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ABSTRACT 

 

PATHOLOGY OF FELINE CHRONIC KIDNEY DISEASE:  HISTOMORPHOLOGIC  
 

CHARACTERIZATION OF RENAL AND GASTRIC LESIONS; AND AN INVESTIGATION   
 

INTO THE EXPRESSION OF RENAL α-ENOLASE 
 
 

Feline chronic kidney disease (CKD) is a common disease among older cats and is 

associated with high morbidity and decreased survival.  A definitive cause or potential factors 

that initiate this highly prevalent disease have been elusive.  The overall goal of this body of 

work was twofold; to better characterize, histopathologically, the renal and associated gastric 

manifestations of CKD, and secondly, explore the potential role of vaccinations and 

autoantibodies in cats with CKD. 

In the first study the presence and severity of both reversible and irreversible 

histopathologic lesions were evaluated in the kidneys of cats at each stage of CKD.  A total of 46 

cats with CKD were classified according to the International Renal Interest Society (IRIS) as: 

Stage I (3 cats), Stage II (16 cats), Stage III (14 cats), and Stage IV (13 cats).  Eleven young, 

non-azotemic and 10 geriatric, non-azotemic cats were included as controls.  The severity of 

tubular degeneration, interstitial inflammation, fibrosis, and glomerulosclerosis was significantly 

greater in later stages of CKD compared to early stages of disease. Proteinuria was associated 

with increased severity of tubular degeneration, inflammation, fibrosis, tubular epithelial single 

cell necrosis and decreased normal parenchyma. Presence of hyperplastic arteriolosclerosis, 

fibrointimal hyperplasia, or other vascular lesions was not found to be significantly different 
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between hypertensive and normotensive cats. Irreversible lesions such as interstitial fibrosis were 

more common and severe in later stages of CKD (Stage III and IV). 

Chronic kidney disease in cats is associated with gastrointestinal signs commonly 

attributed to uremic gastropathy. Symptomatic therapy is based on documented gastric lesions in 

other species.  The objective of this study was to determine the prevalence and characterize 

gastric lesions in cats with CKD.  Samples from a total of 37 CKD cats and 12 non-azotemic 

control cats were evaluated.  Characterized lesions were compared with serum creatinine 

concentrations, calcium-phosphorus product (CPP) and serum gastrin concentrations.  Gastric 

ulceration, hemorrhage, edema, and vascular injury, were not observed in cats with CKD. The 

most significant gastric lesions in CKD cats were fibrosis and mineralization. Sixteen CKD cats 

(43%) had evidence of gastric fibrosis of varying severity and 14 CKD cats (38%) had gastric 

mineralization. Cats with CKD were more likely to have gastric fibrosis and mineralization than 

non-azotemic controls (p=0.005 and p=0.021, respectively). Only cats with moderate and severe 

azotemia had gastric mineralization. CPP was correlated to disease severity; severely azotemic 

CKD cats had significantly greater CPP when compared to non-azotemic controls, and to mildly 

and moderately azotemic cats (p<0.05). Gastrin concentrations were significantly greater in CKD 

cats when compared to non-azotemic controls (p=0.003) but elevated concentrations were not 

associated with gastric ulceration. 

Vaccinations against feline viral rhinotracheitis, calicivirus, and panleukopenia (FVRCP) 

and vaccine cell lysates (CRFK) can induce autoantibodies that target α-enolase protein.  In 

addition, a subset of these cats with antibodies against CRFK lysates developed interstitial 

nephritis when hyperinoculated.  Alpha-enolase, a ubiquitous, glycolytic enzyme has been 

implicated as a self-antigen in various autoimmune diseases, some of which are associated with 
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active nephritis in human patients.  Plasma cell membrane expression of α-enolase has been 

identified as a target of autoantibodies. 

The focus of these dissertation chapters was threefold.  First, to determine if cats with 

CKD have anti-α-enolase antibodies and if levels of antibodies vary with severity of disease (i.e. 

IRIS stage) or FVRCP vaccine history.  Second, to characterize α-enolase expression in feline 

tissues and renal subcellular fractions in health and in feline CKD.  Third, to determine if 

antibodies in the sera from CKD cats are capable of targeting feline endogenous renal proteins.  

Twenty-nine CKD cats and healthy, unvaccinated control cats (n=8) were included.  CKD cats 

consisted of 9 Stage II cats, 8 Stage III cats, and 12 Stage IV cats. 

Cat with CKD, regardless of vaccine history, had significantly greater levels of α-enolase 

antibodies than controls (p<0.0001).  No difference in the levels of antibodies between vaccine 

groups or IRIS stage was found.  Alpha-enolase protein was differentially expressed in the 

kidneys of cats with CKD by immunohistochemistry. In healthy kidneys, α-enolase protein 

immunoreactivity was moderate in tubular epithelium but absent in glomeruli.  In contrast, α-

enolase expression was significantly decreased in tubules that were degenerative or atrophic in 

kidneys of CKD cats with significantly more expression in glomeruli relative to healthy controls.  

All but one CKD (n=28) cat had cytosolic α-enolase while membranous protein expression was 

less frequent (n=16).   However, membranous expression was more common in later stages of 

disease (i.e. Stage III and IV).  Immunoglobulin G from the sera of CKD and non-azotemic cats 

were shown to target recombinant α-enolase, as well as, cytosolic and membranous protein at 

approximately 52 kDa by immunoblot.  These data indicate that α-enolase antibodies are 

commonly found in sera of cats with CKD and are capable of binding endogenous renal proteins.  

Lastly, α-enolase protein is overexpressed in glomeruli with decreased expression in injured 
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renal tubules of cats with CKD.  Together this work indicates that anti-α-enolase antibodies are 

common in cat sera and that renal α-enolase protein is altered in both the cellular population 

expression and cellular localization which has potential physiologic and pathologic implications. 
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CHAPTER 1:  LITERATURE REVIEW 
 

 
The total production or output of a factory may fall for one of two reasons.  The team of 
workers may become slack or may not have enough to do, like the nephrons in heart 
failure; or the team may have been seriously depleted in numbers owing to illness, the 
few remaining workers actually putting in overtime in an unsuccessful attempt to 
compensate for the absence of their fellows.  The latter is the state of affairs in 
experimental renal failure, as our obliging rats have clearly demonstrated, and there is 
good reason to believe that it is the state of affairs also in chronic renal failure in the 
human subject.2  

 
 

1.1 Feline chronic kidney disease 

1.1.1 Prevalence of feline chronic kidney disease 

Chronic kidney disease (CKD) is associated with decreased survival and considerable morbidity 

in felines.5 Reports on prevalence vary but it is the consensus that aged cats are particularly 

affected.6-8  Within the general feline population prevalence of CKD is 1%-3%.9  According to 

the State of Health Report issued by Banfield Pet Hospitals 160 per 10,000 feline patients seen 

annually have kidney disease which has increased in incidence 15% since 2007.10  Lastly in a 

retrospective study of the co-prevalence of degenerative joint disease and CKD as many as 50% 

of study cats without and 68% of cats with  degenerative joint disease had CKD.6   

1.1.2 Pathology of feline chronic kidney disease 

Chronic kidney disease is characterized by a reduction of structural and functional components 

resulting in retention of metabolic waste products, decreased urinary concentrating ability, and 

variable electrolyte and acid-base imbalances.5, 7, 8 The most frequent morphologic diagnosis is 

chronic tubulointerstitial nephritis.7  Other infrequent primary renal diseases that will cause renal 

dysfunction include of lymphosarcoma, amyloidosis, chronic pyelonephritis, and polycystic 

kidney disease.7  CKD is progressive which in part is due to interstitial fibrosis--a common end 
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point that correlates with a decline of renal function.11-13  The tubulointerstitium in particular 

appears to be the focus of renal injury in feline CKD. In addition to interstitial fibrosis, 

mononuclear inflammation and tubular atrophy are typical morphologic changes in chronic 

tubulointerstitial renal disease.14, 15  In a histomorphologic study of felines in the United 

Kingdom interstitial fibrosis was the best histologic correlate to azotemia, hyperphosphatemia, 

and anemia in cats with CKD.12  Additionally, fibrosis scores correlated with interstitial 

inflammation and glomerular obsolescence.12  Primary glomerular lesions in cats with CKD are 

uncommon.7, 8, 12   

1.1.3 Renal fibrosis 

Renal fibrosis, or scarring, is the accumulation of extracellular matrix which irreversibly replaces 

normal tissue.11, 16  Interstitial fibroblasts, the culprit of fibroplasia, can be derived from resident 

fibroblasts, migration of pericytes, recruitment of mesenchymal cells from circulation, and 

transformation of tubular epithelial or endothelial cells.11  Production of extracellular matrix by 

fibroblasts is regulated by various growth factors, leukocyte interactions, and physiologic 

stimuli.16, 17  Transforming growth factor β (TGF-β) is an important renal pro-fibrotic mediator 

and is up-regulated in all mammalian chronic kidney diseases.16  Pro-fibrotic effects include 

induction of various cells to a myofibroblast phenotype, a key event in initiation and progression 

of fibrosis; stimulation of extracellular matrix (ECM) gene transcription, and activation of other 

pro-fibrotic cytokines.18-21 

The renin-angiotensin-aldosterone system (RAAS) is crucial for renal homeostasis and is 

up-regulated in CKD.16 The individual members of the RAAS system have direct pro-fibrotic 

effects.  Angiotensin, aldosterone and renin are capable of up-regulating TGF-β expression along 

with other pro-inflammatory and pro-fibrotic mediators.16  Expression of transglutaminase 2 
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(TG-2), an enzyme that stabilizes the extracellular matrix is associated with renal fibrosis in cats 

with CKD as well.22 

A few other factors that contribute to renal injury and fibrosis include proteinuria, 

interstitial inflammation, and hypoxia.  Protein can be directly toxic to tubular epithelial cells as 

well as contribute to epithelial to mesenchymal transition of tubular epithelial cells.16, 23, 24  

Inflammatory cells produce pro-fibrotic growth factors necessary for propagation of fibrosis.16 

Hypoxia promotes fibrogenesis by several mechanisms.  A few of these mechanisms include 

epithelial to mesenchymal transition, induction of pro-fibrotic mediators by fibroblasts, 

decreased matrix turnover and increased matrix production.25, 26 

In conclusion, there are numerous factors that contribute to renal fibrosis, a few which 

were discussed here.  Fibrosis is considered irreversible, is a common end point of renal injury, 

and is progressive.  The importance of understanding factors that contribute to initiation and 

propagation of fibrosis in the cat kidney could have preventative and therapeutic implications. 

1.1.4 Staging of feline chronic kidney disease 

The International Renal Interest Society was originally organized by veterinarians with an 

interest in nephrology at the 8th Annual Congress of the European Society of Veterinary Internal 

Medicine in Vienna, Austria in 1998.  It is supported by Novartis Animal Health that provides 

financial and organizational assistance.  The primary objective of this group was to establish a 

set of guidelines to aid the clinician in diagnosis and treatment of kidney disease in dogs and 

cats.  Stages are determined by two serial serum creatinine concentrations measured in a stable 

patient.  Stage I cats are not azotemic but at risk due to kidney abnormalities such as decreased 

urine specific gravity, renal proteinuria, or abnormal appearance on ultrasound or renal biopsy.  

Stage II cats have serum creatinine concentrations of 1.6-2.8 mg/dl, 2.8-5.0 mg/dl for Stage III, 
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and >5.0 mg/dl for Stage IV cats.  In addition, renal disease is sub-staged based on presence of 

proteinuria and hypertension which increases the risk of additional organ damage.27 

A recent study evaluating survival of CKD cats based on IRIS stage was reported.28  Overall 

median survival for cats with kidney disease was 771 days from the time of diagnosis and 

survival was significantly less with increasing stage.  For cats with serum creatinine 

concentrations of 2.3-2.8 mg/dl, which lies within the upper half of the defined Stage II by IRIS 

(i.e. Stage IIb), median survival was 1,511 days.  Stage III cats had a median survival of 778 

days while Stage IV cats median survival was only 103 days from the time of diagnosis.  

Clinicopathologic parameters were evaluated as risk factors for survival.  Age at the time of 

diagnosis, albumin, blood urea nitrogen (BUN), creatinine, calcium, bicarbonate, potassium, and 

hematocrit were not predictive of survival.  Hyperphosphatemia was the only variable identified 

as a risk factor.  For every unit increase in phosphorus the risk for death increased 11.8% in cats 

with CKD.28 These data and IRIS scoring for cats with kidney disease can aid the clinician in 

communicating potential risks and prognosis to pet owners.   

1.2 Uremic gastropathy 

1.2.1 The uremic syndrome 

Uremia, a clinical syndrome of chronic kidney disease, is due to retention of toxic metabolic 

byproducts.15  It manifests clinically in a variety of signs including weight loss, vomiting, 

inappetance, and anorexia.9, 29-31 Clinical symptoms are thought to be related to gastrointestinal 

lesions and the central effects of metabolic waste products.32  Toxins of uremia include products 

of protein catabolism and numerous other low, medium and large molecular weight proteins.15  

Theories on the mechanisms of injury include small molecular weight proteins acting on plasma 

membrane adenyl cyclase of gastric epithelial cells, generation of ammonia by gastric bacteria, 
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and altered blood flow with resultant local tissue hypoxia.33-35  Treatment in feline uremia is 

typically symptomatic and largely based on pathology in other species. 

1.2.2 Pathology of uremic gastropathy 

Uremic gastritis was first described in 1934 from autopsies in 135 uremic human patients; 

lesions varied from mild edema to hemorrhage, ulceration, and necrosis.36 In humans 

complications of uremia such as gastritis, ulceration, and hemorrhage are common.37 A 

descriptive study of gastric pathology in a small group of uremic dogs revealed marked lesions.33  

Half of the uremic dogs (n=2) had grossly identifiable lesion of the gastric mucosa in the fundus 

and body characterized by hemorrhage and ulceration.33  The cardia, antrum, and pylorus were 

spared.33  Histologically all uremic dogs were affected by lesions in the lamina propria, gastric 

glands, and submucosal vessels.  Vascular lesions of degeneration, necrosis, and mineralization 

were present with variable severity in all uremic dogs.  In addition, granular mineralization was 

present in the mucosa of uremic dogs.33 In a more recent study of gastric histopathologic features 

in uremic dogs, common lesions included edema, mineralization, glandular atrophy and 

vasculopathy.38  In this study lesions were present in 79% of dogs.  Of the dogs, 14% had 

evidence of gastric mucosal necrosis.38  Similar histopathologic studies have not been done in 

cats despite the high prevalence of renal disease in this species.  Studies of toxin ingestion such 

as Easter lily and melamine and cyanuric acid which resulted in renal failure were not associated 

with gastric ulceration.39, 40 

1.2.2 Gastrin and uremic gastropathy 

Gastrin is a hormone that stimulates the production of hydrochloric acid by gastric parietal cells 

in response to stomach distension or the presence of proteins.41, 42  Its release is under negative 

feedback regulation and thus is not secreted in the presence of acid in health.  In humans and 
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dogs, gastrin is excreted by the kidneys, and it is hypothesized that as renal function declines, 

hypergastrinemia develops, which could result in gastric hyperacidity.43 Hyperacidity can result 

in local tissue injury in the stomach; however, this appears to be an inconsistent finding.44  

Additional factors that potentially contribute to gastric lesions are thought to be the result of 

delayed gastric emptying and Helicobacter pylori infection.45-47   Gastric lesions have been 

reported in cats with hypergastrinemia  due to gastrin-secreting tumors but the relationship of 

hypergastrinemia as an etiology for gastric lesions or gastrointestinal symptoms in feline CKD 

has not been evaluated.48 

1.3 Alpha-enolase autoantibodies and kidney disease 

1.3.1 Renal immunity 

Resident leukocytes of the kidney include dendritic cells, macrophages, and lesser number of 

lymphocytes and mast cells.49, 50 Fibroblasts and dendritic cells are the most abundant cell type in 

the cortical and outer medullary interstitium.49 Low molecular weight proteins passing through 

the glomerular filtration barrier concentrate in proximal tubules where they are reabsorbed.  

Some proteins pass through tubules into the interstitium and are taken up by resident dendritic 

cells.  Interstitial dendritic cells can be exposed to 10-fold greater antigen levels in the kidney 

than any other tissue.50  Dendritic cells are largely responsible for antigen processing and 

presenting to regional lymph nodes and thus are a key player in immune tolerance.50, 51  

Additional functions include regulation of effector cells and production of pro-inflammatory 

cytokines (e.g. TNF) during renal injury.50, 52-54 Renal cortical macrophages are scarce but are 

associated with large vessels and are abundant in the renal pelvis.49  Macrophages function in 

tissue repair by removal of apoptotic cellular debris and production of growth factors as well as 

controlling infectious agents via phagocytosis and production of pro-inflammatory cytokines (IL-
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1β, IL-6, and TNF).52, 53, 55  Resident lymphocytes are present in low numbers while mast cells 

contribute to inflammation in some glomerulonephritides.50  

The intrinsic structural and functional properties of the kidney make it particular 

susceptible to injury.  The pattern of renal injury is largely influenced by the location and 

duration of the inflammatory stimulus.50  For example, immune complex deposition in glomeruli 

results in glomerulonephritis while ischemic, toxic, and obstructive etiologies will result in 

tubulointerstitial injury.50  These entities are not mutually exclusive and glomerulonephritis can 

lead to tubulointerstitial disease by various mechanisms such as injury to podocytes and other 

extracapillary components; ischemia secondary to post-glomerular capillary destruction; and 

tubular protein overload.13, 50, 56-59 

Autoimmune diseases are characterized by an adaptive immune response to self-antigen.  

The inciting trigger or target of said response is not entirely eliminated and thus leads to chronic 

inflammation and ultimately tissue injury.60, 61  Pathogenesis of autoimmunity, in general, is 

typical of any immune responses.  Either directly cytotoxic by activation of T lymphocytes or 

indirectly via initiation of humoral immunity by B lymphocytes.60, 62  Tolerance to self-antigens 

is established in the thymus by elimination of self-reactive T cells.  However, peptides with low 

affinity binding to T cell receptors are not as effective at driving this negative selection process.60  

Auto-reactive antibodies just like any other antibody are capable of forming immune complexes 

in circulation or react directly to tissue specific antigens in situ.63  The kidney is intrinsically 

susceptible to immune mediated injury by virtue of its structural composition. Immune complex 

deposition leads to complement fixation, leukocyte recruitment and inflammation of glomeruli 

and tubules.63-67 
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1.3.2 Alpha-enolase: a target for autoantibodies  

Autoimmune disease can manifest systemically or be directed towards a specific organ.  In 

systemic autoimmune diseases, multiple body systems are affected.  Such is the case in systemic 

lupus erythematosus (SLE) in which several autoantibodies have been identified and typically 

target abundantly and ubiquitously expressed antigens.60, 68  However, some autoantibodies can 

be non-pathogenic and auto-reactive antibodies are present in healthy individuals.3, 69-71  The 

pathogenesis of antibody-mediated nephritis occurs by either deposition of circulating immune 

complexes or in situ binding of autoantibodies to self-antigen.3 Ultimately immune complexes 

will activate complement and recruit inflammatory cells leading to inflammation and tissue 

injury.  

Anti-α-enolase antibodies have been identified in a number of autoimmune diseases.72  

These antibodies were first described in patients with systemic rheumatic diseases a few decades 

ago.73  Currently anti-α-enolase have been reported in patients suffering from systemic lupus 

erythematosus, mixed cryoglobulinemia, systemic sclerosis, Behcet’s disease, and lymphocytic 

hypophysitis to name a few.74-79  Conversely, anti-α-enolase antibodies can also be found in 

healthy individuals with reports of prevalence ranging from 0-6% which may raise doubt as to 

the significance of this particular autoantibody.70, 72, 74, 79-82  However, in SLE and mixed 

cryoglobulinemia, α-enolase antibodies were associated with active nephritis with declining 

antibody levels after therapeutic commencement.75-77, 83  Furthermore, IgG and α-enolase were 

co-localized within glomeruli of patients with membranous glomerulonephritis and lupus 

nephritis by immunofluorescence (Figure 1.1).1, 83 
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The reactivity of autoantibodies to target antigens may give additional clues to the 

variability of antibody pathogenicity in individuals.  Patients with cancer-associated retinopathy 

syndrome, (CAR) a progressive retinal degenerative disease, develop anti-enolase antibodies.    

Epitope mapping of recombinant protein and anti-α-enolase sera from healthy and CAR patients 

revealed 3 common binding regions with an additional epitope unique to CAR patients.84  In 

addition, antibodies in CAR sera had cytotoxic effects on in vitro retinal cells not observed in 

healthy controls.  This suggests that not all autoantibodies are equivalent and that specific 

epitope recognition may confer pathogenicity. 

In addition to autoimmune diseases, α-enolase antibodies have been associated with few 

infectious diseases.  Alpha-enolase antibodies were found in 99% of children that presented for 

Streptococcus pneumonia otitis media.85  Anti-α-enolase antibodies limit tissue invasion by 

Streptococcus pyogenes and is a major cell surface protein of group A Streptococci.86, 87  It is 

 

Figure 1.1 Immunofluorescence of glomerular α-enolase (a) and IgG4 (b) co-localized 
(merged, c) in membranous glomerulonephritis.  Scale bar=20 μm, x630.  Adapted 
from “Direct characterization of target podocyte antigens and auto-antibodies in 
human membranous glomerulonephritis: Alfa-enolase and borderline antigens.” M. 
Bruschi, 2011, J Proteomics, 74(10), 2008-2017. Copyright by Elsevier. Adapted 
with permission. 1 

9 
 



likely that the homologous nature of α-enolase between eukaryotes and prokaryotes contributes 

to the cross reactivity of antibodies via molecular mimicry.61, 68, 72, 85   

1.3.3 Alpha-enolase autoantibodies in the cat 

Crandell Rees Feline Kidney (CRFK) cell lysate was established five decades ago as the first 

feline cell line to successfully be maintained in continuous culture.88  CRFK cell lysates were 

derived from the renal cortex of a young domestic cat and morphologically described in culture 

as “epithelial-like”.88  Designed for feline viral research, CRFK cells are susceptible to feline 

picornaviruses, reovirus, panleukopenia, and herpesvirus 1 which makes them ideal for the 

manufacturing of the core, prophylactic vaccine used routinely to immunize cats against feline 

herpesvirus 1 (rhinotracheitis), calicivirus, and panleukopenia virus (FVRCP).88-91  Since the 

establishment of CRFK cells for replication of feline viruses other cell lines have been explored 

and utilized for research and vaccine purposes.89, 92  Exclusion of all cellular constituents or 

proteins from the purification of viruses used in vaccines is improbable; therefore, cats may be 

exposed repeatedly to feline cellular antigens over the course of a lifetime from the 

administration of any parenteral vaccine that are developed in feline cell culture.    

To determine if vaccine or the cell lysate could induce antibodies or renal injury, cats 

were hyperinoculated with FVRCP vaccine or CRFK cell lysates.91  A total of 4 FVRCP 

vaccines or 11 lysate inocula at 10 μg, 50 μg, or 50 μg with aluminum adjuvant were 

administered to a number of individual cats over 50 weeks.  Serial serum samples were 

monitored for antibodies against CRFK or feline renal cell (FRC) lysates using tissues from 

specific pathogen free (SPF) cats.  All cats that were hyperinoculated with cell lysates developed 

antibodies targeted against cell lysate (CRFK and FRC).  Five of the 6 cats that were 

administered parenteral FVRCP vaccine developed antibodies against CRFK lysate with all 
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developing antibodies against FRC lysate antigen.  Cats that were administered vaccine 

subcutaneously had significantly higher levels of antibodies than cats that were administered an 

intranasal vaccine.  CRFK antigens recognized by vaccine induced antibodies were determined 

by immunoassays, affinity chromatography, and proteomics from cats administered FVRCP 

vaccination or CRFK lysates.93  Sera from the majority (8/14) of cats from either inoculation 

group had anti-α-enolase antibodies.  Post-inoculation sera from cats administered FVRCP 

vaccines parenterally had significantly greater amounts of CRFK and α-enolase antibodies by 

enzyme-linked immunosorbent assay (ELISA).93 In a separate study, azotemic cats with 

naturally occurring renal disease had significantly higher levels of α-enolase antibodies than non-

azotemic cats.94 

Study cats that were hyperinoculated with either vaccine or cell lysates were biopsied.   

