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ABSTRACT 

 

 

 

STATISTICAL METHODS FOR THE DETECTION AND ANALYSIS OF RADIOACTIVE 

SOURCES 

 

 

 

 We consider four topics from areas of radioactive statistical analysis in the present study: 

Bayesian methods for the analysis of count rate data, analysis of energy data, a model for non-

constant background count rate distributions, and a zero-inflated model of the sample count rate. 

The study begins with a review of Bayesian statistics and techniques for analyzing count rate 

data. Next, we consider a novel system for incorporating energy information into count rate 

measurements which searches for elevated count rates in multiple energy regions simultaneously. 

The system analyzes time-interval data in real time to sequentially update a probability 

distribution for the sample count rate. We then consider a “moving target” model of background 

radiation in which the instantaneous background count rate is a function of time, rather than 

being fixed. Unlike the sequential update system, this model assumes a large body of pre-

existing data which can be analyzed retrospectively. Finally, we propose a novel Bayesian 

technique which allows for simultaneous source detection and count rate analysis. This technique 

is fully compatible with, but independent of, the sequential update system and moving target 

model. 
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EXECUTIVE SUMMARY 

 

 

 

A common application of radiation counting measurements is to estimate the count rate 

from a source which is present in a sample of material. This application, which is referred to as 

“count rate analysis,” is typically carried out by taking counts from the sample of interest and 

from background. The net sample count rate is then estimated by subtracting the background 

count rate from the gross count rate of the sample. Source detection is a related application 

whose aim is to estimate the probability that any radioactive material is present in the sample 

(e.g., that the sample count rate is non-zero). Because samples cannot typically be measured 

independently of background, source detection and analysis depend on the ability to accurately 

model both the background and sample distributions. Although source detection is a special case 

of count rate analysis, in practice the two applications are often approached very differently. The 

ability to detect and identify radioactive sources has a number of important applications. It plays 

a key role in monitoring vehicles and cargo for unauthorized nuclear materials, localization of 

lost or stolen sources, facility decontamination and decommissioning, and in personal and 

environmental monitoring for radiation protection purposes. 

 In a classical radiation monitoring set-up, one assumes a known fixed background, 

decides on a decision threshold, and compares the results of a measurement to that decision 

threshold. If the number of observed counts in a given time interval is greater than the decision 

threshold, the observer concludes that a source has been detected. Traditionally, the false-

positive rate is controlled to 5% by setting the decision threshold to mean background + 1.645σ. 

This set-up is easy to understand and implement, but has the disadvantage of unnecessarily 
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discarding past measurement data. Similarly, on-line detectors often employ techniques, such as 

moving averages and recursive digital filters, which are designed to discard and de-emphasize 

old data (Fehlau 1993). For that reason, alternative techniques have been developed to more 

completely make use of the available data (e.g., Brandl 2013). Specifically, there has been 

increasing interest in Bayesian techniques, which allow for the formal incorporation of prior 

belief, data, and knowledge, and which produce probabilities for the underlying parameter (i.e., 

mean count rate). This is in contrast to classical techniques, which do not have the ability to 

incorporate prior data, and which can only make statements about whether an observation was 

drawn from a particular distribution. 

Chapter 1 reviews the standard Bayesian techniques for analyzing count rate data. 

Bayesian analysis has a number of advantages over classical analysis of data. The most obvious 

is that Bayesian analysis allows the investigator to make direct statements about the quantities of 

interest. For example, after a measurement of a possibly radioactive source, classical analysis can 

only estimate the probability of having observed N counts for a given source count rate. This is 

very different from a probability distribution of the source count rate, which can only be obtained 

by incorporating a prior, but it is easy to see how the two probabilities could be confused. In 

contrast, Bayesian analysis can directly answer the question being asked – in this case, “is there a 

source, and, if so, how strong is it likely to be?” For that reason, Bayesian techniques are 

uniquely suited for the analysis of radiation count rate data. 

 Chapter 2 presents a novel system for incorporating energy information into count rate 

measurements which searches for elevated count rates in multiple energy regions simultaneously. 

The system analyzes time-interval data (e.g., time between counts), as this was shown to be a 

more sensitive technique for detecting low count rate sources compared to analyzing counts per 
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unit interval (Luo et al. 2013). Two distinct versions of the detection system are developed. The 

first is intended for situations in which the sample is fixed and can be measured for an unlimited 

amount of time. While developing this system, it was hypothesized that the multiple-energy 

fixed sample detection systems would detect sources in at least 20% less time than the single-

energy detector. The second version of the detection system is intended to detect transient 

sources – i.e., sources which are physically moving relative to the detector, such as a truck 

moving past a fixed roadside detector, or a waste storage facility under an airplane. The 

performance of the transient source detectors will be evaluated in the following scenario: The 

moving target detection system is run for a total of 15 s. It measures background for 10 s, then 

the source for 5 s. The mean background count rate is 2 counts per second, and the source count 

rate varies from 0 to 4 cps. The energy of the source is 1200 keV (corresponding to 60Co). We 

predict that, if the decision thresholds are chosen to control the false positive rate at 5%, the 

multiple-energy detection system will significantly out-perform the single-energy detector in 

terms of failed detections. Similarly, we predict that, if the decision thresholds are chosen to 

control the failed detection rates at 5%, the multiple-energy detection system will significantly 

out-perform the single-energy detector in terms of false positives. Sequentially updating 

Bayesian radiation detectors are a recent development, and have not previously been designed to 

incorporate energy information. Therefore, the detection systems proposed in this document 

represent a new development in the field of health physics. In addition, the improved 

performance of these detection systems could represent a significant advance in the ability of 

health physicists to rapidly detect low count rate sources. 

 Chapter 3 proposes a “moving target” model of background radiation in which the 

instantaneous background count rate is a function of time, rather than being fixed. Specifically, 
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the moving target model treats the average Poisson mean in a given time interval as a random 

variable drawn from a gamma distribution.  Because of the nature of radioactive decay, the 

number of counts in a given time interval from any fixed source of radiation will follow a 

Poisson distribution which, for high enough counts, can be well approximated by a Normal 

distribution. Virtually all classical decision thresholds are based on the assumption that the 

number of counts from background is also sampled from a Normal distribution. However, it is 

well known that background varies with time of day, location, detector performance, 

meteorological conditions, and many other factors (Hemic 1988). In cases where background is 

varying, this results in a broader inferred distribution of background count rate than a “fixed-

target” background. Left unaccounted for, this leads to inaccurate posterior distributions, higher 

than expected false positive rates in measurements with decision thresholds, and faulty 

performance estimates of detectors. We predict that 95% decision thresholds based on the 238U 

background data will be at least 10% higher under the moving target analysis compared to when 

the background is assumed to be stationary and that decision thresholds will be proportional to 

the standard deviation of the distribution of the mean count rate. This is the first time that gamma 

distributions have been used to model actual variation as well as uncertainty in the mean count 

rate of background radiation. This approach represents a significant advance in the ability of 

health physicists to accurately characterize background radiation, and is a significant step 

towards solving the problem of detecting sources in the presence of a non-constant background. 

 Chapter 4 proposes a novel Bayesian technique which allows for simultaneous source 

detection and count rate analysis. The technique involves using priors which include a finite 

probability that the source count rate is exactly zero. Such priors are called “zero-inflated.” 

Solving the posterior distribution of a zero-inflated count rate model provides the probability that 
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the sample contains a source and a probability distribution for the source count rate if the source 

exists, without the need to perform redundant computations. Sampling from zero-inflated 

distributions is straightforward, and can be accomplished with easily accessible open source 

software. In addition, zero-inflated priors lead to finite posterior probabilities of “no source,” 

which is an easy to understand and satisfying result. While zero-inflated likelihood functions 

have become relatively common, especially in Bayesian statistics, zero-inflated priors are 

extremely rare in the statistics literature, and their potential for simultaneous signal detection and 

analysis does not appear to have been recognized. In particular, models with zero-inflated priors 

solve the problem for health physicists of how to characterize the count rate of samples which 

may or may not contain sources. By presenting a compact solution to the two major problems of 

radiation counting measurements, this approach may also ease the transition of health physicists 

to Bayesian statistics.   In spite of their great utility, models of radioactive sources which include 

zero-inflated priors are entirely new to the field of health physics.  
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Chapter 1 

 BAYESIAN TECHNIQUES FOR THE ANALYSIS OF COUNT RATE DATA 

 

 

 

1.1 Introduction 

Bayes’s theorem produces a probability distribution of the parameter(s) of interest by 

combining experimental data with the investigator’s pre-experiment (i.e., prior) knowledge or 

intuition. In the case of radiation sample measurements, the pre-experiment knowledge about the 

probability of possible values of the mean source count rate, 𝜆, is expressed as the prior 

probability distribution, p(𝜆). This p(𝜆) is then multiplied by the likelihood function, which 

gives the likelihood of having observed n counts given the possible range of mean source count 

rates, 𝜆 (e.g., the probability of having observed a specific number of counts as a function of the 

mean decay rate – for counting measurements, the Poisson distribution). The product of these 

probability distributions is then normalized to give an updated posterior probability distribution 

of the mean count rate 𝜆 – the probability distribution of 𝜆 given the observed data. Stated 

mathematically, given the result of a measurement, 𝑛, taken on a radioactive source with mean 

decay rate, 𝜆, Bayes’s theorem states: 

 
p(𝜆|𝑛) =  

p(𝑛|𝜆)p(𝜆)

p(𝑛)
 , (1.1) 

 

where p(𝜆|𝑛) (read “the probability of 𝜆 given 𝑛) is the posterior probability distribution, 

p(𝑛|𝜆) (read: “the probability of 𝑛 given 𝜆) is the likelihood function of the observed data, p(𝜆) 

is the prior, and p(𝑛) is the total probability of having observed the data under the prior and 

likelihood distributions (Kruschke 2010). The denominator, p(𝑛), serves as a normalizing 
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constant to the numerator. It is therefore given by the integral of the numerator over the 

parameter space, so that Bayes’s theorem may be re-written, 

 
p(𝜆|𝑛) =  

p(𝑛|𝜆)p(𝜆)

∫ p(𝑛|𝜆)p(𝜆)d𝜆
∞

0

 . (1.2) 

 

Because the prior and likelihood function together constitute a ‘model’ of the mechanisms which 

led to the observed data, it follows that p(𝑛) can be interpreted as the posterior likelihood of the 

model.  

 

1.2 The Likelihood Function 

Radioactive decay is a Poisson process, meaning that given a radioactive source with 

mean count rate, 𝜆, the probability of the source producing n counts in a given interval 

𝑡 (provided the interval is very short compared to the half-life) is given by the Poisson 

distribution: 

 
p(𝑛|𝜆𝑡) =

(𝜆𝑡)𝑛

𝑛!
e−𝜆𝑡. (1.3) 

 

When expressed as a function of the number of counts, 𝑛,  the Poisson distribution is a 

normalized probability distribution for the number of observed counts. However, if the Poisson 

distribution is expressed as a function of mean count rate 𝜆, holding the value of n constant, it 

provides the relative likelihood of different values of 𝜆 for a given observed count rate, 𝑛. This is 

the likelihood function of the measurement, p(𝑛|𝜆). It is worth noting that the integral of the 

Poisson distribution over the mean count rate, 𝜆, does not evaluate to one, and is therefore not a 

proper probability distribution (thus the term “likelihood function” as opposed to “likelihood 
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distribution”). The likelihood function, like the prior, is a part of the investigator’s model 

describing radioactive decay. In other words, when specifying a Poisson likelihood function, the 

investigator is postulating that the number of observed counts is indeed generated by a Poisson 

process. This is equivalent to postulating that the mean-count rate is fixed, that each count occurs 

independently of the time since the last event, that the mean of the observed counts is equal to 

the variance of the observed counts, and that the number of observed counts is centered on only 

one “peak.” In Chapter 3 we consider a situation in which some of those postulates fail, and 

propose an alternative likelihood function.  

 

1.3 The Prior 

The selection of a prior probability distribution is the most controversial and perhaps the 

most important aspect of applying Bayes’s theorem. For count rate measurements, the prior 

represents the investigator’s pre-existing knowledge or belief about the possible values of the 

mean count rate, 𝜆. Because it is not possible to have a negative mean count rate, the prior 

distribution should exclude negative values.  

For the purposes of rapid computation, it is desirable to select a prior which is 

mathematically tractable. A prior which will produce a posterior of the same parametric form as 

itself for a given likelihood function is called the conjugate prior for that likelihood. The 

conjugate prior for the Poisson distribution is the gamma distribution. That means that if the 

prior is a gamma distribution and the likelihood is a Poisson distribution, the posterior will also 

be a gamma distribution. (Ntzoufras 2009) The gamma distribution is given by: 

 
gamma(𝛼, 𝛽) =  

𝛽𝛼

Γ(𝛼)
𝜆𝛼−1e−𝛽𝜆, (1.4) 
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where 𝜆 is the mean count rate. The mean of the gamma distribution is given by 𝛼/𝛽, and the 

variance by  𝛼/𝛽2 . Therefore, the absolute width (e.g. variance) is small when  𝛼 is small 

compared to 𝛽2. The relative width of the distribution can be expressed as the standard deviation 

divided by the mean, which evaluates to 𝛼−1/2. Therefore, the relative width is small when α is 

large, and is not a function of 𝛽. For the case of measuring count rate data, the parameter 𝛼 can 

be interpreted as the total number of observed counts, while 𝛽 is the total time in which those 

counts occurred. Multiplying the gamma distribution by the likelihood function, it follows that 

the posterior distribution of 𝜆 is given by 

 p(𝜆│𝑛) ∝ gamma(𝛼 + 𝑛, 𝛽 +  𝑡) (1.5) 

 

One advantage of choosing a conjugate prior is that the posterior can be used as a prior for 

subsequent measurements. The likelihood of observing a series of events is equal to the product 

of the likelihood of each event individually. Therefore, the likelihood of an observation of a 

specific combination of counts, 𝑁 =  (𝑛1, 𝑛2, … , 𝑛𝑁), is given by 

 p(𝑛|𝜆) =  ∏
𝜆𝑛𝑖

𝑛𝑖!
e−𝜆𝑖  , (1.6) 

 where 𝑛𝑖 is the number of counts per time observation (Luo et al. 2013). From this, it follows 

that the posterior distribution of 𝜆 is given by 

 p(𝜆|𝑡) ∝ gamma(𝛼 + 𝑁, 𝛽 +   Σ𝑡𝑖),  (1.7) 

 

where 𝑡𝑖 is the duration of the 𝑖th measurement. 
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It follows that after N total counts spanning t time intervals (e.g., seconds, hours, etc.) the 

parameters of the posterior distribution will be 𝛼 + 𝑁 and 𝛽 +  𝑡. If little or no information about 

the mean count rate is available before the measurement, a prior should be chosen which has 

minimal effect on the posterior distribution. Such a prior is often called “uninformative.” It is 

also important to select a prior which assigns some non-zero probability to all possible values 

of 𝜆. From inspection of Eq. 1.7, this is accomplished by selecting parameter values which are 

very small. If 𝛼 = 1 and 𝛽 is very small, the gamma distribution becomes uniform, meaning that 

it is constant for all positive values of 𝜆. This is a common choice, but in reality may be biased 

towards large values of 𝜆. For example, given a uniform prior, the odds ratio of 𝜆 being within 

10% of 10 vs. being within 10% of 1000 is 

 
𝑂𝑅 =  

P(9 < 𝜆 < 11)

P(900 < 𝜆 < 1100)
=  

2

200
= 1: 100. (1.8) 

 

A somewhat more objective prior is obtained for 𝛼 =
1

2
  and 𝛽 → 0, such that 

P(𝜆) ∝  𝜆−
1
2⁄ ,      

(1.9) 

 

which is the Jeffreys prior for the Poisson mean (Jeffreys 1946). The Jeffreys prior is invariant 

under reparameterization of  𝜆, making it preferable to the uniform prior for scale-invariant 

parameters such as the Poisson mean. Either choice of prior is usually acceptable in practice, as 

both will be quickly drowned out by the observed data. 

When a conjugate prior has been chosen, the numerator is already a normalized 

probability distribution, and there is no need to compute the integral. However, as we shall see, 
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this is not usually the case for most real-world scenarios. In fact, it is often the case that the 

integral cannot be evaluated in closed form. In such cases, Markov Chain Monte Carlo 

techniques must be called upon to evaluate the posterior.  

 

1.4 The Predictive Distributions 

The distribution which gives the probability of all possible observations (e.g., every 

possible number of observed counts, 𝑛) is called the predictive distribution. In classical statistics, 

the predictive distribution only exists after a measurement, and is typically given by the 

likelihood function whose parameters are fixed at the maximum likelihood parameter estimates. 

For example, after and observation of 𝑛𝑓𝑖𝑟𝑠𝑡 counts generated by a Poisson process, the 

maximum likelihood value for the Poisson mean is 𝜆 = 𝑛𝑓𝑖𝑟𝑠𝑡, and the predictive distribution for 

the next observation, 𝑛𝑛𝑒𝑥𝑡, is given by, p(𝑛𝑛𝑒𝑥𝑡|𝑛𝑓𝑖𝑟𝑠𝑡) = Poisson(𝑛𝑛𝑒𝑥𝑡|𝜆 = 𝑛𝑓𝑖𝑟𝑠𝑡).  

In contrast, Bayesian statistics typically treats the parameters themselves as random 

variables drawn from a probability distribution (e.g., the prior or the posterior). Because there is 

some pre-existing knowledge about the possible parameter values, it is possible to generate a 

predictive distribution for the next observation before any prior observations have been made. 

