG classifiers average
ROC scores better than 95%, demonstrating that SpliceGrapher’s splice-site classifiers can be used to filter
alignments in nearly any species that has enough gene model annotations to generate a training set.

112



Table D.1: SpliceGrapher classifier performance for 107 different species. Classifiers were built using
SpliceGrapherXT pipeline and ROC scores computed via 5-fold cross-validation.

Species GT AG Species GT AG Species GT AG
A. pisum 0.96 0.94 D. mojavensis 0.97 0.96 O. princeps 0.98 0.96
A. aegypti 0.96 0.95 D. persimilis 0.96 0.96 O. anatinus 0.96 0.94
A. queenslandica 0.99 0.99 D. pseudoobs. 0.98 0.96 O. cuniculus 0.97 0.96
A. carolinensis 0.98 0.96 D. sechellia 0.97 0.96 O. sativa 0.95 0.94
A. gambiae 0.96 0.95 D. simulans 0.97 0.96 O. latipes 0.96 0.95
A. mellifera 0.98 0.96 D. virilis 0.98 0.97 O. garnettii 0.97 0.96
A. thaliana 0.97 0.95 D. willistoni 0.97 0.96 P. troglodytes 0.98 0.96
A. gossypii 0.99 0.96 D. yakuba 0.98 0.97 P. marinus 0.95 0.93
A. clavatus 0.98 0.93 E. telfairi 0.98 0.96 P. patens 0.98 0.95
A. flavus 0.96 0.92 E. histolytica 0.99 0.96 P. berghei 0.94 0.99
A. fumigatus 0.97 0.90 E. caballus 0.95 0.95 P. chabaudi 0.96 0.98
A. nidulans 0.96 0.91 E. europaeus 0.98 0.96 P. falciparum 0.96 0.98
A. terreus 0.97 0.93 F. catus 0.98 0.96 P. pacificus 0.94 0.98
B. mori 0.98 0.98 F. oxysporum 0.96 0.92 P. capensis 0.98 0.96
B. taurus 0.98 0.96 G. morhua 0.98 0.96 P. vampyrus 0.98 0.97
B. fuckeliana 0.98 0.95 G. gallus 0.97 0.95 P. ultimum 0.95 0.95
B. distachyon 0.98 0.96 G. aculeatus 0.96 0.95 S. cerevisiae 0.99 0.92
C. brenneri 0.97 0.98 G. moniliformis 0.97 0.93 S. harrisii 0.97 0.95
C. briggsae 0.95 0.97 G. zeae 0.98 0.94 S. mansoni 0.96 0.94
C. elegans 0.97 0.98 G. gorilla 0.97 0.95 S. pombe 0.99 0.95
C. remanei 0.97 0.98 H. melpomene 0.96 0.96 S. sclerotiorum 0.95 0.90
C. familiaris 0.98 0.95 H. sapiens 0.98 0.96 S. araneus 0.98 0.96
C. porcellus 0.97 0.96 I. scapularis 0.94 0.93 S. bicolor 0.97 0.96
C. hoffmanni 0.98 0.96 L. chalumnae 0.97 0.94 S. scrofa 0.97 0.96
C. intestinalis 0.98 0.96 L. africana 0.96 0.95 T. rubripes 0.96 0.92
C. quinquefas. 0.96 0.97 M. mulatta 0.95 0.93 T. syrichta 0.99 0.97
D. plexippus 0.97 0.96 M. eugenii 0.97 0.96 T. nigroviridis 0.96 0.95
D. rerio 0.98 0.96 M. oryzae 0.97 0.93 T. gondii 0.98 0.98
D. pulex 0.98 0.95 M. gallopavo 0.97 0.94 T. castaneum 0.96 0.96
D. novemcinctus 0.97 0.96 M. murinus 0.97 0.96 T. adhaerens 0.96 0.93
D. discoideum 0.99 0.99 M. musculus 0.98 0.96 T. belangeri 0.97 0.96
D. ordii 0.98 0.97 M. lucifugus 0.97 0.97 T. truncatus 0.98 0.97
D. ananassae 0.98 0.96 N. vectensis 0.97 0.96 V. pacos 0.98 0.96
D. erecta 0.98 0.97 N. fischeri 0.98 0.93 X. tropicalis 0.96 0.94
D. grimshawi 0.98 0.96 N. crassa 0.96 0.94 Z. mays 0.96 0.94
D. melanogaster 0.98 0.96 N. leucogenys 0.96 0.94

113



Appendix E

The SpliceGrapherXT Software

E.1 Overview

SpliceGrapher predicts alternative splicing patterns and produces splice graphs that capture in a single

structure the ways a gene’s exons may be assembled. It enhances gene model annotations using evidence

from next-generation sequencing and EST alignments. With SpliceGrapherXT (version 0.2.2), we introduce

the ability to convert splice graph predictions into transcript predictions using IsoLasso.

E.1.1 Downloading and Installation

• You may download SpliceGrapher from http://SpliceGrapher.sourceforge.net

• Requires PyML version 0.7.9 or higher for classifying splice sites.

• Requires matplotlib version 1.1.0 or higher for the extensive graphics tools.

• The optional IsoLasso pipeline requires IsoLasso version 2.6.1 or higher, along with the ‘gtfTo-

GenePred’ and ‘genePredToBed’ programs from UCSC

(http://hgdownload.cse.ucsc.edu/admin/exe).

Currently Unix/Linux and Mac OS-X are supported. A setup.py script is provided so installation is

standard for python:

python setup.py build

python setup.py install

To check that SpliceGrapher is installed correctly, run the python interpreter and type

>> import SpliceGrapher

>> SpliceGrapher.__version__

’0.2.2’

114



To test your installation more thoroughly, use the test script in the SpliceGrapher examples sub-

directory:

cd examples

run_tests.sh

E.1.2 Brief Tutorial

Before getting into SpliceGrapher’s nuts and bolts, we begin with a few examples to demonstrate its key

features. In the directory where you installed SpliceGrapher you will find a sub-directory called tutorial

that contains all the data you will need for the following examples. Be sure that SpliceGrapher’s scripts are

in your path.

