
THESIS

ADAPTIVE SPATIOTEMPORAL DATA INTEGRATION USING DISTRIBUTED QUERY

RELAXATION OVER HETEROGENEOUS OBSERVATIONAL DATASETS

Submitted by

Saptashwa Mitra

Department of Computer Science

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2018

Master’s Committee:

Advisor: Sangmi Lee Pallickara

Shrideep Pallickara
Kaigang Li

Copyright by Saptashwa Mitra 2018

All Rights Reserved

ABSTRACT

ADAPTIVE SPATIOTEMPORAL DATA INTEGRATION USING DISTRIBUTED QUERY

RELAXATION OVER HETEROGENEOUS OBSERVATIONAL DATASETS

Combining data from disparate sources enhances the opportunity to explore different aspects of

the phenomena under consideration. However, there are several challenges in doing so effectively

that include inter alia, the heterogeneity in data representation and format, collection patterns,

and integration of foreign data attributes in a ready-to-use condition. In this study, we propose a

scalable query-oriented data integration framework that provides estimations for spatiotemporally

aligned data points. We have designed Confluence, a distributed data integration framework that

dynamically generates accurate interpolations for the targeted spatiotemporal scopes along with an

estimate of the uncertainty involved with such estimation. Confluence orchestrates computations

to evaluate spatial and temporal query joins and to interpolate values. Our methodology facilitates

distributed query evaluations with a dynamic relaxation of query constraints. Query evaluations

are locality-aware and we leverage model-based dynamic parameter selection to provide accurate

estimation for data points. We have included empirical benchmarks that profile the suitability of

our approach in terms of accuracy, latency, and throughput at scale.

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my parents, Sumita and Subrata Mitra, for being my

pillars of support and strength throughout my life. I thank them for showering me with uncondi-

tional love and always believing in me and pushing me to do better. Thank you, for all the sacrifices

you have made, both in your life and your career to ensure that I always had the best opportunities

in life.

I would also like to thank my advisor Dr. Sangmi Lee Pallickara for her guidance. Research

was (and is still) not easy for me and I thank her for being patient with me, providing valuable

advice and for her continued support throughout my career here at CSU.

I thank my committee members, Dr. Shrideep Pallickara and Dr. Kaigang Li, for promptly

agreeing to be on my Thesis committee. Thank you for accommodating my Thesis defense on

a such a short notice and for your valuable inputs. My research has been supported by funding

from the US National Science Foundations Advanced Cyberinfrastructure (ACI-1553685), so I am

grateful to them for their financial support.

Finally, I would like to thank all the faculty and staff here at the Computer Science Department

for being so helpful and making life at the university pleasant.

iii

TABLE OF CONTENTS

ABSTRACT . ii
ACKNOWLEDGEMENTS . iii
LIST OF TABLES . vii
LIST OF FIGURES . viii

Chapter 1 Introduction . 1
1.1 Research Questions . 2
1.2 Overview of Our Approach . 2
1.3 Paper Contributions . 3
1.4 Paper Organization . 4

Chapter 2 Background and Related Work . 5
2.1 Related Work . 5

2.1.1 Spatiotemporal Data Analysis . 5
2.1.2 Spatiotemporal Interpolation . 7

2.2 Spatiotemporal Data Integration . 8
2.3 Distributed Geospatial Data Storage System 9

2.3.1 Galileo Cluster Structure . 9
2.3.2 Galileo Metadata Graph . 10

2.4 Candidate Dataset Properties . 11

Chapter 3 Relaxed Geospatial Join Across Geospatial Data Representation Models . . . 13
3.1 Relaxed Conditions for Data Integration 13
3.2 Self-Adaptive Relaxation Conditions . 15

Chapter 4 Methodology . 17
4.1 Distributed Query Relaxation . 17
4.2 Relaxation Region . 18

4.2.1 Neighboring Blocks . 18
4.2.2 Maximum Spatial and Temporal Relaxation 19
4.2.3 Maximum Relaxation Region (MRR) 20
4.2.4 Bordering Region . 20
4.2.5 Neighbors′ Orientation . 21

4.3 Spatiotemporal Border Indexing Scheme 22
4.3.1 Border Index Overview . 22
4.3.2 Border Index Components . 23
4.3.3 Figuring out Orientation . 24
4.3.4 Neighbor Elimination Using Bordering Index 24
4.3.5 Partial Block Processing Using Bordering Index 26

4.4 Feature Interpolation With Uncertainty 27
4.4.1 Vector-to-Vector Interpolation . 28

iv

4.4.2 Vector-to-Raster/ Raster-to-Vector . 29
4.4.3 Raster-to-Raster Interpolation . 30

4.5 Self-Adaptive Relaxation Conditions . 30
4.5.1 Training Data Generation . 32
4.5.2 Modelling β Value . 32
4.5.3 Dynamic β Prediction . 33

Chapter 5 System Architecture . 34
5.1 Effective Data Integration . 34

5.1.1 Minimizing Data Movement . 35
5.1.2 Chunkified/Segmented Integration . 36
5.1.3 Minimizing Block Reading . 37
5.1.4 Fast Record Merging . 38

5.2 Relaxed Data Integration Query . 39
5.2.1 Data Integration Request . 39
5.2.2 Data Integration Event . 40
5.2.3 Neighbor Data Request . 41
5.2.4 Neighbor Data Response . 41
5.2.5 Data Integration Response . 43

5.3 Generating Training Data for Neural Network Model 44
5.3.1 Training Data Request . 44
5.3.2 Survey request . 44
5.3.3 Survey Response . 45
5.3.4 Training Data Event . 45
5.3.5 Training Data Response . 45

Chapter 6 System Evaluation . 46
6.1 Experimental Setup . 46

6.1.1 Distributed Cluster Configuration . 46
6.1.2 Training and Testing of Predictive Models for Interpolation Parameters . 46
6.1.3 Datasets . 47

6.2 Data Integration Latency Test . 48
6.2.1 Using Fixed β . 49
6.2.2 Using Dynamic β . 51
6.2.3 Vector-to-Raster Latency . 51

6.3 Data Integration Throughput Test . 52
6.4 Model Training and Accuracy . 53

6.4.1 Model Building Time . 53
6.4.2 Model Accuracy . 54

6.5 Resource Utilization . 54
6.6 Case Study - Obesity Prediction Using Integrated Data 56

6.6.1 Problem Description . 56
6.6.2 Overview of Approach . 57
6.6.3 Target Variable . 58
6.6.4 Data Selection . 58

v

6.6.5 Distributed Computing Environment 59
6.6.6 Interpolation - Attribute based Uncertainty Estimation for Geospatial

Data Integration . 59
6.6.7 Preliminary Analysis . 61
6.6.8 Integrating Datasets Based on Geospatial Proximity 62
6.6.9 Data Pre-Processing and Feature Selection 64
6.6.10 Estimating uncertainty . 64
6.6.11 Uncertainty Aware Modelling . 65
6.6.12 Experimental Evaluation . 66
6.6.13 Training and Testing of Predictive Models 67
6.6.14 Scalability Evaluation . 67
6.6.15 Experimentation and Accuracy Evaluation 68

Chapter 7 Conclusions . 72
7.1 Research Question 1(RQ1) . 72
7.2 Research Question 2(RQ2) . 72
7.3 Research Question 3(RQ3) . 72
7.4 Research Question 3(RQ4) . 73

Bibliography . 74

vi

LIST OF TABLES

3.1 Relaxed Data Integration On Different Datasets . 15

6.1 RMSE for BMI predictions(for year 1997) using CDC Growth Chart 62
6.2 Results from Feature Selection on Integrated Data . 69
6.3 Prediction RMSE for Gradient Boosting Models on Different Data 70

vii

LIST OF FIGURES

2.1 Node Partitioning Scheme . 10
2.2 Metadata Graph . 11

3.1 Relaxed Conditions(Geospatial) . 13

4.1 Relaxation Regions . 19
4.2 Border Flanks . 21
4.3 Neighboring Region Elimination: Scenario 1 . 25
4.4 Neighboring Region Elimination: Scenario 2 . 26
4.5 Partial Neighbor Block Processing . 27

5.1 MDC Algorithm for One Dimension . 38
5.2 Data Flow in Data Integration . 40
5.3 Process Flow in Data Integration . 43

6.1 Data Integration Latency With Fixed β . 50
6.2 Latency Breakdown . 50
6.3 Data Integration Latency With Dynamic β Prediction 51
6.4 Data Integration Latency With Fixed β in Vector-to-Raster Scenario 52
6.5 Throughput for Different Sizes of Query . 52
6.6 Model Building Time vs Training Data Size . 53
6.7 Accuracy Comparison - Dynamic β vs Fixed β . 55
6.8 CPU Utilizations . 55
6.9 CDC growth chart of BMI progression with age for American boys aged 2-20 years. . . 62
6.10 Strategy for merging Census 2000 & NLSY97 data 63
6.11 Turnaround time with increasing cluster size . 67
6.12 Prediction RMSE with change in training data size for (a) Neural Network and (b)

Gradient Boosting Models . 68
6.13 Comparison in RMSE for different datasets . 71

viii

Chapter 1

Introduction

The rapid growth of geo-sensors and remote sensing technologies have allowed geoscientists to

explore numerous and complex attributes to understand phenomena that evolve spatiotemporally.

The collected data is often integrated with other datasets from different data sources to enhance

exploration options. A starting point for such explorations is to use queries to retrieve relevant

portions from disparate datasets. The results from these queries can then be fused to create a

custom dataset.

Challenges in accomplishing this stem from data volumes, the characteristics of the dataset, and

the data collection processed. Data generated by these sensors are voluminous and are produced at

high velocities. The heterogeneity of the collected data including their resolutions, representations,

and encoding format posed challenges in storing, retrieving, processing, and analyzing them. The

data gathering process involves diverse sensing equipment and variations in the data collection

patterns.

Existing frameworks for spatial data management [1–8] provide scalable solutions for geospa-

tial data storing and query over the multiple datasets. While these systems are highly effective from

the scalable storage system standpoint, their spatial join algorithms rely on traditional query evalu-

ations that return intersecting polygon pairs that do not address the nature of mismatching between

the locations of samples and timestamps. Once the data is retrieved, users perform data interpo-

lations to estimate values at the precise matching location and time. This often causes repetitive

data retrievals because most interpolation algorithms are iterative entailing access to the surround-

ing area and/or temporal scopes. Furthermore, users often explore the parameters to achieve more

accurate estimations.

To address these challenges, we propose a framework for accomplishing effective, accurate,

and scalable data integration operations. In particular, our framework is independent of the under-

lying data model and supports: (1) a distributed data hosting environment for the heterogeneous

1

datasets, (2) approximate join operations, (3) feature interpolations in case of spatiotemporal mis-

alignment with uncertainty estimate, and (4) automatic interpolation parameter selection schemes.

1.1 Research Questions
Enabling scalable data integration operations over a distributed geospatial data storage must

address challenges stemming from dataset sizes, variations in the density of data availability, and

latency requirements during approximate query evaluation. The following research questions to

guide our study in this paper:

• RQ1: How can we support query-based integration of diverse geospatial datasets that are

not spatially and/or temporally aligned?

• RQ2 How can the system cope with different data representation models such as raster and

vector?

• RQ3 How can we effectively orchestrate our data integration algorithm while ensuring sup-

port for interactive applications?

• RQ4 How can the system select parameters of the interpolation algorithms that ensure the

highest accuracy?

1.2 Overview of Our Approach
Our framework, Confluence, facilitates query-driven scalable and interactive spatiotemporal

data integration. Confluence dynamically generates estimations at the aligned data point. Data

alignments are performed based on the specified key indexing attributes such as spatial coordi-

nates and temporal ranges. The integration operations support vector and raster data representation

models. Raster data is made up of pixels (spatiotemporal extent) and each pixel has an associated

value. Vector data model represents the data space using points, lines, and polygons. Our system

automatically transforms values between models by means of aggregating data points or applying

representative data values. The results are delivered with the associated uncertainty information.

2

Based on the user′s query (e.g. spatial coverage), the system performs distributed query relax-

ation that allows query constraints to be relaxed to cover neighboring spatiotemporal scopes. The

maximum range of relaxation is configurable in the system. To reduce data movements within the

storage cluster, the system schedules the computations on nodes that host a majority of the data

that match the user′s query. The system provides separate indexing schemes for boundary regions

of blocks that need to be transferred to perform integration and it is used for query evaluation and

caching.

This study proposes a dynamic relaxation model, an adaptive interpolation scheme to cope

with the repetitive exploration of the parameter spaces for interpolation algorithms, such as In-

verse Distance Weighing (IDW) [9]. Confluence trains model and estimates the best parameters

for a given target spatiotemporal region. Our experiments used an artificial neural network to train

the dynamic relaxation model for IDW, and it showed, depending on the feature being interpo-

lated, an improvement in accuracy by 9% ∼ 31.25% with the estimation compared to using static

parameters.

We validate our ideas in the context of the Galileo system for spatiotemporal data. Galileo is

a cloud-compatible hierarchical distributed hash table (DHT) implementation for voluminous and

multidimensional spatiotemporal observations [10]. The key organizing principle in Galileo is the

use of geohashes whose precision can be controlled to collocate data from contiguous geographical

extents.

1.3 Paper Contributions
Confluence targets interactive data integration that allows the analysis to import relevant por-

tions of voluminous auxiliary dataset interactively. Our query-based data integration process per-

forms dynamic alignments across datasets and also generates interpolated values in situations

where data is unavailable. The dynamically generated estimations are ready-to-use as input to

interactive analytics including visualizations. Specific contributions of Confluence include:

3

• A rapid, query-driven approach to data integration with dynamic, run-time estimation of

values.

• A model-based approach to select the parameters that achieve the most accurate estimation

per data points.

• Geospatial data integration across the spatial data representation models.

• Data representation neutral integration of datasets with uncertainty measures.

1.4 Paper Organization
The remainder of this paper is organized as follows. In section 2, we discuss some related

work in this field along with the standard spatiotemporal join operation and introduce the Galileo

distributed storage system, where we will stage our datasets. In section 3, we discuss the concept

of relaxed data integration and the different scenarios encountered while doing so based on the type

of datasets involved. Section 4 deals with the methodology used in our data integration operation,

followed by a discussion of the system architecture and process flow in section 5. In section 6,

we evaluate the performance of the Confluence system for various scenarios involving relaxed

data integration, along with a case study showing the applications of integrated data followed by a

conclusion in Section 7.

4

Chapter 2

Background and Related Work

2.1 Related Work

2.1.1 Spatiotemporal Data Analysis

With data being collected at an unprecedented rate, the number of big data available for analysis

has seen a drastic increase in the past few years. The recent popularity in the area of Big Spatial

Data has seen an increase in the number of such spatiotemporal datasets, along with technologies

designed specifically for spatiotemporal data management, data processing, and spatial analysis

(such as spatial query, visualization etc) [11].

The improvements in sensor technologies have led to increased analytics being carried out on

Big Spatial Data. Along with distributed analytics on such large spatial datasets, the integration

of multiple spatial datasets in a distributed systems setting has also been explored in previous re-

search. There are several systems that successfully handle storage and range queries on spatial

data. However, performing spatiotemporal integration has been lesser explored [1–7], since it

involves dealing with the heterogeneity of the participating datasets (variety), along with the sig-

nificant differences in the coverage, accuracy, and timeliness of the records in the datasets. Also,

most of these cases deal simply with spatial data integration where all records from participating

datasets that overlap spatially are returned in the output. Hence, an even smaller subset of the work

actually deals with the spatiotemporal integration of the participating datasets that is defined by

finding pairs of points within x Euclidean distance and t temporal distance [7].

