DISSERTATION

FIELD POPULATION GENETICS OF GLOBAL *PUCCINIA STRIIFORMIS* F. SP. *TRITICI* POPULATIONS IN WHEAT REVEAL A DYNAMIC MOLECULAR BATTLEFIELD

Submitted by

Rebecca Lyon

Department of Agricultural Biology

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2021

Doctoral Committee:

Advisor: Pankaj Trivedi

Kirk Broders Stephen Pearce Ruth Hufbauer Copyright by Rebecca Lyon 2021

All Rights Reserved

ABSTRACT

FIELD POPULATION GENETICS OF GLOBAL *PUCCINIA STRIIFORMIS* F. SP. *TRITICI* POPULATIONS IN WHEAT REVEAL A DYNAMIC MOLECULAR BATTLEFIELD

Wheat stripe rust caused by *Puccinia striiformis* f. sp. *tritici* (*Pst*) is one of the most devastating diseases of wheat. Globally, Pst is present in all major wheat-growing regions of the world and approximately 88% of the global wheat varieties are susceptible to *Pst* infection. Yield losses due to stripe rust can reach 100% in susceptible cultivars and mitigating the impact of wheat stripe rust costs over \$1 billion annually. Identifying and deploying resistance genes (*R*-genes) into commercial wheat lines is currently the most effective defense against stripe rust. Unfortunately, the geographic footprint, frequency, and severity of stripe rust epidemics have increased globally due to climate change, and emerging new races are increasingly able to overcome resistant wheat varieties. Current surveillance methods include using a differential set of wheat cultivars to identify Pst races, however this method only focuses on the presence/absence of a few effectors and the differential set can take years to update. Surveillance methods for Pst infection need to be updated to efficiently detect and combat the spread of new isolates and improve preparedness for inevitable future epidemics. In addition, *Pst*-wheat interactions should be elucidated to understand the co-evolutionary arms race between the pathogen and host that regulate the disease outcome. Such information is vital for developing durable resistance strategies to combat *Pst* during active infection in susceptible wheat varieties. In this study, we used field patho-transcriptomics (the sequencing of transcriptomes from infected plant leaves gathered from fields) to (1) determine if modern North American Pst

ii

populations represent introduction events or asexual changes within the resident population and to quantify the presence of effectors; (2) investigate the impact of *Pst* and wheat genetics on the transcriptome of each species; and (3) explore the interaction between *Pst* and wheat during active infection to reveal targets for the pathogen and insight into responses from the host. The samples used in this study were *Pst*-infected wheat leaves collected in fields from around the world. We gained insight into the evolution of *Pst* populations in North America and discovered worldwide conserved molecular interactions between host and pathogen.

The geographic footprint of *Pst* in the United States has expanded in the past two decades and novel races of *Pst* have emerged since 2010. Understanding the population structure of *Pst* and the origin of shifts in population structure can help with the evaluation of genes for the durable resistance against Pst. However, current methods of race-typing using a differential set of wheat cultivars is time-consuming and only gives limited information about the candidate effector diversity of *Pst* isolates in the field. Here we use field patho-transcriptomics to estimate pangenomic variability, assess population structure, and evaluate existing candidate effector diversity within *Pst*. Discriminant analysis of principal components (DAPC) using synonymous *Pst* single nucleotide polymorphisms (SNPs) identified eight distinct genetic clusters of the pathogen across the globe. The North American samples fell into three genetic clusters, with the largest cluster present throughout the continent and genetically distinct from other *Pst* populations around the world. Our results indicate most modern North American samples evolved asexually from within the endemic population (whether by novel mutations or somatic hybridizations) rather than from introductions of new isolates from outside the region. Results from co-transcriptomics analysis suggest that there are fewer candidate effectors in modern populations, which indicates that modern Pst races have evolved by shedding effectors to avoid

iii

detection by the host immune system. Overall, our study provides information on recent evolutionary changes of *Pst* in North America. These findings have implications on wheat breeding and management.

Strategies for combating *Pst* when available resistance genes fail are necessary for developing long-term, durable resistance in novel varieties of cultivated wheat. In the final portion of this study, the co-transcriptomic data were used to evaluate both the host and pathogen exon expression and to explore potential intra- and inter-species molecular interactions during active infection. To start, the population structure of worldwide wheat was evaluated through use of biallelic synonymous SNPs in a DAPC analysis, and two genetic wheat clusters were detected. PERMANOVA analysis was used to clarify the effect of environment and genetic clusters on the transcriptomes. The results revealed that environmental and temporal variation accounted for a large portion of the variance seen in the exon expression of both organisms. Additionally, intra-specific genetic variation had a significant effect on the transcriptome structure within an organism, albeit a much lower effect within wheat. Interestingly, inter-specific genetic variation in *Pst* had a significant effect on the wheat transcriptome while wheat did not have a significant effect on the *Pst* transcriptome. These results imply that the extensive genetic variation within *Pst* is a major driving force in the epidemiology of global striped rust infections, while the major selective pressure of domestication and wheat breeding could be reducing the potential for the host to defend against *Pst* during active infection.

To further explore the mechanisms underlying wheat-*Pst* interaction, exon co-expression networks (ECNs) were created for each organism using Spearman correlations to identify functional exon networks among exons within each organism. Six highly connected *Pst* ECNs revealed exon networks associated with both core cellular functions and the infection process.

iv

The same process identified 11 wheat ECNs having roles in photosynthesis, general plant defense, and transcriptional processing. These ECNs were condensed into single vectors using eigen-vector decomposition and a cross-kingdom dual interaction network was generated to explore both intra- and inter-species interactions among ECNs. This dual interaction network showed a large negative relationship between the host photosynthetic apparatus and *Pst* growth/development and virulence factors. This finding may be indicative of either a direct attack of *Pst* on wheat photosynthesis or a failure of chloroplasts to keep up with parasitic demand on photosynthate through source-sink relationships. Additionally, the dual interaction network revealed a wheat network associated with sulfur metabolism which is also transitively associated with *Pst* growth and virulence, thereby divulging *Pst*'s lack of endogenous sulfur metabolism genes and suggesting that *Pst* obtains needed sulfur from the host. Overall, both individual networks and the dual-transcriptomic network gave insight into biological mechanisms and interactions which occur during active infection.

Sequencing the co-transcriptomes of *Pst*-infected field samples of wheat allows for numerous opportunities to better understand the worldwide population structure and large-scale interactions within the *Pst*-wheat pathosystem. Chapter 2 explains how the global population structure of the pathogen was used to discover the origin of new races found within North America and the array of effectors within worldwide genetic groups. The first part of Chapter 3 presents how the worldwide population structure of the host was evaluated while analyzing the effect of genetics on transcriptional variation. The second part of Chapter 3 shows how these connections gave insight into biological mechanisms during active *Pst* infection and the potential novel breeding targets within the wheat host. This study furthers our understanding of pathogen migration and adaptation while serving as an initial step in probing for novel, durable resistance.

v

ACKNOWLEDGEMENTS

I want to thank all of those who contributed to the success of these dissertation. Specifically, I thank both of my mentors, Dr. Pankaj Trivedi and Dr. Kirk Broders, for supporting and guiding me through this process. I also thank the rest of my doctoral committee members, Dr. Ruth Hufbauer and Dr. Stephen Pearce, for their feedback. I extend my gratitude to Diane Saunders and her team (Venessa Bueno, Dr. Guru Radhakrishnan, and Dr. Antoine Persoons) for sharing sequenced data and helping with the population study. I thank Dr. Jason Corwin for his extensive support – from bioinformatics to writing to inspiring the third chapter of this dissertation. I wish to acknowledge Dr. Gungxi Wu for giving me a solid start in collecting samples, working in the lab, and learning bioinformatics. I thank Karl VanGessel for his assistance with the Wheat GO analysis. I am grateful to Gloria Broders, Dr. Tessa Albrecht, and Dr. Stephen Wyka for helping me in the lab and discussing my project. I thank Dr. Xianming Chen for sample collection and support with inoculation and growth of *Pst* in growth chambers. I extend my gratitude for everyone who collected samples for this study, especially Bob Bowden. I thank my funding sources, the Colorado Wheat Administrative Committee and CSU's Department of Agricultural Biology. Finally, I thank my family and friends who supported me throughout this entire project, particularly my mother Dot Lyon who helped edit and format this dissertation.

TABLE OF CONTENTS

ABSTRACT	ii
ACKNOWLEDGEMENTS	vi
Chapter 1: Impact of climate change and race evolution on the epidemiology and ecology	of
stripe rust in central and eastern United States and Canada	1
Introduction	1
Impact of <i>Pst</i> on North American wheat production	2
Impact of new races on population dynamics of <i>Pst</i>	6
Impact of climate change on the ecology and epidemiology of <i>Pst</i>	8
Adapting stripe rust management in the central United States and Canada to nov	el
races and a changing climate	11
References	15
Chapter 2: Field pathogenomics approach determines North American <i>Pst</i> population is dis	stinct
from global population due to asexual changes within the endemic population at	nd
newer Pst have less candidate effectors	18
Introduction	18
Methods	10
Sample Collection RNA Extraction and Sequencing	23
Sequence Acquisition and Alignment	·····25
SNP Genotyping and Filtering	27
Population Genetics	25
Candidate Effector Analysis	20
Pasulte	20
Discussion	27
Discussion	32
Chapter 3: Evaluating the role of genetics on pathogen and host transcription and creating s	
dual interaction network	۱ /1
	41 /1
Mathada	41
Transprintenes and Filtering	45
Wheet Depulation Structure	43
Statistical Analysis	40
Statistical Analysis	40
Primary Network Analysis: Individual Exon Co-Expression Networks for Psi	I 47
and wheat	4/
Dual Interaction Network Analysis	48
$\mathbf{Results}$	48
Population Structure of <i>Pst</i> and wheat Populations	48
Assessing Impact of Pathogen and Host Genetics on Exon Expression	
Individual Exon Co-Expression Networks	
Interactions among Intra- and Inter-Species Exon Co-Expression Networks	60
Discussion	63
Conclusions	71
Keterences	72

Appendix 2: Wheat GO Analysis $-$ Ta ECN I	90
$Appendix 2. \text{wheat OO Thiarysis} = 1a_\text{LCIV}_1.$	93
Appendix 3: Wheat GO Analysis – Ta_ECN_II	
Appendix 4: Wheat GO Analysis – Ta_ECN_III	96
Appendix 5: Wheat GO Analysis – Ta_ECN_V	99
Appendix 6: Wheat GO Analysis – Ta_ECN_VI	102
Appendix 7: Wheat GO Analysis – Ta_ECN_VIII	105
Appendix 8: Wheat GO Analysis – Ta_ECN_IX	108
Appendix 9: Wheat GO Analysis – Ta_ECN_X	111
Appendix 10: Wheat GO Analysis – Ta_ECN_XI	114
Appendix 11: Pst ECN Membership	117
Appendix 12: Wheat ECN Membership	129

Chapter 1: Impact of climate change and race evolution on the epidemiology and ecology of stripe rust in central and eastern United States and Canada

Introduction

Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat and is present in all major wheat-growing regions of the world¹. In the United States, stripe rust has traditionally been observed in cooler regions with higher moisture levels, such as the Pacific Northwest, but in the last 15 years its geographic footprint has expanded². This expansion is associated with suspected incursions of novel *Pst* races that are better adapted to warmer environments, and have broader virulence profiles and are more aggressive than previously characterized races³. In North America, the frequency and severity of stripe rust epidemics have increased dramatically since the year 2000, with significant losses to stripe rust reported in seven of the last 15 years⁴. The worst epidemic to date was in 2015, when *Pst* infections reached epidemic levels throughout the United States, causing average yield losses of 11.2% and costing the wheat industry approximately \$8.7 million⁵. The high level of residual inoculum at the end of the 2015 season resulted in significant infection rates in the autumn, which, in combination with consistent snow cover, led to the pathogen overwintering in areas historically deemed to have unfavorable conditions, including Colorado, Ohio, and South Dakota⁴. As a result, there was widespread disease in 2016 throughout the central United States and into Canada, as well as in the eastern United States. This lead to further inoculum build-up, increased autumn infection rates, and more northerly overwintering in the Puccinia Pathway, the path followed by overwintering urediniospores from the southern United States and Mexico

during the spring as they spread northward through the Great Plains (Figure 1.1). Urgent action is required to prepare for this severe and worsening threat to wheat production in the United States and Canada.

Furthermore, current climate predictions indicate that weather conditions, including milder winter temperatures, will become increasingly favorable for *Pst* overwintering at more northerly latitudes than observed in previous years, leading to more frequent and damaging epidemics in the medium to long term. While wheat stem rust (*Puccinia graminis* f. sp. *tritici*) has historically been considered a more economically important pathogen of wheat, the expanding geographic extent and increased production losses associated with stripe rust indicate that stripe rust is now the most damaging rust pathogen in North America and globally^{6,7}. Therefore, the purpose of this perspective is to review the impact of emergence of new races and climate change on the ecology, evolution, and epidemiology of *Pst* in North America over the last decade. This will be followed by recommendations for moving forward, which aim to integrate the evolutionary biology of *Pst* with future climate change scenarios and deployment of host resistance to develop more resilient and durable stripe rust management strategies.

Impact of *Pst* on North American wheat production

A recent study combining long-term crop loss data and climate models demonstrated the expansion of the geographic footprint of stripe rust due to climate change². Using state-specific data compiled from the USDA's Cereal Disease Laboratory, Beddow et al. (2015) reinforced the notion that the spatial extent of losses from stripe rust has expanded substantially in recent decades compared with the historical prevalence of the disease¹. For the entire period 1960–1999, just 11 of the 48 continental US states reported losses from stripe rust, whereas between 2000–2014, the disease was reported in a total of 26 states and three Canadian provinces². Stripe rust

Figure 1.1: Schematic diagrams of the annual movement of P. striiformis f. sp. tritici populations and overwintering range according to (A) our current understanding and (B) a conceptual model based on population genetic data⁸. Orange arrows represent movement of western Pst populations, blue and green arrows represent spring and autumn movement of eastern Pst populations, respectively. Blue ovals represent (A) current and (B) predicted overwintering range of Pst based on reports of 2015–2016 and 2016–2017 overwintering inoculum in the United States^{4,9}. Wheat production map used with the permission of the National Association of Wheat growers.

has expanded further since this report, with records of disease originating from 24 states and two Canadian provinces in 2015, and stripe rust was reported from 31 states and five Canadian provinces in 2016⁴. During the 2015 epidemic, many states in the central plains recorded wheat yield losses of 10–25%, representing one of the greatest yield losses due to stripe rust since the introduction of the new pathogen population in 2000⁵. The high level of inoculum at the end of the 2015 crop season resulted in significant autumn season infection rates, which, in combination with consistent snow cover, resulted in the pathogen overwintering in areas historically deemed to have unfavorable conditions. The significant inoculum source in combination with ample precipitation resulted in reports of *Pst* infection on wheat nearly 30–45 days ahead of the historical average along the Puccinia Pathway (Figure 1.2). While there were significant losses in the central plains during 2016 (1–15%), the biggest impact occurred in wheat growing regions in the eastern part of the United States. This was due to the early infections and the lack of resistant varieties in this region.

Prior to the year 2000, stripe rust was a rare problem in the Central Plains¹⁰. Since 2000, stripe rust has occurred more consistently and with greater severity¹⁰. This change in disease severity occurred at the same time as new pathogen populations emerged^{10–12}. When isolates from the new races were tested, they had shorter latent periods and higher germination rates at warmer temperatures¹³. The post-2000 populations had increased virulence and were genetically distinct based on microsatellite markers^{12,14}. However, it has been 17 years since this introduction and it is unclear to what extent mutation, recombination, or somatic hybridization has occurred among US populations of *Pst.* In addition, by using only microsatellite markers, we are only able to determine the evolution of these simple sequence repeats in the genome without gaining any further insight into regions of the genome that may be under selection for adaptation to the warmer and drier

Figure 1.2: Average first report of stripe rust (P. striiformis f. sp. tritici) along the Puccinia Pathway in the central and eastern United States during (A) 2015 and (B) 2016.

climates of the central plains and warmer, more humid climates of the eastern United States. Future research will need to focus on understanding how these adaptive changes occur.

Impact of new races on population dynamics of *Pst*

Even when novel pathogens are initially endemic to restricted geographic areas, they can rapidly emerge in new regions, provided they encounter a production system with susceptible hosts and favorable environmental conditions. In widely grown food crops, many pathogens were introduced long ago and are now geographically wide-spread; and therefore, they do not come to mind as invasive pathogens¹⁵. Although introductions could have occurred centuries ago, the evolution of such ubiquitous pathogens remains a significant cause of concern due to the risk of re-emergence caused by accidental dissemination of new, multi-virulence races, or new highly aggressive strains^{16,17}. An accurate understanding of the origin, distribution, and diversity of inoculum reservoirs and past and recent migration routes of these pathogens is crucial to understand current epidemics, develop risk-assessment models, and alleviate the potential adverse effects of disease emergence^{18,19}. This is particularly true for pathogens which are capable of long-distance migration, for which any newly advantageous mutant (increased virulence, aggressiveness, or resistance to fungicides) has the potential to spread over large geographic areas²⁰.

Stripe rust is an excellent example of a globally distributed pathogen that has major negative impacts on wheat production due to emergences and invasions of new races^{6,14,17,21-23}. Despite the capacity for long-distance migration, the worldwide spread of *Pst* is relatively recent, with most emergences in new locations reported only within the last two decades. In addition to recently colonized areas, new races are known to periodically emerge through the acquisition of new virulences. This is what has likely occurred for the recent invasion of a new population of

Pst into North America, which is believed to have been introduced around the year 2000 and has since become the dominant population in the central plains and eastern United States^{6,12,13}. The population structure of *Pst* is therefore likely to display the hallmarks of a complex mixture of re-emergence of diverse genotypes over continuous wheat-growing areas and rare founder events due to long-distance migration. Recent spread of the pathogen is likely to induce marked changes in patterns of population differentiation among geographic regions, potentially erasing the signature of more ancient colonization events.

A recent global analysis of the population diversity of *Pst* has found a strong population subdivision within *Pst*, with a clustering of isolates according to their geographic origin despite a capacity for long-distance migration^{14,23}. This pattern stands in contrast with the previous understanding of the worldwide population structure of *Pst*, which considers the potential replacement of local populations by new invasions^{20,22}. On the basis of survey data that monitors the occurrence of strains with newly acquired virulences that defeat recently deployed *Yr* (resistance) genes, the population structure of *Pst* was considered to be shaped by a continual replacement of pre-existing populations by the newly emerged races. This process is well known as the boom and bust cycle²⁴. Such geographic migrations were documented in a recent global population analysis of *Pst*, but recently dispersed genotypes appear to coexist with older populations despite the capacity for recurrent long-distance dispersal¹⁴. In contrast, the invasion of a region by new genotypes in clonal populations would result in a population sweep and would replace the original population.

This was observed in the United States, where the post-2000 *Pst* population is dominated by aggressive races (such as PstS1 or its derivatives, which originated from the East African or

Middle East region), but several pre-2000 races continue to be observed in the United States each year at a low frequency^{10,25,26}. The outcome of new race introductions may depend on the relative competitiveness of local populations in their region of origin, and the selective advantage of migrants (e.g. their virulence towards widely deployed resistance genes or an increased tolerance to abiotic stress, such as high temperature). Given the evolutionary potential of *Pst* and increased severity of recent epidemics, we believe the current *Pst* population has continued to adapt to the warmer climates of the eastern United States, leading to an increase in pathogen fitness and aggressiveness not associated with the presence or absence of specific virulence genes associated with host resistance genes. Future research is needed in order to test this theory.

Impact of climate change on the ecology and epidemiology of Pst

The ability of stripe rust to infect wheat plants depends on many factors, including host resistance, time of infection, and environmental factors²⁷. The three main climatic factors affecting disease severity are moisture, temperature, and wind. Bebber et al. (2013) documented a poleward shift of many fungal crop pathogens from southern latitudes moving northward due to increases in temperature and precipitation². This may be occurring with *Pst* as temperature and precipitation affect the *Pst* life cycle, including spore germination, infection, and survival. It also affects latent period, sporulation, and host resistance^{28,29}. The ideal temperature for many *Pst* isolates is between 7–12°C, so *Pst* prefers temperate regions or high-altitude areas within more tropical regions^{1,30}. However, temperature range adaptation varies among isolates of *Pst*. Some isolates have a shorter latent period at 18°C than $12^{\circ}C^{31}$. When creating prediction models, the pathogen population structure of the region should be taken into account. There are also limitations to prediction models, e.g. if a new race emerges with a different optimal temperature, then the prediction model may not be accurate.

As *Pst* is not able to survive the winter in all locations in North America, areas with high amounts of inoculum surviving over the winter and summer can be considered "hot spots" for future disease and development of new populations³². This is important as outbreak propagule pressure influences the landscape spread of wind-dispersed plant pathogens. Increased inoculum pressure measured in terms of urediniospore number is related to a higher probability of *Pst* persisting in the environment³⁰. In fact, a study by Severns et al. (2014) examined how inoculum pressure influences the spread of *Pst*, and they found that a simple power function relates to outbreak disease levels for both magnitude of the final epidemic and the spatial expanse²⁸. Therefore, urediniospores spread via wind allows small hot spots to have a big impact on a disease epidemic. The current understanding of the *Pst* population in the central and eastern United States and Canada postulates that inoculum primarily overwinters in southern Texas, northern Mexico, and along the Gulf Coast in Louisiana and Mississippi. The inoculum then moves northward through the central plains and eastern United States where races may be selected for based on their ability to infect wheat varieties with resistance genes. The population continues to migrate north into Canadian provinces, such as Saskatchewan, where the amount and virulence of the population depends on characteristics of the population in the central plains of the United States³³. However, based on reports from the 2016 stripe rust epidemic and climate change projections, the overwintering range of Pst will likely move northward, creating a greater number of "hot spots" earlier in the growing season, which will result in greater levels of initial inoculum that will lead to greater secondary spore production and crops infected earlier in the season (Figure 1.2). This will inevitably lead to greater disease severity, more rapid expansion into northern latitudes, and greater yield losses throughout North America.

Over the summer months, temperature and humidity are key factors that affect Pst germination and infection. Constant high temperatures have a greater negative effect than temperatures that shift from high to low. Short exposure to higher temperatures does not kill the pathogen and so has less effect on germination and infection rates³¹. Very few recent studies have attempted to evaluate the importance of the over-summering range of Pst in the central and eastern United States; much of this is due to the fact that summer and autumn infection were rare in the past. As the rust population spreads north via the Puccinia Pathway, it first infects winter wheat in the southern great plains, which will be harvested in late June. Pst will continue to spread north into the Dakotas and Canada where spring wheat is planted in May and harvested in August. At this point, the *Pst* populations will begin the migration back south as winter wheat in South Dakota, Nebraska, and Colorado is planted in late August through September and then in Kansas and Oklahoma in September through October. It is this reverse Puccinia Pathway that may allow populations to complete their migration, but we know almost nothing about whether the predominant races moving northward in the spring are the predominant races moving southward in the autumn. In addition, wild grass species have been shown to harbor a more diverse population of *Pst* than is generally observed infecting wheat³⁴. These two sources of inoculum have been largely overlooked in our assessment of *Pst* epidemiology. Much attention and many predictive models have focused on the movement of spores during the spring. Given recent developments, we need to begin investigating the annual meta-population movement of *Pst* on a continental scale and determine how this may change with climate variability in the future.

With regard to the ability of *Pst* to survive through the winter, it has a latent period that can last for several days, weeks, or months depending on weather conditions. During the

overwintering period, temperature is a key aspect of survival. The lowest monthly mean temperature under which *Pst* can continue to develop is believed to be -6° C to -7° C. If wheat plants are under snow, then *Pst* can survive to -10° C³¹. Given the importance of urediniospores as a primary inoculum source each spring, we predict that changing climate patterns will allow *Pst* to overwinter in regions previously thought unsuitable, leading to more rapid and northerly build-up of primary inoculum along the Puccinia Pathway (Figure 1.2).

Adapting stripe rust management in the central United States and Canada to novel races and a changing climate

The most effective defense against stripe rust is the identification and deployment of resistance (R) genes into wheat varieties through breeding programs. However, individual R-genes can quickly be overcome by virulent *Pst* races arising from novel genetic variation in pathogen secreted effector proteins. Effector proteins are important pathogenicity determinants that are recognized in certain host genotypes, where they induce a resistance response that prevents disease development³⁵. Effectors identified by the host are under strong selective pressure to adapt to evade detection by the host resistance mechanisms³⁶. To improve the speed and effectiveness of our responses to stripe rust epidemics, continued high-resolution surveillance of the genetic variability of *Pst* populations within the United States is required. These data can be applied to monitor the distribution of existing *Pst* races and to help predict future emergence and spread of novel *Pst* races.

Existing stripe rust surveillance mechanisms rely on race phenotyping, which involves inoculating each *Pst* isolate onto a series of plants carrying a known complement of R-genes. Infection profiles are scored to determine the presence of pathogen avirulence effector proteins carried by each isolate, allowing their classification into discrete races. This method is often combined with analysis of low-throughput genetic markers, such as microsatellites, to provide a

measure of genetic diversity within the population³⁷. Aside from being low-throughput, cumbersome, and requiring the transport of live spores, this approach has the major limitation that novel effectors, effector diversity in the population, and effector loss in the population are not detected and described. One striking example is the finding that the most common *Pst* race in the United States, PSTv-37, is composed of 83 distinct multi-locus genotypes, including isolates belonging to genetic groups from both the eastern and western United States⁸. This means that within-race adaptation and evolution goes unnoticed, a critical shortcoming for the prediction of emerging epidemics³⁸.

There is an urgent need to update stripe rust surveillance mechanisms to efficiently detect the emergence and spread of new races of Pst within the United States to improve preparedness for inevitable future epidemics. Field pathogenomics is a novel approach to determine the genetic variability of *Pst* populations which improves upon many of the existing surveillance mechanisms³⁹. Made possible by the recent and rapid advances in sequencing technologies, large volumes of transcriptome data are generated from infected wheat leaves, providing high resolution diagnostic information for both pathogen and host simultaneously⁴⁰. This approach could be applied to monitoring populations of stripe rust in both agricultural systems and natural grass populations as a means for predicting new races of stripe rust and/or previously undetected races that may be important in future years. This method would also address questions regarding effector gene diversity and abundance in *Pst* populations. This has been a longstanding topic of interest to pathologists, as the abundance of a specific effector gene will rise and fall in the pathogen population depending on the prevalence of a corresponding resistance gene in the host population. It is unclear whether an effector associated with a new virulent race will decrease in abundance in the pathogen population when the corresponding resistance gene is

removed from production. This may be further complicated in *Pst*, as part of its success in the central United States and Canada appears to be an adaptation to warmer, drier climates and not just evolution of new virulent races. Therefore, epidemiological models will need to take into consideration all fitness attributes, including the effector composition of stripe rust populations, as well as adaptation of *Pst* populations to the climate of central and eastern United States and Canada.

Finally, as we attain a greater understanding of the evolution, ecology, and epidemiology of *Pst*, this information will need to be used to develop durable resistance strategies. With the expanding geographic footprint of stripe rust, plant breeders and pathologists need to work together in order to develop and deploy durable stripe rust resistance strategies⁴¹. In the case of *Pst*, this will include: (i) continuing to screen breeding material with a diverse population of *Pst* isolates; (ii) deployment of varieties with different resistance mechanisms (single-gene, quantitative, adult-plant, seedling stage); and (iii) development of varieties with multiple resistance genes or gene pyramids. While each of these strategies is theoretically determined to provide more durable resistance to *Pst*, it is unclear how durable quantitative resistance and gene pyramids will be in the field. It will be important to continue to test the longevity of these strategies, as well as their effect on the *Pst* population over time.

This perspective arose from a presentation at the Canadian Phytopathological Society annual meeting in a symposium entitled "Biovigilance: A framework for effective pest management." A title could not be more apropos, as rust never sleeps, so plant pathologists and breeders must remain ever vigilant against the development of novel races. But rather than waiting for the next new race to develop, we must change the paradigm and try to predict and be prepared for the emergence of the next new race. By utilizing new capabilities from low-cost, high-throughput sequencing to include a

more diverse sample of isolates, both historic and contemporary, we can gain greater insight into how *Pst* and other rust fungi evolve over time, and how populations evolve from year to year. Strategies for combating dynamic *Pst* populations, when available resistance genes fail, are essential for developing long-term, durable resistance in novel varieties of cultivated wheat. A dual-interaction network furthers our understanding of biological mechanisms during active *Pst* infection and probes for potential novel breeding targets within the wheat host for more durable resistance. These connections give insight into how the cross-kingdom interact during active infection and show conserved interactions from worldwide field samples. Using this knowledge coupled with further investigation into how resistance deployment impacts *Pst* populations, we can hopefully begin to develop long-term durable strategies for managing stripe rust.

References

- 1. Chen, W., Wellings, C., Chen, X., Kang, Z. & Liu, T. Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. *Mol. Plant Pathol.* **15**, 433–446 (2014).
- 2. Beddow, J. M. *et al.* Research investment implications of shifts in the global geography of wheat stripe rust. *Nat. Plants* **1**, (2015).
- 3. Hovmøller, M. S., Walter, S. & Justesen, A. F. Escalating threat of wheat rusts. *Science* **329**, 369 (2010).
- 4. Hughes M. Cereal rust bulletins. (2016). Available at: https://www.ars.usda.gov/midwestarea/%0Ast-paul-mn/cereal-disease-lab/docs/cereal-rust-bulletins/cereal-rustbulletins/.
- 5. Hughes, M. Estimated small grain losses due to rust in 2015. (2015). Available at: https://www.ars.usda.gov/midwest-area/stpaul/cereal-disease-lab/docs/small-grain-losses-due-to-rust/small-grain-losses-due-to-rust/.
- 6. Milus, E. A., Kristensen, K. & Hovmøller, M. S. Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. *Phytopathology* **99**, 89–94 (2009).
- 7. Wellings, C. R. Global status of stripe rust: A review of historical and current threats. *Euphytica* **179**, 129–141 (2011).
- 8. Xia, C. *et al.* Secreted protein gene derived-single nucleotide polymorphisms (SP-SNPs) reveal population diversity and differentiation of Puccinia striiformis f. sp. tritici in the United States. *Fungal Biol.* **120**, 729–744 (2016).
- 9. Liberatore, K. Cereal rust bulletins. (2016). Available at: https://www.ars.usda.gov/midwest-area/stpaul/cereal-disease-lab/docs/cereal-rustbulletins/cereal-rust-bulletins/.
- 10. Liu, T., Wan, A., Liu, D. & Chen, X. Changes of races and virulence genes in Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen, in the United States from 1968 to 2009. *Plant Dis.* **101**, 1522–1532 (2017).
- 11. Chen, X., Moore, M., Milus, E., Long, D. & Line, R. Wheat stripe rust epidemics and races of Puccinia striiformis f. sp. tritici in the United States in 2000. *Plant Dis.* **86**, 39–46 (2002).
- 12. Markell, S. G. & Milus, E. A. Emergence of a Novel Population of Puccinia striiformis f. sp. tritici in Eastern United States. *Phytopathology* **98**, 632–639 (2008).
- 13. Milus, E. A., Seyran, E. & McNew, R. Aggressiveness of Puccinia striiformis f.sp. tritici isolates in the south-central States. *Plant Dis.* **90**, 847–852 (2006).
- 14. Ali, S. *et al.* Origin, Migration Routes and Worldwide Population Genetic Structure of the Wheat Yellow Rust Pathogen Puccinia striiformis f.sp. tritici. *PLoS Pathog.* **10**, (2014).
- 15. Palm, M. E. Systematics and the Impact of Invasive Fungi on Agriculture in the United States. BioScience **51**, (2001).
- 16. Singh, R. P. *et al.* Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. *CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources* **1**, (2006).
- 17. Hovmøller, M. S., Yahyaoui, A. H., Milus, E. A. & Justesen, A. F. Rapid global spread of two aggressive strains of a wheat rust fungus. *Mol. Ecol.* **17**, 3818–26 (2008).
- 18. Campbell, F. T. The science of risk assessment for phytosanitary regulation and the

impact of changing trade regulations. in *BioScience* **51**, 148–153 (Oxford Academic, 2001).

- 19. Perrings, C. *et al.* Biological invasion risks and the public good: An economic perspective. *Ecol. Soc.* **6**, (2002).
- 20. Brown, J. K. M. & Hovmøll, M. S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. *Science* **297**, 537–541 (2002).
- 21. Wellings, C. R. Puccinia striiformis in Australia: A review of the incursion, evolution, and adaptation of stripe rust in the period 1979-2006. in *Australian Journal of Agricultural Research* **58**, 567–575 (CSIRO PUBLISHING, 2007).
- 22. Hovmøller, M. S. *et al.* Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. *Plant Pathol.* **65**, 402–411 (2016).
- 23. Ali, S. *et al.* Yellow rust epidemics worldwide were caused by pathogen races from divergent genetic lineages. *Front. Plant Sci.* **8**, 1057 (2017).
- 24. de Vallavieille-Pope, C. *et al.* Virulence dynamics and regional structuring of Puccinia striiformis f. sp. tritici in France between 1984 and 2009. *Plant Dis.* **96**, 131–140 (2012).
- 25. Walter, S. *et al.* Molecular markers for tracking the origin and worldwide distribution of invasive strains of Puccinia striiformis. *Ecol. Evol.* **6**, 2790–2804 (2016).
- 26. Wan, A. M., Chen, X. M. & Yuen, J. Races of Puccinia striiformis f. sp. tritici in the United States in 2011 and 2012 and Comparison with Races in 2010. *Plant Dis.* **100**, 966–975 (2016).
- 27. Sharma-Poudyal, D. & Chen, X. M. Models for predicting potential yield loss of wheat caused by stripe rust in the U.S. Pacific Northwest. *Phytopathology* **101**, 544–554 (2011).
- 28. Severns, P. M., Estep, L. K., Sackett, K. E. & Mundt, C. C. Degree of host susceptibility in the initial disease outbreak influences subsequent epidemic spread. *J. Appl. Ecol.* **51**, 1622–1630 (2014).
- 29. Sha, Y., Phan, J. H. & Wang, M. D. Effect of low-expression gene filtering on detection of differentially expressed genes in RNA-seq data. in *Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS* **2015-Novem**, 6461–6464 (2015).
- 30. Yan, J., Luo, Y., Chen, T., Huang, C. & Ma, Z. Field distribution of wheat stripe rust latent infection using real-time PCR. *Plant Dis.* **96**, 544–551 (2012).
- 31. Sharma-Poudyal, D., Chen, X. & Rupp, R. A. Potential oversummering and overwintering regions for the wheat stripe rust pathogen in the contiguous United States. *Int. J. Biometeorol.* **58**, 987–997 (2014).
- 32. Estep, L. K., Sackett, K. E. & Mundt, C. C. Influential disease foci in epidemics and underlying mechanisms: A field experiment and simulations. *Ecol. Appl.* **24**, 1854–1862 (2014).
- 33. Brar, G. S. & Kutcher, H. R. Race Characterization of Puccinia striiformis f. sp. tritici, the Cause of Wheat Stripe Rust, in Saskatchewan and Southern Alberta, Canada and Virulence Comparison with Races from the United States. *Plant Dis.* 100, 1744–1753 (2016).
- 34. Cheng, P., Chen, X. & See, D. Grass Hosts Harbor More Diverse Isolates of Puccinia striiformis Than Cereal Crops. *Phytopathology* **106**, 362–371 (2016).
- 35. Cantu, D. *et al.* Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as

candidate effectors. BMC Genomics 14, (2013).

- 36. Jones, J. D. G. & Dangl, J. L. The plant immune system. *Nature* 444, 323–329 (2006).
- Wan, A. & Chen, X. Virulence characterization of Puccinia striiformis f. sp. tritici using a new set of Yr single-gene line differentials in the United States in 2010. *Phytopathology* 98, 1534–1542 (2014).
- 38. Naccache, S. N. *et al.* A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. *Genome Res.* **24**, 1180–1192 (2014).
- 39. Hubbard, A. *et al.* Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. *Genome Biol.* **16**, 23 (2015).
- 40. Westermann, A. J., Gorski, S. A. & Vogel, J. Dual RNA-seq of pathogen and host. *Nature Reviews Microbiology* **10**, 618–630 (2012).
- 41. Mundt, C. C. Durable resistance: A key to sustainable management of pathogens and pests. *Infection, Genetics and Evolution* **27**, 446–455 (2014).

Chapter 2: Field patho-transcriptomics approach determines North American *Pst* population is distinct from global population due to asexual changes within the endemic population and newer *Pst* have less candidate effectors

Introduction

Wheat is an important global staple crop and an economically important commodity for growers in North America. For example, the United States produced about 2.4 billion bushels of wheat valued at \$9.1 billion in 2016¹. Unfortunately, this crop is threatened by plant pathogens. Stripe rust, caused by the fungal pathogen *Puccinia striiformis* f. sp. *tritici* (*Pst*), is one of the most devastating diseases of wheat in the United States and globally. This obligate biotrophic basidiomycete fungi threatens wheat production by diminishing photosynthesis during the important grain-filling stage, leading to yield losses. *Pst* causes the highest yield losses when infection occurs after the flag leaf has emerged². Stripe rust commonly causes between 10–70% crop loss, but can cause up to 100% yield loss in a heavily infected field².

Pst was first introduced to North America from northwestern Europe sometime early in the 20th century³. In the Pacific Northwest, stripe rust is observed each year due to favorable conditions for *Pst* growth and infection, including low night temperatures, dew formation, and year-round availability of host plants^{2,4}. In contrast, there have been less frequent epidemics causing high yield losses east of the Rocky Mountains. For example, *Pst* was first reported in 1941 in Texas and a larger epidemic occurred in 1957, the same year *Pst* was first reported in Kansas^{5,6}.

A major shift in prevalent virulence factors was seen in North America in 2000. These newer US races had a broader virulence profile, were more aggressive at higher temperatures, and were found to be genetically distinct from previous races identified in the eastern United

States^{7,8}. These novel races appeared to be from the introduction of races originating in the East African-Middle Eastern region^{3,6}. The geographic footprint of *Pst* in the United States has expanded in the past two decades and is thought to be due to mutations or introductions of novel races^{3,9,10}. In addition, the number of races in the United States has continued to increase since 2000, with hundreds of races identified by 2018^{11} . Fungicides may be used to control this growing stripe rust problem. For example, the strobilurin class of fungicides are applied before *Pst* infects wheat or during early stages of *Pst* spore growth, and the triazole fungicides are applied after *Pst* infection has occurred^{12,13}. Although stripe rust can be controlled with fungicides, a preferred approach is to breed wheat to have resistance genes against *Pst* infection. This approach is more economical and environmentally friendly than fungicide applications. Understanding the population structure of *Pst*, and the origin of shifts in population structure within North America and worldwide, help wheat breeders evaluate which resistance genes in wheat are most likely to be needed in future years.