Note that all of the examples use the SpliceGrapher.cfg file in the tutorial directory. This contains

the paths to the default reference genome (a thaliana.fa.gz) and the default gene models (a thaliana.gff3.gz).

E.1.2.1 Example 1: Create Classifiers

In this example you will create accurate models for canonical (GT-AG) and semi-canonical (GC-AG)

splice sites for the plant Arabidopsis thaliana. To reduce classifier training time you may also want to set

the number of examples to something relatively small such as -n 400 (the default is 2000). Create the

classifiers by running the build classifiers.py script as follows:

build_classifiers.py -d gt,gc -n 400

The program shows you the SpliceGrapher scripts it uses for each step in the process. Below is output

from a typical run:

Creating SVM models for splice sites
09:45:10 generate_splice_site_data.py -d gt -n 200 -o gt_don_training.fa
-r splice_site_report.txt
09:45:20 generate_splice_site_data.py -d gt -n 200 -o gt_don_neg.fa -N
09:45:29 cat gt_don_neg.fa >> gt_don_training.fa
09:45:29 rm gt_don_neg.fa
09:45:51 generate_splice_site_data.py -d gc -n 200 -o gc_don_training.fa
09:46:01 generate_splice_site_data.py -d gc -n 200 -o gc_don_neg.fa -N
09:46:10 cat gc_don_neg.fa >> gc_don_training.fa
09:46:10 rm gc_don_neg.fa
09:46:31 generate_splice_site_data.py -a -d ag -n 200 -o ag_acc_training.fa
09:46:40 generate_splice_site_data.py -a -d ag -n 200 -o ag_acc_neg.fa -N
09:46:49 cat ag_acc_neg.fa >> ag_acc_training.fa
09:46:49 rm ag_acc_neg.fa
09:47:12 zip classifiers.zip ??_???.cfg ??_???.svm ??_???.fa
09:47:12 rm ??_tmp_e*_i*.fa

Finished.

115



When the script finishes, you may check classifier performance by looking for the ROC scores in their

corresponding .cfg files:

grep roc *.cfg

Scores typically will be above 0.90:

ag_acc.cfg:roc_score = 0.935625

gc_don.cfg:roc_score = 0.94925

gt_don.cfg:roc_score = 0.969875

The script packages these classifiers into the classifiers.zip file in the local directory.

E.1.2.2 Example 2: Filter Alignments

This example you may use the classifiers you created in Example 1, or you may simply copy the

Arabidopsis thaliana.zip file from classifiers sub-directory of your SpliceGrapher distri-

bution. This example uses the following files:

• Alignment output (SAM format): alignments.sam.gz

• A. thaliana classifiers (ZIP format): classifiers.zip (from Example 1 above)

or Arabidopsis thaliana.zip

To filter the alignment output, run the sam filter.py script:

sam_filter.py alignments.sam.gz classifiers.zip -o filtered.sam

E.1.2.3 Example 3: Predict a Splice Graph

This example demonstrates SpliceGrapher’s prediction modules. In this case we will use it to predict a

graph for the gene AT2G04700 that we selected as an illustrative example. This example uses the following

files:

• Alignment output (SAM format): filtered.sam

• Plotter configuration file: AT2G04700 plot.cfg

To predict a graph for this gene, run the predict splicegraph.py script:

116



predict_splicegraph.py AT2G04700 -d filtered.sam -o AT2G04700.gff

There are two ways to view the resulting graph: view splicegraphs.py and plotter.py. The first script

allows you to view a splice graph on your screen or, if you prefer, save it to a file. plotter.py is designed for

file output and provides a more extensive set of options. We have provided an example plotter configuration

file to get you started:

view_splicegraphs.py AT2G04700.gff -L

plotter.py AT2G04700_plot.cfg

E.2 The SpliceGrapher Environment

Throughout the this guide we describe a variety of tasks that require different input files. By far the most

common files are a reference sequence (a FASTA file) and a gene model (either GFF3 or GTF format).

E.2.1 Environment Variables

You may specify default paths for these files by setting the environment variables SG FASTA REF and

SG GENE MODEL. For example, in C shell this might look like:

setenv SG_FASTA_REF "/home/o_sativa/sequences/o_sativa.fasta"

setenv SG_GENE_MODEL "/home/o_sativa/annotations/o_sativa.gff3"

SpliceGrapher will use these default paths when they are not provided to a script on the command line

or in a configuration file.

E.2.2 SpliceGrapher Configuration File

SpliceGrapher programs and modules also use the configuration file SpliceGrapher.cfg to locate

the genomic reference and gene model files. Below is an example of a configuration file.

[SpliceGrapher]

GENE_MODEL = /home/o_sativa/annotations/o_sativa.gff3

FASTA_REFERENCE = /home/o_sativa/sequences/o_sativa.fasta

SpliceGrapher scripts look for SpliceGrapher.cfg in your PATH. When working with data for dif-

ferent organisms, it is often convenient to place a SpliceGrapher.cfg file for each organism in its own

117



directory. Then one can change SpliceGrapher‘s defaults simply by changing directories. SpliceGrapher

scripts will first use any paths specified on the command line, followed by those found in a configuration

file and then those given as environment variables.

E.3 Splice Site Classifiers

For RNA-Seq data we are concerned with two kinds of alignments: ungapped alignments and splice

junction alignments. An ungapped alignment is one in which a read aligns completely within an exonic

region in the reference sequence. Most short-read alignment algorithms can perform exonic alignments. A

splice junction alignment is one in which part of a read aligns to the 3’ end of one exon and the remainder

aligns to the 5’ end of another exon, usually within the same gene. However, many spliced alignment

programs use only rudimentary heuristics to identify correct splice sites. SpliceGrapher’s approach is to

filter these junctions using highly accurate splice-site classifiers.

Starting with version 0.2.0, SpliceGrapher comes with over 100 pre-built classifiers for a variety of

different species. These are provided as .zip files located in the classifiers directory. You may also

build your own classifiers using the build classifiers.py script.