Two cats, 1 that received CRFK lysate and another parenteral FVRCP vaccine, developed mild 

interstitial inflammation by the end of the study.91  A year later, cat’s hyperinoculated with 

CRFK lysate were administered a booster and then biopsied 2 weeks later.  Of these 6 cats, 3 

developed interstitial nephritis (Figure 1.2).4  Glomerular lesions or ultrastructural immune 

complexes were absent.  Lesions present in the biopsies of these 3 cats are similar to the 

histologic changes encountered in feline CKD which includes interstitial mononuclear 

inflammation and tubular injury with relative sparing of glomeruli typical of chronic interstitial 

nephritis.7, 8, 15, 95  This pattern of injury however is not specific to a particular cause but rather a 

common end result of multiple etiologies.15  In a majority of cats with CKD and the 3 

hyperinoculated cats with interstitial nephritis in the aforementioned study; primary glomerular 

lesions, or ultrastructural evidence of immune-complexes in the latter, were not present.  Based 

on these observations an immune-complex mediated pathogenesis, such as with lupus nephritis, 

11 
 



is unlikely in the hyperinoculated cats.   However, induction of auto-antibodies by 

hyperinoculation with parenteral vaccination or cell lysate; and the significant levels of α-enolase 

antibodies in azotemic cats are suggestive of a role of these antibodies in feline renal disease and 

thus should be further investigated. 

 

 

 

Figure 1.2  Biopsy from a cat hyperinoculated with CRFK lysates. Marked 
mononuclear interstitial inflammation with tubular loss. Hematoxylin and eosin, 
20X. Adapted from “Interstitial nephritis in cats inoculated with Crandell Rees 
feline kidney cell lysates” M. Lappin, 2006, J Feline Med Surg, 8(5), 353-356. 
Copyright by SAGE publishing. Adapted with permission4 
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1.4 Alpha-enolase in health and disease   

1.4.1 Alpha-enolase the glycolytic enzyme 

Alpha-enolase (2-phospho-D-glycerate hydrolyase) is a metal-ion-activated enzyme that 

catalyzes the dehydration of 2-phosph-D-glycerate to phosphoenolpyruvate in the catabolic 

direction of the Emden Mayerhoff-Parnas glycolytic pathway.87, 96  Enolase is capable of 

catalyzing the reverse reaction--hydrolysis of phosphoenolpyruvate--during gluconeogenesis 

(anabolic pathway).  Six divalent metal ions can activate this enzyme; however magnesium is its 

natural cofactor.97, 98   

An abundantly expressed cytosolic protein, enolase exists as 3 isoenzymes:  α-, β-, and γ-

isoforms.99-102  The α-isoform is found in a variety of tissues, β-isoform is almost exclusively 

found in muscle, and γ-isoform is primary found in neural and neuroendocrine tissues.  Three 

independent genetic loci encode for each individual isoenzyme.87, 99-103  All enolase are made up 

of 2 identical subunits (dimer) and have a molecular weight of 82,000-100,000 Da.87  The amino 

acid sequence of enolase is highly conserved across species.87  Gene expression of enolase is 

variable depending on the pathophysiologic, metabolic, or developmental conditions of the cell 

and therefore not considered a housekeeping gene.104  ENO1 encodes for α-enolase in addition to 

the DNA-binding tumor suppressor protein, c-myc binding protein (MBP-1). MBP-1 is shorter, 

37 kDa as opposed to α-enolase which is 48 kDa, and is mostly located within the nucleus.105  

1.4.2 Alpha-enolase protein in disease 

Alpha-enolase is not restricted to the cytoplasm as a glycolytic enzyme.  This protein has been 

identified in the pathogenesis of several infectious, inflammatory, and neoplastic diseases.87   

Cardiac isoforms are altered during hypertrophy and subject to post-translation modifications in 
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diabetes.106, 107   Alpha-enolase can be externalized on the cell surface as a marker for apoptosis 

or act as a plasminogen receptor on the cell membrane.108, 109  It promotes tumor cell survival 

during anaerobic conditions and aids in tumor invasion.109   

Up regulation in α-enolase protein expression has been described in several diseases.  

Renal α-enolase protein expression was assessed by immunohistochemistry utilizing an anti-α-

enolase IgG1 monoclonal antibody purified from immunized BALB/c mice.3 Renal biopsies 

from systemic lupus erythematosus (SLE) patients with lupus nephritis and healthy individuals 

were assessed for protein expression.  In healthy controls, alpha-enolase was highly expressed in 

tubules but absent in glomeruli.  In biopsies from patients with lupus nephritis tubular α-enolase 

was greater than controls and glomerular expression was up regulated.  Mesangial cells, parietal 

and visceral epithelial cells as well as cellular crescents in glomeruli expressed protein where it 

was otherwise absent in controls (Figure 1.3).3   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Immunohistochemistry for α-enolase from a renal biopsy from a patient with 
systemic lupus erythematous.  High expression in tubules and glomeruli, monoclonal 
mouse α-enolase antibody. Adapted from “The targets of nephritogenic antibodies in 
systemic autoimmune disorders” P. Migliorini, 2002, Autoimmune Rev,1(3),168-173. 
Copyright by Elsevier. Adapted with permission.3  
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In a separate immunohistochemical study of renal enolase expression in the tubules of 

renal adenocarcinoma it was shown that α-enolase was preferentially expressed.110  Alpha-

enolase was strongly expressed in proximal tubules, collecting ducts, and distal tubules in 

healthy controls.  Protein expression was not found in the loops of Henle.  Gamma-enolase was 

localized to macula densa cells, occasionally in the collecting ducts, distal tubules and 

Bowman’s capsule but not in the proximal tubules.  In the medulla, γ-enolase was found in most 

of loops of Henle and collecting ducts but only a few distal tubules.  Both isoforms were 

localized to the cytoplasm and occasionally the nucleus.  Protein concentrations determined by 

immunoassay were greater for α-enolase than γ-enolase.  Levels of γ-enolase in the medulla were 

statistically higher than those in the cortex.  Both isoforms were greater in renal cell carcinoma 

cells than controls.110 

Alpha-enolase protein may also serve as a marker for physiologic stress.109 Adverse 

environmental conditions such as elevated temperatures and glucose depletion may induce 

cellular synthesis of heat shock proteins (HSP) and glucose-regulated proteins (GRP), 

respectively.  In addition endothelial cells exposed to hypoxic conditions in vitro can synthesize 

a distinct set of hypoxia-associated proteins (HAPS; Mr 34, 36, 39, 47, and 56 kDa).111, 112  This 

appears unique to endothelial cells as primary cultures of mouse renal tubular epithelial cells did 

not up regulate any specific proteins during hypoxic conditions.  However, a majority of renal 

tubular cells did not survive to the time point of maximal protein up regulation of other cell types 

(≥18 hours).  Endothelial cells appear to be tolerant of hypoxic conditions due to up regulation of 

HAPs while renal tubular epithelial cells are extremely sensitive.112  Furthermore, the 47 kDa 

HAP protein from hypoxic endothelial lysates were isolated and sequenced.  Significant identity 

was found with the glycolytic enzyme enolase (75% homology to human α-enolase).  This 
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suggests that α-enolase can function as a hypoxic-associated protein aiding in the survival of 

endothelial cells during hypoxia.113 

1.5 Membranous cellular localization of alpha-enolase  

1.5.1 Surface expression in autoimmune disease  

A feature of systemic autoimmune disorders is production of antibodies specific for antigens 

which are often highly conserved structures and are frequently enzymes.114  Alpha-enolase 

antibodies are present in sera of patients with mixed cryoglobulinemia (MC), SLE, and systemic 

sclerosis.3, 74, 114  In patients with SLE and MC the presence of antibodies invariably was 

associated with active nephritis.  Alpha-enolase has been described as a multifunctional protein 

because of its variable cellular distribution and interaction with other cellular components.109  In 

an experiment by Moscato et al. fractionated renal cortical cells were utilized to determine α-

enolase cellular location and assess the interaction of spontaneous and induced anti-α-enolase 

antibodies.114 Mouse monoclonal antibodies and antibodies isolated from MC, SLE, and SSc 

patients bound to membranous α-enolase by immunoprecipitation and inhibited binding of 

plasminogen.  These data suggests a pathogenic role of anti-α-enolase antibodies in autoimmune 

disease by interfering with the function of membranous α-enolase as a plasminogen receptor.   

  Systemic sclerosis is a connective tissue disorder characterized by excessive fibrosis of 

organs.115, 116  A majority of individuals have detectable antinuclear autoantibodies.115 These 

autoantibodies are capable of activating fibroblasts in vitro.116  Indirect immunofluorescence 

with IgG from systemic sclerosis patients (antifibroblast antibodies, AFA) demonstrated 

significant reactivity to the plasma cell membrane of skin fibroblasts.  Fibroblasts exposed to 

AFA IgG had a dose-dependent up-regulation of cell surface ICAM-1expression and IL-6 

production.  In addition AFA IgG up-regulated cytokine gene expression (IL-1α, IL-1β, and IL-
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6).  Alpha-enolase was identified as a major target of AFA IgG by immunoblot and ELISA.115  

These findings show that α-enolase is expressed on the cell surface of fibroblasts and act at some 

capacity in cell signaling which may contribute to the fibrotic phenotype in this disease. 

1.5.2 Alpha-enolase: plasminogen receptor 

Plasminogen receptors are a heterogeneous group of proteins that contain a carboxyl-terminal 

lysine.3  It is highly expressed and ubiquitously distributed on various cell types.3  The 

importance of α-enolase as a plasminogen receptor has been determined in several diseases.  On 

the surface of leukocytes, neuronal and endothelial cells α-enolase can function as a plasminogen 

receptor.109, 117-121  Cell membrane expressed α-enolase is structurally distinct from other 

enolases despite high sequence similarities which may explain its multifunctionality.122  As a 

plasminogen receptor, activation of plasminogen is enhanced and plasmin is protected which 

ultimately promotes fibrinolysis and degradation of extracellular matrices.109  In autoimmune 

disorders resulting in nephritis, such as previously discussed in lupus nephritis patients, 

autoantibodies target are known to target glomerular α-enolase.3, 83  It has been proposed that the 

mechanism of injury in this disorder is interference of α-enolase that is functioning on the cell 

membrane as a plasminogen receptor.  Blocking potential plasminogen binding sites would 

impair fibrinolysis promoting inflammation and tissue injury.3  Therefore, membranous α-

enolase functioning as a plasminogen receptor could be blocked by autoantibodies and thus 

contribute to the pathogenesis of renal inflammation. 
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CHAPTER 2:  RESEARCH OVERVIEW AND SPECIFIC AIMS 
 
2.1 Research Overview 

Chronic kidney disease (CKD) has been reported in 28-50% of cats and increases in prevalence 

with age.1-3  It is characterized by a reduction of structural and functional components resulting 

in retention of metabolic waste products, decreased urinary concentrating ability, electrolyte and 

acid-base imbalances.3-5  The most frequent morphologic diagnoses in cats with CKD are chronic 

tubulointerstitial nephritis and fibrosis; which are relatively non-specific lesions.4, 6, 7 Fibrosis is 

considered a common end point of all kidney diseases which does little to aid the clinician in 

determining an inciting cause.8  Frequently, CKD in cats is considered multifactorial resulting in 

progressive, irreversible kidney damage.5 Etiologies that have been proposed to contribute to 

renal injury in cats include Leptospira species, feline morbillivirus, diet, age, and vaccines; 

however, definitively defining the etiopathogenesis of CKD has not been accomplished in this 

species. 6, 9-12 

The goal of this dissertation is twofold.  First to better characterize renal pathology in 

feline CKD and associated gastric lesions histologically.  These aims are covered in Chapters 3 

and 4, respectively.  The second goal of this dissertation is to evaluate the expression of renal α-

enolase and its potential role as a target for circulating autoantibodies in cats with CKD.  These 

aims will be addressed in Chapters 5, 6, and 7. 

2.2 Specific Aim 1 (Chapter 3: Histopathology of CKD IRIS stages) 

Histologically tubulointerstitial nephritis is the most common diagnosis made in association with 

feline CKD.4  This common lesion can be result of numerous renal insults however and is not 

indicative of any particular etiology.4, 6, 7  The cause of CKD in cats frequently cannot be 

determined at the time of diagnosis and often renal injury is significant and irreversible.4, 5, 13   
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Staging feline CKD was established by the International Renal Interest Society (IRIS) 

based on measurement of serum creatinine concentrations and further sub-staged by the presence 

of hypertension and proteinuria.14, 15  These clinicopathologic parameters are useful for 

diagnosing, staging, and prognosticating but give few clues as to the distribution and pattern of 

injury within the kidney at individual stages. Therefore it is difficult to determine which stages 

are characterized by irreversible lesions and at which stage interventional therapies should be 

targeted. 

The objective of aim 1 is to characterize and quantify interstitial, tubular, glomerular and 

vascular lesions in the kidney of cats with CKD and assess the association between these 

histopathologic changes and clinical IRIS stage and sub-stage.  The hypothesis for this aim is 

that histopathologic lesions in the kidneys of cats with CKD will vary between clinical IRIS 

stages.  Renal tissue from cats at various IRIS stages were systematically evaluated and scored 

on defined histopathologic criteria by two pathologists.  Histologic scores and clinicopathologic 

data are compared between groups.  Young and geriatric, non-azotemic cats are included as 

controls. 

2.3 Specific Aim 2 (Chapter 4: Uremic gastropathy) 

Uremia is a consequence of renal insufficiency with retention of metabolic waste products 

manifesting in clinical symptoms which can include weight loss, vomiting, inappetance and 

anorexia. 16-19 Such clinical presentations are often thought to be the result of gastric hyperacidity 

secondary to hypergastrinemia and gastric pathology.20, 21  However, while this pathogenesis 

may hold true in human patients with uremia little has been described as to the presence or 

contribution of gastric lesions to clinical symptoms in feline patients suffering from renal 
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disease.22  While hypergastrinemia has been shown to be associated with severity of feline CKD, 

the presence of gastric lesions have not assessed.20 

The objectives of aim 2 is to evaluate the type and prevalence of histopathologic lesions 

in the stomach of cats with CKD, and to determine whether the degree of azotemia, calcium-

phosphorus products and serum gastrin concentrations correlate with gastric pathology. The 

hypothesis for aim 2 is that uremic gastropathy is an uncommon finding in cats with CKD.  

In this chapter, gastric and renal tissues from cats at various stages, or severity, of renal disease 

and healthy controls are systematically evaluated and scored on defined histopathologic criteria 

by two pathologists.  In addition, histologic scores are compared to clinicopathologic parameters 

such as serum creatinine, calcium-phosphorus product, and gastrin concentrations. 

2.4 Specific Aim 3 (Chapter 5: Alpha-enolase antibodies in serum) 

Core vaccines routinely administered to cats and the cell lysates used in vaccine production have 

been associated with development of antibodies against these lysates and renal disease 

experimentally.12, 23  Crandell Rees feline kidney (CRFK) cell line originated from renal cortical 

tissue of a young, healthy domestic cat.24  Established cell cultures were described 

morphologically as “epithelial-like” and are used for production of the core feline herpesvirus 1, 

calicivirus, and panleukopenia (FVRCP) vaccine.23-26  Inevitably these cell contaminates are 

included in the vaccine therefore exposing cats to feline cellular proteins repeatedly over a 

lifetime.23  An immunodominant protein, α-enolase, was identified as a target antigen for vaccine 

and CRFK lysate induced antibodies in cats that were administered repeated boosters.27   

Anti-α-enolase antibodies present in sera are associated with a myriad of infectious, 

autoimmune, inflammatory, and degenerative diseases.28-30  Of particular interest, podocyte α-
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enolase has been found to be the target of auto-antibodies in membranous glomerulonephritis 

and lupus nephritis.31, 32  While the presence of autoantibodies to this particular protein has been 

defined in numerous disease states, the genesis of antibody production is largely undefined in 

human patients.29 

The objective of this dissertation chapter is to identify and quantitate anti-α-enolase 

antibodies in cats with naturally occurring CKD.  Additionally, to identify possible endogenous 

proteins targeted by autoantibodies. The hypothesis for aim 3 is that anti-α-enolase antibodies 

will be present in sera of cats with naturally occurring CKD and that these antibodies will 

bind to endogenous feline renal α-enolase protein.  Anti-α-enolase antibodies are assessed by 

western blot immunoassay and quantitated by an enzyme-linked immunosorbent assay (ELISA) 

against recombinant α-enolase protein.  Additionally, immunoglobulin is extracted from sera by 

a traditional immunoprecipitation assay from azotemic and non-azotemic cats with or without α-

enolase antibody confirmed by western immunoblot.  This immunoglobulin is then used to target 

and identify specific endogenous renal antigens by gel electrophoresis and mass spectrometry, 

respectively.  Serum from cats with naturally occurring CKD at IRIS stages II-IV and healthy, 

non-azotemic young cats have been included in this study.   The healthy, laboratory reared 

control cats have not been administered parenteral vaccines containing viruses grown on cells.  

Vaccine histories of CKD cats will be recorded when available. 
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2.5 Specific Aim 4 (Chapter 6: Renal α-enolase protein expression) 

Originally characterized as a cytoplasmic, glycolytic enzyme, α-enolase has been shown to have 

multiple functions as well as variable cellular expression.33-35  This protein is ubiquitously 

expressed but most concentrated in the thymus and kidney.36  In the kidney α-enolase is localized 

to the cytoplasm of renal proximal tubules, collecting ducts, and distal tubules.30, 37  In human 

patients with lupus nephritis, an autoimmune disease associated with the presence of 

autoantibodies in sera, α-enolase protein expression is altered.  In biopsies from lupus nephritis 

patient’s α-enolase is overexpressed in tubules and glomeruli in comparison to healthy controls.30  

Similar descriptive studies of α-enolase protein expression have not been explored in cats with or 

without CKD. 

The objective of aim 4 is to semi-quantitate α-enolase protein expression within tissues of 

cats in health and with CKD.  The hypothesis for aim 4 is that tubular and glomerular α-

enolase will be overexpressed in cats with CKD.  In order to test this hypothesis, 

immunohistochemistry utilizing a mouse monoclonal antibody will be optimized and validated.  

Kidney and liver tissue from cats with CKD and healthy, non-azotemic controls are included in 

this study.  Thymic tissue from a young cat will be used to optimize and validate this assay. 

2.6 Specific Aim 5 (Chapter 7: Cellular expression and antigenicity of renal proteins) 

Autoimmune disease is characterized by dysregulation of the immune system and loss of self-

tolerance.38  Targets of autoantibodies are frequently conserved, abundantly expressed proteins.34  

Examples include topoisomerase in systemic sclerosis, insulin in type I diabetes, and α-enolase 

in systemic lupus erythematosus.34, 38-40  Anti-α-enolase antibodies can be induced 

experimentally in cats with feline panleukopenia, herpesvirus 1, and calicivirus containing viral 

vaccines.23, 27  These vaccines (FVRCP) are routinely administered to cats and can contain cell 
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lysate contaminates (CRFK) that originated from cat renal cortical tissue.23, 24  Feline renal 

derived cell lysates—CRKF lysates—not only can induce production of antibodies to α-enolase 

but led to interstitial nephritis in a subset of cats.12, 27  Furthermore, client owned cats with 

azotemia were more likely to have anti-α-enolase antibodies than non-azotemic client owned cats 

(Chelsea Sonius, unpublished work).41 Cellular expression of α-enolase is not restricted to the 

cytosol with membranous α-enolase targeted by autoantibodies in autoimmune disease as well as 

alternative, non-glycolytic functions.34  

The objective of this chapter is to localize cellular expression of α-enolase in renal tissue 

homogenates from cats with CKD.  The hypothesis for aim 5 is that α-enolase will be present 

in both cytosolic and membranous fractions in cats with CKD.  Identification of α-enolase 

protein in subcellular fractions of whole renal tissue homogenate from cats with CKD and young 

healthy controls will be achieved by differential centrifugation (herein referred to as subcellular 

fractionation) and western immunoblot with mouse monoclonal α-enolase antibody.   
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CHAPTER 3:  A COMPARISON OF BIOCHEMICAL AND HISTOPATHOLOGIC STAGING 
IN CATS WITH CHRONIC KIDNEY DISEASE 

3.1 Chapter Summary  

 Chronic kidney disease (CKD) is prevalent in elderly cats.  Frequently, a diagnosis is 

made in later stages of disease by which time many renal lesions are irreversible.  As such, little 

headway has been made in identifying an etiology and preventing this common disease. The aim 

of this study was to evaluate the presence and severity of both reversible and irreversible 

histopathologic changes in the kidneys of cats at each stage of CKD and in addition, to determine 

if lesion prevalence and character was different between stages.  A total of 46 cats with CKD 

were classified according to the International Renal Interest Society (IRIS) as: Stage I (3 cats), 

Stage II (16 cats), Stage III (14 cats), and Stage IV (13 cats).  Eleven young, non-azotemic and 

10 geriatric, non-azotemic cats were included as controls.  The severity of tubular degeneration, 

interstitial inflammation, fibrosis, and glomerulosclerosis was significantly greater in later stages 

of CKD compared to early stages of disease. Proteinuria was associated with increased severity 

of tubular degeneration, inflammation, fibrosis, tubular epithelial single cell necrosis and 

decreased normal parenchyma. Presence of hyperplastic arteriolosclerosis, fibrointimal 

hyperplasia, or other vascular lesions was not found to be significantly different between 

hypertensive and normotensive cats. The greater prevalence and severity of irreversible lesions 

in Stage III and IV CKD implies that therapeutic interventions should be targeted at earlier 

stages of disease.  

3.2 Introduction 

Chronic kidney disease (CKD) affects as many as 50% of elderly cats, and prevalence 

increases with age.1, 2 The etiology of CKD in cats is unknown. In humans, the leading cause for 

end stage renal failure is type 2 diabetes mellitus and hypertension.3 However, diabetic 
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nephropathy has not been identified in cats and renal lesions in diabetic cats were no different 

than those in non-diabetic cats.4 The most frequent morphologic diagnosis in cats with CKD is 

chronic tubulointerstitial nephritis and fibrosis; which are relatively non-specific lesions.5-7 

Therefore, feline CKD is currently considered to be the consequence of a variety of etiologies 

that lead to a final common pathway of irreversible, progressive, kidney damage.8 This damage 

culminates in reduction of glomerular filtration rate which, when severe, results in retention of 

metabolic byproducts such as creatinine and blood urea nitrogen. Eventually, uremia may 

develop and manifest as gastrointestinal, cardiovascular, pulmonary, neuromuscular, or 

hematologic diseases.8, 9    

CKD is categorized into disease stages established by the International Renal Interest 

Society (IRIS) based on serum creatinine measurements.10, 11 Clinical progression, or stage, is 

associated with decreased survival.12 Clinicopathologic data are useful for diagnosing, staging, 

and prognosticating but gives few clues as to the distribution and pattern of injury within the 

kidney. Therefore it is difficult to determine which stages are characterized by irreversible 

lesions and at which stage interventional therapies should be targeted.  In a previous study, renal 

fibrosis in cats with CKD from the United Kingdom correlated with clinicopathologic 

derangements such as azotemia, hyperphosphatemia, and anemia.7 Renal scarring encompasses 

interstitial fibrosis, which is an increase in extracellular matrix, as well as glomerulosclerosis and 

tubular atrophy.13-16 Collectively, these changes imply a loss of function and are considered, at 

least to date, irreversible.15, 16 However, not all injury leads to irreversible damage. Replication 

and repair can lead to a return of normal function. Inflammation, edema and tubular epithelial 

damage have the potential to resolve (i.e. reversible). Interest in these types of morphologic 

responses guided the design of this study. The aim of the current study was to further explore the 
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relationship between clinical parameters and renal pathology by characterizing and quantifying a 

wide variety of interstitial, tubular, glomerular and vascular lesions (both reversible and 

irreversible) in the kidney of cats with CKD from the United States and assessing the correlation 

between these histopathologic changes and clinical IRIS stage and substage. 

3.3 Materials and Methods 

3.3.1 Case Selection 

Cats necropsied at Colorado State University Diagnostic Medical Center between 2000 and 2013 

with a history of CKD, appropriate clinicopathologic data necessary for IRIS staging, and 

adequate tissue available for histologic review were included in this study. Exclusion criteria 

included renal neoplasia, ureteral or urethral obstruction, or pyelonephritis. Non-azotemic 

geriatric cats were humanely euthanized with client consent for health problems unrelated to 

renal disease. Young non-azotemic cats were euthanized at a local humane society, according to 

humane society guidelines and protocols. Study samples were obtained from these cats after 

euthanasia, and no cats were euthanized for the purpose of this study. Age was estimated by 

surrender history and/or dental assessment.  

3.3.2 Clinicopathologic Data 

Using the IRIS staging scheme, patients (designated CKD cats) were assigned a Stage of I to IV 

based on clinical evaluation of the cat’s medical history by a board-certified internist. Clinical 

evaluation for IRIS stage determination took into account 2 or more serum creatinine levels no 

less than 48 hours apart, clinical history, fluid therapy, body condition score and fluctuation in 

weight and muscle mass over the course of the disease. Patients assigned to Stage I had a urine 

specific gravity (USG) < 1.035, serum creatinine less than 1.6 mg/dl, as well as other evidence of 

renal abnormalities such as abnormal imaging (radiograph and/or ultrasound), and/or proteinuria. 
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Stages II, III, and IV were defined by creatinine measuring 1.6-2.8 mg/dl, 2.9-5.0 mg/dl and >5.0 

mg/dl, respectively. Non-azotemic control cats had no clinical evidence or history of renal 

disease, USG >1.035, and creatinine ≤ 1.6 mg/dl. Control cats were divided into either non-

azotemic geriatric controls (GC) if they were ≥7 years of age or non-azotemic young controls 

(YC) if they were <4 years of age. 