This distribution is called the prior predictive. After a measurement, the probability distribution 

of the parameters is updated, and is now called the posterior distribution. Combining the 

posterior distribution with the likelihood function gives the posterior predictive distribution. Note 

that if the prior is conjugate to the likelihood function then the posterior will be of the same form 

as the prior, and the posterior predictive will therefore be of the same form as the prior 

predictive. 
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The probability of a particular observation under a given likelihood-prior combination is 

given by the probability of that observation under a given parameter value multiplied by the 

probability of that parameter value, summed over all possible parameter values. For example, the 

probability of observing a particular number of counts, 𝑛, following a Poisson distribution whose 

mean is drawn from a gamma distribution with parameters 𝛼 and 𝛽 can be determined by 

integrating the probability of observing 𝑛 counts for a given count rate 𝜆, Poisson(𝑛|𝜆), over the 

normalized probability distribution of the count rate, gamma(𝜆|𝛼, 𝛽): 

p(𝑛|𝛼, 𝛽) = ∫ Poisson(𝑛|𝜆) ∗ gamma(𝜆|𝛼, 𝛽)d𝜆 =  ∫
(𝜆𝑡)𝑛

𝑛!
e−𝜆𝑡 ×

𝛽𝛼

Γ(𝛼)
𝜆𝛼−1e−𝛽𝜆d𝜆.

∞

𝜆=0

 
     

(1.10) 

 

This process is called marginalizing over, or integrating out, 𝜆. For that reason, the predictive 

distribution is also sometimes called the marginal likelihood. The integral evaluates to a 

normalized parametric probability distribution which, through a simple re-parameterization, 

takes the form of a negative binomial distribution (Ntzoufras 2009): 

𝑝(𝑛|𝛼, 𝛽) = N. B. (𝑟 = 𝛼, 𝑝 =  
1

1 + 𝛽
) = (

𝑛 + 𝛼 − 1

𝑛
) (

𝛽

𝛽 + 1
)
𝛼

(
1

𝛽 + 1
)
𝑛

. 
     

(1.11) 

 

The negative binomial corresponding to the gamma prior is therefore the prior predictive, 

or marginal likelihood, of the observed data under the Poisson likelihood/gamma prior model, 

which is the normalizing constant in Eq. 1.2. If, after the measurement, 𝛼 and 𝛽 are the 

parameters of the posterior gamma distribution, Eq. 1.11 provides the posterior predictive 

distribution for future measurements. The posterior predictive results also hold if the gamma 
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distribution represents actual variations in the value of 𝜆 between measurements. In that case the 

likelihood function is a negative binomial distribution, and priors may be put on 𝛼 and/or 𝛽. This 

situation is considered in Chapter 3. 

The mean of the negative binomial distribution is given by 𝑝𝑟 (1 − 𝑝) =  𝛼 𝛽⁄⁄ , which is 

the same result one would obtain using the stationary target (Poisson) model. In contrast, the 

variance of the negative binomial distribution is given by: 

𝑝𝑟

(1 − 𝑝)2
= 
𝛼

𝛽
+ 

𝛼

𝛽2.
 

     

(1.12) 

 

The variance of the moving target sampling distribution is therefore equal to the sum of the 

variance of the stationary target sampling distribution (𝛼 𝛽⁄ ) and the variance of the gamma 

distribution from which the Poisson mean is sampled.  

 

1.5 Credible Intervals 

Credible intervals are the Bayesian analogue of classical confidence interval (Kruschke 

2010). They are intervals on the prior or posterior distributions which contain a likely range of 

values. For example, if there is a 95% chance that 5 cps < 𝜆 < 10 cps, then (5, 10) is a 95% 

credible interval on p(𝜆). Note that there are multiple intervals which contain 95% of the 

probability mass, and therefore multiple valid techniques for computing credible intervals. The 

preferred technique used in this document is to compute the highest density interval (HDI), that 

is, the interval of highest average density (equivalently, the narrowest possible interval). Another 
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common technique is to compute the interval between the 2.5% quantile and the 97.5% quantile. 

The quantile interval is guaranteed to be continuous and is more straightforward to compute, but 

does not necessarily contain the most probable values of the mean count rate. 

Although some statistical analysis tools have built-in algorithms to compute HDIs, it is 

useful for understanding to derive the algorithms by hand. Because every point in the 95% HDI 

is more likely than every point outside of the 95% HDI, the points of a discrete distribution 

contained in the HDI can be identified by sorting the points from most to least likely, and adding 

up the probability of these points until the collective probability reaches 95%. This is illustrated 

in the following algorithm: 

Discrete HDI Algorithm 
Given: 
X – A list containing all points in the probability distribution 
PX – A list containing the probability of the respective points in list X 
Limit – The probability contained by the HDI 
 
Algorithm: 
PX = [n/sum(PX) for n in PX]          #Normalize the distribution 
pairs = [[px,x] for px,x in zip(PX,X)]     #Keep track of which probability is associated with which x 
sortedpairs = reversed(sorted(pairs))       #Copy the pairs to a list sorted by probability 
pairsInHDI = [] 
sum = 0 
for p in sortedpairs:                            #iterates through every probability/value pair 
     sum += p[0]                                   #integrates the total probability 
     pairsInHDI.append(p)                          #Add to the list of pairs in the HDI 
     if sum>(HDI*sum(PX)):                           #Stops when the probability is greater than the HDI limit 
          break; 
#Add each pair in the original list which is in the HDI (Preserves the original ordering of the lists) 
HDI = [[x,px] for px,x in pairs if pairsInHDI.contains([px,x])]     

 

To compute the HDI of continuous distributions, it is helpful to think of the HDI as the 

region of land which rests above a rising water line (Kruschke 2010). In this analogy, the 95% 

HDI is the region of land above water when the water covers 5% of the land. It follows that the 
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boundaries of the HDI of a continuous distribution, 𝑑𝑖𝑠𝑡, are given when the integral between the 

roots (zero’s) of 𝑑𝑖𝑠𝑡 –  𝑝 is equal to 0.95. This technique can involve evaluating complex 

integrals many times, making it prohibitively slow. However, HDI’s of continuous distributions 

can be estimated quickly and efficiently by discretizing the distribution and using the discrete 

HDI Algorithm shown above.  

 

1.6 Count Rate Analysis 

The classic two-count problem (Little 1982) consists of a background measurement of 

time 𝑡𝐵 and a sample measurement of time 𝑡𝐺 . The number of counts observed in the background 

measurement, 𝑁𝐵,  derives from a Poisson distribution centered at 𝜆𝐵𝑡𝐵, where 𝜆𝐵 is the mean 

background count rate per unit time. Similarly, the number of observed counts from a sample 

measurement, 𝑁𝐺 , derives from a Poisson distribution centered at (𝜆𝑏 + 𝜆𝑠)𝑡𝐺 , where 𝜆𝑠 is the 

mean sample count rate. The goal is to derive a probability distribution for the mean sample 

count rate,  𝜆𝑆. 

   The first step is to determine the appropriate prior probability distributions to describe 

𝜆𝐵 and 𝜆𝑆 (Chalmers and LaBone 2013). Assuming we have no prior knowledge about the 

background and sample count rates (other than that they are positive), it is traditional to choose 

priors which are expected to have minimal impact on the posterior distribution, such as the 

Jeffreys prior: 
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p(𝜆𝐵) = gamma (

1

2
, 0.01) =   

0.010.5

Γ(0.5)
𝜆𝐵

(0.5−1)e−0.01𝜆𝐵  , (1.13) 

           p(𝜆𝑆) = gamma (
1

2
, 0.01) =   

0.010.5

Γ(0.5)
𝜆𝑆
(0.5−1)e−0.01𝜆𝑆  . 

 

Before proceeding, it is worth examining the prior to determine if it really expresses our beliefs 

about the likely values of the background and sample count rates. The gamma distribution has a 

95% credible interval of (0.49, 2512). This very broad credible interval means that a wide range 

of values are possible under this prior, which may not accurately reflect our belief about the 

relative likelihood of very large count rates. This prior also assumes the sample count rate is 

positive, meaning that it rules out the possibility of there being no source. Nonetheless, very 

different priors will result in very similar posteriors, provided that the prior parameters, 𝛼𝐵, 

 𝛽𝐵, 𝛼𝐺 , and 𝛽𝐺, are small compared to the observed data and measurement times, 𝑁𝐵, 

 𝑡𝐵, 𝑁𝐺 , and 𝑡𝐺 . However, this is not the case when count-rate analysis is combined with 

hypothesis testing. 

The next step in solving the two-count problem is to write down the likelihood function. 

As discussed above, radiation count data are typically assumed to be Poisson distributed. 

Therefore, the likelihood function of the background measurement is 

 
p(𝑁𝐵|𝜆𝐵) =

(𝜆𝐵𝑡𝐵)
𝑁𝐵

𝑁𝐵!
e−𝜆𝐵𝑡𝐵 . 

 

(1.14) 

Similarly, the likelihood function for the gross counts from the sample measurement is 

 
p(𝑁𝐺|𝜆𝐵, 𝜆𝑆) =

((𝜆𝐵 + 𝜆𝑆)𝑡𝐺)
𝑁𝐺

𝑁𝐺!
e−(𝜆𝐵+𝜆𝑆)𝑡𝐺 . (1.15) 
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The likelihood function of the combined measurements, also known as the joint likelihood, is the 

product of the likelihoods of the two individual measurements: 

 p(𝑁𝐵, 𝑁𝐺|𝜆𝐵, 𝜆𝑆) =  p(𝑁𝐺|((𝜆𝐵 + 𝜆𝑆)𝑡𝐵)  × p(𝑁𝐵|𝜆𝐵𝑡𝐵). (1.16) 

 

Bayes’s Theorem (Eq. 1.2) requires that the posterior probability distribution is proportional to 

the product of the prior distribution and the likelihood function. Therefore,  

 p(𝜆𝐵, 𝜆𝑆|𝑁𝐵, 𝑁𝐺) ∝  p(𝑁𝐺|((𝜆𝐵 + 𝜆𝑆)𝑡𝐵)  × p(𝑁𝐵|𝜆𝐵𝑡𝐵) ×  p(𝜆𝐵) × p(𝜆𝑆), 

 

(1.17) 

Where ∝ is read ‘is proportional to.’ Eq. 1.17 is the un-normalized joint posterior of the 

background and sample count rate. A normalized probability distribution is equal to 1 when 

integrated over the parameter space. It follows that the normalizing constant is equal to 

 
 p(𝑁𝐵, 𝑁𝐺) =  ∫ ∫  p(𝑁𝐺|((𝜆𝐵 + 𝜆𝑆)𝑡𝐺)  × p(𝑁𝐵|𝜆𝐵𝑡𝐵)  ×  p(𝜆𝐵) × p(𝜆𝑆)d𝜆𝐵d𝜆𝑆,

∞

0

∞

0

 

 

(1.18) 

and the normalized posterior distribution is 

 
p(𝜆𝐵, 𝜆𝑆|𝑁𝐵, 𝑁𝐺) =

 p(𝑁𝐺|((𝜆𝐵 + 𝜆𝑆)𝑡𝐵)  × p(𝑁𝐵|𝜆𝐵𝑡𝐵)  ×  p(𝜆𝐵) × p(𝜆𝑆)

p(𝑁𝐵𝑁𝐺)
. 

 

(1.19) 

 

Given the normalized posterior, it is now possible to compute the expectation value of any 

function of 𝜆𝐵 or 𝜆𝐺 . For example, the expectation value of the source count rate (i.e., the mean) 

is given by 

 
𝜆𝑆̅ = ∫ 𝜆𝑆∫  p(𝜆𝐵, 𝜆𝑆|𝑁𝐵, 𝑁𝐺)d𝜆𝐵d𝜆𝑆 

∞

0

∞

0

. 
(1.20) 
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Similarly, the variance of the sample count rate is 

 
Var(𝜆𝑆) =  ∫ (𝜆𝑆 − 𝜆𝑆̅)

2∫  p(𝜆𝐵, 𝜆𝑆|𝑁𝐵, 𝑁𝐺)d𝜆𝐵d𝜆𝑆 
∞

0

∞

0

. 

 

(1.21) 

The posterior can also be used to calculate credible intervals for the background and 

sample count rates. Note that, unlike classical confidence intervals, these cannot include negative 

values, as these are excluded by the prior. However, the prior also rules out the possibility that 

the sample contains no source at all (i.e., that the sample count rate is exactly zero). Therefore, 

the posterior can be interpreted as the probability distribution of the background and sample 

count rates given that the sample contains a source. 

It is immediately obvious that the most challenging aspect of calculating the posterior is 

evaluating the normalization constant. In this idealized example, which neglects uncertainty on, 

for example, detector calibration and energy response, it is possible to evaluate the integral using 

standard numerical integration techniques. However, these techniques are inadequate for more 

complex models, and must be replaced with Monte Carlo integration methods. These have the 

advantage of allowing the analysis of a model by simply writing it down (i.e., writing down the 

prior and likelihood functions) and entering the observed data, bypassing complex calculations 

altogether. However, Markov Chain Monte Carlo (MCMC) techniques can only produce 

estimates of the posterior, and care must be taken to ensure that these estimates have converged. 

A common, freely available software package for performing MCMC is called OpenBUGS 

(Lunn et al., 2000). Other than the observed data, MCMC software such as OpenBUGS only 

requires input of the “generative model” of the data.  

A generative model is a representation of the processes which are believed to have led to 

the observed data. For the above example, the mean count rates are random variables drawn from 
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gamma distributions, and the observed data are random variables drawn from Poisson 

distributions centered at those means. Therefore, the generative model for the data would read: 

  

Classic Two-Count Model: 

𝜆𝐵~ 𝑔𝑎𝑚𝑚𝑎(𝛼 = 0.5, 𝛽 = 0.01), #Mean background count rate 

𝜆𝑆~ 𝑔𝑎𝑚𝑚𝑎(𝛼 = 0.5, 𝛽 =  0.01), #Mean source count rate 
𝜆𝐺 = 𝜆𝐵 + 𝜆𝑆,   #Mean gross count rate 
𝑁𝐵~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝐵𝑡𝐵),   #Counts observed in background measurement 
𝑁𝐺~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝐺𝑡𝐺).   #Counts observed in sample measurement. 

 

Where the ‘~′symbol represents a stochastic relationship, while the ‘=’ symbol represents a 

deterministic relationship. This model indicates that 𝜆𝐵and 𝜆𝑆 are random variables drawn from 

gamma distributions. In contrast, the gross count rate, 𝜆𝐺 , can be precisely determined given the 

background and sample count rates. The observed values, 𝑁𝐵 and 𝑁𝐺  are also known to be 

random samples drawn from Poisson distributions. In addition to being necessary for 

OpenBUGS, generative models are powerful tools for understanding and communicating 

complex statistical models. A detailed example of how to analyze data using generative models 

and OpenBUGS is given in the Appendix. 

 

1.7 Bayesian Hypothesis Testing 

The above analysis provides a probability distribution for the sample and background 

count rates given that the sample contains a source. It can be shown that if a continuous, 

differentiable prior is used, analysis of the posterior distribution will always result in the 

probability of there being no source as strictly equal to zero. The traditional Bayesian approach 

to hypothesis testing is called Bayesian model comparison (Kruschke 2010). In this approach, 
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the hypotheses themselves are treated as parameters. In order to calculate the likelihood function 

of the observed data, the hypotheses must first be defined mathematically. In the case of source 

detection, the natural choice of hypotheses is, Hypothesis 1 = No Source, Hypothesis 2 = Source. 

These will be referred to as the No Source hypothesis and the Source hypothesis, respectively. 

These can be expressed mathematically as different prior probability distributions on the mean 

source count rate. If Hypothesis 1 is correct then there is no source and the mean count rate is 

zero. If Hypothesis 2 is correct then there is a source but (assuming we don’t know what we’re 

looking for) the mean source count rate could assume any value permitted by the prior.  

For a given hypothesis, Bayes’s Theorem (Eq. 1.1) states that, after an observation of 

𝑛 counts, the posterior probability of that hypothesis being correct is  

 
p(𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠|𝑛) =  

p(𝑛|𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠)p(𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠)

p(𝑛)
 . (1.22) 

 

Given an observation of 𝑛 counts, Eq. 1.22 establishes that the probability of a given 

hypothesis (e.g., source or no source) is equal to the probability that the hypothesis was correct 

before the observation, p(Hypothesis), multiplied by the likelihood of observing 𝑛 counts if that 

hypothesis was correct, p(𝑛|𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠), divided by the probability of observing n counts 

under any of the hypotheses, p(𝑛). If we are only interested in the relative probability of two 

hypotheses, the normalizing constant, p(𝑛), drops out, so that the Probability Ratio, PR, of the 

two hypotheses given the data is the product of the marginal likelihood ratio, or Bayes Factor 

(BF), with the prior odds ratio: 

 
𝑃𝑅 =

p(𝑆𝑜𝑢𝑟𝑐𝑒|𝑁𝐵, 𝑁𝐺)

p(𝑁𝑜 𝑆𝑜𝑢𝑟𝑐𝑒|𝑁𝐵, 𝑁𝐺)
=  

p(𝑁𝐵, 𝑁𝐺|𝑆𝑜𝑢𝑟𝑐𝑒)

p(𝑁𝐵, 𝑁𝐺|𝑁𝑜 𝑆𝑜𝑢𝑟𝑐𝑒)
×

𝑝𝑆𝑜𝑢𝑟𝑐𝑒
1 − 𝑝𝑆𝑜𝑢𝑟𝑐𝑒

. 

