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ABSTRACT 

 

STRUCTURAL SYSTEMS WITH SUSPENDED AND SELF–CENTERED FLOOR SLABS 

FOR EARTHQUAKE RESISTANCE 

 

The purpose of this study is to develop a novel structural system for mitigating the effects of 

earthquakes on buildings by suspending the concrete floor slabs, which act as Tune Mass Dampers 

(TMDs) to reduce the response of the structural system. Each slab is suspended using hanger rods 

and steel links are added between the bottom face of the suspended slab and the beam below the 

slab and to be used as energy dissipaters during an earthquake. Moreover, post-tensioned cables 

are installed adjacent to the steel links to provide a self-centering capability to the floor slab and 

eliminate residual drift after a seismic event.  The Suspended Slab (SS) system is analyzed by 

constructing suitable theoretical models, from which mathematical equations describing the 

response of the system are developed and analyzed.  The location and number of suspended slabs 

and energy dissipation links needs to be carefully chosen for optimum performance of the system.  

 

To obtain the optimized condition, the simple optimization approach of Numerical Search is used. 

The optimization identifies the best locations, damping ratio and the frequency ratio of the slabs. 

The approach is suitable for short structures, however with increase in number of floors the 

algorithm becomes time costly. A new combinatorial approach of optimization is implemented 

that uses Nelder Mead algorithm and Covariance Matrix Adaptation Evolution Strategy. The new 

optimization is modified and tested to assess its effectiveness. 

 



  iii 

Finally, three structures are utilized in a case study to evaluate the effectiveness of the suspended 

slab system using the combinatorial optimization approach. The earthquake is modeled as a 

stationary white noise and Kanai – Tajimi Spectrum is used as excitation input to obtain the Root 

Mean Square response, which is considered as the performance evaluation parameter. From the 

results of this study it is concluded that the suspended slab system can be quite an effective strategy 

for earthquake mitigation.   
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Problem Statement 

1.2 Motivation of the Study 

 

On January 17th, 1994, an earthquake generated in Los Angeles, California of Moment magnitude 

6.7 lasting for about 10 – 20 seconds, caused an estimate damage of about $20 billion dollars. The 

earthquake is labelled as the Northridge earthquake and is considered to be one of the costliest 

natural disasters in U.S. history. The Northridge although had a death toll of 57 persons but the 

damage to the infrastructure was in a magnitude of its own. Although steel buildings have a 

capacity to withstand large seismic events without collapse, the cost of repair is not so forgiving. 

These repair costs can sometimes be on the order of billions of dollars, which imposes huge 

financial constraints on post-disaster recovery and economic growth.  

 

In the earlier stages of earthquake engineering the designs were based on Direct Design approach 

in which the main aim was to satisfy the performance objectives, which included immediate 

occupancy, damage control, and collapse prevention. Due to the high investment cost, the design 

procedure shifted to a more economical approach called the Capacity Design, whose main 

objective is to prevent structural collapse with an acceptable level of damage. Soon the drawbacks 

of this approach were realized, especially after Northridge, and the focus was shifted to minimizing 

structural loss without compromising on performance. Therefore, it is necessary to develop new 

structural systems that satisfy higher performance goals and can be easily repaired with minimal 
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cost after major seismic events. In light of this, various systems have been developed such as - 

base isolation and floor isolation systems, damping devices, rocking frames with fuses and many 

more. The concept behind such systems is to concentrate the damage on specific 

repairable/replaceable elements and/or limit the residual drift. Numerous studies have been done 

on these systems and have demonstrated promising results both in terms of cost and performance.  

 

Amongst these new developments are Tuned Mass Dampers (TMDs) with numerous types of 

configurations developed over the years. A TMD, or harmonic absorber, is a passive system 

(although active version also exists) which can be modeled with a mass, a spring, and a damper. 

The TMD is tuned to a ratio of the structures natural frequency (or another modal frequency). 

When the structure is excited at the tuned frequency, the damper resonates out-of-phase with the 

point of connection to the structure (Setareh at al. 2006). Vibration energy is dissipated from the 

structure via dissipative elements (dampers) that are a part of the TMD system. There have been a 

lot of popular applications, such as the Taipei 101, among others. It has been found that the 

performance of all TMD’s is proportional to the mass used in the system (Li, 2000). Usually the 

mass used in the TMD’s is not more than 1.5 % of that of the main structure (Feng & Mita, 1995), 

which leads to the expectation that the performance of TMD should improve if the mass were to 

be increased. The limitation on the weight of TMDs is due to the fact that if TMDs with larger 

masses are used, the sizes of the beams and columns of the main building will have to increase, 

which can lead to uneconomical design. In light of this a new system is proposed in which the 

floor slab are suspended from the beams above using hanger rods. The suspended slab is expected 

to act like a TMD and due to the high mass of the slab the whole system is expected to show an 

elevated performance than usual TMDs.  



  3 

 One of the main drawbacks of implementing the TMD system is that it needs to be tuned for 

optimal performance so there is a risk of getting detuned. In response to problem a new type of 

TMD system known as the MTMD was inquired, where instead of a single TMD on the top floor 

a certain number of TMD’s are placed. It is seen that using multiple TMDs tend to reduce the 

system’s detuning possibility (Li, 2000). Based on the same principle the proposed system can be 

implemented as a MTMD system, by selectively suspending few slabs, thereby making it a robust 

system. The TMD systems have another limitation that they require extra space and as a result are 

generally avoided below the top floors. So an inherent TMD system would prove to be far more 

economical and easy to implement, such as the Suspended Slab system.   

 

1.3 Proposed System 

 

The proposed structural system consists of hanging the floor slabs by the beam above using cables 

or rods. The Suspended slabs tend to act as a typical PTMD. In order to ensure a controlled motion 

of the slabs they are connected to the beam below by a couple of links. These links are categorized 

into two types – Post – Tensioned (PT) links and Energy Dissipation (ED) links. The PT links are 

responsible to provide the necessary stiffness to control the motion of slabs without yielding and 

to ensure zero residual drift once the effect of excitation fades away. These are similar to the self-

centering cables used in the rocking frame (Eatherton et al., 2008). The ED links are the other set 

of links which are designed in such a way to dissipate energy in these links, thus act as damping 

devices. As a result of this combined mechanism the only part that needs to be replaced would be 

the ED links, which are not only economical but also easy to replace. Thus the combination of 

these two links would ensure that the motion of the suspended slab would tend to act as a TMD 
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system; thereby reducing the motion of the primary steel frame.  The proposed system is shown in 

Figure 1.1. 

 

 

Figure 1.1 Elevation view of the proposed structural system and its components 

 

The performance of the SS system is a function of 3 things: 

1. The mass ratio (μd ), which is the ratio of the mass of a suspended slabs to the mass of 

remainder of the frame (non-suspended slabs & steel skeleton) 

2. The damping ratio of the energy dissipation links (ξd ) and; 

3. The ratio of natural frequency of the slab to the steel frame (βd ) 

The design of typical TMD systems includes optimum selection of these 3 parameters. Based on 

the mass ratio obtained the mass of the isolator is chosen accordingly, thus the mass ratio play a 

vital role in the design. However, in case of the SS system, the size of slabs will be decided before 

the design of the suspension systems. Thus, in case of SS system, the mass ratio cannot be 

Energy Dissipation Links

Post-tensioned Links

Hanger Rods or Cables

Suspended Slab
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considered as a variable during the analysis. The design or as usually called ‘The Tuning’ of the 

system, depends on the other two factors - ξd and βd of each slab. TMD’s have been found to be 

most effective when placed at the top floor (Connor, 2003) so the location of TMD’s have not been 

put into much question. However in case of SS system the location plays a vital role as it directly 

affects the performance. Based on the location, the equations of motion for the system changes, so 

the position and number of TMDs is also considered a variable for the system. 

 

Suitable optimization algorithms are used to solve for these variables to get the optimal 

performance. As discussed, the location of suspended masses, which is generally not a source of 

concern in general TMD’s, plays a vital role in the SS system thus separate optimization algorithms 

are used for it. Unlike usual TMDs, the slabs in the SS system can be placed on any floors without 

any space limitation. As a result the SS system comprises of multiple suspended masses (or slabs) 

not on just the top floor but also on the other floors.  

 

1.4 Organization of Thesis 

 

The thesis has been organized as follows:  

 CHAPTER 2:  This chapter evaluates the features of different types of TMD’s ranging 

from passive to active. This chapter mainly draws out a performance comparison between each 

type by pointing out their advantages and limitations. 

 

 CHAPTER 3:  This chapter investigates the steps involved in theoretically studying and 

subsequently developing the SS system. First, a simplified Pendulum Tune Mass Damper (PTMD) 
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model is considered, which comprises of a PTMD attached to a Single Degree-of-Freedom 

(SDOF) frame. Eventually a more complex model is developed to represent the system, which 

comprises of multiple TMD’s attached to a Multi- Degree-of-Freedom (MDOF) frame. Dynamics 

and vibration theories are used to analyze these models, and finally response relations are obtained 

to describe the performance and behavior of the SS system. These response relations are optimized 

in a conventional way to obtain the necessary design parameters – 𝛽𝑑 (Frequency Ratio) and ξd 

(Damping ratio of TMD), for tuning the corresponding SS system. Finally, a numerical example 

is considered to bring out the performance difference between the SS system and a Composite 

steel frame. 

 

 CHAPTER 4: This chapter examines different optimization methods and assess their 

effectiveness with regard to the developed system. Initially, the ‘Numerical Search’ method is 

looked into in detail. Numerical Search or Linear Search is seen to be too time costly to be 

implemented on tall structures (suggested but not limited to number of story < 9). In light of this, 

2 separate algorithms are implemented in combination to develop a much more efficient strategy 

for optimization. The two algorithms used are Nelder –Mead algorithm and Covariance Matrix 

Adaptation Evolution Strategy (CMA-ES). The performance of the ‘Combinatorial optimization’ 

evaluated and few modifications are made to improve its efficiency, both in terms of time and 

accuracy. 

 

 CHAPTER 5: This chapter mainly concerned with performance comparison between the 

SS system and a conventional composite slab frame. The performance comparison is conducted 

using the frequency domain method of analysis. The earthquake is modeled as a stationary noise 
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and the model used for it is a commonly used Spectrum known as the ‘Kanai-Tajimi Spectrum’. It 

is used to model 2 sets of earthquakes - Near-fault earthquakes and Far-fault earthquakes. The 

performance comparison is drawn out using the Root Mean Square response of the two systems 

for these 2 sets of earthquakes. 

 

 CHAPTER 6: This chapter looks into some of the important design aspects of the SS 

system that are required for the design. The design of PT and ED links are looked into which play 

a vital role in optimizing the performance of the SS system. 

 

 CHAPTER 7: The Final chapter highlights the important features of the SS system and 

proposes the scope for future research. This thesis addresses the performance aspects of the 

developed system; however for proper development of the SS system, detailed design of the 

various components and connections is required as well. 
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1.5 Performance of Moment Resisting frames under Seismic Loading 

 

The integrity of fully-welded connections in the beam-to-column joints of steel frames under 

earthquake loading has come under question as many steel and composite buildings suffered severe 

damage in connections during the Northridge (1994) and Hyogo-ken Nanbu (1995) earthquakes. 

Forensic investigations following the earthquake identified failed welded beam–column 

connections in more than 200 buildings in moment resisting frames (Whitaker, Gilani, & Bertero, 

1998). The failure was attributed to poor connection detailing practices and inadequate weld 

material properties that were common prior to the earthquake (SAC Joint Venture 2000). The 

backing bars and weld runoff tabs used to make the groove welds connecting the beams to the 

columns were normally left in place after completion of the weld. The existence of backing bars 

or weld tabs created a lack-of-fusion defect, which was large enough to originate crack growth 

which propagated in the heat affected zone of the weld metal and in the column flange as shown 

in Figure 1.2.  

 

Figure 1.2 Fractured Connection in 1994 Northridge Earthquake 

 

Backing bar detail not 

removed
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Subsequently, other design alternatives were investigated to reduce the risk of connection failure 

during earthquakes. One of such alternatives for the design of special moment frames is to include 

the reduced beam section (RBS) detail (also known as dog-bone connection), which has shown to 

exhibit stable hysteretic loops and sufficient ductility during numerous laboratory tests and has 

gained rapid acceptance worldwide (Chen et al. 1996; Plumier 1997; Engelhardt and Winneberger 

et al. 1998; Zekioglu et al. 1997). The concept behind the reduced beam section detail is to trim 

the width of the beam flange for a particular length of the beam and force inelastic deformation 

and energy dissipation to occur along the reduced flange portion of the beam. One of the main 

advantages of using a RBS detail in moment frames is that it results in a smaller moment at the 

column face, which limits demand on the connection and reduces the likelihood of brittle fracture 

in the connection. In addition, the RBS detail helps satisfy the “strong column - weak beam” 

seismic design requirements. However, one of the behavioral disadvantages of the RBS detail is 

the need to account for the increased probability of web buckling and lateral-torsional buckling 

caused by reduction in flange stiffness (Chi & Uang, 2002). Another shortcoming of using such 

detail is the large cost associated with material replacement and repair downtime resulting from 

the large inelasticity in the beam. With the recent trend pointing towards sustainable engineering, 

the need for investigating alternative safe, cost-effective, and environmentally friendly design 

approaches for steel frames is ever pressing. As previously discussed, rocking of frames is one 

approach by which damaged in the steel building can be controlled and easily repaired. Another 

approach is base isolation, which although an effective approach in reducing seismic demand, its 

high cost and complexity associated with isolating an entire structure can be a discouraging. Figure 

1.3 shows the deformation of an RBS connection after high inelastic demand. 
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Figure 1.3 Yield and Buckling pattern in a Reduced Beam Section 

 

1.6 Isolation Systems 

 

The concept of base isolation is considered to be one of the most promising developments in the 

field of earthquake engineering. In addition to limiting damage to the main structural component 

of a building, the importance of base isolation lays in the fact that the majority of the value of the 

building is in its contents and nonstructural components. In early 1970’s, various studies were 

conducted on base isolation systems with focus on elastomeric and friction-type bearings. In the 

1980s and early 1990s, attention was shifted towards active control device-based hybrid system 

(Taghavi & Miranda, 2003). However, the practical use of active control-based hybrid systems in 

large structures has been restricted due to problems, including instability, reliability, and, power 

consumption. As a result, researchers shifted their focus towards the feasibility of semi-active 

control devices (Kelly, Leitmann, & Soldatos, 1987; Reinhorn & Riley, 1994), which can be both 

adaptable and stable, while maintaining low external power requirements (S. P. Chang et al. 2002). 

Following initial studies on semi- active control devices, smart structural control system, of the 
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same type, employing MR fluid dampers was proposed and studied (Ramallo, Johnson, & Spencer, 

B. F., 2002; Yoshioka, Ramallo, & Spencer, B. F., 2002).  

 

However, the considerably high cost and complexity associated with the practical application of 

such system on an entire structure can be source of concern. Shape Memory Alloy has found 

application in different fields and has been tested and incorporated in civil structures for earthquake 

mitigation including SMA wire re-centering devices (Dolce, Cardone, & Marnetto, 2001), SMA 

spring isolation system (Khan & Lagoudas, 2002; Mayes, Lagoudas, & BK., 2001) and SMA 

tendon isolation system for multi degree of freedom shear frame structure (Corbi, 2003). SMA 

wires were also used as a bracing. The mentioned studies, among others, demonstrated the 

effectiveness of base isolation for earthquake mitigation. 

