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ABSTRACT

UNCOVERING THE ROLE OF EPIGENETICS IN ALTERNATIVE SPLICING

Alternative Splicing (AS) is a regulated phenomenon that enables a single gene to encode struc-

turally and functionally different biomolecules (proteins, non-coding RNAs etc.), that play impor-

tant roles in an organism’s development and growth. Besides, it has been implicated in multiple

diseases including cancer, thalassemia, and spinal muscular atrophy. Recent studies have shown

that AS is widespread in both plants and animals. Moreover, it has been reported that splicing oc-

curs co-transcriptionally and that chromatin state is important for understanding the regulation of

AS. Most of the previous efforts made to elucidate the regulation of AS used sequence information

alone. However, in this study our goal is to understand AS from an epigenetic perspective: how

chromatin organization, accessibility, and modifications are involved in its regulation.

Intron Retention (IR) is the most frequent form of AS in plants, however, very little is known

about its regulation, particularly regarding the role of chromatin state. Therefore, as a first step, we

investigate the relationship between IR and chromatin accessibility in two plant species: arabidop-

sis and rice. We report a strong association between chromatin accessibility and IR. Our findings

suggest that chromatin is more open and accessible in IR. Furthermore, we discover motifs asso-

ciated with the regulation of alternative and constitutively spliced introns, many of which match

those of known transcription factors and are conserved between arabidopsis and rice, a strong

indication of their functional importance.

Recent studies have suggested that IR is highly prevalent in humans as well. Using the plethora

of genomic data that is available in human, we design a deep learning model for predicting IR in

regions of open chromatin. Our model exhibits good accuracy in terms of Area Under the ROC

Curve (AUC), with median AUC = 0.80. Moreover, we identify motifs enriched in IR events with

significant hits to known human transcription factors (TFs). The zinc finger family exhibits the
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highest activity in IR events, a prediction that is validated using ChIP-Seq data. Experiments by

our collaborators have validated our predictions in candidate IR events.

Finally, as an effort to capture the complete regulatory landscape of alternative splicing, we in-

vestigate the cooperativity and interactions between regulatory sequence features. To that end, we

design a self-attention model that combines convolutional and recurrent layers with a self-attention

layer that helps us capture a global view of the landscape of interactions between regulatory el-

ements in a sequence. We evaluate our method on several datasets and compare it to existing

methodology. In each experiment, our model identifies numerous statistically significant TF inter-

actions, many of which have been previously reported. Finally, using this model with the chromatin

accessibility in IR dataset, we identify many interactions primarily involving the zinc finger fam-

ily of transcription factors. Our approach not only provides a global, biologically relevant set of

interactions but, unlike existing methods, it does not require a computationally expensive postpro-

cessing step.

In summary, this dissertation sheds light on the epigenetic regulation of alternative splicing by

transcription factors, and also contributes methodologically by making the results of deep learning

models more interpretable.

iii



ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Dr. Asa Ben-Hur, for his invaluable support

throughout my PhD career; without his insights and guidance, this would have not been possible.

I am also indebted to Dr. ASN Reddy who has always been there to help and guide me in un-

derstanding the key biological concepts relevant to my research. Finally, I thank the rest of my

doctoral committee members, Dr. Charles Anderson and Dr. Hamidreza Chitsaz, for their time,

valuable suggestion, and feedback.

I would like to convey my gratitude to Mike Hamilton, a member of our research group, who

helped me during the early years of my PhD. Besides, I would also thank the rest of past and

current members of our group for their support.

In 2019, I was awarded the Wim Bohm and Partners PhD Support fellowship which helped

expediting the completion of my PhD degree. I would like to thank and acknowledge Dr. Wim

Bohm for taking that initiative to support PhD students.

Last but not least, I am grateful to my friends and family for their help and support throughout

my PhD and my stay here at Fort Collins, Colorado.

iv



DEDICATION

To my late grandmother.

v



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview of chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2 Biological and Bioinformatics Background . . . . . . . . . . . . . . . . . . 5

2.1 Biological background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Bioinformatics background . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Transcriptome analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Chromatin profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 3 Deep Learning Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Fully connected networks . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Recurrent neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Self-attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 4 Related Work: Machine Learning in Genomics . . . . . . . . . . . . . . . . 23

4.1 Classical machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Kernel based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.2 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.3 Random forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 5 Intron Retention and Chromatin Accessibility in Plants . . . . . . . . . . . . 29

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 DHSs are enriched in IR events . . . . . . . . . . . . . . . . . . . . . . 30

5.2.2 IR events exhibit higher chromatin accessibility than IE events . . . . . 31

5.2.3 Protein footprint analysis . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5.2 Alignment and processing . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5.3 Extraction of IR/IE events and peak calling . . . . . . . . . . . . . . . . 42

5.5.4 Protein footprint analysis . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5.5 Statistical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vi



Chapter 6 Predicting Intron Retention using Deep Learning . . . . . . . . . . . . . . . 46

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.1 Data collection, processing, and representation . . . . . . . . . . . . . . 48

6.2.2 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.3 Network training and evaluation . . . . . . . . . . . . . . . . . . . . . 51

6.2.4 Gapped kmer SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.5 Motif extraction and analysis . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.6 TF ChIP-Seq analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3.1 Predicting DHSs associated with IR . . . . . . . . . . . . . . . . . . . 52

6.3.2 Embeddings lead to poor interpretability . . . . . . . . . . . . . . . . . 53

6.3.3 The zinc finger transcription factor family is enriched in IR events . . . 55

6.3.4 Evidence from Chip-Seq data . . . . . . . . . . . . . . . . . . . . . . . 55

6.3.5 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 7 A Self-Attention Model for Inferring Regulatory Interactions . . . . . . . . . 61

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2.1 Model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2.2 Network training and evaluation . . . . . . . . . . . . . . . . . . . . . 66

7.2.3 Motif extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2.4 Quantifying feature interactions . . . . . . . . . . . . . . . . . . . . . . 67

7.2.5 Data collection and processing . . . . . . . . . . . . . . . . . . . . . . 70

7.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.3.1 Benchmark 1: embedded motif interactions in simulated sequences . . . 70

7.3.2 Benchmark 2: Inferring TAL-GATA motif interactions from ChIP-Seq

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.3.3 The TF interaction landscape across human promoters . . . . . . . . . . 72

7.3.4 Genome-wide regulatory interactions in arabidopsis . . . . . . . . . . . 74

7.3.5 Comparison: SATORI and FIS-based interactions . . . . . . . . . . . . 75

7.3.6 Regulatory interactions in IR events in human . . . . . . . . . . . . . . 77

7.4 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 78

Chapter 8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.1 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.1.1 Predict chromatin accessibility in AS in plants . . . . . . . . . . . . . . 82

8.1.2 Investigate epigenetic regulation of other forms of AS . . . . . . . . . . 82

8.1.3 Use evidence from other chromatin marks . . . . . . . . . . . . . . . . 83

8.1.4 Towards a comprehensive epigenetic splicing code: tissue and condition

specific splicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vii



Appendix A Chapter 5 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . 111

Appendix B Chapter 6 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . 121

B.1 Generating transcription factor family distributions . . . . . . . . . . . . . 121

Appendix C Chapter 7 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . 124

C.1 Data collection and processing . . . . . . . . . . . . . . . . . . . . . . . . 124

C.1.1 Experiment 1: simulated dataset . . . . . . . . . . . . . . . . . . . . . 124

C.1.2 Experiment 2: TAL-GATA ChIP-peaks . . . . . . . . . . . . . . . . . . 124

C.1.3 Experiment 3: human promoter DHSs . . . . . . . . . . . . . . . . . . 125

C.1.4 Experiment 4: genome-wide arabidopsis regions of open chromatin . . . 126

C.2 Limitations of the TomTom motif comparison tool . . . . . . . . . . . . . 126

C.3 Additional tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Appendix D Chapter 8 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . 133

D.1 Methods: Differential AS and chromatin accessibility . . . . . . . . . . . 133

D.1.1 Data collection and processing . . . . . . . . . . . . . . . . . . . . . . 133

D.1.2 Differential IR and chromatin accessibility analysis . . . . . . . . . . . 133

viii



LIST OF TABLES

2.1 AS landscape for 5 different eukaryote species where the number of splicing events

are provided for each type of AS. In general, exon skipping is prevalent in mammalian

species whereas intron retention is the most common form of splicing in plants. The

data was generated using Splicgraher [1] with the following gene annotations: UCSC

hg19 (human), UCSC mm9 (mouse), TAIR10 (arabidopsis), MSU v7 (rice), and JGI

Phytozome V12 (sorghum). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5.1 Enrichment of DHSs in IR and IE events. DHS content is the fraction of IR/IE events

with an overlapping hypersensitive site. The significance of the difference is quantified

by the Fisher exact test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Enriched hexamers exhibiting a footprint. For each of the four datasets we provide

the number of hexamers that exhibit a footprint and are also enriched in either IR or

IE events. The number of enriched footprint-hexamers are shown in each of the three

regions of an event: 5’ exon, intron and 3’ exon. An HMM score cutoff of S = 0.30
was used to generate the footprint hexamers. . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Common enriched footprint-hexamers between arabidopsis and rice. The number of

hexamers in common between the arabidiopsis and rice leaf samples, and the corre-

sponding significance levels of the overlap are shown for all three regions of IR and IE

events. The hexamers in each region were clustered, and motif consensus sequences

are shown. When there is no clear consensus in a given position, that is denoted by

an x. Leading or trailing positions without a clear consensus were omitted, so some

consensus sequences are less than 6 nucleotides long. In the intronic region of IR

events only 2 hexamers were detected so no clustering was performed. Here, an HMM

score cutoff of S = 0.20 was used with manual verification of the footprints of the

overlapping hexamers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1 Enrichment of C2H2 ZF transcription factors binding in IR vs non-IR events quantified

using ChIP-Seq peaks of the corresponding TF. . . . . . . . . . . . . . . . . . . . . . 56

7.1 Summary of the datasets used in the four experiments we designed to test and analyze

SATORI. The first two datasets have binary labels whereas the last two experiments

deal with a multi-label, multi-calss problem. . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 The most frequent interacting families of human transcription factors in the TAL-

GATA ChIP-peaks in human K562 cell-line. All interactions are significant with ad-

justed p-value < 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.1 Preliminary results in terms of AUC scores for the three types of alternative splicing

(ES, A3, and A5) data used with our deep CNN model. The table also shows the num-

ber of positive examples for each dataset. Note that the number of negative examples

were roughly twice the size of the positive set. . . . . . . . . . . . . . . . . . . . . . 83

ix



A.1 Alignment statistics for different Arabidopsis thaliana (AT) and rice samples. Note

that the aligned reads went through preprocessing and then aligned using tophat2 for

RNAseq and bowtie/STAR for DNase I-seq (see Methods in the main text). The reads

in both cases (DNase I-seq and RNA-seq) were filtered for multiple alignments and

filtered for spurious junctions for the RNAseq. Also, in all samples, biological and

technical replicates were pooled. As mentioned in the main text, we used pre-aligned

DNase I-seq and RNA-seq from [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.2 Hotspot was used to call DHS peaks in all DNase I-seq samples. Rice samples, on

average, had more DHS peaks identified. Since hotspot can’t handle replicates, we

pooled DNase I-seq libraries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.3 Number of IR and IE events extracted at different coverage levels are listed below.

Evidence from known gene models and RNA-seq data was used to extract the events

as described in the Methods section in the main paper. . . . . . . . . . . . . . . . . . 117

A.4 DHS overlap statistics are shown for the four samples in both IR and IE events at the

four levels of read coverage. For both IR and IE events, the number of DHS (peaks)

overlapping the events is shown at both individual parts (5’ exon, Intron, and 3’ Exon)

and the whole event (shown in the column titled “All”). Finally, the fisher exact test

p-value is shown for each case, indicating that the overlap is significant in IR events in

contrast to IE events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.5 The HMM’s transition probabilities for all 13 states. The probabilities were derived

from the training data (8 hexamers that were manually detected to have a footprint).

Some of the probabilities were manually tweaked to adjust for the noise in our data.

The highlighted probabilities (as described in figure 2) are relatively higher than the

other transition from the same state. This is to force our HMM to prioritize detection

of the primary footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.6 Emissions for the all HMM’s 13 states are listed. These emissions are modeled by

Gaussian distributions with the corresponding mean and standard deviation (std) shown.

Note that these values are derived after standardization of raw hexamer profile cover-

age to the background score calculated from the training data. The BG1 and BG2

(intermediary/secondary backgrounds) were calculated (and tweaked) based on the

measured BG0 and BG3 values (somewhere in between the two). . . . . . . . . . . . . 120

A.7 The overlap stats between all significantly enriched arabidopsis IR/IE hexamers and

transcription factor motifs from Plant Cistrome Database are summarized below. The

actual overlaps are provided in the Additional file 3. . . . . . . . . . . . . . . . . . . . 120

B.1 List of neural network hyperparameters. . . . . . . . . . . . . . . . . . . . . . . . . . 123

C.1 List of neural network hyperparameters. . . . . . . . . . . . . . . . . . . . . . . . . . 130

C.2 Summary of all significant interactions in the simulated/toy dataset. Our model is able

to recover multiple interactions involving SIX5 and ELF1 TF motifs. We also provide

the actual CNN filter interactions in the first column, named based on the total number

of filters in the convolutional layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

x



C.3 All significant interactions between TAL1 and GATA transcription factors. Note that

in this case, a custom TF database was used containing motifs for TAL1, GATA1, and

GATA2. In case of TAL1, other TFs (LYL1, NHLH2, and TAL2) also shared the same

binding site motif and hence are mentioned here. . . . . . . . . . . . . . . . . . . . . 131

C.4 A list of known TF interactions identified by our model in the human promoter regions.

TRRUSTv2 [3] database was used as a reference of all known interactions. The level

of significance (adjusted p-value) assigned by our model to each interaction is provided

in the last column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

C.5 Summary of the number of unique statistically significant TF interactions reported by

SATORI and FIS for the three real-world datasets. . . . . . . . . . . . . . . . . . . . . 132

C.6 A list of known TF interactions in the IR events. TRRUSTv2 [3] database was used

as a reference of all known interactions. The level of significance (adjusted p-value)

assigned by SATORI to each interaction is provided in the last column. . . . . . . . . . 132

D.1 The overlap between differential IR events with the differentially occuring DHSs in

K562 vs. eight other human cell-lines. The significance of overlap is shown in the last

column in terms of p-value (Fisher test). . . . . . . . . . . . . . . . . . . . . . . . . . 135

xi



LIST OF FIGURES

2.1 Different types of AS are shown in (a) where introns are represented by black lines

connecting the exons. The structure and organization of chromatin within a cell nu-

cleus is shown in (b) along with the accessible regions (DNase I hypersensitive sites)

and some of the key factors that regulate gene expression. Adapted with permission

from [4]. Copyright 2012, Springer Nature. . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The steps of RNA-Seq workflow are shown in (a): RNA extraction, fragmentation, re-

verse transcription, sequencing, mapping to the genome, and finally quantification of

expression (Adapted with permission from [5]. Copyright 2009, Springer Nature). An

IR event is shown in (b) with evidence from RNA-Seq data across two biological repli-

cates for human K562 leukemia cell-line. The coverage plots in green are calculated

using the number of reads aligned to that region of the genome. The high RNA-Seq

coverage across the intron indicates its retention in both K562 replicates. This figure

is generated using the Integrated Genome Viewer [6]. . . . . . . . . . . . . . . . . . . 10

2.3 High throughput massively parallel sequencing experiments for profiling chromatin

accessibility and modifications. Adapted with permission from [7]. Copyright 2014,

Springer Nature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 An example of chromatin profiling for a hypothetical gene. The gene model annota-

tions are shown in the top row where the boxes represent exons/coding sequences. The

corresponding chromatin state is depicted in the second row. Finally, the quantifica-

tion of chromatin accessibility, histone modifications, and DNA methylation is shown

in third, fourth, and fifth row, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 A simple fully connected network, part of a deep learning model [8]. Every unit in

layer A is connected to all other units in layer B. Note that a fully connected network

is usually followed by a read-out layer (not shown here). . . . . . . . . . . . . . . . . 15

3.2 Summary of convolution operation followed by a non-linear ReLU function and max-

pooling. In convolution, a filter of fixed size is scanned across the entire input matrix.

Next, the ReLU operation gets rid of negative values. Finally, the output is reduced via

max-pooling which takes a maximum value across a window of fixed size. . . . . . . . 17

3.3 A simple recurrent neural network with sequential processing is shown in (a). In (b),

the detailed structure of a long short-term memory unit is depicted. These figures were

taken from [9], originally adapted from [10] and [11]. . . . . . . . . . . . . . . . . . 18

3.4 (a) The process of self-attention is summarized. The attention matrix A helps amplify

the input signals that are relevant for the task at hand. (b) An example output, taken

from a model that uses self-attention in a machine translation problem. In regards to

self-attention, the top row shows the queries whereas the bottom row represents the

keys. The results are highlighted for a specific query: the verb “making”. Finally, the

attention values are represented by the color boxes in the bottom row, each correspond-

ing to one of the 8 single heads. This figure has been taken from [12], with permission

from the author. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

xii



4.1 Summary of Basset architecture: to predict DHS occupancy across 164 human cell

lines, Basset used three convolutional layers followed by multiple fully connected lay-

ers. This figure has been taken from [13]. . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 DHS content profiles in IR and IE. For each sequence bin within an IR/IE event we

show the frequency with which that bin overlaps a DHS. Profiles are computed for

arabidopsis leaf samples (a), arabidopsis flower samples (b), rice leaf samples (c), and

rice callus samples (d). In all samples, we see overall higher DHS occupancy across

IR events compared to IE events, suggesting a more open chromatin in IR. Moreover,

the DHS content is much higher in the 3’ exons of IR events. . . . . . . . . . . . . . . 31

5.2 Methylation profiles in IR and IE Methylation levels are shown across introns and their

flanking exons in IR and IE events in arabidopsis (a) and rice (b). . . . . . . . . . . . 32

5.3 HMM footprint detection. The hexamer CCGCCG was detected to have a footprint at

the location of the hexamer (red bar) in the standardized DNase I-seq data profile in

both arabidopsis (a) and rice (b). The number of occurrences of the hexamer in IR/IE

events is shown next to the k-mer in the title of each sub-figure. The profile extends

100bp upstream and downstream of the hexamer location, and is used by our HMM to

score the k-mer for a potential footprint. In both cases, we see a clear dip in coverage

indicating a possible footprint at the hexamer location. . . . . . . . . . . . . . . . . . 33

5.4 Hexamer positional preference. Average positional preference is shown for AT-rich

footprint-exhibiting hexamers in the 3’ exon region of IR events (a), and for compari-

son, the same hexamers in the 3’ exon region of IE events. Similarly, (c) and (d) show

average positional preference for GC-rich hexamers in the 3’ exon region of IR and IE

events, respectively. To demonstrate the positional preference of footprint-exhibiting

hexamers that are associated with IE events we show the average positional profile of

those hexamers in IE events (f) and IR events(e). . . . . . . . . . . . . . . . . . . . . 36

5.5 Significance of overlap of enriched hexamers. The significance of overlap among en-

riched hexamers exhibiting a footprint is shown in the 3’ exon region of IR events (a),

and in the intronic region of IE events (b) for two or more samples. The overlap is

shown in circular layout for all possible combinations of two or more of the four sam-

ples. The four inner sections of each slice represent the four samples and a sample is

labeled in green if it is included in a particular combination. The right most slide pro-

vides the labeling of the samples. The size of the fifth section in each slice represents

the number of hexamers in an intersection of the corresponding samples. The actual

number of overlapping hexamers is also shown. Finally, the color of the fifth section

indicates the significance of overlap (p-value). The intersections are sorted based on

p-value, starting at the labelled segment in an anti-clockwise fashion. . . . . . . . . . 38

5.6 HMM Architecture The core continuous HMM states used to discover footprints are

shown. The five states represent different regions of the DNase I-seq coverage pro-

file: leading background (BG1), down (DN ), footprint (FP ), Up (UP ), and trailing

background (BG2). The footprint state is shown in the center, within the “dip” in the

DNase I-seq coverage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xiii



6.1 The distribution of different transcription factor families in the promoter, intragenic,

and intergenic regions of the human genome. These statistics were obtained by training

the Basset-like network [13] and analyzing the motifs learned by the network (see

supplementary methods in Appendix B for more details). . . . . . . . . . . . . . . . . 47

6.2 Summary of the different model variants explored when predicting DHS occupancy in

IR events. Every architecture is represented by the corresponding colored arrows con-

necting different network components. The output represents a binary class prediction:

IR vs. non-IR DHSs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3 ROC and Precision-Recall curves are shown for the different deep learning archi-

tectures as well as the gkm-SVM in (a) and (b) respectively. The median AUC and

AUPRC values are also provided in the legends. These results were generated using a

10 fold cross validation strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 In (a), the mean information content is summarized for different cases: whether we

use word2vec embeddings and exponential activations in the first convolutional layer.

The distribution of TF families enriched in IR vs non-IR events are summarized in

(b). Finally, the top 3 matches (based on the adjusted p-value) for the IR and non-IR

convolutional layer filters against the CISBP database are shown in (c). In each match,

the target transcription factor motif in the database is shown in the top row whereas the

bottom row shows the actual CNN filter/motif. . . . . . . . . . . . . . . . . . . . . . . 54

6.5 TF occupancy profiles across IR and non-IR events are shown for two transcription fac-

tors, (a) EGR1 and (b) MAZ. To generate the profile, PWM of the corresponding tran-

scription factor was used to score the actual ChIP-Seq peaks (their DNA sequences).

The regions with the highest score were then used to determine the TF occupancy

within the events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.6 Evidence of MAZ, a C2H2 ZF transcription factor, regulating intron retention in the

human K562 cell line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.1 Model architecture variants. We use a convolutional layer followed by a multi-head

self-attention layer (a); optionally, we add a recurrent layer between the two (b). The

input in both cases is a one-hot encoding of the DNA sequence. The output of the

model is either be a binary or multi-label prediction. . . . . . . . . . . . . . . . . . . 63

7.2 Summary of the process of inferring interactions from self-attention layer values. For

a given example, we collapse the attention heads into a single matrix. Next, at each

pair of positions, the corresponding active CNN filters are identified and the attention

value is assigned to the interacting pair. This is repeated for all examples to generate

interaction profiles for all filter-pairs. Finally, we use a background set to test the

significance of filter-filter interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.3 The most frequent TF interactions in human promoters (a). The distribution of TF-TF

interaction distances (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.4 The regulatory interaction landscape in accessible chromatin in the arabipdosis genome.