A common theme among the research mentioned above is that the spatiotemporal data is first

housed in a distributed storage system, such as Hadoop DFS [1] and the analytics jobs are designed

using existing methodologies such as Hadoop Map-Reduce or Apache Spark that can be executed

on top of it. In order to reduce the data access time on these distributed systems, all such research

create some sort of Spatial Indexing structure on top of the storage systems. These indices help

5

accelerate the process of data access by acting as a metadata that can be used to reduce the number

of blocks accessed and hence reduce disk I/O. However, it must be noted that the creation of the

spatial indices is a separate process that has to be completed before any spatiotemporal join queries

can be fired. The creation of this index over the already-stored dataset is time-consuming and is a

one-time operation, assuming no updates are made to the filesystem. In case of updates or insertion

of new blocks in the dataset, these indices need to be updated using a separate batch job, which

could be an overhead. This reduces the throughput of such systems. Our work focuses on creation

and maintenance of a spatiotemporal index that creates and updates itself with every update to the

dataset and hence we do not have to separately run services to generate/ update it before a data

integration operation.

Integration of observational data streams in the context of peer-to-peer grids have been explored

in [12, 13] while those in multimedia settings have been explored in [14]. Often these integrations

have been performed at the publish/subscribe system [15, 16] underpinning them.

Efforts have also explored the use of queries to launch analytic tasks [17,18]; these queries per-

formed targeted analytics and are not designed to support general analytic operations. They do not

support integration of multiple datasets either. Budgaga et al have explored the use of parameter

space sampling and the use of ensemble methods to construct models over spatiotemporal phe-

nomena [19]. Unlike our effort, this approach does not entail data integration. The Synopsis [20]

system constructs sketches of spatiotemporal data that can be subsequently used to construct syn-

thetic datasets for particular portions of the feature space. This is synergistic with our methodology

and can be used to support interpolation operations as a future work. Our methodology can also

interoperate with spatiotemporal data storage systems [10, 21]. Efforts to integrate data from di-

verse data sources have explored the use of metadata as the basis for integration [22]. However,

metadata focused efforts do not perform uncertainty quantification.

6

2.1.2 Spatiotemporal Interpolation

The calculation of a point estimate for the value of an object of interest from a set of claims

has also been covered in various research. One such case is the change of support problem, which

involves interpolation of spatial data features at points different from those at which they have been

observed [23, 24].

Related works on interpolating values of unknown locations based on values from related sur-

rounding regions have been covered in works such as [25]. The focus of this work has been to

use the inverse-distance weighing interpolator (IDW), with cross-validation as a method of pre-

dicting the unknown value of a parameter. The underlying assumption with this methodology is

that the value of a parameter at a point is influenced by the parameter values observed in its neigh-

borhood and the degree of this influence decreases the further away that observation is from the

point of interpolation. This was followed by a subsequent jackknife resampling was then used to

reduce bias of the predictions and estimate their uncertainty. While IDW assumes the influence

of the neighboring points on the interpolated value as a function of their distance from the point

of interpolation, there are methods that take other factors into consideration as well. For exam-

ple, Kriging [26], is another interpolation method that determines the influence of the neighboring

points by creating statistical models that track the relationship among the neighboring observa-

tions. However, unlike IDW, Kriging is a multistep operation and could be very time consuming if

the number of observations involved is large.

Since at the interpolation point, we do not know that value of the actual parameter, several

research has attempted to quantify the uncertainty/ error involved in the interpolated value in the

form of a trust score. [27] [28] dealt not only with finding out the point value of an object of

interest from a given set of claims but also with quantifying a confidence interval for the estimate.

The confidence interval is a measure of the accuracy of the estimated value achieved through

the iterative process. The confidence in the predicted feature value is inversely proportional to

the size of the confidence interval that is returned. Here, for the interpolation, in an iterative

manner, the interpolated value is computed based on the trustfulness score of the information

7

sources (neighboring observations), the correctness of which is then used to update the trust value

of the sources and so on.

2.2 Spatiotemporal Data Integration
A Spatiotemporal Data Join is one of the most general form of the data integration opera-

tion. It involves two participating spatiotemporal datasets to be joined based on the overlapping

spatiotemporal attributes. This operation is denoted by the method:

STJoin (target_data, source_data, spatial_coverage, temporal_range)

where we have two spatiotemporal datasets, target_data and source_data. The target_data is

the dataset for which records from the foreign_data dataset needs to be imported for integration. In

a distributed setting, the foreign_data is the dataset whose records need to be fetched, if necessary,

in case they are not co-located with the target_data.

The Spatiotemporal join operation identifies the overlapping subsets that match the query′s

specified geospatial area (by spatial_coverage) and time (by temporal_range). The resultant dataset

includes all pairs of records from the two datasets that overlap in terms of their spatiotemporal

attributes. The spatial_coverage can be specified in the query in terms of a set of geographic

coordinates that represent a polygon on a 2-D map of the earth. The temporal_coverage can be

specified as a range in terms of a starting and an ending timestamp.

Compared to the existing traditional STJoin operations [refs], Confluence provides both spatial

and temporal interpolated estimations within the query results, in case an exact spatiotemporal

overlap between points is not found between the records of the two participating datasets. The

interpolated estimations derived from the foreign dataset includes uncertainty measures if the data

aggregation is required. This operation has been developed on our distributed geospatial storage

system.

8

2.3 Distributed Geospatial Data Storage System
The efficiency of the data integration operation depends on how efficiently the dataset is stored

in a distributed system. For the purpose of storage of the spatiotemporal datasets, we have used the

Galileo distributed file storage system [10], which is a high-throughput, distributed storage frame-

work for large multidimensional, spatiotemporal data-sets. Confluence leverages the distributed

query evaluation capability of Galileo to efficiently identify the data blocks that match the query′s

geospatial area and temporal range. We provide a brief overview of some of the relevant key

components of Galileo in the following section.

2.3.1 Galileo Cluster Structure

Galileo is a Distributed Hash Table(DHT) based storage system. In Galileo, by convention,

each dataset is called a Geospatial File System and can have its own partitioning scheme for the

nodes in the cluster. We have selected the modified two-tiered hashing system [29] based on the

spatiotemporal characteristics of the incoming data as the partitioning scheme for our datasets.

The spatiotemporal observational space of the dataset is partitioned among the Galileo nodes in

two phases - the first phase separates the nodes into separate groups, where inside each group,

nodes are organized in a ring structure (node-ring) and the second phase puts the groups in another

ring called the group-ring. As illustrated in Fig 2.1 the high-level identifier ring is used to partition

the data based on the temporal aspect. The time-stamp of incoming data point is used to locate the

storage group. Once the group of the storage nodes is identified, the partitioning algorithm will

identify the final location (node) to host the data point within the group of nodes. Galileo uses

geohash [30] to generate data partitions that store geospatially neighboring data points together.

The granularity of size of data block is determined by the length of geohash code managed by the

nodes.

Galileo allows users to customize the partitioning scheme based on the type of data acquisition

and analytics. The basic unit of partitioning of the temporal domain includes hourly, daily, monthly

or yearly. Similarly, the spatial partitioning is fine-tuned based on the geohash precision selected.

9

Fig 2.1illustrates an example of geospatial data ingestion. As an example, if a client ingests a

data point that contains a geo coordinate of (40.5734◦ N, 105.0865◦ W) and temporal information

of December 1, 2017, Galileo calculates the hash value of the temporal information using SHA-

1 and maps it to a matching group. Then, Galileo calculates the geohash value with the geo-

coordinate and determines the node in the group to store the data point (which is 9xvg in this case).

Finally, the data is forwarded to the destination node.

Figure (2.1) Node Partitioning Scheme

2.3.2 Galileo Metadata Graph

Each of the Galileo nodes maintains an in-memory data structure called the Metadata Graph.

The Metadata Graph is an indexing scheme for local data blocks that speed up data retrieval

by avoiding expensive disk I/O. This is especially effective when the system hosts voluminous

datasets.

The Metadata Graph is an in-memory prefix tree that holds the metadata information of every

data block stored in a node. Every depth-first traversal of this tree represents the metadata of

a particular block, with the leaf node holding a path to the block location. For any data access

query made to the Galileo system, the Metadata Graph helps reduce the number of target blocks

by looking into the metadata information it stores and returning the list of blocks that match the

feature constraints of that query.

10

Fig.2.2 shows a sample representation of the Metadata Graph for a node with three blocks in

it each covering the following geospatial domains - {9xvb; 2017-12-01}, {9xvh; 2017-12-01} and

{9xvb; 2018-01-01}. Although the figure shows only spatiotemporal features in the graph, it can

contain other features from the dataset as well that are queried frequently.

Figure (2.2) Metadata Graph

2.4 Candidate Dataset Properties
Our system is designed to enable integration of heterogeneous spatiotemporal datasets, which

are a collection of multivariate records, each containing spatial and temporal information. Our

goal is to take two datasets housed in a Galileo cluster and integrate similar pairs of records from

the datasets based on their spatial and temporal attributes (we may also add conditions on other

features as well).

Our system supports data integration between any combination of data representation models.

To examine our system with various types of datasets, we use both point datasets (where each

record represents a point on earth′s surface at a particular time) and rasterised datasets (where each

record might represent a value for a span in the spatiotemporal domain).

However, the spatiotemporal datasets involved in this operation may contain records of varying

resolution. Take, for instance, the US Census data, which is yearly data with records going down

to block-group level. So, for a Census dataset, for each result, the temporal resolution is year and

11

the spatial resolution is a block-group. Compare that to the NOAA Integrated Surface Database

(ISD), which consists of global hourly and synoptic observations compiled from numerous sources

all over the world. So in this case, the records represent points on the earth′s surface at a particular

point of time.

12

Chapter 3

Relaxed Geospatial Join Across Geospatial Data

Representation Models

In this section, we explain the self-adaptive relaxed spatiotemporal data integration opera-

tion in details along with some of the different scenarios, that we may have to deal with, depending

on the type of the candidate datasets involved.

3.1 Relaxed Conditions for Data Integration

Figure (3.1) Relaxed Conditions(Geospatial)

Given two indexed datasets A and B, and a spatiotemporal predicate θ (e.g. geospatial area

and/or temporal range), traditional spatiotemporal join operation merges the two datasets A and B

on the predicate θ. However, the data points, a ∈ A, and b ∈ B, that satisfy the predicate may not

have the exact same spatiotemporal attributes. Subsequent analyses often perform data interpola-

tion algorithms to generate a virtually integrated dataset that can be ingested to their analysis. This

often involves repetitive I/O access and computation.

To provide the estimations as a part of query results, Confluence retrieves spatiotemporally

neighboring data points as the query results, in the absence of exactly matching spatiotemporal

attributes. Fig.3.1 illustrates an example that estimates an attribute value (from a dataset A) at

13

the location marked with a red dot. Interpolation algorithms often require neighboring points,

marked with black dots (from dataset B) within a pre-defined radius (blue circle). We call the

surrounding region retrieved to estimate attribute values at the red point as the relaxation region

and the loosened predicate as the relaxed conditions.

Confluence provides a set of spatiotemporal integration operations. The data integration queries

support approximate results at the spatiotemporal index of the target dataset. The native data

integration operations have the format:

STJoin (target, source, coverage_spatial, coverage_temporal,

attributes, relaxation_spatial, relaxation_temporal, model)

This operation imports attributes from the source dataset to match those in the target

dataset. To specify a spatial predicate in the query (coverage_spatial) that defines the

geospatial query area, users may use a polygon denoted by a set or geospatial coordinates. The

temporal predicate of this operation coverage_temporal is specified as a range in the form

of two time timestamps or simply time strings. The results will include raw data points match-

ing with the coverages, and/ or interpolated estimations. Users can specify interpolation algo-

rithms in the query (using (model)) and the Confluence APIs are extensible. The parameters,

relaxation_spatial and relaxation_temporal, constitute the query’s relaxation re-

gion, which is the spatiotemporal neighborhood for each target record in which we should look for

neighboring source records for interpolation. If the interpolation is set as 0, users will retrieve raw

data without interpolation. Throughout the rest of the paper, we will refer to the target dataset

as FSA and the source dataset as FSB.

Since Confluence supports both vector and raster data representations, this creates four scenar-

ios of data integration operation that we might encounter. Table.3.1 depicts the operations over the

geo-data representation models.

• Vector-to-Vector: In this operation, both datasets are represented as vector records, similar

to the situation in Fig.3.1. In this scenario, Confluence provides a methodology to estimate

14

Table (3.1) Relaxed Data Integration On Different Datasets

Source Data
Type

Target Data
Type

Required Data
Processing

Vector Vector
Overlapping Record Pairs
+Interpolated feature

Raster Vector
Overlapping Record Pairs
+Interpolated feature

Vector Raster
Overlapping Record Pairs
+Interpolated feature

Raster Raster Overlapping Record Pairs

the value of a feature at a point based on the values of the same feature from the relaxation

region.

• Raster-to-Vector: This operation imports attributes with an associated raster pixel to be

integrated with a group of vector records. The representative raster value is matched to all

of the vector points within the raster pixel. In terms of interpolation, Confluence provides an

aggregated value of a feature from the vector dataset, representative of the raster pixel, based

on the vector points lying in the raster pixel region.

• Vector-to-Raster: In this scenario, Confluence aggregates values of the sources within the

area defining a pixel of the rasterized data (target). The interpolation is similar to that of the

raster-to-vector case.

• Raster-to-Raster: This operation involves both of rasterized records. The result returns

pairs of records from both datasets whose bounds/extent intersect. In this case, due to the

lack of an available interpolation strategy that could be applied in a generalized manner, we

avoid interpolation.

3.2 Self-Adaptive Relaxation Conditions
If we take a look at Fig.3.1, we can see that the number of neighboring points that get matched

against each record ofA depends on the size of the blue circle, which represents the spatiotemporal

relaxation involved with each data integration operation. We can think of the relaxation region as

15

a 3-dimensional spherical area (the dimensions being latitude, longitude and time) around each

datapoint in A.

Since our integration strategy is based on estimating the value of a point/region based on the

observations from neighboring points, each point lying in this sphere will influence the point esti-

mate for the value of a feature. In case of most spatiotemporal data, the influence of neighboring

points on the value of a feature at a specific spatiotemporal location varies with the region at which

we are performing the interpolation. To incorporate this aspect, we introduce a way to dynam-

ically tune certain parameters related to the interpolation operation at runtime, depending on the

spatiotemporal region we are interpolating at. The dynamic interpolation feature prediction adjusts

the influence that the neighboring points have on the final interpolated value of a feature.

In our data integration methodology, we have used machine learning to dynamically influence

the interpolation operation by moderating the degree influence neighboring points would have on

the estimate. This methodology is explained in detail in section 4.5.

16

Chapter 4

Methodology

4.1 Distributed Query Relaxation
A simple inner-join operation between datasets A and B would involve only those points from

A and B that have a complete match for their spatiotemporal attributes (one-to-one correspon-

dence), but, due to the nature of the datasets involved, our relaxed data integration operation yields

a one-to-many map as a result. As we can see from Fig.3.1, for a point in dataset A, say Ai, a

collection of k points, say, {Bi0, Bi1, ..., Bik} from dataset B lying in the spatiotemporal neigh-

borhood will be returned as results of the data integration operation, in case an exact match of

spatiotemporal attributes is not found.

With such a one-to-many map as the output, we might need to have a one-to-one correspon-

dence between FSA and FSB for particular attributes. For instance, in the vector-to-vector sce-

nario, if we have the feature, altitude, in FSA and temperature in FSB. So, corresponding to an

FSA record with an altitude reading, we will have a set of records in its spatiotemporal neighbor-

hood with different temperature reading. Using our feature interpolation functionality, we aim to

estimate the temperature at that altitude with the same spatiotemporal point using the FSB points

that lie in its spatiotemporal neighborhood.

Similarly, in case of a rasterised-to-vector scenario, for a rasterised region for an FSA record,

we will have multiple vector points from FSB that are contained in it. Using feature interpolation,

we attempt to estimate the value for an FSB feature for the entire region represented by the raster

record using the set of FSB points in the one-to-many map.

Thus, through our interpolation operation, we want to generate a synthetic value for a feature

at the same spatiotemporal location as that of Ai. Also, since the interpolated value is merely

an estimate of the actual value, we also provide an estimate of the uncertainty involved with the

prediction.

