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Abstract

Linear and Nonlinear Properties of Numerical Methods for the Rotating

Shallow Water Equations

The shallow water equations provide a useful analogue of the fully compressible Euler

equations since they have similar conservation laws, many of the same types of waves and a

similar (quasi-) balanced state. It is desirable that numerical models posses similar proper-

ties, and the prototypical example of such a scheme is the 1981 Arakawa and Lamb (AL81)

staggered (C-grid) total energy and potential enstrophy conserving scheme, based on the

vector invariant form of the continuous equations. However, this scheme is restricted to a

subset of logically square, orthogonal grids. The current work extends the AL81 scheme to

arbitrary non-orthogonal polygonal grids, by combining Hamiltonian methods (work done

by Salmon, Gassmann, Dubos and others) and Discrete Exterior Calculus (Thuburn, Cotter,

Dubos, Ringler, Skamarock, Klemp and others).

It is also possible to obtain these properties (along with arguably superior wave dis-

persion properties) through the use of a collocated (Z-grid) scheme based on the vorticity-

divergence form of the continuous equations. Unfortunately, existing examples of these

schemes in the literature for general, spherical grids either contain computational modes; or

do not conserve total energy and potential enstrophy. This dissertation extends an existing

scheme for planar grids to spherical grids, through the use of Nambu brackets (as pioneered

by Rick Salmon).

To compare these two schemes, the linear modes (balanced states, stationary modes and

propagating modes; with and without dissipation) are examined on both uniform planar

grids (square, hexagonal) and quasi-uniform spherical grids (geodesic, cubed-sphere). In
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addition to evaluating the linear modes, the results of the two schemes applied to a set of

standard shallow water test cases and a recently developed forced-dissipative turbulence test

case from John Thuburn (intended to evaluate the ability the suitability of schemes as the

basis for a climate model) on both hexagonal-pentagonal icosahedral grids and cubed-sphere

grids are presented. Finally, some remarks and thoughts about the suitability of these two

schemes as the basis for atmospheric dynamical development are given.
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CHAPTER 1

Introduction

1.1. Numerical Methods Should Reflect Reality

The dominant features of the large scale dry dynamics of the atmosphere (and of many

important aspects of the small-scale dynamics) are:


 Potential vorticity dynamics (Rossby waves, invertibility): The atmospheric

state and evolution can be largely described by the potential vorticity field (subject

to the assumption of various balance conditions). PV is conserved exactly for (moist)

adiabatic, inviscid flow. In addition, Rossby waves dynamics also play a key role in

the large-scale synoptic circulation, especially in mid-latitudes.


 Balanced states and waves (geostrophic/hydrostatic balance and adjust-

ment): The atmosphere exists (at least at synoptic scales) in a state of near-

geostrophic and hydrostatic balance; and perturbations to this balance result in

the processes of geostrophic and hydrostatic adjustment ([147], [95]). This occurs

primarily through the radiation of inertia-gravity and sound waves.


 Conserved quantities (mass, momentum, energy, etc.): The atmosphere

has both primary conserved quantities such as mass and momentum, and secondary

conserved quantities such as potential vorticity, potential enstrophy and total energy.

On longer time scales (such as those relevant to climate), conservation laws are an

important constraint on the possible phase space trajectories of the atmosphere

([114]).

Some of these features are linear (balanced states, waves); while others are non-linear

(PV dynamics, conserved quantities). Since these features are so important to the dynamics
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of the atmosphere, it is considered essential that the numerical methods used to build an

atmospheric dynamical core (dycore) are able to accurately represent them. The focus of

this dissertation is the discrete representation of these processes.

1.1.1. PV Dynamics.

Potential vorticity is a very important quantity in large-scale dynamics (indeed, it might

be said to be THE most important quantity). Through the invertibility principle, the state

and evolution of the balanced part of the flow (which is the dynamically dominant part)

can be described entirely by the potential vorticity field. In addition, potential vorticity

obeys the impermeability theorem ([56], [55]), which states that potential vorticity sub-

stance (PVS) cannot cross an isentropic surface; even when diabatic effects are taken into

account. It is also parcel invariant (conserved following the flow) and any non-conservation

of PV is due to diabatic effects such as radiation or turbulent mixing. Therefore, an

Eulerian numerical model of the atmosphere should probably conserve potential

vorticity in a mass-weighted sense (this is called compatibility); and the (possi-

bly implied) advection scheme for potential vorticity should be consistent with

the mass advection scheme (this is called consistency).

1.1.2. Balanced States and Waves.

The representation of waves in a numerical model is characterized by the dispersion

relation, which determines the phase and group velocities (or temporal frequency) of the

propagating modes (numerical representation of waves) in terms of their spatial frequencies.

A numerical model typically has analogues of the physical wave modes, but can also have

spurious branches of the dispersion relationship (extra non-physical waves) or poorly rep-

resented waves of certain frequencies (typically the high spatial frequency ones, although
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higher-order finite element methods can have issues with gaps in the spectrum). There are

also inertial modes that can arise from the combination of temporal and horizontal discretiza-

tion ([73]). These are (purely numerical) propagating modes that do not have a wave-like

structure.

Balanced states are the stationary modes of the system, which for a numerical model

can include both physical and unphysical modes. The unphysical stationary modes can be

especially damaging to numerical simulations, since various non-linear processes can excite

them. In addition, since they do not propagate, any inherent damping in the time discretiza-

tion OR advection scheme will be unable to affect them. However, a well-designed numerical

scheme can be free of such modes.

Computational modes is an overloaded term, used to refer to spurious stationary modes,

spurious branches of the dispersion relationship and poorly represented physical waves. A

diagrammatic representation of the possible linear modes is provided in Figure 1.1. For the

remainder of this work, we will use spurious stationary modes to refer to unphys-

ical stationary modes; spurious wave branches to refer to unphysical propagating

modes; and poorly represented physical modes to refer to physical propagating

modes with characteristics that are unlike those of the corresponding physical

propagating mode.

Both balanced states and the dispersion relationship are linear properties of the numer-

ical method that depend on the choice of discrete moments (and thus analytic form of the

equations used), grid staggering (placement of these moments on the elements of the mesh),

specific discretization scheme and horizontal mesh. There are many possible discrete mo-

ments; common choices are volume-integrated averages over grid cells and pointwise values.

Finite-difference, finite-volume and finite-element all make different choices for the discrete
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Figure 1.1. Diagram of the possible linear modes encountered in a numerical
model of the shallow water equations. Green modes are physical, while red
modes are numerical artifacts.

moments used to represent a continuous field and the ways these moments are used to rep-

resent terms in an equation. The space of possible discrete moments is very large, and there

are many possibilities that have seen only cursory exploration.

The linear modes of a scheme can be investigated analytically using Fourier expansions,

linear algebra, transfer functions and/or other techniques; or numerically by solving eigen-

value and nullspace problems. This work will focus on both analytic and numerical

linear algebraic techniques for investigating the linear modes of discretization

schemes.

1.1.3. Conserved Quantities.

Conserved quantities can generally be split into two types: primary and secondary.

Primary conserved quantities are conservative predicted variables of an equation set. Ex-

amples include dry air mass and momentum (assuming momentum is a predicted variable).
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A secondary conserved quantity is one that is a function of the primary conserved quan-

tities: it must be diagnosed from the predicted quantities. Examples include total energy

and momentum (in the vector-invariant formulation). The atmosphere possesses both types

of conserved quantities, and in particular there are several secondary conserved quantities

(total energy, potential vorticity, potential enstrophy) believed to provide strong constraints

on the flow dynamics. It is often easy to design numerical schemes that have primary conser-

vation, but secondary conservation is much trickier. However, on longer time scales (such as

those relevant to climate), it is believed that secondary conservation properties provide an

important constraint on the possible phase space trajectories of the atmosphere; and there-

fore help determine the long-term statistics of the system. This work will investigate

both primary and secondary conservation.

1.1.4. Rotating Shallow Water Equations.

The rotating shallow water equations (RSW) provide a useful simplification of the full

equations of the dry atmosphere since they have similar characteristics. They represent

the motion of a rotating, hydrostatic, inviscid 2-D fluid for which the horizontal compo-

nent of the Coriolis force has been neglected ([147], [95]). Both rotational and divergent

motions are supported along with many types of waves (inertia-gravity/Poincare, Kelvin,

Rossby). An excellent general overview of the types of waves supported by the shallow wa-

ter equations is given in ([93]). The existence of a balanced state (geostrophic balance) and

a corresponding adjustment process (inertia-gravity wave radiation/geostrophic adjustment)

closely mimics similar situations in the full equations. In addition, the shallow water equa-

tions have cubic invariants (such as energy) and conserve a form of potential vorticity (and

enstrophy). All of these properties make them an ideal simplified system from which to start

the development of numerical models of the ocean or atmosphere. The remainder of this
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thesis is concerned with mimetic Eulerian numerical methods for the rotating

shallow water equations, on both the plane and the sphere. The discussion is

restricted to schemes with a single degree of freedom per mesh element (face,

edge, vertex) using either the vector invariant formulation (A/C staggering) or

vorticity-divergence formulations (Z grid staggering) In addition, it considers

ONLY spatial semidiscretization of underlying PDEs (assuming continuity in

time). These are (necessary) simplifications, and there remains a great deal of interest-

ing work on combined spatiotemporal discretization, other formulations of the continuous

equations and multimoment discretizations.

1.2. Physics and Parameterizations

Due to the finite processing power and memory of computers, all numerical models

of the atmosphere posses a truncation scale. This is the smallest scale of motions that

can be explicitly represented by the dynamics. Beyond this scale, the effects of subgrid

scale processes on the resolved scales must be parameterized; and these representations

are termed parameterizations. A diagram of these model components and the truncation

scale is found in Figures 1.2 and 1.3. Typically, an atmospheric model is split into two

components: the dynamical core and the physics packages. Within the dynamical core, both

the dynamics of moist air (dynamics) and the transport of other quantities (termed tracers,

tracer transport) must be represented. The physics packages are the parameterizations of

subgrid scale effects. Traditionally, all three components of a model (dynamics, transport

and physics) have been solved on the same grid. However, the newest dynamical cores

(especially those based on finite element type methods) use different grids to represent the

physics, tracer transport and dynamics. This thesis deals only with the representation
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Figure 1.2. Diagram of the components of a modern atmospheric model.
Note the overlap between tracer transport and dynamics. In practice, there
should probably be overlap between all three components, but traditionally
the dynamics/transport and the physics are developed largely independently.
This thesis deals only with the dynamics component (shown in green).

Figure 1.3. Image showing the interplay between physics, dynamics and
transport that characterizes an atmospheric dynamical core, and the role of
truncation scale in determining what constitutes the necessary physics.

of the dynamics within a dynamical core; and does not address tracer transport

or physics parameterization.
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1.3. Hamiltonian Structure of the Equations Governing Atmospheric Flow

The unapproximated equations that describe inviscid, rotating, (moist) adiabatic multi-

component fluid flow have a very special mathematical structure: they can be derived from

a Lagrangian variational principle ([122],[146]). In particular, they can be written as a (non-

canonical) Hamiltonian system where the total (moist) energy is the Hamiltonian and there

is a singular symplectic operator that describes all of the dynamics. This allows the full

power of modern physical mechanics (which is largely based on the Lagrangian/Hamiltonian

framework) to be brought to bear. Most of the interesting and important theoretical results of

atmospheric dynamics can be derived in a very general way from the Hamiltonian framework.

This includes (non-linear) stability theorems; wave-mean flow interaction; pseudoenergy,

pseudomomentum and available potential energy; and potential vorticity conservation.

This would be quite valuable even if this were the only such system of equations which

possess this special structure. However, Lagrangian/Hamiltonian expressions have been

found for most of the major equation sets ([92],[32],[31]) that are used in studying atmo-

spheric dynamics. In fact, there is a rich literature on the derivation of these equation sets

through approximations in the underlying Lagrangian, which ensures that the resulting ap-

proximate equation set is consistent with the full equations. In particular, it possess similar

invariants such as total energy and potential vorticity. Of special interest to us, the rotating

shallow water equations in Eulerian form has such a non-canonical Hamiltonian structure.

The restrictions on the flow required to derive a Hamiltonian formulation (inviscid,

(moist) adiabatic) are not as severe as first supposed, since any deviations from these restric-

tions represent important physical processes such as radiation, microphysics and turbulent

(sub-grid scale) mixing. In fact, these deviations are precisely the processes that are param-

eterized within a numerical model. Since the resolved scales of an atmospheric model
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are (moist) adiabatic and inviscid, there is a strong argument that the dynamical

core of a model (the part that models the inviscid and moist adiabatic motions)

should possess a discrete (quasi-)Hamiltonian structure that mimics the continu-

ous Hamiltonian one in important ways. Deviations from inviscid and moist adiabatic

flows can then be physically parameterized. This allows a clean separation between processes

that are resolved by the dynamical core, and those that must be parameterized.

1.4. Desirable Properties for Discretization Schemes of the Rotating

Shallow Water Equations

On the basis of the preceding features of the rotating shallow water equations (balanced

states and waves, PV dynamics and conserved quantities) along with computational consid-

erations (see [127] for more details about much of this), a detailed list of desirable properties

for discretization schemes of the RSW can be developed. These are represented in pictorially

in Figure 1.4. Note that many of these desirable properties carry over to the fully compress-

ible Euler equations as well, and schemes developed for the rotating shallow water equations

can be adapted to deal with the horizontal aspects of the fully compressible equations. This

list has been split into five parts: linear properties (balanced states and waves), potential

vorticity dynamics, conservation properties, computational properties and other properties.

The focus is on vector-invariant and vorticity-divergence formulations of the RSW equations

(as detailed in Chapter 2), although these considerations apply equally to all formulations

of the RSW equations.

1.4.1. Linear Modes and Mimetic Properties. The linear modes of a discretiza-

tion scheme are connected to the nullspaces and eigenspaces of the resulting discrete matrix
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Figure 1.4. Diagram of (some of) the desirable properties of a model that
influence its ability to achieve realistic simulations. The boxes on the far left
represent two possible approaches to achieving some of these properties.

operators. In particular, the discrete dispersion relationship (stationary modes) of the nu-

merical scheme can be determined from the eigenspaces (nullspaces) of the various operators.

Desirable properties for the linear modes are:

(1) No spurious stationary modes

(2) No spurious branches of the dispersion relationship (branches which do not agree in

the leading order term with a physical branch, and for which the difference between

the physical branch and numerical branch does not go to zero as the discretization

is refined).

(3) Good representation of inertia-gravity and Rossby waves (numerical dispersion re-

lationship); no poorly represented physical waves

This works deals with the inertia-gravity waves and stationary modes of various

discretization schemes (C grid and Z grid based) on both planar and quasi-

uniform spherical grids, under the assumption of constant Coriolis force f ; and
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the inertia-gravity and Rossby waves for the same discretizations on quasi-

uniform spherical grids with variable Coriolis force f . It also looks at the effects

of dissipation on these linear modes.

1.4.1.1. Absence of Computational Modes (1 and 2).

It is strongly desirable that a dynamical core does not possess any spurious linear com-

putational modes, since such modes are often excited by the non-linear and forcing terms.

Generally, spurious computational modes can be grouped into two types: stationary modes

and spurious linear wave branches. The first type of computational mode comes from the

(possibly joint) null spaces of the various discrete operators. An example is the pressure

mode that arises on unstaggered (A grid) discretizations. The second type of computational

mode is a spurious linear wave branch- which is a propagating mode. These can arise when

the ratio of degrees of freedom between the wind and height fields are no longer in balance

(2:1 ratio). However, a correct DOF ratio is a neccessary but not sufficient condition to

ensure the absence of spurious branches of the dispersion relationship ([22]). More details

about this are provided in Chapter 5.

1.4.1.2. Good Wave Representation (3).

In addition to not possessing any spurious linear computational modes, it is desirable

that the physical computational modes behave in an analogous manner to the physical modes

they represent. In particular, the behaviour of the discrete dispersion relationship (and the

associated group velocities) is key. For the shallow water equations (ignoring equatorial

or boundary waves such as Kelvin waves) on the rotating sphere there are three types of

waves: westward and eastward propagating inertia-gravity waves and westward propagating

Rossby waves. The continuous dispersion relation for inertia-gravity waves is monotonically

increasing with wavenumber, has a positive group velocity, is isotropic with respect to square
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wavenumber and is qualitatively insensitive to Rossby radius. These are all desirable features

of the discrete inertia-gravity wave dispersion relationship. Similar considerations apply to

the discrete Rossby wave dispersion relationship. Again, more details are provided in Chapter

6.

Mimetic Properties. In addition to the linear mode behaviour of a scheme, there are

desirable mimetic properties:

(1) Energy conserving pressure gradient force (discrete analogue of ~v � ~∇φ � φ~∇ � ~v �
~∇ � p~vφq)

(2) Energy conserving Coriolis force (discrete analogue of ~v � ~vK � 0)

(3) No vorticity production due to pressure gradient force (discrete analogue of ~∇ �
~∇φ � 0)

(4) Existence of a discrete Helmholtz decomposition (connected to steady geostrophic

modes and proper treatment of slow/fast modes)

Note that 1 and 2 together ensure that a scheme for the shallow water equations is at least

linearly stable. No spurious vorticity production ensures that the implied PV equation at

least has the hope of being a good representation of the physical PV equation. The general

discretization schemes presented here are designed to satisfy these desirable

mimetic properties, either by construction or by requirements on the properties

of the various discrete operators.

1.4.2. Potential Vorticity Dynamics.

Potential vorticity in the rotating shallow water equations has an interesting dual role:

it is both a tracer (and thus is advected by the flow) and it determines the (dominant)

geostrophic portion of the flow. In fact, PV plays an important role in geophysical fluid

dynamics in general ([62]) and having good PV behaviour is key to a model that can faithfully
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simulate reality. It is desirable that the (possibly implied) advection equation for potential

vorticity possesses the following properties:

(1) Higher-order accuracy: at least 2nd order, preferably 3rd or higher

(2) Monotonicity: the advection schemes does not produce new minima or maxima

(3) No or limited spurious numerical dissipation: the amplification factor for the advec-

tion scheme is 1

(4) Shape preservation: individual Fourier components move at the same speed, a wave

packet does not break into constituent components

(5) No or limited CFL condition: this allows longer time steps

(6) Compatibility: the evolution of mass-weighted potential vorticity is governed by an

equation that is the divergence of a flux

(7) Consistency with the Lagrangian behaviour of PV: a uniform PV field remains

uniform

(8) Conservation of potential enstrophy

(9) Conservation of total energy

(10) Steady geostrophic modes on a f-plane or f-sphere (discrete analogue of f~vK� ~∇φ �

0 Ñ δ � 0 Ñ Bζ
Bt � 0). This has to do with the implied vorticity equation for

vector-invariant formulations, and ensures that the discrete dispersion relationship

has steady geostrophic modes for constant f , and slow Rossby modes for variable

f .

It should be noted that these characteristics cannot in general all be achieved. For example,

Godunov’s theorem states that a monotonic advection scheme cannot have higher accuracy

than 1st order. A scheme that is dissipative cannot conserve potential enstrophy or total

energy (although it might conserve mass-weighted PV). In general, advection schemes are
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usually designed to satisfy either 1-7 (higher-order flux corrected transport schemes are a

good example of this approach; OR 6-10 (Arakawa and Lamb 1981, TRiSK are good examples

of this approach). Steady geostrophic modes will ensure that the model can adequately

represent geostrophic balance. The focus of this work will be on the properties 6-10.

1.4.3. Conservation Properties.

There are an infinite number of quantities conserved by the rotating shallow water

equations, however, evidence suggests ([117]) that good dynamical behaviour in a numeri-

cal simulation can be obtained by conserving only a subset of them. The main conserved

quantities discussed when considering the shallow water equations are:

(1) Mass

(2) Potential Vorticity

(3) Momentum

(4) Total Energy

(5) Potential Enstrophy

(6) (Axial) Angular Momentum

Conservation of secondary conserved quantities (such as energy and potential enstrophy)

has been shown ([4]) to help suppress non-linear computational instability and improve

simulation fidelity, even when comparing a low-order conservative model to a higher-order

non-conservative model. Of course, the real atmosphere has sources and sinks of most

conserved quantities such as momentum, energy and potential enstrophy. There is debate

([133]) about the best way to handle such sources and sinks (parameterization, numerical

diffusion, etc.) but a strong argument can be made on the basis of the Hamiltonian structure

of the fundamental equations that at least the invsicid, adiabatic dynamical core should
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conserve these quantities. This work will concern itself only with mass, potential

vorticity, total energy and potential enstrophy conservation

1.4.4. Computational Properties.

In addition to ensuring that a dynamical core is capable of accurately simulating the fluid

flow (the mimetic properties discussed above), there are practical computational concerns

relating to the ability of the model to produce a simulation in a timely manner. Timely,

of course, is a relative term but in general weather (climate) model users are interested

in simulated days (months, years) per wallclock hour (day). An extremely accurate model

that runs too slow for a given application is obviously useless. The tradeoff between speed

and accuracy is a highly sensitive and application-dependent choice. This work will not

address computational properties, except for noting the order of accuracy of the

proposed schemes.

1.4.4.1. Order of Accuracy.

The schemes should ideally approach 2nd order accuracy on optimized grids, with higher

order preferable. Higher-order accuracy is useful for:

(1) Computational intensity and scalability: Higher-order schemes tend to do more op-

erations on each piece of data that is fetched from memory, which leads to greater

computational intensity. This is useful because the cost of fetching data from mem-

ory and exchanging data between processing units is growing when compared to

the cost of performing an operation. This strongly suggests that higher-order, local

algorithms will scale better on future architecture, through higher computational in-

tensity, better computation/computation ratios and better computational/memory

access ratios.
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(2) Grid imprinting: Higher-order schemes can reduce the impact of grid imprinting

due to grid singularities. Since all of the quasi-uniform grids under consideration

posses at least weak singularities, this is a desirable property.

(3) Efficiency for smooth flows: As is well-known, for smooth flows a higher-order

scheme is more efficient (in terms of computational expense for a given level of

accuracy) than a lower order scheme. This is primarily because a coarser grid can

be used to achieve the same level of accuracy, which is much cheaper.

1.4.5. Other Properties.

1.4.5.1. Grid Flexibility.

There are a wide variety of quasi-uniform spherical grids under consideration (such as

the icosahedral hexagonal-pentagonal, icosahedral triangular and cubed-sphere; see [127]

for an excellent review) as use for the horizontal meshes in next generation weather and

climate dynamical cores. Some of these grids are orthogonal; others are non-orthogonal

(more discussion of grids is provided in Appendix B). In addition, there are a variety of

optimization procedures (such as spring dynamics [64] and tweaking [59]) that can be applied

to meshes. The discretization schemes proposed in this work are applicable to the

very general class of conformal polygonal meshes (orthogonal or non-orthogonal)

on the plane or sphere.

1.4.5.2. Absence of Hollingsworth Instability.

Unfortunately, non-linear stability for the single layer shallow water equations (such

as energy conservation) is not sufficient to ensure that the multilayer primitive equations

will also be stable. A prime example of this is the Hollingsworth instability (named after

its discoverer, see [61], [85] and [70]). It has been seen in staggered grid (C grid) schemes

that are both total energy and potential enstrophy conservative. Some work has been done
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exploring the causes of this instability ([45]), but it is still not well understood. However,

experience from the work cited above has shown it can be eliminated in several ways:

(1) Time stepping: Splitting the advection terms and inertia-gravity wave terms in the

time stepping scheme seems to remove this instability.

(2) Changing the kinetic energy stencil: Enlargement of kinetic energy stencil has been

shown to eliminate the Hollingsworth instability. As discussed more below, if total

energy conservation is to be retained, this requires a corresponding change in the

definition of the mass flux.

(3) Enstrophy conservation only: schemes that conserve only potential enstrophy do

not seem to exhibit the Hollingsworth instability.

This work does not consider the Hollingsworth instability further, except to note

that changes to the kinetic energy/mass flux or conservation properties of the

scheme are easily accomplished within the proposed framework.

1.5. The Current State of Affairs

1.5.1. Linear Modes (Balanced States and Waves).

For finite-difference schemes the majority of work on linear properties has been the study

of wave dispersion relations, with a focus on uniform grids on the f-plane or β-plane. Back

in the 1960s and 1970s, there were several authors ([3],[119],[120],[118],[86]) who looked at

the dispersion relationship for inertia-gravity waves on a uniform square grid for a variety of

grid staggerings (descriptions of grid staggerings can be found in Appendix B, and in Figure

B.6). They found that the Arakawa C-grid offers the best dispersion relationship when the

Rossby radius of deformation is well-resolved, while the B-grid has moderate errors at all

resolutions. However, the C-grid has poor dispersion properties when the Rossby radius
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is not well-resolved. Batteen [9] looked at the computational noise for a variety of finite-

difference schemes used in an ocean model and found that the B grid works best at lower

resolution, while the C-grid works better at higher resolution. Since the popularization of the

C-grid, much work has been done to improve its dispersion properties for lower resolution.

Some examples of this can be found in ([1], [91], [27]). Due to increases in computing power

and associated increases in horizontal model resolution, this is less relevant for atmospheric

dynamical cores. However, it is still quite relevant for the ocean where the Rossby radius

of deformation is smaller. Randall [100] extended the earlier uniform square grid dispersion

relationship studies to the unstaggered vorticity-divergence grid and showed that the Z-

grid had good dispersion properties independent of the horizontal resolution. Nikovic [36]

looked at analogues of the B-E and Z grid on perfect planar hexagons and found that

the same conclusions held for hexagons as for perfect squares. An interesting approach to

improved dispersion relationships is provided by McGregor ([81]), which employs a reversible

interpolation to compute inertia-gravity waves on a staggered C-grid while the rest of the

calculations are done on an A-grid.

A fully discrete model has both time and space discretization. The previous studies

considered only spatial discretization and assumed continuity in time. Beckers ([12]) looked

at the A-D grids with 2 level forward-backward time differencing and found that the C-grid

performed the best, even with low resolution (provided time steps were large enough). Fox-

Rabinovitz ([42]) looked at time and horizontally staggered A-E grids for atmosphere and

ocean models, again with the conclusion that the C-grid offered a good dispersion relation.

These studies suggest that it is important to consider the combined effects of time and space

discretization, since one can modify the effects of the other.
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Figure 1.5. Various choices of grid staggering for the shallow water equations.

In addition to inertia-gravity waves, there has been some study of Rossby wave dispersion

on the β-plane. Dukowicz ([33]) looked at Rossby waves on a uniform square grid and found

that the B and C grids offered the best dispersion relations (of the Arakawa A-E grids), with

a slight advantage for the B grid. Gavrilov ([48]) also performed a similar study and came

to the same conclusion: the B and C grids were the best among the A-E grids. Thuburn

([131], [141]) looked at Rossby waves on the square and lat-lon C-grid and found that their

representation was sensitive to the choice of discretization scheme. Liu ([77], [76]) looked at

the dispersion relation for Rossby waves on a uniform square grid using the A-E and Z grids;

and found that the C and Z grid offered the best behaviour.

When considering unstructured grids or non-uniform grids, reconstruction of the tan-

gential velocity for C-grid models becomes non-trivial. In addition, satisfying geostrophic

balance and preventing or controlling computational modes that arise due to a mismatch of

degrees of freedom in the mass and wind fields also becomes difficult. Espelid ([35]) looked

at the computation of the Coriolis force for triangular C-grid ocean models, while Danilov
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([26]) explored errors that arise in geostrophic dynamics on triangular C-grids due to velocity

divergence noise. This was further explored in Gassmann ([44]), which looked at triangular

and hexagonal C-grids. Ham ([52]) also found that triangular C-grids had unstable modes.

Skamarok ([124]) performed a linear analysis of the CD-grid and found that it behaved es-

sentially like a D grid at first order. Bonaventura ([17]) looked at the C-grid on a hexagonal

geodesic grid and found that it gave good dispersion properties for inertia-gravity waves.

Thuburn ([132]) looked at inertia-gravity and Rossby wave dispersion on regular hexago-

nal grids for the f-plane and β-plane; with the conclusion that careful choice of Coriolis

reconstruction could give stationary geostrophic modes. However, on the β-plane a second

unphysical branch of the Rossby wave dispersion arises. This work was extended ([140]) to

arbitrary polygonal C-grids with an orthogonal dual, with a focus on stationary geostrophic

modes. Kleptsova ([69]) also looked at the Coriolis term on unstructured C-grids, but with

a focus on properties of the corresponding discrete operator matrices.

Computational modes are also an important aspect of numerical schemes. Peixoto ([96])

looked at grid imprinting in the divergence operator on spherical geodesic grids and found

that imprinting was due primarily to misalignment of opposite cell walls. Weller ([155])

looked at the computational modes for a variety of Voronoi meshes using a C-grid scheme;

and also ([153]) at how to control those computational modes through appropriate choice of

the potential vorticity advection scheme. Weller’s work is unique because it focuses on the

quasi-uniform spherical grids that are actually used in existing models, rather than perfect

planar grids.

Finite-volume models have received considerably less attention in the literature, at least

concerning their linear properties. Castro ([18]) performed extensive analysis of a finite-

volume scheme with a focus on wave dispersion properties and balanced states. Audusse ([8])
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developed a conservative finite-volume discretization from the inertial framework (instead

of the rotating framework), which is an excellent example of the variety of choices that can

be made in designing a numerical scheme. Mohammadian ([88]) looked at Rossby waves

in 1-D upwind-based finite-volume schemes. Faure ([37]) looked at the inertia-gravity wave

dispersion relationship for various finite-volume methods, and found that none of them gave

a satisfactory dispersion relationship for short waves. Xiao ([157]) developed a multi-moment

finite volume scheme (M grid) using both volume and surface integrated values; and found

that at high resolutions it has dispersion properties similar to the Z and C grids, while at

lower resolutions it is similar to an A grid.

There is a much broader and deeper body of work for locally compact Galerkin-style

numerical methods (such as spectral element, discontinuous galerkin and finite element).

Foreman ([39]) performed a comparison of finite element schemes to finite-difference schemes

on the basis of wave dispersion for square and triangular meshes. He also investigated time

discretization ([40]) and the effects of mass lumping ([41]). Hua ([63]) looked at noise-free

mixed finite element methods using semi-implicit time stepping. Walters ([150]) investi-

gated spurious oscillation modes in 1D and 2D mixed finite elements on quadrilateral and

triangular grids. Atkinson ([7]) studied inertia-gravity wave dispersion in finite elements

schemes for the shallow water and generalized wave continuity equations on a variety of

meshes. Bernard ([13], [14]) examined Poincare, Kelvin and Rossby waves on structured and

unstructured triangular meshes. Rostand ([105]) looked at the dispersion relation, spurious

modes and geostrophic balance for Raviart-Thomas and BDM element on equilateral and

biased triangles; and also ([106]) at discrete matrix kernels for finite-difference (B,C and CD

grids) and finite-element discretizations, with a focus on stationary properties and spurious

modes. Hanert ([53]) investigated the dispersion properties of a mixed finite element method
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on unstructured meshes. Cotter ([21],[24],[22]) analysed the use of mixed finite elements for

atmospheric and oceanic modelling, looking at the dispersion relations, ability to maintain

geostrophic balance and mimetic properties. Staniforth, Melvin and others ([126],[83]) con-

tinued this research with a detailed look at the wave dispersion relationship of the RT finite

element on quadrilateral meshes; along with ways to improve it via mass lumping. Melvin

et. al ([84]) also investigated the dispersion relation for the spectral element method, and

found that it had similar issues as the unstaggered A grid finite-difference dispersion rela-

tion for low order; along with spectral jumps and localized eigenmode structures for higher

order. Walters ([151]) examined the role of semi-implicit time discretization and the Coriolis

term in the propagation of inertia-gravity waves; and also ([149]) the dispersion relation-

ships for a set of mixed schemes that use a finite-volume scheme for the continuity equation

and finite-difference or finite-element schemes for the momentum equation. Boneventura

([16]) developed improved reconstruction schemes for the Coriolis terms in Raviart-Thomas

elements.

Perhaps most importantly, there is an excellent series of papers by Le Roux and col-

laborators outlining a general framework for analysing (mixed) finite element schemes on

unstructured meshes. This series outlines a linear algebra based approach to the systematic

investigation of the stationary and propagating modes of an entire class of discretization

schemes (finite elements) for the shallow water equations. It starts ([108]) with an early

paper on spurious stationary modes through a linear algebra approach, and an associated pa-

per ([71]) investigating the inertia-gravity dispersion relationship for a mixed finite-element

scheme on triangles. These papers were followed by an intensive study of inertia-gravity

([72]) and Rossby wave ([107]) dispersion relationships for unstructured triangular grids and

a variety of mixed finite element schemes. Later, the effects of mass lumping ([74]) and time
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discretization ([109]) were examined. A comparison ([110]) between mixed finite element

methods based on the primitive variables to the generalized wave continuity equation on the

basis of the dispersion relationship was made. Recently, an investigation ([73]) into spurious

inertial modes (propagating modes without a wave-like structure) was undertaken.

1.5.2. Conservation Properties.

The recognition of the Hamiltonian nature of atmospheric dynamics was made in the

1980s ([113]). However, the development of discretizations that respect this structure has

been slow in coming. Salmon ([115],[117],[116]) has pioneered the application of discrete

Poisson and Nambu brackets to the development of conservative numerical methods for the

shallow water equations (and other inviscid hydrodynamic equations). This included energy

and enstrophy conserving C-grid schemes on uniform square meshes and a Z-grid scheme for

arbitrary polygonal meshes. Sommer ([125]) used the same ideas to develop an energy and

enstrophy conserving scheme on the ZC-grid. Sommer and Nevir ([92]) also formalized the

use of Nambu brackets in atmospheric dynamics and gave expressions for Nambu bracket

forms of many equation sets used in dynamical core development. This work emphasizes

the primary role that energy and vorticity play in the atmosphere. Recently, Gassmann

([46],[45]) has used the ideas of Sommer, Nevir and Salmon to develop an energetically-

consistent non-hydrostatic atmospheric model called ICON-IAP. A similar project has been

undertaken by Dubos et. al ([30]), termed DYNAMICO. This included careful derivation

of the Hamiltonian formulation for many approximate equation sets in arbitrary vertical

coordinates ([31],[32]). The Hamiltonian framework is powerful, but it is not as useful as it

could be since the connection between the Hamiltonian properties necessary for conservation

and the properties of various discrete operators has not been fully elucidated. Some work

on this front has been done by Dubos ([29]), but additional work remains.
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1.5.3. Mimetic Properties and PV Dynamics.

The pioneering work of mimetic properties for general grids was done by [140]: an en-

ergy conserving linear scheme (linearly stable) with stationary geostrophic modes and no

spurious vorticity production was developed for arbitrary orthogonal polygonal grids. This

was extended in [102] to consider PV dynamics along with either energy conservation or po-

tential enstrophy conservation for the non-linear equations. A follow up paper ([135]) further

extended this work to non-orthogonal grids and recognized the fact that these schemes were

a type of Discrete Exterior Calculus (DEC) method. Difficulties with extension to higher-

order accuracy led to the development of schemes based on Finite Element Exterior Calculus

(FEEC, [25],[22],[23],[82],[136]), which can be made doubly conservative (both energy and

potential enstrophy).

In particular, the use of DEC operators gives the desirable mimetic properties. Nonlinear

properties such as PV dynamics and conservation amount to additional requirements on the

non-standard DEC operators. Both the DEC and Hamiltonian approaches end up producing

very similar schemes. One of the motivating purposes of the current work is the unification of

the DEC and Hamiltonian approaches. As shown in Chapter 3, the additional requirements

on the non-standard DEC operators can be understood as arising from requiring that the

resulting discrete dynamics form a quasi-Hamiltonian system.

1.5.4. Arakawa and Lamb 1981 Scheme.

Advantages. The prototypical gold standard of a mimetic discretization scheme for the

rotating shallow water equations is the 1981 Arakawa and Lamb scheme (AL81, [4])

(1) It has steady geostrophic modes.