The most frequently interacting families of plant transcription factors (a). The distri-

bution of distances between inferred TF-TF interactions (b). . . . . . . . . . . . . . . 74

xiv



7.5 Common interactions in the top predictions of SATORI and FIS. Interactions predicted

by FIS are sorted by frequency. Those predicted by both methods are shown in blue,

and ones predicted only by FIS are shown in red. Top predictions are shown for the

TAL-GATA dataset (a) the human promoter dataset (b), and the genomewide arabidop-

sis dataset (c). For each experiment, the 10 most frequent TF family interactions are

shown in (d), (e), and (f) respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.6 Run time in minutes for SATORI and FIS-based interaction estimation for the four

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.7 The most frequent transcription factor interactions in intron retention events are de-

picted in (a). A majority of these interactions involve C2H2 ZF family. In (b), the

distribution of distances is shown for all the statistically significant interactions. . . . . 78

7.8 Common interactions in the top predictions of SATORI and FIS for the DHS occu-

pancy in IR dataset are shown in (a). The 10 most frequent TF family interactions are

shown in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.1 Differential occurrence of a DHS in a DIR event when comparing (a) the cell-lines

K562 and H1-hESC. The DIR event is evident from the RNA-seq coverage plots in

two biological replicates of the corresponding cell-lines. The DHS is overlapping the

up-regulated IR event (K562) while entirely absent in the down-regulated event (H1-

hESC). That is, the differential DHS and IR event are in the same direction. The

opposite direction DHS and IR event are shown in (b) for K562 and HCT-116 cell-

lines. This plot is generated using Integrated Genome Viewer [6]. . . . . . . . . . . . 85

A.1 Average DNase I-seq coverage profile is shown across IR and IE events in the four

samples: Arabidopsis leaf (a) and flower (b); rice leaf (c) and callus (d). The profile is

centered at the 5’ and 3’ splice sites (indicated by “0” on x-axis in the split figure), and

goes 50bp into the intron and 100bp into the flanking exons. Note that we chose all

three parts of an IR/IE event to be at least 100bp. These profiles do not include events

that come from the first intron of a gene. Moreover, to avoid bias, for each IR event,

we selected IE events with similar relative positions within the gene. . . . . . . . . . . 111

A.2 Average DNase I-seq coverage profile for the four samples: Arabidopsis leaf (a) and

flower (b); rice leaf (c) and callus (d). In each case, a pool of genes up to 5000bp in

length are used (roughly 95% of total genes). The profile encompasses the gene body

and 1000bp upstream of the transcription start site represented by ‘0’ on the x-axis.

Each figure shows the profile for three sub-categories: genes with first intron retained

(purple), genes with intron(s) retained anywhere else but the first one (red), and genes

without any retained intron (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xv



A.3 The complete state diagram for the continuous HMM used to predict hexamers with

potential footprints. The diagram shows all 13 states. The HMM consists of three

modules, to enable us to model leading/trailing footprints in addition to the primary

footprint. Each module has copies of the five core states. The size of the arrow (tran-

sition) as in BG0 −→ DN and UP −→ BG3 represents higher probabilities than the

other transitions from the same state. These probabilities are highlighted in the sup-

plementary table 4. This is used to emphasize the primary footprint detection by our

model in all cases. The figure also summarizes the HMM states in the rectangular box

to the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.4 Positional preference is shown for AT-rich hexamers (top), GC-rich hexamers (middle)

in 3’ exon region of IR events, and all hexamers in intron region of IE events (bottom).

All hexamers mentioned in the figure exhibit a footprint. . . . . . . . . . . . . . . . . 114

A.5 Motifs generated after clustering the IR and IE enriched hexamers exhibiting a foot-

print across in leaf samples in both species. Motif logos were generated using the

weblogo tool. In the table, these motifs are grouped based on the type of event (IR and

IE) they are enriched in and part of the event from which their respective hexamers

were found (5’ exon, intron, and 3’ exon). . . . . . . . . . . . . . . . . . . . . . . . . 115

B.1 The distribution of different transcription factor ChIP-Seq peaks in the promoter, in-

tragenic, and intergenic regions of the human genome. The ChIP-Seq peaks for the

corresponding TFs were downloaded from the ENCODE database [14]. . . . . . . . . 122

B.2 AUC box and whiskers plot is shown for the different network architectures and gapped

kmer SVM, using the leave-one-chromosome-out strategy. For each model, the green

line in the box represents median AUC across the 22 chromosomes whereas average

AUC value is represented by the red marker. All deep learning methods use embedded

representation of the input except Basset. . . . . . . . . . . . . . . . . . . . . . . . . . 122

C.1 Distribution of the attention weights for the main test and the background sets. The ac-

tual frequencies (y-axis) are normalized by total sizes of the test and background sets.

This figure helps in selecting the appropriate attention cutoff, one of the parameters of

SATORI. We use a default value of 0.10. . . . . . . . . . . . . . . . . . . . . . . . . . 127

C.2 Similarities between motifs of GATA variants (a). Similarly, TAL1 and TCF15, both

belonging to the bHLH family, have very similar motifs (CAGCTG consensus) (b). . . 128

C.3 AUC scores for DHSs in human promoters across 164 cell types, achieved by the two

model variants. Each circle represents performance on detecting DHSs in that cell line. 128

C.4 Limitations of the TomTom motif comparison tool. Matches shown here are statisti-

cally significant (q-value < 0.01) for both (a) HOXA2 and (b) ZNF263. The top row

depicts the gold standard motif in the CISBP database and the bottom row shows the

CNN filter/motif. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

C.5 The most frequent interacting transcription factor families in human promoter regions. 129

C.6 The most frequent interacting transcription factor families in the intron retention events. 130

xvi



D.1 Genome-wide differential AS in four lines (cultivars) of sorghum is shown in (a) for

IR events and (b) for ES events. Each slice represents one of the 10 sorghum chro-

mosomes. From the center, the first four concentric circles represent sorghum lines 1,

2, 3, and 7 respectively. The outer most circle shows the genomic coordinates with a

step size of 10 million bp. The gene expression levels are shown by purple and blue

coverage plots for the treated and control samples, respectively. Finally, across the

coverage plots, the up-regulate and down-regulated differential IR events are marked

by green and red lines, respectively. This figure is generated using CIRCOS [15]. . . . 134

xvii



Chapter 1

Introduction

Alternative Splicing (AS) is a regulated phenomenon that enables a single gene to encode

structurally and functionally different biomolecules (proteins, non-coding RNAs, etc.) that play

important roles in an organism’s development and growth [16, 17]. Recent studies involving high

throughput RNA-seq data show that AS is widespread in both plants and animals. There are

different forms of AS but the notable and prevalent ones are Exon Skipping (ES), Intron Retention

(IR), and alternative 3′ (A3) and 5′ (A5) splicing. Interestingly, these forms of AS have different

frequencies of occurrence in plants and animals. For instance, exon skipping is the most prevalent

form of AS in animals whereas intron retention is the most frequent one in plants [18]. This

difference in frequencies might be because of the number of differences in the architecture of

plant and animal genes. For instance, introns in plants are much shorter than in animals. This

compositional bias is important for identification of splice sites by the splicing regulating proteins

and for efficient splicing of introns [19, 20]. Note that the biological background necessary for

understanding alternative splicing is discussed in a greater detail in the next chapter.

Alternative splicing is highly prevalent in both plants and animals. This was first found when

the genomes of human and several other animal species were sequenced. It was observed that

humans do not have a significantly higher number of genes than other organisms such as mice,

fruit flies, and worms, yet have a higher behavioral and morphological complexity. Later, in

several studies, the correlation between the extent of AS and organismal complexity was re-

ported [21–24]. Besides its prevalence, AS has been shown to be important in several diseases

and cancer-related studies. It is known that disease mutations can affect splicing by altering either

the splice sites or the corresponding sequence motifs in exons and introns. This has been reported

in thalassemia [25, 26] and spinal muscular atrophy related mutations [27, 28]. Even mutations

deep within the introns—that are non-coding—have been shown to control splicing and RNA-

processing. This indicates that these apparently unimportant base changes need to be accounted
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for in the future studies on the role of AS in normal development and in disease [29]. Such links

have been found between DNA damage and repair factors and mutations in the non-coding regions,

which have a direct role in cancer pathways [30–32]. Moreover, in the Cancer Genome Project,

a similar association between genetic mutations and splicing regulating factors was reported in

several studies [33–39].

To understand the regulation of splicing, we require an extensive knowledge of AS regulating

sequence elements that determine splice site choice. These elements essentially form the so-called

splicing code; a comprehensive set of features that governs the regulation of AS. Until recently, se-

quence based elements have been the primary features listed in the splicing code [40]. However, in

the past few years, numerous studies have reported that splicing occurs co-transcriptionally [41–44]

and is influenced by chromatin state, in both plant and animal species [45–47]. More specifically,

multiple aspects of chromatin state have been implicated in the regulation of AS, such as chro-

matin accessibility [48], DNA methylation [49, 50], and histone modifications [45, 47]. It follows

that the splicing code needs to include sequence elements that determine chromatin state as part of

a holistic model of AS. Therefore, in this work, we investigate the role of chromatin state in the

regulation of alternative splicing.

As mentioned earlier, IR is the most frequent form of splicing in plants. Nevertheless, very

little is known about the regulation of IR, particularly from an epigenetic perspective. To that end,

we explore the role of chromatin accessibility in the regulation of IR in two plant species: rice and

arabidopsis. We report a significant association between open chromatin and intron retention and

present a mechanistic hypothesis of its regulation from the perspective of co-transcriptional na-

ture of splicing. Moreover, we identify numerous conserved sequence elements for DNA-binding

proteins that affect splicing in the two plant species.

Recent studies have shown that IR is also highly prevalent in humans [51]. Moreover, unlike in

the case of plants, the ENCODE project [14] provides a wealth of human genomic and epigenomic

datasets that are well-suited to be used with complex computational models. Therefore, in the next

step, we design a deep learning model that predicts chromatin accessibility in IR events across the
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entire human genome. The basis for this study lies in the fact that the proteins that regulate AS

should bind in the vicinity of the splicing events, in the regions of open and accessible chromatin.

Using the model, we identify motifs enriched in IR events with significant hits to known human

Transcription Factors (TFs). The zinc finger family exhibits the highest activity in IR events, a

prediction that is validated using ChIP-Seq data. Experiments by our collaborators have validated

our predictions in candidate IR events.

We note that to render an accurate regulatory landscape of alternative splicing, the splicing

code should encompass cooperativity and interactions between the sequence features. Therefore,

we develop a a self-attention based model that captures the regulatory interactions between motifs

identified within the genomic sequences. We first evaluate our method on simulated data and three

complex datasets. In each of the three experiments, our model identifies numerous statistically

significant TF interactions, many of which have been previously reported. Finally, using this model

with the chromatin accessibility in IR dataset, we identify multiple interactions primarily involving

the zinc finger family of transcription factors. Our approach not only provides a global, biologically

relevant set of interactions but, unlike existing methods, it does not require a computationally

expensive postprocessing step.

1.1 Overview of chapters

The next set of chapters describe the relevant background and related work. In Chapter 2, we

provide a detailed overview of the relevant biological and bioinformatics background. Chapter 3

provides a primer on different concepts in deep learning that have been used in this work. Finally,

in Chapter 4, we review the related work in genomics, relevant to the topic of this dissertation.

Chapter 5 investigates the association between chromatin accessibility and IR in two plant

species; arabidopsis and rice [52]. We analyze the chromatin accessibility in IR and non-IR events

using DNase I-Seq and Bisulfite-Seq data. Moreover, a Hidden Markov Model (HMM) is used

with the DNase I-Seq data to identify binding sites for the IR-regulating proteins.
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Chapter 6 uses a deep learning model to predict chromatin accessibility in IR events in human.

Because of the limited chromatin profiling data in plants, for our deep learning model, we use data

from ENCODE Consortium [14] which provide a plethora of human and mouse datasets. In this

study, we also report the IR regulating motifs and known transcription factor binding sites that are

identified by our model.

In Chapter 7, we present a self-attention based model to infer regulatory interaction between

DNA-binding proteins. We test our model on both simulated and real-world datasets (including

the IR dataset) and report numerous statistically significant TF-TF interactions.

Finally, in Chapter 8, we provide a summary of our contributions and discuss the potential

future work in this area, with evidence from our preliminary experimentation and results.
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Chapter 2

Biological and Bioinformatics Background

2.1 Biological background

The central dogma of molecular biology was presented by Francis Crick back in 1958 [53].

In its simplest form, it states that the DNA in our cells is transcribed into RNA which in turn is

translated into proteins. Our focus is on eukaryotic cells which have a distinct membrane-bound

nucleus. Almost all of the DNA in eukaryotic cells is found in their nuclei, organized into structures

called chromosomes. The DNA is in highly compact form held together by protein complexes

known as histones. This packaged DNA coiled around the histone complexes is measured in the

units called nucleosomes. This whole arrangement of DNA is called chromatin (see figure 2.1(b)),

and its organization plays a central role in the regulation of vital biological processes such as gene

expression and alternative splicing, as described next.

Genes in eukaryotes are sequences of DNA that encode functional biomolecules: proteins, non-

coding RNAs, etc. The coding parts of a gene that eventually form the functional biomolecule are

called exons, while the non-coding segments in between the exons, that are spliced out, are called

introns. Gene expression starts with the process of transcription, where the DNA is transcribed into

pre-mRNA by an enzyme known as RNA Polymerase II. In the next step, it goes through a process

known as splicing where exons, the sub-parts of the coding sequence, are joined together and

the introns are spliced out by complex molecular machinery called the spliceosome. The mature

mRNA with 5′ cap and 3′ poly-A tail is then transported to the cytoplasm where it is translated into

protein in the ribosome. As simple as it seems, this whole process has several complex aspects. For

instance, genes do not encode proteins in a one-to-one correspondence: the exons can be combined

in different ways, the 3′ and 5′ ends of the exons can be alternatively selected, and finally the introns

can be retained and find their way out of the cell, as part of the coding sequence. This phenomenon

is called alternative splicing and is highly prevalent in both plants and animals. For instance,
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nearly 95% of human genes have been shown to undergo AS [23, 24]. It is worth mentioning that

transcription is not a two-step process; splicing has been shown to occur co-transcriptionally i.e.

while the polymerase enzyme is transcribing DNA into RNA, the spliceosomal machinery can act

upon the nascent RNA simultaneously, stripping off the introns.

Figure 2.1(a) depicts the different forms of AS. The most common forms are Exon Skipping

(ES), Intron Retention (IR), Alternative 5’ (donor) site splicing (A5), and Alternative 3’ (acceptor)

site splicing (A3). Table 2.1 summarizes the distribution of these types in different animal and

plant species. In general, exon skipping is the most prevalent form of splicing in animal species.

On the other hand, in plants, intron retention is the most common type of AS.

Table 2.1: AS landscape for 5 different eukaryote species where the number of splicing events are provided

for each type of AS. In general, exon skipping is prevalent in mammalian species whereas intron retention

is the most common form of splicing in plants. The data was generated using Splicgraher [1] with the

following gene annotations: UCSC hg19 (human), UCSC mm9 (mouse), TAIR10 (arabidopsis), MSU v7

(rice), and JGI Phytozome V12 (sorghum).

Kindom Species
AS Type

ES IR A3 A5

Animal
Homo sapiens (human) 19985 1583 5763 5798

Mus musculus (mouse) 4470 434 1775 1637

Plant

Arabidopsis thaliana (thale cress) 1138 3334 2540 2378

Oryza sativa (rice) 1207 4321 2959 1937

Sorghum bicolor (sorghum) 2531 3670 3446 2380

As mentioned earlier, the spliceosome primarily executes the process of splicing in eukaryotic

cells. This protein complex is formed by five nuclear ribonucleoprotein particles (snRNPs) along

with numerous auxiliary proteins. These sub-components of the spliceosomal machinery recognize

core splicing signals through a series of biochemical reactions. The splicing signals include the

splice sites: donor (5′ splice sites) and acceptor (3′ splice sites), the polypyrimidine tract, and the

branch point sequence. However, these features alone are insufficient for AS: Splicing Regulatory

Elements (SREs), which are other sequence elements in pre-mRNA, act as the binding sites for

splicing regulating proteins. These SREs, exonic and intronic splicing enhancers/silencers, play

an important role in the regulation of alternative and constitutive splicing [16, 54, 55]. Usually
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Exon skipping

Alternative 5’ splice site

Alternative 3’ splice site

Intron retention

(a) Types of AS (b) Chromatin organization

Figure 2.1: Different types of AS are shown in (a) where introns are represented by black lines connecting

the exons. The structure and organization of chromatin within a cell nucleus is shown in (b) along with the

accessible regions (DNase I hypersensitive sites) and some of the key factors that regulate gene expression.

Adapted with permission from [4]. Copyright 2012, Springer Nature.

6 − 10 nucleotides long [56], these SREs work by accommodating splicing factors that activate

or suppress splice site recognition or spliceosome assembly [54, 57]. These sequence elements,

generally spaced in regular intervals or in clusters, impact the splice site selection through specific

binding of splicing regulatory proteins [58].

DNA/RNA sequence characteristics have also been implicated as splicing determinants. Some

of these features are the length of exons and introns [59], GC-content, and divisibility by 3 etc.

In addition, the secondary structure of RNA in the vicinity of AS events has been shown to affect

splicing outcomes. For instance, secondary structures have been computationally identified that

aid in the prediction of splice sites [60, 61]. Moreover, genome-wide analyses of conserved RNA

secondary structure overlapping splice sites have been shown to affect AS [62]. These secondary

structures can shorten the distance between splice sites and aid in their recognition [63, 64].

Another aspect of the regulation of AS is tissue- and/or condition-specific binding of splicing

factors [65, 66] that affect gene expression in the respective stages and/or cell types. A number

of such elements have been identified, however, their binding sites are not well characterized. For

instance, many of these factors/binding sites involve loosely defined motifs such as “CA-rich” for
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hnRNP-L and “CU-rich” for PTB1 and PTB2 [67, 68]. These motifs alone are not sufficient to

accurately predict tissue- and condition-specific alternating splicing [57].

Finally, we discuss chromatin, a cellular structure that has been linked in several ways with

splicing [46, 69–71]. As shown in figure 2.1(b), it is a compact structure of hereditary material

(DNA and the histone complexes) within the nucleus. Moreover, the figure provides details on

how regulatory proteins—for instance, transcription factors—can bind the DNA in regions of open

chromatin and take part in the regulation of gene expression. In this work, our goal is to investi-

gate the association of AS with chromatin structure, accessibility, and modifications. It has been

reported that the speed of transcription (RNA polymerase II elongation) is affected by histone

modifications and correlates with splicing patterns [72, 73]. The evidence for this phenomenon,

called co-transcriptional splicing, has been previously reported [41–44].

2.2 Bioinformatics background

In this section, we describe the expression and chromatin profiling methodologies needed to

quantify the genomic and epigenomic features involved in the regulation of AS.

2.2.1 Transcriptome analysis

The transcriptomic data relevant to the problem at hand targets the expression of the genes and

their corresponding coding/non-coding parts. Over time, expression quantification has evolved;

from Expressed Sequence Tags [74], to Serial Analysis of Gene Expression [75], DNA micro-

arrays [76], and finally to high-throughput whole-transcriptome shotgun sequencing called RNA-

Seq [77], which is the most popular technique used in expression studies these days. Next, we

describe the major steps in transcriptome analysis: from RNA isolation to sequencing, and finally

quantifying gene expression and alternative splicing.

Library preparation and sequencing

The first step in the quantification of expression is to isolate RNA from a group of cells or a

tissue. The two most commonly used techniques for that are ribosomal RNA (rRNA) depletion [78]
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and polyadenylated (poly-A) RNA enrichment [78]. The next steps in the standard RNA-Seq

library preparation process are fragmentation of RNA, size selection, and complementary DNA

(cDNA) synthesis, followed by amplification using Polymerase Chain Reaction (PCR). Note that

here we focus on Illumina based short-read sequencing of RNA, where the sample is collected from

a group of cells; this is in contrast to single-cell sequencing methods. Once prepared, the library

for each sample in an experiment is sequenced using the massively parallel, high-throughput short-

read sequencing platforms.

Alignment and expression quantification

The sequenced library consist of raw reads, usually 50 base pair (bp) to 150 bp long. In case

of eukaryote species, the raw reads must be aligned to the reference genome using a splice-aware

aligner. Most popular programs used for aligning RNA-Seq reads to the reference genome are

Tophat [79] and STAR [80]. Once the reads have been aligned, we can quantify gene expression

using reference genome annotations of the corresponding species. The expression is essentially a

function of the number of reads aligned to the region of the genome where a specific gene resides.

In practice, the aligned reads are normalized by the library size. Gene expression is commonly

represented using Reads Per Kilobase of transcript per Million mapped reads (RPKM), which is

given by:

RPKM =
n

L
1000
× N

1,000,000

,

where n is the number of reads, L is the lenght of the gene, and N is the size of the library. The

workflow of RNA-Seq experiment is depicted in figure 2.2(a).

Quantification of alternative splicing

AS events can be quantified using the RNA-seq data by counting the reads aligned to exons,

introns, and across their junctions. However, in this case, the definition of exon and intron are

based on the reference genome annotations. Some methods are geared toward identifying novel

splice junctions by using machine learning methods. For example, Splicegrapher [1] can quantify

both known and novel AS events while taking advantage of multiple expression profiling data
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sources. In this work, our focus is primarily on intron retention, and to quantify IR events, we

require that every position of the retained intron is covered by at least one aligned read. As an

example, figure 2.2(b) depicts an intron retention event in K562 human cell-line where in both

replicates, every position of the intron is covered by aligned reads.

(a) (b)

Figure 2.2: The steps of RNA-Seq workflow are shown in (a): RNA extraction, fragmentation, reverse

transcription, sequencing, mapping to the genome, and finally quantification of expression (Adapted with

permission from [5]. Copyright 2009, Springer Nature). An IR event is shown in (b) with evidence from

RNA-Seq data across two biological replicates for human K562 leukemia cell-line. The coverage plots in

green are calculated using the number of reads aligned to that region of the genome. The high RNA-Seq

coverage across the intron indicates its retention in both K562 replicates. This figure is generated using the

Integrated Genome Viewer [6].