17

The methodologies used for interpolation from neighborhood values will be discussed in sec-

tion 4.4.

4.2 Relaxation Region

4.2.1 Neighboring Blocks

Since data in Galileo is grouped into separate blocks for discrete geohash and time slice (which

could be hour, day of month, month or year), given two blocks B1 and B2 from two separate

filesystems (datasets) whose spatiotemporal domains are not disjoint, either B1
′s spatiotemporal

range would include B2
′s spatiotemporal range or vice-versa or B1 and B2

′s spatiotemporal range

could co-incide, depending on what the geohash and temporal precisions have been set for the

blocks of those filesystems.

The concept of neighboring blocks comes into play because of the spatiotemporal relaxation

condition, since for each block of FSA, the region that needs to be looked at is the spatiotemporal

region covered by the block plus the relaxation region around that block. Neighboring blocks for

a particular FSA block refer to the FSB blocks that cover any portion of the relaxation region of

that FSA block.

As mentioned above, the spatiotemporal bounds of any neighboring FSB blocks will either

fully enclose that of the FSA block, or lie on the edge of the spatiotemporal bound of the FSA

block. Hence, in a case where the FSB block contains the entire bounds of an FSA block along

with its relaxation region, then, a single FSB block contains both the core data of the FSA region

along with the relaxation region. In all other scenarios, we might need to scan multiple FSB

blocks.

Having that in mind, if we consider a block of FSA, say BlkAi, and the spatiotemporal range

for BlkAi as a cube in the 3-D space (latitude, longitude, timestamp), let′s call it CAi, any block in

FSB whose spatiotemporal cube externally lies on either of surface of CAi is a neighboring block

of CAi.

18

To illustrate, let us assume BlkAi is a block of FSA covering the spatial span of 9z and date

29-04-2017, as shown in Fig.4.1. Let us denote a block by the spatiotemporal domain it covers

as {9z,29-04-2017}. We can see that spatially, geohashes {c8,cb,f0,9x,dp,9w,9y,dn} are the regions

that lie in the immediate spatial neighborhood of 9z. Similarly, the dates 30-04-2017 and 28-04-

2017 are the immediate temporal neighbors of the temporal region 29-04-2017. So, to summarise,

any block covering the spatial region c8, cb, f0, 9x, 9z, dp, 9w, 9y, dn and the temporal range 28-

04-2017 to 30-04-2017 except for the spatiotemporal region {9z,29-04-2017} is the neighborhood

region of the block BlkAi(requesting block).

Figure (4.1) Relaxation Regions

It is to be noted that not the entirety of the data from the neighboring blocks are required for

Blki, but rather a bordering spatiotemporal fragment, depending on the relative position of the

block with Blki in the spatiotemporal domain. We call the operation of requesting partial data

from neighboring blocks as Neighbor Data Request.

4.2.2 Maximum Spatial and Temporal Relaxation

This represents the maximum limit to which we can set the spatial (in terms of latitude and

longitude) and temporal(in terms of milliseconds) relaxation parameter for a data integration query.

This parameter needs to be set before blocks are stored in the filesystem and aids in our new

indexing scheme.

It would be extremely time-consuming to fetch the bordering areas of an FSB block as per the

query relaxations during runtime, since in that case, we would have to go through all the records in

an entire block even if we only need a fragment of its data. The maximum relaxations are a way for

19

the Border Indices to shortlist beforehand the records from a block that fall in the spatiotemporal

bordering areas of a block, so that only the shortlisted records get evaluated during runtime.

In our approach, we set the maximum extent of the spatial relaxation that is allowed in a query

in terms of geohash characters and the maximum temporal relaxation in terms of milliseconds. In

order to make the relaxed data integration operation swift and efficient, there are a few assumptions/

constraints that have to be decided on, regarding the participating datasets (filesystems) during

their creation, i.e. before any data blocks are saved. All subsequent data integration queries have

to abide by these constraints for the query results to be accurate.

1. Each dataset should specify the values of the maximum relaxation parameters during its

creation.

2. In any data integration operation involving two datasets, the query relaxation parameters

used must be lower than the lowest maximum spatiotemporal relaxations out of the two

datasets.

4.2.3 Maximum Relaxation Region (MRR)

Since the coverage of a block is defined by a geohash, which covers a rectangular spatial

plot and a time range, which could be an hour, a day, a month, or a year, we can think of the

spatiotemporal extent of each block as a three-dimensional cube. The relaxation region for a

block would form an extra layer of coating over this cube. Similarly, a Maximum Relaxation

Region is the region formed by coating the original extent of a block with the maximum relaxation

parameters for that dataset. So, for a block, Blk, the three-dimensional cube that is formed by

combining the original spatiotemporal extent of a block along with its relaxation region is called

the Maximum Relaxed Region (MRR) for Blk.

4.2.4 Bordering Region

By bordering regions of a block, we mean any portion of the total spatiotemporal region cov-

ered by a block that might be requested as an FSB neighboring block data by another FSA block

20

as part of a Neighbour Data Request. As we explain below, the bordering region is defined by

the maximum spatial and temporal relaxation parameters that are set for each filesystem (dataset)

before actual data blocks are stored for it.

For instance, to extend the example in Fig.4.1, let us assume a block from FSA covering

the region cb, 29-04-2017 (let us call it BlkA) and another block from FSB(BlkB) covering the

spatiotemporal region 9z, 29-04-2017. Now, in case of an integration operation involving BlkA,

the corresponding FSB data from BlkB that is required, is the portion of the block records that

cover the northern flank of the geohash region 9z(as shown in Fig.4.2). No other region from Blkb

is needed for data integration of BlkA.

Figure (4.2) Border Flanks

Hence, we can see that spatially, each block can have 8 possible bordering regions/flanks that

may be requested in a neighbor′s data integration- N,S,E,W,NE,NW,SE,SW. The width of each

flank depends on the relaxation prameter. Temporally, if the bounds of a block is from time Tstart

to Tend, then the two temporal bordering regions for that block are the regions Tstart to Tstart + δt

and Tend− δt to Tend. Any combinations of these two sets of flanks are potential bordering regions

for this block that may be requested in another adjacent block′s Neighbour Data Request.

4.2.5 Neighbors′ Orientation

The orientation of a neighboring block with the requesting block determines which fragment

of its data needs to be returned as a part of the Neighbour Data Request. The fragments of data

being returned as part of a response to a Neighbour Data Request are called flanks.

21

Let us take the example of the two blocks, {cb, 29-04-2017} (BlkA) and {9z, 29-04-2017}

(BlkB), as mentioned before. The orientation of BlkB with BlkA is represented as ‘S-Full’, mean-

ing, spatially only the records involving northern flank of BlkB is of interest in a data integration

operation involving BlkA and temporally, all the records are of interest. So an intersection of these

two sets of records, i.e. all records of BlkB that lie in the northern flank are to be returned. In

another example, let BlkA and BlkB be {dn, 29-04-2017} and {9z, 30-04-2017} respectively. In

this case, spatially from BlkB only data points that lie in the south-eastern flank are of interest and

temporally, only records in the time slice from the beginning of 30-04-2017 to δt milliseconds are

to be considered. So the orientation of BlkB with respect to BlkA in this scenario is denoted as

‘’NW-down’(down meaning the temporal range for BlkB lies after that of BlkA).

4.3 Spatiotemporal Border Indexing Scheme

4.3.1 Border Index Overview

Having introduced the various terminology involved, we now introduce our additional in-

memory data structure called the Border Index for indexing of the blocks that get staged in the

Galileo File System. Similar to the Metadata Graph, this index is created /updated during the stor-

age of blocks on a node. However, unlike the Metadata Graph, our new indexing scheme concerns

itself with tagging those records in a block that might lie in the spatiotemporal bordering regions.

The Border Index is there to help extract the border records from a block, should they be requested

as a neighboring FSB data.

In Galileo, we maintain an in-memory Border Index against each block stored for each file-

system (dataset). Each Border Index is tagged to its corresponding block′s absolute path using

an in-memory map (called the Border Map) from the path to the Border Index. Each dataset in

Galileo maintains its own separate Border Map and a set of Border Indices for its blocks.

The purpose of a Border Index is to tag those regions that lie in the maximum spatial and

temporal relaxation regions in a block. It stores the record number of each record that lies in the

bordering region of the block along with their orientation. The index is created such that whenever

22

data from a particular flank of the block is requested (such as ‘S-NW’), we can easily extract record

numbers in a block that matches that criteria without having to evaluate the entire block, which

could become very time-consuming.

A Border Index is created against each block during its creation. It is then updated every time

new records are appended to that particular block. Next, we explain the components of each Border

Index to better understand its functionality.

4.3.2 Border Index Components

The Border Index contains in it information about the bounds of different possible spatiotempo-

ral flanks along with a list of record index numbers corresponding to each of those flanks. So, one

part of the Border Index stores information of the bordering bounds (Flank Descriptors) and the

other part keeps track of the record indices that belong to those bounds (Flank Record Indices).

It also maintains the total number of records in the block currently.

The Flank Descriptors are information that a Border Index creates during its creation and are

never updated after that. These are information that help us determine which spatial and temporal

flank to tag a block record to. The Spatial Flank Descriptors in a Border Index contains the list

of geohashes that lie on each possible spatial flank for a block. The possible spatial flanks are N,

NE, E, SE, S, SW, W and NW (8 in total). Depending on what the maximum spatial relaxation is

set in terms of geohash precision, the Spatial Flank Descriptors consists of 4 lists of strings and 4

strings (since the corner flanks are a single geohash), consisting of the geohashes that lie in each

of the possible flanks. For example, a block with the spatial coverage of Fig.4.2 in a dataset with

maximum spatial relaxation of 3, would have its N, NE, E, SE, S, SW, W and NW flank descriptors

as [9xc, 9xf, 9xg, 9xu, 9xv, 9xy], 9xz, [9xx, 9xr], 9xp, [9x1, 9x4, 9x5, 9xh, 9xj, 9xn], 9x0, [9x8,

9x2] and 9xb respectively. The Temporal Flank Descriptors simply contain two pairs(up and

down) of numbers that represent the range of timestamp for the upper flank and the lower flank for

a block. These descriptors are used to determine which flank a record belongs to and thus tag it to

that corresponding Flank Record Index.

23

The Flank Record Indices contain a total of 10 lists of integers (corresponding to 8 spatial and

2 temporal flanks), where each integer corresponds to the record number from the block that lies in

that particular flank. This part of the Border Index gets updated every time there are new incoming

records stores in a filesystem block. For spatial Flank Record Indices, if a record lies in any of the

spatial flanks, it will get added to its appropriate index list only if it lies in either of the temporal

flank (and vice-versa). This means, a record has to lie both in a spatial and temporal border region

to make it in either of the Flank Record Indices, since, otherwise, there is need to be checked for

check it for a neighbor request.

4.3.3 Figuring out Orientation

Once, based on a neighbor request, we figure out which flanks are needed to be returned, these

Flank Record Indices are used to pick out the records that need to be matched against a particular

spatiotemporal MRR.

Hence, for instance, if we find that for a block, the flank that is needed to be returned is of

orientation ‘E-up’, we just have to find the common indices from the spatial flank indices for ‘E’

and the temporal flank indices for ‘up’ and those are the records to be matched against the MRR

bounds.

4.3.4 Neighbor Elimination Using Bordering Index

As mentioned before, for integration for each block, BlkAi, of FSA, we need FSB data for

the region corresponding to its MRR; that amount of FSB data needs to be fed to the thread that

would handle the data integration operation for this particular segment. The data could lie in fully

the current node, or a fraction of it could lie in some other node in the cluster from which it would

need to be fetched with a Neighbor Data Request.

However, although it is true that, to get accurate results, we need FSB data from the entire MRR

area, there are spacial cases where certain flanks of the MRR that lie outside the spatiotemporal

extent of BlkAi are not needed. Using our indexing scheme, we will show how to further eliminate

flanks of the MRR that are unnecessary to be fetched for these scenarios. Hence, by eliminating

24

certain flanks of the MRR, we will be reducing the spatiotemporal range of Neighborhood Data

Request for that particular block which in turn means that 1) the size of data that might need to be

transferred from another node (if that portion of FSB data is not resident in the current node) is

reduced and 2) by reducing unnecessary flanks, we also reduce the amount of FSB data involved

in data integration in each thread.

We now explain the specific scenarios where we can reject MRR flanks using the Border Index

of an FSA block. For the sake of simplicity, we will be explaining the scenarios in the spatial

domain (2-dimensional) only. The concept could be extended to the spatiotemporal domain (3-

dimensional) easily.

Scenario 1: The first scenario is illustrated in Fig.4.3, where the query polygon does not fully

contain the geospatial bounds of a block, represented by the brown box. The area between the blue

and the brown box represents the geospatial bordering region for the block, which is the maximum

spatial relaxation region. As we can see from the figure, the polygon does not pass through the

maximum relaxation region of the block on the eastern flank. Under these circumstances, we can

see that even after including the spatial relaxation for the query polygon, it would still entirely lie

inside the bounds of the block′s geospatial limits on the eastern side.

Hence, spatially, we can ignore querying the geospatial neighbors of the block that would lie

to the North-East, East and South-East (as shown in Fig.4.3), since fetching FSB records for those

spatial regions would be unnecessary.

Figure (4.3) Neighboring Region Elimination: Scenario 1

25

Scenario 2: The second scenario is shown in Fig.4.4. Here, although the polygon covers a

portion of the eastern maximum relaxation region and it seems like we might need to fetch data

for the eastern geospatial flank, we can see that there are no data-points on this block that actually

lies in the eastern maximum relaxation region. Hence, in such a case, we do not really need that

eastern flank data.

Using the Border Index for the FAA block, we can easily check if there is data in a particular

flank and then use that information to further optimize the size of the neighboring region that needs

to be queried for the block, thus reducing the amount of data to be fetched and possibly the number

of neighboring nodes to be queried.

Hence for every FSA block that matches a data integration query, using the Border Index of

those blocks (like in the two scenarios mentioned above), we can further optimize the size of its

corresponding MRR, thus reducing both data movement and record processing time.

Figure (4.4) Neighboring Region Elimination: Scenario 2

4.3.5 Partial Block Processing Using Bordering Index

As mentioned before, by finding the orientation of an FSA block with that of a neighboring

FSB we can further reduce the amount of data processed out of that FSB block. Since blocks are

defined by the geohash and the time range they cover, it is easy to find it one block from FSB is a

spatiotemporal neighbor of an FSA block. In case an FSB block, let us call it BlkBj , is a neighbor

of the FSA block, say BlkAi, not all of BlkBj needs to be processed. Rather the flank of BlkBj

26

that is in contact with BlkAi′s MRR. That region can be determined by finding out the orientation

of BlkBj with that of BlkAi. The using the Flank Record Indices, we can find the particular record

indices for that particular flank and only those FSB records need to be processed and returned as

candidate FSB records for data integration.

Fig.4.5 shows the scenario where an FSB block is a spatial neighbor of an FSA block. We

explain the scenario in the spatial domain only for simplicity. We can see that the FSB block is the

South-Western(SW) neighbor of the FSA block. Hence spatially, the only flank that the FSA block

would need from this particular FSB block would be the North-Eastern flank(NE) and only those

records that lie in the NE Flank Record Indices of the FSB block should be considered, intersected

with whatever temporal Flank Record Indices are relevant.

Figure (4.5) Partial Neighbor Block Processing

4.4 Feature Interpolation With Uncertainty
The feature interpolation occurs after the record merging operation has completed and is ex-

ecuted in the same thread as the segmented data integration operation (explained in 5.1.2). The

interpolation strategy we use in our data integration operation depends on the dataset itself and

how the data records are influenced by records around them. There is no one specific way to

perform spatiotemporal interpolation - the Confluence APIs are extensible to different types of in-

terpolation algorithms. Another feature we provide along with an interpolated value is an estimate

of the amount of uncertainty associated with that interpolated value. In our work, we explore a few

27

common interpolation methods that we believed might be effective on the kind of dataset we are

working with, which were mostly spatiotemporal sensor or survey datasets.