(2) As long as the grid resolution is larger than the Rossby radius of deformation, it

has good wave dispersion properties.
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(3) The pressure gradient term does not produce any spurious vorticity.

(4) The pressure gradient and Coriolis terms are both energy conserving.

(5) There are no spurious stationary modes, spurious branches of the dispersion rela-

tionship or poorly represented physical modes.

(6) The implied potential vorticity advection equation is compatible with the height

equation.

(7) It conserves mass, potential vorticity, total energy and potential enstrophy.

It is important to note that AL81 can be interpeted both as Hamiltonian-based scheme

(first recognized by Salmon, [115]) and a DEC scheme (as will be shown in chapter 3). The

recognition of the dual nature of this scheme was the inspiration for much of this work.

Limitations. However, there are several important limitations of the AL81 scheme. They

are

(1) Restricted to a topologically square, orthogonal grid; on the sphere this means

a lat-lon or equiangular cubed-sphere grid; which leads to unavoidable resolution

clustering at the poles (lat-lon) or cube corners (cubed-sphere). This is a concern

for two reasons: computational efficiency due to time step restrictions, and the need

for a polar filter which destroys many of the desirable properties of the scheme.

(2) Low order of accuracy, especially in the advection operators. There is a 4th order

version of the PV advection portion of the scheme ([129]), but the rest of the scheme

remains 2nd order. Higher-order accuracy is desirable for variety of reasons, as

discussed earlier.

(3) Loss of conservation properties when advection operators are changed (to be semi-

lagrangian or higher order)
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Figure 1.6. A general non-orthogonal polygonal grid with an associated dual
grid. If m and n are parallel for every edge, then the grid is orthogonal.

(4) When used in a multilayer model, the Hollingsworth instability can occur. However,

this is easily remedied by one of the methods discussed earlier.

(5) Poor wave representation for λ
∆x

   1; this is less of an issue with high model

resolution. However, increased resolution for all orthogonal grids the author is

aware of leads to grid cell clustering at singular points of the grid (poles for lat-lon,

cell corners for cubed-sphere).

In order to ameliorate these issues, there has been substantial research in an attempt to

develop a scheme that has similar properties to AL81, but enables higher-order operators

(especially in advection); quasi-uniform grids (non-orthogonal cubed sphere or geodesic);

or both. An example of the type of grids for which it is desirable to have AL81 apply to

is shown in Figure B.1. There are three primary approaches that have been undertaken:

TRiSK, FEEC and Z-Grid.

TRiSK. The TRiSK approach (named after the original designers of the scheme: Thuburn,

Ringer, Skamarock and Klemp, [102]) allows the use of a general polygonal or spherical

polygonal grid (either orthogonal or non-orthogonal), while preserving all of the desirable

properties of AL81 with the exception of EITHER potential enstrophy conservation or total
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energy conservation. This eliminates the first limitation, but fails to address the low order

of convergence. There are variations on TRiSK ([137]) with higher-order advection, but

they lose the secondary conservation properties (such as energy or potential enstrophy). In

addition, the Coriolis operator in TRiSK is in general 0-th order accurate (inconsistent) on

general grids. Interestingly, this does not seem to affect solution quality. It is not clear how

(perhaps the inconsistency occurs only at isolated points of the grid?) More study of this

is certainly warranted. TRiSK also suffers from the problem of spurious branches of the

dispersion relationship ([44]) on geodesic or hexagonal/triangular grids, since the number of

degrees of freedom in the wind and mass fields are not balanced.

FEEC. Recent work by Cotter, Thuburn and others ([22],[23],[25]) has extended the

mimetic TRiSK framework to finite-element methods, using the approach of Finite Ele-

ment Exterior Calculus. This retains the mesh flexibility inherent in TRiSK, but allows

higher-order, doubly conservative (total energy and potential enstrophy) discretizations. In

addition, it allows DOF balancing to eliminate spurious branches of the dispersion relation-

ship. The primal-dual formulation ([136]) even allows the use of the full suite of Discon-

tinuous Galerkin advection operators for both the mass and the potential vorticity, which

is extremely useful. Of course, a dissipative advection operator will necessarily no longer

conserve total energy or potential enstrophy. However, there have only been a few studies

([126],[83]) on the dispersion relationship for the finite-element families used in FEEC (with

none done on quasi-uniform grids such as gnomic cubed sphere or geodesic); and no work

on the Hollingsworth instability. It appears that there are spectral gaps in the dispersion

relationship that must be removed through some sort of mass-lumping procedure. In addi-

tion, the mixed-finite element formulation does require a global elliptic solve at each time

step. This is less of an issue when combined with a semi-implicit formulation that allows
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longer time steps, and architectural trends suggest that the higher-computational intensity

of finite-element methods could offset their increased communication costs. There has also

been recent work ([89],[59]) on multigrid methods, which appear to offer excellent scalability

on emerging architectures.

Z-Grid. A different approach is to abandon the vector-invariant formulation that under-

lies AL81, TRiSK and FEEC; and use the vorticity-divergence form with collocated vari-

ables (Z grid) instead. It is possible (see Chapter 4) to obtain all of the desirable mimetic

properties of AL81 in this framework (including both total energy and potential enstrophy

conservation), on arbitrary orthogonal (spherical) polygonal meshes. In addition, the qual-

itative properties of the dispersion relationship are independent of the Rossby radius; and

there is proper DOF balance on any type of grid. In addition, it does not appear that the

Hollingsworth instability occurs for multi-layer vorticity-divergence models. However, the

vorticity-divergence formulations requires the solution of elliptic equations at each timestep

to diagnose the streamfunction and velocity potential, and unlike FEEC, there is no way

to avoid this. However, the existing vorticity-divergence models for quasi-uniform spherical

grids either have spurious computational modes ([104]), or are not fully conservative ([57]).

1.6. What This Work Addresses

From the preceding discussion, it is easy to see several outstanding research problems:

(1) The development of a potential enstrophy AND energy conservative single mo-

ment vector-invariant C grid scheme that works on arbitrary (orthogonal or non-

orthogonal) polygonal grids. As discussed in Chapter 3, most of the groundwork

for this has already been done in previous work. Only the form of the potential

vorticity advection remains to be determined.
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(2) Development of a collocated (Z grid), total energy and potential conserving vorticity-

divergence scheme based on the Hamiltonian approach that works on arbitrary

spherical polygonal grids. The groundwork for this has been laid by Rick Salmon

([117]), but the specifics remain to be developed.

(3) Connecting the Hamiltonian and DEC approaches to obtaining conservative schemes;

and obtaining conditions on various operators that are required for the desirable

properties discussed above.

(4) Investigation of the linear modes of various discretization schemes on quasi-uniform

spherical grids (geodesic and cubed-sphere). Many studies have been done on planar

grids, but there is little known about the dispersion relations or stationary modes

on the actual grids that are used in models (outside of [155]).

(5) Investigation of the role that diffusion (either explicitly added or numerically im-

plicit) plays in the linear modes of various discretization schemes on both planar

and quasi-uniform spherical grids.

This work aims to address these issues in the following ways:

Double Conservative C Grid Scheme. A doubly conservative potential vorticity advection

operator Q is developed for arbitrary, orthogonal or non-orthogonal grids. When combined

with the existing TRiSK framework, this completes the extension of AL81 to arbitrary

polygonal grids.

Extension of ζ � δ Schemes. The Salmon 2007 ([117]) scheme is extended to the case

of arbitrary spherical polygonal grids: in particular the new scheme works on icosahedral

hexagonal-pentagonal meshes.

Connection between Hamiltonian and DEC Approaches. The DEC approach is extremely

useful for developing schemes that have the desirable mimetic properties and PV dynamics,
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but the requirements for conservation are tricky. The Hamiltonian approach offers easy access

to conservation, but it is not clear how to incorporate mimetic properties. The generalized

C grid discretization shown in Chapter 3 combines these approaches in a natural and useful

way. The vorticity-divergence framework presented in Chapter 4 makes use of some operators

from DEC, but it is not a full DEC scheme. Instead, it is strongly believed (but not proven)

that the vorticity-divergence framework presented is a mass-lumped finite element scheme

(bilinear on rectangles, linear on triangles).

Linear Modes on Quasi-Uniform Spherical Grids. The numerical stationary modes and

dispersion relations of the two generalized schemes (C grid and Z grid) are studied on both

planar and spherical (hexagonal geodesic, cubed sphere) meshes. In addition, analytic dis-

persion relations and stationary modes for various planar discretization/grid combinations

(such as the A grid on hexagons) are derived.

Diffusion. The effects of diffusion on the linear modes of discretizations of the shallow

water are investigated. In particular, the ability of diffusion to control or remove spurious

stationary modes, poorly represented physical modes and spurious branches of the dispersion

relationship is quantified.

The major contribution of this work is the development of generalized single moment C

and Z grid schemes that provide all of the desirable properties above (including conserva-

tion of both total energy and potential enstrophy) on arbitrary polygonal grids. Alongside

this, a detailed analysis and intercomparison of their properties (such as linear modes and

performance on some test cases) on two prototypical quasi-uniform spherical grids (geodesic,

cubed sphere) has been performed.

As a part of this work, a software framework (Morphe) that allows rapid prototyping

and intercomparison of single moment discretization schemes has been developed. Although
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Morphe was designed in the context of the shallow water equations, it is useful for any 2D

single moment discretization. This framework will be made available to the wider community.

1.7. What This Work Does Not Address

There are many other interesting aspects of the discretization of the shallow water

equations that are not investigated in this thesis. Some relevant ones are discussed below.

These are all certainly interesting and important questions, but they are beyond the scope

of this work.

Time Discretization. This work does not address time discretization, and in particular

the ability to obtain mimetic and conservation properties with the full spatiotemporal dis-

cretization. Also associated with time discretization are the possibility of spurious inertial

modes, which are not studied.

Momentum and Angular Momentum. Although momentum and angular momentum are

both conserved in the continuous equations, it seems extremely difficult to conserve them in

the discrete case since they are continuous symmetry invariants of equations. In contrast,

the other conserved quantities arise from anti-symmetry or Casimirs, which is much easier to

discretize. When using the vector invariant formulation, it does not seem possible to conserve

both momentum and potential enstrophy in the discrete case. The problem becomes even

more acute on general grids. In addition, on a staggered grid using the vector invariant

formulation conservation of momentum becomes very tricky. One possible approach to this

is to directly predict the axial angular momentum.

Hollingsworth Instability. Full atmospheric models naturally involve multiple layers, and

the Hollingsworth instability must be addressed. This work does not deal with the Hollingsworth

instability, except to note that some of the existing known fixes such as modification of the
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kinetic energy stencil can be incorporated into the generalized C grid framework in such a

way as to maintain all of the desirable mimetic and conservation properties.

Higher Order Vorticity-Divergence Schemes. A very useful extension of the existing FEEC

framework would be to incorporate the vorticity-divergence formulation. This would pro-

vide higher-order vorticity-divergence schemes that preserve the mimetic and conservation

properties on arbitrary grids. As a part of this, analysis of the dispersion characteristics of

higher-order vorticity-divergence schemes could be undertaken.

Flux Form Formulation. Instead of predicting ph, ~uq, we could predict ph, ~huq. This is

done in many existing models, but there has not been very much work on the theoretical

underpinnings of this approach. In particular, there has been no work done on the mimetic

properties, linear modes (especially connected to grid staggering choices) or PV dynamics of

these types of schemes. It is possible to obtain a mass, momentum and energy conserving

scheme ([148]) based on this formulation. It seems likely that these schemes are simply

an anti-symmetric discretization of the underlying Lie-Poisson bracket. However, potential

vorticity and potential enstrophy conservation are much trickier. From a Hamiltonian me-

chanics perspective, both of these are Casimirs of the Lie-Poisson bracket. An analysis of the

mimetic properties, linear modes (especially relating to different choices of grid staggering),

PV dynamics and conservation properties for schemes based on ph, ~huq would be useful. A

natural extension of this would be the development of FEEC-based schemes using the ph, ~huq

formulation. It might also be interesting to explore the prediction of the divergence ~∇ � ~hu

and curl ~∇K � ~hu of the mass flux- this would be an analogue of the vorticity-divergence

formulation.
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1.8. Organization of Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents the linear and

nonlinear rotating shallow water equations in the vector-invariant and vorticity-divergence

formulations. Chapter 3 presents a general discretization scheme based on single moment C

grid staggering, and discusses its ability to obtain the desirable properties discussed above.

Chapter 4 does the same for a single moment Z grid staggering. Chapter 5 discusses normal

modes (stationary and propagating) in the context of the linear equations on an f-plane,

f-sphere and full sphere, and present some numerical results from the C and Z grid schemes.

Since at least part of the material in Chapters 2-5 is a review of existing literature, a summary

of new results is provided at the end of each chapter. Chapter 6 presents some standard

test cases from the literature that are run to evaluate the differences between the C grid

and Z grid general discretizations on the basis of important physical properties such as

conservation, representation of geostrophic adjustment and (physical and spurious) linear

normal modes. Chapter 7 summarizes the results from Chapters 3-6 and gives some general

criterion for the development of numerical discretizations schemes of the rotating shallow

water equations. Finally, the Appendices covers important ancillary topics: Non-Canonical

Infinite Dimensional Hamiltonian Mechanics, Horizontal Meshes, Discrete Exterior Calculus

in 2D and linear mode results for uniform planar meshes (such as exact analytic dispersion

relationships for various schemes and allowed wavenumbers on various horizontal meshes).
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CHAPTER 2

Rotating Shallow Water Equations in Continuous

Form

2.1. Continuous Shallow Water Equations

When trying to model a complex physical system such as the atmosphere or ocean, it is

often useful to start with a simplified system that retains some of the key characteristics of

the full system. The shallow water equations provide a useful analogue of fully compressible

Euler equations- in particular they have similar conservation laws, many of the same types

of waves and a similar (quasi-) balanced state. These equations represent the motion of a

rotating, incompressible, inviscid 2D fluid for which the horizontal component of the cori-

olis force has been neglected. They support both rotational and divergent motions along

with inertia-gravity and Rossby waves (geostrophic modes in the f-plane case). The exis-

tence of a balance condition (geostrophic balance) and a corresponding adjustment process

(inertia-gravity wave radiation; geostrophic adjustment) closely mimics similar situations in

the full equations. In addition, the shallow water equations have integral invariants (such as

mass and energy) and Lagrangian invariants (such as potential vorticity and potential en-

strophy). They are a (non-canonical) Hamiltonian system and can be derived from the fully

compressible Euler equations via simplification of the Lagrangian. All of these properties

make them an ideal system from which to start the development of numerical models of the

ocean or atmosphere. The non-linear and linearized rotating shallow water equations are

presented below in both vector-invariant formulation and vorticity-divergence formulation

(using a momentum-based streamfunction and velocity potential). In all cases a constant

value of the gravity g has been assumed. In the linearization, the height field is perturbed
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about a reference height H as h � H � h1. The base state wind is assumed to be zero. The

product of two (or more) perturbation quantities is neglected. For convenience, primes are

dropped in the final form of the linearized equations.

2.1.1. Vector Invariant Formulation. The vector-invariant formulation is used

primarily for two reasons: it is easy to derive a vorticity equation and associated potential

vorticity equation (in particular the splitting of the advective term into a kinetic energy

gradient and a ”vorticity flux” cleanly separates the divergent and rotational parts of ad-

vection); and it is invariant with respect to changes in the coordinate system (hence the

name).

2.1.1.1. Nonlinear.

Choosing fluid height h and vector wind ~u as our prognostic quantities, the equations

of motion are given in vector-invariant form as

(1)
Bh
Bt � �~∇ � ph~uq � �~∇K � ph~uKq

(2)
B~u
Bt � �η~uK � ~∇pΦq

where η � f � ζ is the absolute vorticity, f is the Coriolis parameter, ζ � ~∇K � ~u � �~∇ � ~uK

is the relative vorticity, ~uK � k̂ � ~u is the perpendicular wind, k̂ is the unit vector in the

vertical direction, Φ � gh� ghs�K is the Bernoulli function, K � ~u�~u
2

is the kinetic energy,

h is the fluid height, g is the value of gravity and hs is the topography height. We can also

write an evolution equation for the perpendicular wind as

(3)
B~uK
Bt � η~u� ~∇KpΦq
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Nonlinear Coriolis Term. The non-linear coriolis term

(4) ηk̂ � ~u

can be written in several alternative equivalent forms:

(5) qhk̂ � ~u

(6) qk̂ � ph~uq

(7) k̂ � pη~uq

(8) k̂ � pqh~uq

(9) hk̂ � pq~uq

where q � η
h
� ζ�f

h
is the potential vorticity. These are all equivalent in the continuous

system, but they lead to different discretization strategies. However, considerations from

the Hamiltonian and Exterior Calculus formulations of the vector invariant equations; along

with potential vorticity compatibility and consistency (see below) suggest that qk̂ � ph~uq is

the ideal form to use for discretization. In addition, the Arakawa and Lamb (AL81, REF)

scheme uses this form in order to derive an energy AND potential enstrophy conserving

scheme.
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2.1.1.2. Linear.

By linearizing about a state of rest (no mean wind) with mean fluid height H, one

obtains

(10)
Bh
Bt � �Hp~∇ � ~uq � �Hp~∇K � ~uKq

(11)
B~u
Bt � �f~uK � g~∇h� g~∇hs

(12)
B~uK
Bt � f~u� g~∇Kh� g~∇Khs

where H is the base state fluid height. This can be written in matrix form (without topog-

raphy) as

(13)
B~x
Bt � A~x

where ~x � ph, ~uq and

(14) A �
�

0 �H~∇�
�g~∇ �fk̂�

	

This form is useful for analysing the linear properties of a discretization, and is also strongly

connected to (linear) conservation properties via the linearized Hamiltonian (see below).

2.1.1.3. Hamiltonian.

Define a Hamiltonian

(15) H �
»

Ω

h

2
p~u � ~u� gph� 2hsqq dΩ
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and a symplectic operator

(16) J �
�

0 �~∇�
�~∇ �qk̂�

	

Let ~x � ph, ~uq. Then the vector invariant equations can be written as

(17)
B~x
Bt � J

δH
δ~x

where

(18)
δH
δ~x

� p Φ
h~u q �

�
gh�K
h~u

�

is the functional derivative of the Hamiltonian with respect to ~x and K � ~u�~u
2

.

2.1.1.4. Poisson Bracket. Using the sympletic operator J, a Poisson bracket can be de-

fined as

(19) tA,Bu � pδA
δ~x
,J
δB
δ~x

q

where A and B are arbitrary functionals of ~x. The time evolution of an arbitrary functional

A is then given by

(20)
dA
dt

� tA,Hu

For the nonlinear shallow water equation, the Poisson bracket is (after integration by parts)

(21) tA,Bu �
»

Ω

dΩ

�
δB
δ~u

� ~∇δA
δh

� δA
δ~u

� ~∇δB
δh

� qk̂ �
�
δB
δ~u

� δA
δ~u
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It is useful to split this into two separate brackets as

(22) tA,Bu � tA,BuR � tA,BuQ

where

(23) tA,BuR �
»

Ω

dΩ

�
δB
δ~u

� ~∇δA
δh

� δA
δ~u

� ~∇δB
δh



�
»

Ω

dΩ

�
δB

δh
p~∇ � δA

δ~u
q � δA

δh
p~∇ � δB

δ~u
q



encompasses the gradient and divergence terms; and

(24) tA,BuQ �
»

Ω

dΩ

�
qk̂ �

�
δB
δ~u

� δA
δ~u





encompasses the nonlinear PV flux term.

2.1.1.5. Linearized Hamiltonian.

As is well-known in Hamiltonian mechanics, the linearized dynamics about some steady

state ~x0 are described by the symplectic operator J evaluated at that state along with the

small-amplitude approximation of the pseudo-energy A for that state (denoted by H̃). In

symbols, we have

(25)
B~x
Bt � J|~x�~x0

δH̃
δ~x

More details of this process can be found in the Appendix A.

In the case of the shallow water equations about the steady state ~x � pH, 0q where H is

some constant (also dropping the topography terms), we have

(26) H̃ �
»

Ω

1

2

�
H~u � ~u� gh2

�
dΩ

39



and

(27) J|~x�~x0 � Jlinear �
�

0 �~∇�
�~∇ � f

H
k̂�

	

with

(28)
δH̃
δ~x

� �
gh
H~u

�

Note that Jlinear � AD, where D � �
g 0
0 H

�
. This is because the functional derivative of the

linearized Hamiltonian is simply ~x times a scaling matrix since the Hamiltonian is quadratic

and does not mix variables. This is a general feature of linearized Hamiltonian dynamics. A

Poisson bracket can also be defined for the linear system using J, it is simply the non-linear

Poisson bracket with q replaced by f
H

.

2.1.1.6. Schemes.

For the reasons discussed above (vorticity, invariance) the vector invariant formulation

is used by many existing schemes, including TRiSK ([103]), ICON-IAP ([45],[46]) and Dy-

namico ([30]).

2.1.2. Vorticity-Divergence (Helmholtz Decomposition of h~u) Formula-

tion.

We start by defining the relevant kinematic properties of the velocity field: relative

vorticity ζ and divergence δ:

(29) δ � ~∇ � ~u � ~∇K � ~uK

(30) ζ � ~∇K � ~u � �~∇ � ~uK
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One advantage of using vorticity and divergence is that δ and ζ are true or pseudo-

scalars, unlike the components of the velocity vector ~u which change whenever the coordinate

system is changed (unlike scalar/pseudo-scalars, which are invariant to changes in coordinate

system with the exception of a sign reversal for pseudo-scalars when orientation is flipped).

Another advantage is that only one operator (the Laplacian) appears in the linear system,

which makes it easy to eliminate spurious stationary modes and have good wave propagation

characteristics. In addition, all of the variables are unstaggered and thus certain types

of computations can be made simpler. This also simplifies grid management and other

computational issues.

However, in the nonlinear case the streamfunction and velocity potential are required (to

compute the wind), which means a pair of coupled elliptic equations must be solved at each

time step. Efficient (scalable) solvers such as geometric multigrid exist in the case of simply-

connected domains (grids without holes or complicated boundaries). Such domains occur in

models that use terrain-following coordinates or a hybrid coordinate that is terrain following

at the lower boundary. However, when the vertical coordinate intersects the topography the

grids contain many small islands, disconnected regions and complicated boundaries. It is an

ongoing research problem as to whether there are sufficiently scalable solvers for such grids.

2.1.2.1. Nonlinear.

By taking the divergence (~∇�q and curl (~∇K�) of the momentum equation from the vector

invariant formulation, we obtain

(31)
Bh
Bt � �~∇ � ph~uq

(32)
Bζ
Bt � �~∇ � pη~uq � �~∇ � phq~uq
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(33)
Bδ
Bt �

~∇K � pη~uq �∇2Φ � ~∇K � phq~uq �∇2Φ

where η � ζ�f and q � η
h
. The mass flux (or momentum) can always be split into rotational

and divergent components (ie a Helmholtz decomposition) as:

(34) h~u � h~udiv � h~urot � ~∇χ� ~∇Kψ

where h~udiv � ~∇χ and h~urot � ~∇Kψ. The streamfunction ψ and velocity potential χ can be

related to the vorticity and divergence as

(35) ζ � η � f � ~∇ � ph�1~∇ψq � Jph�1, χq

(36) δ � ~∇ � ph�1~∇χq � Jpψ, h�1q

The tangential mass flux (h~uK) also has a Helmholtz decomposition as

(37) h~uK � ~∇Kχ� ~∇ψ

The Hemholtz decompositions connect the vorticity-divergence formulation and the various

momentum based formulations. In the preceding, we have neglected the possibility of a har-

monic component (a component A for which ~∇2A � 0), which works because the harmonic

component on the sphere is zero. On the doubly periodic plane, it would be possible to

have a constant harmonic component. The equations can be re-written in terms of χ and ψ

directly as

(38)
Bh
Bt � �∇2χ
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(39)
Bζ
Bt � Jpq, ψq � ~∇ � pq~∇χq

(40)
Bδ
Bt � Jpq, χq � ~∇ � pq~∇ψq �∇2Φ

2.1.2.2. Linear.

As before, we can linearize about a state of rest with fluid height H to get:

(41)
Bh
Bt � �Hδ

(42)
Bζ
Bt � �~∇ � pf~uq � �~∇K � pf~uKq

(43)
Bδ
Bt � �~∇ � pf~uKq � g∇2h � ~∇K � pf~uKq � g∇2h

In matrix form (without topography and assuming f is constant) this can be written as

(44)
B~x
Bt � A~x

where ~x � ph, ζ, δq and

(45) A �
�

0 0 �H
0 0 �f

�g~∇2 f 0




2.1.2.3. Hamiltonian.

Define a Hamiltonian

(46) H �
»

Ω

1

2h

�
|~∇χ|2 � |~∇ψ|2 � 2Jpχ, ψq

	
� 1

2
ghph� hsqdΩ
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a symplectic operator

(47) J �
�

0 0 ∇2

0 �Jpq,
q ~∇�pq~∇
q
�∇2 �~∇�pq~∇
q �Jpq,
q

�

and let ~x � ph, ζ, δq. These represent the transformation of the vector invariant Hamiltonian

formulation from ~x � ph, ~uq to ~x � ph, ζ, δq (ie the vorticity-divergence formulation). As

before, the evolution of the system is governed by

(48)
B~x
Bt � J

δH
δ~x

Note that

(49) δH �
»

Ω

dΩ p�ψδζ � χδδ � Φδhq

where

(50) Φ � K � gh � |~∇χ|2 � |~∇ψ|2 � 2Jpχ, ψq
2h2

� gh

which gives

(51)
δH
δ~x

�
�

Φ
�ψ
�χ

	

(this is the functional derivative of the Hamiltonian with respect to ~x). The functional

derivative of the Hamiltonian is intimately connected to the Helmholtz decomposition of the

momentum. An alternative derivation of this is as follows. Note that for a general functional
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F , we have:

(52)
δF
δ~u

� ~∇δF
δδ

� ~∇K δF
δζ

Since

(53)
δHkin

δ~u
� h~u � ~∇χ� ~∇Kψ

it is immediately clear that

(54)
δH
δ~x

�
�

Φ
�ψ
�χ

	

The minus signs come from integration by parts.

2.1.2.4. Poisson Bracket.

Using the sympletic operator J, a Poisson bracket can be defined as

(55) tA,Bu � pδA
δ~x
,J
δB
δ~x

q

where A and B are arbitrary functionals of ~x. The time evolution of an arbitrary functional

A is then given by

(56)
dA
dt

� tA,Hu

For the nonlinear shallow water equation, the Poisson bracket for the vorticity-divergence

form is best expressed as the sum of three separate brackets:

(57) tA,Bu � tA,Buδδ � tA,Buζζ � tA,Buδζh
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where

(58) tA,Buζζ �
»

Ω

dΩqJpAζ ,Bζq

(59) tA,Buδδ �
»

Ω

dΩqJpAδ,Bδq

(60) tA,Buζδh �
»

Ω

dΩqp~∇Aδ � ~∇Bζ � ~∇Aζ � ~∇Bδq � p~∇Aδ � ~∇Bh � ~∇Ah � ~∇Bδq

Note that each of these brackets is anti-symmetric and has the correct general Casimir

functional from above.

2.1.2.5. Nambu Bracket.

As shown in REF, each of these Poisson brackets has as associated Nambu bracket:

(61) tF ,H,Zuζζζ �
»

Ω

dΩZζJpFζ ,Hζq

(62) tF ,H,Zuδδζ �
»

Ω

dΩZζJpFδ,Hδq

(63)

tF ,H,Zuδζh �
»

Ω

dΩ

�
~∇Zh � ~∇Fδ � ~∇Hζ � 1

~∇q
� ~∇Zh � ~∇Fζ � ~∇Hδ � 1

~∇q



� cycpF ,H,Zq

where ZC � ³
Ω
dΩh q

2

2
is the potential enstrophy, and the multipart dot product is simply

the product of the individual components, summed over each basis (ie the first term is
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BxZhBxFδBxHζ

Bxq ). These are useful because they are triply anti-symmetric (which ensures the

conservation of H and Z) and non-degenerate (no Casimirs). It would of course be possible

to generalize these brackets to ANY Casimir, but since we are interested mostly in potential

enstrophy conservation it is not necessary. These brackets will form the basis of the general

discretization method discussed below.

2.1.2.6. Linearized Hamiltonian.

As before, in the case of the shallow water equations about the steady state ~x � pH, 0, 0q

where H is some constant (also dropping the topography terms and assuming f is constant),

we have

(64) Ã �
»

Ω

1

2

�
|~∇χ|2 � |~∇ψ|2

	
� 1

2
gh2dΩ

and

(65) J|~x�~x0 �
�

0 0 ∇2

0 �Jp f
H
,
q ~∇�p f

H
~∇
q

�∇2 �~∇�p f
H
~∇
q �Jp f

H
,
q

�

with

(66)
δÃ
δ~x

�
�
gh
�ψ
�χ

	

where x � ph, ζ, δq (we have changed from η to ζ since f is constant). Note also that the

Hemholtz decomposition simplifies to

(67) H~u � ~∇χ� ~∇Kψ
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which yields

(68) δ � ∇2χ

H

(69) ζ � ∇2ψ

H

In the case of constant f , this reduces to

(70) J|~x�~x0 �
�

0 0 ∇2

0 0 f
H
∇2

�∇2 � f
H
∇2 0

�

2.1.2.7. Schemes.

There is only one class of schemes that use the vorticity-divergence form of the shallow

water equations (with a momentum-based Helmholtz decomposition): those based on Nambu

brackets using the approach pioneered by Rick Salmon in [116] and [117]. They include the

single moment collocated (Z grid) schemes developed in those references; and the staggered

(ZC grid) scheme developed by Sommer and Nevir in [125].

There are also several schemes that use the vorticity-divergence form with a velocity

based Helmholtz decomposition (such as [57] and [104]; or a closely related PV-divergence

form [130]); however it seems quite difficult to derive a Hamiltonian formulation of this

approach. In particular, the expression of the functional derivatives of the Hamiltonian in

terms of χ and ψ from a Helmholtz decomposition of ~u is very complicated, whereas the

expression in terms of χ and ψ from a Helmholtz decomposition of ~hu is quite simple. The

symplectic operator J is of course the same in both cases, since we have the same prognostic

variables.
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2.2. Potential Vorticity

Take the curl of the wind equation and note that η � ζ � f � qh where q � η
h

is the

rotating shallow water potential vorticity to get

(71)
Bphqq
Bt � �~∇ � phq~uq � �~∇K � �hq~uK�

This is the flux form of the PV equation, it can be combined with the mass equation to get

(72)
Dq

Dt
� 0

which is the advective (or Lagrangian) PV equation. Typically, numerical models developed

from the vorticity-divergence or vector-invariant formulation will have an explicit equation

for the height evolution and either an implied or explicit equation for the flux-form PV

evolution. It is highly desirable that these schemes possess two properties related to the PV

(among others):

(1) Compatibility: The (possibly implied) flux-form PV equation can be written as

the divergence of a flux. This ensures both local and global conservation of mass-

weighted PV.

(2) Consistency: When PV is constant, the flux-form PV equation reduces to the height

equation. This ensures that an initially uniform PV field will remain so for all time.

2.3. Conserved Quantities

Since the rotating shallow water equations form a (non-canonical) Hamiltonian system,

we know from Noether’s theorem and other considerations (such as the singular nature of the
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symplectic operator) that there are three categories of conserved quantities: Hamiltonian,

Casimirs and Symmetry Invariants.

2.3.0.8. Energy (Hamiltonian). The first is simply the Hamiltonian itself. In this case,

the Hamiltonian is the total energy of the system. Conservation of the Hamiltonian arises

due to the skew-symmetric nature of the symplectic operator J. In particular, the evolution

of any functional F is given by

(73)
dF
dt

� pδF
δ~x
,J
δH
δ~x

q

where p, q is the inner product associated with the function spaces that H is defined on.

When F � H, we get

(74)
dH
dt

� pδH
δ~x

,J
δH
δ~x

q � 0

since J is skew-symmetric. For the rotating shallow water equations, the Hamiltonian is the

total energy of the system. The elegant derivation of energy conservation and its simplicity

(relying ONLY on the skew-symmetry of J) has lead to the development of powerful discrete

methods for ensuring energy conservation (see Chapter 4).

Kinetic Energy Equation. The local rate of change of mass-weighted kinetic energy is

given by

(75)

BphKq
Bt � δHkin

δ~u
� B~uBt �

δHkin

δh

Bh
Bt � �K~∇�ph~uq�h~u�~∇K�h~u�~∇pghq � �~∇�ph~uKq�h~u�~∇pghq

where K � ~u�~u
2

. Note that there are two terms here: an advection of kinetic energy term

(�~∇�ph~uKq) and a conversion term (�h~u� ~∇pghq) that (reversibly) transforms kinetic energy

into potential energy.
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Potential Energy Equation. The local rate of change of mass-weighted potential energy

is given by

(76)
Bpgh2{2q

Bt � δHpot

δh

Bh
Bt � �gh~∇ � ph~uq

which is entirely a conversion term between kinetic and potential energy. It is useful to split

the potential energy into available and unavailable parts as:

(77) HUPE �
»

Ω

g

2
H0p2h�H0qdΩ � gH2

0

2

»
Ω

dΩ

(78) HAPE � KE �
»

Ω

g

2
ph�H0q2dΩ

(79) HPE �
»

Ω

gh2

2
dΩ � HUPE �HAPE

where H0 �
³
Ω hdΩ³
Ω dΩ

is the domain averaged height (constant with time due to mass conserva-

tion), and HUPE is a constant. Since

(80)
δHAPE

δh
� gph�H0q

(81)
δHUPE

δh
� 0

we can write the local rates of change of APE and UPE as

(82)
BpAPEq

Bt � �gph�H0q~∇ � ph~uq
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(83)
BpUPEq

Bt � 0

The inclusion of topography simply replaces h with h � hs in the equations for HAPE and

H0.

Total Energy Equation. The preceding equations can be combined into a mass-weighted

total energy equation as

(84)
BphK � hghq

Bt � δHkin

δ~u
� B~uBt �

δHkin

δh

Bh
Bt �

δHpot

δh

Bh
Bt � �~∇ � ph~uKq � g~∇ � ph~uhq

2.3.0.9. Casimir Invariants. The second category of conserved quantities consists of

Casimir invariants. Since the rotating shallow water equations are a non-canonical Hamil-

tonian system, the symplectic operator J is singular and thus it posseses Casimir invariants

that satisfy

(85) J
δC
δ~x

� 0

Note that from above, this implies that

(86)
dC
dt

� 0

For the rotating shallow water equations, the Casimirs take the form

(87) C �
»

Ω

hF pqqdΩ

where F pqq is an arbitrary function of the potential vorticity and

(88)
δC
δ~x

�
�
F pqq�qF 1pqq
~∇TF 1pqq
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Important cases include F � 1 (mass conservation), F � q (circulation or mass-weighted

potential vorticity) and F � q2

2
(potential enstrophy).

2.3.0.10. Symmetry Invariants. The third type of conserved quantity is the Symmetry

invariant. Consider an arbitrary translation of some independent coordinate yk. If J and H

are invariant under this translation, and there is some functional M that satisfies

(89) J
δM
δ~x

� � B~x
Byk

then M is conserved (dM
dt

� 0). For the rotating shallow water equations, the symme-

try invariants are momentum and angular momentum, which arise from translational and

rotational symmetry, respectively. It is easy to see that momentum is given by

(90) M~u �
»

Ω

hp~u� ~RqdΩ

where ~R � ~Ω� ~x and ~x is the position vector. In the absence of pressure torques exerted by

the bottom topography, this will be conserved. The angular momentum is given by

(91) MM �
»

Ω

~x� p~u� ~RqdΩ

It too is conserved in the absence of pressure torques exerted by the bottom topography.