Race-typing currently plays a major role in determining the population structure of Pst, which is vital in shaping which resistance genes to include in wheat-breeding programs. Historically, Pst has been classified into races based on its virulence phenotype, which is the compatibility of Pst with wheat plants possessing different resistance genes. Wheat plants with a major resistance gene (Yr gene) are resistant to pathogens with a corresponding avirulence (Avr) gene product. The race of a Pst isolate is determined by comparing the isolate against a differential set of wheat cultivars, each with a single major Yr gene. Specifically, the race of the Pst isolate is determined by evaluating which plant resistance genes the Pst isolate is able to infect or defeat. Around the world, over 40 *Yr* resistance genes have been described, but the differential set of wheat cultivars used to determine stripe rust races represents only 18 major resistance genes, with an additional 9 major resistance genes in the supplemental set^{14,15}. The differential set of wheat cultivars was last updated in 2010 and is usually modified when more *Yr* resistance genes are overcome in the field by *Pst* infection¹⁵. In the last five years (2015 to 2019), 125 *Pst* races have been identified on wheat plants in the United States (including 69 new races)¹⁶. Unfortunately, race-typing can be time-consuming, subjective, and labor intensive while only giving limited phenotypic information¹⁷. Since close monitoring of the *Pst* population for new incursions is essential for breeders and growers to react quickly to changing populations of *Pst*, a new approach using field patho-transcriptomics (also known as field pathogenomics) was developed to speed up the process of identifying strains and candidate effector diversity in the pathogen population, providing valuable information for breeders as they develop new wheat varieties^{17,18}.

Fundamental to race-typing are the candidate effector proteins which interact with the resistance genes of the host. Candidate effectors are proteins produced by pathogens that modify host-cell structure and function, such as enhance infection for the pathogen. To counteract pathogen infection, the plant develops mechanisms to recognize candidate effectors and inhibit pathogen infection, leading to a rapid evolution for both the pathogen candidate effectors and plant responses^{19,20}. In filamentous plant pathogens like *Pst*, candidate effector genes are frequently under selection pressure to drive evolution of these resistance genes²¹. A number of *Puccinia* candidate effectors, including those in *Pst*, have been identified that increase host susceptibility to the pathogen; however, the diversity of these candidate effectors has not been studied on a global population scale^{22,23}. While race-typing uses the differential set of wheat

cultivars to focus on the presence or absence of a few avirulence genes, field pathotranscriptomics evaluates all candidate effectors.

The fungal pathogen *Pst* is clonally propagated with little sexual reproduction and low genetic diversity throughout most of its global range³. Asexual reproduction can occur for this heteroecious fungus when wheat plants are present, while sexual reproduction can occur when the alternate host *Berberis spp*. (barberry) is present²⁴. The Himalayan region has *Berberis spp*. and a higher diversity of *Pst*, indicating sexual reproduction occurs in the Himalayan region while *Pst* in the rest of the globe only undergoes asexual reproduction^{3,25}. There is no evidence of sexual reproduction occurring in North America. Although *Berberis vulgaris* (barberry) is present in the Pacific Northwest, it does not act as an alternate host for *Pst* due to *Pst* teliospore degradation and barberry phenology²⁶.

Although asexual reproduction limits genetic diversity, changes in the *Pst* population can occur in several ways. The primary drivers for increased variation are either introductions of new isolates from outside the region or asexual genetic changes²⁶. New races from around the world can be introduced into the United States through the transport of plant material or through the movement of spores by winds like the westerlies or trade winds. Once in North America, the wind corridor known as the Puccinia Pathway could provide a route for races to move within North America because spores overwintering in the southern United States and northern Mexico can be carried by springtime winds up north through the United States and into Canada. Asexual genetic changes in the *Pst* population can occur when races evolve through mutations that change the protein structure of virulence factors or delete virulence factors, thereby limiting the effectiveness of host resistance genes⁶. In a co-evolutionary arms race, *Pst* populations mutate to accumulate or lose specific *Avr* genes, resulting in a small number of individuals being able to

avoid recognition by the predominant resistance genes present in the host population. These novel *Pst* races will then quickly become the most abundant races in the population, resulting in widespread infection and yield loss. The goal of breeders is to rapidly identify resistant germplasm that can be used to develop new wheat varieties that are able to resist infection by these new races of *Pst*. Unfortunately for breeders, current *Pst* races can rapidly transform into new *Pst* races through a change in a single avirulence protein or through loss of virulence factors¹⁰.

It is important to note that processes such as sexual, parasexual, and somatic recombination can be important drivers of genotypic diversity²⁷. These asexual changes could be in the form of single-step mutation (which has been the origin of new avirulence and virulence combinations in *Pst*) or somatic hybridization (which occurred with a different *Puccinia* species when a new, virulent lineage of *Puccinia graminis* f. sp. *tritici* named Ug99 arose from somatic hybridization^{27,28}).

When comparing *Pst* virulence profiles, international collections are similar to US collections. This similarity may be a reflection of the same resistance genes being deployed over multiple continents rather than a reflection of similar genetic background²⁹. For example, despite high genetic diversity, there was a limited number of pathotypes in Nepal due to a deployment of a limited number of resistance genes in the wheat population which lead to a convergence of pathotypes³⁰. In addition, while virulence profiles were similar between China and the United States, isolates from those two countries appeared to generally evolve independently³¹.

In Europe in 2011, there was an introduction of a new *Pst* race, possibly from the near-Himalayan region to Europe, known as the "Warrior race." This new race caused disease damage on adult wheat plants which had previously demonstrated effective resistance to *Pst*.

In the first year after detection, the Warrior race was seen in high frequencies in multiple countries around Europe³². To date, it is unknown whether this Warrior race has been introduced into North America.

The ever-changing *Pst* population presents a challenge for researchers using race-typing to keep up with the population. For example, novel races have been observed in the central United States that can defeat the *Yr17* gene and the TAM111QTL; however, these races cannot be distinguished from race 37 using the standard differential set of major resistance genes. In contrast, the field patho-transcriptomics approach has found mutations, defined *Pst* strains, assigned strains to genetic lineages that correlated with their virulence profiles, and demonstrated a shift within a United Kingdom population of *Pst*^{17,18}.

In the last two decades, *Pst* incidence and disease loss have increased significantly in North America, particularly east of the Rocky Mountains. Additionally, novel races of *Pst* have emerged since 2010, but our current method of race-typing using the differential set of wheat cultivars is time-consuming and only gives limited information about the candidate effector diversity of *Pst* isolates in the field. Based on these problems, this study uses a field pathotranscriptomics approach to determine if novel races of *Pst* represent introduction events to North America or asexual changes within the resident population. This approach also allows us to quantify the presence/absence of specific candidate effectors in the isolates.

Methods

Sample Collection, RNA Extraction, and Sequencing

Sixteen wheat leaves infected with *Puccinia striiformis* f. sp. *tritici* were collected in 2017 from wheat fields in 8 states in the United States and placed in tubes containing RNAlater. In addition, one isolate (PST-100) originally collected in 2001 from Kansas (as part of the race

group introduced to North America in 2000) was inoculated on a susceptible cultivar (Ripper) and placed in a dew chamber in darkness and 100% humidity at 10°C for 36 hours. The plants were then grown in a growth chamber set at 18°C for the highest temperature and 4°C for the lowest temperature. The *Pst*-infected wheat leaf was collected in RNAlater when the seedling was at the 4-leaf stage.

Total RNA from the *Pst*-infected wheat leaves stored in RNAlater were extracted using a Qiagin RNeasy kit. A NanoDrop spectrophotometer was used to test the quality before sequencing using Illuminia HiSeq 4000 through BGI Americas Corporation. There were between 24 and 90 million total reads for each of the 17 *Pst*-infected wheat leaves.

Sequence Acquisition and Alignment

A total of 313 *Pst*-infected wheat transcriptomes and *Pst* genomes from around the world were included in this study. There were 59 samples from North America, 5 from South America, 11 from Africa, 39 from Asia, 195 from Europe, and 4 from Oceania. Of these samples, 17 were new transcriptomes generated by this study while 296 samples were obtained from previously published papers through either the European Nucleotide Archive or shared by authors^{17,18,33}. The raw reads from these 17 collected samples and from the 296 transcriptomes were trimmed using fastp with default parameters³⁴. The trimmed reads were aligned to the reference genome PST-78, which was originally collected in the Great Plains of the United States in 2000 and obtained through Ensemble³⁵. This reference genome was indexed, and the first pass alignments were performed using STAR Version 2.7.5a with a max number of loci anchors of 200 and split reads no longer than 30. A second index was created from the initial alignments which annotated all splice junctions with the length of the genomic sequence around the junction set to 99. The second pass was performed using the same parameters as the first pass, but with the second

indexed genome³⁶. The resulting bam files were sorted, indexed, and the pileup format generated using SAMtools Version 1.9³⁷.

The percentage of reads mapped to the *Pst* genome ranged from 1-86% and the percentage of reads aligned to the wheat genome ranged from 1-69%. The allele frequency revealed that each of the samples consisted of a single isolate.

SNP Genotyping and Filtering

Single nucleotide polymorphisms (SNPs) were identified using the pipeline and scripts from previously published work³⁸. Only SNPs with at least 20x coverage were included in the final analysis. The frequency of the alleles was graphed to determine if there were one or more isolates present per sample. Synonymous and nonsynonymous SNPs were identified using snpEff ³⁹. Samples with less than 50% coverage were removed. The synonymous SNPs were further filtered; only SNPs that were present in 80% of samples and had a minimum allele frequency of 0.2 were used for further analysis.

In total, there were 313 samples with 143,183 SNPs having at least 20x coverage. By setting a minimum allele frequency of 0.2, the number of SNPs was decreased to 91,717. By stating that SNPs needed to be present in at least 80% of samples, the number of SNPs decreased to 12,359. Samples with less than 50% of their SNPs present in the data were removed, which decreased the number of samples to 295.

After filtering, there were 57 samples from North America collected in the years 2015–2017 and 1 sample originally collected in North America in 2001. There were 10 samples from Africa collected between 2014 and 2016, 39 samples from Asia collected between 2014 and 2017, 179 samples from Europe collected between 1978 and 2017, 4 samples from Oceania collected between 2006 and 2012, and 5 samples from Chile collected in 2014 (Appendix 1). All

Pst samples were collected on wheat except for 11 samples from Europe, where one sample was collected on durum wheat, one sample was collected on perennial grass, one sample was collected from rye, and 8 samples were collected from triticale.

Population Genetics

A multivariate discriminant analyses of principal components (DAPC) was performed using the adegenet package in R environment^{40–43}. The number of genetic clusters was determined by comparing the value of Bayesian Information Criterion (BIC) to the value of the K-means clustering algorithm. Individuals were assigned to clusters based on membership probability. To establish the appropriate number of principal components, the data were cross-validated using poppr Version 2.8.6^{44,45}. A phylogenetic analysis was performed using FastTree Version 2.1.11 SSE3 and the generalized time-reversible model⁴⁶. The input file was created by including genes with at least 2x coverage, then only genes with at least 50% of the gene covered in 50% of the isolate were included to create the file for the phylogenetic analysis³⁸. The tree was visualized using iTOL⁴⁷.

Candidate Effector Analysis

To determine candidate effectors, SignalP was used in order to establish which genes had a signal peptide⁴⁸. Non-synonymous SNPs with at least 20x coverage were used to calculate how many SNPs per candidate effector. A binary matrix indicating presence and absence of candidate effectors was created. If nucleotides were present in 80% or more of the candidate effector, the candidate effector was considered present and given a "1;" otherwise, the value was a zero. There were 80 uninformative candidate effectors that were removed, 54 candidate effectors were present in every isolate, and 26 candidate effectors were present in no isolates. This process left

2,216 candidate effectors for subsequent analysis. A boxplot was created and a pairwise comparison using Wilcoxon rank sum test was calculated using RStudio Version 4.0.1.

Results

The results of the DAPC analysis identified 8 distinct genetic clusters (Figure 2.1) among the global population of *Pst* included in this study. Multiple genetic groups of *Pst* were found in Europe (5 clusters), North America (3 clusters), and Asia (2 clusters). Genetic Cluster 1 consisted of samples from Europe collected between 2013 and 2015 (Germany, France, United Kingdom, Italy, and Poland), samples from South Africa collected in 2016, samples from New Zealand collected in 2011–2012, and the historical *Pst* isolate PST-100 originally collected in 2001 in Kansas, US (part of the race group introduced to North America in 2000). Genetic Cluster 2 was composed entirely of samples from North America collected between 2015 and 2017 (United States and Canada). The final cluster with North American samples was Genetic Cluster 7, which included samples from the United States collected between 2015 and 2016 (specifically Oregon and Washington) and samples from China collected between 2015 and 2017. While all the samples in Genetic Cluster 2 came from locations distributed throughout North America between 2015 and 2017, the North American samples in Genetic Cluster 7 only came from the Pacific Northwest between 2015 and 2016, and the only North American sample in Genetic Cluster 1 came from Kansas in 2001 (Figure 2.2).

The remaining clusters contained no samples from North America. Specifically, Genetic Cluster 3 consisted entirely of samples from Europe collected between 2011 and 2014 (Belarus, Germany, France, United Kingdom, and Poland). The four samples known to be the Warrior race clustered together in Genetic Cluster 4. All the other samples in Genetic Cluster 4 were originally collected in Europe between 2011 and 2014 (Austria, Belarus, Bulgaria,

Figure 2.1A: DAPC analysis showing the data forming into 8 clusters.

B: Countries where samples were taken are in red and pie charts by each continent show the percentage of isolates in each cluster.

Figure 2.2: Samples collected in the United States colored by genetic cluster. The green stars represent Genetic Cluster 7. The purple circles represents Genetic Cluster 2, and the orange triangle represents Genetic Cluster 1.

Czech Republic, Spain, France, United Kingdom, Croatia, Italy, Poland, Romania, Serbia, Slovokia, and Turkey). Genetic Cluster 5 was comprised of samples from Ethiopia and Pakistan collected between 2014 and 2016. Genetic Cluster 6 was made up of samples from Chile, Germany, France, United Kingdom, and New Zealand collected between 1978 and 2014. Lastly, Genetic Cluster 8 consisted of samples collected between 2014 and 2017 in the United Kingdom, Poland, and Sweden.

After filtering, 10,984 genes were included to create the phylogenetic tree, which further confirmed population subdivisions with strong geographic connection (Figure 2.3). In fact, each genetic cluster from the DAPC analysis grouped together in the phylogeny with one exception. Originally identified as part of Genetic Cluster 6 (blue color), a single United Kingdom sample

Figure 2.3: Phylogeny of Pst *isolates by FastTree with the ring of colors being the same as the clusters from the DAPC analysis.*

collected in 2013 was now among the Genetic Cluster 7 (green), which had samples from China and the Pacific Northwest of the United States.

As part of the candidate effector analysis, 2,301 candidate effectors were identified through SignalP. After removing 54 candidate effectors present in every isolate and removing 26 candidate effectors present in no isolates, 2,216 candidate effectors were left. A boxplot was created for the presence/absence matrix that organized the results by the 8 genetic clusters determined by the DAPC analysis (Figure 2.4).

Effector Distribution

Figure 2.4: Boxplot of presence/absence matrix with samples organized by genetic cluster.

To determine p-values, pairwise comparisons of presence/absence data by genetic cluster were done using Wilcoxon rank sum test with continuity correction (Table 2.1). Genetic Cluster 6 showed a significant difference in the number of candidate effectors present, as p-values were consistently below 0.05 when Genetic Cluster 6 was compared to each of the other

clusters. No other genetic cluster showed significant differences with other genetic clusters.

Table 2.1: Pairwise comparisons of presence/absence data by genetic cluster using Wilcoxon rank sum test with continuity correction. The p-values are shown when comparing genetic clusters.

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	Cluster 6	Cluster 7
Cluster 2	0.32294	-	-	-	-	-	-
Cluster 3	0.85809	0.24031	-	-	-	-	-
Cluster 4	0.29296	0.62627	0.18546	-	-	-	-
Cluster 5	0.18288	0.28748	0.16982	0.63166	-	-	-
Cluster 6	0.00096	0.00057	3.3e-05	0.01041	0.05300	-	-
Cluster 7	0.26918	0.97689	0.23438	0.58486	0.42657	0.00134	-
Cluster 8	0.41251	0.97512	0.48936	0.72556	0.52238	0.01460	0.93528

Discussion

While *Pst* is known to sexually reproduce when the alternate host *Berberis spp*.

(barberry) is present, sexual reproduction of *Pst* does not occur with the barberry population of the Pacific Northwest of the United States due to teliospore degradation and barberry phenology^{24,26}. Therefore, the population structure of *Pst* in North America is driven by clonal lineages with diversity created by either introductions from outside the continent or from asexual changes within the endemic population. In 2017 in the United States, there were 64 *Pst* races identified¹¹. The DAPC analysis in this study determined that North American samples fell into only three genetic clusters, which reinforces the concept that within North America, there are a limited number of clonally propagated genotypes despite the large number of pathotypes identified by race-typing.

This study describes the population structure of the *P. striiformis* population in North America compared to the population in the rest of the world. Of the three genetic clusters found

in North America (Figure 2.2), Genetic Cluster 1 had a single sample from the United States that was originally collected in 2001 in Kansas. The Kansas sample clustered with samples collected from Europe between the years 2013 and 2015, Oceania collected between the years 2011 and 2012, and Africa collected between the years 2014 and 2016. The Kansas sample was collected in 2001 after a major shift in prevalent virulence factors was seen in North America in 2000 due to the introduction of novel races from outside North America, which changed the population structure in the United States^{3,6}. The post-2000 race group in North America was shown to have increased aggressiveness at higher temperatures in a study analyzing Amplified Fragment Length Polymorphism (AFLP) markers, latent period, length and area of lesion, and number of spores⁷. Another study used virulence diversity and AFLP markers to show that the post-2000 population replaced the older population as a result of an introduction⁸. In addition, a study using the differential set of wheat cultivars also gave evidence supporting an introduction, while stating that other races later evolved from the endemic population in the United States⁶. Later using SSRs, the post-2000 *Pst* population in North and South America was shown to be an introduction from East African-Middle Eastern region³. These studies support the findings of the DAPC analysis in this study, which determined that Genetic Cluster 1 was associated with the post-2000 global spread of Pst isolates that were more adapted to warmer, drier climates such as those in the central plains of the United States. More modern North American samples (collected between 2015 and 2017) were not part of Genetic Cluster 1, nor were older Pst isolates such as the genomes collected in the 1970s and 1980s in the United Kingdom that were instead found in Genetic Cluster 6.

Of the genotypes tested from North America, 94.8% clustered into Genetic Cluster 2. This genetic cluster was found throughout the sampled areas in North America and consisted of

isolates collected between 2015 and 2017. No samples from other countries clustered with these genotypes, indicating there had been no introduction event but rather the occurrence of asexual changes such as mutations or somatic hybridization within the endemic *Pst* population. This conclusion is supported by previous research using the differential set of wheat cultivars, which determined most of the new races identified in the United States in 2011 and 2012 evolved from previously existing races through a change in a single virulence factor from the endemic population, suggesting mutations were the source of the new races¹⁰. In addition, somatic hybridization may have occurred with co-infection on wheat plants, similar to how stem rust shows evidence of somatic hybridization on wheat²⁸. In laboratory settings, it has been demonstrated that *Puccinia striiformis* can undergo somatic hybridization⁴⁹. Whether by mutations or somatic hybridization, the largest population of *Pst* in the United States between 2015 and 2017 was both genetically distinct from the post-2000 racial group (Genetic Cluster 1) and genetically distinct from *Pst* populations around the world.

The final genetic cluster that included North American samples was Genetic Cluster 7, which consisted of samples collected in China between 2015 and 2017 and two samples from the United States (one sample collected from the state of Oregon in 2015 and the other collected from the state of Washington in 2016). The composition of this genetic cluster supports a previous study where a phylogeny based on polymorphic SNPs was performed and samples from China and the United States fell into the same clade¹⁷. An introduction event between long distances such as across the Pacific Ocean is most likely due to human activity³. The lack of samples from China in other North American clusters indicates there has been a limited amount of genetic exchange between Asia and North America. While regional spread within North

America may occur due to winds, this introduction event into the Pacific Northwest did not spread beyond that region³.

This study established that the Warrior race samples clustered in Genetic Cluster 4 along with samples from multiple countries in Europe. No samples in this study from outside the European continent clustered with the Warrior race. Therefore, it appears that the Warrior race had not left the European continent as of 2017. Furthermore, no known Warrior race isolates were identified in the genetic clusters found in North America. This finding indicates that, as of 2017, the Warrior race had not been introduced into North America. In addition, this finding further supports the conclusion that race shifts in the United States during 2013 and 2015 were not associated with an introduction event, but rather adaptation within the endemic population in the United States.

A few additional observations can be made about this study's genetic clusters. The DAPC analysis in this study determined that the South American samples all clustered into Genetic Cluster 6. This phenomena may be due to the limited number of samples collected from South America (only 5 samples) that were all collected in the year 2014. Conversely, while *Pst* samples from six continents were evaluated in this study, samples from northern Europe were overrepresented due to this region's extensive surveys³². This overrepresentation may explain why *Pst* samples from Europe clustered into five genetic clusters (specifically, Genetic Clusters 1, 3, 4, 6, and 8). Lastly, Genetic Cluster 5 was made up of samples from Pakistan and Ethiopia that were all collected between 2014 and 2016. Samples from these two countries also clustered together when SNPs were used in a DAPC analysis in a previous study¹⁷.

As part of the candidate effector analysis, the number of present candidate effectors versus the number of absent candidate effectors were analyzed in terms of the 8 genetic clusters. Only

Genetic Cluster 6 was significantly enriched in the number of candidate effectors when compared to other genetic clusters. Specifically, Genetic Cluster 6 showed a significant difference in the number of candidate effectors present, as p-values were consistently below 0.05 when Genetic Cluster 6 was compared to each of the other genetic clusters (Table 2.1). It is important to note that the oldest samples with genomes dating back to 1978 are included in this genetic cluster. For example, Genetic Cluster 6 included samples from Europe collected between 1978 and 2014, samples from New Zealand collected in 2006 and 2012, and the five samples from Chile collected in 2014. On average, these samples had a larger number of candidate effectors present than the rest of the genetic clusters (Figure 2.4). Isolates collected after 2000 have fewer candidate effectors expressed from this list than the genetic and transcriptomic samples in Genetic Cluster 6. This loss of candidate effectors could partially explain the shift in races, as possible avirulence genes were no longer expressed and the host resistance genes were not able to recognize the pathogen, thus leading the newer races to infect the wheat hosts.

Since the newer *Pst* isolates had less candidate effector genes than older isolates, this phenomenon suggests there is some fitness cost to having more candidate effector genes than what is needed to overcome the resistance in the host population. Several studies support this hypothesis. The predominant races that caused severe *Pst* epidemics in 2010 and 2011 had a reduced number of virulence genes than the older race they appeared to evolve from in the western United States^{15,50}. This situation is similar to *Puccinia coronata*, the causal agent of oat crown rust, where a fitness cost was associated with strains that had more virulence genes (specifically, more virulence genes were associated with longer latent periods and smaller pustules)⁵¹. Similarly, researchers investigating *P. infestans* demonstrated that, in the absence of resistance genes in the host population, fitness was negatively correlated with virulence

complexity in genetically related isolates⁵². In addition, there was a negative correlation in wheat leaf rust (*Puccinia triticina*) between two traits that conferred a positive effect (specifically, latent period and fecundity)⁵³. However, virulence genes do not always confer a fitness cost. In *Pst*, there did not appear to be a fitness cost for resistance to the host gene *Yr2*, based on the fitness parameters tested⁵⁴.

Regardless of the possibility of fitness costs for resistance genes, evidence shows that the host population has a strong evolutionary effect on the pathogen population. Research with *Pst* determined a high frequency of virulence to deployed resistance genes, but an absence of virulence genes for resistance genes that were not deployed in the host population⁵⁵. Both in *Pst* and *P. coronata*, the host population still drove the evolution of virulence levels in local populations despite the trade-off with some life-history traits and, even in the presence of racial diversity, the dominant lineage was driven by host resistance genes^{51,55}. In addition, this study found fewer candidate effectors in more modern populations, which indicates the likelihood that the evolution of *Pst* candidate effectors is affected by the genetics of the host population.

In *Puccinia triticina*, the selection for quantitative traits can happen at the isolate level independent of the pathotype, indicating more diversity present than the pathotype⁵³. This is similar to *Pst*, where the differential set of wheat cultivars for America was last updated in 2010 and may not reflect the latest changes in the population if changes occur outside the tested avirulence genes¹⁵. Field patho-transcriptomics, such as the techniques used in this study, are a useful tool in rapidly evaluating shifting populations of *Pst* as they adapt to the local wheat population¹⁸. Sequencing the transcriptome of *Pst* field samples can be used to both evaluate the synonymous SNPs and look directly at all the expressed candidate effectors.

References

- 1. USDA. Crop values 2016 Summary. National Agricultural Statistics Service 2, (2017).
- 2. Chen, X. M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. *Can. J. Plant Pathol.* **27**, 314–337 (2005).
- 3. Ali, S. *et al.* Origin, Migration Routes and Worldwide Population Genetic Structure of the Wheat Yellow Rust Pathogen Puccinia striiformis f.sp. tritici. *PLoS Pathog.* **10**, (2014).
- 4. Cheng, P. & Chen, X. M. Virulence and Molecular Analyses Support Asexual Reproduction of Puccinia striiformis f. sp. tritici in the U.S. Pacific Northwest. *Phytopathology* **104**, 1208–1220 (2014).
- 5. Milus, E. A., Seyran, E. & McNew, R. Aggressiveness of Puccinia striiformis f.sp. tritici isolates in the south-central States. *Plant Dis.* **90**, 847–852 (2006).
- 6. Chen, X., Penman, L., Anmin, W. & Cheng, P. Virulence races of Puccinia striiformis f. sp. tritici in 2006 and 2007 and development of wheat stripe rust and distributions, dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. *Can. J. Plant Pathol.* **32**, 315–333 (2010).
- 7. Milus, E. A., Kristensen, K. & Hovmøller, M. S. Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. *Phytopathology* **99**, 89–94 (2009).
- 8. Markell, S. G. & Milus, E. A. Emergence of a Novel Population of Puccinia striiformis f. sp. tritici in Eastern United States. *Phytopathology* **98**, 632–639 (2008).
- 9. Beddow, J. M. *et al.* Research investment implications of shifts in the global geography of wheat stripe rust. *Nat. Plants* **1**, (2015).
- Wan, A. M., Chen, X. M. & Yuen, J. Races of Puccinia striiformis f. sp. tritici in the United States in 2011 and 2012 and Comparison with Races in 2010. *Plant Dis.* 100, 966– 975 (2016).
- WSU Extension Resource. Annual Stripe Rust Race Data Reports | Stripe Rust | Washington State University. (2020). Available at: https://striperust.wsu.edu/races/data/. (Accessed: 25th October 2020)
- 12. Bartlett, D. W. *et al.* The strobilurin fungicides. *Pest Management Science* **58**, 649–662 (2002).
- 13. De Wolf, E. Kansas State University Agricultural Experiment Station and Cooperative Extension Service. (2010).
- 14. Chen, W. Q. *et al.* Race Dynamics, Diversity, and Virulence Evolution in Puccinia striiformis f. sp tritici, the Causal Agent of Wheat Stripe Rust in China from 2003 to 2007. *Plant Dis.* **93**, 1093–1101 (2009).
- Wan, A. & Chen, X. Virulence characterization of Puccinia striiformis f. sp. tritici using a new set of Yr single-gene line differentials in the United States in 2010. *Phytopathology* 98, 1534–1542 (2014).
- 16. Chen, X. Annual Stripe Rust Race Data Reports | Washington State University. Available at: http://striperust.wsu.edu/races/data/. (Accessed: 26th March 2018)
- 17. Radhakrishnan, G. V. *et al.* MARPLE, a point-of-care, strain-level disease diagnostics and surveillance tool for complex fungal pathogens. *BMC Biol.* **17**, 65 (2019).
- 18. Hubbard, A. *et al.* Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. *Genome Biol.* **16**, 23 (2015).
- 19. Win, J. *et al.* Effector biology of plant-associated organisms: Concepts and perspectives. *Cold Spring Harb. Symp. Quant. Biol.* **77**, 235–247 (2012).

- 20. Hogenhout, S. A., Van der Hoorn, R. A. L., Terauchi, R. & Kamoun, S. Emerging Concepts in Effector Biology of Plant-Associated Organisms. *Mol. Plant-Microbe Interact.* **22**, 115–122 (2009).
- 21. De Jonge, R., Bolton, M. D. & Thomma, B. P. How filamentous pathogens co-opt plants: The ins and outs of fungal effectors. *Current Opinion in Plant Biology* **14**, 400–406 (2011).
- 22. Ramachandran, S. R. *et al.* Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses. *Phytopathology* **107**, 75–83 (2017).
- 23. Liu, C. *et al.* The stripe rust fungal effector PEC6 suppresses pattern-triggered immunity in a host species-independent manner and interacts with adenosine kinases. *New Phytologist* (2016). doi:10.1111/nph.14034
- Jin, Y., Szabo, L. J. & Carson, M. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. *Phytopathology* 100, 432–435 (2010).
- 25. Duan, X. *et al.* Puccinia striiformis f.sp. tritici presents high diversity and recombination in the over-summering zone of Gansu, China. *Mycologia* **102**, 44–53 (2010).
- 26. Wang, M. N. & Chen, X. M. Barberry does not function as an alternate host for Puccinia striiformis f. sp. tritici in the US Pacific Northwest due to teliospore degradation and barberry phenology. *Plant Dis.* **99**, 1500–1506 (2015).
- 27. Hovmøller, M. S., Sørensen, C. K., Walter, S. & Justesen, A. F. Diversity of Puccinia striiformis on Cereals and Grasses. *Annu. Rev. Phytopathol.* **49**, 197–217 (2011).
- 28. Li, F. *et al.* Emergence of the Ug99 lineage of the wheat stem rust pathogen through somatic hybridisation. doi:10.1101/692640
- 29. Sharma-Poudyal, D. *et al.* Virulence Characterization of International Collections of the Wheat Stripe Rust Pathogen, Puccinia striiformis f. sp. tritici. *Plant Dis.* **97**, 379–386 (2013).
- 30. Ali, S. *et al.* Low pathotype diversity in a recombinant Puccinia striiformis population through convergent selection at the eastern Himalayan centre of diversity (Nepal). *Plant Pathol.* **67**, 810–820 (2018).
- 31. Zhan, G. *et al.* Comparative virulence phenotypes and molecular genotypes of Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen in China and the United States. *Fungal Biol.* **116**, 643–653 (2012).
- 32. Hovmøller, M. S. *et al.* Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. *Plant Pathol.* **65**, 402–411 (2016).
- 33. Bueno-Sancho, V. *et al.* Pathogenomic Analysis of Wheat Yellow Rust Lineages Detects Seasonal Variation and Host Specificity. *Genome Biol. Evol.* **9**, 3282–3296 (2017).
- 34. Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. in *Bioinformatics* **34**, i884–i890 (2018).
- 35. Cuomo, C. A. *et al.* Comparative Analysis Highlights Variable Genome Content of Wheat Rusts and Divergence of the Mating Loci. *G3 Genes, Genomes, Genet.* **7**, 361–376 (2017).
- 36. Dobin, A. *et al.* STAR: Ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21 (2013).
- 37. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. *Bioinformatics* **27**, 2987–2993 (2011).

- 38. Periyannan, S. *Wheat Rust Diseases: Methods and Protocols*. **1659**, (Humana Press, 2017).
- 39. Cingolani, P. *et al.* A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. *Fly (Austin).* **6**, 80–92 (2012).
- 40. R Core Team. R: A Language and Environment for Statistical Computing. (2020).
- 41. Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. *Bioinformatics* **24**, 1403–1405 (2008).
- 42. Jombart, T. & Ahmed, I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. *Bioinformatics* **27**, 3070–3071 (2011).
- 43. Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. *BMC Genet.* **11**, 94 (2010).
- 44. Kamvar, Z. N., Tabima, J. F. & Grunwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. *PeerJ* **2014**, 1–14 (2014).
- 45. Kamvar, Z. N., Brooks, J. C. & Grünwald, N. J. Novel R tools for analysis of genomewide population genetic data with emphasis on clonality. *Front. Genet.* **6**, 208 (2015).
- 46. Price, M. N., Dehal, P. S. & Arkin, A. P. Fasttree: Computing large minimum evolution trees with profiles instead of a distance matrix. *Mol. Biol. Evol.* **26**, 1641–1650 (2009).
- 47. Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. *Nucleic Acids Res.* **47**, (2019).
- 48. Petersen, T. N., Brunak, S., Von Heijne, G. & Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. *Nature Methods* **8**, 785–786 (2011).
- 49. Lei, Y. *et al.* Virulence and molecular characterization of experimental isolates of the stripe rust pathogen (Puccinia striiformis) indicate somatic recombination. *Phytopathology* **107**, 329–344 (2017).
- 50. Wan, A. & Chen, X. Virulence, frequency, and distribution of races of puccinia striiformis f. sp. tritici and P. striiformis f. sp. hordei identified in the United States in 2008 and 2009. *Plant Dis.* **96**, 67–74 (2012).
- 51. Bruns, E., Carson, M. L. & May, G. The jack of all trades is master of none: A pathogen's ability to infect a greater number of host genotypes comes at a cost of delayed reproduction. *Evolution (N. Y).* **68**, 2453–2466 (2014).
- 52. Montarry, J., Hamelin, F. M., Glais, I., Corbi, R. & Andrivon, D. Fitness costs associated with unnecessary virulence factors and life history traits: Evolutionary insights from the potato late blight pathogen Phytophthora infestans. *BMC Evol. Biol.* **10**, (2010).
- 53. Pariaud, B. *et al.* Shared influence of pathogen and host genetics on a trade-off between latent period and spore production capacity in the wheat pathogen, Puccinia triticina. *Evol. Appl.* **6**, 303–312 (2013).
- Sørensen, C. K., Justesen, A. F. & Hovmøller, M. S. Spontaneous loss of Yr2 avirulence in two lineages of Puccinia striiformis did not affect pathogen fitness. *Plant Pathol.* 62, 19–27 (2013).
- 55. Ali, S. *et al.* Yellow rust epidemics worldwide were caused by pathogen races from divergent genetic lineages. *Front. Plant Sci.* **8**, 1057 (2017).

Chapter 3: Evaluating the role of genetics on pathogen and host transcription and creating a dual-interaction network

Introduction

Wheat (Triticum aestivum) is the second largest cereal crop produced in the world, with an estimated 766 million tons of wheat produced worldwide on 216 million hectares in 2019¹. One major impediment for wheat growers throughout the world is stripe rust disease, which is caused by the pathogen Puccinia striiformis f. sp. tritici (Pst). Pst is a particularly detrimental fungal pathogen belonging to the genus *Puccinia spp.*, which is considered one of the top ten fungal pathogens in the field of molecular plant pathology based on scientific and economic importance². Late-stage symptoms of *Pst* infection include elongated lesions of yellow-orange spores on the host's leaves which tax photosynthesis and ultimately lead to a dramatic reduction in grain development. Stripe rust can be a serious threat to regional and global wheat production during epidemic years, particularly with the growing geographic footprint of the disease. Controlling wheat stripe rust globally costs upwards of \$1 billion per annum and local epidemics can result in complete yield loss for individual growers if left unchecked^{3,4}. Currently, the primary method for controlling Pst infection is breeding of Pst-resistant wheat varieties through the introgression of single resistance genes (R-genes) that convey complete resistance to the fungus⁴. If these single resistance genes fail to convey resistance to local genotypes of *Pst* during the growing season, broad-spectrum fungicides can be used to control acute infections^{5,6}. However, use of these broad-spectrum fungicides can have several off-target problems, including yield loss due to application and the inability to use them in organic management practices. Beyond breeding for single gene resistance and broad-spectrum fungicides, tools do not yet exist for reducing yield loss during active *Pst* infection (infection after wheat resistance fails).

Strategies for combating *Pst* when available resistance genes fail are necessary for developing long-term, durable resistance in novel varieties of cultivated wheat.

As mentioned above, breeding of *Pst*-resistant varieties of wheat consists primarily of selective genetic introgression for single, major-effect R-genes into the wheat host that convey resistance to a small subset of pathogenic Pst races. These R-genes primarily consist of plasma membrane localized receptor-like kinases (RLKs) or cytoplasmic NBS-binding leucine-rich repeat proteins (NBS-LRR proteins)⁷. These single gene receptors recognize either race-specific pathogen-associated molecular patterns (PAMPs) or pathogen effectors, and are responsible for triggering downstream PAMP-triggered immunity (PTI) or a robust effector triggered immunity (ETI), respectively, within the wheat host⁸. In an evolutionary context, this single gene warfare between host and pathogen can be described as an arms battle and is commonly known as the zig-zag model plant pathogen evolution⁸. According to the zig-zag model, plants recognize individual pathogens by endogenous PAMPs produced by a pathogen, such as chitin or flagellin, using RLKs to initiate PTI responses in the host. Successful pathogens evolve and produce effectors that interfere with RLK signaling and suppress PTI response from the host⁸. Lastly, the plant host can evolve novel NBS-LRR proteins designed to detect the presence of pathogen effectors and initiate the stronger, more robust ETI responses in the plant host to combat the pathogen⁸. A pathogen can avoid ETI by shedding/diversifying effectors or acquiring novel effectors that suppress NBS-LRR detection⁸. Host disease susceptibility is a consequence of the pathogen evading detection from the host immune system during this evolutionary arms race between plants and pathogens. Wheat cultivars capable of resisting *Pst* infection through single R-genes create a strong selection pressure on the pathogen population, which can rapidly evolve into novel races capable of evading detection of host R-genes in the standing wheat field and

therefore drive massive epidemics⁹. One contemporary example of this evolutionary arms race in wheat is the evolution and introduction of a novel *Pst* race in the 2010s called the *Pst* Warrior race group, which overcame existing R-genes used in wheat breeding, out competed the old *Pst* population in Europe, and caused more disease and dramatic crop yield loss on adult plants carrying long-term resistance¹⁰. Therefore, it is important to understand the role of non-R-gene mediated resistance mechanisms, such as high-temperature adult-plant (HTAP) resistance, so that they may be breed into elite breeding lines of wheat to reduce crop loss during epidemics of novel pathogenic races of *Pst* ^{9,11}. HTAP resistance to *Pst* is a temperature-dependent type of genetic resistance in mature wheat plants that provides partial resistance against all *Pst* races and has been shown to be robust for over 60 years^{11,12}. However, these resistance mechanisms are poorly understood from both a breeding and molecular perspective and often have some trade-offs. Exploring the interaction between *Pst* and wheat during active infection can reveal targets for the pathogen and insight into responses from the host.