4.4.1 Vector-to-Vector Interpolation

In the vector-to-vector interpolation scenario, we try to predict the value of an FSB feature at

a spatiotemporal point for which we do not actually have an observation, but we have a collection

of other points in its spatiotemporal neighborhood. In the result of the data integration operation,

each point in FSA will have a one-to-many relationship with a collection of FSB points, since in

most cases the spatiotemporal attributes of an FSA will not find an exact match with an FSB point.

Out of the many available interpolation strategies available, the strategy we adopt is that of the

Inverse Distance Weight (IDW) [9]. The reason for picking this strategy is its assumption that

the interpolated value would be dependent on observations recorded in its neighborhood, i.e. the

value at a certain location is similar to and influenced by the observed values in its neighborhood,

which is true for many weather-related or other atmospheric datasets, which are mostly the type of

datasets we are dealing with.

In IDW, the goal is to estimate the value of a parameter (Z), at the unmeasured location (Zj)

based on finite set of measurements of this parameter at other locations (Zi), using the following

equation:

Zj =

n∑
i=1

Zi
(hij)β

n∑
i=1

1
(hij)β

where, hij are the Euclidean distances between the target point and the observed point and β

is the weighting power. As we can see from the equation, the weight or influence of a neighboring

point diminishes the further away it is from the location of interpolation. The β determines the rate

at which the influence drops with distance. So, the idea here is that the closer a point is, the more

influence it has over the estimated value of a parameter.

28

The optimal β for a particular spatiotemporal interpolation point is calculated using machine

learning. We also measure the uncertainty of the interpolated value, Zj , by means of estimating

the error with the machine learning model. This uncertainty value is used to train a model to predict

the best beta value and the error rate. The training data for this model is collected using sample

data from the dataset and estimating their feature value based on observations from neighboring

points and finding the corresponding optimal beta and prediction error.

If the degree of influence of neighboring points is not dependent on the distance, we provide

AUEDIN (explained in 6.6.6) as an alternate method for interpolation and error estimation, which

involves finding weighted mean of the neighboring data points′ feature as an estimate of the feature

value and using a weighted standard deviation to estimate the value of the error in the estimate.

4.4.2 Vector-to-Raster/ Raster-to-Vector

The interpolation methodology of the scenario Vector-to-Raster/ Raster-to-Vector is the same,

because at the end of the data integration operation, we are left with a one to many map between a

raster pixel and a collection of vector datapoints that lie in the extent of the raster area.

So, since each point in the rasterised dataset represents a spatiotemporal extent, we can assume

the value of the variable to be uniformly the same in those bounds. Using interpolation in this

context, we estimate the value of a parameter from the vector dataset for the entire spatiotemporal

extent of the raster record using the vector points that were found as a match. These vector records

are treated as observed samples of the variable over the entire raster region and using these sample

observational values, our interpolation method predicts a value for the feature over the entire raster

extent.

Although several interpolation strategies are available for raster interpolation, we have used

one called AUEDIN (explained in 6.6.6). Similar to the vector-to-vector estimation, here also,

provide an estimate of the uncertainty involved as a weighted standard deviation among the sample

observations.

29

It is to be noted that in many rasterized datasets, the spatiotemporal bounds/ extent of each

record is not explicitly specified. The above method will work only if there is a concrete way to

determine whether a point lies within the extent of a rasterised record. For instance, if we consider

a Census dataset at county level, just the county name is not enough for us to determine the spatial

extent of the records.

4.4.3 Raster-to-Raster Interpolation

A raster-to-raster data integration is possible only if the spatiotemporal extent of the raster

pixel of both participating datasets is well defined. This is because, in this case, any intersection

in the relaxed spatiotemporal extent of target dataset′s data record with that of the source dataset

is considered as a valid integration output and so, there has to be a way to check for intersection.

Since intersection of extents is the only criteria for integration here, each record in the output from

the target dataset will be mapped to one or more records from the source dataset.

Finding an interpolation strategy in this scenario that can be applied in a general sense is diffi-

cult. This is mainly because, in order to interpolate, we have to predict a feature value(from FSB)

that is representative of the entire extent of a record from FSA, based on the FSB records that

intersect with it. To our knowledge, there exists no spatiotemporal interpolation algorithm that can

interpolate the value of a raster pixel based on values from area of intersection with other raster

pixels. There does exist methodology to interpolate a value for an entire raster pixel based on sam-

ple observations from that pixel′s extent, which was the case in case of raster-to-vector scenario,

but is not applicable here. Due to this, we avoid interpolation in a raster-to-raster data integration

setting.

4.5 Self-Adaptive Relaxation Conditions
The size of the relaxation region determines the records from FSB that are used to determine

the value of a feature at a spatiotemporal point as that of an FSA point. The size of the relaxation

region is directly proportional to the number of neighboring points used.

30

In Inverse Distance Weighing [9], we have seen that the nearest points have more influence on

the interpolated value of a feature at a certain point than those at a further location. Hence, the

influence that the points in the relaxation region would have on the interpolated value of a feature

decreases with distance. We can think of these neighboring points as sources that have influence

over the value of a feature at a given location [31]. The sources in IDW have weights inversely

proportional to their distance from the interpolating point. By assigning weights based on the

Euclidean distance of the points, we are minimizing the influence that the points further away have

on the interpolated value.

The β value in the IDW formula determines the weighing power. It determines by what mag-

nitude the influence of a source over the interpolated value decreases with distance. In our im-

plementation, we have used a default value of the relaxation region and allowed the value of β to

determine how the points further away get penalized. the higher the beta, the stricter the penal-

ization with distance. We have thus, in our methodology attempted to find an optimum beta for a

fixed relaxation region.

By Dynamic Relaxation Region, we mean that β value of the relaxation region is determined

based on the spatial location and the time for the point on which the prediction is being made.

Often the level influence of neighboring points on the interpolated value at a point varies with the

spatiotemporal region we are trying to interpolate. In order to take that into consideration, we have

used machine learning to predict the optimal value of beta based on the spatiotemporal point on

which the interpolation is being done. Using a static value of β throughout the spatiotemporal

domain of the query would give us inaccurate results from the interpolation operation if there is in

fact varying impact of neighboring points based on their spatiotemporal location.

Hence we have implemented a one-time operation to generate training points for our machine

learning algorithm and then use them to externally train a machine learning model to predict β,

which could then be used during any data integration query to dynamically predict the value of β

based on the spatiotemporal region it is dealing with.

31

4.5.1 Training Data Generation

There is no way to find the optimal β value for each point in FSA during the actual data

integration process since we do not know the actual value of the feature at the point in question.

We have, thus, attempted to sample throughout a certain spatiotemporal range and generate a set

of training points for our machine learning model. Each training point would have three input

features - latitude, longitude, timestamp and one output feature i.e. β.

The training points are generated from a dataset that would be used as FSB in a data integration

query. Out of that dataset, we perform stratified sampling to getN points in total from all its blocks.

We then perform data integration between those points in the block on the rest of the points in the

block to get a set of neighboring points for each of those N points. For each of the points ni in N ,

we use the neighboring points found to predict the value of the feature in question using IDW with

different β values. We compare the predictions to find out which β (out of a set of pre-defined β′s)

yielded best prediction and generate a training point with the latitude, longitude and timestamp of

the point ni and β being the target variable. Using these training points, we hope to train a machine

learning model to predict the optimum β.

The Training Data Generation operation is similar to the data integration operation, with the

exception that it is an integration of a dataset onto itself and the relaxation parameters involved is

the same as the maximum relaxation parameters set for that dataset.

4.5.2 Modelling β Value

We use the training dataset returned to train our machine learning model that takes an input

vector of 3 features(latitude, longitude and timestamp) and predicts the value of β. For the pur-

pose of supervised learning, we have used feedforward Neural Networks using Python′s SKlearn

package.

The optimal model parameters are then printed as a JSON string, to be used as an input in

future data integration operation. It is to be noted that for a spatiotemporal region, given the data

32

distribution is more or less uniform, both the training data generation and the model training is a

one-time operation.

4.5.3 Dynamic β Prediction

Our data integration operation supports both using of a static β value or using a trained model

to predict optimum β at runtime where, the JSON representation of the trained model is def in

as part of the data integration. During runtime, using the trained model′s weights, we make a

prediction of beta using each of the FSA points′ spatiotemporal parameters. The FSB points in its

relaxation regions are then used to predict the feature value at runtime.

Although it is possible to make a prediction of β value for every FSA point found, it would

be a very time-consuming operation, since the prediction involves multiple matrix multiplication

operations, the size of which depends on the layers of the trained neural network. Thus, to simplify

the operation, we predict the β for the center-point of the spatiotemporal bounds of every FSA

block involved and use that β for every point in that block. Our experiments show that the error

using this method and individual β for every point are quite similar.

33

Chapter 5

System Architecture

In this section, we explain the various components of data integration operation along with the

services that make up the entire Data Integration operation. We also explain the services that go

into creating the training data for model building. We will break up the entire operation and explain

it in terms of the separate requests that get fired internally once a relaxed data integration operation

is requested. Fig.5.2 shows a representation of the various requests and responses involved in a

Galileo cluster for a single data integration operation.

5.1 Effective Data Integration
In Galileo, inside each node, the data is partitioned in blocks and each of these blocks is stored

in a hierarchical directory structure so that they are grouped by the spatial and temporal character-

istics of the data they store.

Typically if records from one dataset(A) are to be merged with that of another dataset(B), based

on a set of joining attributes, each record in A needs to be checked against every record in B. This

is aO(n2) operation, which is infeasible, considering the size of the data we are dealing with. Even

if the data is partitioned into multiple nodes, using this naive strategy on these segments of data on

each node is not feasible and would be very time-consuming, as the number of records in a single

node is still quite large. This would also require a huge amount of data movement in between the

nodes.

So, in order to optimize the operation of data integration in a distributed environment, we

mainly attempt to reduce three aspects. First, we need to reduce the network bandwidth utilization

by reducing the amount of data transferred in between the nodes. Second, we have to reduce

the processing occurring at each node by reducing the number of records being read in for the

integration and ensuring that only the records relevant to the integration get processed. Finally, we

have to optimize the actual operation of integration of the candidate records from the two datasets.

34

Thus, the entire operation of distributed data integration consists of three main components/phases:

data movement, blocks reading and record merging. Below, we explain the complications with

each of these components and how we plan on overcoming these using our methodology.

5.1.1 Minimizing Data Movement

On closer inspection, we can see that in a zero-hop distributed hash table(DHT) based storage

system, like Galileo, the data movement can be drastically reduced. This is because, if we think of

each record individually, it needs to check for a match in its neighboring region in the spatiotem-

poral domain and not the entire dataset. To elaborate, in Fig.4.1, let us assume that we have a point

whose geospatial position is somewhere in the geohash are 9z and let us, for now, just focus on the

spatial aspect of the integration.

For a point (say pi) in FSA lying anywhere in the region 9z, the points from FSB that we need

to consider as candidates for a merge, for pi, are those lying inside 9z, along with its neighboring

area whose thickness depends on the spatial relaxation that is desired in the integration. So, in

Fig.4.1 that neighboring area is represented by the area between the bounds of the 9z geohash

(represented by the blue box) and the red box (let us call this neighboring region nr). Any other

geospatial region should not be of any concern for integration involving point pi. In a similar

fashion, in terms of the temporal attribute, if pi lies in the region for a particular date, as shown

in the figure (29-04-2017), the records from FSB that we should be interested in for integration

should be the ones that cover this particular date and the timespan δt before and after that date,

with δt being the amount of temporal relaxation that the particular query allows.

So, to summarize, the data integration of FSA points lying in the region 9z and 29-04-2017 are

the datapoints from FSB that lie spatially in the red box in Fig.4.1 and temporally in the region

29-04-2017 ±δt.

The temporospatial partitioning of data over Galileo nodes ensures that record blocks are

grouped by the spatiotemporal region they represent. So, to explain in terms of the example in

Fig.4.1, if the dataset for FSA is spatiotemporally partitioned in terms of 2 characters of geohash

35

among the Galileo nodes and by the day of the month respectively, all the data-points lying in the

geospatial region 9z and date 29-04-2017 will lie in the same node. Ideally, if FSA and FSB have

the same temporospatial partitioning, the data for the same spatiotemporal regions lie on the same

nodes in the cluster for the two datasets. This scheme ensures the least amount of data movement in

between the nodes, since, in the worst case, we will only need to import data from the neighboring

region nr spatially and ±δt temporally.

In the case that the temporospatial partitioning is not the same for the two datasets, records

for the same spatiotemporal regions might not be co-located on the same node. But, since Galileo

is a zero hop DHT, one of the main features of this system, that we can exploit in terms of data

integration is that given a spatiotemporal range, we can easily pinpoint the node(s) that contain

this particular chunk of the dataset needed and request that data from those particular nodes only,

without needing to broadcast the neighbor data request throughout the cluster.

Hence, we can see that, due to the DHT-based temporospatial partitioning scheme in Galileo,

we can reduce the amount of network traffic, firstly, by reducing the number of nodes that are

needed to be queried for data from neighboring regions in the spatiotemporal domain for each

block in FSA. Secondly, as we will show in the following section, using the Galileo metadata

graph and our Border Indexing scheme, we can also ensure that the neighboring data being sent

back contains only those records that match the spatiotemporal constraints specified in the query.

5.1.2 Chunkified/Segmented Integration

Say, we have a node ni in the galileo cluster holding a portion of the FSA data in it (let us call it

d1i). The data on ni covers some set of geohashes and a range of time based on the temporospatial

partitioning specified for this dataset. Let′s say the corresponding datapoints needed for integration

for FSB are partly in Ni and the rest have to be fetched from a set of nodes in the cluster(let′s call

this data d2i). For the purpose of data integration, performing the operation on the whole of d1i and

d2i in a single thread would be both time-consuming and resource-heavy.

36

Instead, in our system, we have split the entire operation of data integration into smaller seg-

ments, to be carried out as independent operations inside node ni in separate threads. Doing

so would greatly speed up the data integration process. We have kept the size of each segment

the same as the geospatial coverage of a block of FSA, meaning, the entire operation of data in-

tegration over a query polygon and time range will be split into smaller spatiotemporal bounds

corresponding to that of a block of FSA that may lie in the query space.

In each of the threads, the FSA data being used is data from an FSA block that satisfies the

integration query and the FSB records that get used are the ones covering the relaxation region

of the FSA block. These independent operations can be launched once all the data from the FSA

block′s relaxation region comes in, without having to wait for the remaining incoming FSB data.

As mentioned before, this data for FSB could either lie locally in the current node or might

have to be fetched first using a Neighbor Data Request, which can be determined by referring the

partitioning scheme for FSB. So the cumulative output of joins from each of these segment, which

are the size of an FSA block should give us the desired output for our integration operation.

5.1.3 Minimizing Block Reading

As explained before, each of the Galileo nodes maitain a separate metadata graph for each

dataset it stores. The metadata graph reflects the metadata of the contents of each of the blocks

in a particular dataset. Inside each node, for each filesystem (dataset), each block contains data

for a single spatiotemporal region in a hierarchical directory structure based on the spatiotemporal

attribute of the block. Using the in-memory metadata for each of its blocks stored, once an ndr

request for data from a particular filesystem (dataset) is received by a node, it can pinpoint the

blocks that match the paticular query by querying the metadata graph, without having to actually

go through the records in them. The candidate blocks can then be scanned with the actual spa-

tiotemporal constraints in the query to get the records that are required to be sent back as response.

37

So, this is how the scanning of unnecessary blocks to get relevant data from FSB is avoided

using Galileo′s metadata graph. Later, we introduce a new in-memory data indexing scheme to

help reduce the scanning of unnecessary records further.

5.1.4 Fast Record Merging

As mentioned before, once all relevant records have been fetched to one location, the operation

of integration occurs in a parallel fashion in smaller independent chunks. In this section, we explain

the methodology used to create the FSA to FSB map as the output of the data integration.