E.3.1 Building Classifiers

To simplify the process of constructing classifiers and to provide an example script you may use to create

your own pipeline, SpliceGrapher includes the script build classifiers.py. Assuming you have established

paths for a FASTA reference sequence a gene model file SpliceGrapher.cfg file, you can generate a

complete set of classifiers for filtering spliced alignments with one command:

build_classifiers.py

The script performs the following steps:

1. Generates training data for each splice site dimer.

2. Selects optimal parameters for each classifier.

3. Stores the data for each classifier in a .zip file

The script accepts the following options:

118



Option Value Description
–commands Show but don’t run commands
-a dimer list Acceptor site dimers to predict
-d dimer list Donor site dimers to predict
-f file path Fasta reference file
-m file path GFF3 gene model annotation file
-n examples Total number of examples to use for training
-l file path Optional output log file

By default the script builds classifiers only for canonical GT donor sites and AG acceptor sites. To build

a classifier for semi-canonical GC donor sites as well, simply provide a list to the script:

build_classifiers.py -d gt,gc

In each step of this pipeline, the main script calls other SpliceGrapher scripts to generate data and train

classifiers. By using the --commands option, you can see the commands that would be generated without

actually running them. This is instructive when learning how to use each of the scripts individually. Each of

the scripts used in build classifiers.py is described in the following sections. (For more information on how

these classifiers are constructed, please see [14].)

For the splice site prediction modules SpliceGrapher uses support vector machines (SVM) implemented

in the http://pyml.sourceforge.netPyML package. To create a set of splice-site classifiers, we

suggest taking the following steps:

1. Identify most common splice-site dimers for the species

2. Generate positive, negative training data sets

3. Find optimal classifier parameters for each splice site

Each of these procedures is described in the following sections.

E.3.1.1 Identifying Splice-Site Dimers

The workhorse script generate splice site data.py can identify frequently-occurring splice-site dimers

and generate positive and negative example sequences for any given dimer. The script can produce a report

of all splice site dimers and splice junctions found in a set of gene models. The most frequently occurring

splice site dimers are then candidates for constructing classifiers for predicting novel splice sites in a genome.

The command is simply:

119



generate_splice_site_data.py -r

Below is an example of a report, truncated for readability:

Breakdown of donor sites for 122535 introns:

GT: 121165 (98.88%)

GC: 1248 ( 1.02%)

AT: 84 ( 0.07%)

GA: 13 ( 0.01%)

TT: 8 ( 0.01%)

Breakdown of acceptor sites for 122535 introns:

AG: 122419 (99.91%)

AC: 76 ( 0.06%)

AT: 9 ( 0.01%)

Breakdown of splice junctions:

GT-AG: 121132 (98.8550%)

GC-AG: 1248 ( 1.0185%)

AT-AC: 73 ( 0.0596%)

GA-AG: 13 ( 0.0106%)

TT-AG: 8 ( 0.0065%)

Given a list of splice-site dimers and their frequencies, one can then choose an optimal set that balances

the potential number of successful predictions with the overhead of training a classifier for each dimer.

E.3.1.2 Generating Training Data

The generate splice site data.py script is also used to generate positive and negative examples for train-

ing SVMs. Positive examples are simply examples of the given dimer found at splice sites in the gene model.

To generate negative examples SpliceGrapher uses the procedure outlined in [164]: it looks for all examples

of the given dimer within each gene and uses as negative examples those that don’t appear in splice sites.

To generate positive examples for a given donor-site dimer such as GT, use the following command:

generate_splice_site_data.py -o gt_positive.fa -d GT

120



To generate examples for acceptor sites, use the -a option:

generate_splice_site_data.py -o ag_positive.fa -d AG -a

As with other scripts, the default gene model and FASTA reference are provided in SpliceGrapher.cfg

variables, and output is written to stdout by default.

To generate negative examples, simply add the -N option to the command:

generate_splice_site_data.py -o gt_negative.fa -d GT -N

By default, output splice site sequences will include 100nt on either side of a splice-site dimer, but will

not include the dimer itself. To include splice-site dimers in output sequences, use the -D option. To change

the window size (for example, 30nt on either side), use the -W option:

generate_splice_site_data.py -o gt_positive.fa -d GT -W 30

Note that the window size will reduce the number of possible SVM parameter combinations but may

also reduce SVM performance if the windows are too small. Positive examples for any dimer tend to be

relatively rare, while negative examples are plentiful. In fact, there may orders of magnitude more negative

examples than positive, which would be overkill for training a good classifier. To set a limit on the number

of negative examples generated, use the -n option. When a limit is set, the script will perform the following

random selection procedure a fixed number of times.

First it selects a gene at random from the genome. Once a gene has been selected, it samples positions

at random from within the gene until it finds the appropriate dimer at a position other than a known splice

site. Once the appropriate number of negative examples have been randomly selected, the script halts. Thus

to generate a sample of 10,000 negative GT examples, use the command:

generate_splice_site_data.py -o gt_negative.fa -d GT -N -n 10000

E.3.1.3 Optimizing Classifiers

SpliceGrapher uses support-vector machines (SVMs) to classify splice sites. More specifically it uses

SVMs with a weighted-degree kernel that has proved especially successful at discriminating real splice sites

from spurious ones. While these models are well-suited for predicting novel splice sites, there are a number

of parameters that that can influence SVM performance for a specific kind of splice site. Briefly, these are:

121



• intronic and exonic sequence length on either side of a site

• range of k-mer sizes to use

• size of shifts to allow when assessing k-mers

• number of mismatches to allow

• SVM regularization parameter, C

For an overview and tutorial on SVMs with weighted-degree kernels, see [14].

