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ABSTRACT 
 

 
 

FINITE ELEMENT ANALYSIS OF SKELETAL MUSCLE: A VALIDATED APPROACH TO  
 

MODELING MUSCLE FORCE AND INTRAMUSCULAR PRESSURE 
 
 
 

Impaired muscle function can such as weakness is a reduction in muscle quality or quantity. 

Muscle weakness is debilitating conditions which can result from neuromuscular diseases and 

conditions such as multiple sclerosis, muscular dystrophy, stroke, injury, and aging. Impaired 

muscle function leads to disability, risk of injury, decreases in quality of life, and even death. 

Early disease detection, rehabilitation efforts, surgical techniques, and drug delivery can all be 

improved with the ability to identify muscle weakness by determining individual muscle force in 

vivo. Current clinical methods fail to measure individual muscle force as they are either 

inaccurate for individual muscle estimations (torque measurements) or are too invasive (buckle 

transducer insertion). Electromyography (EMG) is commonly used to diagnose improper muscle 

function, yet it is only a measurement of electrical activity. Thus, there is no minimally invasive 

clinical method which currently evaluates muscle force in vivo, which makes identifying and 

treating impaired muscle a challenge. 

 

Pressure of interstitial fluid within muscle (i.e. Intramuscular Pressure, IMP) is the direct result 

of active muscle contraction or passive stretch. A low profile pressure microsensor can be used 

to measure IMP and thus evaluate force of individual muscles in vivo. Accurate microsensor use 

however, is reliant upon developing a relationship between IMP and force, which is currently 

incomplete. Specifically, while force and IMP are correlated, the variability of IMP in vivo 
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makes muscle force estimates from IMP measurements a challenge. Additionally, the 

distribution of IMP throughout muscle is variable and poorly understood. The goal of this work 

is to develop a computational model which can be used to better understand the behavior of 

intramuscular pressure. However, a lack of mechanical experimental analysis of skeletal muscle 

makes developing a robust model a challenge. Thus, two specific aims are proposed:  

 

1) Experimentally investigate the passive properties of skeletal muscle and identify proper 

modeling assumptions to make in developing a constitutive approach. 

2) Develop and implement a finite element approach for skeletal muscle which is capable of 

simulating muscle force and intramuscular pressure under passive stretch and active 

contraction conditions 

 

Implementation of this model will provide insight into the potential causes of variability of 

intramuscular pressure measurements in vivo and future clinical approaches. 
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CHAPTER 1: 

INTRODUCTION 

 

 

1.1 Skeletal Muscle Anatomy and Physiology 

 Skeletal muscle is a soft tissue which comprises roughly 30% of body mass in females 

and 40% of body mass in males [1]. The primary role of skeletal muscle is to maintain posture 

and provide locomotion to the body. Skeletal muscle is unique as it has both a complex structure-

function relationship as a passive material and exhibits contractile capabilities when voluntarily 

stimulated [2]. From the smallest repeating unit of the tissue – the force generating sarcomere – 

to whole muscle, the biological design and mechanical function allows skeletal muscle to grow, 

adapt, and perform its primary role: drive movement of the skeletal system. 

 

1.1.1 Micro and Cellular Level 

The signature quality of skeletal muscle, contractile force, is first generated by the sarcomere 

before eventually being transmitted through muscle to tendons, and finally the skeletal system. 

Thus, understanding active muscle function must first start at the sarcomere, which is between 1-

4 μm in length [3]. The two primary constituents of the sarcomere are the myofilaments actin and 

myosin (Figure 1-1). The ability of skeletal muscle to generate force is traditionally attributed to 

these two proteins through the sliding filament theory (Figure 1-1B) [4,5]. In its natural state, 

myosin is bound to actin through cross bridges [2]. The addition of adenosine triphosphate 

(ATP) facilitates the unbinding and “charging” of myosin heads, moving from a low energy to a 

high energy state (Figure 1-1C). When the myosin head re-binds to the actin filament and pivots, 
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this shortens the overall length of the sarcomere. The action of one myosin head pivoting 

produces roughly 5 pN of force [6], while the maximum force from one sarcomere is roughly 

150 mN [7]. The z disk separates sarcomeres in series, while the m line designates the middle of 

each sarcomere (Figure 1-1A). The final component of the sarcomere is the protein titin, which is 

largely responsible for the passive tension in elongated sarcomeres [8]. Titin, one of the largest 

molecules discovered at roughly 3 MDa, is a key contributor to passive muscle fiber stiffness and 

organization of the sarcomere [9], and recent studies have suggested it may play a role in force 

enhancement in eccentric (shortening) skeletal muscle contraction [10,11].  

 

Figure 1-1. A) Schematic of the relaxed sarcomere, which is comprised of contractile 
myofilaments actin and myosin and the protein titin. The m line and z disk are architectural 
identifications of the sarcomere. B) Schematic of the contracted sarcomere, which is largely 
attributed to the interaction between actin and myosin. C) Schematic of the interaction between 
actin and myosin under high energy (left) and low energy (right) states. 
 

The maximum isometric force (when the sarcomere is at a constant length while contracting) 

generated by a sarcomere is largely a function of the sarcomere length [2,3]. Additionally, titin is 

considered responsible for passive stiffness when the sarcomere is passive stretched [10,12,13]. 
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Under isometric activation, the force-length relationship is thus broken into active and passive 

contributions (Figure 1-2). For the active contribution, this includes an ascending limb where 

actin overlap inhibits force production (Figure 1-2A), a plateau region where actin/myosin 

overlap is optimal (Figure 1-2B), and a descending limb where actin/myosin overlap decreases 

(Figure 1-2C). The sarcomere supports passive tension beginning at the plateau – also known as 

optimal length, which increases in nonlinear fashion as it is stretched. 

 

Figure 1-2. The force-length relationship of the sarcomere, beginning with active force for A) the 
ascending limb, where actin interference occurs, then B) the plateau or optimal length, where 
overlap between actin and myosin is maximized, and C) the descending limb, where actin-
myosin overlap decreases. D) Passive tension is attributed to stretching of the protein titin. 
 

Sarcomeres are organized in series and in parallel to form myofibrils, which are grouped in 

skeletal muscle cells (Figure 1-3A). Skeletal muscle cells, also known as muscle fibers, are long 

cylinder shaped structures, similar to other cells within the body in that they contain 

mitochondria, nuclei, fluid filled sarcoplasm, and a membrane (Figure 1-3A). The length and 

diameter of muscle fibers, however, are variable depending on the specific muscle task, as long 

fibers have high contraction velocities and produce a large range of motion, while fibers with a 
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larger diameter generate more force [2]. Surrounding the myofibrils is the transverse tubule 

system, which transmits contractile signals to the myofilaments. These signals originate as 

electrical potentials within the brain and spinal cord, travel to muscle through nerve cells known 

as motor neurons, and are transferred into chemical signals at the muscle fibers (Figure 1-3B). A 

motor unit is comprised of the motor neuron and the muscle fibers which it innervates. 

 

Figure 1-3. A) Muscle fibers or cells contain mitochondria and nuclei similar to other cells, along 
with contractile myofibrils and the transverse tubule system. B) A motor unit is comprised of a 
motor neuron or nerve cell and the muscle fibers it innervates. 
 

When muscle fibers are stimulated through motor neurons with a single impulse, they generate a 

fiber twitch which occurs over 100 ms [2]. Increases in impulse frequency lead to summations of 

contraction waves, which when stimulated at high frequencies such as 100 Hz, fully fuse to 
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create a smooth force profile (Figure 1-4). The maximum contractile forces created by muscle 

fibers and motor units are highly variable, as they depend on fiber size, number of fibers, and the 

oxidation type of muscle fibers [2]. Fast muscle fibers generate more force and contract at a 

faster rate than slow muscle fibers, and each motor unit is comprised of fibers with similar fiber 

type. While physiologically there is a continuous distribution of fiber behavior ranging from 

“fastest” to “slowest”, the creation of fiber types allows for general characterization of 

differences between fibers and muscles which have variations in physiology and function. 

  

 

Figure 1-4. Representative graph of the force generated by a motor unit under various impulse 
frequencies. Gray arrows represent a single impulse at each time point. 
 

The most common classification of muscle fibers and motor units is a division into three types: 

fast fatigable, fast fatigue resistant, and slow [14]. Variations in the function of these fibers are 

largely due to composition, including the type of myosin, the distribution of mitochondria, the 

size of the transverse tubule system, the size of the motor neurons, and the organization of the 

sarcomere [2,14,15]. In effect, fast fatigable fibers and motor units generate the highest amount 

of force but fatigue quickly, even within seconds. Fast fatigue resistant fibers generate less force 
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but are resistant to fatigue, and slow fibers generate the least amount of force but show very little 

fatigue even over multiple hours. These fatigue properties are largely due to the methods through 

which the fibers generate the molecule necessary for the actin-myosin complex to contract: 

adenosine triphosphate (ATP). Slow fibers use oxidative metabolism to create 32 ATP molecules 

per glucose molecule, while fast fatigable fibers use glycolysis to yield only two ATP molecules 

per glucose molecule [2]. Fast fatigue resistant fibers use both mechanisms. While oxidative 

metabolism is more efficient, oxygen is not readily available in large quantities, thus glycolysis 

can be used on stored glucose molecules. This phenomenon contributes to motor unit 

recruitment, where the small slow fibers are first recruited to prevent fatigue and excess use of 

stored glucose, then medium sized fast fatigue resistant, and finally large fast fatigable fibers, 

which is known as the Henneman size principle [16]. 

 

1.1.2 Tissue Level 

Skeletal muscle is organized in a hierarchical structure by the extracellular matrix (ECM) [17]. 

The endomysium is the first layer of this matrix as it surrounds muscle fibers themselves (Figure 

1-5A). The perimysium groups multiple fibers together into bundles or fascicles, and the 

epimysium surrounds whole muscle (Figure 1-5A). The ECM is largely comprised of collagen, 

including many different collagen types depending on the specific layer [18,19]. In total, skeletal 

muscle is comprised of roughly 80% intra and extracellular fluid by mass, with the remaining 

20% being constituents such as extracellular matrix, contractile material, and solid cellular 

components [2,17,18,20]. Additionally, the extracellular matrix plays a key role in transmission 

of contractile force, as is connects muscle fibers in parallel, thus transmitting force laterally 

throughout the tissue (Figure 1-5B) [21]. Finally, much of the passive tensile stiffness of skeletal 
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muscle can be attributed to the ECM, in addition to stretching of titin at the sarcomere level [22]. 

Muscle is attached to the skeletal system through aponeurosis, which is a tendinous-like sheath 

where fibers terminate, and tendon. 

 

Figure 1-5. A) Muscle extracellular matrix provides a hierarchical structure starting with 
endomysium, which surrounds muscle fibers, then perimysium, which groups multiple fibers into 
a bundle or fascicle, and finally epimysium, which surrounds whole muscle. B) Schematic of 
transmission of contractile force (black arrow) in skeletal muscle, as the ECM connected muscle 
fibers laterally (top), such that when fibers contract the force is transmitted laterally through 
shearing of the ECM (bottom). 
 

The isometric force-length relationship observed at the sarcomere level is similarly observed at 

the whole muscle level, and while muscle lengths range significantly in vivo, a general estimate 

of ± 20% of optimal length is usually appropriate (Figure 1-6A) [3]. Additionally, just as the 

sarcomere generates force as a function of length, muscle force also varies depending on 

contraction velocity. However, the difficulties in experimentally observing this phenomenon at 

the sarcomere level make it much easier to study at the fiber or tissue level [23,24]. Muscle 

contraction velocity is designated into two scenarios: muscle shortening or concentric activation, 

and muscle lengthening or eccentric activation. Under concentric activation, muscle force 

decreases in nonlinear fashion as contraction velocity increases (Figure 1-6B) [25]. Under 

eccentric activation, however, muscle force rapidly increases and plateaus as the rate of 
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lengthening increases (Figure 1-6B). Whole muscle specific tension (total force divided by area) 

is 25 N/cm2 or 250 kPa for fast fibers, and 10 N/cm2 or 100 kPa for slow fibers [2]. 

 

Figure 1-6. A) Isometric force-length relationship of whole muscle is similar to that of the 
sarcomere. A general estimate of muscle strain in vivo is ± 20% of optimal length, although this 
varies. B) Force-velocity relationship of whole muscle is divided into two conditions: concentric 
(shortening) and eccentric (lengthening) contractions. 
 

Organization of muscle fibers in vivo also contributes to the function of force generation. 

Perhaps the two most important characteristics of whole muscle structure are fiber length and 

physiological cross sectional area (PCSA, Equation 1, where � is mass, �௣ is pennation angle, � 

is density, and �� is fiber length). Muscles with longer fibers have a larger operating range, 

which provides more range of motion for the skeletal system, and have faster contraction 

velocities. Muscles with larger PCSA are able to generate more force due to increases in fiber 

area. Longer fiber lengths are the result of more sarcomeres in series, which contract at the same 

rate and change in length, while larger PCSA is the result of more sarcomeres in parallel, which 

all contract with the same force. Increases in PCSA are partially the result of fiber packing, or 

fiber pennation. The pennation angle �௣ is the angle between the force generation of muscle and 
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the orientation of muscle fibers (Figure 1-7A). Fiber packing through pennation allows for more 

fibers in series and thus greater force production (Figure 1-7B). ���� = �∗�௢����∗��        (1) 

 

Figure 1-7. A) Skeletal muscle pennation angle �௣ is the angle between the direction of whole 
muscle and muscle fibers. B) In comparison to a pennation angle of zero (top), pennate fiber 
packing (bottom) allows for more fibers in parallel for the same volume, and thus more muscle 
force. 
 

The structure and composition of skeletal muscle manifests in unique function as a passive 

constituent as well. Specifically, muscle exhibits transversely isotropic and nonlinear stiffness 

behavior under both tensile [26,27] and compressive [28,29] loading. However, there are 

conflicting studies in terms of tensile anisotropy, as some report the muscle fiber or longitudinal 

direction exhibits a stiffer response than the cross fiber or transverse orientation [30], while 

others report the opposite [26,27]. While it’s unclear exactly why these studies are conflicting, 

the disparities may be the result of post mortem handling and rigor mortis effects [28,31,32], 

variations in muscle architecture across species, or differences in testing protocol.  

Time dependent relaxation also occurs under both tension [33–35] and compression [36–38], and 

while this is largely attributed to inherent viscoelasticity of muscle, poroelasticity (fluid flow) 

may play a role as well [39]. Additionally, while passive tensile viscoelasticity at the muscle 

fiber level is nonlinear [35], this does not appear to be the case at the whole muscle level [34]. 

This complex passive behavior is the result of contributions from and interactions between 
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muscle fibers, the extracellular matrix, and the fluid content of skeletal muscle. While the 

extracellular matrix largely contributes to tensile stiffness as stated above [22], the complete 

structure-function relationship for skeletal muscle is still not clear. Thus, to better understand 

passive muscle function, the nonlinear viscoelastic behavior at the tissue level and the role of 

poroelasticity must be elucidated. 

 

1.2 Impaired Skeletal Muscle Function 

Muscle weakness is a major clinical concerns surrounding skeletal muscle function. Weakness 

can be the result of a wide range of clinical conditions, including neuromuscular diseases such as 

multiple sclerosis [40], and muscular dystrophy [41], sarcopenia [42], injury to orthopaedic 

tissue [43] and neurological tissue [44], and stroke [45]. Characterized as a decrease in the force 

generated by skeletal muscle, weakness can cause increased risk of injury or fall [46], is 

associated with osteoarthritis [47], and in the case of muscular dystrophy eventually causes death 

[41]. The causes for neuromuscular diseases include motor neuron degradation for multiple 

sclerosis and a breakdown of the force transmission within muscle through the dystrophin 

molecule for muscular dystrophy. Thus, there is a wide range of causes for impaired skeletal 

muscle function, and a long list of symptoms and increased risks for those with force 

impairment. 

 

Muscle weakness result from and can lead to a number of physiological changes in skeletal 

muscle function [2]. For example, chronic disuse leads to decreases in muscle volume (and thus 

cross sectional area), increases in passive muscle stiffness through fibrosis, and a transition to 

predominantly fast twitch fiber types [48]. Sarcopenia leads to muscle weakness as a result of 
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decreases in muscle quality (specific tension or force per area) and muscle quantity [49,50]. 

Thus, diagnosing and treating skeletal muscle impairment requires a knowledge of both improper 

physiological function and structural or biological changes. 

 

Current methods to evaluate skeletal muscle function in vivo include electromyography (EMG) 

buckle transducer insertion, and torque measurements. However, EMG is a measurement of 

electrical activity only [51–53], buckle transducer insertion is a highly invasive procedure 

[54,55], and torque measurements are from multiple muscles crossing a joint and thus do not 

directly measure individual muscle force [56–59]. Thus, there is no current clinical approach to 

directly evaluate individual muscle force. While the above approaches all provide valuable 

insight into skeletal muscle function and impairment in vivo, these drawbacks severely limit the 

clinical capabilities of surgeons, physicians, and physical therapists. An approach to directly 

identify individual muscle force would benefit diagnostic techniques for neuromuscular diseases, 

treatments of muscle weakness and spasticity, and targeted delivery for drug therapies. 

 

1.3 Intramuscular Pressure 

Intramuscular pressure (IMP) is the pressurization of saturating fluid within skeletal muscle 

which occurs as a result of active contraction or passive deformation [60–65]. The correlation 

between muscle force and IMP is evident under isometric contraction [64,66,67], and promising 

under dynamic contractions [68]. Early studies of intramuscular pressure identified a linear 

relationship between pressure and muscle contraction force under submaximal isometric 

conditions [69], which were followed by  studies at maximum voluntary contraction [62], and 
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under dynamic conditions [70], which were possible through advancements in pressure 

measurement technique.  

 

IMP measurements have traditionally been obtained through insertion of a either needles [56,71], 

wick catheters [66], or pressure transducers [62] which can be invasive, particularly for isotonic 

(lengthening or shortening) contractions. More recently, the implementation of a minimally 

invasive pressure microsensor has shown success at measuring IMP [64,68,72]. These fiber optic 

microsensors measure fluid pressure through fluctuations of a diaphragm, which alters a fiber 

optic signal (Figure 1-8). Recent sensor advancement has shed further light into proper 

microsensor use, specifically sensor housing and anchoring within the tissue play a key role in 

accuracy of IMP readings, particularly under dynamic conditions [73]. These new sensor 

advancements have thus improved the functionality of this minimally invasive IMP measurement 

approach. 

 

Figure 1-8. A) Pressure microsensor image, highlighting the sensor diaphragm which deforms 
due to environmental pressure, altering the fiber optic signal which is converted into pressure 
readings. B) Microsensor schematic with nitinol housing and anchoring barbs (left). 
 

However, the correlation between muscle force and IMP is not currently strong enough for use of 

IMP as a clinical approach to estimate muscle force. This may be due to previous measurement 

techniques [73], variations in IMP spatially throughout the tissue [71], and difficulties with 
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patient to patient and muscle to muscle reproducibility [62,74]. Additionally, even some 

repeatability experiments have shown difficulties in developing a consistent relationship between 

muscle force and intramuscular pressure [75]. Intramuscular pressure is also a function of fatigue 

[76], and from an impairment standpoint it remains unclear how IMP varies with 

musculoskeletal diseases such as cerebral palsy, muscular dystrophy, and sarcopenia. In 

summary, there are major concerns in utilizing IMP measurements to predict skeletal muscle 

force, as the IMP distribution throughout skeletal muscle is currently unknown and there is little 

information on the force-IMP relationship in conditions other than healthy, rested skeletal 

muscle. Thus, there is a need to develop a tool which can accurately characterize both muscle 

force as well as intramuscular pressure, and provide both global and local insight into skeletal 

muscle function. 

 

1.4 Finite Element Analysis of Skeletal Muscle 

Finite element analysis is the use of discretization to solve complex geometrical problems with 

simplified approximate solutions (Figure 1-9). Finite element models have been developed 

simulating wide range of orthopaedic tissues, including bone [77,78], cartilage [79,80], meniscus 

[81,82], ligament and tendon [83], and intervertebral disk [84,85]. Additionally, finite element 

models incorporating multiple tissues have also been developed and implemented, such as those 

simulating the behavior of the human knee [86] and spine [87]. 
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Figure 1-9. A) A finite element model of the human knee with a hexahedral mesh discretizes the 
complex geometry into elements. B) The solution for deformation of a hexahedron element is 
simpler than that of a more complex geometry. 
 

Finite element modeling of skeletal muscle requires a unique approach due to the contractile 

nature of the tissue. Various finite element modeling studies have been conducted on skeletal 

muscle, with a wide range of assumptions. Early muscle finite element modeling incorporated 

muscle activation into a constitutive approach utilizing anisotropic hyperelasticity [88,89]. 

