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ABSTRACT 
 
 
 

ABIOTIC AND BIOTIC FACTORS INFLUENCING WESTERN UNITED STATES 

CONIFEROUS FORESTS 

 
 

 In the next decade, climate models suggest that global temperatures will continue to 

rise. In the western United States, increases in temperatures and changes in precipitation 

patterns will escalate the risk of drought conditions. These potentially warmer, drier conditions 

could induce physiological changes within trees, subsequently increasing stress on coniferous 

forests that are adapted to cool, wet environments.  The abiotic stress accompanied by drought 

conditions can predispose susceptible hosts to biotic stress of insect and disease populations. 

In particular, high elevation subalpine fir (Abies lasiocarpa) have encountered higher than 

average mortality rates throughout the western United States in association with abiotic and 

biotic agents.  

Chapter 2 of this thesis investigated the potential drivers of subalpine fir mortality and 

determined how climatic factors and site and stand characteristics influenced the presence of 

mortality and biotic agents. The objectives were to identify factors driving subalpine fir mortality 

in Colorado and included 1) determine abiotic and biotic factors that directly and indirectly affect 

subalpine fir mortality, 2) determine factors associated with the presence of D. confusus or 

Armillaria spp., and 3) determine if climate variables were correlated to subalpine fir mortality or 

the presence of D. confusus and Armillaria spp. I hypothesized that sites with a higher density 

(i.e. basal area, trees per hectare, or canopy closure) would experience greater mortality due to 

decreased growth rates from competition and that D. confusus or Armillaria spp. prevalence 

would be a function of tree stress (i.e. increased density), elevation, slope, and departures from 

normal precipitation (i.e. drought), and minimum and maximum temperatures. 
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Stand health monitoring plots found that the most relevant factors to subalpine fir 

mortality are the presence of D. confusus (p = 0.003) and the percent subalpine fir on plot (p = 

<0.0001). I identified that stand density (p = 0.0038), elevation (p = 0.0581), and Armillaria spp. 

(p = 0.0006) were the greatest influences on the presence of D. confusus, while the largest 

influences on the presence of Armillaria spp. are warmer maximum summer temperatures (p = 

0.0136) and the presence of D. confusus (p = 0.0289). Results indicated that increased 

subalpine fir mortality was attributed to high stand density as a predisposing factor, warming 

temperatures as an inciting factor, and bark beetles (Dryocoetes confusus) and root disease 

(Armillaria spp.) as contributing factors. The combination of predisposing, inciting, and 

contributing factors suggests that subalpine mortality can be defined as subalpine fir decline. 

Management strategies used to reduce the impact of subalpine fir decline will need to address 

ways to improve stand health, while decreasing populations of both, D. confusus and Armillaria 

spp. In regards to Armillaria, the inability to successfully manage the disease using current 

techniques highlights the need to find novel management strategies to minimize its impacts. 

Since this disease is a root pathogen, soil microbes likely influence its growth and survival. 

Utilizing soil microbial communities as biocontrols may assist in management of Armillaria. Field 

sampling within the Priest River Experimental Forest in northern Idaho provided the opportunity 

to observe how soil microbial communities are associated with two species of Armillaria, A. 

solidipes (primary pathogen) and A. altimontana (weak pathogen).  

My research objective for Chapter 3 was to identify the soil fungal communities 

associated with tree health status (healthy, moderate and dead) and each Armillaria species, A. 

solidipes and A. altimontana, both of which have differing ecological behaviors (virulent 

pathogen and non-pathogen, respectively) on western white pine. I hypothesized that soil 

microbial communities associated with virulent A. solidipes and non-pathogenic A. altimontana 

would differ in fungal richness and diversity with the latter having a greater richness and 

diversity due to its beneficial qualities to tree health. While richness and diversity is likely to shift 
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among tree health with a greater diversity and richness for soils associated with healthy trees 

due to root exudate production near the rhizosphere. Soil samples were collected alongside 

western white pine (Pinus monticola), while Armillaria rhizomorphs were excavated near the 

roots. The most abundant fungal taxon was Mortierella spp., which functions as saprophyte 

decomposing dead and down wood. No significant differences in fungal diversity or richness 

were found in soils associated with Armillaria species, but, although not significant, there where 

slight differences between soils associated with moderate and dead trees with a greater 

diversity and richness in soils with dead trees (p = 0.18). Additionally, soil pH was significantly 

influenced by soil carbon, nitrogen, and organic matter, while moisture significantly influenced 

soil carbon, nitrogen, and organic matter, acting as indicators to overall health in the stand. 

Although not significantly different, more Hypocreaceae (Trichoderma), a known biocontrol for 

root pathogens, were found within soils associated with A. altimontana and healthy trees. More 

research is needed to solidify differences, yet these factors give insight into potential beneficial 

aspects of soil fungal communities in association with Armillaria species and tree health.   

Changing climates regimes outside of 30-year averages cause increased stress to 

forests. This stress may predispose trees to a greater abundance biotic agents such as bark 

beetles and secondary pathogens, such as Armillaria root disease specifically in association 

with subalpine fir in Colorado. Understanding the role that soil fungal communities play in 

association to Armillaria root disease and tree health may assist in forest management practices 

to increase the health of high elevation forests. 
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CHAPTER 1: INTRODUCTION AND BACKGROUND 
 
 
 

1.1 Effects of climate and on forests 

 By the next century, annual temperatures are predicted to rise between 2 to 4 °C 

globally (Allen et al., 2010; Bentz et al., 2010). In combination with these higher temperatures, a 

decrease in the duration and frequency of precipitation will likely lead to widespread drought 

across the western United States (Seager et al., 2007). These climatic factors interacting with 

increasing levels of CO2 will have varying responses with xeric species out-competing mesic 

species (Allen et al, 2010; Hanson and Weltzin, 2000). The acclimation to minimal precipitation 

will assist in the ability to persist in occurrence of drought (Allen et al., 2010). Within drought 

environments, trees can withstand stressors by utilizing physiological and biochemical 

responses (Allen et al., 2010; Hanson and Weltzin, 2000; Rennenberg et al., 2006). The initial 

response to warmer temperatures and drought is to close stomata, limiting water loss and 

reducing the CO2:O2 ratio, which induces competition between photorespiration and 

photosynthesis (Allen et al., 2010; Rennenberg et al., 2006). Release of water eventually occurs 

as stomates open to uptake additional CO2 for energy production (Hanson and Weltzin, 2000). 

In annual, seasonal drought regions, lack of available soil water and high transpiration rates 

reduces the ability for trees to uptake water through xylem tissue, resulting in cavitation or 

embolism. Cavitation is caused by air bubbles that form in the xylem, due to low water potential 

within the plant (Allen et al., 2010; Hanson and Weltzin, 2000). Additionally, lack of precipitation 

causes reduced soil decomposition, which may result in a greater concentration of immobilized 

nutrients, causing greater competition between plants for limited resources (Hanson and 

Weltzin, 2000; Rennenberg et al., 2006).  

 As drought conditions persist, biochemical defense responses are activated in response 

to increased stress factors. In particular, isoprenoids are stimulated due to higher temperatures 

and soil drought (Rennenberg et al., 2006). Isoprenoids are produced to protect trees against 
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biotic and abiotic stresses, yet they have been found in reduced levels with rising CO2 levels 

(Rennenberg et al., 2006). The cyclic production of isoprenoids results in weakened stress 

responses, making trees susceptible to attack by insects and diseases. Stress, induced by 

climate change and resulting interacting factors influencing a tree’s response, can change stand 

characteristics and increase risk of forest pests and pathogens (Allen et al., 2010).  

 

1.2 Effects climate may play on forest pests and pathogens 

 As climate continues to change, there will be direct and indirect relationships between 

host and pest interactions (Sturrock et al., 2011). Seasonally warmer temperatures have a direct 

effect on the life cycle of bark beetles (Bentz et al., 2010). Beetles that have a two-year life cycle 

utilize their extended maturity as a way to coordinate with their environment and withstand 

harsh temperature extremes; i.e. cold tolerance is observed in spruce beetle (Dendroctonus 

rufipennis) (Bentz et al., 2010). Cryoprotectant responses are enabled during winter to tolerate 

cold temperatures as beetles protect themselves within the tree by overwintering until spring. 

The fluctuation of winter temperatures may result in an adaptation to the timing of overwintering 

(Bentz et al., 2010).   Additionally, as summer temperature and the length of frost-free periods 

increase, it may result in a one-year life cycle, ultimately leading to a substantial population 

growth as their maturity is expedited due to warmer temperatures (Bentz et al., 2010).  

Climate change-induced stress in hosts could indirectly affect beetle populations. Bentz 

et al., (2010) stated that climate change might influence the growth of fungi that are associated 

with mountain pine beetles. Climate regimes may indirectly affect beetles by affecting the 

optimal environment needed for fungal growth (Bentz et al., 2010). The impact of drought also 

affects the host’s ability to defend themselves against infestation, as less beetles are needed to 

successfully attack a host (Bentz et al., 2010; Rennenberg et al., 2006). However, Huberty and 

Denno (2004), found that a loss in water content and turgor pressure may prevent phloem 

feeders from acquiring adequate nitrogen from prolonged drought-stressed trees, contradicting 
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the view that drought benefits beetles. Although increases in beetle populations do occur in 

stressed environments, intermittent drought will likely provide adequate levels of nutrients for 

phloem feeders to thrive, while prolonged drought may adversely affect their ability to reproduce 

(Huberty and Denno, 2004).  

 Similar to bark beetles, pathogens will experience direct and indirect effects associated 

with climate change (Kolb et al. 2016). The direct effects of warmer temperature and less 

precipitation may change the host and disease range with pathogens adapting quicker to the 

new environment (Sturrock et al., 2011). Shorter disease life cycles, earlier sporulation, and 

interactions with insect vectors may alter the spread of pathogens, which will likely increase the 

role of pathogens as mortality agents in the forest (Sturrock et al., 2011). The indirect effects, as 

previously stated, relate to host susceptibility. As host ranges expand or contract, the movement 

of disease will subsequently follow. The increase of drought environments will allow many 

diseases to adversely affect tree health. Stressed trees will not be able to withstand infections 

from forest pathogens, facilitating populations to reach epidemic levels (Bentz et al., 2010).   

Numerous studies have encompassed the effects that climate may have on root 

diseases, specifically Armillaria root disease (Klopfenstein et al., 2009; Kubiak et al., 2017). It is 

hypothesized that as future temperatures increase, the range of Armillaria gallica and Armillaria 

mellea may expand as more susceptible hosts become compromised due to drought stress, 

allowing these weak pathogens to find stressed trees (Kubiak et al., 2017). Klopfenstein et al. 

(2009) have modeled that as climate changes in the inland western United States, the range of 

Douglas-fir (Pseudotsuga menziesii) may constrict, while Armillaria solidipes will likely shift 

within Douglas-fir’s current and previous ranges, inducing a pathogenic response to maladapted 

hosts.    

The type of pests may determine the effects that warmer and drier climates have on 

insects and diseases. Drought environments may adversely affect primary pathogens, such as 

rusts and foliar diseases that depend on water to infect or spread. For these diseases, the lack 
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of moisture may limit the efficacy of the pathogen and prevent its ability to spread (Kolb et al., 

2016). Whereas, secondary pathogens and insects, such as root pathogens and wood borers 

may increase as tree stress is exacerbated by drought conditions (Kolb et al., 2016).  

 

1.3 Association between bark beetles and root diseases 

 Bark beetles and root disease have a close relationship in forested environments 

(James and Goheen, 1981). In association with root disease, it is hypothesized that the 

defenses are compromised in stressed trees making them more susceptibility to infestation. The 

susceptibility of the host to root disease has a direct relationship with the ability for bark beetles 

to establish in a tree (Goheen and Hansen, 1993). These relationships have been observed in 

most of the western states (Ferrell and Smith, 1976; Hertert et al., 1975; Lane and Goheen, 

1979) with heightened mortality occurring in the Rocky Mountains (CSFS, 2009; James and 

Goheen, 1981). In a small sample of 326 trees in southern Colorado, over 80% of conifers 

infected with root disease (Heterobasidion occidentale and Armillaria spp.) were also infested 

with bark beetles, in particular fir engraver on white fir and western balsam bark beetle (WBBB) 

on subalpine fir (James and Goheen, 1981).  

Current mortality levels are documented by aerial pest surveys in Colorado. Yearly 

damage expanded to a maximum around 140,000 ha in 2008 for the subalpine fir mortality 

complex, driven in combination by WBBB and Armillaria root disease (CSFS, 2009). The 

mortality caused by the relationship between bark beetles and root disease coincides with 

predisposing abiotic factors to cause widespread mortality (McMillin et al., 2003). The relatively 

dense stands and drought conditions in high elevation forests likely predispose subalpine fir to 

contributing mortality agents such as WBBB and Armillaria. Within the extent of subalpine fir, 

elevated mortality levels have been witnessed in the last decade in association to these factors, 

prompting the idea that this mortality may be a decline disease. 
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1.4 Distribution of WBBB 

 Western balsam bark beetle (Dryocoetes confusus) is an important mortality agent to 

spruce-fir forests of the subalpine regions in western North America (Garbutt and Vallentgoed, 

1992; Negron and Popp, 2009). Infestation occurs throughout the range of its hosts from British 

Columbia to New Mexico (Negron and Popp, 2009). Subalpine fir (Abies lasiocarpa) is the 

preferred host for WBBB, while infrequent infestations also occurs with other true firs, white 

spruce (Picea glauca), and Engelmann spruce (Picea engelmannii) (Garbutt and Vallentgoed, 

1992). Endemic populations of the beetle act as sanitizers killing stressed trees, while increased 

population levels may accumulate in blowdown and eventually infest healthy trees (McMillin et 

al., 2003; Negron and Popp, 2009).  

 

1.5 Biology of WBBB 

 Dryocoetes confusus, in association, with a pathogenic fungus (Ophiostoma 

dryocoetidis) and root disease have been the cause for significant loss of subalpine fir over the 

last two decades (Garbutt and Vallentgoed, 1992; McMillin et al., 2003; Negron and Popp, 2009; 

USDA-FS, 2011). Infestations occur in high elevation forests, which offer typically cool, wet 

environments (Reich et al., 2016). The two-year life cycle begins in late spring as beetles 

emerge from trees in May to June, coinciding with 15°C temperatures (Garbutt and Vallentgoed, 

1992; Negron and Popp, 2009). As the pioneer beetle, the adult male is attracted to susceptible 

trees by means of kairomone, a chemical attractant exuded from the host. The male will bore 

the nuptial chamber and emit pheromones to attract three or more females (Garbutt and 

Vallentgoed, 1992; USDA-FS, 2011). Following mating, the females will lay eggs along brood 

chambers running off the nuptial chamber. The resulting galleries will make a distinct stellate 

(star) or y-shape, which is used for identification (Garbutt and Vallentgoed, 1992). Adults 



 

6 

overwinter in the tree and lay additional eggs the following spring, later emerging to find another 

susceptible host (Garbutt and Vallentgoed, 1992) (Figure 1-1).  

Beetles have the greatest impact in larger 

diameter stands (McMillin et al., 2003). 

Larvae will continue to feed and grow within 

the tree during spring and summer. The 

culmination of maturation occurs with a 

diapause, starting in the summer, followed 

by pupation stage through fall and winter to 

emerge the next spring (Bentz et al., 2010). 

High temperatures may prevent the 

diapause stage (Bentz et al., 2010), resulting in a one-year life cycle as adults emerge in the fall 

(Bentz et al., 2010; Garbutt, 1992). 

 A symbiotic relationship occurs as the beetle vectors a fungus, O. dryocoetidis (Garbutt 

and Vallentgoed, 1992; Molnar, 1965). The fungus is carried in mycangial pockets on the 

beetle’s thorax and is spread to the host after initial feeding (Molnar, 1965). In British Columbia, 

Molnar (1965) identified that all beetle attacks had fungal associations, and even an 

unsuccessful attack by the beetle resulted in fungal inoculation into the host’s cambial tissue. 

Once inside the host vascular system, fungi can kill the tree without the beetle (Garbutt and 

Vallentgoed, 1992; Molnar, 1965). 

 Indirect evidence of beetle attack includes pitch flow or frass in conjunction with entry 

holes. Pitch flow typically occurs when a host successfully withstands the attack and pitches out 

the beetle. Frass is a combination of boring dust and excrement that results from a successful 

attack (Garbutt and Vallentgoed, 1992; USDA-FS, 2011). Tree death, following an attack, 

results in red needles that can remain on a tree for three or more years (USDA-FS, 2011). 