Field patho-transcriptomics (sequencing the co-transcriptome of infected plant tissue from field samples) has previously been used to evaluate the population structure of *Pst*^{13,14}. Additionally, *in vivo* transcriptomic analysis has also been useful to evaluate transcriptional responses in wheat infected with *Pst* (such as HTAP resistance or the resistance of specific wheat cultivars) as well as to evaluate *Pst* haustorial development and function with a primary focus on identification of *Pst* effectors^{15–17}. While the data generated during these transcriptomic studies can enable *in planta*-measurement of pathogen transcriptome and subsequent potential molecular-plant pathogen interactions, these previous studies have focused solely on a single organism in the interaction and/or were conducted under controlled laboratory settings. To analyze both host and pathogen simultaneously, co-transcriptomic approaches can be used to

reveal potential cross-kingdom interaction and communication. Specifically, the gene co-expression network approach has emerged as a powerful systems biology approach whereby transcripts of highly co-expressed or connected genes can be identified and provide a meaningful way to examine the correlations in gene expression generated from complex RNA-seq datasets. Use of such approaches within the Arabidopsis-*B. cinerea* pathosystem was able to identify novel virulence factors in the pathogen, including a novel biochemical pathway for an uncharacterized cyclic peptide, as well as potential host targets for the resulting toxin¹⁸.

Currently, there is only one other study using a co-transcriptomic approach within the wheat-*Pst* pathosystem, which showed the expression of defense mechanisms in both compatible and incompatible interactions¹⁹. The study showed temporally coordinated activation and suppression of gene expression such as pathways related to plant stress hormones, membrane proteins, and vesicle trafficking in the host while the pathogen showed increased gene expression during early infection related to germination, appressorium formation, and pathogenicity¹⁹. However, Dobin et. al. focused solely on early infection of *Pst* in wheat and used only a single isolate of *Pst* within a greenhouse setting at the wheat's three-leaf stage, which likely does not encapsulate the diversity of *Pst* infection strategies driving yield loss on mature plants in the field¹⁹. At writing, there is no existing study examining the wheat-*Pst* co-transcriptome under field conditions, which limits our ability to understand the interaction within wild and commercial settings.

Our study is the first to evaluate the co-transcriptomic interactions in *Pst*-infected wheat samples under field conditions from the six wheat-growing continents of the world. *Pst*-infected wheat leaves were collected in fields worldwide during the active stage of infection and the transcriptomes of both species were simultaneously sequenced in 246 samples. Our results show

the impact of *Pst* and wheat genetics on the transcriptome of each species. In the present analysis, six exon co-expression networks (ECNs) for the pathogen were identified and are involved with growth/development and virulence mechanisms. For the wheat host, eleven ECNs were identified that encode genes related to photosynthesis (including light and dark reactions, pigments, and REDOX), translation, sulfur metabolism, and isoprenoid biosynthesis. A dual-transcriptomic network was created by eigen-vector decomposition of individual networks and by combining both the *Pst* and wheat eigen-vector ECNs into a single network that illustrates both the connections within the host and pathogen individually, as well as cross-kingdom interactions. These connections give insight into how the host and pathogen interact during active infection and show conserved interactions from worldwide field samples.

Methods

Transcriptomes and Filtering

Sequenced and trimmed reads from the field patho-transcriptomics evaluation discussed in Chapter 2 were used to analyze *Pst*-wheat interaction^{13,14,20}. For the patho-transcriptomic evaluation, transcriptomes were sequenced from 279 *Pst*-infected wheat, triticale, and durum wheat samples that were collected in fields around the world and combined with transcriptomic data from 17 additional samples (see Chapter 2 for details). Samples from plants other than common wheat were removed from the analysis to focus specifically on the interaction between *Pst* and wheat, leaving 280 *Pst*-infected wheat transcriptomes. Raw reads were trimmed using fastp with default parameters and were subsequently mapped to the indexed International Wheat Genome Sequencing Consortium (IWGSC) high-quality bread wheat reference genome (Chinese Spring wheat variety) Version 1.0 to obtain counts of wheat genes²¹. These reads were aligned to the reference using STAR Version 2.7.5a with a maximum of six mismatches and a maximum intron length of $10,000^{22}$. The resulting bam files were sorted and indexed, and the pileup format was generated using SAMtools Version 1.10^{23} . Counts of individual wheat exons per sample were obtained using HTSeq-count with default settings. Counts were filtered by removing exons with fewer than 200 counts as well as exons with counts in less than 50% of samples. Similarly, *Pst* counts data were filtered by removing exons with less than 100 counts over the entire experiment and/or removing exons present in less than 50% of samples. All counts were TMM normalized for each organism using the 'edgeR' package within R²⁴.

Wheat Population Structure

Wheat population structure was determined to group the wheat samples into genetic clusters that would then be used to evaluate the effect of wheat genetics on gene expression levels. To determine wheat population structure, a variant call format (vcf) file was created from the wheat bam files by using the samtools 'mpileup' function to get single nucleotide polymorphisms (SNPs)²³. Synonymous SNPs were annotated using snpEff, and a custom python script was used to prepare and filter files in the following way; 1.) only positions with at least one sample present were included in the analysis, 2.) only biallelic SNPs were included in the analysis. Additionally, an occupancy filter was used where the SNP position needed to be confidently called in at least half of the samples to be included in subsequent analysis²⁵. Samples with less than 20% of the relevant informative SNPs for our collection were removed, therefore reducing the total number of samples from 280 to 246 *Pst*-infected wheat transcriptomes.

Statistical Analysis

These high-quality SNPs were utilized for the multivariate discriminant analyses of principal components (DAPC) using the adegenet package in R environment^{26–29}. The number of

wheat genetic clusters was determined by comparing the value of Bayesian Information Criterion (BIC) to the value of the K-means clustering algorithm using the lowest BIC at the 'elbow' of the curve. Individual wheat samples were assigned to clusters based on fuzzy k-means clustering, which indicated the likelihood that an individual was part of a genetic cluster. To establish the appropriate number of principal components for clustering, the data were cross-validated using poppr Version 2.8.6^{30,31}. The final 246 samples were used for all subsequent analysis and are marked with an asterisk in Appendix 1.

To determine what metadata factors within our dataset have a significant effect on the transcriptome of *Pst*, a non-parametric multivariate statistical test called Permutational Multivariate Analysis of Variance (PERMANOVA) was run using the following model:

$$Y_{ctpw} = C_c + T_t + P_p + W_w + P:W_{pw} + \varepsilon_{ctpw}$$

where C is the country of collection, T is the year of collection, P is *Pst* population cluster based on the *Pst* genetic cluster defined in Chapter 2, and W is the host genetic cluster as determined by the wheat DAPC analysis³². The PERMANOVA analysis is based on TMM-normalized counts in a square matrix with distance testing performed using 999 permutations³³. To visualize the relative relatedness of samples, a Nonmetric Multidimensional Scaling (NMDS) ordination was performed with Bray Curtis distances within the 'vegan' (v. 2.5-7) package³².

Primary Network Analysis: Individual Exon Co-Expression Networks for Pst and Wheat

Individual exon co-expression networks (ECNs) were created for both *Pst* and wheat to determine subnetworks of exons that were co-expressed within each organism during host infection. Correlations were determined using Spearman's rank coefficients for each exon pair from the normalized *Pst* or wheat pseudo-counts using 'rcorr' in the Hmisc package³⁴. The exon correlations in both *Pst* and wheat networks were filtered based on Spearman's R and

correlations R>0.92 were kept for network construction. Networks with ten or more exons were considered major ECNs. Gene ontology (GO) analysis for wheat was completed for the genes in each of the major ECNs using the IWGSC wheat annotation and the 'topGO' package in R to determine the general putative function of these co-expression ECNs³⁵. Due to a lack of GO annotation for *Pst* that prevented calculation of functional enrichment, ECN putative functions were qualitatively determined using JGI MycoCosm GO terms (when available) in combination with BLAST annotation for individual genes using NCBI's database³⁶. Additionally, SignalP was used to establish which genes had a putative secretion signal peptide, and to predict secreted gene products within each Pst_ECN³⁷. Each major ECN was plotted using the 'igraph' package in Rstudio³⁸.

Dual Interaction Network Analysis

A dual interaction network was constructed between *Pst* and the wheat host to estimate direct and indirect interaction of intra-organismal co-expression networks. To create this network, 'vegan' package was used to condense the pseudo-counts of exon members from a single ECN into an eigengene vector (one-dimensional NMDS) for all major pathogen and host-plant ECNs³². The projected position of samples along these resulting eigengene vectors were used to calculate Spearman's rank correlation coefficients between major ECNs and were filtered by keeping correlations above an R of 0.39. The resulting dual interaction network was visualized using Cytoscape³⁹.

Results

Population Structure of Pst and Wheat Populations

To evaluate the interaction between *Pst* and wheat at the transcriptomic level, the transcriptomes of 246 *Pst*-infected wheat leaves from fields representing 23 countries across

9 different years (Appendix 1) were investigated. The trimmed reads of those samples were aligned to both PST-78, a *Pst* reference genome, and the IWGSC's wheat reference genome Version 1.0. Samples with less than 100,000 total wheat counts and then 20% or fewer SNPs were removed. The percentage of reads aligned to the *Pst* genome averaged between 43.79% \pm 1.12 s.e. per sample while the percentage of reads aligned to the wheat genome average 27.54% \pm 1.07 s.e. per sample. After filtering for depth and occupancy, 35,152 *Pst* exons (in 2,809 genes) representing 40.69% of the total potential exome remained and were used for subsequent analysis. For the wheat transcriptome, we identified a total of 96,388 wheat exons representing 12.65% of the total potential wheat exome after filtering for depth and sample occupancy. Data from these worldwide field samples of *Pst*-infected wheat leaves allowed us to study the effects of pathogen and host genetics on exon expression levels within each organism during active infection, as well as allowed us to explore how pathogen and host interact with each other.

To assess the role intra-specific genetic variation plays on driving gene expression within each organism as well as across organisms, we used a DAPC population structure analysis using non-synonymous SNPs derived from the transcriptomic mapping. The population analysis in Chapter 2 revealed 8 *Pst* genetic clusters, which were used to define our *Pst* groups for statistical analysis. Similarly, a DAPC analysis was used to evaluate the wheat genetic population structure of the samples. In this analysis, 5,109 total biallelic SNPs were found with an MAF > 20%. The DAPC results identified two genetic clusters for wheat. Wheat Genetic Cluster 1 included samples collected from 2014 to 2017 while Wheat Genetic Cluster 2 included samples collected from a longer time period (1978 to 2017). Many countries had samples in both wheat genetic clusters, specifically Canada, Chile, China, France, Poland, United Kingdom, and the United

States. However, all samples collected in Croatia, Italy, Pakistan, Romania, and Serbia, as well as Ethiopia and South Africa, were in Wheat Genetic Cluster 1. Wheat Genetic Cluster 2 included all samples collected in Austria, Belgium, Czech Republic, Germany, New Zealand, Slovakia, Sweden, and Turkey. These results showed that there is likely a significant amount of admixture in the wheat population of this study's samples, likely due to contemporary wheat breeding.

Assessing Impact of Pathogen and Host Genetics on Exon Expression

To assess the role of intra-specific genetics on transcriptional variation within the *Pst* and wheat exomes, PERMANOVA and two-dimensional NMDS were performed. The Pst PERMANOVA results indicated that country of collection had the largest effect ($R^2 = 0.2759$; p-value = 0.001^{***}) followed by year of sample ($R^2 = 0.0914$; p-value = 0.001^{***}) as presented in Table 3.1. Collectively, these spatiotemporal terms of country and year variables explained 36.73% of the total variance within the *Pst* exome and represented, in part, the environmental factors related to location and plant physiology. The genetics of the pathogen explained a significant amount of the variance within the Pst exome, with the Pst genetic cluster accounting for 4.20% (p-value = 0.001^{***}) of variance. By comparison, the effect of wheat genetics on the *Pst* transcriptome during active infection was low ($R^2 = 0.0043$; p-value = 0.119), indicating wheat genetics had a much lower impact on the *Pst* transcriptome during active infection. Additionally, the interaction between Pst genetic clusters and wheat genetic clusters accounted for a non-significant 1.38% of total variance (p-value = 0.186) within the *Pst* transcriptome, suggesting that the relationship between *Pst* and wheat genetics on the *Pst* transcriptome is largely additive in nature.

	Df	SumOfSqs	R ²	F	Pr(>F)	Significant Code
Country	23	5.4413	0.27590	4.2522	0.001	***
Year	7	1.8017	0.09135	4.6261	0.001	***
Pst Cluster	7	0.8283	0.04200	2.1269	0.001	***
Wheat Cluster	1	0.0847	0.00430	1.5227	0.119	
<i>Pst</i> Cluster by Wheat Cluster	4	0.2719	0.01379	1.2218	0.186	
Residual	203	11.2942	0.57267			
Total	245	19.7221	1.00000			

Table 3.1: Pst PERMANOVA Results

*** p-value of essentially 0.

A two-dimensional NMDS of the *Pst* transcriptome (Figure 3.1) helped demonstrate the variation across the dataset (stress = 0.1638). The impact of country and time of collection can clearly be observed shaping the *Pst* transcriptome, but drastically obfuscated the weaker impacts of both *Pst* and wheat genetics within the ordination space. Countries such as China, the United Kingdom, and the United States were more widely dispersed, while countries that were clustered more tightly together in the NMDS results included Belgium and France. The years that were more dispersed in the NMDS results include 2014, 2015, and 2016 while the years 2013 and 2017 were more tightly clustered together, implying a canalization in the structure of the *Pst* transcriptome in recent years. The NMDS results showed that the *Pst* Genetic Cluster 5 was more tightly clustered together while the remaining genetic clusters were widely dispersed. The NMDS results for both wheat genetic clusters were even more diffused. Taken together, these results show that the *Pst* transcriptome is largely driven by environmental factors and *Pst* genetics rather than wheat genetics.

The wheat transcriptome showed similar environmental and genetic impacts on exon expression. Specifically, the PERMANOVA results showed country of collection explained the largest proportion of variation ($R^2 = 0.3105$; p-value = 0.001^{***}) followed by year of collection

Figure 3.1: Two-dimensional NMDS results for Pst colored according to A. country, B. year, C. Pst genetic cluster, and D. wheat genetic cluster.

$(R^2 = 0.0588; p-value = 0.001^{***})$ representing a total of 36.9% of the variation in the wheat
transcriptome (Table 3.2). Interestingly, while wheat genetic clusters had a significant impact on
the wheat transcriptome ($R^2 = 0.0056$; p-value = 0.033*) during active infection, the <i>Pst</i> genetic
clusters also had a significant impact, explaining nearly 6 times more variation than the wheat
genetic clusters ($R^2 = 0.0320$; p-value = 0.001**). Lastly, the non-significant interaction between
wheat and <i>Pst</i> genetic clusters (p-value = 0.156) further suggests an additive impact between
wheat and <i>Pst</i> genetics while explaining a larger impact than wheat genetics alone ($R^2 = 0.0137$).
These differences in the genetic effect between the two transcriptomes could be due to either the
fewer number of genetic clusters found within the wheat germplasm, or due to less genetic
diversity within domesticated wheat relative to the wild pathogen. An NMDS of the wheat
transcriptome (Figure 3.2) also showed a good fit within two dimensions (stress = 0.1569).
Similar to the <i>Pst</i> analysis, the impact of country and time of collection determined in the wheat
analysis complicated the visualization showing the clustering of both the <i>Pst</i> and wheat genetics.
Table 3.2: Wheat PERMANOVA Results

	Df	SumOfSqs	R ²	F	Pr(>F)	Significant Code
Country	23	9.8027	0.31049	4.7301	0.001	***
Year	7	1.8571	0.05882	2.9444	0.001	***
Wheat Cluster	1	0.1763	0.00558	1.9569	0.033	*
Pst Cluster	7	1.0131	0.03209	1.6062	0.001	**
Wheat Cluster by <i>Pst</i> Cluster	4	0.4311	0.01366	1.1962	0.156	
Residual	203	18.2915	0.57936			
Total	245	31.5719	1.00000			

p-value of essentially 0.p-value of approximately 0.001.p-value of approximately 0.01. **

*

Figure 3.2: Two-dimensional NMDS for wheat colored by A. country, B. year, C. Pst genetic cluster, and D. wheat genetic cluster.

Within this ordination space, however, the NMDS results showed that samples from United Kingdom and the United States were the most widely dispersed. Samples from countries such as Canada, China, Ethiopia, France, and Poland were more tightly clustered together. Samples collected in 2014, 2016, and 2017 were more widely dispersed according to the NMDS results, while samples such as those collected in 2013 and 2015 were clustered closer together. Both wheat genetic clusters in the NMDS results demonstrated about the same amount of dispersion while the impacts of the *Pst* clusters varied. The wheat transcriptomes infected with *Pst* Genetic Clusters 1, 2, 5, 7, and 8 formed tight, independent clusters within the two-dimensional NMDS, while *Pst* Genetic Clusters 3 and 4 were more loosely aggregated. Taken together, this analysis suggests that spatiotemporal effects have the largest effect on the infected wheat transcriptome while intra-specific genetic variation within *Pst* has a larger effect on the wheat transcriptome during active infections than wheat genetics.

Individual Exon Co-Expression Networks

To identify functional gene networks among the mapped exons within *Pst*, exon-level co-expression networks were created. There were 53.36% of significant interactions among all exons identified (FDR P-val < 0.05), with an average Spearman correlations (*R*) of 0.02072 ± 0.21279 . Spearman's rank coefficients for each *Pst* exon pair were calculated and filtered for positive correlations of *R* above 0.92 to optimize the number of large networks (membership > 10 nodes). These filtered gene pairs were used to construct ECNs. The *Pst* exon co-expression network revealed six major ECNs (networks with > 10 nodes) and spanned a variety of cellular functions, including translation/protein stability, maintenance of REDOX potential, and various virulence factors (Figure 3.3). Pst_ECN_I is the largest ECN (203 exons, 99 unique genes)

Figure 3.3: Exon co-expression networks for Pst. The ECN number, main biological function, and number of exons are shown beside each ECN.

consisting largely of 60s ribosomal proteins, 40s ribosomal proteins, and nucleotide binding proteins, which implicates this network's role in translation (Appendix 11). The second largest ECN is Pst_ECN_II (133 exons, 79 unique genes) and consists of secreted and non-secreted proteins and mainly hypothetical proteins with little to no GO annotation. Of the annotated genes within the network, several are homologous with enzymes such as protein kinase, tripeptidyl peptidase, chitin deacetylase, and lysophospholipase, implicating this ECN with biochemical virulence factors. Pst_ECN_III (63 exons, 60 unique genes) is associated with both secreted and non-secreted genes involved with membrane transport, chitin biosynthesis, and pectin degrading enzymes and subsequently is annotated as involved with chitin/cell wall formation. Pst_ECN_IV (22 exons, 20 unique genes) is associated with intercellular protein degradation and has genes with GO terms involved with transporter activity, protease or protein dimerization activity, and both secreted and non-secreted genes. The ECN associated with the function of cytochrome/REDOX is Pst_ECN_V (15 exons, 13 unique genes) and has non-secreted genes involved with NADH, ATP synthase, and cytochrome c oxidase. Finally, Pst_ECN_VI (10 exons, 2 unique genes) has non-secreted genes involved with several heat shock proteins and is putatively involved with protein stability. Overall, these six major ECNs appear to be primarily associated with gene translation, growth/development, and several general virulence factors.

Co-expression networks were also generated for the wheat exons to identify gene networks commonly up-regulated or down-regulated within the host during active infection. As with *Pst*, Spearman's rank coefficients for each wheat exon pair were calculated and positive correlations above 0.92 were kept to construct the ECNs. There were 11 major wheat ECNs

Figure 3.4: Exon co-expression networks for wheat. The ECN number, main biological function, and number of exons are shown beside each ECN.

consisting of 10 nodes or greater (Figure 3.4, Appendix 12). Five ECNs are involved with different sub-processes of light and dark reactions of photosynthesis (specifically, Ta_ECN_I, Ta_ECN_II, Ta_ECN_III, Ta_ECN_VIII, and Ta_ECN_XI). Among these five ECNs, Ta_ECN_I is by far the largest of this group (234 exons, 194 unique genes) and contains genes involved with both the light and dark reactions of photosynthesis, as well as accessory pigments (Appendix 2 through Appendix 10). The second largest wheat ECN (Ta_ECN_II, 116 exons, 106 unique genes) is primarily involved with accessory pigments and dark reactions, and is enriched for GO:0015979 (photosynthesis), GO:000534 (chloroplast thylakoid), and GO:0031409 (pigment binding). Ta_ECN_III (67 exons, 55 unique genes) is involved with light reactions and REDOX. Similar to Ta_ECN_II, Ta_ECN_VIII (12 exons, 12 unique genes) is involved with the dark reactions of photosynthesis and enriched for GO:0019685 (photosynthesis, dark reaction) and GO:0016829 (lyase activity). The smallest of the wheat ECNs involved in processes of photosynthesis (Ta_ECN_XI, 10 exons, 10 unique genes) contains a collection of light reactions and is enriched for GO:0015979 (photosynthesis), GO:0009535 (chloroplast thylakoid membrane), and GO:0009055 (electron transfer activity). Alternatively to photosynthesis, the remaining wheat ECNs encompass a variety of other cellular processes. Ta_ECN_IV (54 exons, 54 unique genes or non-coding ribosomal RNA) appears to be involved with protein translation and ribosome function. Two additional wheat ECNs involved with translation were Ta_ECN_X (11 exons, 11 unique genes) and Ta_ECN_VII (14 exons, 14 unique genes, 12 of which are non-coding and the rest are involved with rRNA). The next wheat ECN (Ta_ECN_V, 17 exons, 17 unique genes) is more generally involved with translation beyond rRNA. Several components of the chloroplast-specific isoprenoid pathway (MEP pathway) are contained within Ta_ECN_VI (15 exons, 15 unique genes). Ta_ECN_IX

(12 exons, 12 unique genes) is connected with SAMe generation and is involved with regulation of sulfur metabolism within the plant. Overall, the wheat ECNs are associated with different parts of photosynthesis, protein production, isoprenoid production, and sulfur metabolism. *Interactions among Intra- and Inter-Species Exon Co-Expression Networks*

While simple pairwise correlation networks at the exon or even gene level can provide a glimpse into cellular processes involved with disease resistance, these simple pairwise correlation networks would be difficult to interpret at lower edge thresholds or if we included negative correlations as well. To assess the interactions among these *Pst* and wheat co-expression ECNs during infection, a dual interaction network was created where we explored the potential for direct/indirect interactions in both positive and negative relationships (Figure 3.5). To accomplish this, we decomposed the gene expression within these correlated ECNs into a single eigen-vector per network that described the total variation across the network and plotted the sample position along that vector. Sample positions along all eigen-vectors were correlated to look for positive or negative relationships both within each organism and across organisms. This one-dimensional decomposition for each ECN worked extremely well and each eigen-vector described the variation among genes within the network extremely well (stress = $0.09874 \pm$ 0.01398), illustrating that these eigen-vectors captured the vast majority of variation contained within these networks. Of the 77.9% significant interactions (FDR P-val < 0.05), the Spearman correlations had an average R of 0.42679 ± 0.01961 . A composite dual interaction network describing these correlations was generated to assess the relationships among the primary ECNs, both within and across ECNs. Spearman correlations with R² over 0.15 were kept. This analysis illustrated that *Pst* largely demonstrated a coordinated response between its biochemical

Figure 3.5: Cross-kingdom co-expression network. Green circles represent major wheat ECNs while orange circles represent major Pst ECNs. The size of the circles show the number of exons in each ECN. Blue and red lines represent the positive and negative Spearman's rank correlation coefficients, respectively, while the thickness of the line represents the strength of the correlation. virulence factors, chitin formation/plant cell wall degradation, and inter-cellular protein degradation ECNs. Additionally, each of these ECNs were negatively correlated with protein stability ECN, suggesting an inverse relationship between growth, virulence, and fungal response to stress. Lastly, the largest *Pst* ECN (Pst_ECN_I Translation) only showed one negative correlation and that was with general protein stability within *Pst*, which suggested that there was a transitively positive relationship between protein translation and the virulence ECNs. The coordinated response between many of the major *Pst* ECNs suggested coordination between both cellular growth and virulence during active infection in the host.

The relationship among the wheat ECNs within the larger dual interaction network was equally interesting and may illustrate the abundance of photosynthetic ECNs. The primarily photosynthetic network (Ta_ECN_I) was negatively correlated with all other photosynthetic networks as well as isoprenoid biosynthesis, showing that these cellular processes were out of phase from each other. The second largest network (Ta_ECN_II), which contained genes involved with accessory pigments and dark reactions, was positively correlated with all other wheat ECNs except sulfur metabolism. All other ECNs were negatively correlated with the primary photosynthetic network (Ta_ECN_I), and positively correlated with the pigments/dark reactions ECN (Ta_ECN_II). The only exception was the sulfur metabolism ECN (which was connected with Translation_II), implying its role in supporting cysteine and methionine production for protein synthesis. This dual interaction network illustrated that the largest primarily photosynthetic network was out of phase with all other photosynthetic networks, implying that the main network was either down-regulated or susceptible while the other ECNs likely had a compensatory effect during active infection.

Across the organisms, there were several links in the dual interaction network that showed both positive and negative correlations with each other. The chitin/cell wall and intercellular protein degradation ECNs were both negatively correlated with the primary photosynthetic network in the host, implying that the host primary photosynthetic network was either a direct or indirect target of the *Pst*-derived virulence factors. Additionally, the compensatory accessory pigments/dark reactions and light reaction ECNs were positively associating with the virulence factors, indicating they were upregulated more severely when active infection was more severe. Lastly, the small rRNA_II network in the wheat host appeared to be negatively correlated with the biochemical/virulence factors in *Pst*, again implying that these virulence factors were directly or indirectly targeting host protein translation. These results showed that the host photosynthetic apparatus was under severe strain during active infection and compensatory photosynthetic genes were unable to take up the slack.

Discussion

While well-characterized R-genes in the host are the primary mode of plant resistance to obligate biotrophic pathogens, long-term durable resistance to these pathogens must include strong basal resistance when available R-genes fail to provide resistance to novel pathogen races. This study aims to identify the targets of *Pst* virulence factors and potential modes of host resistance during active infection. By studying the quantitative resistance of the dual host-pathogen transcriptome during late active infection, we can identify potential breeding targets for more durable basal resistance and move away from the gene-for-gene arms race where *Pst* rapidly evolves to overcome plant defenses.

Our global dataset pulled from a wide variety of environments and growing conditions, wheat breeding stock, and endemic *Pst* races, making it one of the largest and diverse public
datasets of its kind to explore wheat-Pst interactions. Importantly, we were able to account for large portions of environmental and temporal variation by controlling for country and year of collection, therefore revealing the effect of genetic variance on the transcriptomes of both the host and pathogen. The worldwide population structure of Pst revealed 8 distinctive genetic clusters, the evolution of *Pst* within the endemic population of North America, and the loss of Pst effectors in modern isolates as a way of overcoming wheat defenses. When evaluating the population structure of the wheat samples, only two genetic clusters were identified. This result recapitulates previous work on the genetic diversity within wheat-breeding populations, which showed that the vast majority of modern wheat cultivars can be grouped into 3 or 4 genetic clusters when including land races and modern wheat varieties⁴⁰. Importantly, our study focused solely on common wheat, also known as bread wheat (Triticum aestivum), and did not include other commonly cultivated wheat species, such as the hexaploid spelt wheat (Triticum spelta) or tetraploid durum wheat (*Triticum durum*). The wheat population structure in our study agreed with the relatively narrow population structure of wheat, which could be a function of the low number of identified SNPs (5,109 biallelic SNPs) as well as the genetic bottleneck of wheat due to domestication. Thus, our dataset was likely representative of common wheat as well as the wild Pst germplasm throughout the globe.

Similar to most quantitative traits, variation in the *Pst* and wheat transcriptomes during active infection can be attributed to several variables^{18,41}. Environmental factors had the largest effect on transcription within each organism. Inclusion of these variables (country and year of collection) within the PERMANOVA models facilitated the control of a significant portion of variation due to environmental factors. The intra-specific genetic variation of each organism had a significant effect on the structure of its own transcriptome during active infection, with wheat

having a far more canalized transcriptional response during active infection than Pst. Interestingly, a significant impact of *Pst* genetic variation on the wheat transcriptome could be seen when testing for cross-kingdom effects on the wheat transcriptome. Further, the *Pst* genetic clusters have a larger effect on the structure of the wheat transcriptome than wheat genetics. While the impact of wheat genetics on the *Pst* transcriptome did not share this reciprocal effect, these results suggest that the extensive genetic variation within Pst was a major driving force in the epidemiology of striped rust infections globally. Further, these results imply that the major selective pressure of domestication and breeding on wheat could be reducing the potential for the host to defend themselves from *Pst* during to active infection. In contrast, the *Pst* pangenome was under massive fluctuating selection. Grass hosts harbor more diverse isolates of P. striiformis (including isolates that infect both grasses and wheat) than the number of isolates found on wheat⁴². This pathogen also has the alternate host of barberry and needs to infect that host in order to sexually reproduce, which could further increase the pathogen's virulence during active infection⁴³. Thus, it may be favorable to increase the level of genetic diversity within wheat breeding stocks to improve basal resistance and combat novel races of Pst.

While much of the current research on the virulence of *Pst* is focused on avirulence factors promoting infection, little is known about the virulence factors during active infection that negatively impact wheat seed set and yield. During active infection, *Pst* is largely undetected by the host as the hyphae grow and develop within plant tissues. In this co-expression analysis, the largest ECN for *Pst* (Pst_ECN_I; 203 exons) showed that the major ECNs are primarily associated with protein translation, which is a core cellular function for growth/development. Due to protein turnover, proteins must be made quickly during the infection process to combat host defenses, support mycelial growth, and funnel resources to developing spores. With both the

host and pathogen translating mRNA into proteins for growth and enhancing fitness, the efficiency of translation is important for determining the outcome between pathogen infection or host resistance. Translational efficiency can depend on a number of factors, including the availability of ribosomes⁴⁴. The results of this study showed that translation in *Pst* is negatively correlated with Pst_ECN_VI (involved with protein stability), implying that growing fungus must rely on the generation of new virulence proteins during infection rather than protecting and supporting previously translated structural protein and enzymes. Further, this large network has transitively positive correlation with known/suspected virulence factors in growth and virulence (Pst_ECN_II, Pst_ECN_III, and Pst_ECN_IV) within the composite network (Figure 3.5). One of these transitively correlated ECNs is Pst_ECN_III, whose genes are related to chitin and cell walls (Figure 3.3). During active infection, Pst requires an increasing number of proteins related to chitin formation and plant cell wall degradation to grow and invade the plant host. Additionally, Pst uses a number of virulence factors during active infection to aid with persistence within the host. During successful establishment within the host, the pathogen releases effector molecules into the apoplast of the host that suppresses plant defense, leading to an active infection⁸. These effector molecules may be diverse, given that *Pst* is under massive fluctuating selection related to its wide host range including wheat, wild grasses, and the alternate barberry hosts^{42,43}. Coupled with *Pst*'s high mutation rate and ability to sexually reproduce, this implies that Pst has the potential to evolve rapidly and overcome current and future resistant wheat varieties^{45,46}. Lastly, the second largest ECN for *Pst* (Pst_ECN_II) has genes generally associated with secreted virulence proteins (Figure 3.3). This ECN is positively correlated with ECNs associated with fungal growth (Pst_ECN_I and Pst_ECN_III), which reflects the synergistic importance of virulence factors in this biotrophic pathogen's growth and

development. Pst_ECN_II is also positively correlated with the intercellular protein degradation ECN (Pst_ECN_IV) associated with enzymes like lysophospholipase activity and chitin deacetylase activity, which implicates their combined role in enhanced virulence (Figure 3.5). Together, genes associated with core cellular functions and genes associated with the infection process make up the highly correlated ECNs utilized during active infection.

Alternatively, this study identified a number of gene networks in the host that are co-regulated during active infection. Specifically, five out of eleven gene networks are associated with various aspects of photosynthesis, including light and dark reactions, REDOX potential, and pigments. The largest wheat ECN (Ta_ECN_I; 234 exons) is associated with multiple components of photosynthesis and is negatively correlated with the remaining four wheat photosynthetic ECNs. These associations suggest that, while the primary components of photosynthesis are down regulated during active infection, other components of photosynthesis attempt to compensate. Several studies have shown that photosynthesis varies locally within the leaf and lesion while the photosynthetic rate progressively declines through the infection process for many biotrophic pathogens, including Pst. This decline may be due to increased demand on the photosynthetic apparatus or a direct attack on the photosynthesis from the pathogen^{47,48}. Early in fungal infections with rusts, the photosynthetic rate (measured by the uptake of CO₂ using Li-COR and chlorophyll fluorescence) is either stable or increases until further along in the infection when the photosynthetic rate decreases^{47,49}. Sucrose availability for *Pst* increases during this early infection time period, indicating that Pst growth and development is a new and aggressive sink for photosynthate⁴⁹. Later in the infection process during the sporulation stage, overall photosynthetic rate decreases but is most severe in actively infected wheat cells. This observation supports the idea that at least some portion of the negative impacts on the

photosynthetic apparatus are due to an increased demand on photosynthate from the fungus. Additionally, cellular regions that remain uninfected but are surrounded by actively infected cells (known as green islands) often demonstrate higher local photosynthetic rates, suggesting that they continue to act as a carbon source for the actively growing fungal mycelia^{50,51}. Further, Berger et. al. used chlorophyll fluorescence to show that photosynthesis was inhibited within infection sites, while surrounding areas showed increased photosynthesis in tomato infection with *Botrytis cinerea* ⁵². That study revealed an inverse relationship between a primary photosynthesis network and other individual components of the photosynthetic apparatus, reflecting the decrease in photosynthetic rate and nearby photosynthetic compensation typical in pathogen infections.

In addition to photosynthesis, several exon networks in wheat represent molecular systems that have potential dual roles in both photosynthesis and plant defense against pathogens. Two of the wheat ECNs negatively correlated with the main photosynthetic ECN are associated with the dark reactions of photosynthesis (Ta_ECN_II and Ta_ECN_VIII) and/or accessory pigments (Ta_ECN_II). While these biochemical pathways help fix carbon in the CBB cycle or produce compounds (e.g. carotenoids, etc.) that help protect against excess light for photosynthesis, they also can help deal with excess reactive oxygen species (ROS) production or produce defense compounds during infection⁵³. Additionally, multiple defense-related pathways go through chloroplasts, including the production of ROS and biosynthesis of salicylic acid (SA), which can alter the rate of photorespiration and impact ROS accumulation in the peroxisome, chloroplast, and mitochondrion⁵⁴. An ECN with genes directly involved in redox reactions (Ta_ECN_III) is positively correlated with the dark reactions subsystem (Ta_ECN_VIII), which is unsurprising given the role of peroxisomes scavenging

normal ROS generated during photosynthesis. ROS in the form of hydrogen peroxide is a common bi-product of the oxygenation reaction of Rubisco, and plants see a large spike in a variety of ROS during active infection^{55,56}. This process begins with excess excitation energy that can occur when photosynthetic metabolism is limited. ROS accumulation can be damaging to the plant and must be prevented via several quenching processes⁵⁷. While the overall decline of a host's photosynthetic rate is reflected in lower gene expression in many photosynthesis-related genes, other genes associated with defense and compensating for lower photosynthetic rates are upregulated. Wheat compensates for *Pst* disruption of the normal physiological processes by regulating genes involved with defense and damage mitigation.

While the assessment of individual gene networks within an organism is important for predicting the molecular process impacted during active infection, a cross-kingdom analysis of the networks can reveal the direct and indirect interaction of molecular components between the organisms. The cross-kingdom dual interaction network indicated that the relationship between *Pst* infection and photosynthesis in wheat is more complex than a simple negative correlation between fungal growth and wheat photosynthesis. For example, the main wheat photosynthetic Ta_ECN_I (Figure 3.4) was negatively correlated with the pathogen network Pst_ECN_III associated with chitin formation (Figure 3.5), suggesting that photosynthesis in wheat is inversely related to fungal growth. It has been previous shown that downregulation of photosynthesis, which suggests that the downregulation of the genes in the main photosynthetic ECN in this study lags the reduction of the photosynthetic rate⁴⁸. Our results suggest that later stages of active infection result in a decrease in the expression of photosynthetic-related genes in opposition to increased fungal growth. This decrease could be due to damage to the thylakoid

membrane ultrastructure during Pst infection in susceptible wheat plants, resulting in lower PSII activity⁵⁸. Another possibility is the host plant could reduce photosynthesis in response to fungal infection in order to favor respiration and ROS production as part of the plant's defense, as shown in poplar plants infected by the fungal hemibiotroph Marssonina brunnea⁵⁰. Regardless, host genes associated with photosynthesis are differently correlated with fungal growth. For example, Ta_ECN_II is directly and positively correlated with Pst_ECN_III and expresses genes involved with wheat pigments and dark reactions. Indirectly, all photosynthetic ECNs except the largest photosynthetic ECN are positively correlated with fungal growth. This correlation suggests that the leaf transitions from normal developmental and physiologically defined source-sink relationships to a source-sink host-to-pathogen relationship as photosynthesis decreases while pathogen demand for photosynthetic products increases⁴⁸. Since *Pst* is a biotrophic pathogen that requires a living host in order to grow and reproduce, it uses sucrose from the plant and transforms the infected leaf into a sink⁴⁹. The wheat plant both decreases the expression of photosynthetic genes while also increasing expression in others to compensate for the lower photosynthetic rate at this stage of infection. In other words, during Pst infection, the wheat leaf transitions from a source of sugar to a sink to compensate for the pathogen's demand for photosynthetic products.

Lastly, our network analysis identified an interesting role for sulfur metabolism in the interaction between wheat and *Pst*. One of the smaller wheat ECNs identified (Ta_ECN_IX) was associated with the role of sulfur metabolism in the interaction. While Ta_ECN_IX is not directly correlated with any *Pst* ECNs, it is transitively correlated with *Pst* ECNs involved with growth and infection in a positive manner. This correlation is interesting as the genomes of other obligate biotrophic pathogens, such as *Melampsora larici-populina* (causal agent of poplar leaf

rust) and *Puccinia graminis* f. sp. *tritici* (causal agent of wheat stem rust) lack the key genes required for sulfate assimilation pathways, thereby suggesting that these rust pathogens obtain needed sulfur from the host⁵⁹. The wheat plant could increase the transcription of genes related to sulfur metabolism as the pathogen grows and acts as a sink for reduced sulfur in a similar fashion to photosynthate. This phenomenon suggests that targeted breeding for low sulfur tolerate wheat plants may help improve the basal resistance of wheat germplasm to *Pst* infection.