 

1.6.1 Base Isolation 

 

Base Isolation (BI) is considered to be one of the biggest and most popular isolation methods 

implemented in the field of earthquake engineering. It has turned out to be quite an economical 

and effective approach for mitigating the effects of earthquakes over the past two decades. The 

fundamental concept of base isolation is to decouple the main structure from the earthquake 

induced ground motion. By decoupling, the ground motion transferred to the main structure is 

reduced thereby reducing the damage incurred by the main structure. Base isolation has not only 

been used to isolate structures but has also been used to isolate specific floors containing fragile 

and sensitive equipment.  
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A typical base isolation system comprises of lead-rubber bearings placed at the foundation level 

which tends to introduce flexibility to the main structure and at the same time dissipates energy in 

the damping elements. The isolated structure tends to vibrate like a rigid body with large 

deformations taken by the bearings. This not only reduces the lateral forces experienced but also 

reduces them uniformly over the floors. The lead-rubber bearings have been vastly researched on 

and have been shown to be quite effective (F.Y. Chen et al. 2008; Islam and Ahmad 2010) 

 

Significant research has been done with regards to base isolation systems over a few decades. 

Seismic isolation for multi-story buildings has been also well evaluated and reviewed (Hong and 

Kim 2004; Matsagar and Jangid 2004; Komodromos 2008; Lu and Lin 2008; Spyrakos et al. 2009). 

Base isolator with hardening behavior under increasing loading has been developed for medium-

rise buildings (up to four stories) and sites with moderate earthquake risk (Pocanschi & Phocas, 

2007). Resonant behavior of base-isolated high-rise buildings under long-period ground motions 

was evaluated by Ariga et al. (2006) and long period building responses by Olsen et al. (2008). 

Deb (2004), Dicleli and Buddaram (2007), Di Egidio and Contento (2010) have also given effort 

in progresses of isolated system. Komodromos et al. (2007), Kilar and Koren (2009) focused the 

seismic behavior and responses through dynamic analyses of isolated buildings. 

 

Base Isolation has been particularly popular because of its easy to implement and easy to maintain; 

however it has its share of limitations as well. The BI system is only suitable for structures with 

short periods (Maldonado-mercado, 1995) as the BI system tends to elongate the period of the 

main structure. The more the difference in time periods between the isolated and the non-isolated 

structures the more efficient is the BI system. In case the non-isolated structure has long period 
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then the elongation in period of the isolated structure would be negligible thereby making the BI 

system ineffective. The BI system therefore is not effective on soils that produce long periods. The 

BI system is also seen to be ineffective against wind loads, as they act above the foundation level 

thereby rendering the isolation aspect useless. Further, the BI system requires as isolation gap to 

allow for the free lateral displacement of the isolators (Maldonado-mercado, 1995). Lead-rubber 

bearings tend to deteriorate over time but not much is known about the effects of aging and long 

term creep and how the chemical and physical properties change over time (Villaverde, 1990). 

Other limitations include the inability to measure the coefficient of friction with certainty after a 

long period of inactivity (Villaverde, 1990). 

 

1.6.2 Tuned Mass Dampers 

 

A Tuned Mass Damper is a device that comprises of a mass, a damper and a spring, that is used to 

reduce the response of the structure to dynamic loading. The TMDs are designed such that their 

natural frequency matches the frequency of the predominant mode of the main structure. Under 

these conditions, the TMDs are said to be optimally tuned and are considered to give the best 

performance. The TMD’s have been quite widely studied for wind loading and earthquake loading. 

The concept of TMD was first applied by Frahm (1909) to reduce the rolling motion of ships as 

well as ship hull vibrations. 
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1.6.2.1 Passive Translational Tuned Mass Damper 

 

Passive TMDs are absent of any external source of energy to control the motion of the mass. As a 

result these systems are entirely mechanical and entirely dependent on the initial settings. 

Consequently,  they are susceptible to detuning (Setareh & Hanson, 1992) and are thus unreliable 

than its counterparts. The effectiveness of the TMDs tends to be within a narrow bandwidth around 

the natural frequency of the structure thus it becomes highly necessary to tune the TMDs (Roffel, 

Lourenco, Narasimhan, and Yarusevych, 2011). Even small deviations from the optimal tuning 

frequency can deteriorate the performance significantly. Despite these significant limitations, 

passive TMD systems are still considered to be the primary choice as they are relatively 

inexpensive systems. Furthermore the absence of an external actuator or energy source means that 

there are no additional operational costs once the system is installed.  

 

One of the most common type of passive tuned mass dampers are the translational TMDs (Connor, 

2003). These can be further classified into unidirectional or bidirectional system (Connor, 2003). 

In unidirectional systems, the motion of the TMD mass is restricted to a single direction, often by 

placing the mass on a set of rails or roller bearings. In bidirectional systems, the mass can move 

along both coordinate axes. In either topology a set of springs and dampers are placed between the 

TMD mass and the supporting structure which is fixed to the structure. Translational TMD systems 

have been implemented in large scale structures for over 40 years (Kareem, Kijewski, and Tamura, 

2007). Some prominent examples of structures incorporated with translational TMD systems 

include, the Washington National Airport Tower in in Arlington County, Virginia; the John 

Hancock Tower, in Boston, MA, and the Chiba Port Tower in Chiba Prefecture, Japan. 
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1.6.2.2 Passive Pendulum Tuned Mass Damper 

 

In this type, the translational spring and damper system are replaced with a pendulum, which 

consists of a mass supported by a cable that pivots about a point, similar to a pendulum. It is proven 

analytically that for small angular oscillations the PTMDs can be considered equivalent to a 

translational TMD (Connor, 2003) and can be modeled identically. However PTMDs have certain 

advantages over translational TMDs such as they do not require any bearings, which are quite 

expensive and susceptible to wear and tear.  

 

Numerous researches have been conducted regarding PTMD systems and different systems have 

been developed. A bidirectional homogeneous PTMD has been developed that can be tuned for 

different frequencies in the two directions (Almazán, De la Llera, Inaudi, López-García, and 

Izquierdo, 2007).  Lourenco (2011) developed an adaptive PTMD that increased the robustness of 

the passive system.  PTMD systems are one of the most widely used in the world. Almost half of 

the structures in Japan utilize PTMD systems (Kareem et al., 2007). Some of the prominent 

examples are the Crystal Tower in Osaka, Japan; Higashimyama Sky Tower in Nagoya, Japan; 

and Taipei 101 in Taipei,  Taiwan (Connor, 2003).  

 

1.6.2.3 Active Tuned Mass Damper 

 

Active systems contain an external energy source, often in the form of an actuator. In comparison 

to passive systems, which operate without an energy source and utilize an open loop control, active 

systems utilize sensors to measure system conditions and employ a closed loop control.  
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An Active Tuned Mass Damper (ATMD) system comprises of an actuator which drives the motion 

of either the TMD mass or an auxiliary mass connected to the TMD mass. By actively controlling 

the motion of an external mass, the ATMD can control the forces exerted on the structure. There 

are two advantages in this design. First, the performance of an ATMD system will outperform an 

equivalent passive TMD under detuning conditions, since any detuning is compensated by 

feedback control (e.g. Nishimura et al. 1992; Nagashima 2001). Secondly, an ATMD system is 

capable of optimizing its transient performance. This is particularly useful for impact loads, such 

as earthquake loads (Connor, 2003). As a result ATMD systems have been implemented to reduce 

the lateral response of structures when induced by earthquake loads. For, example the Kyobashi 

Seiwa Building in Tokyo, Japan contains two ATMDs to mitigate structural vibration induced by 

frequent earthquakes (Spencer and Sain, 1997). The installed system reduces the lateral 

displacement by approximately 67%.  

 

Several studies have been performed on the use and performance of ATMDs. These studies 

generally focus on an optimal control algorithm used to improve the ATMDs performance.    

Nishimura et al. (1992) compared the performance of an ATMD using a set of optimized parameter 

equations to a passive TMD system, observing an 80% improvement at the peak frequency. 

Nagashima (2001) presented an optimal displacement feedback control law for an ATMD system 

on a SDOF system. Although ATMDs can outperform their passive counterparts, they have some 

drawbacks. The added design, manufacturing, and instrumentation complexity results in 

significantly higher financial costs over passive systems. Furthermore, the addition of an actuator 

significantly increases the energy requirements of the system. To reduce energy demands, active 

systems can be converted into hybrid systems (Connor, 2003). In hybrid systems the ATMD acts 
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as a passive system under typical loading conditions. Once the structure reaches a certain 

threshold, the active system is turned on. An example of a hybrid system is the Ando Nishikicho 

Building in Tokyo, Japan, which uses a hybrid system containing an 18 tonne passive TMD and 

two auxiliary actuated masses weighing a combined 3.6 tonnes. 

 

1.6.2.4 Semi Active Tuned Mass Damper (SATMD) 

 

ATMD systems provide improved vibration suppression performance at the cost of added 

complexity, maintenance, and energy requirements (Connor, 2003). As a result, active systems are 

usually employed in structures that are exposed to significant dynamic loading. PTMD systems 

are fairly simple systems, which provide excellent vibration suppression when accurately tuned 

and when the structure is excited by narrowband dynamic loading (Setareh et al 2006). Their lack 

of robustness to multiple-frequency narrowband excitations and structural detuning limit their 

performance. SATMD systems combine the advantages of both passive and active systems. These 

systems provide active control of either the stiffness or dampening components of the TMD 

system, instead of driving the system itself. The power requirements to control these components 

are orders of magnitude lower than the power required to drive the TMD mass for active systems 

(e.g. Lin et al 2010; Nagarajaiah, S., and Varadarajan 2005; Chey et al 2010). Since SATMDs do 

not supply mechanical energy to the structure they are considered passive systems. Hence, they 

preserve system stability. By providing active control of the TMD components at lower energy 

costs, they provide improved performance over passive TMD systems while mitigating the 

negative attributes of ATMD systems. There are numerous methods of providing active control to 

TMD components. (Nagarajaiah and Sonmez 2007; Nagarajaiah  and Varadarajan 2005) utilized 
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a semi-active variable stiffness TMD for the suppression of wind induced vibrations for a building 

model. The TMD system allows for adjustment in stiffness via the motion of a linear actuator. 

Setareh (2002 and 2007) proposed dampening control for a PTMD via a magneto rheological 

damper. The magneto rheological damper is a magnetically responsive fluid containing 

magnetisable particles, which in the presence of a magnetic field will affect the fluid’s viscosity. 

Chey (2007 and  2010)  conducted an analytical study of a SATMD using a resettable device in 

the form of a non-linear pneumatic spring. The conclusions common to each of these studies is 

that the semi-active design outperforms the equivalent passive design while providing superior 

performance for detuned testing conditions. 

 

1.6.2.5 Multi – Tuned Mass Damper 

 

As the name implies, multiple TMD systems uses several smaller TMD systems to reduce 

structural vibrations instead of using a single large mass tuned to the structures natural frequency 

(Chen and Wu, 2001). Multiple TMD systems are innately passive systems; however their design 

allows them to be more robust to detuning conditions than traditional passive TMD designs. In 

structures with limited space the use of several smaller TMDs can allow for greater mass ratios 

(Sun et al 1992). For example, if one large TMD system (tuned to the structures natural frequency) 

is divided into several smaller TMD systems (also tuned to the structures natural frequency) with 

an equivalent mass to the original TMD system, then both systems will have an equivalent dynamic 

response (Sun et al 1992). 
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Generally, multiple TMD designs contain individual TMD systems tuned to different frequencies. 

There are two approaches to this implementation. The first is to utilize multiple. TMD systems 

tuned to multiple structural modal frequencies. This is a commonly used approach in real 

structures. For example, the antennae sitting atop the Canadian National Tower in Toronto, Canada 

contains two twenty tons pendulum type dampers tuned to the structure`s second and fourth 

vibration modes (Connor, 2003). The second approach is to utilize multiple TMD systems tuned 

to frequencies distributed around the structure’s natural frequency. Igusa and Xu (1994) 

demonstrated that the optimal approach is to distribute the tuned frequencies of the individual 

TMD systems about the natural frequency. it was concluded that the optimized designed multiple 

TMD system is more robust and effective than the equivalent mass optimized single TMD system. 

Lin and Cheng (2001) evaluated the use of an optimized multiple TMD system to reduce the 

buffeting response and increase the critical wind speed of long spanning bridges. The results show 

that multiple TMD systems, once optimized, perform better and are more robust against wide 

frequency bandwidth wind excitation than the equivalent mass optimized passive TMD system. 

Chen and Wu (2001) made similar observations for structures induced by seismic loading. 

 

1.7 Suspended Systems 

 

The concept of suspending a whole structural system is not new in design and construction of 

buildings against wind and seismic forces. The idea of suspending the structural system is to 

suspend the floors from a concrete core tower using hanger straps draped over the core as shown 

in Figure 1.4  The suspended West Coast Transmission building in Vancouver, Canada. An energy 

dissipating device, typically steel rods, are installed between the floor and the concrete cores and 
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are left to fracture while the system is allowed to freely sway during an earthquake (Goodno, 

1975). Although the suspension systems offer some quite promising attributes with respect to 

earthquake engineering, it still has not been developed to its full potential (Demetriades et al 1992). 

Thus, there is a need to further explore the possible application of the concept and conduct research 

in the area of resistance using suspended systems. Some examples of suspended structures include 

the West Coast Transmission building, built in 1969 in Vancouver, Canada (Figure 1.4  The 

suspended West Coast Transmission building in Vancouver, Canada) the OCBC Centre, built in 

1976 in Singapore, Singapore; and the Administrative Center for the State of Minas Gerais, built 

in 2007 in Minas Gerais, Brazil, which is known as the world’s largest suspended structure. In the 

US, the use of suspension mechanism has also been explored. Examples of such include the 

suspended structure developed by International Environmental Dynamics (IED), San Jose, 

California; the eleven story pacific trade Center, San Pedro; the Great Western Savings and Loan 

Building, Berkeley, California; the Sherman building in San Jose, California; and the Marshall 

building in San Mateo, California. 

 

 

Figure 1.4  The suspended West Coast Transmission building in Vancouver, Canada 
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Isolated floor systems are gaining acceptance in various applications to protect nonstructural 

components that can be moved and located anywhere on the floor or specific rooms—instead of 

isolating single equipment or the entire building. One example is where the floor isolation system 

consists of a raised platform which is isolated using friction-pendulum bearings and damped by 

the friction and/or by viscous dampers (Demetriades et al 1992). Other similar systems have also 

been studied, such as the use of a special kind of bidirectional spring units (Shenlei Cui, M., 2010) 

and wire-rope isolators (Lambrou, V. and Constantinou, 1994) instead of friction bearings to 

provide stiffness, damping and self-centering capabilities to the isolated floor. An advantage of 

these modified systems over traditional friction pendulum bearing system is that the vertical and 

horizontal force transfer mechanisms are uncoupled so that a wide range of isolated periods can 

be achieved by tuning them. Moreover, the friction bearing system experiences high stress 

concentrations at the contact of the bearing and the concave dish that results in formation of 

grooves, which could hinder the motion of the bearing during subsequent earthquakes events. 