 

(1.23) 
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In this case, there are only two hypotheses, so the probability of the two hypotheses must add up 

to 1. It follows that 

 
p(𝑆𝑜𝑢𝑟𝑐𝑒|𝑁𝐵, 𝑁𝐺) =

𝑃𝑅

1 + 𝑃𝑅
   

p(𝑁𝑜 𝑆𝑜𝑢𝑟𝑐𝑒|𝑁𝐵, 𝑁𝐺) =
1

1 + 𝑃𝑅
. 

(1.24) 

 

Therefore, computing the probability ratio is equivalent to computing the posterior probabilities 

of the two hypotheses. The posterior odds of the two hypotheses is a direct function of the prior 

odds. This means that the prior will always have a strong impact on the posterior, regardless of 

the amount of data collected. It follows that there is no such thing as an “uninformative” prior on 

the likelihood of a given hypothesis. However, note that an order of magnitude difference in 

posterior probabilities obtained from different priors updated with a large amount of data, 

p(𝑆𝑜𝑢𝑟𝑐𝑒|𝑁𝐵, 𝑁𝐺) = 0.99 and p(𝑆𝑜𝑢𝑟𝑐𝑒|𝑁𝐵, 𝑁𝐺) = 0.999, may not be significant in terms of 

decision making. Regardless, the investigator must use professional judgment and past 

experience to determine realistic priors. For example in the case of internal dosimetry, where the 

hypotheses might be 𝐼𝑛𝑡𝑎𝑘𝑒 and 𝑁𝑜 𝐼𝑛𝑡𝑎𝑘𝑒, the investigator could use historical data about the 

fraction of incidents which have resulted in actual intakes of radionuclides.  

Bayesian hypothesis testing as formulated in Eq. 1.23 only provides a point estimate for 

PR. This is due to the fact that the prior odds ratio was assumed to be precisely known. In some 

cases it is reasonable to assume that the prior probability ratio,
𝑝𝑆𝑜𝑢𝑟𝑐𝑒

1− 𝑝𝑆𝑜𝑢𝑟𝑐𝑒
, is exactly known – for 

example, if the labels were misplaced on two samples, only one of which was known to contain a 

source. Note that choosing 𝑝𝑆𝑜𝑢𝑟𝑐𝑒 = 0.5 is equivalent to putting a uniform prior from 0 to 1 

on 𝑝𝑆𝑜𝑢𝑟𝑐𝑒, in which case, from Eq. 1.23, the Posterior probability ratio is equal to the Bayes 
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Factor. However, in many cases it may only be possible to estimate the probability ratio based on 

empirical observations or professional judgment, and in some cases the probability ratio may be 

completely unknown. In such cases, the prior uncertainty on the probability ratio can be 

expressed as a probability distribution, p(𝑃𝑅), in which case Bayes’s theorem gives: 

 
p(𝑃𝑅|𝑁𝐵, 𝑁𝐺) =

p(𝑁𝐵, 𝑁𝐺|𝑃𝑅) × p(𝑃𝑅)

p(𝑁𝐵, 𝑁𝐺)
, 

 

(1.25) 

 

where, from Eq 1.23, the likelihood function is 

 
p(𝑁𝐵, 𝑁𝐺|𝑃𝑅) =  

p(𝑁𝐵, 𝑁𝐺|𝑆𝑜𝑢𝑟𝑐𝑒)

p(𝑁𝐵, 𝑁𝐺|𝑁𝑜 𝑆𝑜𝑢𝑟𝑐𝑒)
×

p(𝑆𝑜𝑢𝑟𝑐𝑒|𝑃𝑅)

p(𝑁𝑜 𝑆𝑜𝑢𝑟𝑐𝑒|𝑃𝑅)
=

p(𝑁𝐵, 𝑁𝐺|𝑆𝑜𝑢𝑟𝑐𝑒)

p(𝑁𝐵, 𝑁𝐺|𝑁𝑜 𝑆𝑜𝑢𝑟𝑐𝑒)
 × 𝑃𝑅, 

 

(1.26) 

 

And, from the denominator of Eq. 1.2, the normalizing constant is calculated by integrating the 

numerator over the possible values of PR: 

 
p(𝑁𝐵, 𝑁𝐺) =  ∫

p(𝑁𝐵, 𝑁𝐺|𝑆𝑜𝑢𝑟𝑐𝑒)

p(𝑁𝐵, 𝑁𝐺|𝑁𝑜 𝑆𝑜𝑢𝑟𝑐𝑒)
 × 𝑃𝑅 × p(𝑃𝑅) d𝑃𝑅

1

0

, 

 

(1.27) 

 

Note that putting a uniform prior on 𝑝𝑆𝑜𝑢𝑟𝑐𝑒 is not equivalent to putting a uniform prior 

on the probability ratio.  

Both the 𝑆𝑜𝑢𝑟𝑐𝑒 and 𝑁𝑜 𝑆𝑜𝑢𝑟𝑐𝑒 hypotheses correspond to prior probability distributions 

for the sample count rate. Because 𝑁𝐵 does not depend on the hypotheses, the background 

measurement can be used to update the prior on 𝜆𝐵. From Eq. 1.7, the posterior distribution of 

𝜆𝐵 after the background measurement becomes      
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 p(𝜆𝐵|𝑁𝐵) =  gamma(0.5 + 𝑁𝐵, 0.01 + 𝑡𝐵). (1.28) 

 

The likelihood of the sample measurement under a given hypothesis (a.k.a. the marginal 

likelihood) is equal to the sum of the likelihood for a given value of 𝜆𝐺 , multiplied by the 

probability of 𝜆𝐺 under the given hypothesis. In the case of the No Source hypothesis, this is 

 

 

p(𝑁𝐵 , 𝑁𝐺|𝑁𝑜 𝑆𝑜𝑢𝑟𝑐𝑒) =  ∫ Poisson(𝑁𝐺|𝜆𝐵)p(𝜆𝐵|𝑁𝐵)d𝜆𝐵

∞

0

. (1.29) 

 

This is exactly the same as the denominator (normalizing constant) from Eq. 1.2, except that the 

prior of 𝜆𝐵 has been updated by the background measurement.  

The Source hypothesis corresponds to a prior probability distribution representing the 

investigator’s belief about the likely values of 𝜆𝑆 if the sample contains a source. The likelihood 

function is thus  

 p(𝑁𝐵, 𝑁𝐺|𝑆𝑜𝑢𝑟𝑐𝑒)

=  ∫ ∫ p(𝑁𝐺|𝜆𝐺 = 𝜆𝐵 + 𝜆𝑆) × p(𝜆𝑆) × p(𝜆𝐵|𝑁𝐵)d𝜆𝐵d𝜆𝑆

∞

0

∞

0

 . 
(1.30) 

 

Note the similarity between this and the normalizing coefficient given by Eq. 1.18. As in 

the count rate analysis, these equations result in a rather unwieldy formula for the posterior odds 

which needs to be evaluated numerically or using MCMC.  

An important characteristic of Bayesian hypothesis testing is that the Bayes Factor 

naturally favors the simpler hypothesis (Ntzoufras 2009), and is thus exquisitely sensitive to the 

priors used by the two models (e.g., p(𝜆𝑆)). In particular, BF is highly sensitive to the magnitude 

of the variance of the priors (Bartlett 1957). Assuming nothing is known about the count rate of 
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the source if it exists, the traditional choice would be to represent it with the Jeffreys prior, such 

that, 

 p(𝜆𝑆 = 0|𝑁𝑜 𝑆𝑜𝑢𝑟𝑐𝑒) =  1 , (1.31) 

                              p(𝜆𝑆|𝑆𝑜𝑢𝑟𝑐𝑒) =  gamma (𝛼 =
1

2
, 𝛽 = 0.01). 

 

However, as we saw earlier, this formulation of the Jeffreys prior corresponds to a 95% credible 

interval for the source count rate of (0.49, 2512), with a mean (expected) count rate of 50. This 

model is clearly unrealistic, and will therefore be prone to fail, even if there seems to be strong 

evidence in favor of a source. Because the Jeffreys prior implies taking the limit as 𝛽 → 0, and 

the variance of the gamma distribution is inversely proportional to the square of 𝛽, decreasing 

𝛽 by a factor of ten, such that p(𝜆𝑆|𝑆𝑜𝑢𝑟𝑐𝑒) = gamma (𝛼 =
1

2
, 𝛽 = 0.001), greatly increases 

the prior probability of very large source count rates, and thus greatly reduces the Probability 

Ratio in favor of the No Source hypothesis. Using a uniform prior p(𝜆𝑆|𝑆𝑜𝑢𝑟𝑐𝑒) is even worse, 

as it is equivalent to stating that there is a nearly equal probability of the source activity being 1 

Bq and 100 MBq. This illustrates that, rather than expressing the investigators’ lack of 

knowledge, uniform priors actually imply strong and irrational assumptions on the part of the 

investigator. It follows that models which utilize uninformative priors for the source count rate 

will be prone to fail in Bayesian hypothesis testing. Crucially, different “uninformative” priors 

on the source count rate will result in different posteriors, regardless of the magnitude of the 

observed data. Furthermore, models which utilize improper priors (i.e., priors which do not 

integrate to 1) such as the uniform prior and the Jeffreys prior will always fail, regardless of the 

observed data. As with the priors on the different hypotheses, priors on the sample count rate are 
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best obtained using professional judgment and historical data. These can be updated formally 

using Bayes’s theorem on the measurement of multiple different samples. 

The prohibition of improper priors may be considered a feature, as hypothesis testing 

prohibits unrealistic models, but it also raises the question of how to identify a prior which is 

realistic but at the same time adequately represents the uncertainty on the source count rate. 

Ideally, priors should be based on empirical data from past observations or prior knowledge (e.g., 

we know we are looking for a 10 cps source). If that is not possible, a simple option is to use the 

Posterior Bayes Factor (PBF), which compares the likelihood of the data given the posterior 

distributions,   

 
𝑃𝐵𝐹 =  

p(𝑁𝐵, 𝑁𝐺|𝑁𝐵, 𝑁𝐺 , 𝑆𝑜𝑢𝑟𝑐𝑒)

p(𝑁𝐵, 𝑁𝐺|𝑁𝐵, 𝑁𝐺 , 𝑁𝑜 𝑆𝑜𝑢𝑟𝑐𝑒)
 

 

(1.32) 

 

The PBF allows for the use of uninformative priors, but the practice of evaluating the probability 

of the data given the data is problematic and has been criticized as theoretically unsound 

(Ntzoufras 2009).  

A number of alternatives have been suggested to the PBF (e.g., O’Hagan 1995, Berger 

and Pericchi 1996). The most straightforward approach is to establish an informative prior on the 

source count rate by using a short independent measurement. In other words, take a short sample 

measurement, collecting 𝑁𝐺0 counts in time 𝑡𝐺0, and, using Eq. 1.19, calculate an intermediate 

posterior distribution of the sample count rate. This distribution can then be used as the prior for 

the posterior odds ratio. This measurement should be as short as possible relative to the main 

sample measurement so that the intermediate posterior will have minimal impact on the final 

posterior distribution.  
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If two sample measurements are taken, the ‘Intermediate’ Bayes Factor is given by 

 
𝐼𝐵𝐹 =  

p(𝑁𝐵, 𝑁𝐺1|𝑁𝐵, 𝑁𝐺0, 𝑆𝑜𝑢𝑟𝑐𝑒)

p(𝑁𝐵, 𝑁𝐺1|𝑁𝐵, 𝑁𝐺0, 𝑁𝑜 𝑆𝑜𝑢𝑟𝑐𝑒).
 (1.34) 

 

This technique may work particularly well if a “half-Cauchy” prior (that is, a Student’s t 

distribution with one degree of freedom truncated at zero) is put on 𝜆𝑆 before the initial sample 

measurement (Gelman 2006). However, a detailed examination of such techniques is beyond the 

scope of this research. There is no universally accepted method for selecting a prior in the 

absence of empirical data. When empirical data are not available, priors should be based on 

scientific judgment, excluding values which are ruled out by theory (such as negative count 

rates), and reflecting as accurately as possible the beliefs of the investigator. Uninformative 

priors are intended to have as little impact as possible on the posterior distribution, with the goal 

of obtaining an “objective” posterior. However, objective priors are often not believable or even 

reasonable models of the parameter space. The rejection of models utilizing uninformative priors 

is a reflection of this fact. 
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Chapter 2 

SEQUENTIALLY UPDATED BAYESIAN DETECTION SYSTEM UTILIZING 

ENERGY AND COUNT RATE DATA FOR THE DETECTION OF RADIOACTIVE 

SOURCES1 

 

 

2.1 Introduction 

In this chapter, we consider a particle counting and detection system which searches for 

elevated count rates in multiple energy regions simultaneously. The system analyzes time-

interval data (e.g., time between counts), as this was shown to be a more sensitive technique for 

detecting low count rate sources compared to analyzing counts per unit time (Luo et al. 2013). 

Two distinct versions of the detection system are developed. The first is intended for situations in 

which the sample is fixed and can be measured for an unlimited amount of time. The second 

version is intended to detect sources which are physically moving relative to the detector, such as 

a truck moving past a fixed roadside detector, or a waste storage facility under an airplane. In 

both cases, the detection system is expected to be active indefinitely – i.e., it is an on-line 

detection system. Both versions of the multi-energy detection system are compared to their 

respective gross count rate detection systems in terms of Type I and Type II error rates and 

sensitivity. 

By characterizing and accounting for variations in the background, general purpose 

radiation detectors can be improved with little or no increase in cost. The statistical and 

computational techniques to perform this kind of analysis have been developed. The necessary 

signal analysis can be accomplished using existing Bayesian algorithms which account for 

                                                 
1 This chapter is based on a manuscript which has been accepted for publication by the journal ‘Health Physics.’ 
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multiple channels, multiple detectors, and multiple time intervals. Furthermore, Bayesian 

machine-learning techniques have already been developed which, with trivial modifications, can 

generate appropriate decision thresholds based on the comparison of new measurements against 

a non-parametric sampling distribution.  

A detection system which is always on – e.g., an on-line detection system – and which 

has any chance of making a detection decision in a given time interval will always eventually 

produce an alarm, regardless of whether or not a source is present.  Therefore, false-positive and 

false-negative rates of on-line detectors can only be evaluated over fixed measurement intervals, 

and are not the most useful metrics for evaluating the system. An effective on-line radiation 

detection system should 1) quickly detect and identify changes in radiation levels with a small 

number of failed detections, and 2) be capable of running continuously with a very small number 

of false positive identifications. These qualities can be quantified using the average run length 

(ARL), which is defined as the average time interval between detection decisions at a given 

source count rate. The ARL can be determined empirically by activating the detector and 

measuring the time interval between detection decisions (with the detection system being reset 

after each detection decision). Therefore, the background ARL can be understood as the 

expected frequency of alarms for an online detector measuring background (e.g. false alarms). 

Similarly, the ARL in the presence of a source represents the expected amount of time it will 

take to detect the source. The fundamental challenge in the detection and identification of low 

count rate sources is the natural variation in count rates from both the background and the 

source.  

Because of the nature of radioactive decay, the number of counts in a given time interval 

from any fixed source of radiation will follow a Poisson distribution which, for high enough 
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counts, can be well approximated by a Normal distribution. Virtually all classical decision 

thresholds are based on the assumption that the number of counts from background is also 

sampled from a Normal distribution. However, it is well known that background varies with time 

of day, location, detector performance, meteorological conditions, and many other factors 

(Hemic 1988). Regardless, the natural variation of counts from the background and source 

results in some probability of error in any detection decision. In any detection system, there will 

be a trade-off between false positive and false negative rates. The appropriate balance between 

the two types of errors depends on the application and preferences of the user, whose decision is 

embodied in the decision threshold. 

In a classical radiation monitoring set-up, one assumes a known fixed background, 

decides on a decision threshold, and compares the results of a measurement to that decision 

threshold. If the observed counts in a given time interval is greater than the decision threshold, 

the observer concludes that a source has been detected. Traditionally, the false-positive rate is 

controlled to 5% by setting the decision threshold to mean background + 1.645σ. This set-up is 

easy to understand and implement, but has the disadvantage of unnecessarily discarding past 

measurement data. Similarly, on-line detectors often employ techniques, such as moving 

averages and recursive digital filters, which are designed to discard and de-emphasize old data 

(Fehlau 1993). For that reason, alternative techniques have been developed to more completely 

make use of the available data (Brandl 2013). Specifically, there has been increasing interest in 

Bayesian techniques, which allow for the formal incorporation of prior belief, data, and 

knowledge, and which produce probabilities for the underlying parameter (i.e., mean count rate). 

This is in contrast to classical techniques, which do not have the ability to incorporate prior data, 
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and which can only make statements about whether an observation was drawn from a particular 

distribution. 