Now, our integration strategy should be suitable for both rasterised and point datasets, since

both are supported by our system. A join between two datasets has the worst case complexity

of O(n2). Since the data we are dealing with in each independent segment is still quite large,

optimizing the data integration used also would help reduce the latency of the operation.

For relaxed data integration, we implement a Divide and Conquer Approach algorithm for

similarity join. In our strategy, we implement a One-dimensional Divide and Conquer [32] [33]

similarity join on the two datasets on any one of the three joining fields (latitude, longitude and

time - we use time as the selected field for the similarity join) and then further filter the pairs of

records selected as output of the similarity join by comparing the other two features for similarity.

We explain the operation of One Dimensional Divide and Conquer approach below.

Figure (5.1) MDC Algorithm for One Dimension

In the One Dimensional Divide and Conquer approach, given two sets of n points on a line,

we are to report all pairs of points, one from each set, within distance ε from each other, where

ε represents the relaxation in that particular dimension set in the query. This is accomplished by

38

sorting both sets (a O(nlogn) operation) and performing a scan of both sets by treating portions

of each set corresponding to a range of values of the attribute of width 2ε. By using all elements

with values in the range 0 to ε or ε to 2ε from both datasets, we have all the points necessary to get

output from joining points in the 0 to ε range that are part of some joining pair. No more points

are necessary, since any point that joins with a point in the range 0 to ε must be within distance

2ε from the left side of the 0 to ε range. Once we are done with the 0 to ε range, we can discard

the corresponding partitions from the buffer pool and read the next range, 2ε to 3ε, to finish the

processing of the ε to 2ε range, and so on. The algorithm is explained in the below pseudocode.

Algorithm 1 One Dimensional MDC
1: Given two one dimensional datasets A and B and ε
2: Sort Both A and B on the dimension
3: Read A0

ε, B0
ε

4: Check pairs in A0
ε, B0

ε

5: for j = 2 to d1/εe do
6: Read in A(j−1)ε

jε, B(j−1)ε
jε

7: Check for matches in A(j−2)ε
(j−1)ε, B(j−2)ε

jε

8: Check for matches in A(j−1)ε
jε, B(j−2)ε

(j−1)ε

9: Discard A(j−2)ε
(j−1)ε, B(j−2)ε

(j−1)ε

10: Check for matches in A(j−1)ε
jε, B(j−1)ε

jε

The above algorithm applies for similarity join in case of both point and rasterised data. In case

of rasterised data, we do the sorting based on the lower limit of its bounds in that dimension and

then the rest of the operation is similar.

5.2 Relaxed Data Integration Query

5.2.1 Data Integration Request

This is the initial request that a client sends to any one of the nodes in the cluster. We call this

the Client node (let us call it Ninit) in the operation. The main components of the Data Integration

Query have already been discussed in section 3.1. The Data Integration Request supports both

fixed and dynamic data interpolation parameters. The difference between the two scenarios is that,

39

Figure (5.2) Data Flow in Data Integration

in case of dynamic interpolation, we are required to pass the weights of the layers of a trained

neural network along with the biases in the form of a JSON string that can will be parsed into a

java object for the corresponding model at runtime.

5.2.2 Data Integration Event

Once Ninit receives a data integration request, it looks into the Galileo partitioning scheme for

FSA to see the target nodes, let us call themNt that contains the relevant data for the spatiotemporal

query domain specified in the Data Integration request. It then repackages the Data Integration

Request into an identical request called the Data Integration Event that gets circulated to all the

target nodes.

At each of the node in Nt, let us call it Nti, for i = 1 to n, the Data Integration Event is

then used to retrieve the query polygon, timespan and other feature constraints are used to finalize

the FSA blocks that are candidates for this particular data integration operation. Now for each of

these candidate blocks, we construct a corresponding MRR domain signifying the spatiotemporal

domain whose FSB data it needs for integration. Now by accesing the partitioning scheme (since

Galileo is a zero-hop DHT), we find the nodes that are needed to be queried to access the required

FSB data, which we will need to request using a Neighbor Data Request.

40

A mapping is done between all the nodes nodes to be queried for neighbor data along to the

MRRs that require them, so that in the individual Neighbor Data Request that gets sent out, we only

send those MRRs that are relevant to that node. Each node, Nti, in Nt fires one or more Neighbor

Data Request depending on how many nodes cover the cumulative spatiotemporal regions covered

by all the MRRs on Nti. The set of, say, m nodes Ntij for j = 1 to m, that get sent a Neighbor

Data request by each node Nti are called the neighboring nodes for the node Nti.

Once a Neighbor Data Request is sent out by a node Nti, it begins extracting and processing

data records from all its FSA blocks locally for the impending data integration operation.

5.2.3 Neighbor Data Request

A Neighbor Data Request is a request by each node in Nti for the FSB data it needs for its

MRRs. Part of this data to be fetched could be resident in the current node,Nti, i.e. Ntij might

contain Nti itself, while part of it might need to be fetched from other nodes in the cluster.

A Neighbor Data Request received at a neighbor node contains in a list of MRRs whose domain

intersects with the total spatiotemporal partition handled by the node. Based on the query polygon

and the relaxation parameter, spatially, an outer polygon is created by extending each coordinate

outward by the spatial relaxation. Similarly, the temporal range of the actual data integration query

is extended by the relaxation parameter. This is the spatiotemporal region beyond which no block

from FSB should be of any interest to the query.

5.2.4 Neighbor Data Response

We use this extended spatiotemporal query to find the blocks of FSB on each node that are can-

didates. Now, not all of these blocks need to be of interest, since they might cover spatiotemporal

regions for which there are no FSA blocks.

On finding all the blocks for FSB on a particular node that match the extended spatiotemporal

query, the orientation of that block is checked against each MRR in the request to figure out which

flank of this particular block is to be used by this MRR′s corresponding FSA block. Only those

data records are returned in a Neighbor Data Response, mapped to the corresponding MRR that

41

needs them. It is to be noted that multiple MRRs may request different flanks of the actual FSB

block. In case a candidate block found from the Neighbor Data Request is requested by multiple

MRRs on the same requesting node, but only partially, only the flanks that are needed are returned

and not the entire block.

Each neighbor node sends back two types of Neighbor Data Response - a control message(only

one) and a data message (multiple). The control message is sent back once the MRR orientations

are checked against the FSB block orientations to figure out the blocks that would be sent back

to the requesting node, i.e. it contains a summary of the block data that would be sent back as a

reply from the neighbor node. This is sent back to the requesting node before the internal contents

of the FSB blocks are processed and helps the requesting node be aware of when all the requested

blocks have been received from a particular neighbor node. The data message contains in it the

actual blocks′ data for each path it processes. All of the FSB blocks in a path(i.e. having the same

metadata) on a node are processed in a separate thread and records are stored in the corresponding

fragments and returned as a single Neighbor Data Response.

Any FSB block that gets returned as part of the Neighbor Data Response can either be returned

in a segmented fashion (in case all the MRRs need the entire block) or in a segmented fashion (in

case any one of the MRR requires partial data from the block). This helps us reduce redundant data

being sent back in the response and also avoids further processing to be done on the requesting node

to figure out the part of the block data that a particular MRR needs. There are 28 possible segments

to an FSB block, each of which is stored as a list of records, each of which represents a segment of

the block. In case the full block is not requested, not all of these 28 lists will be populated and if the

full block is requeted, only one of the lists (the last one) will have entries in it. The 28 fragments

are on account of a total of 27 spatiotemporal combinations (spatially 9 i.e. N, S, E, W, NE, NW,

SE, SW, Center and temporally 3 i.e. up, Center, down) and one for the case if an entire block′s

data needs to be returned.

42

Figure (5.3) Process Flow in Data Integration

5.2.5 Data Integration Response

For every node, Nti, each of the neighboring nodes it requests for FSB data sends back a

Neighbor Data Response which is a control message. The purpose of this control messages is to

inform the requesting node of all the data fragments that are going to be subsequently transmitted

by this particular neighbor, so that the requesting node, Nti, knows when all the blocks/ block

fragments have been received. The control message has information of the incoming paths along

with which fragments of those paths are needed by which MRR. This is information that will be

used to gather the FSB data for a corresponding FSA block.

Another purpose of the control message is that it helps to determine when an FSA block is

ready to be launched in a thread, i.e. when all its relevant FSB data has arrived - there is no need

to wait for other unrelated FSB blocks. Each FSA block can be launched in a separate thread once

all its MRR FSB data is received from the relevant nodes. By using the control message sent back

from each of the neighboring nodes, we can determine when all the requirements of a MRR have

been met. Each FSA block is launched with its relevant MRR data and the results of each thread

are stored in a query results directory. The Data Integration Response simply contains the path to

these query result files, which are returned to Ninit once all the threads have finished executing.

An FSA block on a node is ready to be launched in its own separate data integration operation

once the following two conditions are satisfied:

43

1. Once all the neighboring nodes of the MRR of the block have replied with their control

message. This way, we keep track of all the block/ block fragments this particular MRR is

expecting.

2. Once all the requirements of a particular MRR has been satisfied, i.e. every FSB data block

it expects, has been returned from their respective neighboring nodes.

As discussed before, by data integration, we mean both the act of integrating each FSA record

with similar FSB records based on the relaxation parameters, as well as interpolating a feature

value of an FSB using neighboring FSB data.

5.3 Generating Training Data for Neural Network Model
Here we provide a brief description of the requests and responses that get exchanged in order

to generate the training data for our model. The user has to specify the dataset in question, the

spatiotemporal region for which the model is being built and the number of training points desired

in the response. The operation is similar to a data integration operation, the difference being that

this involves only one dataset - we can think of this as a data integration of a dataset upon itself.

5.3.1 Training Data Request

As before, a single node Ninit received the request for training data in the form of a Training

Data Request. FromNinit a Survey Request gets fired to every node that satisfies the spatiotemporal

conditions of the query.

5.3.2 Survey request

A survey request computes the total number of records in the blocks on each node for a filesys-

tem. Since this data is already stored in the block’s border index, we do not have to actually read

blocks to extract this information.

44

5.3.3 Survey Response

A Survey Response gets fired from every node that received a Survey Request recording each

block in the node and total number of records in each block. Using this information, on Ninit, we

decide how many training points to extract from each block on each node.

5.3.4 Training Data Event

This is the request fired from Ninit to each node with a map of each block in it to the total

number of training points to be extracted from that block. On receiving the Training Data Event,

for each block, we sample the specified number of random records as training point. Then we treat

the rest of the block records as an FSB record and perform an integration for neighboring points

for each sampled records. For each sampled point, we attempt to predict the value of a specified

feature at that point using its neighbors with various values of β and decide which one gives least

error. For each sampled record, we generate a training point with 5 fields - latitude, longitude and

timestamp, the optimal β and the error in prediction. Thus node generates a portion of the required

training data and returns it to Ninit in the form of a Training Data Response.

5.3.5 Training Data Response

Ninit gathers all the Training Data Response and combines them into one single file locally at

a specified directory. We can manually fetch our training data from there.

45

Chapter 6

System Evaluation

For evaluation of the performance of the Confluence system, we have tested out various as-

pects of a relaxed data integration operation such as its latency, throughput, model building and

interpolation accuracy. In our experience the vector datasets we have worked with have the most

data density compared to raster datasets and hence, for the purpose of system evaluation, we have

mostly attempted integration in Vector-to-Vector scenario since this would be the most compute

intensive, considering the number of points involved in each dataset. We have also attempted a

Vector-to-Rasterised scenario to show the system latency.

6.1 Experimental Setup

6.1.1 Distributed Cluster Configuration

For our system evaluation, we have used a cluster where each node is an HP Z420 with the

configuration of 8-core Xeon E5-2560V2, 32 GB RAM, and 1 TB disk. The cluster is set up in the

form of 3 group-rings, with each group-ring being assigned 30 nodes each, thus making the total

size of the cluster 90 nodes.

The requests can be fired from any external client node into any one node of the Galileo cluster

and will get redirected to all target nodes from that node onwards by referencing the partitioning

scheme and determining the target nodes.

6.1.2 Training and Testing of Predictive Models for Interpolation Parame-

ters

The training data extracted using Training Data Request is externally trained on a single ma-

chine using Python′s Scikit Learn library [34], since the data size is fairly small and the number

46

of datapoints to be generated is determined by the user. The configuration of this machine is the

same as that of a single node in the Galileo cluster.

We have trained an Artificial Neural Network available in Scikit Learn′s neural network

package using the training data. The trained model is fed in to the data integration as a JSON string

in the query. We have used a JSON parsing library in java to decode the JSON string and gather

the neural network parameters for prediction purposes.

6.1.3 Datasets

Here we describe the datasets that we have used for our data integration evaluations. For vector-

to-vector integrations, the first dataset we have used is sourced from the NOAA North Ameri-

can Mesoscale (NAM) Forecast System [35] and the second one is NOAA′s Integrated Surface

Database (ISD) dataset [36].

The NAM dataset contains atmospheric data collected several times per day from stations all

over the earth and includes features of interest such as surface temperature, visibility, relative

humidity, snow, and precipitation. We have used only the data for the year 2015, for which, the

cumulative size of the entire source dataset was ∼3.3 TB. The NOAA ISD dataset consists of

global hourly and synoptic observations compiled from numerous sources all over the earth. Here

also, we have used the data for the year 2015, whose cumulative size was ∼50 GB.

The NOAA and the NAM datasets had a spatial partitioning of 2 geohash characters, meaning,

spatially, the domain of geohashes on earth of 2 characters were distributed among the cluster and

a temporal partitioning of day of the month.

Now, since the data integration operation optimizes the data locality of the source dataset, we

should choose the dataset with higher data density as the source dataset which should lead to lesser

data movement and hence lower latency. Hence, in case of all our vector-to-vector data integration

operations, we have made the NAM dataset, having higher data density, our FSA and the ISD

dataset as our FSB.

47

For the purpose of vector-to-rasterised integration, we have used a rasterised dataset sourced

from the model climate data provided by the NOAA Operational Model Archive and Distribution

System (NOMADS) project which contains, among several other features, mean wind speed [37]

and wind directions(which are the features we have extracted) recorded every hour. NOMADS is a

repository of weather model that can provide near-real-time access to these weather model forecast

data in addition to historical model data.

The vector data that we have used for this instance is a methane concentration data sourced from

[38]. The total size of this dataset is 10gb and the reason we used this dataset in this scenario is that

unlike the other two vector datasets that we have used, this does not have a uniform data density

in terms of spatiotemporal coverage. The dataset is quite sparse because data is collected through

equipment mounted on Google Street View Cars on specific days on specific neighborhoods. There

is a high concentration of data records over spaecific cities over the U.S. over specific days. So

we can see that between the wind and the methane datasets, there is a difference in spatiotemporal

coverage, uniformity in data distribution as well as density.

The methane and the NOMADS datasets had a spatial partitioning of 4 geohash(considering

geohashes over the U.S. only) characters and a temporal partitioning of day of the month.

6.2 Data Integration Latency Test
Our first experiment involves testing the latency of a relaxed a vector-to-vector relaxed data

integration operation over a both a fixed β value and a dynamically estimated β value over the two

vector datasets mentioned above. A fixed β means that we do not provide a trained model in the

data integration query and use a fixed preset value of β for the interpolation operations.

We have fired 5 different types of requests (each 20 times), each with a varying spatial range

to compare queries running over different spatiotemporal ranges - country level, state level, county

level, city level and blank query. The queries differ in the size of the spatial polygon used as

the query regions and they help us compare our data integration operations′ performance over

different sizes of queries. The blank query involves a query for which no matching blocks were

48

found, since they queried spatiotemporal regions not covered by the datasets. All of these queries

have a temporal range of a single day.

The country level query is the largest in size where we pick a random rectangular plot over the

earth′s surface whose latitudinal range is 10◦ and longitudinal range is 16◦ and a random date, as

the spatiotemporal query region. Similarly, the state level query has a lat-long range of 3.8◦ and

7◦, the county level query has a lat-long range of 0.3◦ and 0.4◦ and city level query has a lat-long

range of 0.075◦ and 0.15◦. The spatial relaxation used is 0.1◦ for both latitudes and longitudes and

the temporal relaxation is 12 hours, just to make sure that each FSA point has to deal with a large

set of neighborhood points.

