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ABSTRACT

TESTING AND ADJUSTING FOR

INFORMATIVE SAMPLING IN SURVEY DATA

Fitting models to survey data can be problematic due to the potentially complex sampling

mechanism through which the observed data are selected. Survey weights have traditionally

been used to adjust for unequal inclusion probabilities under the design-based paradigm of

inference, however, this limits the ability of analysts to make inference of a more general

kind, such as to characteristics of a superpopulation. The problems induced by the presence

of a complex sampling design can be generally contained under the heading of informative

sampling. To say that the sampling is informative is to say that the distribution of the

data in the sample is different from the distribution of the data in the population. Two

major topics relating to analyzing survey data with (potentially) informative sampling are

addressed: testing for informativeness, and model building in the presence of informative

sampling.

Chapter 2 addresses the problem of running formal tests for informative sampling in

survey data. The major contribution contained here is to detail a new test for informative

sampling. The test is shown to be widely applicable and straight-forward to implement

in practice, and also useful compared to existing tests. The test is illustrated through

a variety of empirical studies as well. These applications include a censored regression

problem, linear regression, logistic regression, and fitting a gamma mixture model. Results

from the analogous bootstrap test are also presented; these results agree with the analytic

versions of the test. Alternative tests for informative sampling do in fact exist, however,

the existing methods each have significant drawbacks and limitations which may be resolved

in some situation with this new methodology, and overall the literature is quite sparse in

this area. In a simulation study, the test is shown to have many desirable properties and
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maintains high power compared to alternative tests. Also included is discussion about the

limiting distribution of the test statistic under a sequence of local alternative hypotheses,

and some extensions that are useful in connecting the work contained here with some of the

previous work in the area. These extensions also help motivate the semiparametric methods

considered in chapter 3.

In chapter 3, semiparametric methods are introduced for including design information

in a regression model while staying within a model-based inferential framework. The ideas

explored here attempt to exploit relationships between design variables (such as the sample

inclusion probabilities) and model covariates. In order to account for the complex sampling

design and (potential) bias in estimating model parameters, design variables are included as

covariates and considered to be functions of the model covariates that can then be estimated

in a design-based paradigm using nonparametric methods. The nonparametric method ex-

plored here is kernel smoothing with degree zero. In principle, other (and more complex)

kinds of estimators could be used to estimate the functions of the design variables condi-

tional on the model covariates, but the framework presented here provides asymptotic results

for only the more simple case of kernel smoothing. The method is illustrated via empirical

applications and also through a simulation study in which confidence band coverage rates

from the semiparametric method are compared to those obtained through regular linear

regression. The semiparametric estimator soundly outperforms the regression estimator.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This paper explores two aspects of model building for survey data: testing for informative

sampling in survey data, and semiparametric approaches to model building in the presence

of informative sampling. Chapter 2 is primarily concerned with the issue of testing for design

informativeness, and Chapter 3 proposes methods for fitting predictive models to survey data

under informative selection. The material in Chapter 2 is joint work with my advisers, Jay

Breidt and Jean Opsomer, along with Ricardo Cao and Mario Francisco-Fernández from the

University of Corũna in Spain; as of this writing, much of the material from this introduction

and Chapter 2 is intended to be submitted in condensed form to Biometrika. The chapters

are structured so that the motivation of the problems comes first, followed by theoretical

results and then simulation studies and applications to empirical data are presented. In

this introductory chapter, I will discuss some ideas relating to missing data, both due to

the sampling mechanism and also due to the response mechanism, and I will also develop

the general concept of informative sampling and its presence in statistical literature. In

particular, I will discuss testing for informative sampling in survey data and the literature

that exists on this topic.

1.2 Modes of Inference for Survey Data

Surveys generate large quantities of data in a wide range of disciplines. A survey is

typically designed to estimate characteristics of the particular finite population from which

the sample is drawn. This context is referred to as descriptive inference for surveys. For

large-scale surveys, a combination of statistical efficiency and cost considerations often results
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in a complex sampling design that includes unequal inclusion probabilities, stratification and

clustering. An extensive literature exists on how to incorporate these design complexities into

appropriate descriptive inference methods. So-called design-based methods are the standard

approach to construct estimates and perform inference in this context

It is also common for analysts to use survey data to answer scientific questions that

are applicable more widely than for one particular finite population. In such situations,

the questions concern characteristics of a statistical model describing relationships among

variables, and the finite population is viewed as representing a realization from that model.

This is referred to as analytic inference for surveys. Statisticians have long been aware

of the fact that it is not appropriate to ignore survey considerations when doing analytic

inference for survey data. Both design-based and model-based methods can be applied in

this context, and there is currently still some disagreement as to which of these approaches

is most appropriate. See Little (2004) and Pfeffermann (2011) for recent discussions of this

topic.

1.3 Missing Data and Informative Sampling

There are two primary ways in which missing data can enter an analysis: through the

selection mechanism, i.e. a unit is not sampled and measured, and the response mechanism,

where a sampled unit may have partially or fully missing information. I would like to discuss

a class of problems that arises from the presence of informative sampling in survey data:

Informative sampling occurs when, due to the design complexities, the model that is true

for the data given that they are included in the sample is not the same as the model for the

population as a whole. It is also possible to have an informative non-response mechanism,

and while this is a related and interesting problem, the focus here will be on informativeness

coming from the selection mechanism. This is referred to variably as informative sampling,

informative selection, and design informativeness.
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Noninformative selection occurs when the underlying process that generates the popu-

lation values is independent of the sample selection process. To establish a more rigorous

definition, let X and y denote observed data (I will typically refer to these as “Model” vari-

ables), along with design information contained in Z and sample membership indicators, I.

This is standard notation for survey data; Z may contain design information such as strata,

clusters, or modified inclusion probabilities, and I is a vector of zeros and ones indicating

whether or not a unit is sampled. With our data structured this way, Chambers, Steel,

Wang, and Welsh (2012) state that noninformative selection occurs when

f(I |X,y,Z) = f(I | Z). (1)

For individual units indexed by k we can alternatively write

f(yk | xk, zk, Ik = 1) = f(yk | xk, zk), (2)

which is a convenient and intuitive way to think about informative sampling especially in

the context of regression or a similar conditional problem; it says that the distribution of

the data given that they were sampled is the same as the distribution of the data in general.

There is one more concept relating to missingness which should be discussed here – the

ideas of Missing at Random (MAR) and Missing Completely at Random (MCAR). These

terms are typically applied in the context of nonresponse, but they are used analogously for

the sampling mechanism and so will be defined here. The general approach (e.g. Chambers,

Steel, Wang, and Welsh (2012)) is to say that the data are MCAR if the probability of being

sampled is independent of all the other design and model information, that is

f(Ik | xk, yk, zk) = f(Ik), (3)

and missing at random if inclusion in the sample is independent of the response variable,
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that is

f(Ik | xk, yk, zk) = f(Ik | xk, zk). (4)

One important distinction is that Z contains design information and X contains model in-

formation that comes from measurements on our sampled units. Later, especially in Chapter

3, I will make the distinction between a sampling process that is noninformative given X

and noninformative given X and Z together.

1.4 Testing for Informative Sampling

Testing for informative sampling is a crucial component in choosing a suitable approach

for performing analytic inference. If the design can be determined to be non-informative

with respect to a particular postulated model, then it is reasonable to ignore the design

in subsequent model fitting and analysis. On the other hand, if informativeness cannot be

rejected, the analysis will need to account explicitly for the design complexities, which can

be done either by staying within a design-based framework or by adjusting the model to

incorporate design effects.

In this paper, I introduce a new method for testing the hypothesis of no design informa-

tiveness. I focus mostly on the application to the regression setting since that is the most

common type of analytic inference for survey data, but the method is applicable to any

likelihood-based analysis. While informativeness could in principle be assessed by directly

comparing the population and sample distributions of model variables, this is almost never

possible in practice because the analyst only has access to sample data, supplemented by sur-

vey weights and summary information about the sampling design such as stratum and cluster

indicators. Hence, I will consider testing for the case in which only sample level information

is available, and therefore we will rely on the weights and summary survey information.
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A number of authors have previously considered testing for informativeness, but overall,

the literature on this existing topic is quite sparse. An important class of tests is based on

assessing the significance of the difference between weighted and unweighted estimates of

model parameters. This idea forms the basis of the procedures proposed by DuMouchel and

Duncan (1983) and Fuller (1984) for the coefficients in linear regression. Pfeffermann (1993)

extended this to general likelihood-based problems with explicit estimators, and Pfeffermann

and Sverchkov (2003) to estimators that are defined as the solutions to estimating equations.

The procedure I will present most closely relates to these types of tests but is connected more

directly with the model likelihood. I will return to a comparison of the new procedure with

these others in Chapter 2.

When the postulated model is a linear regression model, the test based on the difference

between weighted and unweighted estimated coefficients is equivalent to an F -test for the

significance of the parameters of an expanded linear model, with the extension composed of

the interactions between the covariates of the original model and the weights. See Fuller

(2009, Section 6.3.1) for a derivation of this equivalence. Testing based on comparing the

postulated model with an extended version of the model was also used by Nordberg (1989)

for logistic regression. In chapter 2 I present results that justify this approach by generalizing

the F -test result to any test of submodels for linear parameters. In logistic regression, for

example, the classical likelihood ratio test is used to test a full vs. a reduced model, and this

is shown to be equivalent to testing for no difference between the weighted vs. unweighted

parameter estimates, under certain conditions. These conditions are analogous to those in

the original result by DuMouchel and Duncan (1983).

Another class of tests targets the moments of the postulated model rather than the model

parameters, and tries to evaluate whether they are equal to the moments of the model that

holds for the sample data. This is generally done in the regression context, so that the

relevant moments are conditional on model covariates. Pfeffermann and Sverchkov (1999)

show that the hypothesis of equal conditional moments for both models is equivalent to
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lack of correlation between the model errors and the sampling weights, and uses classical

correlation test statistics to test this hypothesis. This testing procedure is easy to apply

but is not exact, in the sense that it is generally not clear how many moments should be

compared. Pfeffermann and Sverchkov (1999) noted that “in practice, it would normally

suffice to test the first 2–3 correlations.” A more serious problem is the difficulty of having to

interpret multiple tests simultaneously, so that the overall confidence level of the procedure

is typically unknown.

A final class of tests is based on an identity in Pfeffermann and Sverchkov (1999),

which shows that the difference between the postulated model and the sample model can

be assessed through a regression of the survey weights on the model variables. This class of

tests targets the informativeness directly, but requires that a model relating the weights and

the model variables be defined, so that it is subject to its own possible model specification

bias.

As an illustration of analytic inference and the effect of informativeness, consider the

following “textbook” example. Korn and Graubard (1999, Example 4.3-1) describe an anal-

ysis of data relating gestational age to birthweight in the 1988 National Maternal and Infant

Health Survey (NMIHS). The NMIHS was conducted by the US National Center for Health

Statistics with a goal of studying factors that are related to poor pregnancy outcomes. The

study used a nationally-representative stratified sample from birth records, with deliberate

oversampling of low-birthweight infants. Fuller (2009, Example 6.3.1) simulates data to

mimic properties of NMIHS. The simulated data are a stratified simple random sample in

18 strata, with five observations per stratum. They reflect key properties of the real data:

a strong functional relationship between birthweight and gestational age (in weeks) and an

informative design.