The Health Physics literature has discussed Bayesian techniques for the analysis of low 

count rate radiation since 1982, when Bayesian analysis was applied in situations where classical 

analysis produced negative estimates of total activity (Little 1982). In these situations, a prior 

distribution was used with zero probability of negative values. This resulted in meaningful 

estimates of net count rates. This work was continued for applications in environmental 

monitoring and internal dosimetry (Miller et al 1993, 2001, 2002), and in 2003 it was suggested 

that ISO adopt new methods for the evaluation of uncertainty of measurements to provide 

consistency from a Bayesian viewpoint (Kaeker and Jones 2003; ISO 2000). Subsequently, 

Bayesian techniques were used to more accurately measure uncertainty in radiation 

measurements, and further revision of some parts of the ISO 11929 standard was suggested 

(Weise et al. 2006). Bayesian techniques have also been developed for reducing false-positive 

rates in evaluation of low count rate data (Strom et al. 2001). False positive and false negative 

rates have been favorably compared between classical control chart methods (the Shewart and 

cumulative sum charts (Berger 1986)) and a Bayesian Shiryaev-Roberts (Shiryaev 1961; Roberts 

1966) control chart, and the Bayesian method was shown to be the best way to control false 

positives compared to both control charts (DeVol et al. 2009). Recently, techniques have been 

developed for the Bayesian analysis of time-interval data (Luo et al. 2013). These techniques 

provide meaningful, non-negative estimates of net radioactivity, and compare favorably to 

classical methods in terms of sensitivity and false positive rate. The techniques explored in this 

chapter are largely an extension of those developed by Luo et al. 
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Radiation data are delivered one count at a time by the detector. Most detection systems 

record the number of counts detected in a given time interval. This method is technically easier 

to handle, and the variation in counts per time interval is typically well characterized by a 

Poisson distribution. An alternative strategy for recording count data is to deal with the time-

intervals between individual counts. Several authors have discussed this technique (e.g., Dowdy 

et al. 1978; Arandjelovic et al 2002), which was shown to be superior in cases where source 

information is limited (Luo et al. 2013). The reason for this is that a statistically significant 

number of pulses may often be gathered in a time shorter than any arbitrarily chosen fixed count 

time.  

An important challenge in the use of Bayesian analysis of radiation count data is the 

incorporation of energy information. The detection system developed by Luo et al. considers the 

gross count rate. However, background radiation is derived largely from known sources, and thus 

has a specific energy distribution, or “fingerprint.” Therefore, there clearly is much to be gained 

by characterizing the count rate distribution independently in multiple energy regions. A high 

observed count rate in an energy region in which background is low would represent strong 

evidence of a source. Conversely, a high count rate in an energy region typically inhabited by 

background is much weaker evidence. This suggests that a detection system which analyzes 

energy data will reduce false negatives and false positives.  

 

2.3 Materials and Methods 

2.3.1 Theoretical Considerations 

The proposed on-line detection system begins with a prior probability distribution for the 

sample count rate centered at the mean background count rate, which is known with minimal 
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uncertainty. The prior is then updated sequentially as new information is available, and makes a 

detection decision (i.e., an alarm) if the posterior probability that the sample count rate is less 

than background drops below some pre-determined threshold. It is therefore important to select a 

prior which assigns some non-zero probability to all possible values of 𝜆𝑆, but which will also 

quickly take on the characteristics of the observed data. Without loss of generality, suppose the 

mean background count rate is equal to 2 counts per time interval. In that case, an initial prior of 

gamma(2,1), which is equivalent to 2 counts observed in one time interval, is a reasonable 

approximation for background, and can be considered to be a ‘low information’ prior which 

allows the observed data to dominate the posterior distribution (Luo et al 2013). 

After each observation, the probability that the true count rate, 𝜆𝑆, is above a given 

background count rate, 𝜆𝐵, is inferred from the posterior distribution. This allows the investigator 

to set a decision threshold. If the probability of 𝜆𝑆 > 𝜆𝐵 is higher than the decision threshold, a 

detection decision is made. The detector will continue to collect new observations until a 

detection decision is made or the user ends the measurement. For the purposes of detecting 

transient sources, it is important that the prior never obtain so much information as to drown out 

new signal. This can be solved via the adoption of a ‘moving prior’ technique in which a 

maximum amount of observation time is permitted to be used in the posterior distribution. As 

new data are gathered, the oldest observations are discarded so that the total observation time 

incorporated in the posterior is constant.  Unlike previously suggested moving prior techniques 

(Luo et al 2013), which limit the number of observations included in the posterior, this technique 

guarantees that the posterior will only incorporate data collected during a fixed time interval. 

Detection systems which refresh their priors in this way will be referred to as a “moving prior 

detection systems,” while detection systems which incorporate all of the gathered data will be 
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referred to as “fixed source detection systems.” The sequential update technique can be 

understood as an adaptation of the Kalman Filter for change-point analysis of count rate data 

(Kalman 1960, Welch and Bishop 1995, Taylor 2000). 

In extrapolating this technique to multiple energy regions, separate background count 

rates and prior count rate distributions are assigned to each region.  A simple “proof of concept” 

algorithm is defined for a gamma ray detection system operating in a 2 cps background. The 

algorithm considers two energy regions: 0 – 511 keV (Low), and 511+ keV (High). Given that 

most background counts will fall into the low energy region, initial backgrounds of 𝜆𝑆𝐿𝑜𝑤 = 1.5 

counts/interval and 𝜆𝐵𝐻𝑖𝑔ℎ = 0.5 counts/interval are assigned. Accordingly, the initial priors are 

assigned  

 p(𝜆𝑆𝐿𝑜𝑤) = gamma(1.5, 0.5) 

p(𝜆𝑆𝐻𝑖𝑔ℎ) = gamma(0.5, 0.5). 

(2.1) 

 

These priors are then updated independently with new data. A detection decision is made if the 

probability of 𝜆𝑆 > 𝜆𝐵 is higher than the decision threshold in either energy region. The choice 

of energy regions will naturally depend on the type of radiation being measured. We have chosen 

energy regions which correspond to a gamma-ray detector, but in principal this technique could 

be applied equally well to alpha, beta, or even neutron detectors. 

Finally, the algorithm is extended to consider eleven separate energy regions. For 

simulated data, the relative activities in each region are adjusted to correspond to published 

average background fluence rates (Hemic 1988). For real-world data, fluence rates can be 
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estimated using observed background count rates. In this case, it is important to remember that 

such measurements are specific to the location and detector.  

In order to maintain a constant false positive rate in a fixed source detection system, the 

decision threshold in each energy bin must be scaled by the total number of bins. Applying the 

Dunn-Sidak correction (Sidak 1967), a detector with n bins must have the following decision 

threshold in each bin in order to maintain a constant false positive rate: 

 (1 − 𝛼𝑏𝑖𝑛) = (1 − 𝛼𝑡𝑜𝑡)
1
𝑛⁄  . (2.2) 

 

Therefore, a classical two-energy detector where the decision threshold in each bin is 

97.5% is guaranteed to have a total false-positive rate less than or equal to a gross count rate 

detector with a decision threshold of 95% (Sidak 1967). However, the false-positive rate in a 

Bayesian detector is dependent on the average count rate in each energy bin, as well as the 

choice of prior. In a moving-prior detector, the false positive rate is also a function of how much 

information is stored in the prior at a given time (i.e., the moving prior limit), and how long the 

detector is run. Because moving prior detection systems are designed to ‘reset’ themselves after a 

certain amount of time, an indefinite run time is equivalent to performing an infinite number of 

independent measurements. Therefore, there is some probability of a false detection during each 

time interval, and the false positive rate of any moving prior will increase with run time. The 

exact relationship between decision thresholds and false positives has yet to be thoroughly 

examined, and in practice decision thresholds are chosen empirically to provide the desired false-

positive rates. 
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 2.3.2 Instrumentation 

  All statistical algorithms and simulations were developed using the Python programming 

language (Van Rossum and Drake 2001), with heavy reliance upon the scientific plug-in SciPy 

(Jones et al. 2001). Three distinct gamma-ray detector models were tested. The first was a replica 

of the Luo gross count rate detector (Luo et al. 2013). The second and third were the two-energy 

and eleven-energy detectors described above. Because the huge quantity of radiation data 

required to comprehensively test these would be prohibitive in terms of acquisition time and 

computer memory, the algorithms were initially tested using computer generated data. A Monte 

Carlo method was used to simulate background radiation, as well as the radioactive decay of 

60Co. In order to facilitate study of the relationship between decision thresholds in each bin with 

average run length, these simulations use an idealized detector with complete energy absorption 

and perfect resolution. This causes all of the decays from 60Co fall into the 511+ keV bin for the 

two-energy detector, and the 1 MeV bin for the eleven-energy detector. However, it is worth 

noting that, due to incomplete energy absorption, 60Co would cause an increased count rate in 

lower energy bins in a real-world detector. 

The distribution of the background data and the performance of the algorithms were 

validated using measurement data from a NaI scintillation detector. The detector was attached to 

a Canberra LYNXTM amplifier/multi-channel analyzer, which was controlled using the 

ProSPECT workstation environment. The background was measured at 1 ms precision for 

approximately 3600 ms, with an average count rate of 0.4 counts ms-1 (420 cps). These data 

confirmed both the assumed energy distribution of the background, as well as the predicted 

performance of the detectors in the absence of any source. 
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The experimental and simulated data were analyzed using the Luo time-interval method 

(Luo et al. 2013) and its corresponding energy-region analysis method. The performance of fixed 

source detection systems was evaluated using average run length (ARL). A long ARL when 

measuring background is indicative of a low false positive rate, while a short ARL when 

measuring a source indicates a low false negative rate. In contrast, moving prior detection 

systems were evaluated in terms of detection probability (which represents sensitivity when 

measuring a source and false positive rate when measuring background) during fixed interval 

measurements. Detection probability and false-positive rates were also tested as a function of 

moving prior length (i.e., how much data was collected in the moving prior).  

 

2.4 Results and Discussion 

Gross count rate detectors were compared to two-energy and eleven-energy detectors in 

fixed source and moving-prior modes using simulated and laboratory data. Simulated data were 

used to validate previous findings about the performance of gross count rate detectors by 

replicating the exact conditions reported in those studies (Luo et al. 2013), as well as to 

investigate the performance of multiple-energy detectors under a broad range of carefully 

controlled conditions. Experimental data were used to confirm predictions about detector 

performance derived from the simulated data. 

 

2.4.1 Fixed source detection systems: 

Average run lengths (ARLs) of fixed source detection systems were calculated as a 

function of source count rate using simulated and experimental data. The detectors performed 
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similarly on simulated and laboratory data. The decision threshold for the gross count rate 

detector was set at 95%, meaning that a detection decision was made when the true mean count 

rate from the posterior distribution had a 5% or less probability of being less than or equal to the 

mean observed background count rate. The decision threshold in each bin of the multi-energy 

detectors was set according to the Sidak correction. Therefore, the two-energy detector decision 

threshold was 97.5%, and the eleven-energy detector decision threshold was 99.5% in each bin. 

The mean count rate in each energy region was given a prior of gamma(𝜆𝐵𝑒,1), where 𝜆𝐵𝑒 is the 

observed background count rate in that energy region. 

Fig. 2.1 shows plots of gross count rate vs. ARL for the three detectors on simulated data.  

 

Figure 2.1: Average run lengths of fixed source detection systems on simulated data plotted as a 

function of gross count rate (background = 2 cps). The detectors performed similarly on 

simulated and laboratory data. 
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When the mean gross count rate approaches background (2 cps), the ARLs of all three 

detectors approach infinity. This is due to the fact that as the posterior collects more data, it 

becomes less sensitive to random fluctuations in the observed counts, and the probability of a 

detection decision in any given time interval rapidly approaches zero as the duration of the 

measurement increases. When the mean count rate is exactly equal to background, the 

probability of a detection decision (i.e., a false positive) approaches zero so rapidly that there are 

instances where a detection decision is never made. This results in an infinite ARL regardless of 

the fraction of runs which actually result in false positives (if one run is infinitely long, the ARL 

will be infinite, regardless of the outcome of the other runs). Therefore, the ARL is not a useful 

statistic for evaluating the false-positive rate of fixed source detection systems. This is also 

indicative of the reason that fixed source detection systems are not adequate for applications in 

which the gross count rate is likely to change. When the gross count rate increases, the ARLs of 

all three detectors drop very rapidly. As expected, the ARLs of the energy-spectrum detectors 

drop more quickly and are shorter for all source count rates compared to the gross count rate 

detector, with the two-energy detector performing somewhat better than the eleven-energy 

detector. This suggests that the Sidak correction may be too conservative for the Bayesian multi-

energy detectors. At 3 cps, which corresponds to a source count rate of 1 cps, the ARL of the 

two-energy detector is almost 50% less than that of the gross count rate detector, which confirms 

the first research hypothesis regarding the multi-energy detector method. The shorter ARL’s of 

the multi-energy detectors indicate that they would, in a fixed time interval, be able to reliably 

detect lower count rate sources than the gross count rate detector.  
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2.4.2 Moving prior detection systems: 

The detection probabilities of moving prior detection systems on transient radioactive 

sources were calculated using experimental data. To simulate a transient source, each detector 

was repeatedly exposed to 5 s of background data, followed by 5 s of source data, followed by 5 

additional seconds of background data, with the source strength varied from 0 to 4 cps, and 

background fixed at 2 cps. When the source count rate is 0, the detection probability is 

equivalent to the false-positive rate. For all detectors, the moving prior limit was set to 5 s.  

Although there is no universally acceptable failed-detection and false-positive rate, the 

relative performance of different detectors can be evaluated by controlling the detectors to 

produce equal detection probabilities at a given count rate and comparing the detection 

probabilities at a different count rate. For example, a common metric for comparing detectors is 

the lower limit of detection (LLD), defined as the weakest source strength which will be detected 

95% of the time when the false-positive rate is controlled to 5%.  

The LLD of each detector was determined by controlling the false positive rate to 5%, 

and reading off the source strengths at which the detection probability for each detector was 

95%. This is illustrated in Fig. 2.2, which plots the average detection probability of each detector 

as a function of gross count rate (background + source) when the false-positive rate is limited to 

5%. By this metric, the LLD of the multi-energy detectors is approximately 1.5 cps. In contrast, 

the gross count rate detector only detected approximately 60% of the 1.5 cps sources, and did not 

obtain a 5% failed-detection (e.g., non-detection) rate until the source strength reached 3 cps. In 

this scenario, the eleven-energy detector has the highest detection probability at all source count 

rates, closely followed by the two-energy detector, with both significantly out-performing the 

gross count rate detector. The relatively small performance gain in the eleven-energy detector 
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may be due to the unequal detection probability in each energy bin owing to the different flux 

rates in each region. 

 

 

Figure 2.2: Detection probabilities for the three moving prior detection systems as a function of 

gross count rate with decision thresholds chosen to control the false positive rate to 5%. The 

background count rate was 2 cps. 

 

Conversely, when the failed-detection (e.g., non-detection) rate for 1.5 cps sources is 

controlled to 5%, the eleven-energy detector has the lowest false-positive rate, with both multi-

energy detectors again significantly out-performing the gross count rate detector. In this case, the 

false positive rates of the multi-energy detectors are relatively unchanged at approximately 5%, 

while the false-positive rate of the gross count rate detector dropped to approximately 45%. This 

is illustrated in Fig. 2.3. As predicted, the multiple-energy detectors significantly out-perform the 

single-energy detectors in terms of false positives and failed detections.  
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Figure 2.3: Detection probabilities for the three moving prior detection systems as a function of 

gross count rate with decision thresholds chosen to control the failed detection rate of 1.5 cps 

sources to 5%. The background count rate was 2 cps. 

 

2.5 Conclusion 

Time-interval analysis for particle detectors compares favorably in terms of sensitivity and false 

positive rate when compared to classical methods. Incorporation of energy data decreases the 

ARL of fixed source detection systems, effectively allowing them to detect much weaker sources 

in a given time interval than gross count rate detectors. Incorporation of energy data also 

significantly improves performance when monitoring for transient sources. The lower limits of 

detection (LLDs) of the multi-energy detectors were approximately half that of the gross count 

rate detector. Similarly, when the sensitivity of the gross count rate detector is adjusted to equal 

those of the multi-energy detectors at their LLDs, its false-positive rate jumps to 60%. 
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Utilization of multi-energy moving prior detection systems for the detection of transient 

radioactive sources is the subject of ongoing research. Optimal settings for relative bin size, prior 

parameters, and moving prior limits have yet to be determined. As yet there is also no theoretical 

model to predict false-positive rates at different decision thresholds for the multi-energy moving 

prior detection system. Finally, the performance of the multi-energy detection systems has yet to 

be evaluated on sources with different (or multiple) energies. Although it seems reasonable to 

assume that the eleven-energy detector will have a more constant performance across different 

source energies, this has yet to be confirmed experimentally. 

By assuming that the background count rate comes from a Poisson distribution with a 

perfectly-known mean, the multi-energy detection systems described above are able to make 

detection decisions in real time. However, it is often the case that the background count rate 

varies with time, and therefore could benefit from a more detailed analysis. The next chapter 

considers a method for analyzing the background count rate under a more sophisticated model. 

Although the analysis is likely too complex to be carried out in real time, we show that it can 

significantly improve control over the false-positive and false-negative error rates. 
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Chapter 3  

CHARACTERIZATION OF BACKGROUND RADIATION WITHOUT THE 

ASSUMPTION OF IDENTICALLY DISTRIBUTED COUNT RATE MEASUREMENTS2 

 

 

 

3.1 Introduction 

In the previous chapter, we considered a case in which the mean background count rate 

was assumed to be fixed and perfectly well known – or at least known with minimal uncertainty 

relative to the uncertainty on the sample count rate. This chapter considers the opposite extreme 

– a situation in which the mean of the radiation background count rate (i.e., the Poisson mean) is 

a function of time rather than being fixed. In this “moving target” model, the Poisson mean for 

the background is assumed to change at specified time intervals. As we shall see, it is convenient 

to assume that each new Poisson mean is drawn from a gamma distribution with parameters 𝛼 

and 𝛽.  Given a dataset consisting of replicate background count measurements, we determine 

the values of 𝛼 and 𝛽 using maximum likelihood and Bayesian probabilistic analyses using 

Markov Chain Monte Carlo (MCMC). The 𝛼 and 𝛽 so determined replace the usual fixed-λ 

determination of background. In the Bayesian analysis, the parameters are assumed to have log-

uniform priors, and the parameter space is explored using Markov Chain Monte Carlo. The 

probabilistic analysis results in probability distributions for the parameters, which are 

approximately centered at the maximum likelihood (M.L.) values. We confirm the efficacy of 

these techniques using Monte Carlo generated data, and apply them to data sets generated during 

bioassay monitoring of radiation workers. 

