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Two-Dimensional Recursive Parameter
Identification for Adaptive Kalman Filtering Fig. 1. The NSHP ROS.

of

Mahmood R. Azimi-Sadjadi and Sami Bannour

Abstract-This paper is concerned with the development of a 2-D
adaptive Kalman filtering by recursive adjustment of the parameters of
an autoregressive (AR) image model with non symmetric half-plane
(NSHP) region of support. The image and degradation models are
formulated in a 2-D state-space model, for which the relevant 2-D
Kalman filtering equations are given. The recursive parameter identifi­
cation is achieved using the extension of the stochastic Newton approach
to the 2-D case. This process can be implemented on-line to estimate the
image model parameters based upon the local statistics in every process­
ing window. Simulation results for removing an additive noise from a
degraded image are also presented.

I. INTRODUCfION

The problem of adaptive Kalman filtering of nonhomoge­
neous images has attracted considerable attention during the
recent years [1]-[6]. Space-invariant Kalman filters assume wide
sense stationarity of the image field, which is not a satisfactory
assumption for real world images. As a result, they are insensi­
tive to abrupt changes and tend to smear the edges and reduce
the contrast, resulting in an image with poor visual appearance.
Kalman filters that use space-varying image models take into
account the local statistical information within a processing
window to adjust the filter parameters. One such method was
introduced by Kaufman, Woods, and Tekalp [1], [2], which
proposes an identification and estimation procedure for non­
symmetric half-plane (NSHP) image model that can be used
on-line to evaluate the covariance matrix of the plant noise and
the parameters of the AR model at each stage of the algorithm.
Another approach proposed by Rajala et at. [3] is based upon
partitioning an image into disjoint regions according to the local
spatial activities determined by the directional derivative infor­
mation. This method uses the nearest neighbor algorithm to
determine the best previous state and 2-D interpolation scheme
to improve the estimates of the initial states in each region. In a
recent paper by Tekalp, Kaufman, and Woods [4], an edge­
adaptive Kalman filter is derived that uses multiple image
models to reduce the ringing artifacts that are caused by space­
invariant filters. The selection of the appropriate model is done
using the maximum a posteriori (MAP) method. Azimi-Sadjadi
[5], [6] introduced a 2-D adaptive block Kalman filtering, which
is used to remove the effects of speckle noise in synthetic

aperture radar (SAR) imagery. Other important work in this
area is in [7]-[9].

In this paper, a 2-D recursive parameter identification process
is derived using the 2-D extension of the stochastic Newton
approach [10] which can be used to estimate the parameters of
an AR model with NSHP region of support (ROS). In Section
II, the 2-D image and degradation models with NSHP regions
of support are arranged in a state-space form, in which the
state propagates in two dimensions. For this dynamical
model the space-varying 2-D Kalman filtering equations are
given in Section III, which take into account the nonstationarity
in the image field. The development of the recursive parameter
identification process using the stochastic Newton approach is
also presented in Section III. In Section IV, the implementation
of the adaptive Kalman filtering on a real world image is
considered, and the simulation results are provided.

II. STATE-SPACE MODELING OF IMAGE AND

DEGRADATION PROCESSES

Consider an image of size N x N which is scanned row by row
from left-to-right and top-to-bottom. The image is assumed to
be represented by a zero-mean Markovian field and modeled by
an M x M-order AR process with NSHP ROS given by:

u(m,n) = LL ap.qu(m - p i n - q)+ e(m,n) (1)
p,qEW

where ui m, n) represents the pixel intensity at location (m, n);
ei m, n) is a white noise sequence that drives the process; ap.q's
are the reflection coefficients of the AR model; and the predic­
tion window is W={(p,q): l<p~M,-M~q~Mand p=
0, 1 ~ q ~ M}. This region is shown in Fig. 1. The statistics of the
driving process etm, n) are given as:

E[e(m,n)] = 0

E[e(m + k,n + l)e(m,n)] = <Te
28( k ,t ) (2)

where <Te
2 is the variance of the error ei m, n); Mk, [) is the

Kronecker delta function and E is the expectation operator.
The orthogonality principle gives

The current "local state" vector of size (2M 2 +2M + l)x 1
consists of all the pixels in the ROS, W, of the model. This is
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This local state vector can be related to the past local state
vectors by the following local 2-D state-space model [11], i.e.,

defined by

X(m,n) = [u(m,n)u(m,n -1)

... u(m,n - M)u(m -1,n + M)'"

... u(m-l,n - M)'" u(m - M,n + M)

... u(m - M,n - M)Y. (4)

X(m,n) =A1,OX(m,n-l) +AO,lX(m-l,n+M) +Be(m, n)

(5)
Fig. 2. Local and global states in the NSHP state-space model.