Conclusions

This study sequenced transcriptomes of *Pst*-infected wheat leaves from field samples representing worldwide, modern common wheat and wild *Pst* isolates. Environmental factors have the largest effect on transcriptional variation for both host and pathogen; however, there are also significant effects from both wheat and *Pst* genetic variation. *Pst* genetic variation is a major driving force in the global stripe rust epidemiology, while the selective pressure from wheat domestication and breeding narrow the wheat transcriptional response. Through network analysis, we revealed major interconnected *Pst* networks involved with growth, development, and virulence of the fungus. During *Pst* infection, the wheat leaf transitions from a source of sugars to a sink due to the needs of the pathogen. Despite a lower photosynthetic rate, reflected in an inverse relationship between *Pst* ECNs related to growth and the primary wheat photosynthetic network, other photosynthesis-related networks compensate and are positively correlated with *Pst* growth. This hypothesis-generating study has revealed both the importance of wheat diversity and highlighted some potential breeding targets for more durable basal resistance to move away from R-gene-based resistance.

References

- 1. FAOSTAT. Available at: http://www.fao.org/faostat/en/#data/QC. (Accessed: 19th May 2021)
- 2. Dean, R. *et al.* The Top 10 fungal pathogens in molecular plant pathology. *Molecular Plant Pathology* **13**, 414–430 (2012).
- 3. Chen, X. Pathogens which threaten food security: Puccinia striiformis, the wheat stripe rust pathogen. *Food Security* **12**, 239–251 (2020).
- 4. Chen, X. M. Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. *Can. J. Plant Pathol.* **27**, 314–337 (2005).
- 5. Bartlett, D. W. *et al.* The strobilurin fungicides. *Pest Management Science* **58**, 649–662 (2002).
- 6. De Wolf, E. Kansas State University Agricultural Experiment Station and Cooperative Extension Service. (2010).
- 7. Tao, F. *et al.* Revealing Differentially Expressed Genes and Identifying Effector Proteins of Puccinia striiformis f. sp. tritici in Response to High-Temperature Seedling Plant Resistance of Wheat Based on Transcriptome Sequencing. *mSphere* **5**, (2020).
- 8. Jones, J. D. G. & Dangl, J. L. The plant immune system. *Nature* 444, 323–329 (2006).
- 9. Wellings, C. R. Global status of stripe rust: A review of historical and current threats. *Euphytica* **179**, 129–141 (2011).
- 10. Hovmøller, M. S. *et al.* Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. *Plant Pathol.* **65**, 402–411 (2016).
- 11. Chen, X. Review Article: High-Temperature Adult-Plant Resistance, Key for Sustainable Control of Stripe Rust. *Am. J. Plant Sci.* **04**, 608–627 (2013).
- 12. Chen, X., Coram, T., Huang, X., Wang, M. & Dolezal, A. Understanding Molecular Mechanisms of Durable and Non-durable Resistance to Stripe Rust in Wheat Using a Transcriptomics Approach. *Curr. Genomics* **14**, 111–126 (2013).
- 13. Hubbard, A. *et al.* Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. *Genome Biol.* **16**, 23 (2015).
- 14. Radhakrishnan, G. V. *et al.* MARPLE, a point-of-care, strain-level disease diagnostics and surveillance tool for complex fungal pathogens. *BMC Biol.* **17**, 65 (2019).
- 15. Coram, T. E., Settles, M. L. & Chen, X. Transcriptome analysis of high-temperature adultplant resistance conditioned by Yr39 during the wheat-Puccinia striiformis f. sp. tritici interaction. *Mol. Plant Pathol.* **9**, 479–493 (2008).
- 16. Wang, Y. *et al.* Transcriptome analysis provides insights into the mechanisms underlying wheat cultivar Shumai126 responding to stripe rust. *Gene* **768**, 145290 (2021).
- 17. Cantu, D. *et al.* Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. *BMC Genomics* 14, (2013).
- 18. Zhang, W. *et al.* Plant–necrotroph co-transcriptome networks illuminate a metabolic battlefield. *Elife* **8**, (2019).
- 19. Dobon, A., Bunting, D. C. E., Cabrera-Quio, L. E., Uauy, C. & Saunders, D. G. O. The host-pathogen interaction between wheat and yellow rust induces temporally coordinated waves of gene expression. *BMC Genomics* **17**, 380 (2016).
- 20. Bueno-Sancho, V. et al. Pathogenomic Analysis of Wheat Yellow Rust Lineages Detects

Seasonal Variation and Host Specificity. Genome Biol. Evol. 9, 3282–3296 (2017).

- 21. Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. in *Bioinformatics* **34**, i884–i890 (2018).
- 22. Dobin, A. *et al.* STAR: Ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21 (2013).
- 23. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. *Bioinformatics* **27**, 2987–2993 (2011).
- 24. Robinson, M., Mccarthy, D., Chen, Y. & Smyth, G. K. edgeR : differential expression analysis of digital gene expression data. *October* 23, 2887–2887 (2011).
- 25. Cingolani, P. *et al.* A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. *Fly* (*Austin*). **6**, 80–92 (2012).
- 26. R Core Team. R: A Language and Environment for Statistical Computing. (2020).
- 27. Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. *Bioinformatics* **24**, 1403–1405 (2008).
- 28. Jombart, T. & Ahmed, I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. *Bioinformatics* **27**, 3070–3071 (2011).
- 29. Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. *BMC Genet.* **11**, 94 (2010).
- 30. Kamvar, Z. N., Tabima, J. F. & Grunwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. *PeerJ* **2014**, 1–14 (2014).
- 31. Kamvar, Z. N., Brooks, J. C. & Grünwald, N. J. Novel R tools for analysis of genomewide population genetic data with emphasis on clonality. *Front. Genet.* **6**, 208 (2015).
- 32. Oksanen, J. *et al.* vegan: Community Ecology Package. (2020).
- 33. Kelly, B. J. *et al.* Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA. *Bioinformatics* **31**, 2461–2468 (2015).
- 34. Harrell Jr, F. E., with contributions from Charles Dupont & many others. Hmisc: Harrell Miscellaneous. (2020).
- 35. Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology. (2019).
- 36. Cuomo, C. A. *et al.* Comparative Analysis Highlights Variable Genome Content of Wheat Rusts and Divergence of the Mating Loci. *G3 Genes, Genomes, Genet.* **7**, 361–376 (2017).
- 37. Petersen, T. N., Brunak, S., Von Heijne, G. & Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. *Nature Methods* **8**, 785–786 (2011).
- 38. Csardi, G. & Nepusz, T. The igraph software package for complex network research. *InterJournal* **Complex Sy**, 1695 (2006).
- 39. Paul Shannon, 1 *et al.* Cytoscape: A Software Environment for Integrated Models. *Genome Res.* **13**, 426 (1971).
- 40. Mahboubi, M., Mehrabi, R., Naji, A. M. & Talebi, R. Whole-genome diversity, population structure and linkage disequilibrium analysis of globally diverse wheat genotypes using genotyping-by-sequencing DArTseq platform. *3 Biotech* **10**, 48 (2020).
- 41. Poland, J. & Rutkoski, J. Advances and Challenges in Genomic Selection for Disease Resistance. *Annu. Rev. Phytopathol.* **54**, 79–98 (2016).
- 42. Cheng, P., Chen, X. & See, D. Grass Hosts Harbor More Diverse Isolates of Puccinia striiformis Than Cereal Crops. *Phytopathology* **106**, 362–371 (2016).

- 43. Jin, Y. Role of Berberis spp. as alternate hosts in generating new races of Puccinia graminis and P. striiformis. *Euphytica* **179**, 105–108 (2011).
- 44. Rodnina, M. V. The ribosome in action: Tuning of translational efficiency and protein folding. *Protein Science* 1390–1406 (2016). doi:10.1002/pro.2950
- 45. Xia, C. *et al.* Genomic insights into host adaptation between the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) and the barley stripe rust pathogen (Puccinia striiformis f. sp. hordei). *BMC Genomics* **19**, (2018).
- 46. Jin, Y., Szabo, L. J. & Carson, M. Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. *Phytopathology* **100**, 432–435 (2010).
- 47. Scholes, J. D. & Rolfe, S. A. Photosynthesis in localised regions of oat leaves infected with crown rust (Puccinia coronata): Quantitative imaging of chlorophyll fluorescence. *Planta* **199**, 573–582 (1996).
- 48. Berger, S., Sinha, A. K. & Roitsch, T. Plant physiology meets phytopathology: Plant primary metabolism and plant-pathogen interactions. *Journal of Experimental Botany* **58**, 4019–4026 (2007).
- 49. Chang, Q. *et al.* The effect of Puccinia striiformis f. sp. tritici on the levels of watersoluble carbohydrates and the photosynthetic rate in wheat leaves. *Physiol. Mol. Plant Pathol.* **84**, 131–137 (2013).
- 50. Chen, S. *et al.* Key genes and genetic interactions of plant-pathogen functional modules in poplar infected by marssonina brunnea. *Mol. Plant-Microbe Interact.* **33**, 1080–1090 (2020).
- 51. Camp, R. R. & Whittingham, W. F. Fine Structure of Chloroplasts in 'Green Islands' and in Surrounding Chlorotic Areas of Barley Leaves Infected by Powdery Mildew. *Am. J. Bot.* **62**, 403 (1975).
- 52. Berger, S., Papadopoulos, M., Schreiber, U., Kaiser, W. & Roitsch, T. Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. *Physiol. Plant.* **122**, 419–428 (2004).
- 53. Foyer, C. H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. *Environmental and Experimental Botany* **154**, 134–142 (2018).
- 54. Kangasjärvi, S., Neukermans, J., Li, S., Aro, E. M. & Noctor, G. Photosynthesis, photorespiration, and light signalling in defence responses. *Journal of Experimental Botany* **63**, 1619–1636 (2012).
- 55. Liu, Y. & He, C. A review of redox signaling and the control of MAP kinase pathway in plants. *Redox Biology* **11**, 192–204 (2017).
- 56. Buchanan BB, G. W. & (eds.), J. R. L. *Biochemistry and Molecular Biology of Plants* (second edition). Wiley, Blackwell (Chichester, UK) (2015).
- 57. Bechtold, U., Karpinski, S. & Mullineaux, P. M. The influence of the light environment and photosynthesis on oxidative signalling responses in plant-biotrophic pathogen interactions. *Plant, Cell and Environment* **28**, 1046–1055 (2005).
- 58. Chen, Y. E. *et al.* Influence of stripe rust infection on the photosynthetic characteristics and antioxidant system of susceptible and resistant wheat cultivars at the adult plant stage. *Front. Plant Sci.* **6**, 779 (2015).
- 59. Hamelin, R. C. *et al.* Obligate biotrophy features unraveled by the genomic analysis of rust fungi. *Proc. Natl. Acad. Sci.* **108**, 9166–9171 (2011).

Appendix 1: Sample Collection Information

ID	Location	Country	Continent	Date Collected	Host	Host Variety	Source	Data Type	Accession Number
AR1*	Cash, Arkansas	USA	North America	4/30/2015	Wheat	LCS 2141	Radhakrishnan et al., 2019	RNA-seq	To be shared
AUT1*	Groß-Enzersdorf	Austria	Europe	5/19/2014	Wheat	Sax	Bueno-Sancho et al., 2017	RNA-seq	ERS1327125
AUT2*	Gießhübl	Austria	Europe	5/22/2014	Wheat	Sax	Bueno-Sancho et al., 2017	RNA-seq	ERS1327126
BEL1*	Koksijde	Belgium	Europe	6/2/2014	Wheat	JB Asano	Bueno-Sancho et al., 2017	RNA-seq	ERS1327175
BEL2*	Mignault	Belgium	Europe	6/2/2014	Wheat	Torch	Bueno-Sancho et al., 2017	RNA-seq	ERS1327178
BEL3*	Zwevegem	Belgium	Europe	6/2/2014	Wheat	JB Asano	Bueno-Sancho et al., 2017	RNA-seq	ERS1327176
BEL4*	Tiegem	Belgium	Europe	6/2/2014	Wheat	JB Asano	Bueno-Sancho et al., 2017	RNA-seq	ERS1327177
BGR1*	Novi Han	Bulgaria	Europe	6/11/2014	Wheat	Enola	Bueno-Sancho et al., 2017	RNA-seq	ERS1327157
CA1*	Siskiyou, California	USA	North America	6/3/2015	Wheat	YS 221	Radhakrishnan et al., 2019	RNA-seq	To be shared
CA2*	Woodland, California	USA	North America	4/4/2016	Wheat	breeding line	Radhakrishnan et al., 2019	RNA-seq	To be shared
CAN1*	Lethbridge, Alberta	Canada	North America	7/21/2015	Wheat	GYT3-190 DN	Radhakrishnan et al., 2019	RNA-seq	To be shared
CAN2*	Lethbridge, Alberta	Canada	North America	7/21/2015	Wheat	Morocco FF-B	Radhakrishnan et al., 2019	RNA-seq	To be shared
CAN3*	Lethbridge, Alberta	Canada	North America	7/21/2015	Wheat	Penhold	Radhakrishnan et al., 2019	RNA-seq	To be shared
CAN4*	Lacombe, Alberta	Canada	North America	7/21/2015	Wheat	HY2047	Radhakrishnan et al., 2019	RNA-seq	To be shared
CAN5*	St. Albert, Edmonton	Canada	North America	7/21/2015	Wheat	HY2042	Radhakrishnan et al., 2019	RNA-seq	To be shared
CAN6*	Lacombe, Alberta	Canada	North America	7/21/2015	Wheat	Yr31	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHL1*	StaRosa	Chile	South America	11/24/2014	Wheat	Fito1401-87/ cv. Pantera	Bueno-Sancho et al., 2017	RNA-seq	ERS1327104
CHL2*	Carillana	Chile	South America	11/24/2014	Wheat	Onix	Bueno-Sancho et al., 2017	RNA-seq	ERS1327102
CHL3*	Cajon	Chile	South America	12/6/2014	Wheat	Taita	Bueno-Sancho et al., 2017	RNA-seq	ERS1327105

ID	Location	Country	Continent	Date Collected	Host	Host Variety	Source	Data Type	Accession Number
CHL4*	Los Tilos	Chile	South America	12/7/2014	Wheat	Fito 1404-15	Bueno-Sancho et al., 2017	RNA-seq	ERS1327106
CHL5*	StaRosa	Chile	South America	11/24/2014	Wheat	Onix	Bueno-Sancho et al., 2017	RNA-seq	ERS1327103
CHN1	Nanhu, Zhuanglang	China	Asia	11/26/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN10*	unknown	China	Asia	July 2015	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN11	unknown	China	Asia	July 2015	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN12*	unknown	China	Asia	July 2015	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN13*	Nanhu, Zhuanglang	China	Asia	11/26/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN14*	Nanhu, Zhuanglang	China	Asia	11/26/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN15*	Pingnan, Quizhou	China	Asia	11/27/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN16*	Pingnan, Quizhou	China	Asia	11/27/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN17*	Pingnan, Quizhou	China	Asia	11/27/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN18*	Pingnan, Quizhou	China	Asia	11/28/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN19*	Jinshan, Gangu	China	Asia	11/28/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN2*	Nanhu, Zhuanglang	China	Asia	11/26/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN20*	Jinshan, Gangu	China	Asia	11/28/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN21*	Jinshan, Gangu	China	Asia	11/28/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN22*	Jinshan, Gangu	China	Asia	11/28/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN23*	Jinshan, Gangu	China	Asia	11/28/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN24*	Jinshan, Gangu	China	Asia	11/28/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN25*	Jinshan, Gangu	China	Asia	11/28/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN26*	unknown	China	Asia	2017	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN27*	unknown	China	Asia	2017	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared

ID	Location	Country	Continent	Date Collected	Host	Host Variety	Source	Data Type	Accession Number
CHN28*	unknown	China	Asia	2017	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN29*	unknown	China	Asia	2017	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN3*	Pingnan, Quizhou	China	Asia	11/27/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN30*	unknown	China	Asia	2017	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN31*	unknown	China	Asia	2017	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN32*	unknown	China	Asia	2017	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN33*	unknown	China	Asia	2017	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN4	Pingnan, Quizhou	China	Asia	11/27/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN5*	Jinshan, Gangu	China	Asia	11/28/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN6*	Jinshan, Gangu	China	Asia	11/28/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN7*	unknown	China	Asia	2017	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN8*	unknown	China	Asia	2017	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CHN9*	unknown	China	Asia	2017	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
CO1*	Akron, CO	USA	North America	6/16/2017	Wheat	Ruth	This study	RNA-seq	
CO2*	Colorado	USA	North America	6/16/2017	Wheat	CO12M0367	This study	RNA-seq	
CO3*	Colorado	USA	North America	6/16/2017	Wheat	CO13003C	This study	RNA-seq	
CO4*	Orchard, CO	USA	North America	6/16/2017	Wheat	Brawl CL Plus	This study	RNA-seq	
CO5*	Orchard, CO	USA	North America	6/16/2017	Wheat	CO14A065	This study	RNA-seq	
CO6*	Roggen, CO	USA	North America	6/12/2017	Wheat	unknown	This study	RNA-seq	
CO7*	site 56, CO	USA	North America	6/6/2017	Wheat	unknown	This study	RNA-seq	
CZE1*	Rokytnice	Czech Republic	Europe	6/12/2014	Wheat	Tilman	Bueno-Sancho et al., 2017	RNA-seq	ERS1327120
CZE2	Olomouc	Czech Republic	Europe	6/19/2014	Wheat	NIC08 -108	Bueno-Sancho et al., 2017	RNA-seq	ERS1327154

ID	Location	Country	Continent	Date Collected	Host	Host Variety	Source	Data Type	Accession Number
CZE3	Olomouc	Czech Republic	Europe	6/19/2014	Perennial grass	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327153
CZE4	Olomouc	Czech Republic	Europe	6/19/2014	Wheat	Turandot/Bary ton cross	Bueno-Sancho et al., 2017	RNA-seq	ERS1327155
DE1*	Middletown, DE	USA	North America	6/8/2017	Wheat	Shirley	This study	RNA-seq	
DEU1*	Moselürsch	Germany	Europe	6/10/2014	Wheat	Aktuer	Bueno-Sancho et al., 2017	RNA-seq	ERS1327142
DEU12*	Dunau	Germany	Europe	6/17/2014	Wheat	Loft	Bueno-Sancho et al., 2017	RNA-seq	ERS1327148
DEU14*	Gommershoven	Germany	Europe	5/13/2014	Wheat	JB Asano	Bueno-Sancho et al., 2017	RNA-seq	ERS1327163
DEU15*	Groitzsch	Germany	Europe	5/28/2014	Wheat	Kometus	Bueno-Sancho et al., 2017	RNA-seq	ERS1327164
DEU16*	Groitzsch	Germany	Europe	6/3/2014	Wheat	Akteur	Bueno-Sancho et al., 2017	RNA-seq	ERS1327165
DEU17*	Weißensee	Germany	Europe	6/3/2014	Wheat	Ritmo	Bueno-Sancho et al., 2017	RNA-seq	ERS1327166
DEU18*	Weißensee	Germany	Europe	6/3/2014	Wheat	JB Asano	Bueno-Sancho et al., 2017	RNA-seq	ERS1327167
DEU19*	Tachenhausen	Germany	Europe	6/4/2014	Wheat	Kometus	Bueno-Sancho et al., 2017	RNA-seq	ERS1327169
DEU2*	Hingste Inokluiert	Germany	Europe	6/16/2014	Wheat	Contur	Bueno-Sancho et al., 2017	RNA-seq	ERS1327147
DEU20*	Hüttendorf	Germany	Europe	6/5/2014	Wheat	Kometus	Bueno-Sancho et al., 2017	RNA-seq	ERS1327171
DEU22	Werbig	Germany	Europe	July 2014	Rye	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327185
DEU23*	Ruchheim	Germany	Europe	6/4/2014	Wheat	Victo	Bueno-Sancho et al., 2017	RNA-seq	ERS1327161
DEU3*	Grucking	Germany	Europe	6/23/2014	Wheat	JB Asano	Bueno-Sancho et al., 2017	RNA-seq	ERS1327149
DEU4*	Böhl Bauch 10	Germany	Europe	6/17/2014	Wheat	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327162
DEU5*	Ruchheim	Germany	Europe	6/17/2014	Wheat	Victo	Bueno-Sancho et al., 2017	RNA-seq	To be shared
DEU6*	Weißensee	Germany	Europe	6/3/2014	Wheat	Akteur	Bueno-Sancho et al., 2017	RNA-seq	ERS1327168
DEU7*	Hüttendorf	Germany	Europe	6/5/2014	Wheat	Hermann	Bueno-Sancho et al., 2017	RNA-seq	ERS1327170
DEU8*	Etzdorf	Germany	Europe	6/13/2014	Wheat	JB Asano	Bueno-Sancho et al., 2017	RNA-seq	ERS1327143
DEU9*	Etzdorf	Germany	Europe	6/13/2014	Wheat	Kometus	Bueno-Sancho et al., 2017	RNA-seq	ERS1327144
ESP1	Garínoain	Spain	Europe	7/3/2014	Wheat	Camargo	Bueno-Sancho et al., 2017	RNA-seq	ERS1327158

ID	Location	Country	Continent	Date Collected	Host	Host Variety	Source	Data Type	Accession Number
ETH1*	Kulumsa, Oromia	Ethiopia	Africa	5/16/2014	Wheat	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327111
ETH10*	Sinana	Ethiopia	Africa	12/5/2016	Wheat	Digalu	Radhakrishnan et al., 2019	RNA-seq	To be shared
ETH3*	Sinana	Ethiopia	Africa	12/5/2016	Wheat	Millenium	Radhakrishnan et al., 2019	RNA-seq	To be shared
ETH4*	Sinana	Ethiopia	Africa	12/5/2016	Wheat	SPPSN#15	Radhakrishnan et al., 2019	RNA-seq	To be shared
ETH5	Sinana	Ethiopia	Africa	12/5/2016	Wheat	Hoggana	Radhakrishnan et al., 2019	RNA-seq	To be shared
ETH6*	Sinana RS	Ethiopia	Africa	12/1/2014	Wheat	Hidasse	Bueno-Sancho et al., 2017	RNA-seq	ERS1327115
ETH7*	Sinana RS	Ethiopia	Africa	12/1/2014	Wheat	Honqolo	Bueno-Sancho et al., 2017	RNA-seq	ERS1327116
ETH8*	Sinana RS	Ethiopia	Africa	12/1/2014	Wheat	Sanate	Bueno-Sancho et al., 2017	RNA-seq	ERS1327117
FRA1	Castanet	France	Europe	6/4/2015	Triticale	Orleac	Radhakrishnan et al., 2019	RNA-seq	To be shared
FRA10*	Marchélepot	France	Europe	6/16/2014	Wheat	Trapez	Bueno-Sancho et al., 2017	RNA-seq	ERS1327122
FRA11*	Marchélepot	France	Europe	6/16/2014	Wheat	Bergamo	Bueno-Sancho et al., 2017	RNA-seq	ERS1327123
FRA12*	Pontfaverger	France	Europe	6/10/2014	Wheat	Trapez	Bueno-Sancho et al., 2017	RNA-seq	ERS1327124
FRA13*	Guégon	France	Europe	6/4/2014	Wheat	Expert	Bueno-Sancho et al., 2017	RNA-seq	ERS1327130
FRA14*	Bucy Saint Liphard	France	Europe	6/25/2014	Wheat	Hysun	Bueno-Sancho et al., 2017	RNA-seq	ERS1327151
FRA15*	Bucy Saint Liphard	France	Europe	6/25/2014	Wheat	Karur	Bueno-Sancho et al., 2017	RNA-seq	ERS1327152
FRA16*	unknown	France	Europe	6/11/2014	Durum wheat	Luminur	Bueno-Sancho et al., 2017	RNA-seq	ERS1327183
FRA17	-	France	Europe	-	Wheat	unknown	Hubbard et al., 2015	RNA-seq	ERS1327095
FRA18	-	France	Europe	2000	Wheat	unknown	Hubbard et al., 2015	Genomic	SRX671609
FRA19	-	France	Europe	2002	Wheat	unknown	Hubbard et al., 2015	Genomic	SRX671644
FRA2	Castanet	France	Europe	6/4/2015	Triticale	Tarzan	Radhakrishnan et al., 2019	RNA-seq	To be shared
FRA20	-	France	Europe	2001	Wheat	unknown	Hubbard et al., 2015	Genomic	SRX672139
FRA3*	Gourhel	France	Europe	6/2/2014	Wheat	Altigo	Bueno-Sancho et al., 2017	RNA-seq	ERS1327129

ID	Location	Country	Continent	Date Collected	Host	Host Variety	Source	Data Type	Accession Number
FRA4*	Loyat	France	Europe	6/4/2014	Wheat	Alixan	Bueno-Sancho et al., 2017	RNA-seq	ERS1327131
FRA6*	Nangis, Seine-et- Marne	France	Europe	6/3/2014	Wheat	Rosario	Bueno-Sancho et al., 2017	RNA-seq	ERS1327174
FRA7*	Marchélepot	France	Europe	6/16/2014	Wheat	Glasgow	Bueno-Sancho et al., 2017	RNA-seq	ERS1327121
FRA8	Castanet	France	Europe	6/4/2015	Triticale	Ragtac	Radhakrishnan et al., 2019	RNA-seq	To be shared
FRA9	Castanet	France	Europe	6/4/2015	Triticale	Fido	Radhakrishnan et al., 2019	RNA-seq	To be shared
GBR1*	Cirencester, Gloucestershire	UK	Europe	6/12/2013	Wheat	Oakley	Hubbard et al., 2015	RNA-seq	SRX684252
GBR10*	Caythorpe, Lincolnshire	UK	Europe	5/29/2013	Wheat	Oakley	Hubbard et al., 2015	RNA-seq	SRX684852
GBR100	Cascob, Powys (Wales)	UK	Europe	8/13/2014	Wheat	AC Barrie	Bueno-Sancho et al., 2017	RNA-seq	ERS1327232
GBR103*	-	UK	Europe	1978	Wheat	unknown	Hubbard et al., 2015	RNA-seq	SRX708529
GBR104	-	UK	Europe	1987	Wheat	unknown	Hubbard et al., 2015	Genomic	SRX667853
GBR105	-	UK	Europe	1987	Wheat	unknown	Hubbard et al., 2015	Genomic	SRX667852
GBR106	-	UK	Europe	1988	Wheat	unknown	Hubbard et al., 2015	Genomic	SRX667891
GBR107	-	UK	Europe	1988	Wheat	unknown	Hubbard et al., 2015	Genomic	SRX667866
GBR108	-	UK	Europe	1988	Wheat	unknown	Hubbard et al., 2015	Genomic	SRX667861
GBR109	-	UK	Europe	1988	Wheat	unknown	Hubbard et al., 2015	Genomic	SRX667861
GBR11*	Boothby Graffoe, Lincolnshire	UK	Europe	6/13/2013	Wheat	KWS Santiago	Hubbard et al., 2015	RNA-seq	SRX664976
GBR110	-	UK	Europe	1998	Wheat	unknown	Hubbard et al., 2015	Genomic	SRX667790
GBR111*	Cambridgeshire	UK	Europe	2014	Wheat	Oakley	Hubbard et al., 2015	RNA-seq	SRX702551
GBR112*	Cambridgeshire	UK	Europe	2014	Wheat	Torch	Hubbard et al., 2015	RNA-seq	SRX702556
GBR12*	Welbourne, Lincolnshire	UK	Europe	6/14/2013	Wheat	Recital	Hubbard et al., 2015	RNA-seq	SRX690356
GBR13*	Mendlesham, Suffolk	UK	Europe	6/5/2013	Wheat	KWS 196	Hubbard et al., 2015	RNA-seq	SRX701325

ID	Location	Country	Continent	Date Collected	Host	Host Variety	Source	Data Type	Accession Number
GBR14*	Boothby Graffoe, Lincolnshire	UK	Europe	6/13/2013	Wheat	Solstice	Hubbard et al., 2015	RNA-seq	SRX684439
GBR15*	Caythorpe, Lincolnshire	UK	Europe	6/5/2013	Wheat	RW41088	Hubbard et al., 2015	RNA-seq	SRX684851
GBR16*	Boothby Graffoe, Lincolnshire	UK	Europe	6/13/2013	Wheat	KWS Dali	Hubbard et al., 2015	RNA-seq	SRX685991
GBR17*	unknown	UK	Europe	2017	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
GBR18*	Humbie, East Lothian	UK	Europe	6/23/2014	Wheat	KWS Kielder	Bueno-Sancho et al., 2017	RNA-seq	ERS1327190
GBR19	-	UK	Europe	2001	Wheat	unknown	Hubbard et al., 2015	Genomic	SRX667770
GBR2*	Cambridgeshire	UK	Europe	6/18/2013	Wheat	Claire	Hubbard et al., 2015	RNA-seq	SRX684850
GBR20	-	UK	Europe	2003	Wheat	Brock	Hubbard et al., 2015	Genomic	SRX667387
GBR21	-	UK	Europe	2008	Wheat	Solstice	Hubbard et al., 2015	Genomic	SRX667083
GBR22	-	UK	Europe	2008	Wheat	Timber	Hubbard et al., 2015	Genomic	SRX667388
GBR23	Lincolnshire	UK	Europe	2011	Wheat	Warrior	Hubbard et al., 2015	Genomic	SRX703657
GBR24*	-	UK	Europe	2011	Wheat	unknown	Hubbard et al., 2015	RNA-seq	SRS707593
GBR25*	-	UK	Europe	2011	Wheat	unknown	Hubbard et al., 2015	RNA-seq	SRX708523
GBR26	Bedfordshire	UK	Europe	2011	Wheat	KWS Sterling	Hubbard et al., 2015	Genomic	SRX667377
GBR27*	Caythorpe, Lincolnshire	UK	Europe	7/3/2013	Wheat	Ambition	Hubbard et al., 2015	RNA-seq	SRX702534
GBR28*	Boston, Lincolnshire	UK	Europe	7/3/2013	Wheat	Ambition	Hubbard et al., 2015	RNA-seq	SRX702401
GBR29*	Boston, Lincolnshire	UK	Europe	6/5/2013	Wheat	Oakley	Hubbard et al., 2015	RNA-seq	SRX684393
GBR3*	Mendlesham, Suffolk	UK	Europe	6/5/2013	Wheat	Torch	Hubbard et al., 2015	RNA-seq	SRX685990
GBR30*	Unknown	UK	Europe	2013	Wheat	Crusoe	Hubbard et al., 2015	RNA-seq	SRX702535
GBR31*	Sutton Scotney, Hampshire	UK	Europe	6/6/2013	Wheat	KWS Rowan	Hubbard et al., 2015	RNA-seq	SRX690338

ID	Location	Country	Continent	Date Collected	Host	Host Variety	Source	Data Type	Accession Number
GBR32*	Boothby Graffoe, Lincolnshire	UK	Europe	6/13/2013	Wheat	KWS Kielder	Hubbard et al., 2015	RNA-seq	SRX690311
GBR33*	Cirencester, Gloucestershire	UK	Europe	6/12/2013	Wheat	Horatio	Hubbard et al., 2015	RNA-seq	SRX686006
GBR34*	Cirencester, Gloucestershire	UK	Europe	6/12/2013	Wheat	Solstice	Hubbard et al., 2015	RNA-seq	SRX690352
GBR35*	Oxfordshire	UK	Europe	6/14/2013	Wheat	Solstice	Hubbard et al., 2015	RNA-seq	SRX685190
GBR36*	Welbourne, Lincolnshire	UK	Europe	6/14/2013	Wheat	ReR22	Hubbard et al., 2015	RNA-seq	SRX690343
GBR37*	Welbourne, Lincolnshire	UK	Europe	6/14/2013	Wheat	ReR04	Hubbard et al., 2015	RNA-seq	SRX690312
GBR38*	Welbourne, Lincolnshire	UK	Europe	6/14/2013	Wheat	ReR32	Hubbard et al., 2015	RNA-seq	SRX686004
GBR39*	Welbourne, Lincolnshire	UK	Europe	6/14/2013	Wheat	ReR64	Hubbard et al., 2015	RNA-seq	SRX690541
GBR4*	Mendlesham, Suffolk	UK	Europe	6/5/2013	Wheat	LGW56 (Panacea)	Hubbard et al., 2015	RNA-seq	SRX686005
GBR40*	Welbourne, Lincolnshire	UK	Europe	6/14/2013	Wheat	Allez-Y	Hubbard et al., 2015	RNA-seq	SRX690378
GBR41*	Welbourne, Lincolnshire	UK	Europe	6/14/2013	Wheat	ReR110	Hubbard et al., 2015	RNA-seq	SRX701334
GBR42*	Welbourne, Lincolnshire	UK	Europe	6/14/2013	Wheat	ReR138	Hubbard et al., 2015	RNA-seq	SRX690348
GBR43*	Welbourne, Lincolnshire	UK	Europe	6/14/2013	Wheat	Toisander	Hubbard et al., 2015	RNA-seq	SRX690379
GBR44*	Welbourne, Lincolnshire	UK	Europe	6/14/2013	Wheat	Fairplay	Hubbard et al., 2015	RNA-seq	SRX690528
GBR45*	Welbourne, Lincolnshire	UK	Europe	6/14/2013	Wheat	Audace	Hubbard et al., 2015	RNA-seq	SRX690484
GBR46*	NIAB HQ, Cambridgeshire	UK	Europe	7/7/2013	Wheat	Warrior	Hubbard et al., 2015	RNA-seq	SRX701336
GBR47*	Headley Hall, North Yorkshire	UK	Europe	6/19/2013	Wheat	Laurier	Hubbard et al., 2015	RNA-seq	SRX690483
GBR48*	Sutton Scotney, Hampshire	UK	Europe	2/21/2014	Wheat	Victo	Bueno-Sancho et al., 2017	RNA-seq	ERS1327132

ID	Location	Country	Continent	Date Collected	Host	Host Variety	Source	Data Type	Accession Number
GBR49*	Sutton Scotney, Hampshire	UK	Europe	2/21/2014	Wheat	Oakley	Bueno-Sancho et al., 2017	RNA-seq	ERS1327133
GBR5	Rockland St Mary, Norfolk	UK	Europe	6/6/2013	Triticale	unknown	Hubbard et al., 2015	RNA-seq	SRX690542
GBR50*	unknown	UK	Europe	3/7/2014	Wheat	Panorama	Bueno-Sancho et al., 2017	RNA-seq	ERS1327134
GBR51*	unknown	UK	Europe	3/7/2014	Wheat	Target	Bueno-Sancho et al., 2017	RNA-seq	ERS1327135
GBR52*	unknown	UK	Europe	3/18/2014	Wheat	spreader	Bueno-Sancho et al., 2017	RNA-seq	ERS1327136
GBR53	unknown	UK	Europe	2014	Wheat	Cocoon	Bueno-Sancho et al., 2017	RNA-seq	ERS1327137
GBR54*	Morley, Norfolk	UK	Europe	6/13/2014	Wheat	Kranich	Bueno-Sancho et al., 2017	RNA-seq	ERS1327182
GBR55*	Bridgend, Mid Glamorgan	UK	Europe	June 2014	Wheat	Vuka	Bueno-Sancho et al., 2017	RNA-seq	ERS1327186
GBR56*	unknown	UK	Europe	July 2014	Wheat	Vuka	Bueno-Sancho et al., 2017	RNA-seq	ERS1327187
GBR57*	Bishop Burton, East Yorkshire	UK	Europe	August 2014	Wheat	Vuka	Bueno-Sancho et al., 2017	RNA-seq	ERS1327188
GBR59*	Wolferton, Norfolk	UK	Europe	6/23/2014	Wheat	Jorvik	Bueno-Sancho et al., 2017	RNA-seq	ERS1327191
GBR6	Headley Hall, North Yorkshire	UK	Europe	6/26/2013	Triticale	Phidahlia	Hubbard et al., 2015	RNA-seq	SRX702404
GBR60*	Humbie, East Lothian	UK	Europe	6/23/2014	Wheat	LGW65 (Energise)	Bueno-Sancho et al., 2017	RNA-seq	ERS1327192
GBR62	Humbie, East Lothian	UK	Europe	6/23/2014	Wheat	JB Diego	Bueno-Sancho et al., 2017	RNA-seq	ERS1327194
GBR63*	York, North Yorkshire	UK	Europe	4/28/2014	Wheat	Solstice	Bueno-Sancho et al., 2017	RNA-seq	ERS1327195
GBR64*	York, North Yorkshire	UK	Europe	4/28/2014	Wheat	KWS Kielder	Bueno-Sancho et al., 2017	RNA-seq	ERS1327196
GBR65*	Morley, Norfolk	UK	Europe	4/1/2014	Wheat	Victo	Bueno-Sancho et al., 2017	RNA-seq	ERS1327197
GBR66	Caythorpe, Lincolnshire	UK	Europe	1/23/2014	Wheat	Oakley	Bueno-Sancho et al., 2017	RNA-seq	ERS1327198
GBR67	Caythorpe, Lincolnshire	UK	Europe	1/23/2014	Wheat	Victo	Bueno-Sancho et al., 2017	RNA-seq	ERS1327199
GBR68*	Titchmarsh, Northamptonshire	UK	Europe	1/13/2014	Wheat	Claire	Bueno-Sancho et al., 2017	RNA-seq	ERS1327200