Substaging according to proteinuria and elevation of systemic blood pressure was 

determined based on data availability. Urine samples were collected via cystocentesis during 

routine examination and submitted to the Clinical Pathology Laboratory at Colorado State 

University Diagnostic Medical Center. Quantification of urine protein was determined by urine 

protein to creatinine ratio (UPC) measurement and only CKD cats in which UPC data were 

available were included in this portion of the analysis. GC cats were confirmed to have no 

urinary protein by the sulfosalicyclic acid precipitation test. Hypertension was determined by 

repeated mean systolic blood pressure measurements of greater than 160 mm Hg, prior clinical 

diagnosis of hypertension, or evidence of hypertensive therapy (e.g. amlodipine) in the medical 

record; only cats with blood pressure data available were included in this portion of the analysis. 

3.3.3 Histopathology 

Tissues were preserved in 10% neutral buffered formalin, routinely processed, and embedded in 

paraffin. Sections of kidney cut at 3 μm and stained with hematoxylin and eosin, periodic acid-

Schiff-hematoxylin to assess basement membranes of tubules and blood vessels, and Masson’s 

trichrome for assessment of fibrosis. Tissues were evaluated for a range of histologic lesions by 

two pathologists. The scoring schematic for dichotomous and semi-quantitative histologic 

variables is outlined in Table 3.1. Additionally, continuous variables included global 

glomerulosclerosis and frequency of tubular epithelial single cell necrosis. Global 
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glomerulosclerosis was determined by examining 50 randomly distributed glomeruli per kidney 

to determine the proportion in which >75% of the capillary tuft was effaced by extracellular 

matrix. When present, specific glomerular lesions (e.g. glomerulonephritis or focal segmental 

glomerulosclerosis) were noted.  As renal lesions can be unilateral, if both kidneys were 

available, each was scored separately for the following variables: percent normal parenchyma, 

interstitial cortical scarring, medullary scarring, interstitial inflammation, tubular epithelial single 

cell necrosis, and globally sclerotic glomeruli. Scarring was defined as a percentage of cortex or 

medulla occupied by trichrome-confirmed collagenous matrix, in conjunction with fibroplasia, 

parenchymal collapse due to tubular atrophy and loss and glomerulosclerosis.13, 14  Vasculature 

was assessed for degenerative changes, specifically arteriolosclerosis.  Evaluation of 

arteriolosclerotic lesions included: concentric medial smooth muscle hyperplasia (hyperplastic 

arteriolosclerosis); or segmental or circumferential intimal proliferation with disruption of the 

internal elastic lamina (fibrointimal hyperplasia). Other vascular lesions (eg fibrinoid vascular 

necrosis, arteritis) were recorded if present. 
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Table 3.1 Scoring schematic for dichotomous and semi-quantitative histologic 
variables. 
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3.3.4 Statistical Analysis 

A univariate approach was used to determine if histologic variables differed between non-

azotemic cats and those with CKD. Serum creatinine, IRIS stage, and proteinuria status were 

designated as independent variables.  For semi-quantitative outcome variables (e.g. pattern of 

interstitial scarring) medians were reported and data were converted into ‘ranks’ for linear 

regression analysis. For variables with multiple measurements from the same individual (i.e. 

both kidneys available for review) repeated measures were taken into account for regression 

analyses. Similarly, for continuous variables, differences in means among groups were 

determined by linear regression after assumptions for normality were confirmed. Fisher’s exact 

test was used for dichotomous variables and odds ratios were calculated with 95% confidence 

interval. Statistical significance for all analyses was set at p≤0.05 and p≤0.0125 for pairwise 

comparison to account for multiple comparisons. Statistical calculations were performed by SAS 

v9.3 (SAS Institute Inc., Cary, NC, USA). 

3.4 Results 

3.4.1 Signalment 

Of 331 CKD cats necropsied between 2000 and 2013, a total of 46 CKD cats had sufficient 

clinical data and tissue for evaluation. Age, sex, and cause of death are outlined in Table 3.2.  

There was no statistically significant difference among groups with regards to gender or breed.  

Two CKD cats included in this study died of natural causes while the remaining cats were 

humanely euthanized. Those euthanized for poor quality of life or acute decompensation of CKD 

(21/46) were typically in later stages of the disease (Stage II, n=2; Stage III, n=7; and Stage IV, 

n=12).  
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Table 3.2 Signalment, cause of death, and clinicopathologic data for controls and CKD cats by 
stage. 

 

 

 

 

 

 

 

Twenty-five cats were euthanized for reasons not directly related to kidney disease, 

including:  neoplasia (n=9); gastrointestinal disease, liver disease, or pancreatitis (n=5); and 

cardiopulmonary disease (n=4) which included congestive heart failure, thromboembolism, or 

pulmonary disease. The remaining CKD cats were euthanized for a variety of metabolic or 

neurologic illnesses (n=7). Five of the 10 GC cats were euthanized for non-renal neoplasia; 4 

were euthanized for cardiopulmonary disease and 1 for pancreatitis. 

 

Young 
Controls

Geriatric 
Controls Stage 1 Stage 2 Stage 3 Stage 4

(n=11) (n=10) (n=3) (n=16) (n=14) (n=13)
Age (years)a 3 (1-4) 13 (10-16) 11 (9-15) 15 (8-21) 14 (5-19) 11 (5-18)
Cause of 
death/Euthanasia

Kidney disease 0 0 0 2 7 12
Non-renal disease 0 10 3 14 7 1

1.16 1.23 1.38 2.12 4.31 8.18
Creatinineb (0.8-1.5) (0.9-1.5) (1.35-1.4) (1.5-2.7) (2.95-9.1) (6.0-12.65)

1.067 1.054 1.031 1.018 1.015 1.011
USGc (1.049-1.084) (1.044-1.067) (1.025-1.035) (1.012-1.032) (1.010-1.020) (1.007-1.015)
Proteinuria

Staged n=11 n=10 n=1 n=13 n=7 n=12
UPC <0.2  11 (100) 10 (100) 1 (100) 11 (85) 1 (14) 3 (25)
UPC 0.2-0.4  0 0 0 2 (15) 5 (72) 1 (8)
UPC >0.4   0 0 0 0 1 (14) 8 (67)

Hypertensivee n/df n/d 1 (100) 6 (50) 2 (22) 4 (36)

aMean age in years (range) 
 bAverage of two serum creatinine measurements taken prior to euthanasia in CKD cats (range of  

creatinine for each group) 
cMean (range) 
dNumber of cats with proteinuria per group (percentage of cats with available UPC data); Non- 

proteinuric <0.2, Borderline proteinuric 0.2-0.4, and Proteinuric >0.4 
eNumber of hypertensive cats per stage (percentage of hypertensive cats with available systolic blood  

pressure) 
fNot measured (n/d) 
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3.4.2 Histopathology 

Statistically significant variables are outlined in Tables 3.3 and 3.4 for all CKD stages. The 

salient features of each stage are described below, with special attention being paid to the lesions 

deemed to have pathophysiologic relevance. Results for categorical variables for each group are 

summarized in Figure 3.1. 

 
 

  

 

 

Figure 3.1  Graph of categorical histologic variables by group (YC=young controls; GC=geriatric 
controls) or chronic kidney disease (CKD) stage. Columns represent mean percentage of tissue 
affected by histologic lesion while bars represent the standard error of the mean.  
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Table 3.4  Categorical histologic variables with statistical significance.  For each stage the 
median, mean, and range for each variable are given along with p-values.  Bolded p-values 
indicate statistical significance when compared to other groups by linear regression of ranks. 

Tubular 
compartment Other

% Inflammation % Cortical scar % Medullary scar % Degneration % Normal

Stage I (n=3 ) 1 (1.2, 1-2)a 0 (0.2, 0-1) 0 (0.2, 0-1) 1 (1, 1-1) 3 (3, 3-3)
vs YC 0.0041 0.9307 0.3074 0.253 n/ab

vs GC 0.4082 0.1105 0.9585 1 <0.0001
vs Stage II 0.9429 <0.0001 0.0069 0.1545 0.818
vs Stage III 0.0123 <0.0001 0.0039 0.0069 0.003
vs Stage IV <0.0001 <0.0001 0.0032 0.0001 <0.0001

Stage II (n=16 ) 1 (1.2, 1-3) 1 (1.4, 1-3) 1 (0.9, 0-2) 1.5 (1.6, 0-3) 3 (2.9, 1-4)
vs YC <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
vs GC 0.2136 <0.0001 0.0005 0.0263 <0.0001
vs Stage I 0.9429 <0.0001 0.0069 0.1545 0.818
vs Stage III <0.0001 0.4513 0.7564 0.0247 0.0404
vs Stage IV <0.0001 0.0001 0.5705 <0.0001 <0.0001

Stage III (n=14 ) 2 (1.9, 0-4) 1 (1.6, 0-4) 1 (1.1, 0-4) 2.5 (2.1, 0-3) 2 (2.2, 1-4)
vs YC <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
vs GC <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
vs Stage I 0.0123 <0.0001 0.0039 0.0069 0.003
vs Stage II <0.0001 0.4513 0.7564 0.0247 0.0404
vs Stage IV 0.0259 0.008 0.7795 0.062 0.0062

Stage IV (n=13 ) 3 (2.7, 1-4) 2 (2.3, 1-4) 1 (1.3, 0-4) 3 (2.6, 2-3) 1.5 (1.5, 0-3)
vs YC <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
vs GC <0.0001 <0.0001 0.0003 <0.0001 <0.0001
vs Stage I <0.0001 <0.0001 0.0032 0.0001 <0.0001
vs Stage II <0.0001 0.0001 0.5705 <0.0001 <0.0001
vs Stage III 0.0259 0.008 0.7795 0.062 0.0062

GC (n=10 ) 1 (1, 0-2) 1 (0.6, 0-1) 0 (0.3, 0-2) 1 (1, 1-1) 4 (3.9, 3-4)
YC (n=11 ) 0 (0.5, 0-1) 0 (0.2, 0-1) 0 (0, 0-0) 0 (0.5, 0-2) 4 (4, 4-4)
aData presented as median score (mean, range)
bCould not be determined

Interstitial compartment
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3.4.2.1 CKD Stage I 

Three cats were classified as Stage I having a serum creatinine of <1.6mg/dL, USG ≤1.035, as 

well as abnormal kidneys on gross examination. All three cats were scored as having 50-75% 

normal parenchyma remaining and this score was significantly less than that of GC cats 

(p<0.0001). In comparison with other CKD stages, Stage I cats had a significantly greater 

percent of normal parenchyma than Stages III and IV (p=0.003 and <0.0001, respectively). No 

significant difference was found between Stage I and II. Interstitial inflammation, which was 

comprised exclusively of lymphocytes, affected <25% of the section (median, 1; range, 1-2) in 

Stage I cats. Inflammation at this stage was significantly greater than YC (p=0.0041) cats but 

significantly less than Stages III and IV (p=0.0123 and <0.0001, respectively). Moreover, 

inflammatory infiltrates had a regionally extensive distribution in all cats within this group 

(Figure 3.2). Frequency of this pattern was only significantly different when Stage I cats were 

compared to YC and GC control cats (p=0.0057 and 0.0263, respectively). No difference in 

pattern of inflammation was found when Stage I cats were compared to other stages.   

 

 

 

 

 

 

 

 

 

 

Figure 3.2  Relative frequencies of 4 different patterns of interstitial inflammation for 
each CKD stage I-IV or control group (YC=young controls; GC=geriatric controls). 
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Cortical and medullary scarring was nearly absent in Stage 1 cats (median 0; range 0-1), 

with one cat having a multifocal pattern of scarring occupying less than 25% of the section. 

Severity of cortical scarring within this group was significantly less than that observed in Stages 

II, III, and IV (p<0.0001 for all 3 stages). Likewise, medullary scarring was significantly less 

than other CKD stages (Stage II, p=0.0069; Stage III, p=0.0039; and Stage IV, p=0.0032). The 

pattern of scarring was found to be significantly different from all other CKD stages (versus 

Stage II, p=0.0488; Stage III, p=0.0446; and Stage IV, p=0.0016; Figure 3.3). 

 

 

 

 

 

 

 

 

 

 

Median score (1; range, 1-1) for tubular degeneration in Stage I cats was consistent with 

mild, focal to scattered cortical tubular degeneration. This change was statistically different from 

Stages III and IV (p=0.0069 and p=0.0001, respectively). Dead tubular epithelial cells were 

infrequent (mean ± standard deviation [SD], 1.4±1.7) and occurred significantly less than in GC 

cats (p=0.0007) and CKD cats in Stage II, III, and IV (p<0.0001). Tubular dilation was not 

present at this stage and this was statistically different from Stage IV (p=0.0018).  

 

Figure 3.3.  Relative frequencies of 4 different patterns of cortical scarring for each CKD 
stage I-IV or control group (YC=young controls; GC=geriatric controls). 
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 Glomerular lesions and mineralization of Bowman’s capsule were not present within cats 

at this stage of kidney disease. Global glomerulosclerosis was statistically more frequent in Stage 

I cats (mean ± SD, 1.4 ± 2.2) than in YC (p<0.0001) but less frequent than CKD Stages II-IV 

(Stage II, p=0.0011; Stage III and IV, p<0.0001). Global glomerulosclerosis occurred more 

frequently in GC cats compared to Stage I but the difference was not statistically significant. 

 Vascular lesions and papillary necrosis were absent in this stage while collecting duct 

mineral was present in a single cat.  No statistical significance was found when comparing these 

lesions with other groups. 

3.4.2.2 Stage II 

A total of 16 cats were classified as CKD Stage II. Similar to Stage I, Stage II cats had a median 

score for normal parenchyma that corresponded to 51-75% remaining in the examined sections 

(median, 3; range, 1-4). This was significantly less than control groups (YC and GC, p<0.0001) 

but significantly greater than later stages (Stage III, p=0.0404; Stage IV, p<0.0001). Interstitial 

inflammation affected <25% of the kidney in Stage II cats (median, 1; range, 1-3) which 

consisted mostly of lymphocytes and plasma cells, and less frequently macrophages and 

granulocytes (neutrophils or eosinophils). Severity of inflammation was significantly greater in 

Stage II compared to YC cats (p<0.0001) but significantly less than later stages (versus Stage III 

and IV, p<0.0001). Regionally extensive interstitial inflammation was the most common 

distribution in Stage II cats. Statistical significance between groups was only found when 

compared to YC cats (p=0.0125). 

Cortical (median, 1; range, 1-3) and medullary scarring (median, 1; range, 0-2) was 

significantly greater in Stage II cats than either control group (p<0.0001) or Stage I cats 

(p<0.0001). No difference in the severity of scarring was found when Stage II cats were 
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compared to Stage III cats, but scarring of the cortex was significantly less when compared to 

Stage IV cats (p=0.0001). The pattern of scarring was significantly different from YC 

(p<0.0001), Stage I (p=0.0488), and Stage IV (p=0.037). No difference in the distribution of 

scarring between Stage II and III were found. Interstitial lipid was present in a majority of cats in 

this stage, however, statistical significance was only found when comparing Stage II with control 

groups (YC, p=0.0006; GC, p=0.0048).   

 Stage II cats had a median score of 1.5 (range, 0-3) for tubular degeneration which was 

consistent with mild to moderate degeneration. Cortical tubular degeneration in Stage II was 

significantly greater than control groups (YC, p<0.0001; GC, p=0.0263). Similar to Stage I, 

Stage II cats have significantly less tubular degeneration than later stages (Stage III, p=0.0247; 

Stage IV, p<0.0001). Dead tubular epithelial cells (mean ± SD, 11.0 ± 7.0) were significantly 

more frequent than in YC and Stage I cats (p<0.0001), but were similar to the frequency 

observed in GC. Tubular epithelial cell lipid accumulation was a common finding within Stage II 

cats, similar to the other CKD cats. Nearly half of Stage II cats had cellular casts (7/16) or 

intraluminal crystals (7/16), less frequently lipid casts (6/16). Statistical significance among 

groups was not found for these variables. Tubular dilation occurred frequently (11/16), and this 

was significantly greater than either control group (YC; p=0.0003; GC, p=0.0007). Tubular 

basement membrane mineralization or coagulative necrosis was not seen at this stage.   

 Three cats in Stage II had glomerular lesions. A single cat had moderate cystic 

glomerular atrophy and another had mesangial expansion. The remaining cat had multiple 

glomerular changes including focal glomerular hypercellularity and remodeling of the 

glomerular basement membrane, consistent with a membranoproliferative glomerulonephritis 

pattern as well as focal segmental glomerulosclerosis (FSGS). Bowman’s capsule thickening 
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with or without parietal cell hypertrophy was present in a majority of cats (12/16) and this was 

significantly greater than YC cats (p=0.0002). Global glomerulosclerosis was significantly 

greater in Stage II cats (mean ± SD, 8.4 ± 6.6) compared to controls (YC, p<0.0001; GC, 

p=0.0027) and Stage I cats (p=0.0011); but significantly less than later stages (Stage III, 

p=0.0034; Stage IV, p<0.0001). 

 Vascular lesions identified in Stage II cats consisted of fibrointimal hyperplasia in 9 cats 

(Figure 3.4), hyperplastic arteriolosclerosis in 5, hyalinosis in 2, and torturous vessels in regions 

of scarring in 2. Statistical significance of the frequency of vascular lesions was not present when 

comparing Stage II cats with other groups. Lastly, the incidence of collecting duct mineral (n=8) 

or papillary necrosis (n=3) was not significantly different between Stage II cats and any other 

group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Fibrointimal hyperplasia of an arcuate artery, cat, kidney.  Masson’s 
trichrome stain. 
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3.4.2.3 Stage III 

A total of 14 cats were classified as Stage III. There was significantly less normal renal 

parenchyma in Stage III cats, equating to approximately 25-50% of the section (median, 2; 

range, 1-4) compared to earlier stages (Stage I, p=0.003; Stage II, p=0.0404) and controls (YC 

and GC, p<0.0001). Stage III cats had significantly more normal parenchyma than Stage IV cats 

(p=0.0062). Severity of interstitial inflammation in Stage III cats was significantly different 

when compared to controls and each CKD stage. With a median score of 2 (range, 0-4), Stage III 

cats were more severely affected by inflammation than controls (YC and GC, p<0.0001) and 

early CKD stages (Stage I, p=0.0123; Stage II, p<0.0001) but was less when compared to Stage 

IV cats (p=0.0259). All cats in Stage III had interstitial lymphocytic infiltrates while half had 

plasma cells, macrophages, and granulocytes. Over half of cats in this stage had regionally 

extensive inflammation (8/14). Frequency of inflammatory patterns was only significantly 

different from controls (versus GC, p=0.0351 and YC, p=0.0027). 

Renal scarring was not as severe as inflammation in Stage III cats. Similar to Stage II 

cats, median scores for cortical and medullary scarring were 1 (range 0-4, for both variables) 

corresponding to <25% of the tissue. Scarring was significantly greater in Stage III cats than 

controls (YC and GC, p<0.0001, cortical and medullary) and Stage I (p<0.0001 and p=0.0039 

cortical and medullary, respectively). Severity of cortical scarring in Stage III cats was 

significantly less than Stage IV (p=0.008) with no difference found when compared to Stage II.  

The most frequent scarring pattern in Stage III cats was focal to striped (8/14). Statistical 

significance was found when compared to YC (p<0.0001) and Stage I (p=0.0446). Interstitial 

lipid was a common finding and occurred with significantly greater frequency than in control 

cats (YC, p=0.0003; GC, p=0.0019).   
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 The median score (2.5; range, 0-3) of tubular degeneration in Stage III cats was 

consistent with moderate to severe degeneration. These cats were affected by tubular 

degeneration significantly more than controls (YC and GC, p<0.0001) and early CKD stages 

(Stage I, p=0.0069; Stage II, p=0.0247). Although compared to Stage IV cats, a significant 

difference was not found. Dead tubular epithelial cells were significantly greater in Stage III cats 

(mean ± SD, 15.0 ± 9.7) compared to only YC controls (p<0.0001) and Stage I cats (p<0.0001). 

Cellular casts were present in 11 Stage III cats which was significantly greater than YC cats 

(p=0.0001). Tubular epithelial cell lipid accumulation was common, as was the presence of lipid 

casts (9/14) but neither lesion was significantly different from other groups. Tubular dilation was 

another frequent finding (12/14) with statistical significance when comparing Stage III with 

controls (p<0.0001). Tubular cysts and intraluminal crystals affected half of Stage III cats and 

were significantly greater than YC cats for both variables (p=0.0078).    

 Five of 14 cats in Stage III had glomerular lesions that included one or more of the 

following: FSGS, thrombotic microangiopathy, MPGN pattern, basement membrane remodeling, 

mesangial expansion, mesangiolysis, and/or glomerular hypertrophy. A single cat with focal 

thrombotic microangiopathy was a unique finding in this study (Figure 3.5); specifically, there 

was prominent glomerular endothelial hypertrophy that obscured capillary lumina and 

duplication of glomerular basement membranes in multiple glomeruli. The mean number of 

globally sclerotic glomeruli in Stage III cats was 15.7 (SD, ± 11.4) which was significantly 

different from all other groups (YC, GC, Stage I p<0.0001; Stage II, p=0.0034; Stage IV, 

p=0.0117). Over half of the Stage III cats had glomeruli with thickened Bowman’s capsules and 

parietal cell hypertrophy (8/14). Incidence of this lesion was significantly different from YC cats 

(p=0.0029). 
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Vascular lesions identified in Stage III cats consisted of fibrointimal hyperplasia (9/14), 

hyperplastic arteriolosclerosis (8/14), and a single case each of hyalinosis and torturous vessels 

in regions of scarring. The frequency of hyperplastic arteriolosclerosis was significantly greater 

in Stage III cats when compared to YC cats (p=0.0029). Lastly, the frequency of collecting duct 

mineral (6/14) or papillary necrosis (1/14) was not significantly different between Stage III cats 

and any other group. 

3.4.2.4 Stage IV 

A total of 13 cats were classified as Stage IV. Normal renal parenchyma was significantly less in 

Stage IV cats than all other groups (median, 1.5; range, 0-3; versus YC, GC, Stage I, Stage II, 

p<0.0001; Stage III, p=0.0062). Interstitial inflammation was the most severe in Stage IV cats 

affecting 50-75% of the section examined (median, 3; range, 1-4) which was significantly 

different from controls (YC and GC, p<0.0001) and other CKD stages (Stage I, p<0.0001; Stage 

II, p<0.0001; Stage III, p=0.0259). Populations of inflammatory cells in a majority of cases were 

 

Figure 3.5.  Thrombotic microangiopathy, glomerulus, kidney, cat.  Endothelial 
cells are swollen and frequently obscure the capillary lumen (inset). Periodic acid-
Schiff and hematoxylin.   

 

55 
 



composed of lymphocytes (13/13) and plasma cells (9/13) with macrophages and / or 

granulocytes being present in 5 cats. Pattern of inflammation was variable.  Statistically 

significant differences between the frequency of inflammatory patterns was found when 

comparing Stage IV to controls (YC, p<0.0001; GC, p=0.0028) but not with other CKD stages.   

The median score for cortical scarring was greater than that in the medulla for Stage IV 

cats (cortical median, 2; range, 1-4; medullary median, 1; range, 0-4). Cortical scarring was 

significantly greater in this late stage compared to controls (YC, p<0.0001; GC, p<0.0001) and 

all CKD stages (Stage I, p<0.0001; Stage II, p=0.0001; Stage III, p=0.008; Figure 3.6). 

Medullary scarring was only significantly different from controls (YC, p<0.0001; GC, p=0.0003) 

and Stage I cats (p=0.0032). The majority of Stage IV cats were affected by regionally extensive 

scarring (7/13). Frequency of scarring patterns was significantly different when Stage IV cats 

were compared to controls (YC, p<0.0001; GC, p=0.0011) and early stages of CKD (Stage I, 

p=0.0016; Stage II, p=0.037). Interstitial lipid was present in all Stage IV cats with statistically 

significant difference in incidence when compared to controls (YC, p<0.0001; GC, p=0.0005) 

but no other stage.  
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Tubular degeneration in Stage IV cats was marked affecting entire nephrons (median, 3; 

range, 2-3). Percent of tissue affected was significantly greater in Stage IV CKD than controls 

(YC and GC, p<0.0001) and earlier stages of CKD (Stage I, p=0.0001; Stage II, p<0.0001). 