There have been other studies investigating the performance and reliability of passive and semi-

active equipment isolation systems located on the upper levels of multi- story structures (Alhan 

2005; Gavin, H.P. and Zaicenco 2007). Some other systems have also been developed, such as ball 

in cone isolators. Floor isolation systems have also been investigated and implemented 

internationally over the past 15 years. Among the various analytical investigations, an 

experimental study was conducted on three dimensional floor isolation systems in Japan (Kaneko 

et al 1995). 
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CHAPTER 2                                                                                             

THEORETICAL DEVELOPMENT OF PROPOSED SYSTEM 

 

2.1 Introduction 

 

In 1928, Ormondroyd and Den Hartog presented the theory on TMD, followed by a detailed 

discussion of optimal tuning and damping parameters in Den Hartog’s book on mechanical 

vibrations (J. P. Den Hartog, 1940). Since then, significant contributions have been made in terms 

of analytical studies on TMDs, for example - Randall et al. (1981), Warburton and Ayorinde 

(1980), H.C. and Lin G.C. (1993) and many more. A number of new TMD systems have been 

developed and evaluated, ranging from passive type systems, such as Multi – Tuned Mass 

Dampers (MTMD) and Distributed Tuned Mass Dampers (DTMD), to active and semi-active 

types. Based on the vast repertoire of knowledge on TMDs, the proposed SS system can be 

considered as an analogue to a MTMD, and it is therefore analyzed in a similar manner.  
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2.2 A Single Suspended Slab (SSS) Model  

2.2.1 System Idealization 

 

 

Figure 2.1 System Representation and Idealization of a Single Suspended Slab System 

 

A simplified analytical model (SSS model) is developed to understand and analyze the behavior 

of the SS system. The reference system considered is a 4 – story 1 – bay structure with single 

suspended slab on the 4th floor. The system is analyzed as a 2 DOF system, where the steel frame 

is represented by a single degree of freedom (𝑋𝑆) and the slab by another (θ) (Figure 2.1). The 

proposed analytical model can be considered similar to a typical PTMD system. As discussed 

earlier, a PTMD system comprises of mass suspended by cables at particular location(s) (which is 

mostly the top floor). Similarly in the SS system the slabs are suspended using cables or hanger 

rods. The PTMD system also comprises of some stiffness and damping to keep the motion of the 

pendulum mass within acceptable limit.  
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In the SSS system, the stiffness is provided by the post–tensioned links and the damping by the 

energy dissipation links. Thus, the two systems are quite similar in nature, and so the proposed 

analytical model for the SSS system is exactly the same as that of a PTMD system. The model 

comprises of a mass ‘𝑀𝑆’ that represents the mass of the 4 story structure excluding the mass of 

the suspended slab, and mass ‘𝑚𝑑’ represents the suspended slab’s mass. The damping (CS) and 

stiffness (KS) of mass 𝑀𝑆 represent the structure’s total stiffness and damping, excluding that of 

the suspended slab, and for mass 𝑚𝑑 the stiffness (kd) and damping (cd) represent the slab’s 

properties. As discussed earlier, the suspended slab is connected to the beams below them by 2 set 

of links – the PT and the ED links. So 𝑘𝑑 is actually the stiffness provided by the PT and 𝑐𝑑 is the 

damping provided by the ED links. 

 

As mentioned earlier there are two degrees of freedom used to describe the motion of the complete 

system. The main steel frame’s displacement is described by ‘𝑋𝑆’ and the motion of the suspended 

slab is described by ‘θ’. The equations of motions to describe the behavior of this analytical model 

are derived using the Euler Lagrange method of energy conservation (Tedesco, McDoughal, & 

Ross, 1999). The Lagrange’s equation is given by Equation 3.1, which is a derivative of the 

principle of conservation of energy. The L is known as the ‘Lagrange’ and is the difference 

between the total Kinetic Energy (K) and the total Potential energy (U) of the system. The 

generalized coordinates of the respective system is represented by qj while the work done by the 

non–potential forces is represented by Qj. Equations 3.2 and 3.3 represent the kinetic energy of 

our respective components of the model - 𝑀𝑆 and 𝑚𝑑. Equations 3.4 and 3.5 give the potential 

energy of these components. The final equations of motion derived using the Lagrange equation 

are shown below in Equations 3.8 and 3.9. 
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1st Equation of motion: 
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2nd Equation of motion: 
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2.2.2 Simplification             

 

As previously discussed, the concept of the SS system can be considered parallel to the principle 

of a typical PTMD. Thus, to describe the behavior of the SSS system, equations similar to that of 

PTMDs are used. The relations describing the PTMD system can be converted to a much simpler 
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form. It has been shown that for small oscillations the PTMD system can be considered equivalent 

to a TTMD (Connor, 2003). Under small oscillations the assumptions (Equation 3.10) tend to be 

true, as a result the equations of motion (Equations 3.8 and 3.9) can be converted to TTMD 

equations using the assumptions shown in Equation 3.10.   

1cos         
0sin         

 LX d           
0)(

2

                                                    (2.10)
 
   

                                                                

The SS system is intended to be designed in a way that ensures that the suspended slabs move 

within a small range and since it is considered equivalent to a PTMD, the SSS system can be 

analyzed as a TTMD system instead of a PTMD system. The simplified analytical model is shown 

in Figure 2.2. The suspended slab is represented by a block as it has been converted to a 

translational degree of freedom with displacement ‘Xd’. This simplification makes it easier to solve 

the equations of motion and interpret the results.  

 

 

 

 

The new set of equations of motion are in terms of 2 degrees of freedom - XS (Roof Displacement 

of Steel Frame) and Xd (Displacement of Slab). The equations of motion of both the components 

are a function of their respective damping ratio, mass, stiffness and the length of the cable from 

which the slab is suspended. Generally, the equations of TMD are represented in terms of 

cd

M S

K S

C S

md

Figure 2.2  Simplified SDOF Model 

𝑋𝑆 𝑋𝑑 

𝑘𝑑𝑡𝑜𝑡𝑎𝑙 
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commonly used variables as showed in Table 2-1. The final equations obtained for the simplified 

SSS model are given by Equations 3.11 and 3.12. 

 

Table 2-1 Commonly Used Parameters for TMDs 

ω𝑠 √
𝐾𝑠
𝑀𝑠

 Natural frequency of structure without the suspended slab 

ξ𝑆 
𝑐𝑠

2𝑀𝑠𝜔𝑠
 Bare steel frame damping 

𝑘𝑑𝑡𝑜𝑡𝑎𝑙 
𝑚𝑑𝑔

𝐿
 + 𝑘𝑑 Total Stiffness of Suspended Slabs 

ω𝑑 √
𝑘𝑑𝑡𝑜𝑡𝑎𝑙
𝑀𝑑

 Natural frequency of suspended slab 

α 
𝜔

𝜔𝑠
 Excitation Frequency Ratio 

𝜉𝑑 
𝑐𝑑𝐿

2𝑚𝑑𝜔𝑑𝐿
 Suspended Slab Damping Ratio 

𝛽𝑑 
𝜔𝑑
𝜔𝑠

 Tuned Frequency Ratio 

𝜇𝑑 
𝑚𝑑
𝑀𝑠

 Mass Ratio 
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

4

2

44

2

22                                                                     (2.11) 

auuuuu gSSSSSdddddd dd
   22

2)1()1(2                                                 (2.12) 

 

 



  28 

2.3 Response Transfer Functions 

 

The solution to differential equations is comprised of a homogenous and a non-homogenous 

solution. The homogenous solution, or the transient response, diminishes after a finite time at a 

rate dependent on the internal dampening of the system (Franklin, Fowell, & Emami-Naeini, 

2009). The non-homogenous solution, or steady state response, persists as long as the input 

excitation is provided to the system. In terms of analysis, the homogenous solution is generally 

ignored since the system is incapable of controlling the transient response (Tedesco et al., 1999). 

In practice, the engineers are generally interested in the structure’s steady state response, so the 

homogeneous response is ignored in the analysis.  

 

The 2nd order differential equations (Equations 3.11 and 3.12), which are obtained from the 

previous section, are solved simultaneously using the complex frequency response approach to 

acquire the respective response amplitude transfer functions for both – the steel frame and the slab.  

 

It is considered that the system is excited by a ground excitation of the form (Equation 3.13). The 

displacement response to this forcing function can be considered as a harmonic motion for both, 

the steel frame and the suspended slab (Equations 3.13 and Equation 3.14) and the acceleration 

response can be assumed to satisfy Equations 3.16 for steel frame and Equation 3.17 for the 

suspended slab. The displacement equations are used to transform the differential equations to a 

linear form, which are further solved to obtain the respective displacements amplitudes of the two 

components. The derived displacement amplitudes are further used to obtain the acceleration 

amplitudes using Equations 3.16 and 3.17. Below are given the derived response amplitudes 
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(displacement and acceleration) for the steel frame and the suspended slab, along with their 

corresponding phase angles. The phase angles are the phase difference between the input excitation 

and the response parameter (displacement or acceleration) of the frame or slab. Table 2-2 gives 

the clear definitions of the terminology used. 

 

eaa
ti

gg


 ~                                                                                                                             (2.13) 

Table 2-2  Definition of response parameters 

Variable Definition 

𝑋𝑆 Harmonic response of steel frame  

𝑋𝑑 Harmonic response of suspended slab 

𝐻𝑆 Displacement amplitude of steel frame 

𝛾𝐻𝑆 Phase angle for steel frame 

𝐻𝑑 Response amplitude of suspended slab 

𝛾𝐻𝑑 Phase angle for suspended slab 

𝐴𝑆 Acceleration amplitude of steel frame 

𝛾𝐴𝑆 Phase angle for steel frame 

𝐴𝑑 Acceleration amplitude of suspended slab 

𝛾𝐴𝑆 Phase angle for suspended slab 
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2.3.1 System Behavior 

 

In the previous section, transfer functions for the performance parameters of SSS system are 

obtained. These functions depend on the parameters - ⍺, βd, ξd, ξ and μd. By plotting these 

parameters the fundamental characteristics of the system behavior can be evaluated. To study the 

behavior in detail the parameters are varied one at a time and plotted against the steel frame roof 

amplitude assess the SS system’s behavior. Figure 2.3 shows a plot of how the roof transfer 

function varies with mass ratio for different values of   βd while the structure is under resonance 

condition (⍺ = 1) and the damping ratio is kept constant. From the plot it is seen that as the mass 

ratio increases the roof displacement amplitude decreases thereby indicating an improvement in 

performance. This is logically correct as higher the mass higher the opposing force generated by 

the Suspended slab. Also, the pattern in performance is seen to be true for a wide range of values 

of   βd thus a high mass ratio can be considered advantageous for a TMD. Normally TMDs have 

an upper limit to the mass ratio that can be used practically. The mass ratio chosen for most TMDs 

is generally below 0.05, however this limitation is not applicable to the SSS system since in this 

system the slab is suspended which constitutes for a high percentage of mass as a result the mass 

ratio obtained can be as high as 0.20, which improves the performance of the system notably.  
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Figure 2.3  Effect of Mass Ratio on Response Displacement Amplitude of Steel Frame for ⍺ = 1 and constant 

Damping Ratio 

 

Figure 2.4 shows the variation in performance with respect to the damping ratio of the Suspended 

slabs for different mass ratios at resonance condition. From the plot it is seen that the increasing 

the damping of the suspended slab seems to affect the performance of the main structure adversely. 

As the damping of the suspended slab increases its ability to move gets restrained, as a result the 

opposing force generated by the slabs is reduced.  

 

 

Figure 2.4  Effect of Damping Ratio on Response Displacement Amplitude of Steel Frame for ⍺ = 1 
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The tuned frequency ratio, βd, is a function of the ratio of the stiffness of the suspended slabs to 

that of the main structure. This parameter tends to control the motion of the slab, which suggests 

a correlation to the performance of the main structure. Figure 2.5 shows the variation of the transfer 

function with  βd for different damping ratios that vary from 0.05 to 0.30 at the resonance 

condition. From the plot it is evident that there exists only a single value of βd for which the 

performance is minimum for a particular value of damping and mass ratio.  This frequency at 

which maximum performance is seen is termed as the ‘Tuned frequency’ and varies with other 

parameters - μd and ξd. 

 

 

Figure 2.5  Variation of Response Displacement Amplitude of Steel Frame with Excitation Frequency ⍺ = 1 
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when the system acquires particular value for all parameters. In Figure 2.6 the optimal 

configuration is seen for mass ratio 0.20 and in Figure 2.7 for frequency ratio of 0.77. A point to 

note is that although from the figure it seems that the response for μ = 0.30 is almost equal, if not 

less, but the main point of this section not to point out variation in response with the mass ratio. 

Instead the key point here is to highlight the fact that when the tuning condition is achieved the 

two peaks tend to align at the same level. 

 

 

Figure 2.6  Variation in Response Dispalcement Amplitude for Steel Frame with Input Excitation Frequency 

and Mass Ratio 
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Figure 2.7  Variation in Response Dispalcement Amplitude for Steel Frame with Input Excitation Frequency 

and Frequency Ratio  

 

2.3.2 Numerical Example  

 

A Numerical example is presented to assess the effectiveness of the SSS system against a standard 

composite slab frame. The example comprises of a reference system same as considered earlier, a 

4-story frame with a suspended slab at the top floor. The system is represented by one DOF for 

steel structure and one DOF for suspended slab, similar to the one described analytically. The 

response parameters are calculated based on the equations derived in the previous sections. The 

analysis procedure follows the flowchart shown in Figure 2.8.  
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Figure 2.8  Analysis Procedure 

 

Values are assigned to known variables such as the mass ratio, damping of steel frame, input 

excitation frequency, etc. Next step is to obtain the set of optimal parameters for the system using 

a suitable optimization algorithm. The details on this part are discussed in the next chapter 

(CHAPTER – 4). The numerical optimization involves minimizing the maximum response of the 

SS system for different input excitation frequencies 
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2.3.2.1 Composite Slab Frame  

 

A 4-story 1-bay frame is considered for the composite slab steel frame in this example. The 

damping of the frame is chosen to be quite small (1%); normally, in conventional steel frames 

under large seismic demand, it is considered to be 5%. The main focus of developing the SS system 

is to avoid dissipation of energy in the main steel frame thus it is important to evaluate the 

performance of the structure while considering little or no energy dissipation in the main structure; 

hence the low damping. The response amplitude for a composite slab frame is given by Equation 

(3.26) in vibration theory under the assumption that the harmonic response is given by Equation 

3.27. Equation 3.28 represents the phase difference between the input ground excitation and the 

steel frame’s response. 
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2.3.2.2 Suspended Slab Frame  

 

A 4-story 1-bay steel frame with a slab suspended from the 4th floor, is considered for the SS 

system. The structural properties are the same as the composite frame as given in Table 2-3. To 
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keep consistency in comparison, the properties of the steel frame and the slabs, such as their 

material properties, dimensions, etc. are kept the same as the composite slab frame.  

 

Table 2-3  Structural Properties of 4 Story 1 Bay Frame 

Floor No. 

Mass 

(slugs) 

Stiffness 

(kips/inch) 

1 0.309 37.6 

2 0.304 37.6 

3 0.304 37.6 

4 0.274 37.6 

 

The equations derived in the previous sections are used to obtain the amplitudes of the performance 

parameters. As discussed earlier the steps undertaken for the design process have been showed in 

Figure 2.8. The SSS system is first tuned to optimum conditions by using a ‘Mini-max’ approach. 

In this approach the maximum response is calculated for a range of input frequencies (ω) for a 

controlled set of TMD parameters. From the set of maximum responses, the minimum value is 

chosen and the parameters corresponding to it are considered as the ‘Optimal Tuning Parameters’. 

It is important to note that for the optimization, the parameter about which mini – max is applied 

is the input excitation frequency (α). The approach is applied to optimize the system based on 4 

performance parameters – steel frame roof displacement and acceleration, and top floor suspended 

slab displacement and acceleration. Table 2-4 shows the optimized response parameters with their 

corresponding tuning parameters for different optimizations. Based on the performance parameter 

chosen for optimization the response of the SSS system changes accordingly. The displacement 
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amplitude response of the composite frame is seen to be 50, which is quite high compared to the 

SSS system. Thus, the SSS system out performs the composite slab frame. 