2.4. Subgrid Turbulence Operators

Due to limited computational resources, numerical models naturally have a finite resolu-

tion. That is, there are scales of motion that are not resolved, and since this is a non-linear

system, these scales interact with the resolved scales. A major thrust of this research is the

development of schemes that are nonlinearly stable WITHOUT any added dissipation, and
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conserve both total energy and potential enstrophy in an analogous manner to the contin-

uous equations. This allows the representation of the interaction between the resolved and

unresolved scales to be parameterized on a purely physical basis, instead of being at least

partly a band-aid for poor numerics.

Fundamental considerations from inviscid, incompressible 2D turbulence ([38]) imply

that the conservation of both energy and enstrophy ensure that energy is cascaded upscale,

while enstrophy cascades downscale (and in the case of a viscous flow, ultimately removed).

A numerical model with a finite resolution will therefore see a build-up of enstrophy at

the grid scale. This suggests that our dissipation operator should conserve resolved energy

and dissipate resolved potential enstrophy, with a focus on removing grid-scale enstrophy.

Similar considerations apply to many geophysical flows with the enstropy/vorticity replaced

by the potential enstrophy/potential vorticity (such as the shallow water equations), which

are stratified, quasi-2D turbulence.

Essentially all numerical models of the atmosphere are an example of large-eddy sim-

ulations, since the effective resolution of models is far coarser than the viscous scale. In

particular, this means that the effects of molecular viscosity can be neglected- the resolved

portion of the flow is inviscid. However, there exist very important interactions between

the resolved and unresolved scales . These can be parameterized as a viscous interaction

(and therefore represented using some form of dissipation), but there is growing evidence

([68],[138]) that such parameterizations ignore important effects such as the upscale cascade

of energy in 2D turbulence.

There are many possible ways to parameterize the subgrid interaction term. Implicit

LES models use numerical dissipation from the advection operator as a representation of the

subgrid interaction. Explicit LES models use an explicit representation of the subgrid term,
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typically either hyperviscosity or Smagorinsky-type diffusion. However, these parameteriza-

tions usually break other desirable features of the discretizations (such as steady geostrophic

modes, energy conservation etc.). In addition, they are unable to represent the upscale

cascade of energy from unresolved to resolved scales. An alternative to hyper-diffusion

and divergence damping is the anticipated potential vorticity method ([111],[20],[49]), which

conserves energy, dissipates enstrophy and preserves all of the other properties of the flow

(such as linear waves, steady geostrophic modes and PV compatibility). However, work by

Gassmann and Gilbert ([47],[50]) suggests that from an energetic perspective, Smagorinsky-

type diffusion is the correct physical representation of subgrid turbulence, especially in the

case of 3D flow.

2.4.1. Hypervisocity.

For the purposes of simplicity and comparison with other models, when dissipation is

required in the various test cases in Chapter 8, simple hyperviscosity is used. This is given

by:

(92)
B~u
Bt � ν ~∇2~u

where

(93) ~∇2~u � ~∇p~∇ � ~uq � ~∇T � p~∇T � ~uq � ~∇δ � ~∇T ζ

It is easy to see (by taking divergence and curl of the equation above) that this is equivalent

to

(94)
Bζ
Bt � ν ~∇2ζ
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(95)
Bδ
Bt � ν ~∇2δ

since

(96) ~∇ � ~∇2~u � ~∇2δ

(97) ~∇T � ~∇2~u � ~∇2ζ

Hyperviscosity of order 2p is obtained by simply iterating the relevant Laplacian operators

an additional p times.

2.5. Chapter Summary

The material in this chapter is entirely review (with the possible exception of the sym-

plectic operator for the vorticity-divergence formulation, but that is a trivial derivation from

the existing Poisson brackets in the literature) and no claims to originality are made.
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CHAPTER 3

Generalized C Grid Scheme

3.1. General Nonlinear Formulation (Discrete Exterior Calculus and

Discrete Hamiltonian)

As shown in the previous section, the rotating shallow water equations can be expressed

in terms of Hamiltonian mechanics. The Hamiltonian framework is very useful for looking

at conserved quantities. Therefore, presented below is a generalized scheme based on a

combination of discrete exterior calculus and Hamiltonian methods, that extends the 1981

Arakawa and Lamb scheme to arbitrary grids. This C grid framework draws heavily from

work by Todd Ringler, Joe Klemp, Bill Skamarock, John Thuburn, Collin Cotter, Thomas

Dubos and Hilary Weller (see [140],[102],[103] [135],[137],[153],[155] and [154]); and much of

the material presented is a combination of existing work in the literature.

Generally, the discrete exterior calculus aspect of the discretization is used to obtain

desirable linear mimetic properties, while the Hamiltonian aspect of the discretization is used

to obtain conservation properties. The combination of these two represents the realization of

Salmon’s desire for a constructive method for the development of total energy and potential

enstrophy conserving schemes. It gives a very general, extremely powerful framework for the

creation of discrete models on arbitrary grids that possess linear mimetic and conservation

properties. More details about Hamiltonian mechanics and Discrete Exterior Calculus are

provided in Appendices A and C, respectively.

3.1.1. Grids and choice of variables.

Consider a general polygonal grid and its associated dual grid, as described more in

Appendix B. The method outlined below places NO restrictions on the dual grid, provided
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Figure 3.1. Discrete variables and their staggering on the horizontal mesh

operators (really discrete Hodge stars) can be found that possess the required properties.

Generally, a choice of discrete Hodge star is equivalent to a choice of dual grid. Examples

of grid systems that are covered under this framework are: Voronoi-Delauney (and spherical

Voronoi-Delauney), including both hexagonal-pentagonal and triangular icosahedral grids;

and gnomic non-orthogonal cubed sphere grids. These are the vast majority of quasi-uniform

horizontal grids that are under consideration for next-generation weather and climate dy-

namical cores.

This approach is naturally a C grid type discretization, since vectors are associated with

a 1-forms (and n-1 forms, but we are in 2 dimensions so vectors are ONLY associated with

1-forms). Therefore, the mass variable mi lives on cells (as a primal 2-form), and the wind

variable ue lives at cell edges (as a dual 1-form). A detailed list of discrete variables is given

in Table 3.1, and diagram of their staggering on the grid is given in Figure 3.1. In Table

3.1, p refers to variables that live on the primal grid; while d refers to variables that live on

the dual grid. The number refer to the mesh element each variable is associated with (0 for

vertices, 1 for edges and 2 for cells). For example, p-2 is a variable that lives on primal cells;

while d-0 is a variable that lives on dual vertices.
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Table 3.1. List of discrete variables and their diagnostic equations

Variable Type Equation Description

mi p-2 Prognostic Mass
ue d-1 Prognostic Wind
bi p-2 Constant Topography
fv d-2 Constant Coriolis Force
Ce d-1 HCe � Fe Mass Flux

Fe p-1 Fe � δHkin

δue
Mass Flux

qv p-0 qv � ηv{hv Potential Vorticity
ζv d-2 ζv � D̄2ue Relative Vorticity
ηv d-2 ηv � ζv � fv Absolute Vorticity
Φi p-2 Φi � Ki � ghi Poisson Energy
hv d-2 hv � Rhi Mass
δi p-2 δi � D2Hue Divergence

Ki p-2 IKi � δHkin

δmi
Kinetic Energy

χi d-0 D2HD̄1χi � δi Velocity Potential
ψv p-0 -D̄2H

�1D1ψv � ζv Streamfunction

3.1.1.1. Operators.

Incidence Matrices. Incidence matrices describe the topological relationships between

geometric elements on the same (primal or dual) grid. Since we are working in two di-

mensions, there are four: D1,D2,D̄1,D̄2; where for example D1 maps from primal 0-form to

primal 1-form, and D2 maps from dual 1-forms to dual 2-forms. They are a discrete analogue

of the differential operator d, and therefore represent discrete divergence, gradient and curl.

Continuous properties such as ~∇T � ~∇ � 0 are automatically enforced by construction (ex

D2D1 � 0). These operators are defined purely topologically using the cell complex structure

from algebraic topology. Specifically, they are defined as:

(98) D2 �
¸

ePECpiq
ne,i

(99) D̄1 �
¸

iPCEpeq
�ne,i
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Figure 3.2. Diagram of the discrete exterior derivative D2 on a triangular
mesh. Obtained from http://brickisland.net/cs177/?p=274

(100) D̄2 �
¸

ePEV pvq
te,v

(101) D1 �
¸

vPV Epeq
te,v

The following properties hold:

(102) D2D1 � 0

(103) D̄2D̄1 � 0

(104) D2 � �D̄1
T

(105) D̄2 � DT
1

The action of the discrete exterior derivative is shown in Figure 3.2.

Hodge Star Operators. The discrete Hodge Star operators map between variables defined

on the primal grid and variables defined on the dual grid (in fact, they DEFINE the dual

grid). There are two types of discrete Hodge stars that are typically used: circumcentric (or
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Figure 3.3. Depiction of the action of the various Hodge star operators on
a uniform triangular grid. Obtained from
http://brickisland.net/cs177/?p=274

Voronoi) and barycentric. In this work, we will use exclusively circumcentric Hodge stars

(which are diagonal) with the exception of the dual 1-form circulations to primal 1-form

fluxes Hodge star H for cubed-sphere grids. Note that a discrete Hodge star induces a

discrete inner product. Of course, this process could be reversed: an inner product could be

used to define a Hodge star. This leads to mixed finite-element methods and is the basis of

the FEEC approach ([94]). The action of the Hodge star operators is shown in Figure 3.3.

The combination of the discrete exterior derivatives and the Hodge star operators induces

a De-Rham cohomology, shown in Figure C.1.

R and W. In addition to incidence matrices and Hodge stars described in Appendix C,

the rotating shallow water equations require two additional operators: R (which maps from

primal 2-forms to dual 2-forms, and is an analogue of the identity operator) and W (which

maps from primal 1-form fluxes to dual 1-form fluxes, and is an analogue of the contraction

operator plus sharp/flat operators, see [10] for more details). Note that the transpose RT

maps from primal 0-forms to dual 0-forms. Also note that W is distinct from H�1, which

maps from primal 1-form fluxes to dual 1-form circulations. The correct discretization of the

contraction and sharp/flat operators (to form a discrete calculus with analogous properties

to the continuous one) is an open research question. R is arbitrary, provided that it preserves
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Figure 3.4. The discrete DeRham cohomology induced by the incidence ma-
trices and Hodge stars

Figure 3.5. Actions of R and W for the C grid scheme

the global integral of the operand, and ensures that a constant operand remains constant. For

an R with a stencil given by CV , these reduce to
°
vPV CpiqRi,v � 1 and 1

Av

°
iPCV pvqRi,vAi �

1. The actions of R and W are shown in Figure 3.5.
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Q. The final operator required is the non-linear Coriolis operator Q, which maps from

primal 1-form fluxes to dual 1-form fluxes. There are many properties it should posses, which

are discussed in more detail below. Since this is the non-linear version of W, its continuous

counterpart is also a combination of the contraction operator and the sharp/flat operators.

Mass Flux and Kinetic Energy. We will also need an operator to construct the primal

mass flux from the staggered variables mi and ue. As discussed below, this flux reconstruction

must be compatible with the associated definition of kinetic energy (if total energy is to

be preserved). Fundamentally, the mass flux and kinetic energy both come from discrete

variational derivatives of the Hamiltonian (which implies the compatibility condition between

them).

3.1.2. Discretization.

Starting from the vector invariant equations in Hamiltonian form, we write a general

discretization as follows:

(106) J �

�
�� 0 �D2

�D̄1 Q

�
�


(107) H � 1

2
gpmi,mi � biqI � 1

2
pCe, ueqH � Hpot �Hkin

(108)
δH
δ~x

�

�
��IΦi

Fe

�
�
�

�
��IKi � gIpmi � biq

HCe

�
�
�

�
�� δHkin

δmi
� δHpot

δmi

δHkin

δue

�
�


(109) ~x � pmi, ueq
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where J is the discrete symplectic operator and H is the discrete Hamiltonian; D1, D2, D̄1

and D̄2 are discrete exterior derivatives (incidence matrices) that satisfy various properties

(see below); I,H and J are discrete Hodge star operators (diagonal for orthogonal grids,

non-diagonal for non-orthogonal grids); and Fe (primal 1-form) is the discrete mass flux,

Ce (dual 1-form) is the discrete mass circulation, Φi (primal 2-form) the discrete Bernoulli

function and Ki (primal 2-form) the discrete kinetic energy, respectively. As shown below,

Fe and Ki must be compatible in order for the resulting scheme to conserve total energy.

Note that the discrete functional derivative produces a dual 0-form and a primal 1-form,

as is required. These are the associated dual form counterparts of the predicted variables

(primal 2-form and dual 1-form).

Note that we can define

(110) CK
e � WFe � WHCe

and

(111) FK
e � HCK � HWFe � HWHCe

where CK
e is the dual edge mass flux (dual 1-form) and FK

e is the primal edge circulation

(primal 1-form). These various fluxes are defined by the choice of primal and dual grid

advection schemes. Careful selection of advection scheme will give total energy and potential

vorticity conservation. However, this is often at the cost of accurate advection, which is

discussed more below.
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Putting all of this together, the governing equations are therefore given as

(112)
Bmi

Bt �D2HCe � 0

(113)
Bue
Bt �QHCe � D̄1IpKi � gmi � gbiq � 0

3.1.2.1. Available Energy.

(114) HAPE � 1

2
gpmi � bi,mi � biqI � 1

2
gpm̄i � b̄i, m̄i � b̄iqI

(115) HUPE � 1

2
gpm̄i � b̄i, m̄i � b̄iqI

(116) m̄i � I�1

°
imi°
i I

�1

(117) b̄i � I�1

°
i bi°
i I

�1

3.1.2.2. Functionals.

Note that functionals such as total energy or potential enstrophy in this discretization

are expressed as discrete inner products (or the sum of several inner products). A discrete

functional derivative with respect to a particular form produces a result that is the associated

dual form. For example, the functional derivative of

(118) A � pAi, BiqI
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with respect to Ai (where Ai and Bi are primal 2 forms) is

(119)
δA
δAi

� IBi

which is a dual 0-form.

3.1.2.3. Discrete Hodge Decomposition.

As done in [135], all of the wind variables can be decomposed into non-divergent and

irrotational parts:

(120) ue � D̄1χi �H�1D1ψv

is the dual 1-form circulation and

(121) Hue � ve � HD̄1χi �D1ψv

is the primal 1-form flux. Note that χi is a dual 0-form and ψv is a primal 0-form (rather

than working in terms of 2-forms). This is useful, since many times initial conditions are

given in terms of functions (which are 0-forms). It would be trivial to work in terms of

2-forms (by adding I and J as needed). Also note that these can be calculated from the

divergence primal 2-form and vorticity dual 2-form as

(122) δi � D2Hue � D2HD̄1χi

(123) ζv � D̄2ue � �D̄2H
�1D1ψv
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A similar decomposition can be made for the other wind variables as

(124) uKe � Wve � WHue � H�1D1χv � D̄1ψi

is the dual 1-form flux and

(125) vKe � HuKe � HWHue � D1χv �HD̄1ψi

is the primal 1-form circulation. Note that χv is a primal 0-form and ψi is a dual 0-form.

Also note that these can be calculated from the divergence dual 2-form and vorticity primal

2-form as

(126) ζi � D2v
K
e � D2HD̄1ψi

(127) δv � �D̄2u
K
e � �D̄2H

�1D1χv

One key feature of the discretization above is that

(128) δv � Rδi

Continuous Wind Analogues. As also done in [135], we can associate each of the wind

variables (ue,ve,u
K
e and vKe ) with line integrals of the continuous wind ~u over primal or dual

edges:

(129) ue �
»
dual

~u � m̂dl
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(130) ve �
»
primal

~u � m̂dl

(131) upeerp �
»
dual

~u � ŝdl � �
»
dual

~uK � m̂dl

(132) vKe �
»
primal

~u � t̂dl � �
»
primal

~uK � n̂dl

where ~uK � k̂ � ~u; and m̂ is the unit tangent to the dual edge, n̂ is the unit normal to the

primal edge, ŝ is the unit normal to the dual edge and t̂ is the unit tangent to the primal

edge (see Appendix B for more details).

Non-Divergent Flow. If δi � 0 (and therefore χi � 0) then

(133) uKe � D̄1R
Tψv

and therefore

(134) ψi � RTψv

Thus, the streamfunction at cell centers is a (convex) interpolation of the streamfunction at

vertices.

Choice of Predicted Wind Component. The shallow water equations require ue, ve and

uKe . We choose to predict ue and reconstruct ve (through H) and uKe (through W). It would

be possible to work in terms of ve, but this would require H�1 in the nonlinear equations

(specifically, in Ki and in the diagnosis of qv from ζv � D̄2ue.). This is an issue, because

H�1 is dense for certain grids (such as the non-orthogonal cubed sphere).
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3.1.2.4. Poisson Bracket.

From this discretization, a discrete Poisson bracket can be constructed as

(135) tA,Bu � tA,BuR � tA,BuQ

where

(136) tA,BuR �
¸
i

δA

δmi

D2
δB

δue
�
¸
e

δA

δue
D̄1

δB

δmi

and

(137) tA,BuQ �
¸
e

δA

δue
Q
δB

δue

As in the continuous case, the time evolution of a general functional A is given by

(138)
dA
dt

� tA,Hu

The anti-symmetry of each of these brackets is manifest, using the fact that DT
2 � �D̄1,

along with Q � �QT . The choice of Q is arbitrary, provided it satisfies the conditions

discussed below.

3.1.2.5. Linearized Version (f � const).

As in continuous case, to get the linearized discrete system about a particular steady

state ~x0 (in our case, ~x0 � pH, 0q) we simply need to linearize the psuedo-energy associated

with that steady state (this gives the Hamiltonian of the linear system, see Appendix A)
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and evaluate J at ~x0. This yields:

(139) J �

�
�� 0 �D2

�D̄1
f
H

W

�
�


(140) H � 1

2
gpmi � bi,mi � biqI � 1

2
Hpue, ueqH

(141)
δH
δ~x

�

�
��gImi � bi

HHue

�
�


(142) ~x � pmi, ueq

where we have assumed that Q|q�q0 Ñ q0W, and W is defined below (it maps between

primal 1-forms and dual 1-forms, and is a discretization of the k̂� or perp operator). This

assumption is in fact a requirement for steady geostrophic modes and PV compatibility.

Note that we have also assumed that Fe Ñ Hue when linearized (this is embedded in the

form of the Hamiltonian given above); and that f is a constant. Putting this all together

yields:

(143)
Bmi

Bt �HD2Hue � 0

(144)
Bue
Bt � gD̄1Ipmi � biq � f

H
WHue � 0

for the linear evolution equations.
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ζ�δ Equivalent Equations. Following the procedure in [19], we can also derive equivalent

vorticity-divergence equations for the discrete linearized system. Define ζv � D̄2ue and

δi � D2Hue. By taking D2H and D̄2 of the linear ue evolution equation we obtain

(145)
Bζv
Bt � fD̄2WHue � 0

and

(146)
Bδi
Bt � fD2HWHue � gD2HD̄1Ipmi � biq � 0

Now define ζi � D2HWHue and δv � D̄2WHue so that these reduce to

(147)
Bζv
Bt � fδv � 0

and

(148)
Bδi
Bt � fζi � gLpmi � biq � 0

where L � D2HD̄1I. A key feature of the discretization above is that δv is a linear convex

combination of δi (128). However, in general ζi is NOT a linear convex combination of ζv,

unless the wind is non-divergent. These equations can inverted to obtain the original ue

evolution equation using the discrete Hemholtz decompositions, discrete gradient (D1 and

D̄1) and inverse discrete Laplacian operators. In fact, we can either predict δi and ζv using

the equations above, or predict ue and diagnose ζv and δi using ζv � D̄2ue and δi � D2Hue;

and the results will be the same.
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Poisson Bracket. A linearized Poisson bracket can also be constructed. It is identical to

the non-linear one, except that

(149) tA,BuQ � tA,BuW � f

H

¸
e

δA

δue
W

δB

δue

3.1.2.6. Linearized Version (f � variable).

The previous analysis can be be repeated for the case of variable f (as for example,

occurs on the sphere or the β-plane). The only change occurs in the Coriolis term, which

becomes

(150) Q Ñ Q|qv� f
H
� QL � f

H
W

The specific form that this takes depends on the expression for Q. The choice of Q will

influence the propagation behaviour of discrete Rossby waves, but not the discrete inertia-

gravity waves.

3.2. Linear Mimetic Properties

3.2.1. Linear Stability.

The conditions for linear stability are almost the same as those for non-linear energy

conservation: J � JT (div and grad are adjoints, Coriolis is self-adjoint) and the discrete

Hodge stars are symmetric-positive definite (total energy exists and is positive-definite).

There is no condition on the compatibility of the mass flux and kinetic energy, since functional

derivatives of the linearized Hamiltonian come directly from the Hodge stars (ie the mass flux

in the Hamiltonian is Hue instead of Fe). Another way of saying this is that the Hamiltonian

is now quadratic and does not contain mixed terms that require reconstruction when using

a staggered grid.
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The conditions on J are

(151) D̄1
T � �D2

which is a topological identity enforced by the construction of the incidence matrices (equiv-

alent to the adjointness of divergence and gradient operators in the continuous case); and

(152) WT � �W

which is just anti-symmetry of the Coriolis operator.

3.2.2. Geostrophic Balance and Vorticity Production.

Consider the general linearized discrete system and let ζv � D̄2ue be the vorticity dual

2-form. Its evolution equation (from above) is

(153)
Bζv
Bt � fD̄2WHue � gD̄2D̄1Ih � 0

Vorticity Production. The third term in this equation vanishes since D̄2D̄1 � 0 (this the

discrete analogue of ~∇T � ~∇ � 0, or that curl grad = 0). If it did not vanish, then the gradient

term would be an unphysical source of vorticity.

Geostrophic Balance/Steady Geostrophic Modes. The second term in this equation should

be an approximation to fδ, where δ is the divergence. In particular it should be zero when

D2Hue � 0. This is enforced by requiring that the divergence seen in the implied vorticity

equation is a weighted average of the divergence seen in the mass equation:

(154) RD2 � �D̄2W
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In fact, this condition (which implies that D̄2WD1 � 0, and WD1 � �D̄1R) is enough to

ensure that ANY non-divergent wind field can be balanced by a corresponding height field,

such that the resulting state is steady for the linear equations. Start by assuming that the

wind field is non-divergent (D2Hue � 0). Then it is immediately clear that Bmi
Bt � 0. From

the discrete Helmholtz decomposition, the wind can be written as

(155) Hue � �D1ψv

In order for Bue
Bt � 0, both the vorticity and the divergence must be steady. The vorticity

equation is

(156)
Bζv
Bt � fD̄2WD1ψv

This is zero if D̄2WD1 � 0. The divergence equation can be written as

(157)
Bδ
Bt � fD2HWD1ψv � gD2HD̄1Imi

which is zero if

(158) WD1ψv � g

f
D̄1Imi

Note that

(159) WD1 � �D̄1R
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and therefore if we define

(160) mi � �f
g

I�1RTψv

this equation is satisfied. Although any given non-divergent wind field can be balanced by

some height field, the converse is not necessarily true (see [136] for more discussion of this).

Particular choices of R and the resulting W are discussed in [140]. Note that the convexity

condition on R ensures that the global integral of both divergences will be the same, and

that a unique solution for W can be found.

3.3. Discrete Conservation

3.3.1. Mass.

Mass is automatically conserved (in local and global form) by the form of the discretiza-

tion above, for ANY choice of Fe. Similarly a dual grid mass equation can be defined as

(161)
Bmv

Bt �RD2HCe � 0

where mv � Rmi is a dual 2-form, and R is a convex interpolation operator that converts

from primal 2-forms to dual 2-forms. Since R is chosen to preserve the global integral of

quantities that it operates on, the dual grid mass is also globally conserved. In addition, the

relation between W and R ensures that the dual grid mass equation can be written an

(162)
Bmv

Bt �D2WHCe � 0
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which is in flux form and therefore conserves dual grid mass both locally and globally. Note

that we can predict mv directly, or diagnose it as Rmi at each timestep, and the result will

be the same. In practice, of course, only mi is predicted.

3.3.2. Total Energy.

Total energy conservation occurs in the same way as in the continuous system: by ensur-

ing that J is anti-symmetric, and that the Hamiltonian functional derivatives are compatible

(basically that the mass flux Fe and kinetic energy Ki both come from a functional derivative

of the same Hamiltonian). The first of these conditions is satisfied by requiring that

(1) D̄1 and D2 are adjoints (DT
2 � �D̄1; this is automatic when using incidence matri-

ces)

(2) Q � �QT (this is trickier)

The second of these conditions is satisfied by requiring that

(1) Fe and Ki are compatible (that is, δHkin

δmi
� IKi and δHkin

δue
� Fe � HCe for the same

H)

(2) Hodge stars (I,J,H) are symmetric and positive definite

Note that is is enough to specify an H and simply ensure that J is anti-symmetric: the

system will then conserve energy for ANY choice of H. However, it is often useful to be

able to make changes to Fe or Ki independently (to eliminate the Hollingsworth instability,

for example). Then energetic consistency can be restored by simply modifying Fe or Ki to

ensure compatibility. This is of course equivalent to defining a new Hamiltonian H. It is

also possible to relax strict energy conservation by choosing a more accurate definition of Fe

or Ki. This might be useful, for example, in cases where accurate advection of mass is more

important than energy conservation. The framework is flexible enough to allow this.
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3.3.3. Potential Vorticity.

3.3.3.1. Discrete PV Equation.

The absolute vorticity equation is given by

(163)
Bηv
Bt � D̄2QHCe � 0

which can be re-written as the mass-weighted potential vorticity equation

(164)
Bmvqv
Bt � D̄2QHCe � 0

where ηv � ζv � f � mvqv is the absolute vorticity dual 2-form, ζv � D2ue is the relative

vorticity dual 2-form, qv is the potential vorticity primal 0-form and mv � Rmi is the height

dual 2-form.

Compatibility. Compatibility is provided by the form of the discrete mass-weighted PV

equation, independent of the choice of Q. That is, the mass-weighted potential vorticity

equation is written in terms of a flux divergence.

Consistency. By combining the dual grid mass equation and the mass-weighted potential

vorticity equation (with qv � c a constant), it is easy to see that in order to obtain consistency

that D̄2Qqv�c � �RD2 must hold. Denote Qqv�c � W, as before. Therefore consistency

requires that D̄2W � �RD2. This is sufficient to ensure that an initially uniform qv field

will remain uniform for all time. Interestingly, this is same as the requirement earlier for

stationary geostrophic modes.
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3.3.4. Potential Enstrophy.

Using the discrete potential vorticity qv defined earlier, discrete potential enstrophy can

be defined as

(165) ZC � 1

2
pζv, qvqJ

Taking functional derivatives of this yields

(166)
δZC

δ~x
�

�
���RT q

2
v

2

D̄2
T
qv

�
�
�

�
���RT q

2
v

2

D1qv

�
�


Combining this with the general discrete J gives

(167) D2D1qv � 0

and

(168) �D̄1R
T q

2
v

2
�QD1qv � 0

The first equation is satisfied INDEPENDENT of the choice for R, it is purely topological.

The second equation is more complicated, and requires a careful choice for Q for a given

R. Using the relation RD2 � �D̄2W along with W � �WT , the second equation can be

re-written as

(169) WD1
q2
v

2
�QD1qv � 0

Using this form, it is easy to show that Q � qeW conserves potential enstrophy when qe is

the well-known arithmetic mean between values across an edge. However, this form is not
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energy conservative. Deriving a form for Q that is both total energy and potential enstrophy

conserving is much trickier, and has only been done for logically square orthogonal grids (for

which R � 1
4
; see [4],[129],[115]). A solution method for variable R is given below.

3.4. Summary of Required Operator Properties

The preceding discussion outlined the requirements on the various operators in order to

obtain desirable linear and nonlinear properties. These requirements are now summarized.

3.4.1. Incidence Matrices.

Using the discrete exterior calculus framework (incidence matrices) gives the following

four properties automatically for ANY grid:

(1) D2D1 � 0 (divergence of skew-gradient is zero)

(2) D̄2D̄1 � 0 (curl of gradient is zero)

(3) D2 � �D̄1
T

(divergence and gradient are adjoints)

(4) DT
1 � D̄2 (curl and skew-gradient are adjoints)

These properties ensure that a scheme does not have any spurious vorticity production, and

also that the linear pressure gradient terms conserve energy. They are also useful for both

total energy and potential enstrophy conservation. In addition, the flux-form formulation of

D1 and D2 ensure PV compatibility along with local and global conservation of mass and

dual mass.

3.4.2. Hodge Stars- I, J and H.

In order to obtain linear stability and total energy conservation (and more generally, to

ensure that discrete inner products exist and are positive definite), the discrete Hodge stars

I, J and H must be symmetric positive definite.
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3.4.3. R and W.

In order obtain steady geostrophic modes on an f-plane (along with a flux-form dual

mass equation, PV consistency AND linear PV conservation), then D̄2W � �RD2. In

order for the Coriolis force to be linearly energy conserving, W � �WT . Since R is a

convex interpolation function, there exists a unique solution for W.

3.4.4. Q.

There are three desirable properties that Q should posses:

(1) Q � �QT (gives total energy conservation)

(2) Q|qv�c Ñ cW (for various linear properties to hold, along with PV consistency)

(3) �D̄1R
T q

2
v

2
�QD1qv � 0@qv (gives potential enstrophy conservation)

Versions of Q that posses either properties 1 and 2 OR 2 and 3 for general non-orthogonal

polygonal grids have been previously developed. However, thus far, a Q that posses all three

of these properties has only been developed for orthogonal, logically square grids where

R � 1
4
. Note that this representation of potential enstrophy conservation shows that the

stumbling block is variable R, and not the orthogonality of the grid (which is encoded in

H). A generalization of Q for the case of variable R is discussed below.

3.4.5. Fe and Ki.

In order for there to be total energy conservation, Fe and Ki must be compatible in the

sense that

(170) Fe � HCe � δHkin

δue
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and

(171) IKi � δHkin

δhi

for the SAME Hkin � 1
2
pCe, ueqH. Additional discussion of this compatibility and an example

for a specific choice of H can be found in [135].

Table 3.2. Summary of required operator properties

Operator Properties Notes Mapping
I SPD Hodge Star p2 ->d0
J SPD Hodge star d2 ->p0
H SPD Hodge star d1 ->p1
W RD2 � D̄2W

W � �WT
Interior product (contraction) p1 ->d1

R Identity operator p2 ->d2

Q

Q � �QT

Q Ñ q0Q when qv � q0 is constant

�D̄1R
T q

2
v

2
�QD1qv � 0 @qv

Interior product (contraction) p1 ->d1

Importance of Various Properties. It is generally agreed that the mimetic properties

(linear stability, steady geostrophic modes on an f-plane, no spurious vorticity production

from the gradient term); mass and potential vorticity conservation; and PV compatibil-

ity/consistency plus a consistent dual mass equation are the most important characteristics

of for a numerical scheme to posses. These are encapsulated by the requirements 3.4.1-3.4.3

along with Q|qv�c Ñ cW. There is less consensus on the importance of total energy and

potential enstrophy conservation, and within this framework a choice must be made between

accurate mass and PV advection; and conservation. Some choices made in existing schemes

that fall under this framework are discussed below.
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3.5. Specific Schemes

The determination of a specific scheme requires choices for the Hodge star operators (I,

J and H), nonlinear Coriolis operator Q, interpolation operator R (which will determine

W), mass flux Fe and the kinetic energy Ki. There are many possible choices for these

operators that satisfy the properties discussed above.

Common Operators. All of the scheme discussed below make some common choices:

(1) I � 1
Ai

(2) J � 1
Av

(3) R � °
iPCV pvq

Aiv
Ai

(4) W defined from R using D̄2W � �RD2

The first two are the diagonal Voronoi (circumcentric) Hodge stars, the third one is an

interpolation operator (1st order for general grids, 2nd order for (SCVT grids?), and the

fourth is an analogue of the contraction operator (converts primal 1-form fluxes to dual 1-

form fluxes). Although R and W are 2nd order on uniform planar grids, W is 0th order on

quasi-uniform grids. As discussed in [137], there are O(1) errors that occur in W along the

lines joining pentagons on the geodesic grid, and along the panel edges on the cubed sphere

grid.

In general, provided H is symmetric positive-definite and Q Ñ cW when qv � c is

constant), the schemes below posses all of the linear mimetic properties (linear stability,

steady geostrophic modes on an f-plane, no spurious vorticity production from the gradient

term), mass and potential vorticity conservation; and PV compatibility/consistency plus a

consistent dual mass equation (with the exception of the non-symmetric H version of Weller

2014, see below). They differ in their ability to handle different types of meshes (Voronoi,

general orthogonal non-voronoi, non-orthogonal polygonal, etc.) and their treatment of the
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non-linear aspects such as Q, Fe and Ki, which influence their ability to obtain total energy

and potential enstrophy conservation.

3.5.1. TRiSK 2010/Thuburn 2012.

For TRiSK 2010 ([102]), the following choices are made:

(1) H � le
de

(2) Fe � meue and Ki �
°
ePECpiq

u2
e

4
; with me � 1

2

°
iPCEpeqmi

(3) Q � 1
2
QeW � 1

2
WQe OR Q � QeW

This scheme works only for an orthogonal grid. Note that Ae is defined as Ae � lede
2

in order

to ensure energy conservation. The first choice for Q gives an energy-conserving scheme,

while the second choice gives a potential enstrophy conserving scheme. Qe is a diagonal

operator on edges. In the total energy conserving scheme, it is arbitrary. Various choices have

been explored, including simple linear averaging and anticipated potential vorticity. In the

potential enstrophy conserving scheme, it must be midpoint averaging: Qe � 1
2

°
vPV Epeq qv.

3.5.2. Weller 2012.

For the Weller 2012 ([155]) scheme, the following choices are made:

(1) H � le
de

(2) Fe � meue and Ki �
°
ePECpiqAieu

2
e; with me � Aiehi�Ajehj

Ae

(3) Q � 1
2
QeW � 1

2
WQe OR Q � QeW

This scheme works only for an orthogonal grid. These are essentially the same choices as

made in TRiSK 2010, but with slightly different definitions for mass flux and kinetic energy.

The scheme actually reduces to TRiSK 2010 on a Voronoi grid, but it more accurate for non-

Voronoi grids. Note that spherical geometry is used for area calculations (which requires the

grid to be Pitteway, see Appendix B for more information). Also note that de � 2Ae
le

, instead
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of defining Ae through le and de. For the total energy conserving variant, Qe is defined using

either APVM or CLUST.

3.5.3. Weller 2014.

The Weller 2014 ([154]) scheme is identical to the Weller 2012 scheme (using the energy

conserving version of Q) except for the following:

(1) me is calculated using CLUST or some other advection scheme. Note that without

corresponding changes in the calculation of kinetic energy, this breaks total energy

conservation. However, since Q � �QT , the nonlinear Coriolis term still conserves

energy.

(2) qe is calculated using CLUST or some other advection scheme. This helps smooth

PV advection (and deal with the spurious Rossby wave modes on hexagonal or

geodesic grids).

(3) H is either the Thuburn 2014 symmetric H ([137]) or a non-symmetric H discussed

in ([154]) (this H becomes diagonal as grid becomes orthogonal).

This scheme works for both orthogonal and non-orthogonal grids. It does not conserve total

energy (unless the kinetic energy calculation is changed to be compatible with the definition

of me AND the symmetric H is used) or potential enstrophy. If the symmetric H is used,

it has all of the desirable linear mimetic properties. If the non-symmetric H is used, it no

longer has linear stability. However, the eigenvalues of the resulting linearized scheme are

very similar to the eigenvalues of the symmetric H linearized scheme. It is possible here

that the resulting instability is very weak, and therefore the scheme is stable in practical

situations (especially if any dissipation is added). This would be similar to the situation with

the 2nd order Adams-Bashford time stepping scheme, which has a weak linear instability

but is usable in practice.
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3.5.4. Thuburn 2014.