Similarly mean individual dead tubular epithelial cells were significantly greater than controls 

(mean ± SD, 19.9 ± 10.8; YC, p<0.0001; GC, p=0.001) and early CKD stages (Stage I, 

p<0.0001; Stage II, p=0.002). Lipid within tubular epithelial cells was present in a majority of 

 

 

1 2 

4 3 

Figure 3.6  Scarring in chronic kidney disease, kidney, cat.  Figure 3.6.1 Cortical scarring 
score of ‘1’ with minimal tubular atrophy and interstitial expansion by increased matrix. 
Masson’s trichrome stain.  Figure 3.6.2 Scarring score of ‘2’ with increased interstitial fibrosis, 
periglomerular fibrosis, and tubular atrophy.  Masson’s trichrome stain.  Figure 3.6.3 Score of 
‘3’ with at least 50% of the tissue affected by interstitial fibrosis, tubular atrophy, and 
glomerulosclerosis (not present in image).  Masson’s trichrome stain.  Figure 3.6.4 Score of ‘4’ 
with a majority of the cortical parenchyma replaced by fibrosis, tubular atrophy and loss; and 
glomerulosclerosis.  Masson’s trichrome stain. 
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Stage IV cats. However, lipid in tubular epithelium was common among all groups.  Cellular 

casts were more frequent in Stage IV compared to YC cats (11/13, p<0.0001). Tubular dilation 

(13/13) and cysts (11/13) occurred more frequently in Stage IV cats than controls (YC and GC, 

p<0.0001). Stage IV cats were more likely to have tubular dilation than Stage I cats (p=0.0018) 

and more likely to have tubular cysts than Stage II cats (p=0.008). Intraluminal crystals were a 

common finding (9/13) but not statistically different from other groups. Likewise no significant 

difference was found in prevalence of tubular basement membrane mineralization (3/13) or 

tubular coagulative necrosis (0/13) when Stage IV cats were compared with other groups. 

The majority of Stage IV cats in this study (10/13) had some degree of glomerular lesion.  

Lesions affecting glomeruli in this stage included one or more of the following:  FSGS, 

glomerular hypertrophy, mesangial expansion, endothelial hypertrophy, MPGN pattern, and 

cystic glomerular hypertrophy. The prevalence of glomerular lesions at this stage was 

significantly more than that seen in controls (YC, p=0.0006; GC, p=0.002) and Stage II 

(p=0.009). Mean global glomerulosclerosis was greater in Stage IV than any other group (mean 

± SD, 25.7 ± 13.8; versus YC, GC, Stage I, Stage II p<0.0001; Stage III, p=0.0117).  

Mineralization (2/13) and thickening of Bowman’s capsule with or without parietal cell 

hypertrophy (8/13) were present in Stage IV cats.   

Stage IV kidneys frequently contained vascular fibrointimal hyperplasia (8/13) but 

infrequently were affected by hyperplastic arteriolosclerosis (3/13). A total of 5 Stage IV cats 

had vascular lesions which consisted of a single case of tunica media mineralization, hyalinosis, 

fibrinoid necrotizing arteritis, endothelial swelling, and diffuse torturous vasculature. The cat 

with mineralization of the tunica media had concurrent Bowman’s capsule and tubular basement 

membrane mineralization. Prevalence of vasculature lesions was not significantly different in 
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Stage IV cats from controls or other stages. Finally, frequency of collecting duct mineral (7/13) 

or papillary necrosis (2/13) was not significantly different between Stage IV cats and any other 

group. 

3.4.3 Clinicopathologic Data 

Clinicopathologic data for each group is summarized in Table 2. Analysis of the relationship 

between histologic lesions and serum creatinine did not reveal any major differences from what 

was observed when analysis of the relationship between histologic variables and individual IRIS 

stages was performed (data not shown). A total of 33 cats out of 46 included in this study had 

UPC measurements available for analysis. Nine CKD cats (Stage III: 1 cat, Stage IV: 8 cats) 

were proteinuric (UPC >0.4). Eight CKD cats (Stage II: 2 cat; Stage III: 5 cats, Stage IV: 1 cat) 

were classified as borderline proteinuric (UPC 0.2-0.4) and 16 CKD cats were non-proteinuric 

(Stage I, n=1; Stage II, n=11; Stage III, n=1; Stage IV, n=3). All control cats (YC and GC) were 

non-proteinuric. Non-proteinuric cats (n=37) were more likely to have a greater percent of 

normal parenchyma than either borderline proteinuric cats (p=0.0014) or proteinuric cats 

(p<0.0001). Interstitial inflammation and cortical scarring were significantly greater in 

proteinuric cats than borderline (p=0.0402 and p=0.0052, respectively) and non-proteinuric cats 

(p≤0.0001). Medullary scarring in contrast was only significantly different between non-

proteinuric and borderline proteinuric cats (p=0.0006). Inflammatory constituents were not 

significantly different between groups. Tubular degeneration was significantly less frequent in all 

non-proteinuric cats when compared to borderline (p=0.0003) and proteinuric (p<0.0001) cats. 

Frequency of cellular and lipid casts were significantly less in non-proteinuric cats than 

borderline (p=0.028) and proteinuric cats (p=0.0162 and p=0.05, respectively). The presence of 

lipid vacuoles in normal tubules was significantly greater in non-proteinuric cats than borderline 
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(p=0.0014) and proteinuric cats (p<0.001). Incidence of tubular crystals in non-proteinuric cats 

was significantly less than either borderline (p=0.031) or proteinuric cats (p=0.0046). Tubular 

dilation and cysts were significantly less likely to occur in non-proteinuric cats than borderline 

cats (p=0.017 and p=0.0299, respectively), however, cysts were more likely to occur in 

proteinuric cats when compared to non-proteinuric cats (p=0.0029). Dead tubular epithelial cells 

were significantly greater in borderline proteinuric (p=0.0009) and proteinuric cats (p=0.0081) 

when compared to non-proteinuric cats. 

 Glomerular lesions occurred more frequently in proteinuric cats than both non-proteinuric 

cats (p=0.0004) and borderline proteinuric cats (p=0.018). In contrast global glomerulosclerosis 

was only significantly different when comparing non-proteinuric cats to proteinuric cats 

(p=0.007). Bowman’s capsule mineralization was significantly worse in borderline proteinuric 

cats compared to non-proteinuric cats (p<0.0001; mineral was not seen in all groups, therefore, 

significance could not be determined). No significance difference in the occurrence of vascular 

lesion was found between non-proteinuric, proteinuric and borderline proteinuric cats.  

 A total of 33/46 CKD cats had blood pressure data available for analysis; Stage I (n=1), 

Stage II (n=12), Stage III (n=9), and Stage IV (n=11). All 10 GC cats had available systolic 

blood pressures and were normotensive. Conversely, no information in regards to blood pressure 

was available for YC cats. The single Stage I cat with available blood pressure was hypertensive. 

Half of Stage II (n=6), 2 Stage III, and 4 Stage IV cats with available blood pressure data were 

hypertensive. Hypertension was more likely to occur in cats with CKD than GC cats (p=0.03). 

Presence of hyperplastic arteriolosclerosis, fibrointimal hyperplasia, or other vascular lesions 

was not found to be significantly different between hypertensive and normotensive cats.   
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3.5 Discussion   

While progress has been made in better categorizing stages of feline CKD and the 

associated prognosis and treatment recommendations, a great deal is still unknown about the 

etiopathogenesis of such a common disease.17 Clinicopathologic data is useful for diagnosing, 

staging, and prognosticating but gives few clues about the distribution and pattern of injury 

within the kidney. Therefore, it is difficult to determine which stages are characterized by 

irreversible lesions and at which stage therapeutic interventions should be targeted. In an attempt 

to bridge clinical parameters with renal pathology, reversible and irreversible histologic lesions 

affecting all renal compartments were identified for each stage of CKD. This study showed that 

reversible lesions were present throughout the stages of CKD while irreversible lesions were 

more prevalent in later stages than early stages of CKD.   

Histologic variables that were significantly different among stages affected the 

interstitial, tubular, and glomerular compartments. Overall, earlier stages of CKD (i.e. Stages I 

and II) retained a greater proportion of normal parenchyma in comparison to later stages (i.e. 

Stages III and IV). Within the interstitial compartment the severity of inflammation was similar 

in earlier stages and significantly less than later stages. Lymphocytes were the most common 

constituent of inflammation at any stage and a regionally extensive pattern was most frequent. 

Lipid within the interstitium was frequently associated with interstitial inflammation and scarring 

while edema was rare. Cortical scarring was prevalent in the final stages of CKD (Stage IV), but 

was mild in cats in Stages II and III. Tubular degeneration was significantly greater in later 

stages when compared to earlier stages, although the degree of degeneration was similar between 

individual later stages (i.e. Stages III and IV). Tubular lipid was a frequent finding in normal and 

atrophic tubules.  Single epithelial cell necrosis was significantly less in the earliest stage of 
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disease (Stage I) than all other stages, however, coagulative necrosis was rare. 

Glomerulosclerosis progressively worsened with CKD stage while other glomerular lesions were 

uncommon. Vascular lesions did not differ among IRIS stages. 

Normal parenchyma unaffected by degeneration, atrophy, inflammation, or fibrosis was 

significantly less in later stages of CKD (i.e. Stage III and IV) compared to earlier stage (Stages I 

and II) but similar between Stages I and II. Interestingly, as little as 25-50% of the parenchyma 

was affected in the earlier stages of CKD implying that even mild degree of lesions could have 

functional significance.  This is in contrast to the dogma that at least 75% of functional mass 

must be lost before clinical evidence of renal disease is evident.18-21 The determination of the 

functional consequence of histologic lesions involving only ≤50% of the renal tissue was based 

on serum creatinine levels as an estimate of renal function, as is commonly used in clinical 

practice.  Other functional tests such as glomerular filtration rates which have been demonstrated 

to decline with 75% or greater surgical reduction in renal mass in cats were not measured in this 

study.21-24 Reasons for this contradiction may include uncertainty of the relationship between 

histologic assessment of normal parenchyma and functional renal mass and potential variation in 

whether the most or least severe renal lesions were sampled for histopathology in the 11/46 cases 

that were collected retrospectively in a unilateral manner. 

Percent tubular degeneration was significantly greater in later stages than earlier stages of 

disease, but was not different between controls and Stage I.  This could be a result of small 

sample size for Stage I. In fact the only histologic lesions significantly different between 

geriatric controls and Stage I CKD cats were percent normal parenchyma and tubular epithelial 

single cell necrosis with the latter being greater in geriatric controls. When comparing all CKD 

stages there was an obvious upward trend of tubular epithelial single cell necrosis with each 
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stage although statistical significance was not reached between stages. Lastly, the authors 

acknowledge that the methods used would not differentiate single cell necrosis and include 

apoptosis.  

Interstitial fibrosis and scarring, confirmed by Masson’s trichrome stain, was statistically 

greater in Stage IV compared to all other stages. Cats in Stage IV were most likely to have 25-

50% of their kidneys affected by scarring in comparison to ≤25% scarring in other stages. 

Interstitial fibrosis did not increase significantly between cats in IRIS Stage II and III. This is in 

contrast to a previous study (which did not evaluate tissues stained with trichrome) where 

interstitial fibrosis was the lesion that best correlated with severity of azotemia.7  This suggests 

that additional pathologic processes other than fibrosis are involved in disease progression, and 

implies that initiation of any potential anti-fibrotic therapies in CKD cats should occur prior to 

Stage IV when irreversible fibrosis is most severe.  

While mean percentage of tissue affected by interstitial inflammation increased between 

stages II-IV, histologic scores for inflammation were typically greater than scarring scores for 

each stage. This would be compatible with inflammation preceding and inducing fibrosis.15 

However, patterns of scarring did not parallel that of interstitial inflammation and a significant 

progression in scarring patterns from focal to regional to diffuse with increasing IRIS stage was 

not found. This suggests that instigators of fibrosis other than inflammation may be players in the 

progression of CKD and should be identified and evaluated as potential therapeutic targets. 

Glomerulonephropathies, with the exception of FSGS, were infrequently diagnosed by 

light microscopy (4/46). Due to the retrospective nature of this study tissues were not available 

for ultrastructural evaluation. However our results were similar to previously published work on 
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feline renal disease where glomerular disease was uncommon with a reported prevalence of 8-

15%.2, 5, 6, 25 In the present study the most common glomerular changes were global 

glomerulosclerosis and FSGS. Global glomerulosclerosis was the only histologic variable in this 

study that precipitously increased with IRIS stage progression. Interestingly, glomerulosclerosis 

was more severe in non-azotemic geriatric cats than Stage I CKD cats. This suggests that 

although global glomerulosclerosis appears to be a feature of aging, it can be considered 

pathologic in certain scenarios.26 Additional studies on non-azotemic geriatric cats are needed to 

better characterize normal renal aging changes. 

Focal segmental glomerulosclerosis is a poorly characterized entity in veterinary 

medicine.27, 28 Histologic features are one or more glomeruli with segmental consolidation of 

capillary tufts with replacement by increased extracellular matrix, cellularity, or both.29, 30 

Clinically, proteinuria is a hallmark of FSGS and typically is accompanied by variable degrees of 

hypoalbuminemia, hypercholesterolemia, and edema (nephrotic syndrome) in human patients.29 

Etiologies for FSGS are classified as either primary (idiopathic or genetic) or secondary 

(adaptive) the latter encompasses drug-induced or viral-associated causes.29, 30  In humans, 

distinct histologic variants of FSGS have been identified, based on location and character of the 

lesion within the glomerular tuft, and have been found to relate to specific therapeutic responses 

and prognostic outcomes. For example, the variant perihilar FSGS is defined by sclerosis at the 

vascular pole and often seen in secondary, adaptive FSGS.  Individuals with perihilar variant of 

FSGS typically have nephrotic syndrome less frequently with a milder degree of proteinuria than 

other variants.30  Aging, advanced renal disease and obesity are three examples of conditions that 

are associated with adaptive FSGS.29, 30 
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In the current study, 8 cats with CKD had histologic evidence of FSGS.  Urinalysis and 

UPC measurements were available for 6 of the 8 cats. Although none of the cats suffered from 

nephrotic syndrome, 5/6 were proteinuric with only 2/6 within nephrotic range (UPC > 2.0). A 

single cat was hypoalbuminemic but proteinuric status was not available for this cat. However, 

hypoalbuminemia in this cat was most likely due to pleural effusion from severe mediastinitis 

secondary to complications from an esophageal feeding tube rather than glomerular disease. 

While Leishmania infection in dogs has been associated with chronic glomerulosclerosis, other 

primary or secondary etiologies for FSGS in veterinary medicine have not been reported.31 Viral 

infections (e.g. parvovirus or feline immunodeficiency virus) were not suspected clinically. None 

of the cats in the current study were treated with any FSGS-associated drugs.  While these 8 cats 

may have had primary FSGS, that is typically a diagnosis of exclusion. A more plausible 

explanation would be that these lesions were secondary to adaptive changes due to the loss of 

functional renal mass in these cats. Loss of functional glomeruli leads to hyperfiltration of the 

remaining glomeruli which can result in podocyte injury and eventually sclerosis. In support of 

this theory, perihilar pattern of segmental sclerosis was identified in 4 of the 8 cats with FSGS in 

this study. Based on histopathology and clinicopathologic data it seems most likely that FSGS in 

these 8 cats were likely secondary, or adaptive, to loss of renal mass. 

In the present study, proteinuria was an uncommon finding and typically present in later 

stages of disease. Despite the infrequency of proteinuria in CKD cats, an association with 

increased severity of tubular degeneration, inflammation, fibrosis, tubular epithelial single cell 

necrosis and decreased normal parenchyma was detected. Similarly, positive correlations 

between severity of proteinuria and tubular epithelial injury, interstitial inflammation and fibrosis 

have been found in humans.32  Protein exposure to tubular epithelial cells perpetuates renal 
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injury by direct damage to these cells or indirectly through production of proinflammatory and 

profibrotic cytokines. 32-34 

Cats with glomerular lesions had an average UPC greater (1.3 ± 1.8) than those cats 

without glomerular lesions (0.2 ± 0.1), however, a UPC > 2 was only present in 3 cats. These 

were late stage (Stage III: n=1, Stage IV: n=2) and glomerular lesions were marked (e.g. MPGN 

pattern and TMA). A UPC > 2 typically indicates glomerular disease while tubular reabsorption 

defects are suspected if < 2.35 These data suggest that proteinuria in study cats is unlikely a result 

of primary glomerular disease in a majority of cases and is more likely tubular in origin. In this 

study, proteinuria was more common in late stage cats implying that it is a consequence rather 

than an initiator of disease.  

Mineralization of Bowman’s capsule and tubular basement membranes was more 

frequent in cats with more severe renal disease (i.e. Stages III and IV) than those with milder 

disease (Stages I and II). While calcium-phosphorus products (CPP) were not evaluated in the 

current study, mineralization may be the result of an increased CPP secondary to late--stage renal 

disease.36, 37  

A novel glomerular lesion identified in this report was thrombotic microangiopathy 

(TMA). This cat presented for acute onset of ataxia and blindness. Systolic blood pressure was 

190 mm Hg at presentation with severe proteinuria (UPC 4.8) and a creatinine of 3.2 mg/dL. 

Histologically, scattered glomeruli had endothelial swelling with occlusion of capillary lumina 

which is a characteristic feature of the TMA variant glomerular endotheliosis.38, 39 Endotheliosis 

diminishes filtration and thus decreases overall glomerular filtration rate (GFR) in affected 

individuals.38 Endotheliosis is often seen in women due to pre-eclampsia with clinical 
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hypertension and proteinuria. Although, unrelated to pregnancy in the cat reported here, 

confirmed hypertension may have resulted in endothelial injury with endotheliosis. The 

relationship of this to feline CKD is unknown. 

Vascular lesions other than fibrointimal hyperplasia and hyperplastic arteriolosclerosis 

were uncommon. Fibrointimal hyperplasia appeared as segmental to circumferential thickening 

of the tunica intima accompanied by a discontinuous internal elastic lamina.  It was present in 

over half of all CKD cats as well as in young normal cats, and did not differ among stages of 

CKD.  Fibrointimal hyperplasia has been associated with hypertension but is indistinguishable 

from similar lesions in aging, normotensive human patients.40, 41 Ultimately, vascular lesions 

associated with hypertension may lead to glomerular damage, sclerosis, tubular atrophy, and 

interstitial fibrosis.42 In the present study, however, hypertensive cats were not more likely to be 

affected by fibrointimal hyperplasia than normotensive cats. In a study evaluating lesions in the 

aging feline kidney, vascular lesions were infrequent (6/600 cats), although lesion detection may 

have been limited in that study by the absence of histochemical stains.6  In a recent study 

assessing renal histologic lesions in diabetic cats, vascular lesions were infrequent, with only 4 

cats affected by arterial hypertrophy and a single cat with vascular thickening and splitting.4 

Lesions were not significantly different between those cats with or without diabetes mellitus.4 

Lastly, in the present study fibrointimal hyperplasia was prevalent in young, non-azotemic cats 

(6/11). From these data, the relationship of this vascular lesion to feline kidney disease is 

uncertain.  

Hyperplastic arteriolosclerosis, a feature of systemic hypertension thought to be due to 

microvascular injury, was found in 48% of normotensive cats with CKD. This is in contrast to a 

previous report of 3% in normotensive CKD cats.7 The reason for this discrepancy is not clear, 

67 
 



but may indicate that systemic blood pressure does not adequately represent local renal 

hemodynamics in cats. For example, in a previous study, cats with CKD had significantly higher 

renal vascular resistance than cats without CKD, despite no difference in systemic blood pressure 

between groups, as well as no correlation between systemic blood pressure and renal arterial 

resistance indices.43 In contrast, in humans, indices of vascular resistance (RI) are associated 

with the severity and progression of CKD and RI correlates with systemic blood pressure. The 

reason for the difference between species is unclear but increased RI may be a more accurate 

measurement of local renal hemodynamics in cats.  

Irregularly-sized lipid vacuoles were frequent within tubular epithelium and free within 

the interstitium of CKD cats in this study. Interstitial lipid is thought to originate from tubular 

lipid after rupture of basement membranes and cell lysis.44 The role of tubular lipidosis in feline 

CKD has not been determined. Given that many different lipids have identical histologic 

appearances, it is unclear whether the larger lipid vacuoles and lipid casts are simply due to 

coalescence of smaller vacuoles from normal feline tubules or if they are composed of different 

types of lipids.  
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CHAPTER 4: RELATIONSHIP BETWEEN SERUM CREATININE, SERUM GASTRIN, 
CALCIUM-PHOSPHORUS PRODUCT AND UREMIC GASTROPATHY IN CATS WITH 

CHRONIC KIDNEY DISEASE 

4.1 Chapter Summary 

Chronic kidney disease (CKD) in cats is associated with gastrointestinal signs commonly 

attributed to uremic gastropathy. Consequently, patients are often treated with antacids and 

gastrointestinal protectants. This therapeutic regime is based on documented gastric lesions in 

uremic humans and dogs; however the incidence of uremic gastropathy in cats is unknown.  The 

objective of this study was to determine and the prevalence and characterize gastric lesions in 

cats with CKD.  In addition, histologic lesions were compared with serum creatinine, calcium-

phosphorus product (CPP) and serum gastrin concentrations.  A total of 37 CKD cats and 12 

non-azotemic control cats were evaluated.  Gastric ulceration, hemorrhage, edema, and vascular 

injury, were not observed in cats with CKD. The most significant gastric lesions in CKD cats 

were fibrosis and mineralization. Sixteen CKD cats (43%) had evidence of gastric fibrosis of 

varying severity and 14 CKD cats (38%) had gastric mineralization. Cats with CKD were more 

likely to have gastric fibrosis and mineralization than non-azotemic controls (p=0.005 and 

p=0.021, respectively). Only cats with moderate and severe azotemia had gastric mineralization. 

CPP was correlated to disease severity; severely azotemic CKD cats had significantly greater 

CPP when compared to non-azotemic controls, and to mildly and moderately azotemic cats 

(p<0.05). Gastrin concentrations were significantly greater in CKD cats when compared to non-

azotemic controls (p=0.003) but elevated concentrations were not associated with gastric 

ulceration. 
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4.2 Introduction 

Chronic kidney disease (CKD) is a common clinical problem that affects a significant proportion 

of aged cats.1 Progression of CKD typically results in uremia, a syndrome that manifests 

clinically as a variety of signs, including weight loss, vomiting, inappetance, and anorexia.1-4 

These clinical signs are frequently ascribed to uremic gastritis, a condition attributed to the 

presence of uremic toxins and gastric hyperacidity secondary to hypergastrinemia.5 However 

there are significant gaps in our understanding of the prevalence and pathogenesis of feline 

uremic gastrointestinal disease.  

Uremic gastritis was first described in 1934 from autopsies in 135 uremic human 

patients; lesions varied from mild edema to hemorrhage, ulceration,  and necrosis.6 Although 

complications of uremia such as gastritis, ulceration, and hemorrhage are common in humans,7 

they appear to be less common and less severe in dogs.8 In 1979 Cheville described vascular 

injury, calcification, mucosal edema, and necrosis in the stomachs of a small group of uremic 

dogs with renal amyloidosis and pyelonephritis.9 In a more recent study, mucosal necrosis was 

found to occur less frequently, while mineralization, edema and vascular injury were frequently 

present in dogs with renal disease.8 The prevalence of uremic gastritis has not been 

systematically evaluated in cats. A report of 70 cats with acute renal toxicity due to 

contamination of food with melamine and cyanuric acid indicated that a small percentage of 

animals had gastric mineralization, but ulceration was not observed.10 In addition, an 

experimental study of Easter lily poisoning in cats reported an absence of gastric lesions in 10 

cats that were examined by necropsy.11 Finally, in a case series and literature review of gastric 

ulceration in cats, CKD was not found to be an underlying cause.12  
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Cats with CKD have been shown to have elevated concentrations of gastrin that increase 

with the severity of renal failure,5 but the relationship between gastrin, gastric acid secretion, and 

gastric pathology has not been investigated. Gastrin is secreted by G cells in the gastric antrum 

and stimulates the secretion of gastric acid by the parietal cells. The presence of gastric acid 

results in negative feedback to decrease the secretion of gastrin. In humans and dogs, gastrin is 

excreted by the kidneys, and it is hypothesized that as renal function declines, hypergastrinemia 

develops, resulting in gastric hyperacidity.5 Cats that have gastrin-secreting tumors with levels of 

hypergastrinemia similar to those found in cats with CKD have significant gastric pathology; 

however no study has shown this to be the case in cats with CKD.12  Even in humans, the 

development of hyperacidity in association with CKD appears to be inconsistent, and may be 

related to the presence of Helicobacter spp. infection.13 Thus there is very little available 

evidence on which to base recommendations for the use of acid-reducing medications such as H2 

blockers, proton pump inhibitors or sucralfate in cats with uremia.1-4 The aims of this study were 

to evaluate the type and prevalence of histopathologic lesions in the stomach of cats with CKD, 

and to determine whether degree of azotemia, calcium-phosphorus products and serum gastrin 

concentrations are correlated with gastric pathology. A better understand of gastric pathology in 

CKD cats will facilitate the refinement of medical management strategies for gastrointestinal 

symptoms.  