Option Value Description
-a Interpret splice sites as acceptors
-e EXONSIZE List of exon sizes to try (e.g., ‘20,25,30’)
-C CLIST List of regularization constants for SVM (e.g., ‘0.1,1.0,10.0’)
-i INTRONSIZE List of intron sizes to try (e.g., ‘20,25,30’)
-l LOGFILE Optional log file for tracking performance
-k KFOLDS Number of folds to run cross-validation
-m MINK Set of minimum k values for kernel (e.g, ‘1,2,3’)
-M MAXK Set of maximum k values for kernel (e.g., ‘3,4,5’)
-N Turn normalization OFF
-p Apply a mismatch profile
-P PREFIX Optional prefix for output files
-S SHIFT List of maximum shift values

To simplify this process, SpliceGrapher includes the script select model parameters.py. This script

trains a weighted-degree kernel SVM on labeled FASTA sequences generated by generate splice site data.py

and runs cross-validation for a variety of parameter settings. As the program proceeds, it saves the best

model and parameter configuration. The basic format of this command is

select_model_parameters.py FASTA-training-data dimer

For example:

select_model_parameters.py gt_training.fa gt

This runs cross-validation on a model with just the default parameters (exon lengths of 8nt, 12nt and

16nt; intron lengths of 15nt, 20nt and 25nt; minimum k-mer size 1; maximum k-mer 1, 2 or 3; no mis-

matches; shift sizes 0 and 1, and C = {0.01,0.1,1,10,100}). By default, cosine normalization is applied to

kernel vectors, but this may be turned off using the -N flag.

122



The script accepts a list of values to try for every SVM parameter. For example, to try several shift

values, one might use ’-S 0,1,2,3’. Note, however, that the number of parameter combinations grows

geometrically with each set of values. Since it can take a long time to run cross-validation on an elaborate

model, the program accepts a maximum of 100 parameter combinations per run.

E.3.1.4 Intron and Exon Sequence Lengths

When generate splice site data.py generates training data, it uses the same window size on either side

of a splice site. This permits the model selection program to try different combinations of intron and exon

sequence lengths up to this window size.

Note: in theory, one could use windows that are hundreds or thousands of nucleotides long. But as

window sizes increase, the time required for cross-validation and for classification can increase dramatically.

Experience has shown that classifier performance often does not improve significantly beyond a range of

30-40nt on either side of a splice site. The parameter selection script imposes a hard limit of 50nt on either

side of a junction. If you wish to experiment with longer sequences you will need to change the hard-coded

limit.

To identify the best intron and exon sequence lengths, run the model selection algorithm with a series

of possible lengths for each. For example, if one wishes to find the best model performance for a donor GT

splice site with exon sequence sizes from 10 to 30 and intron sequence sizes from 10 to 40, the command

would then be:

select_model_parameters.py gt_training.fa gt -e 10,20,30 -i 10,20,30,40

To experiment with parameters, simply include in the same command values for those parameters you

wish to try:

select_model_parameters.py gt_training.fa gt -e 20,30 -i 30,40 -m 1,2 -M 2,3

Note: despite one’s best efforts, some parameter settings may cause an SVM to fail to converge. Often

this may be corrected by adding training data or by using different parameter values. For this reason we

recommend working with only a few parameters at a time, taking care to save the resulting output files.

E.3.2 Classifier Data

SpliceGrapher creates three files for each classifier: a .svm file that contains the trained classifier

parameters; a .fa file that contains the sequences used for training, and a .cfg file that contains meta-data

123



about the classifier including the parameters optimized by select model parameters.py and its ROC score.

To avoid having to track three files for every classifier, SpliceGrapher usually stores these files in a single

convenient .zip archive.

E.3.3 Generating ROC Curves

Figure E.1: Example of an ROC curve generated by generate roc.py for a GT classifier.

SpliceGrapher includes a script for generating ROC curves for classifiers. The basic command syntax

is generate roc.py config-file. This script reads the files generated by the parameter selection program,

performs 5-fold cross- validation, and generates an ROC curve. For example:

generate_roc.py gt_don.cfg -o gt_roc.pdf

Example output is shown in the figure. It may not always be possible to train a classifier with strong

ROC scores. In these cases it may be useful to set a decision function threshold for classifying splice sites.

The generate roc.py script can aid in this process. Using the -D option, one can see the True Positive rate

associated with different decision function values. One can then set an appropriate threshold value in the

classifier configuration (.cfg) file for classifying splice sites.

124



E.4 Predicting Splice Graphs

Splice graph prediction is SpliceGrapher‘s main purpose. This process involves two key aspects: vali-

dating the available evidence and making confident predictions from all available evidence.

E.4.1 Filtering Spliced Alignments

A key aspect of splice graph prediction is ensuring the quality of the evidence being used. To this end,

SpliceGrapher includes scripts for filtering spliced alignments in the SAM format. The first is sam filter.py

(which replaces filter sam jct.py in older versions). It takes as input a SAM file and a set of classifiers and

produces a copy of the SAM file with false-positive sites removed:

sam_filter.py alignments.sam classifiers.zip -o filtered.sam

The script accepts the following options:

Option Value Description
-F SAM file File for storing false-positive records
-o OUTPUT Output file
-r REPORT Write classifier scores to file
-z Apply gzip compression to output

By default, SAM records that include false-positive sites will be discarded. You may save these records

to a separate file using the -F option. The -r option allows you to see the classifier scores for each splice

site found in the input file: negative values show which sites were predicted as false-positives.

E.4.1.1 Collating SAM Files

For large volumes of RNA-Seq data, a single SAM file may be unwieldy. For this reason SpliceGrapher

includes the script sam collate.py that reads a SAM alignment file and writes the output to separate files,

one for each chromosome.

sam_collate.py *.sam

Because SAM files can be large, the script can read gzipped files and with the -z option, it can write

them as well.

Note: Most SpliceGrapher scripts expect SAM files to be sorted by chromosome and position within

the chromosome. A command for sorting a SAM file is:

125



sort -k 3,3 -k 4,4n unsorted.sam > sorted.sam

Alternately you may use samtools (samtools.sourceforge.net) for manipulating files prior to collating.

E.4.2 Creating Splice Graphs from Gene Models

Splice graphs are a key data structure for the SpliceGrapher package. They can be used to depict a

gene model, a collection of EST alignments and of course, they provide the foundation for splice graph

predictions. SpliceGrapher files are stored in a GFF format that is specific to these graphs.

