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ABSTRACT 

 

 

 

SPACED-GNSS RECEIVER TECHNIQUES FOR  

IONOSPHERIC IRREGULARITY DRIFT VELOCITY AND HEIGHT ESTIMATION  

BASED ON HIGH-LATITUDE GNSS SCINTILLATION 

 

 

 

Spaced-GNSS receiver measurements offer an inexpensive approach for remote-sensing 

the ionospheric irregularity drift velocity during ionospheric scintillations. Conventional 

approaches targeting equatorial amplitude scintillations are less applicable in high latitude regions 

where phase scintillations are more prominent. This dissertation demonstrates spaced-receiver 

techniques that use multi-GNSS carrier phase measurements to estimate irregularity drift velocity 

and effective irregularity height at high latitudes during scintillations. A time-domain method and 

a time-frequency domain method are implemented to extract time lag information between 

receiver pairs when observing the same irregularity structure. Based on the front velocity model 

and the anisotropy model, a hybrid correlation model is developed to account for the topology of 

the diffraction pattern induced by the irregularity. From the time lag information, the hybrid 

correlation model and known satellite-receiver geometry, the irregularity drift velocity can be 

obtained. In addition, an inversion technique for estimating the effective height of the irregularity 

is developed based on the anisotropy model. These techniques are applied to data collected by two 

GNSS receiver-arrays in Alaska, one at Gakona and the other at the Poker Flat Research Range. 

The GNSS-estimated drift velocities at Poker Flat are in general agreement with the measurements 

from the co-located incoherent scatter radar and the All-sky Imager. The effective height estimates 

also compared favorably against the incoherent scatter radar measurements. 
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1. CHAPTER 1 – INTRODUCTION 

 

 

 

1.1. Ionospheric Scintillation 

The ionosphere is a part of Earth’s upper atmosphere produced by solar UV radiation, 

extending from about 85 km to 1000 km altitude. The F-region of the ionosphere extends from 

about 150 km to more than 500 km altitude, where free electrons are most concentrated [Aarons, 

1982]. For decades, scientists have been studying the ionosphere using measurements obtained 

from radars, rockets, and satellites [Singleton, 1974; Myers et al., 1979; Rino, 1979a, 1979b; 

Fremouw et al., 1980; Basu and Basu, 1985]. With the advent of the Global Navigation Satellite 

System (GNSS), an alternative approach utilizing GNSS receiver measurements has gained 

popularity [Van Dierendonck et al., 1993, 1996, 2004; Aarons et al., 1996, 1997; Morrissey et al., 

2004; Dyrud et al., 2005; Crowley et al., 2011; O’Hannon et al., 2011; Taylor et al., 2013]. 

Activities from the Sun, Earth’s magnetic field and interplanetary magnetic field sometimes 

disturb the ionosphere, leading to the formation of electron density irregularities in the ionospheric 

plasma. When sufficiently intense, these irregularities can scatter trans-ionospheric radio waves 

such as GNSS signals and cause random fluctuations in amplitude and phase of the received 

signals. This phenomenon is commonly called ionospheric scintillation [Aarons, 1982; Yeh and 

Liu, 1982]. It is well known that strong ionospheric scintillation can significantly degrade the 

performance of GNSS receivers in terms of both accuracy and reliability [Skone et al., 2001; 

Morrissey et al., 2004; Kintner et al., 2007; Seo et al., 2007; Fortes et al., 2014; Morton et al., 

2014; Jiao et al., 2014b, 2015; Xu and Morton, 2015]. With increasing reliance on GNSS for 

position, navigation, and timing (PNT) services, the impacts of scintillation on space-based 

systems have become a high priority [Basu et al., 2002]. 
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1.1.1. Low-latitude vs. High-latitude Scintillations 

Ionospheric scintillations can be categorized by latitude as low-latitude, or equatorial 

scintillations (within 20° of Earths’ magnetic equator) and high-latitude scintillations (within 30° 

of Earth’s magnetic poles), as scintillations are generally confined to these regions [Aarons, 1982; 

Aarons and Basu, 1994; Basu et al., 2002]. 

In low-latitude regions, scintillation occurs primarily in the period after local sunset due to 

the Rayleigh-Taylor instability, often causing rapid and long lasting deep fading effects in the 

GNSS receiver measurements [Kelley et al., 1981; Hysell and Kudeki, 2004; Béniguel et al., 2009; 

Jiao et al., 2015]. Solar activities play a secondary modulating role in the production of plasma 

structures, making low-latitude scintillations seasonally dependent and solar cycle dependent. In 

particular, they are more frequent and intense around equinoxes and subside in the summer 

[Tsunoda, 1985; Kintner et al., 2007; Béniguel et al., 2009]. The low-latitude scintillation fade 

patterns are expected to be highly elongated in the magnetic north-south direction, with widths on 

the order of a few hundred meters, and length typically over 10 km [Basu and Basu, 1981; Kintner 

et al., 2004]. These irregularity patterns drift at a velocity primarily between 50-200 m/s in the 

eastward (zonal) direction perpendicular to the magnetic field lines [Kintner et al., 2004]. This 

velocity is often referred to as the plasma drift velocity, or simply the drift velocity. 

In high-latitude regions, the physical mechanism behind ionospheric scintillations is 

different from and more complex than that of low-latitude scintillations. The occurrence of high-

latitude scintillations is largely dependent on space weather. The governing factors of these 

irregularities are presumed to the gradient drift instability and accelerated energetic electron 

precipitation along geomagnetic field lines [Basu et al., 2002]. The scintillation process often 

involves interactions of many components, such as the Earth’s magnetic field, solar activity, 
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interplanetary magnetic field, convective processes, local electric field and conductivity, wave 

interactions, etc. [Tsunoda, 1988; Pi et al., 1997; Basu et al., 2002; Kintner et al., 2007; Skone et 

al., 2008; Smith et al., 2008]. As opposed to the low-latitude scintillation being a post-sunset 

phenomenon, several studies showed that auroral scintillation often occurs at nighttime, while the 

polar cap scintillation can take place at all local times [Kintner et al., 2007; Li et al., 2010; Jiao et 

al., 2013c]. On the other hand, high-latitude scintillations demonstrate seasonal patterns like low-

latitude scintillations, with additional location-dependency [Rino et al., 1983; Kersley et al., 1988, 

1995; Aquino et al., 2005; Li et al., 2010; Alfonsi et al., 2011; Prikryl et al., 2011; Jiao et al., 

2013c]. These high-latitude scintillation irregularities have been observed to be rod-like and field-

aligned similar to the low-latitude case [Martin and Aarons, 1977], while others have observed 

enhanced spatial coherence along the axis transverse to the field line, forming sheet-like or wing-

like irregularity patterns [Livingston et al., 1982]. These irregularity patterns drift at velocities 

much faster than the low-latitude case, typically around 300 to 500 m/s, and can exceed 1000 m/s 

during active conditions [Aarons, 1982]. 

1.1.2. Amplitude vs. Phase Scintillations  

From the receiver measurement perspective, ionospheric scintillations are typically 

categorized into amplitude scintillations and phase scintillations [Aarons and Basu, 1994]. They 

refer to the fluctuations in the received signals’ amplitude and carrier phase measurements.  

For amplitude scintillations, the most adopted metric is the 𝑆4  index. It is defined in 

Equation 1–1 as the standard deviation of the received signal power normalized to the average 

signal power [Briggs and Parkin, 1963]: 

𝑆4 = √
〈𝐼2〉 − 〈𝐼〉2

〈𝐼〉2
 ( 1-1 ) 
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where 𝐼 is the detrended signal intensity measurement, and 〈∙〉 represents the expected value 

over the interval of interest [Van Dierendonck et al., 1993]. In this study, the interval of interest is 

set to 10 seconds to effectively capture scintillation features [Pelgrum et al., 2011]. After 

normalization, 𝑆4 typically falls into the range of 0 to 1, except when saturation happens, in which 

case it can slightly exceed unity [Singleton, 1970]. Following the work of Jiao [2013], amplitude 

scintillations are empirically classified as 𝑆4 < 0.2 for no obvious scintillations, 0.2 ≤ 𝑆4 < 0.5 

for weak/moderate scintillations and 𝑆4 ≥ 0.5 for strong scintillations. 

For phase scintillations, the most adopted measuring metric is the 𝜎𝜙 value. It is defined 

in Equation 1–2 as the standard deviation of the signal phase [Yeh and Liu, 1982]: 

𝜎𝜙 = √〈𝜙2〉 − 〈𝜙〉2 ( 1-2 ) 

where 𝜙 is the detrended carrier phase measurement [Van Dierendonck et al., 1993]. The interval 

of interest is also set to 10 seconds [Pelgrum et al., 2011]. Unlike 𝑆4, 𝜎𝜙 is not a normalized 

metric. The measurable range of 𝜎𝜙 is defined by the receiver’s carrier tracking pull-in range. If 

the received carrier phase is beyond this range due to scintillation, then the receiver has a high 

probability of losing lock of the signal. At that point, 𝜎𝜙  can still be used to identify phase 

scintillations, while its value carries no significance, unless specially developed receiver 

processing algorithms are used to maintain lock of the scintillation signals to generate meaningful 

measurements [Xu and Morton, 2017].  

In order for 𝜎𝜙 to correctly reflect the level of phase scintillation, the oscillator noise from 

both the satellite and the receiver needs to be considered, as the detrending process discussed later 

only removes low frequency components. For the receiver system used in this dissertation, the 

received phase noise is typically under 2.5° for the GPS L1 signal under nominal conditions [Peng 

and Morton, 2013; Taylor et al., 2013]. Following Jiao [2013], phase scintillations are empirically 
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classified as 𝜎𝜙 < 6°  for no obvious scintillations, 6° ≤ 𝜎𝜙 < 30°  for weak/moderate 

scintillations and 𝜎𝜙 ≥ 30° for strong scintillations. 

Note that in the calculations for both 𝑆4 and 𝜎𝜙, the receiver measurements are required 

to be detrended to remove the low-frequency contributions from satellite-receiver range variations, 

antenna patterns, receiver and satellite oscillator drifts, ionosphere and troposphere delays etc. The 

conventional detrending method for both indices is based on a 6th order Butterworth filter with a 

cut-off frequency at 0.1 Hz [Van Dierendonck et al., 1993]. 

In general, amplitude scintillations are more prominent in the low-latitude regions while 

often accompanying simultaneous phase scintillations [Aarons, 1982]. On the contrary, high-

latitude scintillation is usually observed to be dominated by phase scintillations often without 

obvious simultaneous amplitude scintillations [Aarons, 1997; Valladares et al., 2002; Doherty et 

al., 2003; Aquino et al., 2005; Skone et al., 2008; Azeem et al., 2013; Jiao, 2013; Jiao et al., 2013a].  

The faster plasma drift velocity is considered a main reason for such a phenomenon [Forte 

and Radicella, 2002]. The major contribution to amplitude fluctuation spectra is at the Fresnel 

Frequency 𝑓𝐹  according to Rino [1979a, 1979b], which is proportional to the apparent drift 

velocity (composed of the satellite scan velocity and the irregularity drift velocity). Since the 

irregularities drift with the background plasma, 𝑓𝐹 varies with the plasma drift velocity, and faster 

plasma drift velocity implies higher 𝑓𝐹. However, during data detrending using the conventional 

6th order Butterworth filter, a fixed cutoff frequency of 0.1 Hz is often adopted. Such a choice is 

not appropriate and can cause misleading data interpretations, for example, overestimations of 

phase scintillation at high latitudes [Forte and Radicella, 2002]. In fact, the effectiveness of this 

method has long been questioned by previous studies without a confirmed better replacement 

[Forte and Radicella, 2002; Beach, 2006; Mushini et al., 2012; Niu, 2012]. 



6 

1.2. Spaced-Receiver Techniques 

Most of the GNSS scintillation studies focus on investigating the characteristics of 

ionospheric scintillation with the purpose of modeling and mitigating its effects on GNSS systems 

[Secan et al., 1995; Groves et al., 2000; Hegarty et al., 2001; Basu et al., 2002; Béniguel et al., 

2009; Humphreys et al., 2010; Jiao et al., 2013b; Zhang and Morton, 2013]. Others take advantage 

of the occurrence of scintillation events and utilize scintillation signal characteristics to study space 

weather and atmospheric properties [Groves et al., 2000; Ledvina et al., 2004; Kintner and 

Ledvina, 2005; Jiao et al., 2013b; Deshpande et al., 2014]. In this dissertation, the spaced-receiver 

techniques developed for remote-sensing scintillation patterns are such applications. 

1.2.1. Irregularity Drift Velocity Estimation  

The scintillation-based spaced-receiver technique for irregularity drift velocity estimation 

was developed by Mitra [1949], Briggs et al. [1950], and Briggs [1968]. If two closely-spaced 

receivers can observe the same diffraction pattern, the time delay between the receivers’ 

observations can be resolved by the cross-correlation of their signal intensity measurements and is 

used to infer the irregularity drift velocity. 

One of the most common applications of this technique is to estimate the zonal irregularity 

drift velocity in the equatorial region, which is typically in the range of 50 to 200 m/s [Basu and 

Basu, 1981; Kintner et al., 2004]. Early studies used UHF and L band devices to receive radio 

signals transmitted from various satellite systems [Anderson and Mendillo, 1983; Vacchione et al., 

1987; Basu et al., 1991a]. Because of their compact, low cost, and globally distributed nature, 

GNSS receivers have gained popularity in recent years [Basu et al., 1996; Kil et al., 2000; Kil et 

al., 2002; Kintner et al., 2004]. The validity of this method has been supported by on-site 

incoherent scatter radar (ISR) measurements in a few studies [Basu et al., 1991a; Kil et al., 2002]. 
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Previous work focused on the use of signal intensity measurements [Basu et al., 1991a; Kil 

et al., 2000; Otsuka et al., 2006] or total electron content (TEC) [Ji et al., 2011] for drift velocity 

estimations during equatorial amplitude scintillations. At high latitudes, again, ionospheric 

scintillations are generally moderate while phase fluctuations are often more frequent and intense 

than amplitude scintillations. As a result, the conventional spaced-receiver estimation technique 

based on amplitude scintillations is less applicable at high latitude regions. Phase fluctuation 

measurements should be employed instead. 

Little literature has been found, however, utilizing phase fluctuations in this area. This is 

possibly due to the many error sources contained in carrier phase measurements that may dominate 

the time domain correlation among closely-spaced antennas. For example, receiver oscillator-

induced phase jitter and multipath often resemble that of scintillation effects. During strong 

scintillations, carrier phase measurements are often contaminated with cycle slips and missing data 

due to loss of lock of signals. Carrier phase detrending processes aimed to remove low frequency 

components, such as receiver-satellite dynamics, satellite orbit errors, receiver and satellite clock 

drifts, background ionosphere and troposphere-induced carrier phase trend, etc., are heuristic in 

nature and the appropriateness of their use is continuously under debate [Beach, 2006; Mushini et 

al., 2012; Niu et al., 2012]. These errors and uncertainties must be addressed for carrier phase 

measurements to be used effectively in irregularity drift velocity estimation.  

The technique presented in this dissertation aims to minimize carrier phase errors while 

preserving features associated with ionospheric irregularities. First, the data collection system and 

signal processing algorithms are carefully designed to minimize contributions from the receiver 

oscillators and environmental multipath, two sources with similar spectral distributions to that of 

ionospheric irregularity-induced effects. Then, either custom-designed carrier tracking algorithms 
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or specialized ionospheric scintillation monitoring receivers are used to generate high-quality 

carrier phase measurements accustomed to each array system. After synchronizing the receiver 

array output, cycle slips are detected and repaired to further ensure phase data integrity. Only then, 

a zero-phase detrending technique is applied to the cleaned phase measurements to ensure that no 

filter delay is introduced by the detrending process. 

Next, correlation techniques are applied to the processed carrier phase measurements to 

obtain time lags of common scintillation features between receiver pairs. The correlation 

techniques include a time-domain method (TDM) for measurements under ideal signal conditions, 

as well as a time-frequency-domain method (TFDM) targeting noisier signal environment [Wang 

and Morton, 2015; 2017]. For the latter method, an adaptive periodogram technique (APT) is 

employed to perform joint time-frequency analysis of the non-stationary signatures of the 

ionospheric irregularity-induced carrier phase spectrum [Brenneman et al., 2007; Zhou et al., 

2008; Wang et al., 2012; Wang, 2013].  

Measurements from a pair of receivers allows the determination of the one-dimensional (1-

D) apparent drift velocity along the receiver pair. To combine these velocity vectors into two-

dimensional (2-D), a correlation model is required to account for the shape of the signal diffraction 

pattern. Three correlation models have been analyzed in detail through their space-time correlation 

schematics, including the classic isotropy model from Briggs et al. [1950], the front velocity model 

by Wang and Morton [2017] and the anisotropy model following Rino and Livingston [1982]. 

With the understanding of the merits and drawbacks of each method, a hybrid correlation model 

is developed combining the anisotropy model and the front velocity model [Wang and Monton, 

2018a]. Finally, with the known receiver and satellite position, the irregularity drift velocity can 

be estimated. Details of the drift velocity estimation method are described in Chapter 3. 
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It is worth mentioning that the work presented in Wang and Morton [2017], Wang et al., 

[2018] and this dissertation is in parallel with the work in Datta-Barua et al. [2015] and Su et al. 

[2017]. Both studies address the ionospheric drift velocity remote sensing problem using receiver 

arrays at a similar location. 

However, aside from the receiver hardware differences (e.g., Su et al. [2017] is GPS only, 

while this dissertation uses additional signals from GLONASS and Galileo satellites), there are 

several other distinctions between the two studies. First, the array in Su et al. [2017] consists 6 

receivers, while Wang and Morton [2017] uses a 3-receiver-array with a slightly larger footprint. 

Next, the two studies use different correlation models to address the shape of the diffraction 

pattern. Su et al. [2017] uses the anisotropy model, while this study uses a hybrid correlation model 

combining the front velocity model and the anisotropy model. Finally, when analyzing the 

estimated drift velocities against other measurements, Su et al. [2017] focuses on the scintillation 

events on each individual satellite, while this dissertation focuses on the overall temporal and 

spatial pattern of the irregularities. 

1.2.2. Irregularity Height Estimation 

An important parameter in GNSS scintillation studies is the irregularity height. For 

example, it is one of the key components in scintillation modeling studies [Secan et al., 1995; Jiao 

et al., 2018]. Also, it impacts the estimation of other irregularity properties in scintillation-based 

remote sensing studies [Kil et al., 2000; Wang et al., 2018].  

In the literature, the irregularity height is often empirically assumed at a fixed value around 

the shell height following the thin-shell ionospheric model, typically between 350 km and 450 km 

[Komjathy and Langley, 1996; Ledvinat et al., 2004]. For one of our receiver array sites, this value 

can be approximated from the electron density (Ne) profiles measured by the co-located Poker Flat 
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Incoherent Scatter Radar (PFISR). But for a typical standalone receiver array, such information 

cannot be taken for granted. Also, during active conditions, it is not uncommon for the shell height 

to appear outside of the [350 450] km region, especially at high latitudes where scintillation 

formation can be very complex [Sojka et al., 2009; Wang and Morton, 2017]. Besides, whether 

the shell height is a good approximation to the irregularity height remains a debatable topic. 

Focusing on the irregularity height itself, McClure [1964] showed an estimation technique 

based on Low Earth Orbiting (LEO) satellite scintillations, taking advantage of the fact that LEO 

satellite velocity is much greater than the irregularity drift velocity. But this method is not suitable 

for scintillations on GNSS signals, whose satellite scan velocity in the ionosphere is comparable 

to the irregularity drift velocity [Kintner et al., 2004; Wang et al., 2018]. Carrano et al. [2017] 

proposed a method for geolocating ionospheric irregularities along radio occultation (RO) ray-

paths between GNSS and LEO satellites. The irregularity height can later be retrieved based on 

the RO measurements and the positions of the satellites. However, the measurement window of 

this technique is very limited due to the highly constrained RO geometry [Kursinski et al.,1997]. 

Also, the estimated irregularity height may not be applicable to typical GNSS users, since the RO 

ray-paths are very different from typical GNSS satellite-receiver ray-paths.  

In this dissertation, a more inclusive approach is adopted when calculating the drift 

velocities by considering a range of irregularity height assumptions approximated from past 

observations [Wang et al., 2018]. Uncertainties would occur in the drift velocity estimates. But the 

true drift velocity is also likely to be contained in the corresponding velocity variations. A detailed 

analysis is provided in Section 6.2.3 using a real-data example. 

In addition, another spaced-receiver technique has been developed to estimate the effective 

irregularity height [Wang and Morton, 2018b]. An inversion algorithm is proposed using spaced-
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receiver measurements under the framework of the anisotropy model [Fedor, 1967]. The gist of 

the approach is to match the forward propagated anisotropy parameters as in Rino and Fremouw 

[1977] under different height assumptions to the anisotropy parameters estimated from the spaced-

receiver measurements as in Rino and Livingston [1982]. The effective irregularity height is then 

determined to be the height assumption at the best match. Although the focus of this study is on 

high latitude scintillation data, the general approach can be applied to equatorial scintillation 

studies as well. Note that the effective height here should be separated from the “effective/optimal 

height” in GNSS total electron content (TEC) studies, whose objectives are usually on the 

background ionosphere rather than the irregularities [Birch et al., 2002; Zhao and Zhou, 2018].  

To verify the estimated effective irregularity heights, cross-comparison is conducted 

against electron density (Ne) profiles measured by the collocated PFISR. In particular, the 

estimated heights are compared with the depletion and enhancement regions in the Ne profiles, 

where irregularities are most likely to be present. Case studies in Section 6.8 demonstrate insights 

into the relationship between the potential irregularity heights observed from the PFISR Ne profiles 

and the effective heights irregularity estimated from the GNSS receiver array. 

1.3. Objectives of Dissertation Research 

The main objective of this PhD dissertation research is to develop and validate a spaced-

receiver algorithm for estimating the irregularity drift velocity. To achieve this objective, several 

algorithms and techniques are required to be developed and tested. Also, comparative studies 

against drift velocity measurements from other instruments are required for algorithm validation. 

The following is a summary of the objectives in this thesis research: 

a) Use scintillation data from spaced-receivers to develop correlation techniques to estimate 

the time lags across the receiver pairs when observing the same scintillation event; 
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b) Implement viable correlation models to combine 1-D apparent drift velocity estimations 

along receiver pairs into a 2-D velocity. Estimate the irregularity drift velocity based on the 

known satellite-receiver geometry; 

c) Verify the self-consistency of the drift velocity estimation algorithm by comparing the 

estimation results across the available GNSS signals at various frequency bands; 

d) Analyze the validity of the drift velocity estimation algorithm by cross-comparing the 

estimation results against concurrent measurements obtained from other near-by or in-situ 

instruments such as the Super Dual Auroral Radar Network (SuperDARN), the All-Sky 

Imager (ASI) and the Incoherent Scatter Radar (ISR); 

e) Develop an algorithm to estimate anisotropy parameters as well as the effective irregularity 

height. 

1.4. Dissertation Outline 

Chapter 1 gives the background introductions on this PhD dissertation research, including 

the ionospheric scintillation, the spaced-receiver technique and time-frequency analysis 

techniques. Chapter 2 introduces both the old and the new receiver array setups used in this study, 

as well as the pre-processing steps involved in all subsequent spaced-receiver methods. 

Background information on some co-located ionospheric monitoring instruments is also provided, 

including the SuperDARN, the ASI and the ISR. Chapter 3 explains the methodology of the 

scintillation-based spaced-receiver technique for irregularity drift velocity estimation, including 

the basic theory, satellite scan velocity calculation, time lag estimation, and the drift velocity 

estimation bounds. For the time lag estimation, two general methods are presented, the TDM and 

the TFDM. Chapter 4 focuses on the correlation models accounting for different irregularity 

topology assumptions, including the classic isotropy model, the front velocity model, the 
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anisotropy model, and a hybrid correlation model combining the latter two models. Chapter 5 

demonstrates an inversion technique for estimating the effective irregularity height using the 

anisotropy model. Chapter 6 presents the main results of this dissertation, including a self-

consistency studies and serval cross-comparative studies against measurements from other 

instruments. Lastly, Chapter 7 summarizes this study. 
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2. CHAPTER 2 – SYSTEM SETUP, DATA PRE-PROCESSING, AND AN OVERVIEW ON 

OTHER IONOSPHERE MONITORING INSTRUMENTS 

 

 

 

This chapter introduces the hardware setups of the two GNSS arrays used in this 

dissertation, as well as the data pre-processing steps required for later discussions on spaced-

receiver techniques. Background information of some other instruments for ionosphere monitoring 

is also introduced in this chapter. Sections 2.1 and 2.2 introduce the receiver setups at Gakona, 

Alaska and the Poker Flat Research Range (PFRR) near Fairbanks, Alaska. Section 2.3 shows the 

data pre-processing steps involved in this study, including receiver signal processing, receiver 

array synchronization, carrier cycle slip detection and repairing, and carrier phase detrending. 

Section 2.4 gives an overview on some other co-located ionosphere monitoring instruments, 

including the SuperDARN, the ASI, and the PFISR. Section 2.5 elaborates on the common 

measurement volumes of between these instruments and the GNSS array system, respectively. 

2.1. The HAARP (Gakona) Array Setup 

In 2009, an event-driven multi-constellation GNSS receiver array has been established at 

the High Frequency Active Auroral Research Program (HAARP) facility in Gakona, Alaska 

(62.39°N, 145.15°W) for ionospheric scintillation studies [Taylor et al., 2012]. GNSS receiver 

measurements were continuously stored, while raw IF samples were recorded by the radio 

frequency (RF) front ends and tracked by a software-defined receiver (SDR) whenever scintillation 

events had been detected. These results have been used to characterize high-latitude GNSS 

scintillations [Jiao et al., 2013]. Figure 2-1 shows a subset of the receiver array and data collection 

system dedicated in this dissertation. Details of the full system configurations can be found in 

Taylor et al. [2012] and Taylor et al. [2013]. 
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Figure 2-1. HAARP GNSS receiver array setup. The triangles mark the antenna locations, with 

their spacing being several hundred meters. The HAARP facility is also indicated. 

 

Antenna 1 is connected to a Septentrio PolaRxS ionospheric scintillation monitoring (ISM) 

receiver, which is driven by a low phase noise, oven-controlled crystal oscillator (OCXO) and 

generates 100Hz GPS/GLONASS carrier phase measurements [Taylor et al., 2013]. Antennas 2 

and 3 are located 867.9 m due south and 242.7 m due west of Antenna 1, respectively. Each antenna 

is connected to a USRP2 (Universal Software Radio Peripheral, 2nd generation) RF front end stored 

in a shelter at Antenna 1 location via a cable. These USRP2 front ends are configured to record 

raw GPS L1/L2C intermediate frequency (IF) samples. Both front ends are externally driven by 

the OCXO on board the Septentrio ISM receiver to ensure time and frequency coherence of 

measurements across the array [Taylor et al., 2012]. In addition, Antenna 3 is also connected to a 

NovAtel GPSation-6 ionospheric scintillation and TEC monitor receiver that outputs 50Hz 

GPS/GLONASS carrier phase measurements. We shall collectively refer to these commercial 

receivers as ISMs in the remaining dissertation to distinguish them from the SDR receivers. 
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The ISM receivers continuously record carrier phase measurements, while the USRP2’s 

only wrote raw IF data to storage when custom designed space weather event trigger software 

detects a scintillation event. The carrier phase measurements for Antennas 2 and 3 are then 

obtained via a fine-tuned SDR processing algorithm. Detailed parameters of the SDR receiver 

algorithm can be found in Section 2.3.1. The performance of USRP2 front ends and software 

algorithms has been evaluated by [Peng and Morton, 2013]. 

 After some pre-processing steps shown in Section 2.3, GPS and GLONASS carrier phase 

measurements at various data rates are obtained at each antenna. Table 2-1 shows the GNSS bands 

for the HAARP array, together with their corresponding output data rate at each antenna. Note that 

the high data rate outputs from the ISM receiver can be resampled to match with the data rate from 

other devices. 

Table 2-1. GNSS bands received at the HAARP array, and output data rate for each antenna. 

Device Antenna GNSS bands Data rate (Hz) 

Septentrio 

PolaRxS 
A1 

GPS L1/L2/L5 

GLO L1/L2 

100/100/100 

100/100 

NovAtel 

GPStation-6 
A3 

GPS L1/L2/L5 

GLO L1/L2 

50/50/50 

50/50 

USRP2 A2, A3 GPS L1/L2C 100/50 

 

A major issue with the HAARP setup is that signal attenuation occurs due to the lengthy 

cable transmission, causing degradation in the received phase measurements on Antennas 2 and 3. 

A time-frequency domain correlation scheme is developed to resolve this issue [Wang and Morton, 

2015]. The gist of the approach is to transform the original time-domain signal into time-frequency 

domain, so that spectral filtering can be performed while keeping the signal’s temporal 

information. The detailed method is described in Section 3.3.2. 
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2.2. The Poker Flat Array Setup 

In 2014, another event-driven multi-constellation GNSS receiver array was established at 

the PFRR in Fairbanks, Alaska (65.13 °N, 147.49 °W). Having other co-located ionospheric 

monitoring instrumentations such as the PFISR and the ASI greatly benefits the GNSS array 

remote sensing studies. Figure 2-2 illustrates the receiver array arrangement based on a Google 

Earth image over the PFRR. 

 

Figure 2-2. Poker Flat GNSS receiver array setup. The triangles mark the antenna locations, with 

their spacing being several kilometers. The squares mark the PFISR and the ASI locations. 

 

In Figure 2-2, the relative positions of Antennas 1, 2 and 3 are scaled to the real geometry. 

The relative positions of the PFISR (0.55 km to Antenna 2) and the ASI (near Antenna 1 location) 

are also shown by the square and the circle, respectively. All three antennas are connected to 

dedicated Septentrio PolaRxS ISM receivers. In addition to the HAARP receivers’ functionalities, 

these receivers are also capable of producing 100 Hz GALILEO and BEIDOU measurements. 

Antenna 1 is connected to 7 USRP2 front ends to record GPS, GLONASS, GALILEO and 

BEIDOU IF samples, driven by the OCXO on board the Antenna 1 ISM receiver. Another 
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improvement of the Poker Flat setup as opposed to the old HAARP setup is that the data 

connections from the antennas to the receivers and USRP2’s no longer rely on long cables. Each 

antenna is now directly connected to the receiver located at the nearby PFRR facility. Hence the 

data attenuation is greatly reduced. All three ISM receivers continuously record GNSS 

measurements, while the IF data recording on the USRP2’s is triggered by the same mechanism 

as in the HAARP setup.  

2.3. Data Pre-processing 

2.3.1. Custom Receiver Signal Processing 

For the HAARP array, custom software GPS receiver signal processing algorithms were 

applied to acquire and track both GPS code and carrier signal parameters during phase fluctuation 

events. The carrier tracking loop is a third-order Costas phase lock loop (PLL) initialized by coarse 

estimations of carrier Doppler frequency and ranging code phase obtained through a FFT-based 

acquisition process [Misra and Enge, 2006]. The code tracking loop is an early-prompt-late delay 

lock loop (DLL) with a half chip correlator spacing. For both tracking loops, the coherent 

integration time is 10 ms. The equivalent noise bandwidths of the loop filters are 15 Hz for PLL 

and 2 Hz for DLL. The discriminators used for the PLL and DLL are given by: 

𝐷𝑃𝐿𝐿 = arctan(𝑄𝑃 𝐼𝑃⁄ ) ( 2-1 ) 

𝐷𝐷𝐿𝐿 =
1

2

𝐸 − 𝐿

𝐸 + 𝐿
 ( 2-2 ) 

(𝐸 = √𝐼𝐸
2 + 𝑄𝐸

2, 𝐿 = √𝐼𝐿
2 + 𝑄𝐿

2) ( 2-3 ) 

where 𝐼 and 𝑄 are the I and Q channel correlator outputs, while the subscribes denote Prompt 

(𝑃), Early (𝐸) and Late (𝐿) correlators, respectively. To ensure that carrier phase disturbances are 

not filtered out by the PLL, the carrier phase discriminator estimation residual is added back to the 
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filtered carrier phase measurements [Van Dierendonck, 2005]. The output data rate is 100 Hz, 

which is identical to the ISM receiver data rate. Note that after the navigation data bits are 

identified, the tracking results can be further improved by replacing the Costas PLL with the 

coherent PLL discriminator (𝐷𝑃𝐿𝐿 = atan2(𝑄𝑃, 𝐼𝑃)), as it can provide a larger pull-in range to 

accommodate higher carrier phase dynamics [Mao and Morton, 2013]. 

2.3.2. Synchronization 

For any spaced-receiver study, time synchronization across the array of receivers is the 

crucial first step. For the HAARP array, data recording is performed using the same server and 

driven by the same timing device for all three receivers, while the SDR front ends are driven by 

the timing device from the ISM receiver at Antenna 1. For the Poker Flat array, all GNSS channels 

in each of the three ISMs are internally synchronized to GPS time. 