2.2.2 Chromatin profiling

Most of the work towards understanding alternative splicing has primarily used expression

data, such as microarrays, and RNA-Seq. However, in recent years, evidence from chromatin

profiling data has been included in several AS-related studies [51, 52, 81]. There are various se-

quencing techniques that probe different aspects of chromatin: its organization, accessibility, and

modifications. Chromatin Immuno-Precipitation sequencing (ChIP-Seq) [82] reveals binding sites

for specific transcription factors (TFs) as well as several histone modifications, such as methyla-
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Figure 2.3: High throughput massively parallel sequencing experiments for profiling chromatin accessibil-

ity and modifications. Adapted with permission from [7]. Copyright 2014, Springer Nature.

tion (H3K4me3, H3K27me3, etc.) and acetylation (H3K9Ac, H4K16Ac, etc.). These modifica-

tions have been shown to affect the arrangement of chromatin by loosening or tightening the DNA

strands around the histone proteins. Similarly, Micrococcal nuclease sequencing (MNase-Seq) [83]

is used to quantify nucleosome occupancy and positioning.
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To quantify chromatin accessibility, Deoxyribonuclease I based sequencing (DNase I-Seq) [84],

Formaldehyde-Assisted Isolation of Regulatory Elements sequencing (FAIRE-Seq) [85], and As-

say for Transposase-Accessible Chromatin sequencing (ATAC-Seq) [86] are used. For instance, in

DNase I-Seq, an enzyme from the endonuclease family of proteins is used that cleaves DNA in the

regions of open chromatin. These regions are deemed important in analyzing the activity of the

regulatory proteins associated with gene expression and alternative splicing. Chromatin accessi-

bility is discussed in Chapter 5 in greater detail. Finally, DNA methylation patterns are quantified

using Bisulfite sequencing (BS-Seq) [87]. DNA methylation has been shown to affect chromatin

accessibility [88] and more recently, alternative splicing [52].

Promoter 
Region

Gene Model

Chromatin

DNase I-Seq
(Coverage)

ChIP-Seq
(Coverage)

Bisulfite-Seq
(Methylation level)

DHS

DHS

ChIP peak

Histone modification

DNA methylation

Regulatory protein

Figure 2.4: An example of chromatin profiling for a hypothetical gene. The gene model annotations are

shown in the top row where the boxes represent exons/coding sequences. The corresponding chromatin state

is depicted in the second row. Finally, the quantification of chromatin accessibility, histone modifications,

and DNA methylation is shown in third, fourth, and fifth row, respectively.

Figure 2.3 summarizes several of the methods used for chromatin profiling. Most of the

steps—library preparation and sequencing—are very similar to what we described in the previ-

ous section. However, to align the raw reads to the reference genome, an ungapped aligner, such

12



as bowtie [89] or BWA [90], is used. Note that this work is primarily focused on the associa-

tion between AS and chromatin accessibility and modifications using DNase I-Seq, ATAC-Seq,

and ChIP-Seq data. To identify the regions of open/modified chromatin—for instance, DNase I

Hypersensitive Sites (DHSs), Transposase Hypersensitive Sites (THSs) in case of DNase I-Seq,

ATAC-Seq respectively—a peak calling software is used after aligning the reads to the reference

genome. For example, Hotspot [91] can be used to quantify peaks (DHSs) across the genome.

To quantify DNA methylation in bisulfite sequencing data, bismark [92] can be used. Figure 2.4

depicts chromatin profile for a hypothetical gene. The accessible and modified chromatin is repre-

sented by the corresponding DHSs, ChIP peak, and DNA methylation levels.
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Chapter 3

Deep Learning Background

In this work, we use different machine learning models, which take advantage of chromatin

profiling data, to identify sequence elements and motifs associated with the regulation of AS. In

our initial work on the association between intron retention and chromatin accessibility, we design

a continuous Hidden Markov model to call footprints in the DNase I-Seq data across IR events

in plants. These footprints represent potential binding sites for splicing regulating proteins. In

Chapter 6, we use a deep learning model to predict chromatin accessibility in IR events. Several

features and architectural elements are explored such as low-dimensional vector embeddings, con-

volutional, recurrent, and self-attention layers. One advantage of using a deep learning model with

a CNN is that we don’t need explicit feature engineering: weights of the first convolutional layer

can be interpreted as DNA sequence motifs for the regulatory proteins and known transcription

factors associated with intron retention in human. Finally in Chapter 7, we use a self-attention

based model to infer regulatory protein interactions. The attention matrix of a self-attention layer

can be used to quantify the influence of part of an input sequence on all other regions within that se-

quence. This leads us to identify interacting binding-sites for regulatory proteins within a genomic

sequence.

Next, we describe the essential machine learning concepts and approaches that serve as building

blocks for the aforementioned models. We mainly focus on the features and layers of a deep neural

network: a fully connected network, convolution operation, recurrent layers, and self-attention

mechanism etc.

3.1 Fully connected networks

A fully connected network is an important part of a deep learning model where a unit in one

layer is connected to all other units in the subsequent layer (see Figure 3.1). In principal, such a

network is basically a multi-layer perceptron [93]. A single fully connected layer—or a network of
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such layers—serves as read-out layer or mechanism in a complex deep learning model: the outputs

of convolutional and recurrent layers are passed through a network of fully connected layers which

is eventually translated into a classification of two or more target labels. Besides, a cascade of such

layers adds to the depth of the network and help the model capture complex underlying associations

within the features.

Layer BLayer A

Figure 3.1: A simple fully connected network, part of a deep learning model [8]. Every unit in layer A is

connected to all other units in layer B. Note that a fully connected network is usually followed by a read-out

layer (not shown here).

3.2 Convolutional neural networks

Convolutional Neural Networks (CNNs) have been successfully used with a significant gain

in performance over other machine learning methods in image classification [94], natural lan-

guage processing [95], and computational biology [96]. A remarkable advantage of these models

is their ability to capture complex underlying patterns in a given set of features. In problems

involving the analysis of biological sequences, CNNs have exhibited remarkable success across

multiple areas: gene expression analysis [97], TF binding prediction [98–101], chromatin acces-
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sibility analysis [13, 102, 103], chromatin structure and its modifications [104], and identification

of RNA-binding protein sites [105]. Besides providing improvement in accuracy over traditional

machine learning models, CNNs can be used without explicit feature engineering, and can learn

directly from sequence data.

The core process in a convolutional layer is the convolution operation. Since we are analyzing

biological sequences in this work, for the rest of this section, we will focus on one-dimensional

(1D) convolution, which can be written as:

X ′
i,j =

A−1
∑

a=0

B−1
∑

b=0

ω
j
a,bXi+a,b, (3.1)

where X is the input matrix, i is the position at which convolution is performed, j is the index of

the filter, and ωj is the weight matrix of the filter with size A×B where A is the length of the filter

(window size) and B is the number of input channels which is four in the case of one-hot encoded

input sequence, because there are four letters in the DNA alphabet. Here the filters are equivalent to

Positional Weight Matrices (PWMs) or sequence motifs. After the convolution operation, typically

a non-linear function such as the Rectified Linear Unit (ReLU) is used, which is given by:

f(x) = max(0, x). (3.2)

ReLU is a standard activation function in deep learning which reduces the problem of vanishing

gradients. Moreover, we reduce the output size by max-pooling by taking the maximum value

in a window of a pre-determined size. This reduces the input size for the next layer and also

achieves invariance to small shifts in the input sequence. The process of convolution, followed by

a non-linear ReLU and max-pooling operations is depicted in figure 3.2.

3.3 Recurrent neural networks

Recurrent Neural Networks (RNNs) were first presented back in 1980s [106]. Unlike a reg-

ular neural network, an RNN has a feedback loop that allows it to accept a sequence of inputs:
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ReLU = max(0, x)
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Figure 3.2: Summary of convolution operation followed by a non-linear ReLU function and max-pooling.

In convolution, a filter of fixed size is scanned across the entire input matrix. Next, the ReLU operation gets

rid of negative values. Finally, the output is reduced via max-pooling which takes a maximum value across

a window of fixed size.

it follows that the output at step t is influenced by the output/state of the network at the previ-

ous step, t − 1. This enables the network to maintain a memory of the previously seen inputs

and capture long-term dependencies. Because of these properties, RNNs have pervasively been

used in the area of natural language processing [95, 107] and other sequence prediction problems.

Alongside convolutional neural networks, RNNs have also been used in the field of computational

biology [100, 101]. Figure 3.3(a) shows the sequential processing of an RNN.

One disadvantage of an RNN is that while modelling long-term dependencies, it often suf-

fers from the problem of vanishing and exploding gradients [108]. This make RNNs difficult to

work with in a complex sequence prediction problem. To address this, Long Short-Term Memory

(LSTM) [109] units can be used that controls the flow of input through a mechanism of multiple

gates: input, forget, and output. A detailed diagram of an LSTM cell and its working are depicted

in figure 3.3(b). The first step in an LSTM is to identify information that is not required and will

be dropped from the cell in the corresponding step. This is achieved in the forget gate (ft) of the

LSTM which can be mathematically written as:
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(a)

(b)

Figure 3.3: A simple recurrent neural network with sequential processing is shown in (a). In (b), the detailed

structure of a long short-term memory unit is depicted. These figures were taken from [9], originally adapted

from [10] and [11].

ft = σ (Wf [ht−1, Xt] + bf ) , (3.3)

where σ is the sigmoid function, Xt is the input to the current cell, ht−1 represents the output of the

previous LSTM cell at step t−1, and Wf and bf are the weight matrices and biases respectively. ft

is a vector with values ranging from 0 to 1, corresponding the each number in the cell state, Ct−1.
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The next step deals with storing information from the current input Xt in the cell state as well

as updating it. This is further divided into two parts: the sigmoid layer and the tanh layer. First,

the sigmoid function decides whether to update or ignore the new information. Second, the tanh

function weighs the values which pass through, deciding their level of importance. The values

from these two steps are then multiplied to update the new cell state. Finally, this new memory is

added to the previous cell state, Ct−1, to generate the next cell state, Ct. This whole process can be

mathematically summarized using the following equations:

it = σ (Wi [ht−1, Xt] + bi) , (3.4)

Nt = tanh (Wn [ht−1, Xt] + bn) , (3.5)

Ct = Ct−1ft +Ntit, (3.6)

where W and b are the weights and biases, respectively, of the cell state.

In the final step, the output value, ht, of the current cell is generated which is based on the

output gate, Ot, but filtered using the current cell state, Ct. As shown in figure 3.3(b), the last

sigmoid unit determines which parts of the cell state make it to the output. Essentially, the cell

state is put through a tanh function to push the value to be between -1 and 1 and then multiplied

by the output of the aforementioned sigmoid unit. This process can be mathematically expressed

using the following equations:

Ot = σ (Wo [ht−1, Xt] + bo) , (3.7)

ht = Ottanh (Ct) . (3.8)
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3.4 Self-attention

Recently, neural networks that use the concepts of attention and self-attention [110, 111] have

achieved remarkable success in natural language processing tasks, specifically in machine trans-

lation [12]. One of the strengths of attention is that it can capture associations between features

regardless of the distance between them, addressing a major shortcoming of convolutional and re-

current networks. This is particularly useful for tasks in computational biology where our goal is

to identify regulatory elements and their associations/interactions in DNA or RNA sequences.

When it comes to machine translation, self-attention can successfully capture the long distance

dependencies within an input sentence. For example, in figure 3.4(b), in a machine translation

problem, the influence of all other words is shown for the verb “making” in a given sentence [12].

The top row shows the words for which attention is quantified with respect to all other words in

the bottom row. Particularly, the word “making” is strongly influenced by the two words “more”

and “difficult”. The strength of the signal is indicated by the saturation of the colored boxes, each

representing one of the multi-heads in the attention layer—the concept of multi-head attention is

explained in a greater detail, later in this section. It follows that in this example, self-attention

enables the model to capture the complete phrase: “making...more difficult”.

In the field of computational biology, the value of attention for modeling transcription factor

binding site prediction was recently demonstrated, and their work was motivated by the greater

interpretability of the resulting networks [112]. As mentioned earlier, the attention mechanism can

model dependencies within the input sequence regardless of their distance [12]. By doing so, it

guides the network to focus on relevant features within the input and ignore irrelevant information.

Pertinent to the problem at hand, a self-attention layer can help us identify interacting regions

within the input sequences, for instance, binding site motifs of regulatory proteins. Consequently,

we can capture interactions between regulatory events.

The mechanism of self-attention is summarized in figure 3.4(a). To formally define self-

attention, consider the input X and two linear transformations of it, called the Query Q, and Key

K which are defined by:
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Q = W⊤
Q
X, (3.9)

K = W⊤
K
X, (3.10)

where W
Q

and W
K

are the corresponding weight matrices for the Query and Key, respectively.

The attention matrix A is then computed using the following expression:

A(Q,K) = softmax

(

QK⊤
√
dk

)

, (3.11)

where the softmax function is defined as:

softmax(x)i =
exi

∑

j e
xj
. (3.12)

In Equation (3.11), dk is the dimension of the Key K. The scaling by 1√
dk

ensures more stable

gradients of the softmax function for large values of dk [12]. The attention matrix A, defined in

Equation (3.11), is a d× d matrix, which, for every position in a sequence of length d, summarizes

the influence of all other positions on that position. This is crucial for capturing interactions among

regulatory features, which is explained in greater detail in Chapter 7. To generate the output of the

attention layer, we first define the Value matrix

V = W⊤
V
X (3.13)

using the associated weight matrix W
V

. Finally, we define the output of the attention layer as:

Z = AV. (3.14)

Intuitively, Equation (3.14) allows us to generate the output using the parts of the input that we want

to focus on—those which exhibit strong inter-dependencies—and ignore irrelevant information.

The equations above as well as figure 3.4(a) summarize a single head attention layer. In prac-

tice, we use multiple instances of attention heads in a self-attention layer; this redundancy enables
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the network to explore multiple sub-spaces while quantifying the attention profiles for every po-

sition in the sequence. To generate a final attention profile, we concatenate the outputs of the N

single-heads followed by a linear transformation.

X

Q

K

V

KTLinear
Transform

softmax( )

A 
(attention matrix)

Z

      

d

      d

   
   d

(a)

(b)

Figure 3.4: (a) The process of self-attention is summarized. The attention matrix A helps amplify the

input signals that are relevant for the task at hand. (b) An example output, taken from a model that uses

self-attention in a machine translation problem. In regards to self-attention, the top row shows the queries

whereas the bottom row represents the keys. The results are highlighted for a specific query: the verb “mak-

ing”. Finally, the attention values are represented by the color boxes in the bottom row, each corresponding

to one of the 8 single heads. This figure has been taken from [12], with permission from the author.
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Chapter 4

Related Work: Machine Learning in Genomics

In this chapter, we review previously published machine learning methods in the domain of

computational biology; relevant to the topic of this work, specifically those where genomic and

epigenomic data are used. Note that many of the methods—particularly the deep learning based

approaches—do not involve the prediction of alternative splicing. Nevertheless, their employment

in related problems, such as predicting gene expression, TF binding sites, and chromatin state

provides the foundation for a majority of this work.

Next, we categorize the related work into classical machine learning and deep learning based

methods and discuss them in a greater detail.

4.1 Classical machine learning

In genomics and genetics, classical machine learning algorithms have been applied in a broad

range of problems. These algorithms are particularly useful when inferring and annotating bio-

logically relevant signals associated with various regulatory phenomena. For instance, in context

of gene expression, these methods have been used to identify Transcription Start Sites (TSSs) in

genomic sequences [113]. Similarly, numerous such methods have been employed to identify pro-

moters [114], enhancers [115], splice sites [116], and nucleosome positioning [117]. Although

the availability of complex high-throughput sequencing datasets has made deep learning a primary

choice for a number of prediction tasks in genomics and genetics, nevertheless, traditional machine

learning methods are still actively used by researchers in this area, particularly when dealing with

smaller datasets. Next, we briefly review some of the classical machine learning methods relevant

to the topic of this work.
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4.1.1 Kernel based methods

In the field of computational biology, kernel based methods, particularly along with Support

Vector Machines (SVMs) [118], gained remarkable popularity in the decade of 2000s. A kernel

function is essentially an extension of the dot-product similarity between features, leading to more

complex non-linear classification boundaries [119]. Besides their superior performance in various

tasks, SVMs presented two major advantages in this area: first, these methods could handle noise

and high-dimensional data, a typical characteristic of bioinformatics data. Second, SVMs were

able to work with objects such as sequences and structures that don’t have an obvious vector space

representation, protein structures and gene networks, and with aided functionality using kernels,

easily combine heterogeneous data [120]. Pertinent to the topic of this research, we will focus on

the usage of sequence kernels with SVMs.

In genomic data, we are often interested in sequence motifs which have a biological signif-

icance; for instance, these motifs can be representative of the regulatory protein binding-sites.

To extract such features from genomic sequences, the spectrum kernel was developed, and first

used to classify protein sequences [121, 122]. Essentially, a spectrum kernel can quantify k-mer

content within a given set of sequences where a k-mer is a substring of length k. The spectrum

kernel has been widely used with SVMs in tasks involving genomic sequences. For instance, in a

splice site recognition problem, the spectrum kernel based features significantly improved classi-

fier’s performance in comparison to when general sequence composition based features were used,

such as GC-content [119]. An extension of the spectrum kernel, known as the Weighted Degree

(WD) kernel, takes into account the positional information of individual k-mers within the genomic

sequences. In aforementioned splice-site prediction task, where the positional information is im-

portant to capture the relevant splicing signals, using the WD kernel led to improved classifier’s

accuracy in contrast to the vanilla spectrum kernel [119]. It is worth mentioning that numerous

studies have used kernel based SVMs to predict different forms of alternative splicing in genomic

sequences [123–125].
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Recently, to address the limitations of the spectrum kernel, a gapped k-mer based kernel for

genomic sequences was introduced for SVMs [126]. Biological sequence motifs, particularly for

transcription factors, are longer and not all positions within the motif have high information con-

tent. A spectrum kernel with longer k-mer size will lead to extremely sparse feature vectors and

therefore, model overfitting. On the other hand, gapped k-mer SVM (gk-SVM) tend to model those

properties of binding site motifs by specifying informative and non-informative regions within the

k-mers. On several human ChIP-Seq datasets, gk-SVM has been shown to outperform the con-

ventional string kernel based methods with a measurable improvement in accuracy [126]. Gapped

k-mer SVM has been widely used as a standard baseline method in several genomics related studies

that involve deep learning models—which will be discussed later in greater detail.

Besides kernel based SVMs, several other machine learning techniques have pervasively been

used across different areas in computational biology. To stay within the scope of this work, in the

following sections, we review some of these techniques used in the context of alternative splicing,

utilizing genetic and/or epigenetic features.

4.1.2 Logistic regression

Due to the ease of implementation and high model interpretability, logistic regression has been

employed in several studies involving AS prediction. Braunschweig et al. [51] reported the role

of intron retention in genome-wide regulation of mRNA levels in general and turnover of non-

physiologically relevant transcripts. Part of their research focused on generating an “IR code”, a

comprehensive set of sequence and chromatin state features that regulate intron retention. In a

related study, Liu et al. [127] reported a close correlation between a few types of histone modifi-

cations and alternative splicing—exon skipping in that case. They modeled the effect of histone

modifications on cassette exon inclusion using logistic regression.

4.1.3 Random forests

Another commonly used method in predicting alternative splicing is the random forest model:

an ensemble classifier consisting of multiple independent decision trees [128]. Chen et al. [129]

25



employed a random forest model to classify alternatively spliced exons by exploiting differential

evolutionary conservation between exons and introns. Similarly, in a recent study, Mao et al. [125]

used random forest to differentiate retained introns from the excised ones. Compared to an SVM,

their model exhibited higher accuracy in terms of Area Under the ROC curve.

4.2 Deep learning

In recent years, deep learning has made major breakthroughs in the field of machine learning.

Particularly, CNN based models have been successfully used with a significant gain in performance

over other machine learning methods in image classification [94], natural language processing [95],

and computational biology [96]. A remarkable advantage of these models is their ability to capture

complex underlying patterns without using feature engineering as a pre-processing step. Relevant

to the problem at hand, string-matching approaches fail to accurately capture the full complexity

of sequence data in a classification problem. For instance, the k-mer based approaches do not

capture the positional information in a DNA/RNA sequence [119]. On the other hand, using k-

mers with explicit positional information can significantly increase the size of the feature space,

leading to model overfitting. Recently, it has been shown that in learning regulatory elements, deep

neural networks can capture the complex dependencies between sequence positions [130–132].

Furthermore, these method can provide significant reduction in computational time by leveraging

hardware accelerators.

Artificial Neural Networks (ANNs), particularly deep, multi-layered ANNs have previously

been used in the prediction of tissue-specific alternative splicing, while taking into account nu-

merous, handcrafted genomic and epigenomic features [133–135]. However, here we primarily

focus on deep learning models in genomics that use CNNs to automatically infer features from

sequence information. Towards that end, DeepBind has been one of the earliest—and perhaps

the most influential—method that predicts protein binding site specificities within genomic se-

quences [98]. By current deep learning standards, DeepBind used a rather simple architecture

with a single convolutional layer. Nevertheless, in contrast to its contemporary machine learning
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Figure 4.1: Summary of Basset architecture: to predict DHS occupancy across 164 human cell lines, Basset

used three convolutional layers followed by multiple fully connected layers. This figure has been taken

from [13].

methods, it exhibited superior performance while taking advantage of diverse experimental data.

Moreover, DeepBind demonstrated the ability of CNNs to capture signal detectors that recapitulate

known motifs. Similarly, another deep learning method, DeepSEA employed a multi-layer CNN

to predict the chromatin effects of sequence alterations with single-nucleotide sensitivity [100].

Following the success of DeepBind and DeepSEA, a number of deep learning models have been

developed that use RNNs in conjunction with CNNs: the addition of an RNN enables the mod-

els to capture long-term dependencies within sequence features, leading to an improved overall

accuracy [99, 101].

A model that is worth discussing and has inspired part of this work, Basset, was developed by

Kelley et al. to predict genome-wide chromatin accessibility across 164 human cell-lines and tis-
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sues [13]. They used a deep neural architecture with three convolutional layers with max-pooling,

followed by multiple fully connected layers. On the aforementioned task, Basset demonstrates

greater predictive accuracy in contrast to a gapped k-mer SVM. Moreover, it can infer regulatory

motifs within genomic sequences by interpreting weights of the first convolutional layer. In other

words, Basset uses the activations of the first CNN layer filters in the input sequences and generates

Position Weight Matrices (PWMs), that are representative of the sequence motifs. The architecture

of Basset is summarized in figure 4.1. To predict chromatin accessibility in intron retention, we

modified Basset’s architecture and achieved measurable accuracy in terms of AUC and Area Under

the Precision-Recall Curve (AUPRC). For more details, refer to Chapter 6.
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Chapter 5

Intron Retention and Chromatin Accessibility in

Plants

5.1 Introduction

We performed an initial study to explore the association between IR and chromatin accessibility

in plants [52]. As mentioned in Chapter 1, in plants IR is the most prevalent form of alternative

splicing. There is preliminary evidence in metazoans to suggest that chromatin structure may

have an important role in the regulation of splicing; however, nothing is known about the role of

chromatin structure in regulating IR in plants.