Blemker et al developed a three-dimensional idealized geometry of the biceps brachii which also 

included a hyperelastic and anisotropic formulation to study various geometrical assumptions 

[90]. Since then, similar models have been developed and implemented with improvements, 

including whole muscle geometry [91], studies of the role of fiber orientation [92,93], passive 

properties [94], simulations of shortening and lengthening muscle [95], and in vivo simulation 

[96]. Inhomogeneous assumptions have also been applied at various tissue scales, separating 

contractile and passive constituents of skeletal muscle [97–101]. 
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While each of these approaches have provided valuable insight into muscle function or increased 

accuracy over previous methods, there still exists major advancements to be made in the muscle 

modeling field. Specifically, passive time dependent behavior of skeletal muscle is often 

neglected despite clear evidence of this behavior at the fiber [35], tissue [36], and whole muscle 

[34,102] level. There are limited finite element studies that treat skeletal muscle as viscoelastic 

[34], and despite the conflicting data on the tensile nonlinearity of muscle viscoelasticity, this has 

not been evaluated from a modeling perspective. Additionally, no finite element study of skeletal 

muscle had previously been developed incorporating poroelastic effects although they may 

contribute to muscle mechanics [39]. Finally, while some studies utilize a transversely isotropic, 

hyperleastic constitutive formulation which models muscle fibers as reinforcing constituents 

[88,101], some experimental studies have reported that muscle is actually stiffer in the cross fiber 

or transverse direction [26,27]. Thus, recommendations must be made in terms of proper 

modeling assumptions for skeletal muscle composition and function. 

 

One of the earliest finite element studies of skeletal muscle was conducted to study the 

relationship between skeletal muscle force and intramuscular pressure [103]. While this approach 

was effective at modeling both passive and active muscle stress and intramuscular pressure, there 

were several drawbacks which inhibit broad use of this model. Firstly, time dependent properties 

were ignored, which severely limits the use of this model to study dynamic conditions. 

Additionally, the idealized geometry and lack of fluid content inherently limit the physiological 

accuracy, as intramuscular pressure is the pressurization of muscular interstitial fluid. Lastly, it 

remains to be seen if this approach is valid outside of the single condition which was modeled, 

the New Zealand White Rabbit tibialis anterior. Thus, while this model displayed efficacy of 
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finite element analysis in accurately characterizing both muscle force as well as intramuscular 

pressure, a more comprehensive approach is needed to achieve clinical impact. 

 

1.5 Specific Aims 

To improve clinical treatment of impaired skeletal muscle, the following specific aims have been 

identified to facilitate the development and employment of a computational tool which is capable 

of modeling both muscle force as well as intramuscular pressure. This tool can then be used to 

further study the relationship between muscle force and intramuscular pressure and potentially 

identify the cause of variability of intramuscular pressure measurements. 

 

Specific Aim 1: Experimentally investigate the passive properties of skeletal muscle and identify 

proper modeling assumptions to make in developing a constitutive approach. 

 

 Sub Aim 1A: Evaluate the viscoelastic nonlinearity of skeletal muscle in tension. 

While the assumption of linear viscoelasticity is common in biological studies and has been 

applied to skeletal muscle at the whole tissue level, muscle fibers have shown nonlinear 

viscoelastic behavior. Thus, it remains unclear as to how skeletal muscle viscoelasticity should 

be modeled from a tensile standpoint. Experimental data of skeletal muscle under stress 

relaxation conditions will be completed and analyzed using various viscoelastic models to 

determine the appropriate assumptions for future models. 
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Sub Aim 1B: Elucidate the true tensile transverse isotropy of skeletal muscle. 

Conflicting reports in literature of skeletal muscle transverse isotropy make proper modeling 

assumptions difficult to determine. Specifically, the question of whether or not the longitudinal 

or fiber direction is stiffer than the transverse or cross fiber direction must be answered. 

Experimental work is proposed to compare the transversely isotropic tensile behavior of skeletal 

muscle when tested under fresh conditions (pre-rigor) versus tissue subject to a freeze-thaw 

cycle. The findings will dictate the transversely isotropic constitutive approach for in vivo 

skeletal muscle. 

 

 Sub Aim 1C: Evaluate the hydraulic permeability of skeletal muscle. 

The hydraulic permeability of skeletal muscle is unknown, despite the fact that it plays a major 

role in fluid pressurization (such as IMP) in biological tissues. Some biological tissues also 

utilize fluid content and retention to disperse loads under compression, which is largely dictated 

by the hydraulic permeability of the material. While this is not the primary role of skeletal 

muscle, fluid content of muscle may still contribute to compressive stiffness. Thus, there is a 

need to determine skeletal muscle permeability for implementation of physiologically accurate 

computational models and to better understand the distribution of loads within the tissue. In this 

study, direct permeation experiments will be performed along with simulations of experimental 

findings with various assumptions to determine how to properly model skeletal muscle 

permeability. 
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Specific Aim 2: Develop and implement a finite element approach for skeletal muscle which is 

capable of simulating muscle force and intramuscular pressure under passive stretch and active 

contraction conditions. 

 

 Sub Aim 2A: Develop a passive constitutive approach and validate against stretched 

skeletal muscle using finite element analysis. 

Based on the findings from Specific Aim 1, a novel constitutive approach will be developed and 

implemented to simulate the passive stretch response for skeletal muscle. Specifically, this model 

will incorporate the tensile time dependent behavior determined in Aim 1B through 

viscoelasticity, nonlinear and transversely isotropic behavior from Aim 1B through transversely 

isotropic hyperelasticity, and the role of fluid flow and pressurization studied in Aim 1C through 

poroelasticity. The combination of these elastic theories will yield a transversely isotropic, 

hyper-visco-poroelastic constitutive approach. This constitutive model will be incorporated into 

a finite element geometry of the rabbit tibialis anterior for validation against experimental data of 

passively stretched muscle. The model will be validated against experimental data of both 

muscle stress as well as intramuscular pressure. 

 

 Sub Aim 2B: Develop an active constitutive and geometric approach and validate against 

contracting skeletal muscle using finite element analysis. 

As a continuation of Specific Aim 2A, muscle activation will be simulated utilizing an addition 

of active stress to the constitutive model developed in Aim 2A. Additionally, inhomogeneity will 

be incorporated to account for muscle constituents which can (fibers) and cannot (fluid, ECM) 

generate contractile force. This approach will similarly be validated against experimental data of 
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rabbit muscle behavior under isometric maximally stimulated contractile conditions. This aim 

will also further investigate how passive model properties contribute to fluid pressurization. 

Based on experimental data and model output, clinical recommendations will be made about 

sensor insertion technique. 

 

 Sub Aim 2C: Implement the developed approach from 2A and 2B in a model of human 

skeletal muscle to strengthen validation and investigate variability of intramuscular pressure. 

Following model validation under passive stretch (Aim 2A) and maximal isometric contraction 

(Aim 2B) in a rabbit model, modeling of human muscle will be completed. Model agreement 

with human muscle data will greatly strengthen the confidence in employing this constitutive 

approach due to major differences in muscle architecture and scale. This model will also identify 

possible contributions to the variability in intramuscular pressure measurements in vivo. 

Modeling results can also provide insight into possible sensor insertion locations and help guide 

future experimental work to validate computational findings.  
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CHAPTER 2: 

SKELETAL MUSCLE TENSILE STRAIN DEPENDENCE: HYPERVISCOELASTIC 

NONLINEARITY 

 

 

2.1 Introduction 

The passive properties of skeletal muscle play a key role in force transmission throughout the 

tissue under active generation and passive stretch [1–4]. In tendon transfer procedures, the 

detachment and re-attachment of a muscle requires the estimation of resting length with manual 

tensioning, which can lead to deficiencies in contractile function [5,6]. As skeletal muscle is non-

linear [7,8] and time dependent [9,10], this makes manually detecting proper resting length via 

passive muscle tension a challenge. To improve simulations such as finite element analyses, 

which can aid in surgical procedures by identifying proper muscle tension, we must first develop 

a complete understanding of the time and strain dependent properties of skeletal muscle. 

 

As the modeling approaches for soft biological tissues such as skeletal muscle continue to 

advance, the formulation of constitutive relationships for these materials become more complex. 

This is derived from a need for a more complete understanding of the material behavior of these 

tissues, enabling simulations to accurately predict both local and global tissue function. While 

computational models of skeletal muscle have been developing since the introduction of the Hill 

model in 1938 [11], there have been relatively few studies of muscle tensile material properties  

 
This chapter has been published as a Research Paper in the Journal of the Mechanical Behavior 
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at the tissue level [8,12,13], with the majority of studies evaluating skeletal muscle compressive 

properties [14–18]. 

 

Studies of the structural response of individual muscle fibers [9] and intact muscles [7,10,19] are 

more prevalent. Since skeletal muscle is a highly organized collection of fibers and a collagenous 

connective matrix, which plays a key role in force transmission [20], it may be difficult to 

extrapolate whole muscle behavior from results of studies of individual fibers. Likewise, 

variations in anatomical structure between muscles from different locations in the body makes 

inference of the response of one muscle from the study of another a dubious proposition at best. 

 

Many recent investigations into skeletal muscle properties have focused on hyperelastic material 

properties [7,8,13,17–19]. However, the number of studies examining the time dependency are 

limited to compressive conditions [14–16,18,21], single fiber [9,22] or whole muscle 

investigations [23–25], or utilize a linear or quasi-linear viscoelastic response [10,26,27]. Thus, 

to the author’s knowledge, there have been no previous modeling efforts which have included 

nonlinear tissue level strain dependent viscoelastic behavior for skeletal muscle in tension. 

However, when developing such a model, one must take care to ensure that any efforts can be 

implemented into future computational analyses. This is typically done through the development 

of an energy based formulation instead of a stress based formulation, which prevents stress 

integration in a finite element simulation [28]. 

 

Thus, the goals of this study were to (1) examine the time and strain dependent material 

properties of skeletal muscle tissue subjected to consecutive stress relaxation cycles and to (2) 
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implement a fully nonlinear hyperviscoelastic model to capture muscle nonlinearity in both time 

independent modulus and viscoelastic relaxation behavior under passive tensile conditions. 

 

2.2 Methods 

2.2.1 Specimen Preparation 

Longitudinal (along the fiber direction) load-relaxation tests were performed on nine tibialis 

anterior (TA) muscle samples harvested from nine New Zealand White rabbits (one sample per 

animal). The handling of all study animals was performed with approval from the Mayo Clinic 

Institutional Animal Care and Use Committee. Specimens were cut from the muscle midbelly 

away from surrounding fascia and aponeurosis to a thickness of 3.6 mm using a razor tissue 

punch with the long axis coinciding with muscle fiber direction (Figure 2-1). Specimens were 

22.0 ± 4.1 mm long and 5.4 ± 1.0 mm wide as measured with digital calipers. All testing was 

completed within two hours of sacrifice to mitigate the effects of post-mortem rigor [16,29]. 

Testing was performed at room temperature, and specimens were kept moist continually using a 

saline mist spray. 

 

2.2.2 Stress Relaxation Tests 

Load-relaxation tests were performed on an MTS 858 material test device (MTS, Eden Prairie, 

MN) with specimens mounted in thin film clamps (Imada, Northbrook, IL) (Figure 2-1). A pre-

stress condition corresponding to 0.1% of the ultimate stress of the muscle by direction [13] was 

applied. Specimen length was calculated as grip to grip length and strain was calculated from 

crosshead displacement per previous work on rabbit skeletal muscle [13]. Samples were subject 

to five load-relaxation cycles of 0.7 mm (mean strain of 0.031 ± 0.002 standard error of mean) 
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followed by a 300-second relaxation period [12]. Operating in this range ensured that tissue 

remained below the ultimate strain [13] and would not be strained to the point of creating 

damage or plastic deformation [9]. Force measurements were sampled at 20 Hz using a 1-kgf 

load cell (Transducer Techniques, Temecula, CA). As the relaxation behavior of muscles under 

stress relaxation has been shown to be strain-rate insensitive [30], all material tests were 

performed at a uniform rate of displacement.  Tissues were elongated at a rate of 3.8 mm/sec, 

corresponding to 0.1 fiber-lengths/sec [31]. 

 
Figure 2-1: Midbelly specimens were excised from the tibialis anterior (A) along the fiber 
direction (vertical arrow), loaded, and tested in a material testing system with thin film grips (B). 
Samples were cut into rectangular strips and the apparent dog bone shape (B) is a result of tissue 
compression at the grips and not changes in cross sectional area with sample length. 
 

2.2.3 Raw Data Analysis 

First Piola-Kirchoff stress (�) was calculated as the reaction force divided by the initial cross-

sectional area and converted into Second Piola-Kirchoff by � = �� where � is the deformation 

gradient. The relaxation ratio of each individual zeroed stress relaxation step was calculated as 

the mean stress over the final one second of relaxation divided by the peak stress from that step. 

Material elongation was determined using crosshead displacement. Green strain was calculated 
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as the mechanical correlate to �  (Equation 1, where ݁� is one dimensional Green strain and ݁ is 

engineering strain). All relaxation data was processed in Matlab (The Mathworks, Inc., Natick, 

MA) using a first order Savitsky-Golay filter (sgolayfilt) as it is highly effective in reducing high 

frequency noise. 

 ݁� = 1ଶ [ሺ1 + ݁ሻଶ − 1] (1) 

 

2.2.4 Linear Viscoelastic Prony Series 

Calculated stress relaxation data for each strain increment (five steps each and nine specimens 

for a total of 45 stress relaxation steps) were fitted to a constitutive formulation for viscoelastic 

materials [14,32] (Equation 2, where �ሺ݁� , �ሻ is the stress at time � and strain level ݁�, �ሺ�ሻ is 

the time dependent elastic modulus, and � is an integration variable). A three-term linear Prony 

series [14,32–35] was utilized to describe the time dependent elastic modulus (Equation 3, where �଴ is the instantaneous modulus, �௡ are relaxation coefficients, and �௡ are time constants). A 

nonlinear optimization (lsqnonlin) in Matlab applied the Levenberg-Marquardt unbounded local 

optimizing algorithm to fit experimental and model data. This approach varied all seven of the 

material properties from Equation 3 to minimize the residuals between the model output and 

experimental data at each time point [7,32,36–38]. Additional weight was given to the peak 

response to ensure a good fit throughout loading and initial relaxation by mutiplying the peak 

error by the total number of data points in each step [36]. The �଴ initial parameter value was set 

to 10 kPa, the �௡ terms were initially set to values of 0.5, 0.25, and 0.15, respectively, while the �௡ terms were set to 0.1s, 10s, and 100s, respectively. These values were determined by 

performing the optimization under a range of initial values and comparing the results to locate 

the optimal fits. The �௡ terms were set to decreasing values as a large portion of tissue relaxation 
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typically occurs over very short time periods in studies of biological tissues [14,15,35,36]. Each 

parameter was then scaled within the optimization such that all initial values remain on the same 

order of magnitude, which improves the fitting procedure [36,38]. 

 �ሺ݁�ሺ�ሻ, �ሻ = ∫ �ሺ� − �ሻ௧଴ ௗ��ሺ�ሻௗ� ݀� (2) 

 �ሺ�ሻ = �଴ {1 − ∑ �௡ଷ௡=1 [1 − exp ቀ− ௧�೙ቁ]} (3) 

 

2.2.5 Fully Nonlinear Hyperviscoelastic Modeling 

Experimental data was then averaged together to generate a single set of mean stress relaxation 

data in addition to the nine individual specimens. These data were fit to a fully nonlinear 

hyperviscoelastic model. Here the hyperelasticity was characterized by an isotropic polynomial 

strain energy density (SED) function [36,39] (Equation 4, where ߣ = ௟௟0, �ሺߣሻ is the stretch 

dependent strain energy density, ߣ� are the stretches in the longitudinal (1ߣ) and transverse (ߣଶ, ߣଷ) directions, respectively, and �ଶ� are material constants). The Poisson’s ratio (ߥ) of unbathed 

skeletal muscle was assumed to be 0.47, per a previous study of fresh skeletal muscle under 

uniaxial tension [8]. The resulting transverse strain was driven by the Poisson effect (ߥ =−�೟ೝ�೙ೞ�೗೚೙� ), resulting in a simplification of the three stretches to only a longitudinal stretch and strain 

dependence shown in Equation 5. 

 �ሺߣሻ =  ∑  �ଶ� ሺ1ߣଶ + ଶଶߣ + ଷଶߣ − ͵ሻଶ�
 

ଶ�=1  (4) 

1ଶߣ  + ଶଶߣ + ଷଶߣ = ௟௢௡�ଶߣ + ௧௥�௡௦ଶߣʹ = ௟௢௡�ଶߣ + ʹሺ1 + ݁௧௥�௡௦ሻଶ = ௟௢௡�ଶߣ + ʹ(1 − ௟௢௡�)ଶ݁ߥ
 (5) 

The instantaneous modulus �଴ was then calculated as a function of stretch from the SED 

equation (Equation 6) [39]. Previous studies have applied a polynomial expression to identify the 

dependence of Prony series parameters on stretch level for compressed muscle [15] and spinal 
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cord [32]. However, we chose to employ a simple exponential function for the purpose of 

minimizing the number of optimized parameters while still maintaining a robust, non-linear 

function. Thus, the relaxation coefficients and time constants were given exponential dependence 

on longitudinal stretch (Equations 7 and 8, where �௡, �௡, ߤ௡, and �௡ are material properties). A 

stretch and time dependent hyperviscoelastic tangent modulus (�ሺߣሺ�ሻ, �ሻ, which directly 

incorporates the strain energy density function through �଴ and the viscoelastic nonlinearity 

through �௡ and �௡ሺߣሻ, can then be defined (Equation 9). The complete nonlinear constitutive 

relationship for second Piola-Kirchoff stress is then developed (Equation 10), highlighting the 

coupling between stretch and time dependence of the tangent modulus. It should be noted that 

this tangent modulus characterizes the stiffness behavior at a particular deformation and is highly 

nonlinear, thus it should not be confused a linear elastic Young’s modulus. 

 �଴ሺߣሻ = Ͷ �2�ሺ�ሻ��2��2 = Ͷ [ʹ�ଶ + 1ʹ�ସ(ߣ௟௢௡�ଶ + ௧௥�௡௦ଶߣʹ − ͵)ଶ] (6) 

 �௡ሺߣሻ = �௡݁ݔ�(−�௡ሺߣ௟௢௡�ଶ − 1ሻଶ) (7) 

 �௡ሺߣሻ = ௟௢௡�ଶߣ௡ሺ�−)�ݔ௡݁ߤ − 1ሻଶ) (8) 

 �ሺߣ, �ሻ = �଴ሺߣሻ {1 − ∑ �௡ሺߣሻଷ௡=1 [1 − exp ቀ− ௧�೙ሺ�ሻቁ]} (9) 

 �ሺߣሺ�ሻ, �ሻ = ∫ �ሺߣሺ�ሻ, � − �ሻ௧଴ ௗ�ሺ�ሻௗ� ݀� (10) 

The fitting procedure was similar to the optimization performed for single step data, but it 

included all five consecutive relaxation steps and the expanded constitutive relation outlined 

above. Ten separate optimizations were performed, each of the nine individual specimens in 

addition to an averaged set of mean experimental data. The nine individual specimens provided 

statistical measurement of variability, while the set of mean experimental data was used to 

develop a single set of constitutive parameters as averaging parameters from multiple specimens 
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is an ineffective approach in constitutive mode ling [40,41]. The initial parameter values were 

structured similarly to the linear Prony series fitting, where initial �௡ values of 0.5, 0.25, and 

0.15 were used along with initial �௡ values of 0.1s, 10s, and 100s. This was achieved by setting 

all �௡ and �௡ initially to a value of zero, which results in no initial strain dependence. All initial 

parameter values can be found in Table 2-1. To verify uniqueness and global minima, the 

optimization was repeated with each parameter either reduced by 50% or increased by 100%. 

 

Table 2-1: Initial parameter values for the fully hyperviscoelastic model fitting. Each parameter 
was scaled such that the initial values all shared the same order of magnitude. All �௡, �௡, and �௡ 
parameters are unitless. 

Parameter a2 [kPa] a4 [kPa] α1, 2, 3 β1, 2, 3 μ1, 2, 3 [s] ω 1, 2, 3 

Initial Value 10 1000 0.5, 0.25, 0.15 0 0.1, 10, 100 0 

 

While the fully nonlinear hyperviscoelastic model provides a highly robust approach, 

justification for employing such a complex constitutive formulation is needed. Specifically, it 

was unclear if both the hyperelasticity and nonlinear viscoelasticity were both necessary. Thus, 

the outlined optimization procedure to fit mean experimental data was employed with four 

separate models combining linear and nonlinear components from Equations 2 through 7. These 

models included the fully nonlinear model (FNM), a model including a linear instantaneous 

modulus and nonlinear viscoelasticity (LINV, Equations 2, 3, 7, and 8), a nonlinear 

instantaneous modulus and linear viscoelasticity approach (NILV or often referred to quasilinear 

viscoelasticity or QLV, Equations 2-6), and a fully linear model (FLM, Equations 4-10) 

(Equation 2). 
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2.2.6 Statistics 

The goodness of fit for each load-relaxation cycle was evaluated with the goodnessOfFit 

function in Matlab [36]. In brief, the “fit” value was determined from the normalized mean 

square (Equation 11), where ��௠ and ��� are the model and experimental stress values, 

respectively, at the �௧ℎ data point and � is the total number of data points. Fits range from -∞ 

(worst) to 1 (perfect). Additionally, the overall percent error and peak percent error (percent 

difference between peak response at the end of loading) were calculated. 