                             

Table 2-4 Transfer Function Values and SS system parameters for different Optimizations 

Optimization 

Variable 

µ 𝛏𝐝 𝛃𝐝 |𝐔|𝐒 |𝐀|𝐒 |𝐔|𝐝 |𝐀|𝐝 

|𝐔|𝐒 0.198 0,17 0.80 2.2552 2.3270 7.6181 4.9331 

|𝐀|𝐒 0.198 0.17 0.82 2.4491 2.1318 7.7650 4.8510 

|𝐔|𝐝 0.198 0.40 0.72 4.4990 4.1153 6.7541 4.6852 

|𝐀|𝐝 0.198 0.40 0.86 5.0938 4.3394 6.8029 4.5864 

 

 

Figure 2.9  Optimized Amplitudes for different type of Optimizations for SSS Model 

 

|Us| |As| |Ud| |Ad|

2

3

4

5

6

7

8

Variation in Amplitudes with Optimization

Optimization Variable

A
m

p
li
tu

d
e

 

 

Steel Frame Disp

Steel Frame Acc

Slab Disp

Slab Acc



  40 

2.4 Multi Suspended Slab (MSS) Model  

 

 

 

 

TMDs are usually incorporated at the top floor of the structures as their performance is optimum 

when placed at the point of maximum lateral displacement. Initial systems of TMD used a single 

mass at the top floor, however further developments in this field have led to the use of multiple 

small masses. The use of multiple TMDs has popularly known to be called as MTMDs, as 

discussed before. Many researchers have looked into this field such as Kareem and Klein (1995), 

Abe and Igusa (1995). Yamaguchi and Harnpornchai (1993) evaluated the fundamental 

characteristics of horizontally distributed MTMDs in comparison to single TMDs. The study 

suggested that the optimum MTMD is more effective and robust than the optimum single TMD 

and using a larger number of TMDs tend to increase the effectiveness of the system.  

 

𝑁𝑡ℎ Floor 

1𝑠𝑡 Floor 

2𝑛𝑑  Floor 

1𝑠𝑡 
Bay 

2𝑛𝑑  
Bay 

𝑀𝑡ℎ Bay 

Figure 2.10 Multi Suspended Slabs (MSS) System Representation 
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Compared with the research on the horizontal distribution of MTMDs, vertical distribution of 

MTMDs has been less intensely investigated. Bergman et al. (1989) presented the effectiveness of 

vertically distributed MTMDs using a cantilever beam building model having a maximum of three 

TMDs distributed from the top to three–fifths the building height. K. Moon (2005) presented an 

extensive work on vertical distribution of TMDs that showed an elaborate design procedure for 

tuning vertically distributed TMDs to different modes. The analysis highlighted the effectiveness 

of vertically distributing TMDs both in terms of architectural constraint and performance. 

 

To simulate a more realistic presentation of the intended SS system a Multi Suspended Slabs 

(MSS) model is developed as an analogue to a simultaneous, vertically and horizontally distributed 

TMD system. The proposed analytical system in this study not only accounts for vertical 

distribution, but also horizontal distribution. The equations formulated tends to account for 

variation in the properties of each slab, unlike previous studies. K. Moon (2005) presented the 

response for vertically and horizontally distributed TMD’s, however his equations assumed a 

uniformity in the properties of TMD’s. Also, the equations in this study are able to incorporate the 

effect of variation in the placement of suspended slabs. This is achieved using a parameter we 

would refer to as the - ‘Control Parameter (𝐶𝑛 )’, and would be discussed in detail in the sections 

below. 

(NOTE: Although the equation in this study can account for variation in the properties of TMD’s 

(or slabs) but in the scope of this study the properties of all slabs are assumed to be the same. This 

has been done to simplify the analysis and to reduce the optimization variables.) 
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2.4.1 System Idealization 

 

 

 

2.4.2 Equations of Motion 

 

The governing equations for the MSS system takes into account the restoring forces due to all the 

suspended slabs present in the system. The equation for MSS model is obtained by the same 

principle as the SSS model except it takes into account the contribution of each floor’s suspended 

slabs based on a term defined as ‘modal ratios (qn)’.The modal ratio is the ratio of mode shape for 

a particular floor (ϕn) to  the mode shape of the top floor (ϕN). To show the procedure for 

Figure 2.11 Idealization of the MSS System  



  43 

development of the equations of motion, a reference system is considered initially from which the 

generalized equations are be obtained. A 4-story 2-bay SS system is considered as the reference 

system. Equations (3.30 – 3.33) are the dynamic equilibrium equations for the 4-story structure 

with unspecified number of suspended slabs on each floor. Since the slabs are not suspended 

necessarily on all floors, a Control parameter, Cn, is used to indicate the presence or absence of 

suspended slabs on a given floor. As shown by Equation 3.29, 𝐶𝑛 takes only binary values, thus 

the SS system can be physically represented in the form shown in Figure 2.12 Physical 

Representation of Variable 𝑪𝒏. 

 

By representing 𝐶𝑛 in the form of a matrix it not only gives a physical outlook to 𝐶𝑛, but also aids 

in the optimization procedure. This aspect would be discussed in detail in the section ‘Numerical 

Search’ of Chapter – 4. It is worth noting that in the MSS system it is assumed that for any case 

there will be no slab suspended at the bottom floor (𝐶1 = 0), since it would not make sense in terms 

of civil engineering application. In addition, it is assumed that every MSS system will have at least 

SSs on the top floor (𝐶𝑁 = 1), since it has been proved by earlier researches that TMD’s are most 

effective when placed at top (Connor, 2003). This way we are able to reduce 2 variables for 

optimization. 

)(

)(

1

0

SuspendednotSlabif
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The equations 3.30 – 3.33 represent the equations of motion for the 4 stories. These are formulated 

by balancing the forces experienced by each story of the structure. The Left hand side terms in 

each equation represents the force generated in the steel frame due to inertia, damping and 

stiffness. The 1st term on the right (-𝑚𝑛𝑎𝑔) is the force generated due to ground acceleration and 

the other term is the pull generated by the suspended slab(s), due to its motion. 
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Similar to the steel frame the general equations for the SSs are obtained and given by the Equations 

3.34 and 3.35. The former is for the top floor SSs and the latter is for the rest of the floors, which 

in this case is 1st – 3rd floors.

 

Figure 2.12 Physical Representation of Variable 𝑪𝒏 
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amumukucum gjdjdjdjdjdjdjdjd 444444444
                                                       (2.34)                                                                                          

amumukucum gdnjndnjdnjdnjdnjdnjdnjdnj
   , where n = 1 – 3 and j = 1 – 2             (2.35)      

 

The equations of motion for respective floors of the main steel frame are combined into a single 

equation shown in Equation (3.36) by using matrix notation. In order to solve this equation ‘Mode 

Summation’ method is implemented, which is based on the superposition of modes. The response 

of the system is considered as the sum of contribution of each mode as shown in Equation 3.37. 

Usually in the scope of civil engineering, engineers are concerned with just the 1st 2 modes, thus 

the response of the system can be shown by Equation 3.38, where 𝜙𝑖𝑛 are the mode shapes for 𝑖𝑡ℎ 

mode and 𝑛𝑡ℎ story, and 𝑣𝑖 are the modal coordinates for 𝑖𝑡ℎ mode. 
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Equation 3.37 is substituted in 3.36 to get Equation 3.39 which is converted into modal coordinates 

by multiplying with [𝑃]𝑇 and using assumptions from Equations 3.41. 𝑚𝑖, 𝑘𝑖 and 𝑐𝑖 are known as 
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the modal mass, stiffness and damping of the structure for 𝑖𝑡ℎ mode. Equation (3.39) is broken 

down 2 separate modal equations (Equations 3.42 and 3.43). 
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The response for mode 1 is generally considered to be the governing case for TMD systems, thus 

for the purpose of analysis we would consider only its contribution (Equation 3.44). The modal 

equation for 1st mode is converted back into real coordinates by using Equation 3.44. Equation 

3.45 is divided by the mode shape of the top floor to obtain the equation of motion, which is given 
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by Equation (3.46). 𝑚𝐸, 𝑘𝐸 and 𝑐𝐸 are known as the effective mass, stiffness and damping of the 

steel frame. 
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2.4.3 Response Equations 

 

In the previous section the equations of motion have been derived for a 4-story 2-bay frame, 

however a general set of equations is needed. The procedure to derive the response equations is 

almost the same as for the SSS model. The response equations for MSS system’s performance are 

derived from the system’s equation of motion (Equation 3.46). Since the earthquake is considered 

as a harmonic excitation, the required responses are also assumed to be harmonic. These are 

substituted in the primary equations of motion, which are then solved for the response amplitudes 

of different components of the MSS system. The reference system is solved first and the derivation 

has been shown in APPENDIX A. The response equations obtained from the reference system are 

used to infer the generalized response equations for the MSS model.  
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Only the steady state solution is considered for the analysis of this model. From Equation 3.51, the 

response of other floors is related to the top floor, and therefore the response of others floors can 

also be obtained. The response relations for suspended slabs on floors other than the top have not 

been derived as they would be less than the top floor’s slabs. In addition, since the parameters (β, 

ξ and µ) of all suspended slabs are considered the same, so the response of all suspended slabs on 

top floor would be given by the same set of equations. The response amplitudes for respective 

components of the MSS system have been shown below, where Equation (3.52) and (3.53) show 

the main frame’s top floor displacement and acceleration. Equation (3.64) and (3.65) show the top 

floor’s MSS displacement and acceleration. Table 2-5 shows the definition for the variables used 

to represent the response equations. 

 

Table 2-5  List of response parameters for MSS model 

Variable Definition 

𝑢𝑁 Harmonic response of steel frame top floor 

𝑢𝑛 Harmonic response of steel frame 𝑛𝑡ℎ floor 

𝑢𝑑𝑛𝑗 Harmonic response of 𝑗𝑡ℎ suspended slab of top floor 

𝐻𝑁 Displacement amplitude of steel frame top floor 

𝐻𝑑𝑁𝑗 Displacement amplitude of 𝑗𝑡ℎ suspended slab on top floor 

𝐴𝑁 Acceleration amplitude of steel frame top floor 

𝐴𝑑𝑁𝑗 Acceleration amplitude 𝑗𝑡ℎ suspended slab on top floor 

𝑞𝑛 Mode shape ratio for 𝑛𝑡ℎ floor 
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DENDENDEN RNH SINH SRdNj ImRe                                                                                   (2.68)

 

ImRe H SINH SRNRdNj DENDENDEN                                                                                    (2.69) 

The parameters 𝑁𝑈𝑀𝐼𝑁, 𝐷𝐸𝑁𝐼𝑁, 𝑁𝑈𝑀𝑅𝑁, 𝐷𝐸𝑁𝑅𝑁, 𝑅𝑒𝐻𝑆, 𝐼𝑚𝐻𝑆 are the same ones derived for the 

response of the steel frame. 

 

2.4.4 System Behavior 

 

While analyzing the SSS model the response functions were plotted against different variables to 

develop an idea of the behavior of the system. The performance functions derived in the previous 

sections are plotted against different parameters in this section. Figure 2.13 shows a plot of how 

the steel frame’s roof displacement transfer function varies with mass ratio for different number 

of slabs suspended, while the structure is under resonance condition (⍺ = 1) and the TMD 

parameters correspond to ‘Tuned parameters’. The performance of the system is seen to improve 

with increase in the mass ratio and this can be attributed to the same logic as the SSS model. 

However, now variation with number of suspended slabs is also considered. As expected with 

increase in the number of slabs suspended there is increase in performance as well, which can be 

explained in terms of increase in the mass ratio. As more slabs are suspended the mass of the main 

frame tends to reduce, as a result the mass ratio increases and thereby the performance.  
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Figure 2.13  Effect of Mass Ratio on Response Displacement Amplitude 

 

Further plots of other TMD parameters against the mass ratio showed that as the mass ratio 

increased the optimum tuned frequency ratio (βd) decreased (Figure 2.14) and the optimum 

damping ratio increased (Figure 2.15). A similar trend for both the parameters is seen with an 

increase in the number of suspended slabs as well (Figure 2.16). 

 

 

Figure 2.14  Variation in Optimum Frequency Ratio with Mass Ratio 
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Figure 2.15  Variation in Optimum Damping Ratio with Mass Ratio 

 

 

Figure 2.16  Variation of Optimum Frequency Ratio with Number of SS    
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2.4.5 Benchmark Example 

 

The reference structure considered for this example is a 4 story 2 bay structure and its structural 

properties are given by Table 2-6.  The location of the SSs are not predefined since the location 

parameter (𝐶𝑛) is also considered as a variable. The analysis steps followed are to first Input the 

known frame and suspended slab parameters. Then a suitable Optimization methodology is used 

to obtain the location and the parameters of the suspended slabs. Unlike SSS model, now the 

location of suspended slabs is unknown, so the Optimization method adopted also finds the 

Optimum location i.e. 𝐶𝑛 values. Two different optimization strategies were adopted, which are 

discussed in detail in ‘CHAPTER – 4’. Once the tuning parameters are obtained they are used to 

get the response amplitudes for the steel frame and the SSs. 

 

Table 2-6  Structural Properties of 4 Story 2 Bay Frame 

Floor No. 

Mass 

(slugs) 

Stiffness 

(kips/inch) 

1 0.618 75.3 

2 0.608 75.3 

3 0.608 75.3 

4 0.547 75.3 
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2.4.5.1 Suspended Slab Frame 

 

Table 2-7 Transfer Function Values and SS system parameters for Optimization w.r.t. Steel Frame Top Floor 

Displacement Amplitude  

Steel Frame Top Floor Displacement Amplitude Optimization 

M 𝝁𝒅 𝛏𝐝 𝛃𝐝 |𝑯𝑵| |𝐀𝑵| |𝑯𝒅𝑵𝒋| |𝐀𝒅𝑵𝒋| 𝑪𝒏 

𝟏 0.2393 0.10 0.82 6.9998 8.2723 25.2145 17.4840 [ 0 0 1 1 ] 

𝟏 0.3121 0.20 0.74 4.6792 5.1803 13.0041 8.4388 [ 0 1 1 1 ] 

𝟏 0.3121 0.30 0.695 4.2849 4.2793 9.0052 6.1663 [ 0 1 1 1 ] 

𝟐 0.2393 0.10 0.60 7.8057 9.0579 29.7768 13.4079 [ 0 0 1 1 ] 

𝟐 0.2393 0.20 0.60 4.7710 5.1797 14.7943 7.5858 [ 0 0 1 1 ] 

𝟐 0.2393 0.30 0.5975 3.9126 3.8711 9.9610 5.4175 [ 0 0 1 1 ] 

2 0.2393 0.40 0.61 3.7604 3.5134 7.4938 4.0117 [ 0 0 1 1 ] 
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Table 2-8 Transfer Function Values and SS system parameters for Optimization w.r.t. Steel Frame Top Floor 

Acceleration Amplitude  

Steel Frame Top Floor Acceleration Amplitude Optimization 

M 𝝁𝒅 𝛏𝐝 𝛃𝐝 |𝑯𝑵| |𝐀𝑵| |𝑯𝒅𝑵𝒋| |𝐀𝒅𝑵𝒋| 𝑪𝒏 

𝟏 0.3121 0.10 0.83 9.9565 5.8196 26.5475 13.6787 [ 0 1 1 1 ] 

𝟏 0.3121 0.20 0.82 6.0196 3.7884 13.6598 7.1411 [ 0 1 1 1 ] 

𝟏 0.3121 0.30 0.81 5.1171 3.6196 9.5446 5.3505 [ 0 1 1 1 ] 

𝟐 0.3121 0.10 0.6225 16.2830 4.6883 36.6992 8.3440 [ 0 1 1 1 ] 