                                                 
2 This chapter is based on a manuscript which has been accepted for publication by the journal, ‘Radiation 

Protection Dosimetry.’ 
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The ability to accurately characterize background radiation is of interest to a wide range 

of fields, including health physics, radiation detection, medical and industrial radiology, and 

astrophysics. Specifically, it is essential in applications such as determining decision thresholds 

in radiation monitoring, determining source count rates, and verifying the performance of 

detectors. Left unaccounted for, a varying background can lead to higher than expected false 

positive rates in measurements to determine whether a source is present, inaccurate confidence 

intervals on source count rates, and inaccurate performance estimates of detectors. Nonetheless, 

virtually all widely used statistical models - classical and Bayesian - operate on the assumption 

that the background count rate is also sampled from a Gaussian distribution (compare ISO 2000). 

While both models acknowledge uncertainty as to the true mean background count rate, both 

also assume that some fixed true mean count rate does exist, and that uncertainty on that count 

rate can therefore be reduced indefinitely by repeated observations. As a result, it is common 

practice to attempt to obtain very accurate estimates of true mean count rates by conducting long 

background measurements (NCRP 1985; Turner 2007).  

The classical model compiles background data into “sufficient statistics” (e.g., total 

number of counts, 𝑁𝑏, and total measurement time, 𝑡𝑏), and in the process discards a great deal of 

the available information. In particular, the complete measurement data contain information 

about the time dependence of background which is lost when it is compiled into sufficient 

statistics. This simplification was necessary when routine statistical calculations were performed 

by hand, but as computational power has increased, there has been a corresponding increase of 

interest in developing models which can make use of the great wealth of information obtained in 

long background measurements (Brandl 2013). We explore two techniques which take advantage 
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of long background measurements to make inference on the variability of background and 

discuss the relative merits of each. 

 

3.3 Materials and Methods 

3.3.1 Background 

 As in the traditional model, we assume that the number of counts observed in a given 

time interval is a random variable drawn from a probability distribution, which we will call the 

sampling distribution. Furthermore, we assume that the count rate is approximately constant 

during any sufficiently small time interval, ∆𝑡. The number of counts observed during ∆𝑡 is then 

drawn from a Poisson sampling distribution centered at the true mean count rate during that time 

interval, 𝜆∆𝑡 (hereafter termed the Poisson mean): 

 
P(𝑛; 𝜆∆𝑡∆𝑡) =

(𝜆∆𝑡∆𝑡)
𝑛

𝑛!
e−𝜆∆𝑡∆𝑡. (3.1) 

 

However, as the Poisson mean is generally not constant, it is more appropriate to treat it as a 

random variable sampled from a probability distribution. We will use a gamma distribution with 

parameters 𝛼 and 𝛽 (alternatively, the dimensionless 𝛽′ = 𝛽 𝑡⁄ , where 𝑡 is the counting period, 

can be used). The mean of the gamma distribution is given by 𝛼 𝛽⁄ , and variance by 𝛼 𝛽2⁄ . 

Therefore, the absolute width (e.g. variance) is small when 𝛼 is small compared with β2 (the 

variance is equal to 𝛼 𝛽2⁄ ). The relative variation of the mean count rate can be represented by 

standard deviation divided by the mean, which evaluates to 𝛼−1 2⁄ . Therefore, the relative width 

is small when 𝛼 is large, and is not a function of 𝛽.  
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Recall from Chapter 1 that the probability of observing a particular number of counts, 𝑛, 

following a Poisson distribution whose mean is drawn from a gamma distribution with 

parameters 𝛼 and 𝛽′ can be determined by integrating the probability of observing 𝑛 counts for a 

given count rate 𝜆, Poisson(𝑛|𝜆), over the normalized probability distribution of the count rate, 

gamma(𝜆|𝛼, 𝛽′): 

 

p(𝑛|𝛼, 𝛽) = ∫ Poisson(𝑛|𝜆) ∗ gamma(𝜆|𝛼, 𝛽′)d𝜆

∞

λ=0

= ∫
(𝜆𝑡)𝑛

𝑛!
e−𝜆𝑡 ∗

𝛽′𝛼

Γ(𝛼)
𝜆𝛼−1e−𝛽

′𝜆d𝜆  

(3.2) 

 

This integral evaluates to a normalized parametric probability distribution which, through 

a simple re-parameterization, takes the form of a negative binomial distribution (Ntzoufras 

2009): 

 
P(𝑛|𝛼, 𝛽) = N. B. (𝑟 = 𝛼, 𝑝 =  

1

1 + 𝛽′
)

= (
𝑛 + 𝛼 − 1

𝑛
)(

𝛽′

𝛽′ + 1
)

𝛼

(
1

𝛽′ + 1
)
𝑛

 

(3.3) 

 

Therefore, we propose that the observed number of counts from a changing background 

cannot be modeled as a Poisson process, and suggest instead using a negative binomial 

likelihood function to model background data. The mean of the negative binomial distribution is 

given by 𝑝𝑟 (1 − 𝑝) =  𝛼 𝛽⁄⁄ , which is the same result one would obtain using the stationary 

target (Poisson) model. In contrast, the variance of the negative binomial distribution is given by: 
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 𝑝𝑟

(1 − 𝑝)2
= 
𝛼

𝛽
+ 

𝛼

𝛽2
=
𝛼

𝛽2
(1 + β) (3.4) 

 

The variance of the moving target sampling distribution is therefore equal to the sum of the 

variance of the stationary target sampling distribution, 𝛼 𝛽⁄ , and the variance of the gamma 

distribution from which the Poisson mean is sampled, 𝛼 𝛽2⁄ . Equivalently, the standard deviation 

of the negative binomial distribution increases linearly with the standard deviation of the mean 

count rate. 

 From Eq. 3.4, we see that the standard deviation of the negative binomial distribution is 

proportional to the standard deviation of the mean count rate, √𝛼/𝛽.  It follows that, because 

classical decision thresholds for a given sampling distribution are proportional to the standard 

deviation, classical decision thresholds will also be proportional to the standard deviation of the 

mean count rate. Similarly, in the presence of a perfectly known background a Bayesian decision 

threshold might be set when 95% of the posterior lies above the background count rate, which is 

described by a gamma distribution. In that case, the decision threshold would again be 

proportional to the standard deviation of the gamma distribution is √𝛼/𝛽. This confirms the 

second research hypothesis regarding the moving target model. 

Given this sampling distribution, a given data set can be analyzed to determine estimates 

of the parameters 𝛼 and 𝛽. We employ classical and Bayesian approaches to produce maximum 

likelihood estimates and probability distributions, respectively, for these parameters.  
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3.3.2 Maximum Likelihood Estimation 

The maximum likelihood (M.L.) method attempts to find the parameters 𝛼 and 𝛽′ which 

maximize the combined likelihood of a set of observations, which is given by the product of the 

probability of each observation. 

 

p(𝐷𝑎𝑡𝑎) =∏p(𝑥𝑖|𝛼, 𝛽′)

𝑁

𝑖=1

 (3.5) 

 

In this case, 𝑥𝑖 can represent the number of counts observed in the 𝑖th observation, or the time 

interval between counts i-1 and i. Maximizing the likelihood is equivalent to minimizing the 

negative logarithm of this function. We therefore define an error function, to be minimized, for 

which each data point is defined as: 

 𝜒𝑖
2 ≡ −2 ln(p(𝑥𝑖|𝛼, 𝛽

′)). (3.6) 

 

For purposes of interpretation, it is useful to scale the likelihood in the error function by the 

maximum value of the stationary target likelihood of 𝑥𝑖, such that 

 
p(𝑥𝑖|𝛼, 𝛽) →  

p(𝑥𝑖|𝛼, 𝛽)

max
𝜆
p(𝑥𝑖|𝜆).

 (3.7) 

 

Under this transformation, the average optimum value of 〈𝜒2〉 𝑁⁄  for a large number of 

repetitions is somewhat greater than, but approximately equal to, 1. Therefore, 𝜒2becomes a 

useful metric for interpreting how well the model fits the observed data.   
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When the data are expressed as a sequence of counts, i.e., 𝐷𝑎𝑡𝑎 =  [𝑛1, 𝑛2, … , 𝑛𝑁], 

𝜒𝑖
2evaluates to:  

 

𝜒𝑖
2 = −2 ln(

N. B. (𝑛𝑖|𝛼,
1

1 + 𝛽′
)

Poisson(𝑛𝑖|𝜆 = 𝑛𝑖)
)

=  −2ln(
(𝑛𝑖+𝛼−1

𝑛𝑖
) (

𝛽′

𝛽′ + 1
)
𝛼

(
1

𝛽′ + 1
)
𝑛𝑖

𝑛𝑖𝑛𝑖e−𝑛𝑖
𝑛𝑖!

). 

(3.8) 

 

In this case, an analytic solution to the optimization problem can be found by taking the 

partial derivative with respect to 𝛽′: 

 

0 =
∂

∂𝛽′
∑ ln(p(𝑛𝑖|𝛼, 𝛽′)) =  ∑

1

𝛽′ + 1

𝑁

𝑖=1

(
𝛼

𝛽′
− 𝑛𝑖)

N

i=1

. (3.9) 

 

This implies that 𝛽′ = 𝛼 𝑁̅⁄  at the minimum, where 𝑁̅ =  (∑ 𝑛𝑖𝑖 )/𝑁. Given that the mean of the 

Gamma distribution is given by 𝛼 𝛽⁄ , this leads to the intuitive result that the mean of the M.L. 

distribution of the true mean count rate will be equal to the observed mean count rate. 

Incorporating these results, the error function becomes: 

 
𝜒𝑖
2 = −2ln [(

𝛼

𝛼 + 𝑁̅
)
𝛼

(
e𝑁̅

𝑛𝑖(𝛼 + 𝑁̅)
)

𝑛𝑖 (𝑛𝑖 + 𝛼 − 1)!

(𝛼 − 1)!
] (3.10) 
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For a single data point, the minimum value of 𝜒2is zero, which occurs for 𝛼 → ∞. For multiple 

observations that are not identical, the minimum of the 𝜒2function occurs for some finite value 

of 𝛼, which can be easily determined by a variety of straightforward numerical optimization 

algorithms. 

 

3.3.3 Bayesian Probabilistic Analysis 

 In the probabilistic approach, prior probability distributions need to be assumed for the 

parameters 𝛼 and 𝛽′. Although 𝛼 and 𝛽′ are needed for the sampling distribution, the two 

parameters are highly correlated, with the most likely values being those whose ratio is equal to 

the observed mean count rate. For that reason, the analysis is done using parameters µ = α/β’ and 

relative precision 𝛼. Both parameters are assigned broad log-uniform priors. The parameter space 

is then explored using Markov Chain Monte Carlo. This was accomplished using General 

Markov Chain Monte Carlo (GMCMC) routines, which sample the joint posterior distribution 

via either the Metropolis-Rosenbluth-Teller algorithm, the Barker algorithm, or the Multiple 

Candidate algorithm (depending on user preference) (Miller 2013). By calculating the probability 

of observing the data under varying values of 𝛼 and 𝛽′, the GMCMC routines produces empirical 

probability distributions for the parameters. The modes of these distributions are almost identical 

to the M.L. estimates, indicating that the chosen priors are not significantly influencing the 

outcome. However, in contrast to the maximum-likelihood approach, the probabilistic analysis 

also produces reliable estimates for the uncertainty on the distribution parameters.  
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3.3.4 Experimental Analysis 

Both methods were applied to a collection of bioassay data, which, like all radiation 

measurements on living organisms, exhibit significant time dependence. We examined 252 

replicate 234U-in-urine “method blank” background measurements taken over a two-year period. 

These are measurements of samples known to not contain 234U, carried through the entire 

chemical processing and alpha-spectrometry counting procedure, using the exact analysis 

procedures routinely employed for actual samples. The counting period was 42 hours for one 

measurement. The total number of detected counts for all 252 replicate measurements was about 

2200 (only about 0.2 counts per hour).  

As a check, both methods were also tested on Monte Carlo simulated data. For each 

simulated data set, the Poisson mean was drawn from a Gamma distribution with known 

parameter values. In this case, because the true result was known, we could look at the 

agreement between calculated and true values. To evaluate the efficacy of the algorithms in 

general, they were tested on a variety of different sized simulated data sets, which were 

generated using mean count rates drawn from a wide range of parameter values.  

 

3.4 Results 

3.4.1   234U Bioassay Data Set 

 The M.L. estimates of the background variation parameters for the 234U bioassay data are 

𝛼 = 8.7 and 𝛽′ = 1.0, which implies that the Poisson mean λ∆tis drawn from 

 𝜆∆t ~ Gamma(𝛼 = 8.7, 𝛽 = 1.0) (3.11) 
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The sampling distribution for the expected counts is given by 

 p(𝑛|𝛼, 𝛽′) = N. B. (𝛼 = 8.7, 𝛽 =  1) (3.12) 

 

The mean and standard deviation of the sampling distribution are given by 

 Mean[N. B. (𝛼, 𝛽′)] =  
𝛼

𝛽′
= 8.7 

S. D. [N. B. (𝛼, 𝛽′)] =  
𝛼

𝛽′
+
𝛼

𝛽′2
 = 4.17 

(3.13) 

 

These parameters are the M.L. estimates of the predicted observed counts and expected standard 

deviation of multiple count measurements. This sampling distribution is analogous to the Poisson 

distribution which would be computed using the traditional fixed target model. Under this model, 

the expected standard deviation of multiple count measurements is equal to the square root of the 

mean counts, 2.95.  Both distributions have the same mean counts but, as expected, the moving 

target model predicts greater variation in the observed counts. Both sampling distributions are 

plotted in Figure 3.1. 

If these distributions were used in a classical null-hypothesis test, the 95% decision 

threshold for the stationary target model would be 14 counts. In other words, one would expect 

more than 14 counts to be observed in less than 5% of background measurements. In contrast, 

the 95% decision threshold corresponding to the moving target model is 16 counts. 
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Figure 3.1: The cumulative distribution functions of the observed counts under the stationary 

target and moving target models.  

  

The classical 95% decision threshold is therefore 14% higher under the moving target model (16) 

than it would be if the background were assumed to be stationary (14). This confirms the first 

research hypothesis regarding the moving target model. 

 The probabilistic analysis provides probability distributions rather than point estimates 

for the parameters. Probability distributions from analysis of the 234U data are shown in Figures 

3.2a and 3.2b. These are clearly well-aligned with the M.L. point estimates. The probabilistic 

analysis also generates its own non-parametric estimate of the sampling distribution. The 

cumulative distribution function of the Poisson mean 𝜆∆𝑡 is plotted in Figure 3.3 (from two 

Monte Carlo runs with different initial values), along with cumulative distributions from the 

M.L. estimate and fixed target estimate for comparison. The probabilistic sampling distribution 

is very similar to the M.L. sampling distribution when applied to large data sets.  
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               (a)            (b)  

Figure 3.2: Probability distributions of the parameters of the Poisson mean. These figures 

illustrate the uncertainty on the values of the parameters of the gamma distribution from which 

the Poisson mean is drawn. 

 

  

 

 

Figure 3.3: The posterior cumulative distribution function of the true background count rate, 

calculated using the probabilistic method, the maximum likelihood method, and the fixed target 

method. 
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3.4.2   Simulated Data Sets 

When applied to large datasets, Bayesian analysis produces narrow parameter 

distributions which are well represented by the M.L. point estimates. In this case, both methods 

accurately estimate the true parameter values of the simulated data sets. As the size of the data 

set decreases, the uncertainty on the parameters increases, and the maximum likelihood point 

estimates become extremely noisy, and the uncertainties on the parameter values become 

essential to accurately interpreting the data. As a general rule, analysis of measurements on the 

order of one thousand independent observations or less tend to result in significant uncertainty on 

the relative width of the Poisson mean, 𝛼−1 2⁄ . For that reason, it is essential that only 

probabilistic analysis be used to analyze small datasets.  

When 𝜆∆𝑡 is drawn from an extremely narrow probability distribution (α greater than 

100), the sampling distribution effectively reduces to a Poisson distribution. In this case, the 

likelihood of the data is essentially equal for a wide range of parameter values, and the 

probability distribution of 𝛼 may appear to be very broad. However, when α is large, the relative 

width (𝜎 𝜇⁄ =  1 √𝛼⁄  ) becomes very small, so that large differences in α correspond to very 

small differences in relative width. For example, if the 95% credibility interval on α is given by 

𝛼 ∈  (6000,8000), the corresponding credibility interval on the relative width will be 𝛼 −1 2⁄ ∈

 (8000−1 2⁄ , 6000−1 2⁄ ) =  (0.011,0.013). In other words, great uncertainty and variation on α 

does not necessarily imply great variation on the distribution of 𝜆∆𝑡. 
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3.5 Conclusion 

We have examined probabilistic and maximum likelihood methods for estimating 

background radiation, and have shown that the two produce very similar results when applied to 

large datasets. The choice of which method to employ depends on the goals of the user, and on 

the size of the dataset. Moving target analysis can always be applied, even to small datasets, 

using the probabilistic approach. The probabilistic approach produces uncertainty estimates on 

the parameters which are essential for understanding the degree of uncertainty on the variation of 

the Poisson mean in all but very large data sets. Conversely, the M.L. method is easier to 

implement, but can only be safely applied to large datasets. 