 ݂�� = 1 − ∑ [ ���−������−௠��௡(���)]ଶ௡�=1  (11) 

Muscle behavior was assessed by comparing the dependence on strain of all Prony series terms 

(Equation 3) and the relaxation ratio with a general linear model, with significance set at p<0.05 

for all tests. This was performed in Minitab Statistical Software (Minitab Inc., State College, 

PA). The coefficients of variation (CV) was determined for all statistical measures in the linear 

Prony series model to identify the accuracy of all fits. The CV was also calculated for all 

statistical measures and parameter values for the fully nonlinear model for five consecutive steps 

for all nine individual specimens. 

 

2.3 Results 

The peak and equilibrium stresses for all specimens show a nonlinear stress-strain relationship 

(Figure 2-2). As each specimen was displaced 0.7 mm, variations in gauge length provide a more 

continuous stress-strain graph than if each specimen was strained at identically discrete intervals. 

Using a nonlinear optimization algorithm in MATLAB proved to be an excellent approach to fit 

experimental data both visually (Figure 2-3) and by numerical analysis (Table 2-2), with both 

low percent error values and fit values close to the optimal value of 1. The optimizing process 
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also showed an excellent ability to fit both the peak response as well as the shape of the 

relaxation behavior. The optimization procedure was successful for both the linear model fit to 

individual zeroed stress relaxation steps (Figure 2-3A and Table 2-2) as well as the nonlinear 

model fit to five consecutive steps (Figure 2-3B and Table 2-2). 

 
Figure 2-2: Stress-strain data for all peak (black diamonds) and equilibrium (red circles) data 
from all nine samples. Note the nonlinear behavior for both peak and equilibrium responses in 
addition to the dispersed strain values. 

 

Table 2-2: Numerical optimization results for the linear Prony series fit to each normalized 
individual step and the fully hyperviscoelastic model optimized to all nine specimens. 

Statistical Measurement  
Mean or 

Coefficient of 
Variation 

Linear Model 
(Equations 2-3) Isolated 

Steps 
(45 individual steps) 

Nonlinear Model 
(Equations 4-10) Full 

Steps 
(9 specimens with 5 

steps each) 
Complete Response 

Error 
Mean (%) 2.73 4.93 

CV 0.45 0.28 
Peak Response Error 

Only 
Mean (%) 2.53E-5 6.65 

CV 1.28 0.25 

Fit Value 
Mean 0.967 0.999 
CV 0.022 7.6E-4 
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Figure 2-3: Viscoelastic Prony fitting to five isolated stress relaxation steps of a single specimen 
(A), with loading and initial relaxation shown inset. Arrow indicates curves go from lowest strain 
level on bottom to highest on top. Nonlinear hyperviscoelastic fitting to mean experimental data 
(B) with initial steps shown inset for clarity. 
 

Prony series relaxation coefficients and the instantaneous modulus for all five steps of all nine 

specimens were plotted (45 total) were plotted against Green strain to provide visual inspection 

of the dependence of modulus and relaxation behavior on strain level (Figure 2-4). Here a 

positive slope corresponds to increases with increasing strain, while a negative slope conversely 

suggests a decrease. The general linear model analysis of all Prony series coefficients showed 

that muscle relaxation behavior exhibited strain dependence (Figure 2-4), as changes in 

relaxation parameters were observed (�ଶ positive slope, p<0.0005 and �ଷ negative slope, 

p<0.0005) with increasing strain level. The instantaneous modulus �଴ also had a positive slope 

(p<0.0005). Alternatively, the analysis showed no changes in the �1relaxation parameter 

(p=0.157) rate parameters (p=0.184, p=0.205, and p=0.157 for �1, �ଶ, and �ଷ, respectively). The 

mean values (and coefficients of variation in percent) for the rate parameters were found to be 

0.109 (0.060) seconds, 5.29 (0.44) seconds, and 108 (0.54) seconds. The relaxation ratio showed 
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no dependence on strain (p=0.777) and had a mean value of 0.211 with a coefficient of variation 

of 0.18. 

 
Figure 2-4: Viscoelastic Prony series coefficients which were found to have a significant 
dependence on deformation level. The second relaxation parameter �ଶ (B) had a positive slope 
(p<0.0005), while the third relaxation parameter �ଷ (C) had a negative slope (p<0.0005). The 
instantaneous modulus �଴ (D) also increased with strain (p<0.0005). 
 

The mean data fit yielded a single set of constitutive parameters (Table 2-3), which can be 

utilized in computational modeling efforts. This single optimization resulted in a 2.97% error 

between the mean data and model, with a fit value of 0.999 and mean peak errors of 2.40% 

(Table 2-4). Multiplying initial parameters by 50% and 200% did not significantly affect either 

the model fit or optimized parameters. A visual representation of the model tangent stiffness 

provides a useful method to highlight the dependence of material behavior on both strain level 

and relaxation time (Figure 2-5). 
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Table 2-3: Optimized hyperviscoelastic constitutive parameters fitted to mean experimental data 
with coefficient of variation percent in parentheses. 

SED Ψ Relaxation Coefficients En Rate Coefficients τn 

a2 [kPa] 
6.62 

(0.52) 
α1, 2, 3 [s] 

0.641 
(0.089) 

0.124 
(0.53) 

0.114 
(0.47) 

μ1, 2, 3 [s] 
0.202 
(0.25) 

12.2 
(1.2) 

262 
(2.1) 

a4 [kPa] 
3820 
(0.85) 

β1, 2, 3 
-2.27   
(2.6) 

3.67 
(2.7) 

1.46 
(8.6) 

ω1, 2, 3 
-9.78 
(1.1) 

11.6 
(2.8) 

-5.25 
(3.3) 

 

Table 2-4: Fitting comparisons between linear and nonlinear models, showing overall mean 
error, mean error of the five peak values, and the normalized mean square error goodness of fit. 

Statistical 
Measurement 

Fully 
Nonlinear 

Model 

Linear 
Instantaneous, 

Nonlinear 
Viscoelastic 

Nonlinear 
Instantaneous, 

Linear Viscoelastic 

Fully 
Linear 
Model 

Complete Response 
Error (%) 

3.20 15.1 4.08 33.0 

Peak Response 
Error Only (%) 

3.39 18.3 5.58 106 

NMSE Fit Value 1.00 0.984 0.999 0.937 

 

 
Figure 2-5: Tangent modulus behavior for the implemented fully nonlinear hyperviscoelastic 
constitutive model. This model exhibits dependence on both stretch level (x-axis) as well as 
relaxation time (various curves). The instantaneous response (circle markers, t=0 s) and 
equilibrium behavior (triangle markers, t=1,000 s) along with intermediate times are shown, 
highlighting the evolution of modulus behavior over time. 
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The model justification results (Figure 2-6 and Table 2-4) show that the fully nonlinear model 

(FNM) far outperformed others using a linear instantaneous response. The fully linear model 

(FLM) failed to capture any sufficient material behavior with an error of over 30% (Table 2-4). 

The two models combining linearity and nonlinearity (linear instantaneous nonlinear viscoelastic 

- LINV and nonlinear instantaneous linear viscoelastic – NILV) did an improved job predicting 

experimental behavior overall, particularly the NILV model (Table 2-4, ~4% overall error). The 

discrepancies between the FNM model and the LINV model can be observed within the first 

stress relaxation step (Figure 2-6). 

 

 
Figure 2-6. Comparison of various linear and nonlinear models fitted to averaged experimental 
data with only the first fifty seconds of the first step shown. Initial loading and relaxation (from 
0-2 seconds) is further highlighted on the left. 
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2.4. Discussion 

2.4.1 Experimental Data Analysis 

The experimental data shown in this work provides a more continual stress-strain relationship 

(Figure) when compared to studies for which each specimen is strained to identical discrete 

values. This allows for a more detailed investigation of the effect of strain level on passive 

skeletal muscle mechanics. The analyzed experimental data from this work can be compared to 

previously published works which studied the time dependent behavior of skeletal muscle in 

tension [9,12,24]. These investigations similarly showed a large portion of the relaxation occurs 

over a short time period, after which the tissue slowly transitions into an equilibrium state. 

Abraham et al., (2013) comparably investigated stress relaxation of excised New Zealand White 

Rabbit tibialis anterior, albeit it at a single 10% strain step and observed a steady state modulus 

of roughly 70 kPa for excised tissue compared to an equilibrium modulus value of around 20 kPa 

at 10% strain from our raw data. The fully nonlinear hyperviscoelastic model similarly predicts 

an equilibrium tangent modulus of 24 kPa at 10% strain from our data.  

 

Data from Takaza et al., (2013) and Morrow et al., (2010) suggest a stress level of between 5 and 

40 kPa at 10% strain in constant rate testing loaded at 0.05%/s. Best et al., (1994) show a stress 

level of ~350 kPa at 10% strain, at a much higher strain rate (667%/s), which certainly 

contributed to higher stress values. Our data shows stress values of roughly 5-10 kPa for peak 

and 2-3 kPa for equilibrium stress at 10% strain. However, as Meyer et al., (2011) showed with a 

single muscle fiber that superposition does not hold and consecutive stress relaxation cycles 

result in stresses lower than a single cycle, this may account for the discrepancies between our 

data and other literature. Specifically, the increased stiffness observed by Abraham et al would 
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be a result of a single stress relaxation step at 10% strain, compared to 3-4 smaller steps of 

roughly 3% strain, while the constant rate elongation tests would see a compounding effect, 

resulting in increased stresses. 

 

2.4.2 Linear Prony Series Viscoelasticity 

Analyzing the optimized linear Prony series coefficients as well as the relaxation ratio provides 

insight into the transient performance of skeletal muscle as a function of strain (Figure 2-4). 

Outside of a study by Meyer et al., (2011) who investigated viscoelasticity of single fibers, there 

is limited published data to compare with our data. The first result to note is that the relaxation 

ratio exhibited no dependence on strain level, which appears to agree with the findings of Meyer 

et al., (2011) under consecutive stress relaxation steps on single fibers. The strong increase in 

instantaneous modulus with strain further supports the well-documented tensile hyperelasticity of 

skeletal muscle in the fiber direction [7,8,42]. 

 

The changes observed in Prony series coefficients with strain shows the course under which this 

relaxation occurs differs as a function of material strain. Specifically, the increases in the second 

relaxation coefficient coupled with a decrease in the third relaxation coefficient implies that with 

increasing strain the total rate of relaxation is increasing. This is simplified by the fact that the 

rate parameters did not change with strain level. These findings differ from Meyer et al., (2011) 

who found increasing stress relaxation steps resulted in a slower relaxation rate. However, the 

highly collagenous extracellular matrix [2,43,44] supports a large portion of muscular force 

transmission [3,20,45] and as such could certainly affect the relaxation behavior of the tissue. 

Previous studies have suggested that collagen fibers play a role in the time dependent response of 
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the meniscus [46] and cartilage [47], thus it is no surprise that the viscoelastic behavior of 

muscle differs between the fiber and tissue level. 

 

2.4.3 Fully Nonlinear Viscoelastic Model 

To the author’s best knowledge, this work presents the first fully nonlinear hyperviscoelastic 

model of tissue level skeletal muscle under tensile strain. Previous works have evaluated the 

viscoelastic nonlinearity of a single muscle fiber [9,22], have utilized a linear or quasi-linear 

viscoelastic response [10,26,27], or investigated other biological tissues such as spinal ligaments 

[48], the spinal cord [32], and skeletal muscle in compression [15]. Meyer et al., (2011)’s 

investigation of single fiber viscoelasticity was very effective in capturing the strain dependent 

viscosity of the mouse single fiber. We chose to employ a hyperelastic model as fiber bundle 

behavior exhibits nonlinear stiffness when compared to individual fibers or groups of fibers [20]. 

This SED based hyperelastic relationship (Equation 3) is also advantageous over stress based 

functions [9,15,32] which must be integrated to calculate strain energy within an analysis [28]. 

Thus, this constitutive formulation provides a simpler model to incorporate in finite element 

analyses. The fully hyperviscoelastic model exhibited not only the robustness to match various 

strain levels, but the accuracy to capture both the peak responses (average error of 3.29% for the 

five peaks) and the relaxation shape (3.20% overall error and a 0.999 total fit value). This novel 

formulation is capable of combining a technically sound continuum mechanics based 

hyperelastic SED function (Equation 3, which is polyconvex and positive definite) and a flexible 

exponential viscoelastic definition (Equations 6 and 7). The optimized coefficients (Table 2-3) 

can be directly incorporated into analyses in which the fully nonlinear behavior of the tissue is of 
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importance, such as repeated loading simulations or analyses involving inhomogeneous 

deformation. 

 

As this hyperviscoelastic model was applied numerically, there remains the mathematical 

possibility for a negative modulus based on the constitutive parameter values, which is clearly 

not physically reasonable. This can be investigated by identifying the role of each parameter 

within the constitutive model. The �ଶ and �ସ parameters describe the nonlinear behavior of the 

strain energy density function, and as such can be related to a stiffness or modulus term. The �௡ 

terms behave similarly to the �௡ terms from Equation 3, where they reduce a certain amount of 

the modulus over time, corresponding to each time constant, which are largely described with the ߤ௡ terms. The remaining �௡ and �௡ terms characterize the strain dependence of the �௡ and ߤ௡ 

terms, respectively, through an exponential function (Equations 7 and 8). We can see that 

positive �௡ and �௡ values result in increases in relaxation with increases in stretch level, while 

negative �௡ and �௡ values conversely result in decreases in relaxation with increases in stretch 

level. Figure 2-5 highlights the tangent moduli values for this model as a function of relaxation 

time and strain level, showing that the model does not implement a negative modulus, which 

would not satisfy thermodynamic equilibrium. 

 

A three term Prony series was selected for this work as it provides an excellent fit to 

experimental data while minimizing the total number of parameters. While increasing the 

number of Prony series terms increases the fitting potential, this is offset with computational 

capabilities, as minimizing the total number of parameters improves the accuracy of the 

optimization procedure [36]. However, some studies have employed higher order series 
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[14,15,32,49] with good success. Conversely, lower order Prony series have also been utilized 

effectively in studies of biological tissues [50,51]. However, the third order series allows for rate 

parameters dispersed at decade values (roughly 0.1s, 1s, and 100s for ߤ௡, Table 2-3), which are 

able to capture the short term, intermediate, and long term relaxation behavior of the tissue. It is 

uncertain exactly how increasing or decreasing the Prony series order would affect the model, 

but the effectiveness of the utilized approach remains clear. 

 

This highly nonlinear tangent modulus (Figure 2-5) further supports the well documented 

nonlinear response of skeletal muscle in longitudinal tension [7,8,13,52]. The nonlinear shape 

also continues throughout relaxation, as highlighted by the various curves at increasing 

relaxation times, suggesting that skeletal muscle tensile non-linearity exists both in the 

instantaneous and equilibrium state. Figure 2-5 also provides further evidence of a short and 

steep initial relaxation phase, as from zero relaxation (circle) to 0.1 seconds (asterisk) a 

significant portion of the tangent modulus is reduced. This is then followed by a more drastic 

decrease from 0.1 to 1 second (square), particularly at lower stretch values. Conversely, the 

changes in material behavior occurring between 10 (x) and 1000 seconds (triangle, when the 

material has reached equilibrium) represent a similar reduction in modulus, yet this occurs over a 

much longer time period. Furthermore, the fact that this modulus remains positive throughout 

complete relaxation and over a range of stretch values confirms the notion that the numerical 

application of this model obeys natural physical conditions.  

 

The model justification study (Figure 2-6 and Table 2-4) highlighted the improved fitting of the 

fully nonlinear model over the fully linear and LINV approaches. Specifically, the models 
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incorporating linear instantaneous behavior had inferior agreement, while the NILV (also known 

as quasi-linear viscoelasticity or QLV) model was able to produce a very strong overall fit to the 

data as well (~4% error, Table 2-4). Discrepancies between quasilinear and fully nonlinear 

modeling were observed at lower strains as the first step saw over 15% total error and over 20% 

peak error (Figure 2-6). However, the use of a quasilinear formulation or fully nonlinear 

formulation will likely depend on utilization as the ~1% difference between these two 

approaches is functionally quite small. Current utilization of fully nonlinear viscoelasticity 

requires a generous amount of computational power or time, thus the use of QLV is likely 

appropriate. As finite element analyses naturally develop more complex constitutive 

formulations and discrete physiological components to improve clinical significance, the 

inclusion of a fully nonlinear response may one day be a standard approach. 

 

2.4.4 Study Limitations and Improvements 

While this study effectively explores the strain-dependent changes in the temporal response of 

muscle tissue, further studies will be needed to establish a full understanding of tissue behavior. 

Specifically, single cycle load-relaxation studies over a range of strain levels and rates are 

needed to completely assess the extent to which muscle tissue does not adhere to the principle of 

superposition and to identify strain rate dependence. These data could also be used to validate the 

proposed hyperviscoelastic model. It should also be noted that this work represents the response 

of a single muscle (in this case the New Zealand White Rabbit tibialis anterior with a sample size 

N=9) and that further experiments to identify nonlinear viscoelastic muscle behavior for different 

muscles would greatly aid in the confirmation of the proposed model. It remains unclear how 
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muscle curvature, pennation angle, possible changes in fiber type among other physiological 

characteristics may affect the viscoelastic response.  

 

As this work only proposed an isotropic model, future studies should be performed to identify 

the viscoelastic behavior in the transverse direction as muscle is anisotropic [8,13]. However, 

from a computational standpoint, a simplified isotropic model allows for good global accuracy 

while minimizing computational cost [53]. Muscle studies in compression have identified 

transverse anisotropy under carefully controlled conditions [17] in addition to differences 

between the time dependent behavior as a function of loading orientation [14,15,18], yet it is 

unclear how these properties translate, if at all, to tension. Development of data sets including 

shear and volumetric loading conditions would provide a full picture of passive muscle behavior 

in tension. These data could then be incorporated by expanding the SED function from Equation 

3 and subsequently applying independent viscoelastic behavior for each term. This would 

broaden the current implementation to include transverse isotropy in addition to shear and 

volumetric behavior for use in a more complex three dimensional finite element model.  

 

Additionally, the ability of the utilized hyperviscoelastic constitutive model to predict any strain 

rate dependence remains unclear. The inclusion of any plastic strain, such as non-recoverable 

changes in length under in vitro tensile conditions, could also be added to improve finite element 

implementation. While there may be some concern over the use of second Piola-Ki rchoff stress 

over Cauchy stress, all data analysis was performed in the reference configuration and a push-

forward operation could be performed to more closely reflect the local material behavior if 

desired [39]. Finally, while the employed stretch level viscoelastic dependence (Equations 6 and 



 

 

48 
 

7) proved very effective at matching experimental data, a different formulation could possibly 

improve this model. 

 

2.5 Conclusion 

This study shows that the viscoelastic response of skeletal muscle has a statistically significant 

dependence upon strain level as evaluated by comparison of the relaxation response of five 

consecutive load-relaxation cycles. Furthermore, a novel fully nonlinear model including both an 

explicit hyperelastic strain energy density function and a strain dependent viscoelastic 

formulation provided an excellent fit to experimental data. However, the use of quasilinear 

viscoelasticity (QLV) was also able to capture material behavior to a high degree. Thus, for most 

models of skeletal muscle a QLV approach is appropriate although future work to reduce 

computation time would make fully nonlinear modeling an attractive approach. 
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CHAPTER 3: 

HOW DOES TISSUE PREPARATION AFFECT SKELETAL MUSCLE TRANSVERSE 

ISOTROPY? 

 

 

3.1 Introduction 

The human body relies on skeletal muscle, supported by other orthopaedic tissues, for 

locomotion and posture. Passive properties of muscle are governed by two components of the 

tissue: the protein titin at the sarcomere level which gives muscle fibers passive stiffness [1,2], 

and the collagen rich extracellular matrix which organizes muscle fibers in a hierarchical 

structure and dominates passive stiffness at the tissue level [3,4]. In the case of skeletal muscle 

these passive properties have a multifaceted purpose: allowing for the transmission of internal 

force generated at muscle fibers to tendons [5,6], storing energy during locomotion [7,8], and 

maintaining proper resting length for maximum force generation [9]. Muscle fiber alignment 

results in tissue transverse isotropy [10–13] as the material properties of the aligned fibers differ 

from those of the organized extracellular matrix [3]. 

 

Finite element analyses of biological soft tissues provide important insight into tissue behavior 

for clinical recommendations and observations. However, inaccurate constitutive models could 

present erroneous data, thus hampering clinical relevance. Some modeling studies of passive 

skeletal muscle assume the longitudinal direction is stiffer than the transverse direction [14–17]. 