6.2.1 Using Fixed β

Fig.6.1 shows the results from the experiment involving a fixed β. As we can see, the latency

depends on the size of the query region, with the highest average latency being in case of country-

level query (mean of 3.347 seconds). A box-plot also shows the upper and lower bounds of the

latency for queries over different regions. Similarly, the latency for the state, county and city level

queries are found to be 1.307s, 0.375s and 0.324s respectively. Blank queries return a response in

5ms.

The drop in latency with reduction of query region is mainly because of the lesser number of

records that the data integration query has to deal with, along with the reduction in the number of

neighboring nodes involved which leads to lesser data movement.

Fig.6.2 shows the breakdown of the three main components of a data integration operation -

data processing and movement, record integration and interpolation. With the same setup as above,

Fig.6.2 shows a breakdown in cost, averaged out over 10 runs each over the different sizes of spatial

coverage as mentioned before. Before analyzing the results, it should be noted that the total time

is much lower that the sum of the individual components, because the actual integration operation

gets launched parallelly in individual independent threads once a source block has all the neighbor

data it needs.

49

Figure (6.1) Data Integration Latency With Fixed β

We can see from Fig.6.2 that the cost of data processing and movement drops as the spatial

range of a query drops, mainly because of the decrease in the amount of data that gets fetched

from neighboring nodes, since, in most cases, a single node covers the spatial range mentioned in

a query. Hence, the data processing and movement cost goes down drastically compared to the

total time in case of county level and city level query. We can also observe that the data processing

and movement part of the operation is the most costly part of the operation, which justifies our

approach to make the data integration operation locality-aware.

Figure (6.2) Latency Breakdown

50

6.2.2 Using Dynamic β

Fig.6.3 shows the latency of data integration queries with dynamic beta prediction. In this case,

the only extra operation occurring is the prediction of an optimal β for the FSA block only once

before the interpolation operation, using our trained neural network model, which is essentially a

series of matrix multiplication operations, the size of which depends on the size of the layers of

the trained neural network. Hence, we can see that the latency is pretty comparable to that of the

case with a fixed β.

Figure (6.3) Data Integration Latency With Dynamic β Prediction

6.2.3 Vector-to-Raster Latency

Fig.6.4 shows the latency of different sizes of query on the methane sensor(FSA) and wind

dataset(FSB). As we can see, the latency is pretty low in this scenario, even for a country level

query. This is because of the spatiotemporal sparsity of the dataset. Since each block essentially

covers a city on a particular day, there is very little difference in latency between county level and

city level queries, since very few of the blocks have spatiotemporal neighbors.

51

Figure (6.4) Data Integration Latency With Fixed β in Vector-to-Raster Scenario

6.3 Data Integration Throughput Test
Fig.6.5 shows the results from the throughput of the Confluence system for the different sizes

of query mentioned above, except for a blank query. Here, we have simultaneously fired a 1000

requests over random spatial-ranges of a particular size into random nodes of the cluster to see how

long it takes for the last query to finish. As we can see, the throughput increases for the query types

that have lower latencies, with the country level having the lowest throughput of ∼43 requests/sec

while the city level has the highest (∼435 requests/sec).

Figure (6.5) Throughput for Different Sizes of Query

52

6.4 Model Training and Accuracy

6.4.1 Model Building Time

We train an artificial neural network with the training data extracted from the FSB dataset. The

time taken to train that model is directly proportional to the size of the hidden layers of the neural

network, along with the number of training points being used. In our experiments, we have used

5 separate combinations of hidden layers for the neural networks and picked the model with the

combination that gives the least root mean squared error (RMSE). We have kept 10% of the input

data aside for testing of the model and used the remainder 90% for training purposes. The time

reported in Fig.6.5, is the average time per model, i.e. the total time taken divided by the total

number of models trained, which is 5.

In Fig.6.6 we compare the time taken for the operation mentioned above with the increase in

size of training data. It is evident that the training time increases with an increase in the number

of training points, which is why it is better to train individual models for specific spatiotemporal

regions and use those as inputs while running data integration operations on any subset of those

spatiotemporal regions.

Figure (6.6) Model Building Time vs Training Data Size

53

6.4.2 Model Accuracy

We have also compared the accuracy of interpolation with a dynamic β using a trained model in

the data integration operation as opposed to using a static β value. Now, to test out the accuracy of

the dynamic β in interpolating the value of a feature at an unknown point, we have used a separate

service that treats a single dataset as both FSA and FSB. For each block of a dataset, to be

used later as FSB in data integration operations, we randomly perform random stratified sampling

for datapoints from blocks in the spatiotemporal range of the trained model. We then find the

neighboring records from the same dataset to those sampled points and then use a dynamically

predicted β to predict the value of a feature at the sampled point using the neighboring points and

compute the error in the prediction by comparing it to the actual value. For each sampled point,

we also make prediction using a set of pre-defined β values and record the errors.

The corresponding cumulative RMSE′s for different β used is shown in Fig.6.7. We have tested

out the above scenario for three different features from the ISD dataset, namely sky ceiling height,

air temperature and atmospheric pressure. We can see that the RMSE for cases with a dynamic β

is clearly lower than those where a fixed beta is used.

The effectiveness of using a dynamic interpolation parameter also depends on how effective

IDW is in the case of a particular feature. In case points in the spatiotemporal neighborhood of

a certain point do not have influence over the value of the feature at the point of interpolation,

using a dynamic β would not help the accuracy of prediction much. This explains the difference in

the degree to which RMSE decreases using dynamic interpolation parameters in case of different

attributes. We can see that the improvement in accuracy using a dynamic β is much higher in case

of the features sky ceiling height and atmospheric pressure compared to that of air temperature.

6.5 Resource Utilization
In Fig.6.8, we show the CPU utilizations of different nodes in the cluster during a particular

run of our data integration operation. We have tracked the CPU utilizations among 3 different

participating nodes in the cluster from the start until the end of the runtime of the query. The query

54

Figure (6.7) Accuracy Comparison - Dynamic β vs Fixed β

Figure (6.8) CPU Utilizations

used has a fairly large spatiotemporal range, to ensure a longer running time. The client node is

the first node in the Galileo cluster that receives the query and in the case of this run, it does not

contain any of the relevant data. So, the query gets transferred to the target node(s) that contain the

relevant data. We have shown the utilizations of only one such target node. The neighbor node is a

node that the target node has to query for neighboring data. It is to be noted that the neighbor node,

in this scenario, itself is also a target node in the same query as it houses portion of the relevant

FSA data, so its performance graph also accounts for the local data processing and data integration

it handles.

55

We can see from the graph that the client node has the least utilization of resources, since its

only task is to redirect requests to relevant target nodes and gather the responses from those target

nodes. The utilization of each node also depends on the number of blocks it has to process, which

depends on the amount of the spatiotemporal domain of the query that falls under its jurisdiction.

6.6 Case Study - Obesity Prediction Using Integrated Data
Since our system′s main purpose is the integration of multiple spatiotemporal datasets, one

of its main applications could be in the field of machine learning. As a case study, we trained a

machine learning model using an integrated dataset with features from multiple domains to see if

it results in an improvement in prediction accuracy.

In the following sections, we attempt to predict adulthood obesity from a child′s biometric, eco-

nomic, environmental and familial attributes, which we collect by merging two separate geotagged

datasets that cumulatively contain all those information [39]. The main focus in the following

sections would remain on the use of the integrated data in machine learning.

6.6.1 Problem Description

Childhood obesity has received significant attention as an urgent health challenge [40]. Ac-

cording to the National Health and Nutrition Examination Survey(NHANES), obesity prevalence

in 2007-2008 was 33.8%; this is twice as large as the prevalence rates in 1976-1980 and a 50% rise

from 1988-1994 [41]. Worldwide obesity has more than doubled since 1980 [42].

The psychological, physical and economic consequences of obesity have been well studied

[43]. Obesity costs are estimated to be as high as $147 billion per year, or roughly 9% of the

annual medical expenditure in the United States [42]. Because childhood obesity often continues

through adolescence and adulthood, an increased number of adults will be at a risk of chronic

diseases that result from obesity [44, 45].

Providing effective and accurate predictions to obesity [46–48] is key to identifying causes

and developing proactive strategies to prevent it. Recently, there has been growing recognition of

56

extensive factors such as the environment [49,50], genetic predisposition [51], and human behavior

and their complex interactions [52, 53] as influencers of obesity.

Modeling change of obesity levels requires tracking the same individuals repeatedly over a long

period of time, often over decades. Although existing longitudinal studies provide extensive and

accurate observation of the changes and trends, exploring new attributes for a model is prohibitively

expensive and challenging if those attributes have not been tracked in all surveys.

6.6.2 Overview of Approach

Our methodology for predicting obesity with extensive external factors involves:

1. integrating attributes from external datasets via attribute matching and data preprocessing,

2. calculating and preserving the quality of integrated attributes, and

3. evaluating multiple machine learning models to assess the effect of integrating external at-

tributes.

To import attributes from a dataset with finer grained geospatial coverage (e.g. block-level),

we aggregate those values based on the geospatially matching area (e.g. zip-code or county) to

generate an approximated value.

To quantify the quality of integrated attributes, we introduce the concept of data uncertainty

during geospatial integration. Unlike previously discussed data uncertainty measures in integration

[54], data uncertainty in geospatial integration is defined as the likelihood that the approximation

of the integrated attribute does not represent the dataset accurately. In this study, we estimate the

information loss that results from data aggregation for each data point to be imported. To exemplify

the effectiveness of the uncertainty estimate,we perform different model fitting algorithms such as

Artificial Neural Networks, Gradient Boosting, and Random Forest with and without uncertainty

attributes to contrast accuracy.

57

6.6.3 Target Variable

The Body Mass Index (BMI) is a measure of body fat, defined as the weight (in kilograms)

divided by the square of the body-height (in meters). The range of the BMI is frequently used

to determine a person′s obesity level [55, 56]. A person′s BMI could fluctuate over time due to

several biometric, economic, environmental and familial factors. Building a predictive model for

an individual′s future BMI requires us to track these aspects over a large span of time, which can

be challenging.

6.6.4 Data Selection

In order to predict future BMI for children over the US, the datasets we consider as candidates

for integration need to satisfy a few conditions. First, the dataset should have a large geographic

coverage, as that would feed a wide range of individuals from different regions/demographic to

the model and reduce bias. Second, the datasets should have intersecting attributes that would

facilitate their integration properly.

We have explored several longitudinal datasets as candidates, which contained information for

surveyed individuals relating to their biometric, economic, geographical, familial aspects, to name

a few. The candidate datasets were National Longitudinal Study of Youth 97 (NLSY97) [57], NEXT

Generation Health Study (NEXT) [58], National Longitudinal Study of Adolescent to Adult Health

(Add Health) [59] and US Census data [60].

The NLSY97 was one of the largest datasets that tracks 8,984 cohorts since 1997, originating

from 6,819 unique households, selected via screening. It provides a relatively large geospatial

coverage(338 US counties) with well defined geographic information for each of its participants.

Therefore, due to both its large number of participants and its geospatial coverage, we have selected

NLSY97 as the primary dataset.

The AddHealth data, despite having a good geographical coverage, deidentifies the state and

county codes for each candidate. On the other hand, the NEXT dataset provides precise geographic

locations of its candidates using a zipcode. However, its geospatial coverage was unsuitable for

58

geospatial integration with other datasets with large coverage. On analysis, we found that in con-

trast to the 338 US counties that are covered by NLSY97′s participants, NEXT covers only 52,

with only ∼ 12.5% of the NLSY97 data-points intersecting geospatially with NEXT.

Therefore, we have selected the Census dataset to be our auxiliary dataset to explore factors

that are not tracked in the NLSY dataset. Since participants of these surveys are not the same,

it is difficult to merge two records based on aspects such as biometric, behavioral, economic etc.

One possible aspect on which they can be merged is using their geographic location, if the dataset

being merged with the NLSY97 contains environmental information of the area an NLSY97 par-

ticipant hails from. The Census dataset was such a dataset that had the proper geographic coverage

(all of US) and had environmental, economic,familial and demographic information for each lo-

cation with resolution up to block-level and could be summarised to provide relevant information

regarding a cohort′s area of origin.

6.6.5 Distributed Computing Environment

We leverage the Apache Hadoop framework [61,62] to provide scalable, fault-tolerant comput-

ing over a cluster of machines. We use Hadoop Map-Reduce to get an aggregate value for different

features, along with their standard deviations over each county over the US from the block-level

attributes in the Census data. Although Confluence is a much faster alternative to Hadoop, since

the summarization and integration with Census dataset is a one-time process and since our focus

in this case study is the applications of integrated data only, Hadoop Map-Reduce should suffice.

6.6.6 Interpolation - Attribute based Uncertainty Estimation for Geospatial

Data Integration

Importing geospatial attributes from an external dataset introduces uncertainty due to the mis-

match of characteristics such as geospatial coverage and/or temporal range. The imported data

is often estimated using interpolation or aggregation algorithms. Our study focuses on datasets

59

with hierarchical geospatial demarcations such as political boundaries that are popularly used in

longitudinal studies.

We propose a methodology that we call attribute-based uncertainty estimation for data in-

tegration (AUEDIN), that estimates uncertainty for each imported value to quantify the risk of

assimilating imported attributes for subsequent computations such as a model generation.

Suppose dataset A imports a set of attributes from dataset B over a matching geospatial at-

tribute, k, that is included in both datasets A and B. If records in the imported data(from dataset B)

has higher geospatial precision, the records with the larger coverage(from dataset A) geospatially

intersect with multiple records (from dataset B). In such a scenario, we calculate an aggregate of

attribute values (for all records in B that intersect geospatially with a record in A) and use this as

the imported value in the integrated data along with uncertainty of these imported records using

the following method.

Let dataset A be a set of m geospatial units, A0, A1,..., Am−1 and their corresponding attributes.

For a set of attributes of the dataset A, SA = attrA1 , attrA2 , attrA3 , ..., the value of an attribute

attrAi , at the geospatial unit Aj , is denoted as val(attrAi , Aj). Similarly, for dataset B with n

geospatial units, B0, B1,..., Bn−1, each geospatial unit is mapped to a set of attributes values,SB =

attrB1 , attrB2 , attrB3 , ..., and the value of an attribute attrBi of the geospatial unit Bj is denoted

as val(attrBi , Bj). Let us assume that a geospatial unit Ai overlaps with a set of n′ units in B,

{B0,B1,...,Bn′−1}.

We estimate the imported value from B using weighted data aggregation based on the sample

distribution. Assume that geospatial units in B, B0, B1,..., Bn−1, contains sample counts, C0,

C1,...,Cn−1 respectively. We calculate the weights, {W0,W1,...,Wn′−1} for each geospatial unit in

{B0,B1,...,Bn′−1} as,

Wk =
Ck

n′−1∑
j=0

Cj

Once we calculate weights and normalize them, the aggregated attribute value of the record for

attribute Br, to be integrated with record Ai, denoted by val(attrBr , {B0, B1, ..., Bn′−1}), is calcu-

60

lated using the following formula:

val(attrBr , {B0, B1, ..., Bn′−1}) =
n′−1∑
j=0

(val(attrBr , Bj)×Wj)

Each aggregated value is delivered with the associated uncertainty estimate, calculated using

weighted standard deviation as follows:

σri =

√√√√√√√√
n′ ×

n′−1∑
j=0

((val(attrBr , Bj)− µBri)2 ×Wj)

(n′ − 1)×
n′−1∑
k=0

Wk

where µBri = val(attrBr , {B0, B1, ..., Bn′−1}) and σri denotes uncertainty associated with

merging Ai with aggregate value of the attribute Br from dataset B calculated as above.