However, hardware delays do exist. To ensure synchronization, the navigation messages of 

the same satellite at different receivers are decoded and then aligned on a sample-by-sample basis 

[Peng et al., 2012]. The resulting time resolution is 1/fs where fs is the sampling frequency which 

is 5 MHz in this project. As a result, the time misalignment does not exceed 200 ns. 

2.3.3. Cycle Slip Detection and Repairing 

A cycle slip is a discontinuity in a GNSS receiver’s carrier phase measurement, often in a 

form of a sudden jump with an integer (or a half) number of cycles [Leick, 1995]. General causes 

of the discontinuity are either a malfunction in the satellite or the receiver system, or sudden 

changes in the environment that lead to signal degradations or obstructions [Seeber, 2003]. Cycle 

slips are unpredictable in nature and can easily cause large magnitude of jumps in the phase 

measurements. Since this entire study is based on GNSS carrier phase measurements, it is crucial 

to detect and repair the cycle slips before going into subsequent processes. 
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High rate phase measurement is required for this study. The ISM receivers output high rate 

(100 Hz) carrier phase measurements in the form of accumulative Doppler range (ADR). The time 

derivative of ADR is the Doppler frequency, which may vary up to a few kHz in the course of a 

few hours for a stationary receiver [Misra and Enge, 2006]. The nominal Doppler frequency 

change within the sampling interval (0.01 s) is on the order of 0.001 to 0.01 cycles. 

As a result, if a cycle slip of 0.5N cycles (N ∈ ℕ) occurs in the ADR measurement series, 

it will be more pronounced in the time differences of that series. Based on this principle, the cycle 

slip detection and repair are achieved via double difference of the ADR measurements. Assuming 

a cycle slip of 0.5N occurs at ti , the detection and repair algorithm can be captured by the 

following relationship: 

0.5N ≈ (ϕi + 0.5N − ϕi−1) − (ϕi−1 − ϕi−2) ( 2-4 ) 

where ϕ denotes the ADR measurement and i denotes the time epoch at 100Hz. 

This cycle slip detection and repairing technique is suitable for high rate carrier phase 

measurement. However, it does come with a few drawbacks. First, the detection and repair rely on 

nominal ADR measurements prior to the occurrence of the cycle slip. This cannot be always 

guaranteed, especially at the beginning of the data with lower elevation angles where the signal 

condition is not optimal. But in post-processing, the starting point of the algorithm can be applied 

to anywhere in the ADR series and can be used in both forward and backward manners. Second, 

when no high rate pseudo-range measurements are available, the accuracy in the repaired ADR 

sample is only within ±0.5 cycles. A compromise is made so that the correlation results associated 

with the detected cycle slips are discarded in the later processes. Nevertheless, the repairing 

process is still necessary as it would minimize the impact of cycle slips in the detrended carrier 

phase data. 
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Using some phase scintillation data collected by the Poker Flat array, the detected and 

repaired results for the two days of GPS L1 and L2C data on 2015/12/20 and 2015/12/31 are 

summarized by Table 2-2. Details on these scintillation events is presented in Section 6.1.2. 

Table 2-2. Detected and repaired cycle slips in GPS L1 and L2C signals for Poker Flat array 

collected data on 2015/12/20 and 2015/12/31. 

 GPS bands A1 A2 A3 

Large Slips 

(≥100 cycles) 

L1 10 2 9 

L2C 5 5 30 

Small Slips 

(<100 cycles) 

L1 14 11 19 

L2C 3 0 4 

Loss of Lock 
L1 2 1 2 

L2C 1 2 2 

 

2.3.4. Carrier Phase Detrending 

Following the cycle slip detection and repairing process, the raw carrier phase 

measurements from the tracking loop are detrended using a conventional sixth-order high-pass 

Butterworth filter with a cutoff frequency of 0.1 Hz. It is designed to remove slowly varying 

components due to satellite-receiver dynamics, satellite and receiver clock drift, background 

ionosphere and troposphere gradients, etc. The filter is implemented using both a forward and a 

backward third-order Butterworth filter, such that the filter has zero-phase (no filter delays) [Niu 

et al., 2012]. 

It should be noted that this detrending method may cause “phase without amplitude” 

scintillation phenomena frequently observed in high latitude regions [Forte and Radicella, 2002; 

Mushini et al., 2012]. Forte and Radicella [2002] pointed out that the conventional cutoff 

frequency of 0.1 Hz may overestimate phase scintillation than amplitude scintillations, causing the 

correlation between the amplitude and phase scintillation indices to be less than their true values. 
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Mushini et al. [2012] demonstrated that using a wavelet technique, the correlation between the two 

indices can be improved.  

For the spaced-receiver algorithm, the focus of is not on the phase scintillation at a single 

receiver, but on the time difference between the phase fluctuations observed at different receivers. 

For that reason, as long as the fluctuations in the detrended carrier phase are induced by 

ionospheric irregularities, and all phase data are processed the exact same way, then the detailed 

implementation of the detrending method is of less concern. In fact, the conventional detrending 

method works in favor of this study, as the slightly overestimated carrier phase measurements lead 

to a stronger cross-correlation of the irregularity effects between antennas. 

2.4. Other Instruments for Ionosphere Monitoring 

2.4.1. All-Sky Imager 

An all-sky imager (ASI) is an optical device that provides intensified monochromatic 

images of auroral and airglow emission for various atmospheric lines of interest associated with 

distinct heights measured at different wavelengths [Semeter et al., 2001]. Most ASIs can observe 

the two most intense atmospheric lines: the red atomic oxygen line O(1D) at 630 nm wavelength 

and the green atomic oxygen line O(1S) at 557.7 nm wavelength. These two lines correspond to 

altitudes centered at about 200 km and 96 km, respectively [Culot et al., 2004]. 

The specific ASI used in this dissertation is at PFRR (65.12°N, 147.43°W). It is co-located 

with the Poker Flat GNSS receiver array as shown in Section 2.2. This imager has a fish-eye lens 

with a field-of-view of 180° covering the entire sky, and a charge-coupled device camera with a 

resolution of 512 × 512 pixels. In addition to 630 nm and 557.7 nm images, it is also capable of 

providing images of blue nitrogen ion line N2
+ at 427.8 nm and aqua hydrogen atom line H-β at 

486.1 nm. Each image shows the integrated camera view over 12.5 seconds to intensify the 
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observed emissions. Figure 2-3 shows an example of the Poker Flat ASI auroral emission 

measurements at 427.8 nm, 557.7 nm and 630.0 nm on 2015/12/20. 

 

Figure 2-3. Example of consecutive Poker Flat ASI auroral emission images at 427.8 nm, 557.7 

nm and 630.0 nm on 2015/12/20 using Universal Time (UT) standard. The geodetic orientation 

of the images is indicated by the arrows. The bright blob in the lower right of the images is the 

moon. 

 

In Figure 2-3, each wavelength corresponds to an approximated emission center altitude, 

427.8 nm at about 110 km, 557.7 nm at about 96 km, and 630.0 nm at about 200 km. These images 

are integrated over roughly 12.5 seconds (± 0.07 seconds) of continuous snapshots of the sky for 

enhanced visualization. In each image, a horizontal belt of auroral emission can be observed near 

the center. The general shape of the emission is similar between the 427.8 nm and 557.7 nm images. 

More intense emissions are observed at 557.7 nm and 630.0 nm. But the 630.0 nm image appears 

blurrier than the crisp images at 427.8 nm and 557.7 nm because red-line emissions can come from 

a wide range of altitudes. Green and blue lines are much more limited in altitudinal extent and thus 

better show the inherent horizontal structure of auroral arcs. The crisp and bright 557.7 nm ASI 

emission data will be used in the comparative studies later against the GNSS results. 

The auroral patterns observed by the ASI are amorphous and the scale of these patterns is 

often much larger than the footprint of the GNSS array. This makes accurate frame-by-frame 
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estimation of the arc velocity with GNSS derived velocity challenging, but the general direction 

of the auroral arcs can often be estimated via visual inspection [Wang et al., 2018]. Hence in this 

dissertation, the ASI measurements are used to identify the auroral emission patterns and to assess 

the irregularity travel direction estimated by the GNSS receiver array. 

2.4.2. Incoherent Scatter Radar 

Incoherent Scatter Radars (ISR) are Doppler radars dedicated to ionospheric researches. 

The term “incoherent scatter” refers to the assumption that all of the Thomson scattering electrons 

have statistically independent random motions [Gordon, 1958; Evans, 1969]. Based on the 

collective backscatter from these electrons, statistics such as the autocorrelation function (ACF) 

and power spectrum can be established, from which the irregularity drift velocities together with 

other parameters of the probed plasma irregularities can be inferred [Kudeki and Milla, 2012]. 

The PFISR is also located at the PFRR (65.13°N, 147.47°W) [Nicolls and Heinselman, 

2007]. It is a 128-panel Advanced Modular Incoherent Scatter Radar (AMISR) system operating 

at the frequency band of 450 MHz [Heinselman and Nicolls, 2008]. Normal user operations have 

been ongoing since March 2007. The radar is tilted so that its bore sight direction corresponds to 

elevation and azimuth angles of 74° and 15°, respectively. The PFISR consists of 473 

preprogrammed look directions, giving the maximum possible sky coverage under the current 

radar configuration. A more detailed description of PFISR can be found in Heinselman and Nicolls 

[2008]. The PFISR provides measurements of the drift velocities in the form of vector velocities 

by combining its line-of-sight (LOS) velocity measurements into a range of geomagnetic latitude 

bins. Figure 2-4 gives an example of the 2-D horizontal vector velocities on 2012/12/31. 
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Figure 2-4. Example PFISR horizontal vector velocity measurements from 2015/12/31 00:04:44 

to 2016/1/1 00:03:22 UT [Marigal Database, http://isr.sri.com/madrigal/]. These velocities are 

derived from the horizontal velocity measurements along the perpendicular north and the 

perpendicular east directions. The velocity magnitudes are indicated by the arrow lengths, with 

an eastward reference velocity of 1500.0 m/s in the center. The blue arrows are eastward 

velocities, while the red arrows are westward. The latitudinal resolution is 0.25°. 

 

The spaced-receiver technique presented in this study is only capable of resolving the 

horizontal velocity components. Hence, the cross-comparison between GNSS and PFISR 

estimated drift velocities is mainly based on the horizontal vector velocities as in Figure 2-4. 

2.4.3. SuperDARN 

The Super Dual Auroral Radar Network (SuperDARN) is an international radar network 

designed primarily for measuring and studying plasma convection. The network is composed of 

similar pulsed coherent scatter radar arrays in the HF band (8-20MHz), whose combined fields-

of-view covers extensive regions of the polar ionospheres in both hemispheres [Greenwald et al., 

1995; Chisham et al., 2007].  

SuperDARN radars are essentially coherent scatter radars (CSR). These radars are sensitive 

to coherent scattering (Bragg scattering) from small scale electron density irregularities in the 

ionosphere, since these irregularities are on the same scale size as the radar half-wavelength. The 
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geometry of the radar is designed in such a way that the incident radar signal is orthogonal to the 

geomagnetic field, so that the back scatter from the field-aligned irregularity structures can be 

maximized [Greenwald et al., 1995]. 

The HAARP array data was used to conduct a comparison study against SuperDARN 

measurements. We chose to use the data from the nearest Kodiak SuperDARN (KOD) array at 

Kodiak, Alaska (57.60°N 152.2°W), since KOD can provide the highest echo power compared to 

the other SuperDARN arrays in range. Also, the KOD-HAARP geometry is suitable for F region 

ionosphere studies [Wang et al., 2014]. KOD provides a set of echo power and LOS drift velocity 

measurements for each beam, at every range gate at 1-minute intervals. These measurements are 

cross-compared with the GNSS array estimated irregularity drift velocities. Figure 2-5 gives an 

example of the KOD SuperDARN field-of-view plots on 2012/10/13. 

 

Figure 2-5. Example the KOD SuperDARN’s field-of-view plots of LOS velocities (left) and 

echo power (right) on 2012/10/13.  
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In Figure 2-5, the left plot is the drift velocity measurement represented by the color code 

between [-400 400] m/s, while the right plot is the corresponding echo power in the range of [0 

60] dB. Note that in the left plot, gray blocks indicate ground scatter and should be discarded 

during comparison. In addition, echo power can be used to filter the drift velocity measurements 

to ensure data integrity. In this study, a 3-dB threshold is applied when cross-comparing the GNSS 

and SuperDARN drift velocity measurements. 

2.5. Overview of System Coverages and Cross-Comparison Schemes 

In order to conduct a meaningful evaluation of the drift velocity estimation method, the 

receiver array results are compared with measurements from the instruments mentioned above. A 

valid comparison must account for differences in spatial coverage between the GNSS receiver 

array and the other systems. In this section, we characterize the spatial coverage of each system in 

terms of their observation volume. Cross-comparison schemes between the GNSS results against 

the PFISR, the SuperDARN and the ASI measurements are also proposed. 

2.5.1. GNSS Array Coverage 

The spatial coverage of measurements from a GNSS receiver is governed by the satellite-

receiver LOS paths and can be determined from the broadcast positions of the visible satellites and 

the known receiver position. For an array of receivers, the system covers a measurement volume 

determined by the geometry of the satellites and the receiver array. Figure 2-6 illustrates the overall 

Poker Flat GNSS array coverage over a full-day in the form of a skyplot on 2017/5/16. 
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Figure 2-6. Example of Poker Flat GNSS receiver array sky coverage on 2017/5/16 with a 0° 

mask angle. This skyplot gives the satellites’ position via their elevation and azimuth angles at a 

5-minute resolution (GPS, blue; GLONASS, red; Galileo, green and Beidou, yellow). 

 

Although Beidou carrier phase measurements are also available at the Poker Flat array, 

they are not used in this study. This is because at the time of observation, Beidou satellites only 

had regional coverage towards the northwest part of the sky, while their elevation angles were 

relatively low (almost always under 40°) at the GNSS array location. They simply failed to provide 

much admissible drift velocity estimates towards the total results during the scintillation events 

examined in this study. 

2.5.2. ASI Coverage 

The ASI coverage is determined by the characteristics of its lenses. In the case of the Poker 

Flat ASI, the elevation coverage is from 0° to 90°. Note that the ASI is only in operation during 

local nighttime, limiting its temporal coverage. Figure 2-7 gives an example of the ASI coverage 

overlaid with the GNSS array coverage at 08:26:40 UT on 2015/12/20. 

Sky View of GNSS SV Tracks over Poker Flat          Mask Angle 0
o

24 hours from UTC 2017-5-16 00:00:00

 

 

GPS

GLONASS

Galileo

Beidou
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Figure 2-7. Example of Poker Flat ASI sky coverage from a 557.7nm image at 8:26:40 UT on 

2015/12/20, overlaid with the GNSS array coverage. The emission intensity is proportional to the 

ASI image brightness. The numbered dots mark the GNSS satellites’ position in the sky (GPS, 

yellow; GLONASS, red and Galileo, green). The colors of the dots are associated with the phase 

scintillation strength experienced by each satellite-receiver LOS path, expressed by the color bar 

based on 𝜎𝜙 values. The geodetic orientation of the image is indicated by the arrows. 

 

2.5.3. PFISR Coverage and Cross-Comparison Scheme 

For the PFISR, its coverage is illustrated by all the possible look directions (Figure 1 in 

Heinselman and Nicolls [2008]). Figure 2-8 shows the skyplot of PFISR’s coverage, overlaid with 

the GNSS coverage produced from a full-day example on 2015/3/28 (Figure 2 in [Wang and 

Morton, 2017]). 
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Figure 2-8. Sky coverage of the PFISR expressed in a sky plot covering elevation angles from 

20° to 90°, overlaid with the GNSS array coverage on 2015/3/28. The GNSS array’s coverage 

follows the same rubrics as in Figure 2-6. The PFISR’s coverage is illustrated by the star-shaped 

pattern in black, containing all the possible look directions shown by the colored circles (higher 

elevations, blue; lower elevations, red). 

 

Figure 2-8 shows most of the limited overlapping coverage between the two systems is 

contributed by the GLONASS satellites. This hinders direct point-to-point comparisons between 

the two systems. Nevertheless, a cross-comparison scheme is proposed below. 

The PFISR provides measurements of the drift velocities in the form of vector velocities 

binned into geomagnetic latitudes. Therefore, the comparative study of the two systems can be 

carried out by calculating the geomagnetic latitudes of the GNSS irregularity penetration points 

(IRPP), and cross-comparing the corresponding velocity values against the PFISR vector 

velocities. Also, the mean velocities at each epoch across all geomagnetic latitudes within the 

coverage area are compared between GNSS and PFISR results. 

Example Sky View of GNSS SV Tracks

Mask Angle = 20
o

 

 
GPS

GLONASS

GALILEO

BEIDOU
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Before going into the details, it is crucial to understand that not only do the two systems 

observe distinct parts of the sky, but they also have independent schemes for calculating the drift 

velocities from their measurements. Figure 2-9 illustrates some major differences, while showing 

the probable geometry of the two systems. 

 

Figure 2-9. Illustration of drift velocity calculation techniques of the GNSS receiver array and 

the PFISR, as well as the comparison scheme. The pattern in blue outlines an arbitrary 

scintillation patch, with its true drift velocity given by the blue arrow. For the GNSS array, the 

black lines represent the satellite-receiver LOS signal paths. The yellow and brown arrows 

demonstrate different velocity estimations under different IRPP assumptions that are binned into 

corresponding geomagnetic latitude grids. For the PFISR, 4 beams (2 in green and 2 in red) are 

selected for velocity calculation, each producing LOS velocity measurements at various range 

gates specified by the black velocity vectors. These vectors are then binned into different 

geomagnetic latitude grids (3 blue arrows at different transparency levels). The skyplot in the 

upper right corner gives the geometry of the beam arrangement. 

 

Focusing on the PFISR’s scheme, the LOS velocities from each beam at various ranges are 

combined into a single velocity at a particular geomagnetic latitude based on a Bayesian approach 

[Heinselman and Nicolls, 2008]. The vector velocities are usually solved over geomagnetic 

latitudes and represented in three directions with respect to the PFISR look direction: perpendicular 
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east, perpendicular north, and anti-parallel in the geomagnetic coordinate system. Each selected 

beam measures up to 1000 km and has a range resolution determined by its programmable coding 

scheme and pulse arrangement, typically on the order of tens of kilometers. Although the 

combining algorithm can handle any arbitrary beam arrangement, a favorable scheme would be to 

choose beams in different meridional planes with large spatial separations (i.e., the red and green 

planes in Figure 2-9). To summarize, the PFISR’s spatial resolution is determined by the beam 

arrangement, which is typically around several tens of kilometers on the near-end (usually lower 

latitudes), and around 100 km on the far-end (usually higher latitudes). The radar performance 

becomes inferior when there’s high turbulence or insufficient back scatter, degrading the accuracy 

in LOS velocity measurements. This is also captured by Figure 2-9. 

As for the GNSS array’s scheme, the gist of the approach has already been discussed in 

Section 1.2, while the details of the method can be found in Chapter 3. The main takeaway in this 

illustration is that different IRPP altitude assumptions not only can lead to numerical differences 

in the estimated velocities, but also different geomagnetic coordinate projections of these velocities 

(i.e., the yellow and brown arrows on the left side of Figure 2-9). Another observation of this 

projection scheme is that during the conversion from the local East-North-Up coordinates into 

their geomagnetic counterparts, the north component is prone to error caused by the lack of vertical 

velocity measurement from the spaced-receiver method (refer to equation (4) in Heinselman and 

Nicolls, [2008]) 

Another difference between the two systems is the temporal resolution. For the PFISR, this 

is again determined by its pulse arrangement. For the GNSS array, its temporal resolution equals 

its integration time of the cross-correlations process. In this study, the resolutions turned out to be 

5 minutes for the PFISR and 25 seconds for the GNSS array. When cross-comparing the individual 
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velocity at specific geomagnetic latitude, this difference has no significant impact on the result. 

However, when cross-comparing the mean velocities, the GNSS results are also averaged over 5 

minutes to match the PFISR’s resolution. 

2.5.4. KOD SuperDARN Coverage and Cross-Comparison Scheme 

The KOD SuperDARN consists of 16 radar antennas (beams). These radar beams have a 

combined azimuthal coverage of 52˚, from approximately 4˚ to 56˚ relative to due north, with 

individual coverage of 3.24˚. For each beam, the received measurements are divided into 75 range 

gates with a resolution of 45km. In each full scan, KOD covers 52˚ in azimuth and over 3500 km 

in range, an area of over 4×106 km² [Bristow, 2007]. Based on the KOD SuperDARN topology 

and the GNSS array location, Figure 2-10 illustrates the sky coverages of (a) an individual beam 

and (b) the combined array. 

 

Figure 2-10. Sky coverage of the KOD SuperDARN illustrated in (a) individual beam coverage 

schematic and (b) the combined array coverage as a field-of-view plot, both accompanied with 

the GNSS array satellite-receiver LOS topology, respectively. In subplot (a), the satellite-receiver 

LOS coincides with the SuperDARN-irregularity LOS in the ionosphere (blue belt), showing the 

common measurement volume. Subplot (b) shows the SuperDARN field-of-view (fan shape) 

based on the back scatter power measurements (blue rectangles). The GNSS array location is 

marked by the red star with a yellow beam through the SuperDARN’s and GNSS array’s 

locations. A sky plot of satellite tracks is plotted over the GNSS array location, demonstrating the 

common measurement volume between the two systems. 
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The general procedure of the cross-comparison scheme between the GNSS array velocity 

estimates and the SuperDARN measurements can be broken down into the following steps: 1) 

identify the scintillation GNSS signal IRPP coordinates; 2) calculate the distance and bearing angle 

from the IRPP location to the SuperDARN location; 3) project the IRPP onto the SuperDARN’s 

field-of-view; 4) identify the corresponding SuperDARN data grid and perform the comparison. 

Core formulas and detailed procedures can be found in Wang and Morton [2015] and Wang et al. 

[2016]. A detailed example is given in Section 6.4. 

With the receiver array setup introduced, Chapter 3 demonstrates the detailed methodology 

of the spaced-receiver techniques for irregularity drift velocity estimation. 
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3. CHAPTER 3 – SPACED-RECEIVER METHODOLOGY 

 

 

 

An overview of the phase scintillation based spaced-receiver method used in this 

dissertation is given by Figure 3-1 as a block diagram. 

 

Figure 3-1. Block diagram showing the spaced-receiver methodology. Two correlation methods 

for 1-D apparent drift velocity estimation are shown in blue (time-domain method, TDM) and 

green (time-frequency-domain Method, TFDM), respectively. Mutual processing steps are given 

as the red blocks. The correlation model used to combine the 1-D velocities into 2-D, as well as 

the irregularity height assumption are shown in yellow blocks.  

 

In this chapter, the basic theory of the scintillation-based spaced-receiver method for 

estimating the irregularity drift velocity is introduced in Section 3.1. The general method for 

estimating the satellite scan velocity and the sub-ionospheric distance is shown in Section 3.2. 

Under the framework of high-latitude phase scintillation, a time-domain method (TDM) and a 

time-frequency-domain method (TFDM) are presented in Section 3.3 for time lag estimation. In 

Section 3.4, the estimation bounds for the 1-D apparent irregularity drift velocities along receiver 

pairs are provided. 
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3.1. Basic Theory 

A receiver array is considered closely-spaced when their distance is on the order of the first 

Fresnel zone radius at the irregularity structure altitude. The general equation for calculating the 

nth Fresnel zone radius 𝐹𝑅𝑛 at any point along the transmitter-receiver line-of-sight (LOS) is as 

follows 

𝐹𝑅𝑛 = √
𝑛𝜆𝑑1𝑑2

𝑑1 + 𝑑2
 ( 3-1 ) 

where 𝑛 denotes the order of the Fresnel zone, 𝜆 is the wavelength of the transmitted signal, and 

𝑑1 and 𝑑2 represent the distances from the irregularity to the satellite and receiver, respectively. 

For the GPS L1 signal (𝜆 ≈ 0.19 m), if the irregularity structure altitude is assumed to be 350 km 

(𝑑2 = 350 km), then for a satellite at zenith (𝑑1 ≈ 20192 km), the first Fresnel zone radius is 

approximately 256 m. 

For a closely-spaced receiver array, assuming that the irregularity structure is “frozen-in” 

while drifting across the LOS between the receivers and a satellite, the same irregularity structure 

will cause similar phase fluctuations on all receivers’ outputs. Cross-correlation between 

measurements obtained from any two antennas should contain information on the time differences 

of the received fluctuations at the two antennas. 

Together with the known geometry of the antenna array configuration, the apparent 

irregularity pattern drift velocity, 𝒗′, can be estimated along any pair of antennas: 

𝒗′ =
∆𝑑

∆𝑡
 ( 3-2 ) 

where ∆𝑡 denotes the time lag between the antenna pair observing the same irregularity structure, 

and ∆𝑑 denotes the sub-ionospheric distance between their corresponding IRPPs. The difference 

between ∆𝑑  and the receiver baseline distance ∆𝑑𝑅𝑋  is rather small for satellites at high 
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elevations (>40º), but will notably increase towards low elevations [Kil et al., 2000; Kil et al., 

2002], as illustrated in Figure 3-2. 

 

Figure 3-2. Illustration of sub-ionospheric distance ∆𝑑 vs. receiver distance ∆𝑑𝑅𝑋. A high 

elevation scenario is given on the left while a low elevation scenario is no the right. In the left 

sublot, the satellite-receiver distance and the IRPP height are marked by the longer and shorter 

orange lines, respectively. 

 

An approximation of the sub-ionospheric distance ∆𝑑  calculation will be presented in 

Section 3.2. The estimated ∆𝑑  values are then adopted in all subsequent calculations. In this 

study, only observations made at high elevations are considered, so that the signal fluctuations 

caused by effects other than ionosphere irregularities, such as multipath and ground-based 

interference, can be greatly reduced. For the HAARP array, the satellite elevation mask is set to be 

40°. For the Poker Flat array, the elevation mask is lowered to 35°, due to improved signal quality. 

In order to combine the 1-D apparent drift velocities along the receiver pairs into a 2-D 

apparent velocity in the horizontal plane, several velocity modeling methods are 

studied/developed, including the classic isotropy model, a front velocity model and the anisotropy 

model. These models are described in detail in Chapter 4. 



38 

It must be noted that the apparent drift velocity is not the same as the ionospheric 

irregularity drift velocity. The former is the combined effects observed at the receiver array of 

irregularity drift velocity and signal scanning velocity at the IRPP. In the case of geostationary 

(GEO) satellites, the apparent drift velocity and the irregularity drift velocity are essentially 

equivalent. For non-geostationary GNSS satellites, the satellite motion gives the same effect as the 

irregularity layers moving in the opposite direction to the satellite [Kil et al., 2000]. The actual 

ionospheric irregularity drift velocity, 𝒗𝒊𝒐𝒏, can be estimated by the relation 

𝒗𝒊𝒐𝒏 = 𝒗′ + 𝒗𝒔′ ( 3-3 ) 

where 𝒗𝒔′ represents the satellite scan velocity at the irregularity altitude and 𝒗′ is the apparent 

irregularity pattern drift velocity. Figure 3-3 illustrates this property in a 1-D scenario, although 

the general idea holds along any vector component in the zonal-meridional plane. 

 

Figure 3-3. Illustration of drift velocity estimation method. A scintillation irregularity is drift 

from the yellow bubble on the left to the dashed yellow bubble on the right at 𝒗𝒊𝒐𝒏. The receiver 

on the left detects the scintillation pattern at t0, while the receiver on the right saw it ∆𝑡 seconds 
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later. The focus of this problem is to solve for 𝒗𝒊𝒐𝒏 from the satellite scan velocity 𝒗𝒔′ at IRPP 

height, and the apparent irregularity pattern drift 𝒗′. 

 

The main purpose of this chapter is to estimate the irregularity drift velocity, which is often 

assumed to be same as the background plasma drift velocity. The validity of this assumption has 

been supported by co-located ISR measurements in a number of studies [Ledvina et al., 2004; Basu 

et al., 1991a; Kil et al., 2002]. On occasion, however, discrepancies between ISR measured plasma 

drift and spaced-receiver derived irregularity drift have also been found [Kil et al., 2000; Basu et 

al., 1991b]. Basu et al. [1991b] demonstrated that only one out of four data sets for spaced-receiver 

irregularity drift velocity estimations at high latitudes showed fair agreement with the Sondrestrom 

ISR measured plasma drift velocities. Kil et al. [2000] found the irregularity drift estimations to 

be on average 10 – 30 m/s larger than radar measured plasma drift at the same latitude. Thus far, 

existing literature does not reveal a consistent relationship between the irregularity drift and the 

plasma drift. As will be shown in Chapter 6, the techniques presented in this dissertation can be 

used in conjunction with ISR to simultaneously measure irregularity and background plasma drift 

velocities. 

Based on Equation 3-3, 𝒗𝒊𝒐𝒏  can be obtained by accurately estimating 𝒗′  and 𝒗𝒔′ . 

Estimation of the satellite scan velocity 𝒗𝒔′ at the IRPP is presented in the following section. 

Estimation of the apparent irregularity pattern drift velocity 𝒗′ is more challenging and is really 

the cornerstone of this project. Section 3.3 focuses on the time lag estimation, which is a key 

component for estimating the 1-D apparent irregularity pattern drift along receiver pairs. To 

expand the solution into 2-D, a correlation model is required to account for the topology of the 

irregularity pattern. This is discussed in Chapter 4. 
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3.2. Satellite Scan Velocity 

The instantaneous satellite scan velocity at the IRPP can be estimated by the average scan 

velocity over a short amount of time. The estimation process is demonstrated by the following 

steps: 

1) Let the time epoch of calculation be 𝑡1, determine the elevation and azimuth angles of the 

satellite signals exhibiting sufficient phase fluctuation at 𝑡1. This is achieved by estimating 

the satellite orbit using ephemeris decoded from the receiver output at Antenna 1. Use the 

same approach to determine another set of elevation and azimuth angles shortly after 𝑡1, 

say at 𝑡2, with 𝑡2 − 𝑡1 = ∆𝑡. In this dissertation, ∆𝑡 is taken as 1 second. 

2) Compute the IRPP latitudes 𝜑  and longitudes 𝜆  corresponding to these two sets of 

elevation and azimuth angles [Klobuchar, 1987]: 

∠𝐴𝑖 = 90° − ∠𝑒𝑙𝑒𝑖 − arcsin (
𝑟𝑒

𝑟 + ℎ
cos∠𝑒𝑙𝑒𝑖) ( 3-4 ) 

𝜑𝑖 = arcsin(sin𝜑0 cos ∠𝐴𝑖 + cos𝜑0 sin∠𝐴𝑖 cos ∠𝑎𝑧𝑖𝑖) ( 3-5 ) 

𝜆𝑖 = 𝜆0 + arcsin (
sin∠𝐴𝑖 sin∠𝑎𝑧𝑖𝑖

cos 𝜑𝑖
) ,     𝑖 = 1,2 

( 3-6 ) 

where 𝑟  is the Earth radius, ℎ  is the IRPP altitude, 𝜑0  and 𝜆0  are the receiver’s 

latitude and longitude, ∠𝑎𝑧𝑖 and ∠𝑒𝑙𝑒 are the satellite’s elevation and azimuth angles 

determined from step 1, ∠𝐴 is commonly referred as the “Earth angle”, and 𝑖 denotes 

the time index. Figure 3-4 illustrates the geometry and relationships among these 

parameters and parameters used in the following steps. 
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Figure 3-4. Schematic of parameters used in satellite scan velocity estimation. 𝐼𝑅𝑃𝑃1 and 

𝐼𝑅𝑃𝑃2 are determined based on the fixed receiver position and the satellite positions at 𝑡1 and 

𝑡2. The satellite scan velocity at IRPP altitude is calculated as the ratio between the displacement 

d, and the time difference ∆𝑡 = 𝑡2 − 𝑡1. 

 

3) Use the ‘haversine’ formula to calculate the great-circle distance between the two IRPP’s, 

i.e., the shortest distance over the surface at the IRPP altitude [Robusto, 1957]: 

𝑎 = sin2 (
𝜑2 − 𝜑1

2
) + cos𝜑1 cos𝜑2 sin2 (

𝜆2 − 𝜆1

2
) ( 3-7 ) 

𝑐 = 2 ∙ arctan (
√𝑎

√1 − 𝑎
) ( 3-8 ) 

𝑑 = (𝑟 + ℎ) ∙ 𝑐 ( 3-9 ) 

where 𝜑 and 𝜆 are obtained from step 2, and 𝑑 is the great-circle distance. Unlike the 

classic ‘haversine’ formula that assumes the reference frame to be on the surface of the 

Earth, a modification is made here in the last equation so that the reference frame is now 

the surface at the IRPP height. 
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4) Calculate the bearing angle 𝜃 between the two IRPP’s: 

𝑦 = sin(𝜆2 − 𝜆1) cos 𝜑2 ( 3-10 ) 

𝑥 = cos𝜑1 sin𝜑2 − sin 𝜑1 cos𝜑2 cos(𝜆2 − 𝜆1) ( 3-11 ) 

𝜃 = arctan (
𝑦

𝑥
) ( 3-12 ) 

5) Now that both 𝑑  and 𝜃  have been found, together with the already known ∆𝑡 , the 

average satellite scan velocity between the two IRPP’s can be calculated by: 

|𝒗| =
𝑑

Δ𝑡
 ( 3-13 ) 

with the direction of 𝜃, pointing from the IRPP at 𝑡1 to the IRPP at 𝑡2. If Δ𝑡 is small 

enough, this average velocity can be approximated to the instantaneous scan velocity 𝒗𝒔′. 