𝟐 0.3121 0.20 0.5975 8.7245 2.7615 18.0701 4.0219 [ 0 1 1 1 ] 

𝟐 0.3121 0.30 0.59 6.4336 2.2547 11.9632 3.0887 [ 0 1 1 1 ] 

2 0.3121 0.40 0.57 5.3490 2.2157 9.0587 2.5913 [ 0 1 1 1 ] 

 

Table 2-9 Transfer Function Values and SS system parameters for Optimization w.r.t. Top Floor SS 

Displacement Amplitude  

Top Floor Suspended Slab Displacement Amplitude Optimization 

M 𝝁𝒅 𝛏𝐝 𝛃𝐝 |𝑯𝑵| |𝐀𝑵| |𝑯𝒅𝑵𝒋| |𝐀𝒅𝑵𝒋| 𝑪𝒏 

𝟏 0.3121 0.10 0.75 9.6970 11.0699 23.7966 20.5774 [ 0 0 1 1 ] 

𝟏 0.3121 0.20 0.74 6.9620 7.5360 12.3748 12.6778 [ 0 0 1 1 ] 

𝟏 0.3121 0.30 0.67 5.3799 5.5079 8.6633 7.4650 [ 0 1 1 1 ] 

𝟐 0.3121 0.10 0.86 17.1154 8.1951 26.2015 12.0281 [ 0 0 1 1 ] 

𝟐 0.3121 0.20 0.68 5.6979 6.2339 13.0367 9.4323 [ 0 1 0 1 ] 

𝟐 0.3121 0.30 0.66 5.3468 5.4825 8.7847 7.4065 [ 0 1 0 1 ] 

2 0.3121 0.40 0.65 5.5749 5.3362 7.3417 6.3423 [ 0 1 0 1 ] 
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Table 2-10 Transfer Function Values and SS system parameters for Optimization w.r.t. Top Floor SS 

Acceleration Amplitude  

Top Floor Suspended Slab Acceleration Amplitude Optimization 

M 𝝁𝒅 𝛏𝐝 𝛃𝐝 |𝑯𝑵| |𝐀𝑵| |𝑯𝒅𝑵𝒋| |𝐀𝒅𝑵𝒋| 𝑪𝒏 

𝟏 0.3121 0.10 0.79 8.5469 6.8828 25.6921 12.9829 [ 0 1 1 1 ] 

𝟏 0.3121 0.20 0.81 5.8197 3.9435 13.4524 6.9814 [ 0 1 1 1 ] 

𝟏 0.3121 0.30 0.82 5.2964 3.7331 9.6493 5.2812 [ 0 1 1 1 ] 

𝟐 0.3121 0.10 0.53 12.6702 6.8183 39.2665 8.6576 [ 0 1 1 1 ] 

𝟐 0.3121 0.20 0.56 7.7655 3.4320 18.4777 4.4572 [ 0 1 1 1 ] 

𝟐 0.3121 0.30 0.585 6.3582 2.3617 11.9558 3.0347 [ 0 1 1 1 ] 

2 0.3121 0.40 0.60 5.7786 2.4064 8.9546 2.4534 [ 0 1 1 1 ] 

 

 

Figure 2.17  Optimized Amplitudes for different type of Optimizations for MSS model 
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CHAPTER 3 

OPTIMIZATION APPROACH 

 

3.1 Introduction 

 

In the previous chapter the response relations are found for a single suspended slab and a multi 

suspended slabs model. These relations are seen to be a function of some variables, which 

governed the response of the system. In order to get the best response, these variables need to be 

optimized, which is refer to as the ‘Tuned Condition’. As a start the optimization approach adopted 

for the SSS model is first investigated.  

 

The performance of the SSS system is found to be a function of α, 𝜇𝑑, 𝛽𝑑 and 𝜉𝑑. An approach 

known popularly as the Mini – Max approach is used to optimize the response transfer functions 

to obtain the parameters of the SS system. The Mini - Max approach states that the optimum 

response should be the minimum value amongst the maximum response obtained for a range of α. 

Basically, first the transfer function is calculated for different values of α and the maximum value 

is chosen so that we are considering the worst case possible. In civil or any other engineering, the 

approach adopted is always the conservative one in order to increase the reliability of the system. 

This is repeated for different values of 𝛽𝑑, 𝜉𝑑 and a list of maximum transfer function values are 

noted. Amongst these maximum values the minimum value is considered to be the most optimum 

one. The mini – max approach is incorporated for the SS system in the optimization procedures 

that are discussed further down in this chapter. 
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As previously discussed, in the case of the MSS model a new variable, called the control parameter 

(C𝑛) is added . It affects the complete configuration of the system and thereby affects the values 

of α and  𝜇𝑑. For the MSS model the approach adopted for SSS model is extended to incorporate 

the new variable. Now the variables are inter – dependent so a 2 level optimization is implemented 

(i.e. an optimization within another one). The outer optimization sends the input to the inner one, 

which calculates the response and sends it back to the outer one, which finally optimizes based on 

Mini – Max approach to get the final optimized results. The inner optimization takes care of the 

variables 𝛽𝑑 and  𝜉𝑑, whereas the outer optimization takes care of the control parameter (𝐶𝑛) for 

each floor. 

 

In this chapter, two algorithms that are used for optimization are discussed. The first is the 

‘Numerical Search (NS) Pattern’, and the second is a combination of two independent approaches 

- Nelder-Mead and the Covariance Matrix Adaptation Scheme Strategy (CMA-ES). The second 

approach is developed as an alternative to the NS for instances with large number of variables. 

 

3.2 Numerical Search (NS) Pattern Algorithm  

3.2.1 Introduction 

 

Numerical Search (NS) is a basic optimization algorithm used extensively in every field of 

optimization. It belongs to a family of optimization which does not require the optimization of the 

variables’ gradient and is thus easy to implement. The basic principle of NS is that each variable 

is varied at a time in order of a particular magnitude and all the cases are compared to get the 

optimum solution. Although an easy to implement method, however it has its limitations. Since it 
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linearly scans through the entire domain it is required that the domain should be finite and not too 

expansive in nature, as the latter effects the cost of computation. Thus, numerical search cannot be 

applied to complex problems; however it can be used as a preliminary tool to provide a general 

sense for the values of the optimized parameters.  

 

3.2.1.1 Implementation 

 

For the SSS model, as discussed earlier, the NS approach is applied in a very simple manner. The 

variables α, 𝛽𝑑 and 𝜉𝑑 are varied in a finite domain to get a set of response values, from which the 

optimized value was chosen using the Mini – Max approach. A MATLAB code was written to 

implement this method. 

 

For the MSS model a new variable is added, the position of the suspended slabs (𝐶𝑛).  Similar to 

the SSS model the code considers a range for the parameters  𝛽𝑑 and  𝜉𝑑 as the search space 

however to account for 𝐶𝑛 some modification has to be made. The Control Parameter ‘𝐶𝑛’ takes 

only binary values – 0 or 1 so to implement the NS approach on 𝐶𝑛, a function is used to generate 

matrices of all possible combinations of 0s and 1s. The function takes in the number of floors of 

the structure and the number of slabs to be suspended, and in turn generates a matrix with 

dimensions [N x Pm]. N is the number of floors of the SS system and Pm is the number of 

permutations possible. Equation (4.1) shows an example of the function for a 3 story SS system, 

where number of floors (N) = 3 and the number of slabs to be suspended (M) = 1. A loop is used 

to vary the variable M, as a result all possible permutations and combinations of the variable 𝐶𝑛  
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are obtained. Equations (4.1 – 4.3) show all possible combinations and permutations of 𝐶𝑛 

generated for 3 story SS system. 

 

The rows of these matrices are considered one at a time as an input for variable 𝐶𝑛 and based on 

it, the code evaluates other properties of the frame such as natural frequency, mode shapes, etc. 

Once initial conditions for the SS system are obtained the code moves onto the second level of 

numerical search, which optimizes the variables  𝛽𝑑 and  𝜉𝑑. The second level optimization is 

performed in the same manner as for the SSS model. It optimizes the system for every possible 

combination of 𝐶𝑛 and stores the values. The code finally selects the best case based on the 

response calculated and the parameters corresponding to it are the optimized parameters. Figure 

3.1 shows the response plot of SS system with variation in  𝛽𝑑 and  𝜉𝑑, and also the optimal 

solution. 

13  MandN   
𝑦𝑖𝑒𝑙𝑑𝑠
→     [

1 0 0
0 1 0
0 0 1

]                                  (3.1) 

23  MandN  
𝑦𝑖𝑒𝑙𝑑𝑠
→     [

1 1 0
0 1 1
1 0 1

]                                  (3.2) 

33  MandN  
𝑦𝑖𝑒𝑙𝑑𝑠
→     [1 1 1]                                  (3.3) 
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Figure 3.1  Surface plot of Numerical Search Pattern 

 

3.3 Combinatorial Algorithm 

 

In the previous section, the implementation of numerical search pattern to optimize the MSS model 

is discussed. It is seen that the numerical search pattern is quite effective, however it has its limits. 

As the number of stories increase, the time cost of the code increases rapidly to a point where the 

numerical search becomes infeasible to implement. In light of high computation cost a new 

optimization algorithm is implemented, which utilizes a combination of 2 algorithms – Nelder 

Mead and Covariance Matrix Adaptation Scheme Strategy (CMA-ES). The former is used for the 

inner optimization (i.e. to find the optimal 𝛽𝑑 and  𝜉𝑑 values) and the latter is used for outer 

optimization, which deals with optimizing the location of the Suspended Slabs (𝐶𝑛). Evolutionary 

algorithms such as Genetic algorithm and Bee – Swarm optimization have also been successfully 

implemented to find the optimum variables of TMD (Farshidianfar & Soheili, 2011; D. Hartog, 

Although, & Namara, 1998; Mohebbi, Shakeri, Ghanbarpour, & Majzoub, 2012). 
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3.3.1 Nelder Mead Algorithm  

3.3.1.1 Introduction 

 

The Nelder – Mead Algorithm, also known as the Amoeba Method, was developed by John Nelder 

and Roger Mead (Nelder & Mead, 1965). This optimization algorithm is a type of ‘Simplex 

Method’ for finding the local minima of a function for several variables. A ‘Simplex’ is referred 

to a polytope of N+1 side for N dimensions, for example: Simplex for 2-Dimensions is a triangle 

and for 3-Dimensions a tetrahedron.  A polytope is geometric shape with flat sides for a given 

number of dimensions. Examples of polytope are – polygon is a polytope in 2 dimensions and 

polyhedron a polytope in 3 dimensions. The Nelder Mead method was chosen as it is quite efficient 

for problems which are convex in nature. From Figure 3.1, it can be seen that the response of the 

SS system is convex with respect to 𝛽𝑑 and  𝜉𝑑. 

 

The algorithm is a pattern search method that compares function value at the vertices of the 

polytope and ranks them in order of their performance. Once the worst vertex is identified it is 

then modified to a better value, thereby generating a new polytope. The process is repeated to form 

a number of polytopes till the three vertices tend to converge to a single point or get within a 

tolerance limit. The final convergence point is considered as the optimal solution. The procedure 

is discussed in the next section in detail.   
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3.3.1.2 Procedure 

 

The case considered for this thesis is a 2 dimensional problem so a triangle is used as a simplex. 

The evaluation function used are the response parameters of the SS system - |𝐻𝑁|, |𝐴𝑁 |, |𝐻𝑑𝑁𝑗| 

and |𝐴𝑑𝑁𝑗|. The algorithm starts with an initial guess to form the three vertices of the triangle. The 

worst vertex is then modified by a series of steps as discussed below.  

 

Initial Assumption 

The procedure starts with an initial assumption for the three vertices of the triangle. The choice of 

these vertices is supposedly random however the aim is to minimize the time cost, so some thought 

has to be given while choosing the initial vertices. 3 cases are considered to see the effects of initial 

assumption on the processing time for a 10 story 2 bay SS system. The first case considered is 

when one of the vertices is actually the optimum solution. Second, when the optimal solution is 

outside the initial triangle and finally, when the solution lies inside the initial triangle. Figure 3.2 

- Figure 3.4 shows the respective convergence pattern for each case along with the time taken for 

convergence. The best case is seen when the solution lies on the triangle, followed by when it is 

on the outside. Since the 1st case is quite unlikely, a triangle away from the optimal solution should 

be considered. Based on experience, it can be said that the optimal parameters for the SS system 

would most likely lie in the range of 0.50 – 0.90 for 𝛽𝑑, and 0.10 – 0.50 for 𝜉𝑑. Considering this 

domain, the initial assumption is considered as (0.50, 0.10), (0.50, 0.50) and (0.50, 0.80). Figure 

3.5 shows the time convergence for this assumption which is seen to be quite cost effective as 

expected.   
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Figure 3.2  Covergence Pattern of N – M Algorithm for Solution on Initial Assumption (on vertex) 

 

 

Figure 3.3  Covergence Pattern of N – M Algorithm for Solution outside Initial Assumption (outside) 
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Figure 3.4  Covergence Pattern of N – M Algorithm for Solution inside Initial Assumption (inside) 

                      

 

Figure 3.5  Covergence Pattern of N – M Algorithm for an Optimal Initial Assumption chosen 
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refer to the Worst point.  The respective variables are assigned according to the assumption given 

by Equation 4.4. 

),F(),F(),F(
d3d3d2d2d1d1                                               (3.4) 

                    ),(B
d1d1     ),(G

d2d2     ),(
d3d3 W                                     (3.5) 

 

Midpoint (M) 

The Midpoint of the line joining B and G is considered quite important as it plays a key role in the 

steps ahead. The term given to this point is ‘M’ and it is simply the mid-point of the best and the 

2nd best vertex (Equation 4.6). 

                                                                
2

G)(B
M 


                                                               (3.6) 

  

Reflection (R) 

Considering the triangle formed by the three vertices above, it is clear that the fitness value would 

increase as we go from B to W or G to W. Therefore there is a possibility that the fitness value 

may be better further away from point W (i.e. exactly opposite of the line BG) as shown in Figure 

3.6. A new point ‘R’, which is the mirror opposite of point W about BG, is chosen and its fitness 

value is calculated and this step is known as Reflection. This reflection is taken by using equation 

(4.7). 

W) -M (M R R                                                    (3.7) 

 

Where, αR is a constant whose conventional value is taken to be as 1, and for the purpose of this 

study, the value is kept the same.  Equation (4.7) therefore reduces to Equation (4.8). 
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W -M2 R                                                            (3.8)      

 

Expansion (E) 

Once R is obtained and if its fitness value turns out to be better than W then, then the assumption 

made is correct. However, there is another possibility that a smaller value can be found further 

away from R. Therefore, the line passing through M and R is extended to a new point named ‘E’ 

(Figure 3.6). The location of E is obtained by equation (4.9), where 𝛾𝐸 is a constant whose value 

is generally considered to be 2.   

W) -M (M E  E
                                                    (3.9) 

 

Contraction (C)  

The next logical possibility is that if the fitness does not improve at R or E then we consider two 

new points C1 and C2 (Figure 3.6). C1 is the mid-point of M-R line segment and C2 the mid-point 

of W-M. The fitness value for each is calculated using Equations 4.10 and 4.11 and the one with 

better fitness is termed as point ‘C’.  

 R)-M (M 1 CC                                                     (3.10) 

W) -M (M 2 CC                                                     (3.11) 

where 𝜌𝐶 is a constant whose value is generally taken to be -1/2. 

 

Shrinking (S) 

If the fitness value at C is not better than W then the last option remains is to shift the points G and 

W to M and S (Figure 3.6), where M is the mid-point of line segment joining B and G and S is the 

mid-point of line segment between B and W. Point S is calculated using Equation (4.12).  
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W) - B(W S  S                                                    (3.12) 

where 𝜎𝑆 is a constant whose value is generally taken to be 1/2.  