Although moving target analysis does not assume that the background is fixed, it also 

does not require that it be moving. Moving target analysis on a sufficiently large dataset will 

correctly identify cases where the background is fixed. However, it is not generally possible to 

conclude that the background is fixed on the basis of a relatively small data set.   

Maximum Likelihood analysis should be used with caution when the relative width of the 

Poisson mean distribution is greater than about 5%, which typically occurs for data sets with 

fewer than one thousand independent observations. Failure to account for the uncertainty on the 

parameters can lead to poor control of the false positive and false negative rates. For that reason, 

if smaller data sets are to be analyzed under the moving target model, it is essential that the 

probabilistic approach be used.  

Given the need for large background datasets, it may be tempting to reuse background 

measurements for multiple sample measurements. However, this temptation must be avoided, as 
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it will result in correlated sample measurements which cannot be interpreted in a straightforward 

way.  

Variation of the true mean background count rate can occur for a number of reasons, and 

should be considered the norm in counts occurring over long time intervals or on living 

organisms. Failure to account for this variation may produce a dramatic misrepresentation of the 

true background distribution. This will adversely affect a variety of critical endeavors, including 

attempts to control false positive rates, estimate lower limits of detection (LLD’s), estimate 

confidence intervals for source count rates, and assess instrumentation performance. Moving 

target analysis results in a much higher probability of observing counts far above the mean, 

meaning that such observations may no longer strongly imply the presence of a source. Given the 

ease with which modern computers can incorporate count rate variation into the background 

model, it is no longer necessary to analyze background data under the assumption that the count 

rate is fixed.  

In general, the purpose of a detailed model of the background count rate is to better detect 

and characterize radioactive sources. In the next chapter, we discuss a technique for performing 

both of those tasks simultaneously. 
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Chapter 4  

SIMULTANEOUS SOURCE DETECTION AND ANALYSIS USING A ZERO-

INFLATED COUNT RATE3 

 

 

 

4.1 Synopsis 

This chapter proposes a novel Bayesian technique which allows for simultaneous source 

detection and count rate analysis. The technique involves using priors which include a finite 

probability that the source count rate is exactly zero. Such priors are called “zero-inflated.” 

Solving the posterior distribution of a zero-inflated count rate model provides the probability that 

the sample contains a source and a probability distribution for the source count rate if the source 

exists, without the need to perform redundant computations. Sampling from zero-inflated 

distributions is straightforward, and can be accomplished with easily accessible open source 

software. In addition, zero-inflated priors lead to finite posterior probabilities of “no source,” 

which is an easy to understand and satisfying result.  

 

4.2 Introduction 

A common application of radiation counting measurements is to estimate the count rate 

from a source which is present in a sample of material. This application, which is referred to as 

“count rate analysis,” is typically carried out by taking counts from the sample of interest and 

from background. The net sample count rate is then estimated by subtracting the background 

count rate from the gross count rate of the sample. Source detection is a related application 

whose aim is to estimate the probability that any radioactive material is present in the sample 

                                                 
3 This chapter is based on a manuscript which has been submitted for publication in the journal, ‘Health Physics.’ 
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(i.e., that the sample count rate is non-zero). Although source detection is a special case of count 

rate analysis, in practice the two applications are often approached very differently. 

The classical approach to count rate analysis involves making inference on the sampling 

distribution – in this case the probability distribution of the observed data as a function of the 

true sample count rate. Source detection is accomplished using the “null-hypothesis” test, which 

considers the probability of a given measurement if the true sample count rate is zero. However, 

because classical tests cannot produce probability distributions for the sample count rate, which 

is the goal of count rate analysis, they have been largely rejected in favor of the Bayesian 

approach (Little 1982, Potter 1999, Strom and MacLellan 2001).  

   The Bayesian approach to source detection involves posterior probability ratios 

(Jeffreys 1961). In this test, a prior probability is assigned to the existence of the source. 

Probability distributions are also assigned to the source (if it exists) and background count rates, 

but these are typically assumed to be known and are therefore not updated with new 

measurements. Following a measurement, the posterior probability ratio is given by the prior 

probability of the source existing multiplied by the likelihood ratio of the model in which the 

sample contains a source and the model in which it does not.  

   Bayesian count rate analysis is very different from Bayesian source detection. In 

Bayesian count rate analysis, prior probability distributions are assigned to the source and 

background count rates. The priors are then updated with subsequent measurements, giving 

posterior probability distributions for the count rates. The choice of priors will depend on how 

much prior knowledge is available, as well as the specific test chosen. However, even 

uninformative priors typically assume a priori that the sample count rate is greater than zero. 
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Virtually all commonly used probability density functions are finite, continuous, and 

differentiable. This may be due to the fact that such functions are mathematically tractable, or 

because they adequately describe most naturally occurring phenomena. Because finite 

continuous probability density functions only give non-zero probabilities to ranges of values, the 

probability of any precise value will be precisely zero. It follows that the prior, and therefore 

posterior, probability that the source count rate is exactly zero is equal to zero. Because source 

detection is equivalent to determining the probability that the source count rate is exactly zero, 

and finite continuous priors rule out this possibility, such priors cannot be used for source 

detection. 

These problems can be partially overcome by the implementation of an “alpha” prior on 

the source count rate (Miller et al. 2001). The alpha distribution is a limit on the gamma 

distribution in which the shape parameters, 𝛼 and 𝛽, are very small and the first parameter, 𝛼, is 

related to the prior probability of a sample. The distribution is such that it approximates a Delta 

function at p(𝜆 = 0), and becomes log-uniform where p(𝜆 > 0). Using the alpha prior, the 

posterior will include a finite probability that the sample count rate is extremely close to zero. In 

principal, this allows one to avoid hypothesis testing altogether. 

However, a number of practical issues arise in the implementation of an alpha prior. The 

first issue is that it cannot be sampled by commonly available software, meaning that the user 

needs to develop code from scratch in order to sample from it. This is exacerbated by the fact 

that the Delta function at zero makes this sampler particularly difficult to write. Another issue is 

that the prior probability that the source count rate is extremely low is encoded into the first 

parameter of the distribution, making it somewhat difficult to read and modify. Finally, because 

the Delta function can only be approached by a gamma function in a limit situation, the alpha 
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prior still leads to a zero posterior probability of “no source.” This issue might seem pedantic 

when the posterior gives a high probability that the source count rate is less than (for example) 

10−25, but it can be confusing for the uninitiated user.  

This chapter proposes using zero-inflated priors as an alternative to the alpha prior.  Like 

the alpha prior, zero-inflated priors allow for simultaneous source detection and count rate 

analysis. However, sampling from zero-inflated distributions is straightforward compared to 

sampling from an alpha distribution, and can be accomplished with easily accessible open source 

software. In addition, zero-inflated priors lead to finite posterior probabilities of “no source,” 

which is a less confusing and more satisfying result.  

 

4.3 Zero-Inflated Model 

Recall from the discussion of the two-count problem in Chapter 1 that the joint posterior 

distribution is obtained by evaluating 

 
p(𝜆𝐵, 𝜆𝑆|𝑁𝐵, 𝑁𝐺) =

 p(𝑁𝐺|((𝜆𝐵 + 𝜆𝑆)𝑡𝐵)  × p(𝑁𝐵|𝜆𝐵𝑡𝐵) ×  p(𝜆𝐵) × p(𝜆𝑆)

p(𝑁𝐵, 𝑁𝐺)
, (4.1) 

   

where 

 
 p(𝑁𝐵, 𝑁𝐺) =  ∫ ∫  p(𝑁𝐺|((𝜆𝐵 + 𝜆𝑆)𝑡𝐺)  × p(𝑁𝐵|𝜆𝐵𝑡𝐵)  ×  p(𝜆𝐵) × p(𝜆𝑆)d𝜆𝐵d𝜆𝑆 

∞

0

∞

0

, 

  

(4.2) 

 

and that calculating the Probability Ratio, PR, between two hypotheses requires performing the 

most difficult part of the count rate analysis problem – evaluating the double integral of Eq. 4.2. 

Having evaluated that integral for both models, it becomes trivial to calculate the joint posterior. 
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All that is required is to extract the posterior probabilities, p(𝑆𝑜𝑢𝑟𝑐𝑒|𝑁𝐵, 𝑁𝐺) 

and p(𝑁𝑜 𝑆𝑜𝑢𝑟𝑐𝑒|𝑁𝐵, 𝑁𝐺), from the Probability Ratio using the following relationship: 

 
p(𝑆𝑜𝑢𝑟𝑐𝑒|𝑁𝐵, 𝑁𝐺) =

𝑃𝑅

1 + 𝑃𝑅
   

p(𝑁𝑜 𝑆𝑜𝑢𝑟𝑐𝑒|𝑁𝐵, 𝑁𝐺) =
1

1 + 𝑃𝑅,
 

(4.3) 

 

and to combine them with the joint posterior given that there is a source to obtain the true joint 

posterior. The problem with this approach is that it requires the combination of two complex 

analyses after they have been carried out. This not only involves redundant computations, but is 

conceptually rather unclear. Putting a zero-inflated prior distribution on the source count can lead 

to an intuitive model which unifies the two approaches. 

   A zero-inflated probability distribution is a probability density function (e.g., Gaussian, 

Poisson, gamma, etc.) with an increased, or “inflated,” probability mass at zero. A classic 

example is the distribution of cigarettes smoked per day by a given person (Neelon et. al 2010). 

Amongst smokers, the number of cigarettes smoked per day might come from a Poisson 

distribution centered at 𝜆𝑆𝑚𝑜𝑘𝑒𝑟𝑠. However, non-smokers typically smoke precisely zero 

cigarettes per day. Therefore, the distribution of cigarettes per day across the whole population 

would be a Poisson distribution centered at 𝜆𝑆𝑚𝑜𝑘𝑒𝑟𝑠with a large spike at zero.  

Similarly, the number of decays in a given time interval from a sample containing a 

source will come from a Poisson distribution which is likely to be centered well above zero. 

However, the number of decays occurring in a sample containing no source will be precisely 

zero. Therefore, an accurate representation of our prior belief about the sample count rate would 

be a distribution which assigns a finite probability that the mean count rate is exactly zero, 
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followed by an uninformative prior for count greats greater than zero – in other words, a zero-

inflated prior. If, as before, we choose a gamma distribution to represent the probability of the 

source count rate if it is greater than zero, then the complete prior is a zero-inflated gamma (ZIG) 

distribution. If the prior probability that a given sample contains a source is pS, the prior 

probability density function of 𝜆𝑆 can be written: 

 p(𝜆𝑆) = (1 − 𝑝𝑆)δ(0) + 𝑝𝑆 ∗ gamma(𝛼, 𝛽)  ≡ ZIG(𝑝𝑆, 𝛼, 𝛽) (4.4) 

   

where δ(0) is a Delta function located at zero. The Delta function simply indicates that this is 

really a probability mass function at zero – in other words, there is a finite probability that 𝜆𝑆 is 

exactly equal to zero.  

Rather than expressing the ZIG distribution as a single probability density function 

containing a Delta function, it may be clearer to express it as the product of two independent 

probability distributions – a probability mass function for the existence of a source, and a 

probability density function for the strength of the source if it exists. If we represent the 

existence of a source with a binary variable, 𝑆𝑜𝑢𝑟𝑐𝑒, where 𝑆𝑜𝑢𝑟𝑐𝑒 =  1 if the source exists, and 

𝑆𝑜𝑢𝑟𝑐𝑒 =  0 if the source does not exist, then the probability density of 𝜆𝑆 given 𝑆𝑜𝑢𝑟𝑐𝑒 is 

 p(𝜆𝑆|𝑆𝑜𝑢𝑟𝑐𝑒) = 𝑆𝑜𝑢𝑟𝑐𝑒 ∗ gamma(𝛼, 𝛽)  ≡ ZIG(𝑝𝑆, 𝛼, 𝛽), (4.5) 

 

where 𝑆𝑜𝑢𝑟𝑐𝑒 is a random variable with a Bernoulli probability mass function,  

 𝑆𝑜𝑢𝑟𝑐𝑒 ~ Bernoulli(𝑝𝑆). (4.6) 

 

Or, equivalently, 

 
p(𝑆𝑜𝑢𝑟𝑐𝑒) =  {

𝑝𝑆             𝑆𝑜𝑢𝑟𝑐𝑒 = 1
1 − 𝑝𝑆     𝑆𝑜𝑢𝑟𝑐𝑒 = 0.

 (4.7) 
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As discussed in Chapter 1, it will often be the case that pS is not precisely known. In that case, a 

prior distribution may be put on pS to represent the uncertainty on its possible values, such that 

 𝑝𝑆 ~ p(𝑝𝑆)                      0 ≤ 𝑝𝑆 ≤ 1. (4.8) 

 

Models in which priors are put on the parameters of other priors are called hierarchical models, 

and such priors are called hyperpriors, and their parameters are called hyperparameters 

(Ntzoufras 2009). If the prior distribution on 𝑝𝑆 is uniform, then 

 
p(𝑝𝑆) =

1

2
                      0 ≤ 𝑝𝑆 ≤ 1. (4.9) 

 

It can be easily shown that this leads to identical results as assuming 𝑝𝑆 = 0.5. Including this 𝑝𝑆 

and Source, the joint posterior now becomes p(𝜆𝐵, 𝜆𝑆, 𝑝𝑆, 𝑆𝑜𝑢𝑟𝑐𝑒|𝑁𝐵, 𝑁𝐺). The marginal 

posterior of Source, p(𝑆𝑜𝑢𝑟𝑐𝑒 = 0|𝑁𝐵, 𝑁𝐺), is the probability that the sample does not contain a 

source or, equivalently, that the sample count rate is exactly zero.  

The marginal posterior of pS can be thought of as the probability distribution that the next 

sample will contain a source. The hyperparameter, 𝑝𝑆, is not of interest for interpreting the given 

sample, and may be integrated out of the joint posterior as follows, 

 

 

p(𝜆𝐵, 𝜆𝑆, 𝑆𝑜𝑢𝑟𝑐𝑒| 𝑁𝐵, 𝑁𝐺) =  ∫ p(𝜆𝐵, 𝜆𝑆, 𝑝𝑆,𝑆𝑜𝑢𝑟𝑐𝑒| 𝑁𝐵, 𝑁𝐺) × p(𝑝𝑆)dpS.
1

0

 (4.10) 
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Because 𝑆𝑜𝑢𝑟𝑐𝑒 is a binary variable, p(𝜆𝐵, 𝜆𝑆, 𝑆𝑜𝑢𝑟𝑐𝑒|𝑝𝑆, 𝑁𝐵, 𝑁𝐺) is equal to the combination of 

the two marginal posteriors, p(𝜆𝐵, 𝜆𝑆, 𝑆𝑜𝑢𝑟𝑐𝑒 = 1|𝑁𝐵, 𝑁𝐺), and p(𝜆𝐵, 𝜆𝑆, 𝑆𝑜𝑢𝑟𝑐𝑒 = 0|𝑁𝐵, 𝑁𝐺). 

Because 𝑆𝑜𝑢𝑟𝑐𝑒 is really a hypothesis about 𝜆𝑆, it follows that,4 

 

 

p(𝜆𝐵, 𝜆𝑆|𝑁𝐵, 𝑁𝐺)

= {
  p(𝜆𝐵, 𝜆𝑆|𝑆𝑜𝑢𝑟𝑐𝑒 = 1,𝑁𝐵 , 𝑁𝐺) × p(𝑆𝑜𝑢𝑟𝑐𝑒 = 1|𝑁𝐵 , 𝑁𝐺) × p(𝑝𝑆|𝑁𝐵 , 𝑁𝐺)      𝜆𝑆 > 0  

 p(𝜆𝐵, 𝜆𝑆|𝑆𝑜𝑢𝑟𝑐𝑒 = 0,𝑁𝐵, 𝑁𝐺) × p(𝑆𝑜𝑢𝑟𝑐𝑒 = 0|𝑁𝐵 , 𝑁𝐺) × p(𝑝𝑆|𝑁𝐵, 𝑁𝐺)      𝜆𝑆 = 0,
 

(4.11) 

   

where p(𝑝𝑆|𝑁𝐵, 𝑁𝐺) can be derived from the posterior of the odds ratio, p(𝑃𝑅|𝑁𝐵 , 𝑁𝐺), given by Eq. 

1.25. All of the expressions on the right hand sides of these equations can be calculated using Eq. 

4.1, Eq. 4.2, and Eq. 4.3. In particular, if the source does not exist then 𝜆𝑆 = 0, meaning that both 

measurements were of background only. In that case, we can combine our observations such that 

we have observed 𝑁𝐵 + 𝑁𝐺 counts from background in 𝑡𝐵 + 𝑡𝐺 time intervals. It follows that the 

marginal posterior of the mean count rates if the source does not exist reduces to  

 p(𝜆𝐵, 𝜆𝑆|𝑁𝑜 𝑆𝑜𝑢𝑟𝑐𝑒, 𝑁𝐵, 𝑁𝐺) =  p(𝜆𝐵|𝑁 =  𝑁𝐵+𝑁𝐺)                  𝜆𝑆 = 0, (4.12) 

 

Where, from Eq. 1.7,  p(𝜆𝐵|𝑁 =  𝑁𝐵+𝑁𝐺) is given by  

 p(𝜆𝐵|𝑁 =  𝑁𝐵+𝑁𝐺) = gamma(𝛼 + 𝑁, 𝛽 +  𝑡𝐵 + 𝑡𝐺). (4.13) 

 

Alternatively, if multiple background measurements have been carried out, it is possible to 

determine the background distribution by performing a moving target background analysis as 

described in Chapter 3. Because the moving target analysis models background as a gamma 

                                                 
4 This follows from the product rule, which states that p(𝐴, 𝐵) = p(𝐴|𝐵) × p(𝐵), or that the probability of two 

observations, A and B, occurring together is equal to the probability of A given B multiplied by the probability of B. 
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distribution, this will have no impact on the subsequent calculations except to use different 

parameters for the background distribution.  