4.3 Material and Methods 

4.3.1 Animals 

Feline CKD patients necropsied at the Colorado State University Veterinary Teaching Hospital 

(CSU-VTH) between years 2009-2012 were prospectively included in the study. Inclusion 

criteria included historical and clinicopathological findings consistent with CKD, a complete 
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necropsy with evaluation of all major organs, and a serum biochemistry profile and urinalysis 

performed within 2 weeks of euthanasia or death. All owners signed the CSU-VTH consent form 

for euthanasia (when applicable) and educational necropsy; no cats were euthanized for the 

purpose of this study. Exclusion criteria included concurrent primary gastrointestinal disease, 

such as neoplasia, administration of non-steroidal anti-inflammatory drugs or glucocorticoids 

within two weeks prior to euthanasia and ureteral obstruction identified as a post-renal cause of 

azotemia. CKD cats were defined as those with creatinine over 1.6 mg/dL, a urine specific 

gravity (USG) of less than 1.035, and evidence of changes consistent with CKD on renal 

histopathology. Cats were grouped based on severity of azotemia as follows: mild (1.6-2.8 

mg/dL), moderate (2.9-5.0 mg/dL), and severe (>5.0 mg/dL). Although this grouping is in 

accordance with IRIS Staging system,2 staging could not officially be performed as two serum 

creatinine measurements during a clinically stable period were not available for all cats.  

Labwork performed when marked dehydration or clinical decompensation was noted in the 

medical record was not included in analysis. Information regarding administration of antacid 

medications and phosphate binders was recorded. Non-azotemic control cats were young, 

apparently healthy cats in good body condition and free of reported gastrointestinal disease that 

were euthanized at a local humane society, according to humane society guidelines and 

protocols. Study samples were obtained from these cats after euthanasia, and no cats were 

euthanized for the purpose of this study.  Age was estimated by humane society staff based on 

surrender history and/or dental assessment. Non-azotemic status was defined as cats with urine 

specific gravity (USG) >1.035, creatinine <1.6 mg/dL and no evidence of CKD on renal 

histopathology. 
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4.3.2 Clinicopathologic Data 

For the CKD cats, serum creatinine concentration, serum total calcium concentration, serum 

phosphorus concentration and USG values measured within 2 weeks of euthanasia were obtained 

from the medical record. Calcium x phosphorus product (CPP) was calculated as serum total 

calcium concentration multiplied by serum phosphorus concentration and expressed in mg2/dL2. 

For the non-azotemic control cats, serum creatinine, total calcium and phosphorus, serum gastrin, 

and USG were obtained on samples obtained immediately post-mortem via cardiac venipuncture 

and urinary bladder cystocentesis.  

4.3.3 Gastrin Assay 

For measurement of serum gastrin concentrations, serum left over from biochemical analysis was 

collected, stored at -80oC, and shipped to Michigan State University for analysis. Circulating 

concentrations of gastrin were measured with a commercially available radioimmunoassay kit, 

with assay procedures performed according to the manufacturer’s protocol (Gastrin [125I] 

Radioimmunoassay Kit, MP Biomedicals, Diagnostics Division, Orangeburg, NY 10692-1294). 

Synthetic human gastrin17-I standards were used to make the displacement curve, with the 

highest standard of 1000 ng/L. The manufacturer reported the following percent cross reactivity 

with related compounds: gastrin 17-I (100%), gastrin 17-II (77%), gastrin 34-I (42%), gastrin 5-

17 (54%), cholecystokinin-PZ (<0.1%), and cholecystokinin-8 (10.9%). The manufacturer-

reported sensitivity of detection was 3 ng/L. For intra-assay repeatability (10 replicates), the % 

coefficient of variation was 8.6% for a feline sample with a gastrin concentration of 45 ng/L. For 

inter-assay repeatability (10 replicates), the % coefficient of variation was 9.2% for a feline 

sample with a concentration of 54 ng/L. Three feline samples with higher concentrations of 

gastrin (461, 145, 124 ng/L) were diluted with 0 standard at rates of 1:2, 1:4, and 1:8. The 
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average recovery (observed/expected) at these dilutions was 121%, 130%, and 138%, 

respectively. 

4.3.4 Gross and Histopathologic Evaluation 

Complete necropsies were performed on all animals with evaluation of all major organs. 

Specifically, the stomach was incised along the lesser curvature from cardia to pylorus and 

grossly evaluated for the presence of edema, hemorrhage, ulceration or other visible 

abnormalities. Kidneys were cut longitudinally along the long axis (cranial to caudal pole).  

4.3.4.1 Gastric Histopathology 

Three full thickness cross-sections from five anatomic locations of the stomach (cardia, fundus, 

body, antrum, and pylorus) were sampled in a routine manner. Tissues were preserved in 10% 

neutral buffered formalin, paraffin embedded, and sectioned at 5µm. All sections were stained 

with standard hematoxylin and eosin histochemical stain and evaluated independently by 2 

pathologist (SM and CD), blinded to clinical data. For final lesion score, discrepancies between 

the pathologists were resolved by joint review of tissues. Lesion description and scoring rationale 

are outlined in Table 4.1. All sections were systematically reviewed for the presence or absence 

of histologic changes consistent with uremic gastropathy as observed in dogs (i.e. amyloid, 

edema, vascular fibrinoid change, fibrosis and mineralization).8,9 An overall qualitative score 

was given for mineralization in all gastric sections highlighted by Von Kossa stain. Evaluation of 

fibrosis utilizing Masson’s trichrome was restricted to sections from the gastric body, and a 

semi-quantitative scoring scheme for fibrosis was adapted from WSAVA gastrointestinal 

evaluation guidelines.14,15 Finally, sections from the gastric body were evaluated for the presence 

and character of superficial mucosal inflammation, ulceration and/or erosion, and presence of 
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lamina proprial lymphoid nodules. Overall inflammatory infiltrates in the body, if present, were 

graded using a modification of previously published guidelines and visual scoring scale.14,16 

4.3.4.2 Renal Histopathology 

Renal sections from CKD and control cats were examined independently by two pathologists 

blinded to clinical and gastric findings for confirmation of CKD and lesion scoring. Descriptions 

of lesion scoring are outlined in Table 4.1.  For final lesion score, discrepancies between the 

pathologists were resolved by joint review of tissues. Semi-quantitative analysis for the presence 

of amyloid (Congo red) and fibrosis (Masson’s trichrome) in the kidney were given a score from 

0-3 by each pathologist. 

4.3.5 Statistical Analysis 

Serum creatinine concentration, USG, CPP, serum gastrin concentration and gastric lesion scores 

were compared between non-azotemic control cats and CKD cats with mild, moderate, or severe 

azotemia using one-way analysis of variance (ANOVA) and Bonferroni’s multiple comparison 

post hoc test with Prism software (Prism 5, GraphPad, La Jolla, CA). Scoring consensus between 

the two pathologists for each category was evaluated by Cohen’s kappa coefficient with SAS 

software (SAS 9.1.3, SAS Institute Inc., Cary, NC). Comparison between individual groups 

(presence of gastric lesion scores in normal versus CKD cats, the CPP of CKD cats with gastric 

mineralization versus those without gastric mineralization, and cats receiving phosphate binders 

or antacids versus those who were not) was performed using a Mann-Whitney test with Prism 

software (Prism 5, GraphPad, La Jolla, CA). Statistical significance for all analyses was set at 

p≤0.05. 
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Table 4.1 Scoring system for gastric and renal lesions 
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4.4 Results 

4.4.1 Animals 

Fifty-nine cats with CKD were necropsied during this time period; 37 met the inclusion criteria 

for the study. Twenty-two were excluded for the following reasons: routine gastric samples not 

obtained (7), no laboratory testing near the time of euthanasia or marked 

dehydration/decompensation at time laboratory data was collected (7), intestinal neoplasia (6), 

autolysis (1) and FIV positive status (1). In total, 9 mildly azotemic cats, 9 moderately azotemic 

cats, 19 severely azotemic cats, and 12 non-azotemic controls were included in the study. 

The mean age for CKD cats was 13.8 years, ranging from 5 to 21 years of age. There 

were 24 spayed females and 13 castrated male cats. All but two CKD cats were euthanized due 

to poor or declining quality of life. The remaining two cats died at home, and were kept cold and 

submitted for necropsy within 12 hours of death. Five of the CKD cats included in this study 

were receiving famotidine antacid therapy at the time of death (mild azotemia: 2 cats; moderate 

azotemia: 1 cat; severe azotemia 2 cats), while 9 were receiving oral aluminum hydroxide 

phosphate binder therapy (mild azotemia: 1 cat; moderate azotemia: 1 cat; severe azotemia 7 

cats). Average estimated age of control cats was 2.7 years (range 0.8-4 years of age). There were 

2 male intact and 1 female intact cats; 3 neutered male cats and 6 spayed female control cats. 

Control cats had no known history of renal disease, gastrointestinal disease or medication 

administration.  

4.4.2 Clinicopathological Data 

Serum creatinine, USG, CPP and gastrin results for all groups are summarized in Table 4.2. As 

expected, when analyzed with a one-way ANOVA, serum creatinine values were significantly 

higher in severely azotemic CKD cats compared to mild and moderately azotemic groups 
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(p<0.05), while non-azotemic control serum creatinine values were significantly lower than those 

of moderately and severely azotemic CKD cats (p<0.05). Urine specific gravity in non-azotemic 

control cats was significant greater than USG in each CKD group (p<0.05) when analyzed using 

a one-way ANOVA. Calcium x phosphorus product was correlated to disease severity; when 

analyzed using a one-way ANOVA severely azotemic CKD cats had significantly greater CPP 

when compared to non-azotemic controls, mildly azotemic cats and moderately azotemic cats 

(p<0.05) (Figure 4.1). No change in statistical significance was noted when cats that had been 

administered phosphate binders were removed from analysis. The CPP of severely azotemic cats 

receiving phosphate binders was not significantly different from severely azotemic cats not 

receiving phosphate binders when compared with a Mann Whitney test. Although cats with 

gastric mineralization had higher CPP relative to cats without mineralization (114.6 mg2/dL2 and 

82.5 mg2/dL2 respectively) this difference was not statistically significant (p=0.058).  

Circulating serum gastrin concentrations in cats with CKD were significantly higher than 

serum gastrin concentrations in control cats (p=0.003) when compared using a Mann Whitney 

test. When all groups were compared using a one-way ANOVA, cats with severe azotemia had 

significantly higher serum gastrin concentrations than the control group (p<0.05, Figure 4.2). No 

change in statistical significance was noted when cats that had been administered antacids were 

removed from analysis. The median serum gastrin concentration of azotemic cats receiving 

antacids was not significantly different from the median serum gastrin concentration of those 

azotemic cats not receiving antacids when compared with a Mann Whitney test. 
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Table 4.2 Summary of clinicopathologic data in control and CKD cats 
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Figure 4.1 Calcium x phosphorus product (CPP) is correlated to disease severity. 
Severely azotemic CKD cats had significantly greater CPP when compared to 
non-azotemic controls (a), mildly azotemic cats (b) and moderately azotemic cats 
(c) when analyzed with a one way ANOVA with Bonferroni’s post hoc analysis 
(p<0.05).  
 

 

Figure 4.2 Serum gastrin levels are significantly elevated in severely azotemic 
CKD cats. Cats with severe azotemia had significantly higher serum gastrin 
concentrations when compared to non-azotemic controls (a) when analyzed with 
a one way ANOVA with Bonferroni’s post hoc analysis (p<0.05).  
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4.4.3 Histopathology 

Inter-observer variation in histologic scoring was compared between pathologists, yielding an 

average kappa coefficient of 0.84 (range 0.78-0.91) for all gastric and renal histologic categories. 

Of the 37 CKD cats and 12 controls, three sections from each anatomic location (cardia, fundus, 

body, antrum, and pylorus) were evaluated with the exception of two CKD cats; only one section 

from the body was available for evaluation in these cases. Bilateral kidneys were available for 

evaluation on all study cats with the exception of one CKD cat that only had the right kidney 

available for histologic evaluation. 

Gastric lesion scores in CKD and control cats are summarized in Table 4.3. No gross or 

histologic evidence of gastric mucosal ulcerations, hemorrhage, or edema were observed in 

either CKD or control gastric tissues. No histologic evidence of amyloid deposition, edema, or 

vascular fibrinoid change was observed in CKD or control gastric tissues. Gastric fibrosis 

occurred more frequently in CKD cats when compared to controls using a Mann Whitney test 

(p=0.005). When all groups were compared using a one-way ANOVA, there was a statistically 

significant difference in the degree of fibrosis in severely azotemic CKD cats when compared to 

the non-azotemic control group (p<0.05, Figure 4.3). Fibrosis was absent in the stomachs of 

control cats while some degree of fibrosis occurred in 16/37 (43%) of CKD cats (Figure 4.4). 

Fibrosis was typically superficial, with variable expansion of the lamina propria, and minimal 

nesting of pit and glandular cells in severe cases. Three of nine mildly azotemic cats had a mild 

increase in superficial proprial fibrous connective tissue (Figure 4.4.2). A single mildly azotemic 

cat had moderate thickening of proprial fibrous connective tissue with separation of superficial 

glands (Figure 4.4.3). Two moderately azotemic CKD cats and 8 severely azotemic cats had mild 
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gastric fibrosis. One severely azotemic cat had moderate lamina proprial fibrous thickening and 

one severely azotemic cat had marked lamina proprial fibrous thickening.  

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.3 Gastric glandular atrophy and fibrosis occurred more frequently in CKD cats. 
Fibrosis scores in severely azotemic CKD cats were significantly increased when compared 
to the non-azotemic controls (a) using a one way ANOVA with Bonferroni’s post hoc 
analysis (p<0.05).  
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aFibrosis scores and bmineralization scores  for severely azotemic group statistically greater 
than control group (p<0.05) 
cMineralization scores for severely azotemic group statistically greater than mildly azotemic 
group (p<0.05) 
d,eNo statistical difference between any group 
 
 

Table 4.3 Summary of gastric lesions in control and CKD cats. 

Controls Mild Moderate Severe
Stomach Lesions (<1.6 mg.dL) (1.6-2.8 mg/dL) (2.9-5.0 mg/dL) (>5.0 mg/dL)

Amyloid 0 0 0 0
Edema 0 0 0 0
Fibrosisa

0 12 5 7 9
1 0 3 2 8
2 0 1 0 1
3 0 0 0 1
Average score 0 0.56 0.22 0.68

Mineralizationb,c

0 12 9 5 9
1 0 0 0 1
2 0 0 2 3
3 0 0 2 6
Average score 0 0 1.11 1.32

Vascular Fibrinoid 
change 0 0 0 0
Superifical mucosal 
inflammationd

0 4 0 1 3
1 6 7 7 12
2 2 2 1 4
3 0 0 0 0
Average score 0.83 1.22 1 1.05

Mucosal 
erosion/ulceration 0 0 0 0
Lymphoid nodulese 8 7 6 8

Azotemia
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Figure 4.4 Representative examples of degrees of gastric fibrosis (1-4) and mineralization (5-8) 
detected in cats with chronic kidney disease (CKD) compared to non-azotemic controls. (1) Control cat 
stomach, body. Glands are tightly packed with minimal lamina proprial connective tissue.  Masson’s 
trichrome. (2) Cat with CKD, body. Mild expansion of fovalae by lamima proprial fibrous connective 
tissue. Masson’s trichrome. (3) Cat with CKD, body. Moderate expansion of fovalea and gastric glands 
by lamina proprial connective tissue. Masson’s trichrome. (4) Cat with CKD, body. Marked separation 
and individualization of gastric glands by fibrous connective tissue. Masson’s trichrome.  (5) Control 
cat stomach, body. Absence of mineral within the mucosa. Von Kossa. (6) Cat with CKD, body. Mild, 
patchy mineralization. Von Kossa. (7) Cat with CKD, body. Moderate, multifocal to coalescing 
mineralization. Von Kossa. (8) Cat with CKD, body. Severe, diffuse, serpentine pattern of 
mineralization in the apical ½ to 1/3 of the mucosa. Von Kossa 
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Gastric mineralization was more likely to occur in cats with CKD than non-azotemic cats 

(p=0.0214) when compared using a Mann Whitney test. When all groups were compared using a 

one-way ANOVA, gastric mineralization scores were significantly greater in cats with severe 

azotemia compared to non-azotemic and mildly azotemic cats (p<0.05, Figure 4.5). A total of 14 

CKD cats (38%), all from the moderate and severe azotemia groups had gastric mineral of 

varying severity within the apical 1/3 to ½ of the mucosal lamina propria (Figure 4.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Gastric mineralization was present in moderately and severely azotemic CKD 
cats. Gastric mineralization scores were significantly greater in cats with severe azotemia 
when compared to non-azotemic and mildly azotemic cats using a one way ANOVA with 
Bonferroni’s post hoc analysis (p<0.05). 
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Within the gastric mucosa of 3 cats karyorrhectic debris was strictly associated with the 

presence of proprial mineral. Mineral was not found in sections of stomach from non-azotemic 

control or mildly azotemic CKD cats. Moderately azotemic cats had multifocal to coalescing 

(n=2) and diffuse (n=2) gastric mineral. Mineralization was evident in 10/19 cats (52%) of cats 

in the severe azotemia group. A single severely azotemic cat had mild, scattered gastric mucosal 

mineral. Diffuse, marked mucosal mineralization that formed a serpentine band across the 

mucosa was prominent in 6 cats with severe azotemia. The remaining 3 had multifocal to 

coalescing patches of mucosal mineral. In addition, 3 cats with gastric mineralization (moderate 

azotemia: 1 cat; severe azotemia: 2 cats) also had mineralization of gastric arteries and arterioles. 

One of these cats had vascular mineralization that was so severe that the tunica media and tunica 

intima of coronary arteries and the aorta were affected.  

There was no statistically significant difference in inflammation scores between any 

groups. Lymphocytic aggregates forming nodules deep within the mucosal lamina propria with 

variable expansion were present in 21/37 (57%) CKD cats and 8/12 (67%) control cats. Follicles 

were not factored into presence or severity of inflammation in either group. Six control cats had 

mild inflammation and 2 had moderate inflammation, which was nearly exclusively lymphocytic 

in character. A single control cat had intraepithelial globular leukocytes present superficially. 

Severe inflammation was not detected in any control or CKD cat. Seven mildly azotemic cats 

had mild superficial inflammation which involved no more than 1/3 of the section. Two 

additional cats with mild azotemia had moderate inflammation involving 30-60% of the section. 

Leukocytic infiltrates primarily were mononuclear (lymphocytes with few plasma cells) while 5 

cats had intraepithelial globular leukocytes that ranged from 0-6 per high-power field. The 

majority (7/9) of moderately azotemic cats had mild inflammation with only a single cat (1/9) 
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with moderate inflammation. Mononuclear inflammatory cells (predominantly lymphocytes with 

occasional macrophages and/or plasma cells) frequently aggregated around mineral when present 

in the moderately azotemic group of cats. Mild inflammation also predominated in cats with 

severe azotemia (12/19). An additional 4 cats with severe azotemia had moderate inflammation. 

Within the group of severely azotemic cats, infiltrates in addition to lymphocytes included 

frequent neutrophils and occasional eosinophils. In a single cat with severe azotemia, eosinophils 

were aggregated around mineral.  

Renal lesions in the CKD group were consistent with those previously reported including 

interstitial fibrosis, interstitial nephritis, and tubular atrophy and glomerulosclerosis.17 Frequency 

and severity of renal fibrosis in study cats are summarized in Table 4.4. The fibrosis score in 

CKD kidneys was significantly greater than that in controls (p<0.001) when compared using a 

Mann Whitney test. When groups were compared using a one-way ANOVA, renal fibrosis 

scores were significantly higher in all CKD groups in comparison to controls (p<0.05). Renal 

amyloidosis was not observed in either CKD or control groups. 

 

 

 

Table 4.4 Summary of renal lesions in control and CKD cats. 
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4.5 Discussion 

In this study CKD cats were more likely to have gastric mineralization, fibrosis, elevated CPP 

and increased serum gastrin levels than non-azotemic controls. Mineralization was only observed 

in cats with moderate and severe azotemia, and CPP increased significantly with degree of 

azotemia. Lesions in CKD cats were restricted to mucosal mineralization and fibrosis, while 

classic uremic gastropathy lesions such as gastric ulceration, amyloid deposition, edema, 

vascular fibrinoid change and hemorrhage were not observed in the cats examined. These 

findings are unique because no studies have previously reported the prospective and systematic 

evaluation of uremia-induced gastric lesions in cat with CKD. These findings also have 

important clinical implications as they suggest that gastrointestinal signs seen in CKD cats may 

be more likely to be the result of uremic toxins and centrally acting emetogens as opposed to 

pathology within the stomach.  

Gastric mineralization was a common finding in cats with CKD in this study, as also 

reported in canines.8 Thirty-eight per cent of stomachs evaluated from cats with CKD contained 

mineral within the mucosal lamina propria. Only cats with moderate and severe azotemia had 

mineralization, suggesting that worsening azotemia and associated derangements in calcium and 

phosphorus concentrations put the cats at risk for soft-tissue mineralization, specifically in the 

stomach. In this study, CPPs tended to be higher in those cats with gastric mineral (114.6) 

compared to those without mineralization (82.58), which approached statistical significance. In 

general, animals with a CPP exceeding 60-70 are at risk for soft tissue mineralization, although 

increased concentrations likely need to be present for weeks to months.18 Development of gastric 

mineralization may vary depending on individual patient factors or variation in the timeframe of 

elevated plasma mineral concentrations (i.e. months versus days). The administration of 
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phosphate binders did not appear to affect the presence of gastric mineralization; however it is 

difficult to assess the efficacy of phosphate binder therapy from this study as duration of 

hyperphosphatemia, duration of therapy and individual trends in calcium and phosphorus during 

the course of treatment are not known for these patients. In addition relatively small numbers of 

cats were receiving phosphate-binder therapy (7/18 severely azotemic cats), which is consistent 

with a recent survey of medication practices in CKD cats in which 78.3% of cats with CKD were 

not receiving phosphate binders.19 The extent to which gastric mineralization contributes to 

clinical signs of uremia is unclear and additional studies are needed to fully elucidate the 

pathophysiology of gastric mineralization in cats with CKD. 

Fibrosis in the superficial mucosa of the gastric body was a common lesion in cats with 

CKD. Evaluation of fibrosis and atrophy was restricted to the body due to variability in glandular 

density and lamina propria connective tissue in other gastric regions.20 Typically, atrophic 

gastritis is the result of chronic inflammation leading to loss of gastric glands and replacement by 

fibrosis; however significant amounts of inflammation were not seen in CKD cats in this 

study.21-23 Disorders leading to atrophic gastritis in humans are predominantly Helicobacter 

pylori infections or autoimmune gastritis.21 Conversely, atrophic gastritis in dogs and cats is not 

frequently reported and a causative relationship between Helicobacter spp. infection and disease 

is equivocal.20 In a single study investigating non-inflammatory atrophy and/or fibrosis, 27% of 

vomiting dogs and 26% of clinically asymptomatic dogs had similar lesions.23 Despite the 

statistically significant difference between controls and CKD cats, the role of azotemia and 

uremia in the pathogenesis of gastric fibrosis is unclear. A limitation of this study was that 

control cats were not aged matched; thus age variation between the two groups is one possible 

explanation for this difference. The amount of fibrous connective tissue normally found in 
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different locations of the cat stomach at different ages has not been established. Additionally, 

without corroborative pathologic evidence of edema, or other evidence of mucosal injury 

preceding the glandular loss and fibrosis, the interpretation that uremia leads to gastric fibrosis 

should be made with caution. Future studies evaluating cross sectional connective tissue density 

amongst similarly aged animals is necessary in order to draw further conclusions. 

Median serum circulating gastrin concentrations were nearly three times greater in 

azotemic cats than non-azotemic cats. Hypergastrinemia in CKD cats reported here is similar to 

findings in previously published reports.5 Gastrin signals the release of hydrochloric acid from 

parietal cells. Hypergastrinemia may lead to hyperacidity and potential chemical damage to the 

gastric mucosa. Despite this reasonable theory for the pathogenesis of uremic gastropathy, 

gastric ulceration was not found in CKD cats in this study, even when serum gastrin 

concentrations were markedly elevated. Hypergastrinemia may strictly be a consequence of renal 

disease. More than one third of plasma gastrin is extracted from circulation in a single pass 

through the kidney by renal cortical inactivation.24 In one study in humans, hypergastrinemia 

correlated with loss of functional renal mass, but not the degree of uremia.24 Gastrin 

concentrations did not necessarily correlate with severity of azotemia in the CKD cats in this 

study, although this has been documented in a previous study.5 Alternatively, in concordance 

with the fibrotic changes found in this study, increased concentrations of gastrin may be the 

result of atrophic gastritis, with reduced gastric acid secretion failing to give appropriate negative 

feedback. The data presented here showed a significant difference in the presence and severity of 

fibrosis in cats with CKD in comparison to controls. However, it is difficult to determine the role 

of renal disease in development of gastric fibrosis based on this information. Appropriate 

morphometric density studies of parietal cells within the gastric mucosa and measurement of 
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gastric acid pH are needed to determine the exact role of hypergastrinemia in gastric pathology 

in cats with CKD.   