Let Ik = 1 if birth record k is selected, and 0 otherwise, where k ∈ U = {1, . . . , N}, the

finite population of all birth records. Using the terminology traditional in survey statistics,

suppose an analyst is interested in fitting a “superpopulation” model: a stochastic model

6



assumed to have generated the measurements in the finite population. Initially, the analyst

considers simple linear regression of yk = gestational age on xk = birthweight, with normal

errors. An immediate concern is that the selection may have been “informative” in the

sense of distorting the regression relationship between the variables, so that the conditional

distribution of gestational age given birthweight in the superpopulation model, f(y |x;θ), is

different from the relationship in the sample, f(y |x, I = 1;θ), where θ contains the linear

model coefficients and variance term. Indeed, with πk = Pr [Ik = 1 |xk, yk], we have via

Bayes’ rule

f(y |x, I = 1;θ) =
Pr [I = 1 |x, y]∫

Pr [I = 1 |x, y] f(y | x;θ) dy
f(y | x;θ)

=
E [π | x, y]∫

E [π |x, y] f(y | x;θ) dy
f(y | x;θ).

The leading factor depends on θ, and in general cannot be ignored for inference on θ.

However, if in fact E [π | x, y] is independent of y, the leading factor cancels and we have a

non-informative design.

As noted in the previous section, a standard approach to estimation and inference under

possibly informative selection is to use sampling weights wk provided with the survey data

set. These weights are typically adjusted versions of the inverse inclusion probabilities, π−1k ,

and have the property that the weighted sample quantity
∑

k∈U wkIkg(xk, yk)/
∑

k∈U wkIk is

design consistent (with respect to the random selection mechanism) for the corresponding

finite population quantity
∑

k∈U g(xk, yk)/N . There are no selection effects in the latter

quantity, so it will in turn be model consistent (with respect to the superpopulation model)

for E [g(x, y) | x]. The same consistency properties hold for solutions of weighted estimating

equations. For the NMIHS superpopulation model, the solution comes from maximizing the
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weighted Gaussian log-likelihood,

lw(θ) = lw(β, σ2) =
∑
k∈U

wk ln

{
1√

2πσ2
exp

(
−(yk − (1, xk)β)2

2σ2

)}
Ik,

which yields the weighted least squares (WLS) estimator of the regression coefficients,

β̂w = argmin
β∈IR2

∑
k∈U

wk (yk − (1, xk)β)2 Ik. (5)

The WLS estimator is consistent for the finite population quantity,

β̂N = argmin
β∈IR2

∑
k∈U

(yk − (1, xk)β)2 ,

which is in turn consistent for β. For the NMIHS data, β̂w = (28.974, 0.297)T with cor-

responding design-based standard errors (0.426, 0.013)T . These standard errors reflect the

sample-to-sample variability of β̂w as an estimator of β̂N . If the difference between β̂N and

β is negligible (a common assumption when the sampling fraction is small), then these stan-

dard errors can also be interpreted as being valid for the difference between β̂w and β, albeit

under a different mode of inference.

While this design-based approach ensures that a valid estimator is available for model

parameters of interest, it has a few major drawbacks. First, it requires the use of specialized

software; for example, even though the estimator (5) has the form of a WLS estimator, the

inferential framework is based on the design, not on a heteroskedastic linear model. Using

non-survey software will result in the same point estimates but incorrect standard errors

and tests. Second, if the design is in fact non-informative, the estimator θ̂w = (β̂w, σ̂
2
w) is

inefficient compared to the (unweighted) maximum likelihood estimator,

θ̂s = argmax
θ∈IR3

ls(θ) = argmax
θ∈IR3

∑
k∈U

ln

{
1√

2πσ2
exp

(
−(yk − (1, xk)β)2

2σ2

)}
Ik, (6)
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which yields the ordinary least squares (OLS) estimator of the regression coefficients,

β̂s = argmin
β∈IR2

∑
k∈U

(yk − (1, xk)β)2 Ik. (7)

For the NMIHS data, β̂s = (25.765, 0.370)T , with standard errors (0.389, 0.012)T .

But perhaps the most fundamental issue is that, while the design-based approach pro-

vides estimators of the model parameters and (asymptotic) inference tools associated with

the estimators, it does not actually provide a model for the sample data. Hence, many

methods that rely on the model and are in common use among data analysts do not apply.

These include model selection methods, residual diagnostic tests and plots, and prediction

methods, to name a few. While the design-based approach is a possible solution to the

problem of informativeness, there is a clear desire for alternative solutions that account for

the informative selection yet stay within a model-based mode of estimation and inference.

In particular, analysts often want to assess whether they are allowed to “ignore” the design

when fitting a model. In the NMIHS example, they would like to use β̂s to estimate β and

use the traditional OLS variance estimator for inference.

In this linear regression setting, DuMouchel and Duncan (1983) recommended an F -test

procedure to determine the informativeness of the design with respect to the estimation of

β, in the sense of determining whether E
[
β̂w − β̂s

]
= 0. This is the standard F -test of the

full model

Ha : E [yk | xk, wk] = β0 + β1xk + γ0wk + γ1wkxk (8)

versus the reduced model

H0 : E [yk | xk, wk] = β0 + β1xk. (9)
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For the NMIHS data, the test statistic is F = 55.591 on 2 numerator and 88 denominator

degrees of freedom, with a p-value much less than 0.001, strongly rejecting the null hypothesis

of non-informative selection.

This test is simple and efficient when the effects of informative selection can be described

with an expanded mean structure. But the effects of informative selection may appear

elsewhere in the model structure, since any informativeness with respect to other model pa-

rameters (σ2 in particular) is not captured by this test. We therefore present a new test for

informative selection based on comparing the log-likelihood at the weighted maximum like-

lihood estimates, θ̂w, to the log-likelihood at the unweighted maximum likelihood estimates,

θ̂s. We also derive the asymptotic properties of the test and develop a bootstrap version,

and I will then return to the NMIHS data for an empirical example, and also illustrate with

a Tobit regression on data from the National Health and Nutrition Examination Survey

(NHANES). Simulation experiments compare Dumouchel and Duncan type tests to the new

proposal, illustrating its size and power properties in both its asymptotic and bootstrap

versions.
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CHAPTER 2

TESTING FOR INFORMATIVE SAMPLING

IN SURVEY DATA

2.1 Theoretical Results Under the Null Hypothesis

Here theoretical arguments for the new test for informative sampling will be presented,

and in what follows, a number of potential uses will be presented, along with simulation

results and empirical studies. To establish the theoretical results for the new test, consider

a sequence of finite populations indexed by population size, N . Throughout, we condition

on XN = [xTk ]k∈U , IN = [Ik]k∈U , corresponding to the standard regression setting in which

only the conditional distributions of (selected) responses yk given xk are of interest. The

marginal distribution of (XN , IN) may become important in the case of informative selec-

tion, but here we are deriving properties of the test statistics under the null hypothesis of

non-informative selection. We consider a non-negative weighting sequence {wk}k∈U that is

completely determined by (XN , IN), such as design weights wk = π−1k or truncated regression

weights,

wk = max

 1

πk
+

(∑
k∈U

zTk −
∑
k∈U

zTk Ik
πk

)(∑
k∈U

zkz
T
k Ik
πk

)−1
zk
πk
, δ


for some subvector zk of xk and some δ ≥ 0. In what follows, a is used as generic notation

for either the unweighted case, with a = 1 denoting {ak} ≡ 1, or the weighted case, with

a = w denoting {ak} = {wk}. We introduce notation to allow consideration of both original

data and parametric bootstrap samples. For every N , we consider independent random

variables with probability density functions f (yk | xk;θ†) satisfying the following regularity

conditions:
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A1. f (yk | xk;θ) is log-concave in θ.

A2. Under f (yk | xk;θ†), the Fisher information for the kth observation is given by

I(xk;θ†) = Var

(
∂ ln f (yk | xk;θ)

∂θ

∣∣∣∣
θ=θ†

∣∣∣∣∣xk;θ†
)

= E

[
−∂2 ln f (yk | xk;θ)

∂θ∂θT

∣∣∣∣
θ=θ†

∣∣∣∣∣xk;θ†
]
.

A3. ln f (yk | xk;θ) admits the expansion

− ln f
(
yk | xk;θ† +N−1/2u

)
+ ln f (yk | xk;θ†)

=
uT

N1/2

−∂ ln f (yk | xk;θ)

∂θ

∣∣∣∣
θ=θ†

+

{
uT

2N

−∂2 ln f (yk | xk;θ)

∂θ∂θT

∣∣∣∣
θ=θ†

u+ rk

(
yk,

u

N1/2

)}

=
uT

N1/2
D(yk,xk;θ†) +R

(
yk,xk, N

−1/2u;θ†
)

(10)

where

E [D(yk,xk;θ†) |XN , IN ;θ†] = 0,

E
[
R
(
yk,xk, N

−1/2u;θ†
)∣∣XN , IN ;θ†

]
=

uT

2N1/2
I(xk;θ†)

u

N1/2

+vk,0

( u

N1/2
;θ†

)
,

Var
(
R
(
yk,xk, N

−1/2u;θ†
)
|XN , IN ;θ†

)
= vk

(
N−1/2u;θ†

)
sup

θ:‖θ−θ†‖≤η

∑
k∈U

akIkvk,0
(
N−1/2u;θ

)
= o(1)

sup
θ:‖θ−θ†‖≤η

∑
k∈U

a2kIkvk
(
N−1/2u;θ

)
= o(1)

for some η > 0, for both ak ≡ 1 and ak = wk, and for all u ∈ IRp.

12



A4. As N →∞,

K̂a(θ†) =
1

N

∑
k∈U

a2kIkI(xk;θ†)→Ka(θ†)

and

Ĵa(θ†) =
1

N

∑
k∈U

akIkI(xk;θ†)→ Ja(θ†)

where Ja(θ†) is positive definite and K1(θ†) = J1(θ†).

A5. Under f (yk | xk;θ†),

1

N1/2

∑
k∈U

 D(yk,xk;θ†)

wkD(yk,xk;θ†)

 Ik L→ N

 0

0

 ,
 K1(θ†) Jw(θ†)

Jw(θ†) Kw(θ†)




as N →∞.

A6. If θ̂
P→ θ† under θ†, then K̂a

(
θ̂
)

P→Ka (θ†) and Ĵa

(
θ̂
)

P→ Ja (θ†) .

Theorem 1. Suppose {yk}k∈U are independent random variables with yk ∼ f(· | xk;θ0). Let

θ̂a be the maximizer of the log-likelihood criterion

la(θ) =
∑
k∈U

akIk ln f (yk | xk;θ) . (11)

Then, under A1–A4,

N1/2
(
θ̂a − θ0

)
= J−1a

1

N1/2

∑
k∈U

akIkD(yk,xk;θ0) + oP (1). (12)

If A5 also holds, then

N1/2

 θ̂1 − θ0

θ̂w − θ0

 L→ N


 0

0

 ,

 J−11 J−11

J−11 J−1w KwJ
−1
w


 , (13)

where Ja = Ja(θ0) and Ka = Ka(θ0).

13



Theorem 2. Let la(·) and θ̂a be as defined in Theorem 1. Under A1–A4,

T1 = 2
{
l1

(
θ̂1

)
− l1

(
θ̂w

)}
= N

(
θ̂1 − θ̂w

)T
J1

(
θ̂1 − θ̂w

)
+ oP (1)

and

Tw = 2
{
lw

(
θ̂w

)
− lw

(
θ̂1

)}
= N

(
θ̂w − θ̂1

)T
Jw

(
θ̂w − θ̂1

)
+ oP (1),

where the probability is with respect to the parametric distribution indexed by θ0. Under the

additional assumption A5,

N1/2
(
θ̂w − θ̂1

)
L→ N

(
0,−J−11 + J−1w KwJ

−1
w

)
= N (0,Γ) , (14)

so that

Ta
L→

p∑
j=1

λajZ
2
j (15)

where λaj are the eigenvalues of ΓT/2JaΓ
1/2, and {Zj}pj=1 are independent and identically

distributed N (0, 1).