ID	Location	Country	Continent	Date Collected	Host	Host Variety	Source	Data Type	Accession Number
GBR69*	Wallingford, Oxfordshire	UK	Europe	December 2013	Wheat	KWS Kielder	Bueno-Sancho et al., 2017	RNA-seq	ERS1327201
GBR7	Wareham, Dorset	UK	Europe	7/5/2013	Triticale	Amarillo	Hubbard et al., 2015	RNA-seq	SRX702423
GBR71	Caythorpe, Lincolnshire	UK	Europe	1/23/2014	Wheat	Claire	Bueno-Sancho et al., 2017	RNA-seq	ERS1327203
GBR72	Caythorpe, Lincolnshire	UK	Europe	1/23/2014	Wheat	Robigus	Bueno-Sancho et al., 2017	RNA-seq	ERS1327204
GBR73*	Canterbury, Kent	UK	Europe	5/23/2014	Wheat	Cordiale	Bueno-Sancho et al., 2017	RNA-seq	ERS1327205
GBR74*	Canterbury, Kent	UK	Europe	5/23/2014	Wheat	Solstice	Bueno-Sancho et al., 2017	RNA-seq	ERS1327206
GBR75	Caythorpe, Lincolnshire	UK	Europe	5/6/2014	Wheat	Solstice	Bueno-Sancho et al., 2017	RNA-seq	ERS1327207
GBR76*	Caythorpe, Lincolnshire	UK	Europe	5/6/2014	Wheat	Robigus	Bueno-Sancho et al., 2017	RNA-seq	ERS1327208
GBR77*	unknown	UK	Europe	5/16/2014	Wheat	Ambition	Bueno-Sancho et al., 2017	RNA-seq	ERS1327209
GBR79*	Cambridgeshire	UK	Europe	5/8/2014	Wheat	Kranich	Bueno-Sancho et al., 2017	RNA-seq	ERS1327211
GBR8	Wool, Dorset	UK	Europe	7/5/2013	Triticale	Bennette	Hubbard et al., 2015	RNA-seq	SRX702533
GBR80*	Sturminster, Dorset	UK	Europe	5/16/2014	Wheat	Solstice	Bueno-Sancho et al., 2017	RNA-seq	ERS1327212
GBR81*	Canterbury, Kent	UK	Europe	5/23/2014	Wheat	Claire	Bueno-Sancho et al., 2017	RNA-seq	ERS1327213
GBR82	Keisby, Lincolnshire	UK	Europe	5/16/2014	Wheat	Belvoir	Bueno-Sancho et al., 2017	RNA-seq	ERS1327214
GBR83*	Canterbury, Kent	UK	Europe	5/23/2014	Wheat	KWS Sterling	Bueno-Sancho et al., 2017	RNA-seq	ERS1327215
GBR84*	Canterbury, Kent	UK	Europe	5/23/2014	Wheat	Robigus	Bueno-Sancho et al., 2017	RNA-seq	ERS1327216
GBR85*	Headley Hall, North Yorkshire	UK	Europe	5/6/2014	Wheat	Oakley	Bueno-Sancho et al., 2017	RNA-seq	ERS1327217
GBR86*	Royston, Cambridgeshire	UK	Europe	5/23/2014	Wheat	Oakley	Bueno-Sancho et al., 2017	RNA-seq	ERS1327218
GBR87*	Canterbury, Kent	UK	Europe	5/23/2014	Wheat	Oakley	Bueno-Sancho et al., 2017	RNA-seq	ERS1327219
GBR88*	unknown	UK	Europe	5/16/2014	Wheat	Kranich	Bueno-Sancho et al., 2017	RNA-seq	ERS1327220
GBR89*	Canterbury, Kent	UK	Europe	5/23/2014	Wheat	Warrior	Bueno-Sancho et al., 2017	RNA-seq	ERS1327221

ID	Location	Country	Continent	Date Collected	Host	Host Variety	Source	Data Type	Accession Number
GBR9*	Terrington St Clement, Norfolk	UK	Europe	2013	Wheat	Solstice	Hubbard et al., 2015	RNA-seq	SRX684276
GBR90*	Caythorpe, Lincolnshire	UK	Europe	5/6/2014	Wheat	Oakley	Bueno-Sancho et al., 2017	RNA-seq	ERS1327222
GBR91*	Canterbury, Kent	UK	Europe	5/23/2014	Wheat	Relay	Bueno-Sancho et al., 2017	RNA-seq	ERS1327223
GBR92*	Fulbourn, Cambridgeshire	UK	Europe	May 2014	Wheat	Gallant	Bueno-Sancho et al., 2017	RNA-seq	ERS1327224
GBR93	Sutton Scotney, Hampshire	UK	Europe	6/2/2014	Wheat	KWS Sterling	Bueno-Sancho et al., 2017	RNA-seq	ERS1327225
GBR94*	Morley, Norfolk	UK	Europe	May 2014	Wheat	Solstice	Bueno-Sancho et al., 2017	RNA-seq	ERS1327226
GBR95	Headley Hall, North Yorkshire	UK	Europe	6/2/2014	Wheat	Relay	Bueno-Sancho et al., 2017	RNA-seq	ERS1327227
GBR97	Morley, Norfolk	UK	Europe	May 2014	Wheat	Oakley	Bueno-Sancho et al., 2017	RNA-seq	ERS1327229
GBR98*	Morley, Norfolk	UK	Europe	2014	Wheat	Cordiale	Bueno-Sancho et al., 2017	RNA-seq	ERS1327230
GBR99*	Cascob, Powys (Wales)	UK	Europe	8/13/2014	Wheat	AC Barrie	Bueno-Sancho et al., 2017	RNA-seq	ERS1327231
HRV1*	Osisek	Croatia	Europe	5/21/2014	Wheat	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327119
HRV2*	unknown	Croatia	Europe	5/13/2014	Wheat	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327128
ID1*	Ririe, Idaho	USA	North America	6/9/2015	Wheat	Deloris	Radhakrishnan et al., 2019	RNA-seq	To be shared
ID2*	Rockland, Idaho	USA	North America	4/26/2016	Wheat	Bonneville	Radhakrishnan et al., 2019	RNA-seq	To be shared
IN1*	West Lafeyette, Indiana	USA	North America	5/23/2017	Wheat	Ag1331	CSU collection	RNA-seq	
IN2*	Lafayette, Indiana	USA	North America	5/17/2016	Wheat	DH13SRW02 4-182	Radhakrishnan et al., 2019	RNA-seq	To be shared
IN3*	Layfayette, Indiana	USA	North America	5/25/2017	Wheat	NC13142-33	Radhakrishnan et al., 2019	RNA-seq	To be shared
IN4*	Layfayette, Indiana	USA	North America	5/25/2017	Wheat	NC13142-35	Radhakrishnan et al., 2019	RNA-seq	To be shared
IN5*	Layfayette, Indiana	USA	North America	5/25/2017	Wheat	NC13142-36	Radhakrishnan et al., 2019	RNA-seq	To be shared
ITA1*	Ozzano, Bologna	Italy	Europe	5/21/2014	Wheat	Massari	Bueno-Sancho et al., 2017	RNA-seq	ERS1327159

ID	Location	Country	Continent	Date Collected	Host	Host Variety	Source	Data Type	Accession Number
ITA2*	Conselice	Italy	Europe	5/21/2014	Wheat	Irnerio	Bueno-Sancho et al., 2017	RNA-seq	ERS1327160
KS1*	Wichita, Kansas	USA	North America	4/25/2017	Wheat	2141	Radhakrishnan et al., 2019	RNA-seq	To be shared
KS2*	Wichita, Kansas	USA	North America	4/27/2017	Wheat	LCS Compass	Radhakrishnan et al., 2019	RNA-seq	To be shared
KS3*	Wichita, Kansas	USA	North America	4/22/2015	Wheat	Everest	Radhakrishnan et al., 2019	RNA-seq	To be shared
KY1*	Lexington, KY	USA	North America	5/17/2017	Wheat	unkown	This study	RNA-seq	
KY2*	Princeton, KY	USA	North America	6/2/2017	Wheat	unkown	This study	RNA-seq	
MI1*	Scottville, MI	USA	North America	6/2/2017	Wheat	unkown	This study	RNA-seq	
MI2*	Lansing, Michigan	USA	North America	5/23/2016	Wheat	K505hw14	Radhakrishnan et al., 2019	RNA-seq	To be shared
MT1*	Bozeman, Montana	USA	North America	6/1/2015	Wheat	Yellowstone	Radhakrishnan et al., 2019	RNA-seq	To be shared
MT2*	Montana	USA	North America	6/2/2015	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
MT3*	Kalispell, Montana	USA	North America	4/26/2016	Wheat	Decade	Radhakrishnan et al., 2019	RNA-seq	To be shared
NE1*	Blue Hills, NE	USA	North America	5/24/2017	Wheat	unknown	This study	RNA-seq	
NE2*	Box Butte, Nebraska	USA	North America	7/2/2015	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
NY1*	Penn Yan, NY	USA	North America	5/26/2017	Wheat	Erie (soft red winter)	This study	RNA-seq	
NY2*	Savannah, NY	USA	North America	6/7/2017	Wheat	unkown	This study	RNA-seq	
NY3*	Weedsport, New York	USA	North America	5/27/2016	Wheat	Seedway	Radhakrishnan et al., 2019	RNA-seq	To be shared
NZL1	Darfield	New Zealand	Oceania	November 2011	Wheat	Morph	Bueno-Sancho et al., 2017	RNA-seq	ERS1327108
NZL2*	-	New Zealand	Oceania	2012	Wheat	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327109
NZL3	Lincoln	New Zealand	Oceania	November 2012	Wheat	Sy Epson	Bueno-Sancho et al., 2017	RNA-seq	ERS1327107
NZL4*	-	New Zealand	Oceania	2006	Wheat	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327110
OK1*	Chickasha, Oklahoma	USA	North America	4/7/2017	Wheat	Ruby Lee	Radhakrishnan et al., 2019	RNA-seq	To be shared

ID	Location	Country	Continent	Date Collected	Host	Host Variety	Source	Data Type	Accession Number
OK2*	Altus, Oklahoma	USA	North America	4/11/2017	Wheat	Snowmass	Radhakrishnan et al., 2019	RNA-seq	To be shared
OK3*	Cimarron, Oklahoma	USA	North America	5/26/2015	Wheat	Byrd	Radhakrishnan et al., 2019	RNA-seq	To be shared
OR1*	Corvallis, Oregon	USA	North America	5/27/2015	Wheat	ORCF 101R	Radhakrishnan et al., 2019	RNA-seq	To be shared
PAK1*	Attarshisha	Pakistan	Asia	13/05/2014	Wheat	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327099
PAK2*	Abbottabad	Pakistan	Asia	16/05/2014	Wheat	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327096
PAK3*	Qalandar Abad	Pakistan	Asia	16/05/2014	Wheat	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327098
PAK4*	Attarshisha	Pakistan	Asia	13/05/2014	Wheat	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327100
PAK5*	Attarshisha	Pakistan	Asia	13/05/2014	Wheat	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327101
PAK6*	Abbottabad	Pakistan	Asia	16/05/2014	Wheat	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327097
POL1*	Kwidzyn	Poland	Europe	6/5/2014	Wheat	Arkadia	Bueno-Sancho et al., 2017	RNA-seq	ERS1327139
POL2*	Środa Wielko	Poland	Europe	6/6/2014	Wheat	Princeps	Bueno-Sancho et al., 2017	RNA-seq	ERS1327141
POL3*	Choryn	Poland	Europe	5/22/2014	Wheat	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327127
POL4*	Kwidzyn	Poland	Europe	6/5/2014	Wheat	Kobra	Bueno-Sancho et al., 2017	RNA-seq	ERS1327138
POL5*	Środa Wielko	Poland	Europe	6/6/2014	Wheat	Legenda	Bueno-Sancho et al., 2017	RNA-seq	ERS1327140
POL6*	Jarosławiec	Poland	Europe	6/15/2015	Wheat	KWS Magic	Radhakrishnan et al., 2019	RNA-seq	To be shared
PST100*		USA	North America	4/12/2017	Wheat	Ripper	This study	RNA-seq	
ROU1*	unknown	Romania	Europe	5/24/2014	Wheat	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327179
SD1*	Gregory, South Dakota	USA	North America	6/10/2015	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
SD2*	Tripp, South Dakota	USA	North America	6/29/2015	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
SD3*	Clarkton, South Dakota	USA	North America	7/2/2015	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
SRB1*	unknown	Serbia	Europe	5/24/2014	Wheat	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327181
SVK1*	Detva	Slovakia	Europe	5/26/2014	Wheat	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327172

ID	Location	Country	Continent	Date Collected	Host	Host Variety	Source	Data Type	Accession Number
SVK2*	Detva	Slovakia	Europe	5/26/2014	Wheat	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327173
SWE1*	Österlen	Sweden	Europe	5/7/2015	Wheat	Primus	Radhakrishnan et al., 2019	RNA-seq	To be shared
SWE2*	Sanby	Sweden	Europe	5/30/2017	Wheat	Linz	Radhakrishnan et al., 2019	RNA-seq	To be shared
SWE3*	Svalöv	Sweden	Europe	6/15/2017	Wheat	Kranich	Radhakrishnan et al., 2019	RNA-seq	To be shared
SWE4	Svalöv	Sweden	Europe	6/15/2017	Wheat	555012	Radhakrishnan et al., 2019	RNA-seq	To be shared
SWE5*	Svalōv	Sweden	Europe	5/26/2016	Wheat	Hereford	Radhakrishnan et al., 2019	RNA-seq	To be shared
SWE6*	Svalōv	Sweden	Europe	5/26/2016	Wheat	Linus	Radhakrishnan et al., 2019	RNA-seq	To be shared
SWE7*	Sanby	Sweden	Europe	5/30/2017	Wheat	Linz	Radhakrishnan et al., 2019	RNA-seq	To be shared
SWE8*	Svalöv	Sweden	Europe	6/2/2017	Wheat	Kranich	Radhakrishnan et al., 2019	RNA-seq	To be shared
SWE9*	Svalöv	Sweden	Europe	6/2/2017	Wheat	Norin	Radhakrishnan et al., 2019	RNA-seq	To be shared
TN1*	Tennessee	USA	North America	4/21/2017	Wheat	Beck's 128	This study	RNA-seq	
TUR1*	unknown	Turkey	Europe	5/24/2014	Wheat	unknown	Bueno-Sancho et al., 2017	RNA-seq	ERS1327180
TX1*	Hidalgo, Texas	USA	North America	3/9/2015	Wheat	Sisson	Radhakrishnan et al., 2019	RNA-seq	To be shared
VA1*	Warsaw, Virginia	USA	North America	4/21/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
WA1*	Walla Walla, Washington	USA	North America	6/24/2015	Wheat	Express	Radhakrishnan et al., 2019	RNA-seq	To be shared
WA2*	Walla Walla, Washington	USA	North America	6/13/2017	Wheat	Otto	Radhakrishnan et al., 2019	RNA-seq	To be shared
WA3*	Walla Walla, Washington	USA	North America	6/13/2017	Wheat	Artdeco	Radhakrishnan et al., 2019	RNA-seq	To be shared
WA4*	Edicott, Washington	USA	North America	6/11/2015	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
WA6*	Mt. Vernon, Washington	USA	North America	4/10/2015	Wheat	PS 279	Radhakrishnan et al., 2019	RNA-seq	To be shared
WA7*	Rearden, Washington	USA	North America	5/13/2016	Wheat	Ovation	Radhakrishnan et al., 2019	RNA-seq	To be shared
WA8*	Othello, Washington	USA	North America	4/20/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared

ID	Location	Country	Continent	Date Collected	Host	Host Variety	Source	Data Type	Accession Number
WA9*	Walla Walla, Washington	USA	North America	5/12/2016	Wheat	LCS Jet	Radhakrishnan et al., 2019	RNA-seq	To be shared
ZAF1*	Napier	South Africa	Africa	10/18/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared
ZAF2*	Napier	South Africa	Africa	10/18/2016	Wheat	unknown	Radhakrishnan et al., 2019	RNA-seq	To be shared

Legend: * Sample used in Chapter 3 after all filtering steps.

Appendix 2: Wheat GO Analysis – Ta_ECN_I

		Biological Process –	Ta_ECN_I			
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher
1	GO:0015979	Photosynthesis	813	76	2.04	< 1e-30
2	GO:0006091	Generation of precursor metabolites and energy	1415	62	3.55	< 1e-30
3	GO:0019684	Photosynthesis, light reaction	511	45	1.28	< 1e-30
4	GO:0009768	Photosynthesis, light harvesting in photosystem I	64	19	0.16	< 1e-30
5	GO:0009765	Photosynthesis, light harvesting	105	21	0.26	< 1e-30
6	GO:0019253	Reductive pentose-phosphate cycle	41	14	0.1	5.30E-27
7	GO:0019685	Photosynthesis, dark reaction	42	14	0.11	7.90E-27
8	GO:0018298	Protein-chromophore linkage	164	19	0.41	1.80E-26
9	GO:0009416	Response to light stimulus	878	30	2.2	1.10E-25
10	GO:0009314	Response to radiation	988	30	2.48	3.20E-24
11	GO:0015977	Carbon fixation	61	14	0.15	3.20E-24
12	GO:0010207	Photosystem II assembly	168	17	0.42	9.70E-23
13	GO:0009628	Response to abiotic stimulus	1867	33	4.68	1.90E-19
14	GO:0051186	Cofactor metabolic process	1891	33	4.74	2.80E-19
15	GO:0035304	Regulation of protein dephosphorylation	131	13	0.33	1.60E-17
16	GO:0006090	Pyruvate metabolic process	576	20	1.44	2.30E-17
17	GO:0016053	Organic acid biosynthetic process	1597	29	4	2.30E-17
18	GO:0046394	Carboxylic acid biosynthetic process	1597	29	4	2.30E-17
19	GO:0035303	Regulation of dephosphorylation	137	13	0.34	3.00E-17
20	GO:0009773	Photosynthetic electron transport in photosystem I	73	11	0.18	4.50E-17

		Cellular Component –	Ta_ECN_I			
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher
1	GO:0009507	Chloroplast	3737	96	9.89	< 1e-30
2	GO:0009579	Thylakoid	1067	67	2.82	< 1e-30
3	GO:0009534	Chloroplast thylakoid	833	56	2.21	< 1e-30
4	GO:0031976	Plastid thylakoid	835	56	2.21	< 1e-30
5	GO:0044436	Thylakoid part	846	56	2.24	< 1e-30
6	GO:0044434	Chloroplast part	1977	69	5.23	< 1e-30
7	GO:0034357	Photosynthetic membrane	810	54	2.14	< 1e-30
8	GO:0044435	Plastid part	2020	69	5.35	< 1e-30
9	GO:0042651	Thylakoid membrane	768	52	2.03	< 1e-30
10	GO:0009536	Plastid	8609	104	22.79	< 1e-30
11	GO:0009535	Chloroplast thylakoid membrane	697	50	1.84	< 1e-30
12	GO:0055035	Plastid thylakoid membrane	699	50	1.85	< 1e-30
13	GO:0009521	Photosystem	325	35	0.86	< 1e-30
14	GO:0009522	Photosystem I	151	29	0.4	< 1e-30
15	GO:0031984	Organelle subcompartment	2011	56	5.32	< 1e-30
16	GO:0009526	Plastid envelope	883	43	2.34	< 1e-30
17	GO:0009941	Chloroplast envelope	842	39	2.23	< 1e-30
18	GO:0010287	Plastoglobule	147	22	0.39	< 1e-30
19	GO:0044444	Cytoplasmic part	19525	111	51.68	< 1e-30
20	GO:0098796	Membrane protein complex	1280	40	3.39	< 1e-30

		Molecular Function –	Ta_ECN_I			
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher
1	GO:0031409	Pigment binding	64	19	0.13	< 1e-30
2	GO:0016168	Chlorophyll binding	160	23	0.31	< 1e-30
3	GO:0048037	Cofactor binding	3182	44	6.26	8.20E-27
4	GO:0046906	Tetrapyrrole binding	1489	24	2.93	1.10E-15
5	GO:0004332	Fructose-bisphosphate aldolase activity	18	6	0.04	9.00E-13
6	GO:0016491	Oxidoreductase activity	5041	35	9.92	8.90E-12
7	GO:0042132	Fructose 1,6-bisphosphate 1-phosphatase activity	14	5	0.03	5.20E-11
8	GO:0016830	Carbon-carbon lyase activity	353	11	0.69	1.20E-10
9	GO:0016832	Aldehyde-lyase activity	49	6	0.1	6.50E-10
10	GO:0050308	Sugar-phosphatase activity	25	5	0.05	1.40E-09
11	GO:0052852	Very-long-chain-(S)-2-hydroxy-acid oxidase activity	10	4	0.02	2.90E-09
12	GO:0052853	Long-chain-(S)-2-hydroxy-long-chain-acid oxidase activity	10	4	0.02	2.90E-09
13	GO:0052854	Medium-chain-(S)-2-hydroxy-acid oxidase activity	10	4	0.02	2.90E-09
14	GO:0008891	Glycolate oxidase activity	14	4	0.03	1.40E-08
15	GO:0003973	(S)-2-hydroxy-acid oxidase activity	16	4	0.03	2.50E-08
16	GO:0019203	Carbohydrate phosphatase activity	52	5	0.1	6.40E-08
17	GO:0043891	Glyceraldehyde-3-phosphate dehydrogenase (NAD(P)+) (phosphorylating) activity	21	4	0.04	8.20E-08
18	GO:0009055	Electron transfer activity	665	11	1.31	8.60E-08
19	GO:0016628	Oxidoreductase activity, acting on the CH-CH group of donors, NAD or NADP as acceptor	115	6	0.23	1.20E-07
20	GO:0051537	2 iron, 2 sulfur cluster binding	120	6	0.24	1.50E-07

Appendix 3: Wheat GO Analysis – Ta_ECN_II

	Biological Process – Ta_ECN_II								
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher			
1	GO:0015979	Photosynthesis	813	42	1.24	< 1e-30			
2	GO:0019684	Photosynthesis, light reaction	511	19	0.78	1.60E-21			
3	GO:0006091	Generation of precursor metabolites and energy	1415	24	2.15	2.70E-19			
4	GO:0009765	Photosynthesis, light harvesting	105	9	0.16	6.60E-14			
5	GO:0009069	Serine family amino acid metabolic process	253	11	0.39	1.70E-13			
6	GO:0015995	Chlorophyll biosynthetic process	150	9	0.23	1.70E-12			
7	GO:0019344	Cysteine biosynthetic process	153	9	0.23	2.10E-12			
8	GO:0009416	Response to light stimulus	878	15	1.34	3.50E-12			
9	GO:0006534	Cysteine metabolic process	174	9	0.26	6.60E-12			
10	GO:0009768	Photosynthesis, light harvesting in photosystem I	64	7	0.1	7.90E-12			
11	GO:0009314	Response to radiation	988	15	1.5	1.90E-11			
12	GO:0009070	Serine family amino acid biosynthetic process	197	9	0.3	2.00E-11			
13	GO:0006779	Porphyrin-containing compound biosynthetic process	201	9	0.31	2.40E-11			
14	GO:0035304	Regulation of protein dephosphorylation	131	8	0.2	2.80E-11			
15	GO:0015994	Chlorophyll metabolic process	204	9	0.31	2.80E-11			
16	GO:0035303	Regulation of dephosphorylation	137	8	0.21	3.90E-11			
17	GO:0019253	Reductive pentose-phosphate cycle	41	6	0.06	4.20E-11			
18	GO:0019685	Photosynthesis, dark reaction	42	6	0.06	4.90E-11			
19	GO:0033014	Tetrapyrrole biosynthetic process	226	9	0.34	6.90E-11			
20	GO:0046148	Pigment biosynthetic process	327	10	0.5	7.50E-11			

	Cellular Component – Ta_ECN_II									
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher				
1	GO:0009579	Thylakoid	1067	44	1.71	< 1e-30				
2	GO:0009534	Chloroplast thylakoid	833	38	1.34	< 1e-30				
3	GO:0031976	Plastid thylakoid	835	38	1.34	< 1e-30				
4	GO:0044436	Thylakoid part	846	38	1.36	< 1e-30				
5	GO:0034357	Photosynthetic membrane	810	37	1.3	< 1e-30				
6	GO:0044434	Chloroplast part	1977	46	3.18	< 1e-30				
7	GO:0044435	Plastid part	2020	46	3.24	< 1e-30				
8	GO:0009536	Plastid	8609	67	13.83	< 1e-30				
9	GO:0009507	Chloroplast	3737	53	6	< 1e-30				
10	GO:0042651	Thylakoid membrane	768	33	1.23	< 1e-30				
11	GO:0009535	Chloroplast thylakoid membrane	697	31	1.12	< 1e-30				
12	GO:0055035	Plastid thylakoid membrane	699	31	1.12	< 1e-30				
13	GO:0031984	Organelle subcompartment	2011	39	3.23	< 1e-30				
14	GO:0009521	Photosystem	325	20	0.52	1.90E-26				
15	GO:0044444	Cytoplasmic part	19525	71	31.36	6.00E-26				
16	GO:0005737	Cytoplasm	22168	71	35.61	5.00E-22				
17	GO:0009526	Plastid envelope	883	22	1.42	1.60E-20				
18	GO:0009522	Photosystem I	151	13	0.24	2.50E-19				
19	GO:0043231	Intracellular membrane-bounded organelle	24272	71	38.99	3.10E-19				
20	GO:0043227	Membrane-bounded organelle	24447	71	39.27	5.20E-19				

		Molecular Function – '	Ta_ECN_II			
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher
1	GO:0031409	Pigment binding	64	7	0.07	6.10E-13
2	GO:0048037	Cofactor binding	3182	20	3.39	3.00E-11
3	GO:0016491	Oxidoreductase activity	5041	23	5.37	3.60E-10
4	GO:0016168	Chlorophyll binding	160	7	0.17	4.20E-10
5	GO:0043891	Glyceraldehyde-3-phosphate dehydrogenase (NAD(P)+) (phosphorylating) activity	21	4	0.02	6.80E-09
6	GO:0016628	Oxidoreductase activity, acting on the CH-CH group of donors, NAD or NADP as acceptor	115	5	0.12	1.60E-07
7	GO:0042132	Fructose 1,6-bisphosphate 1-phosphatase activity	14	3	0.01	4.10E-07
8	GO:0050308	Sugar-phosphatase activity	25	3	0.03	2.60E-06
9	GO:0016627	Oxidoreductase activity, acting on the CH-CH group of donors	214	5	0.23	3.40E-06
10	GO:0042578	Phosphoric ester hydrolase activity	917	8	0.98	5.50E-06
11	GO:0045550	Geranylgeranyl reductase activity	5	2	0.01	1.10E-05
12	GO:0019203	Carbohydrate phosphatase activity	52	3	0.06	2.40E-05
13	GO:0046906	Tetrapyrrole binding	1489	9	1.59	2.50E-05
14	GO:0016620	Oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor	162	4	0.17	2.80E-05
15	GO:0004324	Ferredoxin-NADP+ reductase activity	9	2	0.01	4.00E-05
16	GO:0052852	Very-long-chain-(S)-2-hydroxy-acid oxidase activity	10	2	0.01	5.00E-05
17	GO:0052853	Long-chain-(S)-2-hydroxy-long-chain-acid oxidase activity	10	2	0.01	5.00E-05
18	GO:0052854	Medium-chain-(S)-2-hydroxy-acid oxidase activity	10	2	0.01	5.00E-05
19	GO:0051287	NAD binding	190	4	0.2	5.20E-05
20	GO:0004096	Catalase activity	11	2	0.01	6.10E-05

Appendix 4: Wheat GO Analysis – Ta_ECN_III

	Biological Process – Ta_ECN_III								
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher			
1	GO:0015979	Photosynthesis	813	10	0.48	1.50E-11			
2	GO:0010207	Photosystem II assembly	168	6	0.1	5.60E-10			
3	GO:0006091	Generation of precursor metabolites and energy	1415	10	0.83	3.20E-09			
4	GO:0035304	Regulation of protein dephosphorylation	131	5	0.08	1.30E-08			
5	GO:0019684	Photosynthesis, light reaction	511	7	0.3	1.30E-08			
6	GO:0035303	Regulation of dephosphorylation	137	5	0.08	1.60E-08			
7	GO:0000023	Maltose metabolic process	118	4	0.07	6.70E-07			
8	GO:0019220	Regulation of phosphate metabolic process	300	5	0.18	7.80E-07			
9	GO:0051174	Regulation of phosphorus metabolic process	300	5	0.18	7.80E-07			
10	GO:0031399	Regulation of protein modification process	307	5	0.18	8.80E-07			
11	GO:0034622	Cellular protein-containing complex assembly	1531	8	0.9	1.70E-06			
12	GO:0065003	Protein-containing complex assembly	1591	8	0.93	2.20E-06			
13	GO:0043933	Protein-containing complex subunit organization	1686	8	0.99	3.40E-06			
14	GO:0009902	Chloroplast relocation	182	4	0.11	3.80E-06			
15	GO:0019750	Chloroplast localization	182	4	0.11	3.80E-06			
16	GO:0051644	Plastid localization	182	4	0.11	3.80E-06			
17	GO:0051667	Establishment of plastid localization	182	4	0.11	3.80E-06			
18	GO:0019252	Starch biosynthetic process	190	4	0.11	4.50E-06			
19	GO:0032790	Ribosome disassembly	6	2	0	4.90E-06			
20	GO:0016051	Carbohydrate biosynthetic process	828	6	0.48	6.70E-06			

		Cellular Component – '	Ta_ECN_III	[
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher
1	GO:0044434	Chloroplast part	1977	22	1.25	5.30E-25
2	GO:0044435	Plastid part	2020	22	1.28	8.50E-25
3	GO:0009579	Thylakoid	1067	19	0.68	9.00E-25
4	GO:0009507	Chloroplast	3737	22	2.37	5.40E-19
5	GO:0009535	Chloroplast thylakoid membrane	697	14	0.44	1.70E-18
6	GO:0055035	Plastid thylakoid membrane	699	14	0.44	1.80E-18
7	GO:0042651	Thylakoid membrane	768	14	0.49	6.50E-18
8	GO:0034357	Photosynthetic membrane	810	14	0.51	1.40E-17
9	GO:0009534	Chloroplast thylakoid	833	14	0.53	2.00E-17
10	GO:0031976	Plastid thylakoid	835	14	0.53	2.10E-17
11	GO:0044436	Thylakoid part	846	14	0.54	2.50E-17
12	GO:0009536	Plastid	8609	26	5.45	8.20E-17
13	GO:0044446	Intracellular organelle part	8349	24	5.29	3.80E-14
14	GO:0044422	Organelle part	8378	24	5.31	4.10E-14
15	GO:0031984	Organelle subcompartment	2011	14	1.27	3.40E-12
16	GO:0044444	Cytoplasmic part	19525	28	12.37	1.10E-10
17	GO:0005737	Cytoplasm	22168	28	14.04	4.00E-09
18	GO:0009941	Chloroplast envelope	842	8	0.53	3.70E-08
19	GO:0043231	Intracellular membrane-bounded organelle	24272	28	15.38	5.10E-08
20	GO:0009526	Plastid envelope	883	8	0.56	5.40E-08

	Molecular Function – Ta_ECN_III								
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher			
1	GO:0004324	Ferredoxin-NADP+ reductase activity	9	2	0	5.70E-06			
2	GO:0016731	Oxidoreductase activity, acting on iron- sulfur proteins as donors, NAD or NADP as acceptor	11	2	0	8.80E-06			
3	GO:0004849	Uridine kinase activity	18	2	0.01	2.40E-05			
4	GO:0016730	Oxidoreductase activity, acting on iron- sulfur proteins as donors	18	2	0.01	2.40E-05			
5	GO:0019206	Nucleoside kinase activity	27	2	0.01	5.60E-05			
6	GO:0016655	Oxidoreductase activity, acting on NAD(P)H, quinone or similar compound as acceptor	201	3	0.08	7.50E-05			
7	GO:0016651	Oxidoreductase activity, acting on NAD(P)H	342	3	0.14	0.00036			
8	GO:0019205	Nucleobase-containing compound kinase activity	102	2	0.04	0.0008			
9	GO:0048038	Quinone binding	102	2	0.04	0.0008			
10	GO:0008483	Transaminase activity	144	2	0.06	0.00159			
11	GO:0016769	Transferase activity, transferring nitrogenous groups	144	2	0.06	0.00159			
12	GO:0003746	Translation elongation factor activity	150	2	0.06	0.00172			
13	GO:0051741	2-methyl-6-phytyl-1,4-benzoquinone methyltransferase activity	7	1	0	0.00287			
14	GO:0016491	Oxidoreductase activity	5041	7	2.07	0.00288			
15	GO:0015114	Phosphate ion transmembrane transporter activity	8	1	0	0.00328			
16	GO:0030170	Pyridoxal phosphate binding	283	2	0.12	0.00595			
17	GO:0070279	Vitamin B6 binding	283	2	0.12	0.00595			
18	GO:0004619	Phosphoglycerate mutase activity	15	1	0.01	0.00613			
19	GO:0048037	Cofactor binding	3182	5	1.3	0.00799			
20	GO:0045158	Electron transporter, transferring electrons within cytochrome b6/f complex of photosystem II activity	22	1	0.01	0.00898			

Appendix 5: Wheat GO Analysis – Ta_ECN_V

Biological Process – Ta_ECN_V									
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher			
1	GO:0006412	Translation	2294	11	0.59	1.10E-14			
2	GO:0043043	Peptide biosynthetic process	2305	11	0.59	1.10E-14			
3	GO:0043604	Amide biosynthetic process	2439	11	0.63	2.10E-14			
4	GO:0006518	Peptide metabolic process	2668	11	0.69	5.60E-14			
5	GO:0043603	Cellular amide metabolic process	2958	11	0.76	1.70E-13			
6	GO:1901566	Organonitrogen compound biosynthetic process	4688	11	1.21	2.80E-11			
7	GO:0034645	Cellular macromolecule biosynthetic process	9336	11	2.4	5.40E-08			
8	GO:0009059	Macromolecule biosynthetic process	9513	11	2.45	6.70E-08			
9	GO:0044271	Cellular nitrogen compound biosynthetic process	9573	11	2.47	7.20E-08			
10	GO:0010467	Gene expression	9704	11	2.5	8.30E-08			
11	GO:0002181	Cytoplasmic translation	222	4	0.06	2.30E-07			
12	GO:0044267	Cellular protein metabolic process	11875	11	3.06	7.70E-07			
13	GO:0042254	Ribosome biogenesis	851	5	0.22	1.30E-06			
14	GO:0044249	Cellular biosynthetic process	12683	11	3.27	1.60E-06			
15	GO:0019538	Protein metabolic process	13401	11	3.45	2.90E-06			
16	GO:1901576	Organic substance biosynthetic process	13435	11	3.46	3.00E-06			
17	GO:0022613	Ribonucleoprotein complex biogenesis	1091	5	0.28	4.40E-06			
18	GO:0009058	Biosynthetic process	14157	11	3.65	5.30E-06			
19	GO:0034641	Cellular nitrogen compound metabolic process	14791	11	3.81	8.60E-06			
20	GO:1901564	Organonitrogen compound metabolic process	16308	11	4.2	2.50E-05			
	Cellular Component – Ta_ECN_V								
----	-------------------------------	--	-----------	-------------	----------	----------------	--	--	--
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher			
1	GO:0022626	Cytosolic ribosome	627	11	0.16	4.30E-21			
2	GO:0044445	Cytosolic part	728	11	0.18	2.20E-20			
3	GO:0044391	Ribosomal subunit	791	11	0.2	5.60E-20			
4	GO:0005840	Ribosome	1241	11	0.31	8.20E-18			
5	GO:1990904	Ribonucleoprotein complex	2116	11	0.53	3.00E-15			
6	GO:0005829	Cytosol	2695	11	0.67	4.20E-14			
7	GO:0043228	Non-membrane-bounded organelle	3549	11	0.88	8.80E-13			
8	GO:0043232	Intracellular non-membrane-bounded organelle	3549	11	0.88	8.80E-13			
9	GO:0022625	Cytosolic large ribosomal subunit	387	6	0.1	1.90E-10			
10	GO:0032991	Protein-containing complex	6582	11	1.64	7.90E-10			
11	GO:0022627	Cytosolic small ribosomal subunit	201	5	0.05	8.40E-10			
12	GO:0015934	Large ribosomal subunit	496	6	0.12	8.50E-10			
13	GO:0015935	Small ribosomal subunit	293	5	0.07	5.50E-09			
14	GO:0044446	Intracellular organelle part	8349	11	2.08	1.10E-08			
15	GO:0044422	Organelle part	8378	11	2.09	1.10E-08			
16	GO:0044444	Cytoplasmic part	19525	11	4.86	0.00012			
17	GO:0005737	Cytoplasm	22168	11	5.52	0.0005			
18	GO:0043229	Intracellular organelle	25553	11	6.36	0.00241			
19	GO:0043226	Organelle	25579	11	6.37	0.00244			
20	GO:0044424	Intracellular part	28808	11	7.17	0.00901			

	Molecular Function – Ta_ECN_V								
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher			
1	GO:0003735	Structural constituent of ribosome	1223	11	0.28	2.40E-18			
2	GO:0005198	Structural molecule activity	1421	11	0.32	1.20E-17			
3	GO:0003723	RNA binding	2699	4	0.61	0.0023			
4	GO:0003676	Nucleic acid binding	11391	4	2.57	0.2424			
5	GO:1901363	Heterocyclic compound binding	23868	4	5.38	0.8723			
6	GO:0097159	Organic cyclic compound binding	23870	4	5.38	0.8724			
7	GO:0005488	Binding	35771	4	8.07	0.9981			
8	GO:0003674	Molecular_function	48782	11	11	1			
9	GO:0000014	Single-stranded DNA endodeoxyribonuclease activity	12	0	0	1			
10	GO:0000030	Mannosyltransferase activity	75	0	0.02	1			
11	GO:0000049	tRNA binding	60	0	0.01	1			
12	GO:0000062	Fatty-acyl-CoA binding	32	0	0.01	1			
13	GO:0000104	Succinate dehydrogenase activity	8	0	0	1			
14	GO:0000107	Imidazoleglycerol-phosphate synthase activity	5	0	0	1			
15	GO:0000149	SNARE binding	126	0	0.03	1			
16	GO:0000150	Recombinase activity	26	0	0.01	1			
17	GO:0000155	Phosphorelay sensor kinase activity	59	0	0.01	1			
18	GO:0000156	Phosphorelay response regulator activity	11	0	0	1			
19	GO:0000166	Nucleotide binding	12967	0	2.92	1			
20	GO:0000171	Ribonuclease MRP activity	6	0	0	1			

Appendix 6: Wheat GO Analysis – Ta_ECN_VI

	Biological Process – Ta_ECN_VI								
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher			
1	GO:0019288	Isopentenyl diphosphate biosynthetic process, methylerythritol 4-phosphate pathway	264	4	0.03	7.10E-09			
2	GO:0009240	Isopentenyl diphosphate biosynthetic process	278	4	0.03	8.70E-09			
3	GO:0046490	Isopentenyl diphosphate metabolic process	278	4	0.03	8.70E-09			
4	GO:0019682	Glyceraldehyde-3-phosphate metabolic process	329	4	0.04	1.70E-08			
5	GO:0006081	Cellular aldehyde metabolic process	458	4	0.05	6.50E-08			
6	GO:0006090	Pyruvate metabolic process	576	4	0.07	1.60E-07			
7	GO:0008654	Phospholipid biosynthetic process	583	4	0.07	1.70E-07			
8	GO:0008299	Isoprenoid biosynthetic process	587	4	0.07	1.70E-07			
9	GO:0006720	Isoprenoid metabolic process	666	4	0.08	2.90E-07			
10	GO:0006644	Phospholipid metabolic process	798	4	0.09	6.00E-07			
11	GO:0008610	Lipid biosynthetic process	1504	4	0.18	7.40E-06			
12	GO:0090407	Organophosphate biosynthetic process	1507	4	0.18	7.50E-06			
13	GO:0044255	Cellular lipid metabolic process	1877	4	0.22	1.80E-05			
14	GO:0032787	Monocarboxylic acid metabolic process	1996	4	0.23	2.30E-05			
15	GO:0019637	Organophosphate metabolic process	2106	4	0.25	2.80E-05			
16	GO:0006412	Translation	2294	4	0.27	4.00E-05			
17	GO:0043043	Peptide biosynthetic process	2305	4	0.27	4.10E-05			
18	GO:1901135	Carbohydrate derivative metabolic process	2365	4	0.28	4.50E-05			
19	GO:0043604	Amide biosynthetic process	2439	4	0.29	5.10E-05			
20	GO:0006629	Lipid metabolic process	2471	4	0.29	5.30E-05			