The fact that splicing can happen co-transcriptionally suggests that chromatin state is relevant

for splicing [48, 136]. One of the primary tools for genome-wide exploration of chromatin is

through exposure of DNA to Deoxyribonuclease I (DNAse I), which is an enzyme that cleaves

DNA; sites that are sensitive to its action—DNase I hypersensitive sites (DHSs)—have been

used as an indicator of regions in the DNA that are accessible in-vivo. DHSs have been used

to identify several types of regulatory elements such as, promoters, silencers, enhancers, and in-

sulators [137, 138]. It has been shown that when a protein binds a region of DNA, it protects it

against the action of DNase I [139] and leaves a footprint which can be identified using DNase

I-seq data [140, 141]. The ENCODE consortium has shown that DHSs identified in the human

genome are robust markers for several genetic regulatory phenomena, including histone modifica-

tions, early replication regions, transcription factor binding sites, and transcription start sites [142].

When it comes to AS, Mercer et al. [81] have shown an association between DHSs and exon-

skipping, reporting that higher numbers of DHS-containing exons are alternatively spliced. Fur-

thermore, this study claims that DHS exons with promoter and enhancer-like features have a higher

fractional overlap with AS. Specifically related to this work, the cross-talk between chromatin or-
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ganization and IR has been studied in mammals [51]. They explore the co-transcriptional regula-

tion of splicing reporting higher chromatin accessibility in retained introns and how polymerase II

elongation speed affects IR and vice-versa. DNase I-seq has been used in plants [2, 143], but the

data has not been analyzed in the context of AS.

Our goal is to shed light on the regulation of IR from the perspective of chromatin organization.

First we test the association between DHSs and IR using DNase I seq data in arabidopsis and rice,

and find that DHSs have a highly significant association with IR; we then look for evidence at the

DNA level for the footprints of protein binding and find a large collection of hexamers that are

conserved across arabidopsis and rice, and likely function as SREs. Finally, we discuss how these

observations are consistent with current models that describe the interaction between transcription,

splicing, and chromatin organization.

5.2 Results

5.2.1 DHSs are enriched in IR events

Our first goal is to investigate the relationship between IR and chromatin accessibility. For

this task we analyzed existing DNase I-seq data in both arabidopsis and rice for which RNA-seq

data for the same samples is also available [2, 143]. First, we used the RNA-seq data to identify

events where an intron is retained (IR), and events where there is no evidence for IR, which we

refer to as intron excision (IE). Note that we do not use the term “constitutive splicing”, as other

alternative splicing events could be occurring. The DNase I-seq data associated with those samples

were then used to identify peaks representing DHSs. We observe that IR events tend to overlap

DHSs to a much greater degree than IE events: 13.3-26.5% of IR events overlap a DHS compared

to 2.1-5.2% for IE, a difference that is highly statistically significant (see Table 5.1, Figure 5.1,

and in Appendix A, Table A.2 and Table A.4 for details). Since expressed genes typically exhibit

a large peak in DNAse I-seq coverage in their promoter region, we excluded IR/IE events in the

first intron of a gene. Consistent with the above results and the higher chromatin accessibility of

the first introns, they exhibit significantly higher rates of IR than other introns in both arabidopsis
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and rice with a p-value of 5.90× 10−89 in arabidopsis and a p-value of 8.93× 10−25 in rice using

the Fisher exact test.
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Figure 5.1: DHS content profiles in IR and IE. For each sequence bin within an IR/IE event we show

the frequency with which that bin overlaps a DHS. Profiles are computed for arabidopsis leaf samples (a),

arabidopsis flower samples (b), rice leaf samples (c), and rice callus samples (d). In all samples, we see

overall higher DHS occupancy across IR events compared to IE events, suggesting a more open chromatin

in IR. Moreover, the DHS content is much higher in the 3’ exons of IR events.

5.2.2 IR events exhibit higher chromatin accessibility than IE events

As a complement to the analysis of DHSs detected using peak calling, we compared IR and IE

events on the basis of raw DNase I-seq read depth (see Figure A.1 in Appendix A). In agreement
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Table 5.1: Enrichment of DHSs in IR and IE events. DHS content is the fraction of IR/IE events with an

overlapping hypersensitive site. The significance of the difference is quantified by the Fisher exact test.

Data Source
DHS Content

p-value
IR IE

Arabidopsis (leaf) [2] 15.24% 4.02% 1.07× 10−66

Arabidopsis (flower) [2] 13.28% 3.49% 9.43× 10−93

Rice (leaf) [143] 16.07% 2.13% 2.29× 10−123

Rice (callus) [143] 26.46% 5.21% 3.61× 10−104

with the higher proportion of DHSs associated with IR, we observe that IR events have a much

higher mean DNase I-seq coverage than IE events (p-value of 1.22×10−56 in arabidopsis, and a p-

value of 5.25×10−100 in rice using the Mann–Whitney U test [144]), demonstrating that chromatin

is more open in IR events than in IE events. As further evidence we analyzed methylation profiling

data in arabidopsis and rice, and found that IR events exhibit lower methylation levels in the 3’ exon

(see Figure 5.2). This is consistent with the results we reported using DNase I-seq data, as DNA

methylation has been reported to have an inverse correlation with chromatin accessibility [88].

5 10 15 20 25 30 35 40 45
Bin Number

0.0

0.5

1.0

1.5

2.0

2.5

A
v
e
ra

g
e
 M

e
th

y
la

ti
o
n
 L

e
v
e
l

5' Exon Intron 3' Exon

IR
IE

(a) Arabidopsis

5 10 15 20 25 30 35 40 45
Bin Number

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
v
e
ra

g
e
 M

e
th

y
la

ti
o
n
 L

e
v
e
l

5' Exon Intron 3' Exon

IR
IE

(b) Rice

Figure 5.2: Methylation profiles in IR and IE Methylation levels are shown across introns and their flanking

exons in IR and IE events in arabidopsis (a) and rice (b).
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5.2.3 Protein footprint analysis

Previous studies have used DNase I-seq data to detect potential transcription factor binding

sites in promoter regions by searching for a dip in the DNase I-seq coverage [140]: a region of

more accessible chromatin is interpreted as the “footprint” left by protein binding. Since splic-

ing occurs co-transcriptionally, there is a potential for events at the DNA level to directly affect

splicing, e.g. via recruitment of splicing factors through their interaction with DNA-binding pro-

teins [48]. We used a continuous Hidden Markov Model (HMM) described in the Methods section

to discover the footprints of protein binding by searching for a footprint in all occurrences of a

given hexamer. A representative footprint is shown in Figure 5.3, which shows the DNase I-seq

data profile for the hexamer CCGCCG, that was detected by our HMM to have a footprint in 3’ ex-

ons, in both arabidopsis and rice. This hexamer is over-represented in IR events (p-value of 0.0008

in arabidopsis, and a p-value of 1.07× 10−24 in rice, computed using the Fisher exact test).
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Figure 5.3: HMM footprint detection. The hexamer CCGCCGwas detected to have a footprint at the location

of the hexamer (red bar) in the standardized DNase I-seq data profile in both arabidopsis (a) and rice (b).

The number of occurrences of the hexamer in IR/IE events is shown next to the k-mer in the title of each

sub-figure. The profile extends 100bp upstream and downstream of the hexamer location, and is used by our

HMM to score the k-mer for a potential footprint. In both cases, we see a clear dip in coverage indicating a

possible footprint at the hexamer location.
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We performed a comprehensive analysis across all hexamers to detect those that have a foot-

print and exhibit an association with IR or IE in the arabidopsis and rice leaf data. Our first

observation is that in IR events the majority of the hexamers come from the 3’ exon, while for

IE, all the hexamers are intronic (see Table 5.2 for details). In rice we identified a much larger

number of hexamers in IR events, likely due to greater read coverage of the DNase I-seq data (see

Table A.1 in Appendix A).

Table 5.2: Enriched hexamers exhibiting a footprint. For each of the four datasets we provide the number

of hexamers that exhibit a footprint and are also enriched in either IR or IE events. The number of enriched

footprint-hexamers are shown in each of the three regions of an event: 5’ exon, intron and 3’ exon. An

HMM score cutoff of S = 0.30 was used to generate the footprint hexamers.

Sample
IR Events IE Events

5’ Exon Intron 3’ Exon 5’ Exon Intron 3’ Exon

Arabidopsis (leaf) [2] 12 6 100 0 28 0
Arabidopsis (flower) [2] 4 3 105 0 27 0
Rice (leaf) [143] 88 75 262 0 14 0
Rice (callus) [143] 46 32 192 0 30 0

Many of the hexamers we identified are conserved in arabidopsis and rice: In the upstream 3’

exon 246 hexamers were common between the two species, while 19 are conserved in the intronic

region of IE events. This level of overlap is highly statistically significant (p-values of 2.25×10−165

and 2.10×10−32 respectively, in a hypergeometric test). This level of conservation is strong support

for the functional importance of these hexamers. We note that for finding conserved hexamers

we used a looser threshold for footprint calling, as the requirement of conservation provided an

additional level of filtering of potential false positives. Manual inspection of the detected hexamers

showed that all of them exhibited valid footprints.

The conserved hexamers in leaf tissue were clustered into motifs that are summarized in Ta-

ble 5.3. In IE we detected motifs only in the intron; these motifs are T-rich with a few As and no

Gs or Cs. The converse holds for intronic motifs in IR: they are GC rich with few As and no Ts.

Furthermore, occurrences of the intronic IE motifs show a clear pattern in terms of their pre-

ferred position within the intron, with a very clear peak near the 3’ of the intron, and are likely
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Table 5.3: Common enriched footprint-hexamers between arabidopsis and rice. The number of hexamers

in common between the arabidiopsis and rice leaf samples, and the corresponding significance levels of the

overlap are shown for all three regions of IR and IE events. The hexamers in each region were clustered, and

motif consensus sequences are shown. When there is no clear consensus in a given position, that is denoted

by an x. Leading or trailing positions without a clear consensus were omitted, so some consensus sequences

are less than 6 nucleotides long. In the intronic region of IR events only 2 hexamers were detected so no

clustering was performed. Here, an HMM score cutoff of S = 0.20 was used with manual verification of

the footprints of the overlapping hexamers.

Event type Region hexamers p-value Motif consensus

IR

5’ Exon 13 1.70× 10−07
CGCCG,(G/C)(G/C)GCGG,

(A/G)T(C/T)(G/T)(C/G)A

Intron 2 0.27 AAGGAG,CGGCGG

3’ Exon 246 2.25× 10−165
AAAA,AAATT,CCGAC,CGCxCG,

(C/A)TTT,GCGGC,GxTTT,

(T/G)AAA,TTT(C/T),

(G/T)T(C/T)(C/G)(G/A)

IE

5’ Exon 0 N/A -

Intron 19 2.10× 10−32
TTAA(T/A)(T/A),T(T/A)TTT(A/T)

3’ Exon 0 N/A -

associated with the polypyrimidine tract (see Figure 5.4). No such pattern is observed for the IR

intronic motifs.

Most of the hexamers and motifs associated with IR events occur in the 3’ exon; the majority

of them (6/10) are AT-rich, and some of the rest (3/10) are GC-rich. Both sets of motifs exhibit

very different positional preferences: the AT-rich motifs tend to occur at the 3’ end of the exon,

while the GC-rich motifs tend to occur in the 5’ end of the exon (see Figure 5.4 for the overall

positional preferences of those motifs, and Figure A.4 in Appendix A for positional preferences

of individual hexamers [52]). We believe that the positional preferences observed reflect different

biological roles of these motifs in regulating IR and IE events, as discussed below.

In order to find potential proteins associated with our hexamers we searched all the arabidopsis

hexamers against a collection of 410 transcription factor motifs from the Plant Cistrome [145] as

described in the Methods section. Out of 280 enriched hexamers, 96 of them had at least one match.

The breakdown into the different locations is found in Table A.7 in Appendix A. The matching

motifs come from a variety of families of transcription factors. The largest number of matches

was to the AP2/EREBP family, which is a plant-specific family of DNA-binding proteins [146].
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Figure 5.4: Hexamer positional preference. Average positional preference is shown for AT-rich footprint-

exhibiting hexamers in the 3’ exon region of IR events (a), and for comparison, the same hexamers in the 3’

exon region of IE events. Similarly, (c) and (d) show average positional preference for GC-rich hexamers in

the 3’ exon region of IR and IE events, respectively. To demonstrate the positional preference of footprint-

exhibiting hexamers that are associated with IE events we show the average positional profile of those

hexamers in IE events (f) and IR events(e).

The second-largest number of matches were to Dof proteins through hexamers in the 3’ exon that

contain mostly A or T nucleotides; this family of transcription factors is also plant-specific [147].
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C2H2 DNA-binding proteins are also strongly represented. Interestingly, a vast majority (about

60%) of them have been shown to be involved in the regulation of AS in animals [148], although

the effect could be either direct or indirect, through the regulation of splicing regulators. Some

of these effects are likely to be direct since DNA-binding proteins, including transription factors,

have been shown to bind in gene bodies [149]. These results implicate plant transcription factors

in splicing regulation. This is in agreement with recent results in mammals that revealed that

more than a third of splicing regulators detected in a high-throughput screen were transcription

factors [148].

Next, we performed an additional enrichment analysis to test the significance of the overlap

across all four datasets (arabidopsis leaf and flower tissue and rice leaf and callus). We used the

SuperExactTest [150] to quantify the overlap between all subsets of samples simultaneously. Since

the majority of hexamers occurred in the 3’ exon of IR events and intronic part of IE events, we

performed this analysis in those regions. The results shown in Figure 5.5 demonstrate a large and

highly statistically significant overlap even when considering all combinations of samples.

5.3 Discussion

Splicing occurs co-transcriptionally, and there is increasing evidence indicating that chromatin

organization involving epigenetic marks and rate of transcription regulate alternative splicing in

mammalian systems [48]. However, in plants, virtually nothing is known in terms cotranscrip-

tional regulation of alternative splicing. Here we investigate the role of chromatin architecture and

potential DNA elements that may regulate IR.

In our data we observe a greater number of DHSs in IR events compared to IE events, and this

is most prominent in the 3’ exon. A similar pattern was observed in the raw DNase I-seq data as

well. We present two possible hypotheses by which this increase in open chromatin contributes

to IR. Splicing is a much slower process than transcription [48], and we hypothesize that the

less open chromatin in IE events leads to more PolII pausing (the speed-bump model), which

allows for a greater degree of recruiting of splicing factors and hence greater likelihood of intron
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Figure 5.5: Significance of overlap of enriched hexamers. The significance of overlap among enriched

hexamers exhibiting a footprint is shown in the 3’ exon region of IR events (a), and in the intronic region of

IE events (b) for two or more samples. The overlap is shown in circular layout for all possible combinations

of two or more of the four samples. The four inner sections of each slice represent the four samples and

a sample is labeled in green if it is included in a particular combination. The right most slide provides the

labeling of the samples. The size of the fifth section in each slice represents the number of hexamers in

an intersection of the corresponding samples. The actual number of overlapping hexamers is also shown.

Finally, the color of the fifth section indicates the significance of overlap (p-value). The intersections are

sorted based on p-value, starting at the labelled segment in an anti-clockwise fashion.

recognition. Conversely, in retained introns, because of the higher elongation rates, there is less

chance of recognizing the splice sites, leading to IR. The fact that retained introns have weaker

splice sites [51,151], makes them more sensitive to the rate of elongation. However, this hypothesis

does not take into account that the increased prevalence of DHSs could be due to binding of trans-

factors, and also does not account for the much larger number of hexamers with footprints that

are associated with IR. For example, in the arabidopsis leaf data we found 118 hexamers with

footprints that are enriched in IR, and only 28 in IE.

The increased number of footprints that we observed in IR could be the result of one of two

factors: 1. Increased PolII pausing and/or, 2. Binding of other chromatin/DNA-interacting pro-

teins. Braunschweig et al. have recently shown that in mammalian systems retained introns are

associated with increased PolII pausing [51]. This pausing may lead to recruitment of splicing
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suppressors that compete or prevent splicing activators from binding, leading to IR. There is data

supporting this hypothesis in non-plant systems [51], and this hypothesis is consistent with the

observation that the high rate of DHS occurrence in the 3’ exon is coupled with the occurrence

of a much higher number of hexamers with footprints that are associated with IR. This suggests

a key role for chromatin architecture in the 3’ exon in regulating the splicing of the upstream in-

tron. We believe the second mechanism is more likely; however additional work aimed at assaying

PollII occupancy in retained vs excised introns is required to help distinguish between these two

mechanisms.

Chromatin modifications have recently been associated with IR in humans: Braunschweig et al.

have shown that the chromatin activation mark H3K27ac is enriched in retained introns [51]. This

observation is consistent with our result showing greater DHS frequency in retained introns: this

modification is associated with more flexible chromatin structure, which facilitates the interaction

of proteins with IR regulatory elements.

The AT-rich hexamers in IE have a positional preference for the 3’ end of the intron, which

suggests they are likely associated with the polypyrimidine tract, which in plants is T-rich [16],

leading to more efficient recognition of splice sites. In contrast, the hexamers we detected in the

introns of IR events, show very different base composition, with virtually no Ts, likely resulting in

poor recognition of these introns.

DNA methylation has been shown to regulate alternative splicing, including IR, in plants and

animals [49, 50, 152, 153]. Part of this regulation could be due to reorganization of chromatin; in

support of this, it has been shown that there is an inverse relationship between DNA methylation

and open chromatin [88]. In our analysis we found a strong correlation between open chromatin

and reduced methylation in IR vs IE events in both arabidopsis and rice. Open chromatin may

make the DNA more available to binding by DNA-binding proteins. In our hexamer analysis we

found that the majority of those hexamers occur in the 3’ flanking exon, which demonstrated the

highest level of open chromatin. Interestingly, the motifs in the introns of IR events are either

CG- or AG-rich. Hence, it’s possible that the hexamers enriched in CG di-nucleotides are the tar-
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gets of methylation, which in turn could attract splicing suppressors, either directly, or through

methylation-binding proteins [49]. Alternatively, proteins bound to methylated regions can mod-

ulate the rate of elongation of PolII [47, 49]. Further studies are required in order to confirm or

exclude some of these possibilities.

In addition to the matches in the Plant Cistrome Database described above, we identified other

transcription factors that have DNA binding motifs that match the hexamers discovered by our

pipeline. These include Homeodomain-leucine zipper (HD-Zip) proteins, which are a family of

transcription factors unique to plants [154] have DNA binding sequences that match some of the

AT-rich hexamers that were detected in our analysis. For example, ATHB9, which is an HD-

Zip class II protein, was shown to have affinity for the sequence GTAAT(G/C)ATTAC; the core

AAT(G/C)A segment of this sequence matches multiple conserved hexamers detected in the 3’

exon of retained introns. HD-Zip class IV proteins bind sequences containing a TAAA core, which

is consistent with a large number of hexamers both in IR and IE events.

Although epigenetic changes, including DNA methylation and histone modifications have been

shown to be important regulators of AS in animals [45, 49, 127], relatively little is known about

their role in AS in plants. This work strongly indicates a role for chromatin organization and DNA

methylation in IR. Recently Pajoro et al. [155] have shown that histone modifications alter AS in

plants, supporting our conclusion that chromatin state is a critical regulator of AS.

5.4 Conclusions

In this work we established a clear correlation between IR and chromatin accessibility and

DNA methylation in arabidopsis and rice. We found that chromatin is more open in retained

introns, which can be explained using a kinetic model of the splicing process. The observed open

chromatin in IR is consistent with the reduced methylation levels we observed in these regions. The

more open chromatin in IR also suggests that IR is more highly regulated than constitutive splicing,

which is supported by the large number of conserved sequence elements that were discovered in

footprints associated with IR. A majority of the discovered sequence elements occur in exons
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immediately downstream of retained introns, indicating its importance in regulating IR events.

Further experiments are required in order to establish the biological function of these sequence

elements and to experimentally verify the hypothesized connections between intron retention and

chromatin organization.

5.5 Materials and methods

5.5.1 Data collection

For arabidopsis, the raw reads data from Zhang et al. [2] (GEO accession number GSE53322)

was used. For rice, we used data from Wu et al. [143] (GEO accession number GSE26610); The

corresponding RNA-seq was published elsewhere [156] (GEO accession number GSE33265).

For rice, there were two samples coming from two tissues: leaf and callus. For bisulfite-seq, we

used raw data from Zemach et al. [157] (GEO accession number GSE41302) and Chodavarapu et

al. [158] (GEO accession number GSE38480), for arabidopsis and rice, respectively.

5.5.2 Alignment and processing

In case of data from Zhang et al. [2], we used their aligned DNase I-seq and RNA-seq files. For

the rest of the data, the raw reads were first pre-processed using FastQC [159] and trimmed using

fastx-trimmer [160] when required. Next, the processed reads were aligned to the corresponding

reference genomes (TAIR10 for arabidopsis and MSU v7 for rice) using different alignment tools.

All the RNA-seq samples were aligned using Tophat2 [79] with default parameters. The Tophat2

alignments were filtered to obtain only uniquely aligned reads. The arabidiopsis DNase I-seq

data was aligned using Bowtie [89]. Bowtie was used with the command-line argument -m 1

to suppress multiple alignments. For the rice DNase I-seq data, we used STAR [80] to align the

reads with the parameters outFilterMultimapNmax 1 and alignIntronMax 1 to adjust

for genomic data alignment. The bisulfite-seq data was quality- and adapter-trimmed using Trim

Galore! [161]. For alignment and methylation calling, we used bismark [92]. Note that biological
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and technical replicates—if there were any—were pooled together for each sample. The alignment

statistics are summarized in Table A.1 in Appendix A.

5.5.3 Extraction of IR/IE events and peak calling

To extract IR and IE events we used annotated IR events from the gene models as well as

evidence from the RNA-seq data found using SpliceGrapher [1], which is a tool that combines

gene models and RNA-seq data to predict alternative splicing events. To avoid any ambiguity

between IR and IE events, we used strict criteria to distinguish between the two on the basis of

the RNA-seq data: exonic read depth of at least 20 was required for a gene to be considered in

our analysis; full coverage across an intron was required for it to be considered retained, and no

coverage for it to be considered an intron excision event. The choice of the exonic read depth

threshold had little effect on our results (see Table A.4 in Appendix A). For DHS peak calling in

the DNase I-seq data, in both arabidopsis and rice, we used the Hotspot [91] program with default

parameters. Table A.2 summarizes the DHS peaks and the numbers of IR/IE events are provided

in Table A.3 in Appendix A. When computing the DHS content profile and DNase I-seq coverage

profiles across IR/IE events we excluded events involving the first intron of a gene, since the first

intron often overlaps the DHS associated with the promoter region, and tends to exhibit higher

DNase I-seq coverage than introns further downstream. As a further step for addressing the non-

uniformity of DNase I-seq coverage across a gene, for each IR event, we selected IE events with

similar relative positions within their genes.