While this is supported by some experimental work [11], there is also data which identifies a 

This chapter has been published as a Short Communication in the Journal of Biomechanics (49, 
12, 2016). All content has been adapted with permission from Elsevier. 
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stiffer transverse response as compared to the longitudinal direction [10,18]. These differences 

may be the result of disparities in experimental protocol and anatomical or species variations, 

although they are more likely the result of rigor mortis, which results in a stiffening of the tissue 

[13,19]. As rigor mortis is a complex phenomenon related to the actin-myosin complex [20,21], 

it most likely influences the longitudinal mechanics to a greater extent than in the transverse 

direction. Thus, it is hypothesized that the large observed differences in passive transversely 

isotropic skeletal muscle behavior is a function of non-fresh testing conditions and/or 

experimental protocol. Data supporting this hypothesis would provide two important 

recommendations for future studies of skeletal muscle: 1) all mechanical testing should be 

conducted on fresh, never frozen tissue, and 2) computational models of passively stretched 

muscle should reflect the true transverse isotropy in that the longitudinal direction is less stiff 

than the transverse direction. 

 

The goals of this work were thus to evaluate the effects of orientation and post mortem handling 

on the material properties of skeletal muscle. Specifically, we aim to answer the question: “How 

does tissue preparation affect the transversely isotropic stiffness and time dependence of skeletal 

muscle?” 

 

3.2 Methods 

Six Giant Flemish Rabbits were obtained with Colorado State University Institutional Animal 

Care and Use Committee approval. Following euthanasia, whole tibialis anterior muscles were 

isolated from each hind limb and stored in a refrigerator for either fresh testing (left or right limb 

randomly) or to allow for the onset of rigor mortis (contralateral limb). As rigor mortis begins 6-
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8 hours post mortem [13,19] fresh muscles were tested within four hours to reduce these effects, 

while the contralateral muscle was subject to non-fresh testing following a freeze-thaw cycle 

(Figure 3-1A). Each tibialis anterior yielded two samples, one longitudinal, and one transverse 

(Figure 3-1B). As the pennation angle of the New Zealand White Rabbit is very low (Lieber and 

Blevins, 1989), the longitudinal direction was assumed to be parallel with the axis of force 

transmission. 

 
Figure 3-1: (A) Specimen groupings and testing timeline, showing the fresh testing group and the 
group subject to non-fresh conditions and a freeze/thaw cycle. Each of these groups yielded 
longitudinal and transverse samples for a total of four groups. (B) Dissection orientations show 
that each muscle yielded two samples, one in the longitudinal direction and one in the transverse 
direction. 
 

Tensile tests were conducted on a servo hydraulic material test system (MTS, Eden Prairie, MN). 

Cross sectional area and gauge length were measured optically with a 1.4 megapixel 

monochrome camera and ImageJ software (National Institutes of Health, Bethesda, MD). 

Graphite powder was used to track strain with digital image correlation (DIC) software (Matlab, 
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Mathworks, Natick, MA) on a region of interest (ROI) (Figure 3-2A). Samples were obtained 

from the muscle midbelly such that they were free of aponeurosis, tendon, and epimysium. A 

custom fabricated drop cutter with high profile histology blades spaced 4mm apart was used to 

slice samples into ~16 mm2 cross section (Table 3-1). To ensure no dimensional differences 

occurred between longitudinal and transverse samples which could potentially influence sample 

behavior, paired equivalence tests were performed. These tests evaluated whether or not the 

mean cross sectional area or mean gauge length was superior for either longitudinal or transverse 

samples compared to the other group (p<0.05). The results showed that superiority was not 

established for either group (longitudinal nor transverse) for both cross sectional area and gauge 

length (p>0.05 for all tests). 

 

Table 3-1: Specimen dimensions (mean and standard deviation in parenthesis) for 
longitudinal and transverse samples. 

Sample Direction Cross Sectional Area (mm2) Gauge Length (mm) 

Longitudinal 17.25 (2.75) 18.14 (3.24) 

Transverse 15.93 (1.71) 17.70 (1.51) 

 

Tensile tests were conducted with a 9 N load cell (Futek, Irvine, CA). A pair of thin film grips 

was utilized to clamp all specimens to reduce grip slippage (Figure 3-2A). Specimen width and 

thickness were measured with image analysis at three locations along the length of each sample, 

while gauge length was measured as the grip to grip distance following a 0.1 N pre-load (Figure 

3-2A). Specimens were kept moist during testing with phosphate buffered saline (PBS) spray 

[10,11]. All specimens underwent an initial ramp phase of 10% strain at 10% second-1 followed 

by 300 seconds of relaxation and finally a constant ramp pull at 1% second-1 until specimen 

failure (Figure 3-2B). Cauchy (true) stress and Euler strain were converted from force-
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displacement data and used to calculate tangent moduli.  Data were smoothed with a third order 

Savitsky-Golay filter to reduce noise [22]. The Cauchy (true) axial stress component associated 

with loading direction (σ) was calculated using Equation 1 [23], where � is first corresponding 

Piola-Kirchoff (engineering) stress component and � and �� are the deformed and initial specimen 

lengths, respectively. The mechanical correlate to the Cauchy stress is Euler strain. The axial 

component of the Euler strain associated with the loading direction (e) is given in Equation 2. 

Tangent moduli (�) were calculated according to Equation 3. 

 � = � ��� (1) 

 � = ଵଶ [1 − ቀ��� ቁଶ] (2) 

 � = �� (3) 

Tangent moduli were calculated at the initial peak, end of the relaxation phase, and at 20% 

strain, which is the higher end of the physiological range for the rabbit tibialis anterior [24,25]. 

Relaxation ratio was calculated as the fraction of stress relaxation over three separate time 

periods following the initial ramp: 0-5 seconds, 5-50 seconds, and 50-300 seconds. The raw 

relaxation data were fitted to a power law equation (Equation 1, where � is Cauchy stress, � is 

relaxation time, and ܽ and ܾ  are constants which characterize the relative stress level and rate of 

relaxation, respectively) for identification of relaxation rate.  

 � = ܽ�� (4) 
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Figure 3-2: Specimen testing procedures. A: Experimental setup showing speckled sample with 
gauge length (black arrow), three width measurement locations (white arrows), and digital image 
correlation region of interest (DIC ROI – light blue dotted box). B: Testing outline (not to scale) 
highlighting initial ramp phase, relaxation phase, and final ramp phase to failure (strain of 0.3 
given as an example), with representative stress shown as solid black line and strain in dotted 
gray line. 
 

Mean and standard deviations for all data were calculated, including raw stress-strain and stress-

time data as well as moduli, relaxation ratios, and power law ܾ terms (Equation 1). A one-way 

ANOVA was performed with a Tukey’s post-hoc analysis (p<0.05) to identify differences in 

moduli, relaxation ratios, and power law ܾ parameter across all four groups.To identify the 

ability of the power law equation (Equation 1) to fit the relaxation data, the normalized root 

mean square error (NRMSE) was calculated for each specimen (Equation 5, where ܰ is the total 

number of data points, ݔ are the experimental data and ݕ are the model data from Equation 1).  

�ܵܯܴܰ  = √∑ ሺ௫�−௬�ሻమ��=భ�௫̅  (5) 
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3.3 Results 

All data passed the Anderson-Darling normality test (p>0.05), suggesting the data were normally 

distributed. This supported the use of an ANOVA to identify statistical differences between 

groups. Visual inspection of raw data and calculated moduli values show the peak modulus for 

longitudinal fresh samples is lower than all other groups (p=0.044, p<0.0005, and p=0.014 for 

transverse fresh, longitudinal rigor, and transverse rigor, respectively), while longitudinal rigor is 

higher than both transverse groups (p=0.008, p=0.027 for transverse fresh and rigor, 

respectively) (Figure 3-3A and 3C). Equilibrium moduli for longitudinal fresh was lower than all 

other groups (p=0.006, p=0.004, and p=0.001 for transverse fresh, longitudinal rigor, and 

transverse rigor, respectively), while values calculated at 20% strain during the constant rate 

phase again showed the longitudinal fresh group was lower than all other groups (p=0.001, 

p=0.004, p=0.015 for transverse fresh, longitudinal rigor, and transverse rigor, respectively) 

(Figure 3-3). The longitudinal fresh samples showed a highly nonlinear shape compared to the 

other groups (Figure 3-3B). 
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Figure 3-3. (A) Raw data results showing stress relaxation step stress-time data with standard 
deviation. The loading phase and initial relaxation are highlighted for clarity on left with no 
standard deviation. (B) Quasi-static testing stress-strain data with standard deviation. (C) Moduli 
values with standard deviation for all four groups at the peak of the stress relaxation step, at 
equilibrium of the stress relaxation step, and at 20% strain of the quasi-static testing phase (* 
denotes statistically different from longitudinal fresh samples and # denotes different from 
longitudinal non-fresh samples, p<0.05). 
 

Longitudinal rigor samples showed faster initial relaxation rate visually, as characterized by the 

power law ܾ  coefficient (p=0.017, p<0.0005, and p<0.0005 for transverse fresh, longitudinal 
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rigor, and transverse rigor, respectively), and when comparing the initial relaxation phase (0-5 

seconds, p=0.029, p<0.0005, and p<0.0005 for transverse fresh, longitudinal rigor, and 

transverse rigor, respectively) (Figure 3-4). The power law equation was able to fit the relaxation 

data very well, with a mean NRMSE value of 1.16E-2% and a standard deviation of 6.0E-3% for 

all samples. 

 
Figure 3-4. (A) Logarithmic plot of the mean relaxation behavior for the four experimental 
groups. (B) Mean and standard deviation power law ܾ values for all four groups (# denotes 
significantly different than longitudinal non-fresh samples, p<0.05). (C) Mean and standard 
deviation relaxation ratio for all four groups between 0-5 seconds, 5-50 seconds, and 50-300 

seconds (# denotes significantly different than longitudinal non-fresh samples, p<0.05). 
 

3.4 Discussion 

The increased tangent moduli values and increase in relaxation rate of longitudinal non-fresh 

samples show that post mortem handling plays a key role in the alteration of muscle mechanical 
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properties, which agrees well with previous experimental data on muscle properties as a function 

of rigor mortis [19]. However, it remains unclear how the mechanical properties of skeletal 

muscle are affected separately by rigor mortis and a freeze/thaw cycle. To the authors knowledge 

this work represents the first investigation of both transverse isotropy and time dependence of 

skeletal muscle as a function of post mortem handling. As rigor mortis is a complex biochemical 

phenomenon [20,21], it remains unclear exactly which mechanisms are contributing to these 

particular results. While this study employed a relatively small sample size (n=6), the statistical 

significance and observable differences were quite clear despite the sample number. 

 

While skeletal muscle tensile studies are common [10,11,15,22,26,27], separate investigations 

have determined the tissue to be stiffer in the longitudinal direction [11] or the transverse 

direction [10]. Our data for fresh samples agree well with Takaza et al for both transverse 

isotropy (transverse stiffer than longitudinal) and in terms of general stress-strain shape 

(longitudinal is nonlinear, transverse appears linear). Takaza et al show higher stress values at 

similar strain levels when compared to our data, as they reported ~100 kPa versus ~50 kPa 

reported here at 30% strain for longitudinal fresh samples and ~110 kPa versus ~25 kPa for 

transverse samples at 15% strain. However, this may be due to variations in species, anatomy, or 

experimental protocol, as stress values at the end of the relaxation phase from the data presented 

here were very low (<4 kPa) and Takaza et al did not incorporate a relaxation phase. Data from 

Morrow et al appears more linear in the longitudinal direction, which agrees fairly well with our 

longitudinal rigor samples, but is again stiffer than our samples. Unfortunately there is poor 

agreement between transverse samples, as Morrow et al found the transverse direction to be less 

stiff and more extensible (~60 kPa at 25% strain here vs ~25 kPa at 100% strain). 
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The observed differences between the data presented here and Morrow et al may be due to four 

main disparities in experimental protocol. The first is the freeze/thaw timing post mortem, which 

was done quickly by Morrow et al and after six hours of refrigeration as presented above. 

Despite the best efforts of Morrow et al to minimize the effects of rigor mortis, the true extent of 

post mortem stiffening to those samples remains unknown. The delayed freezing for our samples 

was done to ensure the onset of rigor mortis affected muscle samples [13,19]. Secondly, Morrow 

et al utilized whole muscle samples with the epimysium and aponeurosis removed, which may 

have led to a smaller aspect ratio for transverse samples compared to the aspect ratio of our 

samples at roughly 4:1 (Table 3-1). Additionally, our tests utilized a relaxation period during 

which longitudinal samples decreased from a higher stress level than all other samples at a faster 

rate, while Morrow et al performed a single ramp test. Finally, Morrow et al studied the extensor 

digitorum longus, which has a higher pennation angle and a shorter fiber length than the tibialis 

anterior [28], which may influence the apparent transverse isotropy of the tissue. To identify 

possible causes for these discrepancies, further experimental work should be performed under 

carefully controlled conditions. Specifically, these tests should identify transversely isotropic 

modulus values of skeletal muscle under various freeze/thaw times post mortem and as a 

function of different specimen aspect ratios. Also, performing these tests on a single tissue would 

greatly reduce variability which may result from anatomical differences. 

 

The data presented here can be utilized to improve constitutive modeling efforts of skeletal 

muscle, as some studies in the past have assumed muscle is stiffer in the longitudinal direction 

[14–17]. Future studies should model muscle as stiffer in the transverse direction similar to other 

works [29–32]. 
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3.5 Conclusions 

The transversely isotropic mechanical properties of skeletal muscle were evaluated with a 

specific focus on post mortem handling. While it remains unclear exactly how a non-fresh 

conditions and a freeze/thaw cycle independently affect the tensile transverse isotropy of skeletal 

muscle, to prevent any alterations in mechanical properties muscle tissue should be tested prior 

to the onset of rigor mortis without a freeze/thaw cycle. These data should be utilized to improve 

future modeling efforts for skeletal muscle with a specific focus on the anisotropic constitutive 

formulation.  
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CHAPTER 4: 

A CASE FOR POROELASTICITY IN SKELETAL MUSCLE FINITE ELEMENT 

ANALYSIS: EXPERIMENT AND MODELING 

 

 

4.1 Introduction 

In addition to muscle fibers and extracellular matrix, skeletal muscle consists of approximately 

75% fluid [1]. Thus, it can be characterized as a biphasic material, consisting of both a solid and 

a fluid phase. Other biphasic biological tissues such as cartilage [2] and meniscus [3] utilize fluid 

content to distribute under loads compression. However, the biphasic properties of muscle, 

specifically permeability, are not known. The role which permeability plays in skeletal muscle 

mechanics, known as poroelasticity, is unclear [4]. In computational models of skeletal muscle, 

time dependence is often neglected [5] or approximated using viscoelastic modeling [6,7]. The 

goals of this work were to 1) characterize skeletal muscle permeability by direct experimental 

measurement, and 2) identify how various permeability implementations affect skeletal muscle 

models in compression. 

 

4.2 Methods 

Four New Zealand White Rabbits ~2.5 kg in weight, were euthanized with Colorado State 

University Institutional Animal Care and Use Committee approval. One biceps femoris muscle 

from each animal was harvested from the left or right hind limb. All procedures were completed  

 
This chapter has been published as a Rapid Innovative Communication in Computer Methods in 
Biomechanics and Biomedical Engineering (2016). All content has been adapted with permission 
from Taylor & Francis. 
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within 6 hours post mortem to reduce the effects of rigor mortis [5]. Cylindrical samples (4 mm 

height and 8 mm diameter) were removed from the muscle mid-belly using a drop cutter and a 

biopsy punch. As skeletal muscle exhibits transversely isotropic passive behavior [8,9], samples 

were obtained in the longitudinal and the transverse directions. 

 

The permeability of each sample was directly evaluated using a permeation test device similar to 

previously published work [10]. In short, this device applied a known flow rate (0.5 mL/min) 

with a syringe pump to phosphate buffered saline across a tissue sample while measuring the 

pressure difference across the sample (Figure 4-1A). Additionally, since permeability is typically 

a function of tissue strain [10], samples were compressed axially (12.5% and 25%) to replicate 

transverse or longitudinal compression or compressed laterally (25% and 50%) to simulate 

longitudinal stretch (Figure 4-1B-D). Pressure (�), flow rate (ܳ ), specimen dimensions (�଴ and �), and strain (�) were measured to calculate the permeability of the tissue [10] (Equation 1). A 

paired t-test was utilized to compare permeability values between longitudinal and transverse 

samples and a general linear model was utilized to determine if permeability varied with strain 

level (p<0.05 for both analyses). 
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Figure 4-1. A) Permeability testing apparatus, where fluid (blue) at a pressurized level � passes 
through the specimen (red) at a flow rate ܳ, across an area �, and along a length � = �଴ሺ1 + �ሻ. 
B-D) Specimens were compressed axially to simulate B) transverse and C) longitudinal 
compression or laterally to simulate D) longitudinal tension. 
 � = ொ�0ሺ1+�ሻ��       (1) 

A 3D finite element (FE) model representing midbelly muscle tissue was developed using FEBio 

(febio.org) with 270 hexahedron elements. This model simulated a 4x4x20 mm cuboid using two 

planes of symmetry and had muscle fibers aligned parallel to the length of the cuboid. The 

cuboid was compressed in the transverse direction under stress relaxation (20% strain at 10% 

second-1 followed by a 300 second relaxation) before compression to 50% strain at 1% second-1. 

A poroelastic ellipsoidal fiber reinforced coupled (compressible) Mooney-Rivlin constitutive 

model was implemented. Strain-dependent permeability was implemented as a function of the 

volume ratio �, the undeformed void ratio �଴ (0.19 for skeletal muscle [1]), and material 

properties �଴, ܯ, and � (Equation 2) [10].  

�ሺ�ሻ = �଴ ቀ�−�01−�0ቁ� exp [�ଶ ሺ�ଶ − 1ሻ]    (2) 

http://www.febio.org/
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To study how various permeability assumptions affects model behavior, four separate 

formulations were utilized in separate simulations: a solid analysis only as a baseline (“Solid”), a 

constant, isotropic permeability for a simple biphasic model (“Constant”), and two separate fits 

of Equation 2 to experimental data to generate anisotropic and strain dependent responses (“Fit 

I” and “Fit II”) (Table 4-1). Fit I was a conservative strain dependent formulation while Fit II 

was a case of highly nonlinear strain dependence similar to other tissues [10]. Additionally, the 

“Constant” model was compared against two models incorporating viscoelasticity of the solid 

phase through a Prony series [7], one with both poroelasticity and viscoelasticity, and one with 

viscoelasticity only. The mean Cauchy stress in the direction of compression was compared 

between models. 

 

Table 4-1. Parameter values for the three utilized permeability formulations. 

Permeability Model 
k0 (m4/N-s) E-11 M (-) α (-) 

Long Trans Long Trans Long Trans 

Isotropic Constant 7.41 N/A N/A N/A N/A 

Fit I 11 4.2 0.63 0.16 0.1 0.97 

Fit II 50 5 10 1 2 1.5 

 

4.3 Results 

The mean permeability value for all samples was 7.41×10-11 m4/N-s with a standard error of 

2.2×10-11 m4/N-s. There was no statistical effect of either strain level (p=0.398) or orientation 

(p=0.158) on skeletal muscle permeability (Figure 4-2A-B). 
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Figure 4-2. Experimental permeability raw data (± standard error of the mean), Fit I, and Fit II 
curves for A) longitudinal samples and B) transverse samples. Cauchy stress outputs for the 
various biphasic analyses for C) initial 20% compression ramp and relaxation and D) 45-50% 
compression and for the viscoelastic comparisons for E) initial 20% compression ramp and 
relaxation and F) 45-50% compression. 
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Table 4-2. Mean Cauchy stress values for all analyses at compressive strains of 20% (peak 
response) and 50%. 

Mean Cauchy 
Stress in kPa Solid Constant Fit I Fit II 

Visco 
Only 

Visco-
Poro 

20% Strain Peak -1.01 -1.52 -1.71 -1.66 -1.74 -2.32 

50% Strain -5.66 -5.91 -5.96 -6.10 -6.95 -7.19 

 

Utilizing a biphasic approach affected tissue behavior particularly under transient conditions 

(Figure 4-2C-D and Table 4-2), while variations in strain dependence and anisotropy played less 

of a role than poroelasticity itself. A combined visco-poroelastic model differed drastically from 

all other analyses, including the viscoelastic only model (Figure 4-2E-F and Table 4-2). 

 

4.4 Discussion 

This work provides, to the authors’ best knowledge, the first direct measurement of skeletal 

muscle permeability. The observed values from this work show an increase of 4-5 orders of 

magnitude over other biological tissues such as cartilage or ligament [2,10]. This is not 

surprising since low muscle permeability would greatly resist muscle deformation, thus reducing 

contractile capabilities. 

