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ABSTRACT 

 

 

 

RETRIEVAL TECHNIQUES AND INFORMATION CONTENT ANALYSIS TO IMPROVE 

REMOTE SENSING OF ATMOSPHERIC WATER VAPOR, LIQUID WATER AND 

TEMPERATURE FROM GROUND-BASED MICROWAVE RADIOMETER 

MEASUREMENTS  

 

 

 

        Observation of profiles of temperature, humidity and winds with sufficient accuracy and 

fine vertical and temporal resolution are needed to improve mesoscale weather prediction, track 

conditions in the lower to mid-troposphere, predict winds for renewable energy, inform the 

public of severe weather and improve transportation safety. In comparing these thermodynamic 

variables, the absolute atmospheric temperature varies only by 15%; in contrast, total water 

vapor may change by up to 50% over several hours. In addition, numerical weather prediction 

(NWP) models are initialized using water vapor profile information, so improvements in their 

accuracy and resolution tend to improve the accuracy of NWP.  Current water vapor profile 

observation systems are expensive and have insufficient spatial coverage to observe humidity in 

the lower to mid-troposphere.  To address this important scientific need, the principal objective 

of this dissertation is to improve the accuracy, vertical resolution and revisit time of tropospheric 

water vapor profiles retrieved from microwave and millimeter-wave brightness temperature 

measurements. 
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        Ground-based microwave and millimeter-wave brightness temperature measurements from 

radiometers operating at frequencies near the 22.235 and 183.31 GHz water vapor absorption 

lines have been used extensively for retrieval of water vapor profiles. Such microwave 

radiometers have the advantages of relatively low cost, potential for future network deployment, 

and frequent revisit times for sensing dynamic changes as well as gradients in water vapor 

profiles. To retrieve water vapor profiles from microwave brightness temperature measurements, 

Bayesian optimal estimation is commonly used, requiring a water vapor background data set. 

Microwave brightness temperature measurements provide information on water vapor at the 

location and time of measurement, while background data sets provide statistics on the general 

behavior and variability of water vapor. Brightness temperature measurements at multiple 

frequencies contribute information to profile retrieval, although the information at multiple 

frequencies may be highly correlated due to similar sensitivities to changes in atmospheric 

pressure, temperature and water vapor mixing ratio as a function of altitude. To retrieve profiles 

with optimal vertical resolution and minimum retrieval error, as many independent 

measurements as possible need to be obtained, within the limitations of available resources. To 

this end, an analysis is performed to determine the amount of independent information about 

water vapor and temperature available from the microwave and millimeter-wave frequency 

spectrum. For this, a feature selection algorithm based on weighting function analysis is used to 

determine sets of frequencies between 10 and 200 GHz that have the greatest number of degrees 

of freedom for water vapor and temperature retrieval. Another analysis is performed to determine 

the optimal background data set size and layer thickness to yield maximum information about 

water vapor variability to sense dynamic changes in water vapor profiles at a particular location 

and a particular time of year. To explore the retrieval technique’s capability and performance, the 
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HUMidity EXperiment 2011 (HUMEX11) was conducted at the U.S. Department of Energy’s 

(DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site. The 

radiometer-retrieved profiles are compared with Raman lidar-retrieved profiles to determine their 

accuracy. 

        In addition to water vapor, clouds and precipitation also strongly affect microwave and 

millimeter-wave brightness temperature measurements. Since the presence of liquid water 

reduces the accuracy of water vapor retrievals, it is important to distinguish between clear and 

cloudy sky conditions and to estimate the amount of liquid water in the atmosphere. To address 

this need, a technique has been developed based on the ratio of the ground-based brightness 

temperature at 23.8 GHz to that at 30.0 GHz, known as the vapor liquid water ratio (VLWR).  

During clear sky conditions, the VLWR is much greater than unity, but when sufficient liquid 

water is present, the VLWR approaches unity. This sensitivity of the VLWR is used to develop 

an algorithm to retrieve integrated water vapor and liquid water in the atmosphere over a wide 

range of elevation angles. Measured brightness temperatures are obtained from the University of 

Miami radiometer during the DYNAmics of the Madden-Julian Oscillation (DYNAMO) 

experiment. The water vapor and liquid water retrieved from microwave brightness temperatures 

are compared to those retrieved from radar measurements by the National Center for 

Atmospheric Research S-PolKa (dual-wavelength S- and Ka-band) radar, which was collocated 

with the radiometer. 

        This dissertation advances the state of knowledge of retrieval of atmospheric water vapor 

from microwave brightness temperature measurements. It focuses on optimizing two information 

sources of interest for water vapor profile retrieval, i.e. independent measurements and 

background data set size. From a theoretical perspective, it determines sets of frequencies in the 
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ranges of 20–23, 85–90 and 165–200 GHz that are optimal for water vapor retrieval from each of 

ground-based and airborne radiometers. The maximum number of degrees of freedom for the 

selected frequencies for ground-based radiometers is 5-6, while the optimum vertical resolution 

is 0.5 to 1.5 km. On the other hand, the maximum number of degrees of freedom for airborne 

radiometers is 8-9, while the optimum vertical resolution is 0.2 to 0.5 km. From an experimental 

perspective, brightness temperature data sets from the HUMEX11 and DYNAMO field 

experiments have been used to improve knowledge of the impact of the background information 

on retrieval of water vapor profiles and estimation of water vapor and liquid water using low 

elevation angle data sets. HUMEX11 measurements have been used to improve retrieval 

performance by choosing optimal atmospheric a-priori statistics of 35-55 profiles and layer 

thickness of 100-m to detect dynamic changes and gradients. DYNAMO measurements have 

been used to retrieve slant water path and slant liquid water with estimated error of less than 10% 

and 25%, respectively, for all elevation angles of interest.  

        These theoretical and experimental advances improve understanding of retrievals using 

microwave brightness temperature and extend them to more challenging applications, including 

sudden atmospheric gradients and slant path delay retrieval for elevation angles as low as 5º. 
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Chapter I Introduction 
 

 

 

        Atmospheric water vapor plays a significant role in weather changes and various 

atmospheric processes like Earth’s energy budget, cloud formation and convective initiation [1] 

[2]. These processes determine the intensity and location of severe weather. Directly or indirectly 

water vapor is involved in initiation of severe storms and turbulent weather conditions [1] [3]. 

Therefore, it is very important to determine water vapor distribution in the troposphere and the 

physical processes that controlling it. Various observing techniques have been developed that are 

helping to understand moisture convection interaction and humidity trends [4] [5] [6]. However, 

the distribution of water vapor in the lower troposphere is still not properly quantified [1] and 

modeled due to its large spatial and temporal variability. Instruments including microwave 

radiometers have been used to retrieve atmospheric water vapor and temperature profiles with 

excellent temporal resolution but varying spatial resolution and accuracy.  

 

1.1. Scientific Motivation 

 

        The measurement of water vapor distribution in the lower troposphere is important for 

numerical weather prediction (NWP) models since water vapor profiles are key inputs for the 

initialization of these models [7]. Ensemble forecasting of convective initiation is particularly 

sensitive to the accuracy and spatial resolution of water vapor profiles. This type of forecasting 

examines forecast variability under a variety of initial conditions to determine where and when 

severe weather is likely to begin. Severe storms are known to develop within 30 to 60 minutes at 

locations where water vapor distribution changes rapidly in time [8] [9] [10]. Therefore, tracking 

dynamic changes in integrated water vapor and water vapor profiles with improved spatial 
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resolution is important to predict the timing and location of cloud formation and the initiation of 

convective storms.  

        Water vapor is the only atmospheric constituent that is short lived and abundant in the 

atmosphere and has a strong positive feedback on climate and weather changes driven by various 

influences [1]. Thus, information about water vapor and it’s variability is very critical. However, 

study of water vapor until now has not led to precise knowledge of its distribution in the 

troposphere or clear understanding of the factors controlling water vapor amount and the 

mechanisms by which it influences atmospheric processes. Therefore, sensing atmospheric water 

vapor is a major area of interest to National Oceanic and Atmospheric Administration (NOAA), 

National Aeronautics and Space Administration (NASA), and National Center for Atmospheric 

Research (NCAR).  Consequently, a significant amount of work has been performed to develop 

systems and techniques for measurement of atmospheric water vapor, as well as to increase the 

spatial and temporal resolution of observed water vapor density profiles. Some of this work is 

summarized in the following sections. 

 

1.2. State of the Art for Water Vapor Retrieval 

 

        This section describes various retrieval techniques that have been developed and used in the 

past for estimation of 1-dimensional profiles of water vapor and temperature. The retrieval 

algorithms used for determination of 2- and 3-dimensional water vapor distribution use 

tomographic retrieval techniques and have been discussed as follows.  

 

1.2.1 One-Dimensional Water Vapor Profile Retrieval using Ground-Based Radiometers 

 

        Retrieval of humidity profiles from passive ground-based radiometers is an ill-posed 

problem [11] because there are a large number of atmospheric states that can produce a given 
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measurement vector within its uncertainty. Various methods have been developed to retrieve 1-D 

water vapor profiles from radiometer brightness temperature measurements in the last few 

decades, including statistical profile inversion and the variational method. In statistical profile 

inversion, a relationship between radiometric measurements and temporally as well as spatially 

coincident radiosonde profiles is established for a particular area. Using this relationship, 

measured brightness temperatures are extrapolated to retrieve water vapor and temperature 

profiles. The problem with this process is the anomalous estimation of profiles having a negative 

or positive bias.  

        Therefore, the variational methods of retrieving water vapor and temperature profiles were 

developed and are known as 1D-VAR [12] and integrated profiling technique (IPT) [13]. This 

technique uses a forward model to relate the state vector (temperature, water vapor profile and 

cloud liquid) to the observation vector i.e., brightness temperatures measured at the frequencies 

channels of operation. The ill-posed problem is addressed by the addition of background or a-

priori data set, sometimes in the form of a short-term forecast from a NWP model. This method 

also takes into consideration the error due to observations and the variability due to background 

data set. The optimum profile is retrieved by adjusting the atmospheric state vector in order to 

minimize a cost function using an optimization method, usually the Gauss-Newton or regularized 

Levenberg–Marquardt method [14]. 1D-VAR uses the Levenberg–Marquardt optimization 

method whereas Gauss-Newton method is used by IPT.  

        As part of 1D-VAR degrees of freedom (DOF) analysis was performed and showed that 

temperature and water vapor measurement frequencies had DOF of 2.8 and 1.8, 

respectively. The vertical resolution of temperature profiles degrades from approximately 0.7 km 

near the ground to 8 km at 4 km altitude while that of humidity profiles detoriates from 2 km at 
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ground level to 7 km at 2 km altitude. An error analysis determined that the 1D-VAR retrieval 

uncertainties for temperature and water vapor density profiles were 1 K and 2.5 gm
−3

, 

respectively [14]. Error analysis for IPT [13] shows that the root mean square (RMS) 

uncertainties are less than 1 K and 1 gm
−3

 for temperature and humidity, respectively. The 

relative error for retrieved integrated liquid water ranges from 15% to 25% whereas the bias 

error for integrated water vapor is approximately 0.013 cm based on comparison with radiosonde 

launched close to measurement time.   

        There are various other retrieval algorithms as described by Westwater [15] and Solheim 

[16] i.e. regularization techniques, iterative techniques, regression methods and a-priori linear 

statistical method with focus on estimation of temperature profiles. The a-priori linear statistical 

method is similar to the 1D-VAR and provides an estimated error of 0.5 to 2 K from ground to 

10 km altitude. Solheim compared the performance of different optimization techniques i.e., 

Gauss-Newton iteration method, regression method, neural network and Bayesian maximum 

probability estimation technique, for retrieval of water vapor, temperature and liquid water 

profiles. All the techniques showed temperature errors of approximately of 0 to 4 K while water 

vapor rms error was in the range of 0 to 2 gm
-3

. Scheve and Swift [17] compared water vapor 

profiles retrieved from K-band microwave brightness temperature measurements to those 

retrieved from Raman lidar measurements [18]. 

 

1.2.2 Two-Dimensional Absorption Coefficient Structure using an Elevation Angle 

Scanning Radiometer 

 

        The retrieval of 2-D absorption coefficient structure uses tomographic measurements from a 

radiometer with a single frequency channel at 23.8 GHz [19] where the radiometer scans a 

vertical plan of atmosphere using 12 different elevation angles from 23
°
 to 90

°
. Tomography 
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works best when a lot of elevation angles of measurement are available from multiple 

perspectives but the number of angular measurements is limited in the 2-D retrieval explained 

here. The scanned region is modeled as a panel of 9 km height and 23 km horizontal extent. This 

observed region is subdivided into rectangular bins, as shown in Figure 1. The size of bins is 

smaller near the radiometer and larger further away from the radiometer. The vertical size of all 

bins is 1.5 km, while the horizontal sizes of the bins vary from 0.5 km near the radiometer to 6 

km furthest away from the radiometer. Solid lines in the figure represent the propagation paths 

observed by the radiometer antenna at various elevation angles. The number of elevation angles 

is determined by the eigenstructure of the forward problem as shown by singular value 

decomposition (SVD) [20]. For each of the 12 elevation angles, the contribution of each bin to 

the brightness temperature is computed assuming that the medium properties are constant within 

the bin. Again, the problem is ill-posed because the number of measurements is less than the 

variables. Therefore, a re-parameterization allows the 39 bins to be re-expressed into five 

macrocells, identified by letters, according to the eigenstructure of the Jacobian matrix. To 

retrieve the absorption coefficients in each bin, a forward model is defined by linearizing the 

radiative transfer equation about a reference model, where the difference between the measured 

and modeled brightness temperature are related to variations in absorption coefficient in each bin 

by means of a Jacobian matrix. The forward model needs to be inverted and least squares 

regression method is applied to retrieve the absorption coefficient profiles.  
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Figure 1. The scanned vertical plane is divided into resolution bins, identified by numbers, each 

with constant attenuation [19]. 

 

1.2.3 Three-Dimensional Water Vapor Field using a Network of Radiometers 

 

        Three-dimensional water vapor density is retrieved from brightness temperatures measured 

by a network of compact microwave radiometer for humidity profiling (CMR-H) [21] designed 

and fabricated at Microwave Systems Laboratory, Colorado State University. The retrieval 

algorithm developed by Padmanabhan et al. [5] uses algebraic reconstruction tomography, 

optimal estimation and Kalman filtering [22]. The network of radiometers performs 

measurements of the atmosphere at various elevation and azimuth angles. Each vertical plane 

scanned by the radiometer is divided into grid cells of equal size, as shown in Figure 2. The 

elevation angles used have minimum redundancy in terms of degrees of freedom and are 

determined by calculating the number of non-zero eigenvalues of the Jacobian matrix relating the 

variation of brightness temperatures and absorption coefficients. The number of eigenvalues is 

equal to the total number of independent ray intersections inside unique grid cells. A water vapor 

profile from radiosonde is used as an a-priori or reference profile. Using the reference 

atmospheric state, a radiative transfer equation in discrete form is used to calculate the brightness 
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temperature at each measurement frequency and elevation angle. The difference between the 

measured and simulated brightness temperatures is termed the variation in brightness 

temperature. The absorption coefficient in each of the grid cells is calculated using Van-Vleck 

Weisskopf absorption model. The variation of the brightness temperature at each elevation angle 

and the variation of the absorption coefficient in each grid cell are related by the elements of the 

Jacobian matrix. Calculating the absorption coefficient from the brightness temperature variation 

and the Jacobian matrix is an ill-posed problem because the number of measurements is less than 

the number of grid cells at which the absorption coefficient needs to be determined. Therefore, 

the deviation of each absorption coefficient from its reference value is calculated using Bayesian 

optimal estimation. The absorption coefficient retrieved in this way for each of the four 

brightness temperature measurement frequencies is fit to the Van-Vleck Weisskopf model [23] 

[24] of the water vapor absorption line to retrieve the water vapor density in each of the grid 

cells. In addition, spatial interpolation i.e., kriging [25] is used to estimate a continuous image of 

water vapor density at each of the unsampled grids. 

        The 3-D water vapor is retrieved with a vertical and horizontal resolution of 0.5 km [26]. 

The temporal resolution of the retrieved water vapor field depends on the time required to scan 

the spatial volume measured by the three radiometers. An observation system simulation 

experiment performed using Weather Research and Forecasting (WRF) model data showed that 

the water vapor density expected percent error was approximately 15-20%. 
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Figure 2. The vertical plane scanned by the radiometer is divided into grid cells to perform the 3-

D water vapor retrieval [5]. 

 

1.3. State of the Art for Retrieval of Integrated Water Vapor and Liquid Water 

 

        There are various retrieval algorithms for estimating integrated water vapor and liquid water 

in the atmosphere using measured brightness temperatures at two frequencies i.e., frequency near 

the 22.235-GHz water vapor absorption line and the other is between 29 to 33 GHz, in a window 

region that is primarily affected by liquid water. These retrieval techniques are broadly divided 

in to two types. One is site specific and another is site independent, where both are dependent on 

background statistics. 

A) Site-Specific Statistical Retrieval 

        Retrieval algorithms developed by Liljegren [27] et. al. and Westwater [28] relate the mean 

radiating temperatures and two-frequency microwave radiometer measurements to the total 

opacities at those two frequencies. These opacities 𝜏1 and 𝜏2 are related to integrated water vapor 

(IWV) and integrated liquid water (ILW) through a linear relationship using statistically-

determined and site-specific retrieval coefficients 𝑣𝑖 and 𝑙𝑖 which are the path averaged mass 

absorption coefficient for water vapor and liquid water at the two frequency of operation of the 

radiometer. Opacities  𝜏1 and 𝜏2  are determined using Eqn. (I.1) 



9 

 

𝜏𝑖(0, ∞) = 𝑙𝑛 (
𝑇𝑚𝑟 − 𝑇𝑏

𝑇𝑚𝑟 − 𝑇𝑏0
) 

(I.1) 

where 𝑖 determines the frequency index, 𝑇𝑚𝑟 is the mean radiating temperature, 𝑇𝑏0 is the cosmic 

background and 𝑇𝑏 is the measured brightness temperature [28]. Opacity is defined as the 

impenetrability to electromagnetic radiation and is a measure of atmospheric extinction or 

absorption. The relationship between the opacities and the retrieved IWV and ILW are based on 

linear regression over a large data set which is usually radiosonde data compiled over a period of 

a year or more. The regression relationship is shown by Eqns. (I.2) and (I.3) 

�̂� = 𝑣0 + 𝑣1𝜏1 + 𝑣2𝜏2 (I.2) 

�̂� = 𝑙0 + 𝑙1𝜏1 + 𝑙2𝜏2 (I.3) 

where �̂� and �̂� are the estimated IWV and ILW. The common practice is to calculate the retrieval 

coefficients and mean radiating temperatures for each of a year so as to take into consideration 

the annual variation in water vapor and liquid water. This method provides a very good accuracy 

for integrated water vapor but the estimation method requires regular update of the background 

data required to calculate the retrieval coefficients, which acts as a limitation. Total water vapor, 

liquid water and ice content are also being estimated from radiometer measurements using neural 

network-based inversions, as developed by Li et al. [29]. 

B) Site-Independent Statistical Retrieval 

 

        These retrieval algorithms use surface parameters such as pressure, water vapor partial 

pressure and temperature to estimate IWV and ILW. In this method the mean radiating 

temperature �̂�𝑚𝑟, retrieval coefficients are determined from surface temperature 𝑇𝑠𝑢𝑟𝑓, pressure 

𝑃𝑠𝑢𝑟𝑓, relative humidity 𝑅𝐻𝑠𝑢𝑟𝑓 and partial pressure 𝑒𝑠𝑓𝑐 as given by Eqns. (I.4) to (I.7) 

�̂�𝑚𝑟 = 𝑎 + 𝑏𝑇𝑠𝑢𝑟𝑓 + 𝑐𝑅𝐻𝑠𝑢𝑟𝑓 (I.4) 
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�̂�𝑑𝑟𝑦 = 𝑎 + 𝑏(𝑃𝑠𝑢𝑟𝑓 − 𝑒𝑠𝑢𝑟𝑓)2/𝑇𝑠𝑢𝑟𝑓 (I.5) 

𝑣 = 𝑎 + 𝑏𝑇𝑠𝑢𝑟𝑓 + 𝑐1𝑇𝑠𝑢𝑟𝑓 + 𝑐2𝑇𝑠𝑢𝑟𝑓
2 + 𝑑1𝑒𝑠𝑢𝑟𝑓 + 𝑑2𝑒𝑠𝑢𝑟𝑓

2  (I.6) 

𝑙 = 𝑎 + 𝑏𝑃𝑠𝑢𝑟𝑓 + 𝑐𝑃𝑠𝑢𝑟𝑓𝑒𝑠𝑢𝑟𝑓 + 𝑑𝑒𝑠𝑢𝑟𝑓
2  (I.7) 

where �̂�𝑑𝑟𝑦 is the dry estimated optical depth,  𝑎, 𝑏, 𝑐, 𝑑, 𝑐1, 𝑐2, 𝑑1 and 𝑑2 are the regression 

parameters and determined using statistical data collected over a long period of time for a 

number of different places like the southern great plains, Oklahoma, ARM site in Alaska, 

Coupled Ocean Atmosphere Research Experiment (COARE) and various other field campaigns 

and radiosonde launch sites. This method [27] performed better than the site specific retrieval 

algorithm in estimating liquid water and the error was less than 0.05 mm for most of the cases. 

However, the IWV estimation error was higher for site independent algorithm than the site 

specific algorithm by approximately 0.2 to 0.3 mm. 

 

1.4 Organization of this Ph.D. Dissertation  

        This dissertation is organized as follows: 

 The fundamentals of remote sensing and radiometry i.e., Planck’s Black body radiation, 

radiative transfer theory and the absorption models used in this dissertation are explained in 

Chapter II. 

 Chapter III describes the Bayesian optimal estimation, Gauss-Newton and Levenberg-

Marquardt optimization techniques used for retrieval of water vapor profiles. 

 Chapter IV discusses the branch and bound feature selection algorithm which is used for 

determining the measurement frequencies which provide the most amount of information for 

water vapor and temperature retrieval. The frequencies selected and the corresponding 

weighting functions are also presented. 
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 Chapter V focuses on the HUMidity Experiment 2011 (HUMEX11). Measurements 

performed during this campaign are used for improving the accuracy of retrieval algorithm. 

The method of optimization of background data set size for improving ability of retrieval 

algorithm to detect gradients in water vapor profiles using ground based microwave 

radiometer measurements is discussed.  

 Chapter VI explains the DYNAMO field campaign as well its goals. 

 Chapter VII shows and discusses the azimuth anisotropy observed in the measured 

brightness temperatures at low elevation angles. Also the various sources of the azimuth 

anisotropy are discussed in this chapter. 

 Chapter VIII discusses the sensitivity of vapor liquid water ratio (VLWR) to water vapor 

and liquid water as well as the retrieval algorithm used for estimation of slant water path and 

slant liquid water at low elevations. Slant water path (SWP) and slant liquid water (SLW) 

are compared with those retrieved from radar measurements. 

 Chapter IX shows the sensitivity of VLWR to change in elevation angle as well as to 

changes in precipitation. 

 Chapter X describes the conclusions of this research work. 
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Chapter II  Fundamentals of Remote Sensing using Radiometry 
 

 

 

        This chapter discusses the fundamentals of remote sensing of water vapor and temperature 

using ground-based and airborne radiometers operating at microwave and millimeter wave 

frequencies. In this chapter atmospheric radiation and microwave radiometer topologies are 

introduced and discussed.  

 

2.1. Planck’s Blackbody Radiation and Brightness Temperature 

 

        An ideal black body is a totally opaque object that absorbs and emits all incident radiation at 

all frequencies without reflecting any. The characteristics of a perfect black body can be 

described using the Planck’s law [23] and the emitted energy is given as Eqn. (II.1) 

𝐵𝑓 =
2ℎ𝑓3

𝑐2
[1 (𝑒

ℎ𝑓
𝑘𝑇 − 1)⁄ ] 

(II.1) 

where 𝐵𝑓 is the spectral brightness of the blackbody with units of W/(m
2
SrHz),  

 ℎ is the Planck’s constant and is equal to 6.626x10
-34

  joules, 

 𝑘 is Boltzmann’s constant and is equal to 1.381x10
-23 

joule/K, 

 𝑇 is absolute temperature, with units of K,  

 𝑓 is the frequency in Hz, 

 𝑐 is the speed of light in m/s.  

        The brightness calculated using Eqn. (II.1) for a range of frequencies and temperatures are 

shown in Figure 3. The figure shows that increase in the temperature of a black body leads to 

increase in amount of radiation emitted by it at a particular frequency. As the temperature is 

increased, the frequency at which Planck’s radiation is maximum also increases. For illustration, 
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a body at 100 K emits maximum radiation at infrared  frequencies whereas at 10
9
 K the 

maximum radiation is observed in the gamma ray frequency ranges.   

 

Figure 3. Spectral brightness on a logarithmic plot for a frequency range of 10 MHz to1000 THz 

according to the Planck law for spectral brightness at four different absolute temperatures with 

varying frequency [30].  

 

        In Figure 3, the spectral brightness is approximately directly proportional to frequency in 

the 1- 1000 GHz range i.e., 0 to 3 on the log scale. Based on this Rayleigh-Jeans law [23] has 

been developed for the frequency range 1 to 300 GHz. For this frequency range, the exponential 

term of Eqn. (II.1) is very small due to which it can be approximated to Eqn. (II.2). 

ℎ𝑓

𝑘𝑇
≪ 1 

(II.2) 

Then, applying the first order Taylor approximation to the exponential in Eqn. (II.1) leads to 

Eqn. (II.3) 

𝑒
ℎ𝑓
𝑘𝑇 − 1 ≅

ℎ𝑓

𝑘𝑇
 

(II.3) 

Therefore, Eqn. (II.1) can be rewritten as in Eqn. (II.4) 

-2 -1 0 1 2 3 4 5 6
-22

-20

-18

-16

-14

-12

-10

-8

S
p

e
c
tr

a
l 
B

ri
g

h
tn

e
s
s
 l
o

g 1
0
(B

f) 
(W

/(
m

2
H

z
S

r)
)

log
10

(Frequency) (GHz)

 

 

T=240 K

T=270 K

T=300 K

T=330 K

1 GHz 

1000 GHz 

http://en.wikipedia.org/wiki/Infrared


14 

 

𝐵𝑓 =
2𝑓2𝑘𝑇

𝑐2
 

(II.4) 

        This simplified form relates the spectral brightness to physical temperature of the black 

body and yields brightness values similar to the Planck’s law for the frequency range of 1 to 300 

GHz. For a black body at a temperature of 300 K, the error in spectral brightness computed using 

the Raleigh-Jeans approximation instead of Planck’s Law is approximately 0.008% at 1 GHz and 

2.4% at 300 GHz.  

        To develop a power-temperature relationship, a lossless antenna is surrounded by a 

blackbody with a physical temperature of 𝑇. The power measured by the antenna [23] is given by 

Eqn. (II.5)  

𝑃𝑏𝑏 = 𝑘𝑇∆𝑓
𝐴𝑟

𝜆2
∬ 𝐹𝑛(𝜃, 𝜙)𝑑𝛺

4𝜋

 
(II.5) 

where 𝜃 is the elevation angle, 𝜙 is the azimuth angle, 𝐹𝑛(𝜃, 𝜙) is the power normalized antenna 

pattern, 𝑑𝛺 is solid angle, 𝐴𝑟 is the receiving area of antenna or effective aperture, ∆𝑓 is the 

bandwidth of received power and 𝜆 is the wavelength of operation of the antenna. The integral in 

Eqn. (II.5) is the antenna pattern solid angle 𝛺𝑝 given by Eqn. (II.6) 

𝛺𝑝 = ∬ 𝐹𝑛(𝜃, 𝜙)𝑑𝛺
4𝜋

=
𝜆2

𝐴𝑟
 

(II.6) 

Eqn. (II.5) can be simplified to obtain a linear relationship between the physical temperature and 

the received power, as in Eqn. (II.7) 

𝑃𝑏𝑏 = 𝑘𝑇∆𝑓 (II.7) 

 

For a bandwidth of ∆𝑓, brightness of a blackbody at particular frequency is given by Eqn. (II.8) 

𝐵𝑏𝑏 = 𝐵𝑓∆𝑓 =
2𝑘𝑇

λ2
∆𝑓 

(II.8) 

        In case of a grey body or a non-blackbody, brightness temperature 𝑇𝐵(𝜃, 𝜙) [23] is used to 

define the direction dependent brightness. It is defined as the temperature a black body in 
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thermal equilibrium with its surroundings would have to represent the observed intensity of a 

grey body object at a particular frequency. A grey body has a brightness given by Eqn. (II.9) 

𝐵(𝜃, 𝜙) =
2𝑘𝑇𝐵(𝜃, 𝜙)

𝜆2
∆𝑓 

(II.9) 

The brightness of the grey and blackbody are related by emissivity as shown in Eqn. (II.10)  

e =
𝐵(𝜃, 𝜙)

𝐵𝑏𝑏
=

𝑇𝐵

𝑇
 

(II.10) 

        The power radiated by an object can be written as a function of its brightness temperature, 

𝑇𝐵. Using Eqn. (II.9), one can rewrite the power radiated by an object as a function of its 

brightness temperature and will be used to derive the radiative transfer function in the next sub-

section. However, the power received by the antenna is slightly different than the power emitted 

by the body. The power received by the antenna has contributions from both the main beam and 

the side lobes and depends on it’s main-beam efficiency. The antenna received power is related 

to the antenna temperature and is given by Eqn. (II.11)  

𝑇𝐴 = 𝜂𝑚�̅�𝑀𝐿 + (1 − 𝜂𝑚)�̅�𝑆𝐿 (II.11) 

        In this equation, 𝜂𝑚 represents the main-beam efficiency of the antenna and in microwave 

and millimeter wave radiometry is typically greater than 90%. Also, �̅�𝑀𝐿 represents the apparent 

temperature of the main-lobe, and �̅�𝑆𝐿 represents the apparent temperature of the side-lobes.  