The elemental block of AI,o and AO,I matrices are given by

The past local state vectors in this model, i.e., vectors
X(m, n -1) and Xim -1, n + M) are needed for the computa­
tion of Xtm, n) as shown in Fig. 2. The "global state" vector at
stage im, n) on the other hand, has to include all the necessary

(6a) (N) vectors Xtm -1, k), k E [n + M, N -1] and Xtm, I), IE

[O,n+M -1].
The degradation process consisting of LSI blur and additive

WG noise can be modeled as

where

[A'
A' A'

~M]A'"~ {

1 2

I' 0

I'

[A"
A" A"

]1 2 M

[" 0
AO,l= :1

I"

B=[1 0 0 or.

(6b)

(6c)

y(m,n) = EE h(p,q)u(m - p,n - q)+ v(m,n) (9)
p,qEW

where ytm, n), him, n), and otm, n) are, respectively, the cor­
rupted image, the point spread function (PSF) of the blur with
NSHP support confined in W, and the additive WG noise with
zero mean and variance u}. This equation can be written in
matrix vector form as

(12)

(lOa)y(m,n) = CX(m,n) + v(m, n)

y( k) = CX( k) + v( k)

where cP represents the unknown parameter vector obtained
from the lexicographical arrangement of the reflection coeffi­
cients ai/so The Kalman filter equations for this model are then

X(m,n) --+ X(k)

X(m,n-l)--+X(k-l)

X(m-l,n+M)--+X(k-N+M). (11)

This applies to any other vector in the model. Thus the 2-D
space-varying dynamic model for the process becomes

X(k) = AI,O(cP )X(k -1) + AO,I(cP )X(k - N + M)+ Be(k)

III. SPACE-VARYING 2-D KALMAN FILTER AND

PARAMETER IDENTIFICATION

For simplicity of derivations let us map the 2-D array (m, n)
to a 1-D array using the index mapping of k=m+(n-l)N,
\:1m, n E [1,N]. Using this mapping we have

Thus equations (5) and (10) would give the complete 2-D dy­
namic model for the process.

C = [h(O,O)h(O, 1) ... h(O, M)h(l, - M)

... h(I,M)'" h(M, - M)'" h(M,M)]. (lOb)

where

(8c)

(8d)

(8a)

(7c)

i=2,"'M (8b)

i =1,'" M (7b)

o

:L+<UM."

HM+"M+"
o a 2, - M 0
000

o
o

o
o

[;] (2M + IX2M + I)'

o
1

I; ~ [:

1"=[0

[

a l - M

A'i= ~

[

a i - ( M - I )

A'i= ?
o
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TABLE I
THE 2-D RECURSrvE PARAMETER IDENTIFICATION ALGORITHM

(19)

(20a)

(20b)

z(k,lP) = y(k)- y(k)

X(O= X(k)+ K(k,IP)Z(k,lP)
b/(k,lP) = C[,b(k, If>}
Htk) = H(k -1)+ v(kXMk, </»R; l(k, </»A/(k, </»- Hik -1))

j,(k) = j,(k -1)+ V(k)H-l(k)A(k, </»R;l(k, </»z(k, </»
[,a(k, </» = [I - K(k, </»C)[,b(k, </»+«zik; </»

[(</>, X(k + 1)) = d / d</>[A1,O(</»X(k)+ AO,I(</>>X(k - N + M + 1))
</>=j,(k)
[,b(k + I,</» = A1,O(</»[,/k,</>)+ AO.1(</»[,a(k - N + M + I,</»

+ [(</>, X(k + 1))

f(<f>,X(k)):= :<f> [A1.o(<f»i(k-l)

+ AO'\<f»i(k - N + M)] <f> = ¢(k). (21b)

A recursive equation for matrix La can be obtained by taking
derivative of (14a), i.e.,

d A

E (k,<f»:= -X(k) = [1 - K(k,<f> )C] Eb(k,<f» + Kz(k,<f»
a d<f>

(22a)