Direct evidence includes observing the beetle and the stellate egg galleries under the bark 

Figure 1-1: Two-year bark beetle life cycle (CSFS, 2014). 
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(Garbutt and Vallentgoed, 1992; USDA-FS, 2011). The signs and symptoms on the tree will 

allow forest managers to identify the beetle, but further understanding the beetle’s relationship 

with root diseases is required to further assist in the management of D. confusus. 

 

1.6 Distribution of Armillaria 

Armillaria spp. are one of the most damaging fungal root pathogens in North America 

(Baumgartner et al., 2011). It is ubiquitous and can be found in temperate and tropical forests. 

Armillaria can infect hundreds of hosts ranging from trees and woody shrubs to forbs (Williams 

et al., 1986). Armillaria ostoyae (Romagnesi) Herink, now identified as Armillaria solidipes Peck, 

Bull. Torrey Bot. Club (Burdsall and Volk, 2008), is the primary pathogen within coniferous 

forests associated with A. altimontana Brazee, B. Ortiz, Banik, and D.L. Lindner (formerly North 

American Biological Species X) (Brazee et al., 2012; Ferguson et al. 2003; Kim et al., 2010; 

Warwell et al., 2019). While A. solidipes has a wide range, A. altimontana is only found in a 

small niche in western North America (Brazee et al., 2012). Their co-occurrence has been 

documented in the inland western United States in mesic, coniferous regions (Brazee et al., 

2012; Ferguson et al., 2003). The pathogenicity of A. altimontana has not been well studied, yet 

it is thought to be beneficial to its host (Warwell et al., 2019).  

 

1.7 Biology of Armillaria spp. 

Armillaria spp. are mostly known as highly virulent pathogens, although they are 

facultative necrotrophs capable of both pathogenic and saprophytic lifestyles (Baumgartner et 

al., 2011; Kile et al., 1991). Their ability to actively parasitize their host and persist on dead 

tissue allows for their continuous spread when susceptible hosts are limited (Kile et al., 1991). 

The three main signs of infection are mycelial fans (sheets of mycelium under the barks of 

infected trees), rhizomorphs (aggregations of hyphae with a melanized outer layer either in the 

soil or under the bark), or basidiomes (above ground fruiting bodies/mushrooms) (Baumgartner 
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et al., 2011; Morrison et al., 1991). The symptoms associated with infection may include 

reduced shoot growth (stunting) (Bamugartner et al., 2011), crown dieback (reddening/flagging), 

or basal resinosis at the base of the tree (Morrison et al., 1991; Williams et al., 1986). These 

symptoms are typically observed in stressed trees, which may prompt for further investigation to 

determine the main factor causing the symptoms. 

The infection process can occur either from contact between a root and a rhizomorph or 

by contact with an infected root (Redfern and Filip, 1991). Once the rhizomorph contacts the 

root, the tip penetrates the bark, moving into the cork cells. Hyphae will spread subcortically 

within the root tissues. Hyphae do not need a wound to enter the root, yet wounds will act as an 

Figure 1-2: Life cycle of Armillaria root disease. 1) Basidiospore germination on dead stump. 2) Formation of diploid mycelium. 

3) Infections of roots by rhizomorphs. 4) Spread via root-to root contact. 5) Release of basidiospores from fruiting bodies 

(Heinzelmann et al., 2019) 
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infection court for the hyphae to easily enter the host (Garraway et al., 1991; Kile et al., 1991) 

(Figure 1-2).  

As rhizomorphs attempt to penetrate the root, the host will respond to inhibit infection 

using three types of responses: biochemical, exudation, and meristematic cork and cambium 

formation (Garraway et al., 1991; Morrison et al., 1991). Biochemical responses release phenols 

or tannins that inhibit the growth of Armillaria in the root, preventing the spread into the host 

tissues. Exudation of resin forms a physical barrier to the hyphae, preventing it from penetrating 

the tissues. Cork and cambium formation walls off the infection similar to compartmentalization 

of decay in trees (CODIT) to further prevent the spread within the root (Morrison et al., 1991). In 

susceptible hosts, these barriers may not fully prevent the spread of the hyphae into the host 

tissues, allowing for further spread of the fungus within the host. Once the hyphae infiltrate the 

tissues, the mycelial fans spread under the bark, increasing the level of decay. Under favorable 

climatic conditions, i.e. precipitation and warmer temperatures, mycelial fans form clusters at the 

base of the tree, initiating the establishment of basidiomes (Morrison et al., 1991).  

The spread of Armillaria occurs from either basidiospores dispersed from clustered 

mushrooms or by vegetative growth of rhizomorphs under the soil (Morrison et al., 1991; 

Redfern and Filip, 1991). Dispersal via mushrooms is less prevalent since spores do not have 

enough nutrients to survive and need to find an infection court (wound) on a susceptible host to 

germinate (Redfern and Filip, 1991). Free-living rhizomorphs spread at a slow rate, ranging from 

0.22 m/year to 1.3 m/year (Ferguson et al., 2003). The ability to find susceptible hosts and 

spread via root-to-root contact allows for rapid dispersal and a greater chance of encountering 

available resources from decaying host tissues (Redfern and Filip, 1991). The dispersal method 

depicts how pathogenic species spread. Since Armillaria spp. also acts as a saprophyte the 

ability to spread via infections is less likely. In the case of A. altimontana, the weak pathogen 

establishes a wide dispersal to find more resources throughout the soil (Redfern and Filip, 

1991). This has also been observed at the Priest River Experimental Forest in northern Idaho, 
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where the two species co-occur with A. altimontana occupying greater space than A. solidipes 

(Warwell et al., 2019). 

Many management techniques are used to minimize the effects of Armillaria. Silvicultural 

practices are commonly used, which include thinning to increase the vigor of remaining trees, 

clearcutting to remove all trees, and selective thinning to change species composition to more 

resistant trees (Kile et al., 1991). Silvicultural techniques successfully remove susceptible hosts 

to increase growing space, but they may spread the pathogen if the remaining trees are 

damaged or stressed following management (Kile et al., 1991; Wargo and Harrington, 1991; 

Williams et al., 1986). To reduce the inoculum load, stump removals following silvicultural 

practices and soil fumigation are used to minimize the spread. These techniques assist in the 

management yet are invasive and not cost effective (Baumgartner et al., 2011; Hagel and 

Shaw, 1991). The inability to successfully manage Armillaria opens up the idea to utilize less 

invasive biocontrols within the soils to suppress the disease.  

 

1.8 Biocontrol of root pathogens 

 Lack of adequate management techniques for forest root pathogens has prompted the 

need to fully understand the interactions between the forest soil microbiome and pathogens. 

The role that soil microbial communities play on the suppression of root pathogens has been 

well studied (Baumgartner and Warnock, 2006; Chapman and Xiao, 2000; Elad et al., 1979; Fu 

et al., 2017; Futai et al., 2008; Kope and Fortin, 1989; Mesanza et al., 2016; Trivedi et al., 2017; 

Xiong et al., 2017). Fungal and bacterial microbes have been identified as a potential biocontrol 

to combat infection of root pathogens with most studies focusing on potential bacteria for soil 

suppression. High microbial diversity may provide competition to the pathogens, specifically in 

response to Fusarium oxysporum f. sp. cubensis, which may induce an inhibitory response in 

comparison between biological control agent-amended soil samples and compost control soils 

(Fu et al., 2017). Beneficial changes in microbial communities included higher levels of 
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Sphingobium, Gp6, Gp4, Lysobacter, Sphingopyxis, and Dyadobacter for bacteria and 

Cryptococcus for fungi were associated with suppressive soil (Fu et al., 2017). Trivedi et al., 

(2017) identified similar results showing that phyla Actinobacteria, Firmicutes, and Acidobacteria 

were major predictors to soil suppression of Fusarium oxysporum in Australia. Further studies 

showed that the above phyla and Verrucomicrobia might be associated with the inhibition of 

Fusarium wilt disease, suggesting that they may also be useful for the management of other 

root pathogens (Xiong et al., 2017). Mesanza et al. (2016) utilized bacteria (Pseudomonas, 

Bacillus, and Erwinia) harvested in the rhizosphere of radiata pine (Pinus radiata) to measure 

the in vitro effects on tree root pathogens, A. mellea and Heterobasidion annosum. Results 

showed that P. fluorescens and B. simplex were antagonistic to both root pathogens, while 

Erwinia billingae had a large effect on H. annosum but only a small reduction in A. mellea. 

Baumgartner and Warnock (2005) also showed that Bacillus and Pseudomonas play a role in 

the inhibition of A. mellea isolated from grapevines.  

  Along with bacteria, fungi may play an integral role in the management of root 

pathogens using suppressive soils, especially since fungi provide a greater amount of biomass 

than bacteria within the soil (Lee Taylor and Sinsabaugh, 2014). The most diverse type is 

ectomycorrhizal (ECM) fungi, which make up 5,000 – 6,000 species within forests (Futai et al., 

2008). Ectomycorrhizal fungi function to increase the uptake of nutrients and water and to 

provide a physical barrier (mantle) to inhibit the infection of pathogens (Futai et al., 2008). To 

identify what types of ECM are suppressive to pathogens, Hope and Fortin (1989) tested seven 

ECM as potential inhibitors to 20 phytopathogens made up of Ascomycetes, Basidiomycetes, 

and imperfect fungi. They documented that Pisolithus tinctorius and Tricholomas pessundatum 

were antagonist toward most phytopathogens including root pathogens (i.e. Armillaria mellea, 

Fusarium oxysporum, and Rhizoctonia spp. and others). Although both exhibited inhibitory 

qualities, P. tinctorius was antagonistic to 85% of the root pathogens, whereas T. pessundatum 

only suppressed 55% (Kope and Fortin, 1989). A study assessing the differences between 
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natural soils that suppressed F. oxysporum and soils that were conducive to the disease, Xiong 

et al., (2017), identified more Mortierella, Ceratobasidium, and Gymnopus in association to 

suppressive soil compared to conducive soil. Trichoderma harzianum, a common soil fungicide 

can be used to inhibit the growth of root pathogens (Elad et al., 1979). In a greenhouse and field 

study, the use of T. harzianum wheat bran inoculum to previous infested soil successfully 

protected crops from Rhizoctonia solani and Sclerotium rolfsii (Elad et al., 1979). A field study in 

British Columbia inoculated Hypholoma fasciculare (an abundant fungus isolated from soil at the 

site) on stumps already infected with Armillaria ostoyae suggesting that fungi can act as direct 

competition to root pathogens, inhibiting the spread within soil (Chapman and Xiao, 2000). Two 

years after the study, one of the sites showed a large reduction in roots infected by A. ostoyae, 

yet more time was needed to determine that Armillaria could be eradicated with H. fasciculare 

(Chapman and Xiao, 2000). The use of both bacterial and fungal antagonists, naturally 

occurring in the soil, may assist in the overall management of root pathogens.   

 

1.9 Conclusion and Hypotheses 

 As climates change over the coming century, drought environments will exacerbate 

increased forest susceptibility to insect and disease damages. The likely expansion of bark 

beetles and root disease induce by changing climates will result in increased mortality across 

landscapes. This relationship complicates the ability to manage forests, prompting the need to 

understand the ultimate drivers of mortality agents. The assessment of subalpine fir mortality in 

Colorado will assist in understanding of how abiotic and biotic factors influence high elevation 

forests (Chapter 2). Identifying factors driving subalpine fir mortality in Colorado focused the 

objectives to 1) determine abiotic and biotic factors that directly and indirectly affect subalpine fir 

mortality, 2) determine factors associated with the presence of D. confusus or Armillaria spp., 

and 3) determine if climate variables were correlated to subalpine fir mortality or the presence of 

D. confusus and Armillaria spp. I hypothesized that sites with a higher density (i.e. basal area, 
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trees per hectare, or canopy closure) would experience greater mortality due to decreased 

growth rates from competition and that D. confusus or Armillaria spp. prevalence would be a 

function of tree stress (i.e. increased density), elevation, slope, and departures from normal 

precipitation (i.e. drought), and minimum and maximum temperatures. 

While the evaluation of soil fungal communities associated with Armillaria root disease 

will assist in providing novel management techniques for root pathogens (Chapter 3). My 

research objective was to identify the soil fungal communities associated with tree health status 

(healthy, moderate and dead) and each Armillaria species, A. solidipes and A. altimontana, both 

of which have differing ecological behaviors (virulent pathogen and non-pathogen, respectively) 

on western white pine. I hypothesize that soil microbial communities will likely differ in richness 

and diversity in comparison between the virulent A. solidipes and the non-pathogenic A. 

altimontana with the latter having a greater richness and diversity due to its beneficial qualities. 

While richness and diversity is likely to shift among tree health with a greater diversity and 

richness for soil associated with healthy trees due to root exudate production near the 

rhizosphere.  
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CHAPTER 2: SUBALPINE FIR DECLINE IN COLORADO IS ASSOCIATED WITH STAND 
DENSITY, WARMING CLIMATES AND AN INTERACTION AMONG FUNGAL DISEASES 

AND THE WESTERN BALSAM BARK BEETLE 
 
 
 

2.1 Preface 

Subalpine fir mortality complex has caused significant damage to high elevation forests within 

Colorado. For the past two decades the climate of spruce-fir forests have trended towards being 

warmer and drier, which likely has had a direct effect on subalpine fir mortality. I examined 

potential links among abiotic (i.e. deviations in temperature and precipitation) and biotic factors 

(Armillaria root disease [Armillaria spp.], Western balsam bark beetle [Dryocoetes confusus], 

and forest structure) with subalpine fir mortality in subalpine fir (Abies lasiocarpa) and 

Engelmann spruce (Picea engelmannii) dominated forests of Colorado. The objectives of this 

study were to determine: (1) Do site and stand characteristics influence subalpine fir mortality? 

(2) What factors are associated with the presence of Armillaria spp. and D. confusus? (3) Do 

warming temperatures and less precipitation influence subalpine fir mortality and/or the 

presence of biotic agents? My results suggested that the presence of biotic agents (D. 

confusus, Armillaria spp., and O. dryocoetidis) and stand density influenced subalpine fir 

mortality, while climatic factors had a direct influence on the presence of biotic agents, thereby 

only indirectly affecting mortality. In terms of the significance of climate, increasing maximum 

summer temperatures were found associated with the presence of Armillaria spp. While the 

climatic variables investigated in this study did not significantly influence D. confusus, stand 

density was associated with increasing prevalence of D. confusus. My results show that 

Armillaria spp. and D. confusus are significantly related to tree decline, but that several other 

factors can also be associated with mortality, suggesting a complex interaction of factors are 

likely involved.  To identify subalpine fir mortality as a decline disease, I determined that stand 

density was likely a predisposing factor, drought was the inciting factor, and D. confusus and 
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Armillaria spp. were contributing factors. Understanding factors involved in subalpine fir decline 

are important for management as this decline continues to threaten Colorado forests. 

 

2.2 Introduction 

High elevation forests in Colorado, roughly at 2,400 to 3,800 meters and primarily 

comprised of spruce and fir, provide benefits to water quantity and quality, outdoor recreation, 

wood products, and food and shelter for wildlife (CSFS, 2008). The spruce-fir forest type 

consists mainly of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) and Engelmann spruce (Picea 

engelmannii Parry ex. Engelm.). As the third largest forest type in public lands of Colorado, 

encompassing 1.86 million hectares (ha) (CSFS, 2019), these high elevation forests are 

particularly sensitive to drier and warmer climates because they occupy a particular niche in 

Colorado’s forest within a narrow climate range (Reich et al., 2016). 

Background mortality is described as the amount of mortality necessary to sustain 

existing stand dynamics, resulting from healthy amounts of pests in a stand (Manion, 2003). 