A closely-related test statistic to Ta is the quadratic form

N−1/2
(
θ̂w − θ̂1

)T {
−Ĵ1

−1
+ Ĵw

−1
K̂wĴw

−1}−1
N−1/2

(
θ̂w − θ̂1

)
,

which is given in equation (4.3) of Pfeffermann (1993), along with its limiting chi-squared

distribution under the null hypothesis that E
[
θ̂w − θ̂1;θ0

]
= 0. The statement in that paper

that “The V–C [variance-covariance] matrices . . . can be obtained by estimating the corre-

sponding randomization V–C matrices” is ambiguous. With variance-covariance matrices

estimated by the plug-in methods of A6, the limiting behavior of Pfeffermann’s test statistic

is an immediate corollary of (14) in Theorem 2.

14



Corollary 3. Under A1–A6,

(
θ̂w − θ̂1

)T {
−Ĵ1

−1 (
θ̂a

)
+ Ĵw

−1 (
θ̂a

)
K̂w

(
θ̂a

)
Ĵw
−1 (

θ̂a

)}−1 (
θ̂w − θ̂1

)
L→ χ2

p, (16)

a chi-squared distribution with p degrees of freedom.

Both Pfeffermann’s test statistic and the asymptotic distribution of Ta require consistent

estimation of Ja and Ka, which is possible via plug-in methods under A6.

2.2 Testing Using Bootstrap Methods

Alternatively, the distribution of Ta may be approximated via parametric bootstrap,

which does not require estimation of the covariance matrices. Our parametric bootstrap

consists of sampling {y∗k}k∈U as independent random variables with y∗k ∼ f(· | xk; θ̂w)

or y∗k ∼ f(· | xk; θ̂1); both are possible because the bootstrap distribution of interest is

computed under the null hypothesis. With θ† = θ̂a, we then have immediately the following

bootstrap analogues of Theorems 1 and 2:

Theorem 4. Suppose {y∗k}k∈U are independent random variables with y∗k ∼ f(· | xk; θ̂a).

Let θ̂
∗
a be the maximizer of the log-likelihood criterion

l∗a(θ) =
∑
k∈U

akIk ln f (y∗k | xk;θ) . (17)

Then, under A1–A4,

N1/2
(
θ̂
∗
a − θ̂a

)
= −J−1a

(
θ̂a

) 1

N1/2

∑
k∈U

akIkD(yk,xk; θ̂a) + oP∗(1), (18)

where the probability is with respect to the parametric distribution at the fixed value θ̂a. If

15



A5 also holds, then

N1/2

 θ̂
∗
1 − θ̂a

θ̂
∗
w − θ̂a

 L∗→ N


 0

0

 ,
 J−11

(
θ̂a

)
J−11

(
θ̂a

)
J−11

(
θ̂a

)
J−1w

(
θ̂a

)
Kw

(
θ̂a

)
J−1w

(
θ̂a

)

 . (19)

Theorem 5. Let l∗a(·) and θ̂
∗
a be as defined in Theorem 4. Under A1–A4,

T ∗1

(
θ̂a

)
= 2

{
l∗1

(
θ̂
∗
1

)
− l∗1

(
θ̂
∗
w

)}
= N

(
θ̂
∗
1 − θ̂

∗
w

)T
J1

(
θ̂a

)(
θ̂
∗
1 − θ̂

∗
w

)
+ oP∗(1)

and

T ∗w

(
θ̂a

)
= 2

{
l∗w

(
θ̂
∗
w

)
− l∗w

(
θ̂
∗
1

)}
= N

(
θ̂
∗
w − θ̂

∗
1

)T
Jw

(
θ̂a

)(
θ̂
∗
w − θ̂

∗
1

)
+ oP∗(1),

where the probability is with respect to the parametric distribution indexed by θ̂a. Under the

additional assumption A5,

N1/2
(
θ̂
∗
w − θ̂

∗
1

)
L∗→ N

(
0,−J−11

(
θ̂a

)
+ J−1w

(
θ̂a

)
Kw

(
θ̂a

)
J−1w

(
θ̂a

))
= N

(
0,Γ

(
θ̂a

))
,

so that

T ∗1

(
θ̂a

)
L∗→

p∑
j=1

λ1j

(
θ̂a

)
Z2
j (20)

where λ1j

(
θ̂a

)
are the eigenvalues of ΓT/2

(
θ̂a

)
J1

(
θ̂a

)
Γ1/2

(
θ̂a

)
,

T ∗w

(
θ̂a

)
L∗→

p∑
j=1

λwj

(
θ̂a

)
Z2
j (21)

where λwj

(
θ̂a

)
are the eigenvalues of ΓT/2

(
θ̂a

)
Jw

(
θ̂a

)
Γ1/2

(
θ̂a

)
, and {Zj}pj=1 are inde-

pendent and identically distributed N (0, 1).

Theorem 6. Assume the conditions of Theorem 5. For z > 0 and {Zj}pj=1 independently

16



and identically distributed N (0, 1), define

GbN (z;θ) = Pr [Tb(θ) ≤ z;θ] and Lb (z;θ) = Pr

[
p∑
j=1

λbj(θ)Z2
j ≤ z;θ

]

for b = 1 or b = w. Further, assume there exists δ > 0 such that

sup
θ:‖θ−θ0‖≤δ

|GbN (z;θ)− Lb (z;θ)| → 0 (22)

as N → ∞. Then the bootstrap test statistics are consistent in the sense that for all z > 0

and for all ε > 0,

Pr
[∣∣∣GbN

(
z; θ̂a

)
− Lb (z;θ0)

∣∣∣ > ε;θ0

]
→ 0 (23)

as N →∞, for a = w or a = 1 and for b = w or b = 1.

Theorem 6 implies that for either choice of a and either choice of b, the empirical distribu-

tion function of independent copies of T ∗b

(
θ̂a

)
can be used to approximate the distribution

function of Tb.

2.3 Theoretical Results Under the Alternative Hypothesis

Under the alternative hypothesis of informative selection, we proceed by assuming that

the distribution of the sample data is in the same parametric family as the distribution

holding for the superpopulation. For parametric families and sampling designs for which

this is true, see Pfeffermann, Krieger, and Rinott (1998). This sort of conjugacy arises

when sampling from exponential families via Poisson sampling, and since this is quite broad

we will consider this situation here. The distribution under the superpopulation is

f(yk | xk;θ0),

17



and under the alternative hypothesis of informative selection this is not, in general, equal to

the distribution of the data given that they are included in the sample, which is

f(yk | xk, Ik = 1;θs).

Here we are using θ0 to denote the parameter values holding at the population level, and θs to

denote the parameter values holding at the sample level. We will suppose that assumptions

analogous to A1–A5 hold under the sample distribution as well, that is, at the parameter

value θs; this will ensure that we have well behaved information matrices under the sample

likelihood and allow us to use classical maximum likelihood results. Suppose we are sampling

from an exponential family of the form

f(yi | xi;θ0) = ai(θ0) exp

[
K∑
k=1

θ0kbk(yi) + ci(yi)

]
,

where θ defines the K−dimensional natural parameterization of the family, and bk(·) and

ci(·) are known functions. Further suppose that the inclusion probabilities have expectations

E [πi | yi,xi] = ri exp

[
K∑
k=1

∆kbk(yi)

]
,

where ri and {∆k} are constants which may depend on xi but not yi. Then we have that

θsk = θ0k + ∆k (Pfeffermann, Krieger, and Rinott (1998)). The constants ∆k function as an

offset for the parameters in the sample distribution versus the parameters in the population

distribution, and in Theorem 7 we will define a sequence of local alternatives by allowing

that offset to go to zero.

Theorem 7. Let la(·) and θ̂a be as defined in Theorem 1. Define a sequence of local alter-

natives

H1N : θs = θ0 +
d√
N
.

18



Under this sequence of alternatives and the assumptions holding under the alternative

hypothesis,

T1 = 2
{
l1

(
θ̂1

)
− l1

(
θ̂w

)}
= N

(
θ̂1 − θ̂w

)T
J1

(
θ̂1 − θ̂w

)
+ oP (1)

and

Tw = 2
{
lw

(
θ̂w

)
− lw

(
θ̂1

)}
= N

(
θ̂w − θ̂1

)T
Jw

(
θ̂w − θ̂1

)
+ oP (1),

where the probability is with respect to the parametric distribution indexed by θ0. Further-

more,

N1/2
[(
θ̂w − θ̂1

)
− (θ0 − θs)

]
L→ N

(
0,−J−11 + J−1w KwJ

−1
w

)
= N (0,Γ) , (24)

so that

Ta
L→

p∑
j=1

λajχ
2(1; δj), (25)

where λaj are the eigenvalues of ΓT/2JaΓ
1/2, and χ2(1; δj) is a non-central chi-squared ran-

dom variable with 1 degree of freedom and non-centrality parameter δj defined as

δj =
[PΓ−1/2d]2j

2
,

that is, the jth element of the resulting vector in brackets, where P is a matrix of eigenvectors

of ΓT/2JaΓ
1/2. With the non-centrality parameter defined in this way, the non-central chi-

squared distribution is of the form

f(q) =
∞∑
i=0

(
e−δ

δi

i!

)
Q(q : 1 + 2i),

where Q(q : k) is the cumulative distribution function of χ2 distribution with k degrees of

freedom.
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This theorem can be used to perform local power calculations under certain conditions.

The assumptions made for the theoretical results shown in this section were made because

they allow for some relatively general asymptotic results. In particular, allowing the data

to come from an exponential family covers many potential cases. The major complications

in trying to compare sample distributions to population distributions under the alternative

hypothesis of informative selection come from the fact that under an arbitrary sampling

design, the sample likelihood is not guaranteed to be in the same family as the population,

and so direct comparisons of parameter values are tricky, in fact it is not immediately clear

how to even proceed. Pfeffermann, Krieger, and Rinott (1998) provides some specific

sampling designs and parametric family pairs under which the sort of conjugacy needed

holds (that is to say, the sample and population distributions are in the same parametric

family), and so this has been the starting point. In practice it may be easier to perform

power calculations via simulation.

2.4 Theoretical Extensions

Using the framework presented above, we wish to establish results analogous to those

of DuMouchel and Duncan (1983), in which effects of informative selection are tested by

comparing a linear mean model to the linear model extended to include weighted covariates,.

We extend those results to a more general framework that can be applied to a wide range

of models. We begin by partitioning the parameters into mean parameters, β, which are

the coefficients of model covariates xk, and nuisance parameters, ξ. Then we will extend

the mean structure to incorporate weighted covariates wkxk, which have coefficients γ, and

finally link the limiting distribution of N1/2(β̂w − β̂1) with that of N1/2(γ̂1− 0). Under this

partitioning of parameters, the following assumptions are needed:
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A7. The following relations between the original and extended models hold:

∂ ln f(yk|xk, wkxk;β,γ, ξ)

∂γ

∣∣∣∣
γ=0

= wk
∂ ln f(yk|xk;β, ξ)

∂β
,

∂2 ln f(yk|xk, wkxk;β, ξ,γ)

∂γ∂ξ

∣∣∣∣
γ=0

= wk
∂2 ln f(yk|xk;β, ξ)

∂β∂ξ
,

∂2 ln f(yk|xk, wkxk;β,γ, ξ)

∂β∂γ

∣∣∣∣
γ=0

= wk
∂2 ln f(yk|xk;β, ξ)

∂β∂βT
,

∂2 ln f(yk|xk, wkxk;β,γ, ξ)

∂γ∂γT

∣∣∣∣
γ=0

= w2
k

∂2 ln f(yk|xk;β, ξ)

∂β∂βT
.