 

2.2. Radiative Transfer Equation 

 

        The radiative transfer theory [15] describes the intensity of electromagnetic radiation 

propagating in a medium which absorbs, emits and scatters. In the atmosphere scattering usually 

occurs during cloudy conditions based on drop-size distribution, and size of the droplets relative 

to the electromagnetic wavelength. Therefore, it has not been considered while deriving the 

radiative transfer equation. The starting point of the theory is the description of the radiation field 
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in terms of the specific intensity or brightness 𝐼𝑓. The variation at a point 𝑠 along a line in the 

direction of propagation is obtained by considering the sources and sinks of the radiation in a 

volume element along that line as shown in Figure 4. The loss in brightness due to absorption is 

given by Eqn. (II.12) 

𝑑𝐼𝑓 = 𝐼𝑓𝛼𝑑𝑠 (II.12) 

where 𝛼 is the absorption coefficient of the medium and has units of nepers/m. 

`  

Figure 4. Illustration of radiation in a small region in space [28]. 

 

Based on Figure 4 the emission and absorption can be modeled as in Eqn. (II.13) 

𝑑𝐼𝑓 = (−𝐼𝑓𝛼 + 𝑆)𝑑𝑠 (II.13) 

while 𝑆 is the source that account for emission and absorption. The source can be written as 

𝑆 = 𝛼𝐵𝑓(𝑇) so (II.13) can be rewritten as in Eqns. (II.14) and (II.15) 

𝑑𝐼𝑓 = (−𝐼𝑓𝛼 + 𝛼𝐵𝑓)𝑑𝑠 (II.14) 

𝑑𝐼𝑓

𝑑𝑠
= −𝐼𝑓𝛼 + 𝛼𝐵𝑓 

(II.15) 

where 𝐵𝑓(𝑇) has units of brightness and depends on both temperature and frequency while 𝛼𝐵𝑓 

quantifies the locally generated energy that is added to the radiation due to emission, 𝐼𝑓𝛼 

 𝐼𝑣 

𝐼𝑓(𝑠,Ω) 

(s,Ω) 

 

 𝑑𝐴 

𝐼𝑓 

𝐼𝑓 + 𝑑𝐼𝑓 

 

 

𝑑𝑠 source 

sink 

𝑠1 

𝑠2 
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quantifies the loss of energy due to absorption and 𝑑𝐼𝑓 is the total source due to emission and 

absorption. Then, Eqn. (II.15) can be rewritten as Eqn. (II.16) 

𝑑𝐼𝑓

𝑑𝑠
+ 𝐼𝑓𝛼 = 𝛼𝐵𝑓 

(II.16) 

The further simplification of the differential equation done by using the concept of optical depth, 

𝜏. This is done by using Eqn. (II.17), where 𝑑𝜏 is an increment of optical depth. 

𝑑𝜏 = 𝛼𝑑𝑠 (II.17) 

The optical depth, 𝜏(𝑠1, 𝑠2), along a path from 𝑠1 to 𝑠2 as shown in Eqn. (II.18) 

𝜏(𝑠1, 𝑠2) = ∫ 𝛼𝑑𝑠
𝑠

𝑠1

 
(II.18) 

Using Eqns. (II.16), (II.17) and (II.18), it is possible to obtain a solution to the radiative transfer 

equation by considering the transfer along the path from 0 to a point 𝑠′ a differential equation of 

the form shown in Eqn. (II.19) 

𝑑𝐵(𝑠′)

𝑑𝜏
𝑒−𝜏(0,𝑠′) + 𝐵(𝑠′)𝑒𝜏(0,𝑠′) = 𝑆(𝑠′)𝑒𝜏(0,𝑠′) 

(II.19) 

After several simplifications and manipulation the solution is shown as Eqn. (II.20) 

𝐵(𝑠) = 𝐵(0)𝑒−𝜏(0,𝑠) + ∫ 𝛼(𝑠′)𝑆(𝑠′)𝑒−𝜏(𝑠′,𝑠)𝑑𝑠′
𝑠

0

 

(II.20) 

Applying modified version of Eqn. (II.9) gives Eqn. (II.21)  

𝐵(𝑠) =
2𝑘

𝜆2
𝑇𝐵(𝑠)∆𝑓 

 (II.21) 

where 𝑇𝐵 is the brightness temperature and is related to the energy emitted from a layer of the 

atmosphere. Additionally, the source function 𝑆, can be rewritten using a similar approach. Since 

the local thermal equilibrium is assumed, the emission must equal the absorption. It is important 

to point out that these source functions represent an approximation. As such, the source function 

takes a form similar to 𝐵(𝑠).  

Using Eqns. (II.20) and (II.21), the brightness temperature is derived as Eqn. (II.22) 
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𝑇𝐵(𝑠) = 𝑇𝐵(0)𝑒−𝜏(0,𝑠) + ∫ 𝛼(𝑠′)𝑇(𝑠′)𝑒−𝜏(𝑠′,𝑠)𝑑𝑠′
𝑠

0

 
(II.22) 

where 𝑇(𝑠′) is the physical temperature of the atmospheric layer at height 𝑠′. 

 

2.3. Radiometers Topology Overview  

 

        A microwave or millimeter-wave radiometer is a passive remote sensing device used for the 

detection of electromagnetic energy which is noise-like in characteristics. The spatial as well as 

spectral characteristics of observed energy sources like determine the performance requirements 

imposed on the functional subsystems of the sensor which include an antenna, receiver, and 

output indicator. There are various topologies of microwave and millimeter-wave radiometers 

some of which are explained here. 

2.3.1 Total Power Radiometer Topology 

 

        A total power radiometer (TPR) is a super heterodyne receiver that has three important parts 

i.e., radio frequency (RF) section, an intermediate frequency (IF) section, power detector and 

integrator. The components of the RF and IF section are the antenna, low noise amplifiers 

(LNA), local oscillator (LO), mixer and intermediate frequency (IF) amplifiers. The block 

diagram of a typical total power radiometer (TPR) is shown in Figure 5. The RF section 

amplifies and filters the low-level, wideband noise signal i.e., the antenna temperature, 𝑇𝐴. The 

output is centered at the RF frequency, fRF. The mixer down converts RF signals to IF signal at 

the IF frequency, fIF using the local oscillator at a frequency of fLO. The IF amplifier provides 

further amplification to the signal to reach a detectable level. Afterward, the output of square law 

detector is a voltage proportional to the amount of power at its input. The output voltage signal 

of the square law detector has time-varying Gaussian noise fluctuations which are averaged by 

the integrator over a time period, 𝜏𝑖𝑛𝑡. thereby averaging a number of independent samples 
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(equivalent to the time-bandwidth product, ∆𝑓𝜏𝑖𝑛𝑡.) to reduce the effect of the system noise on 

the desired signal.  

        The system bandwidth ∆𝑓 is determined by the IF filter. The antenna temperature is also 

affected by the receiver noise temperature, 𝑇𝑟𝑒𝑐. Thus the total system noise temperature by Eqn. 

(II.23) 

𝑇𝑠𝑦𝑠 = 𝑇𝐴 + 𝑇𝑟𝑒𝑐 (II.23) 

 
Total gain=𝐺 

Input noise temperature=𝑇𝑠𝑦𝑠 

Bandwidth=∆𝑓 

 

Figure 5: Topology of a total power radiometer. 

 

The total system noise temperature is related to output voltage of an ideal TPR by Eqn. (II.24) 

𝑉𝑜𝑢𝑡,𝑇𝑃𝑅 = 𝑘∆𝑓𝐺𝛽𝑇𝑠𝑦𝑠 (II.24) 

where 𝐺 is the overall gain of the radiometer, and 𝛽 is the detector sensitivity with units of V/W. 

An important parameter is the radiometric resolution defined as the minimum change in antenna 

noise temperature that produces detectable change in output voltage and is given by Eqn. (II.25). 

 

where 𝜏𝑖𝑛𝑡 is the integration time, ∆𝑇𝑖𝑑𝑒𝑎𝑙 is equal to the standard deviation of the noise 

fluctuations during the integration time. The expressions in Eqns. (II.24) and (II.25) do not take 

into account time-varying 1/f radiometer gain fluctuations, ∆𝐺. The gain fluctuations affect both 

∆𝑇𝑖𝑑𝑒𝑎𝑙 =
𝑇𝑠𝑦𝑠

√∆𝑓𝜏𝑖𝑛𝑡

 (II.25) 
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the output voltage and radiometric resolution of the radiometer. Taking the gain fluctuations into 

consideration, the output voltage of a TPR is given by Eqn. (II.26). 

 

The RMS uncertainty in ∆𝑇𝑖𝑑𝑒𝑎𝑙 due to system gain variations is given by Eqn. (II.27) 

The ideal radiometer resolution and uncertainty due to gain variations are independent of each 

other and can be related to the total RMS uncertainty given by Eqn. (II.28) 

 ∆𝑇𝑇𝑃𝑅 = √(∆𝑇𝑖𝑑𝑒𝑎𝑙)2 + (∆𝑇𝐺)2 (II.28) 

This can be rewritten as in Eqn. (II.29) 

 ∆𝑇𝑇𝑃𝑅 = 𝑇𝑠𝑦𝑠√
1

∆𝑓𝜏𝑖𝑛𝑡 
+ (

∆𝐺

𝐺
)

2

 (II.29) 

The gain variation has an impact of the sensitivity of the radiometer. One method to reduce gain 

variation involves changing the architecture of a TPR to that of a Dicke radiometer. 

 

2.3.2 Dicke Radiometer Topology 

 

        The gain fluctuation problem with TPR can be reduced by using a Dicke radiometer 

topology. In this radiometer a single-pole double-throw (SPDT) “Dicke” switch is used before 

the first LNA. The input of the radiometer is switched rapidly between the antenna temperature, 

𝑇𝐴 and a matched reference load with equivalent noise temperature, 𝑇𝑟𝑒𝑓. The switching 

frequency is chosen such that the gain variations are constant during each switching cycle and 

hence can be cancelled out.  The block diagram for a Dicke radiometer in super-heterodyne 

configuration is given in Figure 6.  

 𝑉𝑜𝑢𝑡,𝑇𝑃𝑅 = 𝑘𝐵𝛽𝑇𝑠𝑦𝑠(𝐺 + ∆𝐺) (II.26) 

 ∆𝑇𝐺 = 𝑇𝑠𝑦𝑠 (
∆𝐺

𝐺
) (II.27) 
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Figure 6: Topology of a Dicke radiometer [23]. 

 

        An operational amplifier after the square-law detector is switched between inverting and 

non-inverting modes, as shown in Figure 6. This switching is in synchronization with the Dicke 

switch at the beginning of the receiver chain. The result is that the antenna signal is input to a 

positive unity gain amplifier and the reference signal is input to a negative unity gain amplifier. 

As the input to the receiver is switched to the antenna for half of the time and to the reference 

matched load for the other half of the time, output voltage of integrator is given by Eqn. (II.30) 

 𝑉𝑜𝑢𝑡,𝐷𝑖𝑐𝑘𝑒 = 𝑘∆𝑓∆𝐺𝛽(𝑇𝐴 − 𝑇𝑟𝑒𝑓) (II.30) 

 

Thus, the equivalent receiver noise temperature is cancelled from the output voltage. The 

uncertainties due to gain variation, reference load and antenna temperature uncertainty are 

statistically unrelated and hence the resolution of a Dicke radiometer is given in Eqn. (II.31).  

 
∆𝑇𝑜𝑢𝑡,𝐷𝑖𝑐𝑘𝑒 = √(∆𝑇𝑖𝑑𝑒𝑎𝑙)2 + (∆𝑇𝑁𝑟𝑒𝑓)

2
+ (∆𝑇𝐺)2 

(II.31) 

Eqn. (II.31) can be rewritten as Eqn. (II.32) 

∆𝑓 
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∆𝑇𝑜𝑢𝑡,𝐷𝑖𝑐𝑘𝑒 = [

2(𝑇𝐴 + 𝑇𝑟𝑒𝑐)2 + 2(𝑇𝑟𝑒𝑓 + 𝑇𝑟𝑒𝑐)
2

∆𝑓𝜏𝑖𝑛𝑡
+ (

∆𝐺

𝐺
)

2

(𝑇𝐴 − 𝑇𝑟𝑒𝑓)
2

]

1
2⁄

 (II.32) 

        However, the reduction in error in a Dicke radiometer comes at the expense of an 

degradation in radiometric resolution by a factor of two compared to a TPR for a balanced 

radiometer when 𝑇𝐴 = 𝑇𝑟𝑒𝑓 and neglecting gain variations in the TPR. This factor of two 

increase for a balanced radiometer, shown in Eqn. (II.32), is the result of a reduction of 

integration time of the signal of interest by a factor of two due to viewing the scene only half of 

the time. From a comparison of Eqn. (II.29) to Eqn. (II.32), it appears that the TPR has a better 

radiometric resolution than a Dicke radiometer; however, since the gain variations increase with 

longer integration time, the radiometric resolution of a TPR increases much more rapidly with 

increasing integration time than that of a Dicke radiometer. Difference in the performance of 

Dicke and TPR is shown in Figure 7. The Dicke radiometer performs better than TPR when gain 

fluctuations are 3x10
-4

. 

 
Figure 7. Radiometric resolution of a TPR and a Dicke radiometer for an antenna temperature 𝑇𝐴 

of 300 K, 𝑇𝑟𝑒𝑐 of 400 K and gain fluctuations, ΔG/G = 3x10
-4

. 
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2.3.3 Direct-Detection Radiometers 

 

        The previous two sections discussed total power radiometers and Dicke radiometers in a 

super-heterodyne configuration; however, both types of radiometers can also be implemented in 

a direct-detection configuration. For both total power radiometers and Dicke radiometers, direct-

detection configurations have no down-conversion of the RF signal to an IF signal. The detector 

diode operates at the RF frequency. Mixers and local oscillators are not needed since down-

conversion is not involved.  

 

2.4. Atmospheric Absorption Models 

 

        Absorption models play an important role in forward models relating the atmospheric 

parameter of interest and the measured brightness temperatures. They also describe the 

absorption as well as emission of electromagnetic radiation by different gases present in the 

atmosphere. Gases absorb and radiate electromagnetic waves at discrete frequencies, known as 

absorption line spectra due to transitions between electronic states of atoms as well as due to 

their vibration and rotation [31]. Emissions due to electronic transition happen in the visible or 

the ultraviolet region of the spectrum. Emission of energy due to vibration and rotation usually 

takes place at infrared, millimeter and microwave frequencies. Ideally spectral lines should be 

infinitesimally sharp but they are not because of the constant motion of the molecules/atoms 

resulting in the spectral lines being broadened known as line broadening. Pressure broadening is 

prominent in the lower atmosphere. This broadening of the spectral lines has been used to get 

information about profiles of water vapor and temperature using microwave and millimeter-wave 

radiometers measurements at various frequencies. Because of pressure broadening each 

frequency is sensitive to variation in water vapor at different altitude. In general absorption lines 

for any gas can be modeled as in Eqn. (II.33) 
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𝛼𝑙𝑖𝑛𝑒 = 𝑛 ∑ 𝑆(𝑓, 𝑇)

𝑖

𝐹(𝑓) 
(II.33) 

where 𝑛 is the number of molecules per unit volume, 𝑆𝑓(𝑇) is the line strength and depends on 

temperature as well as frequency while 𝐹(𝑓) is the line shape and dependents on frequency.  

Water vapor and oxygen are known to be the common absorbing gases in Earth’s atmosphere 

and are the only gases which have absorption lines in the microwave and millimeter-wave 

frequency range. Their absorption spectrums are calculated using meteorological parameters. 

Since the proportion of oxygen in the atmosphere is constant in the well-mixed troposphere, the 

oxygen lines allow the retrieval of atmospheric temperature profiles. The absorption models for 

these gases have been determined and modified by Liebe and Rosenkranz. The absorption 

coefficients for water vapor, cloud liquid water and oxygen calculated using the Liebe [32] [33] 

[34]  and Rosenkranz models [31] [35] are shown in Figure 8.  

 
Figure 8: Microwave and millimeter-wave absorption spectra from 10 to 200 GHz for water 

vapor density of 15.1 gm
−3

, temperature of 297 K, and cloud liquid water density of 0.1 gm
−3 

[36]. 

 

        The peaks represent the absorption lines for the water vapor and oxygen models. 

Frequencies that are sufficiently separated from these absorption lines are considered to be 
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window regions. Brightness temperature measurements near the water vapor resonance 

frequencies at 22.235 GHz and the window region frequency at 30.0 GHz can be used for 

simultaneous retrieval of integrated water vapor and liquid water in the atmosphere. Brightness 

temperature measurements at a number of frequencies near water vapor and oxygen resonance 

frequencies allow retrieval of atmospheric water vapor content and temperature at a variety of 

heights due to pressure broadening.  

 

2.4.1 Liebe Absorption Model 

 

        Liebe’s 1993 Millimeter wave Propagation Model (MPM) [34] which is a modification of 

the MPM87 [32] describes the absorption spectra of water vapor, dry air (in which oxygen is 

major contributor) and hydrometeors for a frequency range of 1 to 1000 GHz for non-

precipitating conditions. This is done by computing the complex refractivity 𝑁 given by Eqn. 

(II.34) 

𝑁 = 𝑁0 + 𝑁′ + 𝑖𝑁′′ (II.34) 

where 𝑖 = √−1, 𝑁0, 𝑁′ frequency independent refractive index terms and 𝑁′′ is the refraction 

term which depends on frequency and is also the attenuation term quantifying loss of radiation 

energy, respectively. Refractivity [37] is defined as in Eqn. (II.35) 

𝑁 = 106(𝑟𝑖 − 1) (II.35) 

where 𝑟𝑖 is given as the refractive index. The real and imaginary refractivity terms are related to 

the attenuation, phase dispersion and the delay rate shown in Eqns. (II.36), (II.37) and (II.38) 

𝛼 = 0.182 𝑓𝑁′′ dB/km (II.36) 

𝛽 = 1.2008𝑓(𝑁0 + 𝑁′) deg/km (II.37) 

𝜏𝑑 = 3.3356(𝑁0 + 𝑁′) ps/km (II.38) 

where 𝛼, 𝛽, 𝜏𝑑, and 𝑓 are the absorption coefficient, phase dispersion, delay rate and frequency, 
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respectively. The use of phase dispersion and delay rate has not been discussed in this chapter. 

The absorption by the atmosphere can be divided into three categories as in Eqn. (II.39) 

𝛼 = 𝛼𝐷 + 𝛼𝑉 + 𝛼𝑊 (II.39) 

where 𝛼 is the total absorption coefficient, 𝛼𝐷 is the dry air component, 𝛼𝑉 is the water vapor 

component and 𝛼𝑊 is the component due to liquid water or ice particles in cloud. The dry, wet 

and liquid components of complex refractivity index are discussed in the following sections. 

 

2.4.1.1 Dry-Air Component 

 

        Refractivity of dry air has contributions from frequency independent term, 44 oxygen 

spectral lines term (resonance spectrum) and non-resonant refractivity of oxygen given by Eqn. 

(II.40)  

𝑁𝐷 = 𝑁𝑑 + ∑ 𝑆𝑘𝐹𝑘
44
𝑘=1 + 𝑁𝑛  (II.40) 

where 𝑁𝑑 is the frequency independent term, 𝑆𝑘 is the line strength, 𝐹𝑘 is the complex line shape 

function for oxygen, k is the line index with values from 1 to 44 and 𝑁𝑛 is the non-resonant 

refractivity. The line shape of a gas describes the shape of the absorption spectrum with respect 

to the resonance frequency while the line strength is determined by the physical temperature of 

gas, number density of absorbing molecules. The frequency independent term is given by Eqn. 

(II.41) 

𝑁𝑑 = 0.2588𝑝𝑑𝜃𝑡  (II.41) 

where 𝑝𝑑 is the partial pressure [38] of dry air in millibars and 𝜃𝑡 is defined as the ratio 300/

(𝑇 + 273), 𝑇 being the ambient temperature in Celsius. The non-resonant oxygen spectrum and 

the nitrogen absorption line are given by Eqn. (II.42) 

𝑁𝑛 = 𝑆𝑜𝐹𝑜(𝑓) + 𝑖𝑆𝑛𝐹𝑛(𝑓) (II.42) 

where 𝑖 = √−1, 𝑆𝑜 is the line strength and 𝐹𝑜 is the shape function for non-resonant oxygen 
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frequencies while 𝑆𝑛 is the line strength and 𝐹𝑛 is the shape function for nitrogen. 

 

2.4.1.2 Water-Vapor Component 

        Refractivity due to water vapor contains the contributions from 34 H2O resonance lines 

spectrum as well as the 10 H2O continuum spectrum and is given by Eqn. (II.43) 

𝑁𝑉 = 𝑁𝑓 + ∑ 𝑆𝑙𝐹𝑙

34

𝑙=1

+ 𝑁𝑐 

 

(II.43) 

𝑁𝑓 is the frequency independent term, 𝑆𝑙 is the line strength, 𝐹𝑘 is the complex shape function for 

water vapor and 𝑙 is the line index. 𝑁𝑐 is contributions from the continuum spectrum. The non-

dispersive term is given as in Eqn. (II.44) 

𝑁𝑓 =  (4.163𝜃 +  0.239)𝑒𝜃𝑡    (II.44) 

where 𝑒 = (𝑢𝑒𝑠)/100 𝑒𝑠 is saturation pressure [39] and 𝑢 is relative humidity [39]. 

        The contributions to the refractivity in the window region frequency ranges are due to 

strong lines centered in the rotational water vapor spectrum above the one TeraHertz frequency 

and are known as the water vapor continuum.  

 

2.4.1.3 Cloud or Fog Component 

 

        Cloud liquid, fog and ice contribute towards absorption of radiation where the size of the 

hydrometeor is less than 50 𝜇𝑚. The refractivity is given by Eqn. (II.45) 

𝑁𝑊 = 1.5 (
𝑤

𝑚𝑤,𝑖
) [

𝜖𝑤,𝑖−1

𝜖𝑤,𝑖+2
]  

(II.45) 

where, 𝑚𝑤,𝑖=1 (for water) and 0.916 g/cm
3
 (for ice) and 𝜖𝑤,𝑖 is the complex permittivity due to 

water and ice, 𝑤 is the density of water or ice. 

A) Complex Permittivity Data for Water 

 

        The relative dielectric constant of water is known as complex permittivity given by Eqn. 

(II.46) 
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𝜖𝑤,𝑖 = 𝜖′ + 𝑖𝜖′′ (II.46) 

where 𝜖′ and 𝜖′′ are the real and loss terms. 𝜖𝑤,𝑖 values depend on temperature T and frequency f 

which provide information about the interaction mechanism between liquid water and 

electromagnetic waves. The single Debye relaxation model describes the permittivity spectrum 

of liquid water using three temperature-dependent parameters below 100 GHz. At higher 

frequencies, additional relaxation and resonance terms are used for frequencies 100 – 1000 GHz 

which is known as the double Debye relaxation [33].  

 

i) Single Debye Model 

 

        The single Debye model provides a description of spectral permittivity for frequencies 

below 100 GHz. The single Debye model for the dielectric constant of water is given by Eqn. 

(II.47) 

𝜖𝐷(𝑓) =
(𝜖𝑜 − 𝜖∞)

[1 − 𝑖 (
𝑓

𝛾𝐷
)]

+ 𝜖∞ 
(II.47) 

where 𝜖𝑜 is the static dielectric constant of pure water given by Eqn. (II.48) 

𝜖𝑜(𝑇) = 77.66 − 103.3θt   (II.48) 

and 𝜖∞, relaxation frequency 𝛾𝐷 are given by Eqns. (II.49) and (II.50) 

 

𝜖∞ = 0.066𝜖𝑜 (II.49) 

𝛾𝐷 = 20.27 + 146.5θt + 314θ𝑡
2 

(II.50) 

 

 

 

ii) Double Debye Model 

 

        On using frequencies above 100 GHz the Debye parameters also change as given by Eqn. 

(II.51) 
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𝜖𝑀(𝑓) =
(𝜖𝑜 − 𝜖1)

[1 − 𝑖 (
𝑓
𝛾1

)]
+

(𝜖1 − 𝜖2)

[1 − 𝑖 (
𝑓
𝛾2

)]
+ 𝜖2 

(II.51) 

where 𝜖1 = 0.0671𝜖𝑜, primary relaxation frequency 𝛾1 = 20.2 + 146.4𝜃𝑡 + 316𝜃𝑡
2, secondary 

relaxation frequency 𝛾2 = 39.8𝛾1 and 𝜖2 = 3.52 + 7.52𝜃𝑡. The real and imaginary parts of 

permittivity are shown in Figure 9. 

B) Complex Permittivity Data for Ice 

        Permittivity model of ice is given by Eqn. (II.52) 

𝜖𝑖 = 3.15 + 𝑖(𝑎𝑖/𝑓 + 𝑏𝑖/𝑓) (II.52) 

where 𝑎𝑖 and 𝑏𝑖 are temperature dependent empirically computed coefficients. 

 
Figure 9. Real and imaginary parts of permittivity of water from 2 GHz to 2 THz [33]. 

 

 

2.4.2 Rosenkranz absorption Model 

 

        Rosenkranz worked on determining and improving the absorption models for ozone, water 

vapor, carbon monoxide, carbon dioxide, nitrogen and oxygen [31] [35]. In this dissertation, 
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Rosenkranz water vapor absorption model has been used extensively so it is discussed in 

particular. Based on previous research work by Liebe and Van Vleck [40] water vapor 

absorption models had discrepancies which are attributed to the water vapor continnum i.e., 

contribution to the absorption line strength in the microwave and millimeter-wave frequency 

range due to absorption lines in the infrared frequency range. Rosenkranz [35] improved the 

water vapor continuum values by combination of MPM87's foreign broadened component 

(contribution from infrared frequencies) which depends on water vapor partial pressure, and 

MPM93's self-broadened component. This is an empirical method and based on that the foreign- 

and self- broadened parts of the water vapor continuum were increased by 15% and 3%, 

respectively. The absorption coefficients are calculated using Eqn. (II.33), absorption line 

strength for resonance frequencies given in [31] and the line shape 𝐹𝑖(𝑓) given by Eqn. (II.53) 

𝐹𝑖(𝑣) = {
(𝑓2𝛾ℎ𝑖 𝜋𝑓𝑖

2⁄ ) {[(𝑓 − 𝑓𝑖)
2 + 𝛾ℎ𝑖

2]
−1

− [𝑓𝑐
2 + 𝛾ℎ𝑖

2]
−1

} , |𝑓 − 𝑓𝑖| < 𝑓𝑐

0, |𝑓 − 𝑓𝑖| ≥ 𝑓𝑐

 
(II.53) 

where 𝑓𝑐 is the line center frequency and 𝛾ℎ𝑖 is the line half width calculated as in Eqn. (II.54) 

𝛾ℎ = 𝑤𝑠𝑝𝐻2𝑂𝜃𝑥𝑠 + 𝑤𝑓𝑝𝑑𝜃𝑥𝑓  (II.54) 

where 𝑝𝑑 is partial pressure of dry air 𝑝𝐻2𝑂 is the partial pressure of water vapor, 𝑤𝑠, 𝑤𝑓, 𝑥𝑠 and 

𝑥𝑓 are constant coefficients determined empirically.  

To calculate the contributions towards the continuum from infrared absorption lines Rosenkranz 

used contributions from the frequency range of 0 to 750 GHz as lines higher than 750 GHz have 

minimal impact. Using both the absorption lines and the continuum the absorption coefficient 

[35] of water vapor is given by Eqn. (II.55) 

𝛼 = 𝛼𝑙𝑖𝑛𝑒 + 𝑓2𝜃3(𝐶𝑓𝑝𝑑𝑝𝐻2𝑂 + 𝐶𝑠𝑝𝐻2𝑂
2 ) (II.55) 

where, 𝐶𝑓 is a coefficient which is dependent on temperature and frequency. This model was 

found to give better results than MPM model for water vapor.  
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2.5. Conclusions 

 

        This chapter analyses the radiative transfer theory which is usually used as the forward 

model in the retrieval algorithms used for estimation of water vapor and temperature profiles as 

well as the retrieval of integrated water vapor and liquid water. In addition, the two most 

common types of radiometer topologies are explained. Dicke radiometers are widely used for 

water vapor and temperature remote sensing because of their stable performance. The commonly 

used absorption models in remote sensing i.e., Leibe and Rosenkranz models are also discussed. 
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Chapter III  Water Vapor and Temperature Profile Retrieval Algorithms 
 

 

 

        Estimation of profiles of atmospheric parameters like water vapor and temperature using 

microwave radiometer measurements require the use of a linear/non-linear retrieval algorithm. 

This chapter discusses the various types of retrieval algorithms, particularly the Bayesian optimal 

estimation technique used for estimation of atmospheric parameters. Furthermore, the various 

sources of information for profile retrieval algorithms are discussed. 

 

3.1. Sources of Information for Retrieval Algorithms 

 

        In a general sense, the retrieval process performs a mapping between the measurement 

space and the retrieval solution space according to a probabilistic model in the presence of 

uncertainties like radiometric measurement noise, model inaccuracies and representativeness 

errors [11]. Retrieval algorithms use four information sources [41] [13] [28] for estimating 

profiles of water vapor and temperature i.e., measured brightness temperatures (�̅�𝐵), background 

data set covariance matrix (𝑆�̿�), measurement error covariance matrix (𝑆̿ ) [11] and weighting 

function matrix also known as Jacobian (�̿�) [12] [41]. 

        The brightness temperature vector contains radiometric measurements performed at 

multiple frequencies. These measurements contribute information towards profile retrieval [36], 

although at some frequencies the information they provide can be highly correlated with that at 

other frequencies due to similar sensitivities to changes in atmospheric pressure, temperature and 

water vapor mixing ratio as a function of altitude. 

        The uncertainties associated with the retrieval can be overcome by knowledge of variability 

(statistics) of the parameters in the solution space. Background information covariance matrix 
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describes the statistical variability of measured profiles over the time period during which they 

were measured. It is calculated using a background data set, i.e. a collection of profiles measured 

over a certain period of time at a specific location [41]. The number of elements in the 

background data set and the relationships among them determine the values of the matrix 

elements, depending on the period of the day, in the same or different seasons. 

        Measurement error covariance matrix includes the noise in radiometric observations, 

representativeness error and the radiative transfer model errors [11]. Noise in radiometric 

observations is related to the sensitivity of the instrument, radiative transfer model errors are due 

to the errors in the model and representativeness error is due to the atmospheric variability over a 

certain period of time. Usually measurements at each of the frequencies of operation are assumed 

to be independent of each other, so the off-diagonal elements are assumed to be zero [13]. 

        The Jacobian is the sensitivity of the measured brightness temperatures to changes in 

atmospheric water vapor as a function of altitude above ground level [28]. Jacobian depends on 

the operating frequency of each of the microwave radiometer channels and on the water vapor 

content and temperature of the atmosphere. 