Matrix Lb can be computed recursively using

where

using (14b) we get

t../(k,<f» = cE (k,<f»
b

where

Htk) are discussed in [10]. The gradient of the prediction is
defined by

Given this model the natural way to measure the goodness of
the estimates is the prediction error z(k,<f» = y(k)- y(kl¢). A
reasonable figure of merit for measuring the size of this vector is
the quadratic norm

where II is a positive definite matrix. The optimal choice of II
is the covariance matrix of the true prediction error z(k,<f»
denoted by Rz(k, <f». The above quadratic criterion can be
recursively minimized for <f> by using stochastic Newton method
[10]. This leads to the following recursive equation

<f>(k) = <f>(k -1)+ v(k)H- 1(k)t..(k,<f> )R;l(k,<f> )z(k,<f»
(16)

given [6] by

X(k) = A1,O( <f> )i(k -1) + AO,I(<f> )i(k - N + M) (l3a)

Pb(k):= E[ (X(k) - X(k))( X(k) - X(k) )/]

= A1,O( <f> )Pa(k -1)A1,O'( <f» + AO,l(<f»

'Pa(k-N+M)AO,l'(<f»+BB'a} (l3b)

K(k,<f» = Pb(k)C'[ CPb(k)C' + u}1] -1 (l3c)

i(k) = X(k) + K(k,<f»[ y(k) - CX(k)] (l3d)

Pa(k):= E[ (X(k)- i(k))( X(k)- i(k) )/]

= [I - K(k)C]Pb(k) (l3e)

where Pb(k) and PaCk) are, respectively, the a priori and the a
posteriori error covariance matrices; K(k,<f» is the Kalman gain
matrix; and X and i denote the a priori and the a posteriori
estimates of the local state vectors. To account for the effects of
nonstationarity in the image field the parameters of the dynamic
model (12) have to be identified locally at each processing
window during the filtering. This calls for an efficient recursive
process for on-line estimation of these parameters. Now let us
rewrite the updating equation (l3d) into the "filtered form,"
i.e.,

i(k) = X(k) + K(k,<f»[ y(k) - CX(k)]

= [I - K(k,<f> )C]X(k) + K(k,<f> )y(k) (14a)

y( kl¢) = Y(k) = CX(k). (14b)

where Htk) is the Hessian (second derivative) of N(<f» wrt <f>
and can be computed recursively [10] using

H(k) = H(k -1)+ v(k)

. [t..(k,<f> )R;l(k,<f> )t../(k,<f»- H(k -1)]. (17)

In this equations {v(k)} is the gain sequence that should satisfy

M o M o

v(k) > 0, lim E v(k) -+00, lim E v2(k)
<00 (18)

Mo-->oo k~O Mo-->oo k~O

where M o = N 2 is a large number representing the total num­
ber of pixels in the image. The third condition ensures that the
effects of noisy measurements are eliminated asymptotically;
and the second condition guarantees the existence of a target.
The choices for the gain sequence {v(k)} and the initial value of

where

(22b)

The gradient matrix K can either be obtained [5], [10] recursively
or by using backward difference approximation. The complete
recursive identification algorithm is given in order in Table I.

Choice of the Gain Sequence: The gain sequence, {v(k)}, in
the adaptation equation has a significant influence on both the
transient behavior of the algorithm and the accuracy of the
estimation. Let us define a new sequence, {A(k)}, which is called
"forgetting factor" [10] as

v(k -1)[1- v(k)]
A(k) = v(k)
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Fig. 5. Accuracy in the estimation for adaptive and nonadaptive
Kalman filters.
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Fig. 3. Original "girl" image.
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which grows exponentially to 1. It is suggested [10] that for most
practical situations where the order of the AR model is not
high, the following numerical method be used to find {A(k)}:

1
v(k ) - -1-+-A(-k-)-/-v(-k---l-) (23) aO,1

al,O

aU
al,-I

A(k) = 0.99A(k -1) +0.01, A(O) = 0.95. (24)
20 40

Iteration Number
60 80

Fig. 7. Parameter variation in the adaptive Kalman filter.