3.2.1. Sub-Ionospheric Distance 

The sub-ionospheric distance is the distance between the IRPPs along the LOS of two 

receivers observing the same satellite, as illustrated in Figure 3-2. An approximation of the sub-

ionospheric distance can be computed using a similar technique demonstrated above. For a 

particular satellite, the elevation and azimuth angles at each receiver can be estimated using the 

decoded ephemeris. The corresponding IRPP coordinates can be calculated as in Equations 3-4 

through 3-6. Finally, the sub-ionospheric distance between the two IRPPs is found using Equations 

3-7 through 3-9. 

3.3. Time Lag Estimation 

3.3.1. Time-Domain Method  

The TDM used in this study follows the conventional time-domain cross-correlation 

technique [Kil et al., 2000]. But as stated in Section 1.2.1, the signal intensity measurements used 

in the conventional method is not suitable for high-latitude scintillation-based spaced-receiver 
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technique. Hence, a major modification in the proposed TDM is to apply the time-domain cross-

correlation algorithm on GNSS carrier phase measurements instead.  

During the process of acquiring the time shifts at correlation peaks (or time lags), the 

correlation coefficients are generated as by-products. Intuitively, correlation values associated with 

higher coefficients are desired, as they represent higher confidence levels. Therefore, a correlation 

coefficient filter can be implemented to ensure the integrity of the calculated time lags. Figure 3-

5 is a block diagram demonstrating the TDM. 

 

Figure 3-5. Block diagram showing the TDM. 

 

On the other hand, excessively high correlation coefficient thresholds lead to very few 

admissible time lag estimations, degrading the statistical performance of the algorithm. By 

matching the GPS L1 estimated drift velocities with the GPS L2C estimations, Wang and Morton 

[2017] proposed a balanced correlation coefficient threshold at 70%, which is adopted in this 

dissertation as well. 

According to the spaced-receiver technique, the drift velocity of an irregularity patch is 

captured when disturbances occur in the input signals, which are GNSS carrier phase signals in 

this case. The correlation coefficient filter can guarantee a high confidence level in the estimated 

time lags, but it cannot separate disturbed signals from quiet conditions. In other words, with the 

correlation coefficient filter alone, the algorithm may still provide drift velocity estimations even 

when the receiver array is not observing any significant irregularities. 
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To further ensure the validity of the algorithm, irregularity strength is estimated, and the 

calculated time lags are further filtered based on the irregularity strength. The 𝜎𝜙 value is the 

most commonly adopted metric for GNSS phase irregularities [Yeh and Liu, 1982]. In our previous 

study, a 𝜎𝜙 threshold at 12° is found to be capable of separating irregularities from noise via 

similar dual frequency self-consistency study, as seen in the above section [Wang and Morton, 

2016]. This threshold value is adopted for GPS and Galileo satellites in this study. Note that this 

scintillation strength filtering technique can be applied to the TFDM as well.  

Also, the TDM is less applicable under noisy signal conditions, such as the signal 

attenuation issue at the HAARP array. In this dissertation, the TDM is only applied on data 

collected from the Poker Flat array. 

3.3.2. Time-Frequency-Domain Method  

Unlike signal intensity measurements for amplitude scintillations, carrier phase 

measurements can be plagued with errors from a number of sources. Among them, receiver 

oscillator-induced phase jitter and multipath are difficult to distinguish from ionospheric 

irregularity-induced fluctuations. Carrier phase measurements are also susceptible to cycle slips, 

especially during scintillation events when signals experience fading and/or higher carrier 

dynamics. Carrier phase detrending processes aimed to remove low frequency components, such 

as receiver-satellite dynamics, satellite orbit errors, receiver and satellite clock bias, background 

ionosphere and troposphere induced carrier phase trend, etc., may over- or under-filter fluctuations 

due to ionospheric irregularities [Beach, 2006; Mushini et al., 2012; Niu et al., 2012]. The 

combined effects of these factors are likely to yield unreliable or inconsistent correlation results 

when directly applying the TDM. In the case of the HAARP array, the signal condition is inferior 

due to the notable signal attenuation occurred when long cables were used to connect the antennas 
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to the receivers and frontends. Figure 3-6 gives an example of detrended GPSL1 carrier phase 

measurements at the HAARP array. 

 

Figure 3-6. Example of detrended carrier phase measurements on GPSL1 at the HAARP array 

from 02:35:57 to 02:36:11 UT on 2012/10/1. The phase signals are shown in red, green, and blue 

for Antennas 1, 2 and 3, respectively. The signals received at Antenna 2 and 3 are noisier than the 

on Antenna 1 because they are connected to the receivers via longer cables 

 

As can be seen in Figure 3-6, there is substantial noise on Antennas 2 and 3, as opposed to 

the clean signal on Antenna 1. The cable length from Antenna 2 to the equipment shelter is the 

longest, causing the largest noise corruption on the measurements. 

To address these issues, we resorted to time-frequency analysis (TFA). The gist of the 

approach is to transform the original time-domain phase measurements into time-frequency-

domain, so that spectral filtering can be applied without losing the temporal information which is 

crucial for the correlation process.  

TFA techniques are widely used in fields associated with instrumentation and 

measurement, such as power quality analysis [Gu and Bollen, 2000; Radil et al., 2008], fault 
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detection [Pineda-Sanchez et al., 2010], and biomedical and biometric applications [Zhou et al., 

2008; Chatterjee et al., 2010], etc. Most of the techniques stem from spectral estimation methods 

that fall into two categories: nonparametric and parametric. In nonparametric methods, the signal 

is assumed to be only composed of sinusoidal components with no dependency on any statistical 

model. Conversely, in parametric methods, the signal is assumed to follow certain probability 

distribution models. Sejdić et al. [2009] provides a recent review on both categories. In ionospheric 

scintillation studies, the Nakagami-m and Gaussian distributions are often used to describe 

amplitude and phase scintillations, respectively [Pullen et al., 1998; Hegarty et al., 2001; 

Humphreys et al., 2009]. However, these model distributions appear to break down for strong 

scintillations [Rino, 2011]. For this reason, only nonparametric methods are considered in this 

study. Our previous studies investigated several nonparametric methods. Among them, an adaptive 

periodogram (APT) method shows superior performance in both time and frequency domains 

[Wang et al., 2012; Wang, 2013]. It can adaptively detect the optimal window length of any 

frequency component to produce high resolution time-frequency spectrum [Wang and Morton, 

2015]. 

Based on the APT method, the TFDM has been developed [Wang et al., 2014; Wang and 

Morton, 2015]. After the transforming the time-domain signals into time-frequency domain, 

additional spectral filtering routines are applied to increase the signal-to-noise ratio of scintillation 

signatures. As a result, this method is suitable for weak signal conditions. Figure 3-7 is a block 

diagram demonstrating the TFDM. 
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Figure 3-7. Block diagram showing the TFDM. 

 

In the following sections, the APT is explained in Section 3.3.2.1, while the TFDM 

implementation is demonstrated by an example in Section 3.3.2.2, following the architecture in 

the above block diagram. 

3.3.2.1. Adaptive Periodogram Technique 

APT is a joint time-frequency analysis (TFA) method developed to capture the time-

varying spectral features of phase fluctuation. Detailed descriptions of the APT algorithm and 

comparisons of its performance against other joint time-frequency analysis methods can be found 

in [Wang et al., 2012; Wang et al., 2013; Wang and Morton, 2015]. The basis of the APT spectral 

estimation method is Lomb’s periodogram, which is modified from the classic Shuster’s 

periodogram using a least-squares (LS) approach [Schuster, 1897; Lomb, 1976]. It estimates the 

spectrum values by LS-fitting sine waves to the signal [Lomb, 1976; Scargle, 1982]. The method 

is based on a linear model fitting, which sets up a convenient framework for further analyses 

[Zhang et al., 2012]. Lomb’s periodogram of an input signal x with N points is defined as: 

         ( 3-14 ) 
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Lomb’s periodogram only outputs one periodogram value for all N points of the input. 

Consequently, all time information is discarded. In order to retrieve the time information, Equation 

3-14 is modified into: 

         ( 3-15 ) 

The major advantage of Lomb’s periodogram as a spectral estimation method is its ability 

to adaptively detect the window length of any frequency component. The following example 

illustrates such a property. Let the input signal x be a time series containing a single continuous 

wave (CW) signal interval. Figure 3-8 demonstrates that the periodogram can accurately detect the 

endpoints of this CW interval simply by searching for the peak index. 

 

Figure 3-8. Illustration of window detectability of Lomb’s periodogram. The black dash-dot and 

red solid lines demonstrate the forward and backward search, respectively. The search peaks 

indicate the successful detection of the ending and starting points of the signal window as the 

blue dashed line. 

 

In Figure 3-8, 500 data points are sampled above the Nyquist rate at 1000 Hz. The input 

signal (blue dashed line) contains a CW cosine wave between the 126th and 375th data point 
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simulated at 20 Hz in a noise-free environment. A forward search at 20 Hz (black dash-dot) 

identifies the CW signal’s ending point, while a backward search (red solid) finds the starting 

point. The peak indices of the two-way search correctly identify the CW signal window. 

A trade-off for this window detection ability is that window biases could exist in certain 

regions of the two-way search depending on the signal frequency and the sampling frequency. 

Nevertheless, such biases will diminish over time due to the LS-fitting feature [Wang, 2013]. 

This window detection ability of Lomb’s periodogram ensures that APT produces a good 

time resolution. In order for the algorithm to have a good frequency resolution, intuitively, when 

the periodogram is evaluated at frequencies other than the signal frequency, the periodogram value 

should remain insignificant. Figure 3-8 illustrates this property. 

 

Figure 3-9. Frequency detectability of Lomb’s periodogram. The red dash-dot line demonstrates 

forward search at 20 Hz, the same frequency of the input signal as the blue solid line. The search 

peak is significantly higher than that of the forward search as the black dashed line at a different 

frequency of 10 Hz. 

 

In Figure 3-9, the blue solid line represents the CW signal at 20 Hz; the red dash-dot line 

is the periodogram forward search at the same frequency, while the black dashed line is the 
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periodogram value at 10 Hz. Evidently, a search for a non-present frequency will yield small values 

and should not be able to identify the signal. This property can be proved by using the 

orthonormality relation of the Fourier kernels [Wang, 2013]. On the other hand, governed by the 

Uncertainty Principle, the periodogram value at a frequency very close to the signal’s frequency 

would be much more noticeable [Cohen, 1995]. However, it should not exceed the periodogram 

value at the true frequency.  

Based on Lomb’s periodogram, the APT power spectrum can be calculated by applying 

two-way searches scanning across the desired frequencies [Wang, 2015]. A byproduct of the 

algorithm is the APT optimized window lengths. The product of these two gives the APT energy 

spectrum.  

One of the most important properties of any joint time-frequency analysis method is their 

performance in the presence of noise. Lomb [1976] showed that the periodogram at any frequency 

has a chi-squared distribution with two degrees of freedom. Under such a framework, Brenneman 

et al. [2007] designed a hypothesis test to demonstrate the frequency detection performance of 

APT under noise. The test reveals the relationship among the desired false alarm rate (α), the 

missed detection rate (1 − β), the minimum signal-to-noise-ratio (SNRmin) of the signal, and the 

required minimum number of data points (η) for the APT algorithm. 

In the actual implementation, the optimal window lengths and the separation between peak 

indices can both be bounded by their corresponding pre-specified ranges. If certain characteristics 

of the signal structure are known, as is the case for scintillation indicators, these strategies can 

drastically benefit the computational performance. To improve the visual representation of the 

resulting spectra, raw APT spectra are converted into decibel (dB) values with respect to their 

mean spectrum values using base-10 logarithm. Figure 3-10 shows an example of the GPS PRN 8 
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APT energy spectrum in dB generated from data taken by the ISM receiver from 12:06:17 to 

12:11:17 UTC, on 2012/10/13. 

 

Figure 3-10. Five minutes example of normalized APT energy spectrum comparison across all 

antennas from 12:06:17 on PRN8. The color bar on the right is in dB with respect to the mean 

value of the APT spectrum. 

 

The window length bound is set to [50, 6000] (samples), while the peak separation bound 

is set to [300, 6000] (samples). These APT parameters are adopted throughout this dissertation, 

based on the study of spectrum analysis presented in [Wang, 2013]. The target frequency range in 

this example is empirically set from 0.05 Hz to 5 Hz with a step size of 0.05 Hz. 

3.3.2.2. TFDM Implementation 

After applying the APT algorithm, the APT spectra are filtered in order to remove low 

power level components, which are most likely due to contributions from noise. The cross-

correlation function between two APT filtered spectrum outputs, P1,f  and P2,f , at frequency f, is 

given by: 
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𝐶𝑓(𝜏) =
∑ 𝑃1,𝑓(𝑡𝑘)𝑃2,𝑓(𝜏 − 𝑡𝑘)𝑘

√∑ 𝑃1,𝑓
2(𝑡𝑘)∑ 𝑃2,𝑓

2(𝑡𝑘)𝑘𝑘

 
( 3-16 ) 

The cross-correlation is carried out during intervals within which the ionospheric 

irregularity is assumed to be “frozen-in”. During each correlation interval, the correlation 

coefficients and the time lags are both recorded for all frequencies across the APT spectra. 

Therefore, there are multiple time lags for each time window. Only time lags corresponding to 

numerically high correlation coefficients (>0.9, for example) are considered to further minimize 

contributions from irregularities that may have some degree of varying patterns observed by the 

two antennas. Averaging of these time lags within each window is performed to obtain the time 

difference of the event’s arrival between the antennas. With the calculated sub-ionospheric 

distances between antennas and averaged time lags, the apparent scintillation pattern drift velocity 

can be estimated. 

We use phase fluctuation events observed on 2012/10/13 by the receiver array at Gakona, 

Alaska to illustrate the TFDM processing. One-hour data starting from 11:54:17 UTC were 

recorded on both USRP frond ends and the ISM receiver. Four GPS satellites (PRN 5, 7, 8 and 26) 

exhibited large phase fluctuations. PRN 7 and PRN 8 stayed at high elevations (>40º) throughout 

this period, while PRN 5 and PRN 26 were visible at high elevations during most of this period. 

Using this phase fluctuation event, 10 minutes of detrended carrier phase measurements of 

PRN 8 are extracted from both antennas starting from 12:04:17 UTC. As defined in Equation 1-2, 

the commonly used phase scintillation index, 𝜎𝜙, is calculated to show the strength of this event. 

𝜎𝜙 at 10 s resolution and the detrended carrier phase at 0.01 s resolution are plotted in Figure 3-

11 for both antennas. 
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Figure 3-11. Ten minutes of GPS PRN 8 detrended carrier phase standard deviation (top) and 

carrier phase data (bottom) starting at 12:04:17 UT on 2012/10/13 from Antennas 1 and 3. After 

zooming into the signals, a slight advance of about 1 second in Antenna 3’s 𝜎𝜙 measurement 

can be observed from the top figure. 

 

In Figure 3-11, large phase fluctuations can be observed for both antennas. From the 

detrended carrier phase plot (bottom), a small time lag can be observed between the two antennas. 

After zooming into the signals, a time lag about 1 second can be determined via inspection. 

However, this feature is less obvious in the 𝜎𝜙 plot (top), due to the averaging process when 

calculating the 𝜎𝜙 value (see Equation 1-2). 

Log-scale APT energy spectra are generated from the detrended carrier phase 

measurements. An example showing a 5-minute comparison across all three antennas on PRN 8 

was given in Figure 3-10 in the previous section. From Figure 3-10, a slight advance on Antenna 

3 relative to Antenna 1 can be observed, which is in accord with the previous observation from the 

𝜎𝜙 plot in Figure 3-11. Note that the APT spectra of Antennas 2 and 3 are notably noisier than that 

of Antenna 1 towards higher frequencies, especially in the case of Antenna 2. This is mostly likely 
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because of the signal attenuation through transmission via long cables. After spectral filtering, the 

APT spectra on PRN 8 across all three antennas using the same set of data are demonstrated in 

Figure 3-12.  

 

Figure 3-12. Five minutes example of filtered APT spectra across all antennas from 12:06:17 on 

PRN8. 

 

Comparing Figure 3-10 and Figure 3-12, clearly, the phase noise effects towards higher 

frequencies have been greatly improved. 

The full hour-length raw correlation and filtered results for PRN 8 across the antennas are 

shown in Figure 3-13 and Figure 3-14, respectively. 



55 

 

Figure 3-13. Example of full-hour raw correlation results from 11:54:17 UT on 2012/10/13 on 

PRN8. The top row figures are correlation coefficients, with intensity indicated by the top 

colorbar. The bottom row figures reflect the correlation lag estimation, with values indicated by 

the bottom colorbar from -30 to 30 seconds. The left column figures are the correlation results 

between Antennas 1 and 2, while the right column figures are for Antennas 1 and 3. 

 

 

Figure 3-14. Example of full-hour correlation results after spectral filtering following the plotting 

rubrics in Figure 3-13.  
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By comparing the top panel coefficient plots in both figures, it can be seen that the high 

coefficient values in the background towards higher frequencies have been further reduced in 

Figure 3-14 than in Figure 3-13, leaving more reliable estimations concentrated towards the bottom 

of the spectra. 

Based on procedures described at the beginning of this section, averaged time lags of the 

irregularity events between antennas are computed. Processed time lags across the antennas on 

PRN 8 are given by Figure 3-15. 

  

Figure 3-15. Full-hour averaged lag estimation across Antennas 1 & 2 (top), and Antennas 1 & 3 

(bottom) from 11:54:17 UT on PRN 8. The estimated values from Antennas 1 & 3 match with 

the previous inspected values from Figure 3-7 (about 1 second). 

 

In Figure 3-14, the correlation coefficient thresholds are set to 0.9 for both Antenna 1 – 

Antenna 2 (top plot) and Antenna 1 – Antenna 3 (bottom plot). Note that between 10 min and 20 

min, the lags are mostly around 0.5 s, which is again in good agreement with our previous inspected 

value from Figure 3-11. 
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On top of the transmission loss issue, it must be noted that the distance between Antennas 

1 and 2 is almost 4 times the distance between Antennas 1 and 3. The “frozen-in” assumption faces 

a stronger challenge over longer distances. The collective result is that the correlation coefficients 

for Antenna 1 – Antenna 2 tend to be lower than that for Antenna 1 – Antenna 3. Even after spectral 

filtering, the 0.9 threshold would reject most of the lag results, leaving numerous blanks in the lag 

estimation (indicated by the zero-lags in the plots). However, further decreasing this threshold 

would render the results to be more susceptible to noise interference in the estimation and may 

introduce correlations between different irregularity patterns. In this study, the coefficient 

threshold is maintained at the high value of 0.9 for the TFDM. In the trade-off between 

measurement availability and reliability, this choice is in favor of the latter. 

3.4. Drift Velocity Estimation Bounds  

Now that both the time lag information and the sub-ionospheric distance are obtained, the 

1-D apparent irregularity pattern drift velocity, 𝒗′𝟏−𝑫, can be determined. The upper and lower 

bounds of 𝒗′𝟏−𝑫  can be established using system parameters. Ledvina et al. [2004] derived 

simple bounds for the measurable 1-D apparent irregularity pattern drift velocity as: 

∆𝑑𝑅𝑋

0.5𝑡𝑐𝑜𝑟𝑟
≤ |𝒗′𝟏−𝑫| ≤

∆𝑑𝑅𝑋

∆𝑡𝑠𝑎𝑚𝑝
 ( 3-17 ) 

where 𝑡𝑐𝑜𝑟𝑟 is the correlation time interval, ∆𝑑𝑅𝑋 is the distance between antennas, and ∆𝑡𝑠𝑎𝑚𝑝 

is the sampling interval of the data. Note that the baseline distance between antennas is used in 

place of the sub-ionospheric distance for simplicity. The upper bound is determined by the system 

setup. It is typically not a limiting factor, especially in this study where ∆𝑡𝑠𝑎𝑚𝑝 = 0.01 s is small 

enough to provide a sufficiently large upper bound. The lower bound is mainly dependent on 

correlation time. While a larger 𝑡𝑐𝑜𝑟𝑟 will result in a smaller lower bound, it may violate the 

“frozen in” assumption. 
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In this study, 𝑡𝑐𝑜𝑟𝑟 = 30 seconds is used for the HAARP array data, while 𝑡𝑐𝑜𝑟𝑟 = 25 

seconds is used when processing the Poker Flat array data. It should be noted that when 𝑡𝑐𝑜𝑟𝑟 is 

fixed, decreasing the baseline distance between the antennas would further lower the measurable 

bounds. However, by doing this, the tolerance on the time lag estimation error will also be 

increasingly stringent. On the other hand, increasing the baseline by too much would eventually 

violate the closely-spaced assumption, as it far exceeds the first Fresnel zone radius at IRPP 

altitude. 

Thus far, the methodology of phase-scintillation-based spaced-receiver technique has been 

introduced. Derivation for the satellite scan velocity is presented. The general processes for 

obtaining the time lag information have been demonstrated through both the TDM and the TFDM. 

The 1-D apparent irregularity pattern drift velocities along receiver pairs can be determined from 

the time lag information and the sub-ionospheric distances of the receiver array. The next step is 

to determine the 2-D apparent pattern drift from these 1-D estimates. This is achieved in Chapter 

4 through modeling the received correlation pattern. 



59 

4. CHAPTER 4 – CORRELATION MODELS 

 

 

 

Knowing the 1-D apparent irregularity drift velocities along the receiver pairs, an intuitive 

approach for calculating the 2-D drift is through vector addition. For a receiver array (𝑖, 𝑗, 𝑘) with 

arbitrary geometry configuration, this process can be generalized into: 

𝒗′ =
∆𝑑𝑖,𝑗

∆𝑡𝑖,𝑗
∙ 𝒂𝒊,𝒋 +

∆𝑑𝑖,𝑘

∆𝑡𝑖,𝑘
∙ 𝒂𝒊,𝒌 ( 4-1 ) 

where 𝒂𝒊,𝒋 and 𝒂𝒊,𝒌 denote the unit vectors along antenna (𝑖, 𝑗) and (𝑖, 𝑘) pairs, respectively.  

However, as pointed out by Briggs et al. [1950], this model is rather naïve and is not 

suitable in the context of spaced-receiver correlation analysis. Because the 2-D apparent drift is 

caused by the irregularity structure rather than a point object. To correctly reconstruct the 2-D drift, 

a correlation model is required to account for the irregularity topology. 

In this chapter, three correlation models are presented, including the classic isotropy model 

in Section 4.1, the front velocity model in Section 4.2, and the anisotropy model in Section 4.3. To 

compare and analyze these correlation models, the space-time correlation schematic of each 

method is constructed. With the understanding of the merits and drawbacks of each method, a 

hybrid correlation model is proposed in Section 4.4 based on the front velocity model and the 

anisotropy model. 

Although different correlation models make different assumptions on irregularity pattern 

topology, all correlation models discussed in this study do share some common assumptions. First, 

the “frozen-in” assumption assumes minimal evolution in irregularity structure and drift direction 

within the correlation interval [Mitra, 1949]. As a result, similar space-time correlation patterns 

can be observed at each receiver, while an averaged correlation pattern can be obtained. Second, 

the correlation functions are assumed to be strictly decreasing functions on both sides of the 
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correlation peaks [Armstrong and Coles, 1972]. Following this assumption, it is feasible to fully 

characterize the space-time correlation of each correlation model. And lastly, a geometrical optics 

relationship is assumed to relate election density perturbation in the irregularity structure to the 

carrier phase fluctuation in the received measurement [Rino and Fremouw 1977; Rino and 

Livingston, 1982]. This assumption establishes the relationship between the irregularity in space 

and the observed correlation pattern on the ground. 

At this stage, the irregularity height is still treated as unknown, causing uncertainty in the 

sub-ionospheric distance calculation. In this chapter, when formulating the drift velocity estimates, 

the known receiver baseline distances are used in place of the sub-ionospheric distances. By doing 

so, approximated deterministic drift velocity solutions can be achieved. This alteration effectively 

puts the focus on the 2-D receiver plane on the ground, rather than the 2-D plane defined by the 

IRPP’s in the ionosphere. Therefore, instead of the term “irregularity pattern drift” used in the 

previous chapters, we now use the term “diffraction pattern drift” from the literature to describe 

the 2-D apparent drift [Livingston et al., 1982; Costa et al., 1988]. We also use the upper-case "𝑽" 

to distinguish the diffraction pattern drift from the irregularity pattern drift in lower-case "𝒗". Note 

that the drift velocity estimates can be corrected later once the irregularity height is fixed. 

4.1. Classic Isotropy Model 

The classic correlation model aiming to resolve the diffraction pattern drift is proposed by 

Mitra [1949] and developed by Briggs et al. [1950] and Briggs [1968]. This model makes the 

implicit assumption that the diffraction pattern is statistically isotropic. In this study, this model is 

referred to as the classic isotropy model. Combining with the common assumptions described 

above, it follows that the instantaneous spatial correlation pattern observed at the receiver array 

would take the form of concentric circles with increasing intensity towards the pattern center. 



61 

A key issue this model addresses is how to estimate the 1-D drift velocity components 

along a pair of receivers whose alignment is at an angle to the diffraction pattern drift direction. 

This is illustrated by the following example: Let RX1 and RX2 represent the receiver pair location 

along the OX direction, where RX1 is at the origin O. An isotropic diffraction pattern is drifting at 

velocity VD at an angle 𝜃 to the OX-axis. Let the corresponding time lag at the receiver pair cross-

correlation peak be 𝜏0. Then, the apparent drift velocity between this pair of receivers along the 

OX direction is 𝑽𝒙
𝑨 = 𝜉0/𝜏0, where 𝜉0 = |𝑅𝑋1 − 𝑅𝑋2|. Figure 4-1 illustrates this example. 

RX1 RX2

V 
D

V 
D

Vx
T

Vx
A

O X

θ

(a) (b)

ξ0

 

Figure 4-1. Illustration of the classic isotropy model. In subplot (a), the diffraction pattern is 

drifting at velocity VD at an angle 𝜃 to the OX-axis. The solid and dashed concentric circles 

indicate the observed correlation pattern caused by diffraction, where maximum correlations are 

observed 𝜏0 seconds apart at RX1 and RX2, respectively. Subplot (b) shows the velocities 

derived from this configuration. 

 

Note that the concentric circles in subplot (a) are shown with different line widths, 

reflecting the monotonic decreasing property of the correlation functions. Subplot (b) shows the 

velocities derived from this configuration, where VD represents the 2-D diffraction pattern drift 

and 𝑽𝒙
𝑨 is the 1-D apparent drift along the OX-axis. As for 𝑽𝒙

𝑻, Briggs et al. [1950] defines it as 

the true drift velocity along the receiver pair direction “with which an observer would have to 

move along OX in order to reduce the speed of fading as observed by him to a minimum”. Indeed, 
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an observer moving along the OX-axis at 𝑽𝒙
𝑻 would find the diffraction pattern fading most slowly 

in time, as the observer is always at the closest point on OX with respect to the diffraction pattern. 

This is an intuitive definition under the isotropic assumption, as 𝑽𝒙
𝑻 would coincide with 

the velocity component of VD along OX. Consequently, the 2-D diffraction pattern drift can be 

reconstructed from these 1-D true drift velocities along receiver pairs via vector addition. The 

following relationships can be obtained: 

𝑽𝒙
𝑨 = 𝑽𝑫 cos 𝜃⁄ , 𝑽𝒙

𝑻 = 𝑽𝑫 cos 𝜃 ( 4-2 ) 

However, in reality, the diffraction pattern is expected to be anisotropic due to the high 

parallel conductivities of the ionosphere [Mendillo and Baumgardner, 1982]. In this case, equation 

set (4-2) may not hold, since both the elongation and orientation of the anisotropic diffraction 

pattern would impact the projections of 𝑽𝑫 onto the OX-axis. 

To account for the above ambiguity, it is more adequate to establish the generalized 

relationship between these velocities and the correlation functions of receiver array measurements. 

Briggs et al. [1950] proposed a space-time correlation schematic following the monotonic 

decreasing assumption on the correlation functions.  

4.1.1. Space-Time Correlation 

The space-time correlation schematic can be a useful tool when analyzing the correlation 

model. In the literature, it is often only expressed in 2-D along a single spatial dimension (with the 

second dimension being time) [Briggs et al., 1950; Kintner et al., 2004]. However, it can be very 

challenging to differentiate between two correlation models based on their correlation surfaces 

along a single dimension. To better understand and compare different models, it is necessary to 

construct their full space-time correlation schematics by assembling correlation surfaces in all 

spatial dimensions. 
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In this study, using the classic isotropy model as an example, the space-time correlation 

schematic is constructed as the following. First, space-time correlation surfaces are obtained along 

selected spatial dimensions for different 𝜃 values. This is performed for three diffraction pattern 

propagation scenarios: a) parallel to the receiver pair orientation (𝜃 = 0°); b) perpendicular to the 

receiver pair orientation (𝜃 = 90° ); c) somewhere between a) and b) (0° < 𝜃 < 90° ). The 

corresponding spatial dimensions are denoted as: a) 𝜁∥, b) 𝜁⊥, and c) 𝜁𝜃. Then, with the first two 

extreme cases and the last general case, the full space-time correlation can be derived. The 

resulting individual correlation surfaces and the full space-time correlation schematic are shown 

in Figure 4-2. 
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Figure 4-2. Individual space-time correlations along different spatial dimensions for (a) 𝜃 = 0° 
in red, (b) 𝜃 = 90° in green, and (c) 0° < 𝜃 < 90° in blue, as well as the full space-time 

correlation schematic (d) for the classic isotropy model. For subplots (a), (b) and (c), an 

illustration is given on top of the correlation pattern for each 𝜃 value, while 𝜁∥, 𝜁⊥, and 𝜁𝜃 are 

the corresponding spatial dimensions. d marks the distance between receivers RX1 and RX2, the 

square marks the apparent drift velocity, and the circle marks the true drift velocity. For subplot 

(d), the top row gives the horizontal cut through the 𝜁x-𝜁y plane, showing the correlation pattern 

from diffraction as concentric circles. In the space-time schematic at the bottom, the dashed 

shapes mark the vertical cuts along each spatial dimension as in subplots (a), (b), and (c). 
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In Figure 4-2, subplots (a), (b) and (c) illustrate the correlation surfaces in red, green and 

blue, under the three scenarios. Similar to Figure 4-1, the widths of the lines correspond to different 

correlation strengths. Along the 𝜁∥, 𝜁⊥ and 𝜁𝜃 axes, the estimated true velocities are marked by 

the circles, while the apparent velocities are marked by the squares. In subplot (d), 𝜁𝑥 -𝜁𝑦 

represents the horizontal receiver plane defined by the user. For example, 𝜁𝑥 can represent the 

geomagnetic east direction while 𝜁𝑦 can be the geomagnetic south. In the bottom figure, the grey 

cylinder represents the full space-time correlation for the classic isotropy model in the space-time 

domain defined by the 𝜁𝑥-𝜁𝑦 plane and the 𝜏-axis. The cross-section at the top of the cylinder 

shows the correlation strengths through the concentric ellipses. The dashed shapes outline the 

intersections from the vertical cuts along each individual dimension for the three scenarios in red, 

green and blue, respectively. The cylinder goes through the 𝜁𝑥-𝜁𝑦 plane at an inclination, which 

gives the magnitude of VD. A horizontal cut through the cylinder at 𝜏 = 0  gives the spatial 

correlation pattern caused by diffraction. In the case of the classic isotropy model, the resulting 

cross-section takes the shape of concentric circles. This is characterized by the top figure of subplot 

(d), while the black arrow along 𝜁∥ shows the direction of VD. 

Along each spatial dimension in subplots (a), (b) and (c), the apparent drift velocity 

(square) is obtained at the cross-correlation peak along the vertical cut of the correlation surface 

at the receiver distance. Then, tracing the correlation values same as the peak value, a horizontal 

cut determines the true drift (circle) following the definition by Briggs et al. [1950]. In this 

example, the strict “frozen-in” assumption is applied, that the correlation strength does not 

decrease over time within the correlation interval. Therefore, the true drift and the apparent drift 

are the same in subplot (a) when the diffraction pattern happens to be traveling along the receiver 

pair alignment. This agrees with the aforementioned observation from the literature. As 𝜃 
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increases, the true drift decreases in magnitude while the apparent drift increases (see subplot (c)). 

Eventually, when 𝜃 approaches 90°, the true drift becomes zero as the apparent drift approaches 

infinity (see subplot (b)).  