 

 

 

 

The basic outline of the procedure adopted in the Nelder-Mead algorithm can be condensed into 

the steps discussed. For each iteration, the above steps are followed and the iterations are continued 

till the 3 vertices of the triangle tend to converge to a particular point or till they reach a certain 

tolerance limit. In reality exact convergence to a common point is highly unlikely, so the latter 

case is adopted. The final optimum point is considered to be the average of all the 3 vertices. The 

final procedure is best explained as shown in the flow diagram below (Figure 3.7). 

 

Figure 3.6  (i) Reflection  (ii) Expansion  (iii) Outside Contraction  (iv) Inside Contraction  (v) Shrink 

M 

S 
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Figure 3.7 Flowchart of Nelder – Mead Algorithm 
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3.3.2 Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 

3.3.2.1 Introduction 

 

The ‘Covariance Matrix Adaptation Evolution Strategy’ (CMA-ES) is a stochastic method of 

optimization for continuous non-linear, non-convex functions.  Compared to other conventional 

optimization techniques like Genetic Algorithm, Bee Swarm, etc., CMA-ES has been found to be 

more flexible and efficient. Since the optimization of SS system requires 2 optimizations, time 

cost is an important factor to be considered.  

 

CMA is an ‘Evolution’ optimization, similar to Genetic algorithm, which means it is based on the 

basic principles of evolution (i.e. the interaction between generation, selection and mutation). The 

overall idea behind CMA is the same as other evolution strategies except the method of generating 

population (‘population’ is referred to the different cases generated) method of selection and 

method of mutation differs. The CMA-ES algorithm exploits 2 different concepts – Maximum 

Likelihood Principle and Evolution Paths. 

 

Maximum Likelihood is a popular estimation method used in the field of statistics. It is used to 

obtain the parameters of a statistical model. Considering an interest in finding out the heights of 

all the people in a state and due to time or resources constraint the height cannot be measured for 

everyone. In such case the principle of maximum likelihood can be used. The heights are assumed 

to have a particular type of distribution, say Gaussian, with unknown parameters (i.e. mean and 

variance). Parameters are referred to the variables used to define a particular type of distribution. 

The Maximum Likelihood principle calculates these parameters based on the given incomplete 
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data set. Thus in short, the Maximum Likelihood principle gives an estimation of the best fit to a 

particular incomplete set of data such that other information can be obtained from it. The question 

remains as to how does Maximum Likelihood come into play in CMA-ES?   

 

The role of Maximum Likelihood is to maximize the probability of selection of correct values and 

search domain. Initially a test population is chosen at the beginning of the algorithm by assuming 

a particular distribution. After the 1st iteration the Maximum Likelihood principle is used to update 

the parameters of the distribution i.e. the mean and the variance, such that the likelihood of the 

correct values of the previous iteration tends to increase. Similarly, to increase the likelihood of 

the correct search domain the covariance matrix of the distribution is updated. This process of 

updating not just the population but also the search domain is highly beneficial and thus makes 

CMA-ES stand out from other evolutionary algorithms. 

 

The second key concept is exploiting the use of Evolution or Search Paths by recording them. 

Evolution paths basically give an idea in which direction the favorable solutions can be found 

based on the results from the previous step. Thus, it gives a correlation between consecutive steps. 

These evolution paths are actually serving dual purpose. First, it is used in the adaptation process 

of the Covariance matrix instead of focusing on the variance of a single successful step. This 

enables a faster and a more efficient improvement in moving towards a favorable direction. The 

second is the use of evolution path to control the step size. The advantage of step size control is to 

avoid premature convergence, which is a common problem of concern in most evolutionary 

algorithms. Premature convergence is basically the convergence of the program on local solutions 

rather than the global. This takes place mainly due to lack of genetic variation among the 
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population generated (i.e. all the members of the population have identical properties). Figure 3.8 

shows a schematic of the concept of CMA-ES in a simple manner by demonstrating how the 

randomly generated search points tend to move towards the optimal solution. 

 

 

 

Generation 1 Generation 2 

Generation 3 Generation 4 

Generation 5 Generation 6 

Figure 3.8  Schematic of Data Movement Pattern of CMA-ES Algorithm 
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3.3.2.2 Sampling 

 

Similar to most algorithms the CMA-ES also start with generating a sample of search points. This 

sampling is done basically by using a multivariate normal distribution with pre-determined mean 

and variance for the first generation. However for subsequent generations these parameters are 

updated using a suitable procedure as discussed in further sections. Normally, the sampling is 

given by Equation (4.14)(Hansen 2011) however, the equation may vary depending on the limits 

on the variables. For example if the function only takes non-negative points then the above 

equation would not be considered suitable, in that case a new sampling function is required, which 

gives sampling points only in the positive domain. 

 

In light of such requirements, research have been done to modify the sampling equations 

Hoshimura (2005) suggested 2 methods of sampling non-negative points – Lognormal distribution 

method and Projection method. In lognormal method, simply a lognormal distribution is used 

instead of a normal distribution. Using lognormal function forces all the sampling points to be 

positive. In case of the Projection method, the negative sampled points obtained are projected on 

the axes as shown in Figure 3.9.  
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As mentioned previously, the variable considered for optimization is 𝐶𝑛, which governs the 

presence or absence of the Suspended slabs. This parameter is considered for each floor and take 

only two values – 0 or 1. Therefore, the discussed methods cannot be used for sampling in this 

case and thus a new equation is formed. The equation uses the same concept as discussed earlier 

but with a filter function that converts the generated search points into binary values. Basically, 

now the sampling function is divided into 2 parts, the first part (Equation 4.14) generates random 

sample points (𝑥𝑘
𝑔+1

) based on a normal distribution with a mean of 0.5 and variance 0.3. Once 

the points are generated they are passed through the filter function (Equation 4.15) to convert into 

binary values. 

 

Figure 3.9  Projection Method 
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Figure 3.10  Unbiased Nature of Sampling Function 

 

For the sampling functions to successfully work an important point to be kept in mind is that while 

generating the sampling points there should not be any bias. In order to ensure this in our developed 

function the mean (𝑚𝑔) was chosen to be 0.5 and the standard deviation (𝜎𝑔) to be 0.3. For the 

intial assumption of the standard deviation Equation 4.13 is considered to be a good intital 

assumption (Hansen 2011). It would be clearer from Figure 3.10 that the probability of getting a 0 

or 1 for 𝐶𝑛 is the same initially, thus the developed sampling function is unbiased in the beginning. 

 ab 3.0                                                             (4.13) 

where, a and b are the bounds of the search domain (in this case a = 0 and b = 1)
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where, N(0,𝐶𝑔) is a Normal or Gaussian distribution for mean = 0 and covariance 𝐶𝑔 
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3.3.2.3 Selection and Recombination 

 

In each generation (or each run) a population is created which comprises a certain number of cases. 

The first step is to determine the size of the population (λ). Equation 4.16 (Hansen 2011) gives 

the population size based on the number of variables (𝑛𝑣𝑎𝑟) being optimized. The population size 

is quite important for the proper execution of the algorithm. If the size is too big then the processing 

time would be too infeasible, and if its too small then the algorithm might get stuck on local 

solutions due to lack of variation. The next step is to determine parameter ‘μ’, which is the number 

of members of the population to be selected to update the mean for the next generation. Equation 

4.17 (Hansen 2011) is used to get the value of μ from the population size (λ). 

 

Once these parameters are defined the weights are calculated by using Equations 4.18 and 4.19 

(Hansen 2011). The next step is to rank the individual member sof the population. Each member 

of the population is assigned to the fitness function to get a respective fitness value, based on which 

the members of the population are given suitable ranks. Based on the ranks given to each case, 

weights are given to them which follow the relation (Equation 4.20) as the case with rank I should 

have the highest weight i.e. the mean of the distribution should shift towards this point. By shifting 

the mean towards the point of highest fitness, it is ensured that the chance of this value being 

selected in the next generation is the highest. Based on the weights the mean is modified using the 

relation (4.21) (Hansen 2011). 

 nln34                                                            (4.16)
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iwi ln5.0'ln'  






                                                   (4.18) 

where, i is the index number of the population member and 𝜇′ = size of population (λ)/2 
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where,  𝑤𝑖 is the weight assigned to 𝑖𝑡ℎ member and F is the fitness function 
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3.3.2.4 Adaptation 

 

Estimating Covariance Matrix 

Equation (4.22) gives the covariances of sampled steps. However, an improved version of this 

equation is generally used (Hansen, 2011) as shown in equation (4.23).   
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Rank µ-update 

If we want the mean of covariance matrices up to a particular generation then it would be given by 

equation (4.24) (Hansen 2011). From the look of this equation each generation has been given the 



  79 

same weight i.e. each generation has the same amount of contribution to the covariance. However, 

this is not the best way to go about because from the 1st generation onwards the results keep getting 

refined as a result the contribution of the recent generations need to be higher. This is usually 

incorporated by assigning weights to each generation using an exponential smoothing, which is 

done as shown in equation (4.25) (Hansen 2011). This concept is known as the learning rate for 

updating the covariance matrix. A small value indicates that most of the information for previous 

generation is retained and therefore there is quite small learning. On the other hand if the value is 

close to 1 then no prior information is retained. Thus, the choice of value is quite important for the 

proper functioning of the algorithm. The relation used to obtain the value of learning rate is shown 

in Equation 4.26 (Hansen 2011). Important parameters and their definition have been listed in 

Table 4 – 1 for reference. 
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Evolution Path  

In the previous section selected steps were used to update the covariance matrix. Now we will 

introduce the concept of Evolution Path, which is the 2nd feature of CMA-ES. As discussed earlier, 

the CMA not only updates the distribution parameters but also the search paths. The evolution path 

is the direction the search pattern takes over a certain number of generations. It gives an idea of 
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where to search for feasible solutions. Mathematically, the evolution path is expressed as the sum 

of successive steps, so the same technique can be applied as the previous section. As before 

exponential smoothing is applied to incorporate higher weights to recent generations based on their 

higher importance. The relationship used to obtain the evolution path is given by Equation (4.28) 

(Hansen 2011), where  cc cc 2  is the normalization constant. Based on the evolution path the 

modified relation for updating the covariance matrix is given by Equation (4.29) (Hansen 2011).  
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Combination 

Combining the two approaches – ‘Rank µ’ update and ‘Evolution Path’ we obtain Equation  (4.32). 

The equation is the combination of both the strategies and thus utilizes the advantages of both. The 

rank-μ update is generally helpful in case of small populations, and the rank-one update in case of 

large populations. 
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3.3.2.5 Step Size (σ) 

 

In the previous sections updating the mean and covariance is addressed; however the variance or 

the step size is also an important parameter to be considered. Thus far no efforts has been made 

for optimizing the step size. Therefore, a step-size control is required. The control is achieved 

using the concept of evolution path (𝑝𝜎), which has been discussed in earlier sections. Based on 

the length of the evolution path the step size can be modified; for eg:- a short evolution path would 

suggest steps opposite in nature and so the step size needs to be decreased. Similarly, longer 

evolution paths suggest steps in similar direction and so the step size needs to be increased. The 

updated equation for step –length is given by Equation (4.33). The question remains as to how to 

decide whether the evolution path is long or short. To achieve this, the evolution path is compared 

to its expected length under random selection, which states that the steps are independent and 

uncorrelated. So, if there is bias in selection that produces a longer than expected path, then the 

step size is increased and vice-versa. 

 (NOTE: The theoretical aspects of CMA-ES have not been investigated in detail as the scope of 

this study is mainly the application of it.) 
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Table 3-1  List of important parameters for Adaptation process in CMA-ES 

𝑝𝑐                Evolution Path of Covariance Matrix 

𝑝𝜎                Evolution Path of Step – Length 

𝑐𝜇               Learning Rate for Rank – μ Update for Covariance Matrix 

𝑐1               Learning Rate for Rank – One Update for Covariance Matrix 

𝑐𝑐               Inverse Backward Time Horizon of Evolution Path 𝑝𝑐 

𝑐𝜎               Inverse Backward Time Horizon of Evolution Path 𝑝𝜎 

𝑑𝜎                   Damping parameter 

𝑐𝜇               Learning Rate for Rank – μ Update for Covariance Matrix 
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3.3.2.6 Process Flowchart 

 

 

3.3.3 Numerical Testing 

 

 

Figure 3.11  CMA – ES Procedure Flowchart 
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3.3.3.1 Introduction 

 

A Numerical example is considered to see the behavior and effectiveness of the new algorithm. A 

10-story 2-bay SS system is considered for analysis whose structural properties are shown in Table 

3-2. Several modifications have been considered to the combinatorial algorithm, which are tested 

separately and their convergence is evaluated to obtain a suitable time effective optimization 

algorithm. First, few new concepts are introduced that are used to modify the algorithm. 

 

Table 3-2  Structural Properties of 10 Story 2 Bay Frame 

Floor No. 

Mass 

(slugs) 

Stiffness 

(kips/inch) 

1 0.618 75.3 

2 0.608 75.3 

3 0.608 75.3 

4 0.608 75.3 

5 0.608 75.3 

6 0.608 75.3 

7 0.608 75.3 

8 0.608 75.3 

9 0.608 75.3 

10 0.547 75.3 
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3.3.3.2 Elitist Selection (Elitism) 

 

Elitism in reference to evolutionary algorithms is quite a popular selection approach. The Elitist 

Selection is a supplementary tool applied to the selection method of evolutionary algorithms to 

improve the chances of finding the optimal solution. The Elitist Selection basically states that in 

every generation the best case is always selected to be carried on to the next generation. In 

Evolutionary Algorithms such as Genetic Algorithm, a certain number of population is generated 

in every generation and out of which a few are selected based on the weights given to them.  

 

The Elitist selection ensures that the best case is always carried on to the next generations, which 

ensures that the optimum point does not get lost. The CMA-ES algorithm generates the search 

points based on a probabilistic distribution, as a result sometimes the optimum point generated in 

the previous step may not be generated in the next generation. In case of the SS system the 

sampling function uses a filter to convert the random search points to binary values, as a result the 

movement of the mean and other parameters tend to occur at a faster rate than the usual. Due to 

this fast movement sometimes it is possible that some solutions may be overlooked or the search 

may get “stuck” on a local solution, so the elitist selection is highly essential in this case. To further 

improve efficiency of the Elitist selection, 2 modifications are made and tested separately. 

 

The first modification (TYPE – I) states that in a particular generation the best case is identified 

and selected. The stored value is then compared to the best case from the next generation. In case 

the stored value turns out to be better, then the worst case for that generation is replaced by the 

stored value. The second type (TYPE – II) states that if the best case from the previous generation 
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turns out to be equal or worse than the best case of the next generation, then it replaces the worst 

case from that generation. The difference between the two cases is that in case the best solution is 

not better than the one from the successive generation, then TYPE – I would not come into play. 

However TYPE – II would still replace the worst case. Both the types have been shown in Figure 

3.12 for better understanding.  

 

3.3.3.3 Flatness Recovery 

 

In CMA-ES it is seen that after certain generations all the members of the population tend to 

converge to a single point. If this point of convergence is the optimal solution, the algorithm works 

as expected, however if the point of convergence is a local solution then the program has to be 

terminated. In this study the chances of getting stuck on a local solution are higher and so in order 

to increase the efficiency of the algorithm a flatness recovery option is implemented. As CMA-ES 

Figure 3.12  Elitist Strategy Modifications 

𝑘𝑡ℎ

(𝑘 + 1)𝑡ℎ 

Population 

Rearrangement 

TYPE I TYPE II 
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converges to a solution the step length tends to decrease so in order to escape from flatness the 

step length has to be increased by a particular factor. However increasing the step length too much 

may cause the algorithm to diverge so an educated estimation has to be made.  