Regardless of how the parameters of background distribution are obtained, the marginal 

posterior of the mean count rates if the source exists, p(𝜆𝐵, 𝜆𝑆|𝑆𝑜𝑢𝑟𝑐𝑒 = 1, 𝑁𝐵, 𝑁𝐺), is given by 

Eq. 4.1, which is the result of the original sample count rate analysis. 

Finally, p(𝑆𝑜𝑢𝑟𝑐𝑒 = 1|𝑁𝐵, 𝑁𝐺) and p(𝑆𝑜𝑢𝑟𝑐𝑒 = 0|𝑁𝐵, 𝑁𝐺) are functions of the 

Probability Ratio given by Eq. 4.3.  Making these substitutions results in the following 

expression for the joint posterior: 

 p(𝜆𝐵, 𝜆𝑆|𝑁𝐵, 𝑁𝐺)

=

{
 

   
𝑃𝑅

1 + 𝑃𝑅
×
 p(𝑁𝐺|((𝜆𝐵 + 𝜆𝑆)𝑡𝐵)  × p(𝑁𝐵|𝜆𝐵𝑡𝐵) ×  p(𝜆𝐵) × p(𝜆𝑆)

p(𝑁𝐵, 𝑁𝐺|𝑆𝑜𝑢𝑟𝑐𝑒)
                 λS > 0  

1

1 + 𝑃𝑅
× gamma(𝛼 + 𝑁𝐵+𝑁𝐺 , 𝛽 + 𝑡𝐵+𝑡𝐺)                                                         λS = 0.

 

 

(4.14) 

Equation 4.14 shows that, after integrating out 𝑝𝑆, solving for the joint posterior under a zero-

inflated prior is equivalent to performing traditional count rate analysis and hypothesis testing. 

From the joint posterior, the marginal posterior of the source count rate can be obtained by 

integrating over the background count rate: 

 
p(𝜆𝑆|𝑁𝐵, 𝑁𝐺) =  ∫ p(𝜆𝐵, 𝜆𝑆|𝑁𝐵, 𝑁𝐺)d

∞

0

𝜆𝐵. (4.15) 

 

Although the formula for the posterior under a zero-inflated prior is complex and difficult 

to solve directly, zero-inflated distributions are very straightforward to sample from, which 

makes them ideal for MCMC analysis. The generative model corresponding to the two-count 

problem with a zero-inflated prior is as follows: 
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Two-Count Model with Zero-Inflated Gamma Prior: 

𝜆𝐵~ 𝑔𝑎𝑚𝑚𝑎(𝛼 = 0.5, 𝛽 = 0.01), #Mean background count rate 

𝑝𝑆 ~ 𝑝(𝑝𝑆),    #The uncertainty on the odds of a source, 𝑝𝑆 

𝑆𝑜𝑢𝑟𝑐𝑒 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙(𝑝𝑆),  #Source is 1 with odds 𝑝𝑆, 0 with odds (1 − 𝑝𝑆) 

𝜆𝑆̂~ 𝑔𝑎𝑚𝑚𝑎(𝛼 = 0.5, 𝛽 =  0.01), #Sample count rate if there is a source 

𝜆𝑆 = 𝑆𝑜𝑢𝑟𝑐𝑒 × 𝜆𝑆̂    #True sample count rate 

𝜆𝐺 = 𝜆𝐵 + 𝜆𝑆,    #Gross count rate 
𝑁𝐵~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝐵𝑡𝐵),   #Counts observed in background measurement 
𝑁𝐺~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝐺𝑡𝐺).   #Counts observed in sample measurement. 

 

This technique has been used to describe the generative model for zero-inflated Poisson 

likelihood functions (Ghosh 2006), but does not appear to have ever been applied to zero-inflated 

prior distributions. As in the classic two-count model, this model indicates that 𝜆𝐵and 𝜆𝑆̂ are 

random variables drawn from gamma distributions. In addition, the existence of a source is 

encapsulated in the random variable Source, which is equal to 1 with odds 𝑝𝑆 and 0 with 

odds 1 − 𝑝𝑆. The true sample count rate is therefore equal to 0 if 𝑆𝑜𝑢𝑟𝑐𝑒 = 0, and 𝜆𝑆̂ 

if 𝑆𝑜𝑢𝑟𝑐𝑒 = 1. Breaking up the zero-inflated prior (with its Delta term) into the product of two 

common probability functions makes it possible to sample from the prior, and therefore analyze 

the data, using easily accessible open source software such as OpenBUGS. The result of this 

analysis will include a finite posterior probability of “no source,” which has obvious advantages 

for communicating with non-technical co-workers and the public. 

Markov Chain Monte Carlo techniques produce a chain of values which, after a certain 

number of iterations, can be considered unbiased random samples from the posterior distribution. 

In order for this to occur, it must be possible for the chain to reach any value of the posterior 

from every other possible value of the posterior. In other words, it must never be possible for the 

chain to include any value from which it cannot then sample from the complete posterior. More 

formally, the Markov Chain only converges to the posterior distribution if it is irreducible, 
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positive recurrent, and aperiodic (Ntzoufras 2009). In general, it is important to understand the 

MCMC algorithm well enough to determine if one’s model will satisfy these conditions. Given 

the simplicity of the model and widespread use of similar models, it is expected that the two 

count radioactive sample problem will satisfy these conditions for the Metropolis Hastings and 

Gibbs sampling algorithms. In addition, the posteriors for the following examples are calculated 

numerically as well as with MCMC. The strong agreement between MCMC and deterministic 

techniques provides further evidence that the Markov Chains can be expected to converge to the 

posterior. Nonetheless, care should always be taken to ensure convergence when relying on 

MCMC (see Appendix for details). 

 

4.4 Examples 

This section presents some simple examples to illustrate the application and usefulness of zero-

inflated models compared to classic hypothesis testing and count rate analysis. Although the ZIG 

model presented above represents an idealized model, it is easily extended to account for real-

world considerations such as detector efficiency, geometric factors, energy-dependence, etc., and 

their respective uncertainties. However, for the purposes of illustration it is helpful to use the 

idealized model. This also makes it possible to use the same data, and therefore to compare 

results, with previous publications. 
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4.4.1 Example 1: Negative Observed Source Count Rate 

In the classic analysis of the two-count problem (Little 1982), the measurement data are 

as follows: 

𝑁𝐵 = 84, 
𝑡𝐵 = 18.56 s, 
𝑁𝐺 = 16, 
𝑡𝐺 = 4.64 s.  
 

 

Note that the average count rate during the sample measurement, 16/4.64 =  3.5 cps is 

lower than the average count rate during the background measurement, 84/18.56 =  4.5 cps. 

This situation is problematic if the strength of the possible source is unknown, as there is no 

obvious way to extract an empirical prior for the source count rate from the measurement. In this 

case, there is no choice but to use a “subjective” prior – a prior which represents the 

investigator’s belief about how strong the source could be. It seems reasonable to assume that the 

investigators would have known in advance that they were looking for a relatively weak source. 

Therefore, a prior that is uniform between zero and five, and zero beyond five would seem 

reasonable. Note also that the maximum mean count rate permitted by this prior, 5 cps, is 

approximately twice the background, at which point experiences persons can typically make 

decisions as to the presence of radioactive sources without the need for statistical methods. Such 

a prior can be represented as a uniform gamma distribution truncated at five:  

 p(𝜆𝑆|𝑆𝑜𝑢𝑟𝑐𝑒) = Uniform(0,5) ∝ lim
β→0

gamma(𝜆𝑆|𝛼 = 1, 𝛽);      0 < 𝜆𝑆 < 5. (4.16) 

 

Because it is truncated, the gamma distribution must be renormalized so it will integrate 

to 1. If the investigators knew that a source existed, entering the observed data into Eq. 4.1 with a 
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uniform prior would result in the joint posterior obtained by Little. In particular, the mean 

sample count rate and 95% credible interval found by Little are, 

𝜆𝑆̅ = 0.63, 
95%CI = (0, 1.77). 
 

However, the evidence clearly suggests that there is no source. Therefore, the posterior on the 

source count rate must have significant mass at λS = 0, which will tend to pull the confidence 

interval towards zero. As shown in Eq. 4.14, the posterior distribution of the source count rate is 

a function of the posterior given that the source exists, p(𝜆𝑆|𝑁𝐵, 𝑁𝐺 , 𝑆𝑜𝑢𝑟𝑐𝑒),  and the 

Probability Ratio that the source exists (PR).  

In order to compute PR, it first is necessary to explicitly state the probability before the 

measurement that the sample would contain a source. In practice, the investigator will often 

possess empirical data and/or relevant experience regarding this prior. However, in order to 

simplify the numerical integration, let us select a uniform prior for 𝑝𝑆, which is equivalent 

to 𝑝𝑆  =  0.5. Note that the choice of  pS necessarily has a strong influence on PR. Using this 

choice, the ratio of priors equals one, and the posterior Probability ratio reduces to 

 
𝑃𝑅 =

p(𝑆𝑜𝑢𝑟𝑐𝑒|𝑁𝐵, 𝑁𝐺)

p(𝑁𝑜 𝑆𝑜𝑢𝑟𝑐𝑒|𝑁𝐵, 𝑁𝐺)
=  

p(𝑁𝐵, 𝑁𝐺|𝑆𝑜𝑢𝑟𝑐𝑒)

p(𝑁𝐵, 𝑁𝐺|𝑁𝑜 𝑆𝑜𝑢𝑟𝑐𝑒).
 

 

(4.17) 

 

Using uniform priors for p(𝜆𝐵) and p(𝜆𝑆) and inserting Eq. 4.2, this becomes, 

 

𝑃𝑅 = 
∫ ∫  Poisson(16|𝜆 = 4.64(𝜆𝐵 + 𝜆𝑆)) × Poisson(84|𝜆 = 18.56𝜆𝐵) d𝜆𝐵d𝜆𝑆 

5

0

∞

0

∫ Poisson(100|𝜆 = 23𝜆𝐵)d𝜆𝐵
∞

0
,

 

 

(4.18) 
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where the integral in the denominator was simplified by recognizing that the No Source 

hypothesis requires that 𝜆𝑆 be exactly 0. Solving these integrals numerically yields, 𝑃𝑅 = 0.155. 

These integrals are challenging to solve with numerical algorithms, and it is easy to see how a 

more complex model would produce equations which could only be solved using Monte Carlo 

techniques. In addition, once PR is calculated, it is still necessary to calculate the posterior of the 

sample count rate for 𝜆𝑆 > 0. From Eq. 4.6, the joint posterior is, 

 p(𝜆𝐵 , 𝜆𝑆|𝑁𝐵, 𝑁𝐺)

=

{
 
 

 
   

𝑃𝑅

1 + 𝑃𝑅

 Poisson(16|𝜆 = 4.64(𝜆𝐵 + 𝜆𝑆)) × Poisson(84|𝜆 = 18.56𝜆𝐵) 

∫ ∫  Poisson(16|𝜆 = 4.64(𝜆𝐵 + 𝜆𝑆)) × Poisson(84|𝜆 = 18.56𝜆𝐵) d𝜆𝐵d𝜆𝑆 
5

0

∞

0

       𝜆𝑆 > 0  

1

1 + 𝑃𝑅
× gamma(𝜆𝐵|𝛼 = 101, 𝛽 = 23)                                                                                            λS = 0.

 

 

(4.19) 

 

When working by hand, computing the posterior of 𝜆𝑆 from a zero-inflated prior is 

equivalent to performing the source-detection computation followed by the count rate analysis 

computation. Using Markov Chain Monte Carlo (MCMC), however, analyzing the zero-inflated 

prior model is almost identical to analyzing the traditional count rate analysis. Inserting the 

priors and observed data yields the following generative model:  

 

ZIG Generative Model for Example 1: 

𝜆𝐵~ 𝑔𝑎𝑚𝑚𝑎(𝛼 = 1, 𝛽 = 0.01), #Mean background count rate 

𝑝𝑆 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1), #The odds of a source, 𝑝𝑆, is equally likely to    

assume any value between 0 and 1 

𝑆𝑜𝑢𝑟𝑐𝑒 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙(pS),  #50% chance Source exists  

𝜆𝑆̂~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,5),   #Sample count rate if there is a source 

𝜆𝑆 = 𝑆𝑜𝑢𝑟𝑐𝑒 × 𝜆𝑆̂    #True sample count rate 

𝜆𝐺 = 𝜆𝐵 + 𝜆𝑆,    #Gross count rate 
84~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(18.56𝜆𝐵),  #Counts observed in background measurement 
16~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(4.64𝜆𝐺).  #Counts observed in sample measurement. 
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The MCMC analysis produces marginal posterior distributions for the source count rate, and for 

the existence of the source. From the analysis, the probability that a source is present is, 

p(𝜆𝑆 > 0|𝑁𝐵, 𝑁𝐺) = 0.132, or about 13%. This corresponds to 𝑃𝑅 =  0.152, which agrees with 

the numerical calculation to within less than 3%. It follows that p(𝜆𝑆 = 0|𝑁𝐵, 𝑁𝐺) = 0.868, or 

about 87%. Equivalently, there is an 87% probability that 𝜆𝑆 is precisely zero, and that there is, 

by definition, no source. The mean and 95% credible interval of the posterior of the source count 

rate are 

𝜆𝑆̅ = 0.083, 

95%CI = {
[0]                         87%
(0, 0.68)              13%

 

 

This means that there is a 95% chance the sample count rate is between 0 and 0.64 cps. 

Because p(𝜆𝑆) is a probability mass, rather than a probability density, it will always be a mode of 

the posterior distribution, and will often cause very unlikely values of the source count rate to be 

included by default in quantile confidence intervals. For that reason, HDI confidence intervals 

are strongly preferred for zero-inflated count rate distributions. 

Figure 4.1 shows a plot of the marginal posterior distribution of the sample count rate. 

From this plot, it is clear that the most likely value of the source count rate is zero, and that 

beyond zero the probability is inversely proportional to the count rate.  

The MCMC analysis also produces a marginal posterior distribution for 𝑝𝑆, which can be 

used as a prior for a measurement of the next source. This technique can be applied retroactively 

to historical measurements to develop an empirical prior for 𝑝𝑆. In this approach, the posterior of 

each measurement, p(𝑝𝑆: 𝑁𝐵, 𝑡𝐵, 𝑁𝐺 , 𝑡𝐺), serving as the prior for the next measurement. By 

measuring multiple different samples, this technique provides a quantitative approach for 

developing empirical priors for future measurements.  
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Figure 4.1: The marginal posterior distribution of λS for Example 1. The large spike at λS = 0 is 

actually a probability mass representing the probability that the sample contains no source. The 

95% HDI, represented by the dashed line, is λS ∈ (0, 0.68). 
 

 

4.4.2 Example 2: Strong Signal, Rare Source 

 The previous example considered a sample which, before measurement, was believed to 

have a 50% chance of containing a source with mean count rate between 0 and 5. The sample 

measurement produced a weak (negative) signal, which was used to update the probability of the 

sample containing a source, as well as the likely values of the source count rate. In practice, the 

investigators usually have a much less vague notion (perhaps from past experience) of the 
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probability that a given sample will contain a source, and of the count rate which sources are 

likely to exhibit. Consider a scenario in which precisely one in twenty samples contains a source, 

and where sources typically have mean count rates of about 2.5 cps. This might be represented 

by gamma(𝜆𝑆|𝛼 = 2.5, 𝛽 = 1), which corresponds to a mean source count rate of 𝜆𝑆̅ =
𝛼

𝛽
= 2.5 

with variance var(𝜆𝑆) =
𝛼

𝛽2
= 2.5. The results of a background and sample measurement are as 

follows: 

𝑁𝐵 = 100, 
𝑡𝐵 = 25 s, 
𝑁𝐺 = 90, 
𝑡𝐺 = 15 s.  
 

In this case, there is a clear signal for a source with a count rate of approximately 2 cps, which is 

well within the expected range of the source count rate. However, that signal must be balanced 

against the prior knowledge that only about 5% of samples actually contain a source. As before, 

it is useful to explicitly state the generative model for the observed data: 

 

ZIG Generative Model for Example 2: 

𝜆𝐵~ 𝑔𝑎𝑚𝑚𝑎(𝛼 = 1, 𝛽 = 0.01), #Mean background count rate 

𝑆𝑜𝑢𝑟𝑐𝑒 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.05),  #5% chance Source exists  

𝜆𝑆̂~ 𝑔𝑎𝑚𝑚𝑎(2.5,1),   #Sample count rate if there is a source 

𝜆𝑆 = 𝑆𝑜𝑢𝑟𝑐𝑒 × 𝜆𝑆̂    #True sample count rate 

𝜆𝐺 = 𝜆𝐵 + 𝜆𝑆,    #Gross count rate 
100 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(25𝜆𝐵),  #Counts observed in background measurement 
90 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(15𝜆𝐺).   #Counts observed in sample measurement. 

 

   This model can once again be analyzed either numerically or using MCMC. The probability 

ratio can be expressed analytically as 
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PR = 
∫ ∫  Poisson(90|15(𝜆𝐵 + 𝜆𝑆)) × Poisson(100|23𝜆𝐵) × gamma(𝜆𝑆|2.5,1) d𝜆𝐵d𝜆𝑆 

∞

0

∞

0

∫ Poisson(100|𝜆 = 23𝜆𝐵)d𝜆𝐵
∞

0

 

×
p(𝑆𝑜𝑢𝑟𝑐𝑒) = 0.05

p(𝑁𝑜 𝑆𝑜𝑢𝑟𝑐𝑒) = 0.95.
 