The script gene model to splicegraph.py accepts a GFF3 gene model annotation file as input and gen-

erates splice graphs as output. The output file may contain all the genes in the gene model file, or you may

specify an output directory and write a separate file for each gene. For example, to generate splice graphs

for all gene models in the GENE MODEL file (from SpliceGrapher.cfg), the command would be:

gene_model_to_splicegraph.py -o gene_models.gff

To generate the same graphs into separate files in a directory /home/mygraphs, the command would

be:

gene_model_to_splicegraph.py -d /home/mygraphs}

It is often useful to organize splice graphs by chromosome, since reference sequences are separated that

way. For example, instead of having a single top- level directory, you may have a directory for each chro-

mosome, such as /home/mygraphs/chr1, /home/mygraphs/chr2, .... In this case, simply

use the -c option to specify the chromosome for which you want to generate graphs:

gene_model_to_splicegraph.py -d /home/mygraphs/chr3 -c chr3

Finally, you may use the script to generate splice graphs for a specific set of genes using the -g op-

tion. For example, if you were interested in generating graphs only for the Arabidopsis genes AT3G01100,

AT3G01120, AT3G01460 and AT3G01490 into the local directory you would enter:

gene_model_to_splicegraph.py -d . -g AT3G01100,AT3G01120,AT3G01460,AT3G01490

Note: although GFF3 gene model annotations are becoming more standardized, not all organisms ad-

here to the same naming conventions. For example, UTR records may be given as ‘three prime UTR’ and

126



‘five prime UTR’, or simply ‘UTR’ in which case the relative gene position must be inferred. Thus you

may need to modify the GFF3 annotations prior to converting them to splice graphs if you want access to

all gene features. (See the GeneModel module for more information.)

E.4.2.1 Converting GTF Annotations

GTF file functionality has been enhanced in version 0.2.1, allowing users to work more easily with gene

models in either GTF or GFF3 formats. We have replaced the gtf2gff.py script with convert models.py that

can convert gene models in GTF format to GFF3 format and vice versa. To convert from GTF to GFF3, the

command is:

convert_models.py Homo_sapiens.gtf --gff3=Homo_sapiens.gff3

To convert from GFF3 to GTF, the command is:

convert_models.py Homo_sapiens.gff3 --gtf=Homo_sapiens.gtf

Note: for both GTF and GFF3 files, SpliceGrapher expects curated gene models from sites such as

UCSC, ENSEMBL or the TAIR website. In many cases it can accept GTF files output from tools like

Cufflinks, but this behavior is not guaranteed, as not all GTF or GFF3 files represent gene models. Also,

some tools may not adhere strictly to the GTF or GFF3 standards. For more on these file formats, see

http://uswest.ensembl.org/info/website/upload/gff.html.

E.4.3 Creating Splice Graphs from ESTs

Popular EST alignment algorithms such as BLAST, BLAT and GMAP can produce output in PSL for-

mat. Consequently SpliceGrapher includes a script, ests to splicegraph.py that converts EST alignments in

PSL format to a splice graph. The script operates very much like the gene model to splicegraph.py script

outlined above except that you must specify a PSL file:

ests_to_splicegraph.py gmap_alignments.psl -d est_splicegraphs

As before, you may specify a single output file or an output directory, and you may request specific gene

names.

Alignment programs sometimes yield introns that are too short (for example exons may abut one an-

other) and that may lead to spurious alternative splicing predictions. To address this issue, the script allows

127



you to specify a minimum allowed intron length (default is 4nt). For example, if the smallest known intron

for an organism is 10nt long, you might use:

ests_to_splicegraph.py gmap_alignments.psl -d est_splicegraphs -i 10

Alignments in the PSL file that infer introns shorter than this will not be included in the splice graphs.

E.4.4 predict graphs.py

With version 0.2.1 SpliceGrapher allows you to predict the splice graphs for every gene in a file of gene

models at once. The predict graphs.py script provides a simple interface for loading RNA-Seq alignments

along with gene models to generate predictions for all genes that have read coverage. The predicted graphs

will be created in files stored in sub-directories named for each chromosome in the gene models.

The basic format of the command is:

predict_graphs.py SAM-file [options]

This program accepts the following parameters:

Note: predict graphs.py loads a complete SAM file along with a complete set of gene models, so it can

require a lot of memory (40GB or more for predictions across the human genome). We intend to address

this memory issue in a future release. For now we recommend splitting the SAM file and gene models by

chromosome and running predict graphs.py on each chromosome separately.

E.4.5 predict splicegraph.py

To predict splice graphs from diverse evidence sources, SpliceGrapher uses the script predict splicegraph.py.

Given annotations for a particular gene along with additional evidence such as EST alignments, ungapped

short read alignments and splice junction alignments, it combines the information and uses inference rules

to predict an output graph.

The program starts with a splice graph created from a gene model. To this you may add additional splice

graphs (such as those generated from EST alignments) or short read alignment data. The output is a single

splice graph that incorporates all of the data sources into a single predicted graph.

The basic format of the command is:

predict_splicegraph.py gene-model [options]

128



Option Value Description
-d SAM file short-read alignments
-J JMINDEPTH Minimum coverage required across splice junctions
-M MINANCHOR Minimum anchor size required for junction evidence
-s GRAPHS Comma-separated list of EST splice graph files
-T THRESHOLD Minimum depth threshold for accepting short-read clusters

This program accepts the following parameters:

Use the -s option to include additional splice graphs from EST alignments. For example, for the Human

gene HES4, you might use:

predict_splicegraph.py HES4_model.gff -s HES4_ests.gff

To include RNA-Seq reads, specify a SAM alignment file using the -d option:

predict_splicegraph.py HES4_graph.gff -d chr1.sam.gz

The -M option provides flexibility beyond the anchor constraints placed on spliced alignments. Even if

you specify a minimum anchor size for spliced alignment, the distribution of reads across a junction may

not be uniform. This option tells the prediction program to use only junctions supported by at least one read

with this many bases on each side:

predict_splicegraph.py HES4_graph.gff -d chr1.sam.gz -M 12

Finally, the -T option provides the prediction program with a threshold for treating short-read clusters

as background noise. By default, SpliceGrapher accepts all short-read clusters as possible evidence.