The Thuburn 2014 ([137]) scheme uses the following definitions:

(1) Fe comes from Hue and mi using the primal grid advection scheme

(2) CK
e � WFe and J�1qv are used to define QK

e � QFe using the dual grid advection

scheme

(3) Ki defined either via the TRISK 2010 approach (which is only 1st order on Voronoi

meshes, 0th order on CS meshes) or as Ki � |~ui|2
2
Ai, where ~ui is a constant vector

for each cell constructed to give a least-square best fit to the ue’s at the edges of

that cell.

(4) H is constructed to be symmetric positive definite, but does not become diagonal

as the grid becomes orthogonal.

This scheme works for both orthogonal and non-orthogonal grids. It provides a high degree

of flexibility in advection schemes for both mi and qv; and posses all of the desirable mimetic

properties. However, it does not conserve total energy or potential enstrophy.

3.5.5. Arakawa and Lamb 1981.

Although it was not recognized at the time (since the generalized framework was not

developed until 30 years later), the Arakawa and Lamb 1981 energy and potential enstrophy

conserving scheme (which works only for logically square orthogonal meshes) is a member of

the above general discretization family. By making the same choices as TRiSK 2010/2012,

with the exception of a different Q, one obtains both the square grid and logically square

orthogonal versions of AL1981. Note that one must also choose particular values for the

orientation of grid elements that define D1,D2 (although they are the logical ones for a

square grid).
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3.5.6. Arakawa and Lamb 1981 Extension (AL81-E).

The schemes above are interesting, but they do not represent a full extension of AL81

to arbitrary grids (primarily due to a lack of double conservation properties). What follows

reproduces all the desirable features of AL81 on arbitrary polygonal grids (except for extra

branches of the dispersion relationship on non-quadrilateral grids, which are unavoidable

with C grid schemes). The following definitions are used for kinetic energy and mass flux:

(172) Ki � φT
uTe Hue

2

(173) me � φImi

(174) Ce � meue

where φ � °
iPCEpeq

Aie
Ae

, and Aie and Ae are spherical triangular areas, and other geometric

quantities are similarly defined. Note that these reduce to the original AL81 scheme on

logically square, orthogonal meshes. All of the Hodge star operators are the circumcentric

Voronoi ones discussed above, except the H operator on cubed sphere grids which follows

Thuburn 2014. Three different variants of Q are chosen: one that conserves just total energy,

one that conserves just potential enstrophy and one that conserves both. They are given as

(175) Q � QeW

for the version that conserves only potential enstrophy, and

(176) Q � 1

2
QeW � 1

2
WQe
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for the version that conserves only total energy, where Qe is the arithmetic mean of qv across

dual edge. Note that both of these also satisfy

(177) Q Ñ c0W

when qv � c0 is a constant. The version that conserves both total energy and potential

enstrophy is discussed below.

3.6. Doubly Conservative Version of Q

The only remaining piece of the puzzle is the generalization of Q to arbitrary grids.

Q must be generalized because the derivation given in AL81 works only for the case of

R � 1
4
, which is valid for logically square orthogonal grids but not more general ones.

AL1981 achieves its desirable properties (total energy and potential enstrophy conservation,

mimeticity, etc.) by requiring that Q satisfies:

(1) Total Energy Conservation: Q � �QT

(2) PV Consistency: Qq�q0 Ñ q0W

(3) Potential Enstrophy Conservation �D̄1R
T q

2
v

2
�QD1qv � 0

General Form. Start from the Salmon 2005 ([116]) definition of Q via a discrete Poisson

bracket as

(178) tA,BuQ �
¸
i

¸
pe,e1qPEP piq

¸
vPV Cpiq

qvαe,e1,v
BpA,Bq
Bpue, ue1q

where αe,e1,v � αe1,e,v. The coefficients will be determined in a manner that ensures that the

three desirable properties from above hold. A diagram of this operator is shown in Figure

3.6.
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Figure 3.6. Diagram of doubly conservative Q operator. For a given edge
(denoted by the green circle), the potential vorticity flux is a weighted sum of
the mass flux at each red circled edge, where the weights are a linear combi-
nation of the potential vorticity at each blue circled vertex.

Energy Conservation. This form is automatically energy conserving due to anti-symmetry

of the δp,q
δp,q operator, INDEPENDENT of the choices of αe,e1,v.

PV Consistency. Ensuring PV consistency simply means that

(179) tA,BuQ Ñ q0tA,BuW

when qv � q0 � constant. This is equivalent to requiring that

(180)
¸

vPV Cpiq
αe,e1,v � we,e1

for every edge pair.

Potential Enstrophy Conservation. Start by noting that potential enstrophy conservation

implies that tF ,Zu � 0 for ANY functional F . By the chain rule, it will suffice to show this

for F � ue and F � mi. In fact, the condition that comes from mi reduces to D2D1 � 0 (as
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discussed in section 3.3.4) and will not be discussed further. So letting F � ue we have

(181) tue,Zu � tue,ZuQ � tue,ZuR � 0

where

(182) tue,ZuQ � QD1qv

(183) tue,ZuR � �D̄1R
T q

2
v

2

using δZ
δue

� D1qv and δZ
δmi

� �RT q
2
v

2
. In particular, this must hold at each edge (for each

ue). This yields

(184)
¸

e1PECP peq

�
� ¸
vPEV Cpe,e1q

αe,e1,vqv

�

 ¸
v1PV Epe1q

te1,v1q
1
v �

¸
iPCEpeq

p�ne,iq
¸

vPV Cpiq
Ri,v

q2
v

2

for every e. Both the left and right hand side of these equations are quadratic polynomials in

tv P CV Epequ where CV Epeq � V Epi1q Y V Epi2q and pi1, i2q � CEpeq. The coefficients in

these polynomial are linear combinations of the α’s. Since these equations must hold for ar-

bitrary qv, each coefficient in the polynomial for the LHS must be equal to the corresponding

coefficient for the RHS polynomial. This gives a large matrix system

(185) A~α � ~b

where each row in A and corresponding entry in~b are ONE of the coefficients in the LHS/RHS

polynomials; and ~α is the vector of unknown coefficients. This system can be solved (via

a least-squares approach) to yield a set of coefficients ~α such that Q conserves potential
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enstrophy. This procedure is essentially identical to the one employed in Salmon 2005.

Specifically, for each grid cell i, we have

(186) Av,v �
¸

e1PEV Epv,e,iq
αe,e1,vte1,vsgnpe, e1q

(187) Bv,v �
¸
i

ne,i
Ri,v

2
� Ri,v

2

where the sum occurs only when v P V Epeq;

(188) Av,v1 �
¸

e1PEV Epv1,e,iq
αe,e1,vte1,v1sgnpe, e1q �

¸
e1PEV Epv,e,iq

αe,e1,v1te1,vsgnpe, e1q

(189) Bv,v1 � 0

where e loops over each edge in i and pv, v1q is the set of vertex pairs in V CpiqxV Cpiq; and

EV Epv, e, iq � ECpiq X EV pvq � e. Note that sgnpe, e1q � 1 � �sgnpe1, eq, which ensures

that the scheme is energy conservative. Also note that coefficients in one cell are coupled

with adjacent cells when v P V Epeq or v1 P V Epeq.

Number of Equations. For each edge e, there are nv1pnv1�1q
2

� nv2pnv2�1q
2

� 3 equations,

where nv1 is the number of vertices for cell i1 and nv2 is the number of vertices for cell i2,

and pi1, i2q � CEpeq.

Number of Unknowns. For each cell i, there are nepne�1q
2

� nv coefficients, where ne is the

number of edges for cell i and nv is the number of vertices for cell i.

In practice, although there can be more equations than unknowns, the resulting system

in underdetermined since the equations are not all linearly independent. This results in
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there being a large number of free parameters. This freedom is dealt with in different ways,

depending on the grid (see below).

3.7. Results for Doubly Conservative Q

3.7.1. Uniform Grids.

On a uniform grid, the simplest possible schemes are homogeneous: they are the same

for each cell i. This means that the coefficients are the same for every cell i, which greatly

reduces the number of unknowns. In addition, it makes sense for a scheme to be symmetric

with respect to the underlying symmetries of the grid. This means, for example that a

uniform square grid scheme is symmetric with respect to 90 degree rotations, and that a

hexagonal grid scheme in symmetric with respect to 120 degree rotations. Note that these

symmetry properties are NOT required for potential enstrophy conservation (or the other

desirable properties of Q), but they help reduce the number of free parameters. They are

added on as additional equations in the matrix-vector system that is solved.

3.7.2. Uniform Square Grid.

As expected, the solution procedure reproduces the AL81 scheme, including its one free

parameter. This can be set as in AL81.

3.7.3. Uniform Hexagonal Grid.

The same procedure can be applied to the uniform hexagonal grid (with 120 degree

symmetry instead of 90 degree symmetry), and it yields a scheme with 8 free parameters.

These free parameters could be optimized to improve the dispersion relation for Rossby

waves, or for other purposes. However, instead they are allowed to take arbitrary values

dictated by the least-squares solver. Much effort was devoted to finding analytic values for

the parameters that could inspire a general analytic solution, but this was not found.
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3.7.4. PV Compatibility.

The astute reader will note that nothing has been said yet about enforcing PV compat-

ibility: QL � W. It was originally believed that PV compatibility would have to added as

additional equations in the matrix-vector system. However, it was found that Q was PV

compatible when ONLY potential enstrophy conservation is enforced (without symmetry

even). This corresponds with the results of Salmon 2004 ([115]), who did not explicitly add

PV compatibility, yet ALL of his schemes had this property.

3.7.5. Quasi-Uniform Spherical Grids.

On a quasi-uniform grid, the scheme is no longer homogenous; and the coupling between

coefficients in each grid cell becomes strongly undesirable due to computational concerns.

On realistic grids, the sparse linear least squares problem can be O(100 million) coefficients,

and is ill-conditioned. Following [140], the coefficients can be uncoupled by defining

(190) Bv,v � pRi,v

2
� Cqne,i

(191) Bv,v1 � Cne,i

when v P V Epeq or v1 P V Epeq, where C � �1{6. On all meshes tested (including uniform

square and uniform grid) there are enough degrees of freedom to do this, and the least-squares

problem has a unique, exact solution.

3.8. Other Desirable Properties

In addition to mimetic properties and conservation properties, it is desirable that a

discretization scheme posses other useful properties.
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3.8.1. Linear Modes.

A detailed study of the linear modes for this generalized C grid scheme on both planar

and quasi-uniform spherical grids is provided in Chapter 6. Some results are summarized

below.

Absence of Computational Modes. The discrete framework discussed above does not

posses any spurious stationary modes; at least on the grids investigated. On certain grids

(such as planar hexagonal or hexagonal icosahedral), it has spurious linear wave branches

([44]). On a hexagonal grid, the spurious branch will be low frequency Rossby waves, which

can be controlled through the use of proper choices in potential vorticity advection (see

[153]). However, on the triangular grid, there are two spurious branches of inertia-gravity

waves which are much harder to control. For this reason, it is advisable to use either square

or hexagonal based grids; and not triangular ones.

Good Wave Representation. The dispersion relation of the discretization above is deter-

mined by a combination of the discrete gradient and discrete Coriolis operators. For all of

the operator and grid combinations studied, the discrete dispersion relation exhibited some

of the same essential characteristics as the continuous one: monotonic increase of frequency

with wavenumber and a positive-definite group velocity. The isotropy of the resulting dis-

persion relationship is a function of grid (as expected), with the hexagonal grid being the

most isotropic. The well-resolved Rossby radius grid dispersion relationship did show arti-

ficial reductions in phase speed for higher-frequency waves, but this is an expected feature

for a finite-difference scheme. However, the dispersion relations all had a strong dependence

on Rossby radius (specifically, the ratio of the Rossby radius to the grid spacing). When

the Rossby radius was poorly resolved, the schemes exhibited pathological behaviour: the
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group velocity had the wrong sign and the dispersion relation decreased monotonically with

increasing wavenumber. This is a disadvantage of staggered grid schemes.

3.8.2. Grid Flexibility.

The general discretization scheme introduced above works on practically all quasi-

uniform spherical meshes under consideration (including both orthogonal and non-orthogonal

geodesic grids and cubed sphere grids), primarily through the choice of discrete Hodge star

operators (specifically, the H operator).

3.8.3. Order of Accuracy.

As shown in [96], using the type of schemes chosen above (nearest-neighbour finite

volume/difference) it is not possible to achieve higher than first-order accuracy on the type

of grids chosen (spherical polygons with geodesics for edges). Even this requires careful

grid optimization, and for the given operator choices has only been achieved on hexagonal-

icosahedral grids using the tweaking optimziation from [59]. In addition, the W operator

(and therefore all the given variants of the Q operator) is inconsistent on general grids.

3.9. Chapter Summary

The general discretization scheme presented above is an extension of the TRiSK scheme

(in particular, the approach presented in [135]). The scheme from [135] is shown to be a

quasi-Hamiltonian scheme, and the connections between the Hamiltonian approach and the

DEC approach are made explicit. In addition to clarifying and unifying existing work, two

major new contributions are made: conditions on the Q operator to obtain total energy

conservation, potential enstrophy conservation and PV consistency; and the development

of a version of the Q operator with these properties for variable R. This completes the

extension of AL81 to arbitrary, non-orthogonal polygonal grids started by the TRiSK team.
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A detailed study of the linear and non-linear properties of the resulting scheme is performed

in Chapters 5 and 6.
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CHAPTER 4

Generalized Z Grid Scheme

4.1. General Nonlinear Formulation

As shown in section 2.1, the rotating shallow water equations can be expressed in terms of

both exterior calculus and Hamiltonian mechanics. These are more natural frameworks than

vector calculus, since they generalize to arbitrary manifolds. In addition, the Hamiltonian

framework is very useful for looking at conserved quantities. Therefore, presented below

is a generalized discrete framework based on the vorticity-divergence formulation and the

Hamiltonian approach. It is inspired (and draws heavily) from the work of Rick Salmon

([117]).

This framework is not based on discrete exterior calculus (since we are dealing with

all collocated quantities, this makes sense). A DEC based vorticity-divergence framework

would place vorticity staggered from height/divergence, which would then suffer from similar

computational mode problems as the generalized C grid. A major motivation for using the

Z grid framework is the elimination of computational modes. Since DEC is used mostly to

obtain desirable linear mimetic properties, and those properties are automatically enforced

in the vorticity-divergence framework due to form, it does not seem necessary to incorporate

the full mechanics of DEC. Instead, the framework is based purely on the Hamiltonian

approach, which lends itself naturally to conservation properties. In fact, it is believed (but

not proven) that this framework is a mass-lumped version of P1 finite elements (which are an

example of finite element exterior calculus for the equations under consideration). However,

it is written in terms of incidence matrices on the primal and dual meshes (D2, D̄1 and D1)
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and also uses the same geometric quantities (Ai, le, de, ne,i and te,v) as the DEC scheme in

Chapter 3.

There are three discrete objects that must be defined: the discrete variable set ~x, a

discrete Hamiltonian H and a discrete symplectic operator (or equivalently, a discrete Poisson

bracket) J. The scheme is designed to work on orthogonal grids. Most of the motivation for

using non-orthogonal grids (specifically, the cubed-sphere grid) stems from a desire to avoid

computational modes associated with a mismatch of degrees of freedom, which are not an

issue on the Z grid. Since the icosahedral grid has is more uniform and has better operator

convergence, the inability to use the cubed-sphere grid does not seem to be a serious issue.

This discretization draws heavily from the work of Rick Salmon (Salmon 2007, [117]) and

the discretization below collapses to his for specific choices of grids (such as orthogonal planar

polygonal with a triangular dual or the perfect planar square grid). However, this framework

extends his results to icosahedral hexagonal-pentagonal grids. It is important to note that

the desirable properties of the scheme (mimetic, conservation, etc.) are entirely contained

in the discrete symplectic operator J and are independent of the choice of Hamiltonian H.

4.1.1. Discrete Variable Set.

The discrete prognostic variable set is given by

(192) ~x � phi, ζi, δiq

Note that the height hi, divergence δi and vorticity ζi are all co-located at the same points.

In addition to these prognostic variables, four diagnostic variables (Φi, χi, ψi and qi) are also

used. These variables are defined below, and their staggering on the grid is shown in Figure

4.1.
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Figure 4.1. Discrete variables and staggering for the generalized Z grid scheme

4.1.2. Functional Derivatives.

The functional derivative of a general functional F is defined as

(193)
δF
δxi

� Fxi �
1

Ai

BF
Bxi

The diagnostic variables (Φi, χi, ψi and qi) are defined through the functional derivatives of

the discrete Hamiltonian H and discrete Potential Enstrophy Z as

(194)
δH
δhi

� Φi

(195)
δH
δζi

� �ψi

(196)
δH
δδi

� �χi

(197)
δZ
δhi

� �1

2
q2
i
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(198)
δZ
δζi

� qi � hiηi � hipζi � fiq

(199)
δZ
δδi

� 0

where the discrete Potential enstrophy is defined as

(200) Z � 1

2

¸
cells

Aihiq
2
i �

1

2

¸
cells

Ai
η2
i

hi

4.1.3. Discrete Poisson/Nambu Brackets.

Following Salmon 2007, the general discretization starts from the Nambu brackets for the

shallow water equations in vorticity-divergence form. As long as these brackets retain their

triply anti-symmetric structure when discretized, total energy and potential enstrophy will

be automatically conserved for any definition of the total energy and potential enstrophy

(with one caveat explained below). In addition, the bracket structure ensures that this

conservation is local as well as global. That is, the evolution of a conserved quantity can

be written in flux-form for each grid cell, where cancellation of fluxes between adjacent cells

leads to the global integral being invariant. This is in contrast to a method that conserves the

global integral, but cannot be written in flux-form for each grid cell. Finite-element methods

are examples of methods for which this is true. The existence of local flux-form conservation

is a useful feature of discretization using Nambu brackets. In what follows below, we will

consider only the case where Z is the potential enstrophy, although this approach could be

easily generalized to arbitrary Casimirs (see [116] for an example of this on a uniform square

grid).
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Jacobian Brackets. Start by defining a ”Jacobian” along edges as

(201) JζpA,Bq � ne,2
δA

δζ2

δB

δζ1

� ne,1
δA

δζ1

δB

δζ2

where ζ1, ζ2 are the values at either side of an edge. Then the tF ,H,Zuζζζ bracket can be

discretized as

(202) tF ,H,Zuζζζ � 1

3

¸
edges

1

2
pD1RZζqJζpF,Hq � cycpF ,H,Zq

where R � °
iPCV pvqC maps from cells to vertices, and C is a constant that depends on the

grid. Note that this bracket is triply anti-symmetric, as required. The tF ,H,Zuδδζ bracket

can be similarly discretized as

(203) tF ,H,Zuδδζ �
¸
edges

1

2
pD1RZζqJδpF,Hq

using the same R operator. This bracket is only doubly-antisymmetric, but it will conserve

Z also on account of the fact that δZ
δδi

� 0. These brackets are essentially those encountered

when discretizing the Arakawa Jacobian, as detailed in [116].

Mixed Bracket. The mixed bracket is trickier since it contains an apparent singularity. On

closer inspection, this singularity cancels out when combined with the functional derivative of

the potential enstrophy. This is the caveat mentioned above- the discrete mixed bracket must

be constructed such that the apparent singularity cancels out with the functional derivative

of the potential enstrophy. With this in mind, the general form of the discrete mixed bracket

is given as:

(204) tF ,H,Zuδζh �
¸
edges

D̄1pZhqi
D̄1qi

le

de

�pD̄1FδqpD̄1Hζq � pD̄1FζqpD̄1Hδq
�� cycpF ,H,Zq
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By using a spherical geometry definition of le and de, this scheme works on arbitrary spherical

polygon grids, provided that they are orthogonal. Note that the definition of Z given above

(or more precisely, the definition of qi as a functional derivative of Z) ensures that the

apparent singularity D̄1pZhqi
D̄1qi

cancels. By inspection, this bracket is triply anti-symmetric

(and therefore, as shown below, will conserve total energy and potential enstrophy).

4.1.4. Discrete Hamiltonian and Helmholtz Decomposition.

The Hamiltonian H can be split into three parts: HFD, HJ and HPE. In the continuous

system we have

(205) H � HFD �HJ �HPE

where

(206) HFD �
»

Ω

dΩ
1

2h

�
~∇χ � ~∇χ� ~∇ψ � ~∇ψ

�

(207) HJ �
»

Ω

dΩ
2Jpχ, ψq

2h
�
»

Ω

dΩ
Jpχ, ψq � Jpψ, χq

2h

(208) HPE �
»

Ω

dΩ
1

2
ghph� 2hsq

These can be discretized as

(209) HFD � 1

2

¸
edges

le

de

pD̄1χiq2
he

� le

de

pD̄1ψiq2
he
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(210) HPE � 1

2

¸
cells

Aighiphi � biq

(211) HJ � 1

2

¸
edges

pD1
1

Rhi
qJpχi, ψiq

with

(212) Jpχi, ψiq � ne,2χ1ψ2 � ne,1ψ1χ2

where he �
°
iPCEpeq

1
2
hi and R is the cell to vertex interpolation operator from above.

Helmholtz Decompositions and Bernoulli Function. By taking variations of H we obtain

(213) δHPE �
¸
cells

gAiphi � biqδhi

(214)

δHFD � 1

2

¸
edges

le

de

pD̄1χiq2 � pD̄1ψiq2
h2
e

δhe �
¸
edges

le

de

pD̄1χiqpD̄1δχiq
he

�
¸
edges

le

de

pD̄1ψiqpD̄1δψiq
he

(215) δHJ � 1

2

¸
edges

D1
1

pRhiq2 RδhiJpχ, ψq � 1

2

¸
edges

D1
1

Rhi
δJpχ, ψq

These can be grouped (half of each term involving δhi goes to Φi and half to δi/ζi) to obtain

(216) δH � �χiδδi ��ψiδζi � Φiδhi

where (using the definition of functional derivative)

(217) Φi � δH
δhi

� 1

Ai
gphi � biq � 1

4

1

Ai
K
le

de

pD̄1χiq2 � pD̄1ψiq2
h2
e

� C

2

1

Ai
KD1

1

pRhiq2Jpχ, ψq
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(218) δi � 1

Ai
D2

1

he

le

de
D̄1χi � 1

2

1

Ai
D2pD1

1

Rhi
qψe

(219) ζi � 1

Ai
D2

1

he

le

de
D̄1ψi � 1

2

1

Ai
D2pD1

1

Rhi
qχe

where K � °
ePECpiq. The last two equations are the discrete version of the Helmholtz

decomposition, and form a pair of non-singular elliptic equations. They can be combined

into a single equation as

(220) A

�
��χi
ψi

�
�
�

�
��FD �JA

JA FD

�
�

�
��χi
ψi

�
�
�

�
��δi
ζi

�
�


where, for example, FDχi � 1
Ai
D2

1
he

le
de
D̄1χi and JAψi � 1

2
1
Ai
D2pD1

1
Rhi

qψe. Note that

(without the 1
Ai

factors) FD is symmetric and JA is anti-symmetric, which means that

A � �AT (ie A itself is skew-symmetric).Also note that when hi � H is a constant (and

therefore he � H), they reduce to

(221) δi � 1

H

1

Ai
D2

le

de
D̄1χi � 1

H
Lχi

(222) ζi � 1

H

1

Ai
D2

le

de
D̄1ψi � 1

H
Lψi

which is the correct linearization behavior.

Independence between choice of H and Nambu Brackets. It is important to note that the

mimetic and conservation properties of the discrete scheme are completely independent of

the choice of discrete Hamiltonian, provided the Hamiltonian is positive definite and pro-

duces invertible elliptic equations for the Helmholtz decomposition. If the resulting elliptic
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equations were singular, then the scheme would have a computational mode (as discussed in

Salmon 2007). Additionally, the discrete Helmholtz decomposition should also simplify to a

pair of uncoupled Poisson problems when linearized.

4.1.5. Discrete Evolution Equations.

By setting F � phi, ζi, δiq, the following evolution equations are obtained:

(223)
Bhi
Bt � �Lχi

(224)
Bζi
Bt � Jζpq, ψiq � FDpqi, χiq

(225)
Bδi
Bt � �LΦi � Jδpqi, χiq � FDpqi, ψiq

where L is the Laplacian, FD is the Flux-Divergence and J is the Jacobian. Note that these

operators on an icosahedral hexagonal-pentagonal grid are the same as those from [57]. The

only difference is in the arguments (qi instead of ηi, and different χi and ψi.)

Laplacian and Flux-Div Operators. The Laplacian and Flux-Divergence operators (which

come from the mixed bracket) can be written as

(226) Lαi � 1

Ai
D2

le

de
D̄1αi

(227) FDpαi, βiq � 1

Ai
D2αe

le

de
D̄1βi
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where αe �
°
iPCEpeq

αi
2

. Note that when αi � α0 is a constant, then

(228) FDpαi, βiq Ñ α0Lβi

Jacobian Operators. The Jacobian operators (which come from the Jacobian brackets)

can be written as

(229) Jδpqi, χiq � � 1

Ai
D2rpD1Rqiqpχeqs

(230) Jζpqi, ψiq � �1

3

1

Ai
D2rpD1Rqiqpψeqs � 1

3

1

Ai
D2rpD1Rψiqpqeqs

It is easy to see that both of these operators are zero if either argument is zero. In addition

Jδ will conserve kinetic energy. Jζ is anti-symmetric under interchange of its arugments,

and will conserve vorticity, kinetic energy and enstrophy: it is an Arakawa-Jacobian. These

properties suffice to ensure that the general discretization scheme conserves PV, total energy

and potential enstrophy. Note that on certain grids with certain choices of R, these operators

might have additional properties. For example, on a polygonal grid with a triangular dual,

using the choice C � 1
3
, Jδ is also an Arakawa Jacobian (in fact, Jδ � Jζ).

4.1.6. Discrete Sympletic Operator.

From the evolution equations and the definition of the discrete functional derivatives of

the Hamiltonian, it is clear that the discrete symplectic operator can be recovered from the

brackets as

(231) J �
�

0 0 L
0 �Jζpq,
q FDpq,
q
�L �FDpq,
q �Jδpq,
q
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where L � 1
Ai
D2

le
de
D̄1 is the discrete Laplacian, FDpq, 
q � 1

Ai
D2qe

le
de
D̄1 is the discrete flux-

divergence and Jpq, 
q is a discrete Jacobian. Note that there are two different Jacobian

operators- one that is used in the divergence equation and one that is used in the vorticity

equation.

4.1.7. Linear Version (f � constant).

As before, the linear version of the scheme is obtained by linearizing the Hamiltonian

H and the sympletic operator J about the point phi, δi, ζiq � pH, 0, 0q (which implies that

qi � f
H

), to yield

(232) Jlinear �
�

0 0 L
0 0 f

H
L

�L � f
H
L 0

�

(233) Hlinear � 1

2

¸
cells

1

Ai
gh2

i �
1

2H

¸
edges

le

de

�pD̄1χiq2 � pD̄1ψiq2
�

where we have used the fact that discrete Jacobian operators are zero when one of their argu-

ments (q in this case) is constant; and that the flux-divergence operators become Laplacian

operators when q is a constant. This is easy to see by contracting the discrete Nambu brack-

ets with respect to Z (to make discrete Poisson brackets) and then applying the condition

q � f
H

. The functional derivatives of the linear Hamiltonian are given as

(234)
δH
δhi

� ghi

(235)
δH
δζi

� �ψi
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(236)
δH
δδi

� �χi

where

(237) Lχi � Hδi

(238) Lψi � Hζi

Putting this all together yields the following evolution equations:

(239)
Bhi
Bt �Hδi � 0

(240)
Bζi
Bt � fδi � 0

(241)
Bδi
Bt � fζi � gLhi � 0

These are an exact analogue of the corresponding continuous equations, and do not require

the solution of elliptic equations.

4.1.8. Linear Version (f � variable).

The same analysis holds as before, except J will be different:

(242) J �
�

0 0 L
0 � 1

H̄
Jζpfi,
q 1

H̄
FDpfi,
q

�L � 1
H̄
FDpfi,
q � 1

H̄
Jδpfi,
q

�

In this case, elliptic equations must be solved to get χi and ψi.
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4.2. Linear Mimetic Properties

4.2.1. Linear Stability.

There are two conditions that must be fulfilled for linear stability: an anti-symmetric

Jlinear, and a positive-definite linear Hamiltonian Hlinear. Inspection of both reveals that

these are satisfied for arbitrary orthogonal polygonal grids.

4.2.2. Geostrophic Balance and Vorticity Production. In contrast to the C-

grid models, Z-grid models have geostrophic balance and no spurious vorticity production

”built-in”. The linear vorticity and mass equations are given by

(243)
Bhi
Bt �Hδi � 0

(244)
Bζi
Bt � fδi � 0

where Hδi � Lχi. Since the δi is the same in both equation, geostrophic modes are automat-

ically stationary. In addition, the vorticity equation does not have any spurious production

terms.

Existence of Geostrophic Balance. In fact, any non-divergent wind field can be balanced

by a corresponding height field. Let δi � 0 and Bδi
Bt � 0, then

(245)
Bζi
Bt � 0

and

(246)
Bhi
Bt � 0
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The divergence equation becomes

(247) �fζi � Lhi � 0

which can be rewritten as

(248) Lhi � f

g
ζi

The solvability of this easy to determine- since the Laplacian operator is negative (semi-

)definite (semi in domains with topology that supports a nullspace), there will be a unique

solution up to the nullspace of L.

4.3. Discrete Conservation

4.3.1. Mass.

The discrete mass equation is given by

(249)
Bhi
Bt � Lχi � 0

Since L can be written as D2Ae, where Ae is some quantity defined at edges, mass will be

automatically conserved (both locally and globally) by form regardless of what Ae is.

4.3.2. Energy and Potential Enstrophy.

Note that the discrete dynamics (by virtue of their triply anti-symmetric construction)

will conserve H AND Z for ANY definition of H and Z (subject to the caveat regarding Z

and the mixed bracket singularity discussed above), provided that H is symmetric positive

definite. As discussed in Salmon 2007, this conservation occurs due to flux exchange between
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adjacent cells (along with a discrete analogue of the conversion between potential energy and

kinetic energy).

Both the Jacobian and mixed brackets are written as a sum over edges, such that the

edge fluxes for a given grid cell are equal and opposite for adjacent cells. This ensures that

the energy and potential enstrophy are conserved locally as well as globally: in both cases

the time evolution of the total energy or potential enstrophy in a grid cell can be written

as the divergence of a flux, where the flux is equal and opposite between two adjacent grid

cells. In fact, both a kinetic energy and a potential energy equation can written for each grid

cell that share this property (there is of course a conversion term in each equation between

kinetic and potential energy that cancels when the total energy equation is formed).

The Hamiltonian above is positive-definite and leads to invertible elliptic equations for

the Helmholtz decomposition, which when combined with an anti-symmetric J ensures that

energy is conserved.

4.3.3. Potential Vorticity.

Discrete PV Equation. The discrete height and vorticity equations are given as

(250)
Bhi
Bt � Lχi � 0

(251)
Bηi
Bt � Jζpq, ψiq � FDζpq, χiq � 0

Noting that qihi � ηi, a mass-weighted PV equation can be written as

(252)
Bqihi
Bt � Jζpq, ψiq � FDζpq, χiq � 0
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Compatibility. Compatibility requires that the mass-weighted PV equation can be writ-

ten as the divergence of a flux; or as the divergence of a set of fluxes such that each flux is

equal and opposite between cells that share said flux. This will be sufficient to ensure both

local and global conservation of mass-weighted PV. Just as in the case of total energy and

potential enstrophy, the form of the Jacobian and Mixed Brackets ensures that this is the

case.

Consistency. Consider the mass-weighted PV equation when qi � q0 � constant. We

have

(253) q0
Bhi
Bt � Jζpq, ψiq|q�q0 � FDζpq, χiq|q�q0 � 0

Note that (by construction) Jζpq, ψiq � 0 when qi is constant; and that FDζpq, χiq Ñ q0Lχi

when qi is constant; therefore the mass-weighted PV equations will reduce to

(254) q0
Bhi
Bt � q0Lχi � 0

which corresponds with the discrete mass equation. Note that these are the same conditions

as those required to ensure that the fully nonlinear system collapses down to the linear

system. This makes sense, since the linear symplectic operator is obtained by evaluating the

full symplectic operator at the point of linearization (which has constant q).

4.4. Schemes

The specification of a scheme from this general family requires a process for determining

geometric quantities (Ai, le and de) and the constant C (from R). In all of the schemes

presented below, Ai is determined by decomposing the polygonal element into planar (or

spherical) triangles, and then applying the relevant formulas. The edge lengths are simply
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the geodesic distances between the relevant points (straight lines on the plane, geodesic arcs

on the sphere). The constant C is given by 1
n
, where n is the number of grid elements in

CV pvq (equal to 4 for quadrilateral elements and 3 for triangular elements).

4.4.1. Salmon 2007 Perfect Square Grid (PS).

On a perfect square grid with spacing ∆ (which is orthogonal and logically square), the

geometric quantities are very simple: Ai � ∆2 and le � de � ∆. Also, since the dual grid

is composed purely of quadrilaterals, C � 1
4
. Plugging these choices into the general scheme

above recovers the first scheme presented in Salmon 2007 (with the caveat that a particular

orientation of grid elements has been assumed).

4.4.2. Salmon 2007 Triangular Grid (TG).

For a general orthogonal polygonal grid with a triangular dual, the geometric quantities

must be computed for each grid element. However, the dual grid is composed purely of

triangles and thus C � 1
3
. Again, by plugging these operators into the general scheme above

we recover the second scheme presented in Salmon 2007. Our scheme is written using le

and de instead of cot θ (and in terms of Ai instead of Av), but is is well known that the

DEC Laplacian using the Voronoi dual (which is our scheme) is equivalent to the cotangeant

formulation of the Laplacian (which is the Salmon 2007 triangular grid scheme). Salmon did

not present a form for the Hamiltonian in this scheme, while we do. Our scheme also works

on icosahedral hexagonal-pentagonal grids, not just planar grids.

4.4.3. Future.

The scheme discussed above is generally first order on icosahedral grids (and the Jacobian

is 0th order), and it would be desirable to have an extension of it to higher-order. Although it

would certainly be possible to do this using the existing finite-difference framework, it is likely
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that the grids would have to have special properties. A more general approach is to use finite

or spectral element methods instead, which have much more geometric flexibility. In fact,

considerations from finite element exterior calculus suggest that it would be possible to derive

an energy and potential enstrophy conserving scheme on both simplices and quadrilaterals

using either Pn continous elements, or DGn discontinous elements. In particular, both

the spectral element and Discontinuous Galerkin methods should be feasible on the cubed-

sphere, in a manner that conserves both energy and potential enstrophy. It is believed (but

not proven) that the generalized scheme described above is in fact a mass-lumped, P1 finite

element scheme (on simplices) of precisely this type.

4.5. Other Desirable Properties

In addition to mimetic properties and conservation properties, it is desirable that a

discretization scheme posses other useful properties.

4.5.1. Linear Modes.

A detailed study of the linear modes for this generalized Z grid scheme on both planar

(constant f) and quasi-uniform spherical grids (both constant and variable f) is provided in

Chapter 5. Some results are summarized below.

Absence of Computational Modes. The discrete framework discussed above does not

posses any spurious stationary modes OR spurious linear wave branches; at least on the

grids investigated. This is a strong advantage of the Z grid formulation.