3.1.1 Radiometric Measurements and Information Content 

 

        Brightness temperature measurements at various microwave frequencies provide 

information about the state of the atmospheric parameter of interest. For example, measurements 

near the weak water vapor absorption lines i.e., frequency range of 18-26 GHz [42] [36] and 

strong water vapor absorption lines i.e., frequency range of 168-192 GHz [42] [43] [36] provide 

information about the distribution of water vapor while the measurements near the oxygen 

complex i.e., the frequency range of 50-60 GHz provide information about the temperature 

profile of the atmosphere [16] [36].  However, these measurements could have a high degree of 
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redundancy depending on the frequencies of operation. Providing redundant measurements to 

retrieval will increase the amount of noise in the retrieval depending on how they are used. The 

goal for profile retrieval is to obtain as many independent measurements as possible, both to 

maximize the vertical resolution and to minimize the retrieval error of the profile. Achieving a 

maximum amount of independent pieces of information is more complex than just adding as 

many frequency channels measurements as possible and requires a selection process for 

determining the best frequency channels [36].  

 

3.1.2 Sources of Initialization Profile and Background Information 

 

        Water vapor profiles from various sources can be used as initialization profiles and 

background data, including in-situ measurements from radiosondes and remote sensing 

measurements from Raman lidar, both of which have high vertical resolution. Other potential 

sources of background data are statistical data sets and weather prediction model output 

compiled over a long time period, i.e., 1-3 years [28].  

        Radiosonde data have a typical vertical resolution of 10 m and therefore can detect fine 

gradients in water vapor and temperature profiles in the lower troposphere. Humidity biases in 

radiosonde measurements are often greater than 5% throughout the troposphere. Residual dry 

bias errors are greater during the day than the night by 5%–7% [44]. The radiosonde balloon 

typically takes 25 to 40 minutes to reach a height of 15-20 km above ground level (AGL) and 

may drift horizontally up to tens of km from the launch site, depending on the local wind speed 

and direction as it ascends [5]. On the other hand, Raman lidar measurements have a vertical 

resolution of 35 m from 0 to 0.2 km, 39 m from 0.2 to 3.7 km and 78 m from 3.7 to 6 km AGL 

with a temporal resolution of 10 minutes [45]. The relative humidity error in Raman lidar 

profiles is less than 10% for altitudes below 8.5 km AGL [18]. 
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        The background data set for profile retrieval from radiometer measurements is typically 

high-vertical resolution radiosonde or remote sensing measurements over a time period of 2-3 

years [28]. Background data sets are used to derive the statistics of profile variability, and their 

usefulness and applicability to retrievals depend upon the location at which and the time of the 

year during which they were taken.  

        Finally, numerical weather prediction model outputs are another potential source of 

background data. However, their spatial and temporal resolution may not be sufficiently fine to 

detect changes or sharp gradients in water vapor profiles.  

 

3.1.3 Background Information Covariance Matrix 

 

        The Bayesian retrieval technique uses background statistics of the solution space to invert 

the measurement and retrieve the most probable solution, as illustrated by Cimini et al. [43] and 

Hewison [12] while using the 1D-VAR technique. The quality of retrieved profiles depends on 

the atmospheric background information covariance matrix [41]. Therefore, the size and content 

of the background data set from which the covariance matrix is calculated is very important. If 

each element in the data set is a sample of the same stationary process [46], the joint probability 

distribution of the atmospheric layers remains constant in time. Therefore, the mean and 

covariance of each layer do not change depending on the size of the background data set. 

Typically, the background data set is filtered based on location, season and time of day to ensure 

its stationarity [46]. Due to the central limit theorem, as data set size increases, the background 

data set becomes a normally distributed random process describing a “mean” atmospheric 

behavior. Failing to achieve stationarity introduces error in the retrieval since the prior statistics 

are not consistent with the atmospheric conditions at the time of the radiometer measurement and 

therefore will bias the retrievals [41]. 
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        Using a large background data set to determine the background information covariance 

matrix improves the representation of the higher-order atmospheric statistics, which helps to 

improve the accuracy of retrieved water vapor profiles but decreases the capability of retrieving 

or predicting singular or so-called “outlier” events. This happens because the covariance matrix 

is general and therefore not “customized” for any particular atmospheric condition. The retrieval 

error approaches a constant value, but gradients or inversions in water vapor profiles will be 

difficult to detect with high accuracy since the covariance matrix describes the variability of 

water vapor profiles during the entire time period represented by the background data set. 

Therefore, both the content and size of the background data set are very important for the 

retrieval. 

        When the background covariance matrix is optimized, it will not be general but instead will 

be particular to the current retrieval and will satisfy the requirement for stationarity, in the sense 

of a particular state of the atmosphere. Since the particular background data set does not describe 

every atmospheric condition, the retrieval performance is expected to degrade as a function of 

time between the initialization and the retrieval.  

        However, a small background data set (less than approximately 10 profiles) will not be able 

to describe the atmosphere accurately enough since statistical information will not be significant. 

Taking this into consideration, it is reasonable to expect that the choice of optimum background 

data set size will be one of the major factors of the ability to detect evolving changes and 

gradients in water vapor profiles.  

        The size of the background data set can be chosen based on the application. If the 

application is to monitor dynamic changes in water vapor profiles, an optimum data set can be 

chosen to correspond to recent weather conditions. Instead, if the application requires water 
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vapor profiles with statistical or seasonal accuracy, a large background data set can be chosen, 

often collected over many months or years [28]. 

 

3.2. Retrieval algorithms for Inverse Problems 

 

        Retrieval algorithms for inverse problems can be categorized as linear, nearly linear, 

moderately non-linear and grossly non-linear. They are defined as 

a) Linear: Usually linear inverse problems can be represented and solved by using the forward 

model �̅� = �̿��̅�. The a-priori, measurements and the state vector for linear problems are 

assumed to be Gaussian [14]. 

b) Nearly linear: These inverse problems are non-linear, but linearization about some prior 

state can be used to find a possible solution.  

c) Moderately non-linear: In this case linearization can be used for error analysis but not for 

finding a solution. 

d) Grossly non-linear: For these problems linearization cannot be used for finding the solution 

or even for error analysis. 

 

3.2.1 Determination of Degree of Nonlinearity  

 

        The non-linearity for an inverse problem can be tested by comparing the forward model 

with the linearized forward model as in Eqn. (III.1) [14]. The problem is linear if the difference 

is within the a-priori variability as given by 

𝛿�̂� = �̿�([�̅�𝐵(�̂̅�)−�̅�𝐵(�̅�𝑎)] − �̿�[�̂̅� − �̅�𝑎]) (III.1) 

where �̿� is the gain function, �̂̅� is the estimated water vapor profile, �̅�𝐵 is the brightness 

temperature vector as function of water vapor profile and �̅�𝑎 is the a-priori profile. The problem 

is non-linear if the difference is within the solution error covariance as given by Eqn. (III.2) [14] 
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𝛿�̂� = �̿�([T̅B(�̂̅�)−T̅B(�̅�)] − �̿�[�̂̅� − �̅�)]) (III.2) 

        After the determination of non-linearity, respective solutions are applied. Generally, remote 

sensing inverse problems are either moderately or highly non-linear. The rest of this section 

discusses the solution process for a non-linear problem. 

 

3.2.2 Bayesian Optimal Estimation 

 

Usually, remote sensing problems are ill-posed inverse problems [14] [12] because the 

atmospheric state vector �̅� to be retrieved has more elements than the measurements in vector �̅� 

where the relation between measurement and state vector is given by Eqn. (III.3). 

�̅� = 𝐹(�̅�) + 휀 ̅ (III.3) 

where 𝐹(𝑥) is the forward model and 휀 ̅is the observation error. 

        As already stated these measurements can be correlated to each other due to which the 

problem becomes more difficult. Consequently, a large number of possible solutions to the state 

vector exist which satisfy the measurements. Therefore, to constraint the number of possible 

solutions additional information is required in the form of initialization profile or a-priori and 

background information covariance matrix. The a-priori information is observation of the state 

vector prior to the measurement. For water vapor and temperature profile retrieval, it is usually 

data taken from radiosonde launched a few hours before the radiometer performs the 

measurement. Background information covariance matrix on the other hand, provides a measure 

of the variability associated with water vapor or temperature profiles during the entire time 

period represented by the background data set.  

        To map the measurement space to the state space in the presence of a-priori information, 

Bayes’ theorem can be used. The probability density function (PDF) of all possible solutions �̅� 

given the measurement �̅� is shown in Eqn. (III.4) [14] 
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𝑃(�̅�|�̅�)  =
𝑃(�̅�|�̅�)𝑃(�̅�)

𝑃(�̅�)
 

(III.4) 

where 

 𝑃(�̅�) and 𝑃(�̅�) are the PDF of the state vector (a-priori knowledge) and the measurement, 

respectively  

 𝑃(�̅�|�̅�) is the conditional PDF of �̅� given �̅�, which provides the knowledge of the forward 

model and the measurement error 

 𝑃(�̅�|�̅�) is the resulting improvement in the a-priori knowledge �̅�, because of combination 

with the measurement vector �̅�. It shows the set of possible solutions to the inverse problem 

and is not the exact solution.  

        Bayes’ theorem can be used to derive the Bayesian optimal estimation method under the 

assumption that the PDF of measurements and state vector are Gaussian. Like any retrieval 

algorithm, the error characteristics of the measurements and the forward model should be as low 

as possible and must be accurately described by covariance matrices. The measurements with 

small errors and/or an accurate description of the relation between measurement and parameter 

will have a higher weight in the solution than measurements with large errors and/or an 

inaccurate description of the relationship between measurement and parameter. If the forward 

model is moderately non-linear, it can be simplified to a linear problem by means of a Taylor 

series expansion about an initial state vector �̅�𝑖. If higher terms are omitted, �̅� can then be 

expressed by Eqn. (III.5) [14] 

�̅� − �̅�𝑖 = 𝐾�̿�(�̅� − �̅�𝑖) (III.5) 

where 𝐾�̿� is the Jacobian matrix of the problem or weighting function [28]. 
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        The retrieval of water vapor and temperature profiles are non-linear problems. Therefore, 

only numerical optimization methods can be used for determining the maximum a-posteriori 

solution (MAP). 

3.2.3 Maximum a Posteriori Solution 

 

        Bayesian optimal estimation is used to solve inverse problems by determining: 

a) Posterior PDF of the state vector, which are the most likely state for which 𝑃(�̅�|�̅�) is 

maximum given by MAP or the expected value of the state i.e. the state averaged over the 

PDF given by Eqn. (III.6): 

�̂̅� = ∫ �̅�𝑃(�̅�|�̅�)𝑑𝑥 
(III.6) 

b) Together with the second moment matrix as a measure of the width of the distribution/PDF 

or the uncertainty of the solution. The error analysis can done using the measurement error 

and the modelling error. 

        Linear problems with measurements and a-priori having Gaussian distribution the 

expected value of the state and most likely state are identical because of the symmetry of the 

PDF. The MAP solution is also known as most likelihood (ML) solution. For non-Gaussian 

statistics the MAP and expected value solutions will provide different solutions. In these 

circumstances the covariance matrices are not an adequate description of uncertainty and higher 

order moments of the PDF are needed. Numerical methods are required to find the MAP 

solution in case of non-linear and non-gaussian statistics. Some of the numerical methods are 

Gauss-Newton and Levenberg-Marquardt optimization methods. 

 

3.2.4 Gauss-Newton Optimization Method 

 

        If the retrieval problem is slightly non-linear, Gauss-Newton (GN) retrieval method can be 

used. The GN iteration is given by Eqn. (III.7) [14] [13] 
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�̅�𝑖+1 = �̅�𝑖 + (𝑆�̿�
−1 + �̿�𝑖

𝑇
𝑆̿−1�̿�𝑖)

−1

(�̿�𝑖

𝑇
𝑆̿−1[�̅�𝐵

′
− �̅�𝐵(�̅�𝑖)] − 𝑆�̿�

−1[�̅�𝑖 − �̅�𝑎]) 
(III.7) 

where 

 𝑖 is the index of iteration 

 �̿�𝑖 is the kernel function or the weighting function matrix 

 𝜌 is the water vapor density profile, where �̅�𝑖 is the initialization water vapor density profile 

when 𝑖 = 1, and  �̅�𝐵
′  is the measured brightness temperature vector 

 �̅�𝑎 is the background profile and is same as the initialization profile. For a small background 

data set, a radiosonde profile taken close to the measurement time is used as the 

initialization profile while for a large background data set mean profile is used as 

initialization profile 

 �̅�𝐵 is the  vector of brightness temperature simulated using a radiative transfer model for the 

frequencies of operation of a radiometer 

 𝑆̿  is the measurement error covariance matrix, where the main diagonal elements are 

determined by the radiometric resolution of each channel [47]. Usually measurements at 

each of the frequencies of operation are assumed to be independent of each other, so the off-

diagonal elements are assumed to be zero. 𝑆̿  also includes the noise in radiometric 

observations, representativeness error and the radiative transfer model errors 

 𝑆�̿� is the background information covariance matrix, with dimensions depending on the 

number of atmospheric layers used for the retrieval and with values based on the statistics of 

the background data set profiles 

The final output profile is chosen based on the convergence criterion given by Eqn. (III.8) [14] 

[�̅�𝐵(�̅�𝑖+1) − �̅�𝐵(�̅�𝑖)] 𝑇𝑆�̿�𝑦
−1[�̅�𝐵(�̅�𝑖+1) − �̅�𝐵(�̅�𝑖)] << 𝑚 (III.8) 
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where 𝑚 is the number of measurements and  𝑆�̿�𝑦  is the covariance between �̅�𝐵
′  and �̅�𝐵(�̅�𝑖). The 

iteration stops when Eqn. (III.8) reaches a value which is significantly less than 𝑚  and the 

resulting profiles are checked for consistency.  

3.2.5 Levenberg-Marquardt Optimization Method 

 

        GN method works well when the a-priori for the problem is in a region sufficiently close to 

the solution so that the second-order derivative of the cost function is small. If the a-priori is not 

close to the solution region, then the Levenberg-Marquardt (LM) method is used. The LM 

method is used as a trust-region method [12]. 

        LM is an iterative, non-linear optimization algorithm, similar to the Gauss-Newton (GN) 

algorithm but with better performance for highly non-linear problems. The main difference 

between LM and GN is that LM has a damping parameter γ that is updated during each iteration 

based on the ratio of the actual value of the cost function to that when the problem was 

considered to be linear. The LM algorithm usually converges within 15 - 20 iterations similar to 

GN technique and is defined by Eqn. (III.9) [14] [12] [43]  

�̅�𝑖+1 = �̅�𝑖 + ((1 + 𝛾)𝑆�̿�
−1 + �̿�𝑖

𝑇
𝑆̿−1�̿�𝑖)

−1

(�̿�𝑖

𝑇
𝑆̿−1[�̅�𝐵

′
− �̅�𝐵(�̅�𝑖)] − 𝑆�̿�

−1[�̅�𝑖 − �̅�𝑎]) 
(III.9) 

where γ is the LM factor. 

LM is an iterative process in which the value of 𝛾 is chosen to minimize a cost function, 𝐽 where 

𝑚 is the number of measurements and  𝑆�̿�𝑦 is the covariance between �̅�B
′  and �̅�𝐵(�̅�𝑖). The 

iteration stops when Eqn. (III.8) reaches a value which is significantly less than 𝑚, and the 

resulting profiles are checked for consistency using cost function as in Eqn. (III.10)  

𝐽 = (�̅� − �̅�𝑏)𝑇𝑆�̿�
−1(�̅� − �̅�𝑏) + (�̅�𝐵(�̅�𝑖) − �̅�𝐵

′ )𝑇𝑆̿−1(�̅�𝐵(�̅�𝑖) − �̅�𝐵
′ ) (III.10) 

where ρ̅ and �̅�𝑏 are the water vapor profile outputs for each iteration and initialization profile, 

respectively. 
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3.3. Conclusions 

 

        This chapter discusses the various retrieval algorithms and the information sources for 

them. The characteristics and function of each information source is also described. The 

Bayesian optimal estimation along with the GN and LM optimization methods is discussed 

which will be used extensively in later chapters.  
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Chapter IV   Radiometric Information Content for Water Vapor and 

Temperature Profiling 
 

 

 

        The goal of this chapter is to determine sets of frequencies in the 10 to 200 GHz range that 

provide the largest amount of mutually independent information on water vapor and temperature 

profiles from ground and airborne instruments for clear sky measurements. Results of such a 

study are important and useful for frequency selection and design of microwave and millimeter-

wave radiometers for humidity and temperature profiling. 

        A branch and bound feature selection algorithm has been used to determine the sets of 

frequencies. The degrees of freedom and the vertical resolution for each frequency set are also 

determined. Finally, an analysis has been performed to determine the impact of measurement 

uncertainty on the number of degrees of freedom of measurement and also the vertical 

resolution. 

 

4.1. Introduction 

 

        Typically, retrieval algorithms use frequencies near water vapor absorption at 22.235 and 

183.31 GHz [17] [42] for humidity profile retrieval as well as frequencies near 60 GHz for 

temperature profile retrieval [48]. These frequency ranges provide the largest amount of 

information on water vapor and temperature in the troposphere as a function of altitude. 

However, accurately determining sets of frequencies that provide the maximum amount of 

information for retrievals is important to optimize the use of resources when designing and 

fabricating microwave and millimeter-wave radiometers. 

        Previous research has focused on information content analysis of the frequency range of 20 

– 70 GHz using eigenvalue analysis of the weighting function (WF) covariance matrix [16]. The 
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WF or Jacobian is the sensitivity of ground-based zenith-viewing brightness temperatures to 

change in the atmospheric parameter of interest, as shown in Eqns. (IV.1) and (IV.2) for the 

parameters of water vapor and temperature, respectively [28]. 

𝑊𝐹𝜌𝑣
↓𝑅(𝑠) = 𝑒−𝜏(0,𝑠)

𝜕𝛼(𝑠)

𝜕𝜌𝑣
[𝑇′(𝑠) − 𝑇𝑏0𝑒−𝜏(𝑠,∞) − ∫ 𝑇′(𝑠′)𝛼𝑒−𝜏(𝑠,𝑠′)𝑑𝑠′

∞

𝑠

] (IV.1) 

 

𝑊𝐹𝑇
↓𝑅(𝑠) =

𝑑𝑇′

𝑑𝑇
𝛼(𝑠)𝑒−𝜏(0,𝑠) + 𝑒−𝜏(0,𝑠)

𝜕𝛼(𝑠)

𝜕𝑇
[𝑇′(𝑠) − 𝑇𝑏0𝑒−𝜏(𝑠,∞)

− ∫ 𝑇′(𝑠′)𝛼𝑒−𝜏(𝑠,𝑠′)𝑑𝑠′
∞

𝑠

] 

(IV.2) 

where 𝑠 represents the altitude above ground, 𝛼(𝑠) is the total absorption coefficient, 𝜌𝑣(𝑠) is the 

water vapor density, 𝑇(𝑠) is the temperature, 𝑇′(𝑠) =
𝑇(𝑠)

𝑅(𝑇)
, 𝑅(𝑇) = 1, and 𝑅(𝑇) is the  Rayleigh-

Jeans approximation factor [15], 𝑇𝑏0 is the cosmic background radiation and 𝜏(𝑠1, 𝑠2) is the 

optical depth from 𝑠1 to 𝑠2, given by 𝜏(𝑠1, 𝑠2) = ∫ 𝛼(𝑠)𝑑𝑠
𝑠2

𝑠1
. 

        Other previous work has focused on finding the rank of frequencies in the 18 – 37 GHz 

range to determine those suitable for estimating the wet-path delay using microwave radiometers 

[49]. This analysis consists of constructing two- and three-frequency sets for the 18 – 37 GHz 

frequency range. Measurements were simulated for each frequency set using radiosonde data 

collected from various launch sites, and each set was ranked based on its retrieval noise.  

        Additionally, the WFs in the frequency range of 10 – 1000 GHz was analyzed to identify 

frequencies that are useful in retrieving water vapor and temperature profiles with high vertical 

resolution from nadir-viewing airborne radiometer measurements [50]. The selected frequency 

ranges were 43 – 86 GHz and 121 – 183 GHz for temperature and water vapor retrieval, 

respectively. These frequency sets were found to provide the best resolution for retrieval over the 
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range of effective heights [50] from 1.9 to 6.4 km, although this result varies slightly with season 

and geographic location. The water vapor and temperature WFs [50] for nadir-viewing airborne 

radiometer are given in Eqns. (IV.3) and (IV.4). 

𝑊𝐹𝜌𝑣
↑ (𝑠) = 𝑒−𝜏(𝑠,ℎ)

𝜕𝛼(𝑠)

𝜕𝜌𝑣
[𝑇′(𝑠) − 𝑇𝑏0

0↓𝑅𝐸𝑒−𝜏(0,𝑠) − ∫ 𝑇′(𝑠′)𝛼𝑒−𝜏(𝑠′,𝑠)𝑑𝑠′
𝑠

0

]

+ 𝑒−𝜏(0,𝑠)𝑟𝑊𝐹𝜌𝑣
↓𝑅(𝑠) 

(IV.3) 

𝑇𝑏0
0↓𝑅𝐸 = (1 − 𝑟)𝑇′(𝑓, 𝑇𝑆) + (𝑟𝑇𝐵(𝑓, 0, ∞))  

 

𝑊𝐹𝑇
↑(𝑠) =

𝑑𝑇′

𝑑𝑇
𝛼(𝑠)𝑒−𝜏(𝑠,ℎ) + 𝑒−𝜏(𝑠,ℎ)

𝜕𝛼(𝑠)

𝜕𝑇
[𝑇′(𝑠) − ∫ 𝑇′(𝑠′)𝛼𝑒−𝜏(𝑠,𝑠′)𝑑𝑠′

𝑠

0

− 𝑒−𝜏(0,𝑠){(1 − 𝑟)𝑇′ + 𝑟(𝑇′(𝑓, 𝑇𝑆) + 𝑊𝐹𝑇
↓𝑅(𝑠))}] 

(IV.4) 

where: 

 ℎ is the observation height above ground level 

 𝑟 is the surface reflection coefficient 

 𝑇𝑆 is surface temperature 

 (1 − 𝑟)𝑇′(𝑓, 𝑇𝑆) is the brightness temperature emitted from the surface 

 𝑇𝐵(𝑓, 0, ∞) is the downwelling brightness temperature 

 𝑟𝑇𝐵(𝑓, 0, ∞) is the atmospheric downwelling brightness temperature reflected from the 

surface 

 𝑇𝑏0
0↓𝑅𝐸is the sum of the reflected and the emitted radiation and 

 𝑊𝐹𝜌𝑣
↓𝑅(𝑠) and 𝑊𝐹𝑇

↓𝑅(𝑠) are the downwelling water vapor and temperature weighting 

functions from Eqns. (IV.1) and (IV.2), respectively 

        To extend and expand upon previous work, this chapter focuses on determining the 

maximum number of independent measurements possible in the range 10 to 200 GHz, with a 

bandwidth of 100 MHz, for the retrieval of atmospheric water vapor and temperature profiles 
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using zenith-pointing ground-based and nadir-pointing airborne radiometers under a variety of 

clear sky atmospheric conditions, including winter and summer weather, as well as over the 

diurnal cycle. 

 

4.2. Frequency Identification Process Based on Feature Selection to Maximize the 

Number of Degrees of Freedom 

 

        The strategy used in this work is to identify the nonredundant frequencies in the range from 

10 to 200 GHz, with a bandwidth of 100 MHz, which contribute to water vapor and temperature 

profile retrieval, with the goals of fine vertical resolution and good retrieval accuracy. The 100-

MHz bandwidth is a requirement to ensure that the frequency channels do not “average over” 

any feature of interest.  However, from a practical point of view, radiometers often have 

bandwidths greater than 100 MHz to reduce noise, but this should not have any significant 

impact on the frequencies sets selected and the associated number of degrees of freedom (DOF). 

The number of DOF is used as a criterion and is considered to be the same as the number of 

independent measurements in the retrieval solution. To determine this number, we first select 

those frequency sets that are the most sensitive to the atmospheric parameter of interest and 

retrieve the parameter with optimum vertical resolution from ground level to the top of the 

troposphere (~10 km). A feature selection algorithm is used to determine the most significant 

frequencies by selecting those with linearly independent WFs, i.e., those providing nonredundant 

information. The WFs are calculated using Eqns. (IV.1) and (IV.2) for zenith-pointing ground 

based radiometers and Eqns. (IV.3) and (IV.4) for nadir-viewing airborne radiometers. 

        WFs are dependent on atmospheric conditions and on measurement frequency. Therefore, 

atmospheric parameters are needed to compute the WF for each frequency. These parameters can 

be obtained from radiosondes that are launched 2-4 times daily from many weather stations in 
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and near populated areas of the world’s land masses. This study uses radiosonde data from the 

U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Southern 

Great Plains (SGP) site near Lamont, Oklahoma to calculate the WFs [51].  

 

4.2.1 Feature Selection and Number of Degrees of Freedom 

 

        Feature selection [52] [53], also known as variable selection, is the process of selection of a 

subset of relevant variables from a larger set. For this study, the variables are the measurement 

frequencies. When using a feature selection algorithm, the main assumption is that the data (here 

the WFs) have some redundant or irrelevant elements and the goal is to identify and remove 

then. Therefore, feature selection is a dimensionality reduction algorithm. In this study, a branch 

and bound algorithm [54] is used, as described below. 

        Assume that a set Zm contains relevant, redundant, and unnecessary features, i.e., X1, X2, 

X3,…, Xm, where m is the total number of elements of the set. The selection algorithm provides a 

subset of n elements, Zn which are those n elements that have the most relevant features within 

Zm. To select the subset Zn, a selection criterion J has to be defined. 

        If J is monotonic, any subset of features should have a value of J that is less than or equal to 

that of any proper superset or superset. However, excluding a particular feature from a large set 

may not significantly impact the criterion values (i.e., number of DOF). Therefore, each feature 

in the m-feature superset (Zm in Figure 10) is removed (one at a time), and the value of J is 

evaluated for each of the resulting subsets at level 1 in Figure 10. The subset with the maximum 

value of J (Zm-1) at level 1 is selected, and all other subsets are discarded. All subsets of Zm-1 at 

level 2 have a value of J that is less than or equal to that of Zm-1. The subsets of Zm-1 (at level 2 in 

Figure 10) with the maximum value of J (Zm-2) is selected, while others are discarded. This 

process of selecting the subset with the maximum value of J and discarding all others is repeated 
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until the desired number of features is selected. In this study, the number of DOF for a set of 

features under consideration is the selection criterion, where features are the WFs corresponding 

to various frequencies. 

 
Figure 10: A solution tree based on a branch and bound feature selection algorithm. 

 

        The averaging kernel is calculated using Eqn. (IV.5) [14], and the number of DOF is 

calculated as the trace of averaging kernel matrix Eqn. (IV.6) [14]  

𝐴𝐾̿̿ ̿̿ = 𝑆�̿�𝑊𝐹̿̿ ̿̿ ̿𝑇(𝑊𝐹̿̿ ̿̿ ̿𝑆�̿�𝑊𝐹̿̿ ̿̿ ̿𝑇 + 𝑆̿ )−1𝑊𝐹̿̿ ̿̿ ̿ (IV.5) 

 

𝐷𝑂𝐹 = 𝑡𝑟(𝐴𝐾̿̿ ̿̿ ) (IV.6) 

where 

 𝑆�̿� is the background information covariance matrix, with dimensions depending on the 

number of layers used for the retrieval and with values calculated based on the statistics of 

radiosonde profiles 

 𝑊𝐹̿̿ ̿̿ ̿ is the weighting function matrix 

 𝑆̿  is the measurement error covariance matrix. The measurements at each of the frequencies 

are independent of each other, so the errors associated with the measurements are also 
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independent. 𝑆̿  includes the noise due to radiometric observations, representativeness error 

and radiative transfer model errors [11]. However, the off-diagonal elements are assumed to 

be negligible, and the radiometer instrument noise is considered to be 0.5 K. In addition, in 

the later part of this study for determining the impact of measurement error on DOF and 

vertical resolution, variable measurement noise has been used and the effects of 

representativeness error and radiative transfer model error have also been included 

        The feature selection algorithm evaluates a set of WFs corresponding to the frequency range 

10 to 200 GHz to determine the major contributing frequencies for remote sensing of water 

vapor and temperature profiles. The value of m is 1900, and the frequency selection process is 

repeated for values of n equal to 2, 3, 4, 5, 10, 20, 30, 40 and 50.  

 

4.2.2 Averaging Kernel and Vertical Resolution 

 

        The vertical resolution of a retrieved profile is defined as the spread of its averaging kernel, 

given by Eqn. (IV.7). The averaging kernel is a linear combination of WFs for the frequencies 

used in the study, as shown in Eqn. (IV.8) [14]. 

𝑠𝑝(𝑧) =  12 ∫(𝑧 − 𝑧′)2 [∑ 𝑊𝐹̿̿ ̿̿
�̿�(𝑧′)𝐺𝑎(𝑧)

𝑚

𝑖=1

]

2

𝑑𝑧′ 

(IV.7) 

𝐴𝐾(𝑧, 𝑧′) = ∫ ∑ 𝑊𝐹̿̿ ̿̿
�̿�(𝑧′)𝐺𝑎(𝑧)

𝑚

𝑖=1

𝑑𝑧′ 
(IV.8) 

The spread of an averaging kernel can be rewritten as Eqn. (IV.9) 

𝑠𝑝(𝑧) = 𝐺𝑎(𝑧)𝑇�̿�𝑎(𝑧)𝐺𝑎(𝑧) (IV.9) 

where 𝐺𝑎(𝑧) is the gain function (containing coefficients for a linear combination of WFs), and 

�̿�𝑎 is given by Eqn. (IV.10).  

�̿�𝑎𝑖𝑗
(𝑧) = 12 ∫(𝑧 − 𝑧′)2𝑊𝐹̿̿ ̿̿

�̿�(𝑧′)𝑊𝐹̿̿ ̿̿
�̿�(𝑧′) 𝑑𝑧′ 

(IV.10) 
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where the �̿�𝑎 matrix elements are the correlations between values of the WFs at two different 

frequencies (i and j) at various altitudes z. 𝑊𝐹̿̿ ̿̿ ̿ is the WF matrix, 𝑧 is height above ground level, i 

and j are the indices of the frequency channels and 𝑧′ is the height above ground level of the 

center of the averaging kernel.  