Background mortality of around 1% naturally occurs within stands, yet it is projected that 

doubling (2%) this mortality over a span of 20 to 30 years can result in a decrease in >50% of 

the age diversity and size of trees in a stand (van Mantgem et al., 2009). This background 

mortality of 18,600 ha over 30 years (1% in Colorado spruce-fir forests), is typically not 

concerning at a forest level, yet higher rates would prompt for further research into the cause of 

mortality. Mortality trends documented in annual aerial pest surveys have highlighted varying 

rates of subalpine fir mortality with an estimated total of 744,000 ha in Colorado from 2008 to 

2017. Estimated rates each year have ranged from 139,200 ha in 2008 to 20,200 ha in 2017 

(CSFS, 2008-2017). The high level of variation observed from aerial survey data is likely 

partially attributed to the spatially aggregated nature of the species across the landscape 

(Garbutt and Vallentgoed, 1992). From aerial surveys, it is estimated that clustered subalpine fir 

mortality has occurred throughout 40% of spruce-fir forests in Colorado since 2008.  A study 
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conducted in southern British Columbia found that subalpine fir mortality doubled from 16.7% to 

31.3% in 1996/7 and 2014, respectively (Maclauchlin, 2016). In the Front Range of Colorado, 

comparisons of overall mortality levels from 1982-2007 to 2008-2013 in the Arapaho-Roosevelt 

NF, found increases in subalpine fir mortality over the past 20 years (Smith et al., 2015). 

Climate plays a significant role in the structure and distribution of species on a 

landscape (Habeck, 1987). Spruce-fir forests in high elevation landscapes are restricted which 

is likely due to a lack of adaptation to high temperatures and low moisture content (Alexander, 

1987). Temperatures in north-facing spruce-fir forests tend to be colder and wetter in 

comparison to pine forests at similar elevations, which usually grow on south and east facing 

aspects (Graham and Jain, 2005). In more xeric environments, higher temperatures limit the 

growth potential for spruce-fir in favor of co-occurring pine species (Villalba et al., 1994). As 

climate conditions transition to warmer and drier, it has been proposed that in spruce-fir forests 

these conditions will be drivers of increased mortality (Reich et al., 2016; Villalba et al., 1994). 

Subalpine fir mortality has been linked to drought in Colorado, particularly early-season drought 

where the potential for mortality increases for a span of 11 years, while late-season drought 

increases mortality risk for two years (Bigler, 2007). Further, reduced radial growth due to 

elevated stand densities prior to any drought can often serve as a predisposing factor to 

mortality events (Bigler, 2007). Periods of drought can decrease growth rates, tree vigor, and 

increase susceptibility to insects and disease (Furniss and Carolin, 1977). Understanding how 

effects of climate interact with damaging biotic agents may provide insights into future of how 

subalpine fir mortality rates will evolve with future weather patterns and help in the develop of 

new management strategies. 

Biotic factors attributed to the subalpine fir mortality complex in Colorado include 

Dryocoetes confusus Swaine (Western balsam bark beetle), Armillaria root disease, and black 

stain fungi (Ophiostoma dryocoetidis (Kendrick & Molnar) De Hoog & Sheffer) (James and 

Goheen, 1981; McMillin, 2003; Molnar, 1965; Negron and Popp, 2009). A survey of 150 trees in 



 

21 

four national forests in Colorado (Grand Mesa, Rio Grande, San Isabel, and San Juan), found 

that the majority of subalpine fir mortality occurred in association with Armillaria root disease 

and bark beetles (James and Goheen, 1981). In separate studies, A. ostoyae (Worrall et al., 

2004), now identified as Armillaria solidipes Peck, Bull. Torrey Bot. Club (Burdsall and Volk, 

2008) and A. sinapina (Burns et al., 2016) have been identified on subalpine fir within Colorado 

forests, prompting the use of Armillaria spp. in the study. Smith et al. (2015), showed that D. 

confusus was the most significant mortality agent, as it was present in 20% of dead trees from 

2011-2013, and likewise Buxton and Maclauchlin (2014) showed that D. confusus contributed to 

25-53% subalpine fir mortality in each plot. Attacks by D. confusus typically occurs in small 

groups, thus making openings to release shade-tolerant seedlings and providing a scattered 

mortality structure throughout the landscape (Garbutt and Vallentgoed, 1992). Subalpine fir 

mortality is prevalent in most western states, and interestingly mortality agents differ from state 

to state. Additional biotic factors include Balsam wooly adelgid (Adelgis piceae Ratzeburg) (ID, 

MT, OR, WA), Heterobasidion occidentale Otrosina and Garbelotto (UT), wood borers (UT), and 

smaller bark beetles (UT) (USDA-FS 2012, 2013a, 2013b, 2015, 2016, 2017).  Comparisons of 

percent spruce-fir affected by subalpine fir mortality complex between all western states, from 

2008 to 2016, shows that Colorado has the greatest percent of mortality, with comparable 

mortality in Oregon and Wyoming, while all over states display far less mortality. The 

combination of contributing factors, including warming temperatures, long periods of prolonged 

drought, and their association with root disease and bark beetle invasion susceptibility has led 

to landscape-scale subalpine fir mortality events and suggests that this mortality, if driven by 

these factors, is a decline disease.  

Identifying factors driving subalpine fir mortality in Colorado focused the objectives to 1) 

determine abiotic and biotic factors that directly and indirectly affect subalpine fir mortality, 2) 

determine factors associated with the presence of D. confusus or Armillaria spp., and 3) 

determine if climate variables were correlated to subalpine fir mortality or the presence of D. 
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confusus and Armillaria spp. I hypothesized that sites with a higher density (i.e. basal area, 

trees per hectare, or canopy closure) would experience greater mortality due to decreased 

growth rates from competition and that D. confusus or Armillaria spp. prevalence would be a 

function of tree stress (i.e. increased density), elevation, slope, and departures from normal 

precipitation (i.e. drought), and minimum and maximum temperatures. Results from this study 

will be discussed in the context of identifying subalpine fir mortality in Colorado as a decline 

disease. 

 

2.3 Methods  

2.3.1 Study Areas  

Study areas were identified using aerial survey and vegetation data for Colorado. GIS 

layers of the Colorado aerial pest survey maps conducted by Region 2 Forest Health Protection 

of the USDA Forest Service from 1994 through 2012 were obtained (USDA-FS, 2012). Using 

ArcGIS (ESRI, 2011), georeferenced data were displayed as distribution maps in which visible 

patches associated with subalpine fir mortality were delineated. To determine cumulative area 

of subalpine fir mortality, years ranging from 1994 to 2012 were joined to establish a range of 

current and past mortality. Presence of spruce-fir forests in Colorado were established using the 

Colorado Division of Wildlife vegetation types in accordance to Reich et al. (2016). Spruce-fir 

vegetation layers were merged with subalpine fir mortality to establish areas of interest. 

All roads within designated state lands and national forests that occurred within the 

spruce-fir forest cover type were suitable for surveys. Sampling was conducted in two phases, 

with the first set of plots established to form a statewide characterization survey and the second 

set used to perform a stand health monitoring survey. All plots were placed along roads located 

within designated state land (Colorado State Forest State Park, CSFSP) and eight national 

forests (Grand Mesa, Pike, Rio Grande, Roosevelt, Routt, San Juan, Uncompahgre, and White 

River).  
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2.3.1.1 Statewide characterization survey 

The statewide characterization survey was conducted in 2013 to assess the overall 

health of subalpine fir in Colorado on a large scale and to assist in determining plot locations for 

the detailed stand health monitoring survey (Figure 2-1). Between May 2013 and September 

2013, 1142 plots were established in a subset of random areas of spruce-fir type within the eight 

national forests, and the Colorado State Forest State Park. The 1,142 plots consisted of fixed 

area plots [16 m (50 ft.) deep and 30 m (100 ft.) wide] measured on each side of the road every 

0.8 km (0.5 mile). Data recorded included location, slope position, aspect, number of crown 

layers, ocular estimates of percent mortality of each species, and insects and diseases 

observed within dead or damaged trees.  

2.3.1.2 Stand health monitoring plots 

The stand health monitoring survey was conducted in 2014 to provide specific 

observations of coincident forest structure, species composition, topographic variables, and 

climatic attributes that could be correlated with subalpine fir mortality and determine incidence 

levels of D. confusus and Armillaria spp. in subalpine fir stands (Figure 2-1). Potential stand 

health monitoring plot locations were identified following the statewide characterization survey in 

2013. From the statewide characterization plots, 57 locations were randomly chosen within 

stratified spruce-fir forested areas both with and without detected mortality using ArcGIS.  

At each location, three independent stand health plots were established. The plots were 

spaced 61 m (200ft) apart along the randomly selected side of the road and 61 m (200 ft) into 

the forest. Data collected at each plot included location, forest type, slope position, aspect, and 

percent canopy closure of overstory trees using a spherical densitometer. To measure overstory 

trees, a variable radius plot was established using a metric BAF of 4.592 (20 English BAF) with 

basal area and trees per hectare values derived from each plot. Individual tree measurements 

consisted of live or dead status, diameter at breast height (DBH), height, crown base height, 
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presence of D. confusus and Armillaria spp. (mortality agents), and any other relevant insects or 

diseases. 

The presence of exit holes and egg/larval galleries associated with dieback on 

susceptible hosts were used to indicate D. confusus presence in a tree, whereas mycelial fans 

at the base and roots of the tree, and the presence of root rot by sounding the tree with a 

hammer were used to determine if Armillaria spp. was present. The occurrence of O. 

dryocoetidis was identified by removing bark, at beetle exit holes, to witness black staining on 

the phloem. Another bark beetle, Dendroctonus rufipennis (spruce beetle), an associated beetle 

affecting trees in the spruce-fir forest type was identified by egg/larval galleries under the bark. 

The galleries of D. confusus had one centralized mating chamber with numerous egg galleries 

(polygamous) branching off, while D. rufipennis galleries consisted of one egg gallery 

(monogamous).  

Four regeneration 13.5 m2 (1/300th acre) circular plots were established in each cardinal 

direction (N, S, E, W) eight meters from plot center. On these plots, the number of seedlings 

(DBH < 2.5 cm) and saplings (DBH 2.5 cm – 10 cm) for each species were recorded.   

2.3.2 PRISM climate data 

  Climate data for each plot was obtained from the Oregon State University PRISM 

Climate Group using the standard PRISM 4 km resolution (PRISM Climate Group, 2004). 

Maximum summer temperatures were collected for July through September from 1985-2014, 

and values were averaged over the three-month period. Minimum winter temperatures were 

collected for November through April from the winters of 1984/85-2013/14, averaging over the 

six-month period. A longer, six-month, period was selected for the winter months to better 

estimate the prolonged colder temperatures typically found at higher elevation landscapes. 

Cumulative annual precipitation data were collected for 30 years ranging from 1985-2014. To 

represent climate change in these metrics at each site, the five years prior to sampling were 
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averaged, then subtracted from the 30-year average. This was done to identify recent deviations 

from historic averages that might be impacting susceptibility to disturbance agents.  

2.3.3 Data Analysis 

For the statewide characterization plots, overstory mortality was used to determine 

overall plot mortality. Percent of mortality for statewide characterization plots was estimated for 

all plots and averaged for each national forest and state land to identify overall mortality from 

surveyed locations.   

Percent of mortality for the 2013 aerial surveys was estimated by taking the sum of the hectares 

of subalpine fir mortality complex and spruce beetle within each national forest and the state of 

Colorado. Mortality levels for each national forest was calculated by providing a buffer of 500 m, 

1000m, 1500 m, and 2000 m from each characterization plot location to directly compare 

mortality results. The accumulation of Colorado spruce-fir mortality was clipped using the state 

boundaries. Spruce-fir vegetation was compiled using land cover raster files to determine the 

extent of spruce-fir in each national forest and the entire state of Colorado. For statewide 

characteristics plots, overall percent mortality was calculated using overstory values to emulate 

aerial pest survey mortality polygons. Average plot mortality consists of plot ocular overstory 

mortality averaged over each national forest. Comparisons between the statewide 

characterization plots and aerial surveys were considered at a forest level and a statewide level. 

Using the RStudio (RStudio, 2015) interface to R (R Core Team, 2017), a logistic 

regression was performed to determine correlation between site and forest structure attributes 

to the three response variables: presence of subalpine fir (SAF) mortality, presence of D. 

confusus and/or Armillaria spp. Predictor variables analyzed included biotic agents, site 

characteristics, forest structure and composition, and climatic measurements. A generalized 

linear model (glm) was used to correlate the three response variables to 19 predictor variables 

(Table 2-3) for a full model that included interactions between Δ minimum winter temperature, Δ 

maximum summer temperature, and Δ annual precipitation. The full model was reduced through 
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backwards stepwise analysis with the Akaike information criterion (AIC) using the MuMin 

package (Barton, 2016). This process was conducted to identify the set of predictor variables 

that minimized the predictive models AIC value. The Hosmer-Lemeshow Lack of Fit test was 

used to confirm that correct predictors were selected for each model.  

 

2.4 Results  

2.4.1.1 Statewide characterization survey data  

 The statewide characterization plots revealed intermittent spruce-fir mortality throughout 

the surveyed locations at an estimated level of 4.7% across the range of spruce-fir forests in 

Colorado (Table 2-1). Mortality occurred on 216 (19%) out of the 1142 totals plots with no 

mortality occurring on 926 plots (81%). For each national forest, the percent of plots affected by 

mortality ranged from 10% in Pike NF to 41% in Routt NF.  

  

When compared with the Colorado aerial pest survey mortality levels, the highly 

concentrated statewide characterization surveys typically provide a lower estimated mortality 

level across each national forest. These lower estimates were consistent for all national forests 

other than Routt NF, which was almost 7% higher than the aerial survey (Table 2-1). Spruce-fir 

Table 2-1: Estimates of spruce-fir mortality for statewide characterization plots compared to Colorado 
aerial pest surveys.  

 2013 Statewide 
Characterization 

Plots 
2013 Colorado Aerial Pest Survey 

 Average plot 
mortality 

500 
m 

1000 m 1500 m 2000 m Total 
NF 

Grand Mesa National Forest 4.1% 14% 14% 12% 11% 16.4% 
Pike National Forest 0.8% 13% 10% 10% 10% 3.2% 
Rio Grande National Forest 4.9% 26% 70% 29% 32% 27.5% 
Roosevelt National Forest 6.2% 3% 4% 4% 4% 8.3% 
Routt National Forest 10.8% 8% 6% 6% 6% 4.1% 
San Juan National Forest 2.6% 1% 2% 2% 2% 14.3% 
Uncompahgre National 
Forest 

1.6% 15% 14% 11% 8% 
5.9% 

White River National Forest 6.2% 10% 10% 8% 7% 7.4% 

Average spruce-fir mortality 4.7% 11% 16% 10% 10% 10.9% 

Total NF spruce-fir mortality      9.5% 
Statewide spruce-fir forests      8.6% 
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mortality for the aerial survey was estimated at 9.5 and 8.6% for Colorado national forests and 

statewide spruce-fir extent, respectively.  

2.4.1.2 Stand health monitoring plot data 

Average incidence of mortality (dead trees/total # of trees) for subalpine fir and 

Engelmann spruce was 37% and 15% throughout all plots. This includes plots with a range from 

0% to 100% mortality for both species. A total of 50 (33%) out of the 153 stand health 

monitoring plots had the occurrence of subalpine fir mortality. Out of the 50 plots, 42 plots (84%) 

had trees that were infested with D. confusus, whereas 22 plots (44%) had trees infected with 

Armillaria spp. All 22 plots with trees infected with Armillaria spp. also had trees infested with D. 

confusus. Eight of the 103 plots without subalpine fir mortality had trees infested with D. 

confusus and infected with Armillaria spp. This means that 95 of the 153 total plots did not have 

any mortality or presence of the two biotic agents.  

2.4.1.3 Stand health monitoring tree level data 

A total of 967 trees were measured on all 153 plots, including subalpine fir, Engelmann 

spruce, white fir (Abies concolor (Gord. & Glend.) Lindl.), lodgepole pine (Pinus contorta Dougl. 

Ex. Loudon), and aspen (Populus tremuloides Michx.). Seven hundred sixty-nine out of the 967 

trees (80%) measured were either subalpine fir (n = 296) or Engelmann spruce (n = 473). For 

subalpine fir, 131 trees (44%) were observed to be dead, ranging from 19% to 48% on 

individual national forests, with exceptions occurring within the Pike NF with 0% and 

Uncompahgre NF at 100% mortality. On average, 20% of the Engelmann spruce on each 

national forest were dead, with the majority occurring on Roosevelt (66%) and Routt NF (49%), 

while no spruce mortality was identified in Pike, Rio Grande, and White River NF. 

Across national forests, subalpine fir mortality occurred in all diameter classes (Figure 2-

2). Furthermore, of the 131 dead subalpine fir, 56 trees (43%) were only infested with D. 

confusus, 9 trees (7%) were only infected with Armillaria spp., while 24 trees (18%) had both 

biotic agents (Figure 2-3). Engelmann spruce mortality occurred on all diameter classes greater 
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than 20 cm with no mortality occurring in smaller diameter trees (Figure 3-2). Neither tree 

diameter nor crown ratio showed a discernable relationship with the presence of D. confusus or 

Armillaria spp. 