E.4.5.1 Finding Splice Forms

SpliceGrapher also has the ability to identify annotated splice forms that are represented in a set of

RNA-Seq data. It uses existing gene models to establish a set of known transcripts that are comprised of

lists of nodes from a splice graph. By identifying splice junctions and nodes unique to each transcript, it

can infer which transcripts are present in a set of aligned reads. The find splice forms.py script accepts as

input a SAM file of RNA-Seq alignments and reports splice forms from annotated gene models where the

RNA-Seq data provide sufficient evidence for them.:

find_splice_forms.py SAM-file [options]

129



Option Value Description
-d OUTDIR Output directory (overrides -o)
-j MINJCT Minimum junction threshold
-o OUTPUT Output file
-O OVERLAP Minimum number of bases that a read cluster must overlap a feature
-t THRESHOLD Minimum average read coverage for clusters

The script uses the following parameters to assess all genes in a gene model file:

Note that a gene model is absolutely required for making these predictions. The input gene model file

may either be given as a command-line option (-m) or specified in your SpliceGrapher.cfg file.

Each splice form is represented by splice junctions or exons unique to that form. find splice forms.py

loads RNA-Seq alignments and converts them into clusters of overlapping reads. When a cluster overlaps

sequence that is unique to a single exon and that exon is unique to a single splice form, the splice form will

be included in the final graph. Similarly, when spliced reads fall across a splice junction that is unique to a

particular splice form, the splice form will be included in the final graph.

Three parameters control the sensitivity/specificity of this program: minimum average cluster read cov-

erage (-t), a minimum number of splice junction reads (-j), and the minimum required cluster overlap

(-O). Read clusters must have the desired minimum coverage before they are used to identify splice forms.

Likewise, splice junctions must have the given minimum number of reads before they are used to identify

forms. In cases where the RNA-Seq coverage does not uniquely cover any particular splice forms, no output

graph will be produced.

You may specify an output file (-o), in which case all splice graphs will be written to the same file. The

recommended approach is instead to specify an output directory (-d) in which case a separate file will be

written for each gene for which a graph is produced.

Features That Uniquely Identify Splice Forms

In this context, a feature is that part of an exon that is completely unique to a particular splice form.

Clusters must overlap unique exon features by a minimum amount (the default is 1, but a higher number is

recommended for better specificity). For example, an exon that represents a retained intron will typically

have as its unique feature that region from the start to the end of the associated intron. Some unique features

may be smaller than the minimum overlap, for example, when the minimum is set to 10 and an alternative

3’ site is a NAGNAG site whose unique feature is just 3nt long. For this reason, SpliceGrapher uses the

smaller of the overlap size or the feature length.

130



E.5 Viewing Splice Graphs

E.5.1 Simple Viewing Tool

SpliceGrapher includes two scripts for viewing splice graphs. These scripts also serve as examples of

how to use the SpliceGrapher viewing modules, many of which have been encapsulated in the ViewerUtils

module. The simplest way to view one or more splice graphs is to use the view splicegraphs.py script. For

example, to view the graph stored in gene graph.gff, simply enter:

view_splicegraphs.py gene_graph.gff

This produces a splice graph with minimal annotations. The script will accept more than one file on the

command line. For example, to plot the files AT1G01020.gff, AT1G01030.gff, AT1G01040.gff

and AT1G01060.gff, one might enter either of the following commands:

view_splicegraphs.py AT1G010[2346]0.gff

view_splicegraphs.py AT1G010*.gff

This can be powerful if you want to compare graph predictions for the same gene across different data

sets (such as for different tissue samples or mutants):

view_splicegraphs.py data/var[1-3]/AT1G01020.gff

The script provides a selection of options that allow you to make the output graph as elaborate as you

like:

Option Value Description
-a (Re)annotate graphs
-m MODEL GFF gene model reference
-o OUTPUT Output file
-x Show genomic positions of graph elements
-E EDGE Intron edge weight
-H HEIGHT Display area height, in inches
-W WIDTH Display area width, in inches
-L Add legend to splice graph plot
-F FONTSIZE Font size for plot titles
-X Use the same genomic position range for each plot
-S Shrink introns

For example, to generate a more elaborate plot for the comparison above and write the output to a PDF

file, one could enter:

131



view_splicegraphs.py data/var[1-3]/AT1G01020.gff -xLt var1,var2,var3 -o cmp.pdf

E.5.1.1 Shrinking Introns

Figure E.2: Example of a splice graph for a human gene with large introns.

Figure E.3: The same human gene with introns reduced to emphasize exons.

Many organisms, especially mammals, have introns that are much longer than exons. This can make it

difficult to see alternative splicing behavior on these plots. Figure 8.1 shows an example of a human gene

that has large introns relative to its exons as generated from the command:

view_splicegraphs.py -m chr9.gff.gz NR4A3

You can change the way these appear in view splicegraphs.py using the -S option (Figure 8.2):

view_splicegraphs.py -m chr9.gff.gz NR4A3 -S

E.5.1.2 Plot Types

SpliceGrapher can produce different kinds of plots for different kinds of data. These are: splice graphs,

isoform plots, read coverage plots, splice junction plots and X-Y plots. These are described in more detail

below:

132



E.5.1.3 Splice Graphs

Splice graphs are SpliceGrapher’s principal plot type. These depict splice graphs that represent all the

different ways in which a gene’s exons may be combined.

Figure E.4: Example of a splice graph for a gene from the plant A. thaliana.

E.5.1.4 Isoforms

Isoform graphs are similar to splice graphs in the way that introns and exons are depicted. However,

instead of plotting the graph in its compact representation, isoform graphs show each possible splice form

from a graph. These are particularly useful for showing splice forms represented in RNA-Seq data.

Figure E.5: Example of an isoform graph for a gene from the plant A. thaliana.

E.5.1.5 Read Coverage

Read coverage graphs depict the way RNA-Seq reads aligned to a gene region. The height of the graph

at any given position represents the number of reads whose alignments overlap at that point.

133



Figure E.6: Example of a read coverage graph for a gene from A. thaliana.