 

As previously mentioned, the variables take only 0 or 1, so once flatness is achieved the mean 

would converge to 0 or 1. In order to convert a 0 to 1 or vice-versa the standard deviation has to 

be chosen such that the probability of generating a number greater than 0.5 is significant. Equation 

4.36 gives the Cumulative Density Function (CDF) or Cumulative distribution function value, 

which determines the probability of generating a number below a certain point (X). Equation 4.37 

gives the probability to get a number greater than a fixed point (X). Equation 4.38 is used to 

transform from a standard normal distribution to a normal distribution. Table 3-3 shows the 

increase in probability to get a number greater than 0.5 with increase in standard deviation. It is 

seen that for sigma greater than 2 the increase in probability is not significant thus it is set as the 

maximum limit and the step length is modified according to the Equation 4.39. 
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Table 3-3 Probability values for different step - lengths 

S no. μ σ X Z P (Z > X) 

1 0 1 0.5 0.50 0.3085 

2 0 2 0.5 0.250 0.4013 

3 0 3 0.5 0.1667 0.4364 

4 0 4 0.5 0.125 0.4522 

5 0 5 0.5 0.10 0.4602 

6 0 6 0.5 0.0830 0.4681 

7 0 7 0.5 0.0714 0.4721 

8 0 8 0.5 0.0625 0.4761 

9 0 9 0.5 0.0566 0.4801 

10 0 10 0.5 0.050 0.4801 

 

3.3.3.4 Cases Considered 

 

Initially, a simple combination of CMA-ES and Nelder – Mead was implemented, however it was 

seen that algorithm tend to get stuck on local solutions. To increase the effectiveness of the 

algorithm few strategies were implemented and tested out.  

 

Case I: Nelder – Mead + CMA-ES  

This case deals with a simple combination of Nelder-Mead and CMA-ES. The algorithm’s 

effectiveness is first evaluated by plotting the best fitness value for each generation. From the 

perspective of time cost the algorithm performed quite well compared to the Numerical Search. 
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The time taken by this algorithm was about 1/10th the Numerical Search. Further, Boxplots were 

plotted to see the behavior of the algorithm. Boxplots are an effective way to represent a cluster of 

data as they indicate important distribution parameters such as mean, upper and lower quartile 

range (75% and 25%). The boxplots also give an understanding of the way the data is distributed.  

 

Figure 4.13 shows that the best fitness value in each generation tends to converge to a point and 

remains unchanged after that. A better view of the convergence is seen from the boxplot shown 

below in Figure 3.13. The algorithm starts out with a wide domain and with passing generations 

the mean, standard deviation and covariance gets updated which forces the search space to shift 

towards the optimal solution, as expected. In terms of performance the algorithm converged to 

local solutions and missed the global optima, which tends to suggest a scope of improvement. 

Figure 3. shows the variation in step-length as how it first increases to expand the search space 

and then once the best solution is found it decreases to reduce the search space. 

 

 

                        
Figure 3.13  Case I Convergence and Accuracy Figure 3.14 Change in Step – Length for Case I 
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Figure 3.13  Boxplot of Case I Convergence  

 

Case II: Nelder-Mead + CMA-ES + TYPE I Elitism 

To improve the accuracy of the algorithm, principle of ‘Elitism’ is implemented. For this case only 

Type I Elitism is applied. The same plots, as those mentioned for the previous case, were plotted 

to see the accuracy and convergence. It is seen that the time and generations taken for convergence 

were found to be identical to the previous case. Even the accuracy was seen to be identical to the 

previous case, which does not necessarily mean no improvement. It only states that even with 

Elitism there is still need of improvement as the accuracy is not satisfactory. 
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Figure 3.14 Box plot of Case II Convergence 

 

Case III: Nelder-Mead + CMA-ES + TYPE I Elitism + TYPE II Elitism 

In this case both, Type I and Type II Elitism are implemented simultaneously. Now the algorithm 

tends to have the benefits of the previous cases along with some additional advantage. The 

convergence plots are plotted same as before. For this case also the algorithm shows similar 

response in terms of time cost and number of generations, however this time significant 
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Figure 3.16  Case II Convergence and Accuracy Figure 3.17  Change in Step – Length Case II 
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improvement in accuracy was seen. The modified algorithm tend to produce much accurate results 

than before. The boxplot and variation in standard deviation showed a similar pattern.  

 

 

 

 

Figure 3.15  Box plot of Case III Convergence 
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Case IV: Nelder-Mead + CMA-ES + TYPE I Elitism + TYPE II Elitism + Flatness Recovery 

Case III is considered acceptable however it still failed to pin point the exact global optima in 

every run. A new unprecedented approach is suggested which utilizes the concept of Elitism in 

combination to another approach called ‘Fitness Recovery’, which has been discussed earlier in 

detail. The concept behind this strategy is to increase the standard deviation when the search starts 

to reach flatness, such that the algorithm is forced to generate new search points that are outside 

the expected domain. This tends to cause the algorithm to diverge, however due to the inherent 

adaptation capability of the CMA-ES, the algorithm prevents from diverging to a failure. After a 

few generations of divergence the algorithm tends to move in the direction of the best value. The 

algorithm moves in a zig-zag pattern and fails to converge to a single point, however this is the 

advantage of this strategy as it prevents the search to get stuck on a local solution and instead 

allows a higher probability of finding the global optima. The pattern is shown in Figure 3.16 which 

represents the variation in the standard deviation.  The purpose served by the Elitist Selection is to 

keep track of the best solution. This strategy fails to converge to a single point thus the Elitist 

selection stores the best value and makes sure that the value is not lost.  
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Figure 3.16  Change in Step – Length for Case IV 

 

The convergence plots for this case have been shown below in Figure 3.17 and Figure 3.18. As 

opposed to other cases where the search ran till all the points converged to a single point, in this 

strategy the algorithm is run until a specific number of generations. From Figure 3.17 the accuracy 

is seen to be better than the predecessors. From Figure 3.18 it is seen that the algorithm does not 

converge to a unique solution however it does manage to find the optimal solution. The 

convergence pattern can be seen in much detail from this plot. As for the time of convergence, it 

is seen to be almost the same as previous cases. 
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Figure 3.17  Case IV Convergence and Accuracy 

 

 

Figure 3.18  Box – Plot of Case IV Convergence 
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CHAPTER 4 

 SYSTEM RESPONSE TO GENERATED WHITE NOISE EARTHQUAKE EXCITATIONS 

 

4.1 Stationary White Noise 

 

A white noise is generally considered as a random signal whose data points are uncorrelated to 

each other and have a mean equal to zero and a finite variance. In terms of energy, a white noise 

has a constant power spectral density (i.e. the signal consists of equal power within any frequency 

band width). The white noise is considered to have a Gaussian distribution. White noise have 

application in a variety of fields including – music, acoustics, electrical, among many others. It is 

usually used to generate signals by passing through a suitable filter. Based on this concept, white 

noise is used in the field of earthquake engineering to simulate ground motions. Figure 4.1 shows 

a typical stationary white noise signal used to simulate a random ground motion excitation.  In this 

study, the earthquake ground acceleration is modeled as a stationary white noise, which is 

characterized by its Power Spectral Density Function (PSDF). The PSDF is obtained using a 

commonly used filter developed by Kanai (1957)  and Tajimi (1960), also commonly known as 

the Kanai-Tajimi Filter. 
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Figure 4.1  An Example of a White Noise Signal 

 

4.2 Kanai-Tajimi Filter 

 

The Kanai-Tajimi filter has been widely used in the analysis of structures under the influence of 

earthquake excitations. According to this model, the ground is assumed to be made up of soil layer 

over rock strata, which is quite logical. The rock and soil interaction is represented using a linear 

system of spring and dashpot in parallel connecting a mass, which represents the soil, to the 

ground, which represents the rock strata. The ground or the rock strata acceleration is assumed to 

be a stationary white noise, in response to which the system is solved for the response of the soil 

layer. The PSDF given by Kanai and Tajimi is shown in Equation (5.1).  
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It is seen to be a function of three parameters𝜔𝑔, which represents the ground natural frequency,𝜉𝑔 , 

the damping ratio of ground, and 𝑆0, which is the ground intensity. These parameters are varied to 

simulate different earthquakes or even an ensemble of earthquakes. Figure 4.2 shows a typical 

form of the Kanai-Tajimi Spectrum. Since Kanai-Tajimi model can easily simulate earthquake 

excitations and is mathematically simple it is used in this study to evaluate the performance of the 

SS system. 

 

Figure 4.2  Typical Shape of Kanai – Tajimi Spectrum 
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4.3 Fast Fourier Transform (FFT) and Power Spectral Density Function (PSDF) 

 

To determine the frequency content of a signal Fourier transform is used. In case of earthquakes, 

the fourier transform converts the earthquakes from a time domain to a frequency domain, which 

gives an indication of the predominant frequencies. In practice the fourier transform is obtained 

using an approach called the ‘Discrete Fourier Transform’, which is programmed as FFT (Fast 

Fourier Transform) in most mathematical software. In FFT, the Fourier synthesis of a time history 

is considered as a pair of Fourier Integrals in the complex domain and is given by Equation (5.3). 

The FFT gives the frequency content of a time history in complex quantities from which the 

Amplitude Spectrum is obtained by taking the magnitude of the complex quantities. 
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where, T is the Total time period of the time history 

 

PSDF is another way of representing the frequency content of a signal. Where as the fourier 

amplitude spectrum gives the frequency content of an actual ground motion of a site, the PSDF is 

a probabilistic measure of the frequency and is given by the Equation (5.4)  
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where, 𝐴  is the amplitude of the Fourier amplitude spectrum, and T is the total duration of the 

time history.  
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4.4 Analysis Procedure 

 

For the purpose of this study 2 sets of earthquakes excitations are generated – Near fault 

earthquakes and Far fault earthquakes. According to ATC-63 the definition for Near fault 

earthquakes constitutes the ground motion records at stations within a distance of 10 km of the 

fault, and Far fault earthquakes constitute records from stations of more than 10 km distance from 

the fault. With respect to these classifications 19 records for Near fault and 30 records were chosen 

in the region of United States, with a soil type D (i.e. broad soil). These 2 sets of earthquakes are 

combined separately by taking the mean of earthquakes selected for the 2 respective cases to obtain 

the effective Power Spectral Density for each case (Equation 5.5). In order to smooth these PSDF’s 

the Kanai – Tajimi Spectrum was used. For each case a different set of parameters for the Kanai – 

Tajimi spectrum are obtained to simulate the ensemble of earthquakes. Table 4-1  Parameters of 

Kanai – Tajimi Model for Near Fault and Far Fault Earthquakes shows the parameters obtained 

for the 2 sets of earthquakes. As expected, except the ground intensity, the other parameters are 

seen to be quite close to each other for the 2 cases. This can be attributed to the fact that both set 

of earthquakes were chosen on the same type of soil (Type – D soil). Figure 4.3 and Figure 4.4 

show the power spectrum obtained after averaging the 2sets of earthquakes selected for near and 

far fault. 
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Figure 4.3  Average Power Spectrum for Near Fault Earthquakes 

 

 

Figure 4.4  Average Power Spectrum for Far Fault Earthquakes 

 

Table 4-1  Parameters of Kanai – Tajimi Model for Near Fault and Far Fault Earthquakes 

Earthquake Type No. of Records 𝝎𝒈 𝝃𝒈 𝑺𝟎 

Near fault 19 17.77 0.30 0.978 

Far fault 30 18.43 0.25 0.0596 
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The PSDF has 3 statistical characteristics – RMS acceleration, central frequency, and the shape 

factor. These 3 terms are utilized in obtaining the respective parameters of Kanai – Tajimi 

Spectrum by equating the 3 terms from of the PSDF obtained to the Kanai – Tajimi spectrum. The 

three characteristics are given by the following relations (Equations 5.6, 5.7 and 5.8), where 𝜆𝑛 is 

the n𝑡ℎ spectral moment and given by Equation (5.9). 𝜔0 is the maximum frequency until which 

the spectrum is considered, and is termed the cut-off frequency. 
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The Kanai – Tanaji PSDF is used to obtain the root mean square response of the SS system and 

the composite frame (Equation 5.10). The mean response is considered as the performance 

evaluation parameter for the SS system. A thing to note is that in the previous chapters it has been 

discussed that the optimized values of the SS system were evaluated by minimizing the maximum 

response amplitudes (also known as the Mini-Max approach). However, now the approach is 

changed since the reference parameter has changed from response amplitude to the RMS response. 

The SS system is now optimized by minimizing the RMS response to the input of Kanai-Tajimi’s 

spectrum.  
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Once the optimized parameters are obtained, they are used to get the final RMS response of the 

SS system. To gain better insight on the performance of the SS system, a new term is introduced, 

which is termed Improvement Factor (I). Improvement factor basically gives the percentage 

improvement in performance of the SS system in comparison to a composite system considered 

with the same properties (Equation 5.11). 

FrameCompositeofRMS

SystemSSofRMSFrameCompositeofRMS 
1Factort Improvemen

                 (4.10) 

 

4.5 Numerical Examples 

 

The design procedure discussed in the previous section is applied to 3 cases to see the effectiveness 

of the SS system with increase in size of the structure. A 4 story 2 bay, 7story 3 bay and a 10 story 

5 bay structure are considered for analysis. In each case the SS system is optimized corresponding 

to 2 different cases: 

 TYPE – I : Steel frame’s top floor RMS displacement  

 TYPE – II : Steel frame’s top floor RMS displacement + Top floor SS RMS acceleration 

 

In 1st case the system is just optimized to steel frame’s top floor displacement, however in the 

second case a simultaneous optimization is carried out to try and improve the overall performance 

of the SS system. For both the cases the input response spectrum considered are the Near and Far 

fault Kanai Tajimi spectrums derived in the previous section. The Importance factors for all the 
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cases are plotted below to see the variation in performance of the SS system and draw conclusions 

from it. The structural properties of each case have been shown below. 

 

Table 4-2  Structural Properties of 4-Story 1-Bay Frame 

Floor No. 

Mass 

(slugs) 

Stiffness 

(kips/inch) 

1 0.309 37.6 

2 0.304 37.6 

3 0.304 37.6 

4 0.274 37.6 

 

Table 4-3  Structural Properties of 7-Story 3-Bay Frame  

Floor No. 

Mass 

(slugs) 

Stiffness 

(kips/inch) 

1 0.8924 112.95 

2 0.8979 112.95 

3 0.8979 112.95 

4 0.8979 112.95 

5 0.8979 112.95 

6 0.8979 112.95 

7 0.7928 112.95 
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Table 4-4  Structural Properties of 10-Story 5-Bay Frame 

Floor No. 

Mass 

(slugs) 

Stiffness 

(kips/inch) 

1 1.4641 188.25 

2 1.4441 188.25 

3 1.4441 188.25 

4 1.4441 188.25 

5 1.4441 188.25 

6 1.4441 188.25 

7 1.4441 188.25 

8 1.4441 188.25 

9 1.4441 188.25 

10 1.30 188.25 

 

The performance of the three structures systems is shown in Figure 5.5 – Figure 5.10. The Figure 

5.5, Figure 5.7, and Figure 5.9 show the improvement factor versus the story number for both the 

displacement and acceleration of the steel frame. Figure 5.6, Figure 5.8, and Figure 5.10, on the 

other hand, show the improvement factor for the displacement and acceleration of just the top story 

SS. 