Good Wave Representation. The inertia-gravity wave dispersion relationship of the un-

staggered vorticity-divergence scheme presented above is determined ENTIRELY by the

spectrum of the discrete Laplacian (exactly as in the continuous case). For all of the Lapla-

cian/Grid combinations studied, the discrete dispersion relationship exhibited the same
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essential characteristics as the continuous one: monotonic increase with wavenumber, a

positive-definite group velocity, and insensitivity to Rossby radius. The isotropy of the re-

sulting dispersion relationship is a function of grid (as expected), with the hexagonal grid

being the most isotropic. This is in strong contrast to the A and C grid dispersion relation-

ships, which had issues with at least one of these features. The Z grid dispersion relationship

does show artificial reductions in phase speed for higher-frequency waves, is expected from

a finite-difference scheme.

4.5.2. Grid Flexibility.

The general discretization scheme introduced above works only on icosahedral hexagonal-

pentagonal meshes (more generally on orthogonal polygonal meshes with a triangular dual);

and on perfect planar square meshes; it does not work on non-orthogonal grids such as the

cubed sphere. However, the main motivation for using a cubed-sphere grid is the avoidance of

spurious branches of the dispersion relationship associated with a mismatch of wind/height

dofs. Since the Z grid does not suffer from this, and the icosahedral hexagonal-pentagonal

grid offers better accuracy, there seems to be little motivation for using a cubed sphere grid.

4.5.3. Order of Accuracy.

The general discretization scheme presented above is approximately first order on opti-

mized quasi-uniform spherical grids, while the Jacobian operator is 0th order. However, the

general approach of using triply anti-symmetric Nambu brackets along with some discrete

Hamiltonian (whose precise definition does not effect the conservation or mimetic properties

of the scheme) is amenable to higher order-discretizations. It would be fairly trivial to ex-

tended the approach presented above to fourth-order on logically square, orthogonal grids

(as discussed in Salmon 2007). Non-orthogonal grids and general polygonal grids would be
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trickier, and as discussed above it is likely that a finite-element based approach would be

preferable for that type of grid.

4.5.4. Absence of Hollingsworth Instability.

There is no evidence of the emergence of Hollingsworth Instability in multi-level vorticity-

divergence models. This is probably because there is no error term in the discrete quasi-

geostrophic equations that are derived from the full equations.

4.6. Chapter Summary

The generalized scheme presented above extends the work of Salmon 2007 to spherical

orthogonal polygonal grids, including the icosahedral grid. In particular Salmon 2007 only

presented a full scheme for perfect square grids, and gave only the brackets (not the Hamil-

tonian) for the case of a general planar orthogonal polygonal grid. This work also shows

that the generalized scheme posses the desirable mimetic and PV dynamics properties.
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CHAPTER 5

Linear Modes

An important component of a numerical scheme for the rotating shallow water equations

are the linear modes associated with the scheme. This includes both the discrete representa-

tion of the continuous linear modes (inertia-gravity and Rossby waves; also physical station-

ary modes such as the hydrostatic mode and geostrophic modes), and any spurious linear

modes. This chapter investigates the linear modes of the generalized schemes presented in

Chapter 3 and Chapter 4, with a focus on the linear modes for quasi-uniform spherical grids.

It also incorporates the effects of dissipation (in the form of viscosity). Investigation of the

linear modes for quasi-uniform grids using a very similar discretization scheme has been done

before in Weller 2012 ([155]). However, this work extends that study in several key ways:

(1) More accurate determination of the linear system matrix A

(2) Uses a true cubed-sphere grid (instead of a ”Voronoized” cube)

(3) Looks at the effects of dissipation (in the form of viscosity)

Where possible, comparison will be made between the results obtained in [155] and the

results obtained here.

5.1. Continuous Equations

From Chapter 2, the linearized rotating shallow water equations without topography

can be written as

(255)
Bh
Bt �H~∇ � ~u � 0
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(256)
B~u
Bt � fk̂ � ~u� g~∇h � 0

which in vorticity-divergence form are

(257)
Bh
Bt �Hδ � 0

(258)
Bζ
Bt � Jpf, ψq � ~∇ � pf ~∇χq � 0

(259)
Bδ
Bt � Jpf, χq � ~∇ � pf ~∇ψq � g~∇2h � 0

In the case of constant f the latter two equations reduce to

(260)
Bζ
Bt � fδ � 0

(261)
Bδ
Bt � fζ � g~∇2h � 0

5.1.1. Stationary Modes (Constant f).

A stationary mode occurs when the time derivatives of the evolutions equations are all

equal to zero: in other words, it is a steady state.

5.1.1.1. B~u
Bt � 0 Ñ Geostrophic Balance.

Geostrophic balance occurs when the time derivative of the wind is zero, or in the

vorticity-divergence formulation, when the time derivative of the divergence is zero. This

implies that:

(262) g~∇h� f~uKgeo � 0
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or equivalently that

(263) ~ugeo � k̂ � ~∇phg
f
q

In the vorticity-divergence formulation, we have

(264) fζgeo � g∇2h � 0

or equivalently that

(265) ζgeo � ∇2phg
f
q

These two formulations are equivalent, which can be seen by computing the vorticity

from the geostrophic wind. Alternatively, one could compute the streamfunction from the

vorticity, and then the geostrophic wind from the streamfunction.

5.1.1.2. Bh
Bt � 0 Ñ Non-Divergent Flow.

Non divergent flow occurs when the divergence is set to zero, which means that the

time derivative of the height and vorticity equations are both zero. Thus by the Helmholtz

decomposition we have

(266) ~und � k̂ � ~∇ψ

where ψ is the streamfunction.
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5.1.1.3. B~u
Bt � 0 Ø Bh

Bt � 0 (Existence of Geostrophic Balance).

Start by taking the divergence of the geostrophic wind. This is:

~∇ � ~ugeo � ~∇ � pk̂ � ~∇phg
f
qq(267)

� g

f
~∇h � p~∇� k̂q � g

f
k̂ � p~∇� ~∇hq(268)

� 0(269)

since the first term is zero because k̂ is a constant and the second term is zero because

~∇� ~∇A � 0 for any scalar field A. So the geostrophic wind is non-divergent.

Now consider a general non-divergent wind field. Note that ∇2ψ � ζ � ~∇K � ~u by

definition and that ~uK � �~∇ψ, where ψ is the streamfunction. Plugging this into the wind

equation gives

(270) ~∇ψ � ~∇
�
gh

f




Therefore, there is a corresponding non-unique height field such that geostrophic balance

holds. The non-uniqueness of the height field comes from the fact that the kernel of the

gradient operator will in general be non-zero (on the doubly periodic plane or sphere, it

contains constant functions).

5.1.1.4. Geostrophic and Hydrostatic Adjustment.

On large scales, the real atmosphere exists in a state of near-geostrophic and hydrostatic

balance. Perturbations to this balance result in the radiation of inertia-gravity and sound

waves that act to restore the atmosphere to the balanced state. This is an important physical
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process and it is widely believed that a dynamical core needs to be able to simulate this

process correctly. Accurate representation of inertia-gravity waves is an important first step.

5.1.1.5. Hydrostatic Mode.

A special case of the geostrophic mode is the hydrostatic mode, which corresponds to

~u � 0 and h � const. It reflects the fact that only differences in fluid height play a physical

role in the linearized shallow water system, not the absolute height of the fluid. Note that

the geostrophic and hydrostatic mode are the ONLY physical stationary modes.

5.1.2. Propagating Modes (Inertia-Gravity Waves).

The other type of linear mode for physical systems is a propagating mode, that is,

one that changes in time. Typically, these modes are assumed to be decomposable into the

appropriate spatial and temporal basis functions for a given spacetime configuration. For the

rotating shallow water equations, this means time variation that looks like eiσt. Combined

with our assumption about continuity in time, this gives B
Bt Ñ iσ. We will consider both the

f-plane/f-sphere (which admits only inertia-gravity waves) and the full-sphere (which admits

both inertia-gravity and Rossby waves), again without topography.

5.1.2.1. Wave Dynamics: Phase and Group Velocity.

Consider a standard one dimensional spatiotemporal plane wave of the form:

(271) Apx, tq � Âeipkx�ωtq

with spatial wavenumber k, temporal frequency w and amplitude Â. Note that the wavenum-

ber is related to the wavelength λ by k � 2π
λ

; and the frequency is related to the period T

by T � 2π
ω

. The phase speed or velocity of such a wave is described by

(272) cp � ω

k
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Now consider a group of such waves where ω � ωpkq. The group velocity cg is defined by

(273) cg � dω

dk

Waves whose phase velocity does not depend on wavenumber are called non-dispersive, since

a group of such waves will retain their initial structure. If the individual wavenumbers

travelled at different speeds, the packet would tend to spread out (disperse) over time. It

is well known that the energy associated with a wave packet travels at the group velocity,

not the phase velocity. Shallow water waves are non-dispersive: their phase velocity is

independent of wave number. As will be seen, this is no longer the case for a numerical

scheme. Such numerical dispersion is a hallmark of all discrete approximations (with the

exception of a spectral model that explicitly decomposes a solution in terms of the basis

functions that represent individual waves).

5.1.2.2. Continuous RSW.

The propagating normal modes of the shallow water system are analysed by first lin-

earising about a reference state (ignoring topography), then assuming wave-like solutions.

Physically, these are the various types of waves in the system: intertia-gravity and Rossby

waves. Plugging this assumed solution into the linearised equations gives the dispersion

relation. Three cases are examined below: the f-plane, the f-sphere and full sphere.

5.1.2.3. f-plane.

The f-plane is a doubly periodic plane with constant f . Assume plane wave solutions of

the form:

(274) θpx, y, tq � θ0e
ikxeilye�iσt
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where θ is some variable, θ0 is a constant, k and l are the horizontal wavenumbers in the

x and y directions and σ is the frequency. These wave solutions are appropriate since the

natural Laplacian basis for the double periodic plane is a double Fourier series. By plugging

these assumed solutions into the linearized shallow water equations we get the dispersion

relation:

(275) σpσ2 � f 2 � gHpk2 � l2qq � 0

or equivalently

(276) pσ
f
q2 � 1 � pλ

d
q2ppkdq2 � pldq2q

where λ2 � gH
f2 is the Rossby radius of deformation (this is the conventional non-dimensionalization

of the problem) and the σ � 0 root has been dropped (it corresponds to geostrophic modes).

For comparison with numerical methods later, a factor of d (grid spacing) has been intro-

duced. These waves are inertia-gravity waves, since the restoring force is a combination of

gravity and the Coriolis force. The number C � λ
d

measures the ratio of the Rossby radius of

deformation to the grid spacing: it is a measure of how well-resolved waves are on the grid. A

large value indicates well-resolved modes, a small value poorly resolved modes. Modern hor-

izontal resolutions imply that most intertia-gravity waves are well-resolved. However, as the

shallow water equations can be regarded as an analogue for the primitive equations in isen-

tropic coordinates, it is still important to consider small values of C since high wavenumber,

vertical, internal modes are often still poorly resolved at current resolutions.

General Properties. By convention, k ¡ 0 and l ¡ 0, which means that the K � 0 case

is unphysical (where K2 � k2 � l2. This can also be seen simply from the assumed form
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of the waves: K � 0 implies a wave that has infinite wavelength (and is therefore constant

everywhere). However, such by plugging such a wave into the original equations, it is easy

to see that it will not propagate. This is not consistent with the dispersion relation, which

states that such waves will have a frequency of f . The positive-definiteness of K implies

that ALL inertia-gravity waves on an f-plane have a frequency greater than the Coriolis

frequency f . Since the domain is bounded, there will be a minimal wavenumber in each

direction given by the size of the domain in that dimension; however, there is no maximal

wavenumber. The frequency increases monotonically with increasing wavenumber and is

isotropic in wavenumber space. However, the dispersion relation solution is not unique- a

given frequency has multiple wavenumber pairs associated with it (these wavenumber pairs

are found by interchanging k and l; this is another consequence of isotropy). On the plane,

every wavenumber pair with an equal value of K2 � k2 � l2 will have the same frequency.

In addition, each frequency comes in a positive and negative sign. In the case that f � 0,

the inertia-gravity waves become non-dispersive. These are all properties that a numerical

model should replicate (or there should be good reasons for not satisfying them; in particular

there will always be a maximal wavenumber that is resolvable on a grid due to the finite

nature of computational meshes).

Non-Rotating Case. In the case that f � 0 (non rotating gravity waves), the dispersion

relation becomes

(277) σ2 � gHK2
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where K2 � k2 � l2 and there are no longer any geostrophic modes. Note that the phase

speed becomes

(278) cp � ω

k
�
a
gH

ie the non rotating gravity waves are non-dispersive. In addition, the flow is purely divergent;

more correctly, any vortical portion of the flow does not contribute to the linearized dynamics.

5.1.2.4. f-sphere.

The f-sphere is a spherical surface with constant f - note that this is a mathematical

construct that has no physical analogue, since such a sphere would have to rotate infinitely

fast at the equator in order to have a non-zero value of f there. The advantage of this

construct is that the effects of spherical geometry can be taken into account without having

to deal with latitudinal variation of the Coriolis parameter. In particular, there are still

stationary geostrophic modes and the only physical propagating modes are inertia-gravity

waves.

A similar procedure to that utilized for the f-plane can be carried out using the spherical

harmonics Y n
mpλ, sinφq as spatial basis functions (again since they are the natural laplacian

basis), where λ is the longitude and φ is the latitude. This yields a dispersion relationship

([140]) of

(279) σpσ2 � f 2 � npn� 1q
a2

gHq � 0

where a is the radius of the Earth and n must be an non-negative integer. There are two

cases to consider. The first is n � 0, for which only the σ � 0 root is physical (corresponds to

the hydrostatic mode). When n � 0 and σ � 0, there is again the problem of a propagating
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solution that is constant in space everywhere (which is not consistent with the evolution

equations). The second case is n ¥ 1, in which case there are 2n � 1 linearly independent

spherical harmonics corresponding to m � �n, . . . , 0, . . . , n. For each pair of pn,mq, all three

roots are physical with the σ � 0 root a geostrophic mode and the others inertia-gravity

waves.

General Properties. By convention, the spherical harmonics have n ¥ 0 andm � �n, . . . , 0, . . . , n,

with both m and n integers. The minimal wavenumber for propagating modes is n � 1. The

frequency increases monotonically with increasing n but it is independent of m. Therefore,

there are 2n�1 linearly independent propagating modes, each with the same frequency. Each

frequency also comes in a positive and negative pair. In the case that f � 0, the inertia-

gravity waves become non-dispersive. These are all properties that a numerical model should

replicate (or there should be good reasons for not satisfying them; in particular there will

always be a maximum wavenumber that is resolvable on a grid due to the finite nature of

computers).

5.2. Discrete Equations

For convenience, presented below are the linearized versions of the general C and Z grid

schemes from Chapters 3 and 4 (without topography). These general formulations will

be useful in analysing the linear modes (stationary and propagating) of various schemes.

5.2.1. Linear Schemes.

By definition, the time evolution of a linearized scheme can be written as

(280)
B~x
Bt � A~x
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where ~x is the vector of discrete degrees of freedom, and A is the evolution matrix. This

equation forms the basis of analyzing the linear modes of the discrete system, since they

are determined entirely by the properties of A. Specific examples of ~x and A for various

schemes are presented below.

5.2.2. C Grid Scheme.

The linearized version of the generalized C grid scheme from Chapter 4 is

(281)
Bmi

Bt � �HD̄2Hue

(282)
Bue
Bt � HQLHue � D̄1Imi

where QL is the discrete bilinear Coriolis operator. For the three variants discussed in

Chapter 3, it is given as

(283) QL,TE � W
fve � fve1

2

(284) QL,Q � fveW

(285) QL,TEQ �
¸

e1PECP peq
p
¸

vPV Cpiq
αe,e1,vfvq

Note that when fv � f is a constant, all three variants reduce to

(286) QL � fW
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This is a side-effect of the condition of PV compatibility. In matrix form, this can be written

as

(287)
B~x
Bt � iω~x � A~x

where ~x � pmi, ueq and

(288) A � �
0 �HD

�gG Q

�

and

(289) D � D2H

(290) G � D̄1I

(291) Q � QLH

Scaling. For comparison with other schemes (that use point values), these matrices are

scaled by

(292) D � IDE�1

(293) G � EGI�1

(294) Q � EQE�1
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which ensures that we are working with point values for all variables. Then ~x becomes

phi, veq where hi � Imi and ve � Eue.

5.2.2.1. Dissipation.

Momentum dissipation in the form of viscosity can be added to the scheme as

(295) Anew � Aold �Adissip

where

(296) Adissip �
�

0 0
0 νccCC�νgdGD

�

where CC � �H�1D1JD̄2 and GD � D̄1ID2H . The generalization to hyperviscosity ~∇2p

is

(297) Adissip �
�

0 0
0 νccCCp�νgdGDp

�

which relies on the relations D2D1 � 0 and D̄2D̄1 � 0.

5.2.3. Z Grid Scheme.

The linearized scheme from Chapter 4 can be written (assuming no topography) as

(298) J �
�

0 0 H
0 � 1

H
Jζpfi,
q 1

H
FDpfi,
q

�gL � 1
H
FDpfi,
q � 1

H
Jδpfi,
q

�

with Hamiltonian functional derivatives given as

(299)
δH
δ~x

�
�
ghi
�ψ
�χ
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and

(300) L�1H̄δ � �χ

and

(301) L�1H̄ζ � �ψ

where ~x � phi, ζi, δiq. This can all be put together to yield

(302) A �
�

0 0 �H
0 Jζpfi,L�1
q �FDpfi,L�1
q

�gL FDpfi,L�1
q Jδpfi,L�1
q




In the case of constant f this reduces to

(303) A �
� 0 0 �H

0 0 �f
�gL f 0

	

5.2.3.1. Dissipation.

Momentum dissipation in the form of viscosity can be added to the scheme as

(304) Anew � Aold �Adissip

where

(305) Adissip �
�

0 0 0
0 νccL 0
0 0 νgdL

	

The generalization to hyperviscosity ~∇2p is

(306) Adissip �
�

0 0 0
0 νccLp 0
0 0 νgdL

p
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5.3. Numerical Stationary Modes

Numerical stationary modes of a general linear system exist when

(307)
B~x
Bt � A~x � 0

where A is the evolution operator matrix for the system. Thus we see that the stationary

modes of a particular scheme are connected to the nullspaces of various discrete operators.

As discussed prior, a discretization scheme might posses spurious stationary modes.

These are non-propagating modes (typically around grid-scale) that do not have a corre-

sponding physical counterpart. Such modes are often damaging, since non-linear processes

can lead to a build-up of energy in these modes which contaminates the solution. Generally,

spurious stationary modes arise when the kernel dimension of the discrete operator matrix

is not the same as the kernel dimension of the corresponding continuous operator.

5.3.1. Stationary Modes for Vector Invariant Formulation.

General Form for Stationary Modes. Starting from 288 and assuming B
Bt � 0, the vector

invariant linear shallow water equations in discrete matrix form reduce to

(308) HD~u � 0

(309) fQ~u� gG~h � 0

This is equivalent to the requirement that A~x � 0. In order for these equations to hold,

both ~u and ~h must satisfy them. The first one gives that either ~u � 0 or ~u P KpDq. The

second one gives that either ~h � 0, ~h � const or ~h � geostrophic; and that either ~u � 0,
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~u P KpTq or ~u � geostrophic. Putting these possibilities together gives a classification of

the stationary modes.

5.3.1.1. Zero Mode/Hydrostatic Mode.

When ~u � 0 and ~h � 0 or ~h � const (assuming that the gradient operator gives zero

when ~h � const, which is a condition for 0-th order consistency of the gradient operator),

this is the hydrostatic mode. Ideally G will have rank 1 and the only mode will be the

hydrostatic mode. This is the case for C grid models, but not for A grid models. This is a

physical mode.

5.3.1.2. Geostrophic Mode.

When ~u P KpDq and �fC~u � gG~h (ie discrete geostrophic balance), we have a

geostrophic mode. The conditions for the existence of stationary geostrophic modes in the

C grid model are discussed further in Chapter 3.

5.3.1.3. Spurious Pressure Modes.

When ~u � 0 and ~h P KpGq, we have a (spurious) pressure mode. There are KdimpGq�1

of these modes. Since KdimpGq � 1 for C grid schemes (this is one of the motivations for the

use of a staggered grid), these modes typically only occur for A grid models. They arise from

the unavoidable averaging in the gradient operator that occurs for collocated quantities.

5.3.1.4. Spurious TD Modes.

When ~u P KpDq X ~u P KpTq and ~h � 0, we have a (spurious) TD mode. Since

KdimpTq � 1 for A grid schemes (since the wind components are collocated), these modes

typically only occur for C grid models. However, a well-designed (energy-conserving) C grid

scheme has D � �GT , and therefore KdimpDq � KdimpGq. Since one of the motivations for

using a staggered grid is that KdimpGq � 1, energy conserving C grid models will be free of

spurious TD modes (and therefore free of spurious stationary modes in general).
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5.3.1.5. Spurious Mixed Pressure-TD Modes.

When ~u P KpDq X ~u P KpTq and ~h P KpGq, we have a (spurious) mixed pressure-TD

mode. This is really a combination of a pressure mode and a TD-mode. Generally, these

modes do not exist in practice since schemes will have either pressure modes (A grids) or

TD modes (C grids).

5.3.2. Stationary Modes for Vorticity-Divergence Formulation.

The situation is markedly different for the vorticity-divergence formulation. Only one

discrete operator appears- the Laplacian. Starting with 302, we obtain

(310) H~δ � 0

(311) f~δ � 0

(312) �f~ζ � gL~h � 0

In order for these equations to hold, ~h, ~δ and ~ζ must satisfy them. The first two give δ � 0.

The last one gives either ~ζ � 0 or ~ζ � geostrophic; and either ~h � 0, ~h � const, ~h P KpLq or

~h � geostrophic. Putting these possibilities together gives a classification of the stationary

modes.

5.3.2.1. Zero Mode/Hydrostatic Mode.

When ~δ � 0, ~ζ � 0 and ~h � 0 or ~h � const, we have the hydrostatic mode (this is

physical). Again L � 0 when ~h � const since this is a condition for 0-th order consistency

of the Laplacian operator.
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5.3.2.2. Geostrophic Modes.

When ~δ � 0 and �f~ζ�gL~h � 0, we have a (physical) geostrophic mode. The conditions

for the existence of stationary geostrophic modes in the Z grid model are discussed further

in Chapter 4.

5.3.2.3. Spurious Pressure Modes.

When ~δ � 0, ~ζ � 0 and ~h P KpLq we have a (spurious) pressure mode. There are

KdimpLq � 1 of these modes. Note that if the kernel of the Laplacian is non-trivial (contains

non-constant functions) then there is not longer a unique (up to a constant) geostrophic

height field for a given non-constant. In practice, however, the kernel of the discrete Laplacian

usually only contains constant functions (an exception would the the X stencil laplaian for

a square grid, for example); and therefore pressure modes are absent.

5.3.3. Spurious Stationary Modes for C and Z Grid Schemes.

On the basis of the above analysis, it is expected that both the C and Z grid schemes will

be free of spurious stationary modes, on ANY grid. This result is investigated numerically

on quasi-uniform spherical grids (icosahedral and cubed-sphere) below. Additionally, the

stationary modes of the full sphere; and the effects of dissipation are also investigated.

5.3.4. Quasi-Uniform Spherical Grid Results.

The null space of a numerical matrix A is tricky to calculate, since in practice a floating

point representation of a matrix is almost always full-rank even when the true matrix is low-

rank. For this reason, the null space is calculated using a Singular Value Decomposition. For

the true matrix, the zero singular values represent the null space. For a floating point matrix,

there will instead be singular values that are much smaller (1e12 or more times smaller in

double precision) than the other singular values. The singular vectors associated with these

133



singular values form a basis for the null space of the matrix. The SVD is computed using

SciPy ([67]) by generating the linear matrix of the various schemes from their definitions.

Only results from the doubly-conservative C grid scheme are shown, the other variants are

similar. Parameters used were the same as those below, in the study of propagating modes

on the f-sphere and fullsphere.

The singular vectors are decomposed into hi and ue (from which ζv and δi are computed)

for the C grid scheme, and hi, ζi and δi for the Z grid scheme. ζv and δi are computed as:

(313) ζv � JD̄2E
�1ve

(314) δi � iDq2HE�1ve

5.3.4.1. f-sphere.

On the f-sphere, several important conclusions can be drawn:

(1) Without dissipation, there are nv stationary modes for the C grid scheme and nf

stationary modes for the Z grid scheme. This fits with theory, which says that there

should be that many geostrophic modes. Inspection of the decomposed singular

vectors reveals that each of these modes has zero divergence, and the height/relative

vorticity fields are a linear combination of spherical harmonics (as expected).

(2) With dissipation, the only stationary mode for the C grid scheme has constant height

and zero relative vorticity and divergence. However, the zero frequency modes from

the eigensolver did have the same structure as those found without dissipation.

Essentially, dissipation is acting exactly as it did in the planar case: no change in

mode structure, but the modes are damped.
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(3) There were no stationary modes found for the Z grid scheme with dissipation. It

appears that the numerical SVD solver used is not converging properly in this case,

since a constant height field with zero relative vorticity and divergence is a steady

state of the numerical scheme (this has been checked). However, the eigensolver did

converge, and the resulting zero frequency modes were found to match the expected

behaviour of the geostrophic modes.

5.3.4.2. full-sphere.

The same analysis can be repeated on the full sphere to yield:

(1) For the C grid scheme without dissipation, there are 16 ”stationary” modes for

the icosahedral grid and 24 ”stationary” modes for the cubed sphere grid. Closer

inspection reveals that these modes have spatial frequencies either exactly equal to

0, or around 10�16. Furthermore, they have δ � 0 and zonally symmetric height

and relative vorticity. Therefore, they can be categorized as physical stationary

modes. Plots of them can be found in Figures 5.5, 5.6, 5.1, 5.2, 5.7, 5.8, 5.3 and 5.4.

Note that although the magnitude of the singular vectors is arbitrary, the spatial

structure is not. Furthermore, the relative magnitudes of the decomposed singular

vector parts are not arbitrary (for example, if the height is scaled by x, the relative

vorticity must be scaled by x as well).

(2) For the C grid scheme with dissipation, the only stationary mode found is one with

constant height with zero relative vorticity and divergence.

(3) Again, there were no stationary modes found for the Z grid scheme with or without

dissipation. However, the zero frequency modes from the eigensolver did converge,

and they can be found in Figures 5.11, 5.9, 5.12 and 5.10. Their spatial structure

was very similar to that found in the C grid case.
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Figure 5.1. Fluid height
for stationary mode with
frequency equal to zero on
icosahedral grid (C grid
scheme)

Figure 5.2. Fluid height
for stationary mode with
frequency equal to zero on
cubed-sphere grid (C grid
scheme)

(4) In contrast with the results in Weller 2012, all of the stationary (ω � 0) and quasi-

stationary (ω � 0) modes for the schemes without dissipation were zonally symmet-

ric. This is probably due to two reasons: one, the use of an actual cubed sphere grid

instead of the ”Voronoized” cube; and two, a more accurate determination of A.

Weller 2012 determined A by running the nonlinear model, which is approximate.

Our approach uses the analytic definition of the schemes to get an exact A for the

linearized model.

5.3.4.3. Conclusions.

From the above analysis, it is clear that the schemes on quasi-uniform planar grids are

behaving in the expected manner. Both the icosahedral and cubed-sphere grids support

zonally symmetric stationary modes in the case of variable f , and have geostrophic modes

in the case of constant f . In addition, no spurious stationary modes were found for either

scheme, for both constant f and variable f . This accords with the theoretical results above.
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Figure 5.3. Relative vor-
ticity for stationary mode
with frequency equal to
zero on icosahedral grid (C
grid scheme)

Figure 5.4. Relative vor-
ticity for stationary mode
with frequency equal to
zero on cubed-sphere grid
(C grid scheme)

Figure 5.5. Fluid height
for stationary mode with
frequency 3.07873e�16 on
icosahedral grid (C grid
scheme)

Figure 5.6. Fluid height
for stationary mode with
frequency 2.1704e�16 on
cubed-sphere grid (C grid
scheme)

As predicted from the planar grid results, dissipation does not alter the mode structures. It

simply leads to damping of the stationary modes.
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Figure 5.7. Relative vor-
ticity for stationary mode
with frequency 3.07873e�16

on icosahedral grid (C grid
scheme)

Figure 5.8. Relative vor-
ticity for stationary mode
with frequency 2.1704e�16

on cubed-sphere grid (C
grid scheme)

Figure 5.9. Fluid height
for stationary mode with
frequency equal to zero on
icosahedral grid (Z grid
scheme)

Figure 5.10. Relative
vorticity for stationary
mode with frequency equal
to zero on icosahedral grid
(Z grid scheme)

5.4. Numerical Propagating Modes

5.4.0.4. Discrete in Space, Continuous in Time.

The propagating linear modes of a numerical scheme are the solution of

(315) iσ~x � A~x
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Figure 5.11. Fluid
height for stationary mode
with frequency equal to
5.3755e�16 on icosahedral
grid (Z grid scheme)

Figure 5.12. Relative
vorticity for stationary
mode with frequency equal
to 5.3755e�16 icosahedral
grid (Z grid scheme)

where continuity in time as eiσt has been assumed. Thus the propagating modes are as-

sociated with the eigendecomposition (eigenvalues and eigenvectors) of the matrix A. In

practice, this system is solved as

(316) ω~x � A~x

Equating iσ and ω, and splitting each into real and imaginary parts gives

(317) σr � ωi

(318) σi � �ωr

Therefore growing modes are characterized by

(319) ωr ¡ 0 Ñ σi   0

139



and damped modes are characterized by

(320) ωr   0 Ñ σi ¡ 0

This will be useful when analysing the results of adding dissipation.

5.4.1. Z Grid Scheme.

By assuming wave-like solutions in time (e�iσt) and using 302, an expression for the

discrete wave dispersion relation is obtained as:

(321)
σ2

f 2
δ̂ � pI� λ2Lqδ̂

This is an eigenvalue problem for the non-dimensional frequencies σ
f
. This can also be written

as

(322) pσ
2 � f 2

f 2λ2
qδ̂ � Lδ̂

Perfect correspondence with the continuous case (for the plane) would imply that Lδ̂ �

�K2δ̂ is satisfied for the eigenvectors: the eigenvalues of L are simply the (squared) sum of

squares of the spatial wavenumbers of the eigenvector. For the sphere, it would require that

Lδ̂ � npn�1q
a2 δ̂. The eigenspectrum of discrete Laplacian operators on various grids has been

very well studied, and in general it is a good approximation to the above requirements. This

explains why the Z grid dispersion relation is uniformly good independent of λ
d
.

5.4.2. C Grid Scheme.

Again assuming wave-like solutions in time (e�iσt), and by using 288 we obtain:

(323) HDû� iσĥ � 0
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(324) fQû� gGĥ� iσû � 0

This can be solved to yield

(325)
σ2

f 2
I� iσ

f
Q� λ2GD � 0

Unfortunately, unlike the Z grid case, this does not have a clean solution.

5.4.3. Planar Grid Results.

To begin, the propagating modes are investigated analytically on uniform planar grids

for the case of constant f with λ
d
� 2.0. Dispersion relationships are obtained by simply

substituting spatial solutions proportional to eikx�ily into the governing equations (contin-

uous, C grid or Z grid), and solving the resulting system using a computer algebra system

(SymPy, [128]). Figures 5.13 and 5.14 show the results on square and hexagonal grids with-

out dissipation. These results are well known (they can be found in [100] and [132]), but

their reproducibility is a useful check of the code. More details (including specific equations)

about the analytic dispersion relationships and allowed wavenumbers on various grids can be

found in Appendix C. Figures 5.15 and 5.16 show the real part of the dispersion relationship

for square and hexagonal grids when dissipation is added; and Figure 5.17 and 5.18 show the

imaginary part of the dispersion relationship when dissipation is added. Only the positive

branch of inertia-gravity waves is shown (results from the negative branch are identical).

The following parameters were used to make the plots below: g � 9.81ms�1, f �

0.0001s�1, H̄ � 400m, ν � 1000.0m2s�1 and dx chosen such that λ
d
� 2.0, which gives

dx � 313.209km.

The primary results of this sub-section are the effects of dissipation on the dispersion

relationship. Some key points are summarized below:
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(1) The addition of dissipation does not noticeably alter the real part of the dispersion

relationships.

(2) The imaginary part of all of the dispersion relations is positive, and therefore is

damping.

(3) The Z grid scheme is slightly more isotropic than the C grid scheme, especially at

higher wavenumber.

(4) The hexagonal grid is more isotropic than the square grid, for all schemes and for

both real and imaginary parts.

(5) Higher frequencies are more damped than lower frequencies.

(6) The C and Z grid damping appears to be almost identical in magnitude

(7) All three schemes (continuous, C and Z) retain geostrophic modes that have zero

real frequency and therefore do not propagate. However, the modes now have non-

zero imaginary frequencies, and are therefore damped. In addition, the damping

appears to be an increasing function of spatial wavenumber (not shown)

It will be interesting to see if these conclusions hold on quasi-uniform spherical grids, and in

the case of variable f .

5.4.4. Quasi-Uniform Spherical Grid Results.

As in the previous section, only results from the doubly-conservative C and Z grid

schemes are shown. The results from the total energy and potential enstrophy conserving

variants are similar. The numerical eigenvalues and eigenvectors are computed using Scipy

by the same procedure as used for the SVD calculation. Just like the singular vectors, the

eigenvectors are decomposed into hi and ue (from which ζv and δi are computed) for the C

grid scheme, and hi, ζi and δi for the Z grid scheme.
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Figure 5.13. Dispersion relations for perfect square grid with λ
d
� 2.0, with-

out dissipation. Normalized frequency σ
f

versus non-dimensional wavenumbers

kd and ld is plotted. Top panel is continuous system, middle panel is C grid
scheme, bottom panel is Z grid scheme.
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Figure 5.14. Dispersion relations for perfect hexagonal grid with λ
d

�
2.0, without dissipation. Normalized frequency σ

f
versus non-dimensional

wavenumbers kd and ld is plotted. Top panel is continuous system, middle
panel is C grid scheme, bottom panel is Z grid scheme.
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Figure 5.15. Real part of dispersion relations for perfect square grid with
λ
d
� 2.0, with dissipation. Normalized frequency σ

f
versus non-dimensional

wavenumbers kd and ld is plotted. Top panel is continuous system, middle
panel is C grid scheme, bottom panel is Z grid scheme.
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Figure 5.16. Real part of dispersion relations for perfect hexagonal grid with
λ
d
� 2.0, with dissipation. Normalized frequency σ

f
versus non-dimensional

wavenumbers kd and ld is plotted. Top panel is continuous system, middle
panel is C grid scheme, bottom panel is Z grid scheme.
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Figure 5.17. Imaginary part of dispersion relations for perfect square grid
with λ

d
� 2.0, with dissipation. Normalized frequency σ

f
versus non-

dimensional wavenumbers kd and ld is plotted. Top panel is continuous system,
middle panel is C grid scheme, bottom panel is Z grid scheme.
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Figure 5.18. Imaginary part of dispersion relations for perfect hexagonal
grid with λ

d
� 2.0, with dissipation. Normalized frequency σ

f
versus non-

dimensional wavenumbers kd and ld is plotted. Top panel is continuous system,
middle panel is C grid scheme, bottom panel is Z grid scheme.
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5.4.4.1. f-sphere results.

Figure 5.19 shows the numerical dispersion relationship on the f-sphere without dissipa-

tion for the C grid scheme (which is the same for all three variants in the constant f case)

on icosahedral (G2) and cubed-sphere (C2) grids, and the Z grid scheme on icosahedral

grids (G2). Only the positive mode branches are shown. Red crosses indicate stationary

modes, black crosses indicate inertia-gravity modes and green circles indicate the theoretical

frequencies obtained from equation 279. Plots were obtained by sorting the numerical eigen-

values by frequency, and assuming that all zero frequency modes were geostrophic modes.