E.5.1.6 Splice Junction Coverage

Splice junction coverage graphs depict the way RNA-Seq reads aligned across splice junctions within

a gene region. Splice junctions are depicted as ‘ˆ’-shaped widgets flanked by bars that depict the anchor

regions on either side of a junction. Labels for each splice junction show the number of reads that aligned

across each junction.

Figure E.7: Example of a splice junction coverage graph for a gene from A. thaliana.

E.5.1.7 X-Y Plots

SpliceGrapher also provides a generic X-Y plot that can depict arbitrary values across a gene region.

These could be used, for example, to plot values from other forms of genomic activity (such as methylation)

to see if there is any correlation between alternative splicing and these other phenomena.

Figure E.8: Example of an X-Y graph for a gene from A. thaliana using randomly-generated values between
1 and 100 to simulate activity within the gene.

134



E.5.2 Multiple Plots

For more elaborate plots, SpliceGrapher includes a second script designed to show a predicted splice

graph along with its accompanying evidence. It accepts a variety of data formats as input and can produce

pages with one to four plots. Each of these plots requires a separate input file.

• Predicted splice graph (SpliceGrapher GFF format)

• Original gene model splice graph (SpliceGrapher GFF format)

• Short read depths (SAM format)

• (Optional) splice junctions with short read support (SAM format)

E.5.2.1 File Options

The options for this script are organized into file options and display options. File options tell the

script what the kinds of input files to expect and how to render the output graphs. You may include any

combination of input files and display them in any order (see Display Options below).

File Options Value Description
-m MODEL Gene models (GTF or GFF3 format)
-o OUTPUT Output plot file (infers format from file extension)
-d DEPTH FILE SAM alignments (ungapped and spliced reads)
-s SPLICE GRAPH GFF splice graph file
-G ORIG GRAPH Optional original graph file
-X XYDATA Data file of X,Y value pairs for a simple graph

Note: SAM alignments may be specified in two ways. Some pipelines may produce separate files for

ungapped alignments and spliced alignments, in which case both the -d and -j options should be used. Other

methods (notably Tophat) produce a single file that contains both ungapped and spliced alignments, in which

case just the -d option should be used.

E.5.2.2 Display Options

The display options are nearly the same as those for view splicegraphs.py:

As an example, suppose we have used SpliceGrapher to predict a splice graph for the gene G123.

We used gene model to splicegraph.py to generate a splice graph for the gene model and stored it in

G123m.gff, generated splice junction and read depth files in SAM format and used predict splicegraph.py

135



Display Options Value Description
-c Add read coverage labels to junctions
-x Add genomic position labels to plots
-E EDGE Minimum edge thickness
-J MINJCT Minimum junction depth
-L Add a legend to graph
-H HEIGHT Display window height (inches)
-W WIDTH Display window width (inches)
-F FONTSIZE Font size for plot titles
-S Shrink introns relative to exons
-D DISPLAY Display order string for plots

to generate a splice graph prediction and stored it in G123p.gff. To produce a four-panel plot of the pre-

dicted graph along with its evidence, we could enter:

view_splicegraph_multiplot.py G123 -d chr1.sam -G G123m.gff -s G123p.gff

Note that the background for each of the panels includes a color-coded synopsis of the gene model. Thus

we may choose to omit the gene model graph from the output and focus instead on the prediction and its

evidence. In addition, suppose we wish to see the evidence at the top of the page and the predicted splice

graph at the bottom. We may change all of these characteristics in a single step using the -D option. It

accepts a string that determines the display order and whether or not to display each plot. Each character

represents a specific plot: ‘O’ for the original gene model, ‘P’ for the predicted splice graph, ‘J’ for the

splice junction plot, and ‘R’ for the read depth plot. The default display order is ‘OPJR’, so to modify a

graph to omit the original graph and change the order, simply enter the string ‘RJP’:

view_splicegraph_multiplot.py G123 -d chr1.sam -G G123m.gff -s G123p.gff -D RJP

E.5.3 High-Quality Plotting

In addition to viewing utilities, SpliceGrapher provides plotting utilities that allow you to tune your

plotting parameters for a specific purpose (such as figures suitable for a talk or paper) and save your config-

uration for later use. The program is called simply plotter.py and has the following format:

plotter.py gene.cfg

The plotting utility has a few options that allow you to try different output parameters such as page

dimensions, but because the program provides a rich set of options, it is more convenient to store these in a

configuration file (Figure E.9).

136



[SinglePlotConfig]
legend = True
shrink_introns = True
height = 5.0
width = 18.0
fontsize = 16
output_file = NR4A3.pdf

[GeneModelGraph]
plot_type = gene
gene_name = NR4A3
relative_size = 10.0
source_file = $GENE_MODELS/chr9.gff3.gz
file_format = gene_model
title_string = Gene Model for %gene

[SpliceGrapher]
plot_type = splice_graph
relative_size = 10.0
source_file = $GRAPHS/NR4A3_pred.gff
title_string = SpliceGrapher Prediction for %gene

[Reads]
plot_type = read_depth
relative_size = 8.0
source_file = $SAM/chr9.sam.gz
title_string = %gene Read Coverage

Figure E.9: This is an example of a plotter configuration file showing the main section (SinglePlotConfig)
and three sub-plot sections including gene models (GeneModelGraph), a splice graph (SpliceGrapher) and
read coverage (Reads). The parameters in the first section control overall output behavior, while parameters
in each section control the behavior of individual sub-plots.

137



E.5.3.1 Main Section

The only required section is the main [SinglePlotConfig] section that provides general parame-

ters for producing a single plot of one or more panels. The remaining sections each identify a distinct panel

that will appear on the same plot in the output file. You may specify as many of these panels as you wish,

provided each one has a unique name. The main difference between the graph sections and the main section

is the parameters that are allowed for each section. SpliceGrapher enforces strict typing on these parameters

and values.