Inflammation and lymphoid hyperplasia were similar in the stomachs of CKD and control 

cats. Therefore, their presence was likely unrelated to renal disease, or perhaps within normal 

limits of leukocyte constituents of the feline gastric mucosa. Studies characterizing leukocyte 

subpopulations within the superficial gastric mucosa have been performed in dogs, and standards 

for infiltrates within a defined unit have been described.14,15 Similar studies have not been 

reported in cats. 

In conclusion, cats with CKD appear more likely to have gastric fibrosis and 

mineralization, rather than uremic gastropathy lesions previously described in dogs and humans. 

Therefore, the administration of gastric protectants such as sucralfate may not be justified, unless 

obvious clinical evidence of gastrointestinal hemorrhage such as melena or hematemesis is 

appreciated. The notable frequency of gastric mineralization, presumably as a consequence of 

metastatic mineralization, may highlight the need for more aggressive control of 

hyperphosphatemia and renal secondary hyperparathyroidism in cats with CKD. Gastrointestinal 

symptoms in these animals may not necessarily be the result of gastric lesions, but perhaps the 

consequence of circulating uremic toxins interacting with the chemoreceptor trigger zone in the 

brain. Medical management of gastrointestinal symptoms with anti-emetic and anti-nausea drugs 

may therefore be more appropriate. Lastly, the exact role of hypergastrinemia in contributing to 

gastric hyperacidity and/or gastric lesions in cats with CKD is still unclear. Further studies to 

determine gastric acidity and parietal cell density in cats are needed in order to close this gap in 

our understanding of the etiopathogenesis of hypergastrinemia in feline uremia. 
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CHAPTER 5: IDENTIFICATION AND QUANTIFICATION OF ANTI-α-ENOLASE 
ANTIBODIES IN SERA OF CATS WITH CHRONIC KIDNEY DISEASE AND 

IMMUNOPRECIPITATION OF ENDOGENOUS RENAL PROTEINS 

5.1 Chapter Summary 

Feline chronic kidney disease (CKD) is a leading cause of morbidity and mortality in aged cats.  

While progress has been made to better characterize and stage feline CKD little is known in 

regards to why CKD is so prevalent in this species or the underlying etiology.  It has been shown 

that parenteral administration of vaccines against feline viral rhinotracheitis (feline herpesvirus 

1), calicivirus, and panleukopenia (FVRCP) or cell lysates (CRFK) used to grow the viruses or 

CRFK lysates alone can induce autoantibodies that bind α-enolase protein.  In addition, a subset 

of these cats with antibodies against CRFK lysates developed interstitial nephritis.  The focus of 

this study was to determine if cats with CKD have anti-α-enolase antibodies by western blot 

immunoassay and if antibody levels are associated with stage of disease or recent vaccination. 

Additionally, to determine if circulating antibodies target endogenous renal α-enolase.  Alpha-

enolase antibodies were quantitated in cats with naturally-occurring CKD (n=29) and healthy, 

unvaccinated controls (n=8) by indirect enzyme-linked immunosorbent assay (ELISA).  Cats 

with CKD had significantly greater levels of α-enolase antibodies than controls (p<0.0001).  

Levels of α-enolase antibodies between IRIS stages were not significantly different (p>0.05).  A 

relationship between levels of antibodies and vaccination status could not be determined due to 

incomplete vaccine histories in a majority of study cats.   Immunoglobulin present within the 

sera of CKD cats was capable of binding endogenous feline renal α-enolase. 

 

97 
 



5.2 Introduction 

Chronic kidney disease (CKD) is a significant healthy concern in geriatric cats affecting 

anywhere from 28-50% of felines.1, 2  Feline CKD is characterized clinicopathologically by 

increased concentrations of serum creatinine and blood urea nitrogen, decreased urinary 

concentrating ability with variable electrolyte and acid-base derangements.2, 3  Histologically, 

tubulointerstitial lesions predominate.3, 4  Tubulointerstitial lesions consist of interstitial fibrosis, 

inflammation, with tubular degeneration and atrophy.4, 5 Multifactorial etiologies are often cited 

in the genesis of CKD in cats, although little headway has been made in definitively defining the 

etiopathogenesis in this species. 

Vaccines and the cell lines used in the production of viral vaccines have been associated 

with development of interstitial nephritis in cats.6  Feline viral rhinotracheitis, calicivirus, and 

panleukopenia (FVRCP) vaccine is a core vaccine recommended by the American Feline 

Practitioners to be given every 3-4 weeks starting as early as 5 weeks until 16 weeks of age 

followed by every 1-3 years depending on risk.7   Viruses included in some FVRCP vaccines are 

grown on cell cultures derived from feline renal tissues (Crandell Rees feline kidney, CRFK) that 

have been described as “epithelial-like”.8  While the manufacturer’s attempt to exclude all cell 

lines during vaccine production some contamination is likely.  Parenteral administration of 

FVRCP vaccines and CRFK lysates has been shown to induce an antibody response to CRFK 

and renal cell lysates.  In a subset of cats that were hyperinoculated with CRFK lysate, interstitial 

nephritis was evident.6, 9  The majority of cats had significant amounts of vaccine induced 

antibodies that targeted α-enolase.10  It has yet to be determined what the effect of vaccinations 

over the course of a lifetime has on feline autoantibody levels or renal health.  
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Alpha-enolase autoantibodies have been implicated in a variety of autoimmune diseases 

with associated nephritis such as systemic lupus erythematosus (SLE), mixed cryoglobulinemia, 

rheumatoid arthritis, and Sjogren’s syndrome.11-13  Patients with SLE which go on to develop 

lupus nephritis had significant elevations in α-enolase antibodies in serum that were associated 

with proteinuria and increased serum creatinine concentrations.14  Alpha-enolase, a ubiquitous 

glycolytic enzyme, has been identified as a podocyte antigen which is the target for serum 

autoantibodies in lupus nephritis patients.14  Alpha-enolase in the glomeruli of lupus nephritis 

patients is overexpressed when compared to patients without nephritis, however, the cause for up 

regulation is unclear.12  A relationship between naturally occurring CKD in cats and the presence 

of renal specific autoantibodies has not been explored and is the aim of the current study.   

5.3 Methods and Materials 

5.3.1  Samples 

Cats with CKD presenting to Colorado State University Diagnostic Medical Center for necropsy 

from 2012 to 2014 that had an available serum sample were used for this study.  Residual serum 

remaining from routine ante mortem biochemistry were collected and stored at -20oC until assays 

could be batched.  Serum from 8 young (≤1.5 years), laboratory reared, non-azotemic cats 

without previous history of vaccination or renal disease were included as controls.  Parenteral 

FVRCP vaccination histories were collected from medical records for CKD cats when available. 

5.3.2 Clinicopathologic Data 

Using the IRIS staging scheme for CKD, study cats were assigned into a stage between II and IV 

based on elevated serum creatinine concentration, a urine specific gravity <1.035, and clinical 

history consistent with CKD.15  Cats with a normal serum creatinine concentration (<1.6 mg/dl), 
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which include IRIS Stage I, were not included.  Stages II, III, and IV were defined by serum 

creatinine concentrations measuring 1.6-2.8 mg/dl, 2.9-5.0 mg/dl and >5.0 mg/dl, respectively. 

Non-azotemic control cats had no clinical evidence or history of renal disease, USG >1.035, and 

serum creatinine concentration ≤ 1.6 mg/dl. 

5.3.3 Western blot Immunoassay 

Optimized gel electrophoresis and western blot immunoassays were run similar to that 

previously described.10  Alpha-enolase antigen was prepared as follows: 3 ug ENO1 recombinant 

protein (Abnova, Taiwan Corp) was mixed with lithium dodecyl sodium (LDS) sample buffer, 

reducing agent, denatured and loaded on a precast 10% Bis-Tris mini gel along with a molecular 

weight standard (Thermo Scientific).  Gels were electrophoresed in 3-(N-Morpholino)-

propanesulfonic acid running buffer at 200V for 50 minutes.  Proteins were then transferred to a 

polyvinylidene difluorure (PVDF) membrane in transfer buffer with 20% methanol in a XCell II 

Blot Module (NuPage, Intitrogen, Carlsbad) at 25V for 90 minutes.  Membranes were dried at 

room temperature and stored at -20oC.   

When all samples had been collected membranes were thawed, moistened with methanol, 

rinsed in distilled water, and blocked with 1xNEH at room temperature with gentle rocking for 1 

hour.  Samples were loaded into Miniblotter 28 (Immunogenics) at an optimized dilution of 1:20 

in TNTP-10% milk at room temperature with gentle rocking for 2 hours.  Membranes were 

rinsed with PBS-Tween 80 for 5 minutes for a total of three washes then incubated with 

peroxidase labeled goat anti-cat IgG (γ) secondary antibody (Kirkegaard and Perry Laboratories, 

Gaithersburg, MD) in a 1:25 dilution in TNTP-10% milk for 1 hour at room temperature with 

gentle rocking.  Membranes were rinsed three times for 5 minutes in PBS-Tween 80.  Protein 

bands were visualized by colorimetric horseradish peroxidase (HRP) detection with 3, 3'-
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diaminobenzidine in 10% hydrogen peroxide buffer and analyzed by Quantity One (Bio-Rad) 

software. 

5.3.4 Enzyme-linked immunosorbent assay (ELISA) 

Optimized α-enolase enzyme-linked immunosorbent assay (ELISA) was run on samples as 

previously described.10  Briefly, each well of a 96-well plate (Immulon II, ThermoScientific, 

Waltham, MA) were incubated with 10 ng of recombinant α-enolase in 100 microliters of 0.06 M 

carbonate buffer (pH 9.6) overnight at 4oC.  Wells were washed with 0.05% Tween 20-PBS 

(PBS-TW) 3 times.  Previously determined positive and negative controls and test samples were 

diluted 1:40 in PBS-TW at 400 microliters per well, loaded in triplicates, and incubated at 37oC 

for 30 minutes.  Wells were washed 3 times in PBS-TW.  Peroxidase labeled goat anti-cat IgG 

(γ) secondary antibody (Kirkegaard and Perry Laboratories, Gaithersburg, MD) was diluted 

1:100 in PBS-TW at 100 microliters per well, and incubated at 37oC for 30 minutes.  Wells were 

washed with PBS-TW as previously described and 100 microliters per well of TMB (Kirkegaard 

and Perry Laboratories, Gaithersburg, MD) was incubated at room temperature (20oC) for 10 

minutes.  Color reaction was stopped with 100 microliters of 0.18M H2SO4 per well.  Optical 

density was read by an automatic plate reader at 450nm and results were reported as the mean 

absorbance of triplicates (Ascent Multiskan, ThermoScientific, Waltham, MA).  The mean 

absorbance was converted to %ELISA by dividing the difference between the test sample mean 

absorbance and negative control mean absorbance by the difference between the positive and 

negative control mean absorbance and multiplying by 100. 

5.3.5 Immunoprecipitation (IP) 

Renal cortex from a non-azotemic, healthy cat was homogenized and desalted by acetone 

precipitation.  Protein was quantified by BCA protein assay (ThermoScientific).  A commercially 
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available classic immunopreciptiation kit (ThermoScientific) was used to complex purified 

immunoglobulin G from pooled α-enolase positive serum of CKD cats and monoclonal mouse 

alpha-enolase antibody with feline renal tissue homogenate.  Immunoglobulin from CKD cats 

was titrated at 2, 5, and 10 ug with 500 ug of renal protein.  Alpha-enolase mouse monoclonal 

antibody was titrated at 1, 2, and 5 ug and complexed with a total of 250ug of protein for each 

dilution.  Homogenized renal tissue was pre-cleared according to the manufacturer’s protocol 

and immune complexes were prepared by incubating at 4oC overnight.  Immune complexes were 

captured on a Protein A/G agarose resin column and eluted off with sample elution buffer and 

heating.  Immune complexes were run on a 10% B is-Tris gel in LDS buffer for 50 minutes at 

200V.  Protein bands were visualized with SimpleBlue stain (Life Technologies), rinsed in dH2O 

and then 20% ethanol.  Bands were excised, subject to trypsin digestion, and mass spectrometry 

at the Colorado State University Proteomics and Metabolomics Facility. 

5.3.6 Mass Spectrometrry 

Sample peptides were purified and concentrated utilizing an on-line enrichment column prior to 

chromatographic separation on a reverse phase nanospray column (Thermo Scientific).  Spectra 

of eluted peptides were collected from a mass spectrometer (Thermo Scientific Orbitrap Velos) 

over a m/z range of 400-2000 Da with a dynamic exclusion limit of 2 MS/MS spectra of a 

peptide mass for 30 seconds (exclusion duration of 90 seconds).  Resulting spectra was generated 

using Xcalibur 2.2 software (Thermo Scientific) with a signal-to-noise ratio threshold of 1.5 and 

1 scan/group. 

Tandem mass spectra were extracted, charge state was deconvoluted and deisotoped by 

ProteoWizard (MSConvert) version 3.0.   MS/MS samples were analyzed by Mascot (Matrix 

Science, London, UK; version 2.3.02) set up to search the uniprot_feline_rev_100214 database 
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(unknown version, 42512 entries).  Searches were performed assuming trypsin digestion, with a 

fragment ion mass tolerance of 0.80 Da, and a parent ion tolerance of 20 PPM. Oxidation of 

methionine and carbamidomethyl of cysteine were specified in Mascot as variable modifications. 

Scaffold (version Scaffold_4.4.1.1, Proteome Software Inc., Portland, OR) was used to validate 

MS/MS based peptide and protein identifications. Peptide identifications were accepted if they 

could be established at greater than 95.0% probability by the Scaffold Local FDR algorithm. 

Protein identifications were accepted if they could be established at greater than 99.9% 

probability and contained at least 2 identified peptides. Protein probabilities were assigned by the 

Protein Prophet algorithm.16  Proteins that contained similar peptides and could not be 

differentiated based on MS/MS analysis alone were grouped to satisfy the principles of 

parsimony. 

5.3.7 Statistics 

To investigate an association between the presence of anti-α-enolase antibodies in the serum of 

cats with or without CKD and between CKD groups (i.e. vaccine status and IRIS stage) was 

determined by Fisher’s exact test and chi-square analysis, respectively.  A non-parametric t test 

(Mann Whitney) was used to compare mean absorbance and %ELISA results between controls 

and CKD cats while a non-parametric one-way analysis of variance (Kruskal Wallis) was used to 

compare mean absorbance and  %ELISA results between CKD groups (i.e. vaccine status and 

IRIS stage) with a post hoc Dunn’s multiple comparison.  Correlation analysis of ELISA assays 

and serum creatinine concentrations were achieved by a non-parametric Spearman rank 

correlation.  All statistical analyses were performed on GraphPad Prism version 5.00 for 

Windows (GraphPad Software, San Diego California USA, www.graphpad.com).  Statistical 

significance was set at p<0.05.  
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5.4 Results 

5.4.1 Samples 

A total of 29 CKD cats classified into Stages II-IV as well as 8 healthy, non-azotemic control 

cats were included in this study.  Control cats were ≤1 ½ years old, domestic shorthair, and 

consisted of 2 males and 6 females.  Mean serum creatinine concentration for control cats was 

1.1 md/dl (range 0.9-1.6 md/dl). A total of 9 Stage II cats, 8 Stage III and 12 Stage IV CKD cats 

were included in this study.  The mean age of cats with CKD was 14.7 years (range 8-20 ½ 

years) and included 14 castrated male and 15 spayed female cats.  Domestic shorthair cats were 

most prevalent (n=17) with lesser domestic longhair (n=6), 3 Siamese, 1 Tonkinese, and 1 

Ragdoll breeds. The mean serum creatinine concentration for Stage II cats was 2.3 mg/dl (range 

1.8-2.7 mg/dl), Stage III 3.5 mg/dl (2.9-4 mg/dl), and Stage IV 8.2 mg/dl (4.2-12.6 mg/dl).  

Vaccine histories were collected from medical records and primary veterinarians were contacted 

to confirm dates, routes of administration, and type of FVRCP vaccine given.  This information 

was only available for 9/29 CKD cats.  Because of the limited number of cats with available 

vaccine histories statistical comparisons of antibody levels were not analyzed. 

5.4.2 Western Blot Immunoassay 

Of the 29 CKD cats, 19 were positive for α-enolase antibodies while 10 were negative by 

Western blot (Figure 5.1).  The mean molecular weight (MW) of CKD bands was 72.7 kDa. Five 

Stage II cats, 6 Stage III, and 8 Stage IV cats had anti-α-enolase antibodies in serum by western 

blot. All eight control cats were positive for anti-α-enolase antibodies with a mean band MW of 

71.8 kDa.  The theoretical molecular weight for recombinant α-enolase protein was 73.5 kDa.  

No association was found between the presence of anti-α-enolase antibodies in serum and cats 
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with or without CKD by western blot (p=0.08).  A majority of CKD cats in each stage had α-

enolase antibodies in serum albeit a statistically significant association was not found (p=0.70).   

  

 

       1             2       3      4       5      6      7       8      9     10     11    12    13    14     15    16    17     18 

Figure 5.1 Alpha-enolase western blot with cat serum.  Lane 1 is the molecular weight standard 
at 64 kDa.  Mean band molecular weight is approximately 72kDa. (Lane 2 and 3) control cats, 
(Lanes 4-16) CKD cats, (Lane 17) positive control, and (Lane 18) negative control. 
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5.4.3 ELISA 

Results from α-enolase ELISAs are summarized in Table 5.1.  The mean absorbance for α-

enolase ELISAs in healthy, non-azotemic control cats was 0.44 (standard error of the mean 0.06) 

which was significantly less than CKD cats (1.21±0.10, p<0.0001; Figure 5.2). The median 

%ELISA for α-enolase antibodies in 8 control cats was 0 (range 0-23.6) while CKD cats were 

significantly greater at 77.47 (range 0-371.9; p<0.0001; Figure 5.3).   

 

 

Mean absorbance values for α-enolase in non-azotemic, healthy control cats were 

significantly less than CKD cats at all IRIS stages (p<0.05, Figure 5.4).  Median α-enolase 

%ELISA measurements for control cats were less than all CKD stages, however, statistical 

significant difference was only found between controls and CKD Stages III and IV (p<0.05, 

Figure 5.5).   

  

 

Table 5.1 Mean absorbance and calculated %ELISA results of α-enolase ELISA.  
%ELISA measurements were determined by the following equation: (mean absorbance 
test sample-mean absorbance of negative control) / (mean absorbance of the positive 
control-mean absorbance of the negative control) x 100. 
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Figure 5.2 Mean absorbance for α-enolase 
ELISA. CKD cats had significantly higher α-
enolase antibodies than healthy controls, 
p<0.001. 

 

 

Figure 5.3 %ELISA for the α-enolase ELISA. 
CKD cats had significantly higher α-enolase 
antibodies than healthy controls, p<0.001. 

  

Figure 5.5 %ELISA for α-enolase ELISA by 
IRIS stage. Healthy controls had significantly 
less α-enolase antibodies than CKD cats at 
Stages III and IV, p<0.05. 

Figure 5.4 Mean absorbance for α-enolase 
ELISA by IRIS stage. Healthy controls 
had significantly less α-enolase antibodies 
than CKD cats at Stages II-IV, p<0.05. 
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The mean absorbance of α-enolase by ELISA increased with increasing IRIS stage; 

however, the results were not statistically significant (Figure 5.4).  Stage II cats had a mean 

absorbance of 1.05 (± 0.15) and a median %ELISA value of 69.67 (range 0-158.8).  Stage III 

cats had a mean absorbance of 1.17 (±0.09) and median %ELISA of 80.13 (range 20.8-122.4); 

while Stage IV cats had a mean absorbance of 1.35 (±0.20) and median %ELISA value of 83.47 

(range 42.6-371.9).  No difference in %ELISA measurements was found among IRIS stages 

(Figure 5.5).   

No significant correlation between either mean absorbance (r=0.20, p=0.29) or %ELISA 

(r=0.21, p=0.28) and serum creatinine concentration of CKD cats was found (Figures 5.6 and 

5.7).  Removal of single outliner did not make data statistically significant.  Additionally, the 

mean absorbance and %ELISA from CKD cats that were negative by α-enolase western blot and 

those that were positive were not statistically different (p=0.19; Figures 5.8 and 5.9 ).  If western 

blot negative cats were removed from the analysis, detectable α-enolase antibody by ELISA 

remained significantly greater than controls (mean absorbance, p=0.0002; %ELISA, p=0.0003; 

Figures 5.10 and 5.11). 
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Figure 5.7 Spearman correlation of 
%ELISA and serum creatinine for CKD 
cats.  No significant correlation was 
found (r=0.21, p=0.28) 

Figure 5.6 Spearman correlation of Mean 
absorbance and serum creatinine for CKD 
cats.  No significant correlation was found 
(r=0.20, p=0.29). 

 

Figure 5.8 Mean absorbance for α-enolase 
ELISA.  CKD cats that were negative by 
western blot immunoassay did not have 
significantly different levels of α-enolase 
antibodies by ELISA, p=0.19. 

 

Figure 5.9 %ELISA for α-enolase ELISA.  
CKD cats that were negative by western 
blot immunoassay did not have 
significantly different levels of α-enolase 
antibodies by ELISA, p=0.19. 
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5.4.4 Immunoprecipitation (IP) and Mass Spectrometry 

Immunoglobulin G eluted from serum by affinity chromatography was incubated with feline 

renal cortical homogenate.  Elutes were run on PAGE and bands excised for mass spectrometry.  

Protein bands were present in all immunoglobulin dilutions.  Eluted heavy chain 

immunoglobulin protein bands (50 kDa) were not distinct from eluted antigen in the CKD 

samples and the entire band was submitted for proteomics.  A total of 30 proteins with 100% 

protein identification probability were found in the protein band excised from CKD 

immunoprecipitation (IP) gel.  Nineteen proteins with 100% protein identification probability 

were identified from monoclonal α-enolase antibody IP gel.  Enolase was identified in the feline 

renal homogenate precipitated with recombinant α-enolase antibody along with numerous keratin 

contaminates.  Enolase was not found from excised gel bands in the CKD sample.  A majority of 

proteins identified were keratin contaminates.  However, when elutes were analyzed by mass 

 

Figure 5.10 Mean absorbance for α-
enolase by ELISA.  Control cats had 
significantly less α-enolase antibodies than 
western blot positive CKD cats, p=0.0002. 

Figure 5.11  %ELISA for α-enolase by 
ELISA.  Control cats had significantly less 
α-enolase antibodies than western blot 
positive CKD cats, p=0.0003. 
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spectrometry prior to gel electrophoresis α-enolase was identified from feline renal homogenate 

precipitated with CKD immunoglobulin at 2 and 5 ug titrations. 

5.5 Discussion 

Spontaneous development of anti-α-enolase antibodies in serum have been shown to be 

associated with nephritis in humans with autoimmune diseases.12, 17  In cats, autoantibodies to α-

enolase can be induced with parenteral administration of FVRCP vaccine.9, 10  Additionally, 

inoculation with the vaccine contaminate, CRFK lysates, has been linked to the development of 

interstitial nephritis in hyperinoculated cats--a common lesion seen in cats with naturally 

occurring kidney disease.6  Our findings show that cats with CKD do develop significant levels 

of anti-α-enolase antibodies detectable by serum ELISA when compared to healthy, non-

azotemic controls.  While there was subtle increases in the mean absorbance measurements 

between CKD stages no statistically significant association between serum creatinine 

concentrations or IRIS stage and antibody levels were found.  Due to unavailable vaccine 

histories for all study cats an association between parenteral FVRCP and α-enolase antibodies in 

CKD cat sera could not be determined.  Future directions in determining this relationship would 

include similar assays with sample sets from age-matched cats with and without CKD and 

detailed vaccine histories which would include the route of administration, type of vaccine (e.g. 

modified live), frequency and timeframe of vaccination from sample date. 

Ten CKD cats were negative on western blot immunoassay but had detectable levels of 

α-enolase antibodies by ELISA. Those cats that were negative for α-enolase antibodies by 

western blot did have less mean absorbance and %ELISA measurements compared to CKD 

western blot positive CKD cats; however, this difference was not statistically significant (Figures 

5.8 and 5.9). Alpha-enolase western blot immunoassay could be a less sensitive method of α-
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enolase antibody detection compared to ELISA.  However, all control cats were positive by 

immunoblot but had significantly less antibody by ELISA than immunoblot negative CKD cats 

negative cats (p=0.002). A potential reason for this discrepancy could be from failure of protein 

transfer from the gel to the PVDF membrane in those particular locations, however, negative 

samples were spread out over the membrane and not necessarily concentrated to one location.  