This follows the approach used in Weller 2012 and [140], and the results for the C grid on

icosahedral grids agree with those papers. In correspondence with those papers, the following

parameters were used: g � 9.80616ms�1, a � 6371220m, ν � 105m2s�1 and f � 0.0001s�1.

H̄ was chosen such that λ
d
� 2.0, where d is the average grid spacing. The average grid

spacing and other characteristics of the grids (including the number of inertia-gravity wave

and stationary modes found) used in this Chapter can be found in Table 5.1.

Table 5.1. Grid Details

Grid nf nv average de IGW Stationary H̄ λ

G2 162 320 1916km 322 320 14974m 3832km
C2 216 218 1542km 430 218 9699m 3084km

Some key points from Figure 5.19 are summarized below:

(1) The number of modes obtained following the above procedure is correct. There are

2nf � 2 inertia-gravity modes and nv stationary modes for the C grid scheme, and

2nf inertia-gravity and nf stationary modes for the Z grid scheme.

(2) The agreement between the theoretical mode frequencies and the numerical mode

frequencies gets worse as frequency increases. This is the expected behaviour for a

numerical method.
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(3) The mode frequencies are quantized, especially at low frequency.

(4) The C grid on the cubed-sphere grid has higher frequency inertia-gravity waves, but

this is expected since the resolution is a little better.

(5) The spectrum is well behaved for all schemes on all grids: there are no spectral

gaps, and increasing frequency is associated with increasing spatial wavenumber.

(6) The frequency spectrum is flattening out as wavenumber increases for the C grid on

icosahedral grids and the Z grid on icosahedral grids, as expected from the theory of

C grids on hexagonal grids. However, it is linearly increasing for the C grid scheme

on cubed-sphere grids. This is in correspondence with the continuous system, but

disagrees with the theory for C grids on square grids. Closer inspection of the

highest frequency modes reveals that they are localized in structure around the

singular points of the cubed sphere. Therefore, as discussed in Weller 2012, such

modes will simply propagate around the singular points, which is not physical. The

highest frequency modes on the icosahedral grids (both C and Z) are also somewhat

localized, but not nearly as bad as that seen on the cubed-sphere grid.

The numerical dispersion relations for the same system, but with dissipation added are

plotted in Figures 5.20 and 5.21. As before, the key points are summarized below:

(1) Dissipation does not appear to change the real part of the spectrum. In partic-

ular, the stationary modes still exist, and the inertia-gravity wave frequencies are

essentially the same.

(2) The imaginary part of the spectrum is positive everywhere, which means that the

waves are damped.

(3) The values in the imaginary part of the spectrum are broadly comparable between

C and Z grid schemes.
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(4) The dissipation increases monotonically with mode index for inertia-gravity waves

(and thus increase monotically with frequency). In addition, the dissipation is also

quantized in the same manner as the real part of the spectrum.

(5) Dissipation is randomly distributed for stationary modes. This is probably due to

the fact that mode index is no longer a measure of spatial frequency in the case of

geostrophic modes, unlike the inertia-gravity waves.

(6) Dissipation does not change the spatial structure of the inertia-gravity waves. In

particular, the localized mode structures seen at the highest frequencies on the

cubed-sphere grid remain. A plot of mode structures for the highest frequency

inertia-gravity waves can be found in Figure 5.26. Note that all grid have localized

mode structures, although they are worst for the cubed-sphere.

These conclusions (with the exception of the distribution of dissipation for stationary modes)

are basically the same as those found in the planar case.

5.4.4.2. fullsphere results.

Figure 5.22 shows the numerical dispersion relationship on the full sphere without dis-

sipation for the C grid scheme (only the doubly-conservative version) on icosahedral and

cubed-sphere grids, and the Z grid scheme on icosahedral grids. Only the positive mode

branches are shown. Red crosses indicate Rossby modes and black crosses indicate inertia-

gravity modes. Plots were obtained by sorting the numerical eigenvalues by frequency,

and assuming that all zero frequency modes from the f-sphere case became Rossby modes.

Although this undoubtedly means that some modes are mis-characterized, the approach

follows that used in Weller 2012 and the results for the C grid on icosahedral grids agree

with that paper. In correspondence with those papers, the following parameters were used:

g � 9.80616ms�1, a � 6371220m, ν � 105m2s�1, H̄ � 105m2s�1

g
and Ω � 0.00007292s�1. The
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Figure 5.19. Dispersion relations for f-sphere on quasi-uniform spherical
grids without dissipation. Normalized frequency σ

f
versus mode index (see

discussion) is plotted. Top panel is C grid on icosahedral grid, middle panel is
C grid on cubed-sphere grid, bottom panel is Z grid scheme on icosahedral
grid.
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Figure 5.20. Real part of dispersion relations for f-sphere on quasi-uniform
spherical grids with dissipation. Normalized frequency σ

f
versus mode index

(see discussion) is plotted. Top panel is C grid on icosahedral grid, middle
panel is C grid on cubed-sphere grid, bottom panel is Z grid scheme on icosa-
hedral grid.
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Figure 5.21. Imaginary part of dispersion relations for f-sphere on quasi-
uniform spherical grids with dissipation. Frequency versus mode index (see
discussion) is plotted. Top panel is C grid on icosahedral grid, middle panel is
C grid on cubed-sphere grid, bottom panel is Z grid scheme on icosahedral
grid.
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smallest Rossby radius occurs at the poles, and is equal to 2168.32km. This is marginally

resolved for the grid resolution chosen.

Some key points from Figure 5.22 are summarized below:

(1) The mode frequencies are less quantized than in the f-sphere case, probably due to

the influence of variable f

(2) Rossby wave frequency is comparable between schemes, as is inertia-gravity wave

frequency.

(3) The spectrum is well behaved for all schemes on all grids: there are no spectral

gaps, and increasing frequency is associated with increasing spatial wavenumber.

(4) The spurious Rossby modes on the icosahedral C grid scheme are all low frequency,

as predicted for theoretical considerations on the β plane.

(5) The spectrum is again flattening with increasing wavenumber for the icosahedral

grid schemes, and linear with wavenumber for the cubed-sphere grid scheme. As

before, the highest frequency modes on both grids are localized, with the cubed-

sphere being noticeably worse than the icosahedral grids.

(6) A plot of mode structures for the highest frequency inertia-gravity waves can be

found in Figure 5.27, and for a representative Rossby wave in Figure 5.25. Note that

all grids have localized modes for the high frequency inertia-gravity wave structures,

although they are worst for the cubed-sphere. In addition, all of the grids are capable

of producing realistic looking low wavenumber Rossby wave mode structures. Visual

inspection of the full set of Rossby wave mode structures for the C grid scheme does

not reveal any immediately obvious spurious mode structures on the icosahedral grid

when compared to the C grid scheme, although such structures must be present.
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The numerical dispersion relations for the same system, but with dissipation added are

plotted in Figures 5.23 and 5.24. As before, the key points are summarized below:

(1) Dissipation does not appear to change the real part of the spectrum. In particular,

both the inertia-gravity wave and Rossby wave frequencies are essentially the same.

(2) The imaginary part of the spectrum is positive everywhere, which means that the

waves are damped.

(3) The values in the imaginary part of the spectrum are broadly comparable between

C and Z grid schemes.

(4) The dissipation increases monotonically with mode index for inertia-gravity waves

(and thus increases monotonically with frequency). In addition, the dissipation is

also quantized in the same manner as the real part of the spectrum.

(5) Dissipation appears to be decreasing with increasing mode index for Rossby modes,

although it is not monotonic. This is NOT due to the spurious Rossby modes

on the icosahedral C grid, since the same effect is observed for the C grid on the

cubed-sphere grid, and for the Z grid on the icosahedral grid.

(6) Yet again, dissipation does not change the mode structures seen.

These conclusions (with the exception of the distribution of dissipation for Rossby modes)

are basically the same as those found in the planar case for constant f , and also those found

numerically for the f-sphere.
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Figure 5.22. Dispersion relations for full sphere on quasi-uniform spherical
grids without dissipation. Normalized frequency σ

f
versus mode index (see

discussion) is plotted. Top panel is C grid (doubly conservative version) on
icosahedral grid, middle panel is C grid (doubly conservative version) on cubed-
sphere grid, bottom panel is Z grid scheme on icosahedral grid.
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Figure 5.23. Real part of dispersion relations for full sphere on quasi-uniform
spherical grids with dissipation. Normalized frequency σ

f
versus mode index

(see discussion) is plotted. Top panel is C grid (doubly conservative version)
on icosahedral grid, middle panel is C grid (doubly conservative version) on
cubed-sphere grid, bottom panel is Z grid scheme on icosahedral grid.
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Figure 5.24. Imaginary part of dispersion relations for full sphere on quasi-
uniform spherical grids with dissipation. Frequency versus mode index (see
discussion) is plotted. Top panel is C grid (doubly conservative version) on
icosahedral grid, middle panel is C grid (doubly conservative version) on cubed-
sphere grid, bottom panel is Z grid scheme on icosahedral grid.
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Figure 5.25. Spatial structures for a selected Rossby wave for various grids
and schemes. On the left is fluid height, on the right is relative vorticity. The
top row is the C grid scheme on icosahedral grids, the middle row is the C grid
scheme on cubed-sphere grids and the bottom row is the Z grid scheme
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Figure 5.26. Spatial structures for the highest frequency inertia-gravity
waves on the f-sphere for various grids and schemes. On the left is fluid height,
on the right is relative vorticity. The top row is the C grid scheme on icosahe-
dral grids, the middle row is the C grid scheme on cubed-sphere grids and the
bottom row is the Z grid scheme
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Figure 5.27. Spatial structures for the highest frequency inertia-gravity
waves on the full sphere for various grids and schemes. On the left is fluid
height, on the right is relative vorticity. The top row is the C grid scheme on
icosahedral grids, the middle row is the C grid scheme on cubed-sphere grids
and the bottom row is the Z grid scheme
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5.5. Chapter Summary

A detailed examination of the linear modes for both the C and Z grid schemes was

performed, from a theoretical basis and numerically through the eigendecomposition and

singular value decomposition of A. The results were broadly similar to those found in

Weller 2012, with the exception of all stationary modes being zonally symmetric for both

grids. The theoretical predictions about stationary modes, and the planar grid results for

C and Z grid scheme on uniform square or hexagonal grids were all found to carry over to

the case of quasi-uniform grids. In addition, the effects of dissipation were quantified. The

majority of this material is new, with the exception of planar grid dispersion relationships.

163



CHAPTER 6

Evaluation and Comparison of the Generalized C

and Z Grid Schemes

This chapter concerns itself with the evaluation and comparison of the generalized C grid

and Z grid schemes presented in Chapter 3 and Chapter 4 , with a focus on their non-linear

properties (the linear properties have been explored in Chapter 5). This is done through

the running of various test cases from the literature (described in more detail below), and

determining the order of accuracy for various operators.

6.1. Details of Runs

A wide range of test cases were run to evaluate the two schemes. These include test

cases 2 (Solid Body Rotation/Zonal Flow), 5 (Flow over a Mountain) and 6 (Rossby-Haurwitz

Wave) from the Williamson set ([156]), the Galewsky et. al barotropically unstable jet ([43])

and a forced dissipative turbulence test case from John Thuburn (personal communication

and [134]). Table 6.1 and the discussion below summarizes the grids, run lengths and other

details. In all cases, gravity was set equal to g � 9.80616ms�1, the Earth’s radius was set

equal to a � 6371220m and rotation was set equal to Ω � 0.00007292s�1, with Coriolis force

equal to 2Ω sin θ, where θ is latitude.

Table 6.1. Simulation Details

Simulation Length (Days) Output (Hours) Grids Dissipation
TC2 10 6 G 2-8, C 2-8 None
TC5 50 6 G 6,7 C 6,7 None
TC6 50 6 G 6,7 C 6,7 None
Galewsky 10 6 G 6,7,8 C 6,7,8 None
GalewskyInit 1 1 G 6,7 C 6,7 None
GalewskyNoPerturb 10 6 G 2-8, C 2-8 None
Held Suarez 2400 24 G 6, C6 None
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6.1.1. Grids.

Two quasi-uniform spherical grids were used: the icosahedral hexagonal-pentagonal grid,

and the gnomonic non-orthogonal cubed-sphere grid. More details about the grids are pro-

vided in Appendix B. For the C grid scheme, both the icosahedral and the cubed-sphere grid

were used. For the Z grid scheme, only the icosahedral grid was used.

6.1.1.1. Icosahedral Hexagonal (G).

This grid is based on the subdivision of each triangular face of an icosahedron into smaller

triangles, which is repeated until the desired resolution is reached. This gives the icosahedral

triangular grid, while the dual of this grid gives the icosahedral hexagonal-pentagonal. This

process produces a highly uniform grid, but the primal grid is composed of 12 pentagons

with the remaining cells hexagons. The dual grid is entirely triangles. This leads to a

mismatch in the degrees of freedom between the wind and the mass field when using a C

grid discretization, which manifests itself as spurious branches of the dispersion relationship.

There are many possibly ways of constructing such a grid, see [87], [152], [11] and Appendix B

for more information. There are also many possible optimizations, the three considered here

are spherical centroidal voronoi tesselation (SCVT, [78], [66] and [28]), tweaking ([59],[58])

and spring dynamics (β � 0.8 and β � 1.1, [142] and [64]). In all cases, the resulting grids

are orthogonal. Additionally, all of these optimizations preserve the property that the primal

grid vertices (triangle ”centers”) are located at the centroid of the dual grid cells (triangles).

This is required by the non-orthogonal H operator. Various grid properties are summarized

in the table below. Results for most test cases (except the order of accuracy for individual

operators and Williamson Test Case 2) are shown only for the tweaked grids, since they

are the only ones to produce consistent operators (see below). Tables 6.2, 6.3, 6.4 and 6.5
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Figure 6.1. Refinement
Level 4 Geodesic Grid with
Tweaked Optimization
(Primal)

Figure 6.2. Refinement
Level 4 Geodesic Grid with
Tweaked Optimization
(Dual)

outline various grid properties, , while Figures 6.1 and 6.2 show refinement level 4 (2562

cells) icosahedral grids.

Table 6.2. Grid Properties for Tweaked Geodesic Grids

Grid Cells Max de (km) Max/Min de Max/Min le Max/Min Ai ∆tpsq
G2-HR 162 2101 1.21879 1.64446 1.09143 1440
G3-HR 642 1073 1.25213 1.84172 1.06141 720
G4-HR 2562 541 1.2647 1.93143 1.05475 360
G5-HR 10242 271 1.26931 1.97294 1.05208 180
G6-HR 40962 136 1.27096 1.99271 1.05036 90
G7-HR 163842 68 1.27153 2.00232 1.04988 45
G8-HR 655362 34 1.27171 2.00705 1.04965 22.5

Table 6.3. Grid Properties for SCVT Geodesic Grids

Grid Cells Max de (km) Max/Min de Max/Min le Max/Min Ai ∆tpsq
G2-CVT 162 2027 1.16595 1.52553 1.19193 1440
G3-CVT 642 1016 1.19683 1.64997 1.25628 720
G4-CVT 2562 509 1.23354 1.71255 1.33178 360
G5-CVT 10242 254 1.27087 1.76735 1.41406 180
G6-CVT 40962 127 1.30997 1.82211 1.50195 90
G7-CVT 163842 64 1.35012 1.87814 1.59545 45
G8-CVT 655362 32 1.39154 1.93578 1.69481 22.5
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Table 6.4. Grid Properties for Spring Dynamics β � 0.8 Geodesic Grids

Grid Cells Max de (km) Max/Min de Max/Min le Max/Min Ai ∆tpsq
G2-SB0.8 162 2003 1.18668 1.4393 1.27855 1440
G3-SB0.8 642 1003 1.25416 1.56135 1.4431 720
G4-SB0.8 2562 502 1.32205 1.67179 1.60309 360
G5-SB0.8 10242 251 1.38455 1.77793 1.75933 180

Table 6.5. Grid Properties for Spring Dynamics β � 1.1 Geodesic Grids

Grid Cells Max de (km) Max/Min de Max/Min le Max/Min Ai ∆tpsq
G2-SB1.1 162 2034 1.16588 1.5364 1.18257 1440
G3-SB1.1 642 1017 1.1853 1.66707 1.228 720
G4-SB1.1 2562 509 1.20847 1.73271 1.27162 360
G5-SB1.1 10242 255 1.22606 1.78558 1.30953 180

6.1.1.2. Cubed Sphere (C).

This grid is based on equiangular, central projection of a cube onto the sphere. Grid

refinement is accomplished by subdivision of each face of the cubed prior to projection. For

the grids used here, each face is equally subdivided into X2 cells, where X � 3 � 2n�1 and

n is the refinement level. This process produces a less uniform grid than the icosahedral

discretization, however the resulting primal grid is now quadrilateral. Unfortunately, it is

also non-orthogonal. The dual grid is also quadrilateral, with the exception of the original 8

vertices of the cube that are triangles. In addition, once generated, the primal grid vertices

are moved to the centroid of the dual grid cells. As before, this is required by the non-

orthogonal H operator. Various grid properties are summarized in the table below. Table

6.6 outlines various grid properties, while Figures 6.3 and 6.3 show refinement level 4 (3456)

cubed sphere grids.

6.1.2. Elliptic Solver.

The Z grid scheme requires the solution of an elliptic equation at each timestep to

determine the streamfunction and velocity potential. This was done via multigrid ([89], [90]

and [59]), which is a scalable method that offers O(n) performance, where n is the number of

167



Table 6.6. Grid Properties for Cubed Sphere Grids

Grid Cells Max de (km) Max/Min de Max/Min le Max/Min Ai ∆tpsq
C2-TH 216 1661 1.24518 1.46956 1.63319 1200
C3-TH 864 834 1.32607 1.45848 1.72167 480
C4-TH 3456 417 1.36911 1.44069 1.73851 240
C5-TH 13824 208 1.39138 1.42855 1.73835 120
C6-TH 55296 104 1.40272 1.42165 1.73598 60
C7-TH 221184 52 1.40845 1.418 1.73421 30
C8-TH 884736 26 1.41133 1.41612 1.73318 15

Figure 6.3. Refinement
Level 4 Cubed Sphere Grid
(Primal)

Figure 6.4. Refinement
Level 4 Cubed Sphere Grid
(Dual)

degrees of freedom in the problem. The restriction and prolongation operators were the same

as those used by [137], and the full multigrid algorithm using a Jacobi smoother was employed

for cycling. Three passes of the algorithm were made, with 2 iterations of the smoother at

each level and 10 iterations of the smoother as a coarse grid solver. There is room for

improvement of the smoother here, and certainly optimization of the multigrid parameters.

However, the given settings gave satisfactory results for the grids under consideration.

6.1.3. Time Stepping.

Time stepping was done using the third order Adams Bashford scheme (AB3, [34]). Since

this is a multilevel time scheme, it admits a computational mode in time. However, this mode

is damped, and there was no evidence of interaction between the computational mode in time
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and any spatial computational modes in either scheme (of which there is only the spurious

Rossby wave branches for the C grid scheme on icosahedral grids). Unfortunately, the AB3

scheme does no preserve the conservation properties of the scheme, and full conservation is

lost. A better choice of time stepping scheme would have been a single step scheme such as a

Runge-Kutta scheme, but such a scheme would have been significantly more computationally

expensive (requiring multiple evaluations of the RHS, which for the Z grid scheme would

have been multiple elliptic solves per time step). Another strong alternative would have

been a semi-implicit or even fully implicit scheme, both for improved time step length and

conservation properties. There is some work ([46], [75] and [45]) indicating that a fully

conservative scheme would be possible by combining a conservative spatial discretization with

the appropriate implicit time stepping scheme. This possibility merits further exploration.

6.1.4. Auxiliary Variables.

To facilitate the analysis of results from the various test cases, auxiliary variables were

computed from prognostic variables at each output step. Many of them are actually used in

the discretization schemes, and the full set is detailed below.

6.1.4.1. C Grid.

Analysis of results from the C grid scheme requires the relative vorticity primal 0-form:

(326) ζv � JD̄2ue

the absolute vorticity primal 0-form:

(327) ηv � Jpζv � fvq
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(where fv is the Coriolis 2-form), the potential vorticity primal 0-form:

(328) qv � D̄2ue � fv
Rmi

the dual cell-integrated fluid height primal 0-form:

(329) mv � JRmi

and the divergence dual 0-form:

(330) δi � ID2Hue

Note that 0-forms (instead of 2-forms) are used here for ζv, ηv, mv and δi. This allows easy

comparison with Z grid results, and other models that use pointwise values.

6.1.4.2. Z Grid.

Since the Z grid directly predicts many quantities of interest (ζi and δi) and does not

require an auxiliary fluid height, the only auxiliary variables are the pointwise absolute

vorticity

(331) ηi � ζi � fi

and the pointwise potential vorticity

(332) qi � ηi
hi
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6.1.5. Choice of Q in C Grid Scheme.

Three different version of Q were used, corresponding to choices conserving only total

energy, only potential enstrophy or conserving both. They are (where Qe �
°
vPV Epeq qv):

(333) Q � WQe

for the enstrophy conserving version

(334) Q � 1

2
QeW � 1

2
WQe

for the energy conserving version, and

(335) Q �
¸

e1PECP peq

¸
vPV Cpiq

αe,e1,vqv

for the doubly conservative version.

6.2. Order of Accuracy

An important component of testing the C and Z grid schemes is determining the order

of accuracy of the individual operators, as well as the overall scheme. To determine the

accuracy of individual operators, various test functions were used. In all of the order of

accuracy plots that follow, the dashed line indicates first-order accuracy.

C Grid Test Functions. For the C grid operators, a simple test function was used:

(336) ψ � cospθq cospλq
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where a is the radius of the Earth, θ is the latitude, and λ is the longitude. This has a

laplacian equal to

(337) ~∇2ψ � � 2

a2
ψ � � 2

a2
cospθq cospλq

Z Grid Test Functions. For the Z grid operators, two test functions were needed:

(338) α � cos3pθq sinp5λq

and

(339) β � �a2

2
cos3pθq sinp3λq

where a is the radius of the Earth, θ is the latitude, and λ is the longitude.

Norms. Two norms are used: the L2 norm

(340) ||B||L2 �
°
ipB2

i dΩiq°
ipdΩiq

and the L8 norm

(341) ||B||L8 � |Bi|max

where dΩi is the area (or length) associated with whatever element the norm is being taken

over. For the C grid scheme, this can be Ai, Av, de or le, depending on whether the norm

involves 2-forms or 1-forms. For the Z grid scheme, it is just Ai.
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6.2.1. C Grid.

In general, using the tweaked optimization, the C grid scheme operators on the icosa-

hedral grid are approximately first order accurate in both the L2 and L8 norms, with the

exception of W{Q. First order accuracy corresponds with the findings of [96],[137] and

[154]. However, both the spring dynamics and SCVT optimizations fail to produce consis-

tent operators- in particular, both the dual grid laplacian and edge laplacian fail to converge

in the L8 norm.

On the cubed sphere grid, all of the laplacian operators along with the W{Q operators

are inconsistent in the L8 norm. In addition, even for the norms and operators that do

converge, the rate of convergence and absolute error magnitudes are much worse than for

the icosahedral grid.

In what follows, ψv, ψi and ψe are simply cospθq cospλq sampled at the appropriate points

(primal vertices, dual vertices and edges).

6.2.1.1. Primal Grid Laplacian.

The primal grid Laplacian is defined by

(342) Lp � ID2HD̄1

and its error e can be computed as

(343) e � Lpψi � 2

a2
ψi

As seen in Figures 6.5 and 6.6, the primal grid Laplacian is approximately first order accurate

in the L2 and L8 norms for icosahedral grids, and somewhat less than first order accurate in
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Figure 6.5. L2 accuracy
for the primal grid lapla-
cian operator Lp

Figure 6.6. L8 accuracy
for the primal grid lapla-
cian operator Lp

L2 for cubed sphere grids. However, it is inconsistent in the L8 norm for the cubed sphere

grid.

6.2.1.2. Dual Grid Laplacian.

The dual grid laplacian is defined as

(344) Ld � �JD̄2H
�1D1

and its error e can be computed as

(345) e � Ldψv � 2

a2
ψv

The L2 norm results (Figure 6.7) for the dual grid laplacian are broadly similar to those of

the primal grid laplacian. However, unlike the primal grid laplacian, the dual grid laplacian

is inconsistent in L8 (Figure 6.8) for both icosahedral and cubed-sphere grids, except when

the tweaked optimization is used on the icosahedral grid.
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Figure 6.7. L2 accuracy
for the dual grid laplacian
operator Ld

Figure 6.8. L8 accuracy
for the dual grid laplacian
operator Ld

6.2.1.3. Edge Laplacian.

The edge laplacian is defined as

(346) Le � �H�1D1JD̄2 � D̄1ID2H

and its error e can be computed as

(347) e � Leψe � 2

a2
ψe

The results (Figures 6.9 and 6.10) are essentially the same as those obtained for the dual

grid laplacian.

6.2.1.4. W Operator.

To assess the accuracy of the W operator, the wind was defined using either

(348) ue � �HD̄1ψi
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Figure 6.9. L2 accuracy
for the edge laplacian oper-
ator Le

Figure 6.10. L8 accu-
racy for the edge laplacian
operator Le

(the divergent wind) or

(349) ue � D1ψv

(the rotational wind). With the divergent wind, the error e was defined as

(350) e � D1ψ �HWHD̄1ψv

, while with the rotational wind the error e was defined as

(351) e � D̄1ψi �WD1ψv

The results (Figures 6.11, 6.12, 6.13 and 6.14) indicate somewhat less than first order accu-

racy in L2 on all grids. However, the L8 norm is inconsistent for all grids. This is a major

shortcoming of the C grid scheme.
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Figure 6.11. L2 accuracy
for the W operator with ue
divergent

Figure 6.12. L8 accu-
racy for the W operator
with ue divergent

Figure 6.13. L2 accuracy
for the W operator with ue
rotational

Figure 6.14. L8 accu-
racy for the W operator
with ue rotational

6.2.1.5. Q Operator.

Essentially the same approach to assessing accuracy for the W operator can be employed

for the Q operator, with the error for the divergent wind defined as

(352) e � ψe �D1ψ �HQpψe,HD̄1ψvq
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Figure 6.15. L2 accuracy
for the R operator

Figure 6.16. L8 accu-
racy for the R operator

and the error for the rotational wind defined as

(353) e � ψe � D̄1ψi �Qpψe, D1ψvq

The results (not shown) are the same.

6.2.1.6. R Operator.

The error e in the R operator can be computed as

(354) e � RTψv � ψi

As seen in Figures 6.15 and 6.16, R is approximately first order in L2 for icosahedral grids

and somewhat less than first order for cubed-sphere grids. In L8, it is somewhat less than

first order for all grids.

6.2.1.7. φ Operator.

The error e in the φ operator can be computed as

(355) e � φψi � ψe
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Figure 6.17. L2 accuracy
for the φ operator

Figure 6.18. L8 accu-
racy for the φ operator

Figures 6.17 and 6.18 clearly show first order accuracy in both L2 and L8 for icosahedral

grids, and somewhat less than first order accuracy for cubed-sphere grids.

6.2.2. Z Grid.

In general, using the tweaked optimization, the Z grid scheme operators on the icosa-

hedral grid are approximately first order accurate in both the L2 and L8 norms, with the

exception of the Jacobian operator J. First order accuracy (and inconsistency of the Jaco-

bian) corresponds with the findings of [96] and [59]. Recent work by Ross Heikes (personal

communication) suggests that the Laplacian and Flux-Divergence operators might also be

inconsistent. In all cases, both the spring dynamics and SCVT optimizations fail to produce

consistent operators- in particular, all three operators fail to converge in the L8 norm.

6.2.2.1. L Operator.

The error e in the Laplacian operator can be computed as

(356) e � Lβi � p~∇2βqi

179



Figure 6.19. L2 accuracy
for the Z grid laplacian op-
erator

Figure 6.20. L8 accu-
racy for the Z grid laplacian
operator

where p~∇2βqi is the analytic Laplacian sampled at cell centers. From Figures 6.19 and 6.20,

it is easy to see that the Z grid laplacian is first order in L2 on all grids, and inconsistent in

L8 except on the tweaked grid.

6.2.2.2. FD Operator.

The error e in the flux-divergence operator can be computed as

(357) e � FDpαi, βiq � p~∇ � pα~∇βqqi

where p~∇ � pα~∇βqqi is the analytic flux-divergence sampled at cell centers. The results (6.21

and 6.22) are the same as the laplacian operator, except that tweaked grid flux-divergence

might be getting inconsistent at the highest resolutions.

6.2.2.3. J Operator.

The error e in the Jacobian operator can be computed as

(358) e � Jpαi, βiq � pJpα, βqqi
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Figure 6.21. L2 accuracy
for the Z grid flux diver-
gence operator

Figure 6.22. L8 accu-
racy for the Z grid flux di-
vergence operator

Figure 6.23. L2 accuracy
for the Z grid jacobian op-
erator

Figure 6.24. L8 accu-
racy for the Z grid jacobian
operator

where pJpα, βqqi is the analytic Jacobian sampled at cell centers. Unlike the flux-divergence

and laplacian operators, the Jacobian operator (Figures 6.23 and 6.24) is inconsistent in L8

on all grids, including the tweaked optimization.

6.3. Williamson Test Case 2- Solid Body Rotation (TC2)

The first test case is quite simple: solid body rotation (a special case of purely zonal

flow) on the sphere. This test case is used primarily to determine the ability of the schemes
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to maintain a steady state solution, and to assess the accuracy of the overall scheme (since

the analytic solution is known). It does not reflect the complexity of realistic flows in the

atmosphere. The details of the setup can be found in [156]. For the C grid scheme, variables

were initialized using

(359) ue � �H�1D1ψv

(360) mi � I�1hi

where ψv was the prescribed streamfunction sampled at primal vertices, and hi was the

prescribed fluid height sampled at dual vertices. For the Z grid scheme, variables were

initialized using

(361) ζi � Lψi

where ψi was the prescribed streamfunction sampled at cell centers (dual vertices).

C Grid Results. Conservation properties for the C grid scheme are illustrated in Fig-

ures 6.25, 6.26, 6.27 and 6.28. This confirms that the scheme is working as expected, with

each version conserving the relevant quantities. The only exception appears to the total

energy conserving variant on cubed-sphere grids. This inaccuracy is probably related to the

inconsistency of the cubed-sphere model in general. The order of accuracy of the scheme

(determined as the difference between the initial fluid height and fluid height at Day 5)

is detailed in Figures 6.29, 6.30, 6.31, 6.32, 6.33 and 6.34. The schemes (all variants) are
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Figure 6.25. Potential
enstrophy conservation
for the C grid scheme (all
three Q variants) on grid
G8 for TC2

Figure 6.26. Potential
enstrophy conservation
for the C grid scheme (all
three Q variants) on grid
C8 for TC2

Figure 6.27. Total en-
ergy conservation for the C
grid scheme (all three Q
variants) on grid G8 for
TC2

Figure 6.28. Total en-
ergy conservation for the C
grid scheme (all three Q
variants) on grid C8 for
TC2

approximately first order accurate in L2 on all grids, with the icosahedral grids being signif-

icantly more accurate than the cubed sphere. However, in L8 only the tweaked icosahedral

grid is first order accurate- the remaining grids (including the cubed sphere) are inconsistent.

Z Grid Results. Conservation properties for the Z grid scheme are illustrated in Figures

6.37 and 6.38. This confirms that the scheme is working as expected and conserving the
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Figure 6.29. L2 accuracy
in fluid height hi for TC2
with C grid scheme us-
ing enstrophy-conserving Q
operator

Figure 6.30. L8 accu-
racy in fluid height hi for
TC2 with C grid scheme us-
ing enstrophy-conserving Q
operator

Figure 6.31. L2 accuracy
in fluid height hi for TC2
with C grid scheme using
energy-conserving Q opera-
tor

Figure 6.32. L8 accu-
racy in fluid height hi for
TC2 with C grid scheme
using energy-conserving Q
operator

relevant quantities. In addition, it is clear that the doubly conservative C grid and Z grid

scheme are conserving to roughly the same order of accuracy, with slighly better conservation

in the Z grid case. The order of accuracy of the scheme (determined as the difference between

the initial fluid height and fluid height at Day 5) is detailed in Figures 6.35 and 6.36. The

Z grid scheme is approximately first order accurate in both L2 and L8.

184



Figure 6.33. L2 accuracy
in fluid height hi for TC2
with C grid scheme using
doubly conservative Q op-
erator

Figure 6.34. L8 accu-
racy in fluid height hi for
TC2 with C grid scheme us-
ing doubly conservative Q
operator

Figure 6.35. L2 accuracy
in fluid height hi for TC2
with Z grid

Figure 6.36. L8 accu-
racy in fluid height hi for
TC2 with Z grid

Comparing the two schemes, it is interesting to note that the Z grid scheme appears to

have much better conservation properties than the C grid. Since other test cases (see below)

do not show this effect, it is hypothesized that this might be due to a better representation

of balance for this test in the Z grid scheme than the C grid scheme. More importantly, the

inconsistency of the W and Jacobian operators does not seem to affect results, provided the

tweaked grid is used.
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Figure 6.37. Potential
enstrophy conservation for
the Z grid and C grid (dou-
bly conservative version)
schemes on grid G8 for TC2

Figure 6.38. Total en-
ergy conservation for the
Z grid and C grid (dou-
bly conservative version)
schemes on grid G8 for TC2

6.4. Williamson Test Case 5- Flow over a Mountain (TC5)

The second test case involves the zonal flow field from TC2, but introduces a non-

differentiable ”mountain” in the topography field. There is no longer an analytic solution,

and therefore comparison with high-resolution reference solutions is the only way to assess

correctness. In addition, the initial flow is highly unbalanced and requires short time steps to

resolve the resulting intertia-gravity waves. The non-differentiable mountain also produces

difficulties for spectral-type methods, and can lead to Gibbs oscillations around the mountain.

However, the resulting structures in the flow field (especially after 15-20 days of development)

are representative of realistic atmospheric complexity. The details of the setup can be found

in [156]. For the C grid scheme, variables were initialized using

(362) ue � �H�1D1ψv

(363) mi � I�1hi
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where ψv was the prescribed streamfunction sampled at primal vertices, and hi was the

prescribed fluid height sampled at dual vertices. For the Z grid scheme, variables were

initialized using

(364) ζi � Lψi

where ψi was the prescribed streamfunction sampled at cell centers (dual vertices).

Plots of the potential vorticity at Day 30 for all the schemes tested are found in Figures

6.39, 6.40, 6.41, 6.42, 6.43, 6.44 and 6.45. They give essentially the same large scale results,

but there is a marked difference in small scale structure between the different schemes.

In particular, it appears that the C grid icosahedral schemes have much more small scale

structure than the C grid cubed sphere schemes. This difference probably indicates the

presence of the spurious Rossby wave modes on the icosahedral C grid, which are close

to grid scale. This is especially apparent by comparing the C grid icosahedral schemes to

the Z grid iscohedral schemes (which do NOT have any computational modes). However,

the presence of these modes does not seem to be affecting the larger scale features in the

flow, which is consistent with the idea that the spurious Rossby modes are quasi-passively

advected by the flow. Similar small scale structures in the flow field for the TC5 test case

can be seen in [155].