4.1.2. Drift Velocity Estimation 

To estimate the true drift velocity along any spatial dimension, an analysis is conducted 

based on the space-time correlation of a general scenario (0° < 𝜃 < 90°). Elaborated upon Figure 

4-2(c), Figure 4-3 illustrates the schematic of the space-time correlation surface along the spatial 

dimension along the 𝜁𝜃-axes. 

 

Figure 4-3. Schematic of a correlation surface in the space-time domain. It corresponds to the 

correlation surface defined in Figure 4-1. The concentric ellipses depict the correlation surface 

with monotonic decreasing values from the origin. The ellipse in red corresponds to correlation 

values equal to the cross-correlation peak of carrier phase measurements from the two receivers. 

It crosses the time-axis at 𝑡0, and the space-axis at 𝑥0. The blue lines give the drift velocity 

components, with 𝑽𝒙
𝑻 associated with displacement 𝜉0 at time 𝜏0, 𝑽𝒙

𝑪 associated with 𝑥0 at 

𝜏1, and 𝑽𝒙
𝑨 associated with 𝜉1 at 𝜏1. 

 

In this space-time domain, velocities are given by the straight lines through the origin 

defined as displacement over time (𝜉/𝜏 ). Hence, their magnitudes are associated with their 
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inclination angles, i.e., lower inclination angles correspond to larger velocities. In Figure 4-3, the 

vertical cut tangent to the red ellipse gives the cross-correlation function, with its peak giving the 

apparent drift velocity 𝑽𝒙
𝑨(= 𝜉0/𝜏0). Also, the horizontal cut finds the true drift velocity 𝑽𝒙

𝑻(=

𝜉1/𝜏1) at the slowest diffraction pattern fading in time, reflected by the slowest changing in the 

correlation function. The relationship between these two velocities is given by the following 

equation [Kintner et al., 2004]: 

𝑽𝒙
𝑻 =

1

1 + (𝑡0/𝜏0)
2
𝑽𝒙

𝑨 ( 4-3 ) 

where 𝑡0 can also be understood as the time at which the auto-correlation function takes on the 

peak value of the cross-correlation function. While 𝜏0 is largely dependent on the inclination of 

the ellipses related to the drift velocity magnitude, 𝑡0 is closely associated with the elongation of 

the ellipses. The ratio 𝑡0/𝜏0 determines the extent to which the apparent and true velocities are 

equivalent. Briggs et al. [1950] also defined the characteristic velocity 𝑽𝒙
𝑪 as a measure of the 

fading rate of the diffraction pattern: 

𝑽𝒙
𝑪 =

𝑥0

𝜏1
=

𝑡0/𝜏0

1 + (𝑡0/𝜏0)2
𝑽𝒙

𝑨 ( 4-4 ) 

For some fixed 𝜏1 value, as 𝑥0 decreases, the concentric ellipses become increasingly 

elongated. This leads to faster changing rate in the correlation function, which implies larger 

diffraction pattern fading rate. From equations (4-3) and (4-4), when the ellipses are highly 

elongated (𝑡0 → 0), then there is 𝑡0/𝜏0 → 0, causing 𝑽𝒙
𝑻 → 𝑽𝒙

𝑨 and 𝑽𝒙
𝑪 → 0. 

All velocity components in this spatial dimension share the same subscripts x, as they are 

defined with respect to the OX-axis under the configuration of the above example. These subscripts 

can be altered under different spatial dimensions, or even omitted when the spatial dimension is 

unspecified. 
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Previous studies indicated that when receivers are placed along the same geomagnetic 

latitude in equatorial regions, 𝑽𝑪 becomes significant only during periods of irregularity growth 

and is rather small during other times [Vacchione et al., 1987; Spatz et al., 1988]. On this account, 

Kil et al. [2000] suggested that 𝑽𝑻 may be approximated to 𝑽𝑨 with errors of less than 10 m/s. 

Kintner et al. [2004] also showed supports for this claim and demonstrated that the direction of 

equatorial drift is zonal in most cases. To summarize, when the receiver array placement and drift 

velocity are both zonal, i.e., 𝜃 ≈ 0° , it follows that 𝑽𝑻 ≈ 𝑽𝑨  and 𝑽𝑪 ≈ 𝟎 .where 𝑽𝑪  is a 

measure of the diffraction fade pattern change rate. As 𝑡0
2 𝜏0

2⁄  decreases, 𝜏0
2 𝑡0

2⁄  increases, and 

𝑽𝑪 decreases accordingly.  

A major drawback of the classic isotropy model is that the isotropic assumption is not 

particularly realistic. In fact, ionospheric irregularity structures are expected to be anisotropic and 

highly elongated along magnetic field lines. This leads to rod-like diffraction patterns instead of 

circular ones. Another issue is that the definition of the true velocity can sometimes be ambiguous, 

as it may not equal to the projected velocity component of the 2-D diffraction pattern drift. 

Consequently, the reconstruction process would be erroneous via vector addition, over-estimating 

VD. This will be explained in the following sections 

4.2. Front Velocity Model 

4.2.1. Space-Time Correlation 

To better address the anisotropic nature of the ionospheric irregularities, Wang and Morton 

[2017] proposed a front velocity model designed for rod-like irregularities having larger footprints 

than the receiver array. The method also assumes that the direction of the drift velocity is 

perpendicular to the velocity front (orientation of the diffraction pattern). This is a valid assumption 

under nominal conditions as the irregularity is aligned with the B-field and E×B drift is expected. 
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Under these assumptions, the space-time correlation schematic is constructed for the front velocity 

model. The results are presented in Figure 4-4 following the rubrics of Figure 4-2. 
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Figure 4-4. Individual space-time correlations along different spatial dimensions (a), (b) and (c), 

as well as the overall space-time correlation schematic (d) for the front velocity model. 

 

In Figure 4-4, subplots (a), (b) and (c) again give the correlation surfaces along the 𝜁∥, 𝜁⊥ 

and 𝜁𝜃 dimensions. Subplot (d) gives the space-time correlation as a disk, while the correlation 

strength is represented by the line width. Compared to Figure 4-2, major differences can be found 

in subplots (b) and (c). They can be understood as the extreme cases of Figures 4-2(b) and 4-2(c) 

as the diffraction pattern becomes increasingly anisotropic. Like the previous example, the strict 

“frozen-in” assumption is applied. As a result, subplot (a) is very similar to Figure 4-2(a). Again, 

a horizontal cut through the disk along the 𝜁𝑥-𝜁𝑦 plane gives the shape of the diffraction pattern, 

which is a rod-like pattern as in the top figure of subplot (d). Note that when finite rod length is 

assumed, disk-like space-time correlation pattern can be observed as in the bottom figure of 

subplot (d), whereas sheet-like correlation pattern can be observed for infinite rod length. Both 
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scenarios would lead to the same diffraction pattern drift as long as the rod-like diffraction pattern 

has a larger footprint than the receiver array baseline. 

Unlike the classic isotropy model, the estimated apparent velocities and true velocities 

coincide in all spatial dimensions for the front velocity model. Therefore, the true velocity as 

defined in the classic isotropy model does not reflect the velocity component of the 2-D diffraction 

pattern drift along 𝜁𝑥 or 𝜁𝑦. 

4.2.2. Drift Velocity Estimation 

To resolve this issue, the front velocity model (and later the anisotropy model) directly 

calculates the true 2-D diffraction pattern drift velocity, instead of attempting to resolve each 

individual velocity component of the drift [Wang and Morton, 2017]. The gist of the approach is 

to exploit the assumption that the drift velocity is perpendicular to the velocity front. This leads to 

potential solutions that lie on circles corresponding to the receiver pairs. For example, consider an 

arbitrary receiver pair defined by their antenna locations RX1 and

The circle for potential solutions is shown in Figure 4-5. 

RX2

RX1
 

Figure 4-5. Illustration of an arbitrary arrangement of RX1 and RX2, with potential positions of 

the rod-like diffraction pattern. Each red dot gives a potential solution for the irregularity 

displacement from RX1. Under the perpendicular assumption between the velocity front and drift 

direction, all potential solutions would lie on a circle (red dashed line) with the RX1 – RX2 

baseline distance being the diameter. 
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In Figure 4-5, the receiver arrangement is indicated by the black dots. Assume RX1 first 

observed the scintillation pattern, and RX2 saw the same pattern 𝜏12 seconds later. Then, several 

potential positions of the rod-like irregularity pattern are marked by the red bars. The distances 

from each potential pattern position to RX1 are indicated by the blue lines, respectively. Each 

intersection of the blue and red lines, marked by the red dots, gives a potential solution for the 

irregularity displacement from RX1. Note that each red dot together with the two black dots form 

a right triangle with the hypotenuse being the baseline distance between RX1 and RX2. Based on 

this property, it can be shown that the all potential solutions lie on a circle (red dashed line) with 

the RX1 – RX2 baseline distance being the diameter. Again, any point on this circle gives a potential 

location for the intersection points, which determines the displacement and orientation of the rod-

like irregularity from RX1, associating with a time offset of 𝜏12 seconds. With the measurements 

from an additional antenna RX3, another circle of potential solutions can be generated, hence more 

information about the irregularity front can be obtained. Figure 4-6 illustrates the geometry of this 

antenna array after introducing another arbitrary antenna RX3. 
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Figure 4-6. Illustration of the geometry of an arbitrary receiver array (RX1, RX2, RX3) following 

Figure 4-5, together with corresponding circles of potential solutions. With two or more circles 

of potential solutions, the drift velocity can be resolved. 
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In Figure 4-6, subplot (a) shows the original geometry of the receiver array. RX1, RX2 and 

RX3 denote the receiver locations, while 𝑑12 and 𝑑13 mark the distances between receiver pairs. 

The potential solutions are on the red dashed circles. The two circles correspond to apparent time 

offsets of 𝜏12 between RX1 and RX2, and 𝜏13 between RX1 and RX3, respectively. In the original 

geometry, the intersection of the two circles typically does not have any physical meaning, as they 

are entirely determined by the fixed antenna arrangement, regardless of the received 

measurements. However, when 𝜏12 = 𝜏13, this intersection gives the solution to the displacement 

and orientation of the irregularity front. Based on this observation, we can manipulate one set of 

distance and time offset such that the apparent velocity gets preserved while having 𝜏12 = 𝜏13 . 

Equation 4-5 demonstrates this technique: 

𝑽𝟏𝟐
𝑨 =

𝑑12

𝜏12 
=

𝑘𝑑12

𝑘𝜏12 
=

𝑑̃12

𝜏13 
 ( 4-5 ) 

Once 𝑑12 is scaled to 𝑑̃12, a new circle of potential solutions can be produced, as shown 

by subplot (b) in Figure 4-6. Its intersection with the solution circle from 𝑑13 directly gives the 

irregularity front displacement 𝑑𝑓. 

The above technique suggests that going from spatial domain into velocity domain can ease 

the process to obtain meaningful intersections of the potential solution circles. By dividing the 

known antenna distances by the corresponding time offsets, the magnitudes of the apparent front 

velocities can be obtained, while the directions of these velocities are aligned with their antenna 

geometry, respectively. Conveniently, the circular form of the solution surface is preserved in the 

velocity domain. Figure 4-7 demonstrates the transformed problem in the velocity domain. 
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Figure 4-7. Illustration of the transformed problem in the velocity domain. The black arrows 

correspond to the 1-D apparent drift along each receiver pair. The blue arrow marks the true 2-D 

diffraction pattern drift found at the intersection of three circles of velocity solution. 

 

In Figure 4-7, the black arrows mark the velocity vectors for the receiver pairs. In addition 

to RX1 - RX2 and RX1 – RX3, the velocity component from RX2 – RX3 is included as well. The red 

dashed circles represent the potential solution circles for the apparent front velocity. Ideally, the 

three circles will intersect at the same point, which gives the solution to 𝑽𝒇
𝑫 marked by the blue 

arrow. However, the third receiver makes this an over-determined problem, which does not always 

have a unique solution due to errors in measurements and non-ideal scenarios in the irregularities. 

For a spaced-receiver array with an arbitrary number of receivers, a simple approach to 

solve this system is to find the minimum mean square error (MMSE) estimator, which minimizes 

the mean square error from 𝑽𝒇
𝑫

 to all solution circles. The idea is to start with a rough estimate of 

𝑽𝒇
𝑫 , and then refine it iteratively so that the mean square error is minimized. The detailed 

procedure, generally referred to as Newton-Raphson method, is described in Appendix A. 

A practical problem of this approach is that the origin (0,0) is always the global optimal 

solution, as all potential solution circles intersect at the origin. To avoid this trivial solution, one 
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can pick an initial guess to be the intersection from two of the receiver pairs. Alternatively, a 

deterministic solution can be found between any two pairs of receivers. The following example 

illustrates the implementation. Figure 4-8 shows the solution circles defined by two apparent 

velocities 𝑽𝟏𝟐
𝑨  and 𝑽𝟏𝟑

𝑨  that correspond to two arbitrary pairs of receivers. 

  

Figure 4-8. Transformed problem in the velocity domain with defined geometry. 𝑽𝟏𝟐
𝑨  and 𝑽𝟏𝟑

𝑨  

(solid arrows) are the apparent drifts along the receiver pairs, defining the dashed solution 

circles. The two circles intersect at point P, giving the solution to the diffraction pattern drift 

velocity 𝑽𝒇
𝑫 (dashed arrow). Points O1 and O2 are the center of the solution circles in the 

Cartesian coordinate system with O being the origin. 

 

Based on Figure 4-7, Figure 4-8 further defines the geometry of the transformed problem 

in the velocity domain. In this Cartesian plane, note that the origin is at 𝑂(0,0) with the circles’ 

centers at 𝑂1(𝑥1, 𝑦1) and 𝑂2(𝑥2, 𝑦2). These coordinates can be directly obtained from the known 

receiver array geometry. 

To solve for 𝑽𝒇
𝑫 = 𝑃(𝑥, 𝑦), note that 1) ∆PO2O1 and ∆OO2O1 are congruent triangles 

(∆PO2O1 ≅ ∆OO2O1), hence ∠PO2O1 = ∠OO2O1 = θ; 2) PO ⊥ O2O1. By applying dot-product 

and trigonometry properties to these observations, the following equations can be established: 

2cos2 𝜃 − 1 = cos 2𝜃 =
𝑂2𝑃 ∙ 𝑂2𝑂

|𝑂2𝑃||𝑂2𝑂|
=

(𝑥−𝑥2, 𝑦−y2) ∙ (−𝑥2, −𝑦2)

𝑟22
 ( 4-6 ) 
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𝑃𝑂 ∙ 𝑂2𝑂1 = (𝑥, 𝑦) ∙ (𝑥1−𝑥2, 𝑦1−𝑦2) = 0 ( 4-7 ) 

where 𝑟2  is the radius of the circle defined by RX1 and RX3 with r2 =
1

2
|𝑽𝟏𝟐

𝑨 | , and cos θ 

obtained by: 

cos 𝜃 =
𝑂2𝑂1 ∙ 𝑂2𝑂

|𝑂2𝑂1||𝑂2𝑂|
=

(𝑥1−𝑥2, 𝑦1−𝑦2) ∙ (−𝑥2, −𝑦2)

𝑟2|(𝑥1−𝑥2, 𝑦1−𝑦2)|
 ( 4-8 ) 

Combining the above equations, a unique solution for 𝑃(𝑥, 𝑦) can be obtained: 

𝑥 = 2𝑟2
2sin2 𝜃

𝑦1−𝑦2

𝑥2𝑦1 − 𝑥1𝑦2
 ( 4-9 ) 

𝑦 = 2𝑟2
2sin2 𝜃

𝑥2−𝑥1

𝑥2𝑦1 − 𝑥1𝑦2
 ( 4-10) 

The above method gives a unique solution for 𝑉𝑓 from the 1-D apparent velocity pairs 

(𝐯′𝟏𝟐, 𝐯′𝟏𝟑). For a receiver array system with 𝑁 ≥ 3 receivers, the system is over-determined. 

There are (
𝑁
2
) such solutions, which can be used to create more robust drift velocity estimates. 

It should be noted that due to the inverse relationship between time lag and velocity, any 

error in time lag measurements can lead to large velocity errors when the time lag value is small. 

To address this, the algorithm can adaptively reject receiver pair cross-correlation peaks that are 

associated with the smaller time lag values. This effectively produces more reliable drift velocity 

magnitude estimates. 

The drawback of the front velocity model is inherited from the perpendicular assumption 

between the velocity front and drift direction. This assumption is suitable for equatorial regions [Ji 

et al., 2011]. However, it becomes less viable under active geomagnetic conditions, especially at 

high latitudes, where interplanetary magnetic field and auroral electrojet also play important roles 

in the direction and magnitude of the drift velocity. 
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4.3. Anisotropy Model 

The anisotropy model is developed to address the more realistic anisotropic nature of the 

diffraction pattern induced by ionospheric scintillation [Fedor, 1967]. The model consists of two 

parts, the forward propagation model and the correlation model.  

The forward propagation model describes the projection from the ionospheric irregularities 

in space to the diffraction pattern on the receiver plane [Singleton, 1970]. The correlation model 

estimates the anisotropy parameters and diffraction pattern drift velocity from receiver array 

measurements [Armstrong and Coles, 1972]. It assumes that the space-time correlation caused by 

the diffraction pattern takes the form of concentric ellipsoids [Rino and Livingston., 1982]. The 

focus of this section is on the correlation model, while the forward propagation model is described 

in Chapter 5. 

4.3.1. Space-Time Correlation 

Unlike the cases for the classic isotropy model and the front velocity model, a less-strict 

“frozen-in” assumption is applied for the anisotropy model by allowing small decrease in the 

correlation strength within the correlation interval. This adaptation is necessary for the space-time 

correlation to remain consistent with the “concentric ellipsoids” assumption made by the 

anisotropy model. The resulting space-time correlation schematic of the anisotropy model is shown 

in Figure 4-9. 



76 

RX1 RX2 RX1 RX2 RX1 RX2

τ

ζ∥

τ τ

θθθ

d d d ζθ

τ

ζx

ζy

θ = 0° θ = 90° 0°<θ < 90°

d d d

(a) (b) (c) (d)

b’ a’

ζ⊥

ζ∥
ζ⊥

ζx

ζy

VD

a’

b’

 

Figure 4-9. Individual space-time correlations along different spatial dimensions (a), (b) and (c), 

as well as the overall space-time correlation schematic (d) for the anisotropy model. a’ and b’ are 

scaled semi-major and semi-minor axes of the diffraction pattern. 

 

In Figure 4-9, subplots (a), (b) and (c) again give the correlation surface along each spatial 

dimension, while subplot (d) gives the outline of the overall space-time correlation as an ellipsoid. 

In addition, b’ and a’ mark the intersections between the individual spatial axes with a common 

correlation ellipsoid in subplots (a) and (b), giving the axial ratio (𝑎′: 𝑏′) of the diffraction pattern. 

Note that subplot (a) is different from those of Figures 4-2(a) and 4-4(a), instead of straight lines 

of correlation values, highly-elongated concentric ellipses are obtained. This is a direct corollary 

of the “concentric ellipsoids” assumption. Although subplots (b) and (c) are very similar to the 

Figures 4-2(b) and 4-2(c) in the classic isotropy model, the overall space-time correlation in 

subplot (d) is closer to Figure 4-4(d) in the front velocity model. This is an expected outcome when 

the axial ratio of the diffraction pattern is large (𝑎′ ≫ 𝑏′). In equatorial studies, large axial ratio 

values are regularly observed [Kintner et al., 2004]. Axial ratio assumptions of 𝑎′: 𝑏′ ≥ 50 are 

often used in scintillation modeling [Secan et al., 1995; Carrano et al., 2016]. 
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4.3.2. Drift Velocity Estimation 

Compared to the isotropic and front models, the anisotropy model is more complex and 

requires information from the auto-correlation function in addition to cross-correlation functions 

to solve for the anisotropy. In essence, a space-time correlation ellipsoid of constant correlation 

can be modeled by the anisotropy parameters (𝑎′, 𝑏′, 𝜓, |𝑣|, 𝜃), where 𝑎′: 𝑏′ gives the axial ratio 

of the diffraction pattern, 𝜓  depicts the orientation of the diffraction pattern, |𝑣|  is the 

magnitude of the correlation and 𝜃 gives the drift direction.  

There are two general methods for solving these anisotropy parameters. The first method, 

developed based on Fedor [1967], focuses on points in auto-correlation and cross-correlation 

functions with the same correlation value. These points can be associated with a common space-

time correlation ellipsoid Therefore, the anisotropy parameter set (𝑎′, 𝑏′, 𝜓, |𝑣|, 𝜃) can be solved 

simultaneously in one step. A recent refinement of this approach is described in Su et al. [2017]. 

The second method, developed based on Armstrong and Coles [1972], focuses on intersections 

between correlation functions. These intersections have the same 𝜏 values and can be associated 

with the same horizontal cut of the space-time correlation ellipsoid. Effectively, this method takes 

a two-step approach. It first solves for the diffraction pattern parameters (𝑎′, 𝑏′, 𝜓 ) based the 

correlation intersections with additional information at the cross-correlation peaks. It then uses the 

solution to find the drift velocity parameters (|𝑣|, 𝜃). Figure 4-10 gives an example showing the 

different data points used in the one-step approach against the two-step approach. 
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Figure 4-10. Illustration of data points used in the one-step approach (green) and the two-step 

approach (red) for solving the anisotropy. R11 and R12 represent the auto-correlation and cross-

correlation functions obtained from the receiver pair (RX1 and RX2) measurements. 

 

In Figure 4-10, the two green dots represent points on R11 and R12 at the same correlation 

value used in the one-step approach. The two red dots represent the intersection between R11 and 

R12 and the cross-correlation peak used in the two-step approach. Comparable performances have 

been observed between these two methods [Costa et al., 1988; Zhudukon et al. 1994]. This study 

follows the two-step approach, refined based on the work of Rino and Livingston [1982]. 

For a receiver array of n receivers, Rino and Livingston [1982] gave an upper bound for 

the number of the intersections involved in the calculation: 

(𝑛2)2 − 𝑛2 − 2𝑛(𝑛 − 1) = 𝑛4 − 3𝑛2 + 2𝑛 ( 4-10 ) 

where the subtracted terms account for the intersections of 𝑛2  correlation functions with 

themselves and the 2𝑛(𝑛 − 1) intersections between the correlation functions and their mirror 

images. Zhudukon et al. [1994] gave the exact number of intersections as 

𝑛 [
𝑛(𝑛 − 1)

2
] +

𝑛(𝑛 − 1)
2 [

𝑛(𝑛 − 1)
2 − 1]

2
=

𝑛(𝑛 − 1)(𝑛2 + 3𝑛 − 2)

8
 

( 4-11 ) 
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where the first term accounts for intersections between 𝑅𝑖𝑖 and 𝑅𝑖𝑗, and the second term accounts 

for intersections between 𝑅𝑖𝑗  and 𝑅𝑖𝑘 . However, when searching for the latter type of 

intersections, both the 𝑅𝑖𝑗 − 𝑅𝑖𝑘 pair and the 𝑅𝑖𝑗 − 𝑅𝑘𝑖 pair need to be considered. Hence the 

number of admissible intersections is 

𝑛 [
𝑛(𝑛 − 1)

2
] +

𝑛(𝑛 − 1)

2
[
𝑛(𝑛 − 1)

2
− 1] =

𝑛4 + 3𝑛2 − 2𝑛

4
 ( 4-12 ) 

To calculate the axial ratio and drift velocity of the diffraction pattern from this system, a 

two-step MMSE estimator is employed. Details of the method are documented in Appendix B. 

As the estimated axial ratio approaches unity (𝑎′: 𝑏′ ≈ 1), the diffraction pattern becomes 

nearly isotropic rather than anisotropic. This means the diffraction patterns would be very similar 

when observed from different angles, making it very challenging to determine the orientation of 

the anisotropy. As a result, small axial ratios carry small confidence levels into the estimated 

anisotropy parameters. In the implementation, results associated with small axial ratios (𝑎′: 𝑏′ <

2) are excluded. 

Another practical issue of the anisotropy model is that it tends to overestimate the 

magnitude of the 2-D drift. An example is given in Section 6.6 demonstrating this problem using 

real data. Unlike the front velocity model, the anisotropy model cannot simply reject receiver 

estimates that are associated with small time lag values, since dropping correlation functions would 

quickly lead to an underdetermined system. 

4.4. Hybrid Correlation Model 

Based on the merits and drawbacks of each correlation method from the analysis above, a 

hybrid correlation method is proposed. First, the drift velocity direction and the diffraction pattern 

orientation are obtained using the anisotropy model. Then, taking these parameters as a priori, an 

adjusted front velocity model is created. It calculates the projection of the apparent velocity onto 
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the drift direction along the diffraction pattern orientation as the velocity front. Following the 

adaptive filtering scheme of the front velocity model, the measurement associated with the smallest 

time lag value is rejected. The remaining measurements are averaged to produce the final estimate 

of the 2-D diffraction pattern drift.  

For example, in the Cartesian plane representing the velocity values, let the apparent 1-D 

diffraction pattern drift be 𝑽𝟏−𝑫
𝑨 = (𝑥1−𝐷, 𝑦1−𝐷)  along some arbitrary receiver pair. Say the 

anisotropy model finds the diffraction pattern drift velocity to be 𝑽𝒂
𝑫 = (𝑥𝑎, 𝑦𝑎), and the velocity 

front orientation to be 𝐹 = (𝑥𝑓 , 𝑦𝑓) . Then, the hybrid diffraction pattern drift velocity 𝑽𝒉
𝑫 =

(𝑥ℎ, 𝑦ℎ)  can be determined as the projection of 𝑽𝟏−𝑫
𝑨   onto 𝑽𝒂

𝑫  based on the orientation 

described by 𝐹. Figure 4-11 illustrates the projection geometry. 

 

Figure 4-11. Illustration of the projection geometry for hybrid velocity estimation. 𝑽𝒉
𝑫 is the 

hybrid diffraction pattern drift projected from the 1-D apparent drift 𝑽𝟏−𝑫
𝑨  onto the direction of 

the anisotropy drift 𝑽𝒂
𝑫 guided by the velocity front F. The dashed black ellipse is the solved 

anisotropy, while the red lines represent the velocity front orientation F. 

 

Based on Figure 4-11, the hybrid velocity can be determined as: 

𝑥 =
𝑦1−𝐷 − kf𝑥1−𝐷

ka − kf
, 𝑦 = ka𝑥 ( 4-13 ) 

where ka = 𝑦𝑎 𝑥𝑎⁄  , and kf = 𝑦𝑓 𝑥𝑓⁄   represent the gradients of the anisotropy drift and the 

velocity front, respectively. In the case where anisotropy parameters are not measurable, the final 

2-D drift estimate takes the front velocity model solution if available. 
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With the hybrid correlation model, the apparent diffraction pattern drift velocity can be 

estimated. Given the irregularity height value, corrections can be applied to obtain the apparent 

irregularity pattern drift. Together with the satellite scan velocity, the irregularity drift velocity can 

be found. 

This chapter concludes the spaced-GNSS receiver techniques for estimating the 

ionospheric irregularity drift velocity. In Chapter 5, an inversion technique is proposed for 

estimating the effective height of the irregularity based on the anisotropy model. 
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5. CHAPTER 5 – EFFECTIVE IRREGULARITY HEIGHT ESTIMATION 

 

 

 

Section 4.3 has demonstrated how to estimate the diffraction pattern parameters using the 

anisotropy correlation model via spaced-receiver analysis. This chapter introduces the spaced-

receiver technique for effective irregularity height estimation also based on the anisotropy model. 

Section 5.1 introduces the forward propagation model depicting how the anisotropic irregularity 

structure is propagated to form the ground diffraction pattern. The methodology of the effective 

height estimation technique is given in Section 5.2. The gist of the approach is to formulate an 

inversion problem trying to match the propagated diffraction pattern to the received diffraction 

pattern derived from receiver measurements. In Section 5.3, a data-driven technique for estimating 

the geomagnetic field parameters is demonstrated. This is an important component of the effective 

height estimation technique, as the inversion process requires high precision geomagnetic field 

parameters to model the propagated diffraction pattern. 

5.1. Forward Propagation Model 

5.1.1. Propagation Geometry 

The ionosphere is a dispersive medium, causing refraction to radio wave signals, such as 

the GNSS signals. During ionospheric scintillation, diffraction/interference patterns due to plasma 

structures can also occur to GNSS signals [Aarons, 1982]. The principal propagation direction of 

the GNSS signal is often oblique to the irregularity layer, in which case signal refraction can be 

expected. Without the complete knowledge of the atmospheric parameters along the satellite-

receiver path, using a fixed coordinate system to capture the entire signal propagation would be 

impractical [Rino, 2011]. To resolve this problem, a continuously displaced coordinate system 

(CDCS) is introduced [Budden, 1965]. This system has a continuously displaced measurement 
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plane that remains centered along the principal propagation direction. By integrating the signal 

over the CDCS system, the total diffraction caused by scintillation can be modeled. Figure 5-1 

demonstrates the CDCS geometry: 

 

Figure 5-1. Illustration of the Continuously Displaced Coordinate System (CDCS). 𝑥 − 𝑦 is the 

incident plane and 𝑥′ − 𝑦’ is the displaced plane, both having vertical components 𝑧 and 𝑧′ 
pointing towards Earth’s center. 𝜃 defines the principal propagation direction. 𝜃𝑠 and 𝝆𝑠 

defines the scattering angle and displacement due to irregularities. The overall displacement 𝒅 

from IRPP is defined by the (𝝆, 𝑧) system. By defining the 𝑥 − 𝑧 plane to be co-planer with 

the local geomagnetic field direction 𝑩, the relationship between the CDCS system and the local 

geomagnetic field system can be established through 𝜑 and 𝜓. 

 

In Figure 5-1, the 𝑥-𝑦 plane at 𝑧 = 𝑧0 represents the incidence plane at the irregularity 

layer, while the 𝑥′-𝑦′ plane at 𝑧 = 𝑧1 represents the receiver plane, or the displaced plane. The 

principal propagation direction is indicated by the blue line. As the signal hits the irregularity layer, 

it is scattered by an angle of 𝜃𝑠. The scattered ray path is indicated by the red line, whose length 
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equals 𝒅. The resulting displacement in the 𝑥′-𝑦′ plane is given by the red vector 𝝆𝑠, while the 

displacement in the 𝑥-𝑦 plane is given by the black vector 𝝆. Here, 𝒅, 𝝆𝑠 and 𝝆 are in bold 

print since they all contain multiple components. The angle 𝜃 represents the incidence angle of 

the principal propagation direction from the 𝑧-axis. To fix both 𝑥 and 𝑦 axes from free rotation 

in the horizontal plane, we set the local geomagnetic field vector 𝑩 to be inclined at an angle 𝜓 

in the 𝑥 -𝑧  plane. Then the angle 𝜑  is simply the azimuth angle of the principal propagation 

direction measured from geomagnetic meridian plane. We can now define the principal 

propagation vector 𝐤 as 

𝐤 =  
2𝜋

𝜆
(sin 𝜃 cos𝜑 , sin 𝜃 sin𝜑 , cos 𝜃) ( 5-1 ) 

where 𝜆 is the wavelength of the signal. We also define the transverse component of 𝐤 as 

𝐤𝑇 = 
2𝜋

𝜆
sin 𝜃 (cos𝜑 , sin𝜑) ( 5-2 ) 

According to the CDCS definition, the displaced measurement plane remains centered on 

the principal propagation direction. Therefore, we have: 

𝒅 = 𝝆 + 𝑎̂𝑧𝑧 ( 5-3 ) 

Consider the transverse coordinates of the scattered ray path in the displaced measurement 

plane, there is: 

𝝆𝑠 = 𝝆 − tan𝜃 𝑎̂𝐤𝑇
(𝑧1 − 𝑧0) ( 5-4 ) 

The above equation applies for the illustrated propagation geometry shown in Figure 5-1. 

It can be further generalized to the following: 

Δ𝝆𝑠 = Δ𝝆 − tan 𝜃 𝑎̂𝐤𝑇
Δ𝑧 ( 5-5 ) 

where Δ𝝆𝑠, Δ𝝆, and Δ𝑧 represent the displacements in the displaced plane, the incidence plane 

and the 𝑧  direction, respectively. From a measurement perspective, Δ𝝆𝑠  captures the known 
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baseline distances between the receiver pairs. Similarly, the velocity of the anisotropy in the 

displaced plane can be defined as: 

𝐯𝒔 = 𝐯′ − tan 𝜃 𝑎̂𝐤𝑇
𝒗𝒛 ( 5-6 ) 

where 𝐯′ is the apparent drift velocity defined in Chapter 3.1, and 𝒗𝒛 is the velocity component 

along the z-axis. 