 

Model calculated stresses had good agreement with previously published experimental work 

under compression [5,8] which gives greater confidence in these results. Statistical results 

showed no dependence of permeability on strain level or orientation, while modeling results 

indicated strain and orientation dependence played less of a role than even a simple poroelastic 

model versus a solid model. Additionally, the viscoelastic comparison data suggest 

viscoelasticity alone may not always be appropriate for skeletal muscle modeling in 
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compression. Thus, a simple biphasic analysis (isotropic, constant permeability) combined with 

viscoelasticity could be appropriately utilized for skeletal muscle models involving highly 

transient compressive conditions such as impact. 
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CHAPTER 5: 

A VALIDATED MODEL OF PASSIVE SKELETAL MUSCLE TO PREDICT FORCE 

AND INTRAMUSCULAR PRESSURE 

 

 

5.1 Introduction 

Skeletal muscle, which composes roughly one third of the human body by mass [1], provides 

locomotion and maintains posture. The well-known force-length relationship of skeletal muscle 

dictates in vivo muscle function under a wide range of conditions [2]. Maintaining appropriate 

muscle resting length is a concern for surgeries involving detachment and reattachment such as a 

tendon transfer procedure [3,4]. Understanding the passive behavior of skeletal muscle is 

essential to properly employing these surgical procedures. Additionally, the passive properties of 

muscle play a key role in force transmission throughout the tissue [5]. Intramuscular pressure 

(IMP) has shown good correlation to muscle force under both active and passive conditions [6–

8] and can be directly measured with a pressure microsensor [9]. This link between IMP and 

muscle force could provide a direct and minimally invasive clinical measurement of individual 

muscle force, which is currently not possible. Thus, the development of a strong relationship 

between passive muscle force and IMP is of significant clinical concern. 

 

Muscle, like other biological soft tissues, is a fibrous material saturated with a high fluid content 

(roughly 80% fluid by volume [10]) that exhibits both tensile and compressive highly nonlinear 

 
This chapter has been published as an Original Paper in Biomechanics and Modeling in 
Mechanobiology (2016). All content has been adapted with permission from Springer. 
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 [11–16], transversely isotropic [11,14–17], and time dependent [12,16,18–23] behavior. While 

these mechanical properties have been implemented using finite element analysis amongst a 

wide range of studies [24–30], the role of fluid content is often ignored despite it’s possible role 

in mechanical behavior [31]. Furthermore, as intramuscular pressure is typically identified as a 

measurement of fluid pressure [32–35], including interstitial fluid contributions in skeletal 

muscle finite element models could provide a valuable link between muscle force and IMP. 

Many of these works have chosen the New Zealand White Rabbit tibialis anterior for study based 

on the ease of access and low pennation angle [36]. 

 

Previous finite element analysis of skeletal muscle force and IMP was successfully utilized using 

a simplified geometry [37]. However, this approach did not incorporate any time dependency or 

fluid content and failed to capture whole muscle behavior. These omissions should be 

reconsidered as they are likely more important than previously thought during tendon transfer 

surgeries, as whole muscle is passively elongated and held at a constant length, where relaxation 

typically occurs. Thus, there is a need to develop a muscle finite element model which accurately 

incorporates whole tissue behavior and time dependency. This work outlines the development 

and validation of a whole muscle continuum mechanics model which will for the first time use 

the roles of fluid content and time dependence to accurately predict both intramuscular pressure 

(IMP) and muscle force under passive stretch conditions. 
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5.2 Methods 

5.2.1 In Situ Testing 

The first experimental data set utilized in this study was conducted at the University of 

California San Diego with Institutional Animal Care and Use Committee approval. In short, the 

distal tendon of one tibialis anterior (TA) of eight (n=8) New Zealand White rabbits (average 

rabbit mass and standard error of mean of 3.6 ± 0.04 kg) was transected and attached to a load 

cell and servomotor similar to previous studies (Figure 5-1A) [6,8]. Animals were anesthetized 

during testing and euthanized post completion. Each muscle was passively stretched across a 

range of physiological lengths in 0.05 muscle fiber strain increments at ~0.05 s-1 followed by 180 

seconds of relaxation. Eleven strain increments which recorded greater than zero reaction force 

were used for this modeling study, where 0.2 strain was observed as the length at which 

maximum isometric force was generated. Intramuscular pressure was recorded using a fiber optic 

pressure transducer [38] (Model FOP-M260-20, Fiso Technologies Inc, Ville de Québec, 

Canada) within the muscle midbelly (Figure 5-1A). Each transducer was inserted through a 22-

gauge catheter and anchored in the tissue with barbs built into a nitinol housing. Muscle stress 

was calculated as � = ���ௌ� where ܨ is force measured at the load cell and PCSA is the 

physiological cross-sectional area calculated from Equation 1, where � is muscle volume 

calculated based on measured muscle mass and density, �௣ is pennation angle of 2.5° [36], �௠ is 

measured muscle length with calipers, and �௙௡ is muscle to fiber length ratio [36]. 

 ���� = �∗c୭s(��)��∗�೑೙      (1) 
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Figure 5-1. Muscle specimens for experimental protocols and the corresponding finite element 
models. A) In situ experimental testing with microsensor insertion (arrow). B) Finite element 
model for in situ comparison, with muscle tissue (red) and aponeurosis (gray). C) Stress 
relaxation in vitro testing, with digital image correlation graphite powder coating and region of 
interest (dotted box) as well as specimen gauge length (black arrow). D) Finite element model 
for stress relaxation comparison with muscle tissue (red) and aponeurosis (gray). 
 

5.2.2 Stress Relaxation Testing 

Four (n=4) New Zealand White rabbits were euthanized with Colorado State University 

Institutional Animal Care and Use Committee approval. The tibialis anterior muscles from both 

hind limbs were dissected out and stored in phosphate buffered saline soaked gauze and 

refrigerated for tensile stress relaxation testing (total of 8 muscles). All testing was completed 

within four hours to reduce the effects of rigor mortis [17,39]. Each whole muscle was subject to 

tensile stress relaxation in a hydraulic material testing system (MTS Bionix 370, Eden Prairie, 

MN) with a 2 lb load cell (Futek LSB200, Irvine, CA) by clamping the proximal and distal ends 

of the muscle in thin film grips, leaving a specimen with no distal aponeurosis in the gauge 

length and only a portion of the proximal aponeurosis in the gauge length (Figure 5-1C). Prior to 

testing, optical measurements of muscle width and depth were performed using a 1.4 MP 

monochrome camera (Point Grey Research, Inc., BC, Canada).  Image analysis software 
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(ImageJ, NIH, Bethesda, MD) was used to calculate cross sectional area as is common in tensile 

testing studies of skeletal muscle [23,15,14,40] based on the assumption of an elliptical cross-

sectional shape [18]. All muscles were pre-loaded with a steady-state force of 0.01 N for each 

test, which is below 0.05% of the failure stress of muscle in the longitudinal direction [14]. 

 

Similar to width and depth, the specimen gauge length was measured optically for displacement 

and rate calculations and each muscle was coated with graphite powder for digital image 

correlation analysis of tensile strain [18] (Figure 5-1C). One muscle from each animal (either the 

right or left) was subject to two consecutive ramp-relax steps of 0.05 strain at 0.05 s-1, while the 

contralateral muscle was subject to two separate single ramp-relax steps of 0.1 strain at strain 

rates of 0.2 s-1 or 0.005 s-1 with fifteen minutes between tests (Figure 5-2). The fast rate falls 

within the range of physiological rates observed during some phases of gait, while the slow rate 

accounts for possible prolonged stretching either in vivo or during surgical intervention [41]. All 

testing was conducted in a 10% phosphate buffered saline bath in room temperature conditions to 

ensure hydration of the tissue. The engineering stress was calculated as � = �� where ܨ is 

reaction force and � is measured cross sectional area. 
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Figure 5-2. Experimental protocol schematics for stress relaxation testing. A) One muscle from 
each rabbit was subject to two consecutive stress relaxation steps of 0.05 strain at 0.05 s-1. B and 
C) The contralateral muscle was subject to two separate stress relaxation steps of 0.1 strain at 0.2 
s-1 and 0.005 s-1 with fifteen minutes between each test. The order of tests in B and C was 
randomized. 
 

5.2.3 Constitutive Model 

5.2.3.1 Skeletal Muscle 

To properly characterize the complex passive behavior of skeletal muscle, a hyper-poro-

viscoelastic constitutive model was implemented. The total stress within this material can be 

decoupled into contributions from the solid and fluid phase as follows (Equation 2), where � is 

the total Cauchy stress tensor, �௦ is the Cauchy stress tensor of the solid phase only, � is the 

scalar fluid pressure, and � is the identity tensor. This fluid pressure is driven by Darcy’s Law 

(Equation 3, where ∆ is the Grad operator) through a porous medium, where ࢗ is fluid flow rate 

vector, ࢑ is material permeability tensor, and ߤ is the fluid viscosity. 

 � = �௦ − ��      (2) 

ࢗ  = − ఓ࢑ ∆�      (3) 
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The stress within a strained elastic solid can be characterized using hyperelasticity, which 

incorporates a strain energy density function Ψ (Equation 4, where � is the volume ratio, � is the 

deformation gradient tensor between the reference and spatial configurations and � = �்� is the 

right Cauchy Green deformation tensor). For this study, a coupled (compressible) transversely 

isotropic hyperelastic strain energy density (SED) formulation was utilized (Equation 5, where Ψ 

is the total strain energy density of the solid, Ψ�௦௢ is the isotropic component, and Ψ௙�௕�௥௦ is the 

anisotropic component modeled with reinforcing fibers). Here 1ܫ and ܫଶ are the first and second 

invariants of � and ܫ௡ are pseudo invariants defined as the square of the stretch ߣ = � ∙ � ∙ � in 

any direction � in the reference configuration (or � in the spatial configuration) within the 

material.  �௦ = ʹ�−1� �Ψ�� �்      (4) Ψሺ1ܫ, ,ଶܫ �, �, ௡ሻܫ = Ψ�௦௢ሺ1ܫ, ,ଶܫ �ሻ + Ψ௙�௕�௥௦ሺ�,  ௡ሻ    (5)ܫ

Unlike other fibrous materials such as tendon [42], ligament [43], meniscus [44], and meniscal 

attachments [45], muscle is less stiff in the longitudinal direction than in the transverse plane 

(Mohammadkhah et al., 2016; Takaza et al., 2012; Wheatley et al., 2016b). A typical 

transversely isotropic model, which consists of an isotropic matrix and a single set of reinforcing 

fibers [46–49], would not be appropriate for skeletal muscle as it would have a higher stiffness in 

the longitudinal direction. Thus, a formulation was utilized which included an isotropic ground 

matrix reinforced with fibers oriented in an ellipsoidal distribution, which allows for modulation 

of the fiber stiffness based on direction, resulting in transverse isotropy of the tissue [50,51]. 

Specifically, an isotropic Mooney-Rivlin formulation was used for the ground matrix (Equation 

6, where �1௠, �ଶ௠, and �௠ are parameters which can be interpreted loosely as the isotropic 

tensile/compressive modulus, isotropic shear modulus, and isotropic bulk modulus of skeletal 
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muscle). To allow for fluid movement throughout the tissue, Equation 6 is a coupled 

formulation, which models the volumetric response of this isotropic matrix as compressible. 

While nearly-incompressible material models are common amongst skeletal muscle studies 

[25,27,46,52,53], they are not appropriate when utilizing a poroelastic approach as an 

incompressible assumption results in zero fluid flow after a deformation. Ψ�௦௢ሺ1ܫ, ,ଶܫ �ሻ = �1௠ሺ1ܫ − ͵ሻ + �ଶ௠ሺܫଶ − ͵ሻ − ʹሺ�1௠ + ʹ�ଶ௠ሻ ln � + ௞�ଶ ሺln �ሻଶ        (6) 

The strain energy contribution from the ellipsoidal fibers includes two parametric functions �ሺ�ሻ 

and �ሺ�ሻ which are implemented to form a continuous three-dimensional power function 

(Equation 7, where �ሺ�ሻ and �ሺ�ሻ are fiber material constants). With the assignment of �1 in the 

muscle fiber direction and �ଶ and �ଷ in the transverse plane, this decomposes the formulation 

such that the constants �1 = �௟௢௡� and �1 = �௟௢௡� characterize the tensile behavior in the 

longitudinal direction, while �ଶ = �ଷ = �௧௥�௡௦ and �ଶ = �ଷ = �௧௥�௡௦ characterize the tensile 

behavior in the transverse plane. Both �ሺ�ሻ and �ሺ�ሻ are described by the same function 

(Equation 8, where � is the angle between the first and second primary directions of the local 

coordinate system, � is the angle between the third primary direction and its perpendicular plane, 

and all � can be replaced with � for the equation to describe �ሺ�ሻ), which results in a continuous 

transition of elastic behavior between three orthogonal unit vectors (in this case the fiber 

direction unit vector and two perpendicular unit vectors in the transverse plane). 

 Ψ௙�௕�௥௦ሺ�, ௡ሻܫ = �ሺ�ሻሺܫ௡ − 1ሻ�ሺ�ሻ        (7) 

 �ሺ�ሻ = ቀc୭s2 � si୬2 ��భ2 + si୬2 � si୬2 ��22 + c୭s2 ��య2 ቁ    (8) 

The final component of the utilized constitutive model was viscoelasticity of the solid phase. 

Skeletal muscle exhibits a time dependent passive response (Van Loocke et al., 2008; Wheatley 
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et al., 2016a, 2016b), and while fluid content in a biphasic model can account for much of the 

time dependence under compressive conditions [54–56], tensile time dependence is generally the 

result of inherent viscoelasticity of collagen [57]. This time dependent response was applied 

using a relaxation function ܩሺ�ሻ (Equation 9, where � is time and � is an integration variable). 

This relaxation function was defined through a Prony series shown in Equation 10, where � is 

the number of terms in the series, ݃� are the viscoelastic relaxation parameters, and �� are time 

constants.  

 �ሺ�ሻ = ∫ �ሺܩ − �ሻ௧−∞ ௗ�ௗ� ݀�       (9) 

ሺ�ሻܩ  = 1 + ∑ ݃�݁(− ೟��)��=1      (10) 

 

5.2.3.2 Aponeurosis and Tendon 

Similar to the solid phase of muscle, the aponeurosis and tendon elements were modeled using a 

transversely isotropic strain energy density function and viscoelastic Prony series [58,59]. As the 

longitudinal direction of aponeurosis and tendon is stiffer than the transverse [42], an uncoupled 

transversely isotropic Mooney-Rivlin strain energy density function was implemented (Equation 

11, where 1̅ܫ and ܫଶ̅ are invariants from the deviatoric right Cauchy Green deformation tensor, 

and �1�, �ଶ�, and �� are similar parameters from Equation 6 but for aponeurosis and tendon). 

The fiber contribution in this model utilized the deviatoric stretch ̅ߣ and the stress can be 

described by Equation 12, where �ଷ� and �ସ� describe the nonlinear tensile stiffness of these 

fibers in the toe region, �5� is the modulus once fibers have exited the toe region, �଺� maintains 

continuity between the linear and toe region, and ߣ௠ is the stretch at the end of the toe region. 

This decoupling of the invariants and fiber stretch from the volumetric response allows the 

aponeurosis and tendon to be easily modeled as nearly incompressible [48]. 
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  Ψ(1̅ܫ, ,ଶ̅ܫ �, (ߣ̅ = �1�ሺ1̅ܫ − ͵ሻ + �ଶ�ሺܫଶ̅ − ͵ሻ + ௞�ଶ ሺln �ሻଶ + Ψ௙�௕�௥௦ሺ̅ߣሻ  (11) 

ߣ̅  �Ψ೑�್�ೝೞ��̅ = ߣ̅                                      ,0} ൑ 1           �ଷ�(݁௖ర�(�̅−1) − 1),     1 < ߣ̅ < ߣ̅�௠�5ߣ + �଺�,                    ̅ߣ ൒  ௠            (12)ߣ

 

5.2.4 Finite Element Model Development 

An isolated New Zealand White Rabbit tibialis anterior muscle was scanned using micro 

computed tomography (Scanco μCT 80, Scanco Medical AG, Brüttisellen, Switzerland) with a 

25 μm voxel size. The resulting images were imported into image segmentation software 

(3DSlicer, www.slicer.org) to generate a three dimensional muscle surface. This surface was 

meshed with manual hexahedral meshing software (TrueGrid, XYZ Scientific Applications, Inc., 

Pleasant Hill, CA) to create a tibialis anterior muscle mesh. The physiological area of 

aponeurosis tissue was visually measured and applied to the mesh in the form of an additional 

layer of three dimensional hexahedral elements (thickness = 0.2 mm to approximate the behavior 

of shell elements) which share nodes with the muscle geometry. The elements on the proximal 

and distal faces were identified as tendon and were considered to have the same material 

properties as the aponeurosis elements. The final three-dimensional mesh thus included two 

materials (muscle and aponeurosis/tendon) for the isolated rabbit tibialis anterior (Figure 5-1B) 

and was implemented in the nonlinear finite element analysis software FEBio [60]. For all 

analyses, the nodes of the proximal face were pinned (displacement in x=y=z=0), the distal face 

nodes were displaced in the z-direction (along the length of the tissue from proximal to distal), 

and the tissue boundary was modeled as impermeable. 

 

http://www.slicer.org/
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A mesh convergence study was completed on the muscle model in the form of five meshes, each 

with increasing mesh density with the above constitutive model. Each mesh was displaced to 0.4 

engineering strain along the muscle length at a constant rate of 0.01 sec-1. The total reaction force 

at the distal nodes, mean fluid pressure for the midbelly elements, and the computation time were 

evaluated to determine the appropriate mesh to be utilized. Specifically, these values for each of 

the first four meshes were compared to the densest mesh at four points: 0.1, 0.2, 0.3, and 0.4 

strain and the average percent difference was calculated. The third mesh from the convergence 

study was selected as it demonstrated less than 0.15% difference from the densest mesh while 

maintaining a low computation time relative to the other meshes (Table 5-1). 

Table 5-1. Mesh convergence for five various mesh densities. Each mesh was compared against 
the densest mesh. Mesh 3 (bold) had very low differences (<0.15%) in both total reaction force 
and fluid pressure from mesh 5, while considerably reducing computation time. Mesh 3 has a 
mean element size of 0.59 mm3. 

Mesh Elements Computation 
Time (min) 

Computation 
Time % Diff 

Reaction Force 
% Diff 

Fluid Pressure 
% Diff 

1 572 1.6 97% 1.85% 0.60% 

2 1596 8.6 83% 1.06% 0.46% 

3 5408 12.4 76% 0.15% 0.13% 

4 19152 16.9 67% -0.02% 0.08% 

5 46400 50.5 - - - 

 

To simulate experimental conditions, the distal end of the model was displaced over a short ramp 

phase (1 second in this case) to generate 0.05 fiber strain increments and allowed to relax over 

180 seconds. This was completed a total of eleven times for a total of 0.55 maximum fiber strain. 

The reaction force at each of the distal nodes (142 in total) was summed to generate a total 

reaction force for the entire muscle. This force was then used to calculate the muscle fiber stress 

for in situ experimental comparison. Passive muscle stress was calculated by dividing reaction 
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force by the PCSA (Equation 1), which was calculated based on the volume of the model � 

(3363 mm3
 measured computationally), the length of the model �௠ (56.1 mm measured 

computationally), and the pennation angle �௣ (2.5°) and fiber length to muscle length ratio �௙௡ 

(0.67) from literature similar to the experimental protocol [36]. Intramuscular pressure was 

interpreted as the mean fluid pressure for six midbelly elements, which were located around the 

center of the mesh similar to pressure microsensor location in the experimental protocol. 

 

For simulation of stress relaxation testing, the proximal and distal ends of the model were 

removed to simulate how the experimental setup gripped the muscle (~40 mm gauge length, 

Figure 5-1C), leaving 3522 hexahedral elements (Figure 5-1D). Stress relaxation conditions were 

applied by pinning the proximal end of the tissue (x=y=z=0 displacement) and after applying a 

pre-load of 0.01 N identical to the experiment, displacing the distal end according to the 

measured digital image correlation strain of each specimen. This resulted in multiple stress 

relaxation outputs for each loading protocol, with slight variability in applied strain as a result of 

the measured experimental strain. The cross section of the muscle was measured using the same 

procedure as the experimental protocol and the total reaction force on the distal face was used to 

calculate the engineering stress in the same manner as the experiment. 

 

5.2.5 Optimization and Validation Procedures 

The first step in model implementation was to determine material parameters (Table 5-2) which 

were not optimized. These included the �1, �ଶ, and � hyperelastic parameters for both muscle and 

aponeurosis (Equations 6 and 11), the viscoelastic parameters for both muscle and aponeurosis 

(Equation 10), and the fiber parameters for aponeurosis (Equation 12). The viscoelastic ݃� 
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parameters for skeletal muscle were determined by fitting the relaxation curve of specimens from 

the single fast ramp stress relaxation test (Figure 5-2B), using decade time constant values of �� = 0.1, 1, 10, 100 seconds (Troyer et al., 2012; Wheatley et al., 2016a, 2016d). The hydraulic 

permeability of muscle was assumed to be a constant value of 7.41x10-11 m4/N-s, based on 

previous experimental and modeling research suggesting the assumption of a constant, isotropic 

permeability is appropriate for skeletal muscle (Wheatley et al., 2016c). As skeletal muscle is 

stiffer in the transverse direction (Mohammadkhah et al., 2016; Takaza et al., 2012; Wheatley et 

al., 2016a), the transverse stiffness was fixed relative to the longitudinal stiffness as follows:  �௧௥�௡௦ = 10 ∗ �௟௢௡� (Wheatley et al., 2016a). Finally, as the transverse tensile behavior of 

skeletal muscle exhibits nearly linear behavior (Mohammadkhah et al., 2016; Takaza et al., 

2012; Wheatley et al., 2016b), the �௧௥�௡௦ parameter was fixed at �௧௥�௡௦ = ͵. The muscle �1 

parameter was determined based on the low modulus of muscle in compression [17], the �ଶ 

parameter was utilized from previously published literature [27], and the � parameter was chosen 

to maintain compressibility of the solid matrix in a poroelastic material [49]. With the exception 

of ߣ௠ [27], all aponeurosis parameters were implemented to ensure model behavior was in 

agreement with experimental studies from literature [58,63–65]. Finally, it is important to note 

that �଺ from Equation 12 is calculated based on the other parameters to satisfy continuity [27]. 