        Achieving optimal vertical resolution requires minimizing the spread of the averaging 

kernel. An ideal averaging kernel would be a Dirac delta function. However, the spread of an 

averaging kernel is determined based on a finite number of WFs (for different weather 

conditions) at the corresponding frequencies of measurement. The limited number of WFs makes 

it virtually impossible to achieve a delta function as an averaging kernel. To address this 

limitation, the Backus-Gilbert technique improves the vertical resolution by using a gain 

function, calculated as in Eqn. (IV.11) [14], to minimize the spread of the averaging kernel. 

Using Eqns. (IV.10) and (IV.11) in Eqn. (IV.9), the spread of the averaging kernel is given by 

Eqn. (IV.12). 

�̅�𝑎(𝑧) =
�̿�𝑎

−1(𝑧)�̅�

�̅�𝑇�̿�𝑎
−1(𝑧)�̅�

 
(IV.11) 

𝑠𝑝(𝑧) =
1 

�̅�𝑇�̿�𝑎
−1�̅�

 
(IV.12) 

 

where the elements of �̅� are given by Eqn. (IV.13) 

𝑢𝑖 = ∫ 𝑊𝐹̿̿ ̿̿
�̿�

10 𝑘𝑚

0

𝑑𝑧 
(IV.13) 

 

4.3. Analysis of Water Vapor and Temperature Measurements from Zenith-Pointing 

Ground-Based Radiometers 

 

4.3.1 Effect of Liquid Water on Temperature and Water Vapor Profile Retrieval 

 

        Brightness temperature measurements near weak (22.235 GHz) and strong (183.31 GHz) 

water vapor absorption lines have significant contributions from cloud liquid water and 
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precipitation, when present, which can be major sources of error in water vapor retrieval. The 

contributions from clouds and precipitation can be due to scattering and/or absorption at 

microwave and millimeter-wave frequencies. Figure 11 shows microwave and millimeter-wave 

absorption spectra of water vapor, oxygen and liquid water absorption coefficients for 10 to 200 

GHz.  

 
Figure 11: Microwave and millimeter-wave absorption spectra from 10 to 200 GHz for water 

vapor density of 15.1 g/m
3
, temperature of 297 K and a cloud liquid water density of 0.1 g/m

3
. 

 

        Typically, scattering occurs in nonprecipitating ice clouds, whereas absorption occurs in 

liquid clouds. The emission by clouds is also affected by cloud thermodynamic temperature [55]. 

Cloud liquid is a significant contributor to measured brightness temperature near the weak water 

vapor absorption line at 22.235 GHz. However, water drops in clouds can be very small 

compared to the wavelength of the radiation, so the Rayleigh approximation can be used. Based 

on this approximation, scattering can be neglected in the forward radiative transfer equations, so 

only absorption models are used [4]. Water vapor profile retrieval with current methods is highly 

inaccurate during precipitation [56], unless specifically tuned for it [57]. For this reason, cloudy 

conditions have not been considered, and all the cases used in this study are for clear sky 

conditions. 
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4.3.2 Determining Measurement Frequencies for Ground-Based Water Vapor Profiling 

 

        A branch and bound feature selection technique is applied to the water vapor WFs 

calculated using Eqn. (IV.1) for frequencies in the range from 10 to 200 GHz. As described in 

Section 4.2, WFs have been calculated using radiosondes launched from the ARM SGP site. 

These WFs have been calculated for four “typical” weather conditions, i.e., winter day/night and 

summer day/night based on radiosondes launched during December/January and June/July for 

winter and summer, respectively, and at noon/midnight for day/night, respectively. The 

frequencies selected for each value of n are shown in Figure 12, where n is the number of main 

contributing frequencies, as defined in Section 4.2.1. For any of these four combinations of 

season and time of day, frequencies near the weak water vapor absorption line at 22.235 GHz are 

selected as the first contributing measurement frequency for water vapor sensing, in agreement 

with previous work [49]. The first 10 selected frequencies for water vapor retrieval in each case 

are given in Table 1. Similarly, frequencies relatively close to the strong water vapor absorption 

line at 183.31 GHz are selected as the second contributing frequency, near 200 GHz.  

Table 1: First 10 frequencies (in GHz) selected for water vapor profile retrieval from ground-

based measurements for winter day/night and summer day/night conditions 

Winter Day 21.3 198.9 65.3 167.7 22.9 168.1 21.7 22.5 23.3 64.9 

Winter Night 21.3 198.9 165.3 22.9 85.7 164.9 165.7 85.3 22.5 23.3 

Summer Day 21.3 198.9 90.5 174.9 22.9 175.3 131.3 20.5 24.1 25.7 

Summer 

Night 

21.3 198.9 22.9 170.1 55.7 170.5 120.5 20.5 22.5 24.1 

 

When the number of frequencies to be selected is greater than two, the frequencies selected vary 

with the season and time of the day. When the number of frequencies selected is 3 and 4, 

frequencies near 90 and 165 GHz are also selected along with the frequencies near 23 and 183 

GHz. 
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Figure 12: Main contributing frequencies for water vapor profile retrieval from a ground-based 

radiometer determined using the feature selection method for the frequency range of 10-200 

GHz. The width of the horizontal axis divisions is 5 GHz. 

 

        The selected frequencies were analyzed to determine the number of independent pieces of 

information by calculating their number of DOF using Eqns. (IV.5) and (IV.6). The parameters 

required for the averaging kernel in Eqn. (IV.6), i.e., background covariance matrix 𝑆�̿� and WF 

matrix 𝑊𝐹̿̿ ̿̿ ̿, are calculated using a background data set of radiosonde profiles measured at the 

ARM SGP site [51]. The background data set is a collection of water vapor and temperature 

profiles for the appropriate season and time of the day, i.e. winter day/night or summer day/night 

for this study. Similarly, WFs are calculated using mean water vapor and temperature profiles 

from the same data set. The number of DOF is calculated for each set of selected frequencies 

based on the value of n. This process is followed for a number of background data sets, and the 

resulting mean and standard deviation of each value of n is shown in Figure 13. It can be seen 

that the number of DOF is slightly lower during winter than during summer, for both day and 

night. This is because water vapor profiles are more variable during summer than during winter. 
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When the number of frequencies selected is in the range of 2 – 5, the mean number of DOF 

increases linearly with the number of selected frequencies.  

 
Figure 13: Number of DOF for water vapor profile retrieval from ground-based radiometer 

measurements under four different clear-sky weather conditions, i.e. winter day/night and 

summer day/night, for the frequency range of 10 - 200 GHz.  

 

        When the number of frequencies selected is in the range of 5 - 20, the number of DOF 

continues to increase, but at a much slower rate. For the range of 20 - 50 frequencies, the number 

of DOF saturates. The range of maximum number of DOF (for a mean profile) is 5 - 6.2 for any 

atmospheric condition. Hence, increasing the number of selected frequencies of measurement 

above a certain value does not significantly increase the number of independent pieces of 

information. For example, the number of DOF increases by only one or two as the number of 

measurement frequencies is increased from 10 to 40. 

        It is also important to determine the vertical resolution of the retrieval using the selected 

frequencies. In this study, vertical resolution is defined as spread of the averaging kernel based 

on the Backus-Gilbert technique, as described in Section 4.2.2. Vertical resolution is computed as 
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the spread is computed as the spread of the averaging kernel for the first two frequencies selected 

for winter and summer daytime using Eqn. (IV.12) for a height range of 0 to 10 km above 

ground level, as shown by the black curves in Figure 14, (a) for winter and (b) for summer.  

        Similarly, the vertical resolution is calculated for the first three selected frequencies, as 

shown by the red curves in Figure 14. This process is continued for 4, 5 and 10 selected 

frequencies. There is a general trend of degradation in vertical resolution as the altitude 

increases. However, the spread decreases and vertical resolution improves as the number of 

selected frequencies increases. The vertical resolution for 10 measurements is approximately 0.5 

to 1.5 km from 0 to 2 km above ground level for both winter and summer. However, from 2 to 9 

km above ground level the vertical resolution for 10 measurements is approximately 1.5 to 3 km.  

 

 
(a) 

  
(b) 

Figure 14: Vertical resolution for water vapor profile retrieval from a ground-based radiometer 

as a function of altitude for (a) winter and (b) summer daytime. 

 

        The weighting functions corresponding to the frequencies contributing the greatest number 

of independent pieces of information as well as improving the vertical resolution for water vapor 

profile retrieval are shown in Figure 15. 

0 10 20 30
0

2

4

6

8

10

Vertical Resolution [km]

A
lt

it
u

d
e
 (

k
m

)

 

 

2 Frequencies

3 Frequencies

4 Frequencies

5 Frequencies

10 Frequencies

0 10 20 30
0

5

10

Vertical Resolution [km]

A
lt

it
u

d
e
 [

k
m

]

 

 

0 10 20 30
0

5

10

Vertical Resolution [km]

A
lt

it
u

d
e
 (

k
m

)

 

 

0 10 20 30
0

5

10

Vertical Resolution [km]

A
lt

it
u

d
e
 [

k
m

]

 

 



57 

 

 
Figure 15: WFs for the frequencies selected for water vapor profile retrieval from a ground-based 

radiometer measurements in the range from 10 to 200 GHz.  

 

        Weighting functions corresponding to 131.3, 165.3 and 198.9 GHz show that these 

measurement frequencies are sensitive to water vapor in the lower parts of the troposphere and 

hence are complementary to 21.3 GHz for estimation of water vapor profiles. Frequencies closer 

to the strong water vapor absorption line are more sensitive to changes in water vapor close to 

the ground. The weighting function at 198.9 GHz is highly sensitive to small changes in water 

vapor, as stated by Cimini et al. [43] and Racette et al. [58]. This and similar frequencies are 

useful to retrieve the water vapor profile in very dry climates, such as the polar regions [43]. 

Measurements corresponding to 90.5 GHz in the window region from approximately 85 to 110 

GHz have been used to estimate the total precipitable water, as described by Payne et al. [59]. 

 

4.3.3 Determining Measurement Frequencies for Ground-based Temperature Profiling 

 

        Temperature profiles have been retrieved from satellite-based radiometric measurements in 

the 50 – 70 GHz range [12], i.e., near the oxygen absorption lines centered at 60 GHz. 
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Measurements at frequencies further away from the 60 GHz oxygen complex provide 

information about the temperature at lower altitudes, based on the temperature weighting 

functions. Frequencies near the higher-frequency millimeter-wave oxygen absorption line at 

118.75 GHz have not been used extensively for temperature profiling.  Also, the window region 

frequencies between these absorption lines have not been analyzed in detail for temperature 

retrieval. To include them in this study, the entire frequency range of 10 to 200 GHz has been 

analyzed to determine sets of frequencies that provide the maximum amount of information on 

tropospheric temperature profiles.  

        Similar to the retrieval of water vapor profiles, retrieval of temperature profiles also requires 

the maximum number of independent pieces of information (or minimum redundancy) to 

improve accuracy and sensitivity to changes in temperature as a function of altitude. The major 

contributing frequencies were selected by applying a feature selection algorithm similar to that 

used for water vapor selection in Section 4.3.2 to the temperature weighting functions 

corresponding to frequencies in the 10 to 200 GHz range.  

        The first 10 selected frequencies are listed in Table 2 and shown in Figure 16. Frequencies 

close to 60 GHz have greater information content and provide more independent measurements 

than those close to the oxygen absorption line at 118.75 GHz. For all weather conditions 

considered in this study, the frequency ranges of 55 – 65 GHz and 116 – 120 GHz are selected, 

which are close to the 60 GHz oxygen complex and the 118.75 GHz oxygen absorption line, 

respectively.  
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Table 2: First 10 frequencies (in GHz) selected for temperature profile retrieval from ground-

based measurements for winter day/night and summer day/night conditions 

Winter Day 60.1 118.1 55.7 119.3 67.3 119.7 63.3 116.9 67.7 116.1 

Winter Night 60.5 118.1 63.3 62.5 118.9 116.9 64.9 55.3 65.7 66.1 

Summer Day 60.1 117.7 62.5 116.5 64.5 118.1 118.5 119.3 119.7 116.1 

Summer 

Night 

60.1 118.1 62.5 116.5 119.3 117.7 119.7 61.7 64.5 116.1 

 
Figure 16: Main contributing frequencies for temperature profile retrieval from a ground-based 

radiometer determined using the feature selection method for the frequency range of 10 to 200 

GHz. The width of the horizontal axis divisions is 5 GHz. 

 

        The selected frequencies were analyzed to determine the number of independent pieces of 

information by calculating their number of DOF, as shown in Figure 17. The number of DOF 

increases approximately linearly with the increase in the number of frequencies selected up to 10 

and then more slowly than linearly up to 20. The number of DOF starts to saturate near or above 

30 selected frequencies. The maximum mean DOF is in the range of 6 – 7 for temperature profile 

retrieval from zenith-pointing ground-based radiometers, under nearly all clear-sky weather 

conditions considered in this study.  
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Figure 17: Number of DOF for temperature profile retrieval from a ground-based radiometer 

under four different clear-sky weather conditions, i.e. winter day/night and summer day/night, 

for the frequency range of 10 to 200 GHz. 

 

        However, the mean maximum number of DOF is slightly higher for summer (6.7) than for 

winter (6.4), which is similar relationship as that in Section 4.3.2 (Figure 13) for water vapor 

measurements. This is due to the greater variability of temperature profiles in summer than in 

winter. After examining the number of DOF, the vertical resolution was analyzed for the selected 

frequencies for temperature profiling, similarly to what was done for water vapor profiling. The 

spread of averaging kernel is determined for first 2, 3, 4, 5 and 10 frequencies selected for 

temperature profiling during daytime, as shown by the black, red, green, blue and orange curves, 

respectively, in Figure 18, (a) for winter and (b) for summer. There is a general degradation in 

vertical resolution as the altitude increases. However, the vertical resolution decreases as number 

of frequencies selected increases. The vertical resolution for 10 measurements is approximately 

0.2 to 0.5 km from the ground to 4 km above ground level.  
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(a) 

 
(b) 

Figure 18: Vertical resolution for temperature profile retrieval from a ground-based radiometer 

as a function of altitude for (a) winter and (b) summer daytime. 

 

Figure 19 shows the weighting functions for the frequencies selected for temperature profile 

retrieval. Most of the weighting functions are most sensitive to temperature changes in the lowest 

2 km of the troposphere.  

 

Figure 19: Temperature WFs for frequencies selected for temperature profiling retrieval from a 

ground-based radiometer in 10 to 200 GHz range. 
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        The 55.7, 60.5 and 63.3 GHz frequencies are most sensitive to changes in temperature from 

the ground to 2 km above ground level, while the frequencies 64.5 and 66.1 GHz (further from 

the 60 GHz oxygen complex) are generally more sensitive to changes in temperature over the 

height range of 0 to 4 km. None of the weighting functions studied have much sensitivity to 

changes in temperature above about 7 km above general level. 

 

4.4. Analysis of Water Vapor and Temperature Measurements from a Nadir-Pointing 

Airborne Radiometer 

 

        This section focuses on determining the measurement frequencies in the 10 to 200 GHz 

range to provide the maximum number of independent pieces of measurements for water vapor 

and temperature profile retrievals for a nadir-pointing airborne microwave radiometer. For the 

study in Sections 4.4.1 and 4.4.2, the background temperature is assumed to be 290 K and the 

emissivity of the sea surface to be 0.5. However, in Section 4.4.3 B an analysis has been 

performed to determine the variability in number of DOF taking into account variations in sea 

surface and land surface emissivity. The altitude of the aircraft is assumed to be at least 10 km 

above ground level. 

 

4.4.1 Determining Measurement Frequencies for Airborne Water Vapor Profiling 

 

        The branch and bound feature selection algorithm was applied to water vapor weighting 

functions in the 10 to 200 GHz range to determine the major contributing frequencies for 

retrieval of water vapor profiles. The first 10 selected major contributing frequencies for a nadir-

pointing airborne radiometer are listed in Table 3 and shown in Figure 20. The plots show that 

there are major contributions for frequencies range 180 to 200 GHz for all clear-sky weather 

conditions studied, but there are also some significant contributors in the window region in the 

range of 130 to 165 GHz. Measurements in this frequency range can be used for accurate 
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retrieval of profiles of water vapor in the upper troposphere (5 – 10 km) where the water vapor 

density is less than 0.5 g/m
3
. This is because frequencies close to the strong water vapor 

absorption line are highly attenuated, even with a small amount of water vapor is present. 

However, the atmosphere is more transparent near the weak water vapor absorption line (in the 

range of 20 to 23 GHz), so 21.3 GHz can be used for retrieval of water vapor profile in the 

lowest 10 km of the troposphere.  

Table 3: First 10 frequencies (in GHz) selected for water vapor profile retrieval from airborne 

measurements for winter day/night and summer day/night conditions 

Winter Day 179.3 184.1 182.5 180.1 183.3 183.7 184.7 180.9 180.5 166.9 

Winter Night 190.5 198.9 181.3 174.9 182.9 175.3 180.5 191.3 184.1 185.7 

Summer Day 175.7 179.7 187.3 178.9 183.7 186.5 186.9 187.3 182.5 146.5 

Summer Night 162.1 187.3 179.3 184.9 186.5 182.5 179.7 186.1 183.7 21.3 

 

 
Figure 20: Main contributing frequencies for water vapor retrieval from airborne measurements 

selected using the feature selection method for frequency range 10 to 200 GHz. The width of the 

horizontal axis divisions is 5 GHz. The bandwidth is 100 MHz. 
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        The number of DOF calculated for each value of n (from 2 to 50) corresponding to all 

weather conditions is shown in Figure 21. Maximum mean DOF for all weather conditions 

studied is approximately 8 – 9, lowest for winter night and highest for summer day. The 

maximum mean DOF is higher than that for zenith-pointing ground-based radiometer. 

 
Figure 21: Number of DOF for water vapor profile retrieval from airborne measurements under 

four different weather conditions, i.e. winter day/night and summer day/night, for the frequency 

range of 10 to 200 GHz. 

 

        The vertical resolution is computed for frequencies selected for water vapor profile retrieval 

using a nadir-pointing airborne radiometer. The spread of the averaging kernel determined for 

first 2, 3, 4, 5 and 10 frequencies selected for daytime is shown by black, red, green, blue and 

orange curves, respectively, in Figure 22, (a) for winter and (b) for summer. The vertical 

resolution in this case is better at 10 km above ground level than at ground level due to the 

difference in the radiative transfer integral, resulting in nadir-pointing airborne and space-borne 

radiometers providing more information in the upper troposphere. The vertical resolution is best 
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for 10 measurements and is approximately 0.2 to 0.5 km from 6 to 10 km above ground level for 

winter, while it is 0.2 to 1 km for summer. The vertical resolution degrades closer to the ground. 

 

 
(a) 

 
(b) 

Figure 22: Vertical resolution for water vapor profile retrieval from airborne measurements as a 

function of altitude for (a) winter and (b) summer daytime. 

 

Weighting functions corresponding to the major contributing frequencies are shown in Figure 23.  

 

 

Figure 23: Water vapor weighting functions for frequencies selected for water profile retrieval 

from nadir-pointing airborne measurements in the range of 10 to 200 GHz.  
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above 4 km altitude and can be used for retrieval of water vapor profiles in the upper 

troposphere. 

 

4.4.2 Determining Measurement Frequencies for Airborne Temperature Profiling 

 

        Analysis of the temperature weighting functions in the range of 10 to 200 GHz results in the 

first 10 frequencies selected for a nadir-pointing airborne radiometer shown in Table 4 and 

Figure 24.  

Table 4: First 10 frequencies (in GHz) selected for temperature profile retrieval from airborne 

measurements for winter day/night and summer day/night conditions 

Winter Day 60.1 117.7 54.9 56.9 56.5 118.1 64.5 59.7 55.3 52.9 

Winter Night 60.1 117.7 55.3 56.9 56.5 118.1 64.5 57.7 59.7 54.9 

Summer Day 60.1 117.7 55.7 55.3 118.1 60.5 59.7 56.9 56.5 54.9 

Summer Night 60.1 117.7 55.3 56.5 118.1 60.5 59.7 56.9 55.7 54.9 

 

 

Figure 24: Main contributing frequencies for temperature profile retrieval from airborne 

measurements selected using the feature selection method for the frequency range 10 to 200 

GHz. The width of the horizontal axis divisions is 5 GHz. The bandwidth is 100 MHz. 
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lines provide the greatest amount of information for temperature profile retrieval from nadir-

pointing airborne radiometers. The number of independent pieces of information from the 

selected frequency set can be determined by calculating their number of DOF for each weather 

condition studied, as shown in Figure 25. The maximum mean number of DOF for all weather 

conditions is in the range of 5 – 6. The number of DOF increases when the number of 

measurements is increased from 2 to 20, but there is no significant increase in DOF above 20 

measurements.  

 
Figure 25: Number of DOF for temperature profile retrieval from airborne measurements under 

four different weather conditions, i.e. winter day/night and summer day/night, for the frequency 

range of 10 to 200 GHz. 
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respectively, in Figure 26. Similar to water vapor retrieval from nadir-pointing airborne 

measurements, the vertical resolution in this case is better at 10 km above ground level than it is 

0 20 40
0

5

10
Winter Day

0 20 40
0

5

10
Winter Night

0 20 40
0

5

10
Summer Day

N
u

m
b

e
r 

o
f 

D
e
g

re
e
s
 o

f 
F

re
e
d

o
m

0 20 40
0

5

10
Summer Night

Number of Measurement Frequencies



68 

 

at ground level. The vertical resolution is best for 10 measurements and is approximately 0.2 to 

0.5 km in winter from 6 to 10 km above ground level and 0.2 to 1 km in summer.  

        Weighting functions for the major contributing frequencies are shown in Figure 27. The 

weighting functions corresponding to 55.3, 56.9 and 60.1 GHz peak at various altitudes well 

above ground level and hence can be used to retrieve temperature profiles.  

 

 
(a) 

 
(b) 

 

 

Figure 26: Vertical resolution for temperature profile retrieval from airborne measurements as a 

function of altitude for (a) winter and (b) summer daytime. 

 

Figure 27: Temperature WFs from nadir-pointing airborne measurements frequencies in the 

range of 10 to 200 GHz. 
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The weighting functions at 64.5 and 117.7 GHz are more sensitive to temperature in the lowest 2 

km of the troposphere and therefore are complementary to the frequencies closer to the 60 GHz 

oxygen complex.  

4.4.3 Effect of Variation in Measurement Noise and Uncertainty on the Number of 

Independent Measurements and Vertical Resolution 

 

A. Effect of Variation in Measurement Noise on the Number of DOF  

 

        All the previous results have been calculated assuming a radiometric resolution of 0.5 K and 

a diagonal matrix S̿ε. However, in this section an analysis has been performed to determine the 

variation in number of DOF for 50 measurement frequencies selected using the branch and 

bound selection algorithm described in Section 4.2.1 for a zenith-pointing ground-based 

radiometer when the instrument noise is varied from 0.1 to 1.2 K. The results are shown in 

Figure 28.  

 
Figure 28: Variation in number of DOF for a range of instrument noise values for a zenith-

pointing ground-based microwave radiometer. 

 

        The number of DOF decreases from 7.8 to 6 for temperature measurement frequencies while 

the number of DOF decreases from 6.45 to 5.5 for water vapor measurement frequencies as the 

0 0.2 0.4 0.6 0.8 1 1.2
5

5.5

6

6.5

7

7.5

8

Noise [K]

D
e
g

re
e
s
 o

f 
F

re
e
d

o
m

 

 

DOF Water Vapor

DOF Temperature



70 

 

instrument noise is increased from 0.1 to 1.2 K. Therefore, an increase in instrument noise has a 

negative effect on the number of DOF, as expected. 

 

B. Effect of Variation in Measurement Uncertainty on the Number of DOF for an 

Airborne Radiometer 

 

        Airborne microwave radiometer measurements are affected by variations in atmospheric 

conditions as well as by the emissivity of the land and sea surfaces.  Measurements performed by 

an airborne microwave radiometer can be represented by Eqn. (IV.14) 

𝑇𝐵𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑
= 𝑇𝐵𝐼𝑑𝑒𝑎𝑙

+ 휀𝑇𝐵
 (IV.14) 

where 𝑇𝐵𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑
 is the measurement, 𝑇𝐵𝐼𝑑𝑒𝑎𝑙

is the measurement due to atmospheric parameters 

and 휀𝑇𝐵
is the uncertainty associated with the measurement, representativeness error and radiative 

transfer model errors. The uncertainty in the measurement is due to the instrument noise and 

uncertainty associated with the land and sea surface emissivity as shown in Eqns. (IV.15) and 

(IV.16) 

휀𝑇𝐵
= ∆𝑇𝐵 + 𝑇𝐵𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (IV.15) 

휀𝑇𝐵
= ∆𝑇𝐵 + (1 − 𝜖)𝑇𝐵

↓ + 𝜖𝑇𝑝ℎ + 휀𝑟 (IV.16) 

where ∆𝑇𝐵 is the uncertainty due to measurement noise, 𝜖 is the land emissivity, 𝑇𝐵
↓ is due to 

down-welling brightness temperature measured at ground level, 𝑇𝑝ℎ is surface temperature and 

휀𝑟 represents the uncertainty due to representativeness error and radiative transfer model errors. 

        Emissivity models of land and sea surfaces can be used to reduce the emissivity uncertainty. 

However, some residual error will persist. The effect of uncertainty on the number of DOF of 

measurements is analyzed and is shown in Figure 29. The figure shows the variation in the 

number of DOF for 50 measurement frequencies when the measurement uncertainty is increased 

from 0.1 to 10 K the number of DOF decreases from 10.9 to 4.9 for water vapor measurement 
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frequencies as the uncertainty is increased from 0.1 to 10 K. Similarly, the number of DOF for 

temperature measurement frequencies decreases from 6.7 to 2.2 as the uncertainty is increased 

from 0.1 to 10 K. Lower values of uncertainty estimate the effect of variation in sea surface 

emissivity. However, high values of uncertainty estimate the effect of variation in land surface 

emissivity. 

 
Figure 29: Variation in the number of DOF for a range of measurement uncertainties for a nadir-

pointing airborne radiometer at 10 km above ground level. 

 

C. Effect of Variation in Measurement Uncertainty on the Number of DOF and Vertical 

Resolution  

 

        The vertical resolution of the measurements has been optimized in Sections 4.3 and 4.4 

using Backus-Gilbert method without taking the measurement error into account. Measurement 

error affects the vertical resolution as well as the number of DOF. Therefore, a study has been 

performed in which the measurement noise is varied from 0.1 to 1.2 K and its impact on number 

of DOF and vertical resolution at 2 km above ground level for a ground-based radiometer and 8 

km above ground level for an airborne radiometer is analyzed for n = 2, 5, 7, 10 and 20 

measurements. To include the impact of noise, the gain function is changed according to Eqn. 

(IV.17) and substituted into Eqn. (IV.9)  
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�̅�𝑎(𝑧) =
(�̿�𝑎(𝑧) + 𝑆̿ )

−1
�̅�

�̅�𝑇(�̿�𝑎(𝑧) + 𝑆̿ )
−1

�̅�
 

(IV.17) 

        The results of the analysis are shown in Figure 30 and Figure 31, which relate the number of 

DOF to vertical resolution for ground-based and airborne radiometers, respectively.  The leftmost 

end of each curve in Figure 30 shows the case when the noise is maximum and the rightmost end 

of the curve shows the case when the noise is minimum. As the noise of the system is decreased, 

the number of DOF increases and the vertical resolution at 2 km above ground level improves.  

 

 
Figure 30: Variation in the number of DOF and vertical resolution with noise for zenith-pointing 

ground-based radiometer. 
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increases from 2.8 to 6.3. For 20 measurements, the number of DOF increases from 3.5 to 6.9 

while the vertical resolution improves from 5.6 to 1 km.  

        Figure 31 shows that for two measurements for airborne radiometer, as the noise is reduced 

from 1.2 to 0.1 K, the number of DOF increases from 1.7 to 2 while the corresponding vertical 

resolution improves from 5.6 to 4.6 km for 8 km above ground level. Similarly, for 5 

measurement frequencies the number of DOF increases from 2.2 to 3.7 and vertical resolution 

improves from 4.6 to 3.5.  

 

 
Figure 31: Variation in DOF and vertical resolution with noise for nadir-pointing airborne 

radiometer. 
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channels with smaller uncertainty have similar performance to a large number of frequency 

channels with greater uncertainty. 

 

4.5. Orthogonalizing Water Vapor and Temperature Measurements 

 

        The feature selection method has been used to determine the frequencies that have the 

highest number of DOF in the frequency range 10 to 200 GHz. However, it is important to note 

that there are a number of frequencies in that range at which the measured brightness 

temperature has contributions from both water vapor and temperature. This is because the 

absorption lines for water vapor and temperature are sometimes similarly close to those 

frequencies, particularly in the window regions. Therefore, it becomes important to determine the 

particular frequency channels for measuring water vapor or temperature, i.e., the frequencies for 

which water vapor and temperature contributions are orthogonal, to identify those with 

contributions to brightness temperature from water vapor that are significantly larger than those 

from temperature, and vice-versa. To accomplish this, the percentage contribution to the 

brightness temperature due to water-vapor absorption is computed using Eqn. (IV.18). 

Percentage water vapor contribution=
𝑇𝐵𝑤𝑣

𝑇𝐵𝑡𝑜𝑡𝑎𝑙
× 100 =

𝜌.𝑊𝑤𝑣

𝑇.𝑊𝑇+𝜌.𝑊𝑤𝑣
× 100 (IV.18) 

        This relationship is used to compute the fractional contribution of water vapor to the total 

brightness temperature for each frequency. It has already been observed that water vapor 

provides a strong contribution to brightness temperature measurements in the frequency ranges 

of 20 – 23 GHz and 165 – 200 GHz.  

        These frequency ranges can be used to determine the major fractional contributing channels. 

To calculate the contribution, 10 radiosonde measurements were performed at the ARM site. The 

contribution from water vapor is shown in blue in Figure 32, and the contribution from 

temperature is shown in red. Frequencies in the ranges of 20 – 23, 80 – 108 and 175 - 184 GHz 
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have water vapor contributions of more than 90%. Temperature contributes only 10% or less to 

the total brightness temperature in those frequency ranges.  For the frequency ranges of 50 - 70 

and 115 – 130 GHz the contribution due to temperature is stronger than that due to water vapor. 