2.4.1.4 Stand heath monitoring plot level climatic data 

 A diverse range of average temperatures and annual precipitation levels occurred 

throughout all national forests. The highest maximum summer temperatures and minimum 

winter temperatures were recorded in the Uncompahgre NF, with averages of 25.6 and -6.7 °C, 

respectively (Table 2-2). Additionally, the least amount of annual precipitation also occurred 

within the Uncompahgre NF with 40 cm recorded on average from 1985-2014 (Table 2-2). 

Climate departures [Δ minimum winter temperatures (°C), Δ maximum summer 

temperatures (°C), and Δ annual precipitation (cm)] varied across and within each national 

forest. All but one plot showed an increase in maximum summer temperatures, including 

increased average departures for each national forest ranging from 0.2 – 0.5° C, with the 

greatest increases occurring in Routt NF (Table 2-2). All plots recorded increased minimum 

winter temperatures throughout the entirety of the study. The average 5-year departures for 

each national forest ranged from 0.5 – 1.6 °C, with the largest increases in Rio Grande and San 

Juan NF (Table 2-2). Precipitation deviations fluctuated in comparison to the temperature values 

with the range of 5-year precipitation departures from -17.5 – 8.7 cm. The largest decrease in 

precipitation occurred within Rio Grande NF, while Grand Mesa, San Juan, Uncompahgre, and 

White River NF also displayed a decreased amount of precipitation from the 30-year norm 

(Table 2-2).  Of the 153 plots, 38 (25%) had an increase in precipitation, while 115 (75%) 

decreased. Furthermore, of the 153 plots, 78 (51%) had at least a 5 cm decrease in 

precipitation from the 30-year average.  
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Table 2-2: Climatic factors on stand health monitoring plots averaged within each national forest. The 
30-year norm data consist of temperatures from 1984/1985 – 2014, while annual precipitation is from 
1985 – 2014. To calculate for 5-year departures the average temperatures and annual precipitation 
from 2009-2014 were subtracted from 30-year climatic norms.  

 30-year norms 5-year departure 

 

Max 
Summer 
Temps 

(°C) 

Min 
Winter 
Temps 

(°C) 

Annual 
Precip. 

(cm) 

Max 
Summer 
Temps 

(°C) 

Min 
Summer 
Temps 

(°C) 

Annual 
Precip. 

(cm) 

Grand Mesa NF 17.1 -13.4 106.7 0.4 1.1 -6.2 
Pike NF 16.7 -12.1 64.2 0.4 1.1 5.0 
Rio Grande NF 17.2 -11.3 93.3 0.4 1.6 -17.5 
Routt NF 17.8 -12.9 76.0 0.5 0.5 6.9 
Roosevelt NF 19.4 -10.4 59.3 0.3 0.7 8.7 
San Juan NF 20.4 -9.8 82.1 0.3 1.5 -7.2 
Uncompahgre NF 25.6 -6.7 40.0 0.4 0.6 -2.3 
White River NF 17.1 -11.2 95.8 0.2 1.1 -3.5 

 

2.4.2 Logistic regression 

2.4.2.1 Presence of subalpine fir mortality 

The use of interactions between climatic factors in the logistic regression resulted in a 

lack of significance for site, stand, and climatic variables. This lack of significance prompted the 

removal of the interactions toward analyzing for each climatic factor individually. Climatic factors 

were not shown to influence the presence of subalpine fir mortality. Consequently, site and 

stand characteristics and biotic agents were correlated to the presence of subalpine fir mortality 

(Table 2-3).  

In terms of abiotic influences, although not significant, the cosine of aspect showed a 

positive correlation with the presence of subalpine fir mortality (Table 2-3), indicating that more 

northerly sheltered aspects are indicative of mortality events. In terms of forest structure, 

increased dominance of subalpine fir on a plot was correlated with greater likelihood of 

subalpine fir mortality. Additionally, a negative relationship with Engelmann spruce sapling was 

found, indicating that regeneration conditions supporting spruce were less likely in association 

with subalpine fir mortality. Both the D. confusus and O. dryocoetidis biotic agents were 

positively correlated to subalpine fir mortality, while not significant the presence of Armillaria 

spp. was negatively correlated to the presence of subalpine fir mortality (Table 2-3).  
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Table 2-3: Significant predictor variables for each response variable selected using Akaike information 
criterion through backwards stepwise logistic regression. These models were reduced from the full 
model using all 19 predictor variables from the 2014 stand health monitoring plots (n=153). 

 

Presence of 
subalpine fir 

mortality 

Presence of D. 

confusus 
Presence of 

Armillaria spp. 

  Coefficient p-value Coefficient p-value Coefficient p-value 

SAF mortality presence  -  - 7.536 <0.0001* - - 

D. confusus presence 4.964 0.0003*  -  - 2.060 0.0289* 

D. rufipennis presence - - -5.190 0.0028* - - 

Armillaria spp. presence -1.997 0.0956 3.401 0.0006* - - 

O. dryocoetidis presence 2.555 0.0196* - - 1.911 0.0506 

% SAF 0.069 <0.0001*  -0.042  0.0809 - - 

Elevation (m) - -  0.004  0.0581 - - 

Cosine aspect (north vs south) 1.052 0.0742  -  - - - 

Sine aspect (west vs east) - - - - - - 

∆ min. winter temperature (°C) - - -2.678 0.0783 - - 

∆ max. summer temperature 
(°C) 

- - - - 5.422 0.0136* 

Δ annual precipitation (cm) - - - - - - 

SAF sapling stems - - - - - - 

SAF seedling stems - - - - - - 

ES sapling stems -0.008 0.0227* - - -0.003 0.1941 

ES seedling stems  -  - -0.004 0.0109* - - 

Overall basal area (m2 ha-1)  -  - 0.072 0.0038* - - 

% slope  0.041  0.1410  -0.048  0.1064 0.038 0.0825 

Overall trees per hectare  0.004  0.1143  -  -  -0.002 0.1368 

Hosmer-Lemeshow Lack of 
Fit: 

 0.9711  0.9213  0.7204 

* Significance was based on a p-value < 0.05 
 

 

2.4.2.2 Presence of D. confusus 

Inclusion of O. dryocoetidis in the D. confusus presence model resulted in a Hosmer-

Lemeshow Lack of Fit value of <0.0001, prompting the removal of O. dryocoetidis as a predictor 

variable. The removal of O. dryocoetidis increases the Lack of Fit value to 0.9213, indicating 

that the high correlation between O. dryocoetidis and D. confusus diminishes the efficacy of the 

model. The change in minimum winter temperatures had a negative correlation to the presence 
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of D. confusus, demonstrating that areas with warmer minimum winter temperature departures 

saw a lower presence of D. confusus.  

In terms of forest attributes, both increases in basal area and the presence of SAF 

mortality were correlated with increased likelihood of D. confusus being present on a plot (Table 

2-2). Conversely, as the density of Engelmann spruce seedlings increased on a plot there was a 

reduced probability of finding D. confusus. While no abiotic variables were significant at the α = 

0.05 level, a weak correlation was found with elevation that indicated greater probability of 

finding D. confusus at higher elevations. Conflicting correlations were found for the biotic agents 

D. rufipennis and Armillaria spp. The presence of Armillaria spp. increased the probability of 

finding D. confusus on a site, while presence of D. rufipennis reduced the likelihood of finding D. 

confusus (Table 2-3). 

2.4.2.3 Presence of Armillaria spp. 

For abiotic factors, maximum summer temperatures were positively correlated to the 

presence of Armillaria spp. (Table 2-3). Although weaker than the α = 0.05 level, increases in a 

site’s percent slope resulted in an increased probability of finding Armillaria spp. present. Similar 

to the other models, increasing density of Engelmann spruce seedlings on a plot reduced the 

probability of finding Armillaria spp. The biotic agents D. confusus and O. dryocoetidis had 

positive correlations to the presence of Armillaria spp., suggesting that as other biotic agents 

increased, the probability of Armillaria spp. presence subsequently increased (Table 2-3).  

 

 2.5 Discussion   

2.5.1 Significant predictors   

The stand health monitoring plots showed that the most relevant factors to subalpine fir 

mortality are stand density and the presence of D. confusus. I identified that stand density, 

elevation, and Armillaria spp. are the greatest influences of the presence of D. confusus, while 

the largest influences on the presence of Armillaria spp. are warmer maximum summer 
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temperatures and increased slope percentage. My data indicated that both D. confusus and 

Armillaria spp. subsequently effect subalpine fir mortality, therefore, I can conclude that an 

increase in summer temperatures and higher stand densities indirectly influence subalpine fir 

mortality in Colorado’s national forests. Therefore, higher density and increases in summer 

temperatures may induce stress to trees increasing the likelihood of Armillaria spp. and D. 

confusus, subsequently leading to subalpine fir mortality. 

2.5.2 Spruce-fir mortality comparisons 

At a statewide level, my estimates of subalpine fir mortality of 4.7% showed a closer 

resemblance to aerial pest surveys from 2013 that estimated 8.7% of spruce-fir forests showed 

elevated mortality levels. However, when examining estimated mortality levels within an 

individual forest, correlations were less congruent at any spatial scale. The estimates were on 

average 6% less than the coincident aerial survey data. The comparison of mortality within the 

roadside surveys and aerial pest surveys is best described at a statewide level rather than an 

individual national forest, watershed, or stand level. These differences observed between the 

aerial survey data and the characterization plots could be due to a combination of over 

estimation of subalpine fir mortality in the aerial surveys and the highly concentrated nature of 

the characterization plots. According to Coleman et al. (2018), aerial surveys conducted 

throughout the Northeastern, Southwestern, and Pacific United States identified that bark 

beetles were the most prolific cause of damage, yet the error rate was large due to multiple 

species of bark beetles associated with different tree species. The ability to accurately identify 

mortality agents is contingent on successfully recognizing tree species during aerial surveys 

(Coleman et al., 2018), but this can be difficult to accomplish across complex mountainous 

terrain. Most bark beetles are host specific, therefore the identification of host species can 

distinguish between numerous bark beetle infestations. Mortality occurring from D. confusus 

and D. rufipennis may be difficult to distinguish in a mixed stand as a result of D. confusus 

infesting both A. lasiocarpa and P. engelmannii within spruce-fir forests. In the statewide 
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characterization plots, I determined overall mortality of spruce-fir rather than distinguishing 

between A. lasiocarpa and P. engelmannii. This should have provided a more balanced 

comparison between my statewide characterization plots and aerial pest surveys, which likely 

encompassed numerous bark beetles within mortality polygons. Additionally, the differences in 

direct comparison between the geographically accessible statewide characterization plots and 

the aerial survey mortality locations is partially due to inherent error in both sampling 

techniques. Together the clustered nature of the characterization plots, limited my ability to 

reliably attribute the mortality agents, while the potential location errors associated with the 

aerial survey, made it difficult to reliably compare the datasets at a scale less than the entire 

state. Direct comparisons between aerial surveys and ground assessments can be made by 

conducting a more thorough and dispersed ground survey, which could establish greater 

sample area as compared to the expansive aerial surveys, thus eliminating accessibility 

limitations. Another comparison is to have targeted ground surveys for the aerial survey 

technician to focus on while identifying damage throughout the entire forest.  

2.5.3 Abiotic and biotic factors influencing subalpine fir decline 

Previous research suggests climate is among one of the strongest influences on 

subalpine fir mortality (Bigler, 2007; Reich et al., 2016). While decreasing levels of precipitation 

is detrimental to all plants, subalpine fir forests have been shown to be more sensitive to 

drought conditions, likely because they typically occur in cool, wet environments (Reich et al., 

2016). Reich et al. (2016) suggested that severely warmer and drier conditions alone where 

enough to cause subalpine fir mortality. This corresponds within the Uncompahgre NF stand 

health monitoring plots. The temperature and precipitation data highlighted this area as the 

warmest and driest and 100% of subalpine fir were dead.  Interestingly, my model suggested 

that the presence of biotic agents (D. confusus, Armillaria spp., and O. dryocoetidis) and stand 

density influenced subalpine fir mortality, while climatic factors had a greater direct influence on 

the presence of biotic agents, thereby only indirectly affecting mortality. These results indicate 
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that subalpine fir mortality is likely driven by biotic factors, with only an indirect linkage to 

climate, suggesting this mortality represents a decline disease.   

In many systems, the risk for beetle expansion from endemic to epidemic levels 

increases as drought occurs (Bentz et al., 2010; Berryman, 1982). Yet, my data showed that 

precipitation did not have a significant effect to the presence of D. confusus. Although climatic 

factors promoting drought, were not shown to influence D. confusus, factors such as other biotic 

agents and increased stand density (basal area) were significantly correlated to beetle presence 

within plots. Because of the highly clustered nature of subalpine fir mortality, the lack of total 

hectares measured throughout stand health monitoring plots may have influenced the ability to 

identify if additional climatic variables affected the presence of D. confusus. Additionally, the 

removal of O. dryocoetidis from my reduced model resulted in a greater p-value for the Hosmer-

Lemeshow Lack of Fit test. This could be due to the direct relationship between D. confusus 

vectoring O. dryocoetidis to infected trees (Molnar, 1965; Garbutt and Vallentgoed, 1992). 

My data suggests that site factors promoting overall tree stress likely drive the increase 

in presence of D. confusus. This was observed as the probability of finding D. confusus steadily 

rose with increasing basal area. In the data, plots with subalpine fir mortality had on average a 

50% greater average basal area (38.4 m-2 ha) compared to plots lacking mortality (25.7 m-2 ha). 

Stand density (i.e. basal area) may be an indicator of overall tree vigor within the stand and 

could affect a tree’s ability to withstand invasion by biotic agents. As density increases, growing 

space decreases, eventually reaching a holding capacity. This threshold can induce competition 

between trees for resources, subsequently increasing stress (Hyink and Zedaker, 1987). 

According to McMillin et al. (2003), D. confusus has the greatest impact in stands with higher 

density and areas with larger diameter trees. The increased competition can cause decreased 

vigor due to a lack of water, nutrients, and space. The added stress due to bark beetles on all 

stands increases insect populations, resulting in widespread mortality (Bentz et al., 2010). The 

risk of susceptibility to D. confusus infestation results from a relationship among diameter, age, 
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and radial growth. In British Columbia, beetles favored older, larger subalpine fir with thicker 

bark to provide more protection to their larvae (Bleiker et al., 2003). However, I did not observe 

an influence of diameter on infested trees. Instead, my study detected an average of 12.7% 

mortality for trees between 5 and 30 cm DBH, suggesting that increased stress related to stand-

level density may play a greater role in infestation than tree diameter or age. 

My results concur with James and Goheen (1981), which showed there is a direct 

relationship between biotic agents, D. confusus and Armillaria spp., in subalpine fir forests. 

Rather than a positive relationship, my study found that subalpine fir mortality was significantly 

associated with an increased presence of D. confusus, but with a decrease in the presence 

Armillaria spp. However, when Armillaria spp. was present there was greater likelihood of D. 

confusus being present on a site. Furthermore, D. confusus was found on 50 plots (33%), while 

Armillaria spp. was only found on 30 (20%), which could have been caused by sampling 

limitations in the study. The comparison to my study and James and Goheen showed that we 

underestimated the presence of Armillaria spp. while they may have represented a more 

accurate level of Armillaria within dead trees. The ability to more precisely diagnose Armillaria 

on healthy and dead trees would have most likely enhanced the influence of Armillaria to the 

presence of subalpine fir mortality.   

Increasing summer temperatures was correlated to an increased presence of Armillaria 

spp. The relationship between Armillaria spp., their hosts and drought have been well 

documented and summarized (Wargo and Harrington, 1991). However, the correlation between 

presence of Armillaria spp. and warming temperatures is less understood. Nechleba (1927) 

found that the pathogenic response of Armillaria spp. increased on true fir species (Abies spp.) 

during dry seasons, while during wet seasons Armillaria spp. persisted as a saprophyte. The 

impact of drier climates affects the defense mechanisms of trees, causing increased infection in 

dry sites (Morrison, 1981). Stress induced by drought along with increased temperatures has 

influenced Armillaria spp. in fir forests causing the occurrence of mortality (Falck, 1918, 1923; 
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Muller, 1921; Nechleba, 1927 in Thomas, 1934). Future drier and warmer conditions will most 

likely continue as climate change persists in forests, allowing pests to become more prolific 

(Allen et al. 2010). This in turn could further increase the likelihood that Armillaria spp. will 

become pathogenic rather than saprophytic on sites.  