Parameters for the [SinglePlotConfig] section are:

Name Type Description
fontsize int Font size for title strings
legend boolean Include legend on all plots
log file string Write error messages to the given log file instead of stderr
height float Page height (in inches)
output file string Path to output file
shrink introns boolean Shrink introns relative to exons
width float Page width (in inches)

E.5.3.2 Plot Sections

Parameters for individual graphs are:

Name Type Description
acceptors string Comma-delimited list of acceptor sites to highlight (junctions only)
background boolean Show the gene model in the plot background
clusters boolean Show read depths as whole clusters (read depth only)
donors string Comma-delimited list of donor sites to highlight (junctions only)
edge weight int Edge weight to use when drawing intron edges
file format string Type of data file to use (gene plot only)
gene name string Gene name to use (gene plot only)
hide boolean Use the gene information but do not display the plot (gene plot only)
highlight string Comma-delimited list of regions to highlight (read depth only)
labels boolean Plot-dependent labels: exon ids in splice graphs, read count for junctions
min coverage float Minimum read coverage required for showing junctions
relative size float Relative plot size
plot type string One of: gene/isoforms/junctions/read depth/splice graph/xy plot
source file string Path to file containing data for this plot
title string string Text to use for plot title
x labels boolean Show positions for all features in plot

Note: A gene model section is required for all plots that use shaded bars in the background. To prevent

138



the gene model itself from plotting, use the hide option.

Figure E.10: Example of read depth plot with highlighting turned on to highlight possible intron retention
activity.

E.5.3.3 Source Files for Plots

Each plot type is associated with specific file formats:

Plot Type File Format Description
gene gene model GFF Plots a gene model as a splice graph
isoforms splice graph GFF Plots elements in a splice graph as distinct splice forms
junctions SAM Depicts all splice junctions from alignments
read depth SAM Depicts read coverage based on alignments
splice graph splice graph GFF Plots a splice graph
xy plot CSV Plots X-Y values

Note: plotting tools expect SAM files to be sorted. If you provide an unsorted SAM file to plotter.py,

you may see nothing in the splice junctions or read depth sections of your plot.

E.5.3.4 Output Options

Although the configuration file allows you to specify output settings such as page width and height and

font size, you may wish to try different settings to get a figure to look the way you want. Thus plotter.py

provides command-line options to change these settings:

Option Value Description
-F FONTSIZE Font size (12-point)
-H HEIGHT Plotting area width (11.0 inches)
-W WIDTH Plotting area width (8.5 inches)
-o OUTPUT Output file

By default, a plot will appear on the screen, but if you specify an output file, plotter.py will output to the

file, using the file extension to determine the file format. Valid file extensions are: emf, eps, pdf, png, ps,

139



raw, rgba, svg and svgz. These command-line settings will override settings in the configuration file. If no

settings are specified in either place, the defaults are used.

E.6 File Formats

Given the variety of data used to generate predictions, SpliceGrapher uses several different file formats

to process data.

E.6.1 Gene Model Files

E.6.1.1 GFF3 Files

Gene models are often stored using the GFF3 format and may contain a wide variety of different record

types, though SpliceGrapher uses only a subset of these types:

• chromosome records are used to establish boundaries for all genes within a chromosome, but may also

be inferred from the genes found within a chromosome.

• gene records are required to establish parent/child relationships within a gene using the “ID” attribute

in the last column. A gene record is assumed to have one or more children given as exon records.

• mRNA records are used to infer exon and intron boundaries as well as parent/child relationships. Each

record must have an “ID” attribute and a “Parent” attribute that refers to its gene. An mRNA record

is assumed to have one or more children given as UTR or CDS records.

• exon records are used to infer exon and intron boundaries as well as parent/child relationships. Each

record must have an “ID” attribute and a “Parent” attribute that refers to its gene.

• CDS records (CDS, UTR, FIVE PRIME UTR, or THREE PRIME UTR) are used to infer exon and

intron boundaries as well as parent/child relationships. Each record must have an “ID” attribute and a

“Parent” attribute that refers to its mRNA parent.

E.6.1.2 GTF Files

The annotations for many organisms (notably those on the ENSEMBL website) use GTF format instead.

In version 0.1.0 we introduced a script gtf2gff.py that converts GTF files into GFF3 format that SpliceGra-

pher can understand. With version 0.2.0 SpliceGrapher can also load GTF files directly.

140



E.6.2 Splice Graph Files

SpliceGrapher also uses the GFF format to store splice graphs. The GFF format is a convenient way to

express all the parent/child relationships in a graph, along with annotations for alternative splicing analysis

and visualization purposes. A SpliceGrapher GFF file uses the following record types:

• graph records define a splice graph. These records include attributes that include the gene name and

a brief description of how the splice graph differs from the gene models. Note that this replaces the

old cluster name, which has been deprecated.

• parent records define exons in a splice graph that act as root nodes in the graph.

• child records define all other exons in a graph, including leaf nodes.

Both parent and child records include attributes that describe unique identifiers for each exon, the splic-

ing forms that include them, and the alternative splicing forms associated with them. Child records also

include their parents’ unique identifiers. Many of these attributes are used by SpliceGrapher’s visualization

modules.

E.6.3 SAM Files

SAM files are similar to GFF files but are used to store short-read depths after reads have been aligned

to a genome (for a complete description, see http://samtools.sourceforge.net/SAM1.pdf).

SpliceGrapher uses short read alignments stored in the SAM format to predict splice graphs and to display

read depths and splice junctions on plots.

E.6.4 BED and WIG Files

Some spliced alignment tools use BED and WIG files to store information about short-read alignments

and splice junctions that have short-read support. SpliceGrapher can read these files to predict splice graphs

and to display read depths and splice junctions on plots. For more information on these file formats, see

http://genome.ucsc.edu/FAQ/FAQformat.html.

E.6.5 PSL Files

Programs that perform EST or cDNA alignments, such as BLAST and GMAP, can produce alignment

information in PSL format. SpliceGrapher uses PSL files to construct splice graphs from these alignments

141



that may then be merged with other graphs to make predictions. For details on the PSL file format, see

http://fungi.ensembl.org/info/website/upload/psl.html.

E.7 Pre-Built Classifiers

Starting with version 0.2.0, SpliceGrapher now comes with a set of pre-built classifiers for over 100

different species. Only classifiers with adequate performance are included, so some species will have clas-

sifiers for canonical (GT donors/AG acceptors) and semi-canonical (GC donors) sites while others will have

classifiers only for canonical sites.

142