Frequencies in the ranges of 57 – 60 and 115 – 121 GHz have temperature contributions of more 

than 90% and 60%, respectively. The results presented in Figure 32 are due to ground base 

radiometer. Similar results were also found for aircraft based instrument. 

 
Figure 32: The fractional contributions of water vapor and temperature effects on total brightness 

temperature measurements. 

 

4.6. Conclusions 

 

        Feature selection methods have shown that the frequency ranges of 20 – 23 GHz, 85 – 90 

GHz and 165 – 200 GHz provide the maximum number of independent pieces of information for 

water vapor profile retrieval from zenith-pointing ground-based microwave radiometer 

measurements. The same frequency ranges are useful for water vapor profile retrieval from 

nadir-pointing airborne radiometers. On the other hand, for temperature profiling from ground-

based measurements, the frequency ranges of 55 – 65 GHz and 116 – 120 GHz provide the 

maximum number of independent pieces of information.  For temperature profile retrieval from 
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nadir-pointing airborne measurements, nearly the same frequency ranges are needed, but the 

millimeter-wave frequency range is more narrowly focused near 118.75 GHz. 

        To determine the number of independent pieces of information and consequently the 

number of frequencies useful for retrieval of water vapor, the number of degrees of freedom has 

been determined for the selected frequencies in each case. From this analysis, it is found that a 

limited number of frequency measurements can be used to achieve fine vertical resolution and 

good accuracy of retrieved water vapor profiles. The maximum number of independent pieces of 

information is 5 – 6 for water vapor profiling and 6 – 7 for temperature profiling from zenith-

pointing ground-based radiometer measurements.  For nadir-pointing airborne measurements, the 

maximum number of independent pieces of information is 8 – 9 for water vapor profiling and 5 – 

6 for temperature profiling.  If additional measurement frequencies are chosen beyond these 

limits, they will provide redundant information since that information is linearly dependent on 

that already measured at other frequencies. Noise analysis has shown that increasing 

measurement uncertainty and instrument noise reduce the number of DOF. Similarly, 

measurement uncertainty degrades the vertical resolution. It was also found that vertical 

resolution is directly related to the number of DOF. 
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Chapter V  Optimization of Background Information for Retrieval 

Algorithms Using Ground Based Microwave Radiometer 

Measurements 
 

 

 

        This chapter explores the potential to use ground-based, zenith-pointing K-band radiometer 

measurements along with optimized background data sets consisting of radiosonde profiles to 

detect dynamic changes and gradients in water vapor profiles. To explore this capability, the 

HUMidity EXperiment 2011 (HUMEX11) was conducted at the U.S. Department of Energy’s 

(DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site near 

Lamont, OK, USA.  

        The results illustrate that in a retrieval algorithm the choice of the size of the background 

data set measured near the radiometer measurement time and the choice of atmospheric layer 

thickness affect the ability to remotely sense dynamic changes in water vapor. In general, it is 

found that background data sets of larger size provide better accuracy in a statistical sense but 

inhibit the ability to detect gradients.  

 

5.1. Introduction 

 

        Tracking dynamic changes in water vapor profiles is important to predict the timing and 

location of cloud formation as well as the initiation of convective storms. These storms develop 

on a time scale of 30 to 60 minutes in locations where the water vapor is highly variable [60] 

[61] [62]. Since convective initiation is highly sensitive to the amount of total column or, 

equivalently, precipitable water vapor (PWV), it is important to remotely sense PWV with fine 

temporal and spatial resolution. In particular, water vapor profile measurements with fine 
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resolution in the planetary boundary layer are needed to analyze detailed, dynamic changes in the 

atmosphere [63]. 

        Instruments currently used to measure water vapor profiles include radiosondes and Raman 

lidar as well as microwave radiometers. Radiosondes provide water vapor measurements with 

fine vertical resolution (on the order of a few tens of meters) for the initialization of numerical 

weather prediction (NWP) models. However, the repeat time of radiosonde launches is not 

sufficient to track the dynamic evolution of tropospheric water vapor. Another instrument that 

can provide profile information to improve NWP models is Raman lidar [64]. These 

measurements have similar vertical resolution to that of radiosondes in the lowest 3 km of the 

troposphere and have temporal resolution of approximately 10 minutes [65]. Infrared 

radiometers, such as atmospheric emitted radiance interferometers (AERI), are useful for 

retrieval of water vapor and temperature profiles. Similarly, satellite based microwave 

radiometer measurements are used to determine precipitable water vapor, water vapor profiles, 

cloud liquid water and wet path delay.  Finally, ground-based microwave and millimeter-wave 

radiometers operate at frequencies near the water vapor absorption lines at 22.235 GHz and 

183.31 GHz, respectively, to retrieve water vapor profiles [66] [43]. These instruments have fine 

temporal resolution; however, the accuracy of retrieved profiles varies depending on the retrieval 

algorithm and the thermodynamic parameter being retrieved. Westwater [28] described various 

retrieval techniques for estimation of water vapor and temperature profiles. Solheim [16] 

compared the performance of various retrieval algorithms i.e., Newtonian iteration method, 

regression method, neural networks and Bayesian maximum probability estimation technique, 

for retrieval of water vapor, temperature and liquid water profiles. Cimini et al. [66] and 

Hewison [12] focused on quantifying and improving the vertical resolution of retrieved water 
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vapor and temperature profiles. Scheve and Swift [17] compared water vapor profiles retrieved 

from K-band microwave brightness temperature measurements to those retrieved from Raman 

lidar measurements.  

        Here, water vapor profiles are retrieved from K-band radiometer measurements using 

Bayesian optimal estimation [14] with an emphasis on detecting water vapor gradients in the 

lower troposphere that are dynamically evolving. For that purpose, background data sets of 

varying sizes are used to determine the statistical variability of atmospheric water vapor. The 

retrieved profiles are compared with water vapor profiles retrieved from a co-located Raman 

lidar. These Raman lidar measurements are assumed to be of high enough quality to be taken as 

“truth”. Therefore, the error is defined as the difference (i.e., deviation from “truth”) between a 

profile retrieved from microwave radiometer measurements and that retrieved from Raman lidar.  

 

5.2. Humidity Experiment 2011 

 

        The HUMidity EXperiment 2011 (HUMEX11) was conducted at the U.S. Department of 

Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) 

Climate Research Facility in Lamont, OK for three weeks in the summer of 2011, during the 

periods of July 7-15 and August 3-15.  

 

5.2.1 Purpose and Goals 

 

        This field campaign was designed to assess the ability to remotely sense dynamic changes 

and gradients in atmospheric water vapor profiles retrieved from K-band microwave brightness 

temperatures and to compare them with water vapor profiles retrieved from Raman lidar. 

Measurements were performed under various atmospheric conditions during clear skies, 

including stable conditions as well as rapidly evolving conditions shortly after rain showers in 
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the area. The measurements were performed after a total rainfall of 12 to 40 mm over 6 to 12 

hours on certain days and when the water vapor density in the lowest 1 km above ground level 

(AGL) was between 8 and 19 g/m
3
. These weather conditions are typically associated with high 

water vapor variability, providing a wide range of conditions for tuning water vapor estimation 

techniques and sensing dynamic changes in water vapor profiles. After precipitation events, the 

radiometer was operated after the sky was clear and clouds had moved out of the radiometer’s 

field of view. Target accuracies for the retrievals were similar to the requirements shown in Table 

5 for the planned National Polar-orbiting Operational Environmental Satellite System (NPOESS) 

Conical-Scanning Microwave Imager/Sounder (CMIS), which was canceled due to cost and 

schedule overruns [67].  

 

Table 5. Requirements based on the Algorithm Theoretical Basis Document for the planned but 

canceled NPOESS Conical-Scanning Microwave Imager/Sounder (CMIS) and for the ground-

based GPS network deployed at the ARM SGP site [68]. 

 

5.2.2 Experiment Description and Measurements Performed 

 

        During HUMEX11, two K-band, multi-frequency Compact Microwave Radiometers for 

Humidity profiling (CMR-H) [21] [5] were deployed at the ARM SGP site. One of the two was 

co-located with a Raman lidar, enabling precise comparisons of profiles retrieved from the K-

band brightness temperatures to those retrieved from the Raman lidar data. The other radiometer 

was deployed 10 km to the northwest, near Lamont, OK. The map showing location of 

radiometers is shown in Figure 33 and the pictures showing the deployment of the radiometers 

are shown Figure 34. 

 Height Above Ground Level Water Vapor Uncertainty (in clear conditions) 

NPOESS 
From ground to 4 km 20% or 0.2 g/kg 

From 4 km to 9 km 35% or 0.1 g/kg 

GPS 
From ground to 3 km 20% or 0.2 g/kg 

From 3 km to 6 km 30 – 35%   or 0.15 g/kg 
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Figure 33. (Left) Map showing the location of the radiometers in Oklahoma, USA. (Right) 

Zoomed out view of the HUMEX11 site in Oklahoma, USA. 

 

        These microwave radiometers sampled atmospheric volumes using mechanical scanning 

over a range of both elevation and azimuth angles. Data measured during HUMEX11 was used 

to retrieve water vapor profiles.  

        The CMR-H K-band radiometers were developed at the Microwave Systems Laboratory 

(MSL) in the Electrical and Computer Engineering Department at Colorado State University 

(CSU) using Monolithic Microwave Integrated Circuit (MMIC) technology with a low noise 

amplifier-based front-end [21]. The radiometers operate at four frequencies near the K-band 

water vapor absorption line, i.e. 22.12, 22.67, 23.25, and 24.5 GHz with bandwidths of 110, 120, 

120 and 200 MHz, respectively.   
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Figure 34. (A) Deployment of a Compact Microwave Radiometer for Humidity profiling (CMR-

H) (B) Tipping curve (C) Raman lidar and (D) Launch of radiosonde at the ARM Southern Great 

Plains (SGP) Central Facility during HUMEX11 

 

        Jacobians, or weighting functions, for these frequencies are shown in Figure 35. The profile 

used to calculate this weighting function is based on the average profile measured by radiosondes 

launched from the ARM SGP site on August 8, 2011. The radiometric resolution (ΔT) of the 

CMR-H is 0.2 K for a 3-s integration time. The 3-dB antenna beamwidth for CMR-H is 3-4°. 

The radiometer’s system noise temperature at the four measurement frequencies is in the range 

A B 

C D 
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of 550 – 800 K. The calibration precision at 298 K (while observing a microwave absorber at 

ambient temperature) is approximately 0.2 K for all four frequencies [69]. 

 
Figure 35: Jacobian or Weighting functions for CMR-H frequencies. 

 

        Calibration of the CMR-H brightness temperature measurements is performed by observing 

two objects of known brightness temperature. The “hot” calibration target is a microwave 

absorber at ambient temperature, and the “cold” calibration source is the cosmic microwave 

background temperature of 2.73 K at these frequencies, using tipping curve measurements 

extrapolated to zero atmospheres [70]. While performing a two point calibration the radiometer 

measures two different scenes of known temperatures 𝑇𝐴,1 and 𝑇𝐴,2, which are related to the 

measured voltage by the Eqns. (V.3) and (V.4) 

𝑉𝑜𝑢𝑡𝑝𝑢𝑡,1 = 𝑎𝑇𝐴,1 + 𝑏 (V.1) 

𝑉𝑜𝑢𝑡𝑝𝑢𝑡,2 = 𝑎𝑇𝐴,2 + 𝑏 (V.2) 

 𝑉𝑜𝑢𝑡𝑝𝑢𝑡,1 and 𝑇𝐴,1 correspond to measurement and antenna temperature while looking at 

the microwave absorber  
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 𝑉𝑜𝑢𝑡𝑝𝑢𝑡,2 and 𝑇𝐴,2 correspond to the extrapolated value of measurement and  cosmic 

background temperature of 2.73 K, respectively.  

 𝑎 is the calibration gain and 𝑏 is the offset. 

The value of 𝑎 and 𝑏 can be calculated by using Eqns. (V.3) and (V.4), 

𝑎 =
𝑉𝑜𝑢𝑡𝑝𝑢𝑡,1 − 𝑉𝑜𝑢𝑡𝑝𝑢𝑡,2

𝑇𝐴,1 − 𝑇𝐴,2
 

(V.3) 

𝑏 =
𝑇𝐴,1𝑉𝑜𝑢𝑡𝑝𝑢𝑡,2 − 𝑇𝐴,2𝑉𝑜𝑢𝑡𝑝𝑢𝑡,1

𝑇𝐴,1 − 𝑇𝐴,2
 

(V.4) 

For determining 𝑉𝑜𝑢𝑡𝑝𝑢𝑡,2 corresponding to cosmic background temperature 𝑇𝐴,2, six zenith angle 

scans at 0°, 25°, 35°, 50°, 55°, 65° and 70° were performed under clear sky conditions. Those 

zenith angles correspond to 1, 1.1, 1.22, 1.47, 1.7, 2.1 and 2.6 air masses. Measured voltages at 

the zenith angles are used to extrapolate to a voltage for zero air mass which corresponds to 

cosmic background temperature of 2.73 K, similar to a radiometer looking upward at the top of 

the atmosphere. The results of tipping curve calibration for the CMR-H frequencies are shown in 

Figure 36. 

 
Figure 36. Tipping-curve calibration performed at the four frequencies of CMR-H 
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        Furthermore, additional instruments were deployed at the ARM SGP site, including wind 

profilers [71], an atmospheric emitted radiance interferometer (AERI) [6], microwave 

radiometers [72] [73] [51] [74], and in-situ weather station sensors. Radiosondes were launched 

from the ARM SGP Central Facility every six hours. This provides an opportunity to compare 

the retrieved results with data from other co-located instruments. 

 

5.3. Sensitivity of Retrieved Water Vapor Profiles 

 

        The atmospheric layer thickness and background data set size have a substantial effect on 

the root mean square (RMS) error and on the ability to detect dynamic changes in the retrieved 

water vapor profiles.  

 

5.3.1 Water Vapor Profile Retrievals for Different Layer Thicknesses 

 

        The retrievals were performed for 100-, 200-, 400- and 500-m layer thicknesses using the 

data sources mentioned in Section 3.1.2 as well as the initialization profile. As alluded to in 

Section 3.1 of, initialization profiles were obtained from radiosonde data, with a typical vertical 

resolution of 10 to 20 m. The initialization profiles were vertically averaged to correspond to the 

layer thickness of the retrieval. For example, when using an initialization profile of 100-m layer 

thickness for the retrieval, the radiosonde water vapor profile was vertically averaged to 100 m 

[41]. 

        The background data set here consists of measurements from 64 radiosondes that were 

launched during the daytime at the ARM SGP site during the months of July and August, 2011. 

Radiosonde data from these two months were used as two separate background data sets for 

retrievals during each of the two respective months. Results described in Sections 5.3 to 5.4 are 

for 40 retrieved profiles using measurements performed over three weeks during the field 
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experiment. These profiles were retrieved using various layer thicknesses and compared with 

Raman lidar profiles to quantify the RMS error for each of them. Figure 37 (a) shows a profile 

retrieved for August 9, 2011 at 17:50 UTC from Raman lidar measurements. Data from 

radiosonde launched at 16:30 UTC is used as the a-priori for the retrieval of the water vapor 

profile from the radiometer measurements. Ground-based in-situ measurements were used 

throughout this study to constrain the surface temperature, humidity and pressure for the 

retrieved profile. 

        To calculate the error as a function of height, the Raman lidar-retrieved values have been 

averaged to the same vertical layer thickness as the radiometer estimates. Figure 37 (b) shows the 

associated difference between radiometer-retrieved and Raman lidar-retrieved profiles for 100-

m, 200-m, 300-m and 500-m layer thicknesses, showing that this difference is larger than 1 g/m
3
 

for layer thickness of 100 and 200 m in the lowest 2.2 km of the troposphere.  

  
(a) 

  
(b) 

Figure 37: (a) Raman lidar profile at 17:50 UTC on August 9, 2011; (b) difference between 

radiometer-retrieved and Raman lidar-retrieved profiles for 100-, 200-, 400- and-500 m layer 

thicknesses. 
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thickness significantly smooth out the vertical variations in the water vapor profile, thereby 

reducing the error. The errors in the retrieved profile with respect to the Raman lidar profile 

averaged over the lowest 3 km of troposphere, i.e. the most significant part of the atmosphere in 

terms of water vapor variability, are 19.3%, 16.7%, 13.9% and 8.2% for 100-m, 200-m, 400-m 

and 500-m layer thicknesses, respectively. The total error of a profile (hereafter “total percentage 

error in PWV”) was determined as the sum of the absolute values of errors at all levels up to and 

including 6 km AGL. The total errors of 40 estimated profiles are used to determine the mean 

and standard deviation of the total percentage error for each layer thickness from 100 m to 500 m 

in 50-m increments. The results are shown in Figure 38. As the layer thickness increases from 

100 m to 500 m, the mean total percentage error decreases from 27% to 13% and the standard 

deviation decreases from 4.5% to 2.3%. Figure 38 shows an inverse relationship between the 

layer thickness and the total percentage error. In other words, the thinner the atmospheric layers 

are, the greater the overall estimation error is.  

 

 
Figure 38: Mean total percentage error in PWV (calculated as the difference between radiometer-

retrieved and Raman lidar-retrieved water vapor profiles) as a function of layer thickness using 

64 radiosonde observations as background information. 

 

        The accuracy of retrieved profiles depends to a great extent on the quality of the 
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Typically, the retrieved profile follows the trend of the initialization profile. If the initialization 

profile (here the radiosonde profile used for the retrieval) is substantially different from the 

actual water vapor profile, the error of the retrieved profile will be large. In that case, the 

retrieval process might not be able to capture gradients or aspects of the actual water vapor 

profile. So, the initialization profile needs to have statistical properties that are similar to those of 

the actual profile. 

 

5.3.2 Variation in Predictability with Change in Background Data Set Size and 

Atmospheric Layer Thickness 

 

        The retrieval accuracy has been evaluated based on the mean and standard deviation of total 

percentage error in the retrieved water vapor profiles for background data set sizes ranging from 

two to 110 profiles. A background data set containing less than 10 profiles does not have 

sufficient statistical significance, but the analysis has been performed to improve understanding 

of its impact on the retrieval. The covariance matrices were calculated using background data 

sets containing two to 110 profiles with an increment of two. Each increment added one profile 

taken before the measurement and one taken after. These profiles were chosen to be as close to 

the time of measurement as possible. For example, for the radiometer measurement at 14:00 

UTC on August 8, 2011, the two radiosonde profiles chosen were at 12:00 UTC and at 18:00 

UTC on August 8, 2011. The radiosondes were launched four times daily at 0, 6, 12 and 18 UTC.  

If two additional profiles were added to the data set, to use similar times of day to represent 

diurnal conditions similar to when the radiometer measurement was taken, they would be at 

18:00 UTC on August 7, 2011, and at 12:00 UTC on August 9, 2011, and so on. This method of 

choosing an equal number of radisonde profiles before and after the retrieval time is particularly 

applicable to this study. This would not be possible if the radiometer measurements were used to 
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retrieve water vapor profiles on a real-time basis. In that case, radiosonde profiles taken before 

the retrieval time would be available for use as the background data set.  

        For small background data set sizes, the time interval between initialization profile and 

retrieved profile has a substantial impact on the retrieval accuracy. The ability to detect changes 

in retrieved water vapor profiles is partially determined by the size of the background data set 

used and by the quality and applicability of the a-priori. The accuracy depends to a certain extent 

on the background data set size and also on the time interval between the radiometer 

measurement and the radiosonde profiles in the background data set as well as the layer 

thickness used for the retrieval. Therefore, the accuracy of the retrieval for a variety of 

background data set sizes is analyzed for varying layer thicknesses. This analysis involved using 

a background data set taken close in time to the radiometer measurement so that the background 

information covariance matrix would be representative of the variability near this time.  

        As before, water vapor profiles were retrieved for 40 measurement times while varying the 

layer thickness from 100 to 500 m as well as the size of the background information covariance 

matrix from two to 110. Figure 39 (a), 39 (b) and 39 (c) show the mean error and its’ standard 

deviation (shown by the curve and error bar, respectively) calculated using 40 retrievals for data 

set sizes of 16, 32 and 64, respectively, and layer thicknesses of 100 m (left panel), 250 m 

(middle panel) and 500 m (right panel). Figure 39 shows that, for any particular layer thickness 

studied, as the size of the background data set increases, the bias of the retrieval decreases. For 

any particular background data set, as the layer thickness is increased the uncertainty of retrieval 

also decreases. In addition, there is an optimum data set size for minimum standard deviation. 

The bias is related to the mean error, and the standard deviation is related to the uncertainty of 
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the retrieval. Figure 39 shows that the results are consistent with the qualitative discussion in 

Section 3.1.3.  

 
(a) 

 
(b) 

 
(c) 

Figure 39: Mean and standard deviation percentage error radiometer-retrieved of profiles with 

respect to Raman lidar-retrieved water vapor profiles for 100-m, 250-m and 500-m layer 

thickness and background data set sizes of (a) 16 elements, (b) 32 elements, and (c) 64 elements. 

 

5.3.3 Change in Total Percentage Error with Change in Background Data Set Size 

 

        This study was performed to find the optimal background data set size to minimize the total 

percentage error while maintaining the ability to detect changes in the gradients of the water 

vapor profile. The total percentage errors were calculated for retrievals using each background 

data set size, where the background data set was taken close to the radiometer measurement time. 

The mean and standard deviation of percentage errors for data set sizes from two to 110 (as well 

as 1500) are shown in Figure 40 as red and blue curves for layer thicknesses of 100 m and 500 m, 
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respectively.  

 

A. Total Percentage Error for 100-m Layer Thickness 
 

        Figure 40 shows that for a 100-m layer thickness and a background data set size of four, the 

total percentage error is 38.5%. Although the background covariance matrix calculated from a 

data set of 4 profiles is not statistically significant, it has been included in the study for 

completeness. The mean total error decreases as the background data set size increases and 

reaches a minimum of 27% for a background data set size of 40. This is because the retrieved 

profiles are stationary with respect to the background data set of 40 profiles, and the background 

data set is related to the current atmosphere. When the size of the background data set taken 

close in time to the radiometer measurement is 40 for 100-m layer thickness, it is inferred from 

the minimum error that the statistics used in the covariance matrix agree with the variability 

associated with the actual water vapor profile. Throughout Figure 40, the standard deviation 

associated with each percentage total error is shown by the error bars. The total error increases 

when the background data set size is greater than 40 profiles because the retrieved profile is no 

longer stationary with respect to the background data set, and the weather conditions associated 

with the background data set are different from those during the radiometer measurement. The a-

priori statistics do not describe the water vapor profile accurately since the background 

atmospheric conditions have changed.  

        For a data set size larger than a certain threshold, i.e. 1500 profiles as shown in Figure 40, 

the mean error becomes nearly constant at 36% mean total error, as shown by the long dashed 

red horizontal line. Similarly, when a Markov covariance matrix, which emulates a synthetic 

atmosphere [14], is used as a background information matrix, the mean error is 42%, as shown 

by the short-dashed red horizontal line. The total error would not have this trend if the selected 
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data set for background covariance matrix calculation was not related to the atmospheric 

condition during the measurement.  

B. Total Percentage Error for 500 m Layer Thickness 

 

        Similar to Section 5.3.3 (A), Figure 40 shows that the error for 500-m layer thickness and a 

background data set size of four has a total percentage error of 17%, while the background 

covariance matrix for a data set size of four is not statistically significant but is used for 

completeness. The error decreases as the background data set size increases until it reaches a 

minimum of 9% for a data set size of 50–55. After the total error reaches a minimum, it then 

begins to increase as the number of profiles in the background data set increases. The error 

becomes nearly constant at 13% (as shown in the long-dashed blue horizontal line) for a 

background data set size of 1500 or greater, due to the stationarity effect discussed in Section 

5.3.3 (A).  

 

 
Figure 40: Mean total percentage error and its’ standard deviation for retrieved profile (for layer 

thicknesses of 100 m and 500 m) as a function of the size of the background data set.  The total 

percentage error for a background data set size of 1500 (for layer thicknesses of 100-m and 500-

m) is represented by red and blue horizontal lines at 36% and 13%, respectively. 
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        The mean error using a Markov covariance matrix as the background covariance matrix for 

500-m layer thickness is 23% as shown by the short-dashed blue horizontal line. It is important 

to observe that the retrieval errors for 500-m thick layers are lower than for 100-m thick layers. 

However, the retrieval for 500-m layer thickness not only averages the error associated with the 

retrieval but also averages the important information about dynamic changes. To retrieve 

information about dynamic changes, it is better to use 100-m layers instead of 500-m layers. 

        A similar analysis was performed by using a background data set which was taken from the 

September 2008 and the background data set size was varied from 2 to 110 to determine the total 

mean error. The results of this analysis are shown in red in Figure 41 for 500-m layer thickness. 

The mean total errors are substantially larger than those when the background data set is taken 

close to the measurement time during July and August of 2011. This is because the background 

data set taken from 2008 is not stationary with the atmospheric water vapor during the 

radiometer measurement.  

 

Figure 41: Mean total percentage error and its’ standard deviation for retrieved profile (for layer 

thickness of 500 m) as a function of the size of the background data set. 
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The difference between the errors in Figure 41 is largest at 16% for a background data set size of 

four and decreases as the background data set size is increased. The difference is smallest when 

the background data set size is larger than 110 profiles. This is because the variability between 

data sets of four profiles taken at two different times is very different. However, the variability 

between data sets of 110 profiles from two different times tends to be quite similar. 

 

C. Analysis of Variability Content Associated with Background Information Covariance 

Matrix 

 

        The covariance matrix (𝑆�̿�) is computed using Eqn. (V.5): 

𝑆�̿� = 𝐸(�̿� − 〈�̿�〉)(�̿� − 〈�̿�〉)𝑇 (V.5)  

where �̿� is the background data set and 〈�̿�〉 represents the mean profile computed from the 

background data set.The matrix 𝑆�̿� has dimension of NxN, where N is the number of layers 

(vertical levels) regardless of the number of profiles that has been used to calculate it (in this 

study, N=60 for each of 100-m and N=12 for 500-m layer thicknesses). As the size of the 

background data set is increased, the elements of 𝑆�̿� also change. Figure 42 shows the 𝑆�̿� for 

100-m layer thickness using background data set with 2, 40, 60 and 1400 profiles.  

        An eigenvalue analysis [16] of the background information covariance matrix was 

performed to determine its variability content for the purpose of detecting dynamic changes in 

the water vapor profile while minimizing the error. For the eigenvalue analysis, the length of �̿� is 

increased from two to 110 using the background data set measured during HUMEX11 and 𝑆�̿� is 

calculated for each background data set (�̿�) size. The eigenvalue analysis of the covariance 

matrix corresponding to each background data set gives a vector of N-eigenvalues. When the 

background data set size is varied from 2 to 110, it results in 109 vectors of N-eigenvalues each. 

The results presented here show the normalized eigenvalue trajectory [17] for the covariance 
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matrices for layer thicknesses of 100 m and 500 m for Figure 43(a) and Figure 43(b), 

respectively. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 42: Covariance matrix (𝑆�̿�) calculated for 100-meter layers (N=60) using (a) two profiles, 

(b) 40 profiles, (c) 64 profiles and (d) 1000 profiles. 

 

        The number of curves corresponds to the N layers in the retrieval, while each curve extends 

from two to 110, i.e. the number of profiles used to calculate S̿a. Trajectories of each curve 

represent the evolution of the eigenvalues as the background data set size increases, where each 

curve (e.g., red, green, and blue curves Figure 43(a)) represents the trajectory of an individual 

normalized eigenvalue corresponding to one atmospheric layer as the number of profiles is 

increased from two to 110. In Figure 43, as the number of water vapor profiles in the background 

data set is increased, the eigenvalue increases and reaches a maximum at approximately 25-35 

and remains above 0.8 for about 35 profiles for both 100-m and 500-m layer thicknesses. 
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                                   (a)  

                                     (b) 

Figure 43: The eigenvalue analysis of the data set as the number of water vapor profiles is 

increased from two to 110 for layer thicknesses of (a) 100 m and (b) 500 m. The red curve in 

Figure 43(a) represents the trajectory of a normalized eigenvalue as the number of profiles is 

increased from two to 110. Each curve represents the trajectory of a normalized eigenvalue. 
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                                   (a) 

 
                                    (b) 

Figure 44: The eigenvalue analysis of the data set as the number of water vapor profiles is 

increased from two to 1400 for layer thicknesses of (a) 100 m and (b) 500 m. The red curve in 

Figure 43 (a) represents the trajectory of a normalized eigenvalue as the number of profiles is 

increased from 2 to 1400. 
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 The background dataset is not correlated with the atmospheric state during the measurement 

time. In Figure 44 this maximum would be considered noise i.e., atmospheric fluctuations 

that are not related to the radiometric observations. In this case, the best option is to perform 

the retrieval when the data set has enough significance and the values of the eigenvalues are 

low (i.e., the size of the dataset needs to be large). Using a large dataset has the effect of 

averaging out the variability of the atmosphere (smoothing) as shown in Figure 42 (d) for 

1000 profiles.  In that case, the retrieval will tend toward a “standard atmosphere”, so the 

retrieval algorithm will have a good performance when measuring a “standard atmosphere” 

i.e., the information contained in 𝑆�̿�. However, the retrieval will have difficulty detecting 

dynamic changes in water vapor because 𝑆�̿� does not containthe necessary information to do 

so. This is where the distinction between the retrieval accuracy and the ability to detect 

dynamic changes is meaningful, i.e.to distinguish between these two types of effects. 