	Cellular Component – Ta_ECN_VI								
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher			
1	GO:0009536	Plastid	8609	10	1.95	7.80E-08			
2	GO:0019013	Viral nucleocapsid	185	3	0.04	8.50E-06			
3	GO:0019028	Viral capsid	191	3	0.04	9.30E-06			
4	GO:0019012	Virion	207	3	0.05	1.20E-05			
5	GO:0044423	Virion part	207	3	0.05	1.20E-05			
6	GO:0009941	Chloroplast envelope	842	4	0.19	2.50E-05			
7	GO:0009526	Plastid envelope	883	4	0.2	3.00E-05			
8	GO:0005840	Ribosome	1241	4	0.28	0.00011			
9	GO:0044444	Cytoplasmic part	19525	10	4.42	0.00028			
10	GO:0031967	Organelle envelope	1598	4	0.36	0.0003			
11	GO:0031975	Envelope	1603	4	0.36	0.0003			
12	GO:0044434	Chloroplast part	1977	4	0.45	0.00067			
13	GO:0044435	Plastid part	2020	4	0.46	0.00073			
14	GO:0009507	Chloroplast	3737	5	0.85	0.00076			
15	GO:1990904	Ribonucleoprotein complex	2116	4	0.48	0.00087			
16	GO:0005737	Cytoplasm	22168	10	5.02	0.00101			
17	GO:0043231	Intracellular membrane-bounded organelle	24272	10	5.49	0.00249			
18	GO:0043227	Membrane-bounded organelle	24447	10	5.53	0.00268			
19	GO:0043229	Intracellular organelle	25553	10	5.78	0.00417			
20	GO:0043226	Organelle	25579	10	5.79	0.00421			

	Molecular Function – Ta_ECN_VI								
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher			
1	GO:0033926	Glycopeptide alpha-N- acetylgalactosaminidase activity	18	2	0	5.80E-06			
2	GO:0140103	Catalytic activity, acting on a glycoprotein	35	2	0.01	2.20E-05			
3	GO:0003735	Structural constituent of ribosome	1223	4	0.25	7.30E-05			
4	GO:0005198	Structural molecule activity	1421	4	0.29	0.00013			
5	GO:0019843	rRNA binding	293	2	0.06	0.00157			
6	GO:0051920	Peroxiredoxin activity	15	1	0	0.00307			
7	GO:0003676	Nucleic acid binding	11391	6	2.34	0.01404			
8	GO:0004553	Hydrolase activity, hydrolyzing O-glycosyl compounds	1145	2	0.23	0.02186			
9	GO:0016798	Hydrolase activity, acting on glycosyl bonds	1314	2	0.27	0.02826			
10	GO:0004601	Peroxidase activity	425	1	0.09	0.08379			
11	GO:0016684	Oxidoreductase activity, acting on peroxide as acceptor	432	1	0.09	0.08512			
12	GO:0016209	Antioxidant activity	483	1	0.1	0.09472			
13	GO:0003723	RNA binding	2699	2	0.55	0.1025			
14	GO:0003700	DNA-binding transcription factor activity	1801	1	0.37	0.31355			
15	GO:0140110	Transcription regulator activity	1948	1	0.4	0.33473			
16	GO:1901363	Heterocyclic compound binding	23868	6	4.89	0.35085			
17	GO:0097159	Organic cyclic compound binding	23870	6	4.89	0.35095			
18	GO:0000166	Nucleotide binding	12967	3	2.66	0.52134			
19	GO:1901265	Nucleoside phosphate binding	12967	3	2.66	0.52134			
20	GO:0036094	Small molecule binding	13505	3	2.77	0.55321			

Appendix 7: Wheat GO Analysis – Ta_ECN_VIII

	Biological Process – Ta_ECN_VIII								
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher			
1	GO:0019253	Reductive pentose-phosphate cycle	41	3	0.01	2.90E-08			
2	GO:0019685	Photosynthesis, dark reaction	42	3	0.01	3.10E-08			
3	GO:0015977	Carbon fixation	61	3	0.01	9.70E-08			
4	GO:0019464	Glycine decarboxylation via glycine cleavage system	8	2	0	6.40E-07			
5	GO:0009853	Photorespiration	130	3	0.02	9.60E-07			
6	GO:0043094	Cellular metabolic compound salvage	232	3	0.04	5.50E-06			
7	GO:0015976	Carbon utilization	23	2	0	5.80E-06			
8	GO:0006546	Glycine catabolic process	36	2	0.01	1.40E-05			
9	GO:0042135	Neurotransmitter catabolic process	38	2	0.01	1.60E-05			
10	GO:0009071	Serine family amino acid catabolic process	41	2	0.01	1.90E-05			
11	GO:0006544	Glycine metabolic process	55	2	0.01	3.40E-05			
12	GO:0042133	Neurotransmitter metabolic process	75	2	0.01	6.40E-05			
13	GO:0001505	Regulation of neurotransmitter levels	77	2	0.01	6.70E-05			
14	GO:0015979	Photosynthesis	813	3	0.13	0.00023			
15	GO:0016051	Carbohydrate biosynthetic process	828	3	0.14	0.00024			
16	GO:1901606	Alpha-amino acid catabolic process	166	2	0.03	0.00031			
17	GO:0009063	Cellular amino acid catabolic process	176	2	0.03	0.00035			
18	GO:0009069	Serine family amino acid metabolic process	253	2	0.04	0.00072			
19	GO:0016054	Organic acid catabolic process	332	2	0.05	0.00123			
20	GO:0046395	Carboxylic acid catabolic process	332	2	0.05	0.00123			

	Cellular Component – Ta_ECN_VIII								
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher			
1	GO:0005960	Glycine cleavage complex	6	2	0	3.20E-07			
2	GO:0009507	Chloroplast	3737	5	0.59	7.80E-05			
3	GO:1990204	Oxidoreductase complex	258	2	0.04	0.0007			
4	GO:0044444	Cytoplasmic part	19525	7	3.09	0.0033			
5	GO:0009536	Plastid	8609	5	1.36	0.0041			
6	GO:0009570	Chloroplast stroma	838	2	0.13	0.0071			
7	GO:0009532	Plastid stroma	874	2	0.14	0.0077			
8	GO:0005737	Cytoplasm	22168	7	3.51	0.008			
9	GO:0043231	Intracellular membrane-bounded organelle	24272	7	3.84	0.0151			
10	GO:0043227	Membrane-bounded organelle	24447	7	3.87	0.0158			
11	GO:0043229	Intracellular organelle	25553	7	4.05	0.0216			
12	GO:0043226	Organelle	25579	7	4.05	0.0217			
13	GO:0044434	Chloroplast part	1977	2	0.31	0.0361			
14	GO:1902494	Catalytic complex	1980	2	0.31	0.0362			
15	GO:0044435	Plastid part	2020	2	0.32	0.0376			
16	GO:0044424	Intracellular part	28808	7	4.56	0.0499			
17	GO:0005622	Intracellular	29512	7	4.67	0.0591			
18	GO:0044464	Cell part	32576	7	5.16	0.1181			
19	GO:0005623	Cell	32702	7	5.18	0.1213			
20	GO:0032991	Protein-containing complex	6582	2	1.04	0.2804			

	Molecular Function – Ta_ECN_VIII								
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher			
1	GO:0016984	Ribulose-bisphosphate carboxylase activity	26	3	0	1.30E-09			
2	GO:0016829	Lyase activity	1039	5	0.11	4.30E-09			
3	GO:0016831	Carboxy-lyase activity	263	3	0.03	1.50E-06			
4	GO:0016830	Carbon-carbon lyase activity	353	3	0.04	3.70E-06			
5	GO:0004089	Carbonate dehydratase activity	40	2	0	6.50E-06			
6	GO:0004497	Monooxygenase activity	1110	3	0.11	0.00011			
7	GO:0016836	Hydro-lyase activity	228	2	0.02	0.00022			
8	GO:0016835	Carbon-oxygen lyase activity	390	2	0.04	0.00063			
9	GO:0016491	Oxidoreductase activity	5041	3	0.52	0.00939			
10	GO:0008270	Zinc ion binding	4250	2	0.44	0.06351			
11	GO:0003824	Catalytic activity	29558	5	3.03	0.08166			
12	GO:0046914	Transition metal ion binding	6136	2	0.63	0.12203			
13	GO:0046872	Metal ion binding	10274	2	1.05	0.28458			
14	GO:0043169	Cation binding	10327	2	1.06	0.28683			
15	GO:0043167	Ion binding	20930	2	2.15	0.71138			
16	GO:0005488	Binding	35771	2	3.67	0.9801			
17	GO:0003674	Molecular_function	48782	5	5	1			
18	GO:0000014	Single-stranded DNA endodeoxyribonuclease activity	12	0	0	1			
19	GO:000030	Mannosyltransferase activity	75	0	0.01	1			
20	GO:0000049	tRNA binding	60	0	0.01	1			

Appendix 8: Wheat GO Analysis – Ta_ECN_IX

	Biological Process – Ta_ECN_IX								
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher			
1	GO:0019344	Cysteine biosynthetic process	153	3	0.02	4.50E-07			
2	GO:0006534	Cysteine metabolic process	174	3	0.02	6.60E-07			
3	GO:0009070	Serine family amino acid biosynthetic process	197	3	0.02	9.60E-07			
4	GO:0000097	Sulfur amino acid biosynthetic process	246	3	0.03	1.90E-06			
5	GO:0009069	Serine family amino acid metabolic process	253	3	0.03	2.00E-06			
6	GO:0019288	Isopentenyl diphosphate biosynthetic process, methylerythritol 4-phosphate pathway	264	3	0.03	2.30E-06			
7	GO:0009240	Isopentenyl diphosphate biosynthetic process	278	3	0.03	2.70E-06			
8	GO:0046490	Isopentenyl diphosphate metabolic process	278	3	0.03	2.70E-06			
9	GO:0000096	Sulfur amino acid metabolic process	279	3	0.03	2.70E-06			
10	GO:0019682	Glyceraldehyde-3-phosphate metabolic process	329	3	0.04	4.50E-06			
11	GO:0044272	Sulfur compound biosynthetic process	432	3	0.05	1.00E-05			
12	GO:0006081	Cellular aldehyde metabolic process	458	3	0.05	1.20E-05			
13	GO:1901566	Organonitrogen compound biosynthetic process	4688	5	0.55	1.60E-05			
14	GO:1901607	Alpha-amino acid biosynthetic process	548	3	0.06	2.10E-05			
15	GO:0006090	Pyruvate metabolic process	576	3	0.07	2.40E-05			
16	GO:0008654	Phospholipid biosynthetic process	583	3	0.07	2.50E-05			
17	GO:0008299	Isoprenoid biosynthetic process	587	3	0.07	2.50E-05			
18	GO:0008652	Cellular amino acid biosynthetic process	623	3	0.07	3.00E-05			
19	GO:0006720	Isoprenoid metabolic process	666	3	0.08	3.70E-05			
20	GO:0006412	Translation	2294	4	0.27	4.00E-05			

	Cellular Component – Ta_ECN_IX								
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher			
1	GO:0000311	Plastid large ribosomal subunit	6	2	0	3.20E-07			
2	GO:0009547	Plastid ribosome	11	2	0	1.20E-06			
3	GO:0009536	Plastid	8609	7	1.36	1.10E-05			
4	GO:0005840	Ribosome	1241	4	0.2	2.00E-05			
5	GO:0015934	Large ribosomal subunit	496	3	0.08	4.80E-05			
6	GO:0000315	Organellar large ribosomal subunit	76	2	0.01	6.10E-05			
7	GO:0022626	Cytosolic ribosome	627	3	0.1	9.50E-05			
8	GO:0044445	Cytosolic part	728	3	0.12	0.00015			
9	GO:0000313	Organellar ribosome	119	2	0.02	0.00015			
10	GO:1990904	Ribonucleoprotein complex	2116	4	0.34	0.00016			
11	GO:0044391	Ribosomal subunit	791	3	0.13	0.00019			
12	GO:0009532	Plastid stroma	874	3	0.14	0.00025			
13	GO:0019013	Viral nucleocapsid	185	2	0.03	0.00036			
14	GO:0019028	Viral capsid	191	2	0.03	0.00038			
15	GO:0019012	Virion	207	2	0.03	0.00045			
16	GO:0044423	Virion part	207	2	0.03	0.00045			
17	GO:0043228	Non-membrane-bounded organelle	3549	4	0.56	0.00119			
18	GO:0043232	Intracellular non-membrane-bounded organelle	3549	4	0.56	0.00119			
19	GO:0044435	Plastid part	2020	3	0.32	0.0029			
20	GO:0044444	Cytoplasmic part	19525	7	3.09	0.00328			

	Molecular Function – Ta_ECN_IX								
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher			
1	GO:0003735	Structural constituent of ribosome	1223	4	0.18	1.30E-05			
2	GO:0005198	Structural molecule activity	1421	4	0.2	2.30E-05			
3	GO:0016851	Magnesium chelatase activity	7	1	0	0.001			
4	GO:0051002	Ligase activity, forming nitrogen-metal bonds	7	1	0	0.001			
5	GO:0051003	Ligase activity, forming nitrogen-metal bonds, forming coordination complexes	7	1	0	0.001			
6	GO:0003723	RNA binding	2699	3	0.39	0.005			
7	GO:0003676	Nucleic acid binding	11391	5	1.63	0.0095			
8	GO:0019843	rRNA binding	293	1	0.04	0.0413			
9	GO:1901363	Heterocyclic compound binding	23868	6	3.42	0.0557			
10	GO:0097159	Organic cyclic compound binding	23870	6	3.43	0.0558			
11	GO:0016874	Ligase activity	1407	1	0.2	0.1853			
12	GO:0000166	Nucleotide binding	12967	3	1.86	0.2771			
13	GO:1901265	Nucleoside phosphate binding	12967	3	1.86	0.2771			
14	GO:0036094	Small molecule binding	13505	3	1.94	0.3011			
15	GO:0005488	Binding	35771	6	5.13	0.4042			
16	GO:0005524	ATP binding	8472	1	1.22	0.737			
17	GO:0008144	Drug binding	8905	1	1.28	0.7561			
18	GO:0035639	Purine ribonucleoside triphosphate binding	9051	1	1.3	0.7623			
19	GO:0032559	Adenyl ribonucleotide binding	10516	1	1.51	0.8173			
20	GO:0030554	Adenyl nucleotide binding	10522	1	1.51	0.8175			

Appendix 9: Wheat GO Analysis – Ta_ECN_X

	Biological Process – Ta_ECN_X								
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher			
1	GO:0006412	Translation	2294	3	0.16	0.00015			
2	GO:0043043	Peptide biosynthetic process	2305	3	0.16	0.00016			
3	GO:0043604	Amide biosynthetic process	2439	3	0.17	0.00019			
4	GO:0006518	Peptide metabolic process	2668	3	0.19	0.00024			
5	GO:0043603	Cellular amide metabolic process	2958	3	0.21	0.00033			
6	GO:1901566	Organonitrogen compound biosynthetic process	4688	3	0.33	0.00132			
7	GO:0034645	Cellular macromolecule biosynthetic process	9336	3	0.66	0.01045			
8	GO:0009059	Macromolecule biosynthetic process	9513	3	0.67	0.01105			
9	GO:0044271	Cellular nitrogen compound biosynthetic process	9573	3	0.67	0.01126			
10	GO:0010467	Gene expression	9704	3	0.68	0.01173			
11	GO:0044267	Cellular protein metabolic process	11875	3	0.83	0.0215			
12	GO:0044249	Cellular biosynthetic process	12683	3	0.89	0.0262			
13	GO:0019538	Protein metabolic process	13401	3	0.94	0.0309			
14	GO:1901576	Organic substance biosynthetic process	13435	3	0.94	0.03114			
15	GO:0009058	Biosynthetic process	14157	3	0.99	0.03643			
16	GO:0034641	Cellular nitrogen compound metabolic process	14791	3	1.04	0.04155			
17	GO:1901564	Organonitrogen compound metabolic process	16308	3	1.15	0.05569			
18	GO:0044260	Cellular macromolecule metabolic process	20000	3	1.41	0.10273			
19	GO:0043170	Macromolecule metabolic process	23321	3	1.64	0.16287			
20	GO:0006807	Nitrogen compound metabolic process	25126	3	1.77	0.20369			

	Cellular Component – Ta_ECN_X								
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher			
1	GO:0019013	Viral nucleocapsid	185	2	0.02	0.00017			
2	GO:0019028	Viral capsid	191	2	0.02	0.00018			
3	GO:0005840	Ribosome	1241	3	0.14	0.00021			
4	GO:0019012	Virion	207	2	0.02	0.00022			
5	GO:0044423	Virion part	207	2	0.02	0.00022			
6	GO:1990904	Ribonucleoprotein complex	2116	3	0.24	0.00102			
7	GO:0044391	Ribosomal subunit	791	2	0.09	0.00309			
8	GO:0043228	Non-membrane-bounded organelle	3549	3	0.4	0.00457			
9	GO:0043232	Intracellular non-membrane-bounded organelle	3549	3	0.4	0.00457			
10	GO:0044444	Cytoplasmic part	19525	5	2.21	0.01682			
11	GO:0032991	Protein-containing complex	6582	3	0.74	0.02608			
12	GO:0005737	Cytoplasm	22168	5	2.51	0.03173			
13	GO:0009536	Plastid	8609	3	0.97	0.05397			
14	GO:0043229	Intracellular organelle	25553	5	2.89	0.06457			
15	GO:0043226	Organelle	25579	5	2.89	0.0649			
16	GO:0044424	Intracellular part	28808	5	3.26	0.1176			
17	GO:0005622	Intracellular	29512	5	3.34	0.13269			
18	GO:0044464	Cell part	32576	5	3.69	0.21744			
19	GO:0005623	Cell	32702	5	3.7	0.22168			
20	GO:0044446	Intracellular organelle part	8349	2	0.94	0.24014			

	Molecular Function – Ta_ECN_X								
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher			
1	GO:0003735	Structural constituent of ribosome	1223	3	0.13	0.00015			
2	GO:0005198	Structural molecule activity	1421	3	0.15	0.00024			
3	GO:0019843	rRNA binding	293	1	0.03	0.02967			
4	GO:0003676	Nucleic acid binding	11391	3	1.17	0.08688			
5	GO:0003723	RNA binding	2699	1	0.28	0.24768			
6	GO:0000166	Nucleotide binding	12967	2	1.33	0.40052			
7	GO:1901265	Nucleoside phosphate binding	12967	2	1.33	0.40052			
8	GO:0036094	Small molecule binding	13505	2	1.38	0.42367			
9	GO:1901363	Heterocyclic compound binding	23868	3	2.45	0.4799			
10	GO:0097159	Organic cyclic compound binding	23870	3	2.45	0.47998			
11	GO:0005488	Binding	35771	3	3.67	0.87808			
12	GO:0003674	Molecular_function	48782	5	5	1			
13	GO:0000014	Single-stranded DNA endodeoxyribonuclease activity	12	0	0	1			
14	GO:0000030	Mannosyltransferase activity	75	0	0.01	1			
15	GO:0000049	tRNA binding	60	0	0.01	1			
16	GO:0000062	Fatty-acyl-CoA binding	32	0	0	1			
17	GO:0000104	Succinate dehydrogenase activity	8	0	0	1			
18	GO:0000107	Imidazoleglycerol-phosphate synthase activity	5	0	0	1			
19	GO:0000149	SNARE binding	126	0	0.01	1			
20	GO:0000150	Recombinase activity	26	0	0	1			

Appendix 10: Wheat GO Analysis – Ta_ECN_XI

	Biological Process – Ta_ECN_XI									
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher				
1	GO:0015979	Photosynthesis	813	3	0.08	2.70E-05				
2	GO:0018298	Protein-chromophore linkage	164	2	0.02	8.80E-05				
3	GO:0009767	Photosynthetic electron transport chain	191	2	0.02	0.00012				
4	GO:0019684	Photosynthesis, light reaction	511	2	0.05	0.00084				
5	GO:0022900	Electron transport chain	623	2	0.06	0.00125				
6	GO:0055114	Oxidation-reduction process	5037	3	0.47	0.00598				
7	GO:0006091	Generation of precursor metabolites and energy	1415	2	0.13	0.0063				
8	GO:0009772	Photosynthetic electron transport in photosystem II	71	1	0.01	0.00663				
9	GO:0044267	Cellular protein metabolic process	11875	3	1.11	0.06807				
10	GO:0019538	Protein metabolic process	13401	3	1.26	0.09452				
11	GO:1901564	Organonitrogen compound metabolic process	16308	3	1.53	0.15896				
12	GO:0006464	Cellular protein modification process	8493	2	0.8	0.17908				
13	GO:0036211	Protein modification process	8493	2	0.8	0.17908				
14	GO:0006412	Translation	2294	1	0.21	0.19818				
15	GO:0043043	Peptide biosynthetic process	2305	1	0.22	0.19906				
16	GO:0043412	Macromolecule modification	9166	2	0.86	0.20368				
17	GO:0043604	Amide biosynthetic process	2439	1	0.23	0.20963				
18	GO:0044237	Cellular metabolic process	29031	4	2.72	0.21359				
19	GO:0006518	Peptide metabolic process	2668	1	0.25	0.22746				
20	GO:0043603	Cellular amide metabolic process	2958	1	0.28	0.2496				

	Cellular Component – Ta_ECN_XI								
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher			
1	GO:0009535	Chloroplast thylakoid membrane	697	3	0.06	1.50E-05			
2	GO:0055035	Plastid thylakoid membrane	699	3	0.06	1.60E-05			
3	GO:0042651	Thylakoid membrane	768	3	0.07	2.10E-05			
4	GO:0034357	Photosynthetic membrane	810	3	0.07	2.40E-05			
5	GO:0009534	Chloroplast thylakoid	833	3	0.08	2.60E-05			
6	GO:0031976	Plastid thylakoid	835	3	0.08	2.60E-05			
7	GO:0044436	Thylakoid part	846	3	0.08	2.80E-05			
8	GO:0009507	Chloroplast	3737	4	0.34	5.10E-05			
9	GO:0009579	Thylakoid	1067	3	0.1	5.50E-05			
10	GO:0009521	Photosystem	325	2	0.03	0.00032			
11	GO:0044434	Chloroplast part	1977	3	0.18	0.00035			
12	GO:0031984	Organelle subcompartment	2011	3	0.18	0.00036			
13	GO:0044435	Plastid part	2020	3	0.18	0.00037			
14	GO:0031360	Intrinsic component of thylakoid membrane	11	1	0	0.001			
15	GO:0031361	Integral component of thylakoid membrane	11	1	0	0.001			
16	GO:0044446	Intracellular organelle part	8349	4	0.76	0.00127			
17	GO:0044422	Organelle part	8378	4	0.76	0.00129			
18	GO:0009536	Plastid	8609	4	0.78	0.00144			
19	GO:0098796	Membrane protein complex	1280	2	0.12	0.00484			
20	GO:0032991	Protein-containing complex	6582	3	0.6	0.01173			

	Molecular Function – Ta_ECN_XI									
	GO.ID	Term	Annotated	Significant	Expected	Classic Fisher				
1	GO:0009055	Electron transfer activity	665	3	0.05	1.00E-05				
2	GO:0045156	Electron transporter, transferring electrons within the cyclic electron transport pathway of photosynthesis activity	75	2	0.01	1.40E-05				
3	GO:0016168	Chlorophyll binding	160	2	0.01	6.40E-05				
4	GO:0045158	Electron transporter, transferring electrons within cytochrome b6/f complex of photosystem II activity	22	1	0	0.0018				
5	GO:0016491	Oxidoreductase activity	5041	3	0.41	0.0041				
6	GO:0046906	Tetrapyrrole binding	1489	2	0.12	0.0054				
7	GO:0051539	4 iron, 4 sulfur cluster binding	176	1	0.01	0.0144				
8	GO:0048037	Cofactor binding	3182	2	0.26	0.0234				
9	GO:0019843	rRNA binding	293	1	0.02	0.0238				
10	GO:0051536	Iron-sulfur cluster binding	368	1	0.03	0.0298				
11	GO:0051540	Metal cluster binding	368	1	0.03	0.0298				
12	GO:0000287	Magnesium ion binding	511	1	0.04	0.0412				
13	GO:0003735	Structural constituent of ribosome	1223	1	0.1	0.0966				
14	GO:0005506	Iron ion binding	1272	1	0.1	0.1003				
15	GO:0020037	Heme binding	1331	1	0.11	0.1048				
16	GO:0005198	Structural molecule activity	1421	1	0.12	0.1115				
17	GO:0046872	Metal ion binding	10274	2	0.84	0.1973				
18	GO:0043169	Cation binding	10327	2	0.85	0.199				
19	GO:0003723	RNA binding	2699	1	0.22	0.2036				
20	GO:0043168	Anion binding	12382	2	1.02	0.2682				

Appendix 11: Pst ECN Membership

Pst ECN	Exon	Gene	Secreted?	Description
Ι	KNF06096-2	PSTG_00607	-	large subunit ribosomal protein L35e
Ι	KNF06096-3	PSTG_00607	-	large subunit ribosomal protein L35e
Ι	KNF06096-4	PSTG_00607	-	large subunit ribosomal protein L35e
Ι	KNF06142-1	PSTG_00651	-	40S ribosomal protein S1
Ι	KNF06142-4	PSTG_00651	-	40S ribosomal protein S1
Ι	KNF06142-5	PSTG_00651	-	40S ribosomal protein S1
Ι	KNF05893-5	PSTG_00887	-	GTP-binding protein YchF
Ι	KNF05916-3	PSTG_00908	-	hypothetical protein
Ι	KNF05916-4	PSTG_00908	-	hypothetical protein
Ι	KNF05916-5	PSTG_00908	-	hypothetical protein
Ι	KNF05961-4	PSTG_00954	-	40S ribosomal protein S27
Ι	KNF05587-2	PSTG_01396	-	hypothetical protein
Ι	KNF05587-3	PSTG_01396	-	hypothetical protein
Ι	KNF05587-4	PSTG_01396	-	hypothetical protein
Ι	KNF05432-5	PSTG_01646	-	hypothetical protein
Ι	KNF05116-2	PSTG_01745	-	30S ribosomal protein S28e
Ι	KNF05116-3	PSTG_01745	-	30S ribosomal protein S28e
Ι	KNF05189-4	PSTG_01816	-	60S ribosomal protein L37-A
Ι	KNF05190-6	PSTG_01817	-	ubiquitin-40S ribosomal protein S27a-2
Ι	KNF04673-5	PSTG_02158	-	hypothetical protein
Ι	KNF04685-1	PSTG_02170	-	40S ribosomal protein S29
Ι	KNF04686-3	PSTG_02171	-	40S ribosomal protein S8
Ι	KNF04686-2	PSTG_02171	-	40S ribosomal protein S8
Ι	KNF04686-4	PSTG_02171	-	40S ribosomal protein S8
Ι	KNF04770-1	PSTG_02248	-	hypothetical protein
Ι	KNF04770-5	PSTG_02248	-	hypothetical protein
Ι	KNF04270-2	PSTG_02614	-	hypothetical protein
Ι	KNF04270-5	PSTG_02614	-	hypothetical protein
Ι	KNF04306-5	PSTG_02648	-	40S ribosomal protein S16
Ι	KNF03999-2	PSTG_02708	-	hypothetical protein
Ι	KNF03999-4	PSTG_02708	-	hypothetical protein
Ι	KNF04041-2	PSTG_02749	-	60S ribosomal protein L32
Ι	KNF03864-3	PSTG_02954	-	40S ribosomal protein S9-B
Ι	KNF03864-4	PSTG_02954	-	40S ribosomal protein S9-B
Ι	KNF03865-1	PSTG_02955	-	60S ribosomal protein L21-A
Ι	KNF03865-2	PSTG_02955	-	60S ribosomal protein L21-A

Pst ECN	Exon	Gene	Secreted?	Description
Ι	KNF03865-3	PSTG_02955	-	60S ribosomal protein L21-A
Ι	KNF03898-5	PSTG_02985	-	ribosomal protein L28e
Ι	KNF03578-6	PSTG_03101	-	hypothetical protein
Ι	KNF03578-7	PSTG_03101	-	hypothetical protein
Ι	KNF03579-2	PSTG_03102	-	40S ribosomal protein S14a
Ι	KNF03590-1	PSTG_03113	-	ribonucleoprotein-associated protein
Ι	KNF03590-3	PSTG_03113	-	ribonucleoprotein-associated protein
Ι	KNF03043-4	PSTG_03636	-	60S ribosomal protein L3
Ι	KNF03043-6	PSTG_03636	-	60S ribosomal protein L3
Ι	KNF03043-7	PSTG_03636	-	60S ribosomal protein L3
Ι	KNF03043-5	PSTG_03636	-	60S ribosomal protein L3
Ι	KNF02956-1	PSTG_03905	-	60S ribosomal protein L15-B
Ι	KNF02956-2	PSTG_03905	-	60S ribosomal protein L15-B
Ι	KNF02956-4	PSTG_03905	-	60S ribosomal protein L15-B
Ι	KNF02749-4	PSTG_04034	-	hypothetical protein
Ι	KNF02749-5	PSTG_04034	-	hypothetical protein
Ι	KNF02504-5	PSTG_04409	-	5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase
Ι	KNF02504-8	PSTG_04409	-	5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase
Ι	KNF02518-3	PSTG_04424	-	hypothetical protein
Ι	KNF02518-4	PSTG_04424	-	hypothetical protein
Ι	KNF02519-1	PSTG_04425	-	40S ribosomal protein S21
Ι	KNF02519-2	PSTG_04425	-	40S ribosomal protein S21
Ι	KNF02519-3	PSTG_04425	-	40S ribosomal protein S21
Ι	KNF01938-1	PSTG_04763	-	hypothetical protein
Ι	KNF01938-2	PSTG_04763	-	hypothetical protein
Ι	KNF01622-2	PSTG_05054	-	40S ribosomal protein S13
Ι	KNF01622-4	PSTG_05054	-	40S ribosomal protein S13
Ι	KNF01623-1	PSTG_05055	-	small subunit ribosomal protein S6e
Ι	KNF01623-3	PSTG_05055	-	small subunit ribosomal protein S6e
Ι	KNF01623-4	PSTG_05055	-	small subunit ribosomal protein S6e
Ι	KNF01711-3	PSTG_05140	-	40S ribosomal protein S19-A
Ι	KNF01711-4	PSTG_05140	-	40S ribosomal protein S19-A
Ι	KNF01429-1	PSTG_05214	-	hypothetical protein
Ι	KNF01429-2	PSTG_05214	-	hypothetical protein
Ι	KNF01429-3	PSTG_05214	-	hypothetical protein
Ι	KNF01514-4	PSTG_05294	-	hypothetical protein
Ι	KNF01514-5	PSTG_05294	-	hypothetical protein
Ι	KNF01284-5	PSTG_05381	-	ribosomal protein L37ae
Ι	KNF01009-2	PSTG_05643	-	60S ribosomal protein L5

Pst ECN	Exon	Gene	Secreted?	Description
Ι	KNF01009-3	PSTG_05643	-	60S ribosomal protein L5
Ι	KNF01105-5	PSTG_05734	-	40S ribosomal protein S5
Ι	KNF01105-3	PSTG_05734	-	40S ribosomal protein S5
Ι	KNF00913-4	PSTG_05806	-	60S ribosomal protein L29
Ι	KNF00749-2	PSTG_05888	-	40S ribosomal protein S7
Ι	KNF00749-4	PSTG_05888	-	40S ribosomal protein S7
Ι	KNF00749-3	PSTG_05888	-	40S ribosomal protein S7
Ι	KNF00604-3	PSTG_06020	-	40S ribosomal protein S0
Ι	KNF00604-4	PSTG_06020	-	40S ribosomal protein S0
Ι	KNF00621-8	PSTG_06036	-	glyceraldehyde-3-phosphate dehydrogenase
Ι	KNF00461-2	PSTG_06392	-	60S ribosomal protein L4-A
Ι	KNF00461-3	PSTG_06392	-	60S ribosomal protein L4-A
Ι	KNF00461-5	PSTG_06392	-	60S ribosomal protein L4-A
Ι	KNF00280-5	PSTG_06451	-	hypothetical protein
Ι	KNF00280-8	PSTG_06451	-	hypothetical protein
Ι	KNF00322-1	PSTG_06495	-	hypothetical protein
Ι	KNF00322-3	PSTG_06495	-	hypothetical protein
Ι	KNF00322-4	PSTG_06495	-	hypothetical protein
Ι	KNF00322-2	PSTG_06495	-	hypothetical protein
Ι	KNF00337-4	PSTG_06510	-	50S ribosomal protein L36e
Ι	KNF00338-2	PSTG_06511	-	hypothetical protein
Ι	KNF00338-5	PSTG_06511	-	hypothetical protein
Ι	KNF00124-5	PSTG_06536	-	hypothetical protein
Ι	KNF00124-7	PSTG_06536	-	hypothetical protein
Ι	KNE99890-1	PSTG_06743	-	large subunit ribosomal protein L31e
Ι	KNE99890-2	PSTG_06743	-	large subunit ribosomal protein L31e
Ι	KNE99656-4	PSTG_07148	-	hypothetical protein
Ι	KNE99656-7	PSTG_07148	-	hypothetical protein
Ι	KNE99656-5	PSTG_07148	-	hypothetical protein
Ι	KNE99490-3	PSTG_07207	-	60S ribosomal protein L27-A
Ι	KNE99490-2	PSTG_07207	-	60S ribosomal protein L27-A
Ι	KNE99146-2	PSTG_07623	-	large subunit ribosomal protein L31e
Ι	KNE99146-4	PSTG_07623	-	large subunit ribosomal protein L31e
Ι	KNE99083-4	PSTG_07734	-	hypothetical protein
Ι	KNE99083-5	PSTG_07734	-	hypothetical protein
Ι	KNE99084-3	PSTG_07735	-	40S ribosomal protein S17
Ι	KNE99084-4	PSTG_07735	-	40S ribosomal protein S17
Ι	KNE98972-1	PSTG_07816	-	40S ribosomal protein S3
Ι	KNE98972-2	PSTG_07816	-	40S ribosomal protein S3
Ι	KNE98972-3	PSTG_07816	-	40S ribosomal protein S3

Pst ECN	Exon	Gene	Secreted?	Description
Ι	KNE98984-5	PSTG_07828	-	30S ribosomal protein S26e
Ι	KNE98598-10	PSTG_08150	-	T-complex protein 1 subunit epsilon
Ι	KNE98630-4	PSTG_08181	-	hypothetical protein
Ι	KNE98630-6	PSTG_08181	-	hypothetical protein
Ι	KNE98049-1	PSTG_08724	-	50S ribosomal protein L22
Ι	KNE98049-2	PSTG_08724	-	50S ribosomal protein L22
Ι	KNE98049-3	PSTG_08724	-	50S ribosomal protein L22
Ι	KNE98049-4	PSTG_08724	-	50S ribosomal protein L22
Ι	KNE98069-6	PSTG_08743	-	guanine nucleotide-binding protein subunit beta-like protein
Ι	KNE98069-8	PSTG_08743	-	guanine nucleotide-binding protein subunit beta-like protein
Ι	KNE98070-3	PSTG_08744	-	60S ribosomal protein L12
Ι	KNE98070-4	PSTG_08744	-	60S ribosomal protein L12
Ι	KNE97625-8	PSTG_09030	-	hypothetical protein
Ι	KNE97533-4	PSTG_09227	-	hypothetical protein
Ι	KNE97198-3	PSTG_09460	-	hypothetical protein
Ι	KNE97198-7	PSTG_09460	-	hypothetical protein
Ι	KNE96845-1	PSTG_09828	-	60S ribosomal protein L33-B
Ι	KNE96845-2	PSTG_09828	-	60S ribosomal protein L33-B
Ι	KNE96845-3	PSTG_09828	-	60S ribosomal protein L33-B
Ι	KNE96810-1	PSTG_09946	-	40S ribosomal protein S11
Ι	KNE96810-2	PSTG_09946	-	40S ribosomal protein S11
Ι	KNE96810-4	PSTG_09946	-	40S ribosomal protein S11
Ι	KNE96707-6	PSTG_09978	-	60S ribosomal protein L11
Ι	KNE96707-4	PSTG_09978	-	60S ribosomal protein L11
Ι	KNE96635-1	PSTG_10042	-	60S ribosomal protein L15-B
Ι	KNE96635-2	PSTG_10042	-	60S ribosomal protein L15-B
Ι	KNE96635-4	PSTG_10042	-	60S ribosomal protein L15-B
Ι	KNE96498-6	PSTG_10205	-	heat shock protein SSB
Ι	KNE96288-1	PSTG_10407	-	60S ribosomal protein L28
Ι	KNE96288-3	PSTG_10407	-	60S ribosomal protein L28
Ι	KNE95905-5	PSTG_10822	-	hypothetical protein
Ι	KNE95641-5	PSTG_11006	-	hypothetical protein
Ι	KNE95641-6	PSTG_11006	-	hypothetical protein
Ι	KNE95523-3	PSTG_11130	-	60S ribosomal protein L1-B
Ι	KNE95523-5	PSTG_11130	-	60S ribosomal protein L1-B
Ι	KNE95523-6	PSTG_11130	-	60S ribosomal protein L1-B
Ι	KNE95024-6	PSTG_11621	-	ubiquitin-60S ribosomal protein L40
Ι	KNE94999-2	PSTG_11696	-	hypothetical protein
Ι	KNE94999-4	PSTG_11696	-	hypothetical protein