5.1.2. Forward Propagation 

Following Briggs and Parkin [1963] and Singleton [1970], we assume that the irregularity 

structure is anisotropic and has the 3-D shape of an ellipsoid. This ellipsoid is defined with respect 

to the B-field. Its semi-major axis assumed to be along the B- field direction due to the high parallel 

conductivities of the ionosphere [Mendillo and Baumgardner, 1982]. Following Rino and 

Fremouw [1977], we define a coordinate system (𝑟, 𝑠, 𝑡), where 𝑠 is along the B-field vector, 𝑡 

is perpendicular to 𝑠  and aligned with the Earth’s magnetic L-shell (B-field surface of equal 

magnetic flux), and 𝑟 is normal to the 𝑠-𝑡 plane. Singleton [1970] showed that the correlation 

function 𝑅Δ𝑁𝑒
 of electron density perturbation Δ𝑁𝑒 is a function of: 

[(
∆𝑟

1
)
2

+ (
∆𝑠

𝑎
)
2

+ (
∆𝑡

𝑏
)

2

]

1/2

 ( 5-7 ) 

where 1, 𝑎 and 𝑏 are scaling factors of the anisotropy ellipsoid along the r-axis, s-axis and t-

axis, respectively. The value 𝑎: 𝑏 gives the axial ratio of the anisotropy. Livingston et al. [1982] 

described several common types of anisotropic irregularity structures. They are called rod-like if 

𝑎 ≫ 𝑏 ≈ 1, or sheet-like if 𝑎 ≈ 𝑏 > 1, or wing-like if 𝑎 > 𝑏 > 1. Figure 5-2 illustrates these 

three types of irregularity structures. 
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Figure 5-2. Illustration of three types of irregularity structures: rod-like (𝑎 ≫ 𝑏 ≈ 1); sheet-like 

(𝑎 ≈ 𝑏 > 1) and wing-like (𝑎 > 𝑏 > 1).  

 

To address 𝑅Δ𝑁𝑒
 in the (𝝆, 𝑧) CDCS system, the (𝑟, 𝑠, 𝑡) Cartesian system needs to be 

transformed into the (𝝆, 𝑧) coordinate system. As shown in Figure 5-1, the B-field vector 𝑩 is 

at an angle 𝜓 to the 𝑥-axis in the 𝑥-𝑧 plane, while 𝑠 is along the B-field. Then, the relationship 

between the two systems can be established as in Figure 5-3. 
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Figure 5-3. Combined geometry of both (𝝆, 𝑧) and (𝑟, 𝑠, 𝑡) coordinate systems for the general 

anisotropic irregularity model. 
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In Figure 5-3, the black vectors represent the (𝝆, 𝑧)  coordinate system, while the red 

vectors represent the (𝑟, 𝑠, 𝑡) coordinate system. The angle between the 𝑥-axis and the 𝑠-axis is 

given by 𝜓, while the blue arrow 𝑟′ represents the projection of the 𝑟-axis onto the 𝑥-𝑧 plane. 

Hence the inclination angle from the 𝑥-𝑧 plane to the 𝑟-𝑠 plane is captured by 𝛿, the angular 

difference between 𝑟 and 𝑟′. All 7 vectors in Figure 5-3 live in two planes that are normal to each 

other. One of them contains (𝑥, 𝑠, 𝑧, 𝑟′) , while the other contains (𝑟′, 𝑟, 𝑦, 𝑡) . This co-planer 

property is captured by the blue dashed lines. Based on this property, one can derive that the 

angular difference between 𝑦 and 𝑡 axes also equals 𝛿. In practice, 𝛿 needs to be fixed so that 

𝑟-axis and 𝑡-axis are not free of rotation. Here, we further assume that 𝛿 is 0. This effectively 

assumes that the s-t plane of the anisotropy is aligned with the Earth’s magnetic L-shell, which 

corresponds to the magnetic field surface of equal magnetic flux. 

Using the above relationships, the appropriate coordinate transformation from the (𝑟, 𝑠, 𝑡) 

system into the (𝝆, 𝑧) system can be derived as: 

𝑠 = 𝑥 cos𝜓 + 𝑧 sin𝜓 ( 5-8 ) 

𝑡 = 𝑥 sin𝜓 sin 𝛿 + 𝑦 cos 𝛿 − 𝑧 cos𝜓 sin 𝛿 ( 5-9 ) 

𝑟 = −𝑥 sin𝜓 cos 𝛿 + 𝑦 sin 𝛿 + 𝑧 cos𝜓 cos 𝛿 ( 5-10 ) 

By evaluating ∆𝑟2 + (
∆𝑠

𝑎
)
2

+ (
∆𝑡

𝑏
)
2

 using the above transformation, a general quadratic 

form of 𝑅Δ𝑁𝑒
 is obtained in terms of ∆𝑥, ∆𝑦, and ∆𝑧. Following Rino and Fremouw [1977], 

𝑅Δ𝑁𝑒
 can be assumed to have the general form: 

𝑅∆𝑁𝑒
(∆𝝆, ∆𝑧) = 〈∆𝑁𝑒

2〉𝑅{[(∆𝝆, ∆𝑧)𝑇𝐂(∆𝝆, ∆𝑧)]2} ( 5-11 ) 

where 𝑅(∙) is the functional form of any valid auto-correlation function, which should always be 

normalized so that 𝑅(0) = 1. And the form of the argument is: 



88 

(∆𝝆, ∆𝑧)𝑇𝐂(∆𝝆, ∆𝑧) = 𝐶11∆𝜌𝑥
2 + 𝐶22∆𝜌𝑦

2 + 𝐶33∆𝑧2 

+2𝐶12∆𝜌𝑥∆𝜌𝑦 + 2𝐶13∆𝜌𝑥∆𝑧 + 2𝐶23∆𝜌𝑦∆𝑧 

( 5-12 ) 

where the elements of the 𝐂 matrix are given as: 

𝐶11 =
1

𝑎
cos2 𝜓 + sin2 𝜓 (

1

𝑏2
sin2 𝛿 + cos2 𝛿) ( 5-13 ) 

𝐶22 =
1

𝑏2
cos2 𝛿 + sin2 𝛿 ( 5-14 ) 

𝐶33 =
1

𝑎
sin2 𝜓 + cos2 𝜓 (

1

𝑏2
sin2 𝛿 + cos2 𝛿) ( 5-15 ) 

𝐶12 = 𝐶21 = (
1

𝑏2
− 1) sin 𝜓 sin 𝛿 cos 𝛿 ( 5-16 ) 

𝐶13 = 𝐶31 = (
1

𝑎2
−

1

𝑏2
sin2 𝛿 − cos2 𝛿) sin𝜓 cos𝜓 ( 5-17 ) 

𝐶23 = 𝐶32 = −(
1

𝑏2
− 1) cos𝜓 sin 𝛿 cos 𝛿 ( 5-18 ) 

Note that when 𝑏 = 1, the horizontal cut of the irregularity in the 𝑟-𝑡 plane becomes a 

circle. Hence the dependence on the parameter 𝛿 disappears and 𝐶12 = 𝐶21 = 𝐶23 = 𝐶32 = 0. 

To propagate the anisotropy forward to the diffracted wave field at the receiver plane, a 

relationship between the fluctuations in the trans-ionospheric carrier phase signal and the 

perturbation in the electron density needs to be established. Following Rino and Fremouw [1977] 

and Rino and Livingston [1982], geometrical optics relationship between the perturbation 

𝛿𝑁𝑒(Δ𝜌, Δ𝑧; Δ𝑡) and the phase fluctuation 𝛿𝜙(Δ𝜌, Δ𝑧; Δ𝑡) is employed, given by: 

𝛿𝜙(Δ𝜌, Δ𝑧; Δ𝑡) = −𝑟𝑒𝜆0 ∫𝛿𝑁𝑒(Δ𝜌, Δ𝑧; Δ𝑡) 𝑑𝑙 ( 5-19 ) 

where 𝑟𝑒(= 2.817 × 10−15 m) is the classical electron radius and 𝜆0 is the carrier wavelength 

of the GNSS signal. Based on this linear ray optics approximation, the spatial auto-correlation 

function of phase 𝑅𝛿𝜙(Δ𝜌, Δ𝑧; Δ𝑡) has the form: 
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𝑅𝛿𝜙(Δ𝜌, Δ𝑧; Δ𝑡) = 〈𝛿𝜙2〉𝑅[𝑓(Δ𝜌𝑠 − 𝐯𝒔Δt)] ( 5-20 ) 

where 〈𝛿𝜙2〉 is the phase variance. The diffraction pattern caused by the propagated anisotropic 

irregularity structure is then characterized by the quadratic function: 

𝑓2(Δ𝝆𝑠) =
𝐶Δ𝜌𝑠𝑥

2 − 𝐵Δ𝜌𝑠𝑥
Δ𝜌𝑠𝑦

+ 𝐴Δ𝜌𝑠𝑥
2

𝐴𝐶 − 𝐵2/4
 ( 5-21 ) 

where the anisotropy parameters 𝐴, 𝐵 and 𝐶 are given by: 

𝐴 = 𝐶̂11 + 𝐶̂33 tan2 𝜃 cos2 𝜑 − 2𝐶̂13 tan 𝜃 cos𝜑 ( 5-22 ) 

𝐵 = 2[𝐶̂12 + 𝐶̂33 tan2 𝜃 sin𝜑 cos𝜑 − tan𝜃 (𝐶̂13 sin𝜑 + 𝐶̂23 cos𝜑)] ( 5-23 ) 

𝐶 = 𝐶̂22 + 𝐶̂33 tan2 𝜃 sin2 𝜑 − 2𝐶̂23 tan 𝜃 sin𝜑 ( 5-24 ) 

where 𝐶̂11 , 𝐶̂22 , 𝐶̂33 , 𝐶̂12 , 𝐶̂13  and 𝐶̂23  are the elements of the 𝐂̂  matrix, which are obtained 

from the corresponding elements of the 𝐂 matrix by replacing 𝑎2 by 1/𝑎2 and 𝑏2 by 1/𝑏2 

in Equation 5-13 to 5-18, respectively. 

At the receiver plane, the shape of the diffraction pattern is characterized by the scaling 

factors 𝑎′ and 𝑏′, along its semi-major and semi-minor axes, giving the axial ratio: 

𝑎′: 𝑏′ = (
𝐴 + 𝐶 + 𝐷

𝐴 + 𝐶 − 𝐷
)
1/2

 ( 5-25 ) 

where 

𝐷 = [(𝐴 − 𝐶)2 + 𝐵2]1/2 ( 5-26 ) 

while the orientation angle of the diffraction pattern is the angle from its principal irregularity axis 

relative to the y-axis: 

𝜙𝑅 =
1

2
tan−1 (

𝐵

𝐶 − 𝐴
) ( 5-27 ) 

For more elaborated descriptions and calculations of the forward propagation process, refer 

to Rino and Fremouw [1977] and Appendix A.3 in Rino [2011]. In this study, we assert that the 
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parameters 𝐴, 𝐵 and 𝐶 together with Equations 5-21 fully characterize the received diffraction 

pattern anisotropy. 

5.2. Effective Irregularity Height Estimation 

With the propagated diffraction pattern in Section 5.1 through modeling, and the estimated 

diffraction pattern in Section 4.3 from measurements, an inversion problem can be established to 

solve for the effective irregularity height based on the anisotropy model. 

5.2.1. Methodology 

In Section 5.1.2, the forward propagation process shows how to directly compute the 

anisotropy parameters (𝐴, 𝐵, 𝐶) from the satellite-receiver geometry, B-field parameters and the 

axial ratio (𝑎: 𝑏) of the ionospheric irregularity. While the satellite-receiver geometry parameters 

can be determined from the known receiver position and satellite orbit information, the field 

parameters and the irregularity axial ratio are essentially unknown. In Section 4.3.2, the spaced-

receiver analysis shows how to estimate a scaled version of the anisotropy parameters (𝐴̂, 𝐵̂, 𝐶̂) 

from receiver array correlation functions. Later in Section 5.2.2, an approximation method is 

demonstrated, showing how to estimate (𝑎: 𝑏)  from the axial ratio (𝑎′: 𝑏′)  of the observed 

diffraction pattern. The method also relies on the relationship between the satellite-receiver 

geometry and the geomagnetic field parameters. Thus far, the only remaining unknown parameters 

are the geomagnetic field parameters, which are all related to the irregularity height. Section 5.3 

shows how the field parameters can be approximated using measurements from a network of 

magnetometers for a given irregularity height. 

Now that both the height-associated modeled anisotropies (𝐴, 𝐵, 𝐶)  and the measured 

anisotropy (𝐴̂, 𝐵̂, 𝐶̂)  can be obtained, the effective irregularity height ℎ∗  can be determined 

when the modeled anisotropy best matches the measured anisotropy. Under the concentric-
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ellipsoids assumption of the anisotropy model, the perfect match occurs when a modeled 

anisotropy is a scaled version of the measured anisotropy, or: 

(𝐴, 𝐵, 𝐶) = 𝑘(𝐴̂, 𝐵̂, 𝐶̂), 𝑘 ∈ ℝ, 𝑘 > 0 ( 5-28 ) 

Formally, this matching process can be described by an inversion problem, whose objective 

is to find the best model parameter ℎ∗ such that: 

𝑘(𝐴̂, 𝐵̂, 𝐶̂) =  𝐺(ℎ∗) ( 5-29 ) 

where 𝐺 is the forward operator describing the relationship between and the model parameter ℎ∗ 

and the propagated diffraction pattern parameters  (𝐴, 𝐵, 𝐶) as in Section 2.2. Note that this height 

ℎ∗ is not necessarily the true irregularity height, but rather an effective height constrained by the 

assumptions involved in the anisotropy model. 

In the implementation, the ratios between the anisotropy coefficients,  (𝐴/𝐵, 𝐴/𝐶, 𝐵/𝐶) 

and (𝐴̂/𝐵̂, 𝐴̂/𝐶̂, 𝐵̂/𝐶̂), are first computed. Then the best match can be found when the mean-

square difference is minimal: 

‖(
𝐴

𝐵
,
𝐴

𝐶
,
𝐵

𝐶
) − (

𝐴̂

𝐵̂
,
𝐴̂

𝐶̂
,
𝐵̂

𝐶̂
)‖ = min‖{

𝐴

𝐵
,
𝐴

𝐶
,
𝐵

𝐶
} − (

𝐴̂

𝐵̂
,
𝐴̂

𝐶̂
,
𝐵̂

𝐶̂
)‖ ( 5-30 ) 

This way, the inversion problem can be solved without calculating the actual value for 𝑘. 

Figure 5-4 illustrates the general methodology for estimating the effective irregularity height. 
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Figure 5-4. Illustration of the effective irregularity height estimation method.  

 

On the left, a diffraction pattern (black ellipses), caused by the irregularity structure (blue 

ellipsoid) is observed at the receiver array. On the right, three ellipsoids of distinct colors (red, blue 

and green) mark the potential positions of the ionospheric irregularity under different height 

assumptions: ℎ1 (red), ℎ∗ (blue) and ℎ2 (green). These ellipsoids are associated with different 

B-field parameters, as indicated by their distinct orientations. Three ellipses (red, blue and green), 

showing the corresponding diffraction patterns, are propagated to the receiver plane. The 

orientation and shape of the blue ellipse matches best with the observed diffraction pattern on the 

left. As a result, the irregularity height associated with the blue diffraction pattern, ℎ∗ , is 

determined to be the effective irregularity height. A block diagram is given below in Figure 5-5 to 

further clarify this procedure. 
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Figure 5-5. Block diagram illustrating the effective irregularity height estimation process. The 

green blocks represent the forward propagation steps, the blue blocks represent the spaced-

receiver analysis steps, and the red blocks shows the matching process. The “{}” represents a set 

of parameters.  

 

Following Figure 5-5, during the forward propagation process, a set of potential irregularity 

height values are first selected to form the search space. For example, {ℎ} can be a range of height 

values from 100 km to 400 km. Then the corresponding B-field parameters {𝜃, 𝜑, 𝜓, 𝛿}  are 

calculated, where 𝜃  can be obtained from the satellite-receiver geometry and the height 

assumption, 𝜑 and 𝜓 can be calculated using real-time geomagnetic field values, and 𝛿 is set 

to be 0. Section 5.3 shows how the B-field values can be approximated from a network of 

magnetometers. Once the axial ratio of the irregularity pattern is obtained from the bottom track, 

a set of anisotropy parameters {𝐴, 𝐵, 𝐶} are calculated using the forward propagation model. 

On the other hand, the diffraction pattern parameters can be estimated based on the 

anisotropy correlation model through spaced-receiver analysis. Following Section 4.3.2 and 

Appendix B, a scaled version of the anisotropy (𝐴̂, 𝐵̂, 𝐶̂) can be estimated. Based on the axial 

ratio 𝑎′: 𝑏′ of the diffraction pattern as well as the B-field parameters from the top track, Section 

5.2.2 shows how the axial ratio {𝑎: 𝑏} of the irregularity pattern can be approximated. 
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To verify the effectiveness of this inversion algorithm, the estimated effective irregularity 

heights can be cross-compared with the electron density profile measured by the collocated PFISR. 

For example, {ℎ} can be taken as the height values of the PFISR measurement range gates. Then 

at the GNSS estimated heights, check for electron density enhancement or depletion in the PFISR 

Ne profiles, as these phenomena are likely associated with ionospheric irregularities. Case studies 

are conducted in Section 6.8 based on two intense geomagnetic storm events. 

5.2.2. Axial Ratio Approximation 

The horizontal slice of the irregularity ellipsoid along the magnetic L-shell is essentially 

the 2-D irregularity pattern characterized by the semi-major axis = 𝑎, and the semi-minor axis =

𝑏. The diffraction pattern is then propagated to the receiver plane with semi-major axis = 𝑎′, and 

semi-minor axis = 𝑏′. If a definitive relationship can be established between these parameters, 

then the irregularity pattern axial ratio 𝑎: 𝑏 can be derived from the diffraction pattern axial ratio 

𝑎′: 𝑏′. A simplified geometry of the irregularity and diffraction patterns is shown in Figure 5-6. 

 

Figure 5-6. Simplified schematics of the propagation geometry. The blue ellipse is the 

irregularity pattern along the L-shell, while the red ellipse is the propagated diffraction pattern in 

the receiver plane.  
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In Figure 5-6, since 𝑏  is aligned with the L-shell and is perpendicular to the B-field 

orientation, it is parallel to 𝑏′ in the receiver plane. It follows that 𝑏 ≈ 𝑏′, especially when the 

satellite-receiver distance is much larger than the receiver-irregularity distance. The remaining task 

is to find the relationship between 𝑎′  and 𝑎 , which can be characterized through geometric 

projection. Since the B-field direction is along the semi-major axis, the same projection can be 

applied to the B-field vector as well. This projection is illustrated by Figure 5-7. 

 

Figure 5-7. Geometric projection from the B-field direction (𝐵⃗ , blue) to the projection vector (𝑆 , 

red) along the principal propagation direction (𝑃⃗ , black). The Briggs-Parkin angle (∠𝐵𝑃) gives 

the angle between 𝐵⃗  and 𝑃⃗ . 
 

In Figure 5-7, the projection from the B-field vector 𝐵⃗  along the principal propagation 

vector 𝑃⃗  onto a plane parallel to the receiver plane is the projection vector 𝑆 . The Briggs-Parkin 

angle (∠𝐵𝑃) defines the angle between the B-filed direction and the principal propagation direction 

[Briggs and Parkin, 1963]. It follows that 

𝑆 = 𝐵⃗ − 𝑐𝑃⃗  ( 5-31 ) 
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where 𝑐 is a scalar. 𝑐𝑃⃗  is a scaled version of 𝑃⃗ , such that the vertical component of 𝑐𝑃⃗  is the 

same as the vertical component of 𝐵⃗ . As a result, 𝑆  is in a plane parallel to the receiver plane. 

Define the scaling parameter between ‖𝑆 ‖ and ‖𝐵⃗ ‖ to be 𝑆, then there is 

𝑆 = ‖𝑆 ‖: ‖𝐵⃗ ‖ = ‖𝐵⃗ − 𝑐𝑃⃗ ‖: ‖𝐵⃗ ‖ = 𝑎′: 𝑎 ( 5-32 ) 

Since 𝑏 ≈ 𝑏′, we finally have 

𝑆 ∙ (𝑎: 𝑏) = 𝑎′: 𝑏′ ( 5-33 ) 

Equation (5-32) provides a coarse estimate of the relationship between 𝑎: 𝑏 and 𝑎′: 𝑏′. In 

reality, the signal bending through the propagation path and the Earth’s curvature would introduce 

additional effects to 𝑆 . Therefore, a ±15% uncertainty is allowed when estimating 𝑎: 𝑏  from 

𝑎′: 𝑏′. 

5.2.3. Anisotropy Errors and Mitigation Techniques 

The validity of the effective height estimation technique is largely dependent on the 

accuracy of the anisotropy parameters. It is important to be able to identify and mitigate potential 

error sources in these parameters, as they may eventually pollute the effective height estimates.  

As mentioned in Section 4.3.2, a practical issue occurs when the estimated diffraction 

pattern axial ratio approaches unity, i.e., 𝑎′: 𝑏′ ≈ 1 . Combining with the topology of the 

irregularity structure, this implies one of two possibilities: 1) the irregularity axial ratio is also near 

unity (𝑎: 𝑏 ≈ 1); or 2) the B-filed direction coincides with the principal propagation direction 

(∠𝐵𝑃 ≈ 0). These two scenarios are illustrated by Figure 5-8. 
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Figure 5-8. Potential scenarios for obtaining unity axial ratio (𝑎′: 𝑏′ ≈ 1). Subplot (a) shows the 

possibility where the irregularity axial ratio is also unity (𝑎: 𝑏 ≈ 1). Subplot (b) shows the 

possibility where the Briggs-Parkin angle is small (∠𝐵𝑃 ≈ 0). 

 

In either case, the diffraction pattern would be practically isotropic, making it very 

challenging to identify its orientation. As a result, when 𝑎′: 𝑏′ ≈ 1, large errors may persist in the 

estimated anisotropy parameters. In the implementation, this potential error is mitigated by 

filtering out the results that are associated with small axial ratios (𝑎′: 𝑏′ < 2). Note that in Figure 

5-8(b), even if the axial ratio turns out to be large, the results could still be invalid. Because when 

∠𝐵𝑃 ≈ 0, the estimated diffraction pattern would not provide any information on the semi-major 

axis, which happens to be along the principal propagation direction. In the implementation, this is 

mitigated by discarding the results associated with small ∠𝐵𝑃 values (∠𝐵𝑃 < 15°). 

The forward propagation model is established based on the assumption that the ionospheric 

irregularities are aligned with the B-field. However, during active conditions, this assumption may 

not hold. In practice, when the orientation of the observed diffraction pattern deviates too much 

from the B-field direction (> 30°), the corresponding results are rejected. 
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In addition, only results associated with sufficient phase scintillation (𝜎𝜙 ≥ 12° ) are 

considered, so that the estimated results are indeed reflecting the irregularity heights. Also, an 

elevation mask for the input phase measurements is set at 35° to mitigate multipath errors. 

5.3. Geomagnetic Field Parameter Estimation 

Another key component of the height estimation method is the parameter set describing 

the input B-field. The baseline field parameters can be obtained from heuristic B-field models, 

such as the International Geomagnetic Reference Field (IGRF) model [Thébault et al., 2015]. But 

during strong geomagnetic activities, strong disturbances exceeding ±1000 nT, can often be 

observed in addition to the baseline values. Figure 8 demonstrates the magnetometer 

measurements from the College Station in Fairbanks, Alaska, during a geomagnetic storm event 

on 2015/12/20. The baseline B-field values are also provided based on the IGRF-12 (the 12th 

generation) model.  

 

Figure 5-9. Real-time magnetometer measurements at the College Station with IGRF modeled 

baseline field parameters on 2015/12/20. 

 

In Figure 5-9, the blue lines in the top, middle and bottom rows represent the magnetometer 

measurements as X (northward), Y (eastward) and Z (downward) components, respectively. The 

red lines correspond to the IGRF modeled field baseline parameters. The IGRF model appears to 
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fit very well to the field baseline at the beginning and the end of the day. However, during the 

active hours from ~0500 to ~2000 UT, the differences between the model and the measurements 

are substantial (> 1000 nT in the X direction, and >500 nT in the Y and Z directions).  

In the inversion algorithm for effective irregularity height estimation, the validity of the 

results is directly related to the accuracy of the input B-field parameters. The above example 

suggests that using daily baseline values from the IGRF model could not provide the desired 

accuracy. An alternative field parameter estimation technique is required. Also, the height 

estimation method ultimately requires the field parameters over the altitudes of interest in the 

ionosphere. To achieve these requirements, a two-step approach is proposed: 1) estimate B-field 

parameters at Earth’s surface; and 2) project these parameters onto the altitudes of interest. 

In the first step, processed magnetometer data covering the Alaskan region is first obtained 

from SuperMAG (http://supermag.jhuapl.edu/). Figure 5-10 shows the 8 regional magnetometer 

stations that were available during the geomagnetic storm events used in this study. 

 

Figure 5-10. Available magnetometer stations from SuperMAG during the observation period, 
marked by the 7 red pins and the green pin. The green pin near the center also marks the Poker Flat 

GNSS array location. The white pins mark other magnetometer stations in the region. 
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The 8 magnetometer stations in Figure 5-10 outline the general Alaskan region, which 

covers most of the observable region from the Poker Flat GNSS array. The station names, three-

letter abbreviations and geodetic coordinates are provided below in Table 5-1 as a reference. 

Table 5-1. GNSS bands used in this dissertation, and output data rate at each antenna. 

Station 

Name 
Barrow College Deadhorse Shumagin Sitka Inuvik Petersburg 

Poker 

 Flat 

Station 

Code 
BRW CMO DED SHU SIT INK T22 PKR 

Latitude 

(°N) 
71.3 64.9 70.4 55.4 57.1 68.3 56.8 65.1 

Longitude 

(°W) 
156.6 147.9 148.8 160.5 135.3 133.3 133.2 147.3 

 

To approximate the geomagnetic parameters within this region, linear interpolation is 

applied based on the SuperMAG data obtained from these 8 stations. A crucial component of the 

interpolation process is to create uniformly spaced coordinates covering this region. However, 

uniform latitude×longitude grid in the geodetic coordinate system does not preserve uniform 

space. For example, a 1°×1° grid at low latitude would cover a much larger region than a 1°×1° 

grid near the North Pole. To properly address this issue, the following steps are implemented: 

1) Convert the geodetic coordinates of the available magnetometer stations into Earth-Center, 

Earth-Fixed (ECEF) coordinates. Create a uniform three-dimensional (3-D) mesh bounded 

by these stations’ (x, y, z) coordinates; 

2) For each vertex in the 3-D mesh, calculate its geodetic coordinates. For each (x,y) 

coordinate, find the z coordinate that is associated with the least altitude value. This way, 

the fitting surface created by points like (x, y, z) can be confined to the Earth’s surface; 

3) Use the calculated geodetic latitude and longitude coordinates of the fitting surface as the 

2-D fitting lattice for linear interpolation. 
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Using a 50km×50km×10km ECEF grid, the corresponding 2-D fitting lattice is illustrated 

by Figure 5-11 as an example. 

 

Figure 5-11. Example of the 2-D fitting lattice created from a 50km×50km×10km ECEF grid. 

  

 In Figure 5-11, note that the size of an individual lattice at lower latitudes is smaller than that 

of a lattice at higher latitudes, indicating correct projection. In the actual implementation, a 

20km×20km×5km ECEF grid is used for enhanced spatial resolution. Linear interpolation is 

applied on the 2-D fitting lattice. Figure 5-12 shows an example of fitted results. 

 

Figure 5-12. Example of interpolated geomagnetic field vertical component Hz (positive 

downward) at 12:00:00 UT on 2015/12/20. The magnitude of the field values is shown by the 

color bar in nT. Eastward longitude coordinates are used for fitting purposes. 
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Note that field strength variation along Hz is nearly 8000 nT in Figure 5-12. This again 

illustrates the importance of using accurate geomagnetic data to represent the field parameters for 

the effective irregularity height estimation method. 

The above procedure estimates the B-field parameters at Earth’s surface. The next step is 

to project the surface field parameters onto targeted altitudes. One way to accomplish this is 

through modeling the Earth’s magnetic field, which is infeasible when only regional field 

parameters are considered as in this case. On the other hand, this suggests that established magnetic 

field models can be employed to carry out the estimation. In this study, we resorted to the IGRF 

model, which uses the Altitude-Adjusted Corrected Geomagnetic (AACGM) coordinate system to 

address the altitude variation in the B-field [Shepherd, 2014]. The implementation is as the 

following:  

1) Find the IGRF baseline field parameters at the Earth’s surface and at the targeted altitude;  

2) Calculate the ratio between these two values;  

3) Use this ratio as a scaling factor to estimate the field parameter at the targeted altitude based 

on the interpolated surface field value found in the previous process. 

For example, on 2015/12/31, the IGRF daily baseline values for Bz (B-field vertical 

component) at the PFRR were 55543.8 nT at the Earth’s surface, and 50596.2 nT at 200 km 

altitude. At 1200 UT, the interpolated Bz value at Poker Flat Antenna 1 location was 55818.5 nT. 

Then the instantaneous Bz value at 200 km above Antenna 1 can be estimated as: 𝐵𝑧,200𝑘𝑚@𝐴1 =

(50596.2 nT ÷ 55543.8 nT) × 55818.5 nT = 50846.4 nT. 

The IGRF itself is a series of mathematical models of the Earth’s main field and its annual 

rate of change (secular variation). It is updated every five years by the International Association of 

Geomagnetism and Aeronomy. This dissertation adopts the 12th generation IGRF model released 
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in December 2014, which is the latest IGRF model as of writing of this dissertation [Thébault et 

al., 2015]. 

 By now, all spaced-GNSS receiver techniques developed in this dissertation have been 

presented. Ionospheric drift velocities and effective heights can be estimated from GNSS carrier 

phase measurements during high latitude ionospheric scintillation. To verify the validity of these 

techniques, self-consistency studies between GNSS frequency bands and cross-comparison studies 

against measurements from other instruments are conducted. The results of these comparative 

studies are presented in Chapter 6.  
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6. CHAPTER 6 – COMPARATIVE CASE STUDIES AND ANALYSIS 

 

 

 

Based on the algorithms and procedures described in Chapters 3, 4 and 5, together with the 

receiver array setup described in Chapter 2, GNSS irregularity drift velocities and effective 

irregularity heights can be estimated during phase scintillations. 

In this chapter, several case studies will be presented to evaluate the accuracy of the 

methods and compare the results with other co-located instrument observations. Section 6.1 gives 

the summary of the scintillation events used in this dissertation for both the HAARP array and the 

Poker Flat array. Error analysis and mitigation techniques are discussed in Section 6.2. In Section 

6.3, an inter-frequency self-consistency study has been conducted based on the HAARP array data. 

Section 6.4 presents a comparative study between the HAARP array drift velocity estimates and 

the SuperDARN measurements. Section 6.5 focuses on the comparison of the two correlation 

methods: TDM and TFDM. In Section 6.6, a comparative study between the Poker Flat array drift 

velocity estimates under different correlation models is conducted. The corresponding background 

ASI images and PFISR vector velocity measurements are provided as references. In Section 6.7, 

another comparative study is conducted between velocity estimates from the Poker Flat array and 

measurements from the PFISR. In Section 6.8, the GNSS array estimated effective irregularity 

heights are cross-compared with the PFISR electron density profiles. 

6.1. Scintillation Events and Example Results 

Numerous ionospheric phase scintillation events have been collected by the HAARP array 

and the Poker Flat array. In this dissertation, the HAARP array data is used for self-consistency 

study across different GNSS signals, as well as a quantitative cross-comparative study between 

the GNSS receiver array estimations and the KOD SuperDARN measurements based on a large 
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amount of scintillation events using the TFDM. The Poker Flat array data is used for a method 

comparison study between the TDM and the TFDM, as well as a cross-comparative study between 

the GNSS measurements and the PFISR measurements based on a couple of long-lasting events 

using the TDM. 

6.1.1. HAARP Array Events and Example Results 

The HAARP GNSS array system continuously monitored the local ionosphere from 2011/8 

to 2013/3. GPS measurements were available throughout this 20-month period, while GLONASS 

measurements became available for the last 10 months since 2012/6, after a full system update 

during a 2012 summer campaign [Taylor et al., 2013]. The KOD SuperDARN array also has 

continuous measurement throughout these 20 months. 

To perform the data comparison during ionospheric scintillations, the scintillation events 

need to be extracted first. From the available data, we examined the phase measurement from each 

GPS satellite and identified the total scintillation event time to be 224.32 hours [Wang et al., 2016]. 

Among the 20-month period, 37 days of data are further identified where scintillation events are 

most concentrated. These selected data have a combined event time of 164.1 hours, covering more 

than 73% of the total event time. Lastly, the corresponding KOD data are obtained for these 37 

days. 

Following the procedures described in previous chapters, the apparent irregularity drift 

velocities are estimated based on the TFDM. In this study, the front velocity model is directly 

applied to the time lag estimates at the correlation peaks produced by the TFDM. For other 

correlation models associated with the anisotropy model, additional processing is required to 

retrieve the full correlation functions. It is not pursued in this study. The drift velocity estimates 

are obtained using the front velocity model. from Figure 6-1 shows the estimated irregularity drift 
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velocities for the visible GPS satellites calculated from a scintillation event from 11:51:17 to 

12:54:17 UTC on 2012/10/13. 