(4.20) 

 

This integral evaluates to 𝑃𝑅 =  1.16, which agrees with the Monte Carlo analysis to within less 

than 1%. Analyzing the model with MCMC is much more straightforward (See Appendix), and 

results in the probability that a source is present as, p(𝜆𝑆 > 0|𝑁𝐵, 𝑁𝐺) = 0.539. or about 54%. It 

follows that p(𝜆𝑆 = 0|𝑁𝐵, 𝑁𝐺) = 0.461, or about 46%. This corresponds to 𝑃𝑅 =
0.539

0.461
= 1.17. 

The mean and 95% highest density credible interval (HDI) of the posterior of the sample count 

rate are 

𝜆𝑆̅ = 1.06, 

 95% HDI = {
[0]                         46%
(0.9, 3.1)              54%

 

 

 

An interesting feature of the posterior of 𝜆𝑆 is that the 95% HDI is discontinuous. This 

means that there is a 95% chance that the sample count rate is either precisely zero (no source) or 

between 0.9 and 3.1 cps. This is indicative of a bimodal distribution – i.e., a distribution with two 

distinct peaks. The 95% quantile confidence interval for Example 2 would include, in addition to 

higher values, the interval between 0 and 0.9, obscuring the bimodal nature of the posterior. The 

marginal posterior distribution and 95% HDI of 𝜆𝑆 are shown in Figure 4.2. 
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Figure 4.2: The marginal posterior distribution of λS for Example 2. The large spike at λS = 0 

represents the probability that the sample contains no source. The 95% HDI, represented by the 

dashed line, includes 𝜆𝑆 = 0 and λS ∈ (0.9, 3.1). 
 

4.5 Discussion 

Bayesian hypothesis testing (and thus analysis with zero-inflated priors) also naturally 

discourages unreasonable priors. For example, putting a uniform prior on the source count rate is 

equivalent to stating that there is an equal probability of the source activity being 1 Bq and 100 

MBq. As shown above, hypotheses which correspond to uniform (i.e., unreasonable) priors 

inevitably fail when compared to informative priors in Bayesian hypothesis testing. Although 

uniform priors are clearly unrealistic, they nonetheless do not favor any one parameter value 

over any other, and therefore often have little impact on the posterior. For that reason, they are 
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commonly used to represent the investigator’s lack of knowledge about the true values of the 

parameters, and are perceived as producing “objective” posteriors. The unique sensitivity of 

hypothesis testing to the variance of the priors makes it difficult to identify priors which will not 

unduly influence the results. Ideally, there will be empirical knowledge about the likely values of 

the source count rate. If there is not, it is possible to generate empirical data prospectively by 

performing multiple observations. However, the ideal technique for generating empirical priors 

is a topic for further research and discussion. 

 

4.6 Conclusion 

 Two of the most common applications of counting measurements are source detection 

and sample count rate analysis. The traditional Bayesian approaches to these two problems are 

very different, and are therefore difficult to combine. In any situation where a sample may or 

may not contain a source, traditional priors cannot adequately represent the possibility that the 

sample count rate is precisely zero. One approach to this problem is to use a uniform prior to 

obtain a probability distribution for the sample count rate if the sample contains a source, and 

then to perform hypothesis testing. By performing two different techniques without attempting to 

unify them, the investigator is essentially forced to conduct twice as much work. Another 

disadvantage to this approach is that it allows the investigator to ‘get away’ with using an 

unreasonable uniform prior on the source count rate.  

 Another approach to dealing with samples which may contain no source is to use a 

prior which compresses some fraction of the probability density as close as possible to zero – 

e.g., an ‘alpha’ prior. A disadvantage of this approach is that such distributions are extremely 

difficult to formulate and to sample from for the purposes of MCMC. In addition, alpha priors 
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may lead to posterior distributions which are difficult to communicate to the general public, for 

whom there is a very big difference between a “very small source” and “no source.” 

 Given the importance of priors which honestly represent the investigator’s beliefs, the 

advantage of zero-inflated priors is clear. Zero-inflated priors can compactly encapsulate the 

beliefs of the investigator – specifically, how likely it is that the sample contains a source and 

how strong that source is likely to be if it exists. By incorporating hypothesis testing into count 

rate analysis, they eliminate the need for redundant calculations, while at the same time forcing 

investigators to postulate reasonable priors. Zero-inflated priors are also relatively easy to sample 

from, meaning that data can be analyzed using open-source MCMC software such as 

OpenBUGS (See Appendix). Finally, zero-inflated priors result in zero-inflated posteriors, 

meaning that it will always be possible to report a finite probability that the sample count rate is 

precisely zero, and thus does not contain a source. It is hoped that the use and interpretation of 

models utilizing zero-inflated priors will prove so simple and straightforward that the technique 

will become widely adopted for statistical decision making in health physics.  
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Chapter 5  

SUMMARY AND CONCLUSIONS 

 

 

5.1 Bayesian Analysis 

The use of of Bayesian techniques for analyzing radiation count rate data throughout this 

paper reveals a number of advantages over classical analysis. The most obvious advantage is that 

Bayesian analysis allows the investigator to make direct statements about the quantities of 

interest. For example, after a measurement of a possibly radioactive source, classical analysis can 

only estimate the probability of having observed N counts for a given source count rate. This is 

very different from a probability distribution of the source count rate, which can only be obtained 

by incorporating a prior, but it is easy to see how the two probabilities could be confused. This 

document shows how Bayesian analysis can directly answers the question being asked – in this 

case, “is there a source, and, if so, how strong is it likely to be?”   

The prior probability distribution is the most important and the most controversial aspect 

of Bayesian analysis. Although requiring the investigator to explicitly state their beliefs in 

advance may seem inconvenient and potentially hard to justify, it also avoids the problems of a 

classical analysis, in which assumptions are often implicit and not well understood, even by the 

investigator (e.g., the assumption that a sample is Normally distributed, or that the samples are 

independent). Hypothetically, the hidden assumptions of classical significance tests makes it 

possible for an investigator to analyze data using a number of different classical tests until one 

produces the desired outcome. In contrast, the requirement in Bayesian analysis to explicitly 

state a prior forces the investigator to think seriously about the assumptions necessary for an 
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analysis, knowing that those assumptions will be questioned and considered by others. This leads 

to more realistic assumptions and, therefore, more realistic results. For example, the use of a 

strictly positive prior makes it impossible to obtain a confidence interval for the sample count 

rate which contains negative numbers. The results of a Bayesian analysis are therefore more 

reasonable, easier to understand, and more easily discussed by the scientific community.  

 

5.2 Sequentially-Updated Source Detection Systems 

 Two of the most common applications of counting measurements are source detection 

and sample count rate analysis. In Chapter 2, a method of source detection is proposed which 

operates under the idealized assumption that the background distribution is fixed and perfectly 

well known. This assumption greatly simplifies computations, enabling the detection system to 

update the posterior distribution in real-time and allowing for near instantaneous detection 

decisions. By considering multiple energy-regions simultaneously, the detection system is able to 

detect sources more quickly and reliably with a decreased incidence of false positives. 

In particular, incorporation of energy data decreases the Average Run Length (ARL) of 

fixed source detection systems, effectively allowing them to detect much weaker sources in a 

given time interval than gross count rate detectors. At 5 cps, which corresponds to a source count 

rate of 3 cps, the ARL of the two-energy detector is almost 50% less than that of the gross count 

rate detector. This confirms the first research hypothesis regarding the multi-energy detector 

method. 

 Incorporation of energy data also significantly improves performance when monitoring 

for transient sources. The LLD of each detector is determined by controlling the false positive 

rate to 5%, and reading off the source strengths at which the detection probability for each 
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detector was 95%. By this metric, the LLD of the multi-energy detectors is found to be 

approximately 1.5 cps. This exceeds the performance gain predicted in the second research 

hypothesis regarding the multi-energy detector. Conversely, when the failed-detection (e.g., non-

detection) rate for 1.5 cps sources is controlled to 5%, the false positive rates of the multi-energy 

detectors are relatively unchanged at approximately 5%, while the false-positive rate of the gross 

count rate detector drop to approximately 45%. As predicted, the multiple-energy transient 

source detectors significantly out-perform their single-energy counterparts in terms of false 

positives and failed detections. 

 

5.3 Moving Target Model of Background 

Source detection and source count rate analysis both depend on an accurate model of 

radiation background. The third chapter shows that, unlike fixed radioactive sources, the mean of 

the radiation background count rate (i.e. the Poisson mean) may sometimes be a function of time. 

Non-constant background radiation is characterized with a “moving target” model, in which the 

Poisson mean for the background is assumed to change at specified time intervals, with the new 

mean being drawn from a gamma distribution with parameters 𝛼 and 𝛽.  Given a dataset 

consisting of replicate background count measurements, we determine the values of 𝛼 and 𝛽 

using maximum likelihood and Bayesian probabilistic analysis using Markov Chain Monte Carlo 

(MCMC). 

 When a new Poisson mean is drawn from a gamma distribution between each 

observation, the resulting sampling distribution is a negative binomial distribution. As a result, 

decision thresholds are different under the moving target model than they are under the usual 

assumption of constant background. In particular, we find that classical decision thresholds 
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increase with the standard deviation of the mean count rate, √𝛼/𝛽. This confirms the second 

research hypothesis regarding the moving target model. We also find that Bayesian decision 

thresholds would be proportional the standard deviation of the mean count rate. This confirms 

the second research hypothesis regarding the moving target model. 

If negative binomial sampling distributions derived from the observed data were used in a 

classical null-hypothesis test, the 95% decision threshold for the stationary target model would 

be 15 counts. In other words, one would expect more than 15 counts to be observed in less than 

5% of background measurements. In contrast, the 95% decision threshold corresponding to the 

moving target model is 17 counts. The classical 95% decision threshold is therefore 13% higher 

under the moving target model than it would be if the background were assumed to be stationary. 

This confirms the first research hypothesis regarding the moving target model. 

 

5.4 Zero-Inflated Priors 

 In any situation where a sample may or may not contain a source, traditional priors 

cannot adequately represent the possibility that the sample count rate is precisely zero. 

Therefore, Chapter 4 proposes using non-traditional, “zero-inflated,” priors to model the mean 

count rate of a possibly radioactive sample. Zero-inflated priors compactly encapsulate the 

beliefs of the investigator – specifically, how likely it is that the sample contains a source and 

how strong that source is likely to be if it exists. By incorporating hypothesis testing into count 

rate analysis, they eliminate the need for redundant calculations, while at the same time forcing 

investigators to postulate reasonable priors. Zero-inflated priors are also relatively easy to sample 

from, meaning that data can be analyzed using open-source MCMC software such as 
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OpenBUGS (See Appendix). Finally, zero-inflated priors result in zero-inflated posteriors, 

meaning that it will always be possible to report a finite probability that the sample count rate is 

precisely zero, and thus does not contain a source. It is hoped that the use and interpretation of 

models utilizing zero-inflated priors will prove so simple and straightforward that the technique 

will become widely adopted for statistical decision making in health physics.  
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Appendix 

 

 

 

This section provides a step-by-step description of how to analyze count measurement data using 

OpenBUGS. OpenBUGS is a freely available, open-source software package designed for 

“Bayesian Analysis Using Gibbs Sampling” (BUGS). It runs on all major operating systems, 

including Windows, Macintosh, and Linux. After downloading OpenBUGS, open a new project 

by clicking ‘File -> New.’ This is shown in Figure 4.A.1. 

 

Figure 4.A.1: Open a new project by clicking ‘File -> New.’ 

 

A window will appear in which the model, data, and initial values may be enetered. To enter the 

model, type “model { … }”, with the generative model between the brackets. The 

nomenclature is very similar to that used in this paper, except that deterministic relationships are 

expressed using backwards arrows, ‘<-‘, instead of ‘=’. Text following the pound sign, ‘#’, is 

ignored by the compiler. OpenBUGS has a number of built-in probability distributions, such as 

‘dgamma,’ ‘dpois’, ‘dbern’, ‘dunif’, and ‘dnorm’, corresponding to the gamma, Poisson, 

Bernoulli, uniform, and Normal distributions, respectively. Finally, algebra is not permitted in 

lines indicating stochastic relationships (with a few rare exceptions). For example, the line, 
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N ~ dpois(lambda*t)  

would become  

mu <- lambda*t 

N~dpois(mus) 

The generative model used in Example 1 would read as follows: 

model { 

#Counts from background in the detector (b0) 

lambdaB ~ dgamma(1,.01)   #Mean background count rate 

muB <- lambdaB*tB    #Mean background counts in 

interval tb 

NB ~ dpois (muB) #Observed counts in background 

measurement 

#Counts from Source 

source ~ dbern(p_source)   #0 if no source, 1 if there 

is a source 

lambdaSource ~ dunif(0,5)  #Source Activity (Bq) assuming 

there is a source) 

lambdaSample <- source*lambdaSource #True source activity 

 

#Measured Counts 

muG <- (lambdaB+lambdaSample)*tg  #Mean gross counts in 

interval tg 

NG ~ dpois(muG)    #Observed counts in sample 

measurement 

} 

 

After specifying the model, the next step is to specify the observed data. These are stored in a 

single list, denoted ‘list(…)’. For Example 1, this would read, 

list(NB = 84, tb = 18.56, NG = 16, tg = 4.64, p_source = 0.5) 

 

Optionally, initial values of the undefined stochastic variables (i.e., those which have not been 

measured) can be specified in another list. For example, 

list(lambdaB = 1, source = 0, lambdaSample = 0) 
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The final result should look something like Figure 4.A.2. 

 

 

Figure 4.A.2: The complete model specification with data and initial values. 

 

The next step is to load the model, data, and initial values into the program. To do that, select 

‘Specification…’ from the ‘Model’ drop-down menu (Figure 4.A.3).  

 

Figure 4.A.3: Open the model specification window by clicking ‘File -> New.’ 
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Highlight the word ‘model’ (right before the brackets), and click ‘check model.’ If the model 

is not syntactically correct, an error message will appear in the lower-left corner of the screen. 

This is shown in Figure 4.A.4. If there are no errors, load the data by highlighting the word 

‘list’ before the list of observed data and click ‘load data.’ Again, if there are any errors, a 

message will appear in the lower left corner. Next, compile the model by clicking ‘compile.’ 

Finally, load the initial values in the same way. If you do not wish to specify initial values, you 

can have the program generate them for you by clicking ‘gen inits.’  

    

 

Figure 4.A.4: The screen after clicking ‘check model’ in the ‘Specification Tool’ 

window. Note that the word ‘model’ is highlighted, and that there is a message in the lower left 

corner saying ‘model is syntactically correct.’ 

 

The next step is to ‘burn in’ the Markov Chain by having BUGS run several thousand untracked 

MCMC iterations, which allows it to converge on the posterior distribution. From the ‘Model’ 

drop down menu, select ‘Update…’ Enter the desired burn-in iterations (20,000 is usually 

enough), and click ‘update.’ Once the burn-in is complete, a message will appear in the lower 

left corner saying “x updates took n seconds.” This is shown in Figure 4.A.5. 
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The next step is to specify the parameters whose posterior distribution you want to 

calculate. To do this, select ‘Samples…’ from the ‘Inference’ drop-down menu. In the text 

box/drop down menu next to the word ‘node,’ type in the name of each parameter you would 

like to follow one at a time, then press ‘set’ after typing in each parameter. In this case, the 

parameters of interest are lambdaSample, source, and (maybe) lambdaB. This is shown in Figure 

4.A.6. 

 

Figure 4.A.5: The screen after running 2000 ‘burn-in’ iterations 

 

 

Figure 4.A.6: Entering the parameters we wish to track. Note that the ‘set’ button darkens when 

you have typed in a parameter name which is the model. The next step is to click that button. 

 

To run the analysis, go back to the ‘Update Tool’ window and select the number of iterations 

you would like to run. Every iteration produces one independent sample from the joint posterior 
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distribution. The more parameters in the model, the more iterations it takes to explore the sample 

space. A reasonable number to start with is 10,000, but it is not uncommon to use 100,000 or 

even 1,000,000. 

Once the simulation is finished, return to the ‘Sample Monitor Tool’ window to 

review the results. To view results for one parameter at a time, select the desired parameter from 

the ‘node’ text box/drop-down menu. To view all parameters at once, type ‘*’ into the node text 

box/drop-down menu. To view summary statistics, click the ‘stat’ button. Plots of the 

distributions can be viewed by pressing the ‘density’ button. To view the raw data, press the 

‘coda’ button. The result of pressing all of these buttons is shown in Figure 4.A.7.  

 

Figure 4.A.7: The summary statistics, density plots, and raw data for the specified parameters 

after 100,000 iterations. 

 

These data can then be imported and analyzed using a program of choice. To ensure convergence 

of the chain, press the ‘history’ button. The plot should look like white noise. If it looks like a 

flat line with occasional jumps, or if it trends up or down, the chain has not converged, and the 

model needs to be modified. This can happen if the initial values are far from the posterior mean, 

if the priors are inconsistent with the observed data, or if not enough iterations have been run. 



 

93 

 

Figure 4.A.8 shows a history plot for lambdaSample. The plot shows no obvious trends and 

appears like white noise, indicating that the chain has likely converged. 

 

Figure 4.A.8: history plot for the lambdaSample chain. Note that the plot looks like white noise, 

which is indicative of convergence. 

 

This is obviously only a brief introduction to OpenBUGS. Users should read the 

instruction manual, and educate themselves on the details of Markov Chain Monte Carlo, 

especially those related to chain convergence.  

 