Table 5-2. Constitutive material parameters for skeletal muscle and aponeurosis which were 
utilized within the finite element model, excluding the reinforcing fibers from skeletal muscle. 
These parameters were fixed during the optimization process. 

 �૚ 
(kPa) 

�૛ 
(kPa) 

 ࢑
(kPa) 

�� 
(seconds) 

�� 
(-) 

�૜ 
(kPa) 

�૝ 
(-) 

�૞ 
(kPa) 

 ࢓�
(-) 

Muscle 0.05 0.5 5 
0.1, 1, 
10, 100 

1.3, 0.48, 
0.29, 0.17 

- - - - 

Aponeurosis 1E4 500 5E5 
0.33, 47.5, 

2500 
0.20, 0.13, 

0.19 
50 40 1E5 1.03 
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The whole muscle finite element model was fit to experimental in situ stress data using the 

nonlinear least squares algorithm lsqnonlin in Matlab (The Mathworks, Inc., Natick, MA).  This 

solver was utilized as it allows bounds to be applied to constitutive parameters while fitting 

nonlinear data. Model stress was calculated as reaction force at the distal face divided by PCSA 

in the same manner as the experiment. The residual between muscle fiber stress from the model 

and experimental data at the eleven strain increments (0.05-0.55) was optimized per Equation 13, 

where ��௡ are the experimental stress values and �௠௡ are the model stress values at the �th time 

point. 

݈�ݑ݀�ݏ݁ݎ   = ∑ [ௌ��−ௌ��ௌ�� ]ଶ11�=1      (13) 

This method of fitting only muscle stress directly allowed for simple validation of intramuscular 

pressure data. Similar to stress, intramuscular pressure at each strain increment (0.05-0.55) was 

compared against model midbelly fluid pressure. Specifically, the fits of stress and pressure were 

evaluated using the GoodnessOfFit function in Matlab (Equation 14, where ��� and �௠� 
correspond to the experimental stress/pressure and model stress/pressure, respectively). Here a 

perfect fit yields a value of one, where experiment and model data are identical, and the worst 

possible fit yields a value of negative infinity. For validation of muscle stress, the model was 

compared against experimental stress relaxation data using Equation 13. The mean experimental 

stress relaxation curves and mean model stress relaxation curves were compared with a single fit 

using Equation 14. 

 ݂�� = 1 − ∑ [ ���−������−௠��௡ሺ��ሻ]11�=1 ଶ
    (14) 
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5.3 Results 

The optimization procedure, which fit model stress to in situ experimental stress, was highly 

successful both through visual inspection (Figure 5-3A), and through statistical analysis (NMSE 

fit value of 0.993). Similarly, the validation of model fluid pressure to in situ experimental 

intramuscular pressure showed a very good fit both visually (Figure 5-3B) and statistically 

(NMSE fit value of 0.955). Final optimized parameters (Table 5-3) show the well-observed 

nonlinear passive tensile behavior of muscle in the longitudinal direction (Takaza et al., 2012; 

Wheatley et al., 2016a; Wheatley et al., 2016b).  

 
Figure 5-3. A) Model fit to in situ experimental stress (standard error bars) data using nonlinear 
optimization. The inset image shows a highlight of the same data at lower strain levels. The 
NMSE fit value for these data is 0.993. B)  Model validation to in situ experimental 
intramuscular pressure data with similar inset image of lower strain levels. The NMSE fit value 
for these data is 0.955. 
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Table 5-3. Muscle ellipsoidal reinforcing fiber parameter values. The longitudinal parameters 
were optimized using the nonlinear algorithm (denoted with *), while the transverse parameters 
were fixed as follows: �௧௥�௡௦ = 10 ∗ �௟௢௡� and �௧௥�௡௦ = ͵. 

Ellipsoidal Fibers �࢕࢒�� (kPa) �࢙��࢚࢘ (kPa) �࢙��࢚࢘� (-) ��࢕࢒ (-) 

Muscle 3.299* 32.99 7.34* 3 

 

The measured digital image correlation strain values from the in vitro stress relaxation tests were 

0.102 ± 0.30 (mean ± standard error of the mean). All samples showed the typical stress 

relaxation behavior previously observed for skeletal muscle under tensile conditions (Wheatley 

et al., 2016a). Validation of muscle stress for the three stress relaxation curves was also 

successful, as visual inspection shows a high level of overlap of model and experimental 

standard error (Figure 5-4). The NMSE fit value of 0.860 for these three curves further supports 

these findings. Note that the variability in model output shown with standard error bars is the 

result of matching finite element model boundary conditions to variation in experimental 

specimen strain as tracked with digital image correlation. 
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Figure 5-4. Model validation for in vitro experimental stress relaxation data for A) two step 
stress relaxation, B) single slow step stress relaxation, and C) single fast step stress relaxation 
with initial ramp and relaxation highlighted on right for clarity. The NMSE fit value for this 
validation is 0.860 with standard error bars shown. 
 

5.4 Discussion 

To the best of the authors’ knowledge, this work presents the first study which utilized a hyper-

poro-viscoelastic approach to model skeletal muscle. While previous studies have employed 

hyperelasticity [17,24,27,37,46,52,66–68] or hyper-viscoelasticity (Gras et al., 2013; Khodaei et 

al., 2013; Lu et al., 2010; Van Loocke et al., 2009, 2008, Wheatley et al., 2016a, 2016d) to 

model skeletal muscle under a wide range of conditions, poroelasticity is not typically 

incorporated. These models utilize viscoelasticity alone to describe the time dependent relaxation 

of the tissue. However, poro-viscoelastic theory has been applied in studies of other tissues such 

as meniscus [49], bone [71], and cartilage [57,72]. Furthermore, evidence suggests fluid content 
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in skeletal muscle plays a role in the time dependent behavior of the tissue [31]. The 

permeability value used in this study was determined experimentally through direct 

measurement, with subsequent finite element analysis suggesting anisotropy and strain 

dependence playing a minor role in passive muscle mechanics (Wheatley et al., 2016c). While 

the contribution of fluid pressure to relaxation in tension is most likely minimal [57], we chose to 

implement it for two reasons: 1) poroelastic theory allows for the interpretation of fluid pressure 

as intramuscular pressure, and 2) this formulation could be utilized in an in vivo model of 

skeletal muscle, which may be subject to compressive conditions where fluid content plays a key 

role in biological tissue behavior [57,73,74]. 

 

The utilized optimization approach required the varying of only two parameters out of a total of 

nineteen used: the stiffness and nonlinearity of the longitudinal reinforcing fibers (Equation 7). 

This greatly simplified the approach by eliminating parameter optimization which could result in 

a non-unique set of final parameters [49]. Additionally, this makes translation from rabbit to 

human muscle more streamlined, as it would require minimum changes to only these parameters, 

not the whole constitutive model. Future modeling analysis should be completed to evaluate the 

accuracy of the parameters utilized in this study in predicting human muscle mechanics and how 

this model behaves under compressive conditions. 

 

The model presented here also provides the only whole muscle analysis to predict both passive 

muscle stress and intramuscular pressure. Previous work correctly identified muscle stress and 

intramuscular pressure of muscle in an idealized geometry [37]. While our work utilizes fluid 

pressure as an interpretation of intramuscular pressure, Jenkyn et al used solid pressure, which is 
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calculated from the Cauchy stress tensor of the solid constituent. While it remains unclear 

exactly what the physiological mechanism for intramuscular pressure is, it is clear the sensors 

measure fluid pressure and have been designed to reduce contact between the sensor diaphragm 

and any solid constituents within the tissue [38]. Thus, it is unlikely the utilized sensors are 

capable of accurately measuring solid pressure. Additionally, the model presented here 

incorporates time dependency of the tissue which Jenkyn et al did not model. Stress relaxation or 

creep is an important physiological mechanism in soft tissue behavior and could greatly affect 

the identification of muscle resting length during procedures such as tendon transfer surgery. 

 

The constitutive model implemented for aponeurosis from this study is based on the anisotropic 

behavior observed experimentally [64] and is consistent with previous finite element approaches 

[52,53]. Specifically, this formulation provides an isotropic nearly-incompressible ground matrix 

with a single set of reinforcing fibers which support tension only. With the exception of ߣ௠, the 

specific parameters were modified from previously utilized values for tendon and aponeurosis 

[27] to ensure agreement with experimental data. Previously published works suggest 

aponeurosis strain values of ~0.08 at maximum contraction [29,63–65], which is similar to the 

maximum stress from this study [6]. Thus, the observed ~0.08 maximum Lagrange strain found 

in this work (Figure 5-5), suggests the constitutive model utilized here was accurate. 
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Figure 5-5. Aponeurosis Lagrange strain in the direction of stretch at (denoted with black arrow). 
The maximum observed value of roughly 0.08 corresponds well to experimental studies of 
aponeurosis strain[29,63–65]. 
 

One potential limitation of this work was the difficulty of developing of a constitutive model in 

which the transverse direction is stiffer than the longitudinal direction in tension, which is 

consistent with previously published literature (Mohammadkhah et al., 2016; Takaza et al., 2012; 

Wheatley et al., 2016b). Further complicating the scenario is that the longitudinal direction 

exhibits a high degree of tensile nonlinearity, while the transverse direction alternatively has a 

more linear tensile response (Takaza et al., 2012; Wheatley et al., 2016b). Thus typical 

orthotropic models such as a Fung Orthotropic material [75–77] or an orthotropic linear elastic 

material [78] would not accurately characterize the tissue transverse isotropy, as they do not 

account for variations in spatial linearity. In this scenario – a transversely isotropic material 

where the plane of isotropy is stiffer and more linear than the first primary direction – an 

implementation of true transverse isotropy would require a unique set of invariants [79]. 

Specifically, there would be no “isotropic” invariants, as each would have some directional 

dependence. As this type of a response is not common in biological tissues, these constitutive 

models are typically not common in finite element analysis. Thus, to closely simulate muscle 



95 
 

transverse isotropy, an isotropic coupled Mooney-Rivlin strain energy density (SED) function 

was utilized with three-dimensional ellipsoidal reinforcing fibers. This formulation allowed for 

the muscle fiber direction to exhibit a high level of tensile nonlinearity, while keeping the 

transverse direction relatively linear and with a higher stiffness. The drawback from this method 

is the isotropic tensile/compressive response of the SED equation (�1 from Equation 6) was 

simply given a low parameter value of 0.05 kPa. 

 

While the validation method from this work shows excellent agreement to experimental data 

under uniaxial tension, this represents only one loading condition. The transversely isotropic 

optimized muscle constitutive model can thus be compared against previously published 

experimental data on skeletal muscle under tensile conditions for further validation. In short, an 

idealized geometry was implemented into two finite element models to determine the model 

Cauchy stress in the direction of deformation under quasi-static (strain rate of 0.05% s-1) 

longitudinal and transverse tension. This simulated tensile testing of excised samples similar to 

experimental studies. When comparing against the data summarized by Mohammadkhah et al. 

2016, there is good agreement for both orientations, though our model predicts a larger toe 

region than observed experimentally. Specifically, our model predicts 100 kPa of Cauchy stress 

at approximately 0.41 strain compared to the observed values of roughly 0.3-0.4 strain under 

longitudinal tension [14,46,80]. For transverse tension, our predicted strain level at 50 kPa is 

roughly 0.26 strain compared against experimental values of roughly 0.07-0.2 [14,40,80]. These 

small differences could be the result of differences in testing protocol versus simulation or 

anatomical and species variations. 
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One important distinction to make is the definition of zero strain from this work compared to the 

in situ data. In some cases, muscle resting length was identified by locating the length at which 

isometric force was greatest. For this study, which focused on passive stretch only, zero strain 

was identified by determining the point at which passive tension was recruited. This resulted in a 

difference of 0.2 strain between what was identified here as zero strain (passive tension was first 

measured) and as optimal length (maximum isometric force). This toe region of 0.2 strain 

showed relatively low stress values (<1 kPa), yet increased in nonlinear fashion with strain and 

as such was identified as an important region to accurately model. 

 

Future work will incorporate muscle activation, as active muscle force is also correlated with 

intramuscular pressure (IMP) [6–8]. Additionally, in vivo geometry, including contact between 

muscle and surrounding tissue should be studied. These additions would significantly strengthen 

the physiological relevance of this model by expanding to clinical conditions where active and 

passive muscle force could be measured. As there exists no current clinical technique to measure 

muscle force in vivo, the use of a pressure microsensor to evaluate IMP and thus estimate muscle 

force could provide an impactful and novel clinical tool. A validated finite element model which 

predicts both muscle force and IMP could provide important insight into the force-IMP 

relationship in vivo.  

 

5.5 Conclusions 

This work presented a novel finite element model of skeletal muscle, which was the first to 

implement fluid behavior through poroelastic theory and the first whole muscle model to 

accurately predict intramuscular pressure (IMP). It was independently validated against both 
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IMP and passive muscle force, exhibited aponeurosis behavior consistent with physiological 

observations from literature, and used a novel constitutive approach to accurately characterize 

the tensile transverse isotropy of the tissue. This model could be utilized to guide surgeries such 

as a tendon transfer procedure, where skeletal muscle is passively stretched to a new tendon 

insertion location. Future work should include muscle activation and an in vivo environment to 

increase clinical relevance.  
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CHAPTER 6: 

MODELING SKELETAL MUSCLE STRESS AND INTRAMUSCULAR PRESSURE: A 

WHOLE MUSCLE ACTIVE-PASSIVE APPROACH 

 

 

6.1 Introduction 

Healthy skeletal muscle provides stabilization and locomotion for the human body. The robust 

contractile function and complex mechanical behavior are driven by the active and passive 

properties and structure of skeletal muscle [1,2]. Skeletal muscle structure facilitates force 

transmission from contractile muscle fibers to the skeletal system [3]. Thus, understanding the 

physiological role of skeletal muscle requires studying muscle function as both a contractile 

tissue and a passive structure. 

 

In the case of skeletal muscle, a validated finite element model could provide the necessary 

correlation between muscle force and intramuscular pressure (IMP), thus enabling pressure 

microsensors to estimate muscle force. Previously, a finite element model of skeletal muscle was 

developed which accurately predicted both muscle force as well as intramuscular pressure under 

passive stretch [4]. This model characterized the complex passive response of the tissue by 

incorporating hyperelasticity, viscoelasticity, poroelasticity, and anisotropy. This work presents 

further development of this muscle model to incorporate muscle activation through 

inhomogeneity and validation of IMP under active conditions. The goals of this work were to 

identify how fluid pressurization is distributed within active skeletal muscle to potentially 



104 
 

identify ideal microsensor insertion location and to gain further insight into what conditions 

dictate this pressurization. 

 

6.2 Methods 

6.2.1 Experiment 

Experiments and detailed analyses are currently under peer review [5]. Briefly, eight New 

Zealand White Rabbit muscles (n=8) were passively stretched and stimulated under isometric 

conditions at a total of fifteen different muscle lengths. Experiments were conducted on 

anesthetized animals with the approval of the University of California San Diego Institutional 

Animal Use and Care Committee by isolating and attaching the distal tibialis anterior tendon to 

an actuator and load cell. Active isometric contraction involved maximal stimulation of the 

peroneal nerve. Muscle stress was calculated as force measured by the load cell from stretch or 

activation divided by the physiological cross sectional area [6]. Intramuscular pressure was 

measured with pressure microsensors [7] inserted into the muscle midbelly in two orientations: 

in the longitudinal direction (parallel to muscle fibers) and in the transverse direction 

(perpendicular to muscle fibers).  

 

6.2.2 Constitutive Model 

6.2.2.1 Skeletal Muscle 

Two similar constitutive models were simultaneously utilized for skeletal muscle in this study, 

representing the components of the tissue which are “excitable” but still support passive loads 

and those that are only able to support passive loads (“passive”). As the tissue-level passive 

properties of skeletal muscle are attributed to both the active actin-myosin complex [8–10], and 
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the extracellular matrix [11,12], it is difficult to elucidate exactly how to assign properties to 

these constituents. Thus, for both previous modelling efforts [4] and the current model, the 

passive responses from the extracellular matrix and contractile elements are coupled. Previously, 

passive skeletal muscle was modeled as a hyper-visco-poroelastic material with an anisotropic 

compressible solid phase [4]. For the current model, the assumption was made that the excitable 

constituent did not contain a fluid component. Thus, the constitutive approach for the excitable 

and the passive constituents is very similar, with the only exception being that the excitable 

constituent did not include poroelasticity.  Thus, it is assumed that the contractile tissue is 

comprised of solid material only, and the excitable constituent was a compressible hyper-

viscoelastic material [13–16], while passive was modeled as compressible hyper-visco-

poroelastic material [17].  

 

While the full constitutive approach has been previously outlined [4], in brief, an isotropic, 

compressible (or coupled) Mooney-Rivlin strain energy density function was utilized for the 

ground matrix [18] and viscoelastic effects were modeled using a three-term Prony series [19]. 

Tensile anisotropic and nonlinear properties of passive muscle were largely dictated by three-

dimensional tension-only reinforcing fibers with an ellipsoidal fiber distribution (EFD) [20]. 

Previously, the longitudinal EFD properties were optimized to experimental data and the 

transverse EFD parameters were fixed based on the assumption of an increase in modulus of one 

order of magnitude over longitudinal properties [21]. While this formulation yielded excellent 

model validation to both muscle stress and intramuscular pressure under passive conditions [4], 

they were altered in this study for improved agreement with experimental data under both 
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passive and active conditions. A constant, isotropic hydraulic permeability was assumed based 

on prior experimental and finite element analysis of skeletal muscle [17].  

Table 6-1. Constitutive model parameter values for skeletal muscle. Note that the excitable and 
passive constituent have the same constitutive model and parameters with the exception of 
poroelasticity, which was only utilized for the passive constituent. 

Mooney-Rivlin SED 
Prony Series 

Viscoelasticity Ellipsoidal Fiber Distribution Permeability 
(mm4/N-s) 
(passive) c1 

(kPa) 
c2 

(kPa) 
k 

(kPa) gi (-) τi (s) 
ξlong 

(kPa) 
βlong 

 (-) 
ξtrans 
(kPa) 

βtrans 
(-) 

0.05 0.5 5 

1.33, 
0.476, 
0.295, 
0.167 

0.1, 
1, 10, 
100 

Optim Optim 15 3 0.074 

 

The total stress within a biphasic finite element model which includes an active component can 

be decomposed into active stress ��௖௧���, passive stress within the porous solid �௦௢௟�ௗ, and fluid 

pressure � (Equation 1, where � is the identity matrix). Muscle activation was modeled using 

prescribed uniaxial contraction (Equation 2) [22]. Here � is the Jacobian or volume ratio, ଴ܶ is 

the maximum activation stress, �ሺ�ሻ is a load curve which defines the stress as a function of time, 

and � is the unit vector which dictates the direction of active contraction, which is the 

physiological pennation angle. The load curve �ሺ�ሻ was chosen to replicate the increase of force 

of fully fused isometric skeletal muscle [2]. 

 �௧௢௧�௟ = ��௖௧��� + �௦௢௟�ௗ − ��     (1) ��௖௧��� = �−1 ଴ܶ�ሺ�ሻ� ⊗ �      (2) 
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6.2.2.2 Aponeurosis and Tendon 

Aponeurosis and tendon were modeled as nearly incompressible hyper-viscoelastic with a 

transversely isotropic Mooney-Rivlin strain energy function [23] and a Prony series viscoelastic 

formulation [24] (Table 6-2). This formulation is outlined in greater detail in [4]. 

Table 6-2. Constitutive model parameter values for tendon/aponeurosis. These parameters are 
identical to previously utilized values [4]. 

Mooney-Rivlin SED 
Prony Series 

Viscoelasticity 

c1 (kPa) 
c2 

(kPa) k (kPa) 
c4  
(-) c5 (kPa) 

λmax  
(-) k (kPa) gi (-) τi (s) 

10000 500 50 40 100000 1.03 500000 
0.203, 0.133, 

0.191 

0.33, 
47.5, 
2500 

 

6.2.3 Finite Element Model 

To represent the longitudinal contractile structure of skeletal muscle, inhomogeneous geometry 

of the New Zealand White Rabbit tibialis anterior and the human tibialis anterior were 

developed. The excitable and passive components of the tissue were connected directly through 

mesh structure, along with aponeurosis and tendon tissue. Thus, no boundary contact conditions 

were necessary between these three constituents. As skeletal muscle is comprised of roughly 

80% fluid [25], the excitable constituent was assumed to be approximately 20% of the total 

volume of the tissue. As the mesh is comprised of solely hexahedral elements, this was achieved 

by denoting one of out every five longitudinal string of elements as excitable (Figure 6-1). 
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Figure 6-1. Inhomogeneous finite element geometry of skeletal muscle, showing excitable (dark 
red), passive (light red), and aponeurosis/tendon (gray). A) Whole New Zealand White Rabbit 
tibialis anterior muscle model and B) cross sectional view of the rabbit tibialis anterior model. 
 