 

 

 

 

 



  106 

4.5.1 4 Story 2 Bay 

 

 

Figure 4.5  Performance of Steel Frame for Near and Far Fault Earthquakes 

 

 

Figure 4.6  Performance of Top Floor Suspended Slab for Near and Far Fault Earthquakes 
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4.5.2 7 Story 3 Bay 

 

 

Figure 4.7  Performance of Steel Frame for Near and Far Fault Earthquakes 

 

 

Figure 4.8  Performance of Top Floor Suspended Slab for Near and Far Fault Earthquakes 
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4.5.3 10 Story 5 Bay 

 

 

Figure 4.9  Performance of Steel Frame for Near and Far Fault Earthquakes 

 

 

Figure 4.10  Performance of Top Floor Suspended Slab for Near and Far Fault Earthquakes 
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4.5.4 Results 

 

The results from all cases have been tabulated in Table 4-5 Transfer Function Values and SS 

system optimized parameters for different Optimizations. The table shows the Improvement 

factors for all response variables of the SS system, along with the optimized parameters - 𝛽𝑑, 𝜉𝑑 

and 𝐶𝑛. From the results it can be clearly seen that performance difference in Near and Far Fault 

spectrums is not much as their ground frequencies and damping are quite close to each other. Since 

the Improvement factor is a relative measure of performance, the ground intensity of the 2 spectra’s 

does not contribute to anything, hence the ‘I’ factors are a function of ground frequency and 

damping. 

 

From the 3 structures considered a clear improvement is seen in the performance of the MSS 

system. For TYPE – I optimization the overall performance of the MSS system is seen to be quite 

satisfactory for the 1st two structures – 4-story and 7-story. However, for the 10th story the ‘I’ factor 

of SS acceleration is almost 1 for TYPE – I optimization, which means there is almost no 

improvement. For TYPE – II it can be seen that now the ‘I’ factor for SS acceleration is a little 

better. 

 

 Although the improvement is not that much, further improvement can be achieved if 𝜉𝑑 is allowed 

to increase further. For the scope of this thesis the damping ratio of the SS is limited to 0.30 to 

keep a somewhat practical perspective. Since the design aspects of the SS system are not dealt 

with, it is quite difficult to quantify actual values. However, it can be shown that even higher 𝜉𝑑 

values can be practically applicable. Equations 5.12 are divided and the damping ratio of structure 
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and the SS are assumed to be the same (Equation 5.13). By rearranging the final relation between 

the damping coefficient of SS and the structure is shown in Equation 5.14. For the 10 story 

structure, 𝜇𝑑 = 0.05 (5%) and 𝛽𝑑 = 0.60 (60%), therefore 𝑐𝑑 = 0.03𝑥𝐶𝑆 or 3% of 𝐶𝑆. Thus, even if 

the 𝜉𝑑 value turns out to be high it may still be practically feasible.    

𝜉𝑑 = 
𝑐𝑑

2𝑚𝑑𝜔𝑑
  and  𝜉𝑠 =

𝐶𝑆

2𝑀𝑆𝜔𝑆
                                            (5.12) 

𝜉𝑑

𝜉𝑆
= 1                                                           (5.13) 

𝑐𝑑 =
𝐶𝑆.(2𝑚𝑑𝜔𝑑)

2𝑀𝑆𝜔𝑆
= 𝐶𝑆. (𝜇𝑑𝛽𝑑) , where 𝜇𝑑 =

𝑚𝑑

𝑀𝑆
  and  𝛽𝑑 =

𝜔𝑑

𝜔𝑆
                     (5.14) 
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Table 4-5 Transfer Function Values and SS system optimized parameters for different Optimizations  

Structure Earthquake Optimization 𝑰𝑭𝒅 𝑰𝑭𝒂 𝑰𝑺𝒅 𝑰𝑺𝒂 𝜷𝒅 𝝃𝒅 𝑪𝒏 

4x2 Near – Fault  TYPE – I 1.518 1.562 1.623 1.202 0.6263 0.30 [ 0 1 0 1 ] 

4x2 Near – Fault TYPE - II 1.513 1.582 1.674 1.214 0.6822 0.30 [ 0 1 0 1 ] 

4x2 Far – Fault TYPE – I 1.518 1.558 1.623 1.164 0.6263 0.30 [ 0 1 0 1 ] 

4x2 Far – Fault  TYPE - II 1.515 1.575 1.665 1.174 0.6726 0.30 [ 0 1 0 1 ] 

7x3 Near – Fault  TYPE – I 1.668 1.703 1.672 1.332 0.6734 0.23 [ 0 1 1 1 0 0 1 ] 

7x3 Near – Fault TYPE - II 1.654 1.728 1.669 1.394 0.5322 0.30 [ 0 1 1 1 1 0 1 ] 

7x3 Far – Fault TYPE – I 1.669 1.685 1.711 1.270 0.6998 0.25 [ 0 1 0 0 0 1 1 ] 

7x3 Far – Fault  TYPE - II 1.654 1.725 1.667 1.358 0.5304 0.30 [ 0 1 1 1 1 0 1 ] 

10x5 Near – Fault  TYPE – I 1.559 1.612 1.598 1.059 0.575 0.30 [ 0 1 1 1 1 0 0 0 1 1 ] 

10x5 Near – Fault TYPE - II 1.521 1.660 1.677 1.104 0.6381 0.30 [ 0 1 1 1 1 1 1 0 0 1 ] 

10x5 Far – Fault TYPE – I 1.553 1.627 1.639 1.007 0.629 0.30 [ 0 1 1 1 1 0 0 0 1 1 ] 

10x5 Far – Fault  TYPE - II 1.534 1.651 1.653 1.044 0.6046 0.30 [ 0 1 1 1 1 1 1 0 0 1 ] 
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CHAPTER 5 

DESIGN CONSIDERATIONS 

 

5.1 Design Considerations 

 

The scope of this study is just the performance analysis of the SS system, however complete 

evaluation of this system cannot be completed without a design perspective. The most important 

design component of the SS system are the post – tensioned and energy dissipation links, which 

govern the parameters - 𝑘𝑑 and 𝑐𝑑. Throughout the study the focus has been on the performance 

aspect of the SS system, however the purpose of studying the SS system as an analogue to a TMD 

system was not just to evaluate the performance but also to develop a procedure to design these 

links.  

 

5.1.1 Design of Energy Dissipation Links 

 

Once optimum values for parameters 𝛽𝑑 and 𝜉𝑑 are obtained for any particular SS system they are 

used to design the links. First we look at the energy dissipation links, which are designed by 

obtaining the damping coefficient from 𝜉𝑑 by Equation (6.1). The parameters on the right hand 

side are known from the analysis, thus we can get the damping coefficient.  

 𝜉𝑑 = 
𝑐𝑑

2𝑚𝑑𝜔𝑑
 =>   𝑐𝑑 =

𝐶𝑆.(2𝑚𝑑𝜔𝑑)

2𝑀𝑆𝜔𝑆
= 𝐶𝑆. (𝜇𝑑𝛽𝑑)         (6.1) 

 

where, 𝐶𝑆 is the damping coefficient of the steel frame excluding the suspended slabs, 
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 𝜇𝑑  is the mass ratio and 𝛽𝑑 is the frequency ratio of the suspended slabs 

 

5.1.2 Design of Post – Tension (PT) Links 

 

The second important design aspect is to design the post – tensioned links. The typical schematic 

of the post tensioned link is shown in Figure 6.1, the definition parameters used are given in Table 

6.1. Once optimal value of 𝛽𝑑 is obtained Equation 6.2 can be used to 𝑘𝑡𝑜𝑡𝑎𝑙, the total stiffness 

provided of the suspended slab. However, we are concerned with just the stiffness of the PT links 

because the inherent stiffness of the suspended slab (Equation 6.3) cannot be changed due to 

architectural constraints.  By using Equation 6.4 we can get the stiffness due to only PT links. 

Once we have the separate stiffness, it is used to get the design force in each PT link using 

Equations 6.5, 6.6 and 6.7, since ℎ𝑠, 𝑠𝑃 and 𝑛𝑃𝑇 are pre – decided and 𝑋𝑚𝑎𝑥 is obtained from the 

analysis procedure. 
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Table 5-1  List of parameters for PT links 

Variable Definition 

𝑘𝑡𝑜𝑡𝑎𝑙 Total stiffness of suspended slab 

𝑘𝑑 Stiffness of suspended slab only due to PT links 

𝑘𝑖𝑛 Inherent stiffness of suspended slab 

𝑋𝑚𝑎𝑥 Maximum displacement of suspended slab 

ℎ𝑠 Spacing between suspended slab and beam 

𝑠𝑝 Horizontal spacing between the two ends of a PT link 

𝜃  Horizontal angle PT link for maximum displacement of slab 

𝐹𝑃𝑉 Vertical force of PT link 

𝐹𝑃𝐻 Horizontal force of PT link 

𝐹𝑃 Net force of PT link 

𝑛𝑃𝑇 Number of PT links 

 

 

Figure 5.1  Schematic of Post – tensioned links 

 

𝛽𝑑 = 
𝜔𝑑

𝜔𝑆
= √

𝑘𝑡𝑜𝑡𝑎𝑙𝑀𝑆

𝑚𝑑𝐾𝑆
= √

𝑘𝑡𝑜𝑡𝑎𝑙

𝜇𝑑𝐾𝑆
=> 𝑘𝑡𝑜𝑡𝑎𝑙 = 𝛽𝑑

2 𝜇𝑑𝐾𝑆           (6.2) 

Beam 

Suspended 
Slab 

Post – Tensioned Link 

𝑋𝑚𝑎𝑥 

θ 

ℎ𝑠 
𝐹𝑃𝑉 

𝐹𝑃𝐻 

𝐹𝑃 

𝑠𝑃 
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𝑘𝑖𝑛 = 
𝑚𝑑 𝑔

𝐿
                                    (6.3) 

𝑘𝑑 = 𝑘𝑡𝑜𝑡𝑎𝑙 − 𝑘𝑖𝑛          (6.4) 

𝐹𝑃𝐻 = 𝑘𝑑 × 𝑋𝑚𝑎𝑥          (6.5) 

𝜃 = 𝑡𝑎𝑛−1 (
ℎ𝑠

𝑋𝑚𝑎𝑥+𝑠𝑃
)                              (6.6)  

𝐹𝑃 = 
𝐹𝑃𝐻 𝑐𝑜𝑠𝜃

𝑛𝑃𝑇
                        (6.7) 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

 

The suspended and self-centered slabs system is a novel system developed to mitigate the effects 

of earthquake while minimizing the requirement of repairs. The SS system works on the principle 

of vibration isolation and dissipation of energy in replaceable elements, which makes it a high 

potential system. Other earthquake mitigation systems such as – the reduced beam section and the 

dog – bone connection, require high repair cost due to replacement of beams after an earthquake. 

However, in the SS system since the energy is dissipated in the energy dissipation links attached 

to each slabs, thus the repair cost could be highly reduced. Also, the SS system utilizes the benefits 

of passive TMD system, however it does not encounter the problem of architectural constraints, as 

experienced by regular TMD systems. In order to implement TMD’s separate space has to be 

reserved for them, which is not the case with the SS system. 

 

The SS is identified to be equivalent to a MTMD system, thus optimization procedure is required 

to ‘Tune’ the system. TMD systems tend to perform best when attuned to specific conditions. The 

theoretical models are analyzed in congruence with 2 optimization methods - Numerical Search 

and Combinatorial optimization. Both methods are found to be quite accurate, however as the size 

of SS system increased the former got too time costly. On the other hand, the latter method showed 

better accuracy and reduction in processing time by almost one – tenth. Finally, to test the 

performance of the SS system 3 test structures were considered – 4 story 2 bay, 7 story 3 bay and 
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10 story 5 bay, and the Kanai – Tajimi spectrum is used to model the input earthquakes. The tests 

revealed about 50 – 60 % improvement in performance of the SS system over the composite frame 

for the 3 test structures. 

 

6.2 Future Work 

 

There is still need to look into the designing aspects of the SS system in detail i.e. the size of 

beams, design of suspension connections, etc. In addition, the analysis conducted in this study 

assumes a unidirectional earthquake and a symmetric structure, which neglects the feasibility of 

this system if torsional effects are to be considered. In case the suspended slabs are not evenly 

distributed then there will be some torsion produced in the system. Thus, it is necessary to 

investigate this aspect of the system as well. These are the analytical aspects that need to be further 

explored, but at the end it is quite necessary to do experimental testing or a software simulation to 

verify the theoretical formulation. Since the SS system is an unexplored domain, the scope for 

future research in regard to it is quite vast and at the same time essential due to its high potential.  
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APPENDIX A 

 RESPONSE EQUATIONS DERIVATION FOR MSS MODEL 
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     , where n = 1 – 3 and j = 1 – 2           (A. 3) 

 

Steel Frame Displacement Amplitude Derivation (|𝑯𝟒|) 

Equation A.1 – A.3 represents the equations of motion of the steel frame, 𝑗𝑡ℎ SS of top floor and  

𝑗𝑡ℎ SS of floors 1st – 3rd. First, the displacement amplitudes are derived by substituting the 

assumptions (Equation A.4) in Equation A.1 and dividing this equation by ωS
2 and mE

~  to get 

complex form Equation A.7, where ‘i’ represents the complex root √−1. Similarly, the relations 

(A.2) and (A.3) are divided by (md4j.ωs
2) and  (mdnj.ωs

2), and Equations A.5 and A.6 are 

substituted to obtain the complex form Equations A.8 and A.9.  
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Equations A.8 and A.9 are rearranged to obtain relations for 𝐻𝑑4𝑗 and 𝐻𝑑𝑛𝑗 in terms of 𝐻4, and 

these are substituted in Equation A.7 to obtain a relation in terms of single variable U4. After the 

substitution the equation is rearranged to get the relation for steel frame displacement amplitude 

as shown below (Equation A.10). 
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The Equations A.11 – A.13 show how the components of equation A.10 are divided into real and 

imaginary parts. These parts are solved separately to break into real and imaginary components, 

which are clearly shown in Equations A.14 – A.29. Equation A.20 shows a much clearer picture 

of the complex nature of the main equation. 
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The real terms of Equation A.20 are coupled together in the numerator and the denominator. 

Similarly, the complex terms are also collected and the equation is converted to the form of 
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Equation A.25, from which the actual response amplitude is obtained by taking the modulus 

(Equation A.26). Equations A.21 – A.24 represent the real and imaginary terms of the numerator 

and the denominator. 
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Suspended Slab Displacement Amplitude Derivation (|𝑯𝒅𝟒𝒋|) 

Equation A.10 is a function of 𝐻4 and 𝐻𝑑4𝑗, so by substituting Equation A.25 in A.10 the SS 

displacement amplitude can be easily obtained. After substituting the equation is rearranged to 

collect the real and imaginary parts separately such that it can be represented by Equation A.31. 

The amplitude is given by equation A.32.  
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where, 
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ImRe 44444 H dIH dRjRd DENDENDEN                                                                               (A. 35) 

DENDENDEN RH dIH djRd 44444 ImRe                                                                               (A. 36) 

 

Top Story Steel Frame and SS Acceleration Amplitudes Derivation (|𝑨𝟒| and |𝑨𝒅𝟒𝒋|) 

The acceleration amplitude for steel frame top floor is obtained by using Equation A.37. Equation 

A.4 is differentiated twice and substituted in A.37 to obtain relation A.40, which relates 𝐴4 to𝐻4. 

Thus by simply substituting A.25 in A.40 and rearranging we get Equation A.43, from which the 

acceleration amplitude is obtained (Equation A.44). Similarly for SS acceleration amplitude, 
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Equation A.5 is differentiated twice and substituted in A.38, which is rearranged and solved to get 

the acceleration amplitude as given by Equation A.45. 
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