 

Figure 6-1. Sky vector plot of ionospheric irregularity drift velocity estimation. The color-coded 

tracks correspond to the 𝝈𝝓 values of each satellite’s detrended phase measurements, with 

intensity given by the colorbar. The vectors on the satellite tracks illustrate the drift velocity 

estimation magnitude and direction. A velocity vector of 1500 m/s pointing eastward is given as 

a reference. 

 

In Figure 6-1, all velocity vectors roughly point to the same north-east direction with 

magnitudes ranging from 300 to 3000 m/s with most around 1500 m/s. Note that the corresponding 

𝜎𝜑  values of each satellite have also been plotted with color code indicated by the color bar on the 

right. Intuitively, it is easier for this technique to determine the drift velocity when the phase 

fluctuation is stronger. 

6.1.2. Poker Flat Array Events and Example Results 

6.1.2.1. The 2015/12/20 Event 

A geomagnetic storm event took place during December 19-21, 2015. The sudden storm 

commencement (SSC) was documented at 16:16:12 UT on 2015/12/19 at the ground, marking the 
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initial phase of the storm [Ebre Observatory, http://www.obsebre.es/en/rapid]. Following a 30-hour 

build-up, the hourly Disturbance Storm Time (Dst) index indicated that the storm reached 

maximum intensity at -155 nT [World Data Center (WDC) for Geomagnetism, Kyoto, 

http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html]. Since -200 nT < Dstmin < -100 nT, this event can be 

classified as an intense storm [Gonzalez et al., 1994]. At the meantime, the global geomagnetic Kp 

index reached 7+. To further describe this event, Figure 6-2 illustrates several selected 

geomagnetic and interplanetary magnetic field (IMF) parameters from 2015/12/19 to 2015/12/21. 

 

Figure 6-2. Variations of selected geomagnetic and IMF parameters during 2015/12/19-

2015/12/21. The vertical dashed line gives the SSC time at 16:16:12 UT on 2015/12/19 

[http://www.obsebre.es/en/rapid]. The Kp index is 3-hour averaged. All other parameters are 5-

minute averaged. The parameters are further separated into 3 days by the vertical gray lines. In 

the top subplot, the Kp index is shown by the bar-plot, while the Auroral Electroject (AE) index 

is shown by the black curve. The middle subplot gives the symmetric (SYM) geomagnetic 

disturbance index in the horizontal direction (H) in nT (SYM/H, black), as well as the IMF BZ 

component in nT (IMF Bz, gray). The bottom subplot gives the Solar wind speed in km/s (Vsw, 

black), together with the Solar wind pressure in nPa (Psw, gray). The Kp index is obtained from 

WDC Kyoto Observatory [http://wdc.kugi.kyoto-u.ac.jp/aedir/index.html], while other 

parameters are acquired through NASA/GSFC’s Space Physics Data Facility’s OMNIWeb 

service [http://omniweb.gsfc.nasa.gov/index.html]. 
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In the top subplot of Figure 6-2, the AE index demonstrated small short-term increases 

following the SSC on 2015/12/19, while much more prominent increases and fluctuations (up to 

1883 nT) occurred on 2015/12/20 after ~0300 UT. The Kp index maintained at a high level 

(between 4 and 7) throughout the main phase of this event. From the middle subplot, the SYM-H 

index shows a decreasing trend in general until maximum intensity at ~2300 UT on 2015/12/20, 

with a few upturns indicating substorms [Lyatskaya et al., 2008]. The IMF BZ component turned 

northward after the SSC, followed by some fluctuations, until it suddenly turned southward at 

~0300 UT on 2015/12/20 and remained southward for more than 30 hours. In the bottom subplot, 

the solar wind speed shows an abrupt increase at the SSC, along with large fluctuations in the solar 

wind pressure occurring shortly after and lasting throughout the main phase of the event. 

To proceed with the comparative study between GNSS array and PFISR measured drift 

velocities, the first data period is selected from 00:00:18 to 23:59:53 UT on 2015/12/20. The 

reasons behind this choice are: (1) both systems have near continuous measurements throughout 

this period; and (2) strong IMF and geomagnetic activities are captured during this period by 

Figure 6-2, indicating high potentials for observing ionospheric irregularities on both systems. In 

fact, according to the International Q-Days (the quietest days) and D-Days (the most disturbed 

days) service, 2015/12/20 is the most disturbed day in December 2015 in terms of geomagnetic 

activity [WDC for Geomagnetism, Kyoto, http://wdc.kugi.kyoto-u.ac.jp/qddays/index.html]. As 

expected, the local magnetometer at Poker Flat observed strong fluctuations during this data period 

[UAF Alaska Satellite Facility, https://www.asf.alaska.edu/magnetometer]. These measurements 

are plotted in Figure 6-3, in accordance with the GNSS σϕ measurements. 
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Figure 6-3. Local observations on 2015/12/20 from the Poker Flat Magnetometer and the GNSS 

array. The top subplot gives the variations of the local BH component from its mean value in nT 

(Poker Bh, blue) and the BZ component (Poker Bz, green). In the bottom subplot, the carrier 

phase 𝜎𝜙 measurements are plotted for all visible GPS (blue circles), GLONASS (red squares) 

and Galileo (green plus signs) satellites above 30° elevations. The data resolution is 1 second. 

 

In Figure 6-3, large fluctuations can be observed in both BH and BZ components between 

~0430 and ~0600 UT, around ~08 UT, and between ~1000 and ~2000 UT. Large disturbances can 

also be observed in both GPS and Galileo 𝜎𝜙 measurements at these times. The ASI images are 

also plotted for 2015/12/20 to demonstrate the detected emissions. Figure 6-4 shows the ASI 

keograms (north-south slices of ASI images at each epoch) for each Poker Flat ASI wavelength. 

 
Figure 6-4. ASI keograms of 2015/12/20 at the PFRR from 0330 UT to 1830 UT. The subplots 

correspond to different measurement wavelength at 557.7 nm, 427.8 nm, 486.1 nm and 630.0 

nm, respectively. 
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In Figure 6-4, consistent results can be observed from all four wavelengths in general, 

where less particle precipitation is observed at 486.1 nm and the 630.0 nm measurements appear 

to be under cloudy conditions. Focusing on the 557.7 nm line emission, relatively weak and 

localized particle precipitation can be observed from ~0500 UT to 0900 UT, while stronger and 

widely spreading precipitation can be observed between ~1130 UT to 1400 UT, as well as ~1600 

UT to ~1730 UT. These results also agree with the event features observed from both the global 

parameters in Figure 6-2 and the local parameters in Figure 6-4, respectively.  

Following the procedures described in the previous sections, the GPS and Galileo carrier 

phase measurements are used to estimate the irregularity drift velocities. An example of the 

processed results from 0430 to 0530 UT on 2015/12/20 is plotted in Figure 6-5 as velocity vectors 

on top of their satellite tracks with 𝜎𝜙 values indicating the phase irregularity strength. 

 
Figure 6-5. Example skyplot of drift velocity estimations from 0440 to 0540 UT on 2015/12/20. 

The starting location of each satellite is marked by a numbered label (GPS, blue; GLONASS, 
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red; Galileo, green). The colorbar correspond to the phase scintillation σϕ indices. The estimated 

drift velocities are illustrated by the quivers, with a reference vector at 1500 m/s pointing 

eastward. 

 

In this example, 7 GPS satellites (GPS 5, 7, 8, 13, 20, 28 and 30), 6 GLONASS satellites 

(GLO 3, 4, 5, 13, 14 and 22) and 1 Galileo satellite (GAL 24) were visible above the 30° elevation 

mask. In the west part of the sky, the irregularity drift pattern appeared to be very turbulent and 

localized. The irregularity drift velocities were highly variable while GPS 13 and GLO even 

experienced sudden turns in drift directions. On the other hand, in the east part of the sky, all GNSS 

satellites experienced northward drift velocities. GPS 7, GAL 24 and GLO 13 all observed dense 

and consistent drifts in almost the same direction. 

6.1.2.2. The 2015/12/31 Event 

Another geomagnetic storm event occurred on 2015/12/31-2016/1/1. The SSC was 

registered at 00:49:36 UT on 2015/12/31 at the ground [Ebre Observatory]. The main phase of this 

event lasted until ~0130 UT on 2016/01/01, when the Dst index reached as low as -110 nT [WDC 

for Geomagnetism, Kyoto]. Again, this event can be classified as an intense storm, although 

slightly less intense than the previously discussed event. The maximum Kp index reached 6. To 

further describe this event, Figure 6-2 shows the selected geomagnetic and IMF parameters from 

2015/12/31 to 2016/1/1. For comparison, 2015/12/30 is included as an example of a quiet-day. 
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Figure 6-6. Variations of selected IMF and geomagnetic parameters during 2015/12/31-2016/1/1. 

Refer to Figure 6-2 for the plotting rubrics. 

In the top subplot of Figure 6-6, the AE index demonstrated prominent increases and 

fluctuations (up to 2000 nT) from ~0730 UT on 2015/12/31 to ~1200 UT on 2016/1/1. The Kp 

index stayed at a high level (between 3 and 6) throughout the main phase of this event. From the 

middle subplot, the SYM-H index stayed at a high level after the SSC, until ~1130 UT on 

2015/12/31, where a general decreasing trend can be observed from then on until reaching 

maximum intensity at ~0130 UT on 2016/1/1. Large fluctuations in the IMF BZ component can be 

observed from the SSC till ~2000 UT on 2015/12/31. In the bottom subplot, two abrupt increases 

can be observed in the solar wind speed, one at the SSC and the other at ~0600 UT on 2015/12/31. 

The solar wind pressure also increased at the SSC, and dropped back to nominal values after ~2000 

UT on 2015/12/31. 

The data period selected for this case study is 00:00:22 to 23:59:57 UT on 2015/12/31. 

2015/12/31 is the second most disturbed day in December 2015 in terms of geomagnetic activities 

0

2

4

6

8
K

p
2015/12/30                      2015/12/31                     2016/01/01

0

1000

2000

A
E

 (
n

T
)

-150

-100

-50

0

50

S
Y

M
/H

 (
n

T
)

-20

0

20

IM
F

 B
z
 (

n
T

)

0 6 12 18 24 30 36 42 48 54 60 66 72
300

400

500

V
s
w

 (
k
m

/s
)

Time (UT hours)

0

10

20

P
s
w

 (
n

P
a

)



113 

[WDC for Geomagnetism, Kyoto]. The local magnetometer measurements at Poker Flat are 

plotted in Figure 6-7, in accordance with the GNSS 𝜎𝜙 measurements. 

 

Figure 6-7. Local observations on 2015/12/31 from Poker Flat Magnetometer and the GNSS 

array. Refer to Figure 6-3 for the plotting rubrics. 

 

In Figure 6-7, large fluctuations can be observed in both BH and BZ components between 

~0800 and ~1800 UT with smaller fluctuations between ~2000 to 2400 UT. Corresponding 

disturbances can be observed in both GPS and Galileo 𝜎𝜙 measurements at these times. Similar 

to Figure 6-4, the ASI keograms are plotted for all Poker Flat ASI wavelengths in Figure 6-8. 

 

Figure 6-8. ASI keograms of 2015/12/31 at the PFRR from 0330 UT to 1830 UT. 
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Similar to the 2015/12/20 example, general agreements in the emission features can be 

observed from all four wavelengths. Focusing on the 557.7 nm, particle precipitation can be 

observed from ~0830 UT to ~1100 UT and from ~1200 UT to ~1600 UT. Again, these results also 

agree with the event features observed from both the global parameters in Figure 6-6 and the local 

parameters in Figure 6-7, respectively 

An example of the irregularity drift estimations from 1215 to 1315 UT on 2015/12/31 is 

plotted in Figure 6-9 as velocity vectors on top of their satellite tracks with 𝜎𝜙 values indicating 

the phase irregularity strength. 

 
Figure 6-9. Example skyplot of drift velocity estimations from 1215 to 1315 UT on 2015/12/31. 

Refer to Figure 6-5 for the plotting rubrics. 

 

In this example, 6 GPS satellites (GPS 2, 5, 25, 26, 29 and 31), 5 GLONASS (GLO 6, 13, 

14, 22 and 23) satellites and 2 Galileo satellites (GAL 11 and 12) were visible above the 30° 
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elevation mask. The irregularity drift patterns appeared be converging to the north-to-south 

direction for both satellite clusters in the south part of the sky and the west-north part of the sky. 

Again, all GPS, GLONASS and Galileo results show good agreement when the satellite tracks are 

in the vicinities of each other. 

6.2. Error Analysis and Mitigation Techniques  

There are several potential error sources in the method described in this study and 

mitigation methods have been exploited to minimize these errors as part of the integral process 

during the development of the techniques presented. Below is a summary of these error sources 

and mitigation techniques. 

6.2.1. GNSS Carrier Phase Errors 

GNSS carrier phase measurements are estimations generated by receiver PLL. PLL 

estimated carrier phase errors and carrier phase cycle slips are directly affected by the signal-to-

noise ratio (SNR) and can be a major issue for equatorial scintillations when deep signal fading 

often occur, resulting in 20 dB or more SNR degradation. However, at high latitudes, the observed 

phase fluctuations are not associated with simultaneous deep fading. Typical observed signal 

intensity during large phase fluctuations are on the order of a few dB [Jiao et al., 2013], well within 

the normal performance range of conventional PLL. Because each antenna output is processed by 

independent PLL tracking channels, the carrier phase noise should be independent from each other 

and therefore, produce negligible cross-correlations in the technique discussed in this paper. 

The receiver oscillator is a major contributor to phase measurement error. For the HAARP 

array, all three receivers are driven a common high quality, low-phase noise OCXO and the 

receiver outputs are aligned on a sample-by-sample basis at a 5 MHz sampling rate. Therefore, if 

there are any prominent phase jitters due to receiver oscillator, they should be synchronized to 
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within 0.2 μs between antennas. Such a small time lag will be filtered in the phase spectrum 

correlation product. For the Poker Flat array, all three receivers are driven by the same type of 

OCXO from the exact same receiver model, Septentrio PolaRxS. Again, these receiver oscillators 

are of high quality and low-phase noise, and are synchronized to the GPS Time. 

Likewise, satellite oscillator plays an as important role as the receiver oscillator. The GNSS 

constellations used in this dissertation are GPS, GLONASS and Galileo. Among them, GPS and 

Galileo satellites show comparable phase errors under nominal signal conditions, indicating 

comparable satellite oscillator performance. But this is not the case for GLONASS satellites, 

whose phase noise is often much higher. This issue is demonstrated by Figure 6-10. 

 
Figure 6-10. Comparison of 2-hour nominal 𝜎𝜙 values on GPS L1 and GLONASS L1 signals 

from 2012/10/09 19:26:40 UTC at Antenna 1. GPS PRN 29 is shown in red, while GLONASS 

SV 18 is shown in red. Frequency scaling is applied on GLONASS L1 to match with the GPS L1 

measurement. 

 

In Figure 6-10, both data sets are taken during quiet background ionosphere conditions. 

GPS PRN 29 (blue) traveled from 22º to 76 º elevation angles, while GLONASS SV 18 (red) 

traveled from 24º to 86º. After carrier phase detrending, the baseline GPS 𝜎𝜙  values slightly 

fluctuate between 0.7º to 3º, mostly between 1º to 2º, while the baseline GLONASS 𝜎𝜙 values 
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demonstrate a much larger variation between 1º and 6º, mostly between 1º to 4º. Both the 

magnitude and variation in the 𝜎𝜙 values of GLONASS satellites are much higher than those of 

the GPS counterparts. To address this issue, the scintillation strength threshold for GLONASS is 

set to be 15°, a 3-degree increase from the GPS/Galileo 𝜎𝜙 threshold. 

Multipath could be another potential error source. In this study, however, only high 

elevation satellites which are less susceptible to multipath are used for evaluations. Furthermore, 

reflective multipath due to objects in the local environment follows a near 24-hour repetitive 

pattern due to the periodic nature of the GPS satellite orbit. Such repetitive pattern was not found 

for the phase fluctuation events presented in this study. 

Cycle slips may also cause phase errors up to millions of cycles. A cycle slip detection and 

repairing algorithm suitable for high rate phase measurements has been demonstrated in Section 

5.3. The accuracy in the repaired ADR sample is within ±0.5 cycles. To ensure phase measurement 

integrity, correlation results associated with the detected cycle slips are discarded in the later 

processes. This would minimize the impact of cycle slips in later detrending process. 

As discussed in Section 5.4, the carrier phase detrending process may exaggerate 

fluctuations caused by ionospheric irregularities. On one hand, this does not have negative impacts 

on the front velocity model, since the peak correlation indices stay the same, as long as the exact 

same detrending process is applied to all receivers in the array. On the other hand, the anisotropy 

model would be affected, since inaccurate detrended phase would lead to distorted correlation 

surfaces. 

6.2.2. Joint Time-Frequency Analysis Error 

The APT algorithm has been tested using various simulation data to demonstrate its 

performance in finding the optimal window length of a coherent spectrum [Wang, 2013]. Its 
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temporal resolution directly determines the time lag precision. It is interesting to note that the 

“signals” of interests here are the phase fluctuations; therefore, the APT spectral error decreases 

as the level of ionospheric induced phase fluctuation increases. Noisy APT spectra, such as the 

ones observed on Antenna 2 in the HAARP setup, result in lower correlation coefficients, leading 

to difficulties in identifying persistent irregularity patterns across the antenna array, and hence 

cause errors in time lag estimations. By using higher thresholds, estimates from noisy spectra are 

filtered, reducing the availability of measurements and hence reducing the temporal resolution. 

However, the question remains as what is an acceptable correlation threshold? Without the 

knowledge of the true irregularity drift velocity, it is difficult to have a quantitative answer. 

Nevertheless, the algorithm seems to produce estimates that are self-consistent, in the sense that 

the estimates for neighboring satellites are similar to each other. Also, as will be presented in 

Section 6.3, the algorithm is self-consistent across different GNSS signals towards higher 

scintillation strength [Wang et al., 2015]. 

To improve APT spectrum quality, it is necessary to optimize the receiver hardware setup 

(reduce the cable length to minimize signal loss and use a low phase noise oscillator) and software 

receiver signal processing algorithms. The cable length issue has been resolved in the Poker Flat 

array setup. 

6.2.3. Irregularity Height Error 

For the Poker Flat GNSS array, the peak electron density height, hmF2, can be directly 

obtained from the electron density (Ne) profiles measured by the PFISR. Figure 6-11 shows the 

Ne profile from the PFISR’s zenith beam on 2015/12/20. 
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Figure 6-11. PFISR zenith beam Ne profile on 2015/12/20 from 85 km to 344 km using 

alternating code measurements. The color code corresponds to the log-scaled electron density 

values. The white strip at ~1100 UT is an intermission between two PFISR experiments. 

 

In Figure 6-11, the ionospheric irregularity altitudes can be identified from enhancement 

(warmer colors) and depletion (colder colors) regions in the Ne profiles. The irregularities occurred 

at various heights from ~0400 to ~2000 UT during local night time, mostly concentrated towards 

lower altitudes around 120 km. During local day time, the irregularities raised to higher altitudes 

around 300 km. A direct observation from Figure 6-11 is that irregularities can be spread over a 

wide range of altitude and their heights may not be well-defined. 

The above example shows that even when Ne profiles from an incoherent scatter radar is 

available, it may still be challenging to correctly identified the ionospheric irregularity altitudes 

from the depletion/enhancement regions. Hence the questions remain: What altitude assumption 

should be used and how does that effect the irregularity drift velocity estimates? In this study, we 

take a more inclusive approach by considering a range of irregularity altitudes when calculating 

drift velocities. We then derive the drift velocity range corresponds to the altitude range. 
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Sojka et al. [2009] showed that the hmF2 values over the PFRR are typically between 175 

km and 350 km, concentrated around 250 km. The hmF2 increases in local summer and decreases 

in local winter, associated with the seasonal changes in insolation. But phase scintillations often 

occur during active conditions, where the local hmF2 has been observed to reach 400 km [Zou et 

al., 2013], while E region irregularity around 100 km is not uncommon [Sojka et al., 2009; Wang 

and Morton, 2017]. Based on these past observations, we set the boundary irregularity altitudes to 

be [100km, 400 km] for the Poker Flat array. For the HAARP array, this boundary is set to be 

[150km, 450 km] considering the HAARP site is at a lower latitude. 

Data from 2015/12/20 is processed under two irregularity altitude assumptions of 100 km 

and 400 km. The variations in the estimated drift velocities are analyzed from two aspects: the 

absolute velocity differences, and the percentage differences relative to results under 100km and 

400 km altitude assumption. Meanwhile, elevation masks at 30°, 45° and 60° are employed to 

demonstrate the impact of satellite elevation angles. The results are shown in table 6-1. 

Table 6-1. Percentage fraction of absolute and relative velocity variations under different 

irregularity altitude assumptions that would fall within certain numerical bounds; for different 

choices of elevation threshold and size of the bounds 

Elev. 

Absolute Variations Percentage Variations (100 km / 400 km) 

±50 m/s ±100 m/s ±200 m/s ±5% ±10% ±20% 

30° 54.1% 72.8% 85.1% 56.5% / 53.6% 71.1% / 74.5% 88.5% / 84.5% 

45° 61.5% 80.2% 89.6% 58.3% / 56.3% 77.1% / 82.3% 93.8% / 88.5% 

60° 74.2% 93.6% 100% 64.3% / 64.5% 83.9% / 90.3% 100% / 100% 

 

In Table 6-1, take the 100% entry under the Absolute Variations for example, the result 

shows that the velocity differences between 100 km and 400 km assumptions are all (100%) within 

±200 m/s for satellites above 60° elevations. It can be observed that the velocity variations caused 
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by different irregularity altitude assumptions become smaller towards higher elevation angles. For 

satellites above 60° elevations, all velocity estimations can be expected to be within ±200 m/s, or 

±20% of the truth. For satellite above 45° elevations, nearly 90% of the velocity estimations are 

within 20% or 200m/s of the true values. The percentage values drop to between 84 and 89 for 30° 

elevation. Table 6-1 indicates that the irregularity altitude assumption does not play a critical role 

in the estimated irregularity drift velocity when for satellites at high elevations. Figure 6-12 

illustrates this elevation impact on altitude sensitivity of the resulting drift velocity estimations. 

 

Figure 6-12. Illustration of elevation impact on altitude sensitivity of drift velocity estimation. 

The blue layer represents the ionosphere with altitude extending from 100 km to 400 km. ∆𝒅𝑹𝑿 

marks the receiver distance. The red labels mark the sub-ionospheric distances of the receivers at 

100 km (∆𝒅𝟏𝑯) and 400 km (∆𝒅𝟒𝑯) for the satellite at higher elevation, while the purple labels 

mark the lower elevation counter parts (∆𝒅𝟏𝑳 and ∆𝒅𝟒𝑳). 

 

In Figure 6-12, ∆𝒅𝟏𝑯, ∆𝒅𝟒𝑯, ∆𝒅𝟏𝑳 and ∆𝒅𝟒𝑳  represent the sub-ionospheric distances 

between ionospheric pierce points (IPPs) of the two GNSS receivers under different irregularity 

altitude assumptions. Under typical GNSS satellite-receiver geometry, orbit altitude ≫  IPP 

altitude. As a result, the relationship ∆𝒅𝟏𝑯 ≈ ∆𝒅𝟒𝑯 ≈ ∆𝒅𝟏𝑳 > ∆𝒅𝟒𝑳  holds. This supports the 
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observation from Table 6-1 that altitude of irregularity does not have a significant impact on drift 

velocity estimations for satellites with relatively high elevation. 

6.2.4. Coordinate Transformation Error 

When cross-comparing the GNSS estimations against PFISR measurements, the results are 

eventually transformed into the geomagnetic coordinate system from the local East-North-Up 

coordinate system. The coordinate transformation algorithm is given as the following [Heinselman 

and Nicolls, 2008]:  

𝑣𝑝𝑒 = 𝑣𝑒 cos 𝛿 + 𝑣𝑛 sin 𝛿 ( 6-1 ) 

𝑣𝑝𝑛 = 𝑣𝑧 cos 𝐼 + sin 𝐼 (𝑣𝑛 cos 𝛿 + 𝑣𝑒 sin 𝛿) ( 6-2 ) 

𝑣𝑎𝑝 = 𝑣𝑧 sin 𝐼 − cos 𝐼 (𝑣𝑛 cos 𝛿 + 𝑣𝑒 sin 𝛿) ( 6-3 ) 

where 𝑣𝑒, 𝑣𝑛 and 𝑣𝑧 are the local East, North and Up velocity components, and 𝑣𝑝𝑒, 𝑣𝑝𝑛 and 

𝑣𝑎𝑝  are the geomagnetic Perpendicular North, Perpendicular East and Anti-Parallel velocity 

components. 𝛿 is the geomagnetic declination angle and I is the dip angle (also known as the 

inclination angle). These angles can be estimated using the IGRF model. For the Poker Flat site,  

𝛿 is around 22° and I is around 77.5° [Heinselman and Nicolls, 2008].  

The spaced-receiver technique only estimates the horizontal velocity components. In 

practice, 𝑣𝑧 is often assumed to be zero. As a result, the Perpendicular North component is prone 

to error due to the uncertainty in the local Up velocity components. To further investigate this 

transformation error, we resorted to the raw PFISR vector velocity measurements, which provides 

information on the anti-parallel velocities as well as the error terms associated with them. An 

example of the PFISR measurements is shown in Figure 6-13. 



123 

 
Figure 6-13. Example PFISR vector velocity measurements with associated error terms from 

2015/12/31 00:04:44 to 2016/1/1 00:03:22 UT. The two rows from top to bottom show the 

velocity and velocity error values, while the three columns from left to right show the 

perpendicular east direction (V perp east), the perpendicular north direction (V perp north), and 

the anti-parallel direction (V anti par), respectively. The velocity and velocity error values for V 

anti par are multiplied by 10 for better visual representation. The color bars represent the values 

for the velocities and velocity errors, respectively. The latitudinal resolution is 0.25° for all 

subplots. 

 

In Figure 6-13, the velocity values in both 𝑣𝑝𝑒  (V per east) and 𝑣𝑝𝑛  (V perp north) 

directions have large variations, while 𝑣𝑎𝑝 (V anti par) maintains at small values around zero. 

𝑣𝑝𝑒 and 𝑣𝑝𝑛 values are higher towards higher latitudes and from 65.5°N to 65.75°N. Note that in 

the bottom 2-D vector velocity plot, 𝑣𝑝𝑒 and 𝑣𝑝𝑛 are filtered too exclude velocities associated 

with large errors.  

Focusing on the anti-parallel direction, both the 𝑣𝑎𝑝  values and the 𝑣𝑎𝑝  error terms 

appears to be relatively large at first glance. However, one must keep in mind that those values 

have been purposely multiplied by a factor of 10 to enhance visual representation. Through 

examining the original values from the Madrigal Database, the actual 𝑣𝑎𝑝 and 𝑣𝑎𝑝 errors values 

are found out to be no more than 50 m/s throughout the measurement period. Meanwhile, the 
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geomagnetic dip angle over the PFISR site is close to 90°, meaning that the impact of the 𝑣𝑧 

component would be reasonably small on the 𝑣𝑝𝑛 and 𝑣𝑎𝑝 components in Equations 6-2 and 6-

3. Combining this remark with the small values of 𝑣𝑎𝑝 and 𝑣𝑎𝑝 errors observed by the PFISR, a 

conclusion can be drawn that the potential errors caused by the coordinate transformation should 

not be significant. A similar conjecture can be deduced from the 2015/12/20 data set. Note, 

however, even though this conclusion is applicable to these particular events at the Poker Flat site, 

it’s not necessarily the case for the general problem. 

6.3. Inter-Frequency Self-Consistency Check 

When GNSS signals from different frequency bands traverse from a satellite to the receiver 

array, the drift velocities estimated from them are expected to be very close. This is because even 

though the signals correspond to different irregularity scales, they have the same traversing paths 

through the same background ionosphere. Based on this premise, a self-consistency study is 

conducted upon the estimated results from various GNSS signals to investigate the validity of this 

spaced-receiver approach. The similarities/differences in the diffraction patterns caused by 

irregularities structures at different wavelengths and scales are examined. Data sets from collected 

by the HAARP array are used for this study. Hence the TFDM is applied. 

Referring to Table 2-1, the HAARP data collection system has simultaneous GPS L1 and 

L2C capability at each antenna, as well as GPS L1/L2/L5 and GLONASS L1/L2 capability 

between Antenna 1 and Antenna 3. Provided that the signals are of the same format, the spaced-

receiver technique can be easily applied to these GNSS signals. The subsections below are 

dedicated to the estimation results of the irregularity drift velocity between GPS L1 and L2C bands 

across all antennas, as well as the results between Antennas 1 and 3 on GPS L1/L2/L5 and 

GLONASS L1/L2. 
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6.3.1. GPS L1 vs. GPS L2C 

From the scintillation data set observed at the HAARP array, 4 triggered phase fluctuation 

events are further selected for the self-consistency study between GPS L1 and L2C signals. These 

data sets contain strong phase fluctuations on most of the satellites throughout the events. The 

detailed event date and times, duration, and data availability are specified by Table 6-2. 

Table 6-2. Phase fluctuation events with L2C availability. 

Date Starting Time (UT) Duration (minutes) GPS L2C (PRN) 

2012/11/14 08:51:00 15 5, 7 

2013/03/17 09:05:54 14 25, 29, 31 

2013/03/17 10:17:10 15 5, 25, 29, 31 

2013/03/17 19:08:30 28 1, 17, 31 

 

By applying the spaced-receiver techniques, the GPS L1 and L2C irregularity drift 

velocities are estimated. An example sky vector plot is produced from the last event on 2013/03/17.  

 

Figure 6-14. Skyplot of irregularity drift velocity estimation based on GPS L1 and L2C 

measurements from 19:08:30 to 19:36:30 UT on 2013/03/17. Blue arrows represent L1 

estimates, while pink arrows represent L2C estimates. The satellites with L2C signals are marked 

by pink PRN numbers. The satellite paths are shown in red started by the black plus signs.  
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Figure 6-14 shows the sky vector plot of irregularity drift velocity estimation based on both 

GPS L1 (blue) and L2C (pink) measurements. Most of the L1 estimated drift velocities agree with 

the L2C estimations. This is an expected outcome although disagreements between the estimates 

between L1 and L2C do exist. 

There are several possible explanations for these discrepancies. First, due to the dispersive 

nature of the ionosphere, the two signals may have taken two slightly different paths that have 

different background drift velocities. In this case, the algorithm still provides the desired outcome, 

but other instruments with vertical sensing ability need to be employed to further investigate these 

results. Second, the ionospheric irregularity patches travel and evolve too fast to be measured by 

the system. In this case, neither the L1 nor the L2 estimation result is reliable. And lastly, the phase 

fluctuations may not be strong enough to provide high enough SNR for the algorithm to produce 

compelling results.  

A classifying metric is required to differentiate these similarities and differences according 

to the strengths of the events. The commonly used phase scintillation index, 𝜎𝜙 is employed to 

categorize these phase fluctuation events on the two GPS bands. Note that a phase fluctuation 

event of certain 𝜎𝜙 value on GPS L1 band and an event on GPS L2C band of the same 𝜎𝜙 value 

do not imply the same level of event strength. Instead, for weak scintillation, GNSS phase 

scintillation index follows the inverse frequency power law, which leads to the following 

relationship [Rino, 1979; Morrissey et al., 2004]: 

𝜎𝜙(𝑡)𝑅𝐹1

𝜎𝜙(𝑡)𝑅𝐹2
=

𝑓𝑅𝐹2

𝑓𝑅𝐹1
 ( 6-4 ) 

where 𝜎𝜙(𝑡) is the received 𝜎𝜙 measurement at time 𝑡, 𝑅𝐹1 and 𝑅𝐹2 represent the different 

GNSS radio frequency signals, and 𝑓 is the carrier phase frequency. 
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According to the frequency relationship, an event with 12º 𝜎𝜙 on GPS L1 will have a 

response of 15.4º 𝜎𝜙 on GPS L2C. Figure 6-15 illustrates such a property using real scintillation 

measurements. 

 

Figure 6-15. Example of 𝜎𝜙 values of GPS L1 and L2C phase measurements from 2013/03/17 

19:08:30 on PRN 1. The subplot on the left are the original 𝜎𝜙 values of the two bands. The 

subplot on the right gives the GPS L1 𝜎𝜙 values scaled up by 154/120 to match with the GPS 

L2C band. 

 

In Figure 6-15, the left panel shows direct phase scintillation index 𝜎𝜙 values for GPS L1 

(blue) and L2C (red) on March 17, 2013 in Alaska. The right panel shows the same GPS L2C  𝜎𝜙 

values and scaled version (by a factor of 154/120) of GPS L1 𝜎𝜙 values. The scaled GPS L2C 

and original GPS L1 𝜎𝜙  values show remarkable agreement. This property of phase 

measurements is particularly useful when describing and associating the phase fluctuation 

strengths from different GNSS bands. In order to categorize the levels of the phase fluctuation 

events for a particular GNSS band, certain 𝜎𝜙 threshold can be employed as the cutoff value. By 

scaling the phase measurements from all other GNSS bands to this particular frequency band, this 

𝜎𝜙 value can also serve as a uniform benchmark in describing the same level of phase fluctuations 

at all other GNSS bands. In the rest of this paper, all phase calculations are scaled to the equivalent 
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GPS L2C band. The carrier frequency ratio can be derived from Table 6-3 to be appeared later in 

this section. 