        Therefore, as shown in Figure 43, a background data set size of 25-35 provides maximum 

information about the variability of water vapor profiles. For a background data set size greater 

than 100 profiles, the eigenvalues of the covariance matrix are nearly constant for changes in 

background data set size; therefore, additional profiles provide no new information about water 

vapor variability. However, there is a noticeable discrepancy between the eigenvalue peak at a 

background data set size of 25-35 (in Figure 43), and the minimum total error obtained (from 

Figure 40), which occurs at a background data set size equal to 40-55. This is because a balance 

exists between the variability associated with the 𝑆�̿� matrix and its significance. This means that 

the maximum information is provided by using 25-35 profiles in the background data (from 

Figure 43). However, this data set is not sufficiently large to provide the optimum information 

about water vapor variability in the atmosphere to minimize the error of the retrieval.  
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        As already mentioned in the theoretical discussion of the background information covariance 

matrix in Section 3.1.3, the number of independent vectors in the covariance matrix obtained 

using only two profiles (Figure 42a) is similar to one, which is clear from the vertical and 

horizontal patterns (most the rows and columns of the matrix are scaled versions of the same 

vector). Therefore, all the N eigenvalue trajectories start at zero, which correspond to eigenvalues 

for background data set with 2 profiles. This is due to the fact that limited information will be 

obtained when calculating the covariance matrix of two consecutive atmospheric profiles since 

the atmosphere does not change significantly between the times at which two consecutive 

radiosondes are launched. As a result, the retrieval has poor performance when using a small 

number of background profiles. It is evident that this 𝑆�̿� is not statistically significant and is not 

useful for retrievals but it has been analyzed for completeness of the study. On the other hand, 

when the number of profiles in the background data set is increased (as in Figure 42 (b) and 

Figure 42 (c)) the vertical and horizontal patterns disappear (although the covariance matrix has 

a diagonal symmetry). This improvement results from increasing the number of profiles, which 

takes into account more states of the atmosphere, so the values of the N eigenvalues values, as 

well as the number of linear independent vectors, increase. Increasing the number of profiles in 

the background data set used for computing 𝑆�̿�  above a certain value causes the vertical and 

horizontal patterns to reappear (as in Figure 42 (d)), with a consequent reduction in number of 

linear independent vectors (or information about water vapor variability). It can be observed that 

the difference between the 𝑆�̿� for 40 profiles (Figure 42 (b)) and that 𝑆�̿� for 1000 profiles (Figure 

42 (d)), has an substantial impact on the quality of retrieval. Using the 𝑆�̿� in Figure 42b results in 

the retrieval assigning  more variability to the layers at 2-3 km altitude, while using the 𝑆�̿� in 

Figure 42 (d) results in assigning more variability to the lower layers at 0-1 km altitude. 
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Therefore, there is a substantial difference between results using 𝑆�̿� calculated using 40 and 1000 

profiles. 

        From the total percentage error analysis in Figure 40 and the eigenvalue analysis of the 

background data covariance matrix in Figure 43 and Figure 44, it has been confirmed that the 

optimum size of background data set is approximately 40 and 60 for 100-m and 500-m layer 

thickness, respectively. However, these specific optimum sizes can change for different layer 

thicknesses, time, place, background statistics (a-priori profile and background error covariance) 

and season of retrieval. 

        To determine the ability to sense dynamic changes in water vapor profiles, retrievals from 

radiometer measurements were performed for 100-m layer thickness and background data set 

sizes of 40 and 1400 profiles. Results of the retrieval for August 13, 2011 are shown in Figure 45 

in which they are compared with Raman lidar-retrieved profiles.  

        The profiles retrieved using a background data set size of 40 profiles track the inversions in 

the humidity profile at 500–600 m at 15:10 UTC and at 1300–1600 m at 21:10 UTC. Similarly, 

the slight inversion at 1400–1600 m at 20:00 UTC is also detected. However, the profiles 

retrieved using background data set sizes of 1400 profiles follow a trend generally similar to the 

Raman lidar-retrieved profiles but do not include the fine gradients and inversions in the lowest 1 

km of the troposphere. These results show that the retrieval using a background data set size of 

approximately 40 profiles for 100-m layer thickness is optimal in this case to retrieve water 

vapor profiles and also to detect the gradients. However, this background dataset of 40 profiles 

applies to weather conditions during the HUMEX11 experiment. The optimal number of profiles 

might be different for other weather conditions and locations. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 45: Time series of retrieved water vapor profiles for 100-m layer thickness and 

background data set sizes of 40 and 1400 in comparison with Raman lidar profiles. 
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for 40 radiometer measurements, all shown in Figure 46, as a function of time after the 

corresponding radiosonde launch. The total percentage error at 500 m vertical layer thickness is 

lower than that at 100 m layer thickness for most cases. Total errors are minimum when the 

radiometer measurements are close in time to the radiosonde launches. This is because the shape 

and values of the initialization profile are similar to the actual state of the atmosphere at the 

retrieval time. Total errors for 500-m and 100-m vertical layer thickness are in the range of 7 – 

15% and 12 – 22%, respectively, for the time range of 0 to 150 minutes after the radiosonde 

launches (for background data set size of 64). Retrievals for 100-m layer thickness which are the 

longest in time (4-5 hours) after the radiosonde launches have errors in the range of 22 – 30%.  

The largest error corresponds to 100-m layer thickness and a background data set size of 16.  

 
Figure 46: Total percentage error as a function of time between radiosonde launch and 

radiometer measurement for 100-m and 500-m layer thicknesses as well as background data set 

sizes of 16 and 64. 
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radiosonde launch, the percentage error increases. The errors are less than the errors mentioned 

in Table 6 when the a-priori data used for the retrieval was taken 150 minutes from the 

radiometer measurement time. Finally, the likelihood of sensing dynamic changes and gradients 

in the water vapor profile decreases as the elapsed time since the launch of the most recent 

radiosonde. 

 

5.5. Conclusions 

 

        Water vapor profiles retrieved from radiometer measurements have confirmed that 

retrievals using atmospheric layers and an optimal size of background data set taken close to the 

measurement times have a higher likelihood of sensing evolving changes in water vapor profiles 

than do larger background data sets with thicker layers. Larger background data sets provide 

better accuracy in a statistical sense, but dynamic changes are not detected. Therefore, a large 

background data set is less than optimal for sensing dynamic changes in the atmosphere.  

        For a given atmospheric layer thickness in the range of 100 to 500 m, as the size of the 

background data set increases from two to 110, the total percentage error of the radiometer 

retrieval decreases and then increases. In between, there exists an optimum background data set 

size of 40 – 60 profiles to minimize the total percentage error. Sensing dynamic changes in water 

vapor profiles and improving retrieval accuracy are quite important while the water vapor profile 

is evolving. Depending on the weather conditions, the sizes of background data sets and layer 

thicknesses can be chosen appropriately. For days when the weather conditions are nearly 

constant, one can use a large background data set with thick layers, while on the days when the 

weather is quickly evolving, thin layers with a small background data set can be used to detect 

changes in the atmosphere more effectively. 

 



104 

 

Chapter VI   Data Quality Analysis for Dynamics of the Madden-Julian 

Oscillation (DYNAMO) Experiment  
  

 

 

        The Dynamics of the Madden-Julian Oscillation (DYNAMO) field campaign [75] was 

conducted in the central equatorial Indian Ocean between September 1, 2011 and January 15, 

2012 [76] to improve the understanding of Madden-Julian Oscillation (MJO) [77]. This chapter 

gives an overview of the field experiment and its goals and purpose. A list of various instruments 

used during the field campaign is mentioned. The radiometer data analyzed as part of this 

dissertation is also given in this chapter along with the data quality control. 

6.1. Purpose and Goals of DYNAMO 

 
        MJO is a large-scale atmospheric phenomenon that involves coupling of atmospheric 

circulation with tropical deep convection. It is initiated by the development of convective clouds 

over the equatorial Indian Ocean [77]. These clouds propagate east resulting in drying of the 

atmosphere over central Indian Ocean and suppression of the cloudiness.  

        MJO impacts tropical cyclones, increases or decreases their activity in all ocean basins, and 

hence affects their prediction, particularly hurricanes near North America. It also affects the start 

of monsoon and intra-seasonal fluctuations of rainfall over Asia, Australia, Americas, and 

Africa. Even though MJO is so important, the forecast of MJO by large-scale models is usually 

inadequate because of improper parameterization of MJO in models. This is primarily caused 

due to paucity of basic and important observations in the remote equatorial Indian Ocean. 

Therefore, aim of DYNAMO was to improve the quality and quantity of observations available 

and specifically understand the stages of development of clouds over the Indian Ocean and their 

associations with recharging of the humidity field in the region after the clouds propagate [77].                        

http://en.wikipedia.org/wiki/Deep_convection
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The DYNAMO experiment was endorsed by the World Climate Research Program and was led 

by Prof. Chidong Zhang of the University of Miami. The objectives of DYNAMO [75] are 

described as: 

 performing in-situ observations of the equatorial Indian Ocean region, which are important to 

improve understanding of the processes affecting MJO initiation 

 provide a basis for testing hypotheses which have been already developed and also forming 

new ones regarding these processes; 

 identifying the discrepancies in current numerical models that are resulting in the low 

prediction skills and poor simulations of MJO initiation and also to improve modeling 

parameterizations. 

6.2. Experiment Description and Measurements Performed 

 

        The field campaign involved performing measurements using various ground, ship and 

aircraft-based in-situ and remote sensing instruments. These were deployed at Diego Garcia 

(7.3˚S, 72.5˚E), United Kingdom and Gan Islands (0.7°S, 73.2°E), Maldives. In-situ instruments 

included aircraft launched dropsondes, radiosondes as well as surface-based meteorological 

sensors (including rain gauge). The remote sensing instruments included radars (operating at 

various frequencies), wind profilers and radiometers (operating at K and Ka-band). Figure 47 

shows the map of the Indian Ocean region where the DYNAMO experiment was performed as 

well as the islands and ships which were used during the experiments. Ships involved in the 

DYNAMO included Mirai (Japan), Sagar Kanya (India), Baruna Jaya-III a US Geological 

Survey, Roger Revelle a US university national oceanographic laboratory system (UNOLS) ship. 

A P-3 aircraft was used for launching dropsondes. Radiosondes were launched from all ships and 

land facilities with daily frequencies of 4-8 hours [75].  
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        An array of radars was deployed for the field campaign. This array included both ship- and 

island-based facilities. The radars collected data that was intended for estimation of vertical 

structures and variability of diabatic heating and moistening profiles. These profiles are very 

important for determining the effects of convection on large-scale circulation, to validate 

numerical models, and also to constrain models used to test hypotheses regarding MJO initiation 

processes.  

 
Figure 47: Research vessels, aircraft and sites used during the DYNAMO experiment [75]. 

 

        The array of Doppler precipitation radars provided information about cloud formation and 

precipitation while the information about thermodynamic processes was provided by the 

sounding data. Ship based instrument measured upper-ocean mixing and atmospheric boundary 
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layer turbulence. All the measurements formed the integrated data set that is needed to determine 

air-sea interaction processes during MJO initiation. 

        As part of the DYNAMO campaign, NCAR deployed the S-PolKa (dual-wavelength S- and 

Ka-band) radar [78], and the University of Miami deployed a two-channel microwave radiometer 

(UM-Radiometer), both co-located on Gan Island. A second two-channel microwave radiometer 

was deployed at the US DOE’s (ARM) Site on Gan Island, approximately 8.5 km southeast of 

the UM-Radiometer, as shown in Figure 48. Both the UM-Radiometer and the DOE radiometer 

have two frequency channels at 23.8 and 30.0 GHz. In addition, radiosondes were launched eight 

times daily (every three hours) from the DOE ARM site during DYNAMO to provide in-situ 

data on atmospheric conditions.  

        The Ka-band capability of the National Center for Atmospheric Research (NCAR) S-PolKa 

radar was very useful in studying non-precipitating clouds which are prevalent in the region 

during the time period leading to MJO initiation.  

  

Figure 48: (Left) Locations of the University of Miami microwave radiometer (UM-Radiometer, 

shown by the yellow disk) and the DOE radiometer (shown by the orange disk) on Gan Island, 

Maldives.  (Right) Zoomed out view of the equatorial Indian Ocean and Maldives. 

        The S-PolKa radar was deployed to monitor clouds and to measure the types and intensity 

of precipitation. It performed 360º azimuth scans and elevation scans of 0.5º, 1.5º, 2.5º, 3.5º, 

Azimuth= -50° 
Azimuth= +50° 

Azimuth scan 

from -50º to 
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5.0º, 7.0º, 9.0º and 11.0º known as plan position indicator (PPI) as well as vertical cross-sectional 

scans also known as range height indicator (RHI) scans [79]. The scanning strategy included 8 

PPI elevation angles (from 0.5° to 11°) and 55 RHIs with scan angles of 0°–45°. Of the 55 RHIs, 

39 were toward the north to the east and 16 were toward the ARM site. The UM-Radiometer 

performed measurements over a range of azimuth angles from -50º to +150º (referenced to north 

at 0º) and at elevation angles of 5º, 7º, 9º, 11º, 30º, 45º and 90º. Brightness temperature 

measurements were performed continuously to estimate slant water path (SWP) and slant liquid 

water (SLW) under a variety of weather conditions, including clear and cloudy skies as well as 

precipitation of various types and intensities. 

 

6.3. Analysis of the Radiometer Measurements and Data Quality Control 

 

        This section analyzes the brightness temperature measurements for the time period of the 

DYNAMO field campaign performed by the UM-Radiometer at various elevation angles (as part 

of the data quality control). Measured brightness temperatures at 23.8 and 30.0 GHz and various 

elevation angles (5º, 7º, 9º and 11º) are analyzed for the azimuth range of -50º to +150º to 

determine errors, anomalies and biases. The measurements at 23.8 and 30 GHz are affected by 

thermodynamic state of the atmosphere where 23.8 GHz measurements are affected mostly by 

the variation of water vapor in azimuth and elevation angles while measurements at 30.0 GHz 

are mostly affected by liquid water variation. Figure 49 shows the mean and standard deviation 

of the measurements performed at both the frequencies. Mean value of the brightness 

temperatures have an associated trend with respect to the azimuth angles. For all elevation angles 

maximum value of the mean corresponds to azimuth angles -50º and 150º while the minimum 

value corresponds to 54º azimuth. The standard deviation for 23.8 GHz is in the range 10-15 K 

while the standard deviation for 30.0 GHz is in the range 15-30 K. These results in Figure 49 are 
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unexpected since one would expect a uniformly distributed water vapor field in an isotropic 

atmosphere.  

 

 

  

 
 

Figure 49: Mean and standard deviation of the measured brightness temperatures at 23.8 and 

30.0 GHz for 5º, 7º, 9º and 11º elevation angles from 7-Oct-2011 to 15-Jan-2012. 

 

        This anisotropic behavior is analyzed in more detail in Figure 50. Here the variation in 

brightness temperatures for each elevation angle for 21-Oct-2012 (12:00 to 24:00 UTC) is 

shown. From this analysis it is confirmed that brightness temperatures measured at low elevation 

angles have azimuth anisotropy. The brightness temperatures corresponding to the azimuth angle 
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-50º and 150º are higher than azimuth angles close to 50º. The azimuth angles -35º to -10º and 

120º to 140º correspond to the radiometer field of view above ground while the azimuth angle 

range 0º to 120º corresponds to field of view above water. 

 

  

  

Figure 50: Measurements associated with the azimuth scanning pattern, for 5º, 7º, 9º and 11º 

elevations for October 21 from 12:00 to 24:00 UTC are compared with brightness temperatures 

simulated using radiosonde data taken at 14:30 UTC. 
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elevation angle is approximately constant at 20 K as shown in Figure 50. However, the 

difference between the highest and lowest value of brightness temperatures at 30.0 GHz reduces 

as the elevation angle increases. The vertical fluctuation in the plots is due to the changes in the 

atmosphere over the period of 12 hours of measurements and system noise.  

        This anisotropic behavior of the brightness temperatures with respect to the azimuth angles 

is analyzed in more detail in the next chapter. Various studies have been performed to determine 

the source (wind direction, wind speed, land contamination of the antenna brightness 

temperatures and water vapor at ground level) of this azimuth anisotropy in Chapter VII.  

 

6.4. Conclusions 

 

        Data set collected during DYNAMO offers an unique opportunity to explore new 

techniques of retrieving SWP and SLW at low elevation angles because most of the integrated 

water vapor and liquid water retrieval algorithms have been developed for zenith pointing 

radiometer measurements. The new retrieval algorithm and the results have been discussed in 

Chapter VIII. The UM-Radiometer was collocated with the NCAR’s SPolKa radar, and both the 

instruments were measuring common volume of the atmosphere. The estimated SWP and SLW 

can be validated by comparison with those retrieved using radar measurements. Another 

challenge would be to determine the source of the anisotropy observed at the low elevation 

angles in Figure 49 and Figure 50.  
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Chapter VII DYNAMO Data Quality Control: Source Analysis of 

Brightness Temperature Anisotropy 
 

 

 

        During the Dynamics of the Madden-Julian Oscillation (DYNAMO) [75] campaign a 

microwave radiometer operating at 23.8 and 30.0 GHz was deployed by the University of Miami 

(UM) to estimate slant water path and slant liquid water at the Gan Island, Maldives as explained 

in Chapter VI. While performing the data quality control for measured brightness temperatures 

during clear sky conditions, anisotropy was observed for the elevation angles 5°, 7°, 9° and 11° 

at various azimuth angles. The anisotropy here to will be referred to as azimuth anisotropy.  

        Main goal of this chapter is to analyze the anisotropic behavior of measured brightness 

temperatures along with various atmospheric parameters like wind direction, water vapor density 

and wind speed to determine the physical source of this anisotropy. Radio frequency interference 

(RFI), land contamination and mechanical tilt of the radiometer at all the azimuth angles were 

also analyzed as possible sources of the anisotropy.  

 

7.1. Brightness Temperature Measurements and Azimuth Anisotropy 

 

        An extended analysis has been performed to determine the source of azimuth anisotropy 

which has been observed in Section 6.3. As part of the analysis brightness temperatures 

measured on two different days are shown in Figure 51 (a) and (b). Time series of measurements 

performed on January 7, 2012 are shown in Figure 51 (a). It was a dry day and the crests 

correspond to end of a scan at 150° and start of a new scan at -50°. The minimum value of 

measured brightness temperatures is at the azimuth angle of 54° and the observed anisotropy is a 

persistent phenomenon. However, for some days it is not evident at all. 
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(a) 

 
(b) 

Figure 51: The time series of brightness temperatures at 23.8 GHz for elevation angle of 5° (a) 

taken on 7-Jan-2012 and (b) taken on 9-Oct-2011 where x-axis is the time period noon to 14:30 

UTC. 

 

        This is determined by analyzing the time series of measurements performed on 9-Oct-2011 

shown in Figure 51 (b). The measurements do not follow any trend and the brightness 

temperatures at 23.8 GHz have small variations while measurements at 30.0 GHz vary over time 

and have a dynamic range of approximately 30 K. Based on the radar measurements and weather 

prediction for 9-Oct-2011, it was confirmed that the atmosphere around the radiometer had liquid 

water due to rain and cloud.  

 

7.2. Possible Sources of Azimuth Anisotropy 

 

        Various sources of azimuth anisotropy such as atmospheric parameters at ground level i.e., 

water vapor, wind direction, wind speed and liquid water have been analyzed here. Land 

contamination, RFI and variation in elevation angles of the radiometer due to the slight 

movement of the base of the radiometer have also been analyzed as possible sources. For the 

analysis, a new term anisotropy amplitude has been defined as the difference between brightness 

temperature measured at azimuth angles of -50° and 54° for each elevation angle. 
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7.2.1 Study of Atmospheric Parameters to Identify the Source of Anisotropy 

 

        The measured brightness temperatures at various azimuth angles indicate that there is 

possibility of an uneven distribution of water and liquid water in the atmosphere. The relation 

between anisotropy amplitude and water vapor density, liquid water, wind speed and wind 

direction at ground level is analyzed. This was done to determine the magnitude of impact of 

wind on the movement of water vapor and liquid water over the Gan Island.  

7.2.1.1 Relationship between Anisotropy and Wind Direction 

 

        In this analysis wind direction measurements performed by radiosondes at various altitudes 

are analyzed for the time period of October 2011 to January 2012 and are shown in Figure 52.  

  

  

Figure 52: Wind direction measurements performed by radiosondes at approximately 10 m, 1 

km, 2 km and 3 km above ground level for the time period October-2011 to January-2012. 
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Nov-2011 to 15-Jan-2012) while most of the wind direction values taken at 1, 2 and 3 km above 

ground level are persistently in the range -180° to 0° as shown in Figure 52. Wind direction 

samples (380 to 900) at 10 m above ground level have been analyzed along with anisotropy 

amplitude for elevation angles of 5°, 7°, 9° and 11° which is shown in Figure 53. 

 

 

  

  

Figure 53: Scatter plot of wind-direction and anisotropy amplitude for each elevation angle and 

for both frequencies (for time period of 20-Nov-2011 to 15-Jan-2012). 

 

        From the figure, two regions can be observed in the scatter plot i.e., wind directions for 
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and wind direction. This is because all wind direction samples in the range of 380 to 900 are not 
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in the range of -180° to 50°. Figure 53 shows that anisotropy amplitude for 23.8 and 30.0 GHz at 

5° elevation angle differ by 20 K while that of 7° and 9° differ by 15 and 5 K, respectively. For 

11° elevation angle, the anisotropy amplitude values for both the frequencies are overlapping. 

Next, the anisotropy amplitudes are binned (bin width of 10°) based on their corresponding wind 

direction at 10 m above ground level as shown in Figure 54. Binned data for the 4 elevation 

angles show that there is a non-linear correlation between wind direction and anisotropy 

amplitude. The same analysis was also performed for difference between the brightness 

temperatures taken at azimuth angles of 54° and 150° corresponding to elevation angles 5°, 7°, 

9° and 11° for the time period of 20-Nov-2011 to 15-Jan-2012. Again a non-linear relationship 

was found and the results are similar to those in Figure 53 and Figure 54. Therefore, wind 

direction is one of the possible sources of azimuth anisotropy. 

        A statistical significance test is used to determine the probability that the observed 

relationship between the anisotropy amplitude and atmospheric parameter of study (i.e., wind 

direction) is not due to chance. The test determines if the outcome of this study can lead to a 

rejection of the hypothesis (null hypothesis) that there is no relationship between two measured 

parameters based on a pre-specified low probability threshold called P-values. Lower the P-

value, higher the probability that the observed relationship between two parameters is not by 

chance. Null hypothesis rejection threshold is usually set at P-value less than 5-8% (here it is set 

at 8%). P-values for the correlation between anisotropy amplitude and wind direction at various 

altitudes are calculated and shown in Figure 55. P-values are lower than the threshold value for 

altitudes less than 1 km, for elevation angles considered here. Therefore, wind direction in the 

lowest 1 km of troposphere is correlated to the anisotropy. 

 

http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Randomness
http://en.wikipedia.org/wiki/P-value
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Figure 54: Scatter plot for anisotropy amplitude for corresponding wind-direction for each 

elevation angle and for both frequencies for time period of 20-Nov-2011 to 15-Jan-2012  

 

 

  
Figure 55: P-values for the correlation between anisotropy amplitude and wind direction at 

various altitudes for 23.8 and 30.0 GHz. 
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7.2.1.2 Relationship between Anisotropy and Wind Speed 

 

        The wind speed measurements have been analyzed to determine their contribution to 

azimuth anisotropy. Wind speed at 10 m, 1, 2 and 3 km above ground level are shown in Figure 

56 and the values are in the range of 0 to 5 m/s at 10 m above ground level while they are in the 

range of 15 to 25 m/s for altitudes 1-3 km above ground level. 

  

  

Figure 56: Wind speed taken by radiosondes at approximately 10 m above ground level for the 

time period October-2011 to January-2012. 

 

        In this analysis the binned anisotropy amplitudes are presented along with wind speed at 10 

m above ground level as shown in Figure 57. Anisotropy amplitudes for the four elevation angles 

and two frequencies do not show any trend and are spread out with respect to the wind speed. 

However, the anisotropy amplitudes corresponding to 5° and 7° elevation angles as well as wind 

speed range of 5 to 6 m/s increase by 5 to 10 K.  

0 200 400 600 800 1000
0

5

10

15

20

25

Number of Samples

W
in

d
 S

p
e
e
d

 [
m

/s
]

10 m Above Ground Level

0 200 400 600 800 1000
0

5

10

15

20

25

Number of Samples

W
in

d
 S

p
e
e
d

 [
m

/s
]

1 km Above Ground Level

0 200 400 600 800 1000
0

5

10

15

20

25

Number of Samples

W
in

d
 S

p
e
e
d

 [
m

/s
]

2 km Above Ground Level

0 200 400 600 800 1000
0

5

10

15

20

25

Number of Samples

W
in

d
 S

p
e
e
d

 [
m

/s
]

3 km Above Ground Level

 

 



119 

 

 

  

  
Figure 57: Scatter plot for binned anisotropy amplitude for corresponding wind speed for each 

elevation angle and for both frequencies for time period of 7-Oct-2011 to 15-Jan-2012 

 

        This is because of the samples correspond to wind direction of -50° to 0°. Based on this 

analysis it is clear that wind speed is not a contributor to anisotropic behavior of measurements. 

This is particularly confirmed by the statistical significance test where the P-values calculated for 

the correlation between anisotropy amplitude and wind speed at various altitudes are shown in 

Figure 58. The P-values are higher than 30% for all the altitude under consideration. So, there is 

no correlation between wind speed at various altitudes and the anisotropy amplitude. Wind speed 

is not a source of the azimuth anisotropy. 
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Figure 58: P-values for the correlation between anisotropy amplitude and wind speed at various 

altitudes for 23.8 and 30.0 GHz. 

 

7.2.1.3 Relationship between Anisotropy and Water Vapor Density 

 

        Next water vapor density measurements at 10 m above ground level during October 2011 to 

January 2012 are used for the study. Water vapor density samples from 1 to 900 are shown along 

with azimuth anisotropy (between azimuth angles of -50° and 54°) in Figure 59. There is a 

decreasing trend in the azimuth anisotropy with the increase in water vapor density values. This 

means that the increase in water vapor density results in increase in brightness temperatures at 

the azimuth angles of study thus reducing the difference between the measurements i.e., higher 

the water vapor density lower the anisotropy amplitude. 

        Calculation of P-value for the correlation between anisotropy amplitude and water vapor 

density at various altitudes are shown in Figure 60. The P-values are lower than 8% for water 

vapor density in the altitude range 0 to 800 m. Thus the variation in the water vapor density in 

the lowest 1 km of the troposphere has an impact on the anisotropy amplitude. 
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Figure 59: Scatter plot for binned anisotropy amplitude for corresponding water vapor density 

for each elevation angle and for both frequencies for time period of 7-Oct-2011 to 15-Jan-2012  

 

  
Figure 60: P-values for the correlation between anisotropy amplitude and water vapor density at 

various altitudes for 23.8 and 30.0 GHz. 
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7.2.1.4 Relationship between Anisotropy and Liquid Water 

 

        Another analysis was performed using liquid water density at 50 m above ground level 

calculated using radiosondes measurements. The liquid water density samples (1-900) along with 

azimuth anisotropy are shown in Figure 61. There is a decreasing trend in the azimuth anisotropy 

with the increase in the liquid water for elevation angles 5° and 7°. This is supported by the 

results shown in Figure 51 (b) where increase in the liquid water present in the atmosphere 

results in increase in brightness temperatures at all the azimuth angles of study thus reducing the 

anisotropy amplitude i.e., higher the liquid water density lower the phenomenon.  

 

  

 

 

 

 
Figure 61: Scatter plot for binned brightness temperature difference for corresponding liquid 

water density for each elevation angle and for both frequencies for time period of 7-Oct-2011 to 

15-Jan-2012 (Brightness temperature difference for azimuth angles -50° and 54°) 
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P-values calculation for the correlation between anisotropy amplitude and liquid water density at 

various altitudes are shown in Figure 62. The P-values are higher than 8% for most of the 

altitudes considered in this case. Thus the liquid water in the lowest 1 km of troposphere does not 

have an important effect on the anisotropy amplitude. 

 

  
Figure 62: P-values for the correlation between anisotropy amplitude and liquid water at various 

altitudes for 23.8 and 30.0 GHz. 

 

7.2.1.5 Summary of Azimuth Anisotropy on Atmospheric Parameters 

 

        The P-values for relation between azimuth anisotropy and wind direction, wind speed, water 

vapor and liquid water in the lowest 100 m of the troposphere is summarized in Tables 7 and 8. 

 

Table 7. P-values for determining statistical significance for 23.8 GHz for brightness temperature 

difference between azimuth angles of -50° and 54° 

Elevation Angle 5° 7° 9° 11° 

Water Vapor 0% 0% 0% 0% 

Wind Direction 3.01% 2.31% 2.97%  3.62% 

Wind Speed 36.03% 39.70% 40.85% 38.67% 

Liquid Water 6.61% 7.12% 10.13% 13.57% 
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Table 8. P-values for determining statistical significance for 30.0 GHz for brightness temperature 

difference between azimuth angles of -50° and 54° 

Elevation Angles 5° 7° 9° 11° 

Water Vapor 0% 0% 0% 0% 

Wind Direction 2.53% 3.82% 6.39% 6.46% 

Wind Speed 51.48% 45.98% 41.63% 38.24% 

Liquid Water 6.97% 7.51% 11.29% 14.38% 

 
        This correlation between wind direction, water vapor and anisotropy amplitude can be 

explained to certain extent by the atoll effect [80]. However, the anisotropy amplitude of 20 K or 

more is significant and can be due to about 20-40% variation in water vapor along the azimuth 

angles which is a lot in terms of atmospheric variability for water vapor in a distance of about 5-

10 km at the same time. Therefore, various possible sources of anisotropy have been explored. 

 
7.2.2 Hypothesis of Land Contamination, RFI and Mechanical Tilt Affecting Measured 

Brightness Temperatures 

 

7.2.2.1 Hypothesis of Land Contamination 

 

        Analysis here involves the verification of hypothesis of land contamination being a possible 

source of the observed anisotropy because brightness temperatures increase as the field of view 

of the radiometer gets close to land during azimuth scan. There is a possibility of contributions 

from land contaminating the antenna side lobes because the lowest elevation angle of 

measurement is 5° and the antenna half power beamwidth is 3° [73], However, the fact that 

maximum value of brightness temperatures is measured at an azimuth angle which corresponds 

to field of view above water is (azimuth of -50° and 150°) contradicts the hypothesis of land 

contamination and needs more analysis. 

        In case of land contamination, the contribution from antenna side lobes and consequently 

measurement will vary with the land temperature. As part of the study, the time series of 

difference between 4 pm and 4 am land temperature is analyzed for the whole time period of the 
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experiment as shown in Figure 63 (a). The temperature has been measured by in-situ sensor at 

two meters above ground level. The 4 pm surface temperature is constantly higher than that at 4 

am by approximately 4 to 6 °C for the whole time period in most of the cases.  