6.6.7 Preliminary Analysis

Our goal is to predict an individual′s potential obesity down the line, given certain available

information about him/her in the current day. As a preliminary analysis, we have considered the

growth charts proposed by organizations such as the Centers for Disease Control and Preven-

tion (CDC) [63] and World Health Organization (WHO) [64] to estimate BMI, relying only on

individuals′ biometric information- weight, height and age.

The growth chart is group of graphical measurements predicting the progression of weight and

height among children from their birth till the age of 20 [63]. At any point in time, a child′s age

and the BMI is plotted to a point on the graph. The percentile curve which is the closest to the

point is used to estimate the growth pattern for child over the next few years as shown in Fig.6.9

We used the CDC 2000 growth chart for BMI on participants of NLSY97 to see how effectively

it predicts the BMI N years from day 1 of their interview, compared to the actual measurements

(we have tested for N=1,2 and 3) recorded in NLSY97. Table 6.1 shows the results of that test.

61

Figure (6.9) CDC growth chart of BMI progression with age for American boys aged 2-20 years.

Table (6.1) RMSE for BMI predictions(for year 1997) using CDC Growth Chart

1 Yr 2 Yr 3 Yr

Male 3.52 3.38 3.40

Female 3.72 4.25 3.94

The prediction using the CDC growth chart demonstrates a sizable error range that can impact

the detection of obesity. If the BMI is between 25 and 29.9, the individual is considered overweight,

BMI of 30 or over is considered obese. We believe this happens because a child′s growth velocity

can jump from one percentile curve to another during his/her developing years due to a number of

external factors such as stress, family problems, genetic and chronic diseases. Our goal is to come

up with a prediction model that can make better predictions of BMI by incorporating the growth

chart data along with external factors from other available datasets.

6.6.8 Integrating Datasets Based on Geospatial Proximity

The external factors that we want in our input data along with the biometric information, are

behavioral, economic, familial and environmental. The NLSY97 survey has a good variety of

questions relating to various behavioral, familial and biometric aspects of an individual′s life but

lacks a good collection of environmental and economic attributes. The US Census data consists of

a set of records relating to the country′s demographic distribution,age, income, family structures

62

down to the block-group level. Using this dataset, we can form summary of areas of the country

on factors such as median income, household size, percentage of population based on ages, family

structures and so on. Thus in order to incorporate the missing aspects in NLSY97 data, we have

considered the summarised US Census data for integration.

Between the NLSY97 and the Census 2000 datasets, the only common attributes suitable for

a merge is the geospatial attribute. This, however, introduces a few challenges to the aggregation

process. First, the maximum resolution of the Census datasets is at a block-group level, while

NLSY97 is county level. Second, individual participant′s data is not available from Census, only

block-level aggregates are available. Therefore, the best way to combine the two datasets is to use

the county information of each individual. However, since we are trying to combine an individual′s

record on the NLSY side with an aggregate of county-level information from the Census dataset,

this will introduce some level of uncertainty in integrated Census information. As explained later,

we have attempted to estimate this uncertainty and use it in our machine learning model to enhance

its prediction accuracy.

Fig.6.10 gives a pictorial description of the mapping between the data-points of both the

datasets. The circular regions colored red, green and blue represent three counties A,B and C.

Now, on the NLSY97 side, there can be multiple participants who come from the same county

whereas, with the Census aggregate, there would be a single record per county. Thus, geospatial

integration between the NLSY97 and Census data would result in a many-to-one mapping.

Figure (6.10) Strategy for merging Census 2000 & NLSY97 data

63

6.6.9 Data Pre-Processing and Feature Selection

The NLSY97 dataset was collected by conducting a series of interviews with each participant

over a period of twenty years. The responses are a mixture of quantitative and non-quantitative

values. Some non-quantitative attributes (e.g. race or gender of the person) may have a set of

choices but have no numerical significance. We re-constructed non-quantitative responses as a

set of propositions with associated boolean responses. This re-construction of non-quantitative

questions increased the number of attributes: The NLSY97 data has over 67,000 attributes in total.

This input vector was large enough to suffer from the curse of dimensionality [65].

We reduced the dimensionality of the input vector using the Lasso algorithm [66] and per-

formed Gradient Boosting [67] and Random Forest [68] to explore important features. We avoided

PCA to simplify interpretability of model.

6.6.10 Estimating uncertainty

In our case, the Census dataset provides higher geospatial precision(block-group level) than

NLSY97 dataset (county level). Attribute integration from the Census dataset involves data aggre-

gation to match the lower geospatial precision in NLSY97.

We have used our proposed approach, AUEDIN, to aggregate values and estimate uncertainty.

The population information included in the Census dataset is used to capture the distribution of

samples. If an imported attribute is selected, the model input vector contains the uncertainty es-

timate for that attribute. Uncertainty estimates for eliminated attributes are not included in the

model.

Overview of Model Building: The input data to our predictive model went through the

following stages. Initially, we started out with the NLSY97 data and used simply those features

available in that dataset to make our predictions. In order to improve on this initial accuracy, we

introduced a new feature to our training dataset- the prediction of BMI after n years, using the CDC

growth chart given the stats of the individual at the current date. In the next phase, we combined

the input dataset with the county-wise summary from the Census dataset and used that to train our

64

model. Finally, along with this data, we used a vector of uncertainty estimates for each selected

feature and used it to train our model.

6.6.11 Uncertainty Aware Modelling

Since we only have an estimate of the error for integrated values from Census data, we tried out

two approaches. First, we have used the integrated data, with potential errors as it is and applied

machine learning models on it. In case the data has relatively low noise, the prediction algorithm

might tune itself to the noise, thus becoming resistant. We have applied two commonly used

machine learning models: feed-forward neural networks, to attempt deep learning and gradient

boosting. We tried out gradient boosting here because, even if the data-noise affects a single

model, combining multiple models as in ensemble methods, might help mitigate its effect.

In our second approach, we have incorporated the uncertainty estimates into our machine learn-

ing algorithm. Here, we would be working with two input vectors - one for the actual integrated

dataset(dint) and the other representing the error in measurement of each of the feature value in

that integrated dataset (eint). Evidently, both dint and eint must have the same dimension.

We assume that the features from the NLSY97 dataset would all have zero measurement errors,

i.e. the values of variables acquired from interview of the participants are all assumed to be correct.

Only the values of features derived and integrated from Census must have possible error associated

with them. So, we can create an uncertainty matrix with the same dimension as the input vector,

where all columns corresponding to NLSY97 features would have 0 values and only columns

associated to Census attributes would have corresponding weighted standard deviation for that

measurement.

For the purpose of modeling with uncertainty, we have used two different techniques to test

which performs better. In the first approach, we have performed feature selection on dint using

Lasso Regression and then used the N(We have tried N=12,15,20) most important features, joined

with the matrix representing their corresponding measurement error as an input vector to a neural

network. In our second approach, we have performed feature selection as before, but this time

65

instead of clubbing two vectors into one input vector, we have used Maximum-Likelihood Principal

Component Regression(MLPCR) [69], which takes the input vector and a vector of measurement

standard deviations as its input.

The reason we have used MLPCR instead of PCR(Principal Component Regression) is that

although PCR is effective for quantitative analysis of multicomponent mixtures, it relies on the

Singular Value Decomposition(SVD) to obtain a reliable estimation of a p-dimensional subspace.

When the measurement errors in the input are all iid normal, the p-dimensional hyperplane deter-

mined by SVD will be an optimal model for the data in a maximum likelihood sense. However,

in case the measurement errors are not independent with uniform variance, the p-dimensional es-

timation will not be optimal. MLPCR provides two advantages. First, it allows inclusion of mea-

surement uncertainties, assuming the errors are uncorrelated, into the calibration process. Second,

it provides a maximum likelihood estimate of the PCA [70] model, which is generally superior to

that obtained through SVD.

6.6.12 Experimental Evaluation

We have used separate models for predicting BMI for males and females. This is because two

people with the same BMI can have very different body compositions. This is especially true when

comparing males and females because women typically have a higher percentage of body fat than

men. We have noticed an increase in accuracy with models trained on gender-segregated data.

Data Pre-processing:

We will be working with our datasets at 3 different stages. The first stage is simply the in-

formation available from the NLSY97 data, clubbed with the predictions from the CDC Growth

Chart from year 2000. This was a simple data integration step where we appended a new column

representing Growth Chart′s BMI predictions 3 years from the current interview date.

66

Data Integration:

In the second stage, we have integrated the data from the previous stage with the Census

data. The calculations regarding summarization and uncertainty estimation and integration with

the NLSY97 data were carried out in consecutive Map-Reduce tasks which were executed on

Hadoop version 2.7.3 with the OpenJDK JVM, version 1.8.0 92. The Map-Reduce operations for

this study were performed on a cluster of 20 HP Z420 servers (8- core Xeon E5-2560V2, 32 GB

RAM, 1 TB disk).

6.6.13 Training and Testing of Predictive Models

In the final stage, we have used the Python′s Scikit Learn library [34] for most of our machine

learning processes. Since the data at this point is relatively small in size(nearly 200 Mb), the

training and testing phases are carried out on a single machine whose configuration is the same as

that of each cluster node.

6.6.14 Scalability Evaluation

Due to the large size of the Census dataset and the NLSY dataset, by adopting Hadoop frame-

work, we are able to profit from its scalability feature. For experimental purposes, we gradually

adjusted the number of nodes in the Hadoop cluster, starting from 2 nodes, till 20. The result of

the experiment is shown in Fig.6.11. Fig.6.11, shows that with increasing cluster size, the exe-

Figure (6.11) Turnaround time with increasing cluster size

67

cution time for the job decreased, meaning addition of machines to the cluster does improve the

performance.

6.6.15 Experimentation and Accuracy Evaluation

Experiment 1 (Effect of data size):

In the first step of our experimentation, we wanted to check whether using greater number of

data-points does actually improve the prediction accuracy, as that would mean that the training

data is properly distributed. We have first taken the NLSY97 data, appended with the Growth

Chart predictions and truncated and fed it to two different machine learning models(deep learning

model and an ensemble model) in an incremental fashion using Scikit Learn′s neural_network

package and ensemble package(for Gradient Boosting).

Figure (6.12) Prediction RMSE with change in training data size for (a) Neural Network and (b) Gradient
Boosting Models

The data-set is first randomized and 10% of it is kept aside for testing purpose, so that training

data remains constant and then the remaining 90% data points are fed as training data to a machine

learning model incrementally to see if larger training data size helps improve accuracy. The RMSE

we have reported in the Fig.6.12a is actually an average RMSE over 50 separate trials of training

and testing the data.

As we can see from the Fig.6.12a, the prediction RMSE for both models for male and female

BMI prediction goes down as the size of the training dataset increases. The dotted lines are for

68

when only the Growth Chart curves are used to make a prediction for males and females. Similar

results have been observed when we have used an ensemble method(Gradient Boosting) as can be

seen in Fig.6.12b.

Table (6.2) Results from Feature Selection on Integrated Data

Selected Features

NLSY97

Predicted BMI
Weight Of Participant(lbs)
Is Participant Limited by Missing/Deformed
Body Part
Participant is Unhappy,Sad or Depressed
Is Participant Limited By Sensory Problems
Is Participant Limited By Mental Conditions

Census

Percent Families With Children Above 18Y/O
Percentage of Seniors in Area
Percentage of Married People in Area
Average Household Size

Experiment 2 (Effect of Data Integration without Uncertainty Estimates) :

In the next step of our experimentation, we evaluate the effect of integrating new features from

the Census dataset. Our expectation is that some of the features integrated from the new dataset

could turn out to be important and thus enhance our model′s predictive capability.

Fig.6.13 shows the change in RMSE of BMI predictions with different models and input data.

It is to be noted that the three bars(orange, green and red) in Fig.6.13 represent the results from

doing a feature selection using Lasso Regression [66] and then training the top N features(we have

tried with N=12,15,20) with an artificial neural network. Feature selection by Gradient Boosting

by taking the most important 15 features and then applying artificial neural network gave similar

results, but features selected by Lasso Regression were better. The RMSE values are the result of

a K(=10) Fold validation on the input dataset.

As evident from the Figure6.13, inclusion of Census information does increase the prediction

accuracy. The prediction RMSE for men comes down to∼2.99 and that for women comes down to

∼3.23 in the case of Lasso Regression followed by training on neural networks. Also, from table

69

6.3, we can see that the prediction RMSE with integrated features using Gradient Boosting also

decreases to ∼2.9 for male and to ∼3.06 for female.

Another aspect of this experimentation is to check whether the features integrated from the

Census dataset are actually important enough to contribute to the BMI prediction. Table 6.2 shows

a list of top 10 features that were selected using Lasso Regression in one of our experiments. We

can see a mixture of attributes from both NLSY97 and the Census data summary make the list as

the top influencers in BMI prediction. Also, some of the behavioral and biometric factors that were

chosen as the top features intuitively make sense.

Experiment 3- Effect of Data Integration with Uncertainty Estimates

The final phase of our experimentation involves using the uncertainty information we had gen-

erated from the Map-Reduce task into our learning models to see if we get any improvement in

prediction accuracy. In order to do so, we tried two approaches.The first approach is similar to what

we did previously, i.e. we tried feature selection and then applied neural network. The difference

is, here, along with the selected features, we appended the column representing the uncertainty

value of that feature. For feature selection, we have found that using Gradient Boosting and taking

out the top 15, along with their uncertainties gave us the best result. The uncertainty column is

added only if it is for a feature relating to the geographically higher resolution dataset(Census),

because the measurement uncertainty for NLSY97 is considered to be 0. In Fig.6.13, the red bar

represents the output from this experiment and it shows that there is considerable improvement in

terms of RMSE using this method both for male and female.

Table (6.3) Prediction RMSE for Gradient Boosting Models on Different Data

RMSE(Male) RMSE(Female)
NLSY+Growth Chart 3.0387 3.1999
NLSY+Growth Chart+Census 2.889 3.0599

In the second approach, we tried out the MLPCR model, which allows us to include infor-

mation on measurement uncertainties in its learning process. However, as we can see from the

70

Figure (6.13) Comparison in RMSE for different datasets

Fig.6.13(last bar in the clustered bar chart), we do not get an improved RMSE. A possible ex-

planation for this could be that MLPCR, which relies on Maximum Likelihood Principal Com-

ponent Analysis(MLPCA) requires that the measurements have uncorrelated errors. Since the

errors/weighted standard deviations are the same for each measurement for each county, the con-

dition for uncorrelated error condition for each measurement is not satisfied.

To summarize, we see that, while the RMSE of prediction using Growth Chart was 3.4 and 3.68

for male and female respectively, our integrated training data was able to reduce RMSE to 2.99 for

male(∼8.9% improvement) and 3.23 for female(∼12.3% improvement) and further incorporation

of uncertainty measures took the RMSE to 2.78 for male(∼18.3% improvement) and 2.74 for

female(∼25.6% improvement).

71

Chapter 7

Conclusions

We presented our methodology to efficiently integrate ancillary spatiotemporal datasets of vary-

ing resolutions into a single merged dataset. This merged dataset could be used for a variety of

analytical applications such as visualization and predictive model building. As a case study, we

have also demonstrated a practical application of such integrated data in the field of machine learn-

ing.

7.1 Research Question 1(RQ1)
Integration of misaligned data records among participating dataset is handled using the concept

of spatiotemporal relaxation region where, for a point from the target dataset, any point from the

source dataset lying in this region is considered as a similar and hence a match.

7.2 Research Question 2(RQ2)
Difference in resolution among participating datasets is handled by implementing separate in-

tegration and interpolation strategies in scenarios involving different combinations of vector and

rasterised datasets as participants.

7.3 Research Question 3(RQ3)
The data integration operation is orchestrated in the form of independent sub-jobs for smaller

spatiotemporal regions inside the spatiotemporal span of the actual query. Latency is reduced by

minimising the data movement as well as the amount of record processed.

72

7.4 Research Question 3(RQ4)
Using machine learning, we have dynamically made predictions on the interpolation parameter,

β, to alter the level to which neighboring points′ influence drops with distance from the interpola-

tion point.