It will be shown later that A7 holds in many models of potential interest.

Theorem 8. Let θ0 be partitioned into linear parameters, β, and other parameters, ξ. The

parameters β are linear in the sense that they enter the model as coefficients for known

covariates xk in the probability density function f(yk|xk;β, ξ). Let f(yk|xk, wkxk;β,γ, ξ)

be the probability density function under the model extended to include weighted covariates,

wkxk, with coefficients γ. Under the additional assumption A7,

N1/2M 1/2Γ
−1/2
11 (β̂w − β̂1)

L→ N (0,M ), (26)

and

N1/2(γ̂1 − 0)
L→ N (0,M ), (27)
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where

M = {aw2 − awV −111 aw − 2bwd
−1
1 bT1 V

−1
11 aw + bwV

−1
21 b

T
w}−1,

Γ11 = V −11w [aw2 − 2bwd
−1
w bTw2 + bwd

−1
w dw2d−1w bTw]V −11w − V −111 ,

where V1r = ar − brd−1r bTr , V2r = dr − bTr a−1r br, ar = limn,N→∞− 1
N

∑
k∈U Ikrk

∂2 ln l(xk;β,ξ)
∂β∂βT

,

br = limn,N→∞− 1
N

∑
k∈U Ikrk

∂2 ln l(xk;β,ξ)
∂β∂ξ

, and

dr = limn,N→∞− 1
N

∑
k∈U Ikrk

∂2 ln l(xk;β,ξ)
∂ξ∂ξT

; for r = 1 and r = w.

In the case in which the maximum likelihood estimates for the mean parameters, β, and

the nuisance parameters, ξ are asymptotically uncorrelated, the following corollary arises.

Corollary 9. Let θ0 be partitioned as in Theorem 8 and let f(yk|xk;β, ξ) and f(yk|xk, wkxk;β,γ, ξ)

be defined as in Theorem 8. If the maximum likelihood estimates for the mean parameters,

β, and the nuisance parameters, ξ are asymptotically uncorrelated, then

N1/2{aw2 − awa−11 aw}−1aw(β̂w − β̂1)
L→ N (0, {aw2 − awa−11 aw}−1), (28)

and

N1/2(γ̂1 − 0)
L→ N (0, {aw2 − awa−11 aw}−1), (29)

where aw2, aw, and a1 are defined as in Theorem 8.

Before continuing on to simulation studies and applications of the theory discussed, I

would like to take some time to look in detail at some parametric families that satisfy the

assumptions needed to apply Theorem 8 and Corollary 9.
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2.4.1 Gamma Mixture Model

To illustrate a situation in which Theorem 8 is applicable, consider the mixture model

yk = {zk × 0}+ {(1− zk)× vk},

where zk ∼ Bernoulli(δ) and vk ∼ Gamma(exkβ, τ), with mean exp(xkβ)τ and variance

exp(xkβ)τ 2. yk is zero with probability δ and is positive following a gamma distribution

with probability 1− δ. In the original model, the probability density is

f(yk|xk; δ, τ,β) = δzk

(1− δ) y
exkβ−1
k e−yk/τ

τ e
xkβΓ(exkβ)


1−zk

.

This is similar to a model used to model fishery data in section 2.6.1. We are interested

in the scores and information with respect to β since this is where we will be extending

the model. In the following, the derivative of the natural logarithm of the gamma function

is called the digamma function and is denoted ψ(·); its derivative is called the trigamma

function and is denoted ψ1(·). The derivatives are

∂ ln f(yk|xk; δ, τ,β)

∂β

=
(
exkβxk ln(yk)− exkβxk ln(τ)−

[
ψ(exkβ)exkβxk

])
(1− zk),

and

∂2 ln f(yk|xk; δ, τ,β)

∂β∂βT
=

{
xTk e

xkβ ln(yk)xk − xTk exkβ ln(τ)xk

−
[
ψ1(e

xkβ)xTk e
2xkβxk + ψ(exkβ)xke

xTkβxk

]}
(1− zk).
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The double partial derivatives with respect to β and δ are zero, as are the double partial

derivatives with respect to τ and δ. The double partial derivative with respect to β and τ is

∂2 ln f(yk|xk; δ, τ,β)

∂β∂τ
= −xke

xkβ

τ
(1− zk)

Extending the model to include weighted covariates,

f(yk|xk, wkxk; δ, τ,β,γ) = δzk

{
(1− δ) y

exp(xkβ+wkxkγ)−1
k e−yk/τ

τ exp(xkβ+wkxkγ)Γ(exkβ+wkxkγ)

}1−zk

.

The relationships in A7 hold since

∂ ln f(yk|xk, wkxk; δ, τ,β,γ)

∂γ

∣∣∣∣
γ=0

=
(
exkβ+wkxkγwkxk ln(yk)− exkβ+wkxkγwkxk ln(τ)

− ψ(exkβ+wkxkγ)exkβ+wkxkγwkxk

)
(1− zk)

∣∣∣
γ=0

= wk
∂ ln f(yk|xk; δ, τ,β)

∂β
,

∂2 ln f(yk|xk, wkxk; δ, τ,β),γ

∂β∂γ

∣∣∣∣
γ=0

=
{
wkx

T
k e
xkβ+wkxkγ ln(yk)xk − wkxTk exkβ+wkxkγ ln(τ)xk

−
[
ψ1(e

xkβ+wkxkγ)xTk e
2(xkβ+wkxkγ)wkxk

+ ψ(exkβ+wkxkγ)xTk e
xkβ+wkxkγwkxk

]}
(1− zk)

∣∣∣
γ=0

= wk
∂2 ln f(yk|xk; δ, τ,β)

∂β∂βT
,
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∂2 ln f(yk|xk, wkxk; δ, τ,β),γ

∂γ∂γT

∣∣∣∣
γ=0

=
{
w2
kx

T
k e
xkβ+wkxkγ ln(yk)xk − w2

kx
T
k e
xkβ+wkxkγ ln(τ)xk

−
[
ψ1(e

xkβ+wkxkγ)xTk e
2(xkβ+wkxkγ)w2

kxk

+ ψ(exkβ+wkxkγ)xTk e
xkβ+wkxkγw2

kxk

]}
(1− zk)

∣∣∣
γ=0

= w2
k

∂2 ln f(yk|xk; δ, τ,β)

∂β∂βT
,

and

∂2 ln f(yk|xk, wkxk; δ, τ,β,γ)

∂γ∂τ

∣∣∣∣
γ=0

= −wkxke
xkβ+wkxkγ

τ
(1− zk)

∣∣∣∣∣
γ=0

= wk
∂2 ln f(yk|xk; δ, τ,β)

∂β∂τ
,

so we see that the theory of this section is applicable in this case.

2.4.2 Linear Regression Applications

Corollary (9) is widely applicable and deserves some special attention here. It can be

applied in the regular linear model case, where

f(yk|xk;β, σ2) =
1√

2πσ2
exp

[
− 1

2σ2
(yk − xkβ)

]

and

f(yk|xk, wkxk;β,γ, σ2) =
1√

2πσ2
exp

− 1

2σ2

yk − [ xk wkxk ]

 β
γ



 .
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The mean and variance estimates are uncorrelated, and the second derivatives needed for

the information matrix in the extended model are

∂2 ln f(yk|xk, wkxk;β,γ, ξ)

∂β∂βT
= −x

T
kxk
σ2

,

∂2 ln f(yk|xk, wkxk;β,γ, ξ)

∂β∂γ
= −x

T
kwkxk
σ2

,

and

∂2 ln f(yk|xk, wkxk;β,γ, ξ)

∂γ∂γT
= −x

T
kw

2
kxk

σ2
,

thus the relationships given in A7 hold. The result is effectively established in this case since

this gives us the limiting variance of N1/2(γ̂ − 0) and also that of N1/2(β̂w − β̂1), and the

transformation that links the two. This is exactly the result from DuMouchel and Duncan

(1983) but presented in the framework of this paper; in this framework we can find analogous

results for many analyses besides regular linear regression. An immediate extension is for any

normal linear mixed model, the only difference being that the nuisance parameter ξ will be of

higher dimension than one (in linear regression with only fixed covariates its dimension is one,

containing only the model variance, σ2). For normal linear mixed models the information

matrix will still have a block diagonal form (one block containing fixed covariates, the other

containing random effects and the random error variance), regardless of the density of the

random effects, suggesting the asymptotic independence between the maximum likelihood

estimators of β and ξ that is needed.
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2.4.3 Applications to Exponential Families

The assumptions are in fact satisfied for all exponential families. This is a simple result

since the form of an s-dimensional exponential family, indexed by the parameter θ, is

pθ(y) = exp

[
s∑
i=1

ηi(θ)Ti(y)−B(θ)

]
h(y),

which, since θ contains linear parameters β and nuisance parameters ξ, can be written as

pθ(y) = exp

[
s∑
i=1

ηi(x
T
kβ, ξ)Ti(y)−B(xTkβ, ξ)

]
h(y).

The partial derivative of B(θ) with respect to β is

∂

∂β
B
(
xTkβ, ξ

)
= xTkB

′ (xTkβ, ξ) ,
and extending the linear structure to contain weighted covariates the derivative (evaluated

at γ = 0) is

∂

∂γ
B
(
xTkβ + wkxkγ, ξ

)∣∣
γ=0

= wkx
T
kB
′ (xTkβ, ξ) = wk

∂

∂β
B
(
xTkβ, ξ

)
.

This is true whether or not B(·) is a function of the linear parameters; if it is not, then

the derivative is 0. The argument is identical for the ηi(·), and analogous for the necessary

second derivatives.

It is also possible to carry out the test for informativeness in exponential families using

the natural parameterization. This is intuitively obvious because of the invariance property

of maximum likelihood estimates. Because of invariance the η̂ that maximize the likelihood

function will be η(θ̂), thus the maximum values obtained are the same under the θ or η
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parameterization, and the same is true for the test statistics T1 and Tw. Since the test

statistics are identical, their asymptotic distributions are also the same and can be obtained

either by computing the information with respect to θ and following Theorem 2 exactly, or

by computing information with respect to η and following Theorem 2 in terms of η.

We can verify experimentally that the results agree under either parameterization. Recall

the simple linear regression example relating infant birth weight to gestational age. The

probability density for yk is

exp

[
xTkβ

σ2
yk −

1

2σ2
y2k −

(xTkβ)2

2σ2
− 1

2
ln(σ2)

]
1√
2π

= exp

[
xTk η1yk + η2y

2
k −

(
−1

4
(xTk η1)

2η−12 −
1

2
ln(−η2) +

1

2
ln(2)

)]
1√
2π
.

The information with respect to η is given by the second and double partial derivatives of

A(η), the part of the exponent not containing yk. These derivatives are

∂2

∂η1∂η
T
1

A(η) = −1

2
xkx

T
k η
−1
2 ,

∂2

∂η22
A(η) = −1

2
(xTk η1)

2η−32 +
1

2
η−22 ,

and

∂2

∂η1∂η2
A(η) =

1

2
xkx

T
k η1η

−2
2 .