2.5.4 Categorization of decline disease designation 

Decline diseases are characterized by a slow progression of mortality, whereas, dieback 

can be seen after the effects of a solitary event (i.e. drought, defoliation, or disease outbreaks). 

These dieback events cause mortality within a stand but may convalesce as the outbreak 

subsides (Mueller-Dombois, 1992). Decline diseases occur when mortality is the result of three 

features: predisposing, inciting, and contributing factors. Predisposing factors are the result of 

long-term effects or permanent stress on the landscape, which increases the risk of mortality. 

Inciting factors are short-term effects that create additive stress, making trees more susceptible 

to secondary biotic contributing factors. Contributing factors are generally pests or pathogens 

that preferentially attack stressed or weakened trees within the stand. Although the presence of 

a predisposing, inciting, and contributing factors are needed for classification as a decline 

disease, the contributing factor may be what ultimately kills the tree (Manion, 1981; Houston, 

1992). The main contributors to subalpine fir decline are stand density and the presence of D. 

confusus, which are likely exacerbated by the presence of Armillaria spp. and drought 

conditions brought on by increased summer temperatures. While climatic factors are thought to 

be a direct influence on subalpine fir mortality (Reich et al. 2016), my data suggests that climate 

may have a greater effect on biotic factors, especially Armillaria spp., which may indirectly 

influence subalpine fir decline in Colorado. The increase in maximum summer temperatures 

increases the presence of Armillaria spp., leading to additional tree stress and subsequently 

increasing the presence of D. confusus.  
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2.5.5 Limitations of study 

Although an elaborate field was created study over two years, plots were not established 

throughout the entirety of each national forest, due to time constraints to complete all surveys 

within the summer and many spruce-fir forests are located within designated wilderness areas 

and are thus not accessible for roadside surveys. This limitation affected my ability to perform 

statewide characterization plots in 2013, subsequently reducing the area available study in the 

following year’s stand health monitoring plots. Additionally, while performing stand health 

monitoring plots, I encountered difficulty in identifying the presence of Armillaria spp. on live 

trees. Colorado has reduced moisture levels compared to other regions where Armillaria spp. 

are more prevalent, such as Oregon and Washington. These reduced moisture levels may limit 

the spread of its mycelial network (Cruickshank et al., 1997). Further, the reduced prevalence 

may be due to my survey design whereby a positive identification of Armillaria spp. occurred 

when a mycelial fan was observed. Mycelia fans are produced during an advanced infection, yet 

rhizomorph formation could have persisted without symptoms progressing aboveground (Greig, 

Gregory, and Strouts, 1991; Morrison, 1981). Without observing roots and rhizomorphs, the 

study likely underestimated the amount of Armillaria infection. In areas of the Nelson forest 

region in British Columbia, two-thirds of sampled plots that appeared disease-free were infected 

belowground by Armillaria spp. (Morrison, 1918). Though not completed in this study, utilizing 

rhizomorph collections and the presence of resinosis along the lower bole, as field indicators 

would have enhanced my ability to identify Armillaria spp. on more trees.  

  

2.6 Conclusion 

The elevated levels of subalpine fir mortality indicated that the combination of abiotic and 

biotic factors, including climate, stand characteristics, and insects and disease have sanitized 

maladapted trees within the stand. As climate models project changes to warmer and drier high 

elevation forests, areas affected by subalpine fir decline will inevitably increase due to an 
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increased presence of biotic factors. Managing forests, via thinning to increase vigor, to 

minimize predisposing and inciting factors may help reduce the risk of each contributing factor. 

This will assist to maintain mortality levels closer to background rates and potentially reduce the 

spread of subalpine fir decline within spruce-fir forests. Learning from other insects and 

diseases will provide insight into proper management techniques and ways to mitigate mortality 

agent’s populations. Understanding how the host and pathogen life cycles of subalpine fir, D. 

confusus, and Armillaria spp. will respond to climatic changes toward reduced precipitation and 

increased temperature will allow forest managers to prepare for heightened levels of biotic 

agents prior to epidemic populations in the future.   



 

39 

 

 

Figure 2-1: Map of all plot locations within eight national forests and state land (dashed with light grey) in Colorado (CSFSP = Colorado State Forest State Park, 
GMNF = Grand Mesa, PKNF = Pike, RGNF = Rio Grande, RONF = Routt, RVNF = Roosevelt, SJNF = San Juan, UNNF = Uncompahgre, & WRNF = White River). 
Six hundred and eighty-one characterization plots (red circles) were established in 2013 along forest service roads following areas identified as spruce-fir forest 
type (light green). One hundred and fifty-three stand health monitoring plots stratified by presence of SAF mortality were established in 2014 to determine 
presence of mortality agents and other stand characteristics that may influence subalpine fir mortality in the Rocky Mountains of Colorado.  
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Figure 2-2: Mortality of subalpine fir (dark grey) and Engelmann spruce (light grey) by 5 cm diameter class. 

Bars represent percent tree mortality from 2014 stand health monitoring plots (n=153) located across eight 

national forests in Colorado. 

 

Figure 2-3: A total of 296 subalpine fir in the 2014 stand health monitoring plots were assessed for health 

status and 131 (44%) identified as dead. Mortality agents were identified on dead subalpine fir; Presence of 

Dryocoetes confusus was determined by larval and egg galleries, while mycelial fans were used to 

determine presence of Armillaria s
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CHAPTER 3: CHANGES IN SOIL FUNGAL COMMUNITIES ASSOCIATED WITH 
ARMILLARIA ROOT DISEASE ON WESTERN WHITE PINE (PINUS MONTICOLA) 

 
 
 

3.1 Preface 

 In forests, soil interactions among Armillaria species, fungal communities, and roots may 

influence tree growth and survival. Two fungal species, A. solidipes (highly virulent) and A. 

altimontana (less virulent), frequently co-occur in forests of inland northwestern United States. 

Understanding fungal communities associated with each Armillaria species may provide novel 

insights for managing Armillaria root disease. Aims of this study were to identify fungal microbes 

and their community structure in association with A. altimontana and A. solidipes infected 

western white pine (Pinus monticola) under different health statuses. Results of this field study 

revealed no significant changes in fungal communities associated with the two Armillaria spp., 

yet slight changes occurred between moderate and dead trees. Although not significant, higher 

fungal diversity was associated with dead-standing trees and A. solidipes. When examining 

operational taxonomic units (OTUs) within communities, there was an abundance of saprophytic 

Mortierella and numerous ectomycorrhizal fungi associated with all soils. We also found higher 

levels of Hypocreaceae (Trichoderma) species associated with healthy trees and A. 

altimontana. These organisms are known to be important in biocontrol against pathogens in 

disease-suppressive soils. Additionally, pH is the most significant soils characteristics, as it 

influences soil carbon, nitrogen, and organic matter. Research suggests that novel approaches 

could be developed for managing Armillaria root disease by fostering soil conditions to favor 

fungal communities that suppress Armillaria root disease. 
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3.2 Introduction  

3.2.1 Background of Armillaria in North America 

Armillaria spp. are native fungal root pathogens that cause prolific damage to coniferous 

forests of North America. Currently, ten North American Biological Species (NABS) have been 

identified, through molecular tools and somatic pairing, occurring on a broad range of hosts 

throughout the United States (Guillaumin et al., 1991; Kim et al., 2010). Although mostly known 

as pathogens, Armillaria can persist as saprophytes, exhibiting facultative necrotrophic 

characteristics, as they kill trees and consume dead tissue for nutrition (Baumgartner et al., 

2011; Kile et al., 1991). The ability to thrive on live and dead tissue enables Armillaria to spread 

in soil acting as a primary pathogen, impacting tree health, and decomposer increasing soil 

organic matter (Baumgartner et al., 2011). Once established within a stand, expansion occurs 

via a vegetative growth of rhizomorphs under the soil (Redfern and Filip, 1991). Growth can 

occur as root-to-root contact or actively within the soil. Spread can reach up to 1.5 m/year 

depending on environmental conditions (Ferguson et al., 2003; Redfern and Filip, 1991). Weak 

pathogens tend to disperse throughout the forest to expand their ability to find nutrients, while 

pathogenic species spread via root contacts of susceptible hosts, causing infections and 

mortality (Redfern and Filip, 1991).  

Management strategies for Armillaria consist of reducing the inoculum load by means of 

root excavation or soil fumigants, i.e. methyl bromide & carbon disulphide (Hagel and Shaw, 

1991). Yet, the feasibility to use methyl bromide may be limited by a potential ban in the United 

States (Baumgartner et al., 2011). Forest management treatments such as partial cutting are 

commonly utilized to increase growing space subsequently increasing tree vigor and decreasing 

susceptibility to most disturbing agents, however it may exacerbate Armillaria infection due to 

added stress form soil compaction and damage to residual trees (Kile et al., 1991; Wargo and 

Harrington, 1991; Williams et al., 1986). Therefore, clearcutting in disease centers may be a 

better option to reduce the potential for inoculum to build up on susceptible hosts (Kile et al., 
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1991). Changing the species composition by selectively removing susceptible hosts in mixed 

conifer stands to favor resistant species, has been suggested as the best harvesting 

management strategy (Kile et al., 1991). Additionally, introducing high intensity fire to the stand 

may also reduce the inoculum load (Kile et al., 1991), whereas, low intensity fires heat the soils, 

but may not directly reduce the presence of the disease. However, increased soil temperatures 

may enhance Trichoderma (a known biological control agent for Armillaria), consequently 

reducing infection (Reaves et al., 1990). Due to the complexity of tree damage induced during 

most silvicultural management strategies, minimizing stress within stands is key to treating 

Armillaria infections (Kile et al., 2019). Soil metagenomics can be used to identify important 

fungi, bacteria, and archaea associated with tree health that can be utilized to enhance the 

management of Armillaria (Ross-Davis et al., 2015).  

3.2.2 Co-occurrence of A. solidipes and A. altimontana 

Interactions between Armillaria species have been documented between A. solidipes 

Peck [as A. ostoyae (Romagnesi) Herink] and A. altimontana Brazee, B. Ortiz, Banik, and D.L. 

Lindner (formerly North American Biological Species X) co-occurring within stands in the inland 

northwestern United States (Ferguson et al., 2003; Kim et al., 2010; Warwell et al., 2019). 

Armillaria solidipes is known as a primary, virulent pathogen on many North American conifer 

species (Ferguson et al., 2003). Armillaria altimontana has previously been found on dead 

grand fir (Abies grandis) and symptomatic Douglas-fir (Pseudotsuga menziesii), yet evidence for 

pathogenicity has not been documented (Ferguson et al., 2003). Current research at the Priest 

River Experimental Forest (PREF) suggests that A. altimontana may be non-pathogenic due to 

an increase in diameter, height and percent survival for trees associated with the fungus 

compared to trees infected with A. solidipes. Additionally, A. altimontana occupies a larger niche 

compared to A. solidipes indicating that A. altimontana may be potentially beneficial to stands in 

conjunction with a pathogenic species of Armillaria (Warwell et al., 2019). Recognizing the 
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underlying soil factors within host-pathogen interactions and understanding the relationship of 

soils between high and low virulent root pathogens may enhance the management of Armillaria.  

3.2.3 Understanding the importance of soil microbial communities  

 It is hypothesized that soil microbes play an essential part in ecosystem functioning 

within a forest environment (Baldrian, 2017; Hartmann et al., 2014). Yet, the innate 

heterogeneity of microbial communities within forest soils provides a challenge in studying the 

impacts soils may play on forest ecology (Fierer and Jackson, 2006). Understanding those roles 

may be a key to the future management of forests. Many factors are known to affect the 

diversity of microbes within the soil, including temperature, moisture, pH, location to 

rhizosphere, and other biotic factors complicating what ultimately influences community diversity 

present in a single soil sample (Fierer and Jackson, 2006). The diversity associated with a small 

amount of soil may result in as many as 2,500 fungal taxa, many of which are unculturable. 

Utilizing soil metagenomics allows researchers to categorize communities and identifies a 

higher diversity of microbes compared to culturing (Buee et al., 2009). Understanding the 

drivers that shape microbial community structure, interactions, and functions through 

metagenomics and statistical analysis will provide further insight into soil ecological health and 

management.   

 The ecosystem services provided by soil microbes enhance many of the functions 

needed for forests to thrive. The association between mycorrhizae and roots allow for increased 

water and nutrient uptake to provide essential minerals needed for tree health (Azul et al., 2014; 

Baldrian, 2017; Leake et al., 2004; Lee Taylor and Sinsabaugh, 2014; Saif and Khan, 1975). 

Microbes also breakdown litter, maintaining stand health by decomposing organic matter into 

usable inorganic minerals usable by plants (Cardenas et al., 2015; Chapman and Koch, 2007; 

Davidson and Janssens, 2006; Robertson and Groffman, 2014; Schloter et al., 2003). In 

addition, pathogenic soil fungi function as sanitizers of stressed trees, increasing the vigor of 

residual trees in a stand (Allison and Martiny, 2008; Horwath, 2014; Kile et al., 1991). Whereas 
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highly virulent soil pathogens can infect healthy tree roots, ultimately degrading the health of 

stands (Kile at al., 1991). Additionally, the ability to utilize beneficial microbes to inhibit of the 

growth of root pathogens, which are historically difficult to mitigate, may enhance current 

management techniques (Kim et al., 2016). 

3.2.4 Potential use of biocontrols for root diseases 

   Bioncontrols have been used to minimize the effects of pathogens within all 

environments with few studies focusing on forests (Mesanza et al., 2016). Microbial 

communities can act as an antagonist toward root pathogens by direct competition for nutrients 

and increase host resistance (Mesanza et al., 2016). Specifically, beneficial fungi can to inhibit 

the growth of Armillaria. Trichoderma are well known for their biological control capabilities in 

association with burned and unburned sites (Reaves et al., 1990). The isolation of T. 

citrinoviride occurred in burn areas, while T. harzianum was more abundant in non-burned 

areas. Both showed signs of inhibition toward A. ostoyae (solidipes) with T. cintinoviride playing 

a larger antagonistic role, suggesting that the association with fire might assist in the reduction 

of Armillaria inoculum (Reaves et al., 1990). In British Columbia, Chapman et al. (2004) utilized 

Hypholoma fasciculare, a highly abundant fungal saprophyte, to determine in situ inhibition to 

the growth of A. ostoyae. Soils in association with H. fasciculare, with an adequate supply of 

wood debris exhibited the capability to reduce mortality, compared to locations without the 

Hypholoma (Chapman et al., 2004). Both studies highlight native, highly abundant soil microbes 

that can be used in the management of root diseases, specifically Armillaria. Proper 

management of naturally occurring, abundant microbes may improve techniques employed to 

inhibit root pathogens.   

3.2.5 Goals and research objectives  

Our research objective was to identify the soil fungal communities associated with tree 

health status (healthy, moderate and dead) and colonized by Armillaria species, A. solidipes 

and A. altimontana, both of which have differing ecological behaviors (virulent pathogen and 
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non-pathogen, respectively) on western white pine. I hypothesize that soil microbial 

communities will likely differ in richness and diversity in comparison between the virulent A. 

solidipes and the non-pathogenic A. altimontana with the latter having a greater richness and 

diversity due to its beneficial qualities. While richness and diversity is likely to shift among tree 

health with a greater diversity and richness for soil associated with healthy trees due to root 

exudate production near the rhizosphere. In better understanding communities associated with 

each species, we proposed to identify potential biocontrol species that may enhance our ability 

to develop novel techniques to minimize the effects of Armillaria and assist in the management 

of the disease.  

 

3.3 Methods 

3.3.1 Field sampling  

The study area was located in the northern panhandle of Idaho at the United States 

Department of Agriculture-Forest Service Priest River Experimental Forest. The field site was 

within the Ida Creek study area (elevation at 760 meters), which is a historic western white pine 

seed provenance plot. In 1971, 2,372 seedlings were planted in a common garden plantation 

with 1.2 m x 1.2 m spacing between each row and column. Planted seeds were selected from 

eight national forests in Idaho and Washington, with elevations ranging from 760 to 1,585 

meters. In 1987, all 2,076 remaining trees were sampled for diameter at breast height (DBH), 

height, tree health status and association with Armillaria species. Armillaria species were 

identified using methods described in Warwell et al. (2019). Briefly, Armillaria were identified 

using somatic incompatibility pairing tests where an unknown isolate is grown with a reference 

isolate for each species of Armillaria. Unmated pairings were determined by the formation of a 

pseudosclerotial plate forming between both isolates. Mated pairings were distinguished as 

compatible due to colorless antagonism of mycelial growth (Figure 3-1) (Warwell et al., 2019). 