73

Bibliography

[1] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang, and Joel

Saltz. Hadoop gis: a high performance spatial data warehousing system over mapreduce.

Proceedings of the VLDB Endowment, 6(11):1009–1020, 2013.

[2] Ahmed Eldawy and Mohamed F Mokbel. Spatialhadoop: A mapreduce framework for spatial

data. In Data Engineering (ICDE), 2015 IEEE 31st International Conference on, pages 1352–

1363. IEEE, 2015.

[3] Haoyu Tan, Wuman Luo, and Lionel M Ni. Clost: a hadoop-based storage system for big

spatio-temporal data analytics. In Proceedings of the 21st ACM international conference on

Information and knowledge management, pages 2139–2143. ACM, 2012.

[4] Jiamin Lu and Ralf Hartmut Guting. Parallel secondo: boosting database engines with

hadoop. In Parallel and Distributed Systems (ICPADS), 2012 IEEE 18th International Con-

ference on, pages 738–743. IEEE, 2012.

[5] Ahmed Eldawy, Mostafa Elganainy, Ammar Bakeer, Ahmed Abdelmotaleb, and Mohamed

Mokbel. Sphinx: Distributed execution of interactive sql queries on big spatial data. In

Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic

Information Systems, page 78. ACM, 2015.

[6] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. Simba: Efficient

in-memory spatial analytics. In Proceedings of the 2016 International Conference on Man-

agement of Data, pages 1071–1085. ACM, 2016.

[7] Louai Alarabi. St-hadoop: A mapreduce framework for big spatio-temporal data. In Pro-

ceedings of the 2017 ACM International Conference on Management of Data, pages 40–42.

ACM, 2017.

74

[8] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. Geospark: A cluster computing framework for

processing large-scale spatial data. In Proceedings of the 23rd SIGSPATIAL International

Conference on Advances in Geographic Information Systems, page 70. ACM, 2015.

[9] Maciej Tomczak. Spatial interpolation and its uncertainty using automated anisotropic in-

verse distance weighting (idw)-cross-validation/jackknife approach. Journal of Geographic

Information and Decision Analysis, 2(2):18–30, 1998.

[10] Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara. Galileo: A framework

for distributed storage of high-throughput data streams. In Utility and Cloud Computing

(UCC), 2011 Fourth IEEE International Conference on, pages 17–24. IEEE, 2011.

[11] Xiaochuang Yao and Guoqing Li. Big spatial vector data management: a review. Big Earth

Data, 2(1):108–129, 2018.

[12] Geoffrey Fox, Sang Lim, Shrideep Pallickara, and Marlon Pierce. Message-based cellular

peer-to-peer grids: foundations for secure federation and autonomic services. Future Gener-

ation Computer Systems, 21(3):401–415, 2005.

[13] Geoffrey Fox, Shrideep Pallickara, and Xi Rao. Towards enabling peer-to-peer grids. Con-

currency and Computation: Practice and Experience, 17(7-8):1109–1131, 2005.

[14] Ahmet Uyar, Shrideep Pallickara, and Geoffrey C Fox. Towards an architecture for au-

dio/video conferencing in distributed brokering systems. In Communications in Computing,

pages 17–23, 2003.

[15] Geoffrey Fox and Shrideep Pallickara. Deploying the naradabrokering substrate in aiding

efficient web and grid service interactions. Proceedings of the IEEE, 93(3):564–577, 2005.

[16] Thilina Buddhika and Shrideep Pallickara. Neptune: Real time stream processing for internet

of things and sensing environments. In Parallel and Distributed Processing Symposium, 2016

IEEE International, pages 1143–1152. IEEE, 2016.

75

[17] Matthew Malensek, Sangmi Pallickara, and Shrideep Pallickara. Analytic queries over

geospatial time-series data using distributed hash tables. IEEE Transactions on Knowledge

and Data Engineering, 28(6):1408–1422, 2016.

[18] Matthew Malensek, Sangmi Pallickara, and Shrideep Pallickara. Fast, ad hoc query evalu-

ations over multidimensional geospatial datasets. IEEE Transactions on Cloud Computing,

5(1):28–42, 2017.

[19] Walid Budgaga, Matthew Malensek, Sangmi Pallickara, Neil Harvey, F Jay Breidt, and

Shrideep Pallickara. Predictive analytics using statistical, learning, and ensemble methods

to support real-time exploration of discrete event simulations. Future Generation Computer

Systems, 56:360–374, 2016.

[20] Thilina Buddhika, Matthew Malensek, Sangmi Lee Pallickara, and Shrideep Pallickara. Syn-

opsis: A distributed sketch over voluminous spatiotemporal observational streams. IEEE

Transactions on Knowledge and Data Engineering, 29(11):2552–2566, 2017.

[21] Matthew Malensek, Sangmi Pallickara, and Shrideep Pallickara. Polygon-based query

evaluation over geospatial data using distributed hash tables. In Proceedings of the 2013

IEEE/ACM 6th International Conference on Utility and Cloud Computing, pages 219–226.

IEEE Computer Society, 2013.

[22] Sangmi Lee Pallickara, Shrideep Pallickara, Milija Zupanski, and Stephen Sullivan. Effi-

cient metadata generation to enable interactive data discovery over large-scale scientific data

collections. In Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second

International Conference on, pages 573–580. IEEE, 2010.

[23] Alan E Gelfand, Li Zhu, and Bradley P Carlin. On the change of support problem for spatio-

temporal data. Biostatistics, 2(1):31–45, 2001.

76

[24] INTAEK JUNG and KYUSOO CHONG. Interpolation and spatial matching method of vari-

ous public data for building an integrated database. WIT Transactions on The Built Environ-

ment, 176:307–318, 2017.

[25] Maciej Tomczak. Spatial interpolation and its uncertainty using automated anisotropic in-

verse distance weighting (idw) - cross-validation/jackknife approach. Journal of Geographic

Information and Decision Analysis, 2(2):18–30, 1998.

[26] Margaret A Oliver and Richard Webster. Kriging: a method of interpolation for geographical

information systems. International Journal of Geographical Information System, 4(3):313–

332, 1990.

[27] Houping Xiao, Jing Gao, Qi Li, Fenglong Ma, Lu Su, Yunlong Feng, and Aidong Zhang.

Towards confidence in the truth: A bootstrapping based truth discovery approach. In ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016.

[28] Houping Xiao, Jing Gao, Zhaoran Wang, Shiyu Wang, Lu Su, and Han Liu. A truth dis-

covery approach with theoretical guarantee. In ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. ACM, 2016.

[29] Johnson Charles Kachikaran Arulswamy and Sangmi Lee Pallickara. Columbus: Enabling

scalable scientific workflows for fast evolving spatio-temporal sensor data. In Services Com-

puting (SCC), 2017 IEEE International Conference on, pages 9–18. IEEE, 2017.

[30] G. Niemeyer. Geohash, 1999. http://www.geohash.org/.

[31] Houping Xiao, Jing Gao, Qi Li, Fenglong Ma, Lu Su, Yunlong Feng, and Aidong Zhang.

Towards confidence in the truth: A bootstrapping based truth discovery approach. In Pro-

ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 1935–1944. ACM, 2016.

[32] Jon Louis Bentley. Multidimensional divide-and-conquer. Communications of the ACM,

23(4):214–229, 1980.

77

[33] Nick Koudas and Kenneth C Sevcik. High dimensional similarity joins: Algorithms and

performance evaluation. IEEE Transactions on Knowledge and Data Engineering, 12(1):3–

18, 2000.

[34] Scikit-learn.

[35] National Oceanic and Atmospheric Administration, The North American Mesoscale Forecast

System, 2018. http://www.emc.ncep.noaa.gov/index.php?branch=NAM.

[36] National Oceanic and Atmospheric Administration, Integrated Surface Database (ISD),

2018. https://www.ncdc.noaa.gov/isd.

[37] NOAA National Operational Model Archive and Distribution System. NOAA U.S. Wind

Climatology Data, 2018. https://nomads.ncdc.noaa.gov/guide.

[38] Joseph C von Fischer, Daniel Cooley, Sam Chamberlain, Adam Gaylord, Claire J Griebenow,

Steven P Hamburg, Jessica Salo, Russ Schumacher, David Theobald, and Jay Ham. Rapid,

vehicle-based identification of location and magnitude of urban natural gas pipeline leaks.

Environmental Science & Technology, 51(7):4091–4099, 2017.

[39] Saptashwa Mitra, Yu Qiu, Haley Moss, Kaigang Li, and Sangmi Pallickara. Effective in-

tegration of geotagged, ancillary longitudinal survey datasets to improve adulthood obesity

predictive models. IEEE Big Data Science and Engineering (BigData SE), 2018 in press.

[40] Cynthia L Ogden, Susan Z Yanovski, Margaret D Carroll, and Katherine M Flegal. The

epidemiology of obesity. Gastroenterology, 132(6):2087–2102, 2007.

[41] National Center for Health Statistics (US et al. Health, united states, 2004: With chartbook

on trends in the health of americans. 2004.

[42] Eric A Finkelstein, Justin G Trogdon, Joel W Cohen, and William Dietz. Annual medi-

cal spending attributable to obesity: payer-and service-specific estimates. Health affairs,

28(5):w822–w831, 2009.

78

[43] Julie A Gazmararian, David Frisvold, Kun Zhang, and Jeffrey P Koplan. Obesity is associated

with an increase in pharmaceutical expenses among university employees. Journal of obesity,

2015, 2015.

[44] Neslihan Koyuncuoğlu Güngör. Overweight and obesity in children and adolescents. Journal

of clinical research in pediatric endocrinology, 6(3):129, 2014.

[45] Sukanya Manna and Abigail M Jewkes. Understanding early childhood obesity risks: An

empirical study using fuzzy signatures. In Fuzzy Systems (FUZZ-IEEE), 2014 IEEE Interna-

tional Conference on, pages 1333–1339. IEEE, 2014.

[46] Christina Riedel and Rüdiger et al. von Kries. Overweight in adolescence can be predicted at

age 6 years: a cart analysis in german cohorts. PloS one, 9(3):e93581, 2014.

[47] Kirsten E Bevelander, Kirsikka Kaipainen, Robert Swain, Simone Dohle, Josh C Bongard,

Paul DH Hines, and Brian Wansink. Crowdsourcing novel childhood predictors of adult

obesity. PloS one, 9(2):e87756, 2014.

[48] Xiaozhong Wen, Ken Kleinman, Matthew W Gillman, Sheryl L Rifas-Shiman, and Elsie M

Taveras. Childhood body mass index trajectories: modeling, characterizing, pairwise correla-

tions and socio-demographic predictors of trajectory characteristics. BMC medical research

methodology, 12(1):38, 2012.

[49] Hedwig Lee, Megan Andrew, Achamyeleh Gebremariam, Julie C Lumeng, and Joyce M

Lee. Longitudinal associations between poverty and obesity from birth through adolescence.

American journal of public health, 104(5):e70–e76, 2014.

[50] Lisa M Hooper, Joy J Burnham, Rachel Richey, Jamie DeCoster, Mitch Shelton, and John C

Higginbotham. The fit families pilot study: preliminary findings on how parental health and

other family system factors relate to and predict adolescent obesity and depressive symptoms.

Journal of Family Therapy, 36(3):308–336, 2014.

79

[51] Ruth JF Loos and A Cecile JW Janssens. Predicting polygenic obesity using genetic infor-

mation. Cell Metabolism, 25(3):535–543, 2017.

[52] J Liang, BE Matheson, WH Kaye, and KN Boutelle. Neurocognitive correlates of obesity

and obesity-related behaviors in children and adolescents. International journal of obesity

(2005), 38(4):494, 2014.

[53] Heather L Yardley, Jacquelyn Smith, Carolyn Mingione, and Lisa J Merlo. The role of

addictive behaviors in childhood obesity. Current Addiction Reports, 1(2):96–101, 2014.

[54] Halevy Dong and Yu. Data integration with uncertainty. Proceedings of the 33rd international

conference on Very large data bases, pages 687–698, 2007.

[55] Defining adult overweight and obesity.

[56] Defining childhood obesity.

[57] The national longitudinal study of youth 97 (NLSY97).

[58] Next generation health study (NEXT).

[59] National longitudinal study of adolescent to adult health (add health).

[60] Census 2000 data for the united states.

[61] Tom White. Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012.

[62] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar,

et al. Apache hadoop yarn: Yet another resource negotiator. In Proceedings of the 4th annual

Symposium on Cloud Computing, page 5. ACM, 2013.

[63] Cdc growth charts.

[64] WHO growth charts.

80

[65] Eamonn Keogh and Abdullah Mueen. Curse of dimensionality. In Encyclopedia of Machine

Learning, pages 257–258. Springer, 2011.

[66] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society. Series B (Methodological), pages 267–288, 1996.

[67] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals

of statistics, pages 1189–1232, 2001.

[68] Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest. R news,

2(3):18–22, 2002.

[69] Peter D Wentzell, Darren T Andrews, and Bruce R Kowalski. Maximum likelihood multi-

variate calibration. Analytical chemistry, 69(13):2299–2311, 1997.

[70] Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary

reviews: computational statistics, 2(4):433–459, 2010.

81

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Research Questions
	Overview of Our Approach
	Paper Contributions
	Paper Organization

	Background and Related Work
	Related Work
	Spatiotemporal Data Analysis
	Spatiotemporal Interpolation

	Spatiotemporal Data Integration
	Distributed Geospatial Data Storage System
	Galileo Cluster Structure
	Galileo Metadata Graph

	Candidate Dataset Properties

	Relaxed Geospatial Join Across Geospatial Data Representation Models
	Relaxed Conditions for Data Integration
	Self-Adaptive Relaxation Conditions

	Methodology
	Distributed Query Relaxation
	Relaxation Region
	Neighboring Blocks
	Maximum Spatial and Temporal Relaxation
	Maximum Relaxation Region (MRR)
	Bordering Region
	Neighbors' Orientation

	Spatiotemporal Border Indexing Scheme
	Border Index Overview
	Border Index Components
	Figuring out Orientation
	Neighbor Elimination Using Bordering Index
	Partial Block Processing Using Bordering Index

	Feature Interpolation With Uncertainty
	Vector-to-Vector Interpolation
	Vector-to-Raster/ Raster-to-Vector
	Raster-to-Raster Interpolation

	Self-Adaptive Relaxation Conditions
	Training Data Generation
	Modelling Value
	Dynamic Prediction

	System Architecture
	Effective Data Integration
	Minimizing Data Movement
	Chunkified/Segmented Integration
	Minimizing Block Reading
	Fast Record Merging

	Relaxed Data Integration Query
	Data Integration Request
	Data Integration Event
	Neighbor Data Request
	Neighbor Data Response
	Data Integration Response

	Generating Training Data for Neural Network Model
	Training Data Request
	Survey request
	Survey Response
	Training Data Event
	Training Data Response

	System Evaluation
	Experimental Setup
	Distributed Cluster Configuration
	Training and Testing of Predictive Models for Interpolation Parameters
	Datasets

	Data Integration Latency Test
	Using Fixed
	Using Dynamic
	Vector-to-Raster Latency

	Data Integration Throughput Test
	Model Training and Accuracy
	Model Building Time
	Model Accuracy

	Resource Utilization
	Case Study - Obesity Prediction Using Integrated Data
	Problem Description
	Overview of Approach
	Target Variable
	Data Selection
	Distributed Computing Environment
	Interpolation - Attribute based Uncertainty Estimation for Geospatial Data Integration
	Preliminary Analysis
	Integrating Datasets Based on Geospatial Proximity
	Data Pre-Processing and Feature Selection
	Estimating uncertainty
	Uncertainty Aware Modelling
	Experimental Evaluation
	Training and Testing of Predictive Models
	Scalability Evaluation
	Experimentation and Accuracy Evaluation

	Conclusions
	Research Question 1(RQ1)
	Research Question 2(RQ2)
	Research Question 3(RQ3)
	Research Question 3(RQ4)

	Bibliography