In order to classify the drift velocity estimations, and to establish relationship between the 

two GPS bands, scatter plots comparing L1 and L2C velocities are generated using all 4 events. 

The result is illustrated by Figure 6-16.  

 

Figure 6-16. Scatter plots of L2C vs. L1 irregularity drift velocity estimations based on data sets 

in Table 6-2. The subplot on the left shows the velocity magnitude, while the subplot on the right 

shows the direction of the velocity with respect to due north. An L2C 𝜎𝜙 cutoff is chosen at 

25°. Any velocity estimation corresponds to a higher 𝜎𝜙 value is plotted in red. The dashed 

lines have unity slopes, indicating where L1 and L2C results match with each other. 

 

In Figure 6-16, the GPS L1 estimated irregularity drift velocity magnitude (left) and 

direction (right) is plotted against their counterparts from GPS L2C estimations. A 𝜎𝜙 cutoff is 

chosen at 25º to distinguish between the stronger events (red) from the weaker ones (blue). The 

unity dashed lines in both subplots indicate where L1 and L2C results match. From Figure 6-16, it 

can be observed that the correlation between L1 and L2C estimation results are weak at lower 𝜎𝜙 

values, but fairly strong at higher 𝜎𝜙 values. The 25º cutoff is chosen specifically to support this 

argument. If the cutoff value is too low, then more scattered points will occur off the unity line. If 
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it is chosen too high, then the red points will become very sparse. From the left subplot, the 

magnitudes of most of the drift velocities lie within the [0 1000] m/s range. From the right subplot, 

two clusters of velocity angles can be observed around 30º and 80º. After carefully examining each 

piece of data, both clusters can be traced back to the satellites from 2012/11/14. The first cluster 

(30º east from due north) appears to be mostly contributed by PRN 7, while the second cluster (80º 

east from due north) appears to be mostly contributed by PRN 5. Both satellites experienced large 

scale phase fluctuations during that time on 2012/11/14. They both demonstrated good consistency 

in the velocity directions with relatively low velocity magnitudes (100 to 250 m/s). 

Note that Figure 6-16 only applies for the estimations containing simultaneous Antennas 

1, 2 and Antennas 1, 3 components, since the 2-D velocity measurements requires simultaneous 

estimations in both directions. As a result, a lot of useful information from a solitary component 

might be discarded when there are no concurrent estimations. For this reason, another pair of 

scatter plots is generated from Antenna 1, 2 and Antenna 1, 3 estimations, respectively. Figure 6-

17 illustrates the results, adopting the same L2C 𝜎𝜙 cutoff value at 25º. 

 

Figure 6-17. Scatter plots of L2C vs. L1 irregularity drift velocity estimations across different 

two antenna pairs based on data sets in Table 6-2. The subplot on the left shows the Antenna 1, 2 

estimation results, while the subplot on the right shows the Antenna 1, 3 results.  
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In Figure 6-17, the GPS L1 estimated irregularity drift velocity across Antennas 1 & 2 (left) 

and across Antennas 1 & 3 (right) is plotted against their counterparts from GPS L2C estimations. 

Similar to previous observations, estimations correspond to higher 𝜎𝜙  demonstrate better 

consistency between GPS L1 and L2C results in both antenna pairs. From the left subplot, the drift 

velocities seem to scatter around 0. From the right subplot, most of the results lie in the upper right 

corner, which corresponds to an eastward drift. 

6.3.2. GPS L1 vs. L2C vs. L5 and GLONASS L1 vs. L2 

To further study the relationships across different GNSS bands, another triggered phase 

fluctuation event is selected for irregularity drift velocity estimation across Antennas 1 and 3, 1 

hour from 05:00:00 UT on 2012/10/09. This data set contains strong phase fluctuations across 

most of the GPS and GLONASS satellites throughout the event. Meanwhile, the signal condition 

across Antennas 1-3 pair is much better than that on Antennas 1-2 pair. Table 6-3 lists the satellites 

above 30º elevation angles for all available signals at the receivers during this event, as well as the 

carrier frequencies of the signals. Note that the GLONASS frequencies listed here is the center 

frequencies of the FDMA signals. 

Table 6-3. Visible satellites and signal carrier frequencies for the event from 05:00:00 to 

06:00:00 UT on 2012/10/09. 

Signal Carrier Frequency SV number 

GPS L1 1575.42 MHz 1, 11, 14, 20, 32 

GPS L2C 1227.60 MHz 1 

GPS L5 1176.45 MHz 1 

GLONASS L1 1602.0 MHz 5, 6, 7, 15, 21, 22 

GLONASS L2 1246.0 MHz 5, 6, 7, 15, 21, 22 

 

Similar to the previous data treatment, all carrier phase measurements are scaled towards 

the GPS L2C frequency at 1227.60 MHz. For the FDMA signals on GLONASS, each satellite has 
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varied carrier frequency based on its frequency slot. For GLONASS L1, fL1 = 1602 +

n × 0.5625 MHz,  where n = −7,−6,… ,0, … ,5,6.  For GLONASS L2, the frequency step is 

0.4375 MHz. Comparing to the magnitude of their center frequencies; the slight variation in each 

signal frequency is negligible for the purpose of this study. Therefore, the 𝜎𝜙 scaling is only 

based on the center frequencies on GLONASS signals. 

Referring to Table 6-3, the only satellite with all three GPS frequency bands is PRN1. 

Multi-band irregularity drift velocities across antennas 1 and 3 are estimated for this GPS satellite. 

Three scatter plots cross-comparing GPS L1, L2C and L5 velocities are generated as in Figure 6-

18. The same 𝜎𝜙 cutoff is adopted to be equivalent to 25º on GPS L2C. The other frequencies are 

scaled to the L2C frequency band accordingly.  

 

Figure 6-18. Scatter plots of GPS L1 vs. L2C vs. L5 irregularity drift velocity estimations across 

Antennas 1 & 3 from 05:00:00 UT to 06:00:00 UT on 2012/10/09, GPS PRN1. The left subplot 

shows the GPS L1 vs. L2C estimation results, the middle subplot shows L1 vs. L5 results, and 

the right subplot shows L2C vs. L5 results. The 𝜎𝜙 cutoff is at 25° on GPS L2C. 

 

In Figure 6-18, irregularity drift velocity estimations across Antennas 1 & 3 are plotted for 

GPS L2C vs. L1 (left), L5 vs. L1 (middle) and L5 vs. L2C (right) on PRN 1. The 𝜎𝜙 cutoff is at 

25º on GPS L2C. By observing the red circles in all three subplots in Figure 6-18, similar remark 
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can be drawn as in the previous section, that the correlation between the GPS bands estimation 

results is fairly strong at higher 𝜎𝜙 values. Moreover, by comparing the right subplot against the 

other two subplots, it can be seen that the correlation between L2C and L5 velocities is higher than 

other frequency pairs. This in all likelihood is due to the fact that the carrier frequency between 

GPS L2C and L5 is closer than L1. 

In fact, thanks to the improvement in signal condition, the consistency between the 

estimated drift velocities of the three GPS bands is preserved when the 𝜎𝜙 cutoff is lowered to 

15º. Drift velocity estimations across Antennas 1 & 3 are plotted in Figure 6-19 for GPS L2C vs. 

L1 (left), L5 vs. L1 (middle) and L5 vs. L2C (right) on PRN 1. The 𝜎𝜙  cutoff is set to be 

equivalent to 15º on GPS L2C. 

 

Figure 6-19. Scatter plots of GPS L1 vs. L2C vs. L5 irregularity drift velocity estimations. The 

𝜎𝜙 cutoff is at 15° on GPS L2C. 

 

The same process is applied to the GLONASS satellites. Figure 6-20 shows the scattered 

plot of the derived velocities for GLONASS L1 and L2 bands for all satellites above 30º elevation. 

The 𝜎𝜙 cutoff is chosen to be equivalent to 25º on GPS L2C.  
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Figure 6-20. Scatter plots of GLONASS L2 vs. L1 irregularity drift velocity estimations across 

Antennas 1 & 3 from 05:00:00 to 06:00:00 on 2012/10/09. The 𝜎𝜙 cutoff is at 25° on GPS L2C. 

 

Similar observation to that of GPS can be drawn from the red symbols that the consistency 

between GLONASS L1 and L2 is high towards higher 𝜎𝜙 values. But the number of red points 

is very limited even though there are 6 GLONASS satellites above 30º elevations. To increase 

potential matches, the 𝜎𝜙 cutoff is lowered to 15º. Figure 6-21 gives the results. 

 

Figure 6-21. Scatter plots of GLONASS L2 vs. L1 irregularity drift velocity estimations. The 𝝈𝝓 

cutoff is at 15º on GPS L2C. 

 

From Figure 6-21, more red symbols can be found than those from Figure 6-20. However, 

the consistency between the GLONASS bands is notably degraded, unlike the case of GPS signals 
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shown by Figure 6-19. This is likely because phase noise of GLONASS signal is much higher than 

that of GPS in general (refer to Figure 6-10).  

Up to this point, all data comparison and analysis of the multi-band drift velocity 

estimations are based on the 𝜎𝜙  value, which measures the strength of the ionospheric 

irregularities. The results suggest that stronger phase fluctuations yield more consistent estimation 

results across the available GNSS signals. Therefore, we conclude that 𝜎𝜙 at above appropriate 

cutoff values is an adequate classifying metric for the self-consistency check of the estimated drift 

velocities. On the other hand, in Sections 3.3 and 6.2, a scintillation strength filter of  𝜎𝜙 = 12° 

(at GPS L1 frequency, or ~15° at L2 frequency) is proposed for separating irregularity patterns 

from noise. The above self-consistency study supports this choice. 

6.4. Cross-Comparison against KOD SuperDARN 

In this section, a comparative study between SuperDARN and GNSS array measurements 

during ionospheric scintillation is carried out. The availability of the matching SuperDARN 

backscatter data when the GNSS receiver array records ionospheric scintillation events is analyzed 

in detail. In addition, using the matching data from the two instruments, we cross-compare the 

SuperDARN’s LOS ionospheric irregularity drift velocity measurements against the estimates 

produced by the TFDM. A more adequate comparison scheme is proposed in contrast to the 

conventional schemes in the literature, which are described below. 

In the literature, most of the comparison studies between the two instruments are not based 

on direct point-to-point comparison at the IRPP’s. Instead, they only utilize the HF backscatter 

data from a single SuperDARN beam covering the approximated SuperDARN-GNSS receiver 

LOS direction. An example of such comparison schemes is shown in Figure 6-22, replicated using 

our GNSS receiver measurements and KOD data. 
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Figure 6-22. Replicated example of previous comparison study between SuperDARN HF 

backscatter and GNSS receiver measurement. The top plot shows all available GPS satellites’ 

detrended phase measurements. The middle plot shows the SuperDARN measured plasma drift 

velocity. The bottom plot shows the SuperDARN measured backscatter power. 

 

The example in Figure 6-22 is generated from 2012/10/13 00:00:00 to 2012/10/14 00:00:00 

UT. The top plot shows the carrier phase 𝜎𝜙 with an elevation mask of 10º for each visible GPS 

satellite, indicated by distinct colors. The vertical stripes correspond to phase detrending edge 

effects from the Butterworth filter. The middle plot and bottom plot are the measurements from 

the 10th KOD beam for plasma drift velocity and backscatter power, respectively.  

Based on the known ground distance between the two facilities (658 km) and an 

approximated irregularity height (350 km), the distance from the SuperDARN to the overhead 

irregularity at the GNSS receiver can be estimated (~800 km). By looking at SuperDARN data 

from regions around the 800-km mark, comparison against the GNSS data is typically made 

through inspection. In some literature, even this calculation is omitted, while the ground distance 

is simply used as the center mark. 

This one-beam comparison scheme is only capable of observing the general behavior along 

the LOS beam. It does not account for the ionospheric penetration location of each individual 
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satellite in the ionosphere, which could potentially be a few hundreds of kilometers away from the 

LOS beam. As a result, the comparison between the two systems is not accurate and potentially 

misleading. Moreover, much information from the nearby beams is absent. An improved 

comparison scheme has been developed to address these issues. 

The general procedure of the improved comparison scheme can be broken down into the 

following steps: 1) identify the scintillation GNSS signal IRPP coordinates; 2) calculate the 

distance and bearing angle from the IRPP location to the SuperDARN location; 3) project the IRPP 

onto the SuperDARN’s field-of-view; 4) identify the corresponding SuperDARN data grid and 

perform the comparison [Wang and Morton, 2015; Wang et al., 2016]. Core formulas and detailed 

procedures are given as the followings: 

1) Calculate IRPP location based on the elevation and azimuth angles provided by the 

receivers, as well as the presumed or modeled irregularity heights (refer to Equations 5-5 

through 5-7). To mitigate the multipath effects, only satellites at higher elevation angles (≥ 

30º) are considered in this study. Note that in order to identify the IRPP, the irregularity 

height has to be determined first. As stated in Section 6.2.3, the height is assumed to be 

within the [150 km, 450 km] range for the HAARP site. 

2) Obtain the geodetic coordinates of the SuperDARN array, (𝜑𝑆𝐷 , 𝜆𝑆𝐷 , ℎ𝑆𝐷), and convert 

them into the Earth-Center, Earth-Fixed (ECEF) coordinates(𝑥𝑆𝐷 , 𝑦𝑆𝐷 , 𝑧𝑆𝐷) . Similarly, 

convert (𝜑𝐼𝑃𝑃, 𝜆𝐼𝑃𝑃 , ℎ𝐼𝑃𝑃) into (𝑥𝐼𝑃𝑃 , 𝑦𝐼𝑃𝑃 , 𝑧𝐼𝑃𝑃). Use the range equation to identify the 

distance between these two points. 

𝑑 = √(𝑥𝐼𝑃𝑃 − 𝑥𝑆𝐷)2 + (𝑦𝐼𝑃𝑃 − 𝑦𝑆𝐷)2 + (𝑧𝐼𝑃𝑃 − 𝑧𝑆𝐷)2 ( 6-5 ) 

Then, calculate the bearing angle of IRPP observed from SuperDARN’s location based on 

Section 3.2. 
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3) Using the calculated parameters 𝜃  and 𝑑 , project the IRPP position onto the 

SuperDARN’s field-of-view. 

4) Since the SuperDARN data is sparse in general, the data search is expanded to all available 

data grids around the projected IRPP, within a certain radius. For this study, 45 km is chosen 

to be the radius since it is the range gate resolution value of the SuperDARN. Figure 6-23 

gives an example of this data finding process. 

 

Figure 6-23. Example of data finding. The background plot is a zoomed-in SuperDARN field-of-

view. The projected IRPP’s are indicated by the blue plus signs, while the GNSS receiver 

position is given by the black cross. The blue and red circles indicate the matched and 

mismatched data between SuperDARN and GNSS receiver. 

 

Figure 6-23 is composed of the KOD’s field-of-view plot and the skyplot of the projected 

IRPPs of all visible GPS satellite above an elevation mask of 30º. The field-of-view is zoomed-in 

to the vicinity of the GNSS receiver, indicated by the black “X”. The satellite IRPPs are marked 

by the blue plus signs, accompanied by the PRN numbers. The circles around the IRPPs illustrate 

the data search radius (= 45 km). The blue circles illustrate the matched data pairs between 

SuperDARN and GNSS, while the red circles indicate lack of matches. In this case, the IRPPs of 

PRN 24 and PRN 31 are outside of KOD’s field-of-view, which will not go into the later 

comparisons. Once the matched data grids have been identified, the corresponding GPS data is 

extracted, while all available SuperDARN measurements within the search radius are documented.  
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After the matched data from the two instruments has been identified, statistical comparison 

is conducted by examining the SuperDARN availability versus ionospheric scintillation strength 

indicated by GNSS measurements. The estimated plasma drift velocity from the GNSS array is 

also compared against the measured values from the SuperDARN for some available data. 

6.4.1. Data Availability Based on a Presumed Irregularity Height 

GPS L1 and GLONASS L1 signals are considered for this study. An empirical irregularity 

height assumption at 350 km is employed to obtain some preliminary comparison results. Using 

the above matching data finding scheme, data availabilities from the KOD SuperDARN during 

scintillations for GPS and GLONASS signals are shown in Figure 6-24 based on the data set 

described in Section 6.1.1. 

 
Figure 6-24. Preliminary data availability results based on a presumed irregularity height at 350 

km. The left-hand plot shows the total matched data points between the two instruments. The 

right-hand plot shows the SuperDARN data availability in terms of its probability of detection 

during scintillation events. The blue points represent GPS data, while red points represent 

GLONASS data. Both plots are plotted versus 𝜎𝜙 values. 

 

In Figure 6-24, the left-hand plot shows the total matched data points between SuperDARN 

and GNSS during scintillation events. Both GPS (blue) and GLONASS (red) matched data points 

decrease significantly towards higher 𝜎𝜙  values. This is an expected result, as stronger 
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scintillation events are less frequent. Note that the GLONASS result goes up at 𝜎𝜙 = 5° before 

it decreases. This is because GLONASS signals have rather noisy baseline values. The right-hand 

plot captures SuperDARN’s ability to detect ionospheric irregularities when GNSS receiver 

observes scintillation events. It shows the SuperDARN data availability in terms of its probability 

of detection during scintillation events. Note that even under a reasonably large search radius (45 

km) in the data matching scheme, the data matching rates are between 20% to 30% for both GPS 

and GLONASS measurements. 

6.4.2. Data Availability Based on a Range of Irregularity Heights 

Although 350 km serves as a good approximation for the altitude of ionosphere F-region 

electron density peak, the true IRPPs are likely to differ and fluctuate over time. In order to obtain 

an estimate of the IRPPs, a range of irregularity heights from 150 km to 450 km are used in this 

comparison. Figure 6-25 is generated to justify that this range of irregularity heights is in fact 

visible from the KOD SuperDARN. 

 
Figure 6-25. SuperDARN coverage at receiver zenith. The SuperDARN and the GNSS receiver 

positions are indicated by the red antenna and the green receiver, respectively. The visible region 

of the SuperDARN at the receiver overhead is estimated to be [h1, h2], or [34.1 km, 442.1 km]. 

The region of interest is marked by yellow from the bottom of the ionosphere (blue) to h2. 
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In Figure 6-25, l and r represent the known ground distance between the two instruments 

and the Earth radius, respectively. KOD’s elevation coverage is from 0º to 30º from the horizon. 

Employing the spherical-earth approximation, the lower and upper bounds of KOD’s visible region 

at the receiver overhead are found to be [h1, h2] = [34.1 km, 442.1 km], with the beam center at 

around 200 km altitude. The [150 km, 450 km] assumption is roughly contained in this region. 

Data availability in Figure 6-24 are reproduced for this range of irregularity height assumptions, 

with a step size of 25 km. The full-range results are shown in Figure 6-26. 

 
Figure 6-26. Data availability for full range of irregularity heights [150 km, 450 km]. The left-

hand plot corresponds to GPS data, while the right-hand plot corresponds to GLONASS data. 

The color bar indicates the data availability from 0 to 40%. 

 

In Figure 6-26, the left-hand plot shows the SuperDARN data availability for the full-range 

of irregularity heights, while the right-hand plot shows the comparison results for GLONASS data. 

An increase can be observed in both plots toward lower irregularity height assumptions around 

200 km. This increase in detection can be explained by the SuperDARN-GNSS geometry shown 

in Figure 6-25, where the center of the SuperDARN beam is at about 200 km. The GLONASS 

availability results are skewed towards higher 𝜎𝜙 values than the GPS results. This is again due 

to the higher phase noise on GLONASS signals. 
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6.4.3. Drift Velocity Cross-comparison for Available Data 

Thus far, the SuperDARN data availability during GNSS phase scintillations at the HAARP 

site are found to be at a level between 20% and 35% of the time. Within the matched data, the 

GNSS estimated irregularity drift velocities are cross-compared with the KOD SuperDARN LOS 

velocity measurements. Figure 6-26 gives an example of the GPS estimated drift velocities by the 

HAARP receiver array using the data set from 1:46:00 UT to 2:34:00 UT on 2012/10/01. 

 
Figure 6-27. Skyplot of HAARP array estimated plasma drift velocity on 2012/10/01. 

 

After projecting the GPS estimated velocities onto SuperDARN’s direction, the cross-

comparison results against the SuperDARN measured LOS drift velocities are shown in Figure 6-

28, with both filtered and un-filtered GPS estimated velocity values.  
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Figure 6-28. Cross-comparison between GPS estimated drift velocities and SuperDARN LOS 

measurements. The blue bars illustrate the maximum and minimum velocity measurements 

within the SuperDARN search radius. The green and red bars are the un-filtered and filtered 

GNSS estimated values based on scintillation strength, respectively. 

 

In Figure 6-28, all results are generated using the same irregularity height range 

assumption. The blue bars correspond to the maximum and minimum SuperDARN measured 

velocity within the 45-km search radius at a 1-minute interval. The green and red bars are the un-

filtered (regardless of scintillation strength) and filtered (signals with 𝜎𝜙 > 12°) GNSS estimated 

velocities respectively at a 30-second interval. The uncertainties in the irregularity height 

assumption are also carried into the estimated velocities. The cross-comparison between the two 

systems shows poor agreement in general. In particular, on PRN 6, even when the HAARP array 

produces consistent estimations during strong scintillations, disagreement against SuperDARN 

measurements can still be observed. SuperDARN measurements demonstrated large variations 

within the 45-km search radius. This result implies that even when matching SuperDARN data 

exists; it only represents the averaged behavior of a large volume in the ionosphere. This averaged 
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behavior may not represent individual GNSS satellite-receiver LOS path, even if that path is within 

the SuperDARN volume. 

6.5. TDM vs. TFDM 

For the HAARP array data, only the TFDM is applicable due to its signal conditions. On 

the other hand, both the TDM and the TFDM are applicable for the data collected by the Poker 

Flat array. In this section, the two methods are compared in terms of both time lag comparison and 

drift velocity comparison. 

Due to the computational load of the TFDM, only a piece of scintillation data is selected 

for this comparative study. The data period selected is from 1600UT to 1800UT on 2015/12/20, 

which was right after the AE index reached maximum value. During this two-hour period, the 

global geomagnetic Kp index stayed at 7. The following GNSS signals are analyzed: GPS L1, 

GLONASS L1 and Galileo E1. There are 9 GPS satellites (PRN8, 10, 15, 16, 18, 20, 21, 26 and 

27) and 7 GLONASS satellites (GLO 5, 7, 12, 13, 21, 22 and 23) above 30° elevations during this 

two-hour period. Only 1 Galileo satellite is partially visible in this time interval: GAL 26. 

6.5.1. Time Lag Comparison 

Time lag estimations are generated for both TDM and TFDM, together with their 

corresponding correlation coefficients. From 1600 to 1800 UT, 5 out of the 9 GPS satellites (PRN 

16, 18, 20, 21 and 27) and 4 out of the 7 GLONASS satellites (GLO 5, 13, 21 and 22) are visible 

during the majority of the time. An example of the correlation results is given between antenna 

pairs A2 and A3. Using a correlation coefficient filter at 70%, the GNSS time lag results for the 

aforementioned GPS and GLONASS satellites are plotted in Figure 6-29, together with the only 

Galileo example, GAL 26. 



144 

 

Figure 6-29. Example of time lag comparison between the two methods on A2-A3 antenna pair. 

Time lag results for GPS (GPS, black) 16, 18, 20, 21 and 27; GLONASS (GLO, red) 5, 13, 21 

and 22; Galileo (GAL, blue) 26 are plotted. The red circles represent results for the TDM while 

the blue circles represent results for the TFDM. 

 

In Figure 6-29, over all, the TDM and TFDM results agree well with each other. Outliers 

do occur occasionally. Notice that there are more red circles than blue ones on every GNSS 

satellite, showing the TFDM tends to yield less admissible results than the TDM. This is because 

TFDM’s spectral approach is more rigorous and selective than TDM in terms of finding the time 

lags. Based on the results for all visible GPS and GLONASS satellites, some statistical parameters 

of the time lag differences between TDM and TFDM are given in Table 6-4. 

Table 6-4. Time lag difference (s) between TDM and TFDM 

Antenna pairs 
GPS GLONASS 

Points Mean Std Points Mean Std 

A1-A2 166 0.04 1.43 80 -0.22 1.76 

A1-A3 289 0.02 0.68 134 0.10 1.74 

A2-A3 232 0.10 1.54 196 0.06 0.79 
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In Table 6-4, the GPS time lag differences have more data points than the GLONASS ones. 

As a result, the GPS differences are smaller than the GLONASS differences in both mean values 

and standard deviations. The best matches of the GPS results come from the A1-A3 pair, while the 

GLONASS results come from the A2-A3 pair. Overall, the time lag discrepancy between TDM 

and TFDM is small. 

6.5.2. Drift Velocity Comparison 

Small time lag differences may still lead to large velocity differences. Hence, the drift 

velocities from both methods are generated for comparison. Figures 6-30 depicts the differences 

in the velocity estimations between TDM and TFDM for GPS signals. 

 

Figure 6-30. TFDM vs. TDM in GPS drift velocity estimations, cross-compared with the PFISR 

results. The circles represent the mean velocity values: PFISR (black), GPS TFDM (red) and 

GPS TDM (blue). Error-bars are plotted on top of the GPS mean velocities representing the 

standard deviations. 
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In Figure 6-30 the GPS TFDM and TDM results match well against each other, especially 

in the east-to-west direction. The error-bars of TFDM are shorter than those of the TDM, 

suggesting better consistency of the time-frequency approach, as expected. The cross-comparison 

between GPS and PFISR results also show general agreement, except for the last 3 data points. 

Figures 6-31 shows the differences in the velocity estimations between TDM and TFDM 

for GLONASS signals. 

 

Figure 6-31. TFDM vs. TDM in GLONASS drift velocity estimations, cross-compared with the 

PFISR results 

 

In Figure 6-31, general agreements can also be observed between TFDM and TDM, and 

between PFISR and GLONASS. Comparing with the GPS results, the GLONASS error-bars are 

notably shorter, and sometimes even non-existing. This can be explained by the fewer number of 

data points on GLONASS than on GPS. Even so, the last few velocity estimations on GLONASS 

show better agreement with the PFISR measurements. This may due to its better sky coverage. 
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To summarize, TFDM and TDM produce comparable time lag and drift velocity 

estimations. TFDM is slightly more consistent than TDM in terms of having smaller variances. 

Note that when estimating velocities from a large amount of data, TDM is preferred over TFDM, 

since it costs much less computational resources. 

6.6. Comparison between Correlation Models 

As noted in Chapter 2, auroral patterns are amorphous. Also, the scale of these patterns is 

often much larger than the footprint of a GNSS satellite signal’s IPP. As a result, accurate frame-

by-frame estimation of the arc velocity with GNSS derived velocity can be challenging. On the 

other hand, the general direction of the auroral arcs can often be estimated via visual inspection. 

Hence, consecutive ASI images can be used as references to infer the irregularity drift direction. 

A case study is conducted based on the intense geomagnetic storm event occurred on 

2015/12/20. Ionospheric irregularity drift velocities are estimated based on the hybrid correlation 

model, together with the satellite scan velocity estimates. Irregularity drift velocities from the front 

velocity model and the anisotropy model are also calculated for comparison. The irregularity 

height assumption is taken to be 96 km to match with the emission center of the green atomic 

oxygen line at 557.7 nm. The corresponding GNSS drift velocity estimates are directly overlaid 

on top of the ASI 557.7 nm images. The averaged PFISR vector velocity measurements are also 

provided as references. An elevation angle mask of 35° is applied to minimize the multipath effects. 

Figure 6-32 shows the comparison results using the geodetic coordinate system for 4 consecutive 

epochs from 04:39:35 UT with a 25-second interval. 
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Figure 6-32. Cross-comparison between drift velocity estimates from different correlation 

methods vs. PFISR vector velocity measurements on top of 557.7 nm ASI images from 04:30:25 

to 04:31:40 UT on 2015/12/20. In each subplot, the red square and quiver represent the 

approximated PFISR beam center and the averaged PFISR vector velocity measurement, 

respectively. GNSS satellites are plotted as circles with respect their elevation and azimuth 

angles using three-letter initials for abbreviation (GPS = GPS, GLO = GLONASS, GAL = 

Galileo). The color of each circle corresponds to the phase scintillation strength observed for 

each satellite, shown by the color bar. Drift velocity estimates from different correlation methods 

are given by the colored quivers (pink = anisotropy model, cyan = front velocity model, yellow = 

hybrid model). The estimated topologies of these models are provided using dashed lines in the 

same colors. Geodetic reference velocity vectors at 1500 m/s are given in white in the first 

subplot. 
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In Figure 6-32, the PFISR beam center is approximated from the four PFISR beams used 

in this experiment: (14° az, 90° el), (-154.3° az, 77.5° el), (-34.7° az, 66.1° el) and (75° az, 65.6° 

el) [Marigal Database, http://isr.sri.com/madrigal/]. The PFISR velocity is averaged from 

measurements within [66°N, 66.75°N] geomagnetic latitudes, where most consistent results are 

observed. The PFISR velocity stays the same for all four subplots, as this 100-second period is 

within a 5-minute PFISR data interval. A horizontal arc structure can be observed from the ASI 

images showing auroral emission. With close examinations, the arc structure is found out to be 

moving westward during the 100-second observation period. This agrees with PFISR’s vector 

velocity measurements. Meanwhile, good spatial associations can be observed between phase 

scintillations experienced on GNSS satellites and auroral emissions seen on ASI. Phase 

scintillation strengths that are above nominal values (𝜎𝜓 > 4°) are only observed on satellites 

closest to the irregularity: GPS 7, GLONASS 4 and GLONASS 13. Moderate scintillation is 

observed on GPS 7, producing measurable space-time correlations for drift velocity estimation. 

For the front velocity model, the magnitude of the drift velocity estimates matches well 

against PFISR’s measurement. But the orientation of the velocity front and the direction of the 

drift don’t match with the local B-field topology, whose declination angle was around 18.5°N 

based the IGRF model [Thébault et al., 2015]. For the anisotropy model, as shown by the dashed 

ellipses, the anisotropy orientation matches with the B-field orientation. Also, the directions of the 

estimated drift velocities agree with the PFISR results. However, the magnitudes of the velocity 

estimates are much larger than the PFISR measurements in the first three subplots. Combining the 

advantages of the front velocity model and the anisotropy model, the hybrid correlation model 

shows improved performance in both velocity magnitude and drift direction estimation 
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6.7. Cross-Comparison against the PFISR 

6.7.1. Case Study on 2015/12/20 

The irregularity drift velocities are calculated using the hybrid correlation model based on 

the GNSS receiver array measurements. The GNSS estimated velocities originally in the geodetic 

coordinate system are mapped into the geomagnetic coordinate system. To cross-compare the 

results against PFISR’s measurements, the GNSS estimated velocities are further averaged into 

geomagnetic latitude bins from 63.5°N to 68°N with a step size of 0.25°. The comparison results 

are demonstrated by Figure 6-33, while the GNSS results are based on irregularity altitudes 

observed from PFISR’s measurements. 

 
Figure 6-33. Cross-comparison between the GNSS array’s estimates (blue) and the PFISR’s 

measurements (red) in geomagnetic latitudes, with reference vectors at 1500 m/s pointing 

eastward and northward. 
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In Figure 6-33, the PFISR measurements are most consistent from 66°N to 67°N. Three 

common features can be identified across these geomagnetic latitudes. First, at around 0400 UT, 

large north-westward velocity components can be observed, and quickly transitioned into small 

south-westward components. Second, from ~1500 UT to ~2100 UT, south-eastward drifts 

persisted with relatively large variations. Finally, from ~2100 UT to 2400 UT, small north-ward 

components emerged. These features can also be observed on GNSS estimated results. In addition, 

the GNSS results showed some large fluctuations post 1200 UT towards lower magnetic latitudes. 

In fact, the timing of these fluctuations corresponds well with a sub-storm occurred during this 

period (refer to Figures 6-2, 6-3 and 6-4). This sub-storm was likely localized towards the southern 

half of the sky outside of PFISR’s limited observation volume. This observation is supported by 

Figure 6-35 showing ASI summary images every 10 minutes from 1200 UT to 1350 UT. 

 

Figure 6-34. ASI summary images every 10 minutes from 1200 UT to 1350 UT on 2015/12/20.  
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In Figure 6-34, unfortunately, the images in the first 40 minutes and the last image appear 

to be under cloudy conditions. From 1250 to 1340 UT, the sky is mostly clear. The aurora does 

appear to be more active and turbulent in the southern half of the sky, especially at 1250, 1310, 

1330 and 1340 UT. 