The finite element geometry for the rabbit tibialis anterior is outlined elsewhere [4], but in short 

it was developed by segmentation and hexahedral meshing of μCT images of an in vitro New 

Zealand White Rabbit tibialis anterior. The pennation angle of 2.5° [6] was applied globally by 

specifying the orientation of the constitutive model. Stress was calculated by summing the total 

reaction force at the distal nodes and dividing by physiological cross sectional area of the model. 

This approach was the same for both active isometric and passive conditions. Model pressure 

was calculated as fluid pressure from 90 midbelly elements of the passive constituent. Again, this 

output did not change between active and passive simulations. The muscle mesh utilized in this 

study (18646 elements) was compared against a denser mesh (46400 elements) under active 

isometric conditions to ensure mesh density convergence. Isometric activation was simulated 

using an active stress of 500 kPa (଴ܶ from Equation 2, determined based on applied active stress 

from the results) for the denser mesh and for the same reaction force using the less dense mesh, 

only a 0.80% difference of mean fluid pressure between the two models was observed at � = 0.5 

seconds. 
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6.2.4 Verification of Transverse Stiffness Parameters 

To investigate the role of transverse fiber stiffness in model behavior, with an emphasis on fluid 

pressure, variations in transverse ellipsoidal fiber distribution (EFD) parameters were applied. 

The model stiffness is largely dictated by these tension-only EFD parameters by design, as 

skeletal muscle tensile stiffness is roughly two orders higher in tension versus compression 

[21,26–29]. While the longitudinal fiber parameters were determined through nonlinear 

optimization, the transverse parameters were not specifically fit to experimental data. Previous 

finite element modeling of passively stretched muscle utilized a value of ~33kPa for ξtrans based 

on the assumption of the transverse orientation being one order of stiffness higher than the 

longitudinal [4]. However, the reported values for transverse tensile linear modulus of skeletal 

muscle from literature range from roughly 20 kPa to nearly 800 kPa [21,30]. Additionally, there 

remains uncertainty to the role of transverse stiffness in model fluid pressurization. To study this, 

a direct comparison of model behavior was made between two ξtrans parameter values: 33 kPa 

from the previous study and 15 kPa utilized in this study.  

 

A simplified finite element geometry of 2560 cubic hexahedral elements using the same 

inhomogeneous nature as presented in Figure 6-1 was developed to compare model behavior to 

experimentally analyzed excised muscle samples [21]. The mean Cauchy stress in the direction 

of elongation (transverse) was compared to the experimentally calculated Cauchy stress. 

Experimental samples underwent 0.1 tensile strain at a rate of 0.1 s-1 followed by a 300 second 

relaxation period, and finally a constant rate pull step to 0.25 tensile strain at 0.01 s-1. While this 

highlighted differences in parameter agreement to specific experimental data, the goal of this 

work was to identify how these values affect fluid pressurization within the model. The above 
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whole muscle finite element model was thus employed with each of these two parameters under 

active contraction at three muscle lengths to investigate the role of transverse stiffness in model 

fluid pressure. The three lengths include one on the ascending limb (-0.2 fiber strain from 

optimal length), optimal length, and one on the descending limb (0.2 fiber strain from optimal 

length). The specified contractile internal stress (Equation 2) will remain the same for both 

conditions, although changes to the constitutive approach may result in differences in reaction 

force at the model boundary. 

 

6.2.5 Optimization and Validation 

To ensure that passive model behavior was still consistent with passive experimental data 

following changes to the constitutive model and geometry, the same optimization approach  [4] 

was used to generate ξlong
 and βlong parameters. In short, the model stress was fit to the passive 

experimental stress at increments of 5% fiber strain over a total of eleven points and the model 

pressure was compared against experimental data. 

 

Active isometric stress from the FE model was optimized to experimental data by varying the ଴ܶ 

parameter from Equation 2. This was done for each of the fifteen experimental data points under 

active isometric contraction. For each fit, the muscle was passively stretched to the 

corresponding experimental length followed by 300 seconds of relaxation to reach steady-state 

[19,31] before activation was applied per the activation curve. Active model stress and fluid 

pressure were calculated by subtracting the steady-state stress and fluid pressure values from the 

maximum stress and pressure during contraction. Experimental and model pressures were 

compared for an independent validation. Statistical analysis of agreement between model outputs 
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and experimental data were completed by calculating the root mean square error (RMSE, 

Equation 3, where �� are experimental data and  �௠ are model data) and normalized root mean 

square error (NRMSE, Equation 4).  

��ܯܴ = √∑ (���−���)2భ5�=భ 15       (3) 

��ܯܴ� = ோ�ௌ�௠�௫ሺ��ሻ−௠�௡ሺ��ሻ     (4) 

 

6.3 Results 

The optimized passive parameters for longitudinal EFD properties showed a highly nonlinear 

longitudinal stiffness, which is consistent with previous investigations of skeletal muscle 

longitudinal tensile behavior [19,21,28,32,33] (Table 6-3). Optimized applied stress (଴ܶ from 

Equation 2) in the excitable constituent for isometric activation varied for each data point and 

ranged from 229 to 604 kPa. These values were expected to be higher than the whole muscle 

specific tension as the excitable constituent comprises only a fraction of the total muscle volume.  

 

Table 6-3. Optimized longitudinal ellipsoidal fiber distribution (EFD) parameters. 

Ellipsoidal Fiber Distribution 

ξlong (kPa) βlong (-) 

2.76 10.9 

 

Model optimization to experimental stress data under both active and passive conditions was 

confirmed visually (Figure 6-2A and 2D) and resulted in small statistical error values (NRMSE 

values less than 1%, Table 6-4). The model was able to match experimental intramuscular 

pressure readings under passive tension for both the longitudinal and transverse sensor insertion 

directions by visual analysis (Figure 6-2B, 3C) and through statistical measures (~5-10% 
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NRMSE, Table 6-4). Under isometric active conditions, the model produced superior statistical 

agreement with experimental intramuscular pressure data with the longitudinal sensor insertion 

(NRMSE of 48%) in comparison to transverse orientation (NRMSE of 115%). Visually, model 

pressures decreased with increasing stretch similar to transverse sensor insertion, while 

longitudinal sensor insertion did not exhibit this trend (Figure 6-2E and 2F). The model 

agreement with transverse data was stronger at muscle lengths which occur in vivo (Figure 6-2E 

inset, NRMSE of 37%) in comparison to longitudinal data (Figure 6-2F, NRMSE of 111%) 

[34,35]. 



113 
 

 
Figure 6-2. A) Model fit to experimental stress under passive stretch conditions. The 
corresponding passive experimental and model predictions for intramuscular pressure are shown 
for B) longitudinal sensor insertion and C) transverse sensor insertion. D) Model fit to 
experimental stress under active isometric conditions. The corresponding active experimental 
and model prediction for intramuscular pressure are shown for E) longitudinal sensor insertion 
and F) transverse sensor insertion. Physiological in vivo muscle lengths are highlighted in the top 
right inset of E, showing model predictive capabilities. All experimental data presented as mean 
and standard deviation. 
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Table 6-4. Statistical analysis of model agreement to experimental data of sensor insertion in the 
longitudinal or transverse orientations. Root mean square error (RMSE, Equation 3) and 
normalized root mean square error (NRMSE, Equation 4). Note that for passive and active stress 
the model was fit to experimental data (hence the smaller errors) and that all pressure 
comparisons are independent validation.  

Statistic Insertion 
Passive 
Stress 
(kPa) 

Passive 
Pressure 
(mmHg) 

Active 
Stress 
(kPa) 

Active 
Pressure 
(mmHg) 

RMSE 
Longitudinal 

1.26 
3.53 

0.119 
35.3 

Transverse 2.12 68.2 

NRMSE 
Longitudinal 

0.765% 
11.7% 

0.0786% 
48.1% 

Transverse 5.64% 115% 
 

Intramuscular pressure exhibited inhomogeneity within the model (Figure 6-3). Fluid pressure 

was highly transient in the distal region (which has a larger aponeurosis), which had pressure 

gradients of nearly 100 mmHg across less than 15 mm (Figure 6-3A). While the proximal region 

also exhibited pressure gradients, they was not as drastic (Figure 6-3B, ranging from 0 mmHg to 

~30 mmHg). Fluid pressure gradients decreased with time as pressure equilibrated. 

 
Figure 6-3. Color maps of fully activated finite element model at optimal length after one second 
of maximum contraction. A) Image of two dimensional sagittal midbelly slice of the model 
showing fluid pressure distribution. B) Image of two dimensional coronal midbelly slice showing 
fluid pressure distribution. The distal region exhibited the highest variability in fluid pressure. 
 

The transverse stiffness parameter comparison showed that current modeling approaches (a value 

of 15 kPa for ξtrans) had a stronger agreement to experimental tensile stress data than previous 
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approaches (33 kPa for ξtrans) (Figure 6-4). This was observed both under stress relaxation 

(Figure 6-4A) (NRMSE of 3.8% for the current approach versus 22% for the previous approach) 

as well as constant rate pull (Figure 6-4B) (NRMSE of 8.3% for current versus 26% for 

previous). Additionally, transverse parameter stiffness affected fluid pressurization within the 

model under active contraction, particularly at short muscle lengths. Specifically, increases in 

transverse stiffness lead to increases in fluid pressure in excess of 20% on the ascending limb for 

the same active stress generation (Table 6-5). 

 

Figure 6-4. Comparison of two models to experimental data (mean with standard deviation in 
gray) of rabbit tibialis anterior muscle subject to transverse extension. The current model 
assumes a ξtrans value of 15 kPa while previous modeling utilized 33 kPa. A) Stress relaxation 
step of 0.1 strain ramp (shown left) and 300 seconds of relaxation (shown right). B) Constant rate 
pull to 0.25 strain at a rate of 0.01 s-1. 
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Table 6-5. Comparison between the previous modeling approach (ξtrans of 33 kPa) and current 
approach (ξtrans of 15 kPa) at three muscle lengths: the ascending limb (strain of -0.2), optimal 
length (zero strain), and the descending limb (strain of 0.2). Fluid pressure increased with 
increases in transverse stiffness, particularly on the ascending limb, yet measured whole model 
stress had only little dependence on transverse stiffness. 

Strain 
from 

L0 

Stress (kPa) Pressure (mmHg) 

Exp Current 
Model 

Previous 
Model 

Model % 
Difference 

Exp Current 
Model 

Previous 
Model 

Model % 
Difference 

-0.2 192 192 190 1.1% 56.7 95.6 117 23% 
0 237 237 236 0.19% 36.8 38.0 40.3 6.0% 

0.2 184 184 184 0.17% 19.6 16.5 17.2 4.2% 
 

6.4 Discussion 

This work presents the first whole muscle finite element model to accurately predict both 

intramuscular pressure and muscle stress under active contraction conditions. Previous modeling 

efforts either did not include activation [4] or used an idealized 2D geometry and lacked time 

dependent effects [36]. This work has developed the foundation for future endeavors to evaluate 

intramuscular pressure distributions within skeletal muscle, study how disease and degradation 

affect muscle force and intramuscular pressure, and how variations in geometry or activation 

affect force and IMP. Based on the agreement with experimental data, this work suggests use of 

sensors inserted longitudinally in contrast to a transverse insertion. Although the NRMSE error 

value of 48% for longitudinal active data may seem quite high, experimental standard deviations 

are similarly ~50%. Additionally, the model showed excellent predictive capability for data from 

-0.15 to 0.2 strain (Figure 6-2E inset), which are muscle lengths likely experienced in vivo [34]. 

While it remains unclear exactly why the IMP data in this study differs based on sensor insertion 

technique, it is likely the result of anchoring within the tissue, which is critical to proper sensor 

utilization [7]. 
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The inhomogeneous approach in this work was chosen based on the portion of tissue comprised 

of solid muscle fibers in contrast to extracellular matrix and fluid content [25,37]. Previous finite 

element modeling efforts of skeletal muscle have utilized similar three dimensional 

inhomogeneous assumptions about contractile constituents [38,39], homogeneous assumptions 

[13,16,23,36,40–45], and a combination of three dimensional and one dimensional elements 

[35,46,47]. While the approach used in this work clearly does not replicate the complete 

structure of skeletal muscle, it does provide further insight into the inhomogeneous behavior of 

the tissue, particularly for intramuscular pressure (Figure 6-3). While it remains to be seen 

exactly how other approaches, such as a passive three-dimensional mesh reinforced with one-

dimensional contractile elements are able to model intramuscular pressure behavior, this current 

approach shows strong predictive capabilities, especially in the physiological range of strain. 

Future work to investigate the role of muscle weakness, fibrosis, fatigue, and isotonic 

contractions on fluid pressurization would benefit the IMP field. 

 

Model fluid pressure exhibited a high level of spatial dependence during immediate contraction 

(Figure 6-3). While this variability decreased with time even during contraction, the combination 

of transience and inhomogeneity manifests in a highly dynamic pressure distribution. This could 

support previous experimental findings noting the difficulty with repeatability of intramuscular 

pressure measurements [48], particularly under dynamic conditions when sensor movement 

occurs [49]. Under steady-state conditions, fluid can equilibrate and thus the model pressure 

distribution is more uniform. However, it remains unclear if this modeling observation is 

physiologically accurate, as current experimental intramuscular pressure studies do not provide 

the necessary spatial measurements to correlate with a finite element model. Future work to 
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experimentally investigate regional IMP in muscle simultaneously would provide valuable 

insight into this spatial fluid distribution and provide strong validation data for this model. 

Additionally, dynamic muscle conditions are critical to proper in vivo function [2] and thus 

should not be neglected for the sake of simplicity. 

 

The length-dependency of the model fluid pressure output suggests that variability of 

intramuscular pressure may in vivo may be dependent on more physiological conditions than 

muscle force alone. Additionally, the transverse stiffness of the model affects fluid pressurization 

under active conditions (Table 6-5). From a modeling perspective, it is not surprising that the 

fluid pressure behaves in such a manner. When muscle is passively stretched, the transverse 

direction compresses due to the Poisson effect, which results in fluid pressurization. When 

muscle actively contracts, the transverse direction expands, again due to the Poisson effect. In 

this case, the longitudinal compression causes fluid pressurization. Thus, these two conditions 

enact opposing deformations as a result of the Poisson effect, which when combined result in a 

small volumetric deformation (Figure 6-5). From a modeling perspective, as the muscle is 

lengthened, contraction must overcome larger and larger deformations to pressurize the fluid. 

Thus, the observed decrease in fluid pressure with muscle stretch is expected within a finite 

element model of continuum muscle. Further experimental work to identify exactly how muscle 

length and activation level contribute to intramuscular pressure readings would elucidate the 

accuracy of this modeling approach. 
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Figure 6-5. A) The deformations resulting from passive stretch and active contraction both enact 
the Poisson effect, where the longitudinal strain (black arrows) results in opposite strain in the 
transverse plane (red arrows). As these deformations oppose each other, the result is a smaller 
final volumetric deformation, which results in low fluid pressurization. B) Model transverse 
strains (x and y directions, as elongation occurs in the z direction) for three time points when 
stretched to optimal length, after initial ramp elongation, at the end of stress relaxation, and at 
maximum contraction. Passive elongation results in negative transverse strains, which is then 
counteracted by shortening due to active contraction. 
 

While passive stretch of in vitro whole skeletal muscle is largely dictated by longitudinal 

mechanical properties, in vivo muscle fibers are connected through fascia to surrounding muscle 

fibers and other tissues.  As a result, force generation is transmitted laterally throughout skeletal 

muscle [3]. Thus, while the transverse tensile properties play a limited role in in vitro passive 

muscle stiffness, they contribute to the mechanical function of skeletal muscle in vivo. From a 

modeling perspective, the transverse tensile stiffness also plays a key role in fluid pressurization 

(Table 6-5). This was particularly evident on the ascending limb when muscle is at short lengths, 

as there is no pre-stretch to overcome and thus transverse tensile strains are larger. Stiffer fibers 

would result in less expansion and thus more fluid pressurization. However, at longer muscle 

lengths the role of transverse stiffness seems to be less important to fluid pressurization (Table 6-

5). This appears to be due to the fact that contraction must “overcome” stretch to pressurize fluid 
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(Figure 6-5), resulting in small transverse tensile strains and thus less of a contribution from the 

transverse fibers. The agreement between experiment and model data for transverse muscle 

stiffness (Figure 6-4) is thus critical for future applications of this work to in vivo modeling and 

to the use of this model for clinical recommendations. 

 

6.5 Conclusions 

This work presents the first whole muscle finite element model of skeletal muscle which predicts 

both intramuscular pressure and muscle force. This work also modeled active skeletal muscle 

with a hyper-poro-viscoelastic constitutive approach, utilized inhomogeneity, and confirmed 

physiological accuracy in regards to choosing parameter values. Muscle stress and intramuscular 

pressure data under passive and active conditions were modeled, and the use of a pressure 

microsensor inserted longitudinally into skeletal muscle was suggested. The transverse tensile 

stiffness was shown to play a key role in fluid pressurization at short muscle length. At longer 

lengths, passive stretch and muscle contraction enacted opposing Poisson effects, which led to 

low fluid pressurizations. Future use of this model to study spatial distribution of fluid pressure 

within skeletal muscle will guide the clinical use of the pressure microsensors for accurately 

measuring intramuscular pressure. Further model development to include more complex muscle 

activation as well as the effects of muscle weakness or disease would also be highly beneficial. 
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CHAPTER 7: 

MODELING INTRAMUSCULAR PRESSURE IN THE HUMAN TIBIALIS ANTERIOR 

WITH FINITE ELEMENT ANALYSIS 

 

 

7.1 Introduction 

The correlation between muscle force and intramuscular pressure (IMP) [1–5] provides an 

opportunity to utilize IMP measurements as a clinical approach to interpret muscle force in vivo. 

However, regional variations in IMP [6] and difficulties with reproducibility from muscle to 

muscle and patient to patient [7] make this interpretation rather difficult. It remains unclear 

exactly why intramuscular pressure measurements are highly variable yet still correlate strongly 

with muscle force. Chapter 6 presents a finite element model of the rabbit tibialis anterior which 

suggests sensor location and muscle length may play a role in fluid pressurization within the 

tissue. However, it remains to be seen if this is observed experimentally and if variations in 

muscle architecture, boundary conditions, and measurement location manifest in pressure 

variations. 

 

Previous finite element modeling of skeletal muscle characterized both muscle stress and 

intramuscular pressure under active and passive conditions (Chapter 6). That work provided 

insight into spatial distribution of fluid pressure within the model, suggested the use of 

longitudinal pressure microsensor insertion, identified the role transverse stiffness plays in fluid 

pressure in contracting muscle, and suggested that muscle length may influence IMP. However, 

there is some concern in utilizing an approach developed in an animal model (New Zealand 
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White Rabbit tibialis anterior or TA) for human application. Additionally, it remains unclear how 

the developed constitutive approach can translate to muscles with variations in architecture. The 

New Zealand White Rabbit TA is a unipennate muscle with a low pennation angle of roughly 

three degrees [8]. This simplifies the geometry and force transmission from a modeling 

standpoint as the muscle fibers are nearly aligned with the whole muscle. The human TA, a 

bipennate structure is thus architecturally different from the rabbit TA in that it has both external 

aponeuroses and an internal tendon/aponeurosis [9]. While the constitutive approach was 

developed and implemented at the tissue scale, use of that model in only one muscle limits the 

confidence in application to human studies without further validation. 

 

Previous fluid pressure validation was also completed for singular time points in a highly 

transient system. Specifically, model outputs were compared against isometric muscle stress and 

intramuscular pressure data under maximum contraction only. For passive stretch data, steady-

state pressure comparisons were made. While the agreement in Chapter 6 between model and 

experiment suggests an effective computational approach, there is concern in using this model to 

study dynamic muscle conditions, which are critical to in vivo muscle function [10]. The force-

pressure relationship under sub-maximal conditions would be of interest as normal gait and daily 

function typically do not occur at maximum contraction [10]. Validation of model behavior 

under various contractile levels would greatly strengthen the applicability of this model. 

Thus, there are three goals of the work presented here: 1) investigate variability in model fluid 

pressure and evaluate the efficacy of the previously utilized constitutive model in predicting 

intramuscular pressure behavior for 2) different muscle architecture (in this case a bipennate 

structure) and 3) variations in contractile level.  
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7.2 Methods 

7.2.1 Experimental Data 

Previous experimental analysis of isometric contractile behavior of the human tibialis anterior 

was completed [11]. Eight (n=8) healthy young adults were recruited for the study, which 

involved simultaneous measurement of dorsiflexion force and intramuscular pressure. For each 

subject, the ankle was placed at a neutral position (90° angle with the leg) with the knee between 

45-60° of flexion and dorsiflexion force was measured with a force transducer. Intramuscular 

pressure was measured with a pressure microsensor [12] inserted longitudinally (along with the 

muscle fibers) into the muscle midbelly using a 22 gauge catheter. Each subject contracted to 

50% maximum voluntary contraction (MVC) at three contraction rates: 5% per second, 10% per 

second, and 15% per second. Each contraction rate test was repeated for a total of fifteen trials 

per rate per subject, or 45 trials in total per subject. Dorsiflexion force was normalized for each 

run and intramuscular pressure was zeroed to produce IMP-%MVC data. To simplify and 

combine the results, IMP-%MVC data points were identified in intervals of 2.5% MVC from 0-

50%. Intramuscular pressure was averaged over a 0.1 seconds at each interval to reduce noise. 