Since 1987, the 2,076 trees had been thinned to increase spacing for the mature trees and to 
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remove dead trees caused by a combination of A. solidipes (a pathogenic species of Armillaria), 

competition, white pine blister rust, and other minor agents of mortality. In 2016, the study area 

had ~600 trees remaining from the initial planting.  

 We randomly selected 60 trees for sampling ensuring that half of the trees were 

historically associated with each of the two species of Armillaria. Out of the 30 trees for each 

species, 15 were historically healthy and 15 were historically dead or dying. If historically dead 

or dying trees had fallen since the last inventory, adjacent trees were selected that fit similar 

treatments. Three additional trees were sampled due to needle discoloration and the formation 

of mycelial fans on the base of the trunk, indicating the presence of Armillaria, bringing the total 

number of trees sampled to 63. Tree health was categorized as healthy, indicating no visible 

signs or symptoms of disease; moderate, characterized as a qualitative identification of living 

trees with visible symptoms of decline; and dead. 

 Sampling was completed in the summer of 2016. Tree measurements included DBH and 

tree health status. Tree health status measurements were based on total amount of needles, 

color of foliage, insect and disease presence, and dead/live status. Soil sampling consisted of 

clearing a 30 cm diameter circle from the duff and litter, in a flat location, one meter from the 

main stem to minimize damage to the roots. Depth of duff and litter were measured at four 

cardinal directions within the cleared area for soil sampling. Bulk soil samples were taken for 

each of the 63 trees using a 15 cm split soil corer hammered into the ground using a compact 

slide hammer. Each bulk density sampling location was selected to ensure extraction of 15 cm 

of soil. Orientation to each tree differed, depending on the topography around the tree and its 

root zone. After each sample, the soil core was taken apart and sanitized using 70% ethanol to 

remove any contaminant DNA. The soil was placed in quart sized plastic bags, labeled with 

each unique tree number and homogenized. Two grams of soil were placed in a 15 ml plastic 

bead tube (Qiagen Powersoil RNA Extaction Kit ®; Germantown, MD), with 5 ml of LifeGuard 

RNA preservation solution (Qiagen). An additional backup sample for each tree was prepared 
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following the same protocol. Both tubes were immediately placed in a cooler with ice to preserve 

the soil RNA and DNA and shipped to Colorado State University. Once in Colorado, the 

samples were stored in a refrigerator for preservation prior to RNA and DNA extractions. The 

remaining bulk soil, not collected for DNA extractions, from each tree was sent to the Rocky 

Mountain Research Station in Moscow, ID for soil characteristics measurements and chemistry 

calculations.  

Armillaria rhizomorphs adjacent to the roots were also collected. Soil around roots were 

extracted using a “mini Pulaski”. Primary rhizomorph collections occurred on the same side as 

the soil core while an additional sampling occurred 180° from the core. Rhizomorphs were 

collected by hand and individually placed in empty 15 ml plastic tubes. Tubes filled with 

rhizomorphs were placed in a cooler and transported to the Rocky Mountain Research Station 

in Moscow, ID to isolate pure cultures of mycelium.  

3.3.2 Rhizomorph isolation, mycelial DNA extractions and PCR 

Rhizomorphs were plated for fungal isolation within seven days of collection. Each 

rhizomorph was surface sterilized, placed into a sterilized 15 ml test tube, and rinsed with 

sterile-distilled water to remove the attached soil particles. Rinsed rhizomorphs were soaked in 

20% Clorox bleach solution (Sodium Hypchlorite) for 6-10 minutes. After soaking, rhizomorphs 

were removed from the bleach solution, rinsed with sterile-distilled water, and then soaked in 

3% hydrogen peroxide for 6-10 minutes. After removal of the hydrogen peroxide, rhizomorphs 

were rinsed with sterile distilled water to remove excess solution. After sanitization, rhizomorphs 

were cut into 1 cm sections and placed in the center of an agar plate of enhanced Armillaria 

media (6 g malt extract, 6 g dextrose, 4 g peptone, 12 g agar, 800 mL DD H2O). Each plate was 

incubated at 25°C in the dark until the formation of mycelium. The plates were checked daily to 

ensure no contamination and re-isolated on Armillaria media until a pure culture of Armillaria 

mycelium was obtained. Eighty-seven total rhizomorphs were isolated from 48 total trees with 

cultures grown for all 87 rhizomorphs.  
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Once pure cultures were obtained, they were sent to Colorado State University for DNA 

extractions. For extractions, mycelium was plated onto 0.22 µm pore size MF-Millipore TM 

Membrane filters (MilliporeSigma, Burlington, MA) on the enhanced Armillaria media. Mycelia 

from each pure culture were cut into 1 cm2 sections. Four pieces were evenly placed on the 

membrane of two plates and grown for 2-3 weeks. DNA of > 50 mg of mycelia were extracted 

using Zymo DNA extraction kits (Irvine, CA), following manufacturer protocols with a few 

modifications. To maximize DNA quantity and quality extractions, three 3-mm glass beads were 

added to a bead tube prior to adding mycelium, and cell lysis was performed in the Thermo 

Savant FastPrep ® FP120 Cell Homogenizer (Qbiogene, Carlsbad, CA) at 6.0 speed with two 

30-second cycles. DNA concentration and quality were quantified using a NanoDrop TM 2000 

spectrophotometer (Thermo Fisher Scientific, Wilmington, DE).  

For species identification, DNA was amplified at the translation elongation factor-1α 

(tef1) locus using primers EF-983 and EF-2218 (Rehner and Buckley, 2005). Samples were 

amplified with a Eppendorf Mastercycler pro Thermal Cycler (Eppendorf, Hamburg, Germany) 

using the cycle 94 °C for 2:30, 30 cycles of 94 °C for 0:30, 60 °C for 0:30, and 72 °C for 1:30, 

and ending with 72 °C for 10:00 and maintaining at 4 °C. The resulting PCR product was run on 

an electrophoresis gel. Successfully amplified PCR products were cleaned using ExoSAP-IT TM 

PCR Product Cleanup Reagent (Thermo Fisher Scientific, Santa Clara, CA) to remove excess 

primers and nucleotides. Cleaned PCR products were sent to Eurofins Genomics (Louisville, 

KY) for Miseq Illumina sequencing in both directions. Forward and reverse DNA sequences 

were edited and aligned in Geneious R11.1 (https://www.geneious.com). Aligned sequences 

were referenced to known NABS Armillaria spp. for species identification, either A. solidipes or 

A. altimontana, and identified by blasting clustered sequences in the National Center for 

Biotechnology Information Basic Local Alignment Search Tool (BLASTn) (Zhang et al., 2000). 

Sequences corresponding to both A. altimontana and A. solidipes resulted in 99% identity. 

3.3.3 Soil RNA and DNA extraction protocol 
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DNA from the preserved soil samples was extracted using MoBio Powersoil Total RNA 

Isolation and DNA Elution Accessory kits (Qiagen®, Carlsbad, CA), following manufacturer 

protocols. The 15 mL bead tubes with soil were centrifuged for five minutes to allow for the soil 

and LifeGuard Preservation Solution to separate. The LifeGuard Preservation Solution was 

pipetted from the tubes and discarded to leave just the soil. The complete MoBio Powersoil 

instructions were followed, resulting in 100 µL of eluted DNA and RNA for each sample. RNA 

and DNA qualification and quality were measured using a Nanodrop TM 2000 

spectrophotometer. If the concentration of RNA and DNA were below 10 ng µL-1 the sample soil 

RNA and DNA was extracted again, following the same protocol as above using the additional 

soil preserved from the Ida Creek study area.  

Thirty microliters of the soil DNA were sent to the University of Minnesota Genomics 

Center for library preparation and sequencing. A total 57 out 63 samples were sent for 

sequencing; the six remaining samples did not yield sufficient DNA concentration or quality and 

therefore were excluded. Libraries were prepared for the internal transcribed spacer (ITS2) 

region to sequence fungal communities. Primers ITS3 (5’-GCATCGATGAAGAACGAGC-3’) and 

ITS4 (5’TCCTCCGCTTATTGATATGC-3’) (White et al., 1990) were used to amplify the ITS2 

genomic region.  

3.3.4 Cleaning DNA sequence data 

Files were inputted into the Galaxy Project (Afgan et al., 2018), as fastqsanger files, to 

clean and analyze the fastq files by trimming primers prior to analysis using Mothur (Schloss et 

al., 2009). Files were viewed using FastQC (Andrews, 2014) to identify initial quality of samples 

and to determine protocols for trimming. Within Trimmomatic (Bolger et al., 2014) the 

parameters for trimming consisted of using HEADCROP to trim the first 50 basepairs (bp) to 

remove the primers from each fasta file, the SLIDINGWINDOW to view every four bp and 

remove pairs that fell below a PHRED score of 20, and MINLIN to make the minimum length of 

the trimmed sequences at least 125 bp. Each fasta file was trimmed using paired end data to 



 

55 

overlap the R1 and R2 files. Sequences were further cleaned following a modified Mothur 

MiSeq SOP (Kosich et al., 2013), using a perl script prepared by Dr. Zaid Abdo 

(https://github.com/Abdo-Lab). The protocol was followed with a few exceptions including 

removal of the initial align.seq setup. Data was classified to the fungal database 

UNITEv6_sh_dynamic_s (Nilsson et al., 2018). Following the Mothur protocol, the OTU table 

and taxonomy file were prepared to identify the fungal communities within the soil samples.  

3.3.5 Statistical analysis of fungal communities 

Using the RStudio (RStudio, 2015) interface to R (R Core Team, 2017), the OTU table 

and taxonomy file were merged and OTUs with less than 2 reads were removed. Two reads 

were subtracted from all total OTU abundances. Any negative values were set to zero and then 

those OTUs with zero abundance were removed from further analyses. After combining the 

OTU table and taxonomy file, the data reflected the Kingdom, Phylum, Class, Order, Family, 

Genus, and Species (if available) alongside each unique OTU. A metadata file was uploaded to 

reflect plot characteristics to each soil sample, including Armillaria species and tree health 

status. The OTU/taxonomy file and metadata table were merged to correlate plot characteristics 

with fungal data. The initial analysis was calculated at the family level. A rarefaction curve 

(richness) was established to determine the quality of sequences for each sample using the 

phyloseq package in R (McMurdie and Holmes, 2013). For all analyses, groups were created to 

determine the differences between each Armillaria spp. (A. solidipes and A. altimontana) and 

among tree health status (healthy, moderate, or dead). The relative abundance was determined 

for the top 17 fungal groups using a stacked bar graph for each group using the 

metagenomeseq package in R (Paulson et al., nd). Ordination plots were established for each 

group, using non-metric multidimensional scaling (NMDS) in the Vegan package in R, to 

determine the dissimilarity of fungal communities (Oksanen et al., 2017). Overlap in an 

ordination plot determined similarity between fungal communities, while separation described 

dissimilar microbial communities (Clark, 2017). Diversity and richness were measured, at the 
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OTU level, using the Shannon and Inverse Simpson indices. The Shannon index is a used to 

determine diversity utilizing the relationship to richness and rare microbes (Hill et al., 2006; 

Nagendra, 2002). Inverse Simpson relies on evenness and more dominant microbes to identify 

diversity (Nagendra, 2002). Richness is described as the amount of individuals identified within 

a single sample, while evenness explains the relative abundance of the different individuals 

(Zhang et al., 2012). 

To display fungal differences among groups, heat trees were established using the 

Metacoder package (Foster at al., 2017). Heat trees were developed with all taxon using color 

and size to determine the abundance and proportion of each OTU for all categories of Armillaria 

spp. and tree health. Heat trees were also produced for fungal communities using each species 

of Armillaria and comparing between the abundance in A. altimontana and A. solidipes. To 

determine the differences in fungal communities for tree health status, healthy and dead trees 

were compared to identify the greatest variability within the samples. Finally, core fungal 

communities were created for each Armillaria spp. and tree health status (within A. altimontana) 

by identifying what OTUs corresponded to each tree species or tree health status. Counts were 

completed in R to assess the presence of an OTU corresponding to each species of Armillaria 

and tree health status with A. altimontana (R Core Team, 2017). Venn diagrams were compiled 

following the coordination of core and unique fungal communities. Tree health status was not 

recognized within A. solidipes due to low sample size. To identify what soil chemistry properties 

influenced soil fungal communities, a PERMANOVA analysis was completed using the Vegan 

package in R. The analysis identified significant predictors by completing a forward stepwise 

analysis based on the subset of variables that minimized the Akaike Information Criterion (AIC). 
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3.4 Results 

3.4.1 Field sampling and rhizomorph species identification 

 From the 63 trees sampled, mycelial extractions identified that 44 were associated with 

A. altimontana, 1 with A. solidipes, 2 were associated with both A. altimontana and A. solidipes, 

14 did not include rhizomorphs, and 2 were unknown due to inadequate DNA from mycelial 

extractions. Any tree associated with both species was categorized as A. solidipes due to the 

pathogenic nature of the disease. Thirty-eight trees were healthy, 13 were dead, and 12 were in 

moderate health (any live tree with crown dieback or symptoms of insect or disease damage).  

3.4.2 Next Generation Illumina sequencing soil data analysis 

To identify fungal communities in Ida Creek soils, total DNA was extracted from 63 

samples and of those 57 were sent for Miseq Illumina sequencing at the ITS2 region. Six 

samples were not processed due to insufficient DNA quantity or quality. The total number of 

reads, following trimming, was 4,323,028. Reads were screened using screen.seqs to remove 

any longer than 275 bp, resulting in the removal of 375,837 from the dataset. The remaining 

reads were clustered into 387,219 unique sequences. The modified Mothur protocol for the ITS2 

data resulted in 6,936 total unique OTUs and a remaining 2,806, following the removal of low 

coverage OTUs (< 2 sequences) in RStudio. A rarefaction curve was established for all samples 

to identify if DNA was adequately sequenced. If the curve plateaued, there was sufficient 

sequencing to reflect high quality fungal communities for each sample (Figure 3-2). Thirty-four 

(80%) samples plateaued indicating high quality communities, whereas 8 (20%) samples did not 

plateau, indicating a need to sequence at a greater depth. For final data analyses, 42 samples 

were used (39 A. altimontana, 3 A. solidipes, 27 healthy, 6 moderate, and 9 dead). 

Samples were grouped either by associated species of Armillaria (A. altimontana or A. 

solidipes) or tree health status (healthy, moderate, or dead). Non-metric multidimensional 

scaling (NMDS) ordination plots were used to identify the dissimilarity of fungal communities of 

each group (Clark, 2017). The two-dimensional NMDS plots identified overlapping between 
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fungal communities of trees associated with A. altimontana and A. solidipes, suggesting that 

Armillaria species did not strongly influence soil fungal community composition (Figure 3-3A). 

Additionally, for tree health, overlaps occurred among all three groups, with fungal taxa of 

moderately healthy trees were more dissimilar from fungal taxa of dead trees than healthy trees 

(Figure 3-3B). Using a 3-D NMDS ordination plot, at 90% confidence, overlapping communities 

between healthy and dead trees and healthy and moderate trees indicated that fungal taxa were 

similar, yet there was only a slight overlap between moderate and dead trees suggesting a 

difference in fungal communities.   

Fungal communities were also assessed for overall richness and diversity. Richness 

was analyzed to represent how many species were present in each sample, and Inverse 

Simpson and Shannon diversity indices were estimated to compare diversity among groups. 

Fungal species richness was slighter greater in soil associated with A. solidipes; however the 

difference was not statistically significant (Table 3-1). Neither diversity index (Simpson or 

Shannon) showed significant differences between Armillaria species, but once again A. 

solidipes associated samples had a greater diversity. For tree health status, no significant 

differences were observed in richness or diversity (Table 3-1). However, soil associated with 

dead trees tended to have the greatest fungal community richness and diversity, while 

moderately healthy trees had the lowest.  

Table 3-1: Richness and diversity indices calculated for Armillaria 
species and tree health status. Values based on samples within 
each group with standard errors. 

