Limitations in Forecasting Middle Eastern Dust Storms with Weather Models

Motivations

Dust Storms Cause: Reduced Visibility and Agricultural Productivity Respiratory, Ocular, and **Circulatory Damage** Spread of Disease **Ecosystem Fertilization**

- Severe dust outbreaks are common in the Middle East Large-scale dust sources can be captured in weather forecasting models, but dust lofted by small-scale storms is not explicitly predicted
- To improve dust forecasts, should we put resources into resolving the large-scale processes or small-scale storms?

Hypothesis

The amount of Middle Eastern dust lofted by storms is non-negligible relative to dust produced by large-scale flow

How do storms influence dust concentrations?

Methodology & Case Study

Employ a numerical weather forecasting model as a laboratory to simulate a representative dust case study

Fig. 2) AQUA true color image: 04-Aug-2016 / 9:30 UTC

The amount of dust lofted scales superlinearly with surface wind speed

Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem 3.9.1.1) combined with the GOCART aerosol model

*Contact: jennie.bukowski@colostate.edu

Conclusion: Storms not explicitly resolved in forecast models can alter dust concentrations by more than 250%

Model Setup

- Model: WRF-Chem 3.9.1.1
- **Dust Scheme: GOCART**
- 15-km grid spacing typical of global dust
- forecast models (Figure 3)
- Start: 02-Aug-2016-00Z
- End: 05-Aug-2016-00Z
- Initialization: FNL-GDAS (0.25°x0.25°)

- parameterizations (2018 AMS meeting) Regional climatology & haboob climatology – frequency of this type of
- meteorological setup and dust outbreak
- Sensitivity to sea surface temperatures
- Dust scheme sensitivities

Jennie Bukowski^{1*} and Sue van den Heever¹

¹ Department of Atmospheric Science - Colorado State University, Fort Collins, CO

Hypothesis: A significant amount of Middle Eastern dust is generated by storms and missed by current weather forecast models

Conclusions

Including storms in the simulation changes the spatial distribution and concentration of mineral dust (Fig. 4&5) More dust is lofted with storms in coastal regions Inland regions respond more strongly and loft less dust as the large-scale flow is punctuated by storms Storms move dust from the surface to higher levels of

> **Coastal Areas** High moisture content More prone to generating storms Storms increase dust lofting

Inland Areas Low moisture content

Few storms

Storms decrease dust lofting by interrupting large-scale flow

Storms redistribute dust from the surface to higher levels of the atmosphere compared to large-scale flow

The loss of dust inland outweighs the addition of dust along the coasts. There is a strong interference between the two

Acknowledgements

Cooperative Institute for Atmospheric Research (CIRA) • Weather Research and Forecasting Model (WRF)