These derivatives are used to construct the matrices Ĵ1, Ĵw, and K̂w, by summing over

the sample, summing with weights, or summing with weights squared respectively. In short,

the test is carried out exactly as before. From these three matrices, Γ̂ = Ĵ
−1
w K̂wĴ

−1
w − Ĵ

−1
1 is

computed, and the eigenvalues of Γ̂
T/2
Ĵ1Γ̂

1/2
give the weights for the linear combination of

χ2
1 random variables. The process has not changed, the only difference is that the information

has been computed in terms of η; the end result is the same. For the birth weight data, using

the natural parameterization will result in the same test statistic, 2(l1(η̂1)−l1(η̂w)) = 132.88,
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and the eigenvalues are again λT = (1.967, 0.352, 0.021). Using the natural parameters, we

have obtained identical results to the test under the θ parameterization.

2.4.4 Logistic Regression Applications

Another case of interest is in logistic regression analyses. Logistic regression fits perfectly

into the framework of Corollary 9 because there are linear parameters, and no associated

nuisance parameters. Nordberg (1989) uses this idea to test for informativeness by expanding

the covariate structure in a logistic regression model to include weighted covariates and then

applying the deviance test for nested models. This would be an exact analogue of the

Dumouchel and Duncan F-test for informative sampling in linear regression, and Corollary

9 provides the justification for this application. In section 2.5.2 I will present some power

calculations and compare the classical likelihood ratio test (deviance test) to the new test

and also make comparisons to the Wald-type test proposed by Pfeffermann (1993).

For logistic regression the original and extended models are

f(yk|xk;β) =

(
exkβ

1 + exkβ

)yk
(

1− exkβ

1 + exkβ

)(1−yk)

and

f(yk|xk, wkxk;β,γ) =

(
exkβ+wkxkγ

1 + exkβ+wkxkγ

)yk
(

1− exkβ+wkxkγ

1 + exkβ+wkxkγ

)(1−yk)

.

The information in the extended model is

I(X,WX;β,γ)|γ=0 =
1

N

 ∑
k∈U x

T
kxkpk(1− pk)

∑
k∈U x

T
kwkxkpk(1− pk)∑

k∈U x
T
kwkxkpk(1− pk)

∑
k∈U x

T
kw

2
kxkpk(1− pk)

 ,
where

pk =
exp(xkβ)

1 + exp(xkβ)
.
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This is analogous to the previous examples; the relationships in A7 hold, and the relevant

limiting distributions are known.

Furthermore, the test in Theorem 2 can be easily adapted to test for informativeness

in a subspace of θ0 whenever θ0 can be partitioned into uncorrelated pieces. To test for

informativeness in the mean structure, the test statistics T1 and Tw would only look at the

differences in log-likelihood due to estimation of β, and because of the uncorrelated maximum

likelihood estimates this can be done by evaluating at any point in the ξ space. For example,

one could use the statistic T1 = 2{l1(ξ̂1, β̂1)− l1(ξ̂1, β̂w)}. The necessary eigenvalues could

be computed from the relevant portion of ΓT/1JaΓ
1/2.

2.4.5 Relating the Likelihood Ratio Test to the F-test

There is one final idea that I would like to discuss before moving on to the simulations

studies and applications. For linear regression, the estimate of σ2 is independent of the

estimates for β. As mentioned before, this suggests that Corollary 9 can be applied. In this

setting, Corollary 9 gives the asymptotic distributions for (β̂w − β̂1) and (γ̂1 − 0) as

N1/2{aw2 − awa−11 aw}−1aw(β̂w − β̂1)
L→ N (0, {aw2 − awa−11 aw}−1),

and

N1/2(γ̂1 − 0)
L→ N (0, {aw2 − awa−11 aw}−1),

where {aw2 − awa−11 aw}−1aw =
{
XTWWX −XTWX

(
XTX

)−1
XTWX

}−1
XTWX.

The justification for using the F-test to test for design informativeness is based on the

fact that γ̂1 =
{
XTWWX −XTWX

(
XTX

)−1
XTWX

}−1
XTWX(β̂w − β̂1). Thus

the one-to-one transformation that justifies the use of the F-test for design informativeness is

precisely the one-to-one transformation that links the limiting distributions of (β̂w− β̂1) and

(γ̂1 − 0) in Corollary 9. The advantages provided by the new theory are obvious. Not only

can the F-test only detect informativeness in the mean structure, it also does not provide a
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framework that can justify the use of tests for submodels in testing for design informativeness

in other situations. For example, the deviance test for submodels in the logistic regression

setting is analogous to the F-test in the linear model setting, and Corollary 9 provides the

justification for the use of the deviance test in testing for design informativeness.

2.5 Simulation Studies

This section contains simulation studies and will be followed by empirical applications

to survey data from recent years in the section that follows. First, the likelihood ratio

test for informativeness will be compared to the DuMouchel and Duncan test when the

informativeness enters the model through the variance structure, and a logistic regression

study shows that the likelihood ratio test has comparable power to the Wald test and is

more robust and well behaved. The likelihood ratio test will then be applied in the regular

linear regression case; this will also provide a connection between the likelihood ratio test

and the F-test for submodels proposed by DuMouchel and Duncan.

2.5.1 Student’s t Simulation

This section contains a simulation study in which informative selection is present in

the variance structure of a linear model. Since the DuMouchel and Duncan test looks

for informativeness in the mean structure of a linear model it does not perform well in this

situation, in fact it is not able to detect design informativeness almost at all. For k = 1, . . . , N

the true model is

yk = µ+ σ
zk√
vk/ν

√
ν − 2

ν
= µ+ σkzk,

{zk} iid N(0,1), independent of {vk} iid χ2
ν . The error terms here are distributed as scaled

tν , with mean zero and variance σ2 for ν > 2. Given vk, yk ∼N(0, σ2
k).
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Selection is via Poisson sampling with inclusion probabilities:

πk =
nσk∑
k∈U σk

.

The selection is informative and selected elements have large conditional variances given

σk, compared to non-selected elements. This is an interesting scenario because designs with

πk ∝ σk minimize the unconditional variance (with respect to design and model randomness)

of the Horvitz-Thompson estimator. As ν → ∞, σk converges in probability to σ, and the

design becomes noninformative. But the wk’s then all converge to n/N , and the critical

value of the test converges to zero, so that the test is not defined.

In this setting, the Dumouchel and Duncan test is the test of significance of the slope

coefficient in simple linear regression of yk on the intercept and wk = π−1k . This test is not

defined for wk ≡ constant, since the design matrix is singular.

The following table shows empirical rejection frequencies based on 1000 replicate samples

with µ = 2 and σ = 1:

Table 1: Empirical Rejection Frequencies

ν Test n = 50 n = 100 n = 200

5 T1 0.822 0.989 1.000
DD 0.121 0.119 0.125

20 T1 0.303 0.527 0.835
DD 0.073 0.062 0.059

80 T1 0.093 0.158 0.263
DD 0.043 0.053 0.056
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Not surprisingly, the likelihood ratio test based on T1 has better power in all cases than

the Dumouchel and Duncan test, DD. DD has almost no power to detect the informativeness

in the variance, since it looks in the mean. At ν = 5 degrees of freedom, the DD test has a

small amount of power. This seems to be due to the fact that the variance of the unweighted

estimator is much larger (approximately 27% larger) than that of the weighted estimator at

all sample sizes considered. The weighted and unweighted estimates will therefore differ by

chance, and the DD test will (correctly) reject by (incorrectly) interpreting this difference as

bias in the mean estimate. Note that this “lucky” power does not increase with increasing

sample size.

Once the degrees of freedom increase, the weights stabilize substantially and the weighted

and unweighted estimators have similar variances; e.g., unweighted has only about 6% higher

variance than weighted at ν = 20, and 2% higher variance at ν = 80. For these cases, the

DD test has essentially no power, rejecting about as often as would be expected under non-

informativeness. Again, the rejection frequency does not increase with increasing sample

size. The likelihood ratio test, on the other hand, continues to have power to detect the

informative selection, and this power increases with sample size.

2.5.2 Logistic Regression Simulation

The following simulation study is based on a data set from Nordberg (1989) involving

a population of 12195 milk producing farms in Sweden. The goal of the analysis is to fit

a logistic regression model to predict P (Y = 1) where the response variable Y is a binary

varible indicating whether or not the farms that had milk cows in 1983 still had milk cows

in 1984. Farms that did not have milk cows in 1984 were given a value y = 0 and a value of

y = 1 otherwise. The predictor variables used were

• Region (R1, R2, R3; coded as 0− 1 indicator variables)

• Farm Size (Large S=0, and small S=1)

• Farm Type (Primarily milk producing T=1, and Other T=0)

• Age of farmer in three categories (A1 = 1 if Age ≤ 49 and 0 otherwise; A2 = 1 if 50 ≤
Age ≤ 59, and 0 otherwise; and A3 = 1 if Age geq60, and 0 otherwise.)
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The model used to generate the data is

P (Y = 1) =
e−2.5+δ1.6S−0.3A2+0.8A3−δ0.8A3×S+δ1.0T−δ0.3R2×S−δ0.5R3×S

1 + e−2.5+δ1.6S−0.3A2+0.8A3−δ0.8A3×S+δ1.0T−δ0.3R2×S−δ0.5R3×S
, (30)

where δ is a constant that controls the level of design informativeness.

The population consisting of 12195 elements was created from the model given in equa-

tion (30), where the values for the predictors were taken from the original study. These

probabilities were then used to generate a population of y values. From this finite popu-

lation a stratified sample was taken where the strata are defined by the farm size (S) and

type (T ), and thus there are four strata based on the four size/type combinations. The

number of elements drawn from each stratum was 840, 521, 920, and 720, which corresponds

to inclusion probabilities of 0.10, 1.00, 0.60, and 0.42 respectively.

Since the variables on which the data are stratified (farm size and farm type) hold pre-

dictive information for the response, it is clear that the sampling is informative in the sense

that f(yk|xk, Ik = 1) 6= f(yk|xk), and as such their exclusion from the model should lead

to some level of model bias. The level of design informativeness can be controlled by δ in

that choosing δ = 0 will correspond to the case in which the sampling is non-informative,

and values further from 0 in magnitude reflect a higher degree of informativeness. Choosing

δ = 1 corresponds to the model found in the Nordberg paper.
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For the following power calculations, the Wald test (Pfeffermann (1993)) given in Corol-

lary 3 will be compared to the likelihood ratio test. Each power calculation is based on

1000 simulations and uses an α of 0.05. “Weighted” and “Unweighted” refers to whether the

weighted or unweighted maximum likelihood estimates were be used when computing the

expected information in the sample.

δ

P
ow

er

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
05

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

Pfeffermann Weighted
Pfeffermann Unweighted
LRT Weighted
LRT Unweighted

δ

P
ow

er

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

Pfeffermann Weighted
Pfeffermann Unweighted
LRT Weighted
LRT Unweighted

Figure 1: Power curves for Wald test vs. likelihood ratio test using two sample sizes, n = 3001
(left), and n = 601 (right)

The power curves using the larger sample size show the Wald test proposed by Pfef-

fermann (1993) performing the best when the information is evaluated at the unweighted

maximum likelihood estimator, the worst when the information is evaluated at the weighted

maximum likelihood estimates, and the likelihood ratio test falls in between the power curves

for the Wald test when using both the weighted and unweighted estimates. However, the

power curves using the smaller sample size show some very poor behavior from the Wald

test. First, when using the unweighted estimates, the Wald test has the wrong size. The size

of the test should be 0.05, and is actually higher than 0.10, so naturally it “wins” for other

values of δ as well.
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Second, and perhaps even more interestingly, when the weighted estimates are used the

Wald test does not even produce a monotone increasing power curve. This is very strange

(and undesirable) behavior especially considering that the hypotheses are “equal” vs. “not

equal”. The likelihood ratio test, in contrast, has very good behavior. The size is correct,

or approximately so, for both sample sizes considered, and the test seems to be unaffected

by the choice of maximum likelihood estimate used to compute expected information.