 
(a) 

 

 
(b) 

 
(c) 

Figure 63: (a) Difference in surface temperature between 4 pm and 4 am over 3 months. The 

difference of brightness temperature taken at azimuth angles -50° (high brightness temperatures) 

and 54° (low brightness temperatures) for 5° elevation angles (b) at 23.8 GHz (c) at 30.0 GHz at 

4 pm and 4 am for 3 months. 

 

        The skin depth of soil is approximately 3 cm at the microwave frequencies of 23.8 and 30.0 

GHz, so land temperature can be assumed to be similar to atmospheric temperature at two meters 

above the ground. The impact of higher day time temperature on brightness temperature 
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measurements should be obvious in case of land contaminating the measurements.         

Therefore, anisotropy amplitude is computed for 5° elevation angles from 7-Oct-2011 to 15-Jan-

2012 at 4 pm and at 4 am. The time series of anisotropy amplitude for 23.8 GHz is shown in 

Figure 63 (b) while that for 30.0 GHz is shown in Figure 63 (c). Anisotropy amplitude for both 4 

am and 4 pm show a similar increasing trend and pattern for the three months of the experiment. 

It increases from 5 K to 20 K during the field experiment for 23.8 GHz while it increases from 

15 to 50 K for 30.0 GHz for the same period of time. Azimuth anisotropy dynamic range for 30 

GHz is approximately 4-5 times higher than at 23.8 GHz. The time series of azimuth anisotropy 

for day and night as shown in Figure 63 (b) and (c) is not explained by the times series of 

difference in land temperature (for day and night) in Figure 63 (a).  

        Based on these results and assumed antenna main beam efficiency an analysis has been 

performed to verify the contribution from land. Assuming a typical antenna main beam 

efficiency of 90% for the UM radiometer, the brightness temperature 𝑇𝐵 has contributions from 

various sources based on Eqn. (VII.1) 

𝑇𝐵 = 0.9𝑇𝑎𝑡𝑚_𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 + 0.05𝑇𝑎𝑡𝑚_𝑛𝑜𝑛𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 + 0.05𝑇𝑔𝑟𝑜𝑢𝑛𝑑 (VII.1) 

where: 

 𝑇𝑎𝑡𝑚_𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 is the contribution to total brightness temperature from atmosphere at an 

elevation angle and is due to the main beam, 

 𝑇𝑎𝑡𝑚_𝑛𝑜𝑛𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 is the contribution to total brightness temperature from sources other than 

atmosphere and land due to the side lobe pointing away from land,  

 𝑇𝑔𝑟𝑜𝑢𝑛𝑑 is the contribution to total brightness temperature from land due to the side lobe 

pointing towards land. 

        Assuming the worst case scenario where the emissivity is one for ground, a 20 K difference 

to explain the anisotropy amplitude in brightness temperature would require a difference of 400 
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K between ground and sea surface temperature. Therefore, land contamination might be present 

in the measurements especially at the low elevation angles used in this study but it is not the 

source of the anisotropy. 

        Another analysis has been performed where measured data has been compared with the 

simulated data for each elevation angle, 11°, 9°, 7° and 5°. Measurements taken during clear sky 

conditions at each of the elevation angles are analyzed and presented by circles in Figure 64 as a 

scatter plot for the 23.8 and 30.0 GHz. This result shows the spectral signature of water vapor for 

various elevation angles.  

 
Figure 64: The brightness temperature scatter plot for 23.8 and 30 GHz for elevation angles 5°, 

7°, 9° and 11° shown in plots A, B, C and D respectively. The simulated brightness temperatures 

from radiosondes are also presented along with the radiometer measurements. (50 radiosondes 

and 500 points). 
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Radiosonde measurements which are temporally co-located with the radiometer measurements 

are used to simulate the brightness temperatures for the frequencies 23.8 and 30.0 GHz using 

radiative transfer equation and are presented by the esteriques.  

        The scatter plots for 23.8 and 30 GHz based on radiometer measured and radiosonde 

simulated data show that 80% of the data are comparable particularly when the amount of water 

vapor present in the atmosphere is low to medium. In case of land contamination most of the 

simulated brightness temperatures would not be comparable to the measurements and spectral 

signature will be completely different. Therefore, the hypothesis of land contamination being a 

source of the measurement anisotropy can be rejected. 

 

7.2.2.2 Radio Frequency Interference as Source of Anisotropy 

 

        Analysis has been performed to determine if RFI is a possible source of the azimuth 

anisotropy observed during clear sky conditions. The measurement can be represented as Eqn. 

(VII.2) 

𝑇𝐴 = [1 − 𝛤(𝜌)]𝑇𝑚𝑟 + 𝛤(𝜌)𝑇𝑥(𝑎𝑧) (VII.2) 

where 

 𝑇𝐴 is the measured antenna temperature 

 𝛤(𝜌) is the transmisitivity of the atmosphere which changes due to variation in temperature, 

water vapor and liquid water 

 𝑇𝑚𝑟 is the mean radiating temperature of the atmosphere 

 𝑇𝑥(𝑎𝑧) is the brightness temperature contributor varying with azimuth angle  

 𝑎𝑧 is the azimuth angle varying from -50º to 150º 

Based on Eqn. (VII.2) there can be two cases Eqn. (VII.3): 
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1) Assuming a very wet day, 𝛤(𝜌) = 0, the atmosphere appears homogeneous because there is 

lot of contribution from liquid water and humidity. So the Eqn. (VII.2) can be written as 

Eqn. (VII.3) 

𝑇𝐴 = 𝑇𝑚𝑒𝑎𝑛 (VII.3) 

So, there is no pattern in the measured brightness temperatures. 

2) Assuming a slightly wet day, 𝛤(𝜌) = 0.5, the atmosphere appears inhomogeneous because 

the contribution varies with the azimuth angle of measurement. Eqn. (VII.2) can be written 

as Eqn. (VII.4) 

𝑇𝐴 = 0.5𝑇𝑚𝑒𝑎𝑛 + 0.5𝑇𝑥(𝑎𝑧) (VII.4) 

There is a pattern in the measurements. Possible sources of RFI: 

1) One possible source of RFI could be present at azimuth angles between 200º to 240º as 

shown by the yellow lines in Figure 65. But there is no land mass in that direction for about 

500-1000 km. 

 

Figure 65: Map of the locations of the University of Miami microwave radiometer (shown by the 

yellow disk) and the DOE radiometer (shown by the orange disk) on Gan Island, Maldives.  
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2) SPol-Ka radar: Chances are low since the radar is very close to the radiometer and the signal 

from this radar would saturate the radiometer channels. If this radar is the RFI source then it 

has to be due to some kind of leakage and the angular dependence cannot be explained in 

that case. 

3) Ka band radar at the ARM site: The ARM site is about 8.5 km away from the radiometer site 

and is at an azimuth of about 130º. Therefore, the observed azimuth pattern cannot be 

created by the emitted signal. 

Based on this analysis, it is confirmed that RFI is not a source of the anisotropy. 

 

7.2.2.3 Radiometer Tilt as Source of Anisotropy 

 

        Another possible explanation for the observed anisotropy is the tilt in the radiometer during 

azimuth angle scan for the elevation angles of 5º to 11º. The sand under the base of the 

radiometer might have moved slightly leading to 0.5º to 1º variation in the elevation angles. 

Brightness temperatures were simulated at elevation angles of 4º, 4.5º, 5º and 5.5º at 23.8º and 

30.0º GHz using a radiative transfer model to estimate the impact of the variation in elevation 

angles on the measurements as shown in Figure 66. It is observed that a variation of 0.5-1º in the 

elevation angle produces a change of 10 and 20 K in the simulated brightness temperatures at 

23.8 and 30 GHz frequencies, respectively. This is similar to the anisotropy amplitude observed 

in the measured brightness temperatures. Thus, radiometer tilt is a possible source of anisotropy 

observed in the measurements. These results corroborate with the results in Figure 63. As can be 

observed there is a slight tilt for the first 75 days and then a sudden increase in tilt which 

coincides with the decrease in precipitation events. 
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(a) 

 
(b) 

Figure 66: Variation in brightness temperatures due to changes in elevation angles. 

 

A correlation between the tilt angle and anisotropy amplitude for 23.8 GHz is used to determine 

the variation in tilt for the whole time period of the experiment as shown in Figure 67 (a). The tilt 

angles appear to increase as the number of precipitation events reduce and the liquid water in the 

atmosphere reduces which occurs close to the 75
th

 day of experiment. The tilt angle for the 80
th

 

day corresponding to the azimuth angles are shown in Figure 67 (b). 

 
(a) 

 
(b) 

Figure 67: (a) Variation in tilt angle during the whole time period of the experiment (b) Tilt 

angle for the azimuth angle range of -50 to 150 at 13:00 UTC on 31-Dec-2011. 

 

0 100 200 300
160

180

200

220

240

260

280
30.0 GHz

B
ri

g
h

tn
e
s
s
 T

e
m

p
e
ra

tu
re

s
 [

K
]

 

 

4.0o

4.5o

5.0o

5.5o

0 100 200 300
230

240

250

260

270

280
23.8 GHz

B
ri

g
h

tn
e
s
s
 T

e
m

p
e
ra

tu
re

s
 [

K
]

0 100 200 300
160

180

200

220

240

260

280
30.0 GHz

B
ri

g
h

tn
e
s
s
 T

e
m

p
e
ra

tu
re

s
 [

K
]

 

 

0 20 40 60 80
-1

-0.5

0

0.5

T
il
t 

A
n

g
le

 [
o
]

Number of Days

23.8 GHz

Reduction in Precipitation Events

-50 0 50 100 150
-0.6

-0.4

-0.2

0

0.2

T
il
t 

A
n

g
le

 [
o
]

Azimuth Angle [o]



132 

 

To determine the variation in elevation angles with time, tilt angles were calculated for all the 

measurements corresponding to azimuth angles similar to that in Figure 67 (b). 

 

7.3. Conclusions 

 

        Various analyses were performed to determine the possible source/sources of azimuth 

anisotropy observed in Figure 51. Water vapor and liquid water present in the atmosphere affect 

measurements at 23.8 and 30 GHz, respectively; hence ground measurements of these 

parameters were analyzed to determine their correlation with the azimuth anisotropy. Similarly, 

wind direction and speed at ground level were also analyzed to determine their correlation with 

the azimuth anisotropy. It was observed that in-situ measurements of wind direction and water 

vapor are correlated with the azimuth anisotropy while wind speed and liquid are not.  

Other possible reasons for the anisotropy i.e., land contamination, RFI and radiometer tilt were 

also analyzed. It was found that a radiometer elevation angle variation of 0.5° to 1° produces a 

brightness temperature difference of 10-20 K and 20-30 K for 23.8 GHz and 30 GHz 

measurement frequencies, respectively. These values of brightness temperatures are similar to 

the anisotropy amplitude observed in Figure 51. It is inferred from the analysis that the possible 

sources of azimuth anisotropy are water vapor, wind direction and the tilt of radiometer. 
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Chapter VIII Slant Water Path, Slant Liquid Water Retrievals and 

Rainfall Intensity during the DYNAMO Experiment 
 

 

 

8.1. Introduction 

 

        In this study, vapor-liquid water ratio (VLWR) has been developed and its sensitivity to 

both water vapor and liquid water has been analyzed. This chapter focuses on the development of 

a new retrieval algorithm using the VLWR and ground-based brightness temperature 

measurements for zenith to low elevation angles to estimate slant water path (SWP) and slant 

liquid water (SLW). This algorithm minimizes the squared differences between the 

measurements and results from models to estimate the SWP and SLW.  

 

8.2. Definition and Discussion of Vapor-Liquid Water Ratio 

 

        Water vapor in the atmosphere strongly influences brightness temperatures at 23.8 GHz due 

to its proximity to the water vapor absorption line at 22.235 GHz. On the other hand, 30.0 GHz is 

a window frequency between water vapor and oxygen absorption lines, and is mostly affected by 

liquid water. Therefore, the vapor-liquid water ratio (VLWR) is defined as the ratio of the 

brightness temperature measured at 23.8 GHz, 𝑇𝐵23.8
, to that at 30.0 GHz, 𝑇𝐵30.0

 Eqn. (VIII.1)  

 

 
VLWR(𝜌𝑣, 𝜌𝑙 , 𝑃, 𝑇) =

𝑇𝐵23.8

𝑇𝐵30.0

 (VIII.1) 

where 𝜌𝑣 is the water vapor density, 𝜌𝑙 is the liquid water density, 𝑃 is the atmospheric pressure 

and 𝑇 is the physical temperature of the atmosphere. 

        Since VLWR is sensitive to changes in 𝑇𝐵23.8
 and 𝑇𝐵30.0

, it is sensitive to water vapor 

density, liquid water density, temperature, pressure and also to scattering, which occurs 

principally in the presence of large water droplets and/or ice particles. Atmospheric temperature 
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has a minimal effect on brightness temperatures at these frequencies, and the pressure profile is 

typically slowly varying with time and has a second-order impact. Therefore, VLWR is 

principally sensitive to changes in water vapor, 𝜌𝑣, and liquid water, 𝜌𝑙. This method is related to 

that used by Bosisio et. al. [81] to analyze precipitation events. 

        A theoretical analysis has been performed to determine the sensitivity of VLWR to water 

vapor density, 𝜌𝑣, and liquid water density, 𝜌𝑙. The sensitivities of VLWR to each of these 

quantities are considered separately to improve understanding of the fundamental relationships 

among these quantities. The partial derivative of VLWR with respect to either water vapor 

density or liquid water density is given by Eqn. (VIII.2) 

 𝜕𝑉𝐿𝑊𝑅

𝜕𝜌𝑥
=

𝜕 (
𝑇𝐵23.8

𝑇𝐵30.0

)

𝜕𝜌𝑥
=

𝑇𝐵30.0
(

𝜕𝑇𝐵23.8

𝜕𝜌𝑥
) − (

𝜕𝑇𝐵30

𝜕𝜌𝑥
) 𝑇𝐵23.8

(𝑇𝐵30.0
)

2  (VIII.2) 

where 𝜌𝑥 is the density variable, and 𝑥 represents 𝑣 for water vapor density or l for liquid water 

density. 

Brightness temperatures at 23.8 and 30.0 GHz are described using the radiative transfer equation 

[28] given by Eqn. (VIII.3) 

𝑇𝐵𝑓
= ∫ 𝑇(𝑠)

∞

0

𝛼𝑓(𝑠)𝑒−𝜏𝑓(0,𝑠)𝑠𝑒𝑐 (𝜃)𝑑𝑠 + 𝑇𝑏0𝑒−𝜏𝑓(0,∞) 
(VIII.3) 

𝜏𝑓(0, 𝑠) = ∫ 𝛼𝑓(𝑠)𝑠𝑒𝑐 (𝜃)𝑑𝑠
𝑠

0
,  

where: 

 𝑇(𝑠) is the atmospheric physical temperature at height s above ground, 

 𝛼𝑓(𝑠) is the absorption coefficient at height s above the ground at frequency f,  and 𝛼𝑓(𝑠) =

𝛼𝑓𝑑𝑟𝑦(𝑠) + 𝛼𝑓𝑣𝑎𝑝𝑜𝑟(𝑠) + 𝛼𝑓𝑙𝑖𝑞𝑢𝑖𝑑(𝑠), in which 𝛼𝑓𝑑𝑟𝑦 is the dry component, and 𝛼𝑓𝑣𝑎𝑝𝑜𝑟 and 

𝛼𝑓𝑙𝑖𝑞𝑢𝑖𝑑 are the components due to water vapor and liquid water, respectively, 

 𝜏𝑓 is the atmospheric opacity at frequency f,  
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 𝑇𝑏0 is the cosmic background brightness temperature (2.73 K, constant at these frequencies), 

and 

 𝜃 is the zenith angle. 

The partial derivative of 𝑇𝐵𝑓
 with respect to 𝜌𝑥 is given by Eqn. (VIII.4): 

𝜕𝑇𝐵𝑓

𝜕𝜌𝑥
≅

𝜕

𝜕𝜌𝑥
∫ 𝑇(𝑠)

∞

0

𝛼𝑓(𝑠)𝑒−𝜏𝑓(0,𝑠) 𝑠𝑒𝑐(𝜃) 𝑑𝑠

= ∫ 𝑇(𝑠)
𝜕

𝜕𝜌𝑥

∞

0

[𝛼𝑓(𝑠)𝑒−𝜏𝑓(0,𝑠)]𝑠𝑒𝑐(𝜃)𝑑𝑠

= ∫ 𝑇(𝑠)𝑒−𝜏𝑓(0,𝑠)
∞

0

[
𝜕𝛼𝑓(𝑠)

𝜕𝜌𝑥
− 𝛼𝑓(𝑠)

𝜕𝜏𝑓

𝜕𝜌𝑥
] 𝑠𝑒𝑐 (𝜃)𝑑𝑠 

 

(VIII.4) 

where the cosmic background temperature, 𝑇𝑏0, has been omitted due to its minimal impact on 

the calculated brightness temperature. 
𝜕𝛼𝑓(𝑠)

𝜕𝜌𝑥
 in Eqn. (VIII.4) consists of a dry component as well 

as components due to water vapor and liquid water, is given by Eqn. (VIII.5): 

𝜕𝛼𝑓(𝑠)

𝜕𝜌𝑥
=

𝜕𝛼𝑓𝑑𝑟𝑦(𝑠)

𝜕𝜌𝑥
+

𝜕𝛼𝑓𝑣𝑎𝑝𝑜𝑟(𝑠)

𝜕𝜌𝑥
+

𝜕𝛼𝑓𝑙𝑖𝑞𝑢𝑖𝑑(𝑠)

𝜕𝜌𝑥
 

(VIII.5) 

The partial derivatives of the absorption coefficients at frequency f in Eqn. (VIII.5) are 

principally dependent on density 𝜌𝑥(𝑠) and to a lesser extent on temperature and atmospheric 

pressure [35]. In addition, those parameters that vary most significantly are the water vapor 

density and liquid water density, while the atmospheric temperature and pressure vary more 

slowly. The value of 
𝜕𝛼𝑓(𝑠)

𝜕𝜌𝑥
− 𝛼𝑓(𝑠)

𝜕𝜏𝑓

𝜕𝜌𝑥
 changes with the value of 𝜌𝑥 and also with the zenith 

angle of measurement, 𝜃, as shown in Eqn. (VIII.3). The factor 
𝜕𝛼𝑓(𝑠)

𝜕𝜌𝑥
− 𝛼𝑓(𝑠)

𝜕𝜏𝑓

𝜕𝜌𝑥
 is positive 

when 
𝜕𝛼𝑓(𝑠)

𝜕𝜌𝑥
> 𝛼𝑓(𝑠)

𝜕𝜏𝑓

𝜕𝜌𝑥
, which occurs at low zenith angles, i.e. at high elevation angles. In that 

case, the measured brightness temperature increases linearly with 𝜌𝑥, as shown in Figure 68 and 

explained in the following subsection. On the other hand, as the zenith angle, 𝜃, increases, i.e. 
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the elevation angle decreases, the value of the term 
𝜕𝛼𝑓(𝑠)

𝜕𝜌𝑥
 approaches that of 𝛼𝑓(𝑠)

𝜕𝜏𝑓

𝜕𝜌𝑥
, resulting 

in 
𝜕𝛼𝑓(𝑠)

𝜕𝜌𝑥
≈ 𝛼𝑓(𝑠)

𝜕𝜏𝑓

𝜕𝜌𝑥
. Substituting Eqn. (VIII.3) and (VIII.4) into Eqn. (VIII.2), we find: 

𝜕

𝜕𝜌𝑥

(𝑉𝐿𝑊𝑅) =
𝐴 − 𝐵

(𝑇𝐵30.0
)

2 
(VIII.6) 

where: 

𝐴 = 𝑇𝐵30.0
∫ 𝑇(𝑠)𝑒−𝜏23.8(0,𝑠)

∞

0

[
𝜕𝛼23.8(𝑠)

𝜕𝜌𝑥
− 𝛼23.8(𝑠)

𝜕𝜏23.8

𝜕𝜌𝑥
] 𝑠𝑒𝑐 (𝜃)𝑑𝑠 

(VIII.7) 

𝐵 = 𝑇𝐵23.8
∫ 𝑇(𝑠)𝑒−𝜏30.0(0,𝑠)

∞

0

[
𝜕𝛼30.0(𝑠)

𝜕𝜌𝑥
− 𝛼30.0(𝑠)

𝜕𝜏30.0

𝜕𝜌𝑥
] 𝑠𝑒𝑐 (𝜃)𝑑𝑠 

(VIII.8) 

        The term (𝑇𝐵30.0
)

2
 exhibits a monotonically positive dependence on both water vapor 

density, 𝜌𝑣, and liquid water density, 𝜌𝑙. It changes the magnitude of the slope, but the sign of 

slope is determined by the relative values of 𝐴 and 𝐵.  The two terms 𝐴 and 𝐵 are strongly 

dependent on frequency and depend on both water vapor density and liquid water density. Their 

values determine whether the overall VLWR in Eqn. (VIII.6) has a positive or negative 

dependence on 𝜌𝑥, as shown in the following two subsections. 

 

8.2.1 Vapor-Liquid Water Ratio Sensitivity to Water Vapor 

 

        Analyzing the sensitivity of VLWR to water vapor density involves calculation of 𝑇𝐵23.8
 

and 𝑇𝐵30.0
 at a variety of elevation angles ranging from 5º to 90º based on 100 atmospheric 

profiles measured by radiosondes launched from the ARM site on Gan Island during October 

2011. In this analysis, the selected radiosondes were for clear sky conditions, so the liquid water 

density is set to zero in the simulations. The modeled VLWR values based on simulated 

brightness temperatures are shown in Figure 68 as a function of SWP in symbols of various 

colors corresponding to each elevation angle from 5º to 90º. VLWR is in the range of 1.8 to 2.2 

for elevation angles from 50° to 90° and in the range of approximately 1.7 to 2 for elevation 
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angles from 20° to 30°, and less than 1.7 for elevation angles from 5º to 11º. The VLWR values 

are approximately proportional to SWP for elevation angles from 30º to 90º and nearly 

independent of changes in SWP for elevation angles from 15º to 20º. In contrast, VLWR 

decreases as SWP increases for elevation angles from 5º to 11º. 

 

 

Figure 68: VLWR values for a range of SWP at elevation angles from 5° to 90°. 

 

        At higher elevation angles the brightness temperatures at 23.8 and 30.0 GHz are increasing 

linearly with water vapor path and brightness temperature at 23.8 GHz is higher than those at 30 

GHz. This is because 23.8 GHz is more sensitive to changes in water vapor than 30 GHz. 

Therefore, an increase in water vapor path results in increase in VLWR. As the elevation angles 

decrease, the rate of increase in brightness temperature at 23.8 GHz becomes similar to that of 

rate of increase in at 30.0 GHz. This is because of the high amount of attenuation at 23.8 GHz 

because the radiometer ray passes through high amount of water vapor present in lower parts of 

troposphere. This results in the VLWR sensitivity close to one.  

        However, when the elevation angles are lower than 15º the brightness temperatures increase 

with slant water vapor path follow a different relationship for 23.8 and 30 GHz. Brightness 

temperatures at 23.8 GHz increase non-linearly while those at 30.0 GHz increase linearly. This is 

because of high amount of attenuation at 23.8 GHz. The 30 GHz is less attenuated at these 
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elevation angles so they continue to increase linearly. Thus, the VLWR sensitivity values 

decrease as the SWVP increases. However, it is important to observe that VLWR values are 

always greater than one, which is because of the brightness temperatures at 23.8 GHz being 

greater than those at 30.0 GHz for clear sky conditions.  

Based on the simulation results and the theoretical water vapor sensitivity analysis, the 

sensitivity of VLWR to water vapor in the atmosphere, i.e., 
𝜕𝑉𝐿𝑊𝑅

𝜕𝜌𝑣
, has three distinct regions, 

depending on the elevation angle of measurement, as explained below. 

1. The region where VLWR increases with increasing water vapor i.e., 
𝜕𝑉𝐿𝑊𝑅

𝜕𝜌𝑣
> 0, corresponds 

to elevation angles from 30° to 90° i.e., Figure 68. For this region, 𝐴 > 𝐵 i.e., (
𝜕𝛼23.8𝑣(𝑠)

𝜕𝜌𝑣
−

𝛼23.8𝑣(𝑠)
𝜕𝜏23.8𝑣

𝜕𝜌𝑣
≫

𝜕𝛼30𝑣(𝑠)

𝜕𝜌𝑣
− 𝛼30𝑣(𝑠)

𝜕𝜏30𝑣

𝜕𝜌𝑣
), and an increase in the absorption coefficient at 

23.8 GHz (due to an increase in water vapor) has greater impact than an increase in path 

length does due to increasing zenith angle, so 
𝜕𝑉𝐿𝑊𝑅

𝜕𝜌𝑣
> 0. 

2. The region where the VLWR is nearly independent of changes in water vapor i.e., 
𝜕𝑉𝐿𝑊𝑅

𝜕𝜌𝑣
≈ 0  

corresponds to elevation angles from 15° to 20°. For this region, 𝐴 ≈ 𝐵 i.e.,  (
𝜕𝛼23.8𝑣(𝑠)

𝜕𝜌𝑣
−

𝛼23.8𝑣(𝑠)
𝜕𝜏23.8𝑣

𝜕𝜌𝑣
>

𝜕𝛼30𝑣(𝑠)

𝜕𝜌𝑣
− 𝛼30𝑣(𝑠)

𝜕𝜏30𝑣

𝜕𝜌𝑣
) and an increase in the absorption coefficient at 

23.8 GHz (due to an increase in water vapor) is nearly balanced by the increase in the path 

length due to increasing zenith angle, 𝜃, so 
𝜕𝑉𝐿𝑊𝑅

𝜕𝜌𝑣
≈ 0. 

3. The region where VLWR decreases with increasing water vapor i.e., 
𝜕𝑉𝐿𝑊𝑅

𝜕𝜌𝑣
< 0 corresponds 

to elevation angles from 5° to 11°. For this region, 𝐴 < 𝐵 i.e., (
𝜕𝛼23.8𝑣(𝑠)

𝜕𝜌𝑣
− 𝛼23.8𝑣(𝑠)

𝜕𝜏23.8𝑣

𝜕𝜌𝑣
<
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𝜕𝛼30𝑣(𝑠)

𝜕𝜌𝑣
− 𝛼30𝑣(𝑠)

𝜕𝜏30𝑣

𝜕𝜌𝑣
), and an increase in the path length due to increasing zenith angle 

has greater impact than an increase in the absorption coefficient at 23.8 GHz (due to an 

increase in water vapor), so 
𝜕𝑉𝐿𝑊𝑅

𝜕𝜌𝑣
< 0. 

This dependence of VLWR on elevation angle is due to both the distribution of water vapor in 

the atmosphere, which is larger near the ground, and the path length along the radiometer’s field 

of view close to the ground level since longer path lengths correspond to lower elevation angles.  

 

8.2.2 Vapor-Liquid Water Ratio Sensitivity to Liquid Water 

 

        The analysis in the previous subsection focuses on the sensitivity of VLWR to water vapor 

under clear sky conditions. Here, the effect of liquid water on VLWR is considered. IWV is held 

constant at a value of 3.12 cm, which is the same as SWP at 90° elevation angle, while the ILW 

(and by extension, SLW) is varied based on the cloud liquid water content. Humidity profiles 

from radiosondes are used to compute liquid water density [82] profiles. The profiles of liquid 

water density and water vapor density are used to calculate absorption coefficients at 23.8 and 

30.0 GHz using commonly-accepted atmospheric absorption models in this frequency range [28] 

[31] [33]. Liquid water density is calculated from radiosonde data using Eqn. (VIII.9) [82] 

𝑊 = {

0                       𝑅𝐻 < 𝑏0 or 𝑇 < 240 𝐾

2 (
𝑅𝐻 − 𝑏0

30%
)     𝑅𝐻 > 𝑏0 and 𝑇 > 240 𝐾

 

(VIII.9) 

where:  

 𝑊 is the liquid water density in g/m
3
, 

 𝑅𝐻 is the relative humidity, 

 𝑏0 is the threshold relative humidity percentage for liquid water formation set at 95%, and 

 𝑇 is the physical temperature. 

Liquid water absorption coefficients are calculated using Eqn. (VIII.10) [83] 
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𝛼𝑓𝑙𝑖𝑞𝑢𝑖𝑑 = 6𝜋10−2
𝐼𝑚{𝜖𝑓}

|𝜖𝑓 + 2|
2 𝑊𝑓 

(VIII.10) 

where: 

 𝛼𝑓𝑙𝑖𝑞𝑢𝑖𝑑 is the absorption coefficient in Np/km for the frequency f, at 23.8 or 30.0 GHz, 

 𝑓 is the frequency, and 

 ϵ𝑓 is the relative dielectric constant of cloud liquid water [33]. 

        Liquid water absorption coefficients are added to the dry and water vapor absorption 

coefficients, as in Eqn. (VIII.5). The total absorption, 𝛼𝑓(𝑠), is used in Eqn. (VIII.3) to simulate 

values of 𝑇𝐵23.8
 and 𝑇𝐵30.0

, which are then used to calculate VLWR. Figure 69 shows the 

relationship between VLWR and ILW at elevation angles of 5°, 11°, 30°, 50° and 90°. Based on 

the above analysis, as the liquid water content increases, VLWR decreases to near unity as the 

brightness temperatures at 23.8 GHz and 30.0 GHz become similar in value. In strong 

precipitation, VLWR values can decrease to less than unity for any measured elevation angle, 

particularly due to scattering. However, the slope of the curves, or rate of decrease of VLWR 

with increase in ILW, decreases as the elevation angle decreases, as shown in Figure 69.  
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Figure 69: VLWR values for range of ILW for elevation angles of 5°, 11°, 30°, 50° and 90°. 

 

Using the results in Figure 69 and the theoretical sensitivity analysis of 
𝜕𝑉𝐿𝑊𝑅

𝜕𝜌𝑙
, the sensitivity of 

VLWR to liquid water in the atmosphere has two distinct regions based on elevation angle.  

1. The first region with a large negative slope i.e., 
𝜕𝑉𝐿𝑊𝑅

𝜕𝜌𝑙
≪ 0 corresponds to elevation angles 

from 20° to 90°. For this region, 𝐵 ≫ 𝐴 i.e., (
𝜕𝛼30.0𝑙(𝑠)

𝜕𝜌𝑙
− 𝛼30.0𝑙(𝑠)

𝜕𝜏30.0𝑙

𝜕𝜌𝑙
≫

𝜕𝛼23.8𝑙(𝑠)

𝜕𝜌𝑙
−

𝛼23.8𝑙(𝑠)
𝜕𝜏23.8𝑙

𝜕𝜌𝑙
) and  𝑇𝐵23.8

> 𝑇𝐵30.0
. 