 Richness Shannon InvSimpson 

A.altimontana 224 ± 11.6 3.26 ± 0.072 13.4 ± 1.01 
A.solidipes 133 ± 70.5 2.62 ± 0.434 8.18 ± 6.19 
Healthy 229 ± 13.6 3.28 ± 0.085 13.5 ± 1.18 
Moderate 179 ± 28.9 3.02 ± 0.181 10.0 ± 2.51 
Dead 243 ± 23.6 3.43 ± 0.147 15.9 ± 2.05 
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The relative abundance of the 17 most abundant fungal taxa are shown in Figure 3-4A. 

Though not significant, more reads were identified as Atheliaceae, Cortinariaceae, Helotiales, 

Hypocreaceae (Trichoderma), Puccinomycotina, and Rhizopogonaceae in communities 

associated with A. altimontana, whereas more Hypocreales, Inocybaceae, and Leotiomycetes 

were detected in soil associated with A. solidipes. In examining tree health, variation occurred 

between each health status with greater differences occurring in comparisons between healthy 

or moderate and dead trees (Figure 3-4B). Greater proportions of Hypocreaceae (Trichoderma), 

Rhizopogonaceae, Trichcomaceae, and Leotimycetes were observed in soils of healthy trees. In 

soils from moderately healthy trees, a greater proportion of Myxotrichaceae was identified, and 

Cortinariaceae was more abundant in soils from both healthy and moderate trees. For soils of 

dead trees, there were greater proportions of Inocybaceae and unclassified fungi.  

To understand the variation of OTU abundance among groups, Venn diagrams of the 

core fungal communities were produced to identify OTUs that were similar between numerous 

treatments. The diagrams identified which fungal OTUs were associated with both species of 

Armillaria and which were unique to each species (Figure 3-5A). The core fungal community 

associated with both A. altimontana and A. solidipes consisted of 521 OTUs. Far surpassing the 

core community, 2,219 OTUs were unique to A. altimontana, whereas only 66 were unique to A. 

solidipes.  A Venn diagram was produced to compare all health status categories associated 

with A. altimontana (Figure 3-5B). This analysis was not completed for A. solidipes since only 

three infected trees were identified. A total of 535 fungal OTUs were associated with all tree 

health status categories (A. altimontana), while 1,182 OTUs were unique to healthy trees, 135 

OTUs were unique to moderate health trees, and 311 OTUs were unique to dead trees. The 

core fungal taxa between healthy and dead trees resulted in 389 similar OTUs. For healthy and 

moderate, 162 OTUs were similar, and for moderate and dead only 66 OTUs were similar. The 

OTU comparisons between each group concurs with results of the NMDS ordination plots of 

Figure 3.3, which highlight overlaps or departures in fungal communities. 
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To further identify differences in fungal taxa associated with each Armillaria species and 

tree health status, the metacoder package in R was used to create heat trees (Foster at al., 

2017). The heat trees identified comparisons by calculating the log2 ratio of median proportions 

and color-coded each difference to establish clear variances in fungal abundance. For the 

comparison between A. altimontana (brown) and A. solidipes (blue), the heat maps identified a 

greater abundance of Agaricomycetes within soils associated with A. altimontana, (Figure 3-6). 

For soils associated with A. solidipes, a greater abundance was observed for Ilyonectria 

(Hypocreales), Leotimycetes, and Mortierella, which coincides with the stacked bar graphs in 

Figure 3-4. Tree health associations were created for all pairwise comparisons; healthy/dead, 

healthy/moderate, and moderate/dead, to characterize fungal communities. The comparison 

between healthy (brown) and dead (blue) trees, showed that overall Ascomycota were more 

abundant in soils associated with healthy trees, while Basidiomycota and Zygomycota were 

more abundant in soils associated with dead trees (Figure 3-7). More specifically, there was 

greater abundance of Agaricales, Mortierella, and Ilyonectria (Hypocreales) in soils with dead 

trees, similar to results observed by the stacked bar graphs.  Comparing healthy (blue) and 

moderate health (brown) trees, more Agaricomycetes and Leotiomycetes were found in soil 

associated with healthy trees, while more Mortierella and Ilyonectria (Hypocreales) were 

detected in soils associated with moderately healthy trees (Figure 3-8). Assessing the 

differences between moderate (blue) and dead (brown) trees, more Agaricales and 

Leotiomycetes were identified in soils from moderate trees with no taxa more abundant in dead 

trees (Figure 3-9). Patterns that arose were that Leotiomycetes were associated with A. 

solidipes, healthy and moderate trees. Additionally, a greater abundance of Mortierella was 

associated with soils of A. solidipes and dead trees.  

To determine which taxa were significantly different between each Armillaria species and 

tree health status, the (90% confidence) log fold change of OTUs was estimated (Figure 3-10). 

These analyses recognized that there was significantly greater abundance of Mucor zonatus, 
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Rhizopogon subbadius, Atheliaceae, and unclassified fungi in association with A. altimontana. 

No fungi were found significantly more abundant in association with A. solidipes. For healthy 

versus dead trees, there was a greater abundance of Mortierella pseudozygospora, Penicillium 

humicoloides, unclassified Leotiomycetes, and unclassified fungi associated with healthy trees. 

A greater abundance of Geminibasidium spp. and Penicillium bialowiezense were observed in 

dead trees (Figure 3-11). More Mortierella spp., Umbelopsis spp., Herpotrichiellaceae spp., 

unclassified Tremellomycetes, and unclassified fungi were associated with healthy trees, 

whereas for moderate trees, Archaeorhizomyces spp. and unclassified Ascomycota were more 

abundant (Figure 3-12). Comparing moderate and dead trees showed significantly more 

sequences were identified as Cladophialophora chaetospira, Leohumicola spp., unclassified 

Leotiomycetes, and unclassified fungi in moderate trees, while more Metarhizium carneum, 

Mortierella spp., and unclassified fungi were identified in dead trees (Figure 3-13).  

3.4.3 Soil chemistry data analysis 

 To potentially identify soil characteristics that influenced fungal communities, soil 

chemistry data was used to help understand potential drivers for each group. Spearman’s 

correlation was used to compare connections between fungal richness and diversity and soil 

chemical properties (Figure 3-14). Significant positive correlations were observed between 

fungal richness and diversity, whereas soil nitrogen had a slight positive correlation to Inverse 

Simpson’s sample diversity (Table 3-2). While not correlated with fungal richness or diversity, 

carbon, nitrogen, organic matter, and moisture were highly correlated with each other (Table 3-

2). Although not included within the correlation analyses, a linear model was established to 

identify if soil chemistry influenced Armillaria species and tree health (Table 3-2). Interestingly, 

since it was not correlated to any soil characteristics, pH was recognized as the most significant 

factor driving fungal communities with a relatively small range from 5.07 to 6.38 for all samples. 

Additionally, soil carbon, nitrogen and organic matter had a significant impact on pH levels 

(Table 3-3). Less influential factors on fungal communities included carbon, organic matter, 
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nitrogen, and moisture, yet they were removed from the final analysis due to poor to AIC values 

in the models. 

Table 3-2: Determining significance of soil chemistry factors based on linear models to fit ANOVA. 
Richness and diversity indices were based on all samples combined.  

 OM Carbon Nitrogen Shannon InvSimpson Richness Health Species 

Moisture 0.0015* 0.0065* 0.0003* 0.8445 0.5486 0.1334 0.4574 0.0888 
Rock - - - 0.2776 0.8394 0.0196* 0.9596 0.9538 
Root - - - 0.7795 0.6562 0.9349 0.9185 0.6607 
Charcoal - - - 0.9997 0.7136 0.7010 0.6229 0.5899 
Other - - - 0.8529 0.6384 0.4837 0.5475 0.4882 
pH 0.0012* <0.0001* 0.0433* 0.6288 0.6797 0.3887 0.7514 0.5480 
Organic 
Matter 

- <0.0001* <0.0001* 0.5364 0.3592 0.7329 0.3704 0.4167 

Carbon - - <0.0001* 0.2156 0.3639 0.3983 0.2374 0.7857 
Nitrogen - <0.0001* - 0.1073 0.0803 0.4708 0.1605 0.5875 
Shannon - - - - - - 0.2183 0.6646 
InvSimpson - - - - - - 0.1905 0.5050 
Richness - - - - - - 0.2028 0.7579 

* Significance was based on a p-value < 0.05 

 
Table 3-3: Evaluating significance of soil 
chemistry properties to fungal microbial 
communities based on permANOVA 
permutation test. 

 F p-value 

PH 3.4289 0.001* 
Moisture 1.5348 0.025* 
Nitrogen 1.5187 0.035* 
Carbon 1.4593 0.015* 
Organic Matter 1.3875 0.090 
Charcoal 1.3055 0.110 
Rock 1.1490 0.185 
Other 1.0143 0.385 
Root 0.7943 0.880 
Species 0.5874 0.970 
Health 0.9049 0.770 

* Significance was based on a p-value < 0.05 

 

3.5 Discussion 

3.5.1 – Significant predictors to fungal communities 

The goals of this study were to identify differences in soil fungal communities between 

trees associated with A. altimontana and A. solidipes and within healthy, moderately healthy 

and dead trees. No significant differences were observed in fungal taxa diversity or richness in 

soils, likely driven by having identified only three trees associated with A. solidipes. Comparing 
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among tree health status (healthy, moderate, and dead), although not significant, there was a 

clear distinction of fungal taxa associated with moderately healthy trees compared to dead 

trees, as observed in the 2-D ordination plot (Figure 3.3B). These results suggest that as a trees 

health declines from moderate to dead, there is an overall increase in richness and diversity of 

fungal communities. The significant differences, using a 90% log fold change, observed for taxa 

between moderate and dead trees, found that moderately healthy trees have a greater 

abundance of Cladophialophora chaetospira, Leohumicola spp., and Leotiomycetes, while dead 

trees have more Metarhizium carneum and Mortierella spp.  

Fungal taxa that act primarily as decomposers and mycorrhizae were associated with 

trees in all health statuses. Cladophialophora chateospira is a common decomposer found in 

soils, which allows the release of nutrients to be accessible to trees (Badali et al., 2008). 

Leohumicola spp. have a strong relationship with diseased roots known to be associated with 

trees as they decline in health (Xu et al., 2012). Leotiomycetes are mycorrhizae associated with 

lower pH soils and are thought to provide additional nutrients to trees in moderate health 

(Sterkenburg et al., 2015). It is likely that these taxa have relationships that may be beneficial to 

a tree’s health. Mortierella spp. were found in high abundance in soils of dead trees, which 

could be due to their ability to act as saprophytes to decompose dead tissue (Toju and Sato, 

2018). In addition, Mortierella are the most abundant fungi in all soils. Saprophytic fungi assist in 

the decomposition of dead tissue by subsequently increasing nutrients for healthy and moderate 

trees, while providing resources for upcoming seedlings or understory vegetation in association 

with dead trees.  

The soil characteristic with the greatest impact on fungal communities was pH, which is 

surprising as soil fungi are generally known to be able to withstand a wide range of pH (Rousk 

et el., 2010). The large influence of soil pH on fungal communities was most likely due to the 

significant effects carbon, nitrogen, and organic matter. Coniferous forest litter has a high C:N 

ratio, which constitutes to a slower decomposition of more recalcitrant (higher lignin) litter. Soils 
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with a higher pH are typically able to breakdown litter more rapidly, which releases more 

nutrients into the soil and provide an increase to organic matter (Finzi et al., 1998). The pH 

ranged from 5.07 to 6.36. At this range, there is an increased rate of forest litter decomposition 

with the higher concentrations of saprophytes within the soil (Finzi et al., 1998). Additionally, 

moisture significantly affected soil carbon, nitrogen, and organic matter levels. The effects of 

moisture on soil chemistry manifests through cyclic drying and rewetting of soil. Fierer and 

Schimel (2002), showed that as soils were subject to drying and rewetting cycles, soil organic 

matter and carbon were prone to increase, while nitrogen decreased due to increased 

nitrification and leaching. In combination, soil pH and moisture may have an indirect relationship 

to fungal diversity and increased tree health.   

3.5.2 Functions of fungal taxa associated with Armillaria species 

 While no overall differences were observed between fungal communities in soils 

associated with Armillaria species, some taxa were more abundant in each category. Seven out 

of the 17 most abundant taxa were more abundant in soils associated with A. altimontana than 

with A. solidipes. Six of these taxa have been shown to increase soil productivity through 

multiple functions as ectomycorrhizal fungi  (Atheliaceae, Cortinariacaeae, Helotiales, and 

Rhizopogonaceae [Balestrini et al., 2015; Horton et al., 2013; Kipfer et el., 2010; Rudawska et 

al., 2011]), antagonists (Hypocreaceae [Trichoderma] [Reaves et al., 1990]), or mycoparasites 

(Puccinomycotina [Aime et al., 2014]). More specifically, two identifiable genera were 

significantly abundant in soils associated with A. altimontana compared to A. solidipes. Although 

there is no extensive research regarding Mucor zonatus, Mucorales may act as an antagonist to 

pathogens of pea plants (Pisum sativa) within the microbial inoculant “Effective Microorganisms” 

TM (EMRO, Okinawa, Japan), including Fusarium, Rhizoctonia, and Botrytis, indicating there 

may be the potential to inhibit A. solidipes (Okorski and Majchrzak, 2007). Additionally, 

Rhizopogon spp. may be ectomycorrhizal,, allowing increased uptake of water and nutrients to 

enhance tree defenses to pathogenic root diseases (Leake et al., 2004). The functions of these 



 

65 

fungi suggest that these fungal communities increase the overall health of the stand, 

corroborating Warwell et al. (2019), who found that trees associated with A. altimontana were 

larger in both diameter and height than trees not associated with Armillaria.  

 Although not significant, observed differences in fungal taxa within the heat map 

analyses (Figures 3-6 & 3-7) showed that soils associated with A. solidipes and dead trees have 

a higher abundance of Mortierella than soils in conjunction with A. altimontana and healthy 

trees. As stated above, the saprophytic ability of Mortierella may assist in the breakdown of 

dead tissue (Toju and Sato, 2018). This could result in greater mineralization of carbon to build 

biomass and immobilization of nutrients to facilitate seedling establishment (Allen et al., 1995).  

Healthy trees may utilize mycorrhizae to increase the uptake of nutrients, yet 

mycorrhizae may be outcompeted by saprophytes in conjunction with dead trees to initiate the 

decomposition of dead roots (Allen et al., 1995). Though not observed in this study because of 

sample sizes, similar trends could occur in soils associated with A. altimontana and A. solidipes, 

with increased mycorrhizae related to A. altimontana and increased decomposition with A. 

solidipes.  Since neither Armillaria species nor tree health may be driving the fungal 

communities, the ability to understand soil chemistry may be vital to the presence of fungal 

biocontrols.  

3.5.3 Role of soil chemistry in fungal communities 

 The role of pH as the greatest influence on fungal communities may be convoluted since 

our analyses did not include soil bacteria. Fungi can live within larger ranges of soil pH 

compared to bacteria, thus pH has less of an influence on fungi than on bacteria (Rousk et el., 

2010). In our samples soil pH ranged from 5.07 to 6.38. This narrow range of pH, likely allows a 

wide variety of fungi including mycorrhizae and saprotrophs to thrive within the soils, providing a 

greater diversity and richness within our samples. According to Rousk et al. (2009), the optimum 

pH for fungal growth is 4.5, which is well below levels observed in our samples. As pH increases 

there is less fungal growth and greater bacterial growth, therefore as our samples increase from 
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a pH of 5 to over 6, there is a probability that bacterial communities will have a greater influence 

than fungal communities (Rousk et al., 2009). Incorporating bacterial community analysis may 

enhance our ability to see changes related to pH.  

Additionally, soil pH was significantly influenced by soil carbon, nitrogen, and organic 

matter, while moisture significantly influenced soil carbon, nitrogen, and organic matter, acting 

as indicators to overall health in the stand. Carbon catalyzes soil fungal communities, especially 

saprophytes to breakdown woody organic material in the soil (Baldrian, 2017). In terms of 

carbon cycling, as diversity of microbes increase in the soils, the breakdown of organic carbon 

will result (Morris and Blackwood, 2014). This could indicate that if more carbon is present in the 

soil, there are likely more highly diverse communities driving that flux in carbon. As labile 

nutrients are released into the soils, trees are able to uptake these inorganic molecules to 

improve their structure and withstand stress (Baldrian, 2017; Morris and Blackwood, 2014). This 

process allows soil properties to directly influence the abundance and diversity of fungal 

communities (Baldrian, 2017). Soil microbes, specifically mycorrhizae, increase the ability for 

the soil water and nutrients to be used by plants, sparking photosynthesis (Morris and 

Blackwood, 2014). Soil moisture allows for an increase in the decomposition of organic matter 

to release important nutrients (Morris and Blackwood, 2014). The presence of fungi that 

decompose and assist in the uptake of nutrients could allow for nutrient cycling to actively 

persist on the site.  