6.5. Rossby-Haurwitz Wave (TC6)

The third test is a Rossby-Haurwitz wave, which is an analytic solution to the barotropic

vorticity equation (BVE). In the BVE case, the wave is simply advected around the globe. It

is NOT an analytic solution of the shallow water equations, but it is still widely used as a test

case. Again, since there is no analytic solution, comparison with high-resolution reference
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Figure 6.39. Potential
vorticity at Day 30 for C
grid scheme using doubly
conservative Q variant on
grid G6 for TC5

Figure 6.40. Potential
vorticity at Day 30 for C
grid scheme using doubly
conservative Q variant on
grid C6 for TC5

Figure 6.41. Potential
vorticity at Day 30 for C
grid scheme using energy-
conserving Q variant on
grid G6 for TC5

Figure 6.42. Potential
vorticity at Day 30 for C
grid scheme using energy-
conserving Q variant on
grid C6 for TC5

solutions is the only way to assess correctness. Unfortunately, as was discovered later, the

particular choice of Rossby-Haurwitz wave advocated in [156] is dynamically unstable to a

triad interaction ([139]). This limits its utility as a test case, since unavoidable truncation

errors can trigger the instability, especially when they project onto the relevant wavenumbers

(1, 3 and 5). The details of the setup can be found in [156]. For the C grid scheme, variables
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Figure 6.43. Potential
vorticity at Day 30 for
C grid scheme using
enstrophy-conserving Q
variant on grid G6 for TC5

Figure 6.44. Potential
vorticity at Day 30 for
C grid scheme using
enstrophy-conserving Q
variant on grid C6 for TC5

Figure 6.45. Potential vorticity at Day 30 for Z grid scheme on grid G6 for TC5

were initialized using

(365) ue � �H�1D1ψv

(366) mi � I�1hi
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Figure 6.46. Absolute
vorticity at Day 30 for
C grid scheme using
enstrophy-conserving Q
variant on grid G7 for
Rossby-Haurwitz Wave

Figure 6.47. Absolute
vorticity at Day 30 for
C grid scheme using
enstrophy-conserving Q
variant on grid C7 for
Rossby-Haurwitz Wave

where ψv was the prescribed streamfunction sampled at primal vertices, and hi was the

prescribed fluid height sampled at dual vertices. For the Z grid scheme, variables were just

sampled at cell centers (dual vertices).

Figures 6.46, 6.47, 6.48, 6.49, 6.50, 6.51 and 6.52 plot the absolute vorticity η for all of the

schemes tested. Two features immediately emerge: the first is the inability of the icosahedral

grid schemes to maintain the Rossby-Haurwitz wave. They all experience breakdown of the

wave by Day 35, with the enstrophy-conserving variant breaking down earlier (around Day

25). By Day 50 (not shown) all of the icosahedral grid schemes have broken down completely,

while the cubed-sphere grid schemes continue to maintain the initial Rossby-Haurwitz wave

through day 50. These results are consistent with the idea that the Rossby-Haurwitz wave is

strongly unstable to wavenumber 5 perturbations, which are forced by the singular points of

the icosahedral grid. However, the cubed sphere grid singular points generate a wavenumber

4 forcing, and therefore the Rossby-Haurwitz is much more stable on that grid.

The second is the presence of small scale structures in all schemes, similar to the results

found for TC5. However, unlike the TC5 test, it does not appear that the C grid scheme on

icosahedral grids is any noisier than the other schemes.
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Figure 6.48. Absolute
vorticity at Day 30 for C
grid scheme using energy-
conserving Q variant
on grid G7 for Rossby-
Haurwitz Wave

Figure 6.49. Absolute
vorticity at Day 30 for C
grid scheme using energy-
conserving Q variant
on grid C7 for Rossby-
Haurwitz Wave

Figure 6.50. Absolute
vorticity at Day 30 for
C grid scheme using
double conservative Q
variant on grid G7 for
Rossby-Haurwitz Wave

Figure 6.51. Absolute
vorticity at Day 30 for
C grid scheme using
double conservative Q
variant on grid C7 for
Rossby-Haurwitz Wave

Figure 6.52. Absolute vorticity at Day 6 for Z grid scheme on grid G7 for
Rossby-Haurwitz Wave

6.6. Barotropically Unstable Jet (Galewsky)

As discussed in [43], the preceding three test cases have issues: TC2 is too simple

to represent realistic atmospheric flows, the mountain in TC5 is only C0 continuous and
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requires very short time steps due to initialization shocks, and the particular Rossby wave

in TC6 is dynamically unstable to a triad interaction. For these reasons, a new test case

was developed by Galewsky et al ([43]). It is a barotropically unstable but balanced zonal

jet. To this balanced but unstable initial condition a perturbation is added that triggers the

instability. Both the balanced state and the perturbation have analytic expressions and are

C8 continuous. The details of the setup can be found in the paper mentioned above. For

the C grid scheme, variables were initialized using

(367) ue � �H�1D1ψv

(368) mi � I�1hi

where ψv was the prescribed streamfunction sampled at primal vertices, and hi was the

prescribed fluid height sampled at dual vertices. For the Z grid scheme, variables were

initialized using

(369) ζi � Lψi

where ψi was the prescribed streamfunction sampled at cell centers (dual vertices). The

height was set using hi (sampled at cell centers, which are dual vertices).

6.6.1. Unperturbed Version (GalewskyNoPerturb).

The simplest realization of this test case is the initial balanced state, without any per-

turbation. The correct solution is simply a maintenance of the initial state. As is well

known, this is a difficult test for models built on quasi-uniform grids, since the flow field is

not aligned with grid cell walls. As shown in Figures 6.53, 6.54, 6.55, 6.56, 6.57, 6.58 and
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Figure 6.53. Absolute
vorticity at Day 6 for
C grid scheme using
enstrophy-conserving Q
variant on grid G8 for
Galewsky without initial
perturbation

Figure 6.54. Absolute
vorticity at Day 6 for
C grid scheme using
enstrophy-conserving Q
variant on grid C8 for
Galewsky without initial
perturbation

6.59; none of the tested schemes were able to maintain the initial steady state. However, it is

clear that the icosahedral grid schemes are superior to the cubed-sphere grid schemes. It is

also evident that the total energy and doubly conservative variants of the C grid scheme, and

the Z grid scheme, are better than the potential enstrophy conserving variant. In particular,

the doubly conservative C grid scheme on the icosahedral grid and the Z grid scheme are

extremely similar, despite being based on completely different numerics.

These results can be contrasted with those found in [123], [79] and [65]. All of the

grid-based schemes described in the preceding papers are based on quasi-uniform spherical

grids, and they all exhibit the same inability to maintain the balanced but unstable initial

state. This problem is exacerbated by lower resolution. At higher resolutions, especially for

the higher-order schemes ([79], [65]), the models are much better at maintaining the initial

condition. [79] found that the icosahedral grid also did a better job at maintaining balance

than the cubed-sphere grid, although both had issues at lower resolution. [79] also found

that the addition of viscosity with ν � 105m2s�1 helped control the instability, but it did

not remove it.
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Figure 6.55. Absolute
vorticity at Day 6 for C
grid scheme using energy-
conserving Q variant on
grid G8 for Galewsky
without initial perturba-
tion

Figure 6.56. Absolute
vorticity at Day 6 for C
grid scheme using energy-
conserving Q variant on
grid C8 for Galewsky
without initial perturba-
tion

Figure 6.57. Absolute
vorticity at Day 6 for C
grid scheme using double
conservative Q variant
on grid G8 for Galewsky
without initial perturba-
tion

Figure 6.58. Absolute
vorticity at Day 6 for C
grid scheme using double
conservative Q variant
on grid C8 for Galewsky
without initial perturba-
tion

Figure 6.59. Absolute vorticity at Day 6 for Z grid scheme on grid G8 for
Galewsky without initial perturbation
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Figure 6.60. Divergence
at hour 3 for C grid scheme
using enstrophy conserving
Q variant on grid G8 for
Galewsky

Figure 6.61. Divergence
at hour 3 for C grid scheme
using enstrophy conserving
Q variant on grid C8 for
Galewsky

Figure 6.62. Divergence
at hour 3 for C grid scheme
using energy conserving Q
variant on grid G8 for
Galewsky

Figure 6.63. Divergence
at hour 3 for C grid scheme
using energy conserving Q
variant on grid C8 for
Galewsky

6.6.2. Initial Response (GalewskyInit).

When the perturbation is added, a markedly different response in observed. Plotting

in Figures 6.60, 6.61, 6.62, 6.63, 6.64, 6.65 and 6.66 is the divergence δ after 3 hours of

simulation. There is a clearly defined inertia-gravity wave spreading out from the initial

height perturbation. This wave is very similar for all of the schemes tested. There are some

slight differences in the divergence field away from the wavefront, but the main wave itself

appears the same between schemes. The divergence field can be compared to that obtained

in [43], and they are extremely similar. This confirms that the initial perturbation has been

implemented correctly, and that the models are behaving as expected.
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Figure 6.64. Divergence
at hour 3 for C grid scheme
using double conservative
Q variant on grid G8 for
Galewsky

Figure 6.65. Divergence
at hour 3 for C grid scheme
using double conservative
Q variant on grid C8 for
Galewsky

Figure 6.66. Divergence at hour 3 for Z grid scheme on grid G8 for Galewsky

6.6.3. Fully Developed Jet (Galewsky).

In addition to the initial response, it is useful to examine the fully developed jet. The

absolute vorticity at Day 6 for all of the schemes tested is shown in Figures 6.73, 6.74, 6.75,

6.76, 6.77, 6.78 and 6.79. The main jet structure between 00 and 1800 W is very similar

between all of the schemes (except for the C grid total energy conserving variant), with

some differences in the depth of the trough around 1100 W. The main jet structure is also

very similar to the inviscid jet solution from the original Galewsky et. al paper. As noted,

the C grid total energy conserving variant is unstable, and the solution is quite bad. The

undeveloped portion of the jet between 00 and 1800 E is markedly different from scheme to

scheme. The two stables C grid schemes (potential enstrophy and doubly conservative) on

the cubed-sphere grid show similar behaviour, while the doubly-conservative, total energy
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and Z grid scheme on icosahedral grids are also similar. The enstrophy conserving variant

on icosahedral grids is similar to none of these schemes.

Close inspection does reveal that the doubly conservative C grid scheme and the Z grid

scheme are extremely similar. This is an interesting result, because the schemes are built

using very different numerics. It suggests that conservation properties can have an influence

even in shorter-term simulations, an unexpected result.

The differences between the schemes (in particular the different variants of Q, and

the two types of grid) do not appear to be going away with increasing resolution. Since

this testcase represents the complicated evolution of a unstable initial state, this is not

unexpected. Nonlinear feedbacks between scales imply that small scale features in the flow

(which are strongly sensitive to the choice of scheme and grid) can influence the evolution

of the larger scales. Additionally, lower resolution runs of this testcase (not shown) had

very strong wavenumber 4 (for the cubed sphere) or wavenumber 5 (for the icosahedral grid)

patterns.

These results can be contrasted with the many examinations of this test case in the

literature using a variety of schemes. Hilary Weller ([154]) and Thuburn et. al ([137])

used a very similar scheme on both icosahedral and cubed-sphere grid, and found broadly

the same results. A high resolution was required to eliminate the spurious wavenumber 4

(cubed-sphere) or 5 (icosahedral) patterns. In addition, unlike Weller’s results, both we and

Thuburn et. al found that the cubed-sphere grid gave comparable results to the icosahedral

grid at sufficiently high resolution. Xiao et. al ([65], using a higher-order multi-moment finite

volume scheme on icosahedral grids), Maras et. al ([79], using a continuous/discontinuous

Galerkin method on both cubed-sphere and icosahedral grids), Shin et. al ([123], using

low-order finite volume methods on icosahedral grids) and Salehipour et. al ([112], using
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a discontinuous Galerkin method on icosahedral grids) and obtained similar conclusions re-

garding the neccessity of high resolution to control the wavenumber 4/5 forcing. In addition,

Salehipour et. al also found that the implicit diffusion in the DG method helped control the

spurious release of instability associated with low resolution. Ringler e.t. al ([103], using a

very similar low-order finite volume method on icosahedral grids) obtained a similar main

jet structure on variable resolution grids, with the solution in the coarse region exhibiting

a strong wavenumber 5 pattern as resolution decreased. From our results and these other

results in the literature, it appears some combination of high resolution and higher-order ap-

proximations is required to prevent spurious release of instability associated with the singular

points on icosahedral and cubed-sphere grids.

Conservation properties for this test case are plotted in Figures 6.67, 6.68, 6.69, 6.70,

6.71 and 6.72. They show broadly the same results as TC2: each variant of Q is conserving

the expected quantities. However, the total energy conserving C grid scheme on the cubed-

sphere grid is no longer conserving energy. In addition, it also shows a lot of potential

enstrophy growth (around 30% by the end of the simulation), while the remaining schemes

show little growth for the non-conserved quantities. This makes sense, since that scheme

is unstable (see above). In addition, the differences in conservation between the doubly-

conservative C grid scheme and the Z grid scheme have gone away. This suggests that the

interpretation of this effect given early (better ability of the Z grid scheme to maintain the

balanced state of TC2) is correct.

6.7. Shallow Water Held-Suarez Analogue (Held Suarez)

The preceding test cases focus on the ability of the schemes to accurately simulate the

evolution of a given initial condition, and on their ability to maintain a balanced initial
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Figure 6.67. Potential
enstrophy conservation
for the C grid scheme (all
three Q variants) on grid
G8 for Galewsky

Figure 6.68. Potential
enstrophy conservation
for the C grid scheme (all
three Q variants) on grid
C8 for Galewsky

Figure 6.69. Total en-
ergy conservation for the C
grid scheme (all three Q
variants) on grid G8 for
Galewsky

Figure 6.70. Total en-
ergy conservation for the C
grid scheme (all three Q
variants) on grid C8 for
Galewsky

condition. These situations are characteristic of the types of problems that a weather fore-

casting model is used to solve. However, climate simulations rely on the ability of a model to

correctly simulate the long-term statistics of the dynamical system under a (possibly time-

varying) forcing. This is markedly different from the test cases above. To evaluate the ability

of the schemes to simulate long-term statistics, a shallow water analogue of the Held-Suarez
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Figure 6.71. Potential
enstrophy conservation for
the Z grid and C grid (dou-
bly conservative version)
schemes on grid G8 for
Galewsky

Figure 6.72. Total en-
ergy conservation for the
Z grid and C grid (dou-
bly conservative version)
schemes on grid G8 for
Galewsky

Figure 6.73. Absolute
vorticity at Day 6 for
C grid scheme using
enstrophy-conserving Q
variant on grid G8 for
Galewsky

Figure 6.74. Absolute
vorticity at Day 6 for
C grid scheme using
enstrophy-conserving Q
variant on grid C8 for
Galewsky

test case has been developed by John Thuburn ([134], and personal communication). It is

essentially a forced-dissipative turbulence test case.

Description of Test Case. A forcing is added to the shallow water equations as

(370)
Bu
Bt � � � � � ~ueqm � ~u

τu
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Figure 6.75. Absolute
vorticity at Day 6 for C
grid scheme using energy-
conserving Q variant on
grid G8 for Galewsky

Figure 6.76. Absolute
vorticity at Day 6 for C
grid scheme using energy-
conserving Q variant on
grid C8 for Galewsky

Figure 6.77. Absolute
vorticity at Day 6 for C
grid scheme using double
conservative Q variant on
grid G8 for Galewsky

Figure 6.78. Absolute
vorticity at Day 6 for C
grid scheme using double
conservative Q variant on
grid C8 for Galewsky

Figure 6.79. Absolute vorticity at Day 6 for Z grid scheme on grid G8 for Galewsky

(371)
Bh
Bt � � � � � heqm � h

τh

or in vorticity-divergence form as

(372)
Bδ
Bt � � � � � δeqm � δ

τu
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(373)
Bζ
Bt � � � � � ζeqm � ζ

τu

The equilibrium profiles (with θ latitude, λ longitude, a Earth’s radius) are given by

(374) heqm � h0 � dHp1 � sin2pθqq

(375) ueqm � ~∇Tψeqm � u0 sin2p2θq
�

sin2pmθq � 1

2




where ~u is purely zonal. A streamfunction can be calculated as

(376) ψeqm � au0

2
pA�B � Cq

where

(377) A � sinr2pm� 2qθs
8pm� 2q

(378) B � sinr2pm� 2qθs
8pm� 2q

(379) C � sinp2mθq
4m

which gives

(380) ζeqm � u0

a
p�D � E � F q

(381) δeqm � 0

202



Figure 6.80. heqm forcing function

where

(382) D � tanpθq sin2p2θqrsin2pmθq � 1

2
s

(383) E � 2m sin2p2θq sinpmθq cospmθq

(384) F � 4 cosp2θq sinp2θqrsin2pmθq � 1

2
s

The various constants are m � 12, u0 � 120 meters per second, dH � 8000 meters
g

, h0 �

103 meters � 2dH
3

, τh � 100 days and τu � 100 days. Plots of the forcing functions are

provided in Figures 6.80, 6.81, 6.82 and 6.83. The initial height field is set equal to 103m.

The initial wind field (and therefore vorticity and divergence fields) is set equal to 0. The

model is run for 2400 days, with the first 400 days treated as a spin-up time. The underlying

forcing is zonally and equatorially symmetric; loss of these symmetries in the statistics is

evidence of grid imprinting or other model errors.
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Figure 6.81. ueqm forcing function

Figure 6.82. ψeqm forcing function

Figure 6.83. ζeqm forcing function
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Statistics. To analyze the results, statistics are computed for the last 2000 days of

each run; for fluid height h, relative vorticity ζ and divergence δ. The relevant statistics

are temporal means δ̄t, temporal standard deviations δσt , zonal/temporal means6 δ̄t,z and

zonal/temporal standard deviations δ̄zσt . Zonal mean statistics are computed by binning

area-weighted data based on latitude and taking area-weighted statistics over each bin. Due

to the quasi-uniform nature of the grids under consideration, this does have the disadvantage

of relative few samples near the poles, and therefore zonal mean statistics from high-latitudes

should be treated with caution.

6.7.1. C Grid Results.

Zonal Mean Results. Zonal/temporal means and standard deviations for the cubed sphere

grid are provided in Figures 6.84, 6.85, 6.86, 6.87, 6.88 and 6.89; and for the icosahedral grid

in Figures 6.90, 6.91, 6.92, 6.93, 6.94 and 6.95.

Looking at the zonal mean statistics for the cubed sphere grid, it is immediately ap-

parent that the total energy conserving variant is producing wildly different results from

the potential enstrophy and doubly-conservative variants. However, the potential enstro-

phy and doubly conservative variants are quite similar, except for the standard deviation of

fluid height. Significant differences in this case are seen at all latitudes. These zonal mean

statistics can be also compared with results from John Thuburn (personal communication,

obtained using a primal-dual mimetic finite element scheme). The primal-dual finite ele-

ment scheme is very similar to the one presented here, but it is first-order accurate in the

Taylor series sense on all grids. The doubly conservative and potential enstrophy conserving

variants are very similar to Thuburn’s results, indicating that the total energy conserving

variant is probably wrong. As might be anticipated, there is significantly more variabil-

ity in the standard deviations of both relative vorticity and divergence than in the results
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from Thuburn. This is not unexpected, since Thuburn uses an upwind advection scheme for

both fluid height and potential vorticity. Further examination of the cubed-sphere results

is provided below: essentially there is extremely strong grid imprinting seen for all three

variants.

On the icosahedral grid, the situation is very different. All three variants show very

similar zonal mean statistics. The zonal standard deviation of fluid height shows some

differences, especially in the mid-latitudes. Similar results are seen in standard deviation

of relative vorticity and divergence. There are also differences in the standard deviation of

divergence in the tropics. Since the mid-latitudes are the dynamically active regions for this

forcing, these differences are important. Comparing to the results from Thuburn, the zonal

means of all variables are quite similar. However, there is again significantly more variability

in the standard deviation of relative vorticity and divergence. In addition, the standard

deviation of height appears to be missing a peak at around �30� latitude. It does not

appear that any particular variants are closer to each other than to the other variants. This

is unexpected, since reasoning from incompressible turbulence theory suggests that enstrophy

conservation should produce similar results to double conservation. Closer examination of

this is certainly warranted, but beyond the scope of this work.

Temporal Statistics. Temporal means and standard deviations for the cubed sphere grid

are provided in Figures 6.96, 6.97, 6.98, 6.99, 6.100 and 6.101; and for the icosahedral grid

in Figures 6.102, 6.103, 6.104, 6.105, 6.106 and 6.107.

For the total energy conserving variant on the cubed-sphere grid, strong grid imprinting

is seen in both means and standard deviations for all variables- especially in the mean

divergence. In addition, all three variants show grid imprinting in the standard deviations

of relative vorticity and divergence. This is not a surprising result: the ”weather” test cases
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Figure 6.84. Zonally av-
eraged mean fluid height
for C grid scheme on the
cubed-sphere grid, all three
variants

Figure 6.85. Zonally
averaged standard devi-
ation of fluid height for
C grid scheme on the
cubed-sphere grid, all three
variants

Figure 6.86. Zonally av-
eraged mean relative vor-
ticity for C grid scheme on
the cubed-sphere grid, all
three variants

Figure 6.87. Zonally av-
eraged standard deviation
of relative vorticity for C
grid scheme on the cubed-
sphere grid, all three vari-
ants

(especially the Galewsky test case) revealed issues with the cubed-sphere. However, these

results reveal the unsuitability of this scheme on the cubed sphere grid for use in climate

simulations. This is not the case for the results from Thuburn, again probably due to the

upwind biased advection of height and potential vorticity.
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Figure 6.88. Zonally av-
eraged mean divergence for
C grid scheme on the
cubed-sphere grid, all three
variants

Figure 6.89. Zonally
averaged standard devi-
ation of divergence for
C grid scheme on the
cubed-sphere grid, all three
variants

Figure 6.90. Zonally av-
eraged mean fluid height
for C grid scheme on the
icosahedral grid, all three
variants

Figure 6.91. Zonally av-
eraged standard deviation
of fluid height for C grid
scheme on the icosahedral
grid, all three variants

Results on the icosahedral grid are again quite different from the results on the cubed-

sphere grid. All three variants produced very similar mean statistics in fluid height and

relative vorticity, and were close to the results from Thuburn. The standard deviation of

fluid height was also similar between the variants and to Thuburn. However, the relative
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Figure 6.92. Zonally av-
eraged mean relative vor-
ticity for C grid scheme
on the icosahedral grid, all
three variants

Figure 6.93. Zonally av-
eraged standard deviation
of relative vorticity for C
grid scheme on the icosahe-
dral grid, all three variants

Figure 6.94. Zonally av-
eraged mean divergence for
C grid scheme on the icosa-
hedral grid, all three vari-
ants

Figure 6.95. Zonally av-
eraged standard deviation
of divergence for C grid
scheme on the icosahedral
grid, all three variants

vorticity standard deviation and mean divergence both exhibited significant grid imprinting,

although not as severe as that seen on the cubed-sphere grid. This is not the case for the

results from Thuburn, again probably due to the upwind biased advection of height and

potential vorticity.
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Figure 6.96. Standard deviation of fluid height for C grid scheme on cubed-
sphere grid. Top is doubly conservative variant, middle is total energy con-
serving variant and bottom in potential enstrophy conserving variant
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Figure 6.97. Mean fluid height for C grid scheme on cubed-sphere grid. Top
is doubly conservative variant, middle is total energy conserving variant and
bottom in potential enstrophy conserving variant
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Figure 6.98. Standard deviation of relative vorticity for C grid scheme on
cubed-sphere grid. Top is doubly conservative variant, middle is total energy
conserving variant and bottom in potential enstrophy conserving variant. Note
that the total energy conserving variant is producing values that exceed the
plot bounds.
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Figure 6.99. Mean relative vorticity for C grid scheme on cubed-sphere grid.
Top is doubly conservative variant, middle is total energy conserving variant
and bottom in potential enstrophy conserving variant
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Figure 6.100. Standard deviation of divergence for C grid scheme on cubed-
sphere grid. Top is doubly conservative variant, middle is total energy con-
serving variant and bottom in potential enstrophy conserving variant. Note
that the total energy conserving variant is producing values that exceed the
plot bounds.
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Figure 6.101. Mean divergence for C grid scheme on cubed-sphere grid. Top
is doubly conservative variant, middle is total energy conserving variant and
bottom in potential enstrophy conserving variant
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Figure 6.102. Standard deviation of fluid height for C grid scheme on icosa-
hedral grid. Top is doubly conservative variant, middle is total energy con-
serving variant and bottom in potential enstrophy conserving variant

216



Figure 6.103. Mean fluid height for C grid scheme on icosahedral grid. Top
is doubly conservative variant, middle is total energy conserving variant and
bottom in potential enstrophy conserving variant
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Figure 6.104. Standard deviation of relative vorticity for C grid scheme on
icosahedral grid. Top is doubly conservative variant, middle is total energy
conserving variant and bottom in potential enstrophy conserving variant
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Figure 6.105. Mean relative vorticity for C grid scheme on icosahedral grid.
Top is doubly conservative variant, middle is total energy conserving variant
and bottom in potential enstrophy conserving variant
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Figure 6.106. Standard deviation of divergence for C grid scheme on icosahe-
dral grid. Top is doubly conservative variant, middle is total energy conserving
variant and bottom in potential enstrophy conserving variant
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Figure 6.107. Mean divergence for C grid scheme on icosahedral grid. Top
is doubly conservative variant, middle is total energy conserving variant and
bottom in potential enstrophy conserving variant
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6.7.2. Z Grid Results.

Zonal Mean Results. Zonal/temporal means and standard deviations for the icosahedral

grid are provided in Figures 6.108, 6.109, 6.110, 6.111, 6.112 and 6.113.

The zonally averaged means for fluid height and relative vorticity are quite similar to

those found by Thuburn, and those seen for the doubly conservative C grid scheme on

icosahedral grids. However, there are significant differences seen in the zonally averaged

mean divergence. especially in the mid latitudes. Comparing zonal standard deviations, the

fluid height and relative vorticity are quite different, at all latitudes. Interestingly, the zonal

standard deviation of divergence between and C and Z grid were quite similar. Compared

with Thuburn, the relative vorticty and divergence zonal standard deviations were much

noisier.

It was hoped that the doubly conservative C grid scheme on icosahedral grids and Z

grid scheme would produce similar results, since they conserve the same quantities and are

based on the same grid. Unfortunately, this was not the case.
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Figure 6.108. Zonally
averaged mean fluid height
for Z grid and C grid (dou-
bly conservative variant)
schemes on the icosahedral
grid

Figure 6.109. Zonally
averaged standard devi-
ation of fluid height for
Z grid and C grid (dou-
bly conservative variant)
schemes on the icosahedral
grid

Figure 6.110. Zonally
averaged mean relative
vorticity for Z grid and C
grid (doubly conservative
variant) schemes on the
icosahedral grid

Figure 6.111. Zonally
averaged standard devia-
tion of relative vorticity for
Z grid and C grid (dou-
bly conservative variant)
schemes on the icosahedral
grid

Temporal Statistics. Temporal means and standard deviations for the icosahedral grid

are provided in Figures 6.115 and 6.114.
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Figure 6.112. Zonally
averaged mean divergence
for Z grid and C grid (dou-
bly conservative variant)
schemes on the icosahedral
grid

Figure 6.113. Zonally
averaged standard devi-
ation of divergence for
Z grid and C grid (dou-
bly conservative variant)
schemes on the icosahedral
grid

The spatial distribution of mean fluid height and relative vorticity are quite similar to

the C grid doubly conservative scheme on icosahedral grids; and to the results from Thuburn.

The same can be said for the standard deviation of divergence and fluid height, with the

caveat that the divergence standard deviation is noisier. Unlike the C grid case, the relative

vorticity standard deviation does not appear to have significant grid imprinting, and it quite

similar to the results in Thuburn, although noisier. The mean divergence does show a little

grid imprinting, althogh it is much weaker than that seen on the C grid. It is hypothesized

that the grid imprinting on the Z grid scheme is weaker than the C grid scheme because

the Jacobian operator is much more consistent than the W operator. It seems likely that

more serious grid imprinting would be seen on the Z grid at higher resolution, where the

inconsistency of the Jacobian approaches that of the W operator at lower resolutions.
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Figure 6.114. Standard deviation of fluid height, relative vorticity and di-
vergence for the Z grid scheme on an icosahedral grid.

6.8. Chapter Summary

This chapter has evaluated and compared the generalized C and Z grid schemes devel-

oped in Chapter 3 and Chapter 4. Essentially all of the material presented is new, with the

exception of some of the order of accuracy results that are duplicates of tests done in [154]

and [137]. The next Chapter provides a high-level overview of the results from this Chapter

and makes suggestions about the utility of various schemes for both weather forecasting and

climate prediction.
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Figure 6.115. Mean fluid height, relative vorticity and divergence for the Z
grid scheme on an icosahedral grid.
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CHAPTER 7

Conclusions

The major thrust of this work was the development of a doubly conservative extension

of the 1981 Arakawa and Lamb scheme to arbitrary grids. This was accomplished by follow-

ing the approach of Salmon 2004 ([115]), in conjunction with the discrete exterior calculus

framework of Thuburn, Cotter and Dubos 2012 ([135]). In addition, a doubly conservative Z

grid scheme for icosahedral grids free of computational modes was also developed, following

Salmon 2007 ([117]). The linear modes and performance of the schemes for various test

cases on a variety of grids were then investigated. Broad conclusions are drawn below from

these investigations, and some remarks about the suitability of these schemes as the basis

for weather and climate models are given.

7.1. Linear Modes Summary

Stationary Modes. For the f-sphere, the stationary modes for all three schemes were

found to be linear combinations of the geostrophic modes (with zero divergence). On the

full sphere, all of the stationary or quasi-stationary modes were zonally symmetric (again

with zero divergence). This was in contrast to the results from Weller ([153]), who found

stationary or quasi-stationary modes with zonal structure. It is hypothesized that this

difference is due to the more accurate calculation of A compared to that study. In all cases

(f-sphere and full sphere, with and without dissipation), no damaging spurious stationary

modes were found. This supports the theoretical analysis, and is what is expected from

planar grid results. The addition of dissipation did not alter the mode structures for either

the f-sphere or the full sphere case, although the only truly stationary mode in the case
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of dissipation was a mode with constant height and zero wind (and therefore zero relative

vorticity and divergence).

Propagating Modes. All of the scheme tested had broadly similar wave dispersion prop-

erties, with the some differences in the highest wavenumbers. Encouragingly, none of the

schemes had any spectral gaps or jumps, and all showed increasing frequency with wavenum-

ber. Both the C and Z grid schemes on icosahedral grids showed the expected flattening of

frequency at the highest wavenumbers, while the C grid scheme on the cubed sphere grid

had a linear increase in frequency. These high frequency modes were shown to be unphysical

and strongly localized around the singular points of the grid. Although this was also the

case for the icosahedral grid schemes, it was much less pronounced. These results broadly

mimic what is seen in the planar grid case, and also what was found in Weller. There was

no evidence of damaging spurious Rossby modes, in particular, the stationary modes of the

full sphere were all zonally symmetric. The strength of dissipation (in the form of viscosity)

linearly increased with increasing wavenumber for the inertia-gravity modes for both the f-

sphere and the full sphere, in accordance with the planar grid results. It was quasi-randomly

distributed for the Rossby modes. The reason for this remains unclear, although it is possi-

ble that the method used to characterized the Rossby modes is not an accurate reflection of

their spatial wavenumber.

7.2. Test Cases Summary

Accuracy. Both the C and the Z grid scheme were found to be inconsistent, even with

optimized grids. The W operator for the C grid scheme was inconsistent on all grids, as

was the Jacobian operator for the Z grid scheme. For the cubed-sphere C grid scheme, even

the Laplacian operators were inconsistent. However, on the tweaked icosahedral grid both
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the Z grid and C grid schemes were able to obtain approximately first order accuracy in

the TC2 test case, despite their inconsistency. Unfortunately, the TC2 test case (solid body

rotation) is not particularly challenging- it is quite linear; and probably does not represent

the performance of the scheme for realistic situations.

”Weather” Test Cases. Results from TC5 indicate the presence of significant near grid-

scale variability for the C grid scheme on icosahedral grids, especially when compared to

the C grid scheme on cubed-sphere grids or the Z grid scheme. This variability is believed

to be associated with the spurious branch of Rossby waves associated with the icosahedral

C grid. However, this additional variability does not appear to impact the ability of the

model to resolve the larger scales. The Rossby-Haurwitz test case (TC6) indicated that the

icosahedral grid imprinting (a wavenumber 5 forcing) was causing the initial state to break

down. This occurs after around 20 days for both the C and Z grid models on icosahedral

grids. The cubed-sphere C grid was stable out to 50 days. The Galewsky et. al test case,

run without the initial perturbation, indicated the presence of grid imprinting on all grids,

associated with a breakdown of the balanced but unstable initial state. In a 3D model,

this could cause the spurious release of baroclinic instability. The total energy conserving

and doubly conservative C grid schemes on icosahedral grids, and the Z grid scheme showed

the least evidence of grid imprinting. When the initial perturbation was added, these three

schemes also produced very similar results. The cubed-sphere grid schemes (except for the

total energy conserving variant) appears to be converging to the consensus solution, but

slower than the icosahedral schemes. All of the schemes required extremely high resolution

(G8 and C8) to eliminate the wavenumber 4 (cubed-sphere) or 5 (icosahedral) patterns seen

in the inactive regions of the jet. No evidence of issues from the spurious modes on the

icosahedral C grid was found. On the optimized icosahedral grids, there were additionally
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no issues seen from the inconsistency of the W or Jacobian operators. For the cubed-sphere

grid, there were instability issues with the total energy conserving variant in the Galewsky

test case, probably associated with the inconsistency of the C grid scheme on the cubed

sphere grid in general.

Climate Test Cases. Unlike the results from the weather test cases (where the total en-

ergy and doubly conservative variants of the C grid scheme on icosahedral grids; and the Z

grid scheme both performed well), the ”Held-Suarez” climate test case revealed major issues

with all of the schemes tested. In particular, all of the C grid schemes exhibited signifi-

cant grid imprinting in at least the mean divergence. The Z grid scheme also showed this,

but it was much weaker than that seen in the C grid schemes. However, as discussed in

Chapter 6, this was probably due to the increased accuracy of the Jacobian operator at the

resolutions tested compared with the W operator. At higher resolutions, it is anticipated

that the inconsistency of the Jacobian operator would produce similar grid imprinting issues.

Encouragingly, however, no evidence of issues from the spurious modes on the icosahedral C

grid was found.

7.3. Selection of a scheme for developing a weather model

Weather forecasting is fundamentally an initial value problem, and conservation aspects

are less important. Instead, the ability of a scheme to accurately evolve an initial state;

and properly represent processes such as baroclinic instability are paramount. The cubed

sphere C grid schemes and the enstrophy conserving C grid scheme on icosahedral grids all

suffered from very strong grid imprinting, and associated spurious breakdown of the unstable

balanced jet. On the basis of these results from the ”weather” test cases (TC2, TC5, TC6

and Galewsky), it appears that the total energy or doubly conservative variants of the C
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grid scheme on icosahedral grids; and the Z grid scheme are the only viable possibilities.

However, the spurious release of barotropic instability could be an issue with these schemes,

even though their grid imprinting was quite weak. It seems likely that higher-order accuracy

(at least between 1st and 2nd order) is desirable in order to suppress this.

Although the issues with the scheme discussed above can be circumvented with the

addition of dissipation or filters, this is not a desirable approach. The real atmosphere is

essentially inviscid at the scales of interest for most NWP, and therefore any dissipation

(either explicit or implicit) is really a representation of the interaction between resolved and

unresolved scales. There is growing evidence ([138] and [68]) that viscosity, hyperviscosity

and other commonly used dissipation schemes are a poor representation of this subgrid

interaction. Therefore, it is not unreasonable to say dissipation that is added purely to

control bad numerics represents an unphysical parameterization, and it should be avoided

wherever possible.

7.4. Selection of a scheme for developing a climate model

Climate simulation is a very different problem from weather forecasting. The basic

question becomes: given a set of (possibly time varying) forcings, what are the statistics of

possible dynamical states? In such a case, a strong argument can be made for the importance

of conservation laws, since they constrain the possible dynamical states that a system can

explore. This is very different from weather forecasting, which is trying to determine the

evolution of a dynamical system from a given state.