5.5.4 Protein footprint analysis

Hexamer data generation

For the discovery of k-mers that exhibit footprints we chose to focus on hexamers since this

provides a good balance of specificity and tractability of exhaustive search. We considered all

possible hexamers coming from the three parts of an event: 5’ exon, intron, and 3’ exon. For

every hexamer, we generated the DNase I-seq profile. For each occurrence of the hexamer we
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extracted its DNase I cut at every nucleotide position of the hexamer as well as 100bp upstream

and downstream of its location and then took the average over all positions. Note that in going

100bp upstream and downstream, we made sure not to go beyond the boundaries of the event

parts: intron or the flanking exons. This was done to avoid introducing any bias coming from

the properties of different segments of the event. In case of multiple instances of a hexamer in a

sequence, we considered the one which had the lowest DNase I-seq coverage.

Footprint calling using continuous HMMs

We used the profile of DNase I-seq coverage to call footprints using a continuous HMM. Con-

tinuous HMMs are a good modeling tool for sequences of real values such as DNase I-seq cover-

age, and allow us to detect whether the observed profile contains a feature that can be identified

as a protein footprint. Our model was inspired by a similar model [141] and the implementation

uses SageMath [162]. As shown in Figure 5.6, our HMM has five core states: the leading back-

ground state (BG1), the down state (DN ), the footprint state (FP ), the up state (UP ) and finally,

the trailing background state (BG2).

DN UP

BG1 BG2
FP

100bp100bp

Figure 5.6: HMM Architecture The core continuous HMM states used to discover footprints are shown.

The five states represent different regions of the DNase I-seq coverage profile: leading background (BG1),

down (DN ), footprint (FP ), Up (UP ), and trailing background (BG2). The footprint state is shown in the

center, within the “dip” in the DNase I-seq coverage.
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The HMM was trained on data profiles of hexamers with manually verified footprints and was

used to score the rest of the hexamers. Note that all hexamer profiles were standardized to a back-

ground score calculated from the training set. To account for tandem motifs, we added additional

states to the model to represent secondary footprints upstream or downstream of the primary foot-

print. The state diagram for the final HMM, which has 13 states, along with complete specification

of the model (transition and emission probabilities), and the training and testing protocol, can be

found in the Table A.5, Table A.6 and Figure A.3 in Appendix A.

Using the trained HMM we score hexamers as potential footprints using the following expres-

sion:

S = − log

[

CFP

CBG

]

,

where CFP is the average standardized coverage at the footprint state and CBG is the average

coverage across the background states. A conservative threshold of S = 0.30 was used in the

analysis of individual hexamers, and the cutoff was lowered to S = 0.20 in the cross-species

analysis. To cluster the hexamers into motifs, we used complete linkage hierarchical clustering

with a distance metric that assigns two k-mers a distance of 0 if they shared a 4-mer, and then edit

distance was applied; clusters were cut at a depth of 4. We used clustalw2 [163] to generate the

multiple alignments which were then fed to weblogo [164] to generate motif logos. For positional

preferences, when a hexamer occurred multiple times in an IR/IE event, we chose the one with

lowest DNase I-seq read depth among all occurrences.

Motif matches in the plant cistrome database

All significantly enriched arabidopsis hexamers were searched against each motif from the

Plant Cistrome Database [145] using their respective position weight matrices. A cistrome motif

was considered a match for a given hexamer if the hexamer matched exactly the consensus se-

quence at some location, such that the information content in the positions covered by the hexamer

consist of at least 50% of the overall information content of the motif.
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5.5.5 Statistical tests

Whenever testing multiple hypotheses, the resulting p-values were adjusted using the Benjamini-

Hochberg method [165]. All the statistical tests used in this work were performed in R; for the

significance of multi-sample intersections, we used the R package for the super exact test [150]

with population size of 4096.
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Chapter 6

Predicting Intron Retention using Deep Learning

6.1 Introduction

A growing number of studies have shown the role of chromatin state in the regulation of al-

ternative splicing. As mentioned in the previous chapter, Mercer et al. [81] showed an association

between DHSs and exon-skipping, reporting that higher numbers of DHS-containing exons are

alternatively spliced. Similarly, the cross-talk between chromatin organization and IR has been

studied in mammals by Braunschweig et al. [51] where they explored the co-transcriptional regu-

lation of splicing, reporting higher chromatin accessibility in retained introns and how polymerase

II elongation speed affects IR and vice-versa. When it comes to identifying regulatory proteins

associated with AS, Han et al. [148] reported a regulatory role of zinc finger transcription factors

in exon skipping. This is in agreement with our work in plants (see Chapter 5) where we identified

potential regulatory elements occurring primarily in the 3’ flanking exon of IR events, several of

which significantly match plant zinc finger transcription factor binding site motifs.

As further motivation for considering the role of Transcription Factors (TFs) in splicing regu-

lation, we explored the frequency of motif matches for different TF families across regions of open

chromatin in the human genome. We observe in Figure 6.1 that the prevalence of motif matches in

the human intragenic regions is significantly higher than the promoter regions; a similar observa-

tion was also made in plants [166]. We validated this observation using ChIP-Seq data for five TFs

from the ENCODE database [14], and observed similar behavior to that observed in Figure 6.1.

This suggests a regulatory role of transcription factors beyond the regulation of gene expression.

Deep neural networks have become the tool of choice for exploring complex phenomena such

as chromatin accessibility and structure [13, 96, 103]. A remarkable advantage of these models

is their ability to capture the underlying patterns in large noisy datasets directly from sequence

with minimal pre-processing, learning motifs of the regulatory proteins involved as part of the
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Figure 6.1: The distribution of different transcription factor families in the promoter, intragenic, and inter-

genic regions of the human genome. These statistics were obtained by training the Basset-like network [13]

and analyzing the motifs learned by the network (see supplementary methods in Appendix B for more de-

tails).

training process. Deep learning has been used in genomics for gene expression analysis [97, 167],

TF binding prediction [98–101, 168], chromatin accessibility analysis [13, 102, 103], prediction

of chromatin structure and its modifications [104, 169], identification of RNA-binding protein

sites [105, 167], and alternative splicing [170–172].

In this study we demonstrate that deep learning models can distinguish with good accuracy

regions of open chromatin associated with IR from other intragenic regions of open chromatin

using DNase I-Seq data across 164 different immortalized human cell-lines and tissues [14, 173].

The basis for this study lies in the fact that the proteins that regulate AS should bind in the vicinity

of the splicing events. DHSs are regions of open and accessible chromatin where transcription

factors and other regulatory proteins bind. Since a protein can only bind in accessible regions of

the chromatin, DHSs that occur within or in the proximity of AS events are excellent candidates to

look for the potential binding sites (and motifs). Our model is based on that knowledge in that if a

DHS overlaps an IR event, and accommodates the IR-specific regulatory proteins, then the model

should be able to discriminate it from a non-IR DHS.
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By analyzing the motifs learned by the network, we find that specific families of TFs are as-

sociated with IR events, mostly members of the zinc finger family of TFs; results of ChIP-seq

experiments for multiple zinc finger TFs in the K562 cell line support our findings for this associa-

tion. Our work provides convincing evidence for a novel role of TFs in gene regulation, proposing

a direction for further research.

6.2 Methods

6.2.1 Data collection, processing, and representation

We use DNase I-seq data from 125 human immortalized cell-lines and tissues from the EN-

CODE database [14] and 39 cell types from the Roadmap Epigenetics consortium [173] as pro-

cessed by [13]: every DNAse I-seq peak is extended to a length of 600bp around its midpoint

and adjacent peaks are greedily merged until no two peaks overlap by more than 200bp. For our

analysis we focus on over a million DHSs that occur within genes.

Next, we extracted IR events from the Ensembl GRCh37 (hg19) reference annotations, utilizing

code from SpliceGrapher [1] and IdiffIR [174]. In total, we identified 58, 305 unique IR events out

of which, 15, 400 had overlapping DHSs. These constitute our positive examples. We use a strict

criterion requiring the DHS to overlap the retained intron, i.e., DHSs overlapping only the flanking

exons do not qualify. All other intragenic DHSs that did not overlap an IR event are labelled as

negative examples. The number of negative examples was twice the size of our positive set.

We use two methods to transform the sequences into input for the neural network: one-hot

encoding and sequence embedding. For one-hot encoding a sequence is represented as a 4 × N

matrix where N is the length of the sequence. Each position in the sequence is represented by

the columns of the matrix with a non-zero value at a position corresponding to one of the four

DNA nucleotides. To represent a sequence using word embedding we first decompose it into

overlapping k-mers of length k, and then train a word2vec model [175] to map each k-mer into an

m-dimensional vector space. This gives us an embedding matrix of dimensions (N − k + 1) ×

m. This representation is designed to preserve the context of the k-mers by producing similar
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embedding vectors for k-mers that tend to co-occur. Recently in a TF binding site prediction

task within genomic sequences, it has been shown that in contrast to one-hot-encoding, k-mer

embedding representation of the input leads to improved model performance [176].

RNN (bi-directional)

Multi-Head Self-Attention (MHA) 

K Q V

Scaled dot-product
attention

# heads

concatenate & normalize

Fully Connected Layers

Binary classification 
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RNN + MHA
CNN + MHA
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exon exon exon exon

IR event

exon
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non-IR DHS

Input
(one-hot encoded or word2vec embeddings)

Figure 6.2: Summary of the different model variants explored when predicting DHS occupancy in IR

events. Every architecture is represented by the corresponding colored arrows connecting different network

components. The output represents a binary class prediction: IR vs. non-IR DHSs.

6.2.2 Network architecture

We investigate several network architectures to predict chromatin accessibility in IR events

with the goal of understanding its chromatin-mediated regulation. The primary network element, a

one-dimensional convolutional layer, scans a set of filters against the matrix representing the input

sequence. As shown in equation 3.1, the number of input channels, B in our model are: 4 for

DNA one-hot encoding input, the size of embedding, d in case of word2vec input, and number
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of previous layer filters in case of higher convolutional layers. In the first layer, the filters are

equivalent to PWMs or sequence motifs.

The output of a convolutional layer is produced by applying a non-linear activation function to

the result of the convolution operation. In this work we use the Rectified Linear Unit (ReLU). This

activation function addresses the problem of diminishing gradients in case of deeper networks, and

has proven to be effective in genomics data [13]. Next, the output size is reduced by max-pooling

where the maximum value in a window of a pre-determined size is selected. This reduces the input

size for the next layer and also achieves invariance to small shifts in the input sequence.

Another feature that we explore in our model is recurrent layers. RNNs have an internal state

that enables them to capture distant feature interactions in the input sequence. Specifically, we em-

ploy a bi-directional RNN with Long Short-Term Memory (LSTM) units [109]. In a bi-directional

RNN, a forward and a backward layer are used that traverse the input in both directions, improving

the model’s performance.

We also incorporate a multi-head self-attention layer in our deep learning model. Attention is

a powerful feature in that it can model dependencies within the input sequence regardless of their

distances [12]. By doing so, it guides the network to focus on relevant features within the input and

ignore irrelevant information. In case of multi-head self-attention, we concatenate the output of the

H single-heads followed by a linear transformation. The final output is then collapsed along the

hidden (attention) layer dimensions through addition and normalized by the mean and the standard

deviation of the result. Empirically we find that this step is not only computationally efficient but

also leads to better model accuracy in comparison to just flattening the attention layer output. The

output of the attention layer is fed to one or more fully connected layers to generate the output

of the network. In most architectures we employ a single fully connected layer; for Basset-like

networks [13] we use three fully connected layers.
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6.2.3 Network training and evaluation

As mentioned in the previous section, we explore several network variants with different layers

and features. These architectures are summarized in figure 6.2. We tune the network hyperparame-

ters using a semi-randomized grid search algorithm that employs a 5-fold cross validation strategy.

In case of the Basset like model variant, we start with the hyperparaemters reported in [13] and

fine-tune their values. This is because the problem at hand is similar to the one addressed using the

Basset method [13]—predicting DHS occupancy from DNA sequence. The optimized hyperpa-

rameters are summarized in Table B.1 in Appendix B. We used two different schemes to train/test

our model: 10-fold cross validation, and leave-one-chromosome-out cross validation. For the mo-

tif extraction analysis described later in this section, we used random train, test, and validation set

splits with 80%, 10%, and 10% of the total data, respectively. To assess model performance, we

use the area under the ROC curve (AUC) and the area under the Precision-Recall curve (AUPRC).

6.2.4 Gapped kmer SVM

We use the large-scale gapped kmer SVM (gkm-SVM), called the LS-GKM [177]. This version

can handle bigger datasets (50k-100k examples) and exhibits better scalability. The LS-GKM is

employed using both 10-fold and leave-one-chromosome-out cross validation strategies. We run

the package with the following parameters: −m 20000, −x 10, and −T 16 which specify the size

of the memory cache in MB, number of cross validation folds (in case of 10-fold CV), and number

of processing threads, respectively.

6.2.5 Motif extraction and analysis

To interpret the CNN based deep learning model, we extract sequence motifs using the weights

(filters) of the first convolutional layer, similar to the methodology described in [13]. We select

the positive examples (DHSs overlapping IR events) with the model prediction probability greater

than 0.65. This cutoff is chosen as a best trade-off between the number of qualified examples and

confidence in the prediction. For the negative examples, we used a cutoff value of less than 0.35.
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Next, for each filter we identify regions in the set of sequences that activated the filter with a value

greater than half of the filter’s maximum score over all sequences. The highest scoring regions

(sequence substrings) from all the sequences are stacked and for each filter, a position weight

matrix is calculated using the nucleotide frequency and background information. We generate

the sequence logos using the WebLogo tool [164]. The resulting PWMs are searched against the

human CIS-BP database [178] using the TomTom tool [179] with distance metric set to euclidean.

6.2.6 TF ChIP-Seq analysis

We download the ChIP peaks of all the transcription factors that are enriched in IR events

from the ENCODE database [14]. Next, we use our previously published pipeline [52] to test the

enrichment of a given TF ChIP peaks in IR events. Briefly, we quantify the overlap of ChIP peaks

with IR events and compare them to the overlap with non-IR events. The significance of overlap is

tested using the Fisher exact test. To generate the profiles of TF occupancy across IR and non-IR

events, we use the region of the ChIP peak where the PWM of the corresponding transcription

factor has the highest score. This PWM scoring analysis is done using Biopython [180].

6.3 Results

6.3.1 Predicting DHSs associated with IR

We used the models described in figure 6.2 to distinguish DHSs associated with IR from non-

IR DHSs. To assess the performance of each model variant, we used both 10-fold and leave-one-

chromosome-out cross validation strategies. Figure 6.3 summarizes the results for several model

architectures in the form of ROC and Precision-Recall curves. As expected, the deep learning

based models exhibited improvement over the gkm-SVM in terms of AUC and AUPRC values.

The architecture variants involving a multi-head self-attention layer exhibit accuracy on par with

the Basset model. However, it should be noted that we fine-tuned Basset [13] hyperarameters as

the default settings lead to results similar to that of the gkm-SVM. The reason for that is, unlike
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the problem at hand, Basset was designed to predict DHS occupancy in 164 human cell-types in a

multi-class, multi-label classification setting.

The results shown in figure 6.3 are generated using the different model variants with one-

hot encoded input. Nevertheless, we also used word2vec embeddings and reported a measurable

boost in accuracy, as shown in Figure B.2 (Appendix B). This is particularly evident in the case

of the Basset-like model when used with one-hot encoded input (Basset) vs. low-dimensional

word2vec embeddings (Basset-E). It follows that using word2vec embeddings improves overall

model performance but at the cost of lower network interpretability; this is discussed at length in

the next section.
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Figure 6.3: ROC and Precision-Recall curves are shown for the different deep learning architectures as well

as the gkm-SVM in (a) and (b) respectively. The median AUC and AUPRC values are also provided in the

legends. These results were generated using a 10 fold cross validation strategy.

6.3.2 Embeddings lead to poor interpretability

As mentioned in the previous section, the deep learning based models predicted DHS occu-

pancy in IR and non-IR events with measurably higher accuracy than the gkm-SVM. However, it

is not trivial to interpret the rules that the neural networks are learning. One way to extract infor-

mation from the model is by examining its parameters, modulating the flow of information through
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Figure 6.4: In (a), the mean information content is summarized for different cases: whether we use

word2vec embeddings and exponential activations in the first convolutional layer. The distribution of TF

families enriched in IR vs non-IR events are summarized in (b). Finally, the top 3 matches (based on the

adjusted p-value) for the IR and non-IR convolutional layer filters against the CISBP database are shown in

(c). In each match, the target transcription factor motif in the database is shown in the top row whereas the

bottom row shows the actual CNN filter/motif.

layers of the network and analyzing its prediction on a specific set of sequences. These sequences

can be specific dataset examples—for instance, DHSs overlapping IR events—that are predicted

by the deep CNN with higher confidence. To achieve this, we used top positive (and negative)

predictions of our model and implemented the strategy described in [98] and [13] (see Methods

section for more details).

We chose the CNN-MHA model variant (see Figure 6.2) to do the motif analysis. This is be-

cause we need the convolutional layer to infer regulatory motifs. Besides, this architecture is not

as complex as the other variants, yet exhibits comparable accuracy. We used this model with both

one-hot and word2vec representations of the input sequences. Interestingly, the average informa-

tion content (IF) of enriched motifs [181] significantly varied with the two input representations.

When using the regular one-hot encoding, we find the motifs to be more informative and useful

(mean IF = 4.0). The same is not true for word2vec embeddings where we get motifs with far lower

information content (mean IF = 1.8). Recently, it was reported that, in contrast to ReLU activation,

exponential functions in the first convolutional layer lead to more informative motifs [182]. By

using Softplus as the activation in the convolutional layer, we report a slight improvement in infor-

mation content when using the one-hot encoded input. Nevertheless, when we use the word2vec

54



input representation, there is a measurable improvement in average motif information content, as

shown in Figure 6.4(a). Note that we did try different exponential functions but the Softplus activa-

tion gives the highest average information content. These findings are summarized in figure 6.4(a).

6.3.3 The zinc finger transcription factor family is enriched in IR events

We analyzed the motifs that were derived from the CNN filters for both top positive and top

negative examples (see Methods). Next, we searched both sets of motifs against the Human CIS-

BP transcription factor database [178] using the TomTom tool [179]. In case of IR DHSs, 23 motifs

have significant hits against multiple known human TFs (q-value < 0.01). In comparison, 25 of the

non-IR motifs have significant matches. Figure 6.4(c) shows the top hits reported for both IR and

non-IR motifs. In the figure, a match is represented by the gold-standard CISBP human TF motif

at the top, and the CNN filter motif at the bottom. We also observe that most of the IR motifs have

significant hits in the Zinc Finger (ZF C2H2) super-family of transcription factors whereas the

non-IR motifs are predominantly matched to the Homeodomain and Sox families of transcription

factors. The distribution of the top four most frequent families in IR vs non-IR events are shown

in figure 6.4(b). C2H2 ZF is the largest family of transcription factors and is highly active in the

promoter, intragenic, and intragenic regions of the human genome (see figure 6.1). However, it is

highly significant to observe that it is far more enriched in IR events compared to non-IR events.

Zinc finger transcription factors have previously been implicated in the regulation of alternative

splicing [148], particularly exon skipping. Here we report a role of this family in the regulation of

intron retention.

6.3.4 Evidence from Chip-Seq data

To validate our findings using experimental data, we downloaded available ChIP-Seq peaks of

all zinc finger transcription factors in the human K562 cell line from the ENCODE database [14].

To test their enrichment in IR vs. non-IR events, we followed a strategy similar to [52]: For each

transcription factor, we measured the overlap of its ChIP-Seq peaks with IR and non-IR events

and tested its significance using the Fisher-exact test. All five TFs demonstrated highly significant
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Table 6.1: Enrichment of C2H2 ZF transcription factors binding in IR vs non-IR events quantified using

ChIP-Seq peaks of the corresponding TF.

TF IR TF occupancy (%) non-IR TF occupancy (%) p-value

MAZ 14.85 7.66 3.58E-65

EGR1 14.52 8.22 4.11E-60

ZNF263 1.31 0.7 1.68E-06

SP1 4.43 2.21 6.98E-21

SP2 2.04 1.13 2.12E-08

enrichment in IR events (see Table 6.1), validating our in-silico findings that the C2H2 ZF family

plays a role in the regulation of IR.

As table 6.1 suggests, in terms of the overlap, MAZ and EGR1 are far more frequent in IR

events. Therefore, we picked those TFs and generated their binding affinity profiles across IR and

non-IR events. To do that, we scored the ChIP-Seq peaks with the PWM of the corresponding

transcription factor and picked the location with the highest score. Next, that particular location

of the peak was used to determine where exactly it overlapped the IR/non-IR event. The binding

affinity profiles are depicted in figure 6.5 for both EGR1 and MAZ, normalized by the over-all

CHIP-peak occupancy in IR and non-IR events, respectively.
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Figure 6.5: TF occupancy profiles across IR and non-IR events are shown for two transcription factors, (a)

EGR1 and (b) MAZ. To generate the profile, PWM of the corresponding transcription factor was used to

score the actual ChIP-Seq peaks (their DNA sequences). The regions with the highest score were then used

to determine the TF occupancy within the events.
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Interestingly, we observed that for both transcription factors, the binding affinity is stronger in

the flanking exons of the retained introns. In contrast, in non-IR events, both EGR1 and MAZ are

preferentially bound in the intronic regions. These unique TF-occupancy profiles suggest a role of

zinc finger TFs in regulating intron retention, and AS in general.

6.3.5 Experimental validation

To experimentally validate the influence of C2H2 ZF transcription factors in regulating intron

retention in a specific human cell-line, we picked human MAZ TF and a candidate IR event: intron

1 of the SCAND1 gene. The candidate event were picked based on the following criteria:

• The prediction score assigned by our deep learning model: we selected the top ranked ex-

amples in the test set.

• The experimental evidence of retention of the candidate introns from the RNA-Seq data in

the corresponding cell-line (K562 in this case).