A quantitative comparison is carried out by investigating the mean values and standard 

deviations of PFISR’s measurements and the combined velocity estimations from the GNSS 

receiver array. For the GNSS estimations, the results are binned into 5-minute intervals to match 

with the PFISR’s measurements from the original 25-second resolution. The variations caused by 

the boundary irregularity altitude assumptions have also been accounted for. The results are shown 

in Figure 6-35. 

 
Figure 6-35. Cross-comparison of mean drift velocities between the PFISR (red dots) and the 

GNSS array (blue dots) on 2015/12/20, together with their standard deviations as error-bars, 

accounting for irregularity altitude variations.  

 

Figure 6-35 indicates that the cross-comparison results between the GNSS array and the 

PFISR are again in good agreement. Comparing the mean values, in the east-west direction, the 

GNSS estimations are reasonably close to the PFISR measurements, and are almost always within 
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PFIRS’s error-bar boundaries. In the north-south direction, the agreement is slightly inferior. This 

is likely due to the shorter baseline separations in the north-south direction, as well as the possible 

error occurred during coordinate transformation from geodetic to geomagnetic without knowledge 

of the vertical velocity component. The error-bars of the GNSS array are also longer in the north-

south direction, showing larger velocity variations. As suggested by Table 6-1, the dominate 

contributor to the GNSS velocity variations would come from the spatial and temporal variations 

of the irregularity structures. The variations caused by different irregularity altitude assumption 

only serve a minor role. 

The last cross-comparison is on the distribution of the velocity magnitudes. Note that this 

comparison only focuses on the results from 1000 to 2000 UT, as both the GNSS array and the 

PFISR have near-continuous data. The variations caused by the boundary irregularity altitude 

assumptions at [100km, 400km] are also incorporated into the results. 

 

Figure 6-36. Cross-Comparison of the velocity magnitude distributions of the PFISR 

measurements (red squares) and the GNSS estimates (blue circles with error-bars) between 1000 

and 2000 UT on 2015/12/20. The blue circles represent the GNSS distribution under the 

irregularity altitude assumption based on PFISR’s observation, while the error-bars indicate 

variations associated with the irregularity altitude boundary assumptions. 

0 500 1000 1500 2000 2500 3000 3500
0

0.01

0.02

0.03

0.04

0.05

0.06

Velocity Magnitude (m/s)

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

2015/20/20 10:00 ~ 20:00 UT Velocity Magnitude Distribution

 

 

PFISR

GNSS



154 

In Figure 6-36, a general agreement can be seen between the two distributions. The PFISR 

distribution has a more distinct peak between velocities ranges from 600 m/s to 1100 m/s, while 

the GNSS distribution shows more proportion towards velocities above 2000 m/s. Overall, the 

variations caused by different irregularity altitude assumptions are small. However, relatively large 

variations in the distribution can be observed in velocities under 400 m/s. This is because small 

velocities are more likely to be influence by different altitude assumptions. 

6.7.2. Case Study on 2015/12/31 

The GNSS results are again projected onto corresponding geomagnetic latitudes. The 

results are shown in Figure 6-37, together with the PFISR measurements. 

 
Figure 6-37. Cross-comparison between GPS array estimated and PFISR measured drift 

velocities for 2015/12/31. 
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Focusing on results from 65.75°N to 68°N, good agreements can be observed between the 

GNSS’s estimations and the PFISR’s results, in the sense that south-eastward arrows can be 

observed in both figures from 8:00 to 16:00 UT and a change into small northward arrows can be 

observed after 22:00 UT. For latitudes below 65.75°N, between 8:00 to 16:00 UT, the GNSS results 

follow the PFISR’s pattern, which is dominated by south-eastward velocities, only more turbulent. 

Towards 24:00 UT from 64.25°N to 65°N, north-westward components can be observed, which 

agrees well with the trend from the PFISR results.  

Similarly, the mean velocities are calculated for both PFISR and GNSS vector velocities 

along the geomagnetic west-to-east and south-to-north directions. The results are illustrated by 

Figure 6-38. 

 

Figure 6-38. Cross-comparison of mean drift velocities between the PFISR and the GNSS array 

on 2015/12/31. 

 

Again, in both plots of Figure 6-38, both the GNSS mean estimations and their standard 

deviations in general agree with PFISR’s measurements with a few exceptions between 9~11 UT. 
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In fact, the south-to-north velocities also agree well in general between the two systems, despite 

the geometry constraint. 

For the distribution comparison, measurements from 1130 UT to 1630 UT are considered. 

In fact, the local geomagnetic disturbances are the greatest during this period (refer to Figure 6-3). 

The comparison results are plotted in Figure 6-39 below. 

 
Figure 6-39. Cross-Comparison of the velocity magnitude distributions of the PFISR 

measurements and the GNSS estimations between 1130 and 1630 UT on 2015/12/31. 

 

In Figure 6-39, a general agreement can again be observed between the two distributions. 

The GNSS results have slightly more occurrences in the velocities at 1400 m/s and above, while 

the PFISR results are slightly more concentrated between 500 m/s and 1100 m/s. This distribution 

comparison is conducted based on 5 hours of near-continuous measurements, which is only half 

of the time span as in the 2015/12/20 event. As a result, the variations caused by different 

irregularity altitude assumptions are larger than those from 2015/12/20 (refer to Figure 6-36).  
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6.8. Effective Irregularity Height Estimation Results 

6.8.1. Estimation Results and Cross-comparison against PFISR  

Following the technique described in Chapter 5, the effective irregularity heights are 

estimated for both the 2015/12/20 and the 2015/12/31 events using the Poker Flat array data. To 

analyze the results, we again resorted to the PFISR. Although PFISR’s spatial coverage does not 

have much overlap with the Poker Flat array, it’s electron density profiles often provide useful 

insights into the ionospheric irregularity heights. Hence a cross-comparison is conducted between 

the GNSS array estimated results and PFISR’s measurements. 

6.8.1.1. Results for the 2015/12/20 Event 

The GNSS array estimated effective heights are plotted over PFISR’s electron density 

profile from its zenith beam generated by alternating code measurements. Figure 6-41 shows the 

cross-comparison results. Note that the height estimation method is responsive to both 

enhancement and depletion of electrons in the irregularity structure. Because diffraction patterns 

are associated with carrier phase fluctuations, which may occur as the signal passes through either 

type of structures.  

 

Figure 6-40. Estimated effective irregularity heights over the PFISR electron density profile from 

0400 to 2400 UT on 2015/12/20. The estimated heights are represented by the colored dots, 
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showing whether the height can be associated with a global/local enhancement region (black), or 

a global/local depletion region (white), or neither (purple). 

 

In Figure 6-40, most of the detected heights can be associated with either enhancement or 

depletion regions, while more matches can be found at enhancement regions. The GNSS effective 

heights are estimated every 25 seconds. But the matching process is based on PFISR’s data 

resolution at 5-minute. Therefore, each color dot in Figure 6-40 may represent multiple matching 

heights between the GNSS and PFISR results. In fact, more than 80% of the time, the GNSS 

estimated effective heights can be associated with an enhancement/depletion region. This suggests 

that the effective height estimation method has the potential to provide good approximations to the 

actual irregularity heights. 

To further analyze the cross-comparison result, individual electron density profile at each 

time epoch is plotted. In addition, the electron density profile from 2015/12/30 (the day with least 

magnetic activities of the month) at the same time epoch is plotted as a quiet-day reference. This 

will help us better understand how disturbed the ionosphere was comparing to its normal state. 

Figure 6-41 shows an example where the effective irregularity height is detected at an enhancement 

region. 



159 

 

Figure 6-41. Example of estimated effective irregularity heights over individual PFISR electron 

density profile at 13:14:16 UT on 2015/12/20. The solid black line gives the electron density 

profile on 2015/12/20, while the dashed blue line gives the reference profile on 2015/12/30. The 

horizontal red line indicates the GNSS estimated effective irregularity height. 

 

In Figure 6-41, the election density on 2015/12/20 is significantly higher than that on 

2015/12/30, especially towards the bottom F-layer, indicating strong activities. The height 

estimation method identifies the effective irregularity layer at around 145 km. The profile value is 

registered at more than 1011.5 electrons per m3, while the concurrent 2015/12/30 profile value at 

the same height is less than 1010 electrons per m3. These evidences suggest that the irregularity 

height has been correctly identified. More examples showing enhancement matches are given in 

Figure 6-42. 
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Figure 6-42. Examples of estimated effective irregularity heights matching with PFISR electron 

enhancement regions on 2015/12/20. 

 

In Figure 6-42, subplots (a) and (b) show matches at/near global density peaks towards 

lower altitude values. Subplots (c) and (d) show matches at local density peaks near the mean layer 
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heights around 210 km and 175 km, respectively. Subplots (e) and (f) show matches at/near local 

density peaks towards higher altitude values. Matches with depletion regions have also been 

observed. An example is given in Figure 6-46. 

 

Figure 6-43. Example of estimated effective irregularity heights matching with PFISR electron 

depletion regions at 17:41:53 UT on 2015/12/20. 

 

In this example, the election density on 2015/12/20 is smaller than that on 2015/12/30. 

More fluctuations can be observed on the 2015/12/20 profile towards lower altitudes. The 

estimated effective height appears to be at a local depletion region within the nearby enhancement 

region. Again, the irregularity height is likely to be correctly identified. More examples showing 

depletion matches are given in Figure 6-44. 
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Figure 6-44. Examples of estimated effective irregularity heights matching with PFISR electron 

depletion regions on 2015/12/20. 

 

In Figure 6-45, subplots (a) and (b) show matches at local depletion within the lowest 

density layers around 90 km and 120 km, respectively. Subplots (c) and (d) show matches at local 
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density valley near the mean layer heights around 175 km and 190 km. Subplots (e) and (f) show 

matches at local density valleys at around 265 km. 

There exist cases where multiple satellites detected distinct irregularity heights at the same 

epoch. Figure 6-48 shows some examples. 

 

Figure 6-45. Examples of estimated effective irregularity heights matching with multiple PFISR 

electron enhancement/depletion regions on 2015/12/20 

 

In Figure 6-45, subplot (a) shows two local enhancement matches, one near 190 km, and 

the other near 320 km. Subplot (b) shows two local depletion matches, both are slightly lower than 

the detected irregularity heights in subplot (a), respectively. Subplots (c) and (d) each shows an 
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enhancement match and a depletion match. The estimated irregularity heights in subplot (c) are 

closer to the 220 km, while the heights in subplot (d) is more spread out toward higher and lower 

regions in the ionosphere. 

There also exist cases where no distinct irregularity structures can be observed near the 

estimated effective irregularity heights. Figure 6-46 shows an example illustrating this scenario. 

 

Figure 6-46. Example of estimated effective irregularity heights that does not show good match 

with electron enhancement/depletion regions from PFISR at 18:27:18 UT on 2015/12/20. 

 

In this example, the overall Ne profile on 2015/12/20 is very similar to that of 2015/12/30, 

showing no obvious irregularity structures. The GNSS estimated height is likely a false alarm as 

the height value lands in a region without noticeable depletion or enhancement in the Ne profile. 

6.8.1.2. Results for the 2015/12/31 Event  

The same estimation and cross-comparison process is applied to the 2012/12/31 event. 

Similar to Figure 6-40, the overall cross-comparison is illustrated by Figure 6-47. 
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Figure 6-47. Estimated effective irregularity heights over the PFISR electron density profile from 

0400 to 2400 UT on 2015/12/31.  

 

Like the 2015/12/20 example, in Figure 6-48, most of the detected heights can be 

associated with either enhancement or depletion regions. This geomagnetic storm event is not as 

severe as the case during the 2015/12/20 event. Hence, the total number of detected heights as well 

as the number of enhancement and depletion matches are less than the previous example. Also, 

the irregularity structures in the 2015/12/31 event appear to be better defined than those in the 

2015/12/20 event. The detected irregularities in Figure 6-47 are not as scattered as in Figure 6-40. 

Statistics wise, more than 85% of the time, the GNSS estimated effective heights can be associated 

with an enhancement/depletion region. 

Again, the individual cross-comparisons are demonstrated, also using 2015/12/30 as a 

quiet-day reference. Figure 6-48 shows some examples associated with enhancements in the 

density. 
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Figure 6-48. Examples of estimated effective irregularity heights matching with PFISR electron 

enhancement regions on 2015/12/31. 

 

In Figure 6-48, subplots (a) and (b) show matches near the global density peaks around 95 

km and 110 km, respectively. As indicated by Figure 6-47, enhancement matches like these are 

very common for this event. Subplots (c) shows a match at the local density peak near the mean 

layer heights at 175 km. Subplots (d) shows match at local density peak around 320 km. 

Matches with depletion regions have also been observed. Selected examples are given in 

Figure 6-50. 
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Figure 6-49. Examples of estimated effective irregularity heights matching with PFISR electron 

depletion regions on 2015/12/31. 

 

In Figure 6-49, subplot (a) shows a match at a local density valley within the peak density 

layer around 120 km. Subplots (b) and (c) each has a match with the density valley at around 155 

km. Subplots (c) and (d) shows a match near the local density valley 200 km. Subplots (d) shows 

a match near the global density valley around 260 km. 

Concurrent detections of effective irregularity heights from multiple satellites have also 

been observed. Figure 6-50 shows two examples. 
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Figure 6-50. Examples of estimated effective irregularity heights matching with multiple PFISR 

electron enhancement/depletion regions on 2015/12/31. 

 

In Figure 6-50, subplot (a) show one match at a local density valley around 130 km and 

another match at a local density peak around 190 km. Subplot (b) shows one match at a local 

density valley around 105 km and another match near a local density peak around 270 km. 
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7. CHAPTER 7 – SUMMARY 

 

 

 

In this dissertation, the ground work for irregularity drift velocity estimation has been 

established. The main contribution includes the TDM and TFDM for time lag estimation, the 

hybrid correlation model for apparent irregularity pattern drift estimation, and the inversion 

technique for effective irregularity height estimation. Using these algorithms, the ionospheric 

irregularity drift velocity and effective height can be estimated. 

A self-consistency study has been conducted utilizing different GNSS signals from the 

HAARP array data using the TFDM. The results are satisfactory towards stronger scintillation 

conditions. Another self-consistency study between the TDM and the TFDM has been conducted 

based on the Poker Flat array data. The two methods demonstrate comparable drift velocity 

estimations, while the TFDM appears to be producing slightly more consistent results. A 

comparison study is conducted on the front velocity model, the anisotropy model and the hybrid 

correlation model. The hybrid model demonstrated superior performance in both velocity 

orientation and magnitude estimation. This model is employed to calculated drift velocity 

estimates. 

Drift velocity estimation results have been compared against SuperDARN backscatter 

measurements based on the HAARP array data. Fair correlation between 20% and 30% has been 

found between GNSS recorded scintillation events and SuperDARN observed backscatters. 

However, the drift velocity comparison did not yield satisfactory results, which may due to the 

intrinsic difference between the two systems when measuring the ionosphere irregularities.  

Drift velocity estimations have been cross-compared against PFISR vector velocity 

measurements based on the Poker Flat array data. Two case studies during intense geomagnetic 
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storm events on 2015/12/20 and 2015/12/31 have been conducted. The cross-comparison results 

between the GNSS array and the PFISR are favorable in both cases. Similar spatial and temporal 

features, mean velocity behaviors and velocity magnitude distributions have been observed 

between the two systems. ASI data and geomagnetic field parameters also supports these results. 

Based on these results, we conclude that the phase-scintillation-based GNSS spaced-receiver 

technique for irregularity drift velocity estimation is viable for high latitude studies. 

The effective irregularity height estimation method based on the anisotropy model has also 

been implemented. The technique is applied to both the 2015/12/20 and the 2015/12/31 events 

using the Poker Flat array data. The estimation results are compared favorably against the electron 

density profiles from PFISR measurements. More than 80% of the time, the GNSS estimated 

effective heights can be associated with an enhancement/depletion region in the PFISR Ne profiles. 

A key component of this inversion algorithm is to accurately estimate the magnetic field 

parameters. At high latitudes, in addition to the Earth’s magnetic field, the interplanetary magnetic 

field is also an important governing factor of the scintillation mechanism. Meanwhile, AMPERE 

(Active Magnetosphere and Planetary Electrodynamics Response Experiment) is able to provide 

near-realtime global magnetic field measurements using the Iridium satellite constellation at 780 

km altitude [Anderson et al., 2008]. This spaceborne system can potentially compliment the B-

field estimation method from ground stations described in this study. 

Based on these self-consistency tests and cross-comparison studies, the spaced-GNSS 

receiver techniques developed in this dissertation demonstrated great feasibility and capability in 

the field of ionosphere remote sensing. The techniques are presented based on GNSS carrier phase 

measurements obtained from the HAARP array and the Poker Flat array. Nevertheless, the same 

principle can be applied to any phase-scintillation-based spaced-receiver array system. 
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In the future, similar spaced-GNSS receiver systems can be deployed to both high-latitude 

and low-latitude regions to provide continuous ionospheric irregularity drift velocity and effective 

height estimates during ionospheric scintillations. The AMPERE magnetic field measurements 

will be investigated to improve the current method. Additionally, more case studies during 

scintillations will be conducted to further verify this inversion algorithm in both high latitude and 

equatorial regions. 
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APPENDIX 

 

 

 

A.  MMSE Solution for the Front Velocity Model 

Denote the true MMSE solution 𝑽𝑓 = (𝑥, 𝑦) in a Cartesian velocity plane. Let the center 

of each potential solution circle be at 𝒄𝑖𝑗 = (𝑥𝑖𝑗, 𝑦𝑖𝑗), and let 𝑖 < 𝑗 to remove redundancy. For 

example,  𝑐12 = (𝑥12, 𝑦12) denotes the center of the solution circle obtained from d12 and t12. The 

radius of each circle is given by 𝑟𝑖𝑗 = 𝑑𝑖𝑗/2𝜏𝑖𝑗. The formula describing each circle with an error 

term 𝜀𝑖𝑗 is given by: 

𝑟𝑖𝑗 = √(𝑥𝑖𝑗 − 𝑥)2 + (𝑦𝑖𝑗 − 𝑦)2 + 𝜀𝑖𝑗 = ‖𝒄𝑖𝑗 − 𝑽𝑓‖ + 𝜀𝑖𝑗 ( A-1 ) 

Let 𝑽0 = (𝑥0, 𝑦0) be the initial guess of the solution to front velocity. Let 𝑟0,𝑖𝑗 be the 

corresponding distances from the initial guess to each center of the circles. Then there is: 

𝑟0,𝑖𝑗 = ‖𝒄𝑖𝑗 − 𝑽0‖ ( A-2 ) 

Let 𝛿𝑽 = (𝛿𝑥, 𝛿𝑦)  represent the difference between the true velocity and the guessed 

velocity. Then there is 𝑽𝑓 = 𝑽0 + 𝛿𝑽. We now develop a system of linear equations in which 𝛿𝑽 

is the unknown to be determined. The difference between 𝑟0,𝑖𝑗 and 𝑟𝑖𝑗 is given by 𝛿𝑟𝑖𝑗, where: 

𝛿𝑟𝑖𝑗 = 𝑟𝑖𝑗 − 𝑟0,𝑖𝑗 ( A-3 ) 

= ‖𝒄𝑖𝑗 − 𝑽𝑓‖ + 𝜀𝑖𝑗 − ‖𝒄𝑖𝑗 − 𝑽0‖ ( A-4 ) 

≈
(𝒄𝒊𝒋 − 𝑽0)

‖𝒄𝒊𝒋 − 𝑽0‖
∙ 𝛿𝑽 + 𝜀𝑖𝑗 ( A-5 ) 

= −𝟏𝑖𝑗 ∙ 𝛿𝑽 + 𝜀𝑖𝑗 ( A-6 ) 

where a Taylor series approximation of a vector norm has been used to linearize the problem in 

Equation A-5. Here, 𝟏𝑖𝑗 is a shorthand notation for the term (𝒄𝑖𝑗 − 𝑽0)/‖𝒄𝑖𝑗 − 𝑽0‖. 
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Based on Equation A-6, the set of (
𝑁
2
) linearized equations can be written in a matrix 

form as: 

𝛿𝒓 =

[
 
 
 
 

𝛿𝑟12

𝛿𝑟13

𝛿𝑟14

⋮
𝛿𝑟𝑁−1𝑁]

 
 
 
 

=

[
 
 
 
 

(−𝟏12)
𝑇

(−𝟏13)
𝑇

(−𝟏14)
𝑇

⋮
(−𝟏𝑁−1𝑁)𝑇]

 
 
 
 

[
𝛿𝑥
𝛿𝑦

] +

[
 
 
 
 

𝜀12
𝜀13

𝜀14

⋮
𝜀𝑁−1𝑁]

 
 
 
 

 ( A-7 ) 

or more compactly as: 

𝛿𝒓 = 𝐺𝛿𝑽𝑇 + 𝜺 ( A-8 ) 

where 

𝐺 =

(−𝟏12)
𝑇

(−𝟏13)
𝑇

(−𝟏14)
𝑇

⋮
(−𝟏𝑁−1𝑁)𝑇

, 𝑎𝑛𝑑 𝜺 =

[
 
 
 
 

𝜀12
𝜀13

𝜀14

⋮
𝜀𝑁−1𝑁]

 
 
 
 

 ( A-9 ) 

For an over-determined system, the MMSE solution 𝛿𝑽 is that which minimizes the sum 

of squared residuals: min‖𝛿𝒓 − 𝐺𝛿𝑽𝑇‖2. And the solution is given by: 

𝛿𝑽̂𝑇 = (𝐺𝑇𝐺)−1𝐺𝑇𝛿𝒓 ( A-10 ) 

The new, improved estimate of the front velocity is now: 

𝑽̂𝑓 = 𝑽0 + 𝛿𝑽̂ ( A-11 ) 

The observation equations may now be linearized about these new estimates of the front velocity. 

This process can be iterated many times to get closer to the best MMSE solution, when the change 

in the estimates is sufficiently small. 
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B.  Anisotropy Parameters Estimation 

We formulate the correlation model according to the forward propagated diffraction pattern 

as in Equation 5-21. It is more convenient to rewrite Equation 5-21 in terms of the matrix form: 

𝑓2(Δ𝝆𝑠) = Δ𝝆𝑠
𝑇ℰΔ𝝆𝑠 ( B-1 ) 

where ℰ is a 2 × 2 matrix: 

ℰ =
1

𝐴𝐶 − 𝐵2/4
[

𝐶 −𝐵/2
−𝐵/2 𝐴

] ( B-2 ) 

For a system of 𝑛  spaced receivers, the total number of correlation functions is 𝑛2 . 

Denote each correlation function as 𝑅𝑖𝑗(∆𝑡) , where 𝑖  and 𝑗  represent specific receiver pairs 

with 𝑖, 𝑗 = 1, 2, … , 𝑛. This includes both auto-correlation functions (𝑖 = 𝑗) and cross-correlation 

functions (𝑖 ≠ 𝑗) . Based on the model described in the previous section, these correlation 

functions will take the general form: 

𝑅𝑖𝑗(∆𝑡) = 𝑅𝑖𝑗[𝑓(∆𝝆𝑖𝑗 − 𝐯𝑠∆𝑡); ∆𝑡] ( B-3 ) 

In the next step, these correlation functions are paired with each other to reveal more 

information about the anisotropy. For the convenience of problem formulation, the 𝑛2 correlation 

functions are indexed consecutively from 1 to 𝑛2 based on cardinality. For example, the auto-

correlation function 𝑅11 is now labeled as 𝑅1, and the cross-correlation function 𝑅13 is now 

labeled as 𝑅3. Then Equation B-3 can be rewritten as the following form using a single superscript 

notation: 

𝑅𝑖(∆𝑡) = 𝑅[𝑓(∆𝝆(𝑖) − 𝐯𝑠∆𝑡); ∆𝑡] ( B-4 ) 

where 𝑖 takes the values from 1 to 𝑛2. 

Following the method of Armstrong and Coles [1972], the intercept time delay 𝜏𝑗𝑘 

between any pair of correlation functions is identified by: 
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𝑅[𝑓(∆𝝆(𝑗) − 𝐯𝑠𝜏𝑗𝑘); 𝜏𝑗𝑘] = 𝑅[𝑓(∆𝝆(𝑘) − 𝐯𝑠𝜏𝑗𝑘); 𝜏𝑗𝑘] ( B-5 ) 

By using the same matrix notation used in the previous section, it follows that Equation B-

5 holds only if: 

(∆𝝆(𝑗) − 𝐯𝑠𝜏𝑗𝑘)
𝑇
ℰ(∆𝝆(𝑗) − 𝐯𝑠𝜏𝑗𝑘) = (∆𝝆(𝑘) − 𝐯𝑠𝜏𝑗𝑘)

𝑇
ℰ(∆𝝆(𝑘) − 𝐯𝑠𝜏𝑗𝑘) ( B-6 ) 

or 

𝐯𝑠
𝑇ℰ(∆𝝆(𝑗) − ∆𝝆(𝑘)) =

1

2𝜏𝑗𝑘
[∆𝝆(𝑗)𝑇ℰ∆𝝆(𝑗) − ∆𝝆(𝑘)𝑇ℰ∆𝝆(𝑘)] ( B-7 ) 

If ℰ, the anisotropy term is known, then the above equation constitutes an over-determined 

system while 𝐯𝑠 can be solved using the least squares method [Armstrong and Coles, 1972; Rino 

and Livingston, 1982]. In order to determine the anisotropy parameters, another set of equations 

are introduced by considering the time lag 𝜏𝑖 produced when the correlation between a receiver 

pair is at maximum, including auto-correlation with the receiver itself, which leads to 𝜏𝑖 = 0. Note 

that for a cross-correlation, 𝜏𝑖 is exactly the time lag used to determine the apparent velocity in 

the previous sections. By direct computation under the frozen-in assumption, Rino and Livingston 

[1982] showed that 𝜏𝑖 must satisfy the relation: 

𝐯𝑠
𝑇ℰ∆𝝆(𝑖) = 𝜏𝑖𝒗eff

2  ( B-8 ) 

where 

𝒗eff = 𝑓(𝐯𝑠) = (
𝐶v𝑠𝑥

2 − 𝐵v𝑠𝑥
v𝑠𝑦

+ 𝐴v𝑠𝑥
2

𝐴𝐶 − 𝐵2/4
)

1/2

 ( B-9 ) 

By substituting Equation B-8 into Equation B-7, there is: 

∆𝝆(𝑗)𝑇[ℰ/𝒗eff
2 ]∆𝝆(𝑗) − ∆𝝆(𝑘)𝑇[ℰ/𝒗eff

2 ]∆𝝆(𝑘) = 2𝜏𝑗𝑘(𝜏𝑗 − 𝜏𝑘) ( B-10 ) 

This system of equation is in general over-determined, hence can be used to solve for 

[ℰ/𝒗eff
2 ] using least squares. Moreover, knowing [ℰ/𝒗eff

2 ] is sufficient to determine 𝐯𝑠 in the 
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system of equations described by Equation B-8, as we can simply divide both sides by an arbitrary 

𝒗eff
2   to turn ℰ  into [ℰ/𝒗eff

2 ] . To better formulate the system of equations into a least squares 

problem, Equation B-10 is rewritten in a more compact form by defining the 𝑁𝐼 × 3 matrix: 

𝒟 = [

𝐷𝑥𝑥
(1)

𝐷𝑥𝑦
(1)

𝐷𝑦𝑦
(1)

⋮ ⋮ ⋮

𝐷𝑥𝑥
(𝑁𝐼) 𝐷𝑥𝑦

(𝑁𝐼) 𝐷𝑦𝑦
(𝑁𝐼)

] ( B-11 ) 

with the elements 

𝐷𝑥𝑥
(𝑖)

= ∆𝜌𝑥
(𝑗)2

− ∆𝜌𝑥
(𝑘)2

 ( B-12 ) 

𝐷𝑥𝑦
(𝑖) = ∆𝜌𝑥

(𝑘)
∆𝜌𝑦

(𝑗)
− ∆𝜌𝑥

(𝑗)
∆𝜌𝑦

(𝑘)
 ( B-13 ) 

𝐷𝑦𝑦
(𝑖)

= ∆𝜌𝑦
(𝑗)2

− ∆𝜌𝑦
(𝑘)2

 
( B-14 ) 

where 𝑖 takes on all 𝑁𝐼 = (𝑛4 + 3𝑛2 − 2𝑛)/4 admissible pairs of intersection points, while 𝑗 

and 𝑘 correspond to the indexed receiver pairs. We also define the 𝑁𝐼 × 1 vector: 

𝐓 = [2𝜏𝑗𝑘
(1)

(𝜏𝑗
(1)

− 𝜏𝑘
(1)

), … ,2𝜏𝑗𝑘
(𝑁𝐼) (𝜏𝑗

(𝑁𝐼) − 𝜏𝑘
(𝑁𝐼))]

𝑇

 ( B-15 ) 

and the 3 × 1 vector 

𝐗 = [𝐶/𝐸, 𝐵/𝐸, 𝐴/𝐸 ]𝑇 ( B-16 ) 

where 

𝐸 = 𝒗eff
2 (𝐴𝐶 − 𝐵2/4) ( B-17 ) 

Now, the system of equations described by Equation B-10 can be written in matrix form as 

𝒟𝐗 = 𝐓 ( B-18 ) 

which has the least squares solution: 

𝑋̂ = [𝒟𝑇𝒟]−1𝒟𝑇𝑇 ( B-19 ) 

It should be noted that knowing 𝐗̂ ≈ [𝐶/𝐸, 𝐵/𝐸, 𝐴/𝐸 ]𝑇  is equivalent as knowing 

[ℰ/𝒗eff
2 ], since 
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ℰ

𝑣𝑒𝑓𝑓
2  

=
1

𝑣𝑒𝑓𝑓
2 (𝐴𝐶 − 𝐵2/4)

[
𝐶 −𝐵/2

−𝐵/2 𝐴
] = [

𝐶/𝐸 −𝐵/2𝐸
−𝐵/2𝐸 𝐴/𝐸

] ( B-20 ) 

Based on Equation B-8, the following relationship can be established: 

𝐯𝑠
𝑇[ℰ/𝒗eff

2 ](∆𝝆(𝑗) − ∆𝝆(𝑘)) = 𝜏𝑗 − 𝜏𝑘 ( B-21 ) 

As discussed before, we now can solve this system of equations using the solved [ℰ/𝒗eff
2 ]. 

Similarly, we first define the 𝑁𝐼 × 2 matrix: 

ℐ = [

𝐼𝑥
(1)

𝐼𝑦
(1)

⋮ ⋮

𝐼𝑥
(𝑁𝐼) 𝐼𝑦

(𝑁𝐼)
] ( B-22 ) 

where 

𝐼𝑥
(𝑖)

=
𝐶

𝐸
(∆𝜌𝑥

(𝑗)
− ∆𝜌𝑥

(𝑘)
) −

𝐵

2𝐸
(∆𝜌𝑦

(𝑗)
− ∆𝜌𝑦

(𝑘)
) ( B-23 ) 

𝐼𝑦
(𝑖)

= −
𝐵

2𝐸
(∆𝜌𝑥

(𝑗)
− ∆𝜌𝑥

(𝑘)
) +

𝐴

𝐸
(∆𝜌𝑦

(𝑗)
− ∆𝜌𝑦

(𝑘)
) 

( B-24 ) 

and the 𝑁𝐼 × 1 vector 𝛘 with elements: 

𝜒(𝑖) = 𝜏𝑗
(𝑖) − 𝜏𝑘

(𝑖)
 ( B-25 ) 

together with the 2 × 1 vector 𝐯𝑠 = [v𝑠𝑥
, v𝑠𝑦

]𝑇 to be solved for. 

Equation B-21 can now be written in matrix form as: 

ℐ𝑣𝑠 = 𝜒 ( B-26 ) 

which has the least squares solution: 

𝐯̂𝑠 = [ℐ𝑇ℐ]−1ℐ𝑇𝛘 ( B-27 ) 

Equations B-19 and B-27 give the scaled anisotropy by 𝒗eff
2  and the true pattern velocity 

derived from a set of receiver temporal correlation functions. 

To review this process, we first generate all auto-correlation and cross-correlation functions 

from the 𝑛 spaced-receiver measurements. Next, we determine 𝜏𝑖, the time lag at which each 
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correlation functions achieves its maximum value. Then, we determine the 𝑁𝐼 = (𝑛4 + 3𝑛2 −

2𝑛)/4  admissible pairs of intersection points between any receiver pair. With all these 

information, we can finally formulate the least square problem for solving the scaled anisotropy 

and the true irregularity pattern velocity. 

In general, however, not all possible intersections can be computed accurately. Rino and 

Livingston [1982] discussed two situations on this issue. First, if the correlation time is long 

compared with the data interval, then small errors in the correlation function estimate can lead to 

large errors in 𝜏𝑗𝑘. To avoid this situation, one can reject intersections that lie outside a preselected 

subinterval within the correlation time. Second, at the other extreme of short correlation times, 𝜏𝑗𝑘 

would fall into the noise. To avoid this situation, one can reject 𝜏𝑗𝑘 values that occur beyond some 

preselected decorrelation time, typically the time to 70% decorrelation. 

 