Lastly, α-enolase antibody in sera of cats with CKD could have low affinity binding for 

recombinant α-enolase resulting in reduction in the level of detection by immunoblot.18, 19   

Alpha-enolase was sequenced by mass spectrometry from immunoprecipitated cat sera 

and recombinant, monoclonal antibody with feline kidney homogenate.  The absence of 

identifiable α-enolase by mass spectrometry in gel bands from immunoprecipitated cat sera could 

be the consequence of interference of immunoglobulin heavy chain.14  It is likely that due to 

confluent bands between the location of Ig heavy chain (50 kDa) and the protein of interest (47 

kDa) on the gel that immunoglobulin was included with excision of the sample band.  Exclusion 

of immunoglobulin could be achieved by a different immunoprecipitation technique that 

covalently binds antibody to the IP agarose matrix allowing for elution of only the antigen 

(Thermo Scientific). Despite potential interference of Ig heavy chain whole elution’s of feline 

immunoglobulin and precipitated kidney homogenates yielded identification of α-enolase with 

100% protein identification probability. A potential cause for this discrepancy between the crude 

elution and the gel band could be in the method of band excision.  Perhaps gel bands were 

excised or handled incorrectly yielding mostly keratin contaminants by mass spectrometry.   It is 

our opinion, based on the results of this assay, that immunoglobulin present within CKD cat sera 

binds endogenous renal α-enolase.  
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In conclusion, the findings of this study show that cats with naturally occurring CKD 

have high levels of serum anti-α-enolase antibodies.  While cats with CKD have significantly 

greater amounts of α-enolase autoantibodies when compared to healthy controls, no significant 

difference was found when comparing groups based on severity of disease (i.e. IRIS stage).  

Lastly, immunoglobulin present within the serum of cats with CKD is capable of binding 

endogenous feline renal α-enolase.   
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CHAPTER 6: QUANTIFICATION OF RENAL α-ENOLASE IN FELINE CHRONIC KIDNEY 
DISEASE 

6.1 Chapter Summary 

Alpha-enolase, a ubiquitous, glycolytic enzyme known for catalyzing the conversion of 3-

phosphoglycerate to phospheenolpyruvate has been implicated as a self-antigen in various 

autoimmune diseases.  Autoantibodies in serum are capable of eliciting renal injury and 

ultimately can contribute to patient morbidity and mortality.  Furthermore, endogenous renal α-

enolase has been shown to be overexpressed in human patients with systemic lupus nephritis and 

mixed cryoglobulinemia.  Kidney disease is common in companion animals and affects a 

significant proportion of geriatric cats.  Alpha-enolase protein expression in the kidney has not 

determined in healthy or diseased cats.  The purpose of this study was to identify and 

characterize α-enolase expression in feline tissues as well as to compare the pattern of expression 

between healthy kidneys and kidneys from cats with chronic kidney disease (CKD).  A total of 

29 cats with CKD and 8 non-azotemic, healthy controls were evaluated for this study.  An 

immunohistochemistry technique for semi-quantitative measurement of α-enolase protein 

expression in feline tissue was optimized utilizing a commercially available monoclonal α-

enolase antibody.  In healthy kidneys, α-enolase was moderately expressed in tubular epithelium 

but absent in glomeruli.  In contrast, α-enolase expression was significantly decreased in tubules 

that were degenerative or atrophic in kidneys of CKD cats with significantly more expression in 

glomeruli relative to healthy controls.  There was no significant difference in α-enolase 

expression in hepatocytes between groups.  This study shows that renal α-enolase expression is 

altered in cats with CKD.  
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6.2 Introduction 

Lohman and Mayerhof in 1934 discovered the glycolytic enzyme, enolase, while studying the 

conversion of 3-phosphoglycerate to pyruvate in muscle extracts.1 To date, enolase has been 

described in both prokaryotic and eukaryotic organisms.  The mammalian enolase enzyme 

family consists of 3 isoenzyme subunits: alpha, beta, and gamma; forming homo- or 

heterodimers.2-6    Alpha-enolase isoezyme is ubiquitous, found in a variety of tissues, with the 

highest concentration within the thymus and kidney.4, 7  This isoform predominates during 

morphogenesis which eventually transitions into beta and gamma dimers with development of 

mature skeletal muscle and nervous tissues, respectively.2, 3, 5, 6  Although originally 

characterized as a cytoplasmic, glycolytic enzyme, enolase has been shown to have multiple 

functions as well as variable cellular expression.4, 8-11  Products of eno1 gene can participate in 

transcriptional repression; cellular defense against hypoxia; and function as a plasminogen 

receptor.12-17      

Circulating α-enolase antibodies have been repeatedly detected in serum of patients with 

autoimmune diseases such as but not limited to rheumatoid arthritis, systemic lupus 

erythematosus (SLE), and mixed cryoglobulinemia.7, 18-22  Of particular interest, 70% of SLE 

patients with detectable anti-alpha-enolase antibodies have active nephritis.22, 23 Renal expression 

of α-enolase is primarily within the cytoplasm of healthy renal tubular epithelium but lacking 

within glomeruli.19, 24  In human patients with lupus nephritis, α-enolase is overexpressed in 

tubules and glomeruli in comparison to healthy patients.19  Similar descriptive or quantitative 

studies of enolase expression in healthy or diseased feline kidneys have not been reported.   

The aim of the current study was firstly to utilize immunohistochemistry to determine 

protein expression of alpha-enolase in feline tissues and compare expression in the kidney 
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between healthy control cats and cats with chronic kidney disease (CKD).  In addition, 

immunoreactivity of α-enolase in liver tissues was used in order to determine if systemic α-

enolase protein expression was affected by CKD.   

6.3 Methods and Materials 

6.3.1 Samples 

Cats with CKD presenting to Colorado State University Diagnostic Medical Center for necropsy 

from 2012 to 2014 were used for this study.  Kidney (n=29) and liver tissues (n=5) from cats 

with CKD was sampled at the time of necropsy. Tissues were fixed in 10% neutral buffered 

formalin solution, paraffin embedded and sectioned at 5 microns.  Liver (n=5) and kidney (n=8) 

tissue from non-azotemic, young (≤1.5 years), healthy cats acquired from the humane society or 

laboratory reared were used as controls, respectively.   Acquisition of tissues was approved by 

Colorado State University’s Institutional Animal Care and Use Committee (IACUC).   Liver 

tissue was sampled and scored in order to determine if systemic α-enolase protein expression 

was variable with chronic kidney disease.  Thymic tissue from a young cat that was euthanized 

unrelated to the current study and necropsied for diagnostic purposes was collected and used for 

antibody optimization and assay validation.  Thymic tissue was used for assay validation and 

optimization due to its reported high level of α-enolase protein expression.7 

6.3.2 Clinicopathologic Data 

Using the IRIS staging scheme for CKD, study cats were assigned into a stage between II and IV 

based on elevated serum creatinine concentration, a urine specific gravity <1.035, and clinical 

history consistent with CKD.25  Cats with a normal serum creatinine concentration (<1.6 mg/dl), 

which include IRIS Stage I, were not included.  Stages II, III, and IV were defined by serum 
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creatinine concentrations measuring 1.6-2.8 mg/dl, 2.9-5.0 mg/dl and >5.0 mg/dl, respectively. 

Non-azotemic control cats had no clinical evidence or history of renal disease, USG >1.035, and 

serum creatinine concentration ≤ 1.6 mg/dl.  

6.3.3 Immunohistochemistry 

Tissues were fixed in 10% neutral buffered formalin solution, paraffin embedded and sectioned 

at 5 microns.  Immunohistochemistry (IHC) on all tissues was performed on a Leica Bond-Max 

autostainer (Leica Microsystems) according to established manufacturer’s protocol.  Tissue 

sections were deparaffinized and rehydrated.  Antigen retrieval consisted of heating slides for 20 

minutes with Bond Epitope Retrievel Solution 1 at pH 6 (Leica Microsystems).  Endogenous 

peroxidase activity was blocked with 3% hydrogen peroxide solution.  Slides were incubated 

with mouse monoclonal ENO1 antibody (Abnova Taiwan Corp.) for 15 minutes at room 

temperature.  Primary antibody was replaced with Bond Ready-to-Use Mouse Negative Control 

antibody for negative controls (Leica Microsystems).  Antibody detection was accomplished by 

applying 3,3’-diaminobenzidine chromagen and hematoxylin counterstain. 

Determining optimal antibody concentration for appropriate signal intensity was 

determined by applying serial dilutions of primary antibody (ENO1, Abnova) to thymic tissue.  

The optimal concentration of antibody that provided the highest intensity with the least 

background staining was 1:2000, compared with more concentrated dilutions (1:500 and 

1:1000).  Primary antibody at a concentration of 1:2000 was used in all IHC procedures as 

described above with thymus as a positive control.  Assay validation was achieved by scoring 

thymic tissue at the optimal antibody concentration on 3 separate occasions and scored 

separately.  Interassay variation was determined from the quotient of the standard deviations and 

mean (i.e. coefficient of variation). 
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  Each section of kidney and liver was evaluated for positive immunoreacitvity and 

assigned a score based on signal intensity—immunoreactivity--ranging from 0 to 3.  Scoring was 

defined as follows:   0=no staining, 1=light brown/tan, 2=moderate brown staining, 3=dark 

brown which may obscure the nucleus.  Ten high powered fields (40X) were selected from a 

subgross grid for each section of liver and kidney.  A total of 20 hepatocytes, 2 per single grid 

block were scored.  Similarly renal cortical tubules, either 20 tubules from controls or 10 injured 

and 10 normal tubules from CKD cats, and 20 non-sclerotic glomeruli for each cat were scored.  

Injured tubules were defined as those that were degenerative or atrophic.  Sections from bilateral 

kidneys were evaluated separately and compared to determine if there was variability between 

kidneys in individual CKD (n=5) and control (n=2) cats.  

6.3.4 Statistics 

Immunoreactivity scores for renal cortical tubules and glomeruli from non-azotemic controls and 

CKD cats were compared by non-parametric one-way analysis of variance (Kruskal-Wallis) with 

post-hoc Dunn’s comparison tests.  Additionally, tubules and glomeruli from bilateral kidneys of 

CKD and control cats were compared by non-parametric, paired t test (Wilcoxon signed rank 

test).  Hepatocytes of controls and CKD cats were compared by a non-parametric t test.  

Statistical significance for all analyses were set at p<0.05 and performed in GraphPad Prism 

version 5.00 for Windows (GraphPad Software, San Diego California USA, 

www.graphpad.com).   
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6.4 Results 

6.4.1 Signalment and Clinicopathologic Data 

A total of 29 cats with CKD and 8 non-azotemic, young, healthy controls were included in this 

study.  Control cats were ≤1 ½ years old, domestic shorthair, and consisted of 2 males and 6 

females.  A total of 9 Stage II cats, 8 Stage III and 12 Stage IV CKD cats were included in this 

study.  The mean age of cats with CKD was 14.7 years (range 8-20 ½ years) and included 14 

castrated male and 15 spayed female cats.  Domestic shorthair cats were most prevalent (n=17) 

with lesser domestic longhair (n=6), 3 Siamese, 1 Tonkinese, and 1 Ragdoll breeds. 

6.4.2 Immunohistochemistry 

6.4.2.1 Thymus 

Immunohistochemistry of feline tissues utilizing a mouse monoclonal α-enolase antibody 

(Abnova, Taiwan) was validated and optimized with thymic tissue from a young cat without 

renal disease.  At the ideal dilution, 1:2000, the coefficient of variation for interassay variation 

was determined to be 8.2%.   Pale to light staining was present in the cytoplasm of most thymic 

epithelial cells with a mean staining intensity of 0.99 on a visual scale of 0-3.  Infrequently, a 

thin rim of moderate cytoplasmic staining could be identified around small lymphocytic nuclei.  

Determining cytoplasmic versus membrane staining was equivocal in lymphocytes.    

Additionally, periparenchymal adipocytes were positive for cytoplasmic enolase.  

6.4.2.2 Liver 

Hepatocellular α-enolase expression was not significantly different between cats with or without 

CKD (p>0.05, Figure 6.1).  The median immunoreactivity score for young control cats and CKD 

was 1 (range 0-2).  No score of 3 was given to any hepatocyte for either group while a majority 

were given a score of 1 (controls 62/100, CKD 73/100).  Remaining cats were given a score of 
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either 2 (controls 20/100, CKD 12/100) or no staining was detected (controls 18/100, CKD 

15/100).  Alpha-enolase staining was restricted to the cytoplasm of hepatocytes (Figure 6.2). 

 

  

  
1 2 

Figure 6.2  Immunohistochemistry of the liver from a (1) non-azotemic, healthy control 
and (2) chronic kidney disease cat, mouse monoclonal α-enolase antibody, 20X (Inset: 
negative control). 

 

Figure 6.1 Mean immunoreactivity scores for hepatocytes of healthy controls (n=5) and 
CKD cats (n=5).   Whiskers represent the standard error of mean. 

 

122 
 



6.4.2.3 Kidney  

Alpha-enolase immunoreactivity scores for CKD and control cats are summarized in Figure 6.3 

with descriptive statistics outlined in Table 6.1.  When comparing bilateral kidney scores from 

either CKD (n=5) or control (n=2) cats statistical difference was not found in staining intensities 

of CKD tubules (injured tubules, p=0.57; normal tubules, p=0.11) and glomeruli (CKD, p=0.77; 

controls, p=0.09).  All tubules from bilateral kidneys of control cats were scored a 2 and so 

statistical analysis could not be performed because all values were equal.  Because no difference 

between kidneys within individual cats was found, either those with CKD or healthy controls, a 

single kidney was evaluated for each cat for the remainder of the study. 

 

  

 

 

Table 6.1 Summary of immunoreactivity scores in non-azotemic, healthy control cats 
(n=8) and chronic kidney disease cats (n=29).  Immunoreactivity scores are given as the 
total number and (percentage) of glomeruli or tubule with each score 
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A total of 8 young, non-azotemic, healthy cats were used as controls.  Twenty glomeruli 

and 20 tubules were evaluated per cat.  The median glomerular immunoreactivity score for 

control cats was 1 (range 0-2).  The majority of glomeruli (139/160) had either absent staining 

for α-enolase or occasional pale staining of a few epithelial cells (Figure 6.4).  The median 

tubular immunoreactivity score for control cats was 2 (range 2-3).  Nearly all control cats had 

moderate, monochromatic, cytoplasmic staining of tubular epithelial cells (158/160) with only a 

few tubules that stained intensely (2/160, Figure 6.4).   

 

 

 

Figure 6.3 Mean immunoreactivity scores for glomeruli and tubules from healthy controls and 
CKD cats.   Normal and injured tubules in CKD cats were scored separately.  Whiskers 
represent the standard error of mean.  Glomerular α-enolase expression was significantly 
greater in CKD cats than controls (p<0.05).  Tubular α-enolase was significantly greater in 
control tubules and normal CKD tubules when compared to injured CKD tubules (p<0.05). 
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Twenty-nine cats at various stages of CKD were evaluated for this study.  Glomerular 

staining in CKD cats was variable with a median score of 2 (range 0-3).   Immunopositivity for 

α-enolase was variable even within the same kidney of some cats with some glomeruli having 

absent staining while in other regions staining intensity was marked (Figure 6.5).  However, 

moderate staining was most common (243/580) and present within the cytoplasm of glomerular 

epithelial cells (visceral and parietal) and less frequently mesangial cells.  Degenerative and 

atrophic tubules (i.e. injured) were scored separately from tubules that morphologically were 

normal in cats with CKD.  Injured tubules had a median score of 1 (range 0-3) while 

morphologically normal tubules had a median score of 2 (range 1-3).  There was a greater 

variability in staining intensity in injured tubules while a majority of morphologically normal 

tubules had moderate staining (203/290). 

Glomerular α-enolase expression by immunohistochemistry was significantly greater in 

cats with CKD than controls (p<0.05).  Immunoreactivity was not significantly different between 

morphologically normal tubules and control tubules, however, injured tubules from CKD cats 

had significantly less α-enolase staining than both tubules from control cats and morphologically 

normal tubules from CKD cats (Figure 6.5). 
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Figure 6.4 Immunohistochemistry of the kidney in a healthy control cat, mouse monoclonal 
α-enolase antibody.  Minimal staining in glomeruli with moderate, monochromatic staining 
of tubules, 20X (Inset: negative control). 

 

 

Figure 6.5 Immunohistochemistry of the kidney in a CKD cat, mouse monoclonal α-
enolase antibody.  There is moderate to marked glomerular staining in epithelial and few 
mesangial cells.  Tubules have variable staining intensities, 20X (Inset: negative control). 
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Immunoreactivity of α-enolase was compared between CKD stages.  Results are 

summarized in Figure 6.6 with descriptive statistics outlined in Table 6.2.  Of the 29 CKD cats 

included in this study 9 were in Stage II, 8 Stage III, and 12 were in Stage IV.  The median 

expression of α-enolase in glomeruli was 2 (range 0-3) for all stages with no statistical 

significance found between stages.  Median immunoreactivity for normal tubules was 2 (range 1-

3) for all stages with no significant difference between stages. Injured tubules of cats at any stage 

of CKD had significantly less α-enolase expression when compared to normal tubules at any 

stage (p<0.05).  The median immunoreactivity score for all stages of injured tubules was 1 

(range 0-3).  No statistically significant difference was found between stages when α-enolase 

expression in injured tubules was compared.  Alpha-enolase expression in glomeruli of CKD cats 

was significantly less than normal tubules at all stages (p<0.05).  Injured tubules from all stages 

had significantly less α-enolase expression than glomeruli from Stage IV cats (p<0.05).  

However, expression was similar between injured tubules of Stage II cats and glomeruli of both 

Stage II and III cats (p>0.05).    
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Figure 6.6 Mean immunoreactivity scores for glomeruli and tubules from healthy controls and 
CKD cats.   Normal and injured tubules in CKD cats were scored separately.  Whiskers 
represent the standard error of mean.  Glomerular α-enolase expression was significantly 
greater in CKD cats than controls (p<0.05).  Tubular α-enolase was significantly greater in 
control tubules and normal CKD tubules when compared to injured CKD tubules (p<0.05). 

 

Table 6.2 Summary of immunoreactivity scores in CKD cats grouped by IRIS. 
Immunoreactivity scores are given as the total number and (percentage) of glomeruli or tubule 
with each score. 
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6.5 Discussion 

In this study we have described α-enolase protein expression in feline thymic, hepatic, and renal 

tissues.  We demonstrated that there is a difference between renal α-enolase expression in cats 

with CKD compared to healthy controls.  Renal α-enolase is primarily expressed in renal cortical 

tubules in healthy cats with absent to minimal expression in glomeruli.  In contrast, tubular 

expression was decreased in injured tubules while glomerular expression was increased in CKD 

cats compared to healthy controls.  Alpha-enolase expression in the glomeruli of CKD cats was 

present in the cytoplasm of mesangial cells, visceral and parietal epithelium similar to the pattern 

described in patients with SLE nephritis with the exception of crescents in SLE which was not a 

feature found in CKD cats.19   

The mechanism for α-enolase protein overexpression in the kidney has not been 

definitively determined.19  Possible mechanisms include glycolytic and non-glycolytic pathways 

in response to hypoxic conditions and increased anaerobic metabolism.4, 12, 13  In response to 

hypoxic conditions, endothelial cells but not renal tubular epithelial cells were shown to up 

regulate α-enolase.12, 13, 26  Therefore, at least in cases of SLE nephritis with overexpression of α-

enolase in renal tubules another function for the protein other than glycolysis may be the cause 

for increased levels.  Glomerular expression described in this current study is similar to that seen 

in SLE nephritis biopsies.  Therefore, it seems plausible that up regulation of α-enolase in cats 

with CKD has a similar pathogenesis and function, although at present has not been described.  

Similar mechanisms are likely playing a role in increased protein expression in glomeruli and 

normal tubules of cats with CKD.  The decreased protein expression in injured tubules of CKD 

cats could be the result of tubular degeneration and atrophy a common histologic feature of 

feline CKD.27, 28  Another potential cause for decreased protein expression in injured tubules 
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could be the presence of nephritogenic autoantibodies that are bound to tubular α-enolase and 

thus blocking available epitopes for detection by monoclonal antibody in the 

immunohistochemistry assay.  However, this was not a reported interference for protein 

detection in similar assays with known nephrtiogenic autoantibodies in human patients.19 

Alpha-enolase expression in the liver of cats was not affected by CKD.  

Immunoreactivity was mild in both CKD and healthy control groups.  Thymic α-enolase 

immunoreactivity in both CKD and control cats were unexpected in the current study.  Alpha-

enolase is considered a ubiquitous protein with the thymus and kidney containing greater 

amounts of protein than other organs. 4, 7  This conclusion was based on intense reactivity of 

rabbit α-enolase antiserum.to rabbit thymic tissue extracts via an immunoblot assay. 7 In this 

aforementioned study rabbit polyclonal anti-α-enolase serum was applied to several tissue 

extracts.  The thymus in particular was extracted from rabbit while the others were rat and 

human derived.  Perhaps the markedly intense immunoreactivity was due to high primary 

antibody concentrations, nonspecific staining or cross reactivity rather than an optimized protein 

quantification in this tissue.  Based on the findings in the current study, the kidney has greater 

protein expression than that of the thymus or liver by immunohistochemistry utilizing a 

monoclonal, mouse antibody. 

  In conclusion, renal α-enolase is increased in glomeruli and decreased in injured tubules 

of CKD cats when compared to healthy controls.  The mechanism for alteration of protein 

expression could be the result of hypoxia, increased anaerobic metabolism; or tubulointerstitial 

injury.  Additional studies to further elucidate the role of α-enolase enzyme in the pathogenesis 

of feline CKD are needed such as quantifying α-enolase mRNA, localizing cellular expression as 

well as identifying nephritogenic autoantibodies in feline tissues. 
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CHAPTER 7:  CELLULAR LOCALIZATION OF RENAL ALPHA-ENOLASE 

7.1 Chapter Summary 

Alpha-enolase is a ubiquitous glycolytic enzyme that is alternatively expressed on the plasma 

membrane where it can be targeted by autoantibodies in sera of patients with autoimmune 

diseases involving the kidney.  Anti-α-enolase antibodies can be induced experimentally in cats 

with prophylactic viral vaccines and occur naturally in cats with chronic kidney disease (CKD).  

The purpose of this study was to evaluate the cellular location of α-enolase in feline renal tissue 

homogenates.  A total of 29 CKD cats at various IRIS stages and 2 healthy controls were 

included in this study.  Renal tissue homogenates were fractionated and α-enolase protein was 

identified by western blot immunoassay.  Twenty-eight cats with CKD and both control cats had 

cytosolic α-enolase protein while only 16 CKD cats and a single control cat had membranous 

protein expression.  The number of cats with membranous α-enolase was significantly greater in 

later stages of kidney disease (p=0.006).  Eluted immunoglobulin from both azotemic and non-

azotemic cats bound endogenous cytosolic and membrane proteins at the approximate molecular 

weight as α-enolase.   

7.2 Introduction 

Autoimmune diseases occur due to the production of an adaptive immune response to self-

antigen.1  Specific T lymphocytes that recognize self-antigen are capable of causing tissue 

damage directly or indirectly by antigen presentation and subsequent antibody production by B 

lymphocytes.1  Frequently highly conserved intracellular enzymes are the target of 

autoantibodies in autoimmune diseases.2  The loss of self-tolerance is often spontaneous or 

idiopathic; however there is evidence that autoimmunity can be triggered by infectious agents via 
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molecular mimicry.1, 3  Regardless of the inciting cause, there is dysregulation of the immune 

response resulting in systemic or tissue specific injury by cellular or humoral defenses. 

Alpha-enolase is frequently reported as the target for autoantibodies in a myriad of 

diseases.3-5  Specifically, glomerular podocyte α-enolase has been identified as a target for 

autoantibodies by in vivo co-localization in human membranous glomerulonephritis and lupus 

nephritis biopsies.6, 7  Renal injury results from immune complex deposition, activation of 

complement and recruitment of inflammatory cells.8  In cats, interstitial nephritis has been 

documented to occur in association with the presence of experimentally induced anti-α-enolase 

antibodies.9, 10  Antibodies were induced by repeated administration of vaccines containing 

cellular contaminants as well as cell line lysates.9  Furthermore, azotemic client owned cats with 

known  FVRCP vaccine histories were more likely to have α-enolase antibodies than non-

azotemic cats.11    

Alpha-enolase is a ubiquitous glycolytic enzyme with highest concentrations in the 

thymus and kidney.12, 13  However, its function and location do not appear to be restricted to the 

cytoplasm to participate in glycolytic metabolism. In addition to catalyzing the conversion of 2-

phosphoglycerate to phosphoenolpyruvate, α-enolase can be expressed on the plasma membrane 

as a plasminogen receptor or act as a marker of hypoxia and heat stress.13-17  As a membrane 

bound protein it can also act as a target for autoantibodies.2  Shifting of enzyme expression to the 

plasma membrane may provide clues to possible pathogenesis of disease, such as its role in 

hypoxic stress or inflammation, and is in part the aim of this particular study.  In addition to 

localizing α-enolase cellular expression in the kidney we analyzed the affinity of cat sera to renal 

fractionated proteins. 
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7.3 Material and Methods 

7.3.1 Samples 

Cats with CKD presenting to Colorado State University Diagnostic Medical Center for necropsy 

and available serum from 2012 to 2014 were used for this study.  Samples were collected from 

any residual serum that remained after ante mortem routine biochemistry, at the owner’s 

permission.  Samples were stored at -20oC until assays could be run in batches.  Renal cortical 

tissue was taken at the time of necropsy, stored in RNAlater preservative, and frozen at -80oC.  