• The evidence for an overlap of MAZ ChIP-Seq peaks with the candidate introns (or their

flanking exons) in K562 cell-line.

Our goal was to measure the effect of silencing MAZ–a human zinc finger TF–on splicing of

the aforementioned introns. The results are summarized in figure 6.6.

The wet-lab experimentation was performed by our collaborator, Maayan Salton, at The He-

brew University of Jerusalem. In summary, short interfering—or, also referred to as silencing—

RNA (siRNA) were used to silence the target transcription factor, represented as siMAZ in fig-

ure 6.6. As a control, the siRNA silenced Green Fluorescent Protein (siGFP) was used and the

relative expression of the intron was measured. As shown in the figure, the level of retention in-

versely correlates with the silencing of MAZ gene: with knocked-down MAZ, the retention level

drops as shown in figure 6.6. Note that for the given IR event, the difference in relative expression

is significant (t-test p-value < 0.05).
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Figure 6.6: Evidence of MAZ, a C2H2 ZF transcription factor, regulating intron retention in the human

K562 cell line.

6.4 Discussion

We explore several deep learning architectures to accurately predict chromatin accessibility

in IR events. Because it solves a similar problem, we first redesign the Basset method [13] to

discriminate IR overlapping DHSs from those that occurred elsewhere within genes. Note that

in our problem formulation, the out of the box Basset doesn’t perform so well; the accuracy in

terms of AUC/AUPRC scores is similar to that of a gapped kmer SVM (baseline). Therefore,

we fine-tune the default parameters of the model which leads to a significant improvement in

accuracy, as depicted in figure 6.3. Besides Basset, in other architecture variants, we explore

multi-head self-attention alongside convolutional and recurrent layers. One of the strengths of

self-attention is that it can guide the model to focus on relevant information by quantifying inter-

feature dependencies. Essentially, for every input feature, self-attention determines how much it is

influenced by the rest of the features. That way, the model focuses on the relevant and important

parts of the input and discards irrelevant information. Similarly, a recurrent layer can help capture

long-term dependencies within the input sequence. Overall, the self-attention and recurrent layers

improves model performance in terms of AUC/AUPRC values.
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In addition to network features and layers, we also explore input transformation using word2vec

embeddings [175]. The embedding representation is superior to a simple one-hot encoding in that

it learns statistical information of k-mer co-occurrence relationships in the input. We find that, in

contrast to one-hot encoding, these embeddings improve model performance in every architecture

variant (see Figure B.1 in Appendix B). However, this transformation comes with an inherent draw-

back: poor network interpretability. It is worth mentioning that for the problem at hand, accuracy

is undeniably helpful, nevertheless, model interpretability is of paramount importance. Our goal is

to understand how chromatin accessibility can help us elucidate the regulation of intron retention.

To this end, we convert the weights/filters of the convolutional layer to potential binding site mo-

tifs by using their activation within the input sequences. Unfortunately, in case of embeddings, the

average information content is significantly lower in contrast to the regular one-hot encoded input

(see figure 6.4(a)). Therefore, for all downstream motif analysis, we use the model with the input

represented as a one-hot encoded matrix.

In the motif analysis, we found that the zinc finger (C2H2 ZF) family of transcription factors

has a strong association with IR events: More than 50% of all motifs associated with IR have

significant hits to C2H2 ZF transcription factors. This is consistent with previous work reporting

that zinc finger transcription factors influence exon skipping [148]. Overall, this suggests that

the C2H2 ZF family plays an important role in the regulation of alternative splicing in general.

Non-IR events on the other hand exhibit enrichment of the Homoedomain and Sox families (see

Figure 6.4(b)).

To validate our predictions on the association of these TFs with IR, we used experimental

ChIP-Seq data for multiple zinc finger transcription factors: EGR1, MAZ, SP1, SP2, and ZNF263.

We observe much higher occupancy of these transcription factors in IR events in the K562 human

cell line, validating the model’s predictions. It is also useful to analyze where in an event these

regulatory proteins preferentially bind. Therefore, we generate binding affinity profiles for MAZ

and EGR1 across IR events. We observe that both transcription factors have stronger binding

preference in the flanking exons of retained introns. In contrast, in non-IR events, MAZ and EGR1
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exhibit higher affinity in the intronic region. This suggest a regulatory role of zinc finger TFs by

preferentially binding at specific regions of IR and non-IR events. MAZ4 elements—an element

that contains four copies of the MAZ protein binding sequence—have previously been reported to

influence alternative splicing [183]. This might be true for EGR1 as well; both MAZ and EGR1

have a decent binding site sequence similarity (see figure 6.4(c)).

In the next chapter, we analyze the cooperativity and interactions among the IR-enriched motifs

by employing a self-attention based deep learning model. We report numerous statistically signifi-

cant TF interactions in IR events, multiple of which have previously been reported in the scientific

literature. It follows that intron retention is regulated by a complex orchestration of transcription

factor interactions. Further wet-lab experiments are needed to validate these findings and provide

a solid foundation on how these proteins regulate intron retention, and AS in general.
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Chapter 7

A Self-Attention Model for Inferring Regulatory

Interactions

7.1 Introduction

In the previous chapter, we identified and validated the role of transcription factors—particularly

the C2H2 zinc finger family—in the regulation of intron retention in human. In order o capture a

comprehensive landscape of the regulation of alternative splicing, in this chapter, our goal is infer

interactions between transcription factors by interpreting the values learnt by self-attention layer

of our deep learning model.

The discovery that TFs work in tandem to regulate the expression of their targets [184] has

sparked the development of a variety of computational methods for predicting cooperativity among

TFs and other regulatory proteins by looking at regulatory element co-occurrences [185–191]. De-

spite the demonstrated ability of deep neural networks to extract regulatory signals directly from

sequence, there are very few studies that explore cooperativity between regulatory features in ge-

nomic data using these methods. Deep Feature Interaction Maps (DFIM) uses a network attribution

method called DeepLIFT [192] to estimate interactions between regulatory elements, tested for one

pair at a time [193]. The major drawback of DFIM is that it is computationally expensive: the in-

teractions are inferred in a separate post-processing step and involves recalculation of network

gradients. We note that the recent DeepResolve method infers feature importance and whether

a feature participates in interactions with other features, but does not infer pairs of interacting

features explicitly [194].

Recently, neural networks that use the concepts of attention and self-attention [110, 111] have

achieved remarkable success in natural language processing tasks, specifically in machine trans-

lation [12]. One of the strengths of attention is that it can capture associations between features
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regardless of the distance between them, addressing a major shortcoming of convolutional and re-

current networks. This is particularly useful for tasks in computational biology where our goal is

to identify regulatory elements and their associations/interactions in DNA or RNA sequences. The

value of attention for modeling transcription factor binding site prediction was recently demon-

strated, and their work was motivated by the greater interpretability of the resulting networks [112].

However, to the best of our knowledge, it has not been employed for inferring regulatory inter-

actions between TFs and other regulatory elements. To this end, we propose SATORI, a Self-

ATtentiOn based deep learning model to capture Regulatory element Interactions in genomic se-

quences. The primary components of the architecture of our model are a CNN layer and a multi-

head self-attention layer. Optionally, we also incorporate an RNN layer between the two primary

layers. The convolutional layer discovers features/motifs in the input sequences. The self-attention

layer then captures potential interactions between those features without the need for explicitly test-

ing all possible combinations of motifs. That enables us to infer a global landscape of interactions

in a given genomic dataset, without a computationally-expensive post-processing step.

We test SATORI on several simulated and real datasets, including data on chromatin acces-

sibility in 164 cell lines in all human promoters and genome-wide chromatin accessibility data

across 36 samples in Arabidopsis. Moreover, pertinent to this work, we use SATORI to infer TF

interactions involved in the regulation of intron retention. To compare our method to DFIM, we in-

corporate their Feature Interaction Scores (FIS) [193] into our framework. In all our experiments,

SATORI and FIS scoring return highly consistent sets of interactions, with SATORI returning a

much larger number of biologically confirmed interactions. Due to the relative paucity of experi-

mentally determined TF-TF interactions it is important to have multiple independent methods for

this task. We believe this work will assist researchers in improving the interpretability of complex

deep learning methods and providing actionable hypotheses for follow up experiments.
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Figure 7.1: Model architecture variants. We use a convolutional layer followed by a multi-head self-

attention layer (a); optionally, we add a recurrent layer between the two (b). The input in both cases is

a one-hot encoding of the DNA sequence. The output of the model is either be a binary or multi-label

prediction.

7.2 Methods

7.2.1 Model architecture

We present a self-attention based deep neural network to capture interactions between regula-

tory features in genomic sequences. Figure 7.1 depicts the two main architectures we explored in

our work. Note that the input to the model—DNA/RNA sequences—was represented as a one-hot

encoding: a sequence of length L is transformed into a matrix of size 4×L where each position in

the sequence is represented by a column in the matrix as a non-zero value at location corresponding

to one of the four DNA nucleotides.

The first component of our model is a CNN layer where a finite set of filters are scanned

against the input sequence/matrix. For more information on the convolutional layer, please refer to
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Chapter 3. Similar to the model architecture describe in the previous chapter, after the convolution

operation, we use ReLU as the activation function, followed by a max-pooling operation.

Optionally, as shown in Figure 7.1(b), we use an RNN layer following the CNN layer. RNNs

have an internal state that enables them to capture distant feature interactions in the input sequence.

Specifically, we employ a bi-directional RNN with Long Short-Term Memory (LSTM) units [109].

The core component of our network is a multi-head self-attention layer. Attention mechanism

can model dependencies within the input sequence regardless of their distance [12]. By doing so, it

guides the network to focus on relevant features within the input and ignore irrelevant information.

Pertinent to the problem at hand, a self-attention layer can help us identify interacting regions

within the input sequences. Consequently, we can capture interactions between regulatory events.

For more technical details on self-attention, refer to Chapter 3.

For multi-head self-attention, we concatenate the output of the N single-heads followed by

a linear transformation. The final output is then collapsed along the hidden (attention) layer di-

mensions through addition and normalized by the mean and the standard deviation of the result.

Empirically we find that this step is not only computationally efficient but also lead to better model

accuracy in comparison to just flattening the attention layer output. The final fully connected read-

out layer outputs the model’s prediction: either a binary or multi-label classification, depending

on the experiment. For binary classification, we use the standard cross entropy loss function. For

multi-label classification, we use the binary cross entropy with logits loss function:

L(y, ŷ) = −
1

C

C
∑

i=1

[yi log σ(ŷi) + (1− yi) log(1− σ(ŷi))] ,

where y is the vector of ground truth labels, ŷ are the network predictions, C is the number of

classes, and σ is the sigmoid function.
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Table 7.1: Summary of the datasets used in the four experiments we designed to test and analyze SATORI. The first two datasets have binary labels

whereas the last two experiments deal with a multi-label, multi-calss problem.

Experiment Dataset Description Size and Labels

1 Simulated Simulated DNA sequences 120,000 (total)

ELF1 & SIX5 embedded in pos. examples 40,000 (+), 80,000 (−)

ELF1 or SIX5 embedded in neg. examples

Random embeddings of AP3 and TAL1

2 TAL-GATA ChIP-Seq DNA sequences for TAL1, GATA1, 105,134 (total)

and GATA2 ChIP-peaks in K562. 25,134 (+), 80,000 (−)

Positive examples were peaks

that overlapped DHSs.

Negative examples were all other DHSs.

3 Human Promoter open chromatin DHSs overlapping the human promoters 20,613, across 164 cell types

4 Arabidopsis open chromatin DHSs/THSs across arabidopsis genome 88,245, across 36 samples

6
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7.2.2 Network training and evaluation

For model selection and optimization, we employ a random search based algorithm to tune

the network’s hyperparameters. For the convolutional layers we considered filter size, number of

filters, and size of window over which pooling is performed. For the multi-head attention layer

we tuned the dimensionality of the features generated, and the size of the output of the multi-head

attention layer. Details are provided in Table C.1 (Appendix C). To evaluate the model, we use

a simple strategy of splitting the data into 80%, 10%, and 10% for train, test, and validation sets,

respectively. To assess the model’s performance, Area Under the ROC Curve (AUC) is used. The

hyperparameters for the two architectures (see figure 7.1) are summarized in Table C.1 in Appendix

C. The package was implemented in PyTorch [195] and all the experiments were ran on a Ubuntu

server with a 12 GB TITAN V GPU.

7.2.3 Motif extraction

To interpret the deep learning model, we extract sequence motifs from the weights matrices

(filters) of the first convolutional layer, similarly to the methodology used in [13]. For binary clas-

sification problems, we use the positive test set examples that achieve a probability score greater

than 0.70. This cutoff was chosen as a good trade-off between the number of qualifying examples

and confidence in the prediction. We use all test set examples when dealing with a multi-class or

multi-label problems. Next, for each filter we identify regions in the set of sequences that activate

the filter with a value greater than half of the filter’s maximum score over all sequences. The result-

ing substrings are stacked and for each filter, a PWM is calculated using the nucleotide frequency

and background information. Sequence logos are generated using the WebLogo tool [164]. The

PWMs are searched against appropriate TF databases using the TomTom tool [179] with distance

metric set to Euclidean. For searching we use the human CISBP [178] and arabiodpsis DAP [196]

databases. In the benchmark experiments, we use custom TF databases, details of which are pro-

vided in Appendix C.
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Figure 7.2: Summary of the process of inferring interactions from self-attention layer values. For a given

example, we collapse the attention heads into a single matrix. Next, at each pair of positions, the corre-

sponding active CNN filters are identified and the attention value is assigned to the interacting pair. This is

repeated for all examples to generate interaction profiles for all filter-pairs. Finally, we use a background set

to test the significance of filter-filter interactions.

Recently, it has been reported that exponential activation functions such as Softplus in the

convolutional layer improve motif information content [182]. In our experiments this led to a

slight improvement in the information content of the CNN filters when the Softplus function was

used instead of ReLU activation (median information content = 4.12 with Softplus compared to

4.00 with ReLU).

7.2.4 Quantifying feature interactions

In this section we describe the process of inferring motif interactions from the self-attention

layer. The attention matrix for each head is calculated using Equation (3.11). Next, we collapse the

N heads to a single d×d matrix by taking the maximum at each position (see Figure 7.2). This step

summarizes the self-attention values from multiple subspaces associated with the corresponding

single-heads to a single, attention profile.
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The attention matrix provides information about interactions between positions in the sequence.

That is next converted into interactions between filters by retrieving the filters that are active in

those positions. Finally, for each identified filter-filter interaction, we generate the attention profile

across all testing examples. For a given pair, this profile consists of a vector of its attention values

at positions where the corresponding filters were active. An interaction pair is discarded if its

maximum attention value is below a certain threshold. By default we used the value 0.10; in the

human promoter data we used 0.08 to increase sensitivity. We note that the distribution of attention

values tends to be bi-modal, with most of the values close to 0 or 1 (see Figure C.1, Appendix C).

Filter-filter interactions are then translated to motif interactions by picking the most significant

TomTom hits in the appropriate TF database. Note that we might not find significant matches for

every CNN filter in the database; it can be expected that our model is capturing interactions of

un-characterized regulatory elements. However, in this paper we focus on the interactions between

known TFs. To test the statistical significance of motif interactions, we first generate their attention

profiles in the background data (described next). Then the non-parametric Mann-Whitney U Test

is used to calculate their significance. All the p-values are adjusted for multiple hypothesis testing

using Benjamini-Hochberg method [165].

Background selection

As mentioned above, to test the statistical significance of regulatory interactions, we need to

compare them to a background. We use a biologically relevant background depending on the

experiment:

• For binary classification problems, the negative test set is used as the background.

• For multi-label, multi-class or regression problems we generate a background set by shuf-

fling the test set sequences while preserving their di-nucleotide frequencies. Next, in the

shuffled sequences, we randomly embed motifs that are generated based on the CNN filters,

interpreted as probability distributions, taking into account the number of times a filter is

active in the original test sequences.
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Quantifying interactions using FIS scoring

To infer interactions between motifs using the FIS method, we closely follow the strategy

described in [193]. Given a test sequence and all of its activated first layer CNN filters, first a

source motif is selected. The remaining filters serve as the target motifs for the given source motif.

Using Integrated Gradients [197], we calculate the attribution scores for all the target motifs in the

given test sequence. The attribution score determines how important a motif is for the model to

accurately predict the test example. Next, the source motif is mutated based on the GC-content

of the given sequence and the attribution scores are recalculated for all targets. Finally, to infer

interactions, for each source and target pair, the FIS score is calculated as the difference between

the attribution scores for each target motif, before and after mutating the source motif. Intuitively,

if modifying the source motif affects the attribution of the target motif, this suggests a potential

interaction, and the magnitude of the change in attribution scores is used to quantify this potential.

We compute FIS scores for all unique pairs of source and target motifs across all test sequences

and identify statistically significant interactions using the the same approach used in SATORI (see

Figure 7.2).

Selecting test examples

To quantify interactions using SATORI or the FIS-based approach, we use the high-confidence

predictions of the model. For binary classification, we pick all positive examples that are as-

signed prediction confidence above a specified threshold. We use a threshold of p = 0.70 in our

experiments. For the background examples, we pick all the negative test examples that score be-

low 1 − p. In case of the multi-label classification problem, we pick our test examples based on

the precision of the model’s prediction probabilities: for a test example to qualify, the precision

value—calculated using the given labels and their model assigned probabilities—must be above

a specified threshold (default precision threshold = 0.50). We note that for FIS scoring of multi-

label classification problems, we only use the attribution values of the true positive predictions.

These values are summed and used in calculating the final FIS score.

69



7.2.5 Data collection and processing

We use multiple datasets to test our model’s ability to capture interactions between regulatory

elements. The datasets are summarized in Table 7.1, and specific details are provided in the Meth-

ods section of the supplementary material. As mentioned earlier, we also used SATORI with the

IR DHSs; more information on the processing of that dataset can be found in the Methods section

of Chapter 6.

7.3 Results and Discussion

7.3.1 Benchmark 1: embedded motif interactions in simulated sequences

In this experiment we used SATORI to test if it can recover interactions embedded in sim-

ulated DNA sequences. This test served as a benchmark in order to compare our model to the

recently published DFIM method [193]. We used a very similar approach to theirs when creat-

ing the simulated dataset: 120, 000 random DNA sequences were generated; in 40, 000 sequences

we embedded motifs of the transcription factors SIX5 and ELF1. This simulated an interaction

between the two TFs since we required both to be present in every sequence. We labelled these

sequences as positive examples. In the remaining sequences that serve as negative examples, we

embedded only one of the two motifs in each sequence. In addition, motifs of TAL1 and AP3 were

embedded at random across the whole dataset.

Not surprisingly, both variants of our model achieved perfect classification accuracy on the test

set for this data. We then analyzed the attention layer weights and inferred statistically significant

motif interactions and found that all the significant interactions returned by our model involve

SIX5 and ELF1 as expected. These interactions are summarized in Table C.2 (Appendix C).

7.3.2 Benchmark 2: Inferring TAL-GATA motif interactions from ChIP-

Seq data

The TFs TAL1 and GATA1 have been reported to interact: GATA1 requires a prior or simul-

taneous binding of TAL1 before it can bind DNA [198]. To investigate these interactions in this
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Table 7.2: The most frequent interacting families of human transcription factors in the TAL-GATA ChIP-

peaks in human K562 cell-line. All interactions are significant with adjusted p-value < 0.05.

TF Family Interaction Frequency Percent of total interactions

C2H2 ZF←→ CxxC 170 14.36%

Homeodomain←→ C2H2 ZF 121 10.22%

C2H2 ZF←→ C2H2 ZF 90 7.60%

GATA←→ C2H2 ZF 79 6.67%

Homeodomain←→ CxxC 72 6.08%

C2H2 ZF←→ Sox 62 5.24%

C2H2 ZF←→ bHLH 53 4.48%

GATA←→ CxxC 51 4.31%

Sox←→ CxxC 39 3.29%

C2H2 ZF←→ THAP finger 21 1.77%

CxxC←→ bHLH 19 1.60%

Nuclear receptor←→ C2H2 ZF 19 1.60%

GATA←→ bHLH 18 1.27%

Homeodomain←→ bHLH 17 1.44%

SAND←→ C2H2 ZF 17 1.44%

experiment, which follows a similar experiment performed by the authors of DFIM, we formu-

lated a binary classification problem where the positive set consisted of sequences of the TAL1,

GATA1, and GATA2 ChIP-Seq peaks that overlapped regions of open chromatin (DHSs) in the

human K562 cell-line. For the negative set, sequences of all other K562 DHSs that didn’t overlap

any of the ChIP-Seq peaks were used. This experiment serves as another benchmark for our model,

and was also used by Greenside et al. to test their model’s ability uncover interactions between

TAL1 and GATA1/GATA2 [193]. Further details on the dataset are provided in Appendix C.

We trained both variants of our model on this dataset; in this harder dataset the variant with

an RNN layer performed much better with an AUC of 0.94 on the test set compared to 0.85 for

the model without an RNN. The authors of DFIM achieved similar accuracy using five layers of

convolution. Please note that we do not seek to demonstrate better model accuracy. Our focus

is on model interpretability, which we seek to achieve without compromising in that regard. We

recovered multiple significant filter-filter interactions that mapped to TAL1 and GATA motifs with

highly significant p-values (see Table C.3 in Appendix C), demonstrating the ability of our model

to recover in-vivo interactions between TFs.
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Since the ChIP-Seq peaks of TAL and GATA transcription factors are occurring in regions of

open chromatin, it is highly likely that in those regions, other regulatory elements/TFs are active

and interacting with each other. Therefore, we also let SATORI search for interactions among

all known human transcription factors and found numerous other interactions. Table 7.2 summa-

rizes the 15 most frequent TF family-family interactions, consisting predominantly of interactions

between members of the C2H2 ZF, Homeodomain, CxxC, and GATA families (see Table C.7 in

Appendix C for the list of individual TF interactions). An interesting observation here is that the

interactions between the GATA and bHLH (TAL1) families are not the most frequent, despite the

fact that the model used their ChIP-Seq peaks. This is likely because of the differences in size of

these TF families: the C2H2 ZF and Homeodomain families are the largest TF families in humans,

whereas bHLH and particularly GATA, are much smaller in size.

Because of the similarity between some TF motifs, the matching between filters and motifs is

not without errors. In this second experiment GATA was predicted to interact with TCF15, which

has a motif that closely resembles that of TAL1. In fact, both of them belong to the same bHLH

family. Figure C.2 in Appendix C shows the similarity between these motifs.

7.3.3 The TF interaction landscape across human promoters

In this experiment we investigated regulatory interactions between TFs in all human promoter

regions using DNase I hypersentivity data (DHSs) across 164 immortalized cell lines and tissues.