From Corollary 9 we can also test for design informativeness by extending the model

to include weighted covariates with parameters γ and testing that γ = 0. The classical

likelihood ratio test (referred to as the deviance test here for clarity) for submodels in logistic

regression compares twice the ratio of log-likelihoods from the reduced and full models to

a χ2
p distribution (p being the difference in the number of parameters for the two models;

for our purposes this is the number of parameters in the original model). Below are power

curves from the deviance test compared to the the new likelihood ratio test.
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Figure 2: Power curves for deviance test (dotted line) vs. likelihood ratio test (solid line)
using two sample sizes, n = 3001 (left), and n = 601 (right)

The deviance and likelihood ratio tests have almost identical power curves when using

the larger sample size (n = 3001) and the new likelihood ratio test performs better when the

sample size is reduced (n = 601).
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2.5.3 Linear Model

Recall the National Maternal and Infant Health Survey example in which infant gesta-

tional age is regressed on infant birthweight. For linear regression, the likelihood ratio test

is performed as follows: Use the expected information to construct Ĵ1, Ĵw, and K̂w; Use

these matrices to obtain the necessary covariance matrix, Γ̂, then compute the eigenvalues of

Γ̂
T/2
Ĵ1Γ̂

1/2
which are used as the weights for the linear combination of χ2

1 random variables.

The expected information is

blockdiag

{∑
k∈U

Ik
xkx

T
k

σ̂2
,
∑
k∈U

Ik
1

2nσ̂4

}
,

where xk is a column vector containing a 1 and the kth birthweight. Ĵ1 is computed directly

from the sum over the sample of the expected information, Ĵw and K̂w are computed by

summing over the sample with weights and squared weights respectively. The eigenvalues

are λT = (1.967, 0.352, 0.021), and the 0.05 critical value from the asymptotic distribution

(computed from 1,000,000 simulated linear combinations of χ2
1 random variables) is 7.98.

The test statistic is

2(l1(θ̂1)− l1(θ̂w)) = 132.88,

which is highly significant. This agrees with the F-test which produced a p-value much less

than 0.001.

Again, it should be pointed out that the F-test will be generally more powerful at detect-

ing informativeness in the mean structure, however it will completely fail to detect informa-

tiveness in the variance structure, while the new test can detect informativeness within any

parameter.

2.6 Empirical Applications

Here I will present some empirical applications, first to fishery data involving a Gamma

mixture model, and then to national health data which involves a censored regression esti-

mation problem. These applications show the wide applicability of the test in practice. Both

of these models are quite complex, leading to involved calculations in order to obtain the

analytic distributions of the test statistics. Therefore, I will present an application of the

bootstrap version of the test because the usefulness of simulation methods for conducting the

test is made obvious when the likelihood function for the proposed model is very complex.
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2.6.1 Gamma Mixture Model for American Plaice Data

In this section the likelihood ratio test for design informativeness will be applied to fitting

a Gamma mixture model for biomass of hauls of American Plaice fish in the southern Gulf

of St. Lawrence. For y = Biomass, consider the mixture model

yk = {zk × 0}{(1− zk)× xk},

where zk ∼ Bernoulli(δ), and xk ∼ Gamma(α, τ). Biomass is represented by a random vari-

able that takes a value of 0 with probability δ and is positive following a Gamma distribution

with probability (1− δ). The probability density function for yk is

f(yk) = δzk
{

(1− δ)y
α−1
k e−yk/τ

ταΓ(α)

}1−zk

The log-likelihood function at the population level is

l(δ, α, τ) =
∑
k∈U

ln f(yk) =
∑
k∈U

ln

[
δzk
{

(1− δ)y
α−1
k e−yk/τ

ταΓ(α)

}1−zk
]

= ln δ
∑
k∈U

zk + {ln(1− δ)− α ln τ − ln Γ(α)}

{∑
k∈U

(1− zk)

}

+(α− 1)
∑
k∈U

(1− zk) ln yk −
1

τ

∑
k∈U

yk(1− zk).

Eventually, when obtaining maximum likelihood estimates, or applying tests for informa-

tiveness, all sums will be over the sample and may contain weights as well (for obtaining

weighted parameter estimates for example).

To obtain unweighted maximum likelihood estimates, θ̂a = (δ̂a, α̂a, τ̂a), for a = 1 or

a = w, maximize the sample-level log-likelihood function with respect to δ, α, and τ . The

sample-level log-likelihood is

la(δ, α, τ) = ln δ
∑
k∈s

akzk + {ln(1− δ)− α ln τ − ln Γ(α)}

{∑
k∈s

ak(1− zk)

}

+ (α− 1)
∑
k∈s

ak(1− zk) ln yk −
1

τ

∑
k∈s

akyk(1− zk).
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This can be done using software and maximizing the three-dimensional likelihood function

above, or by setting the partial derivative of la(δ, α, τ) with respect to δ equal to zero to obtain

δ̂a =

(∑
k∈s

ak

)−1∑
k∈s

akzk,

setting the derivative of la(δ̂a, α, τ) with respect to τ equal to zero to obtain

τ̂a(α) =
1

α

(∑
k∈s

ak(1− zk)

)−1∑
k∈s

akyk(1− zk),

and then maximizing the one-dimensional log-likelihood as a function of α only:

la(δ̂a, α, τ̂a(α)) = constant− ln{τ̂1(α)αΓ(α)}
∑
k∈s

ak(1− zk)

+(α− 1)
∑
k∈s

ak(1− zk) ln yk −
∑
k∈s

ak(1− zk).

The estimate for δ is the (weighted or unweighted) proportion of zero hauls in the sample,

and the estimate for τ is the (weighted or unweighted) mean of the non-zero hauls divided

by α, which makes sense because the theoretical mean of the non-zero hauls is ατ .
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Figure 3: Weighted vs unweighted data with weighted mixture model fit

Figure (3) shows that the weighted data do in fact differ slightly from the unweighted

data. This difference is found to be significant. The weighted and unweighted parameter

estimates are

(δ̂w, α̂w, τ̂w) = (0.070, 0.514, 34.342),

and

(δ̂1, α̂1, τ̂1) = (0.0794, 0.497, 32.465).

These estimates yield a test statistic of

T1 = 2(l1(δ̂1, α̂1, τ̂1)− l1(δ̂w, α̂w, τ̂w)) = 1.11.

The second derivatives are needed for computing the expected information matrix, which is

needed to find the asymptotic distribution of the test statistic, T1. The derivative of ln Γ(·)
is called the digamma function and is denoted ψ(·);
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its derivative is called the trigamma function and is denoted ψ1(·) (see section 2.4.1 for more

on applications to a gamma mixture model). The non-zero elements of the information

matrix are

E

[
−
∑
k∈U

Ik
∂2la(δ, α, τ)

∂δ2

]
=

∑
k∈U Ikak

δ(1− δ)
,

E

[
−
∑
k∈U

Ik
∂2la(δ, α, τ)

∂α2

]
= ψ1(α)(1− δ)

∑
k∈U

Ikak,

E

[
−
∑
k∈U

Ik
∂2la(δ, α, τ)

∂τ 2

]
=

1− δ
τ

∑
k∈U

Ikak,

and

E

[
−
∑
k∈U

Ik
∂2la(δ, α, τ)

∂α∂τ 2

]
=
α(1− δ)

τ 2

∑
k∈U

Ikak.

∂2l(δ, α, τ)

∂δ2
= − 1

δ2

∑
k∈U

zk −
1

(1− δ)2
∑
k∈U

(1− zk),

∂2l(δ, α, τ)

∂α2
= −ψ1(α)

∑
k∈U

(1− zk),

and

∂2l(δ, α, τ)

∂τ 2
=

α

τ 2

∑
k∈U

(1− zk)−
2

τ 3

∑
k∈U

yk(1− zk).

The double partial derivatives with respect to α and δ are zero, as are the double partial

derivatives with respect to τ and δ. The double partial derivative with respect to α and τ is

∂2l(δ, α, τ)

∂α∂τ
= −1

τ

∑
k∈U

(1− zk)

The information is given by the expectation of the negative of the second and double partial
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derivatives above. Taking expectations we have

E

[
1

δ2

∑
k∈U

zk +
1

(1− δ)2
∑
k∈U

(1− zk)

]
=

∑
k∈U 1

δ(1− δ)
,

E

[
ψ1(α)

∑
k∈U

(1− zk)

]
= ψ1(α)(1− δ)

∑
k∈U

1,

E

[
1

τ

∑
k∈U

(1− zk)

]
=

1− δ
τ

∑
k∈U

1,

and

E

[
α

τ 2

∑
k∈U

(1− zk)

]
+ E

[
2

τ 3

∑
k∈U

(1− zk)yk

]
=
α(1− δ)

τ 2

∑
k∈U

1.

The information is used to construct Ĵa and K̂a; Ĵ1 is obtained by summing the information

over the sample, Ĵw by weighting the sum over the sample by wk, and K̂w by weighting the

sum over the sample by w2
k. The test proceeds by computing Γ̂ = Ĵ

−1
w K̂wĴ

−1
w −Ĵ

−1
1 and then

getting the eigenvalues from Γ̂
T/2
Ĵ1Γ̂

1/2
. These eigenvalues provide the weights for the linear

combination of χ2
1 random variables that constitutes the asymptotic distribution of T1. The

eigenvalues are λT = (0.0554, 0.0554, 0.0554), and the 0.05 critival value is 0.433. Recalling

that the value of the test statistic was T1 = 1.11, we strongly reject the null hypothesis of

non-informative selection.

2.6.2 Tobit Regression

The National Health and Nutrition Examination Survey is a yearly survey conducted

by the National Center for Health Statistics. For this example the likelihood ratio test for

informative sampling is applied to a Tobit model, which is a censored regression model.

The response variable is y = ln(Cotinine). Cotinine is the primary metabolite of nicotine in

cigarette smoke and it is of interest how various economic and housing factors affect cotanine

levels in children (see Wilson et. al. (2011)). Consider the following two potential models:

ln(Cotinine) = β0 + β1I{Age<12} + β2Poverty (31)

+β3I{AttachedHousing} + β4I{Apartment} + ε,
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and

ln(Cotinine) = β0 + β1I{Age<12} + β2Poverty (32)

+β3I{AttachedHousing} + β4I{Apartment} + β5I{Hispanic} + ε,

where ε ∼ N (0, σ2). If the test for informativeness is applied when fitting model (31), highly

significant design informativeness will be found. However, it is known that the survey was

designed to oversample Hispanics in the population, and in fact if Hispanic origin is taken

into account, as in model (32), significant design informativeness is no longer found.

The lower detection limit for cotinine is 0.015, so instead of observing every response y

we observe

y∗ = max(y, τ),

where τ = ln(0.015).

The likelihood function for the proposed model is

L(yk|xk;β, σ) =
∏
k 6∈c

1√
2πσ2

e−
1

2σ2
(yk−xTkβ)2

∏
k∈c

Φ

(
τ − xTkβ

σ

)
,

where {k ∈ c} indicates censored observations, {k 6∈ c} indicates uncensored observations,

and Φ(·) is the standard normal cumulative distribution function. The log-likelihood is

l(yk|xk;β, σ) =
∑
k 6∈c

[
−1

2
log(2π)− log(σ)− 1

2σ2
(yk − xTkβ)2

]
+
∑
k∈c

log Φ

(
τ − xTkβ

σ

)
.