2. The second region with a smaller negative slope i.e., 
𝜕𝑉𝐿𝑊𝑅

𝜕𝜌𝑙
< 0 corresponds to elevation 

angles less than 11°. For this region 𝐵 > 𝐴 i.e., (𝑖. 𝑒. ,
𝜕𝛼30.0𝑙(𝑠)

𝜕𝜌𝑙
− 𝛼30.0𝑙(𝑠)

𝜕𝜏30.0𝑙

𝜕𝜌𝑙
>

𝜕𝛼23.8𝑙(𝑠)

𝜕𝜌𝑙
− 𝛼23.8𝑙(𝑠)

𝜕𝜏23.8𝑙

𝜕𝜌𝑙
) and 𝑇𝐵23.8

> 𝑇𝐵30.0
. 

In addition, for liquid water, this dependence of VLWR on the elevation angle is due to the 

distribution of water vapor and liquid water in the atmosphere, as well as the path length of the 

0 0.02 0.04 0.06 0.08 0.1
1

1.2

1.4

1.6

1.8

2

2.2

Integrated Liquid Water [cm]

V
L

W
R

 

 

90o

50o

30o

11o

5o



142 

 

atmosphere along the radiometer field of view, with longer path lengths corresponding to lower 

elevation angles. 

 

8.3. Vapor Liquid Water Ratio Sensitivity to Precipitation 

 

        The sensitivity of VLWR to variation in liquid water present in the atmosphere is significant 

as already discussed in Section 8.2.2. Here, the change in VLWR due to variation in precipitation 

intensity is analyzed by using VLWR measured during precipitation of various intensities in the 

range of 15-55 dBZ where 15 dBZ corresponds to light and 55 dBZ corresponds to heavy 

precipitation, respectively. Figure 70 shows a particular precipitation event with intensity in the 

range of 50-55 dBZ. The precipitation event is primarily concentrated in the azimuth angle of -

90º to 90º where the most intense precipitation is over the radiometer. 

 

 
Figure 70: Precipitation event with radar reflectivity values in the range of 50-55 dBZ [84]. 
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        The VLWR values corresponding to the various azimuth (-50º to 150º) and elevation angles 

(5º, 7º, 9º and 11º) are calculated and shown in Figure 71. It can be observed that the VLWR 

values are less than one in Figure 71 for most of the azimuth and elevation angles. This is 

because heavy precipitation is observed over the radiometer location. The heavy precipitation 

can be inferred from the VLWR values for the azimuth angles of -50º to 38º. 

 
Figure 71: VLWR value corresponding to the precipitation event shown in Figure 70 depending 

on the elevation angle. 

 

        VLWR sensitivity to precipitation intensity is analyzed further by taking another case. Here 

the precipitation is of mixed intensities varying from light to heavy. The radar reflectivity data 

for this case is shown in Figure 72 where the precipitation intensity again varies from 15 to 55 

dBZ. The precipitation is spread over the azimuth angles ranging from -120º to 120º where -90º 

to -30º correspond to heavy precipitation, -30º to 120º correspond to light and moderate 

precipitation. The corresponding VLWR values are shown in Figure 73. The VLWR values 

change with precipitation intensity and distance along the line of sight of the radiometer. The 
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VLWR values for light to moderate precipitation are in the range of 1-1.3 for most of the cases 

while for heavy precipitation it is close to one. Particularly, the light precipitation observed at 

approximately 30 km from radiometer at azimuth angle of 60º has VLWR values in the range 1-

1.3.  

 

 
 

Figure 72: Precipitation close to the radiometer with radar reflectivity values in the range of 15-

25 dBZ. 

 

        These values can be considered as threshold value of VLWR corresponding to light 

precipitation. Any values of VLWR below these will mean increase in precipitation intensity. 

Based on these values it can be inferred that for each elevation angle there are minimum and 

maximum values of VLWR for heavy and light, respectively. 
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Figure 73: VLWR values corresponding to the precipitation event shown in Figure 72. 

 

        To calculate the minimum value of VLWR, 20 cases of heavy rainfall events similar to the 

one seen in Figure 70 are considered and the mean value is calculated. Results are shown in 

Figure 74. The mean minimum values are approximately one for all the elevation angles. 

 
Figure 74: VLWR values for heavy and precipitation for various elevation angles. 

 

        Similarly mean threshold values of VLWR for various elevation angles are computed using 

15 cases of light precipitation using cases shown in Figure 72. The mean threshold values vary 

from 1.1 to 1.35 for elevation 5º to 11º.  



146 

 

8.4. Sensitivity of VLWR to Distance of Precipitation Event from Radiometer 

 

        Along with variation in rain intensity, variation in precipitation distance from radiometer 

also affects the VLWR values. Variation in rainfall distance from radiometer is hereby known as 

precipitation range. To determine the impact of precipitation range on VLWR, regression 

analysis is performed where precipitation range values determined from radar measurements are 

used along with VLWR values to develop a relationship. The results of the regression are shown 

in Figure 75. 

  

  
Figure 75: VLWR and precipitation distance relationship. 

 

        It is observed that, for elevation angles of 5º, 9º and 11º, the VLWR is sensitive to changes 

in precipitation range and there is a second order relationship between precipitation range and 

VLWR. However, for 7º elevation angle the VLWR is not sensitive to changes in precipitation 

range. 
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8.5. Retrieval of Integrated Water Vapor and Integrated Liquid Water for Zenith 

Measurements 

 

        As seen in the Section 8.2, VLWR is sensitive to liquid water water vapor, as well as the 

elevation angle of brightness temperature measurements. The sensitivity of VLWR to these 

parameters allows retrieval of integrated water vapor (IWV) and integrated liquid water (ILW) in 

the atmosphere and therefore the SWP and SLW as a function of elevation angle. 

 

8.5.1 Retrieval Algorithm for IWV and ILW 

 

        Based on results of the sensitivity analysis of VLWR, a retrieval algorithm was developed 

to estimate IWV and ILW, as shown in Eqn. (VIII.11). This algorithm minimizes the squared 

differences between modeled and measured VLWRs as well as that between modeled and 

measured brightness temperatures at 30.0 GHz Eqn. (VIII.11). 

min 𝜒2

𝜏23.8, 𝜏30.0
=  |𝑉𝐿𝑊𝑅𝑚𝑜𝑑𝑒𝑙 − 𝑉𝐿𝑊𝑅′|2 + |𝑇𝐵30.0 𝑚𝑜𝑑𝑒𝑙

− 𝑇𝐵30.0

′ |
2

 
(VIII.11) 

where: 

 𝑉𝐿𝑊𝑅𝑚𝑜𝑑𝑒𝑙 is modeled VLWR for the IWV range of 0 to 9 cm and ILW range of 0 to 0.6 

mm, 

 𝑉𝐿𝑊𝑅′ is the VLWR calculated from the measured brightness temperatures at 23.8 GHz 

and 30.0 GHz, 

 𝑇𝐵30.0 𝑚𝑜𝑑𝑒𝑙
 and 𝑇𝐵30.0

′  are the modeled and measured brightness temperatures at 30.0 GHz, 

respectively. The brightness temperatures at 23.8 and 30.0 GHz are modeled using IWV and 

ILW from 700 radiosonde profiles collected at the ARM site on Gan Island during the 

months of June to August 2011. These data were interpolated to generate a brightness 

temperature model for the ranges of IWV and ILW mentioned above, for a zenith pointing 
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radiometer, as shown in Figure 76(a). It is inferred that modeled brightness temperature at 

30 GHz is sensitive to changes in ILW and has no sensitivty to IWV variation.  

 
(a) 

Modeled VLWR 

 
(b) 

Figure 76: (a) Modeled brightness temperatures at 30 GHz, and (b) Modeled VLWR values for 

the IWV from 0 to 9 cm and ILW from 0 to 0.6 mm. 

 

        The modeled VLWR was calculated using Eqns. (VIII.1) and (VIII.3), and the results are 

shown in Figure 76(b). The modeled VLWR is larger than 2.0 when the ILW is less than 0.005 

cm and the IWV is greater than 2.8 cm. When the ILW is above 0.025 cm for all values of IWV 

considered, the VLWR is less than or equal to unity. 𝑉𝐿𝑊𝑅𝑚𝑜𝑑𝑒𝑙 and 𝑇𝐵30.0 𝑚𝑜𝑑𝑒𝑙
  calculated in 

this way are used to retrieve IWV and ILW from brightness temperatures measured by the UM-

radiometer on December 15, 2011 at 05:30 UTC. The results of the retrieval are shown in Figure 

77. The curve starting near the y-axis and ending on the x-axis shows the locus of points where 

the measured VLWR is equal to the modeled VLWR, i.e., the minimum of the first term in Eqn. 

(VIII.11).  
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Figure 77: Intersection of the two loci representing the two terms in Eqn. (VIII.11). 

 

        From the first term, the VLWR (equal to 1.01 from measurements) could be produced by a 

range of ILW from 0 to 0.045 cm and a range of IWV from 0 to 9 cm.  The nearly-vertical curve 

in the figure shows the locus of points where the measured TB30.0

′  and modeled TB30.0 model
 are 

equal, i.e., the minimum of the second term in Eqn. (VIII.11). From the second term, the 

measured TB30.0

′  could be produced by a range of IWV from 0 to 9 cm but by only a narrow range 

of ILW, from 0.025 to 0.035 cm. From the intersection of the two loci in Figure 77, the estimated 

value of the IWV is found to be 4.36 cm and that of ILW is 0.032 cm. 

        This algorithm has been used to retrieve time series of IWV and ILW for December 15, 

2011 as shown in blue in Figure 78 and Figure 79, respectively. IWV and ILW retrieved during 

precipitation are represented by the green circles around the corresponding blue points. 

Precipitating conditions have been determined when the VLWR value decreases below an 

empirically-determined threshold value of 1.2, based on mean VLWR determined for various 

light precipitation events during DYNAMO.  
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Figure 78: Time series of estimated integrated water vapor (IWV) from UM-radiometer 

measurements on December 15, 2011. 

 

 
Figure 79: Time series of estimated integrated liquid water (ILW) from UM-radiometer 

measurements on December 15, 2011. 

 

        This is believed to be due to the fact that the DOE ARM radiosonde launch site was 8.5 km 

southeast of the UM-radiometer, and there was significant variability of water vapor and liquid 

water on this spatial scale. The red circles in Figure 78 and Figure 79 show the IWV and ILW, 

respectively, calculated from measurements using the 9 radiosondes launched on December 15, 
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2011. Retrieved IWV and ILW compare well with IWV and ILW measured by radiosondes. 

However, IWV and ILW from radiosondes launched at 02:30, 05:30 and 08:30 UTC exhibit 

lower values of IWV than the retrieved values. 

  

8.5.2 IWV and ILW Observation System Simulation Experiment and Retrieval 

Performance of a Zenith-Pointing Radiometer 

 

        An Observation System Simulation Experiment (OSSE) was performed to determine the 

uncertainty associated with the retrieval algorithm used in the previous subsection. As part of the 

OSSE, atmospheric measurements from 500 radiosondes launched during August and September 

2011 were used to simulate brightness temperatures at 23.8 and 30.0 GHz, from which the IWV 

and ILW were estimated using Eqn. (VIII.11). The uncertainty associated with the IWV retrieval 

algorithm was calculated as the difference between the estimated IWV and that measured by 

radiosondes. The average IWV retrieval uncertainty was calculated in each of 10 bins of 0.25 cm 

width, shown in Figure 80 as 3.5% to 4.5% for IWV values from 4.0 to 6.5 cm.  

 

Figure 80: IWV retrieval uncertainty from OSSE (in red) and difference between radiometer 

estimates and radiosonde data measured during DYNAMO (in blue) 
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        Similarly, the uncertainty associated with the ILW retrieval algorithm was calculated as the 

difference between the estimated ILW and that measured by radiosondes. The average ILW 

retrieval uncertainty was calculated in each of 10 bins of 0.004 cm width, shown in Figure 81 as 

12% for ILW of 0.005 cm, decreasing to 5% for ILW of 0.0175 cm or greater and decreasing to 

3% for ILW of 0.0275 cm or greater. Retrieval uncertainties for both IWV and ILW from the 

OSSE have generally similar values to the difference between retrieved values from DYNAMO 

data and radiosonde interpolated values, as shown in Figure 80 and Figure 81, respectively. 

Retrieval uncertainties have been calculated for zenith measurements performed from December 

1-15, 2011.  

 
Figure 81: ILW retrieval uncertainty from OSSE (in red) and difference between radiometer 

estimates and radiosonde data measured during DYNAMO (in blue). 
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8.6.1 Slant Water Path and Slant Liquid Water for Low Elevation Angle Measurements 
      

Microwave radiometer measurements performed at various azimuth angles from zenith to low 

elevation angles are used to retrieve SWP and SLW using Eqn. (VIII.11). Models for 𝑇𝐵23.8
 and 

𝑇𝐵30.0
 at 5°, 7°, 9° and 11° elevation angles were developed for a range of SWP and SLW. SWP 

and SLW have been retrieved for October 11, 2011 at the four low elevation angles and at 

azimuth angles from -50º to +150º for 21:35 UTC. The retrieved SWP and SLW are shown in 

Figure 82(a) and Figure 82(b), respectively, on a director cosine plane, where θ and ϕ are the 

elevation and azimuth angles of measurement, respectively. For elevation angles of 5° and 7°, 

retrieved SWP is from 27 cm to 65 cm, and it is from 20 cm to 42 cm for elevation angles of 9° 

and 11°. Similarly, retrieved SLW for elevation angles of 5° and 7° is from 0.05 to 0.37 cm, and 

it is from 0.05 to 0.17 cm for elevation angles of 9° and 11°.  

 

 
(a) 

(b) 

Figure 82: (a) Retrieved SWP and (b) SLW on October 11, 2011 at 21:35 UTC for all azimuth 

angles measured and elevation angles of 5°, 7°, 9° and 11°. 
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reflectivity plan position indicator (PPI) image in Figure 83 shows measured precipitation with 

reflectivity 20-35 dBZ along the red segment at 65° azimuth.  

 

 

Figure 83: Radar reflectivity PPI image at 5° elevation angle on October 11, 2011 at 21:33 UTC 

 

        The performance of the retrieval algorithm for SWP and SLW is assessed using an OSSE as 

well as through comparison of SWP radiometer retrievals with SWP radar retrievals during the 

DYNAMO campaign. To implement the OSSE, radiosonde measured profiles are used to 

simulate 𝑇𝐵23.8
 and 𝑇𝐵30.0

, which are then used to estimate SWP and SLW at elevation angles of 

5°, 7° and 9°. Uncertainties associated with the retrieval algorithm were calculated as the 

difference between the estimated SWP and SLW and the corresponding quantities measured by 

radiosondes, with the results as shown in Figure 84.  

Azimuth 65° 
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(a) 
 

(b) 

Figure 84: (a) Retrieval uncertainty of SWP at elevation angles of 5°, 7° and 9° based on an 

OSSE (in red). Comparison between radar- and radiometer-retrieved values of SWP (in blue). (b) 

Retrieval uncertainty of SLW at elevation angles of 5°, 7° and 9° based on an OSSE (in red). 

 

        SWP were retrieved using two independent measurement sources, the UM-radiometer and 

the NCAR S-PolKa radar, co-located during the DYNAMO experiment. To compare SWP 

retrievals, the radar and radiometer performed simultaneous measurements at 5°, 7° and 9° 

elevation angles to sample common volumes of the atmosphere. The SWP retrievals from the 

radar and radiometer are based on different principles due to different measurement physics. The 

radar measures the attenuation of the signal due to water vapor from the radar to the edge of a 

cloud or precipitation echo, so the range may vary substantially from measurement to 

measurement [85] [86]. The retrieval of SWP from radar involves comparison of the reflectivity 

from the edges of clouds and precipitation at 2.8 GHz (S-band), which is not significantly 

attenuated by water vapor, with those at 35 GHz (Ka-band), which is significantly attenuated. 

The attenuation value is then used to estimate the SWP. In contrast, radiometers provide a more 

consistent range for SWP retrieval, although greater values of attenuation often limit the range of 

the radiometer, depending on the atmospheric conditions.  For comparison of the two retrievals, 

the radiometer-retrieved SWP is normalized by the equivalent range of the atmosphere measured 

4 5 6 7 8 9 10
-5

0

5

10

15

20

25

Elevation Angle [deg]

R
e
tr

ie
v
a
l 
U

n
c
e
rt

a
in

ty
 [

%
]

SWP

 

 

Uncertainty from OSSE

Uncertainty from DYNAMO

4 5 6 7 8 9 10
5

10

15

20

25

30

35

40

Elevation Angle [deg]

R
e
tr

ie
v
a
l 
U

n
c
e
rt

a
in

ty
 [

%
]

SLW

 

 

Uncertainty from OSSE



156 

 

by the radiometer and scaled by the radar range over which attenuation is measured. The 

radiometer measurements with elevation angles uncertainty less than 0.5° were grouped as the 

elevation angle under consideration and used for evaluating the accuracy of the retrieval 

algorithm. The equivalent radiometer range for a particular elevation angle has been computed 

using the path length of the atmosphere in the direction of the radiometer field of view from 

which 95% of the total measured power is emitted. Based on a planar atmosphere model, the 

equivalent radiometer ranges have been calculated as 50, 44 and 37 km for elevation angles of 

5°, 7° and 9°, respectively which has been explained in the next sub-section.  

        The radar-retrieved SWP values are subtracted from the range-adjusted radiometer-retrieved 

SWP values to calculate the mean difference at each elevation angle as a percentage, as shown in 

the blue points in Figure 84(a), with error bars showing the standard deviation. The differences 

between these SWP retrievals are less than 10% for 5° elevation angle, decreasing to less than 

7.5% for 7° and 9° elevation angles. Differences may be due to uncertainties in the retrieval from 

both the radar and radiometer, as well as to uncertainties in the range normalization for the 

radiometer-retrieved values. Furthermore, it can be observed that both the mean difference and 

its standard deviation decrease as the elevation angle increases. This is due to uncertainties that 

decrease at higher elevation angles since the equivalent radiometer range is typically longer than 

the actual radar range. On the other hand, the percentage mean error in SWP from the OSSE is 

less than 8% at 5° elevation angle and less than 5% at 7° and 9° elevation angles. The OSSE 

percentage errors are consistently approximately 2% lower than the differences between SWP 

retrieved from radar and radiometer measurements during DYNAMO.  

        The performance of the retrieval technique for estimation of SLW is based on OSSE results 

only because no SLW information is available from the radar measurements. Figure 84(b) shows 
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the error of the retrieved SLW at 5°, 7° and 9° elevation angles. Exhibiting similar behavior to 

SWP in elevation angle with different magnitudes, the error is less than 24% at 5° elevation 

angle and decreasing with increasing elevation angle to less than 18% at 7° and 9° elevation 

angles. 

8.6.2 Radiometer Range 

 

A simulation based study is performed to determining the range of radiometer for various 

elevation angles. The atmosphere is considered to be horizontally stratified as in Figure II1 and 

most of the water vapor is present in the lowest 10 km of the troposphere.  

 
Figure 85. Radiometer scanning at various elevation angles 

 

First, brightness temperatures are simulated for each frequency using RTE given by (I2) upto 10 

km altitude in the troposphere without considering the radiometer range as shown in Figure II1. 

Then, brightness temperatures are again simulated using the RTE corresponding to each 

elevation angle but constraining the range not the altitude. The range for which brightness 

temperature calculated in step two is 95% of that simulated in step one is considered the actual 

radiometer range. This process is repeated for elevation angles 90
o
 to 5

o
 to find the radiometer 

range with respect to elevation angles. The radiometer range depends on the amount of 

atmospheric attenuation. To take into account this uncertainty, the radiometer range is calculated 

for different atmospheric conditions where temperature and water vapor change considerably, 

including light precipitating cases. 
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As shown in Figure II2, the radiometric range is 10 km for zenith angles 0° to 35° and it 

increases from 10 to 55 km for zenith angles 35° to 85°. The standard deviation of range is 1 km 

for 0° zenith angle and increases to 5 km for 85° zenith angle. These ranges have been calculated 

by considering weather conditions at Gan Island during DYNAMO experiment and they are 

expected to change with weather conditions and place. 

 
Figure II3. Dependence of the radiometric ranges on zenith angles. 
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quantities and those calculated from radiosonde measurements, with differences of less than 5% 

and 12% for IWV and ILW, respectively, where IWV is for all weather conditions, while ILW 

includes cloudy and precipitating conditions. The differences for ILW retrievals are 12% for the 

lowest ILW values and rapidly decrease with increasing ILW to less than 5% for ILW values 

greater than 0.0175 cm. The differences between retrieved IWV and ILW and those calculated 

from radiosonde measurements agree well with retrieval uncertainties found using an OSSE.  

        The new retrieval algorithm was also used to estimate SWP and SLW from UM-radiometer 

measurements at low elevation angles during DYNAMO. To the authors’ knowledge, this is the 

first time that microwave radiometer-retrieved SWP has been validated by comparison with 

radar-retrieved SWP, showing a mean difference of less than 10% at 5° elevation angle and less 

than 7.5% at 7° and 9° elevation angles, decreasing as the elevation angle increases. These mean 

differences and their dependence on elevation angle agree well with SWP retrieval uncertainties 

found using an OSSE. For liquid water, the OSSE shows that the retrieval error in SLW is less 

than 24% at 5° elevation angle, decreasing to less than 18% at 7° and 9° elevation angles. Such 

retrievals of SWP and SLW are useful for characterizing the spatial and temporal variation in the 

distribution of water vapor and liquid water in the lower troposphere, which may in turn 

contribute to improved forecasting of convective initiation and precipitation. VLWR is sensitive 

to precipitation intensity and precipitation range. These correlations can be used to develop a 

relationship to determine intensity and distance of precipitation from the radiometer. 
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Chapter IX   Conclusions and Future Work 
 

 

 

9.1. Conclusions 

 

        One of the main goals of the research work presented in this dissertation is to perform a 

comprehensive analysis of various methods of improving vertical resolution, accuracy, detection 

of gradients and dynamic changes in estimated water vapor profiles using microwave and 

millimeter-wave radiometer measurements. Therefore, two methods have been followed for 

improving water vapor retrieval using Bayesian optimal estimation technique which uses 

measured brightness temperatures as inputs.  

 First is a theoretical study, used for determination of measurement frequencies in the 10-200 

GHz range which provide the highest DOF of measurements for retrieval of water vapor and 

temperature profiles as explained in Chapter IV. Maximizing the DOF of measurements 

maximizes the amount of information provided to the retrieval and hence is important for 

improving vertical resolution and accuracy.  

 Second method is to optimize the background information covariance matrix and layer 

thickness used in the estimation technique as discussed in Chapter V. This optimization 

results in the background data set being correlated with the water vapor profile during 

measurement. This background data set plays an important role in improving the ability to 

detect dynamic changes and gradients in water vapor profiles during clear sky conditions. 

The field campaign HUMEX11 at the central facility of the ARM site in SGP, Oklahoma 

was designed to assess the ability to remotely sense dynamic changes and gradients in 

atmospheric water vapor profiles retrieved from K-band microwave brightness temperatures. 
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        For determining frequencies with highest DOF for water vapor and temperature profile 

estimation a branch and bound feature selection algorithm was used. It was found that the 

frequencies in the ranges of 20 – 23 GHz, 85 – 90 GHz and 165 – 200 GHz provide the 

maximum number of independent pieces of information for water vapor profile retrieval from 

zenith-pointing ground-based as well as nadir viewing airborne microwave radiometer 

measurements. The maximum number of independent pieces of information is 5 – 6 from ground 

based and 8 – 9 from airborne radiometers for water vapor profiling. Temperature profiling 

requires the use of frequency ranges 55 – 65 GHz and 116 – 120 GHz for maximizing number of 

independent pieces of information for ground-based measurements. The frequencies required for 

nadir-pointing airborne measurements of temperature profile are similar to the ground-based 

measurement. In addition to that millimeter-wave frequency at 118.75 GHz is also required for 

airborne measurements. The maximum number of independent pieces of information is 6 – 7 for 

temperature profiling from ground and 5 – 6 for airbourne instruments. Inclusion of additional 

measurement frequencies results in redundant information about the atmospheric parameter of 

interest since that information is linearly dependent on that already measured at other 

frequencies.  

        Measurement noise and uncertainty analyses have shown that DOF and vertical resolution 

are inversely proportional to measurement uncertainty and instrument noise. Similarly, it was 

found that there is an inverse relationship between vertical resolution and DOF. Therefore, to get 

the best performance in terms of vertical resolution and accuracy, a low noise radiometer need to 

be designed with maximum number of independent measurement frequencies.  

        For improving the ability to detect dynamic changes and gradients, an analysis is performed 

to determine the optimum background data set size as well as layer thickness which will be used 
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for cases when the background data set is correlated with the atmospheric state during the 

radiometric measurement time and therefore, represents variability associated with water vapor 

profile.  

        To determine the optimum background data set size, eigenvalue analysis of covariance 

matrix for the data set sizes of 110 and 1400 profiles (for both the layer thickness of 100 and 500 

m) is performed. The maximum variability peak occurs for data set size of approximately 25-35 

profiles. However, the maximum accuracy is achieved by using a data set of 40-60 profiles. So, 

there is a balance between ability to achieve maximum accuracy and using the maximum 

variability data set, which provides the maximum information to sense dynamic changes. This is 

because the data set variability can be associated not only to atmospheric dynamic changes but 

also to noise. To reduce the effect of noise it is necessary that the collected data set has statistical 

significance, and usually this is achieved by the increasing the data set size above the size of 30-

40 profiles. Therefore, the optimal background data set for minimum retrieval error has to be 

short enough to be close in time to the measurements but not so short that is not statistically 

significant.  

        Analyses have also proved that large background data sets provide better accuracy in a 

statistical sense, but dynamic changes cannot be detected. Therefore, a large background data set 

is less than optimal for sensing dynamic changes in the atmosphere. However, sometimes 

background data taken close to radiometric measurements might not be available. In that case, 

the best performance is obtained by using a large data set taken over a long period of time 

representing seasonal variability. This makes the retrieval tend toward a “standard atmosphere”. 

So optimum background data set with thin layers can be used to retrieve water vapor profile on 

days when weather is quickly evolving while large background data set with thicker layer can be 
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used when the weather is nearly constant. Therefore, depending on the weather conditions, the 

sizes of background data sets and layer thicknesses can be chosen appropriately. 

        Another goal of the dissertation is to develop a new retrieval algorithm for estimation of 

SWP and SLW from UM-radiometer measurements performed at low elevation angles of 5º, 7º, 

9º and 11º during the DYNAMO experiment. However, the radiometer measurements at those 

elevation angles were found to have anisotropy which varied with the azimuth angle of 

measurement. This azimuth anisotropy was observed for clear sky conditions while they were 

not evident for rainy and cloudy conditions as discussed in Chapter VII. Various possible 

source/sources of anisotropy were analyzed and it was found that a change of 0.5º to 1º in the 5º 

elevation produces a brightness temperature difference of 10-20 K and 20-30 K for 23.8 GHz 

and 30 GHz measurement frequencies, respectively. These values of brightness temperatures are 

similar to the anisotropy amplitude observed. It was inferred that the sand underneath the base of 

the radiometer pedestal was not perfectly stable due to which radiometer elevation angle changed 

as it scanned the volume of the atmosphere for the azimuth angle range -50º to 150º. 

        These brightness temperatures were used along with VLWR to develop a new retrieval 

algorithm to estimate IWV and ILW for zenith pointing measurements. VLWR is defined as the 

ratio of the brightness temperature at 23.8 GHz to that at 30.0 GHz and it’s sensitivity to both 

atmospheric water vapor and liquid water is found to differ substantially as a function of 

elevation angle of radiometer measurements as explained in Chapter VIII. Retrievals of IWV and 

ILW from zenith pointing UM-radiometer measurements show good agreement between these 

quantities and those calculated from radiosonde measurements, with differences of less than 5% 

and 12% for IWV and ILW, respectively, where IWV is for all weather conditions, while ILW 

includes cloudy and precipitating conditions. The new retrieval algorithm was also used to 
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estimate SWP and SLW from UM-radiometer measurements at low elevation angles during 

DYNAMO. Microwave radiometer-retrieved SWP has been validated by comparison with radar-

retrieved SWP, showing a mean difference of less than 10% at 5° elevation angle and less than 

7.5% at 7° and 9° elevation angles, decreasing as the elevation angle increases. These mean 

differences and their dependence on elevation angle agree well with SWP retrieval uncertainties 

found using an OSSE.  

 

9.2. Future Work 

 

Some recommendations for future work are as follows: 

1) Determining optimum background data set size for water vapor profile retrieval for various 

ARM sites in the US for different weather conditions. This background data set can be used 

for determining dynamic changes in the water vapor profile in those sites when the 

measurements are taken close to the background data set. 

2) Determination of the optimum background data set size and layer thickness for temperature 

profile retrieval using eigenvalue and accuracy analyses. Use of brightness temperature 

measurements performed by microwave radiometer profiler [87] for frequency range of 50-

59 GHz to retrieve temperature profiles using the optimum background data set taken at 

ARM site. These profiles can be used for estimating the dynamic changes and gradients in 

the temperature profiles which in-turn can increase the accuracy of the water vapor profile 

when radiosonde data is not available as a-priori close to the measurement time. 

3) Comparison of the retrieved temperature profile with those from AERI so as to determine 

the associated retrieval error. 
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4) Comparison of the SLW retrieved from radiometer measurements with those from the S-

PolKa radar at the elevation angles of 5º, 7º, 9º and 11º to determine the retrieval error for 

SLW estimation. 

5) Modelling of the brightness temperatures at 23.8 and 30.0 GHz using the radiative transfer 

code by DOE. Retrieval of SWP and SLW using these modeled brightness temperatures and 

comparison of these SWP and SLW accuracy with those from the model used in Chapter 

VIII will provide proper information about the performance of the retrieval technique. 

6) The observed variation of VLWR with elevation angles during clear, cloudy and 

precipitating conditions in Chapters VIII and IX can be used for determining the distance of 

precipitation from radiometer or the height of cloud base. 
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