This experiment was based on Kelley et al’s work where they predicted chromatin accessibility

from sequence information alone across the entire human genome [13]. The labels in this data

represent presence/absence of a given DHS across each of the 164 cell lines, and is a multi-label

classification problem. We trained both network variants (see figure 7.1) and observed that with the

optional RNN layer, the network performed better in terms AUC scores. In Appendix C, Figure C.3

compares the accuracy for each of the 164 cell lines for both variants of the architecture.

The trained network yielded filters that matched 93 TFs with known motifs (counting only

filters that had information content greater than 3.0). Among those 93 TFs, our model identified
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Figure 7.3: The most frequent TF interactions in human promoters (a). The distribution of TF-TF interac-

tion distances (b).

234 pairs of motifs that interact, with a total of 1250 statistically significant interactions. The 20

most frequent interactions are shown in Figure 7.3(a). For the complete list, refer to Table C.8

(Appendix C). We also looked at the distribution of the distances between interacting motifs, and

observed that, as expected, interactions tend to occur in close proximity with a median distance of

interaction of 168 bp (see Figure 7.3(b)). Overall, the Homeodomain, C2H2 ZF, and CxxC families

were the most frequent families of interacting TFs (see Figure C.5 in the appendix). Finally, it

is worth mentioning that for twelve interactions out of the total of 234, we found evidence in

the TRRUST database [3] which lists only 58 interactions among the 93 TFs (see Table C.4 in

Appendix C for details). This overlap is statistically significant with a p-value of 4.66×10−7 using

the hypergeometric test.

We note that in this work we only analyzed interactions between motifs of known TFs. Not

all filters can be mapped to characterized regulatory proteins. In this dataset, TomTom returned no

significant matches for 80 out of the CNN filters with motif information content greater than 3.0.

The interactions of such filters require further investigation to discover the regulatory molecules

associated with them.
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As mentioned above, the motif matching results returned by TomTom are noisy and imperfect.

For example, some of the statistically significant matches are clearly incorrect, as shown in Fig-

ure C.4 (Appendix C). However, this is not a shortcoming of our model, but rather a limitation of

the interpretation of filter-filter interactions.

7.3.4 Genome-wide regulatory interactions in arabidopsis

We extended our analysis to plants by designing a similar experiment as described in the pre-

vious section. More specifically, we predict chromatin accessibility using sequence information

alone across 36 arabidopsis samples from recently published arabidopsis DNase I-Seq and ATAC-

Seq studies (GEO accession numbers provided in the Supplementary Methods section in Appendix

C). Like the previous dataset, this too is a multi-label prediction problem, where the labels indi-

cates whether a given region has a peak in each of the 36 samples of DNase I-Seq and ATAC-Seq.

We trained both variants of our model and similarly to the other datasets, the network that included

an RNN layer performed slightly better in terms of median AUC across samples (0.86 compared

to 0.85).
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Figure 7.4: The regulatory interaction landscape in accessible chromatin in the arabipdosis genome. The

most frequently interacting families of plant transcription factors (a). The distribution of distances between

inferred TF-TF interactions (b).
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In the next step, we investigated genome-wide regulatory interactions in those regions of open-

chromatin. The trained network yielded 189 filters with information content above 3.0, and we ob-

tained 100 unique matches for those filters in the DAP-Seq arabidopsis TF database [196]. Among

these 100 TFs, our model identified interactions between 230 pairs of TFs with a total of approx-

imately 1400 statistically significant interactions involving diverse plant transcription factors (see

Figure 7.4(a)). G2like, MYB, C2C2dof, and AP2 were the most frequently represented TF fami-

lies in those interactions. Similarly to our findings in human, plant TF interactions tend to occur

in relative proximity (median distance = 138 bp) as shown in Figure 7.4(b). Arabidopsis does not

have a database of known interactions between TFs, so our results could not be validated. Targeted

experimental validation of these predictions can thus significantly enrich our knowledge of the

combinatorial regulation of gene expression in plants.

7.3.5 Comparison: SATORI and FIS-based interactions

To compare our model to DFIM [193], we incorporated its FIS scoring method as a feature in

our framework and tested it on the three real-world datasets. A key observation is that among the

top scoring interactions predicted by the two methods there is very high overlap: In the TAL-GATA

dataset the top 15 interactions predicted by FIS scoring were also predicted by SATORI; for the

human promoter dataset 14 out of the top 15 FIS predictions were detected by SATORI; finally,

for the arabidopsis genome-wide dataset, nine out of the top FIS predictions were predicted by

SATORI. At the TF family level, we observed perfect agreement in the top ten predictions. These

results are summarized in Figure 7.5. The agreement on the top predictions suggests their high

likelihood of being biologically relevant, and make them promising candidates for experimental

validation.

Among the three real-world datasets the lowest agreement was observed for the arabidopsis

dataset. This is likely due to its complexity, as it probes interactions on a genome-wide scale

across all accessible regions of the arabidopsis genome. Nevertheless, there is a high level of

agreement at the level of TF families. We also compared the computation times for the two meth-
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(a) (b) (c)

(d) (e) (f)

Figure 7.5: Common interactions in the top predictions of SATORI and FIS. Interactions predicted by FIS

are sorted by frequency. Those predicted by both methods are shown in blue, and ones predicted only by

FIS are shown in red. Top predictions are shown for the TAL-GATA dataset (a) the human promoter dataset

(b), and the genomewide arabidopsis dataset (c). For each experiment, the 10 most frequent TF family

interactions are shown in (d), (e), and (f) respectively.

ods. As discussed earlier, unlike the FIS method, SATORI does not require re-calculation of the

gradients to estimate the interactions, leading to much faster computation times: it processed all

motif interactions 8 to 20 times faster than FIS (see Figure 7.6).

In our experiments SATORI reported more interactions for the human and arabidopsis chro-

matin accessibility datasets, while the FIS method identified more motif interactions for the TAL-

GATA experiment (see Table C.5 in Appendix C). For the human promoter dataset, we searched the

interactions identified by the two methods in the TRRUSTv2 database. Interestingly, for SATORI

we found matches for 12 TF-TF interactions; in comparison only a single FIS interaction was

found in the TRRUSTv2 database. Due to the small number of experimentally verified interac-

tions, more extensive wet-lab validation is needed to test the quality of the reported interactions by
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Figure 7.6: Run time in minutes for SATORI and FIS-based interaction estimation for the four datasets.

the two methods. High-frequency interactions consistently detected by both methods can be used

as the most promising candidates for experimental follow-up.

7.3.6 Regulatory interactions in IR events in human

After thoroughly testing our method on multiple datasets, we used SATORI to predict interac-

tions involved in the regulation of intron retention. We were able to identify 241 unique interac-

tions in the DHSs occurring in IR events. The top 20 most frequent interactions are summarized

in figure 7.7(a). The complete list of significant TF interactions can be found in Table C.9 in

the appendix. As expected, most of the interacting transcription factors belong to the C2H2 ZF

family. We also observe interactions between C2H2 ZF and CxxC, Nuclear receptor, and bHLH

families of transcription factors. In Appendix C, Figure C.6 shows the most frequently interacting

TF families. Moreover, we looked at the average interaction distance and found out that TF motifs

preferentially interact in proximity. This is evident from the distribution of interaction distances in

figure 7.7(b); the median interaction distance was 164bp.
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Figure 7.7: The most frequent transcription factor interactions in intron retention events are depicted in (a).

A majority of these interactions involve C2H2 ZF family. In (b), the distribution of distances is shown for

all the statistically significant interactions.

Besides SATORI, we used FIS based scoring method and identified 253 unique interactions

in the DHSs occurring in IR events. Interestingly, out of the 15 most frequent interactions, 13

were also predicted by SATORI, as shown in figure 7.8(a). Finally, we searched the significant

interactions in TRRUSTv2 [3], a database that annotates TF regulatory roles and their interactions

by text-mining previously published literature. As summarized in Table C.6 (Appendix C), 14

of the TF interactions predicted by SATORI were annotated in the database. In contrast, only 7

FIS interactions were found in the TRRUSTv2 database, indicating higher accuracy of SATORI

in identifying relevant TF-TF interactions. As previously mentioned, for experimental follow-up,

high-frequency interactions that are consistently detected by both methods can be used as the most

promising candidates.

7.4 Conclusions and Future Work

In this work we presented SATORI — a method for extracting interactions between the learned

features of an attention-based deep learning model. Unlike existing methods, it does not require

any post-processing and uses the sparsity of the attention matrix to infer the most salient interac-
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(a) (b)

Figure 7.8: Common interactions in the top predictions of SATORI and FIS for the DHS occupancy in IR

dataset are shown in (a). The 10 most frequent TF family interactions are shown in (b).

tions. We compared SATORI to the FIS interaction estimation method and reported a 10x speed-

up in its computation time in most cases. Furthermore, the top predictions made by both methods

show very high overlap, suggesting such interactions as promising targets for follow-up biological

experiments. This high overlap, despite the big difference in the approach provides good evidence

for their potential biological relevance.

Pertinent to the problem at hand, SATORI identified numerous TF interactions with a poten-

tial role in the regulation of intron retention. A majority of these interactions were between the

members of C2H2 zinc finger family of transcription factors. It follows that regulation of IR is

orchestrated by complex interactions among transcription factors, predominantly from the zinc

finger family. Further wet-lab experimentation is needed to validate these findings.

The proposed method can be extended in several ways. In this work we focused on globally

scoring interactions between TFs with known PWMs. This is in contrast to feature attribution

methods that score the contribution of features in genomic regions of interest. We believe that the

sparsity of the attention matrix could make it useful as an attribution method as well, but further

experiments are required in order to validate that. SATORI is able to detect interactions between
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filters, even if they do not correspond to known TFs. Furthermore, the proposed methodology is

flexible enough to be applied to deep networks that integrate multiple data modalities, and has

potential applications outside of computational biology. For example, it can allow discovery of in-

teractions between different characteristics of chromatin structure to provide a better understanding

of the relationship between epigenetic markers such as histone modifications, DNA methylation,

and nucleosome positioning and their contribution to the regulation of alternative splicing.
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Chapter 8

Conclusions

In this work, we investigated the regulation of alternative splicing—primarily, intron retention—

in both plants and animals, by leveraging from various epigenetic data sources. Our contributions

are summarized below:

• We investigated the role chromatin accessibility in the regulation of intron retention in two

plant species: arabidopsis and rice. Our findings suggested a more open and accessible chro-

matin in IR events compared to the non-IR events. Moreover, using a continuous HMM, we

identified potential footprints in the regions of open chromatin. By quantifying the enriched

sequence elements in the aforementioned footprints, we compiled a list of binding site motifs

associated with the regulation of intron retention in both plant species.

• In human, we successfully predicted chromatin accessibility in IR events using a deep learn-

ing model. By analyzing the first convolutional layer filters, we identified numerous human

transcription factors involved in the regulation of intron retention, a majority of which be-

longed to the C2H2 ZF family. These findings were validated using publicly available TF

ChIP-Seq data and in wet lab experiments using candidate IR events.

• We developed a self-attention based model (SATORI) to infer cooperativity and interac-

tions between regulatory proteins. SATORI successfully identified significant interactions

between transcription factors across multiple datasets. We also used SATORI to identify TF

interactions involved in the regulation of intron retention in human.

8.1 Open Problems

Next we discuss the open problems in this area and towards that end, the tentative experimenta-

tion that we have conducted which show promising results. We report these findings in this chapter

as well as the accompanying supplementary material in Appendix D.
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8.1.1 Predict chromatin accessibility in AS in plants

It is also crucial to understand how AS is regulated in plants. However, in the paradigm of

deep learning, one of the problems associated with plant datasets is the far fewer number of AS

events to begin with. For instance, in arabidopsis (TAIR10 genome annotations), there are roughly

3500 IR events and around 1500 of them have a DHS/THS overlap. We trained our deep learning

model using that dataset and observed poor performance, slightly better than random guessing

(AUC ≈ 0.55). Nevertheless, using the same data with a gkm-SVM model gave an AUC score of

0.68. This shows that in plants, the overlapping DHSs/THSs potentially have IR specific regulatory

elements (binding sites). Therefore, with sufficiently large dataset, we believe the deep learning

model can successfully predict chromatin accessibility in AS events in plants. There are different

ways to address this issue:

• Use RNA-Seq data along with gene models to find novel splicing events. Splicegrapher [1],

for example, can take advantage of different expression datasets along with the genome

annotations and call significantly more AS events.

• Design a multi-task deep learning model that use data from several plant species. In Chap-

ter 5, We reported a significant number of IR hexamers that exhibited a footprint and were

common between rice and arabidopsis. It follows that for AS in plants, the regulatory ele-

ments might not be too different. Therefore, by sharing datasets from different plant species

in a multi-task learning setting will not only improve the model’s performance but also cap-

ture the overall plant splicing code.

8.1.2 Investigate epigenetic regulation of other forms of AS

In this work, we primarily focused on intron retention for two reasons: first, it is the most

prevalent form of AS in plants and second, it is not well studied and has remained greatly un-

derappreciated. Nevertheless, it is also crucial to understand how chromatin plays its role in the

regulation of other forms of AS: exon skipping, alternative 3’ and 5’ splicing. We have already

run experiments using our deep learning model and the preliminary results are promising for the
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aforementioned types of AS, particularly alternative 5’ splicing. Table 8.1 summarize the results

in terms of AUC scores.

Table 8.1: Preliminary results in terms of AUC scores for the three types of alternative splicing (ES, A3,

and A5) data used with our deep CNN model. The table also shows the number of positive examples for

each dataset. Note that the number of negative examples were roughly twice the size of the positive set.

AS type No. of positive examples AUC

Exon skipping 33705 0.7

Alternative 5’ splicing 11646 0.83

Alternative 3’ splicing 15570 0.73

From the table, we can see that the model exhibits decent AUC of 0.83 while predicting DHS

occupancy in alternative 5’ site splicing. In order to improve the model’s performance in exon

skipping and alternative 3’ site splicing, one future direction is to extract the biologically relevant

AS events. For example, in case of exon skipping, we used DHSs that overlapped the alternatively

spliced exon. However, it has been shown that the regulatory elements can be found not only

in the flanking introns but even the neighboring exons, upstream and downstream of the exon of

interest [40]. We believe by using DHSs that occur in the extended regions around the alternatively

spliced exons will improve the model performance and give us better information (in terms of

binding site motifs) to understand the regulation of exon skipping.

8.1.3 Use evidence from other chromatin marks

Our findings suggest that DHS occupancy is crucial in understanding how AS is regulated in

both plants and animals. Nevertheless, in Chapter 5 we also reported an association between in-

tron retention and DNA methylation. Similarly, Braunschweig et al. [51] observed enrichment of

certain histone modifications in the retained introns. It follows that it is also useful to incorpo-

rate evidence from several other chromatin marks (histone modifications, nucleosome occupancy,

DNA methylation etc.) to better model the regulation of AS in both plants and animals. It is

worth mentioning that we successfully predicted histone modification (H3K4me3) from sequence

information alone, in a Basset [13] like experiment that used data from four cultivars of sorghum
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under control and stress conditions, with an average AUC of 0.83. It follows that these chromatin

markers can be used to assist our model better capturing the regulation of AS.

One way to incorporate data from chromatin marks directly into the deep learning model is by

using the method described by Hiranuma et al. [199]. To predict transcription factor occupancy in

the promoter region of a gene, they used chromatin accessibility data from an ATAC-Seq exper-

iment and added it to the one-hot encoded representation of the input, at per-base level. This is

particularly useful since to learn the underlying rules, their model had access to extra information:

how “accessible” is the chromatin at each of the nucleotides in the DNA sequence. A significant

improvement in performance was reported over DeepSea [100] which, in a similar problem, uses

sequence information alone.

8.1.4 Towards a comprehensive epigenetic splicing code: tissue and condi-

tion specific splicing

To compile a universal code—and set of rules—that govern the regulation of alternative splic-

ing, it is important to understand how AS is regulated across different cell-lines/tissues (eg. liver

vs. brain) or samples under different conditions (eg. heat stressed vs. control samples). In a

way, this is an extension of differential gene expression which has been widely studied in both

plants and animals. Differential AS has been reported in several studies; the major type of AS

investigated are exon skipping in animals and intron retention in plants [174, 200]. Recently, we

explored differential AS across two drought resistant and drought susceptible lines (cultivars) of

sorghum [201]. In Appendix D, Figure D.1 shows the genome-wide occurrence of differential IR

and ES events across control and treated samples in all four lines of sorghum. It shows that in

different cultivars of sorghum, under regular and stress conditions, there is a strong evidence of

differential AS.

To this end, our tentative experimentation suggest a strong association between differential

intron retention and chromatin accessibility in human. Figure 8.1 depicts this association in two

differential intron retention events in human cell lines. For a complete summary across eight
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different cell-lines, refer to the Table D.1 in Appendix D. These preliminary results signify a need

for further experimentation in order to elucidate the influence of chromatin state (accessibility,

modifications, and arrangement) on the differential regulation of alternative splicing.

(a) Same Direction

(b) Opposite Direction

Figure 8.1: Differential occurrence of a DHS in a DIR event when comparing (a) the cell-lines K562 and

H1-hESC. The DIR event is evident from the RNA-seq coverage plots in two biological replicates of the

corresponding cell-lines. The DHS is overlapping the up-regulated IR event (K562) while entirely absent in

the down-regulated event (H1-hESC). That is, the differential DHS and IR event are in the same direction.

The opposite direction DHS and IR event are shown in (b) for K562 and HCT-116 cell-lines. This plot is

generated using Integrated Genome Viewer [6].
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Appendix A

Chapter 5 Supplementary Material

Figure A.1: Average DNase I-seq coverage profile is shown across IR and IE events in the four samples:

Arabidopsis leaf (a) and flower (b); rice leaf (c) and callus (d). The profile is centered at the 5’ and 3’ splice

sites (indicated by “0” on x-axis in the split figure), and goes 50bp into the intron and 100bp into the flanking

exons. Note that we chose all three parts of an IR/IE event to be at least 100bp. These profiles do not include

events that come from the first intron of a gene. Moreover, to avoid bias, for each IR event, we selected IE

events with similar relative positions within the gene.
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Figure A.2: Average DNase I-seq coverage profile for the four samples: Arabidopsis leaf (a) and flower

(b); rice leaf (c) and callus (d). In each case, a pool of genes up to 5000bp in length are used (roughly

95% of total genes). The profile encompasses the gene body and 1000bp upstream of the transcription start

site represented by ‘0’ on the x-axis. Each figure shows the profile for three sub-categories: genes with

first intron retained (purple), genes with intron(s) retained anywhere else but the first one (red), and genes

without any retained intron (green).
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Figure A.3: The complete state diagram for the continuous HMM used to predict hexamers with potential

footprints. The diagram shows all 13 states. The HMM consists of three modules, to enable us to model

leading/trailing footprints in addition to the primary footprint. Each module has copies of the five core states.

The size of the arrow (transition) as in BG0 −→ DN and UP −→ BG3 represents higher probabilities

than the other transitions from the same state. These probabilities are highlighted in the supplementary table

4. This is used to emphasize the primary footprint detection by our model in all cases. The figure also

summarizes the HMM states in the rectangular box to the right.
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Figure A.4: Positional preference is shown for AT-rich hexamers (top), GC-rich hexamers (middle) in 3’

exon region of IR events, and all hexamers in intron region of IE events (bottom). All hexamers mentioned

in the figure exhibit a footprint.
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Figure A.5: Motifs generated after clustering the IR and IE enriched hexamers exhibiting a footprint across

in leaf samples in both species. Motif logos were generated using the weblogo tool. In the table, these

motifs are grouped based on the type of event (IR and IE) they are enriched in and part of the event from

which their respective hexamers were found (5’ exon, intron, and 3’ exon).
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Table A.1: Alignment statistics for different Arabidopsis thaliana (AT) and rice samples. Note that the

aligned reads went through preprocessing and then aligned using tophat2 for RNAseq and bowtie/STAR

for DNase I-seq (see Methods in the main text). The reads in both cases (DNase I-seq and RNA-seq) were

filtered for multiple alignments and filtered for spurious junctions for the RNAseq. Also, in all samples,

biological and technical replicates were pooled. As mentioned in the main text, we used pre-aligned DNase

I-seq and RNA-seq from [2].

Type of data Sample Total Reads Aligned reads (Unique/Filtered)

DNase I-seq
Rice (leaf, control) [143] 42593905 29260669 (68.70%)

Rice (callus, control) [143] 57037438 39867789 (69.90%)

RNA-seq
Rice (leaf, control) [143] 40206025 37364769 (92.93%)

Rice (callus, control) [143] 29634838 27100117 (91.45%)

Bisulfite-seq
Arabidopsis [157] 41177470 16559509 (40.20%)

Rice [158] 130128482 62386292 (47.90%)

Table A.2: Hotspot was used to call DHS peaks in all DNase I-seq samples. Rice samples, on average, had

more DHS peaks identified. Since hotspot can’t handle replicates, we pooled DNase I-seq libraries.

S.No. Sample # of DHSs

1 AT (leaf) [2] 45,665

2 AT (Flower) [2] 42,782

3 Rice (Leaf) [143] 69,277

4 Rice (Callus) [143] 107,092
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Table A.3: Number of IR and IE events extracted at different coverage levels are listed below. Evidence

from known gene models and RNA-seq data was used to extract the events as described in the Methods

section in the main paper.

Sample Expression Level IR Events IE Events

AT (Leaf) [2]

1 3804 63538

5 3599 50666

10 3196 38568

20 2397 21426

AT (Flower) [2]

1 5007 64005

5 4856 54665

10 4568 47229

20 3811 33936

Rice (Leaf) [143]

1 3882 33945

5 3579 24089

10 3254 17850

20 2619 10522

Rice (Callus) [143]

1 2758 40757

5 2426 30514

10 1980 23189

20 1399 13446
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Table A.4: DHS overlap statistics are shown for the four samples in both IR and IE events at the four levels of read coverage. For both IR and

IE events, the number of DHS (peaks) overlapping the events is shown at both individual parts (5’ exon, Intron, and 3’ Exon) and the whole event

(shown in the column titled “All”). Finally, the fisher exact test p-value is shown for each case, indicating that the overlap is significant in IR events

in contrast to IE events.