∂l(yk|xk;β, σ)

∂σ
=

∑
k 6∈c

[
1

σ3
(yk − xTkβ)2 − 1

σ

]
−
∑
k∈c

1

Φ
(
τ−xTkβ

σ

)φ(τ − xTkβ
σ

)(
τ − xTkβ

σ2

)
,
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and

∂l(yk|xk;β, σ)

∂β
=
∑
k 6∈c

xTk
σ2

(yk − xTkβ)−
∑
k∈c

1

Φ
(
τ−xTkβ

σ

)φ(τ − xTkβ
σ

)(
xTk
σ

)
.

The second partial derivatives are

∂2l(yk|xk;β, σ)

∂βTβ
= −

∑
k 6∈c

1

σ2
xTkxk

−
∑
k∈c

 1

Φ2
(
τ−xTkβ

σ

)φ2

(
τ − xTkβ

σ

)
xTkxk
σ2

+
1

Φ
(
τ−xTkβ

σ

)φ′β (τ − xTkβσ

)(
xTk
σ

) ,

∂2l(yk|xk;β, σ)

∂σ2
=

∑
k 6∈c

[
1

σ2
− 3

σ4
(yk − xTkβ)2

]

−
∑
k∈c

 1

Φ2
(
τ−xTkβ

σ

)φ2

(
τ − xTkβ

σ

)(
τ − xTkβ

σ2

)2

+
1

Φ
(
τ−xTkβ

σ

) (φ′σ (τ − xTkβσ

)(
τ − xTkβ

σ2

)

− 2φ

(
τ − xTkβ

σ

)(
τ − xTkβ

σ3

))]
,

and
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∂2l(yk|xk;β, σ)

∂σ∂β
=

∑
k 6∈c

−2xTk
σ3

(yk − xTkβ)

−
∑
k∈c

 1

Φ2
(
τ−xTkβ

σ

)φ2

(
τ − xTkβ

σ

)(
τ − xTkβ

σ2

)(
xTk
σ

)

− 1

Φ
(
τ−xTkβ

σ

) [φ(τ − xTkβ
σ

)(
xTk
σ2

)

− φ′β

(
τ − xTkβ

σ

)(
τ − xTkβ

σ2

)]}
,

where

φ′β

(
τ − xTkβ

σ

)
= φ

(
τ − xTkβ

σ

)(
xTk
σ2

(τ − xTkβ)

)
,

and

φ′σ

(
τ − xTkβ

σ

)
= φ

(
τ − xTkβ

σ

)(
1

σ3
(τ − xTkβ)2

)
.

Now we need to take expectations conditioning on I{k∈s} and xTk . For all sums over k ∈ c,
since the yk only enter through the censoring indicator,Iyk≤τ , this will amount to adding the

term E
[
I{Yk≤τ}

]
= P (Yk ≤ τ) = Φ(

τ−xTkβ
σ

). Some additional work is necessary however for

the three sums over {k 6∈ c}. For the following assume we are conditioning on I{k∈s} and xk.

Starting with the expectation for the uncensored observations in the second derivative with

respect to β we have

∑
k∈s

xTkxk
σ2

E
[
I{Yk>τ}

]
=
∑
k∈s

xTkxk
σ2

(
1− Φ

(
τ − xTkβ

σ

))
,

and the expectation for the uncensored observations in the second derivative with respect to
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σ is

∑
k∈s

[
1

σ2
E
[
I{yk>τ}

]
− 3

σ4
E
[
I{Yk>τ}(yk − x

T
kβ)2

]]
=

∑
k∈s

[
− 2

σ2

(
1− Φ

(
τ − xTkβ

σ

))
− 3

σ3
(τ − xTkβ)φ

(
τ − xTkβ

σ

)]
.

In the equations above, E
[
I{yk>τ}

]
is clearly P (yk > τ) = P

(
Z >

τ−xTkβ
σ

)
= 1−Φ

(
τ−xTkβ

σ

)
,

and E
[
I{Yk>τ}(yk − xTkβ)2

]
is computed using integration by parts as follows:

E
[
I{y>τ}(y − xTβ)2

]
=

∫ ∞
τ

(y − xTβ)2√
2πσ2

e−
1

2σ2
(y−xTβ)2dy

= − σ√
2π

(y − xTβ)e−
1

2σ2
(y−xTβ)2

∣∣∣∞
τ

+ σ2

∫ ∞
τ

1√
2πσ2

e−
1

2σ2
(y−xTβ)2dy

= σ(τ − xTβ)φ

(
τ − xTβ

σ

)
+ σ2

(
1− Φ

(
τ − xTβ

σ

))
.

Finally, the expectation of the double partial with respect to σ and β (for uncensored

observations) is

∑
k∈s

−2xk
σ3

E
[
(yk − xTkβ)I{Yk>τ}

]
=
∑
k∈s

−2xTk
σ2

φ

(
τ − xTkβ

σ

)
,

since

E
[
I{y>τ}(y − xTβ)

]
=

∫ ∞
τ

(y − xTβ)√
2πσ2

e−
1

2σ2
(y−xTβ)2dy

= − σ√
2π
e−

1
2σ2

(y−xTβ)2
∣∣∣∞
τ

= σφ

(
τ − xTβ

σ

)
.

46



Putting everything together, we have

E

[
∂2l(yk|xk;β, σ)

∂β∂βT

]
=

∑
k∈s

{
−x

T
kxk
σ2

(
1− Φ

(
τ − xTkβ

σ

))

−

 1

Φ
(
τ−xTkβ

σ

)φ2

(
τ − xTkβ

σ

)
xTkxk
σ2

+ φ′β

(
τ − xTkβ

σ

)(xk
σ

)]}
,

E

[
∂2l(yk|xk;β, σ)

∂σ2

]
=

∑
k∈s

{[
− 2

σ2

(
1− Φ

(
τ − xTkβ

σ

))
− 3

σ3
(τ − xTkβ)φ

(
τ − xTkβ

σ

)]

−

 1

Φ
(
τ−xTkβ

σ

)φ2

(
τ − xTkβ

σ

)(
τ − xTkβ

σ2

)2

+φ′σ

(
τ − xTkβ

σ

)(
τ − xTkβ

σ2

)
− 2φ

(
τ − xTkβ

σ

)(
τ − xTkβ

σ3

)]}
,

and

E

[
∂2l(yk|xk;β, σ)

∂σ∂β

]
=

∑
k∈s

{
−2xTk
σ2

φ

(
τ − xTkβ

σ

)

−

 xTk

Φ
(
τ−xTkβ

σ

)φ2

(
τ − xTkβ

σ

)(
τ − xTkβ

σ3

)

−
[
φ

(
τ − xTkβ

σ

)(
xTk
σ2

)
− φ′β

(
τ − xTkβ

σ

)(
τ − xTkβ

σ2

)])}

Once the expected information is computed all that is left is to construct the estimated

covariance matrix, Γ̂ = Ĵ
−1
w K̂wĴ

−1
w − Ĵ

−1
1 , and find the eigenvalues of Γ̂

T/2
Ĵ1Γ̂

1/2
. This will
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give us the weights for the linear combination of χ2
1 random variables that are needed for

the test.

If the test is applied to the smaller model (no effect for Hispanics), then the eigenvalues

are λT = (1.154, 1.070, 0.973, 0.945, 0.729, 0.535); the 0.05 critical value for the asymptotic

distribution computed from 10,000 simulated linear combinations of χ2
1 random variables is

11.58. Letting θ = (σ,β), the likelihood ratio test statistic is

T1 = 2(l1(θ̂1)− l1(θ̂w)) = 19.38,

and so we strongly reject the null hypothesis of non-informativeness. If an indicator for

people of Hispanic origins is included in the model and the test is repeated, the relevant

eigenvalues are λT = (1.154, 1.061, 0.920, 0.912, 0.862, 0.587, 0.461); the 0.05 critical value is

12.14 and the likelihood ratio test statistic is

T1 = 2(l1(θ̂1)− l1(θ̂w)) = 5.19.

Thus the design is no longer found to be informative. This indicates that all of the infor-

mation held in the design (with respect to estimation of model parameters), in addition to

model covariates, was contained in knowing whether a person is of Hispanic origins or not.

The inclusion of this additional design information in the model has removed the model and

design bias simultaneously.

2.6.3 Bootstrap Results

The bootstrap analogue to the LRT test is easy to apply; the distribution of the test

statistic T1 can be bootstrapped by simulating from the proposed model under the null

hypothesis of non-informativeness, and then computing the value of the test statistic at each

simulation step. This is a very nice feature since it allows for the possible avoidance of tedious

information calculations, like for a Tobit regression model. Comparisons of bootstrapped and

analytic distributions are shown below for both the model with an indicator for Hispanics

(32), and the model without (31).
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Figure 4: QQ plots for the analytic distribution vs. the bootstrapped test statistic for the
model without an indicator for Hispanics (31) (left) and the model with the indicator (32)
(right)

For the model without an indicator for Hispanic origins the bootstrap 0.05 critical value

is 12.68 compared to a critical value of 11.44 from the analytic distribution; In the model

which includes the indicator the bootstrap 0.05 critical value is 13.94 compared to 11.04

obtained from the analytic distribution. The asymptotic distributions closely mirror those

distribution that are obtained via bootstrapping, however the asymptotic and bootstrap

distributions agree more closely using the smaller model. In both cases our inference from

either method is in agreement.
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CHAPTER 3

SEMIPARAMETRIC APPROACHES TO MODEL BUILDING

IN THE PRESENCE OF INFORMATIVE SAMPLING

3.1 Introduction

Consider the problem of estimating the conditional distribution of a variable y given x.

Informative sampling occurs when

f(yk | xk, Ik = 1) 6= f(yk | xk).

If it is not possible to extend the covariate structure to account for the informativeness in the

design then it may be possible to include extra design information in the model specification

and then “integrate out” the additional design information later. In order to do this we need

to have access to design variables, z, such that

f(yk | xk, zk, Ik = 1) = f(yk | xk, zk). (33)

That is, the design is noninformative after conditioning on the information in zk. Chambers

defines noninformativeness as in equation (33): conditional independence of the population

generating process and the sample selection process given z. Here we only wish to make the

distinction that variables of scientific interest are considered to be valid model variables, x,

and design variables that are not scientifically interesting (such as an inclusion probability)

are contained in z. The auxillary information in z is necessary for performing unbiased

inference, but is not otherwise interesting. In short, we consider the scenario in which the

design is informative given only x, but noninformative given x and z.

Assuming (33) holds, we can estimate f(y | x, z) in an unbiased way using the sample

data. This is important because in the presence of design informativeness the model that

holds at the sample level is different from the model that holds at the population level, and

since our inferential goal is the latter, the sample data will provide biased results in general.

Furthermore, if our inferential goal is f(y | x) then we would like to investigate ways of

extracting f(y | x), which we can not estimate directly from the sample data, from

50



f(y | x, z), which we can estimate directly from the sample data. The following sections

discuss integrating out design effects to obtain f(y | x) via

f(y | x) =

∫
f(y | x, z)f(z | x)dz.

In the context of regression (or any conditional expectation problem), notice that

E [E [y | x, z] | x] =

∫ ∫
yf(y | x, z)dydz =

∫
y

∫
f(y | x, z)dzdy = E [y | x] ,

so design variables can be integrated out of the mean structure via iterating expectations.

In the next section, a semiparametric approach to this problem will be proposed. In

subsequent sections further asymptotic properties will be derived, and detailed applications

will be made.