3.5.4 Potential fungal microbes as biocontrols  

We observed that Hypocreaceae (Trichoderma), known biocontrol species, were more 

abundant in soils associated with A. altimontana and healthy trees, compared to soils 

associated with A. solidipes and dead trees. Trichoderma, known for its biocontrol properties, 

has been documented to inhibit the growth of Armillaria (Raziq and Fox, 2005; Reaves et al., 

1990). Although not significant, likely due to our limited sample size, we found 13 OTUs 

belonging to Trichoderma. Most were found in low numbers within samples associated with A. 
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altimontana, yet the most abundant Trichoderma spp. was observed in samples associated with 

both A. solidipes and A. altimontana. A closer examination of the three samples associated with 

A. solidipes identified that the lone tree associated only to A. solidipes did not have the 

Trichoderma species present. Yet, the two samples with both species of Armillaria had a high 

presence of Trichoderma. Albeit a small sample size, this corresponds with the idea that A. 

altimontana may be antagonistic toward A. solidipes (Warwell et al., 2019). Overall, 85% (33 

trees) of the soils associated with A. altimontana had Trichoderma within the fungal 

communities. Further research into a mutualistic relationship between Trichoderma and A. 

altimontana may show that the presence of A. altimontana may assist in the inhibition of A. 

solidipes.  

Utilizing fungal communities to assist in the management of Armillaria root disease may 

be key to minimizing potential damage to residual trees caused by silvicultural management 

practices. Beneficial microbes can minimize inoculum loads by inhibiting the pathogen from 

infecting susceptible hosts (Kile et al., 1991). In this study, a greater diversity of mycorrhizae 

and saprophytic fungi was observed in association to A. altimontana and healthy/moderate 

trees, demonstrating that mycorrhizae may have a direct influence on hosts within forested 

environments associated with Armillaria species (Balestrini et al., 2015).  

3.5.5 Limitations of the study 

Selecting trees to sample Armillaria species was the greatest limiting factor. The small 

subsample of A. solidipes infected trees is an inherent struggle from taking field samples, as it 

was difficult to assess Armillaria infections under the soil. Sampling each of the remaining ~600 

trees may have enhanced our study by increasing the sample size for each species and would 

have updated the last inventory from 1987. We successfully extracted adequate DNA from 90% 

of the samples. The ability to collect more than two soil samples for each tree would have 

allowed for more attempts at extracting quality DNA. As for rhizomorph collections, we only 

successfully collected rhizomorphs for 78% of the trees. The ability to expand our excavation 
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methods to collect rhizomorphs could have greatly increased our sample size. This was the 

largest restriction in our field sampling. Additionally, the utilization of metatranscriptomics could 

have bolstered our understanding of what fungal microbes are present and their functions within 

the soils. This could assist in our understanding of what may be occurring as trees transition 

from healthy to dead and the association between either Armillaria species. 

 

3.6 Conclusion 

The low sample size of A. solidipes greatly decreased our ability to find significant fungal 

community differences between Armillaria species, yet I did observe a slight shift of soil fungi 

among tree health. Although not significant, microbial community changes were detected as 

trees transition from moderately healthy to dead. The most abundant fungal microbes 

associated with all trees were mycorrhizae and saprophytes facilitating to increase the health of 

trees and decompose dead tissue to release vital nutrients to associative trees. A major finding 

was that soil properties, specifically pH, carbon, nitrogen, organic matter, and moisture, may 

indirectly impact the overall abundance of soil fungi.  

Since this study did not identify significant suppressive fungal communities, such as 

Trichoderma and Hypholoma, although observed at slightly higher levels in association with A. 

altimontana and healthy trees, further research is needed to understand if fungal (or potentially 

bacterial) communities change in the presence of soil root pathogens and/or though changing 

tree health status. Additionally population dynamics between A. altimontana and A. solidipes 

may provide further knowledge into the relationship between highly virulent and less virulent 

fungi. Since A. altimontana occupies more space at the Ida Creek field site than A. solidipes, it 

may seem that this less virulent species has a competitive advantage over the virulent species 

at this site. Recognizing how microbes change over time, as infection or inhibition progresses, 

may give a greater insight into ways to minimize the effects of Armillaria. We further propose to 

use network analysis and machine learning approaches to identify microbial groups with positive 
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and negative correlations with Armillaria species and tree health. This will allow for targeted 

culturing of beneficial microbes that can be developed as suitable bioinoculants to manage 

Armillaria root disease.  
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Figure 3-1: Armillaria species distribution with Ida Creek field site at the Priest River Experimental Forest (PREF). 
Pixels represent individual trees with colors representing the association between Armillaria altimontana or A. 
solidipes . Split pixels represent trees that were associated with both A. alitmontana and A. solidipes (Warwell et al., 
2019). 
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Figure 3-2: Rarefaction curve for all 42 sequenced samples. 
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Figure 3-3: Non-metric multidimensional scaling plot to determine dissimilarity of fungal microbial communities associated between: A) A. altimontana and A. 
solidipes, B) Tree health status. 
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Figure 3-4: Stacked bar graphs of top 17 most abundant fungal taxa for: A) A. altimontana and A. solidipes and B) tree health status. 
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Figure 3-5: A) Microbial communities (OTUs) between A. altimontana and A. solidipes. Core microbiome 
encompasses overlap between both species, while unique OTUs occur within each circle. B) Microbial communities 
associated to tree health status (Healthy, moderate, and dead). Core microbiome encompasses overlap all three 
groups, while interacting OTUs occur between two groups. Unique OTUs occur within each of the three circles. 
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Figure 3-6: Heat tree to compare microbial communities between A. altimontana (brown) and A. solidipes (blue). Overall abundance is calculated to determine the 
Log2 ratio of median proportions for each microbe to determine differences. 
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Figure 3-7: Heat tree to compare microbial communities between healthy trees (brown) and dead trees (blue). Overall abundance is calculated to determine the 
Log2 ratio of median proportions for each microbe to determine differences. 
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Figure 3-8: Heat tree to compare microbial communities between healthy trees (brown) and moderate trees (blue). Overall abundance is calculated to determine 
the Log2 ratio of median proportions for each microbe to determine differences. 
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Figure 3-9: Heat tree to compare microbial communities between dead trees (brown) and moderate trees (blue). Overall abundance is calculated to determine the 
Log2 ratio of median proportions for each microbe to determine differences.
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Figure 3-10: Log fold change for unique OTUs in association between A. altimontana (red) and A. solidipes (no 
observations). Significance is based on 90% confidence log Fold change between both species of Armillaria, with 
difference displayed for A. altimontana. 
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Figure 3-11: Log fold change for unique OTUs in association of tree health: healthy (red) and dead (blue). 
Significance is based on 90% confidence log Fold change between each status of tree health with differences 
portrayed for both healthy and dead trees.  

  



 

80 

 

 

Figure 3-12: Log fold change for unique OTUs in association of tree health: healthy (red) and moderate (blue). 
Significance is based on 90% confidence log Fold change between each status of tree health with differences 
portrayed for both healthy and moderate trees. 
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Figure 3-13: Log fold change for unique OTUs in association of tree health: moderate (red) and dead (blue). 
Significance is based on 90% confidence log Fold change between each status of tree health with differences 
portrayed for both moderate and dead trees. 
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Figure 3-14: Spearman correlation for soil chemistry properties and overall soil microbial richness and diversity 
indices. Correlations are identified using light colors (white/yellow), while no correlations is presented with dark colors 
(red/orange). The graph shows that richness, Shannon diversity, and InvSimpson diversity are correlated to each. 
The only soil property correlated to either richness or diversity is soil nitrogen, which is slightly correlated to the 
InvSimpson diversity index. For all soil properties, nitrogen, carbon, and organic matter are highly correlated with 
slight correlations with moisture and charcoal content.  
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CHAPTER 4: SUMMARY AND CONCLUSIONS 
 
 
 

Coniferous forests within the western United States have endured detrimental effects to 

overall health due to multiple abiotic and biotic factors, including changing climates, site and 

stand characteristics, and the presence of insect and disease populations. Climate models 

indicate that future temperature trends are hypothesized to be warmer and drier, subsequently 

causing an increase in drought duration and intensity (Allen et al., 2010). In Colorado, average 

annual temperature anomalies and annual water deficits have increased within the last year 

thirty years inducing stress to forests (CSFS, 2019; Smith et al., 2015). Climatic effects may 

induce an increased probability of mortality, specifically within high elevation forest that are 

frequently located in a cool, wet environment (Reich et al., 2016). Climate may also induce 

changes to pests and pathogens, whereas drought intensity increases the likelihood for higher 

plant damage by bark beetles and secondary pathogens within forests (Kolb et al., 2016). 

Assessing the direct and indirect effects of how abiotic and biotic factors will influence our 

forests may allow land managers to mitigate impacts within forested areas.  

To assess the effects that abiotic and biotic factors had on the presence of subalpine fir 

mortality in Colorado, roadside surveys and stand health monitoring plots were established. The 

stand health monitoring plots showed that the most relevant factors to subalpine fir mortality are 

stand density and the presence of D. confusus. I identified that stand density, elevation, and 

Armillaria spp. were the greatest influences on the presence of D. confusus, while the largest 

influences on the presence of Armillaria spp. are warmer maximum summer temperatures and 

increased slope percentage. My data indicated that both D. confusus and Armillaria spp. 

subsequently effected subalpine fir mortality, therefore, I can conclude that an increase in 

summer temperatures and higher stand densities indirectly influence subalpine fir mortality in 

Colorado’s national forests (Figure 4-1). Therefore, higher density and increases in summer 
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temperatures may have induced stress to trees increasing the likelihood of Armillaria spp. and 

D. confusus, subsequently leading to subalpine fir mortality. 

Reduced levels of subalpine fir mortality from 122,000 new acres in 2014 to 25,000 new 

acres in 2018 indicates that the combination of abiotic and biotic factors, including climate, 

stand characteristics, and insects and disease may have sanitized maladapted trees making 

stands healthier and less dense. As climate models project changes to even warmer and drier 

high elevation forests, however, areas affected by subalpine fir decline may increase again due 

to elevated stress and a greater presence of biotic factors. Managing forests, via thinning to 

increase vigor, to minimize predisposing and inciting factors may help reduce the risk of each 

contributing factor. 

Due to multiple dispersal methods, Armillaria root disease is difficult to manage in a 

forested setting. Since fungal biocontrols have been used to assist in the management, my 

samples were collected with the presence of two species of Armillaria, to understand the 

dynamics of soil fungal communities in association to multiple fungal root diseases. The goals of 

this study were to identify differences in soil fungal communities between trees associated with 

A. altimontana (non-pathogenic) and A. solidipes (highly virulent) and among healthy, 

moderately healthy and dead trees. No significant differences were observed in fungal taxa 

diversity or richness in soils, likely caused by low samples sizes (I only identified three trees 

associated with A. solidipes). Comparing among tree health status (healthy, moderate, and 

dead), although not significant, there was a clear distinction of fungal taxa associated with 

moderately healthy trees compared to dead trees. These results suggest that as a trees health 

declines from moderate to dead, there is an overall increase in richness and diversity of fungal 

communities. Although not significant, Hypocreaceae (Trichoderma) was more abundant in soils 

associated with A. altimontana and healthy trees.  

Mortierella were the most abundant fungi in soils associated with all treatments, which 

act as saprophytes to decompose dead tissue (Toju and Sato, 2018). Saprophytic fungi assist in 
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the decomposition of dead tissue by subsequently increasing nutrients for healthy and moderate 

trees, while providing resources for other remaining trees, new regeneration, or understory 

vegetation in association with dead trees. Additionally, mycorrhizae fungi were found within all 

treatments. Mycorrhizae may assist in the uptakes of nutrients for living trees and may act as a 

conduit to flush nutrients from declining trees to healthier trees as they die. Therefore, 

mycorrhizae may act to increase the overall health of the forest even with the presence of dead 

trees within a stand. 

The soil characteristic with the greatest impact on fungal communities was pH, which is 

surprising since soil fungi are generally known to be able to withstand a wide range of pH 

(Rousk et el., 2010). The large influence of soil pH on fungal communities is most likely due to 

the significant effects carbon, nitrogen, and organic matter has on soil pH. Coniferous forest 

litter has a higher C:N ratio, which constitutes to a slower decomposition of more recalcitrant 

(higher lignin) litter. Soils with a higher pH are typically able to breakdown litter more rapidly, 

which releases more nutrients into the soil and provides an increase to organic matter (Finzi et 

al., 1998). The pH ranged from 5.07 to 6.36. At this range, there is an increased rate of forest 

litter decomposition with the higher concentrations of saprophytes within the soil (Finzi et al., 

1998). Additionally, moisture significantly affected soil carbon, nitrogen, and organic matter 

levels. In combination, soil pH and moisture may have an indirect relationship to fungal diversity 

and increased tree health.  

The implications of this study infer that there is a potential for suppressive soils with the 

use of Trichoderma spp. due to the greater abundance in soils associated with A. altimontana 

and healthy trees. This may indicate that novel approaches could be developed for managing 

Armillaria root disease. Additionally, future research observing microbial communities as 

Armillaria spp. establishes in association to trees may provide insight as to how microbes adapt 

overtime in conjunction with root disease.   
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The impact of changing climate regimes will inevitably induce stress to forests. This 

stress will cause further risk of due to biotic agents such as bark beetles and secondary 

pathogens, such as Armillaria root disease in association with subalpine fir decline. 

Understanding what microorganisms are present within soil will help determine the primary 

drivers of overall plant health in association with Armillaria root disease, while connecting these 

belowground processes with the above ground forest ecology to improve forest management 

techniques. 
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Figure 4-1: A conceptual model of direct and indirect factors of subalpine fir (SAF) mortality based on logistic regressions for the presence of subalpine fir 
mortality, Dryocoetes confusus and Armillaria spp. Direct factors are displayed with solid lines, while indirect factors are dashed lines. Significant factors 
are represented with a thick line with non-significant factors with thin lines. This identifies that biotic factors (D. confusus, Armillaria spp., and O. 
dryocoetidis) direct influence SAF mortality, whereas climate (change in max. summer temperatures) and stand density (basal area and trees per 
hectare) have an indirect influence on SAF mortality.



 

93 

REFERENCE 
 
 
 

Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., 
Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H., Gonzalez, P., Fensham, R., Zhang, Z., 
Castro, J., Demidova, N., Lim, J-H., Allard, G., Running, S.W., Semerci, A., & Cobb, N. 2010. A 
global overview of drought and heat-induced tree mortality reveals emerging climate change 
risks for forests. For. Ecol. Manage., 259(4), 660-684. 

Colorado State Forest Service. 2019. https://csfs.colostate.edu/colorados-forests-changing-
climate/#1475778323849-01cfbca6-642d Accessed on March 25 2019. 

Finzi AC, Breemen NV, Canham CD. 1998. Canopy tree-soil interactions within temperate 

forests: Species effects on soil carbon and nitrogen. Ecological Applications. 8(2): 440-446.   

Kolb TE, Fettig CJ, Ayres MP, Bentz BJ, Hicke JA, Mathiasen R, Stewart JE, Weed AS. 2016. 
Observed and anticipated impacts on forest insects and disease in the United States. For. Ecol. 
Manage. 380: 321-334.  

Reich, R.M., Lundquist, J.E. & Hughes, K. 2016. Host-environment mismatches associated with 
subalpine fir decline in Colorado. J. For. Res., 27(5): 1177-1189. 

Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N. 

2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Jl. 

4(10): 1340-1351. 

Smith, J.M., Paritsis, J., Veblen, T.T., & Chapman, T.B. 2015. Permanent forest plots show 
accelerating tree mortality in subalpine fir forests of the Colorado Front Range from 1982 to 
2013. For. Ecol. Manage. 341: 8-17.  

Toju H, Sato H. 2018. Root-associated fungi shared between arbuscular mycorrhizal and 

ectomycorrhizal conifers in a temperate forest. Front Microbiol. 9: 443. 

 


	2.4 Results
	2.5 Discussion