Similarly, tissues and serum from two healthy, non-azotemic, laboratory reared cats were used as 

controls.  Acquisition of tissues and serum was approved by Colorado State University’s 

Institutional Animal Care and Use Committee (IACUC).   Additional serum from non-azotemic, 

aged cats (>10 years old) from a previous study that were screened for α-enolase antibodies by 

western blot immunoassay were included for affinity chromatography assays.11 

7.3.2 Subcellular fractionation 

Renal cortical tissue was weighed (20mg), minced, rinsed in cold PBS, and disrupted by a hand 

held tissue homogenizer (Omni International, Inc).  Subcellular fractionation of membrane and 

cytosolic compartments was achieved using Qproteome Cell Compartment Kit (Qiagen) 

according to the manufacturer’s protocol.  Briefly, extraction buffer was added to homogenized 

tissue to disrupt the plasma membrane.  After centrifugation at 4000 rcf for 10 minutes at 4oC, 

the supernatant which contained cytosolic proteins was separated from the pellet.  The pellet 

which contained the plasma membrane and organelles was resuspended in a separate extraction 

buffer, incubated and centrifuged at 6000 rcf for 10 minutes at 4oC.  This supernatant contained 

plasma membranes proteins.  Cellular fractions were then desalted with acetone precipitation and 

resuspended with 0.5% Tween 20 in PBS (0.5% PBST).  Protein concentrations were determined 
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by the Pierce BCA Protein Assay Kit (Thermo Scientific).  Five micrograms of protein from 

each fraction was mixed with lithium dodecyl sodium (LDS) sample buffer, reducing agent, 

denatured and loaded on a precast 10% Bis-Tris mini gel along with a molecular weight standard 

(Thermo Scientific). Gels were electrophoresed in 3-(N-Morpholino)-propanesulfonic acid 

running buffer at 200V for 50 minutes.  Proteins were then transferred to a polyvinylidene 

difluorure (PVDF) membrane in transfer buffer with 20% methanol in a XCell II Blot Module 

(NuPage, Intitrogen, Carlsbad) at 25V for 90 minutes. 

 Membranes were blocked with 5% nonfat dry milk in PBS with 0.2% Tween 20 (0.2% 

PBST; Fisher Scientific) and then incubated with a primary mouse monoclonal anti-alpha-

enolase antibody (2.5μg/mL) overnight at 4oC (Abnova Taiwan Corp.).  Monoclonal mouse anti-

Na-K-ATPase (0.05μg/mL) and anti-GAPDH (Glyceraldehyde-3-phosphate-dehydrogenase, 

1:1000) blocked with 3% milk in PBS were optimized and used for confirmation of plasma 

membrane and cytosolic compartments, respectively (Millipore).  All membranes were washed 

with 5% nonfat dry milk in PBS with 0.2% PBST and subsequently incubated in goat-anti-mouse 

IgG (heavy and light chain) secondary antibody conjugated to horseradish peroxidase at room 

temperature for 1 hour (Abnova Taiwan Corp.).  Protein bands were visualized by colorimetric 

horseradish peroxidase (HRP) detection with 3, 3'-diaminobenzidine in 10% hydrogen peroxide 

buffer and analyzed by Quantity One (Bio-Rad) software.  Prevalence of α-enolase protein bands 

in subcellular fractions were compared between IRIS stages by chi-square analysis on GraphPad 

Prism version 5.00 for Windows (GraphPad Software, San Diego California USA, 

www.graphpad.com).   

 

137 
 

http://www.graphpad.com/


7.3.3 Affinity chromatography 

Serum samples from each of the following groups were pooled for a total final volume of 250-

300 μL and utilized for affinity chromatography assay:  CKD and aged, non-azotemic cats that 

were positive and negative for α-enolase antibody by western blot immunoblot.  Immunoglobulin 

G was purified with a commercially available antibody purification kit (Thermo Scientific) 

according to the manufacturer’s protocol as previously described.18-20  Briefly, serum was 

incubated with a Protein A agarose column in order to elute immunoglobulin G.  Gel 

electrophoresis and western blot membranes were prepared as previously described with 

recombinant α-enolase, cytosolic, and membrane fractions and stored at -20oC.  Membranes were 

thawed, rinsed with methanol and then with distilled water before blocked with TNTP + 10% 

milk at room temperature on a rocker for one hour.  Immunoglobulin concentration was 

optimized at 15μg in 10mL of TNTP + 10% milk (1.5μg/mL).  Membranes were incubated at 

4oC overnight with gentle rocking then washed with PBS-Tween 80 three times for 5 minutes.  

Secondary goat-anti-cat antibody was diluted 1:25 with 20mL of TNTP+milk.  Membranes were 

incubated with secondary antibody in the dark for 1 hour with gentle rocking at room 

temperature and rinsed with PBS-Tween 80.  Protein bands were visualized by colorimetric 

horseradish peroxidase (HRP) detection with 3, 3'-diaminobenzidine in 10% hydrogen peroxide 

buffer and analyzed by Quantity One (Bio-Rad) software. 

7.4 Results 

7.4.1 Subcellular fractionation 

Optimal concentrations of primary and secondary antibody were determined.  Serial dilutions of 

primary Na-K-ATPase antibody at 0.1 μg/mL, 0.05μg/mL, and 0.075 μg/mL were evaluated by 

western blot immunoassay with protein from membrane fractions.  Similarly, dilutions of 1:250, 
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1:500, and 1:1000 for GAPDH were evaluated by western blot immunoassay with protein from 

cytosolic fractions.  For each antibody, serial dilutions of secondary goat anti-mouse antibody at 

1:2000, 1:3000, and 1:5000 were employed. Optimal concentration for Na-K-ATPase was 0.05 

μg/mL while GAPDH antibody was optimal at 1:1000 both at 1:5000 dilution of secondary 

antibody.  Homogenized fractions required addition of detergent (0.5% PBS-Tween 20) to 

solubilize the protein pellet after acetone precipitation which reduced the appearance of multiple 

bands in the final immunoblot. 

Subcellular fractionation of renal cortical tissue from all CKD cats and 2 non-azotemic, 

healthy cats was achieved by the aid of a commercially available kit (Qiagen).  Cytosolic and 

membrane fractions were confirmed by the presence of positive bands at the appropriate 

molecular weight (MW) for GAPDH and Na-K-ATPase in respective fractions (Figure 7.1).  A 

prominent protein band was present in the cytosolic fraction at an approximate molecular weight 

of 62.3 kDa (range 60.2-63.5 kDa) that bound α-enolase monoclonal antibody in all but a single 

CKD cat (CKD 28/29, controls 2/2 Figure 7.2).  Sixteen CKD cats and a single control cat had a 

faint band at a similar molecular weight in the membrane fractions (mean 64.1 kDa, range 62.8-

65.2 kDa, Figure 7.3).  The single CKD cat that did not have detectable cytosolic α-enolase 

protein was negative in the membrane fraction as well.  Of the CKD cats, 8/9 Stage II cats had 

cytosolic protein and only 1/9 had α-enolase in the membrane fraction. All Stage III cats (8/8) 

had cytosolic α-enolase while 6/8 had protein in the membrane fraction.  Similarly all Stage IV 

cats (12/12) had cytosolic and 9/12 had membrane protein.  Cats in higher stages (i.e. Stages III 

and IV) of CKD were more likely to have α-enolase in the membrane fraction (p=0.006, Figure 

7.4).  Additional bands were present at approximately 182.7, 79.2, 76.1, 70.9, and 53.4 kDa in 
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the cytosolic fractions.  In the membrane fractions additional bands were present at 

approximately 149.8, 33.0, and 15.0 kDa. 

 

  

 

 

Figure 7.1 Western blots of renal cortical cytosolic (Lane 1 and 3) and membrane (Lane 2 
and 4) fractions.  Lanes 1 and 2 GAPDH, Lanes 3 and 4 Na-K-ATPase.   
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Figure 7.2 Cytosolic fractions from CKD cats with a common, dominant band at a mean 
molecular weight of 62.3 kDa.  Lane 1, blocking buffer (negative); Lane 2, recombinant α-
enolase protein; Lanes 3-14, cytosolic fractions from CKD cats. 
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Figure 7.3 Membrane fractions from CKD cats with a common, dominant band at a 
mean molecular weight of 64.1 kDa.  Lane 1, blocking buffer (negative); Lane 2, 
recombinant α-enolase protein; Lanes 3-10, membrane fractions from CKD cats. 

 
 

 

Figure 7.4 Prevalence of CKD cats with membranous expression of α-enolase by IRIS 
stage expressed as a percentage of the group.  Expression was significantly more 
common in later stages (p=0.006).   
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7.4.2 Affinity chromatography 

Serum with and without α-enolase antibodies, confirmed by western blot immunoassay, from 

both CKD and aged, non-azotemic cats were used for this assay.  Immunoglobulin G was 

extracted from serum by affinity chromatography as described.  Immunoglobulin was quantitated 

and applied to western blots of renal cortical fractions at various dilutions (1.5 μg/mL, 7.5 μg/mL 

and 15.0 μg /mL).  Optimal concentration of IgG was determined to be 1.5 μg /ml. Immunoblots 

containing recombinant α-enolase, feline renal cytosolic and membrane proteins were incubated 

separately with IgG from aforementioned groups.  Immunodominant bands were similar between 

groups (Figure 7.5).  Recombinant enolase bands appeared at 54.3 kDa which was less than the 

theoretical MW of 73.5 kDa.  Dominant cytosolic protein bands were present at 51.7 kDa, 80.2 

kDa, and 43.7 kDa.  Membrane protein bands were present at 52.2 kDa and a single band at 30.6 

kDa in the membrane incubated with aged, non-azotemic feline serum that was negative by 

immunoassay for α-enolase antibody.  
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7.5 Discussion 

Alpha-enolase has been characterized as an abundant, highly conserved cytosolic protein which 

is capable of acting as a plasminogen receptor on the cell membrane or up regulated in response 

to metabolic stress such as hypoxia.17 However, knowledge of protein expression and its role in 

disease states is mostly restricted to human and rodent models.  The purpose of this study was to 

characterize cellular expression of α-enolase in the cat kidney both in health and in CKD.  In 

addition, to complement previous serologic studies we were able to demonstrate that 

immunoglobulin present in cat sera was capable of binding to endogenous feline renal protein in 

vitro. 

Figure 7.5 Western blot of feline renal subcellular fractions incubated with 1.5 μg/mL 
of IgG from CKD cats (Lanes 2-7) and aged, non-azotemic cats (Lanes 8-13) that 
were either positive (Lanes 5-7 and 11-13) or negative (Lanes 2-4 and 8-10) for α-
enolase antibody by western blot immunoblot.  Lane 1 blocking buffer (negative); 
Lanes  2,5, 8, and 11 recombinant α-enolase; Lanes  3,6, 9, and 12 cytosolic 
fractions; Lanes 4, 7,10, and 13 membrane fractions.  
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Subcellular fractionation of renal cortical tissue from CKD cats revealed the presence of 

dominant protein band that bound α-enolase monoclonal antibody in a majority of study cats.  

This protein was present in cytosolic and lesser membrane fractions in 28 and 16 CKD cats, 

respectively. However, the identified protein was not at the expected molecular weight (MW) for 

α-enolase which should be approximately 47 kDa.  In general, discrepancies in the expected 

molecular weight of proteins separated by gel electrophoresis can be the result of post-

translational modifications such as nitration, carbonylation, and phosphorylation, alternative 

splicing, or intrinsic factors such as protein charge or dimerization.21 Post-translational 

modifications of α-enolase have been documented in association with neoplasia, diabetic 

cardiomyopathy, aging, and Alzheimer’s disease.17  Oxidative stress can result in carbonylation 

and nitration of α-enolase which will modify the isoelectric point of the protein without change 

to the protein’s molecular weight.22, 23  It has been demonstrated that cats with CKD have 

increased markers of oxidative stress.24  This stress could potentially lead to protein 

modifications, altering α-enolase isoelectric point or molecular weight. In the present study, 

additional proteomics analyses to assess the presence of post-translational modifications in the 

kidney of CKD cats would be required to identify if such changes were present in feline renal α-

enolase.  Alternatively, protein bands at higher molecular weight could be the result of sample 

viscosity.  While optimizing the subcellular fractionation for gel electrophoresis and western blot 

immunoassay samples were eventually solubilized in 0.5% PBS-Tween 20 which resulted in a 

moderately to markedly viscous sample.   It is possible that the sample viscosity inhibited the 

electrophoretic mobility to some extent resulting in a slightly increased molecular weight by gel 

electrophoresis.25, 26  Additionally, the positive control--recombinant α-enolase--was not at the 

exact expected MW of 73.5 kDa but less at approximately 54.3 kDa in the affinity 
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chromatography western blots.  In this assay, the reduction in weight could be the consequence 

of loss of the GST tag (26 kDa) from the recombinant protein.  

Extraction of immunoglobulin by affinity chromatography revealed positive bands in 

samples that had previously tested negative for anti-α-enolase antibodies by western blot 

immunoassay.  A potential explanation for this could be that there was a soluble substance 

interfering with the immunoglobulin in the serum of cats with negative western blot 

immunoassays.  Or perhaps α-enolase antibody was less concentrated in these cats sera which 

brought about a false negative result by western blot immunoassay.   

In conclusion, this study has shown that α-enolase is predominantly expressed within the 

cytosol of cats with and without chronic kidney disease.  As the stage of CKD progresses (i.e. 

from Stage II to IV) membranous expression of α-enolase occurs more frequently.  Although a 

mechanism for the shift to membranous α-enolase expression has not been defined the data 

gathered in this study suggests that a relationship, either cause or effect, between the severity of 

CKD and a shift in cellular localization exists.2  Alpha-enolase can function as a plasminogen 

receptor, the site for conversion of plasminogen to plasmin in the fibrinolysis pathway, when 

expressed on cell membranes.27  Impaired fibrin clearance due to blocking of plasminogen 

receptors by anti-α-enolase antibodies leading to increased inflammation has been proposed.2, 27 

Further work to define the functional role of membranous α-enolase in cats with CKD, such as a 

plasminogen receptor, is needed. Furthermore, determining if there is an association between the 

presence and severity of renal inflammation and membranous α-enolase expression in cats with 

CKD may provide insight into the role of α-enolase as a plasminogen receptor in feline CKD. 
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CHAPTER 8: CONCLUDING REMARKS 

8.1 Significance of Work 

It has been well established that feline chronic kidney disease (CKD) affects many cats and can 

have significant consequences.  There are many gaps in our current knowledge as to the leading 

cause(s) and pathogenesis of this syndrome.   The ultimate goal for this dissertation was to 

elevate our knowledge in an attempt to bridge some of these gaps.  In Chapter 3, we described 

various patterns and characteristics of renal lesions at the different stages of CKD.  Unique 

lesions and specific patterns will hopefully guide future studies in potential etiologies and 

therapies.  In Chapter 4 we characterized gastric lesions in cats with CKD.  Our findings will 

undoubtedly impact current therapeutic regimens.  For the second part of this dissertation we 

explored the role of α-enolase and autoantibodies in feline CKD.  Chapter 5 demonstrated the 

presence of anti-α-enolase antibodies in the serum of cats with CKD that were capable of binding 

to endogenous renal proteins.  Chapter 6 characterized the expression of α-enolase protein in 

healthy and CKD cats while Chapter 7 went a step further and described the subcellular protein 

expression.  The data generated from the second portion of this project are in large descriptive 

but have some interesting potential etiopathogenic implications for feline CKD.   

8.2 Specific Aim 1 (Chapter 3: Histopathology of CKD IRIS stages) 

This chapter documented differences in histologic lesions and patterns among the four stages of 

CKD. The severity of tubular degeneration, interstitial inflammation, fibrosis, and 

glomerulosclerosis was significantly greater in later stages of CKD compared to early stages of 

disease, although glomerulosclerosis was the only variable that increased significantly with each 

disease stage. This latter finding is unique to this study as glomerulosclerosis was mild and not 

different among stages in a previous study of cats with CKD.1 Sclerosis, or hardening of the 
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glomerulus can occur for a variety of reasons.  Maladaptive hyperfiltration and ischemia can 

result in glomerulosclerosis with the latter considered in the aforementioned study to be the more 

probable pathogenesis based on pattern of glomeruli histopathologically.1, 2  This is of 

particularly interest in conjunction with the vascular findings in this study.  Fibrointimal 

hyperplasia, a thickening of the vascular intima, was found in 56.5% of CKD cats and could 

have potential hemodynamic consequences that warrant further investigation.    Proteinuria was 

associated with increased severity of tubular degeneration, inflammation, fibrosis, tubular 

epithelial single cell necrosis and decreased normal parenchyma. These findings will help 

pinpoint therapeutic targets and the stage of disease at which they should be initiated, in addition 

to potential implications as to the pathogenesis of CKD in the cat.    

8.3 Specific Aim 2 (Chapter 4: Uremic gastropathy) 

Uremic gastritis, consisting of necrosis, hemorrhage, and ulceration has been documented in 

humans with renal failure.3  While dogs appear to be less affected by necrosis and mucosal 

ulceration, no histologic assessment of gastric pathology in cats with CKD has been performed.4, 

5   The aim of this chapter was to evaluate the type and prevalence of histopathologic lesions in 

the stomach of cats with CKD, and to determine whether the degree of azotemia, calcium-

phosphorus products and serum gastrin concentrations correlated with gastric pathology.  

The most significant gastric lesions in CKD cats were fibrosis and mineralization. Gastric 

ulceration, hemorrhage, edema, and vascular injury, were not observed in cats with CKD.  Only 

cats with moderate and severe azotemia had gastric mineralization. Calcium-phosphorus product 

(CPP) was correlated to disease severity.  Severely azotemic CKD cats had significantly greater 

CPP when compared to non-azotemic controls, and to mildly and moderately azotemic cats. 
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Gastrin concentrations were significantly greater in CKD cats when compared to non-azotemic 

controls but elevated concentrations were not associated with gastric ulceration. 

 These data suggest that the therapeutic administration of gastric protectants such as 

sucralfate may not be justified in cats with CKD.  Medical management of gastrointestinal 

symptoms with anti-emetic and anti-nausea drugs may be more appropriate in ameliorating 

clinical symptoms attributable to uremia. Gastric mineralization, likely the consequence of 

metastatic mineralization, suggests that interventions to reduce hyperphosphatemia and renal 

secondary hyperparathyroidism are indicated.  Lastly, the exact role of hypergastrinemia in 

contributing to gastric hyperacidity and/or gastric lesions in cats with CKD is still unclear. 

Further studies to determine gastric acidity and normal gastric pathology in cats are needed in 

order to close this gap in our understanding of the etiopathogenesis of hypergastrinemia in feline 

uremia. 

8.4 Specific Aim 3 (Chapter 5: Alpha-enolase antibodies in serum and endogenous renal 

targets) 

Systemic lupus erythematosus (SLE) is an autoimmune disease in which patients have 

autoantibodies that target a variety of cellular components.  Of interest, anti-α-enolase antibodies 

have been associated with active nephritis and recovery in SLE patients.6-8  Anti-α-enolase 

antibodies can be induced experimentally in cats and inducible autoantibodies have been 

associated with interstitial nephritis.9, 10  In this chapter, the goal was to determine if cats with 

naturally occurring CKD at various stages and with variable vaccine exposure had significant 

serum anti-α-enolase antibodies.  In addition, it was determined that endogenous renal α-enolase 

was a target for circulating autoantibodies. 
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Cats with CKD had significantly higher levels of serum anti-α-enolase antibodies than 

healthy, non-azotemic control cats.  Alpha-enolase antibodies increased with each stage (Stage 

II-IV); however the difference between each stage was not statistically significant.  Lack of 

statistical significance may be a consequence of a small sample size for each stage. If 

autoantibodies to α-enolase do indeed increase with stage then there are potential diagnostic or 

pathogenic implications of these antibodies.  Autoantibodies can be produced in response to 

cellular injury for tissue repair.11, 12  Renal tubular injury in feline CKD, which includes 

degeneration and epithelial cell death, were described in Chapter 3.  These histologic variables of 

tubular injury increase with stage and thus could potentially be the cause for an increase in 

autoantibodies. Alternatively, autoantibodies induced by vaccination could be the cause for renal 

injury.  Vaccination status could only be confirmed in 9/29 CKD cats in this study and thus an 

association between vaccination exposure and antibody levels could not be determined.  Future 

studies should be concentrated on evaluating anti-α-enolase antibodies in cats with and without 

naturally occurring CKD with known vaccine histories.  Furthermore, correlation of antibody 

levels and histologic variables of renal injury in cats with CKD are warranted to evaluate the 

potential pathogenicity of α-enolase antibodies.  

8.5 Specific Aim 4 (Chapter 6: Renal α-enolase protein expression) 

Alpha-enolase is  best known as a cytoplasmic, glycolytic enzyme in most cell types.13, 14  

However, It is not restricted to its glycolytic role in the cytosol.  It can be up regulated in the cell 

in response to physiologic stress, expressed on the cell membrane as a plasminogen  receptor, C-

peptide receptor, or marker of apoptosis to name a few.15-20  In addition protein expression in 

kidneys of patients with active nephritis is differentially expressed and is targeted by 
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autoantibodies.6-8  Differences in protein expression could give clues to the metabolic state of 

tissues or pathogenesis of a particular disease. 

 In this chapter, an immunohistochemical assay utilizing a monoclonal mouse antibody 

was optimized and validated in feline tissues to assess protein expression in health and CKD.  

Renal α-enolase was primarily expressed in renal cortical tubules in healthy cats with absent to 

minimal expression in glomeruli.  In contrast, tubular expression was less in injured tubules 

while glomerular expression was increased in CKD cats compared to healthy controls.  Alpha-

enolase expression in the glomeruli of CKD cats was present in the cytoplasm of mesangial cells, 

visceral and parietal epithelium.  Hepatic protein expression was similar between healthy and 

CKD cats which indicates that there is not likely a systemic down regulation of α-enolase 

enzyme in cats with CKD.  Implications of the differential expression may be an indicator of the 

metabolic state of the kidney.  Perhaps there is increased expression in glomeruli and a few 

remaining morphologic normal tubules as a response to local tissue hypoxia or increased 

metabolic demand on remaining, functioning nephrons.  Studies have shown that whilst renal 

tubular epithelial cells did not up regulate enolase in response to hypoxic conditions the in vitro 

conditions were extreme.20, 21  It is more likely that local tissue oxygen tension could be reduced, 

due to loss of peritubular capillaries, increased interstitial fibrosis and inflammation, but not 

absent and it would be of interest to explore what the metabolic response of tubular cells and 

glomerular epithelial cells are under these conditions.    This may include investigating 

expression of hypoxic markers like hypoxia inducible factor (HIF-1α) or vascular endothelial 

growth factor (VEGF-A) in correlation with α-enolase expression in cats with CKD.  Lastly, 

including a group of age matched cats that do not have CKD in future experiments should be 

performed. 
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8.6 Specific Aim 5 (Chapter 7: Cellular localization of α-enolase) 

To complement the previous chapter which addressed α-enolase protein expression in cats with 

CKD, this aim expanded our understanding of protein expression to the subcellular level.  Alpha-

enolase has multiple functions as a membranous protein.  A few include plasminogen receptor, 

apoptotic marker, and target for autoantibodies.6, 7, 16-18, 22-24   Localization of protein in cats with 

CKD has possible etiopathogenic implications.  

In this chapter, kidney homogenate was fractionated into cytosolic and membranous 

fractions and α-enolase protein was identified by immunoblot.  Protein expression was 

predominately in the cytosolic fractions as would be expected; however in over half of CKD cats 

had membranous α-enolase, albeit subjectively weaker.  Membranous expression in cats with 

CKD could indicate that in this disease there is a functional shift for this protein.  Perhaps in 

these cells, α-enolase is acting as a plasminogen receptor or externalized as a result of apoptosis.  

In the case of the latter it would be plausible that in cats with CKD that due to ongoing tissue 

injury that there is some degree of apoptosis.  In addition, we were able to show that 

immunoglobulin in cat sera is capable of binding renal endogenous proteins in both cytosolic and 

membranous fractions.  It is debatable if this binding translates in vivo or if autoantibodies are 

indeed pathogenic as there is little evidence that feline CKD is an immune-complex mediated 

disease.1, 9, 11  Additional studies such as that done by Bruschi et al co-localizing protein and 

antibodies in tissues would be of interest.6, 7 Lastly, evaluating a subset of aged matched cats 

without CKD would be beneficial in further understanding these findings. 
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