H(O) = I and the initial values of Lb(O) and [(</>(0), X<O)) as

For a large order models, A(k) should grow more slowly to 1.
The choice of the initial estimate of H(k) is also discussed in
great details in [10]. If no prior information about the variance
of the output innovation and covariance of </>(0) is available the
reasonable choice for H(O) is found to be

(25)
L (0) = r( </>(0), X(O)) = [ -;u

b 0

f-L u

o
o

f-L
u

1o .
o

Small values of p result in slower convergence. This corresponds
to the case when too much confidence is given to the initial
estimates </>( 0).

IV. IMPLEMENTATION AND RESULTS

In this section the proposed 2-D adaptive Kalman filtering
algorithm is used to remove the effects of additive WG noise
from an image. The test image chosen is the "girl" image in Fig.
3, which is degraded by adding a zero-mean WG noise to obtain
SNR of 5 dB. The resultant image is shown in Fig. 4. Initial
estimates of the AR model parameters are obtained globally
from the noisy image. In addition, we set X(O)= 0, PJO)= uu2

[ ,

The adaptation process is restarted at the beginning of each new
row. A comparison is made between the Euclidean norms of
Pa(k) and K(k) matrices for both the nonadaptive and adaptive
cases. The norm of PJk) matrix, which indicates the accuracy in
estimation is plotted for the first 75 pixels of row 256 of the
image for both cases as shown in Fig. 5. The plot of norm of
Kt k ), which shows convergence behavior and tracking charac­
teristic of the process, is shown in Fig. 6. These plots clearly
indicate the accuracy in estimation and the fast convergence of
our method when compared with the conventional non-adaptive
Kalman filters. The plots of variations of four significant model
parameters, i.e., a o. j , al,o, a l. j , and ai, _j, are also shown in Fig.
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Fig. 8. Processed image using adaptive Kalman filter (SNR = 11 dB).

7. These plots demonstrate the edge-dependent characteristic of
the adaptation algorithm. The resultant filtered image is shown
in Fig. 8. The SNR for this image is measured to be 11 dB,
which indicates 6-dB improvement.

V. CONCLUSION

This paper presents a 2-D space-varying Kalman filter for
NSHP image models. The parameter identification is accom­
plished using the stochastic Newton approach which accounts
for the non-stationarity in the image field and adjusts the model
parameters on-line based upon the local spatial activities within
each processing window. Simulation results on an image are
provided, which show the improvements in the performance
comparing with those of the nonadaptive methods.
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Realization of Voltage-Controlled Impedances

Raj Senani and D. R. Bhaskar

Abstract-Some time back, Nay and Hudak presented a technique
employing JFET and up-amps for obtaining voltage-controlled positive/
negative resistance exhibiting wide dynamic range and low distortion. In
this paper, two new op-amp-JFET configurations are proposed, which
not only realize voltage-controlled resistances but, unlike the Nay and
Hudak configuration, make it possible to realize voltage-controlled in­
ductance and voltage-controlled capacitance elements, too. Experimen­
tal results are given to demonstrate the practical validity of the theoreti­
cal formulations.

I. INTRODUCTION

In D] and [2], Nay and Budak (NB) presented a technique of
obtaining linear positive/negative voltage-controlled resistance
(VCR) having wide dynamic range and low distortion, with
linear range considerably greater than other known FET VCR's.
The proposition of [1] and [2] is reproduced here in Fig. 1. The
input resistance of the circuit, when FET is confined to operate
in non-saturated region, is given by

(1)

so that when a> 0, R in presents a voltage-controlled positive
resistance (VCPR) [1], whereas with a < 0, voltage-controlled
negative resistance (VCNR) is realized [2]. Note that extension
of linear range has been made possible because whereas usual
FET VCR provides linear VCR for only small vD S (typically
,;;100 m'V), the VCR of Fig. 1 can handle voltage swing of the
order of several volts (see fig. 6 of [1]) while the FET inside the
VCR is still confined to handle only a small fraction aVD (a « 1)
of the input voltage vD •

In the following, alternative configurations are presented that
not only provide VCR's but can also provide voltage-controlled
inductance and voltage-controlled capacitance (by appropriate
choice of two circuit impedances) which are not realizable from
the NB circuits [1], [2] in any way.

II. REALIZATION OF VOLTAGE-CONTROLLED

POSITIVE IMPEDANCES

A. The Proposed Configurations

The first proposition is shown in Fig. 2(a). Although we
employ an extra op-amp and five more resistors than NB circuit
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