Pst ECN	Exon	Gene	Secreted?	Description
Ι	KNE94391-3	PSTG_12291	-	translationally-controlled tumor protein
Ι	KNE94400-5	PSTG_12300	-	pyruvate dehydrogenase E1 component subunit beta
Ι	KNE93748-1	PSTG_12851	-	hypothetical protein
Ι	KNE93748-6	PSTG_12851	-	hypothetical protein
Ι	KNE93631-2	PSTG_13007	-	50S ribosomal protein L19e
Ι	KNE93631-4	PSTG_13007	-	50S ribosomal protein L19e
Ι	KNE93632-2	PSTG_13008	-	40S ribosomal protein S18
Ι	KNE93632-4	PSTG_13008	-	40S ribosomal protein S18
Ι	KNE93481-6	PSTG_13111	-	elongation factor 1-alpha
Ι	KNE93481-7	PSTG_13111	-	elongation factor 1-alpha
Ι	KNE93481-8	PSTG_13111	-	elongation factor 1-alpha
Ι	KNE93481-9	PSTG_13111	-	elongation factor 1-alpha
Ι	KNE93500-4	PSTG_13128	-	hypothetical protein
Ι	KNE93500-5	PSTG_13128	-	hypothetical protein
Ι	KNE93500-6	PSTG_13128	-	hypothetical protein
Ι	KNE93413-1	PSTG_13237	-	endoribonuclease L-PSP
Ι	KNE93198-2	PSTG_13448	-	40S ribosomal protein S15
Ι	KNE93198-4	PSTG_13448	-	40S ribosomal protein S15
Ι	KNE93199-1	PSTG_13449	-	hypothetical protein
Ι	KNE93199-3	PSTG_13449	-	hypothetical protein
Ι	KNE92706-10	PSTG_13914	-	pyruvate kinase
Ι	KNE92706-8	PSTG_13914	-	pyruvate kinase
Ι	KNE92706-9	PSTG_13914	-	pyruvate kinase
Ι	KNE92453-1	PSTG_14174	-	50S ribosomal protein L34e
Ι	KNE92453-4	PSTG_14174	-	50S ribosomal protein L34e
Ι	KNE92347-6	PSTG_14247	-	hypothetical protein
Ι	KNE91789-3	PSTG_14806	-	hypothetical protein
Ι	KNE91789-4	PSTG_14806	-	hypothetical protein
Ι	KNE91408-2	PSTG_15155	-	60S ribosomal protein L8
Ι	KNE91408-3	PSTG_15155	-	60S ribosomal protein L8
Ι	KNE91408-5	PSTG_15155	-	60S ribosomal protein L8
Ι	KNE91332-1	PSTG_15262	-	small subunit ribosomal protein S2e
Ι	KNE91332-3	PSTG_15262	-	small subunit ribosomal protein S2e
Ι	KNE91277-4	PSTG_15301	-	60S ribosomal protein L23
Ι	KNE90888-7	PSTG_15678	-	hypothetical protein
Ι	KNE90223-4	PSTG_16330	-	S25 ribosomal protein
Ι	KNE90223-2	PSTG_16330	-	S25 ribosomal protein
Ι	KNE90178-3	PSTG_16362	-	hypothetical protein
Ι	KNE90178-5	PSTG_16362	-	hypothetical protein
Ι	KNE90178-4	PSTG_16362	-	hypothetical protein

Pst ECN	Exon	Gene	Secreted?	Description
Ι	KNE89788-2	PSTG_16747	-	60S ribosomal protein L20
Ι	KNE89788-1	PSTG_16747	-	60S ribosomal protein L20
Ι	KNE89788-3	PSTG_16747	-	60S ribosomal protein L20
Ι	KNE89600-6	PSTG_16938	-	adenosylhomocysteinase
Ι	KNE89600-7	PSTG_16938	-	adenosylhomocysteinase
Ι	KNE89584-1	PSTG_16947	-	hypothetical protein
Ι	KNE89584-2	PSTG_16947	-	hypothetical protein
Ι	KNE89584-3	PSTG_16947	-	hypothetical protein
Ι	KNE89584-4	PSTG_16947	-	hypothetical protein
Π	KNF06693-6	PSTG_00009	-	hypothetical protein
Π	KNF06384-1	PSTG_00266	-	hypothetical protein
II	KNF06384-2	PSTG_00266	-	hypothetical protein
Π	KNF06387-1	PSTG_00269	-	hypothetical protein
Π	KNF06140-1	PSTG_00649	Yes	hypothetical protein
Π	KNF06140-13	PSTG_00649	Yes	hypothetical protein
Π	KNF06141-1	PSTG_00650	Yes	hypothetical protein
Π	KNF05923-1	PSTG_00916	-	hypothetical protein
II	KNF05923-2	PSTG_00916	-	hypothetical protein
Π	KNF06019-1	PSTG_01012	-	hypothetical protein
Π	KNF06019-3	PSTG_01012	-	hypothetical protein
Π	KNF05780-3	PSTG_01177	-	hypothetical protein
Π	KNF05780-4	PSTG_01177	-	hypothetical protein
Π	KNF05358-1	PSTG_01573	Yes	hypothetical protein
II	KNF05358-5	PSTG_01573	Yes	hypothetical protein
Π	KNF04815-4	PSTG_01871	-	hypothetical protein
Π	KNF04871-1	PSTG_01925	-	hypothetical protein
Π	KNF04605-2	PSTG_02092	Yes	hypothetical protein
Π	KNF04652-1	PSTG_02137	-	hypothetical protein
Π	KNF04524-3	PSTG_02434	Yes	hypothetical protein
Π	KNF04244-1	PSTG_02592	-	hypothetical protein
Π	KNF04244-2	PSTG_02592	-	hypothetical protein
Π	KNF04085-2	PSTG_02790	Yes	hypothetical protein
Π	KNF04132-12	PSTG_02836	-	hypothetical protein
Π	KNF04132-4	PSTG_02836	-	hypothetical protein
Π	KNF03592-7	PSTG_03115	-	hypothetical protein
Π	KNF03592-9	PSTG_03115	-	hypothetical protein
II	KNF03674-1	PSTG_03194	Yes	hypothetical protein
Π	KNF03413-1	PSTG_03353	-	hypothetical protein
II	KNF03457-2	PSTG_03398	_	hypothetical protein
Π	KNF03457-3	PSTG_03398	-	hypothetical protein

Pst ECN	Exon	Gene	Secreted?	Description
II	KNF03457-5	PSTG_03398	-	hypothetical protein
II	KNF03260-3	PSTG_03525	-	hypothetical protein
II	KNF03260-4	PSTG_03525	-	hypothetical protein
II	KNF03260-5	PSTG_03525	-	hypothetical protein
II	KNF02619-1	PSTG_04216	Yes	hypothetical protein
II	KNF02619-4	PSTG_04216	Yes	hypothetical protein
II	KNF02092-3	PSTG_04590	-	hypothetical protein
II	KNF02092-5	PSTG_04590	-	hypothetical protein
II	KNF02092-7	PSTG_04590	-	hypothetical protein
Π	KNF02092-1	PSTG_04590	-	hypothetical protein
II	KNF02027-1	PSTG_04848	Yes	hypothetical protein
II	KNF02044-2	PSTG_04865	Yes	hypothetical protein
Π	KNF02044-3	PSTG_04865	Yes	hypothetical protein
II	KNF02044-5	PSTG_04865	Yes	hypothetical protein
II	KNF01539-2	PSTG_05319	-	hypothetical protein
Π	KNF01283-1	PSTG_05380	-	hypothetical protein
II	KNF00807-2	PSTG_05945	-	hypothetical protein
II	KNF00849-1	PSTG_05983	-	hypothetical protein
Π	KNF00502-1	PSTG_06194	-	hypothetical protein
II	KNF00502-2	PSTG_06194	-	hypothetical protein
II	KNF00540-1	PSTG_06232	-	hypothetical protein
Π	KNF00540-3	PSTG_06232	-	hypothetical protein
II	KNF00540-5	PSTG_06232	-	hypothetical protein
II	KNF00334-1	PSTG_06507	Yes	hypothetical protein
II	KNF00334-4	PSTG_06507	Yes	hypothetical protein
II	KNF00357-2	PSTG_06528	-	hypothetical protein
II	KNF00182-2	PSTG_06592	-	hypothetical protein
II	KNF00182-6	PSTG_06592	-	hypothetical protein
II	KNF00207-3	PSTG_06620	Yes	hypothetical protein
II	KNE99894-1	PSTG_06747	-	hypothetical protein
II	KNE99986-3	PSTG_06838	-	hypothetical protein
II	KNE99986-4	PSTG_06838	-	hypothetical protein
Π	KNE99522-1	PSTG_07035	-	hypothetical protein
Π	KNE99748-2	PSTG_07035	-	hypothetical protein
Π	KNE99748-3	PSTG_07035	-	hypothetical protein
II	KNE99225-1	PSTG_07533	Yes	hypothetical protein
II	KNE99225-2	PSTG_07533	Yes	hypothetical protein
Π	KNE99225-3	PSTG_07533	Yes	hypothetical protein
Π	KNE99225-5	PSTG_07533	Yes	hypothetical protein
Π	KNE98963-2	PSTG_07807	Yes	hypothetical protein

Pst ECN	Exon	Gene	Secreted?	Description
II	KNE98963-4	PSTG_07807	Yes	hypothetical protein
II	KNE98801-1	PSTG_07989	-	hypothetical protein
II	KNE98801-2	PSTG_07989	-	hypothetical protein
II	KNE98801-3	PSTG_07989	-	hypothetical protein
II	KNE98801-5	PSTG_07989	-	hypothetical protein
II	KNE98801-7	PSTG_07989	-	hypothetical protein
II	KNE98579-2	PSTG_08131	Yes	hypothetical protein
II	KNE98081-1	PSTG_08755	Yes	hypothetical protein
II	KNE98081-3	PSTG_08755	Yes	hypothetical protein
II	KNE98081-4	PSTG_08755	Yes	hypothetical protein
II	KNE97907-5	PSTG_08780	-	CMGC/MAPK
II	KNE97907-6	PSTG_08780	-	CMGC/MAPK
Π	KNE97641-1	PSTG_09047	Yes	hypothetical protein
Π	KNE97641-3	PSTG_09047	Yes	hypothetical protein
Π	KNE97641-5	PSTG_09047	Yes	hypothetical protein
Π	KNE97422-1	PSTG_09255	-	hypothetical protein
Π	KNE97422-2	PSTG_09255	-	hypothetical protein
Π	KNE97422-3	PSTG_09255	-	hypothetical protein
Π	KNE96842-2	PSTG_09825	-	hypothetical protein
Π	KNE96080-3	PSTG_10652	Yes	hypothetical protein
Π	KNE96080-5	PSTG_10652	Yes	hypothetical protein
Π	KNE95699-1	PSTG_10918	Yes	hypothetical protein
II	KNE95699-5	PSTG_10918	Yes	hypothetical protein
Π	KNE95701-1	PSTG_10920	Yes	hypothetical protein
II	KNE95701-5	PSTG_10920	Yes	hypothetical protein
II	KNE95760-2	PSTG_10976	-	hypothetical protein
Π	KNE95619-3	PSTG_11109	Yes	hypothetical protein
Π	KNE95625-1	PSTG_11115	-	hypothetical protein
II	KNE95280-1	PSTG_11366	-	hypothetical protein
II	KNE95266-1	PSTG_11438	Yes	hypothetical protein
Π	KNE95205-1	PSTG_11470	-	hypothetical protein
Π	KNE95205-2	PSTG_11470	-	hypothetical protein
Π	KNE95088-4	PSTG_11565	-	hypothetical protein
Π	KNE94593-2	PSTG_12057	-	hypothetical protein
II	KNE94593-5	PSTG_12057	-	hypothetical protein
II	KNE94566-5	PSTG_12118	Yes	hypothetical protein
II	KNE94421-6	PSTG_12216	Yes	hypothetical protein
Π	KNE94396-1	PSTG_12296	-	hypothetical protein
Π	KNE94283-4	PSTG_12309	-	TKL/LISK/LISK-DD1 protein kinase
Π	KNE94223-1	PSTG_12451	-	hypothetical protein

Pst ECN	Exon	Gene	Secreted?	Description
II	KNE94149-1	PSTG_12479	Yes	hypothetical protein
II	KNE94149-4	PSTG_12479	Yes	hypothetical protein
II	KNE94173-1	PSTG_12504	-	hypothetical protein
II	KNE93237-2	PSTG_13411	Yes	hypothetical protein
II	KNE92714-1	PSTG_13922	Yes	hypothetical protein
II	KNE92505-1	PSTG_14106	-	hypothetical protein
II	KNE91482-1	PSTG_15112	Yes	hypothetical protein
II	KNE91482-2	PSTG_15112	Yes	hypothetical protein
II	KNE91339-9	PSTG_15268	-	hypothetical protein
II	KNE91169-1	PSTG_15425	-	hypothetical protein
II	KNE91169-11	PSTG_15425	-	hypothetical protein
II	KNE90769-8	PSTG_15777	Yes	hypothetical protein
II	KNE90580-3	PSTG_15973	Yes	hypothetical protein
II	KNE90580-5	PSTG_15973	Yes	hypothetical protein
II	KNE90191-4	PSTG_16373	Yes	hypothetical protein
II	KNE90191-6	PSTG_16373	Yes	hypothetical protein
II	KNE89665-1	PSTG_16862	-	hypothetical protein
II	KNE89459-1	PSTG_17090	-	hypothetical protein
II	KNE89459-4	PSTG_17090	-	hypothetical protein
II	KNE89459-7	PSTG_17090	-	hypothetical protein
II	KNE89425-1	PSTG_17118	-	hypothetical protein
II	KNE87876-1	PSTG_18734	-	hypothetical protein
III	KNF06597-2	PSTG_00471	-	hypothetical protein
III	KNF06141-10	PSTG_00650	Yes	hypothetical protein
III	KNF05923-4	PSTG_00916	-	hypothetical protein
III	KNF05965-4	PSTG_00958	Yes	hypothetical protein
III	KNF05780-10	PSTG_01177	-	hypothetical protein
III	KNF05316-9	PSTG_01530	-	AGC/NDR protein kinase
III	KNF05358-6	PSTG_01573	Yes	hypothetical protein
III	KNF05079-6	PSTG_01711	Yes	hypothetical protein
III	KNF04871-3	PSTG_01925	-	hypothetical protein
III	KNF04871-6	PSTG_01925	-	hypothetical protein
III	KNF04605-6	PSTG_02092	Yes	hypothetical protein
III	KNF04652-2	PSTG_02137	-	hypothetical protein
III	KNF04524-5	PSTG_02434	Yes	hypothetical protein
III	KNF03674-7	PSTG_03194	Yes	hypothetical protein
III	KNF03413-6	PSTG_03353	-	hypothetical protein
III	KNF03457-6	PSTG_03398	-	hypothetical protein
III	KNF03060-1	PSTG_03652	Yes	hypothetical protein
III	KNF03060-3	PSTG_03652	Yes	hypothetical protein

Pst ECN	Exon	Gene	Secreted?	Description
III	KNF02751-5	PSTG_04036	-	hypothetical protein
III	KNF02619-12	PSTG_04216	Yes	hypothetical protein
III	KNF02092-8	PSTG_04590	-	hypothetical protein
III	KNF02044-6	PSTG_04865	Yes	hypothetical protein
III	KNF00808-8	PSTG_05945	-	hypothetical protein
III	KNF00502-3	PSTG_06194	-	hypothetical protein
III	KNE99894-9	PSTG_06747	-	hypothetical protein
III	KNE99946-3	PSTG_06799	-	hypothetical protein
III	KNE99747-6	PSTG_07034	-	hypothetical protein
III	KNE99522-2	PSTG_07235	-	hypothetical protein
III	KNE99225-9	PSTG_07533	Yes	hypothetical protein
III	KNE98939-1	PSTG_07784	-	hypothetical protein
III	KNE98767-2	PSTG_07954	-	hypothetical protein
III	KNE97908-7	PSTG_08780	-	CMGC/MAPK protein kinase%2C variant
III	KNE97637-6	PSTG_09044	Yes	hypothetical protein
III	KNE97641-6	PSTG_09047	Yes	hypothetical protein
III	KNE97422-4	PSTG_09255	-	hypothetical protein
III	KNE96842-4	PSTG_09825	-	hypothetical protein
III	KNE96132-2	PSTG_10552	-	hypothetical protein
III	KNE96062-12	PSTG_10638	-	hypothetical protein
III	KNE96080-7	PSTG_10652	Yes	hypothetical protein
III	KNE95625-2	PSTG_11115	-	hypothetical protein
III	KNE95280-4	PSTG_11366	-	hypothetical protein
III	KNE95266-5	PSTG_11438	Yes	hypothetical protein
III	KNE95088-7	PSTG_11565	-	hypothetical protein
III	KNE94396-2	PSTG_12296	-	hypothetical protein
III	KNE94341-1	PSTG_12366	Yes	hypothetical protein
III	KNE94223-3	PSTG_12451	-	hypothetical protein
III	KNE94149-8	PSTG_12479	Yes	hypothetical protein
III	KNE94173-2	PSTG_12504	-	hypothetical protein
III	KNE93783-1	PSTG_12886	-	hypothetical protein
III	KNE93426-2	PSTG_13248	Yes	hypothetical protein
III	KNE93017-4	PSTG_13591	Yes	hypothetical protein
III	KNE92929-10	PSTG_13645	-	hypothetical protein
III	KNE92948-10	PSTG_13662	Yes	hypothetical protein
III	KNE92892-4	PSTG_13740	-	hypothetical protein
III	KNE92714-3	PSTG_13922	Yes	hypothetical protein
III	KNE92505-4	PSTG_14106	-	hypothetical protein
III	KNE92505-6	PSTG_14106	-	hypothetical protein
III	KNE91482-5	PSTG_15112	Yes	hypothetical protein

Pst ECN	Exon	Gene	Secreted?	Description
III	KNE91215-4	PSTG_15379	Yes	hypothetical protein
III	KNE90769-9	PSTG_15777	Yes	hypothetical protein
III	KNE90191-10	PSTG_16373	Yes	hypothetical protein
III	KNE89665-2	PSTG_16862	-	hypothetical protein
III	KNE89425-4	PSTG_17118	-	hypothetical protein
IV	KNF06510-5	PSTG_00386	-	hypothetical protein
IV	KNF02276-18	PSTG_04484	-	hypothetical protein
IV	KNF02298-4	PSTG_04505	Yes	hypothetical protein
IV	KNF00689-1	PSTG_06104	Yes	hypothetical protein
IV	KNF00413-5	PSTG_06342	-	hypothetical protein
IV	KNE99323-1	PSTG_07440	Yes	hypothetical protein
IV	KNE99148-2	PSTG_07625	-	hypothetical protein
IV	KNE98142-3	PSTG_08606	Yes	hypothetical protein
IV	KNE97642-1	PSTG_09048	Yes	hypothetical protein
IV	KNE97642-6	PSTG_09048	Yes	hypothetical protein
IV	KNE95229-3	PSTG_11493	Yes	hypothetical protein
IV	KNE94989-2	PSTG_11687	Yes	hypothetical protein
IV	KNE9444-4	PSTG_12237	Yes	hypothetical protein
IV	KNE92718-5	PSTG_13849	-	hypothetical protein
IV	KNE92366-1	PSTG_14202	Yes	hypothetical protein
IV	KNE92373-1	PSTG_14208	-	hypothetical protein
IV	KNE92149-1	PSTG_14441	-	hypothetical protein
IV	KNE92149-4	PSTG_14441	-	hypothetical protein
IV	KNE91633-11	PSTG_14941	Yes	hypothetical protein
IV	KNE91490-3	PSTG_15087	-	hypothetical protein
IV	KNE90739-4	PSTG_15845	-	hypothetical protein
IV	KNE90575-5	PSTG_15994	-	hydroxymethylglutaryl-CoA synthase
V	ENSRNAG049 979156-1	ENSRNAG0499 79156	-	Bacterial large subunit
V	ENSRNAG049 979160-1	ENSRNAG0499 79160	-	Bacterial small subunit
V	KNF06910-1	PSTG_40002	-	cytochrome c oxidase subunit 3
V	KNF06911-1	PSTG_40005	-	NADH-ubiquinone oxidoreductase chain 4
V	KNF06911-2	PSTG_40005	-	NADH-ubiquinone oxidoreductase chain 4
V	KNF06912-1	PSTG_40006	-	intron_maturase 2
V	KNF06915-1	PSTG_40013	-	cytochrome c oxidase subunit 1
V	KNF06915-4	PSTG_40013	-	cytochrome c oxidase subunit 1
V	KNF06916-1	PSTG_40014	-	LAGLIDADG 1
V	KNF06923-3	PSTG_40028	-	NADH-ubiquinone oxidoreductase chain 5
V	KNF06924-1	PSTG_40033	-	ATP synthase subunit 9
V	KNF06925-1	PSTG_40038	-	NADH dehydrogenase subunit 2

Pst ECN	Exon	Gene	Secreted?	Description
V	KNF06928-1	PSTG_40046	-	ATP synthase subunit A
V	KNF06929-1	PSTG_40048	-	cytochrome c oxidase subunit 2
V	KNF06929-2	PSTG_40048	-	cytochrome c oxidase subunit 2
VI	KNF03487-2	PSTG_03423	-	heat shock protein HSS1
VI	KNF03487-4	PSTG_03423	-	heat shock protein HSS1
VI	KNF03487-5	PSTG_03423	-	heat shock protein HSS1
VI	KNF03487-6	PSTG_03423	-	heat shock protein HSS1
VI	KNF03487-7	PSTG_03423	-	heat shock protein HSS1
VI	KNF02405-10	PSTG_04312	-	heat shock protein 90
VI	KNF02405-11	PSTG_04312	-	heat shock protein 90
VI	KNF02405-6	PSTG_04312	-	heat shock protein 90
VI	KNF02405-7	PSTG_04312	-	heat shock protein 90
VI	KNF02405-8	PSTG_04312	-	heat shock protein 90

Legend: - Not secreted.

Appendix 12: Wheat ECN Membership

Wheat ECN	Exon	Gene	Description
Ι	TraesCS1A02G171000.1.E4	TraesCS1A02G171000	NADPH-protochlorophyllide oxidoreductase
Ι	TraesCS1A02G251200.1.E3	TraesCS1A02G251200	N/A
Ι	TraesCS1A02G298800.1.E3	TraesCS1A02G298800	N/A
Ι	TraesCS1A02G301400.1.E3	TraesCS1A02G301400	Serine/threonine-protein kinase STN8%2C chloroplastic
Ι	TraesCS1A02G313300.1.E6	TraesCS1A02G313300	Phosphoglycerate kinase
Ι	TraesCS1A02G392000.1.E2	TraesCS1A02G392000	Photosystem I reaction center subunit VI%2C chloroplast precursor (PSI- H) (Light-harvesting complex I 11 kDa protein) (GOS5 protein)
Ι	TraesCS1A02G403300.1.E1	TraesCS1A02G403300	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS1B02G186300.1.E4	TraesCS1B02G186300	NADPH-protochlorophyllide oxidoreductase
Ι	TraesCS1B02G261800.1.E3	TraesCS1B02G261800	N/A
Ι	TraesCS1B02G325100.1.E6	TraesCS1B02G325100	Phosphoglycerate kinase
Ι	TraesCS1B02G420100.1.E2	TraesCS1B02G420100	Photosystem I reaction center subunit VI%2C chloroplast precursor (PSI- H) (Light-harvesting complex I 11 kDa protein) (GOS5 protein)
Ι	TraesCS1B02G432700.1.E1	TraesCS1B02G432700	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS1D02G168700.2.E4	TraesCS1D02G168700	NADPH-protochlorophyllide oxidoreductase
Ι	TraesCS1D02G301100.1.E3	TraesCS1D02G301100	Serine/threonine-protein kinase STN8%2C chloroplastic
Ι	TraesCS1D02G400100.1.E2	TraesCS1D02G400100	Photosystem I reaction center subunit VI%2C chloroplast precursor (PSI- H) (Light-harvesting complex I 11 kDa protein) (GOS5 protein)
Ι	TraesCS1D02G411300.1.E1	TraesCS1D02G411300	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS1D02G428200.1.E2	TraesCS1D02G428200	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS2A02G114400.1.E3	TraesCS2A02G114400	N/A
Ι	TraesCS2A02G133900.1.E5	TraesCS2A02G133900	N/A
Ι	TraesCS2A02G187200.1.E3	TraesCS2A02G187200	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS2A02G204800.1.E2	TraesCS2A02G204800	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS2A02G206200.1.E2	TraesCS2A02G206200	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS2A02G223600.1.E1	TraesCS2A02G223600	N/A
Ι	TraesCS2A02G250800.1.E10	TraesCS2A02G250800	Similar to Glycolate oxidase (EC 1.1.3.15) (Fragment)
Ι	TraesCS2A02G252600.1.E1	TraesCS2A02G252600	N/A
Ι	TraesCS2A02G252600.1.E2	TraesCS2A02G252600	N/A
Ι	TraesCS2A02G254600.3.E3	TraesCS2A02G254600	N/A
Ι	TraesCS2A02G342600.1.E2	TraesCS2A02G342600	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS2A02G344600.1.E4	TraesCS2A02G344600	Glyceraldehyde-3-phosphate dehydrogenase
Ι	TraesCS2A02G368300.1.E1	TraesCS2A02G368300	Peroxisomal protein%2C Response to salt and low nitrogen stresse

Wheat ECN	Exon	Gene	Description
Ι	TraesCS2B02G079400.1.E2	TraesCS2B02G079400	Ribulose bisphosphate carboxylase small chain
Ι	TraesCS2B02G099500.1.E8	TraesCS2B02G099500	N/A
Ι	TraesCS2B02G157500.1.E5	TraesCS2B02G157500	N/A
Ι	TraesCS2B02G220100.1.E3	TraesCS2B02G220100	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS2B02G233400.1.E2	TraesCS2B02G233400	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS2B02G234500.1.E3	TraesCS2B02G234500	Cytochrome b6-f complex iron-sulfur subunit
Ι	TraesCS2B02G234500.1.E4	TraesCS2B02G234500	Cytochrome b6-f complex iron-sulfur subunit
Ι	TraesCS2B02G264100.2.E10	TraesCS2B02G264100	Similar to Glycolate oxidase (EC 1.1.3.15) (Fragment)
Ι	TraesCS2B02G267500.1.E3	TraesCS2B02G267500	N/A
Ι	TraesCS2B02G272300.1.E1	TraesCS2B02G272300	N/A
Ι	TraesCS2B02G272300.1.E2	TraesCS2B02G272300	N/A
Ι	TraesCS2B02G273900.1.E1	TraesCS2B02G273900	N/A
Ι	TraesCS2B02G278500.1.E4	TraesCS2B02G278500	Peroxidase
Ι	TraesCS2B02G340300.1.E2	TraesCS2B02G340300	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS2B02G342200.1.E4	TraesCS2B02G342200	Glyceraldehyde-3-phosphate dehydrogenase
Ι	TraesCS2D02G065600.1.E2	TraesCS2D02G065600	Ribulose bisphosphate carboxylase small chain
Ι	TraesCS2D02G115200.1.E3	TraesCS2D02G115200	N/A
Ι	TraesCS2D02G136100.1.E5	TraesCS2D02G136100	N/A
Ι	TraesCS2D02G209900.1.E2	TraesCS2D02G209900	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS2D02G214700.1.E3	TraesCS2D02G214700	Cytochrome b6-f complex iron-sulfur subunit%2C chloroplastic
Ι	TraesCS2D02G214700.1.E4	TraesCS2D02G214700	Cytochrome b6-f complex iron-sulfur subunit%2C chloroplastic
Ι	TraesCS2D02G229600.1.E1	TraesCS2D02G229600	N/A
Ι	TraesCS2D02G253200.1.E1	TraesCS2D02G253200	N/A
Ι	TraesCS2D02G253200.1.E2	TraesCS2D02G253200	N/A
Ι	TraesCS2D02G255100.1.E2	TraesCS2D02G255100	N/A
Ι	TraesCS2D02G255100.1.E3	TraesCS2D02G255100	N/A
Ι	TraesCS2D02G262400.2.E1	TraesCS2D02G262400	N/A
Ι	TraesCS2D02G320900.1.E2	TraesCS2D02G320900	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS2D02G322900.1.E4	TraesCS2D02G322900	Glyceraldehyde-3-phosphate dehydrogenase
Ι	TraesCS2D02G346900.2.E1	TraesCS2D02G346900	N/A
Ι	TraesCS2D02G467900.1.E3	TraesCS2D02G467900	Aminomethyltransferase
Ι	TraesCS3A02G028700.1.E2	TraesCS3A02G028700	N/A
Ι	TraesCS3A02G052700.1.E1	TraesCS3A02G052700	N/A
Ι	TraesCS3A02G052700.1.E2	TraesCS3A02G052700	N/A
Ι	TraesCS3A02G094900.1.E1	TraesCS3A02G094900	N/A
Ι	TraesCS3A02G212000.1.E1	TraesCS3A02G212000	N/A
Ι	TraesCS3A02G367000.1.E8	TraesCS3A02G367000	Sedoheptulose-1%2C7-bisphosphatase%2C chloroplastic
Ι	TraesCS3A02G381000.1.E3	TraesCS3A02G381000	N/A

Wheat ECN	Exon	Gene	Description
Ι	TraesCS3A02G381000.1.E4	TraesCS3A02G381000	N/A
Ι	TraesCS3A02G398500.1.E12	TraesCS3A02G398500	N/A
Ι	TraesCS3A02G418300.1.E4	TraesCS3A02G418300	N/A
Ι	TraesCS3B02G061700.1.E1	TraesCS3B02G061700	N/A
Ι	TraesCS3B02G061700.1.E2	TraesCS3B02G061700	N/A
Ι	TraesCS3B02G110400.1.E1	TraesCS3B02G110400	N/A
Ι	TraesCS3B02G240500.1.E2	TraesCS3B02G240500	N/A
Ι	TraesCS3B02G242400.1.E1	TraesCS3B02G242400	N/A
Ι	TraesCS3B02G344200.1.E2	TraesCS3B02G344200	Similar to Photosystem II reaction center W protein (PSII 6.1 kDa protein) (Fragment)
Ι	TraesCS3B02G398300.1.E5	TraesCS3B02G398300	Sedoheptulose-1%2C7-bisphosphatase%2C chloroplast%2C expressed
Ι	TraesCS3B02G398300.1.E8	TraesCS3B02G398300	Sedoheptulose-1%2C7-bisphosphatase%2C chloroplast%2C expressed
Ι	TraesCS3B02G410400.1.E1	TraesCS3B02G410400	Fructose-1%2C6-bisphosphatase%2C cytosolic%2Cputative%2Cexpressed
Ι	TraesCS3B02G410400.1.E11	TraesCS3B02G410400	Fructose-1%2C6-bisphosphatase%2C cytosolic%2Cputative%2Cexpressed
Ι	TraesCS3B02G413700.1.E3	TraesCS3B02G413700	N/A
Ι	TraesCS3B02G413700.1.E4	TraesCS3B02G413700	N/A
Ι	TraesCS3B02G430900.1.E12	TraesCS3B02G430900	N/A
Ι	TraesCS3B02G453500.1.E4	TraesCS3B02G453500	N/A
Ι	TraesCS3D02G051800.1.E1	TraesCS3D02G051800	N/A
Ι	TraesCS3D02G051800.1.E2	TraesCS3D02G051800	N/A
Ι	TraesCS3D02G160600.1.E4	TraesCS3D02G160600	N/A
Ι	TraesCS3D02G214600.1.E1	TraesCS3D02G214600	N/A
Ι	TraesCS3D02G309400.1.E2	TraesCS3D02G309400	Similar to Photosystem II reaction center W protein (PSII 6.1 kDa protein) (Fragment)
Ι	TraesCS3D02G359900.1.E5	TraesCS3D02G359900	N/A
Ι	TraesCS3D02G359900.1.E8	TraesCS3D02G359900	N/A
Ι	TraesCS3D02G370700.1.E11	TraesCS3D02G370700	N/A
Ι	TraesCS3D02G374200.1.E3	TraesCS3D02G374200	N/A
Ι	TraesCS3D02G374200.1.E4	TraesCS3D02G374200	N/A
Ι	TraesCS3D02G392600.1.E12	TraesCS3D02G392600	N/A
Ι	TraesCS4A02G093100.1.E2	TraesCS4A02G093100	Fructose-1%2C6-bisphosphatase%2C chloroplastic
Ι	TraesCS4A02G093100.1.E3	TraesCS4A02G093100	Fructose-1%2C6-bisphosphatase%2C chloroplastic
Ι	TraesCS4A02G099800.1.E1	TraesCS4A02G099800	N/A
Ι	TraesCS4A02G110700.1.E2	TraesCS4A02G110700	N/A
Ι	TraesCS4A02G177500.1.E7	TraesCS4A02G177500	N/A
Ι	TraesCS4A02G177500.3.E3	TraesCS4A02G177500	N/A
Ι	TraesCS4A02G190400.2.E1	TraesCS4A02G190400	N/A
Ι	TraesCS4A02G206400.1.E1	TraesCS4A02G206400	Fructose-bisphosphate aldolase

Wheat ECN	Exon	Gene	Description
Ι	TraesCS4A02G206400.1.E2	TraesCS4A02G206400	Fructose-bisphosphate aldolase
Ι	TraesCS4A02G206400.1.E5	TraesCS4A02G206400	Fructose-bisphosphate aldolase
Ι	TraesCS4A02G206400.1.E6	TraesCS4A02G206400	Fructose-bisphosphate aldolase
Ι	TraesCS4A02G226900.3.E4	TraesCS4A02G226900	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS4A02G246100.1.E9	TraesCS4A02G246100	Serine hydroxymethyltransferase
Ι	TraesCS4B02G069300.1.E9	TraesCS4B02G069300	Serine hydroxymethyltransferase
Ι	TraesCS4B02G089000.1.E1	TraesCS4B02G089000	N/A
Ι	TraesCS4B02G089500.1.E1	TraesCS4B02G089500	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS4B02G089500.1.E6	TraesCS4B02G089500	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS4B02G109900.1.E1	TraesCS4B02G109900	Fructose-bisphosphate aldolase
Ι	TraesCS4B02G109900.1.E2	TraesCS4B02G109900	Fructose-bisphosphate aldolase
Ι	TraesCS4B02G109900.1.E5	TraesCS4B02G109900	Fructose-bisphosphate aldolase
Ι	TraesCS4B02G109900.1.E6	TraesCS4B02G109900	Fructose-bisphosphate aldolase
Ι	TraesCS4B02G140300.1.E3	TraesCS4B02G140300	N/A
Ι	TraesCS4B02G140300.1.E7	TraesCS4B02G140300	N/A
Ι	TraesCS4B02G193400.1.E2	TraesCS4B02G193400	N/A
Ι	TraesCS4B02G204500.1.E1	TraesCS4B02G204500	N/A
Ι	TraesCS4B02G211400.1.E3	TraesCS4B02G211400	N/A
Ι	TraesCS4B02G323000.1.E7	TraesCS4B02G323000	Glyceraldehyde-3-phosphate dehydrogenase
Ι	TraesCS4D02G041200.1.E2	TraesCS4D02G041200	Peptidylprolyl isomerase
Ι	TraesCS4D02G086400.1.E1	TraesCS4D02G086400	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS4D02G086400.1.E6	TraesCS4D02G086400	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS4D02G107400.1.E1	TraesCS4D02G107400	Fructose-bisphosphate aldolase
Ι	TraesCS4D02G107400.1.E2	TraesCS4D02G107400	Fructose-bisphosphate aldolase
Ι	TraesCS4D02G107400.1.E5	TraesCS4D02G107400	Fructose-bisphosphate aldolase
Ι	TraesCS4D02G107400.1.E6	TraesCS4D02G107400	Fructose-bisphosphate aldolase
Ι	TraesCS4D02G135000.9.E7	TraesCS4D02G135000	N/A
Ι	TraesCS4D02G194400.1.E2	TraesCS4D02G194400	N/A
Ι	TraesCS4D02G205400.1.E1	TraesCS4D02G205400	N/A
Ι	TraesCS4D02G212000.1.E3	TraesCS4D02G212000	N/A
Ι	TraesCS4D02G319400.1.E7	TraesCS4D02G319400	Glyceraldehyde-3-phosphate dehydrogenase
Ι	TraesCS4D02G348600.1.E8	TraesCS4D02G348600	Peroxisomal protein%2C Response to salt and low nitrogen stresse
Ι	TraesCS5A02G036200.1.E10	TraesCS5A02G036200	N/A
Ι	TraesCS5A02G036200.1.E7	TraesCS5A02G036200	N/A
Ι	TraesCS5A02G108000.1.E1	TraesCS5A02G108000	Fructose-bisphosphate aldolase
Ι	TraesCS5A02G108000.1.E2	TraesCS5A02G108000	Fructose-bisphosphate aldolase
Ι	TraesCS5A02G110300.1.E1	TraesCS5A02G110300	N/A
Ι	TraesCS5A02G110300.1.E2	TraesCS5A02G110300	N/A
Ι	TraesCS5A02G165700.1.E1	TraesCS5A02G165700	Ribulose bisphosphate carboxylase small chain

Wheat ECN	Exon	Gene	Description
Ι	TraesCS5A02G165700.1.E2	TraesCS5A02G165700	Ribulose bisphosphate carboxylase small chain
Ι	TraesCS5A02G229300.1.E2	TraesCS5A02G229300	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS5A02G256900.1.E1	TraesCS5A02G256900	N/A
Ι	TraesCS5A02G322500.1.E2	TraesCS5A02G322500	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS5A02G350600.1.E1	TraesCS5A02G350600	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS5A02G402600.1.E2	TraesCS5A02G402600	N/A
Ι	TraesCS5A02G424400.1.E2	TraesCS5A02G424400	N/A
Ι	TraesCS5A02G424400.1.E9	TraesCS5A02G424400	N/A
Ι	TraesCS5A02G457500.1.E1	TraesCS5A02G457500	N/A
Ι	TraesCS5A02G461500.1.E3	TraesCS5A02G461500	N/A
Ι	TraesCS5A02G482800.1.E3	TraesCS5A02G482800	N/A
Ι	TraesCS5A02G495100.1.E7	TraesCS5A02G495100	Glyceraldehyde-3-phosphate dehydrogenase
Ι	TraesCS5B02G036800.1.E11	TraesCS5B02G036800	N/A
Ι	TraesCS5B02G036800.1.E8	TraesCS5B02G036800	N/A
Ι	TraesCS5B02G111800.1.E1	TraesCS5B02G111800	Thioredoxin M-type%2C chloroplastic
Ι	TraesCS5B02G111800.1.E2	TraesCS5B02G111800	Thioredoxin M-type%2C chloroplastic
Ι	TraesCS5B02G115300.1.E2	TraesCS5B02G115300	Fructose-bisphosphate aldolase
Ι	TraesCS5B02G162800.1.E2	TraesCS5B02G162800	Ribulose bisphosphate carboxylase small chain
Ι	TraesCS5B02G256400.1.E1	TraesCS5B02G256400	Photosystem 1 subunit 5
Ι	TraesCS5B02G322900.1.E2	TraesCS5B02G322900	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS5B02G407400.1.E2	TraesCS5B02G407400	N/A
Ι	TraesCS5B02G426500.1.E9	TraesCS5B02G426500	N/A
Ι	TraesCS5B02G471700.1.E3	TraesCS5B02G471700	N/A
Ι	TraesCS5B02G496000.1.E3	TraesCS5B02G496000	N/A
Ι	TraesCS5B02G534400.2.E10	TraesCS5B02G534400	N/A
Ι	TraesCS5D02G044400.1.E10	TraesCS5D02G044400	N/A
Ι	TraesCS5D02G044400.1.E7	TraesCS5D02G044400	N/A
Ι	TraesCS5D02G090700.1.E3	TraesCS5D02G090700	N/A
Ι	TraesCS5D02G118500.1.E1	TraesCS5D02G118500	N/A
Ι	TraesCS5D02G118500.1.E2	TraesCS5D02G118500	N/A
Ι	TraesCS5D02G238300.1.E2	TraesCS5D02G238300	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS5D02G265500.1.E1	TraesCS5D02G265500	N/A
Ι	TraesCS5D02G329200.1.E2	TraesCS5D02G329200	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS5D02G357600.1.E1	TraesCS5D02G357600	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS5D02G412600.1.E1	TraesCS5D02G412600	N/A
Ι	TraesCS5D02G422800.1.E1	TraesCS5D02G422800	N/A
Ι	TraesCS5D02G432900.1.E10	TraesCS5D02G432900	N/A
Ι	TraesCS5D02G474200.1.E2	TraesCS5D02G474200	N/A
Ι	TraesCS5D02G496400.2.E3	TraesCS5D02G496400	N/A
Ι	TraesCS5D02G502900.1.E1	TraesCS5D02G502900	N/A