Sample Exp. Level
IR Events IE Events

Fisher Pval
5’ Exon Intron 3’ Exon All 5’ Exon Intron 3’ Exon All

AT (Leaf) [2]

1 61 61 224 346 498 614 1102 2214 9.55E-69

5 59 61 220 340 384 448 839 1671 9.57E-76

10 56 59 202 317 288 331 630 1249 1.92E-76

20 45 51 172 268 173 189 381 743 1.07E-66

AT (Flower) [2]

1 70 70 308 448 475 484 1348 2307 1.44E-78

5 66 69 300 435 354 363 1121 1838 2.41E-84

10 63 68 285 416 282 281 946 1509 3.36E-88

20 56 64 259 379 192 194 653 1039 9.43E-93

Rice (Leaf) [143]

1 66 58 308 432 182 172 413 767 3.00E-143

5 62 57 297 416 114 96 286 496 6.77E-148

10 58 57 290 405 75 66 219 360 2.92E-147

20 44 50 248 342 37 33 130 200 2.29E-123

Rice (Callus) [143]

1 67 61 339 467 404 378 1404 2186 3.43E-112

5 54 54 319 427 244 191 1030 1465 1.40E-120

10 42 45 290 377 164 120 766 1050 4.77E-122

20 34 40 225 299 99 68 466 633 3.61E-104

1
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Table A.5: The HMM’s transition probabilities for all 13 states. The probabilities were derived from the training data (8 hexamers that were manually

detected to have a footprint). Some of the probabilities were manually tweaked to adjust for the noise in our data. The highlighted probabilities (as

described in figure 2) are relatively higher than the other transition from the same state. This is to force our HMM to prioritize detection of the

primary footprint.

States BG0 UP FPS DN BG1 UP FPP DN BG2 UP FPS DN BG3

BG0 0.996 0.000037239 0 0 0 0.004 0 0 0 0 0 0 0

UP 0 0.042 0.958 0 0 0 0 0 0 0 0 0 0

FPS 0 0 0.879 0.121 0 0 0 0 0 0 0 0 0

DN 0 0 0 0.036 0.964 0 0 0 0 0 0 0 0

BG1 0 0 0 0 0.990 0.010 0 0 0 0 0 0 0

UP 0 0 0 0 0 0.042 0.958 0 0 0 0 0 0

FPP 0 0 0 0 0 0 0.879 0.121 0 0 0 0 0

DN 0 0 0 0 0 0 0 0.036 0.001 0 0 0 0.963

BG2 0 0 0 0 0 0 0 0 0.990 0.010 0 0 0

UP 0 0 0 0 0 0 0 0 0 0.042 0.958 0 0

FPS 0 0 0 0 0 0 0 0 0 0 0.879 0.121 0

DN 0 0 0 0 0 0 0 0 0 0 0 0.036 0.964

BG3 0 0 0 0 0 0 0 0 0 0 0 0 1

1
1
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Table A.6: Emissions for the all HMM’s 13 states are listed. These emissions are modeled by Gaussian

distributions with the corresponding mean and standard deviation (std) shown. Note that these values are

derived after standardization of raw hexamer profile coverage to the background score calculated from the

training data. The BG1 and BG2 (intermediary/secondary backgrounds) were calculated (and tweaked)

based on the measured BG0 and BG3 values (somewhere in between the two).

States
Arabidopsis Rice

mean std mean std

BG0 0.370681027 0.145492001 0.530290538 0.231679565

UP -1.103074051 0.903519929 -1.149144567 0.856341604

FPS -2.726769331 0.034938222 -2.638014215 0.03536976

DN -1.359386756 0.969790822 -1.290317173 0.832150009

BG1 0.490681027 0.145492001 0.480290538 0.231679565

UP -1.103074051 0.903519929 -1.149144567 0.856341604

FPP -2.726769331 0.034938222 -2.638014215 0.03536976

DN -1.359386756 0.969790822 -1.290317173 0.832150009

BG2 0.490681027 0.145492001 0.480290538 0.231679565

UP -1.103074051 0.903519929 -1.149144567 0.856341604

FPS -2.726769331 0.034938222 -2.638014215 0.03536976

DN -1.359386756 0.969790822 -1.290317173 0.832150009

BG3 0.629707395 0.228739766 0.476770207 0.27267674

Table A.7: The overlap stats between all significantly enriched arabidopsis IR/IE hexamers and transcription

factor motifs from Plant Cistrome Database are summarized below. The actual overlaps are provided in the

Additional file 3.

AS Type Part Total Motifs Total Hexamers Overlapping Hexamers

IR

5’ Exon

410

13 6

Intron 2 1

3’ Exon 246 80

IE Intron 19 9
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Appendix B

Chapter 6 Supplementary Material

B.1 Generating transcription factor family distributions

To generate figure 1 in the main text, we used the original Basset [13] with all DHSs (2 million)

across 164 human cell lines. The dataset was split into 80%, 10%, and 10% for training, validating,

and testing the model. Once the model was trained, we followed the motif analysis pipeline, as

described in [13]. We analyzed first CNN layer filters to generate motifs for three different test

sets: DHSs that overlapped the human promoter, intragenic, and intergenic regions, separately.

Next, for each CNN filter, we inferred enrichment by counting all of its activations across the

sequences coming from one of the three aforementioned regions, separately. Finally, the enriched

CNN motifs in each set were mapped to human CISBP database [178] using TomTom tool from

MEME suite [202]. In the final figure, we only used families of those TF motifs which had a

significant match with adjusted p-value < 0.05.
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Figure B.1: The distribution of different transcription factor ChIP-Seq peaks in the promoter, intragenic, and

intergenic regions of the human genome. The ChIP-Seq peaks for the corresponding TFs were downloaded

from the ENCODE database [14].

gkmSVM Basset Basset-E MHA CNN-MHA RNN-MHA CNN-RNN-MHA

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

A
U

C
 s

co
re

Figure B.2: AUC box and whiskers plot is shown for the different network architectures and gapped kmer

SVM, using the leave-one-chromosome-out strategy. For each model, the green line in the box represents

median AUC across the 22 chromosomes whereas average AUC value is represented by the red marker. All

deep learning methods use embedded representation of the input except Basset.
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Table B.1: List of neural network hyperparameters.

Hyperparameter type Description

use_embd bool Whether to use the word2vec embeddings [default: False]

embd_size int Size of the word2vec embedding vectors [default: 50]

embd_window int Size of the word2vec embedding window [default: 5]

embd_kmer int Length of the kmer (for word2vec embeddings) [default: 3]

singlehead_size int Size of the attention single head [default: 32]

num_heads int Number of heads in multi-head self-attention layer [default: 8]

multihead_size int Output size of the multi-head after concatenation [default: 100]

batch_size int Batch size in training/testing the model [default: 172]

use_RNN bool Whether to use the RNN layer. [default: based on model variant]

RNN_hidden_size int Size of the RNN layer. [default: 100]

CNN_filters int Number of CNN filters to use. [default: 200]

CNN_filter_size int Size of each CNN filter. [default: 13]

use_CNN_pool bool Use max pooling in the CNN layer. [default: True]

CNN_pool_size int Size of the max pooling window in CNN layer. [default: 6]

input_channels int Number of input channels. [default: 4 (for DNA sequences)]

num_epochs int Number of training epochs. [default: 30]

readout_strategy string Normalize the MHA output or flatten it. [default: "normalize"]
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Appendix C

Chapter 7 Supplementary Material

C.1 Data collection and processing

C.1.1 Experiment 1: simulated dataset

In this experiment, we simulated DNA sequences using random sampling from a distribution

of [0.27, 0.23, 0.23, 0.27] for A, C, G, and T respectively as used for a similar dataset generated

by Greenside et al. [193]. We generated 120,000 sequences each with a length of 200 bp. Sim-

ilar to Greenside et al. [193], we randomly embedded instances of the motifs of both ELF1 and

SIX5 transcription factors in 40,000 of the total sequences. This was our positive set of examples

where we essentially simulated interactions between the aforementioned motifs. In the negative set

(80,000 sequences), we embedded instances of either ELF1 or SIX5 in a sequence (but not both).

Moreover, we embedded instances of the AP1 and TAL1 motifs across all examples. The motifs

for the four transcription factors were obtained from Kheradpour et al. [203].

TF Database information

To map CNN filters to motifs of known TFs, we used TomTom with a custom TF database

(MEME format) containing PWMs of the four transcription factors: SIX5, ELF1, AP1, and TAL1.

C.1.2 Experiment 2: TAL-GATA ChIP-peaks

Here we followed the same strategy described in DFIM [193]: ChIP-Seq peaks were down-

loaded for the three TFs TAL1, GATA1, and GATA2 from the ENCODE [14] database in the

K562 cell line (hg19 genome assembly and annotations). For the chromatin accessibility data, we

downloaded processed DNase I Hypersensitive Sites (DHSs) from the ENCODE database for the

corresponding cell line. Next, every ChIP-Seq peak for the three transcription factors was searched

for an overlap with DHSs in the K562 cell line. If an overlap was found, the sequence of the ChIP-
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Seq peak was extended 500 bp upstream and downstream from its center. This served as a positive

set in our binary classification problem. For the negative set, we randomly sampled 80,000 exam-

ples from all K562 DHSs that didn’t overlap a ChIP-Seq peak for any of the three transcription

factors.

TF Database information

In this experiment, we used two TF databases: the first one was a custom motif file with PWMs

of TAL1, GATA1, and GATA2 transcription factors. This was because we wanted to directly com-

pare our model to DFIM [193] where Greenside et al. measured interactions between the afore-

mentioned transcription factors. The second reference was the entire CISBP TF database [178]

that we used in order to infer other TF interactions within the ChIP-Seq peaks.

C.1.3 Experiment 3: human promoter DHSs

In this experiment, we used DHSs overlapping gene promoter regions across the entire human

genome. We used the pipeline described by Kelley et al. in Basset [13]: DHSs were downloaded

for 164 human immortalized cell lines from the ENCODE [14] and ROADMAP [173] consortia.

These regions of open chromatin were merged if they overlapped more than 200 bp. Finally, every

DHS was extended to a length of 600 bp around its center. Kelley et al. [13] used DHSs across the

entire genome however, we selected only those which overlapped the human promoter regions. To

do that, we defined promoter as a region of 1000 bp upstream of the transcription start site (TSS)

of a gene—Ensemble based hg19/GrCh37 reference and annotations were used. The final dataset

had 20,613 genomic sequences of the corresponding DHSs (that overlapped the human promoters).

The targets in this case were either a single or multiple labels, corresponding to the164 cell lines

in which the DHSs were observed.

TF Database information

In motif analysis (and later in the TF interactions), we used the human CISBP transcription

factor database [178].
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C.1.4 Experiment 4: genome-wide arabidopsis regions of open chromatin

Here we designed a similar experiment as described in the previous section. The dataset was

constructed using the same procedure described above as used by Kelley et al. [13]. We used

regions of open chromatin: DHSs and ATAC-Seq based Transposase Hypersensitive Sites (THSs),

across the entire arabidopsis genome using TAIR10 annotations. We used the following publicly

available datasets (GEO accession numbers provided):

• For DHSs: GSE53322, GSE53324, GSE53323, GSE46987, GSE34318

• For THSs: GSE89346, GSE85203, GSE101940, GSE116287, GSE101482

We ended up with 88,245 examples in our final dataset across 36 different samples. Note that

peaks occurring in multiple biological samples were merged.

TF Database information

Here we used the DAP-Seq based arabidopsis transcription factors database [196].

C.2 Limitations of the TomTom motif comparison tool

We used the TomTom tool from the MEME suite [202] to map CNN filters to motifs of known

transcription factors. In some cases, we observed the match to be dubious despite the tool assigning

it a significant p-value. This is shown in Supplementary Figure F4 for two of our CNN filters

matching the known TF motifs of HOXA2 and ZNF263 in the human CISBP database [178]. By

default, TomTom uses Pearson correlation for comparing motifs. However, we obtained better

results using the Euclidean distance.
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C.3 Additional tables

Table C.7: A list of significant interactions in the TAL-GATA ChIP-Seq.

(available: https://github.com/fahadahaf/SATORI/blob/master/process_results/tables/C7.xlsx)

Table C.8: A list of significant interactions in the human promoters.

(available: https://github.com/fahadahaf/SATORI/blob/master/process_results/tables/C8.xlsx)

Table C.9: A list of significant interactions in the intron retention

(available: https://github.com/fahadahaf/SATORI/blob/master/process_results/tables/C9.xlsx)

Figure C.1: Distribution of the attention weights for the main test and the background sets. The actual

frequencies (y-axis) are normalized by total sizes of the test and background sets. This figure helps in

selecting the appropriate attention cutoff, one of the parameters of SATORI. We use a default value of 0.10.
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Figure C.2: Similarities between motifs of GATA variants (a). Similarly, TAL1 and TCF15, both belonging

to the bHLH family, have very similar motifs (CAGCTG consensus) (b).

Figure C.3: AUC scores for DHSs in human promoters across 164 cell types, achieved by the two model

variants. Each circle represents performance on detecting DHSs in that cell line.
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Figure C.4: Limitations of the TomTom motif comparison tool. Matches shown here are statistically sig-

nificant (q-value < 0.01) for both (a) HOXA2 and (b) ZNF263. The top row depicts the gold standard motif

in the CISBP database and the bottom row shows the CNN filter/motif. .
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Figure C.5: The most frequent interacting transcription factor families in human promoter regions.
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Figure C.6: The most frequent interacting transcription factor families in the intron retention events.

Table C.1: List of neural network hyperparameters.

Hyperparameter type Description

singlehead_size int Size of the attention head [default: 32]

num_heads int Number of heads in multi-head self-attention layer [default: 8]

multihead_size int Output size of the multi-head after concatenation [default: 100]

batch_size int Batch size in training/testing the model [default: 172]

use_RNN bool Whether to use the RNN layer. [default: based on model variant]

RNN_hidden_size int Size of the RNN layer. [default: 100]

CNN_filters int Number of CNN filters to use. [default: 200]

CNN_filter_size int Size of each CNN filter. [default: 13]

use_CNN_pool bool Use max pooling in the CNN layer. [default: True]

CNN_pool_size int Size of the max pooling window in CNN layer. [default: 6]

input_channels int Number of input channels. [default: 4 (for DNA sequences)]

num_epochs int Number of training epochs. [default: 30]

readout_strategy string Normalize or flatten the MHA output. [default: "normalize"]
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Table C.2: Summary of all significant interactions in the simulated/toy dataset. Our model is able to recover

multiple interactions involving SIX5 and ELF1 TF motifs. We also provide the actual CNN filter interactions

in the first column, named based on the total number of filters in the convolutional layer.

Filter interaction TF motif interaction Adjusted p-value

filter033←→filter170 SIX5←→ELF1 1.47E-42

filter170←→filter181 ELF1←→SIX5 1.50E-39

filter033←→filter111 SIX5←→ELF1 1.12E-20

filter111←→filter181 ELF1←→SIX5 3.17E-22

filter033←→filter091 SIX5←→ELF1 2.44E-18

filter091←→filter181 ELF1←→SIX5 2.14E-12

filter033←→filter055 SIX5←→ELF1 2.64E-08

filter055←→filter181 ELF1←→SIX5 3.84E-04

filter019←→filter033 ELF1←→SIX5 1.35E-07

filter019←→filter181 ELF1←→SIX5 2.48E-12

filter091←→filter199 ELF1←→SIX5 2.82E-03

Table C.3: All significant interactions between TAL1 and GATA transcription factors. Note that in this

case, a custom TF database was used containing motifs for TAL1, GATA1, and GATA2. In case of TAL1,

other TFs (LYL1, NHLH2, and TAL2) also shared the same binding site motif and hence are mentioned

here.

TF A TF B Adjusted p-value

GATA2 LYL1,TAL1,NHLH2,TAL2 4.37E-24

GATA2 LYL1,TAL1,NHLH2,TAL2 8.18E-21

LYL1,TAL1,NHLH2,TAL2 GATA2 5.71E-19

LYL1,TAL1,NHLH2,TAL2 GATA2 1.54E-16

LYL1,TAL1,NHLH2,TAL2 GATA2 8.68E-11

GATA2 LYL1,TAL1,NHLH2,TAL2 3.92E-10

LYL1,TAL1,NHLH2,TAL2 GATA2 3.27E-08

LYL1,TAL1,NHLH2,TAL2 GATA2 3.28E-08

GATA2 LYL1,TAL1,NHLH2,TAL2 5.66E-05

LYL1,TAL1,NHLH2,TAL2 GATA2 6.76E-04

LYL1,TAL1,NHLH2,TAL2 GATA2 4.51E-03

LYL1,TAL1,NHLH2,TAL2 GATA2 4.66E-03

LYL1,TAL1,NHLH2,TAL2 GATA2 4.72E-03

LYL1,TAL1,NHLH2,TAL2 GATA2 5.41E-03
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Table C.4: A list of known TF interactions identified by our model in the human promoter regions. TR-

RUSTv2 [3] database was used as a reference of all known interactions. The level of significance (adjusted

p-value) assigned by our model to each interaction is provided in the last column.

motif interaction TF1 family TF2 family adjusted p-value

EGR1←→LCOR C2H2 ZF Pipsqueak 1.84E-27

E2F1←→LCOR E2F Pipsqueak 1.32E-23

DNMT1←→LCOR CxxC Pipsqueak 1.72E-16

EGR1←→SRF C2H2 ZF MADS box 1.75E-14

SRF←→SP2 MADS box C2H2 ZF 4.12E-10

E2F1←→SRF E2F MADS box 5.96E-09

EGR1←→E2F4 C2H2 ZF E2F 9.64E-07

E2F1←→DNMT1 E2F CxxC 4.36E-05

E2F1←→E2F4 E2F E2F 1.64E-04

DNMT1←→E2F4 CxxC E2F 1.64E-04

E2F1←→EGR1 E2F C2H2 ZF 1.99E-03

DNMT1←→EGR1 CxxC C2H2 ZF 2.33E-03

Table C.5: Summary of the number of unique statistically significant TF interactions reported by SATORI

and FIS for the three real-world datasets.

Experiment SATORI FIS

TAL-GATA ChIP-Seq 152 235

Human promoters 234 184

Arabidopsis genome-wide 230 224

Table C.6: A list of known TF interactions in the IR events. TRRUSTv2 [3] database was used as a

reference of all known interactions. The level of significance (adjusted p-value) assigned by SATORI to

each interaction is provided in the last column.

motif interaction TF1 family TF2 family adjusted p-value

DNMT1←→E2F1 E2F E2F 4.15E-04

DNMT1←→EGR1 CxxC CxxC 4.94E-02

DNMT1←→ESR1 Nuclear receptor Nuclear receptor 5.55E-03

DNMT1←→SP4 CxxC CxxC 6.19E-04

E2F1←→ESR1 E2F Nuclear receptor 8.25E-07

E2F1←→SP4 E2F C2H2 ZF 1.47E-10

EGR1←→E2F1 E2F E2F 6.54E-04

EGR1←→ESR1 C2H2 ZF Nuclear receptor 5.49E-05

EGR1←→MAZ C2H2 ZF C2H2 ZF 2.65E-03

EGR1←→RREB1 C2H2 ZF C2H2 ZF 4.25E-02

EGR1←→SP4 C2H2 ZF C2H2 ZF 3.27E-03

ESR1←→RARG Nuclear receptor Nuclear receptor 1.67E-04

ESR1←→SP4 Nuclear receptor C2H2 ZF 7.72E-10

MAZ←→SP2 C2H2 ZF C2H2 ZF 2.06E-04
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Appendix D

Chapter 8 Supplementary Material

D.1 Methods: Differential AS and chromatin accessibility

D.1.1 Data collection and processing

We downloaded the processed RNA-Seq and DNase I-Seq peaks (DHSs) for the K562 and the

other eight cell lines from Encode database [14]. In case of RNA-Seq data, every cell type had

at least two biological replicates. We noticed that the library sizes varied significantly across cell

types: the smallest library had around 70 million reads where the largest one had over 250 million

reads. To adjust for the variation, we used Sambamba [204] to sample reads from every library

such that they all had roughly the same sizes.

In case of arabidopsis, raw RNA-Seq reads and processed ATAC-Seq peaks (THSs) from [205]

were used(GEO accession number GSE116287). The data consisted of multiple biological repli-

cates for arabidopsis root and shoot tissues under control and treatment conditions. The ATAC-Seq

peaks were merged across biological replicates. In case of RNA-Seq, the reads were first pre-

processed using FastQC [159] and trimmed using fastx-trimmer [160]. Reads were aligned to the

TAIR10 reference genome using STAR [80] with parameter outFilterMultimapNmax 1 to

get uniquely aligned reads.

D.1.2 Differential IR and chromatin accessibility analysis

To get differential IR events, we used idiffIR [206] using the default parameters. In case of

human data, K562 was compared against the rest of the eight cell-lines. Since the data was aligned

using hg19 reference genome, we used the corresponding genome annotations with idiffIR. In case

of arabidopsis, the treated samples were compared to the control samples in both root and shoot

tissues. Finally, we selected an adjusted p-value cutoff of 0.05 for a differential IR event to be used

in the downstream analysis.
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Next, we used the chromatin accessibility peaks (DNase I-Seq in case of human and ATAC-Seq

in case of arabidopsis) to analyze their occupancy in the differential IR events. For each event,

we checked if a given peak overlapped its coordinates: from the start of the upstream exon to the

end of the downstream exon. We checked that using peaks from both control and treated samples.

A stringent requirement was used for differential peak occurrence. For instance, for a differential

IR event to qualify, we required that it must had overlapping peak(s) from only one of the two

conditions. To check the significance of overlap between differential IR events and differentially

occurring peaks, we used fisher exact test. Finally, to visualize the events and overlapping peaks,

Integrated Genome Viewer was used [6].

(a) IR (b) ES

Figure D.1: Genome-wide differential AS in four lines (cultivars) of sorghum is shown in (a) for IR events

and (b) for ES events. Each slice represents one of the 10 sorghum chromosomes. From the center, the first

four concentric circles represent sorghum lines 1, 2, 3, and 7 respectively. The outer most circle shows the

genomic coordinates with a step size of 10 million bp. The gene expression levels are shown by purple and

blue coverage plots for the treated and control samples, respectively. Finally, across the coverage plots, the

up-regulate and down-regulated differential IR events are marked by green and red lines, respectively. This

figure is generated using CIRCOS [15].
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Table D.1: The overlap between differential IR events with the differentially occuring DHSs in K562 vs.

eight other human cell-lines. The significance of overlap is shown in the last column in terms of p-value

(Fisher test).

K562 vs. Total events Events with Differential DHSs Fisher p-value

GM12878 191 60 9.32× 10−06

H1-hESC 163 42 0.032164027
HCT-116 137 29 0.00098362
HepG2 119 23 0.065757989
HSMM 77 15 0.236222736
MCF-7 145 35 0.001566634
NHEK 82 24 0.012541207
NHLF 88 22 0.008227137
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