On the basis of the grid imprinting seen for all of the C grid schemes, only the Z grid

scheme seems to be a viable possibility for a climate model. However, as discussed above,

this lack of grid imprinting is probably only an artifact of the coarse resolution used, where
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the Jacobian operator is still fairly accurate. Again, at higher resolutions it is anticipated

that the inconsistency of the Jacobian operator will would produce similar grid imprinting

issues.

7.5. Future Work

In reality, none of these scheme are truly viable as candidates for next generation dy-

namical cores being used for either climate or weather. If a choice had to be made, the Z

grid scheme might be made viable for climate, and the Z grid and total energy or doubly

conservative C grid schemes on icosahedral grids could be made to work for weather. All of

these would likely require unphysical amounts of dissipation to control the grid imprinting

induced by the inconsistency of the W and Jacobian operators.

However, all is not lost. Recent work by John Thuburn and Collin Cotter ([136]) has

extended the C grid framework discussed in Chapter 3 to the case of primal-dual mimetic

finite elements. It seems very likely that the doubly conservative C grid scheme can also be

extended to this framework: it is believed that the same form of operator Q can in fact be

used. The W operator in this framework is now consistent, and the whole scheme is more

accurate, which should help alleviate grid imprinting issues. In addition, since the scheme

is still single-moment with the same degrees of freedom, the linear modes should be very

similar to those seen in the current study.

A finite-element scheme requires the solution of elliptic problems at each time step. This

motivates the use of a semi-implicit or fully implicit time stepping scheme, since unlike the

current framework the additional cost compared to explicit time stepping is not very large.

Also, it would be possible to obtain a fully conservative scheme (rather than just semi-discrete

conservative) using implicit time stepping, which might be desirable for climate applications.
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The accuracy issues with the Z grid scheme could also be solved. Two routes seem

fruitful: the first would be the extension of finite element exterior calculus approach to the

vorticity-divergence framework. This would require careful investigation into the resulting

linear modes, since anything beyond the lowest-order finite element schemes would have

multiple degrees of freedom per geometry entity, which has been know to cause issues in the

dispersion relationship. The second would be recent work done by Ross Heikes (personal

communication) on improving the accuracy of individual operators while retaining a single

moment per grid cell. Again, semi-implicit or fully implicit time stepping should probably

be explored in these frameworks.

It also seems likely that the inhomogeneity of the cubed-sphere grid used in this study

contributes to the issues seen on that grid. As has been found by other work, it appears

that good performance of the low order finite-difference/finite volume type schemes requires

careful optimization of the underlying grid. Recent work by Jim Purser ([99], and personal

communication) has led to a method for generating much smoother cubed sphere grids. It

seems likely that similar performance to that seen on the tweaked icosahedral grid could

be obtained on an optimized cubed sphere grid, although grid imprinting issues from the

inconsistency of W would remain. It would also be useful to explore other choices of grid

such as Hilary Weller’s diamond grid ([154]), which is obtained from a cubed sphere grid by

creating new grid cells at each edge from the two primal vertices and two dual vertices that

define the edge.
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APPENDIX A

Hamiltonian Methods

A brief, non mathematically rigorous overview of infinite-dimensional Hamiltonian me-

chanics is provided below. The reader is referred to [122], [2], [121], [114] and [113] for more

information. This material is purely pedagogical and no claims to originality are made.

A.1. Infinite Dimensional Non-Canonical Hamiltonian Systems

Consider a dynamical system described by a state vector ~x P X , where X is some infinite-

dimensional space. Typically, X is a Banach space over some domain. If the dynamics can

be represented as

(385)
B~x
Bt � J

δH
δ~x

where H is some functional of the state vector ~x (called the Hamiltonian, making δH
δ~x

a

functional derivative in the dual space X �) and J is a antisymmetric bilinear form that

satisfies the Jacobi identity on X ��X �, then we say that the system is Hamiltonian. Many

dynamical systems of interest in physics (including essentially all adiabatic and inviscid fluid

dynamical systems) are Hamiltonian. Note that J can be a function of the state vector ~x,

although it must be anti-symmetric and satisfy the Jacobi identity for ANY values of the

state vector. This particular representation of the dynamics is called the symplectic form.

There are equivalent ways of representing Hamiltonian dynamics, but the symplectic form is

useful in fluid mechanics because it works for both canonical and non-canonical Hamiltonian

systems. In practice, δH
δ~x

can be associated uniquely with an element of X and J with a

skew-symmetric differential operator on X � X .
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Poisson Brackets. The evolution of a general functional F is described by

(386)
dF
dt

� pδF
δ~x
, J
δH
δ~x

q � �pδH
δ~x

, J
δF
δ~x

q � tF ,Hu � �tH,Fu

where we have used the skew-symmetry of J, p, q is the inner product associated with the

function space that F is defined on and

(387) tA,Bu � pδA
δ~x
, J
δB
δ~x

q

is the Poisson bracket.

Properties of J/Poisson Brackets. As mentioned above, J satisfies two key properties:

skew-symmetry and the Jacobi identity. Skew symmetry simply means that

(388) tA,Bu � �tB,Au

for any two functionals A and B. The Jacobi identity is

(389) tA, tB, Cuu � tC, tA,Buu � tB, tC,Auu � 0

for any three functionals A, B and C. For non-canonical Hamiltonian systems, J is singular

and therefore there also exist functionals (termed Casimirs) that satisfy

(390) tC,Gu � 0 @G
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where G is some arbitrary functional. By the chain rule for functional derivatives, this

reduces to

(391) tC, xiu � 0 @xi

In practice, when discretizing Hamiltonian systems, it is usually possible only to preserve the

skew-symmetric aspect of J along with a few of the Casimirs. Fortunately, this is typically

good enough.

A.2. Linearized Hamiltonian Dynamics

Consider a state of a Hamiltonian system ~x � ~x0 where

(392)
B~x0

Bt � J
δH
δ~x

|~x�~x0 � 0

ie it is stationary. It is always possible (since J δC
δ~x
� 0) to find a Casimir C0 such that

(393)
δH
δ~x

|~x�~x0 � �δC0

δ~x
|~x�~x0

Now form the quantity

(394) A � H � C0 �H|~x�~x0 � C0|~x�~x0

This is called the psuedoenergy (or wave-activity) associated with the steady state ~x0. Note

that it is an exact invariant of the system. For small disturbances from ~x, it is quadratic in

the disturbance amplitude. Since the Hamiltonian is arbitrary to a Casimir or constant, we
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have

(395)
B~x
Bt � J

δA
δ~x

This represents a fundamental gauge invariance in non-canonical Hamiltonian dynamics-

the exact same dynamics are obtained for an infinite class of Hamiltonians. If J and A are

expanded for small amplitude disturbances, the first-order approximation to this equation is

(396)
B~x
Bt � Jlinear

δHlinear

δ~x

where

(397) Jlinear � J|~x�~x0

and

(398) Hlinear � A with small amplitude approximation

This is (by definition) the linearized dynamics about ~x0.

A.3. Conserved Quantities

We now seek the invariants of the dynamical system; that is, the functionals F such that

(399)
dF
dt

� 0
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There are three types of such invariants: the Hamiltonian, Casimirs and Symmetry Invari-

ants. By definition, the time evolution of F is given as

(400)
dF
dt

� tF ,Hu

A.3.1. Hamiltonian.

Consider the case where F � H. Then we have

(401)
dH
dt

� tH,Hu � �tH,Hu � 0

where the second to last equality has been obtained using the skew-symmetry of the Poisson

bracket and the final equality comes from the definition of the inner product along with the

Poisson bracket. Note that this required two things: a skew-symmetric Poisson bracket and

a positive-definite inner product. When discretizing a Hamiltonian system, the same two

properties are required for conservation of the Hamiltonian.

A.3.2. Casimirs.

Now consider the case where F � C. Then we have

(402)
dC
dt

� tC,Hu � 0

by the definition of a Casimir (tC,Au � 0 for any functional A).

A.3.3. Symmetry Invariants.

Let the state vector ~x be a function of some set of independent coordinates ~y. Typically

these are spatial and temporal coordinates, although their particular interpretation does not

248



matter. Consider a translation of one of the these coordinates:

(403) yk � yk � ε

If H (and J) are invariant under this translation, such that

(404) Hp~xpy0, y1, . . . , yk, . . . qq � Hp~xpy0, y1, . . . , yk � ε, . . . qq

and

(405) Jp~xpy0, y1, . . . , yk, . . . qq � Jp~xpy0, y1, . . . , yk � ε, . . . qq

; and there exists some functional M that satisfies

(406) J
δM
δ~x

� � B~x
Byk

then M is invariant in time. This is Noether’s theorem- it relates symmetries to conserved

quantities and is a fundamental tool of mathematical physics and Hamiltonian methods. In

fact, if we let M � H and yk � t, it is easy to see that the invariance of the Hamiltonian

arises due to a temporal symmetry.

A.3.4. Boundary Conditions.

Notice that nothing here has been said about boundary conditions, especially in the

important area of conserved quantities and boundary conditions. For example, it is quite

possible to have a physical system where energy (or mass, or momentum) are exchanged

across some boundary. Obviously, energy will no longer be an invariant of the system anyway.

However, the net flow of energy across the boundary will precisely balance the change in the
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total energy of the system. This thesis does not consider systems with boundaries (all of the

domains under consideration are closed). It is possible to incorporate boundary conditions

into the Hamiltonian formulation given above, but for simplicity this point is ignored.
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APPENDIX B

Horizontal Grids and Discretization Methods

A brief overview of discretization methods and meshes is provided below. This material

is purely pedagogical and no claims to originality are made. The focus in this chapter is on

Eulerian methods using a single mesh or primal-dual mesh pair.

B.1. Design of a Numerical Method

Consider a set of dependent variables ~x � px0, x1, . . . q (called field functions) and inde-

pendent variables ~y � py0, y1, . . . q. Typically the independent variables are spatial and/or

temporal coordinates that describe a particular domain; and the dependent variables might

be scalars such as pressure or vectors such as velocity. The evolution of the dependent

variables is described by a set of coupled partial differential equations. This form is gen-

eral enough to encompass most physical systems of interest. Fundamentally, the process of

designing a numerical method for solving this system involves three connected steps:

[94][95][96][97][98][99][100][101][102][103][104][105][106][107][108][109][110][111][112][113][114][115][116][117][118][119][120][121][122][123][124][125][126][127][128][129][130][131][132][133][134][135][136][137][138][139][140][141][142][143][144][145][146][147][148][149][150][151][152][153][154][155][156][157](1) Choice of a discrete mesh in space and time to represent the domain: Usually

the spatial mesh and the temporal mesh are determined independently, but coupled

meshes are possible. Certain methods might even use multiple meshes (for example,

a spectral transform method) or primal-dual mesh pairs.

(2) Choice of the representation of field functions on the mesh: This involves determin-

ing how many degrees of freedom for each field function are associated with each

mesh element. Another name for this is grid staggering.
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(3) Choice of how the various DOFs are combined to approximate the set of PDEs:

Coupling can be local (confined to a small subset of other DOFs) or non-local (all

DOFs are coupled). There are many possibilities here.

It is easy to see how different choices made here give rise to finite-difference, finite-volume,

spectral transform, finite-element and other methods. It is also easy to see that the possible

space of choices has not been well explored. This work concerns itself only with the

spatial mesh and associated grid staggering for single moment schemes and two

spatial dimensions (each grid element has at most a single DOF for each field

function associated with it); where the coupling between DOFs is local. In addi-

tion, this appendix focuses primarily on items 1 and 2, while the thesis itself focuses on item

3. Additional information about mesh choice and field function representation using ideas

from Discrete Exterior Calculus is found in Appendix C.

B.2. Horizontal Mesh Overview

When considering the rotating shallow water equations in the context of building an

atmospheric dynamical core, there are two domains that need to be discretized: the doubly

periodic plane (topologically isomorphic to T2) and the two-sphere S2. We are interested in

quasi-uniform meshes without internal or external boundaries, although many of the same

considerations apply to multiresolution meshes or meshes with boundaries.

B.2.1. Primal Mesh.

An excellent overview of quasi-uniform spherical grids and design criterion for their

use in solving the rotating shallow water equations is given by [127]. Fundamentally, a

horizontal mesh can be thought of as a set of mesh elements (faces, edges and vertices) that
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are connected in a topologically consistent manner. They serve to divide the original physical

domain in a set of connected subdomains on which the field functions are represented. In

our case, a mesh starts with a set of primal vertices (dimensionality 0) that are connected

by edges (dimensionality 1), which are geodesics of the underlying domain (straight lines for

the plane, great circle arcs for the sphere). This creates a set of contiguous (spherical or

planar) polygons (dimensionality 2), which are the mesh faces.

B.2.2. Dual Mesh.

In addition to these primal mesh elements, it is useful to consider a dual mesh. It is a

well-known fact from algebraic topology that a consistent dual mesh always exists (for the

case of a contiguous primal mesh) for a given primal mesh. In fact, the elements of the

dual mesh have a one to one correspondence with the elements of the primal mesh; with

the their dimensionality equal to n-k (n is the underlying dimension of the space, k is the

dimensionality of the corresponding primal mesh element). For example, primal vertices

can be associated in a unique 1-1 relationship with dual faces. This is a deep result from

algebraic topology, and is the discrete analogue of the isomorphism between ordinary and

twisted differential forms. See [54] for more details. There are many ways to construct a dual

mesh; the most common are the Voronoi (or circumcentric) dual and the barycentric dual.

They all amount to a choice of where to place the dual vertices that are associated with each

primal face. Typically, this will be somewhere within the associated primal face. However,

strongly distorted meshes will have some dual vertices that lie outside of their associated

primal face. Such meshes can cause numerical difficulties. The general type of grid that we

are interested in is shown in Figure B.1.

253



Figure B.1. A general non-orthogonal polygonal grid with an associated dual
grid. If m and n are parallel for every edge, then the grid is orthogonal.

B.2.3. Grid Geometry.

In addition to the topology of the grid, there are many geometric quantities associated

with it of interest. Primarily, we are interested in:

(1) edge lengths le (primal edges) and de (dual edges)

(2) primal face areas Ai

(3) dual face areas Av

(4) edge areas Ae

(5) overlapping dual and primal face areas Aiv

(6) overlapping edge primal face areas Aie

These quantities are depicted pictorially in Figure B.2.

B.2.4. Pitteway Grids.

A Pitteway triangulation has the property each primal-dual edge pair intersects (see

Figure B.3). It is a special case of the more general Delauney triangulation. This is a useful

property for computing various geometric areas, and ensures that the grid is ”well-behaved”
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Figure B.2. Grid geometry

Figure B.3. On the left is a Pitteway triangulation, on the
right is a non-Pitteway triangulation. This figure is from
http://upload.wikimedia.org/wikipedia/commons/e/ee/Pitteway.svg, ob-
tained under a Creative Commons license

in some sense. As discussed more below, quasi-uniform grids will almost always avoid these

grid pathologies. Multiresolution grids, however, might not.

B.2.5. Neighbors.

In addition to mesh geometry, there is also mesh topology to consider: in particular,

the interconnection between neighboring grid elements. For example CV(v) denotes cells

adjacent to a given vertex. The relevant stencils are given in Table 1.1. All of these stencils

are self-explanatory, with the exception of ECP(e). ECP(e) is tECpi1q YECpi2qu, where i1

255



and i2 are CEpeq: it is the union of edges for the two cells on either side of an edge. More

details about these stencils can be found in [135].

Table B.1. Mesh element neighbor stencils

Stencil From To

CV(v) cells vertices
EC(v) edges vertices
VC(i) vertices cells
EC(i) edges cells
CE(e) cells edges
VE(e) vertices edges
ECP(e) edges edges

B.2.6. Desirable Mesh Properties.

There are many desirable properties that a horizontal mesh can posses. When consid-

ering a quasi-uniform mesh, the following are key:

(1) Isotropic: Different directions in the mesh should look the same. Another way to

say this is that the mesh is invariant under rotation (or since meshes are discrete,

invariant under some subgroup of rotation).

(2) Local Uniformity: Adjacent grid cells are similar in size and shape.

(3) Global Uniformity: Global variation in grid cell size and shape is small.

(4) Orthogonality/Skewness: The primal and dual edges are orthogonal to each other.

The degreee of non-orthogonality is termed skewness.

(5) Centroidality: The location of dual vertices is close to the centroid of the associated

primal face.

(6) Cell types: The primal faces are composed of one type of polygon; and the dual

faces are composed of another (possible the same) type of polygon.
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(7) Cell shape: The primal and dual faces are both quadrilateral, which ensures that

DOFs for a staggered grid method are balanced.

(8) Absence of Mesh Pathologies- The mesh should be free of pathologies. Dual vertices

should lie in their associated primal cells. Dual and primal edges should intersect.

Quasi-uniform grids almost always satisfy this. Multiresolution grids might not.

Clearly, these requirements can often come into conflict. More example, the uniform

planar hexagonal grid is more isotropic than the uniform planar square grid, but it is no longer

quadrilateral. Some of these requirements are topological (cell type and shape) and others

are geometrical (uniformity, skewness, etc.). There are unavoidable topological constraints

on polygonal meshes on the sphere (discussed below). Typically some weighted combination

of the geometric requirements are optimized for actual applications.

Ideally a discretization scheme will work on arbitrary, non-orthogonal polygonal meshes.

This gives the most flexibility in mesh optimization and construction for various applications;

and to optimize computational performance. Obviously, better performance in a quantitative

sense can be obtained for optimized meshes for a given method. However, the fundamental

characteristics of the method (such as mimetic or conservation properties) should be indepen-

dent of the mesh. The generalized C grid discretization presented above keeps its desirable

properties on arbitrary, non-orthogonal polygonal meshes. The only exception to this are

the linear mode properties of the C grid discretization, which has avoidable DOF ratio issues

for non-quadrilateral grids. The generalized Z grid discretization works on for orthogonal

polygonal grids, however as discussed this does not seems to be a major stumbling block.
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Figure B.4. Triangular, square and hexagonal uniform planar grids

B.3. Specific Meshes

As a matter of necessity, this will focus only on a subset of meshes on the plane and

sphere. They are described below.

B.3.1. Planar Meshes.

Regular tiling of the plane with a single polygon type is possible only using hexagons,

square or triangles (see Figure B.4). These meshes (using the circumcentric dual) are orthog-

onal, centroidal, completely uniform and have no mesh pathologies. The hexagonal mesh is

the most isotropic, followed by the square mesh and then the triangular mesh (which suffers

from an anisotropy in that there are ”up” and ”down” triangles). Note that the triangular

and hexagonal meshes are dual to each other, while the square mesh is dual to itself.

It is also possible to build orthogonal, non-uniform meshes using Voronoi tesselations

which will give either hexagonal (with some pentagonal and heptagonal cells; using the

Voronoi tesselation) or triangular cells (using the Delauney dual). These meshes are orthog-

onal, and can be optimized to be centroidal using the Centroidal Voronoi Tesselation. They

are useful primarily when multiresolution meshes are desired.

B.3.2. Spherical Meshes.
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Figure B.5. Icosahedral-hexagonal and (gnomic) cubed sphere grids

We consider only the case of a single, non-overlapping primal grid created by projection

of a Platonic solid onto the sphere, followed by subdivision of its faces. More details can be

found in [127] and [98]. Some examples of these grids are shown in Figure B.5.

Topology of the Sphere. Unlike the plane, it is impossible to tile the sphere with polygons

such that both the primal and the dual grid have a single type of cell. Fortunately, these

singular points are limited in number and isolated. These unavoidable singularities arise

from topological nature of the sphere (in particular, its Euler characteristic of 2).

B.3.3. Icosahedral Grid.

Icosahedral grids are based on the subdivision and projection of the icosahedron onto

the sphere (equivalently, one can start from dodecahedron- the dual of the icosahedron).

One obtains a grid made entirely of triangles in this manner, while the dual grid is made of

hexagons and 12 pentagons corresponding to the original vertices of the icosahedron. From

linear mode and isotropy considerations, typically the hexagonal-pentagonal grid is used as

the primal grid; while the triangular grid is used as the dual. There are 12 point singulari-

ties located at the pentagons, and weak singularities along the lines connection pentagons.
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Geodesic grids can be centroidal, depending on how exactly the dual grid is defined (see

SCVT methods, discussed in Chapter 7). They are also orthogonal, and the quasi-uniform

construction described here does not posses any grid pathologies. More discussion of various

construction and optimization methods for geodesic grids is provided in Chapter 7.

B.3.4. Cubed-Sphere.

The cubed sphere grid is based on the subdivision and projection of the cube onto

the sphere. The primal grid is composed of square elements, while the dual grid is made

of squares and 8 triangles (corresponding to the original vertices of the cube). There are 8

point singularities located at the triangles (called panel corners), and weak singularities along

the lines connecting triangles (called panel edges). Cubed sphere grids do not posses any

grid pathologies. Depending on the projection method, the grid can orthogonal (conformal

projection) or non-orthogonal (gnomic projection). Since there is strong grid cell clustering

at the singular points using the conformal project, typically the gnomic projection is used.

More discussion of various construction and optimization methods for cubed sphere grids is

provided in Chapter 7.

B.3.5. Mesh Optimization Methods.

Once the topology of a mesh has been established, there remains a great deal of op-

timization of the geometry properties that is possible. Extant examples of optimizations

methods in current use include SCVT/CVT, Spring Dynamics and Tweaked Grids. There

are many other possible methods, usually optimizing some combination of local and global

uniformity, centroidality and skewness. Again, the space of possible optimizations is greatly

enlarged if the discretization method supports very general grids.
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B.3.6. Other Grids.

In addition to the cube and the icosahedron/dodecahedron, it is also possible start from

the octagon ([101]) to generate a quasi-uniform spherical grid. There have also been various

quadrilateral ”kite” grids based on either the cubed sphere or the geodesic grid. There are

also other attempts to create quasi-uniform spherical grids not based on polyhedral projec-

tion. Such attempts include the electrostatic grid and the Fibonnaci grid. Two unexplored

areas of possible quasi-uniform spherical grids for atmospheric dynamical cores are those

used in astronomy to map and analyse the Cosmic Microwave Background Radiation; and

those used in other branches of earth science (such as [51]). At least one of those (HEALPIX)

shows promise.

B.4. Field Function Representation

Once a mesh has been obtained, there are many different ways to represent the field

functions on it: point vales, edge or face integrated values, polynomial basis function, etc.

As stated before, this thesis deals with methods that associate one degree of freedom per

mesh element for each field function; and each field function is associated with only one

type of mesh element. This is consistent with finite-difference or finite-volume methods. In

addition, these degrees of freedom are coupled in a local manner: only DOFs within some

limited neighbourhood are coupled.

B.4.1. Grid Staggering.

When a system of equations encompasses several variables, there are choices to be made

in how to place these variables on the horizontal mesh. This is referred to as grid staggering.

For the shallow water equations, there are either two or three variables depending on the
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formulation chosen- height and velocity (a vector quantity) for the vector invariant formu-

lation OR height, vorticity and divergence for the vorticity-divergence formulation. Various

possible staggerings for these variables are described in REFS and reproduced in Figure B.6.

The A grid collocates all variables at the same point (usually considered the center of a grid

cell). The B grid places the mass variable at the center of a cell and the wind vector at cell

vertices. The C grid places the mass variable at the center of a cell and the normal compo-

nent of the velocity at cell walls (for certain schemes on non-orthogonal grids the velocity

component at the walls is not necessarily the normal component, but it is similar in spirit

to a C-grid). The D grid places the mass variable at the center of a cell and the tangential

component of velocity at cell walls (again for certain schemes on non-orthogonal grids the

velocity component at the walls is not necessarily the tangential component, but it is similar

in spirit to a D-grid). The Z grid places the mass variable, vorticity and divergence all at the

center of a cell. The ZC grid places the height and divergence at cell centers and vorticity

at cell vertices. These grid staggering definitions are general enough to apply to arbitrary

polygonal meshes, including all the spherical meshes currently in use. Note that the A, B,

C and D grids apply for the vector invariant or flux form formulations, while the Z grid and

ZC grid apply for the vorticity-divergence formulation.

From considerations in DEC and Hamiltonian Mechanics, it is advisable to use either

the C grid staggering, the Z grid staggering or the ZC grid staggering. This thesis focuses on

Z and C grid staggerings. The ZC grid, although theoretically interesting, suffers from the

same DOF balancing issues as the C grid but has a similar computational cost to the Z grid

staggering. Therefore, it offers little practical advantage over the C or Z grid staggerings.
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Figure B.6. Various choices of grid staggering for the shallow water equations
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APPENDIX C

Discrete Exterior Calculus

A brief review of discrete exterior calculus on 2D manifolds is given below. More in-

formation is available in [15], [97], [145], [144], [80], [143] and [60]. Whenever necessary,

mathematical rigor has been sacrificed for ease of exposition. This material is purely peda-

gogical and no claims to originality are made.

C.1. Discrete Exterior Calculus in 2D

The primary operators of interest are the exterior derivative d and the Hodge star

operator �. Other operators such as the Lie derivative L~u, interior product i~u, sharp 7 and

flat 5 can also be derived, but a consistent theory of these remains an active area of research.

C.1.1. General Setup.

Start by considering a two dimensional primal-dual polygonal mesh such that the dual

mesh vertices lie within the associated primal mesh cells. This mesh does not necessarily have

to be orthgonal; and it can use the circumcentric (Voronoi) dual, the barycentric dual or some

other dual. Such a mesh is sufficiently general to encompass various planar grids (squares,

triangles, hexagons) along with many quasi-uniform spherical grids (geodesic hexagonal-

pentagonal, geodesic triangular, cubed sphere). There are six types of mesh elements: primal

cells, primal edges, primal vertices, dual cells, dual edges and dual vertices. In addition, there

is a 1-1 correspondence (isomorphism) between primal cells - dual vertices, primal edges -

dual edges and primal vertices - dual cells. This is precisely analogous to the isomorphism

between ordinary and twisted forms induced by the Hodge star operator (indeed, such a

primal-dual cell complex can be and is used as the basis for defining a discrete Hodge star).
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Following from exterior calculus considerations for a 2D manifold, there are six types

of objects that we want to represent: ordinary 0,1 and 2-forms; and twisted 0,1 and 2-

forms. Each type of object can be uniquely associated with a geometric entity. Conveniently

(actually, this is a deep property from algebraic topology), we have also have six types of

geometric entities. Ordinary forms will be associated with the primal grid, and twisted forms

will associated with the dual grid. 0-forms are associated with points, 1-forms are associated

with edges and 2-forms are associated with cells. There is an isomorphism between geometric

entities on the primal grid, and geometric entities on the dual grid (this is duality, and is

another deep result from algebraic topology). This isomorphism will be represented using

the DEC approach by defining a set of discrete Hodge stars. There is one degree of freedom

per object associated with each geometric entity (ie this a single moment scheme).

C.1.1.1. Incidence Matrices.

Incidence matrices describe the topological relationships between geometric elements

on the same (primal or dual) grid. Since we are working in two dimensions, there are four:

D1,D2,D̄1,D̄2; where for example D1 maps from primal 0-form to primal 1-form, and D2 maps

from dual 1-forms to dual 2-forms. They are a discrete analogue of the differential operator

d, and therefore represent discrete divergence, gradient and curl. Continuous properties such

as ~∇T � ~∇ � 0 are automatically enforced by construction (ex D2D1 � 0). These operators

are defined purely topologically using the cell complex structure from algebraic topology.

Specifically, they are defined as:

(407) D2 �
¸

ePECpiq
ne,i
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(408) D̄1 �
¸

iPCEpeq
�ne,i

(409) D̄2 �
¸

ePEV pvq
te,v

(410) D1 �
¸

vPV Epeq
te,v

The following properties hold:

(411) D2D1 � 0

(412) D̄2D̄1 � 0

(413) D2 � �D̄1
T

(414) D̄2 � DT
1

C.1.1.2. Hodge Star Operators.

The discrete Hodge Star operators map between variables defined on the primal grid and

variables defined on the dual grid (in fact, they DEFINE the dual grid). There are two types

of discrete Hodge stars that are typically used: circumcentric (or Voronoi) and barycentric.

In this work, we will use exclusively circumcentric Hodge stars (which are diagonal) with the
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exception of the dual 1-form circulations to primal 1-form fluxes Hodge star H for cubed-

sphere grids. Note that a discrete Hodge star induces a discrete inner product. Of couse,

this process could be reversed: an inner product could be used to define a Hodge star. This

leads to mixed finite-element methods and is the basis of the finite-element exterior calculus

(FEEC) approach (see [5] and [6] for an excellent, albeit technical, introduction to FEEC).

Specifically, the circumcentric Hodge star operators are defined as

(415) I � 1

Ai

(416) J � 1

Av

(417) H � le

de

where the geometric quantities are defined using either planar OR spherical operators, where

appropriate.

The incidence matrices combined with the Hodge star operators form what is known as

a discrete DeRham cohomology, which is depicted pictorially in Figure C.1. Note however,

that paths do not commute (unlike in the continuous case).

C.1.1.3. Inner Products.

As discussed above, the three discrete hodge star operators (I,J and H) each induce

inner products. There are nine inner products that arise, and they are defined as:
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Figure C.1. The discrete DeRham cohomology induced by the incidence
matrices and Hodge stars

(418) pAi, BiqI � pAiqT IBi � pBiqT IAi where Ai and Bi are primal 2-forms

(419) pAi, BiqI�1 � pAiqT I�1Bi � pBiqT I�1Ai where Ai and Bi are dual 0-forms

(420) pAi, BiqI � pAiqTBi � pBiqTAi where Ai is a primal 2-form and Bi is a dual 0-form

(421) pAi, BiqJ � pAiqTJBi � pBiqTJAi where Ai and Bi are dual 2-forms

(422) pAi, BiqJ�1 � pAiqTJ�1Bi � pBiqTJ�1Ai where Ai and Bi are primal 0-forms
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(423) pAi, BiqJ � pAiqTBi � pBiqTAi where Ai is a dual 2-form and Bi is a primal 0-form

(424) pAi, BiqH � pAiqTHBi � pBiqTHAi where Ai and Bi are dual 1-forms

(425) pAi, BiqH�1 � pAiqTH�1Bi � pBiqTH�1Ai where Ai and Bi are primal 1-forms

(426) pAi, BiqH � pAiqTBi � pBiqTAi where Ai is a primal 1-form and Bi is a dual 1-form

In order for these inner products to exist and have the correct properties, it is required

that I,J and H are symmetric and positive definite (which, among other things, ensures that

they are invertible).

C.1.1.4. Laplacian Operators.

Since there are six types of discrete objects, there are six different Laplacian operators.

They are

(427) ~∇2ai � D2HD̄1Iai where aiis a primal 2-form

(428) ~∇2ai � ID2HD̄1ai where aiis a dual 0-form

(429) ~∇2av � �D̄2H
�1D1Jav where avis a dual 2-form
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(430) ~∇2av � �JD̄2H
�1D1av where avis a primal 0-form

(431) ~∇2ae � HD̄1ID2ae �D1JD̄2H
�1ae where aeis a primal 1-form

(432) ~∇2ae � D̄1ID2Hae �H�1D1JD̄2ae where aeis a dual 1-form
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APPENDIX D

Dispersion Relations and Allowed Wavenumbers for

Planar Grids

D.1. Dispersion Relations for Planar Grids

Analytic expressions for the dispersion relations for the C and Z grid schemes on perfect

square and perfect hexagonal planar grids are presented below. These results are not new,

they can be found in [100] and [132].

In all cases, C � λ
d

where d is the grid spacing, kd + ld are the non-dimensional

wavenumbers and λ �
?
gH
f

.

D.1.1. Perfect Planar Square Grids.

SZ. On a uniform square grid, the Z grid scheme dispersion relationship is:

(433)
σ2

f 2
� 1 � 4C2psin2pkd

2
q � sin2p ld

2
qq

SC. On a uniform square grid, the C grid scheme dispersion relationship is:

(434)
σ2

f 2
� 1

4
p1 � cospldq � cospkdq � cospkdq cospldqq � 4C2psin2pkd

2
q � sin2p ld

2
qq

D.1.2. Perfect Planar Hexagonal Grids. It is useful to define two auxiliary quan-

tities on hexagonal grids:

(435) a � kd

4
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(436) b �
?

3

4
ld

HZ. On a uniform hexagonal grid, the Z grid scheme dispersion relationship is:

(437)
σ2

f 2
� 1 �R

where

(438) R � 8

3
C2
�
sin2p2aq � sin2p�a� bq � sin2p�a� bq�

and

HC. On a uniform hexagonal grid, the C grid scheme dispersion relationship is:

(439)
σ2

f 2
� A

3
� 8

3
C2B

where

(440) A � a2
1 � a2

2 � a2
3

(441) B � s2
1 � s2

2 � s2
3

(442) a1 � 2c2c3 � c1

3

(443) a2 � 2c3c1 � c2

3
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(444) a3 � 2c1c2 � c3

3

(445) c1 � cosp2aq

(446) c2 � cosp�a� bq

(447) c3 � cosp�a� bq

(448) s1 � sinp2aq

(449) s2 � sinp�a� bq

(450) s3 � sinp�a� bq

D.2. Allowed Wavenumbers for Planar Grids

On a discrete grid, only certain wavenumbers will be supported. These wavenumbers

will be determined by the type of grid element and the number of grid cells. The actual

grid spacing does not play a role (when viewed from the non-dimensional perspective). In

particular, there will be a minimal wavenumber corresponding the longest wavelength that

can be resolved and a maximumal wavenumber corresponding to the shortest wavelength

that be resolved (typically twice the grid spacing). In addition to a discrete and finite
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wavenumber space, there will also be aliasing associated with a grid. Waves with a higher

wavenumber than those supported by the grid will be aliased into waves that are supported

on the grid. Specific examples of discrete wavenumber spaces and aliasing are given below.

D.2.1. Perfect Planar Square.

The perfect planar square mesh is a doubly periodic mesh composed of regular rectangles

(squares) of identical size. Assume such a mesh of size nx by ny grid cells. Such a mesh will

support discrete wavenumbers of the form:

(451) kd � 2πxn
nx

; ld � 2πyn
ny

where xn � �nx � 1, . . . , nx and yn � �ny � 1, . . . , ny. This set of wavenumbers is then

truncated to lie in the first Brioullin zone given by

(452) S � rpπ, πq, p�π, πq, p�π,�πq, pπ,�πqs

This gives maximal wavenumbers of xn � nx
2

for nx even and xn � nx�1
2

for nx odd (with

similar results for yn). The minimal wavenumber is given by xn � 1 (discounting the xn � 0

mode, which is simply constant in space).

D.2.2. Perfect Planar Hexagonal.

The perfect planar hexagonal mesh is a doubly periodic mesh composed of regular

hexagons of identical size. Assume such a mesh of size nx by ny grid cells. Such a mesh will

support discrete wavenumbers of the form:

(453) kd � 2πxn
nx

; ld � 2πyn?
3ny

� 2πxn?
3nx
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Figure D.1. Allowed wavenumbers on the hexagonal grid

where xn � �nx � 1, . . . , nx and yn � �2nx � ny � 1, . . . , 2nx � ny. A plot of the allowed

wavenumbers is shown in Figure D.1.

This set of wavenumbers is then truncated to lie in the first Brioullin zone given by

(454)

H �
�
p�4π{3, 0q, p�2π{3, 2π{

?
3qq, p2π{3, 2π{

?
3qq, p4π{3, 0q, p2π{3,�2π{

?
3q, p�2π{3,�2π{

?
3q
�

The maximal wavenumber occurs at the corners of the hexagonal Brioullin zone. For exam-

ple, for the corner p�4π{3, 0q, the associated maximal wavenumber is xn � 2nx
3

and yn � 2ny
3

.

The minimal wavenumbers are again, xn � 1 and yn � 1.
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