Wheat ECN	Exon	Gene	Description
Ι	TraesCS5D02G532100.1.E10	TraesCS5D02G532100	N/A
Ι	TraesCS6A02G086300.1.E1	TraesCS6A02G086300	N/A
Ι	TraesCS6A02G159800.1.E1	TraesCS6A02G159800	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS6A02G159800.1.E3	TraesCS6A02G159800	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS6A02G209800.1.E1	TraesCS6A02G209800	Elongation factor Tu
Ι	TraesCS6A02G267300.1.E1	TraesCS6A02G267300	Phosphoribulokinase
Ι	TraesCS6A02G303800.1.E1	TraesCS6A02G303800	PDE332
Ι	TraesCS6A02G307700.1.E3	TraesCS6A02G307700	Geranylgeranyl diphosphate reductase%2C chloroplastic
Ι	TraesCS6A02G358100.1.E4	TraesCS6A02G358100	N/A
Ι	TraesCS6B02G015000.1.E5	TraesCS6B02G015000	FerredoxinNADP reductase%2C chloroplastic
Ι	TraesCS6B02G115900.1.E1	TraesCS6B02G115900	N/A
Ι	TraesCS6B02G191500.1.E1	TraesCS6B02G191500	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS6B02G191500.1.E3	TraesCS6B02G191500	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS6B02G197100.1.E1	TraesCS6B02G197100	N/A
Ι	TraesCS6B02G238600.1.E1	TraesCS6B02G238600	Elongation factor Tu
Ι	TraesCS6B02G248700.1.E3	TraesCS6B02G248700	N/A
Ι	TraesCS6B02G294700.1.E1	TraesCS6B02G294700	Phosphoribulokinase
Ι	TraesCS6B02G336300.1.E3	TraesCS6B02G336300	Geranylgeranyl diphosphate reductase%2C chloroplastic
Ι	TraesCS6B02G390600.1.E4	TraesCS6B02G390600	N/A
Ι	TraesCS6D02G001700.1.E8	TraesCS6D02G001700	hydroxypyruvate reductase
Ι	TraesCS6D02G012200.1.E5	TraesCS6D02G012200	FerredoxinNADP reductase%2C chloroplastic
Ι	TraesCS6D02G152700.1.E2	TraesCS6D02G152700	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS6D02G152700.1.E4	TraesCS6D02G152700	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS6D02G158500.1.E1	TraesCS6D02G158500	N/A
Ι	TraesCS6D02G193000.1.E1	TraesCS6D02G193000	Elongation factor Tu
Ι	TraesCS6D02G247400.1.E1	TraesCS6D02G247400	Phosphoribulokinase%2C chloroplastic
Ι	TraesCS6D02G283300.1.E1	TraesCS6D02G283300	PDE332
Ι	TraesCS6D02G286900.1.E3	TraesCS6D02G286900	Geranylgeranyl diphosphate reductase%2C chloroplastic
Ι	TraesCS6D02G340700.1.E4	TraesCS6D02G340700	N/A
Ι	TraesCS6D02G370200.1.E3	TraesCS6D02G370200	N/A
Ι	TraesCS7A02G000400.1.E1	TraesCS7A02G000400	Plastocyanin
Ι	TraesCS7A02G227100.1.E5	TraesCS7A02G227100	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS7A02G325400.1.E1	TraesCS7A02G325400	Ferredoxin%2C chloroplastic
Ι	TraesCS7A02G325500.1.E1	TraesCS7A02G325500	Ferredoxin
Ι	TraesCS7A02G381100.2.E2	TraesCS7A02G381100	N/A
Ι	TraesCS7B02G065200.1.E4	TraesCS7B02G065200	N/A
Ι	TraesCS7B02G167500.1.E4	TraesCS7B02G167500	N/A
Ι	TraesCS7B02G167600.1.E7	TraesCS7B02G167600	N/A

Wheat ECN	Exon	Gene	Description
Ι	TraesCS7B02G192500.1.E4	TraesCS7B02G192500	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS7B02G226100.1.E1	TraesCS7B02G226100	Ferredoxin%2C chloroplastic
Ι	TraesCS7B02G226200.1.E1	TraesCS7B02G226200	Ferredoxin
Ι	TraesCS7B02G283000.1.E2	TraesCS7B02G283000	Fructose-bisphosphate aldolase
Ι	TraesCS7B02G283000.1.E3	TraesCS7B02G283000	Fructose-bisphosphate aldolase
Ι	TraesCS7D02G000300.1.E1	TraesCS7D02G000300	Plastocyanin
Ι	TraesCS7D02G161000.1.E3	TraesCS7D02G161000	N/A
Ι	TraesCS7D02G227300.1.E4	TraesCS7D02G227300	Chlorophyll a-b binding protein%2C chloroplastic
Ι	TraesCS7D02G322000.1.E1	TraesCS7D02G322000	Ferredoxin
Ι	TraesCS7D02G377400.1.E2	TraesCS7D02G377400	Fructose-bisphosphate aldolase
Ι	TraesCS7D02G377400.1.E3	TraesCS7D02G377400	Fructose-bisphosphate aldolase
Ι	TraesCS7D02G382300.1.E1	TraesCS7D02G382300	N/A
Ι	TraesCSU02G077300.1.E1	TraesCSU02G077300	N/A
II	TraesCS1A02G097000.1.E1	TraesCS1A02G097000	N/A
Π	TraesCS1A02G251200.1.E1	TraesCS1A02G251200	N/A
II	TraesCS1A02G392000.1.E1	TraesCS1A02G392000	Photosystem I reaction center subunit VI%2C chloroplast precursor (PSI- H) (Light-harvesting complex 1.11 kDa protein) (GOS5 protein)
II	TraesCS1B02G186300.1.E3	TraesCS1B02G186300	NADPH-protochlorophyllide oxidoreductase
II	TraesCS1B02G261800.1.E1	TraesCS1B02G261800	N/A
II	TraesCS1D02G400100.1.E1	TraesCS1D02G400100	Photosystem I reaction center subunit VI%2C chloroplast precursor (PSI- H) (Light-harvesting complex I 11 kDa protein) (GOS5 protein)
II	TraesCS2A02G114400.1.E1	TraesCS2A02G114400	N/A
II	TraesCS2A02G187200.1.E1	TraesCS2A02G187200	Chlorophyll a-b binding protein%2C chloroplastic
II	TraesCS2A02G206200.1.E1	TraesCS2A02G206200	Chlorophyll a-b binding protein%2C chloroplastic
Π	TraesCS2A02G207900.1.E3	TraesCS2A02G207900	Cytochrome b6-f complex iron-sulfur subunit
Π	TraesCS2A02G215000.1.E1	TraesCS2A02G215000	N/A
Π	TraesCS2A02G225300.1.E1	TraesCS2A02G225300	N/A
Π	TraesCS2A02G247300.3.E1	TraesCS2A02G247300	N/A
II	TraesCS2A02G344600.1.E3	TraesCS2A02G344600	Glyceraldehyde-3-phosphate dehydrogenase
Π	TraesCS2A02G348500.1.E1	TraesCS2A02G348500	N/A
II	TraesCS2A02G371100.1.E5	TraesCS2A02G371100	N/A
II	TraesCS2A02G467900.1.E1	TraesCS2A02G467900	Aminomethyltransferase
II	TraesCS2A02G500400.2.E1	TraesCS2A02G500400	Glutamine synthetase
Π	TraesCS2B02G220100.1.E1	TraesCS2B02G220100	Chlorophyll a-b binding protein%2C chloroplastic
II	TraesCS2B02G233400.1.E1	TraesCS2B02G233400	Chlorophyll a-b binding protein%2C chloroplastic
II	TraesCS2B02G234500.1.E2	TraesCS2B02G234500	Cytochrome b6-f complex iron-sulfur subunit
II	TraesCS2B02G240000.1.E1	TraesCS2B02G240000	N/A
II	TraesCS2B02G260200.1.E1	TraesCS2B02G260200	N/A
II	TraesCS2B02G270300.1.E1	TraesCS2B02G270300	Oxygen evolving enhancer protein
Wheat ECN	Exon	Gene	Description
--------------	-------------------------	--------------------	--
II	TraesCS2B02G340300.1.E1	TraesCS2B02G340300	Chlorophyll a-b binding protein%2C chloroplastic
II	TraesCS2B02G342200.1.E3	TraesCS2B02G342200	Glyceraldehyde-3-phosphate dehydrogenase
Π	TraesCS2B02G405600.1.E1	TraesCS2B02G405600	N/A
II	TraesCS2D02G115200.1.E1	TraesCS2D02G115200	N/A
II	TraesCS2D02G179700.1.E1	TraesCS2D02G179700	N/A
II	TraesCS2D02G200700.1.E1	TraesCS2D02G200700	Chlorophyll a-b binding protein%2C chloroplastic
II	TraesCS2D02G200700.1.E3	TraesCS2D02G200700	Chlorophyll a-b binding protein%2C chloroplastic
II	TraesCS2D02G200700.1.E4	TraesCS2D02G200700	Chlorophyll a-b binding protein%2C chloroplastic
II	TraesCS2D02G209900.1.E1	TraesCS2D02G209900	Chlorophyll a-b binding protein%2C chloroplastic
П	TraesCS2D02G214700.1.E2	TraesCS2D02G214700	Cytochrome b6-f complex iron-sulfur subunit%2C chloroplastic
II	TraesCS2D02G220800.1.E1	TraesCS2D02G220800	N/A
II	TraesCS2D02G248400.2.E1	TraesCS2D02G248400	Oxygen evolving enhancer protein
II	TraesCS2D02G255100.1.E1	TraesCS2D02G255100	N/A
II	TraesCS2D02G467900.1.E1	TraesCS2D02G467900	Aminomethyltransferase
II	TraesCS3A02G250200.1.E1	TraesCS3A02G250200	Glycine cleavage system P protein
II	TraesCS3A02G304900.1.E1	TraesCS3A02G304900	N/A
П	TraesCS3A02G367000.1.E5	TraesCS3A02G367000	Sedoheptulose-1%2C7-bisphosphatase%2C chloroplastic
II	TraesCS3A02G381000.1.E1	TraesCS3A02G381000	N/A
II	TraesCS3A02G443700.1.E2	TraesCS3A02G443700	PnsB5
II	TraesCS3B02G279700.1.E1	TraesCS3B02G279700	Glycine cleavage system P protein
II	TraesCS3B02G344200.1.E1	TraesCS3B02G344200	Similar to Photosystem II reaction center W protein (PSII 6.1 kDa protein) (Fragment)
II	TraesCS3B02G413700.1.E1	TraesCS3B02G413700	N/A
II	TraesCS3B02G477300.1.E1	TraesCS3B02G477300	PnsB5
II	TraesCS3D02G084800.1.E1	TraesCS3D02G084800	N/A
II	TraesCS3D02G250600.1.E1	TraesCS3D02G250600	Glycine cleavage system P protein
Π	TraesCS3D02G309400.1.E1	TraesCS3D02G309400	Similar to Photosystem II reaction center W protein (PSII 6.1 kDa protein) (Fragment)
II	TraesCS3D02G370700.1.E1	TraesCS3D02G370700	N/A
II	TraesCS3D02G374200.1.E1	TraesCS3D02G374200	N/A
II	TraesCS4A02G093100.1.E1	TraesCS4A02G093100	Fructose-1%2C6-bisphosphatase%2C chloroplastic
II	TraesCS4A02G120600.1.E1	TraesCS4A02G120600	N/A
II	TraesCS4A02G319000.2.E1	TraesCS4A02G319000	N/A
II	TraesCS4A02G342800.1.E1	TraesCS4A02G342800	N/A
II	TraesCS4A02G499500.1.E1	TraesCS4A02G499500	Plastocyanin
II	TraesCS4B02G043700.1.E3	TraesCS4B02G043700	Peptidylprolyl isomerase
II	TraesCS4B02G211400.1.E1	TraesCS4B02G211400	N/A
II	TraesCS4B02G274300.1.E1	TraesCS4B02G274300	NDH-dependent cyclic electron flow 1
II	TraesCS4B02G323000.1.E6	TraesCS4B02G323000	Glyceraldehyde-3-phosphate dehydrogenase

Wheat ECN	Exon	Gene	Description
II	TraesCS4B02G325800.1.E3	TraesCS4B02G325800	Catalase
II	TraesCS4B02G326700.1.E1	TraesCS4B02G326700	Signal recognition particle 43 kDa protein%2C chloroplastic
II	TraesCS4D02G212000.1.E1	TraesCS4D02G212000	N/A
II	TraesCS4D02G212000.1.E2	TraesCS4D02G212000	N/A
II	TraesCS4D02G319400.1.E6	TraesCS4D02G319400	Glyceraldehyde-3-phosphate dehydrogenase
II	TraesCS4D02G323400.1.E1	TraesCS4D02G323400	Signal recognition particle 43 kDa protein%2C chloroplastic
Π	TraesCS5A02G414400.1.E1	TraesCS5A02G414400	N/A
II	TraesCS5A02G424400.1.E6	TraesCS5A02G424400	N/A
II	TraesCS5A02G482800.1.E1	TraesCS5A02G482800	N/A
II	TraesCS5A02G495100.1.E1	TraesCS5A02G495100	Glyceraldehyde-3-phosphate dehydrogenase
II	TraesCS5A02G495100.1.E6	TraesCS5A02G495100	Glyceraldehyde-3-phosphate dehydrogenase
II	TraesCS5A02G498000.1.E3	TraesCS5A02G498000	Catalase
II	TraesCS5A02G498700.1.E1	TraesCS5A02G498700	Signal recognition particle 43 kDa protein%2C chloroplastic
II	TraesCS5B02G417400.1.E1	TraesCS5B02G417400	N/A
II	TraesCS5B02G426500.1.E6	TraesCS5B02G426500	N/A
II	TraesCS5B02G466700.1.E1	TraesCS5B02G466700	N/A
II	TraesCS5B02G496000.1.E1	TraesCS5B02G496000	N/A
II	TraesCS5B02G560400.2.E1	TraesCS5B02G560400	N/A
II	TraesCS5D02G432900.1.E7	TraesCS5D02G432900	N/A
II	TraesCS5D02G468400.1.E1	TraesCS5D02G468400	N/A
II	TraesCS5D02G496400.2.E1	TraesCS5D02G496400	N/A
II	TraesCS5D02G569800.1.E1	TraesCS5D02G569800	N/A
II	TraesCS6A02G105400.1.E1	TraesCS6A02G105400	N/A
II	TraesCS6A02G219200.1.E1	TraesCS6A02G219200	N/A
II	TraesCS6A02G307700.1.E1	TraesCS6A02G307700	Geranylgeranyl diphosphate reductase%2C chloroplastic
П	TraesCS6A02G307700.1.E2	TraesCS6A02G307700	Geranylgeranyl diphosphate reductase%2C chloroplastic
II	TraesCS6A02G358100.1.E1	TraesCS6A02G358100	N/A
II	TraesCS6A02G372100.1.E1	TraesCS6A02G372100	Thioredoxin domain 2 containing protein
Π	TraesCS6B02G015000.1.E1	TraesCS6B02G015000	FerredoxinNADP reductase%2C chloroplastic
II	TraesCS6B02G248700.1.E1	TraesCS6B02G248700	N/A
II	TraesCS6B02G336300.1.E1	TraesCS6B02G336300	Geranylgeranyl diphosphate reductase%2C chloroplastic
II	TraesCS6B02G336300.1.E2	TraesCS6B02G336300	Geranylgeranyl diphosphate reductase%2C chloroplastic
II	TraesCS6B02G390600.1.E1	TraesCS6B02G390600	N/A
II	TraesCS6D02G012200.1.E1	TraesCS6D02G012200	FerredoxinNADP reductase%2C chloroplastic
II	TraesCS6D02G202300.1.E1	TraesCS6D02G202300	N/A
II	TraesCS6D02G286900.1.E1	TraesCS6D02G286900	Geranylgeranyl diphosphate reductase%2C chloroplastic

Wheat ECN	Exon	Gene	Description
П	TraesCS6D02G286900.1.E2	TraesCS6D02G286900	Geranylgeranyl diphosphate reductase%2C chloroplastic
II	TraesCS6D02G299200.1.E1	TraesCS6D02G299200	Chlorophyll a-b binding protein%2C chloroplastic
II	TraesCS6D02G340700.1.E1	TraesCS6D02G340700	N/A
II	TraesCS7A02G020500.1.E1	TraesCS7A02G020500	FerredoxinNADP reductase%2C chloroplastic
II	TraesCS7A02G068500.1.E1	TraesCS7A02G068500	N/A
II	TraesCS7A02G227100.1.E2	TraesCS7A02G227100	Chlorophyll a-b binding protein%2C chloroplastic
II	TraesCS7A02G227100.1.E4	TraesCS7A02G227100	Chlorophyll a-b binding protein%2C chloroplastic
II	TraesCS7A02G291000.1.E1	TraesCS7A02G291000	N/A
II	TraesCS7A02G385700.1.E1	TraesCS7A02G385700	N/A
II	TraesCS7A02G485300.1.E1	TraesCS7A02G485300	Peptidylprolyl isomerase
II	TraesCS7B02G148000.1.E3	TraesCS7B02G148000	N/A
II	TraesCS7B02G192500.1.E1	TraesCS7B02G192500	Chlorophyll a-b binding protein%2C chloroplastic
II	TraesCS7B02G192500.1.E3	TraesCS7B02G192500	Chlorophyll a-b binding protein%2C chloroplastic
II	TraesCS7B02G288600.1.E1	TraesCS7B02G288600	N/A
II	TraesCS7D02G016800.1.E1	TraesCS7D02G016800	FerredoxinNADP reductase%2C chloroplastic
II	TraesCS7D02G161000.1.E1	TraesCS7D02G161000	N/A
II	TraesCS7D02G227300.1.E1	TraesCS7D02G227300	Chlorophyll a-b binding protein%2C chloroplastic
II	TraesCS7D02G227300.1.E3	TraesCS7D02G227300	Chlorophyll a-b binding protein%2C chloroplastic
II	TraesCS7D02G472600.1.E1	TraesCS7D02G472600	Peptidylprolyl isomerase
III	TraesCS1D02G116400.1.E6	TraesCS1D02G116400	N/A
III	TraesCS1D02G313800.2.E6	TraesCS1D02G313800	Phosphoglycerate kinase
III	TraesCS2A02G207900.1.E5	TraesCS2A02G207900	Cytochrome b6-f complex iron-sulfur subunit
III	TraesCS2A02G261600.1.E12	TraesCS2A02G261600	N/A
III	TraesCS2A02G387000.1.E2	TraesCS2A02G387000	Elongation factor G%2C chloroplastic
III	TraesCS2A02G387000.1.E3	TraesCS2A02G387000	Elongation factor G%2C chloroplastic
III	TraesCS2A02G387000.1.E4	TraesCS2A02G387000	Elongation factor G%2C chloroplastic
III	TraesCS2A02G387800.1.E2	TraesCS2A02G387800	N/A
III	TraesCS2B02G280600.2.E12	TraesCS2B02G280600	N/A
III	TraesCS2B02G404600.1.E2	TraesCS2B02G404600	Elongation factor G%2C chloroplastic
III	TraesCS2B02G404600.1.E3	TraesCS2B02G404600	Elongation factor G%2C chloroplastic
III	TraesCS2B02G404600.1.E4	TraesCS2B02G404600	Elongation factor G%2C chloroplastic
III	TraesCS2B02G405600.1.E2	TraesCS2B02G405600	N/A
III	TraesCS2D02G057900.1.E5	TraesCS2D02G057900	Protein PHOTOSYSTEM I ASSEMBLY 2%2C chloroplastic
III	TraesCS2D02G383800.1.E2	TraesCS2D02G383800	Elongation factor G%2C chloroplastic
III	TraesCS2D02G383800.1.E3	TraesCS2D02G383800	Elongation factor G%2C chloroplastic
III	TraesCS2D02G383800.1.E4	TraesCS2D02G383800	Elongation factor G%2C chloroplastic
III	TraesCS3A02G304900.1.E6	TraesCS3A02G304900	N/A
III	TraesCS3A02G443700.1.E6	TraesCS3A02G443700	PnsB5
III	TraesCS3B02G477300.1.E5	TraesCS3B02G477300	PnsB5

Wheat ECN	Exon	Gene	Description
III	TraesCS3D02G436100.1.E5	TraesCS3D02G436100	PnsB5
III	TraesCS4A02G190400.2.E5	TraesCS4A02G190400	N/A
III	TraesCS4A02G246100.1.E15	TraesCS4A02G246100	Serine hydroxymethyltransferase
III	TraesCS4A02G246100.1.E16	TraesCS4A02G246100	Serine hydroxymethyltransferase
III	TraesCS4A02G268900.1.E2	TraesCS4A02G268900	N/A
III	TraesCS4B02G045300.1.E2	TraesCS4B02G045300	N/A
III	TraesCS4B02G069300.1.E15	TraesCS4B02G069300	Serine hydroxymethyltransferase
III	TraesCS4B02G069300.1.E17	TraesCS4B02G069300	Serine hydroxymethyltransferase
III	TraesCS4B02G134600.1.E8	TraesCS4B02G134600	N/A
III	TraesCS4B02G285000.1.E9	TraesCS4B02G285000	Ribulose-phosphate 3-epimerase
III	TraesCS4B02G355100.1.E8	TraesCS4B02G355100	Putative PEX11-1 protein
III	TraesCS4D02G045200.1.E2	TraesCS4D02G045200	N/A
III	TraesCS4D02G068100.1.E15	TraesCS4D02G068100	Serine hydroxymethyltransferase
III	TraesCS4D02G068100.1.E16	TraesCS4D02G068100	Serine hydroxymethyltransferase
III	TraesCS4D02G283800.1.E9	TraesCS4D02G283800	Ribulose-phosphate 3-epimerase
III	TraesCS5A02G030400.1.E18	TraesCS5A02G030400	N/A
III	TraesCS5A02G230400.1.E5	TraesCS5A02G230400	N/A
III	TraesCS5A02G524400.1.E8	TraesCS5A02G524400	Peroxisomal protein%2C Response to salt and low nitrogen stresse
III	TraesCS5B02G035200.1.E3	TraesCS5B02G035200	N/A
III	TraesCS5B02G412500.3.E9	TraesCS5B02G412500	N/A
III	TraesCS5D02G122700.1.E2	TraesCS5D02G122700	Fructose-bisphosphate aldolase
III	TraesCS5D02G237400.1.E5	TraesCS5D02G237400	N/A
III	TraesCS5D02G417600.1.E9	TraesCS5D02G417600	Malate dehydrogenase
III	TraesCS5D02G569800.1.E10	TraesCS5D02G569800	N/A
III	TraesCS6A02G208200.1.E3	TraesCS6A02G208200	Phosphate transporter
III	TraesCS6A02G267300.1.E4	TraesCS6A02G267300	Phosphoribulokinase
III	TraesCS6A02G267300.1.E5	TraesCS6A02G267300	Phosphoribulokinase
III	TraesCS6A02G308100.1.E4	TraesCS6A02G308100	N/A
III	TraesCS6B02G015000.1.E6	TraesCS6B02G015000	FerredoxinNADP reductase%2C chloroplastic
III	TraesCS6B02G294700.1.E4	TraesCS6B02G294700	Phosphoribulokinase
III	TraesCS6B02G294700.1.E5	TraesCS6B02G294700	Phosphoribulokinase
III	TraesCS6D02G012200.1.E6	TraesCS6D02G012200	FerredoxinNADP reductase%2C chloroplastic
III	TraesCS6D02G183500.1.E14	TraesCS6D02G183500	N/A
III	TraesCS6D02G247400.1.E4	TraesCS6D02G247400	Phosphoribulokinase%2C chloroplastic
III	TraesCS6D02G247400.1.E5	TraesCS6D02G247400	Phosphoribulokinase%2C chloroplastic
III	TraesCS6D02G283300.1.E2	TraesCS6D02G283300	PDE332
III	TraesCS6D02G287300.1.E4	TraesCS6D02G287300	N/A
III	TraesCS6D02G299200.1.E6	TraesCS6D02G299200	Chlorophyll a-b binding protein%2C chloroplastic
III	TraesCS7A02G020500.1.E6	TraesCS7A02G020500	FerredoxinNADP reductase%2C chloroplastic

Wheat ECN	Exon	Gene	Description
III	TraesCS7A02G206700.2.E5	TraesCS7A02G206700	N/A
III	TraesCS7A02G294700.1.E6	TraesCS7A02G294700	N/A
III	TraesCS7B02G114100.1.E5	TraesCS7B02G114100	N/A
III	TraesCS7B02G189500.1.E6	TraesCS7B02G189500	N/A
III	TraesCS7B02G313800.1.E4	TraesCS7B02G313800	N/A
III	TraesCS7D02G016800.1.E6	TraesCS7D02G016800	FerredoxinNADP reductase%2C chloroplastic
III	TraesCS7D02G209600.2.E5	TraesCS7D02G209600	N/A
III	TraesCS7D02G472600.1.E3	TraesCS7D02G472600	Peptidylprolyl isomerase
IV	ENSRNA050013832.E1	ENSRNA050013832	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050013838.E1	ENSRNA050013838	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050013842.E1	ENSRNA050013842	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050013848.E1	ENSRNA050013848	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050013851.E1	ENSRNA050013851	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050013852.E1	ENSRNA050013852	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050013859.E1	ENSRNA050013859	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050013861.E1	ENSRNA050013861	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050013864.E1	ENSRNA050013864	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050015671.E1	ENSRNA050015671	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050015672.E1	ENSRNA050015672	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050015673.E1	ENSRNA050015673	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050015982.E1	ENSRNA050015982	Eukaryotic large subunit ribosomal RNA
IV	ENSRNA050016387.E1	ENSRNA050016387	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050016549.E1	ENSRNA050016549	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050016783.E1	ENSRNA050016783	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050016807.E1	ENSRNA050016807	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050018652.E1	ENSRNA050018652	Eukaryotic large subunit ribosomal RNA
IV	ENSRNA050018659.E1	ENSRNA050018659	Eukaryotic large subunit ribosomal RNA
IV	ENSRNA050018663.E1	ENSRNA050018663	Eukaryotic large subunit ribosomal RNA
IV	ENSRNA050018909.E1	ENSRNA050018909	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050018910.E1	ENSRNA050018910	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050018911.E1	ENSRNA050018911	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050018913.E1	ENSRNA050018913	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050018926.E1	ENSRNA050018926	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050019700.E1	ENSRNA050019700	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050019891.E1	ENSRNA050019891	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050019892.E1	ENSRNA050019892	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050019893.E1	ENSRNA050019893	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050019894.E1	ENSRNA050019894	Eukaryotic large subunit ribosomal RNA
IV	ENSRNA050020636.E1	ENSRNA050020636	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050020637.E1	ENSRNA050020637	Eukaryotic small subunit ribosomal RNA

Wheat ECN	Exon	Gene	Description
IV	ENSRNA050020641.E1	ENSRNA050020641	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050020881.E1	ENSRNA050020881	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050021225.E1	ENSRNA050021225	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050021761.E1	ENSRNA050021761	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050024295.E1	ENSRNA050024295	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050024297.E1	ENSRNA050024297	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050024298.E1	ENSRNA050024298	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050024357.E1	ENSRNA050024357	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050024358.E1	ENSRNA050024358	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050024359.E1	ENSRNA050024359	Eukaryotic large subunit ribosomal RNA
IV	ENSRNA050024363.E1	ENSRNA050024363	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050024364.E1	ENSRNA050024364	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050024366.E1	ENSRNA050024366	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050024521.E1	ENSRNA050024521	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050024524.E1	ENSRNA050024524	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050024571.E1	ENSRNA050024571	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050024578.E1	ENSRNA050024578	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050024580.E1	ENSRNA050024580	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050024582.E1	ENSRNA050024582	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050024755.E1	ENSRNA050024755	Eukaryotic small subunit ribosomal RNA
IV	ENSRNA050024756.E1	ENSRNA050024756	Eukaryotic small subunit ribosomal RNA
IV	TraesCS1A02G001700.1.E1	TraesCS1A02G001700	N/A
IX	TraesCS3B02G268900.1.E1	TraesCS3B02G268900	N/A
IX	TraesCS3D02G194000.1.E2	TraesCS3D02G194000	Similar to 50S ribosomal protein L40
IX	TraesCS3D02G240800.1.E1	TraesCS3D02G240800	N/A
IX	TraesCS4A02G091100.1.E1	TraesCS4A02G091100	RPL4
IX	TraesCS4B02G213600.1.E1	TraesCS4B02G213600	RPL4
IX	TraesCS4B02G344600.2.E3	TraesCS4B02G344600	50S ribosomal protein L5%2C chloroplastic
IX	TraesCS4D02G339700.1.E3	TraesCS4D02G339700	50S ribosomal protein L5%2C chloroplastic
IX	TraesCS5A02G368400.1.E3	TraesCS5A02G368400	N/A
IX	TraesCS5B02G370700.1.E3	TraesCS5B02G370700	N/A
IX	TraesCS5D02G414600.1.E2	TraesCS5D02G414600	30S ribosomal protein S9%2C chloroplastic
IX	TraesCS7A02G480700.1.E3	TraesCS7A02G480700	Mg-protoporphyrin IX chelatase
IX	TraesCS7D02G467500.1.E3	TraesCS7D02G467500	Mg-protoporphyrin IX chelatase
V	TraesCS1A02G159100.1.E1	TraesCS1A02G159100	N/A
V	TraesCS1B02G174800.1.E1	TraesCS1B02G174800	N/A
V	TraesCS2A02G170800.1.E1	TraesCS2A02G170800	N/A
V	TraesCS2D02G111100.1.E1	TraesCS2D02G111100	N/A
V	TraesCS2D02G178300.1.E1	TraesCS2D02G178300	N/A
V	TraesCS2D02G263000.1.E1	TraesCS2D02G263000	N/A

Wheat ECN	Exon	Gene	Description
V	TraesCS3A02G313500.1.E1	TraesCS3A02G313500	N/A
V	TraesCS3B02G158400.1.E1	TraesCS3B02G158400	N/A
V	TraesCS3D02G140800.1.E1	TraesCS3D02G140800	N/A
V	TraesCS4A02G190200.1.E1	TraesCS4A02G190200	N/A
V	TraesCS4D02G123000.1.E1	TraesCS4D02G123000	N/A
V	TraesCS5A02G082800.1.E1	TraesCS5A02G082800	N/A
V	TraesCS5A02G458900.1.E1	TraesCS5A02G458900	N/A
V	TraesCS5B02G088900.1.E1	TraesCS5B02G088900	N/A
V	TraesCS5B02G468500.1.E1	TraesCS5B02G468500	N/A
V	TraesCS5D02G470000.1.E1	TraesCS5D02G470000	N/A
V	TraesCS7B02G444400.1.E1	TraesCS7B02G444400	60S ribosomal protein L27
VI	TraesCS2B02G313700.1.E7	TraesCS2B02G313700	N/A
VI	TraesCS2D02G295500.1.E7	TraesCS2D02G295500	N/A
VI	TraesCS5A02G368400.1.E4	TraesCS5A02G368400	N/A
VI	TraesCS5A02G468600.1.E2	TraesCS5A02G468600	50S ribosomal protein L17%2C chloroplastic
VI	TraesCS5B02G370700.1.E4	TraesCS5B02G370700	N/A
VI	TraesCS5B02G481100.1.E2	TraesCS5B02G481100	50S ribosomal protein L17%2C chloroplastic
VI	TraesCS5D02G378000.1.E4	TraesCS5D02G378000	N/A
VI	TraesCS5D02G481500.1.E2	TraesCS5D02G481500	50S ribosomal protein L17%2C chloroplastic
VI	TraesCS6A02G084200.1.E3	TraesCS6A02G084200	N/A
VI	TraesCS6A02G105400.1.E2	TraesCS6A02G105400	N/A
VI	TraesCS6B02G112800.1.E3	TraesCS6B02G112800	N/A
VI	TraesCS6B02G134800.1.E2	TraesCS6B02G134800	N/A
VI	TraesCS6D02G094200.1.E2	TraesCS6D02G094200	N/A
VI	TraesCS7B02G176100.1.E4	TraesCS7B02G176100	N/A
VI	TraesCS7D02G278100.1.E4	TraesCS7D02G278100	N/A
VII	ENSRNA050013833.E1	ENSRNA050013833	Eukaryotic small subunit ribosomal RNA
VII	ENSRNA050013840.E1	ENSRNA050013840	Eukaryotic small subunit ribosomal RNA
VII	ENSRNA050013857.E1	ENSRNA050013857	Eukaryotic small subunit ribosomal RNA
VII	ENSRNA050013875.E1	ENSRNA050013875	Eukaryotic large subunit ribosomal RNA
VII	ENSRNA050019260.E1	ENSRNA050019260	Eukaryotic small subunit ribosomal RNA
VII	ENSRNA050019702.E1	ENSRNA050019702	Eukaryotic large subunit ribosomal RNA
VII	ENSRNA050020224.E1	ENSRNA050020224	Eukaryotic large subunit ribosomal RNA
VII	ENSRNA050021222.E1	ENSRNA050021222	Eukaryotic small subunit ribosomal RNA
VII	ENSRNA050024312.E1	ENSRNA050024312	Eukaryotic small subunit ribosomal RNA
VII	ENSRNA050024360.E1	ENSRNA050024360	Eukaryotic large subunit ribosomal RNA
VII	ENSRNA050024528.E1	ENSRNA050024528	Eukaryotic small subunit ribosomal RNA
VII	ENSRNA050024795.E1	ENSRNA050024795	Eukaryotic small subunit ribosomal RNA
VII	TraesCS1A02G000900.1.E2	TraesCS1A02G000900	N/A
VII	TraesCS6B02G117900.1.E1	TraesCS6B02G117900	N/A

Wheat ECN	Exon	Gene	Description
VIII	TraesCS2A02G066700.1.E2	TraesCS2A02G066700	Ribulose bisphosphate carboxylase small chain
VIII	TraesCS2A02G066800.1.E2	TraesCS2A02G066800	Ribulose bisphosphate carboxylase small chain
VIII	TraesCS2B02G079200.1.E2	TraesCS2B02G079200	Ribulose bisphosphate carboxylase small chain
VIII	TraesCS2D02G065200.1.E2	TraesCS2D02G065200	Ribulose bisphosphate carboxylase small chain
VIII	TraesCS2D02G065300.1.E2	TraesCS2D02G065300	Ribulose bisphosphate carboxylase small chain
VIII	TraesCS3A02G230000.3.E9	TraesCS3A02G230000	Carbonic anhydrase
VIII	TraesCS3B02G259300.2.E9	TraesCS3B02G259300	Carbonic anhydrase
VIII	TraesCS3D02G223300.3.E9	TraesCS3D02G223300	Carbonic anhydrase
VIII	TraesCS6A02G312200.1.E4	TraesCS6A02G312200	Glycine cleavage system H protein
VIII	TraesCS6B02G342400.1.E4	TraesCS6B02G342400	Glycine cleavage system H protein
VIII	TraesCS7D02G016800.1.E7	TraesCS7D02G016800	FerredoxinNADP reductase%2C chloroplastic
VIII	TraesCS7D02G343300.1.E8	TraesCS7D02G343300	CBBY-like protein
X	TraesCS6A02G173100.1.E1	TraesCS6A02G173100	N/A
Х	TraesCS6B02G200800.1.E1	TraesCS6B02G200800	N/A
Х	TraesCS6D02G094200.1.E1	TraesCS6D02G094200	N/A
Х	TraesCS6D02G162200.1.E1	TraesCS6D02G162200	N/A
Х	TraesCS6D02G174500.1.E1	TraesCS6D02G174500	50S ribosomal protein L21%2C chloroplastic
Х	TraesCS6D02G224200.1.E1	TraesCS6D02G224200	N/A
Х	TraesCS7A02G267900.1.E1	TraesCS7A02G267900	plastid-specific 50S ribosomal protein 6
Х	TraesCS7A02G278300.1.E1	TraesCS7A02G278300	N/A
Х	TraesCS7B02G176100.1.E1	TraesCS7B02G176100	N/A
Х	TraesCS7D02G267000.1.E1	TraesCS7D02G267000	plastid-specific 50S ribosomal protein 6
Х	TraesCS7D02G278100.1.E1	TraesCS7D02G278100	N/A
XI	ENSRNA050016680.E1	ENSRNA050016680	Antisense RNA which regulates isiA expression
XI	ENSRNA050021557.E1	ENSRNA050021557	Antisense RNA which regulates isiA expression
XI	ENSRNA050022801.E1	ENSRNA050022801	Antisense RNA which regulates isiA expression
XI	TraesCS1D02G179900.1.E1	TraesCS1D02G179900	Photosystem II protein D1
XI	TraesCS2B02G487300.1.E1	TraesCS2B02G487300	30S ribosomal protein S14%2C chloroplastic
XI	TraesCS2B02G487400.1.E1	TraesCS2B02G487400	N/A
XI	TraesCS5D02G559400.1.E1	TraesCS5D02G559400	N/A
XI	TraesCS5D02G559700.1.E1	TraesCS5D02G559700	N/A
XI	TraesCS6B02G037800.1.E1	TraesCS6B02G037800	N/A
XI	TraesCSU02G269500.1.E1	TraesCSU02G269500	Cytochrome b6-f complex subunit 4

Legend: N/A Not applicable.