 

7.2.2 Constitutive Model 

The constitutive approach utilized in this study was previously developed and validated against 

experimental data of the New Zealand White Rabbit tibialis anterior (TA). The details of this 

material model can be found in [13] for detailed explanation of passive behavior and in Chapter 

6 for detailed explanation of active behavior. In short, the passive constitutive approach utilized 

hyper-visco-poroelastic theories to characterize the complex passive function of the solid 

constituents of skeletal muscle. The tensile nonlinearity and anisotropy were modeled using an 
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isotropic hyperelastic Mooney-Rivlin strain energy density function [14] reinforced with 

exponential tension-only fibers [15]. This formulation allows the utilized approach to 

characterize the unique transversely isotropic behavior of skeletal muscle, where the longitudinal 

or fiber direction has a highly nonlinear tensile response, while the transverse or cross fiber 

direction has a more linear and stiffer response [16]. To model the time dependent relaxation of 

skeletal muscle in tension, a viscoelastic Prony series was employed [17] and fluid content was 

modeled with poroelasticity [18]. 

 

For active muscle, a formulation which dictates active stress as a function of time was 

incorporated, allowing for the ramp behavior of maximally contracting muscle to be 

appropriately simulated [10]. An inhomogeneous approach was developed which specified two 

different muscle constituents: passive only muscle and muscle which generated contractile stress 

and supported passive deformation. Due to the complexity of the structure-function relationship 

of passive muscle, including the fact that muscle passive behavior is a manifestation of both 

ECM and fiber stiffness [19,20], both constituents were given identical passive properties, with 

the exclusion of poroelasticity for the active-passive constituent. As seen in Chapter 6, this 

approach yielded good agreement between IMP and model pressure for maximally stimulated 

isometric contraction at various muscle lengths, particularly for the physiological operating 

range. 

 

7.2.3 Finite Element Geometry 

An idealized finite element geometry of the human tibialis anterior (TA) was developed (Figure 

7-1). Based on literature data [21], the total muscle length was 260 mm, pennation angle was 
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9.98°, and muscle fibers were 68.5 mm. The bipennate structure of the human TA requires an 

internal aponeurosis or tendon in addition to external aponeuroses (Figure 7-1A). Similar to 

previous finite element modeling of skeletal muscle (Chapter 6), an inhomogeneous geometry 

was employed in which 20% of the total muscle volume was defined as contractile. Due to the 

structure of this inhomogeneous approach, the hexahedral mesh lines must follow the muscle 

fiber orientations. This makes modeling the full geometry of the human tibialis anterior a 

challenge, which is why this idealized approach was implemented. The model represents a slice 

of the human TA 1mm thick, midway between the lateral and medial sides of the tissue. 

 
Figure 7-1. Idealized geometry of human tibialis anterior finite element model. A) Model 
without mesh lines to highlight various constituents, including active-passive (dark red), passive 
only (light red), and aponeurosis (gray). B) The same geometry with mesh lines and elements 
highlighted in yellow (black arrow) which were utilized for fluid pressure output. 
 

To simulate isometric activation of the human TA at neutral flexion (the ankle joint at 90 

degrees), the distal end of the muscle was displaced towards the proximal end and pinned prior 

to contraction, enacting muscle shortening. This is because the human TA is slack at neutral 

ankle flexion and does not support significant passive loads until nearly ten degrees of 

dorsiflexion [22]. After a 300 second relaxation phase [17,23], 50% maximum voluntary 

contraction (MVC) was applied through a ramp of active stress generation within the model with 
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a linear slope. This contraction was applied at three rates: 5% MVC per second, 10% MVC per 

second, and 15% MVC per second to match experimental trials [11]. With both the proximal and 

distal ends of the tissue pinned, the specific tension of the model was determined by summing 

the reaction force as the distal nodes and dividing by the physiological cross sectional area of 

33.35 mm2. Intramuscular pressure was interpreted as the mean fluid pressure of six elements 

within the model which were chosen to due to experimental location of pressure microsensors 

(Figure 7-1B) [11]. Model pressure was zeroed at the beginning of contraction, which occurred 

after stress relaxation as a result of passive deformation. 

 

7.2.4 Variations in Boundary Conditions and Model Parameters 

To study the effect of muscle length as well as contractile force on model fluid pressure, 

variations in pre-contraction displacement and specific tension were applied. For the pre-

contraction displacement, previous experimental work has shown that the human TA is slack 

when the ankle is neutral, and that the difference in muscle length between this neutral position 

and ten degrees of plantarflexion when passive tension is recruited is roughly 3.5% [22,24]. 

However, the previously developed and validated constitutive model employs a wide toe region 

[13], thus there is some concern over the proper pre-contraction displacement, as the low 

stiffness within this toe region may be difficult to observe experimentally in vivo versus in vitro. 

To investigate the role of pre-contraction shortening on the model fluid pressure, four different 

displacement lengths were applied to the distal end of the tissue resulting in muscle shortening, 

4.5 mm, 6 mm, 7.5 mm, and 9 mm (experimentally calculated value). These will be referred to as 

“Model 1” (4.5 mm), “Model 2” (6 mm), “Model 3” (7.5 mm), and “Model 4” (9 mm). 
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Specific tension of human muscle in vivo cannot be directly measured, as experimental analysis 

requires measurement of torque and back calculations using anatomical and muscle structural 

measurements [25]. Fukunaga et al. found that the human TA generates roughly 85 kPa at 

maximum voluntary contraction [24], while Maganaris et al. others determined a value of 155 

kPa [26]. Thus, for 50% maximum voluntary contraction, two specific tension values were 

utilized in this study: 42.5 kPa and 77.5 kPa. 

 

7.2.5 Statistics 

Similar to Chapter 6, the root mean square error (RMSE, Equation 1, where �� are experimental 

data and  �௠ are model data) and normalized root mean square error (NRMSE, Equation 2) were 

utilized to evaluate model fit to experimental data. Model fluid pressure output was compared 

against experimental intramuscular pressure data at 2.5% MVC increments up to 50% MVC. 

Total NRMSE for each model to all three contraction rates was calculated as the square root of 

the sum of the squared NRMSE values for each contraction rate. 

��ܯܴ = √∑ (���−���)2భ5�=భ 15       (1) 

��ܯܴ� = ோ�ௌ�௠�௫ሺ��ሻ−௠�௡ሺ��ሻ     (2) 

 

7.3 Results 

Model fluid pressure showed a nonlinear increase as a function of contraction level (Figure 7-2) 

similar to experimental data. Statistical agreement between models and experimental data ranged 

from less than 7% NRMSE to 95% NRMSE for individual pressure-contraction curves (Table 7-

1). For Model 3 with an applied specific tension of 42.5 kPa, the best overall fit to experimental 

data was observed at 23% NRMSE (Table 7-1). Both muscle length (Model #) and specific 
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tension affected model fluid pressure visually (Figure 7-2) as well as statistically in terms of 

agreement to experimental data (Table 7-1). However, the differences in fluid pressure were 

larger because of the variations in boundary conditions versus variations in specific tension 

(Figure 7-2).  

 

 
Figure 7-2. Comparison between experimental data (standard error bars) and modeling outputs. 
All model curves show specific tension values for both 77.5 kPa (top curves) and 42.5 kPa 
(bottom curves). A) Contraction rate of 5% per second. B) Contraction rate of 10% per second. 
C) Contraction rate of 15% per second. 
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Table 7-1. Statistical analysis of agreement between model outputs and experimental data. Fluid 
pressure behavior was dictated by both pre-contraction length as well as specific tension. Model 
3 with a specific tension of 42.5 kPa was found to have the overall strongest agreement to 
experiment at NRMSE of 23%. 

Model # 
Specific 
Tension 

(kPa) 

5%/s 10%/s 15%/s 
Total 

NRMSE RMSE 
(kPa) NRMSE 

RMSE 
(kPa) NRMSE 

RMSE 
(kPa) NRMSE 

Model 1 
42.5 66 62% 107 69% 91 47% 104% 

77.5 51 48% 91 59% 75 39% 85% 

Model 2 
42.5 31 29% 70 45% 55 28% 60% 

77.5 11 10% 46 30% 35 18% 36% 

Model 3 
42.5 15 14% 24 16% 21 11% 23% 

77.5 43 40% 10 6.7% 39 20% 45% 

Model 4 
42.5 67 63% 36 23% 60 31% 74% 

77.5 101 95% 70 45% 97 50% 116% 

  

The fluid pressure distribution within the model shows highly variable pressure values at the 

proximal and distal ends, with a more consistent distribution within the muscle midbelly (Figure 

7-3A). This was confirmed both by plotting fluid pressure as a function of distal to proximal 

location (Figure 7-3B) and by evaluating the statistical distribution of fluid pressure in four 

regions (Table 7-2). Specifically, when the pressure-location data from the model in Figure 7-3B 

are divided into four equal sized element groups (distal, middle near distal, middle near 

proximal, and proximal), the lowest standard deviations (4.5 and 7.5 mmHg for the superficial 

and deep data, respectively) and ranges (similarly 13 and 26 mmHg) are observed in the middle-

distal region and the highest (21-71 mmHg for standard deviation and 67-187 mmHg for range) 

are observed in the distal and proximal regions. 
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Figure 7-3. Fluid pressure distribution at 50% MVC for Model 3 after contracting at a rate of 
10% per second. Figure shown for muscle model contracting at a specific tension value of 77.5 
kPa (smallest NRMSE at 6.7% from Table 7-1). A) Pressure color map within finite element 
model. B) Plot of model pressures as a function of distal to proximal location. The two curves 
are shown for element rows located at the corresponding arrows from A. The model in A is 
aligned with the x-axis of the plot in B for comparison. The proximal (left) and distal (right) ends 
of the muscle showed highest spatial variability in fluid pressure. 
 

Table 7-2. Statistical analysis of regional fluid pressure variation within the model. Data from 
Figure 7-3B grouped into four sets by distal to proximal location (distal, middle near distal, 
middle near distal, and proximal). The distal-proximal region exhibited the lowest standard 
deviations and ranges, while the distal and proximal regions exhibited the highest. 

Region 
Superficial Pressure 

(mmHg) Deep Pressure (mmHg) 

Average StDev Range Average StDev Range 

Distal 159 33 92 102 57 147 

Middle-Distal 194 4.5 13 192 7.5 26 

Middle-
Proximal 

182 17 49 205 12 41 

Proximal 99 71 187 181 21 67 
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7.4 Discussion 

The contractile stress values utilized in this study are below the 50% of the maximum voluntary 

isometric specific tension of skeletal muscle (~100 kPa) [10]. This is likely due to the fact that 

the human TA is on the ascending limb of the isometric force-length curve with the ankle in a 

neutral position [24]. While specific tension values played a role in the pressurization of fluid 

within the model (Figure 7-2 and Table 7-1), muscle length had a larger effect on model fluid 

pressure as presented here (Figure 7-2). However, this is certainly dependent on the exact 

boundary conditions and specific tension values utilized in this study. The variations in pre-

contraction muscle length were identified by utilizing physiology studies to estimate 

approximate muscle length with the ankle at a neutral position [22,24]. Yet the long toe-region 

exhibited by the utilized constitutive model [13] suggests in vivo detections of muscle stiffness 

may be difficult at low strain levels and thus passive tension could occur closer to the neutral 

position than reported. Thus, it is not surprising that Model 3 exhibited the strongest correlation 

to experimental data (total NRMSE of 23%, Table 7-1), as it requires some muscle shortening, 

but not the full 9mm as calculated from literature. 

 

As muscle length decreased (going from Model 1 to Model 4), pressure values increased (Figure 

7-2). This agrees with findings from Chapter 6, which shows model pressures on the ascending 

limb were higher than at optimal length, which were higher than those on the descending curve. 

While it remains to be seen exactly how muscle length and intramuscular pressure are related in 

human in vivo studies, this work suggests that muscle length contributes to variability in 

intramuscular pressure. This could partially explain why experimentally measured intramuscular 
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pressure values are fairly consistent for the same muscle and patient, but less so for different 

muscles or patients where architecture and/or anatomy are variable [7,11]. 

Intramuscular pressure values from this study (~100-250 mmHg) are comparable to or higher 

than those from the Chapter 6 study (~25-150 mmHg), despite the fact that this work was 

conducted at 50% MVC while Chapter 6 was under 100% MVC. These differences in fluid 

pressure could be due to differences in muscle architecture, as the utilized constitutive models 

are the same and both studies simulated contraction at short muscle lengths. Specifically, the 

human TA is bipennate with a pennation angle of roughly 20° while the rabbit TA is unipennate 

and has a very low pennation angle of only 3° [8,21]. In fact, despite the massive differences in 

size, the fiber length of the human TA is less than twice that of the rabbit TA (68 mm vs 38 mm) 

[8,21]. Thus, the agreement between model and experimental data exhibited for both the rabbit 

TA in Chapter 6 and here for the human TA provides strong evidence that the utilized 

constitutive approach is a robust model for skeletal muscle at the tissue level. 

 

This work also presents the first finite element simulation of both muscle force and intramuscular 

pressure for human muscle contracting across a range of voluntary levels, specifically from 0% 

to 50% MVC. Previous work from Chapter 6 compared model and experimental pressures at 

maximal stimulation only, similar to early finite element work of muscle force and IMP [27]. 

The nonlinear shape of model pressure-contraction outputs is similar to that of the 

experimentally gathered pressure-contraction data, particularly for Model 3 compared to 10% per 

second contraction rate data (Figure 7-2). This approach is also unique in the fact that the passive 

constitutive model incorporates viscoelastic and poroelastic theories, which means time 

dependent variations in fluid pressure are the result of solid constituent relaxation, fluid flow, 
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and contraction level. Thus, the agreement between model and experiment further supports the 

use of this constitutive approach as a robust method to simulate the behavior of skeletal muscle. 

 

Regional variation of fluid pressurization within the model showed the least variable pressure 

readings in the muscle midbelly, but large spatial variations at the proximal and distal ends by 

inspection of both a color map and plotted pressure-location data (Figure 7-3). Statistical analysis 

of variability within the four model regions (distal to proximal) supported these findings (Table 

7-2). From a modeling perspective, this suggests IMP readings from pressure microsensors 

would be most consistent if placed in the muscle midbelly, away from large IMP gradients. This 

also suggests variations in experimentally measured IMP could be the result of improper sensor 

insertion, as small changes in insertion location could manifest in large changes in pressure 

readings in the proximal and distal regions. However, this must be either confirmed or rejected 

experimentally, as clinical recommendations cannot be made in confidence before regional 

validation within the model is completed. Model behavior could also be validated against three 

dimensional strain calculations utilizing magnetic resonance imaging [28] to improve confidence 

in interpreting spatial results. Thus, this work proposes the use of Figure 7-3 and Table 7-2 data 

in implementing further modeling studies or experimental analyses of intramuscular pressure to 

either confirm or reject the hypothesis that the muscle midbelly is the ideal location for sensor 

insertion. 

 

While this work presented novel insight into skeletal muscle function from a modeling 

perspective and strengthened the case for the use of a hyper-visco-poroelastic approach to 

modeling skeletal muscle, there are certainly some potential weaknesses along with future work 
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to be completed. First, the utilized finite element geometry from this study represents only an 

idealized version of the human tibialis anterior. A full geometry would require either alterations 

to the inhomogeneous approach for muscle activation or highly complex meshing, as the 

hexahedral mesh lines must follow the orientation of muscle fibers. While this would provide 

further insight into global IMP behavior, the in vivo environment of the human TA would require 

careful assumptions regarding boundary conditions. This is particularly evident given the current 

study, which highlights how boundary conditions can affect model fluid pressure. The effects of 

muscle weakness and disease such as fibrosis [29] could also be studied to evaluate how fluid 

pressure changes with impaired function. Finally, the constitutive approach for muscle activation 

should be improved to include the dependence of muscle force on velocity. 

 

7.5 Conclusions 

This work presented the first finite element model of human skeletal muscle which modeled 

various contraction levels and simulated both muscle force and intramuscular pressure. 

Simulating a bipennate muscle under variable contractile conditions provides further confidence 

in utilizing a constitutive model developed for a unipennate geometry under maximum voluntary 

contraction only. This model provides evidence that muscle length, specific tension, sensor 

insertion location, and architecture may account for variability of intramuscular pressure 

readings in vivo. Finally, while the model suggests that the midbelly of the tissue is ideal for 

sensor location, this must be either confirmed or rejected using further modeling or experimental 

analysis. Future work to study impaired muscle and more advanced contractile conditions would 

greatly increase the clinical application of this work. 
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CHAPTER 7: 

CONCLUSIONS AND FUTURE WORK 

 

 

In summary, this work presents the development and implementation of a finite element model 

of skeletal muscle to study intramuscular pressure. Constitutive model development was based 

on three experimental analyses of skeletal muscle which investigated 1) the viscoelastic response 

of muscle in tension, 2) the anisotropic and hyperelastic response of muscle in tension, and 3) the 

hydraulic permeability of the tissue. These data were utilized to create and implement a novel 

transversely isotropic, hyper-visco-poroelastic constitutive approach to model the passive 

behavior of skeletal muscle. Muscle activation was incorporated through an inhomogeneous 

approach. Model validation was completed against experimental data of muscle stress and 

intramuscular pressure, and simulations of both rabbit muscle and human muscle were 

completed. 

 

Experimental studies identified critical phenomena at the tissue level for the development of a 

robust finite element model. The tensile viscoelastic behavior of skeletal muscle was studied to 

determine if muscle exhibited linear or nonlinear viscoelasticity. While statistical analysis 

suggested strain level dependence of stress relaxation, only marginal increases in modeling 

accuracy were observed in a fully nonlinear viscoelastic model versus a quasilinear viscoelastic 

model. Thus, the use of quasilinear viscoelasticity was chosen for this work. Future studies 

incorporating fully nonlinear viscoelasticity into a finite element model of skeletal muscle would 

shed light on how viscoelastic assumptions affect whole muscle behavior from a computational 
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standpoint. Transversely isotropic tensile testing of skeletal muscle under fresh and non-fresh 

(subject to a freeze-thaw cycle) conditions confirmed previous findings that the transverse 

orientation exhibited stiffer and more linear behavior than the longitudinal orientation, while 

conflicts in literature were likely the result of post-mortem stiffening. All future experimental 

studies of skeletal muscle should be completed under fresh conditions, before the effects of rigor 

mortis (~4-8 hours). Finally, muscle hydraulic permeability was directly measured and muscle 

compression was simulated with various strain dependent and anisotropic assumptions. While 

tissue relaxation in tension is generally attributed to inherent viscoelasticity of solid constituents, 

poroelasticity may play a role in stress relaxation under compressive conditions. Further work to 

identify how well poroelastic theory can explain stress relaxation of muscle in compression may 

result in modeling approaches with greater physiological accuracy. 

 

The developed constitutive model was validated using a finite element approach for passive 

stretch, activate contraction, and in two muscle geometries. This robust approach supports the 

use of this model for variations in physiological architecture and both passive and active 

conditions. The model suggested that in addition to activation level, muscle length and 

architecture contribute to variability of intramuscular pressure. Additionally, the use of 

longitudinal sensor insertion yielded experimental data which more closely agreed to model 

output versus transverse insertion. Spatial variability was observed from a modeling perspective 

but must be confirmed experimentally before strong clinical recommendations about sensor 

insertion location can be made. 
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While this work has presented the development and implementation of a model of skeletal 

muscle to study the behavior of intramuscular pressure (IMP), future work should be completed 

to strengthen the use of IMP as a clinical measurement. Firstly, finite element analysis of human 

in vivo muscle geometry should be completed for greater clinical impact. While accurate whole 

muscle geometry was simulated for the rabbit tibialis anterior, the creation of a human mesh 

entails some difficulty due to architecture and orientation. The approach presented here should 

also be validated spatially using data gathered through experimental analysis. This could include 

both intramuscular pressure measurements at various spatial regions throughout the tissue as well 

as imaging modalities such as magnetic resonance imaging to evaluate regional strain of in vivo 

muscle. 

 

Additionally, further developments of muscle activation from a constitutive standpoint would 

greatly expand the impact of this model. Specifically, this includes isotonic contractions, where 

muscle is actively shortening or lengthening, as is common in gait and locomotion. Modeling 

clinical conditions such as muscle weakness, increases in stiffness as a result of fibrosis, or 

decreases in muscle mass could also shed light onto the role of intramuscular pressure in 

impaired muscle. While this work has provided novel insight into muscle function through 

experimental and computational analyses, there remains an opportunity to build upon this work 

and make a greater clinical impact. 

 

 

 