3.2 A Semiparametric Model

Suppose y = xTβ+fT (x, z)γ+ε, where E [ε | x, z] = 0. Here x contains model variables

and z contains design variables (such as weights, strata, clusters). Writing E [f(x, z) | x] =

Γ(x), we have E [y | x] = µ(x) = xTβ + ΓT (x)γ. Our goal is to integrate the design effects

out of f(y|x, z) and find the mean function as a function of model variables only. The

proposed estimator is

µ̂(x) = xT β̂ + Γ̂Tπ (x)γ̂, (34)

where (β̂
T
, γ̂T ) come from the regression of y on (xT ,fT (x, z)), and Γ̂π(x) is a design-based

estimator of the finite population quantity corresponding to Γ(x). Since the regression

coefficients are estimated via ordinary least squares they can be written as

 β̂

γ̂

 =

∑
k∈U

 xk

zk

( xk zk

)
Ik


−1∑

k∈U

 xk

zk

 ykIk

 . (35)
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Let the design-based estimator for Γ(x) be of the form

Γ̂π(x) =

(∑
k∈U

K

(
x− xi
h

)
Ik
πk

)−1(∑
k∈U

K

(
x− xi
h

)
zk
Ik
πk

)
, (36)

where K(·) is a kernel function, assumptions for which will be given in a following sec-

tion. The model is semiparametric in the sense that the model parameters, β and γ, will

be estimated using standard parameteric regression methods, and Γ(x) will be estimated

non-parametrically under a classical design-based framework; this accomplishes the task of

integrating out the design effects. The model would be fit in three steps: first β and γ would

be estimated via ordinary least squares, then Γ(x) would be estimated by an appropriate

design-based estimator, and then the two pieces would be combined.

Conditions for the joint asymptotic normality of the design and model-based pieces will

be addressed in the following sections, and asymptotic results will follow.

3.3 Notation and Assumptions

Standard survey sampling notation will be used throughout. For design-based compo-

nents of the estimation problems that follow we will consider a finite population ofN elements

contained in the set U = {1, 2, . . . , N}. The subset of elements contained in the sample will

be denoted s ⊆ U . Sample membership indicators are defined as

Ik =

 1, k ∈ s,

0, k /∈ s,
,

where E [Ik] = πk. Here πk is the probability that the kth element will be included in the

sample, and wk = π−1k are the sampling weights. Totals will be denoted by a lower case t and

will represent sums over U ; subscripts will indicate what is being summed up. For example,

ty =
∑
k∈U

yk
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is the sum of all y in the finite population, an estimator for which is given by

t̂y =
∑
k∈U

yk
Ik
πk
.

This is the Horvitz-Thompson estimator (Horvitz and Thompson (1952)) of the finite pop-

ulation total, and will be used to estimate totals for the remainder of the paper, unless

otherwise specified.

For analytic inference we will consider a sequence of finite populations UN , and focus

inference on the underlying process (superpopulation) that generates the population of ob-

servations from which we are sampling. Asymptotic results will rely on the population size

N going to infinity, and thus the sample size n and the bandwidth h can be written as nN

and hN indicating that as N →∞, n→∞ and h→ 0 at rates that will be specified in the

assumptions section. The N subscript will be suppressed in much of what follows.

The following assumptions will be made to prove the theoretical results and follow closely

those assumptions made by Breidt and Opsomer (2000).
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B1. For each N , the xi are considered fixed with respect to the superpopulation model. The

xi are independent and identically distributed F (x) =
∫ x
−∞ f(t) dt, where f(·) is a density

with compact support [ax, bx] with f(x) > 0, ∀x ∈ [ax, bx].

In addition, the zi are uniformly bounded with compact support [az, bz].

B2. As N →∞, nNN
−1 → π ∈ (0, 1), hN → 0, and Nh3N →∞.

B3. For all N , mini∈UN πi ≥ λ > 0, mini,j∈UN πij ≥ λ > 0, and

lim sup
N→∞

nN max
i 6=j
|πij − πiπj| <∞,

and

lim
N→∞

max
(i1,i2,i3,i4)∈D4

|E [(Ii1Ii2 − πi1πi2)(Ii3Ii4 − πi3πi4)] | = O(N−1),

where Dt is the set of all distinct t-tuples from UN .

B4. The kernel function K(·) is symmetric, continuous and bounded, and has compact

support.

B5. The function Γ(x) is a continuous and differentiable function.

B6. For λ 6= 0, ∑
k∈U

λT
 xk

zk




4

= O(N),

and the limit

lim
N→∞

N−1
∑
k∈U

λT

 xk

zk

σ2Ik = lim
N→∞

N−1
∑
k∈U

λT

 xk

zk

σ2πk

exists, where σ2 is the error variance for the model. Additionally, for λ 6= 0,

N−1/2λ
∑
i∈U

1∑
j∈U K

(
x−xi
h

) [zi − ∑j∈U K
(
x−xi
h

)
zj∑

j∈U K
(
x−xi
h

) ]K (x− xi
h

)(
Ii
πi
− 1

)

is asymptotically normally distributed with mean 0 and variance Σd, where Σd is the asymp-

totic, design-based variance of the expression on the left.

B7. limN→∞N
−1∑

k∈U

 xk

zk

( xk zk

)
Ik = A, a positive definite matrix.
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Assumptions B5 and B6 are used to establish a central limit theorem for the semipara-

metric estimator. It is common to make a central limit theorem assumption for the design,

and conditions can be checked on a design by design basis (see for example Fuller (2009)).

The inclusion of λ 6= 0 is for the proof which relies on the Cramér-Wold device which says

that a vector of random variables is jointly normally distributed if any linear combination

of the variables is univariate normal.

3.4 Limiting Distribution of µ̂(x)

This section introduces a central limit theorem for µ̂(x). The asymptotic variances for

the estimators given in equations (35) and (36), which will be needed for obtaining the joint

limiting distribution of the parameter estimates, are obtained as follows. The model-based

and design-based components of the estimator are in fact uncorrelated (as shown in Lemma

1 in the Appendix), hence the variance components for the estimated model coefficients and

design-based estimator can be found separately. Denote these variance components as Σm

and Σd. The matrix Σm is obtained using standard least squares regression results, so we

immediately have that

nΣm ≡ nVar

 β̂

γ̂

 = A−1σ2, (37)

where A is defined as in assumption B6. Next define

Σd ≡ nVar
(

Γ̂(x) |X,Z
)

= lim
N→∞

n
∑
i,j∈U

∑
(πij − πiπj)

di
πi

dj
πj
, (38)

where

di =
1∑

j∈U K
(x−xj

h

) [zi − ∑j∈U K
(x−xj

h

)
zj∑

j∈U K
(x−xj

h

) ]K (x− xj
h

)
. (39)

This is a standard design-based variance calculation, which is obtained by taking the variance

of the linearized form of Γ̂(x) from Lemma 5 in the Appendix.

We may now state and prove the following theorem on the joint asymptotic normality of
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the model and design pieces for the estimator given in (34).

Theorem 10. Under B5–B6,

n1/2


β̂ − β

γ̂ − γ

Γ̂π(x)− Γ(x)

 L→ N

0,

 Σm 0

0 Σd


 ,

where Σm and Σd are defined as in equations (37) and (38).

3.5 Variance Estimation

The asymptotic variances given by (37) and (38) can be estimated as follows:

V̂

 β̂ − β
γ̂ − γ

 =

[(
X Z

)T (
X Z

)]−1
σ̂2, (40)

where the model variance, σ2, can be estimated by the model mean square error as usual:

σ̂2 =

∑
i∈U

yi − ( xTi zTi )

 β̂

γ̂




2

Ii

n− p− q
.

The design component can be estimated via a linearization argument as follows:

V̂(Γ̂π(x)) =
∑
i∈U

∑
j∈U

πij − πiπj
πij

d̂i
πi

d̂j
πj
IiIj, (41)

where d̂i corresponds to the di defined in equation (39) with sums over the population re-

placed by sums over the sample, weighted by inverse inclusion probabilities. These estimates

are in fact design-consistent for their targets under mild assumptions.
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Theorem 11. Under B1–B4,

lim
N→∞

E
[
|Σ̂d − Σd|

]
= 0,

where

Σd =
n(∑

i∈U K
(
x−xi
h

))2 ∑
i,j∈U

[zi − Γ(x)]K

(
x− xi
h

)
[zj − Γ(x)]K

(
x− xj
h

)
∆ij

πiπj
,

and

Σ̂d =
n(∑

j∈U K
(x−xj

h

) Ij
πj

)2 ∑
i,j∈U

[
zi − Γ̂(x)

]
K

(
x− xi
h

)[
zj − Γ̂(x)

]

×K
(
x− xj
h

)
∆ij

πiπj

IiIj
πij

.

3.5.1 Consistency of µ̂(x)

In this section consistency of the estimator will be established along with variance esti-

mates so that we may apply error bounds to the semiparametric fits.
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The following result shows that (34) is a mean square consistent estimator for µ(x).

Theorem 12. Assume B1–B4, then

µ̂(x) = xT β̂ + Γ̂Tπ (x)γ̂

is mean square consistent in the sense that

lim
N→∞

E
[
{µ̂(x)− µ(x)}2

]
= 0.

3.5.2 Variance Estimation for µ̂(x)

To derive the asymptotic variance of the semiparametric estimator given by equation

(34), begin by writing

µ̂(x)− µ(x) = xT β̂ + Γ̂Tπ (x)γ̂ − xTβ − ΓT (x)γ

= xT (β̂ − β) + ΓT (x)(γ̂ − γ) + (Γ̂π(x)− Γ(x))T (γ̂ − γ + γ)

= xT (β̂ − β) + ΓT (x)(γ̂ − γ) + γT (Γ̂π(x)− Γ(x))

+(γ̂ − γ)T (Γ̂π(x)− Γ(x))

= xTa+ ΓT (x)b+ γTc+ bTc.

As noted in the Appendix, a and b are Op(n
−1/2), and c is Op((nh)−1/2), so bTc has a smaller

order of Op(nh
−1/2). It will then suffice to estimate the variance of xTa + ΓT (x)b + γTc

conditional on x. Thus for purposes of application, we will calculate the variance as

Var
(
xTa+ ΓT (x)b+ γTc | x

)
= Var

(
xTa+ ΓT (x)b | x

)
+ Var

(
γTc | x

)
+2Cov

(
xTa+ ΓT (x),γTc | x

)
. (42)

In (42), a and b represent model pieces, and c represents a design piece. As in Lemma 1

from the Appendix, the model and design pieces will be exactly uncorrelated and so the

remaining variance components can be estimated individually and added. For the model
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piece, the conditional variance formula will be applied to obtain

Var
(
xTa+ ΓT (x)b | x

)
= Var

(
E
[
xTa+ ΓT (x)b | x, z, I

]
| x
)

+E
[
Var

(
xTa+ ΓT (x)b | x, z, I

)
| x
]

= E

( x Γ(x) )T [( X Z )T ( X Z )]−1σ2
ε

 x

Γ(x)


 ,

where X is a matrix of model covariates and Z is a matrix of f(x, z) values.

For the design piece, we again begin by conditioning to obtain

Var
(
γTc | x

)
= Var

(
E
[
γTc | x, z

]
| x
)

+ E
[
Var

(
γTc | x, z

)
| x
]

= E
[
Var

(
γTc | x, z

)
| x
]
,

since E [c | x, z] = 0. Now, Var
(
γTc | x, z

)
is approximated as in (41) (via a linearization

argument), and the model and design pieces are exactly uncorrelated (by Lemma 1 in the

Appendix).

3.6 Empirical Applications

This section details applications of the proposed estimator in the context of regular

linear regression with one predictor. One such data set can be found in Chapter 6 of Fuller

(2009). This example (Example 6.3.3) describes data simulated to approximate data from

the Canadian Workplace and Employee Survey.

3.6.1 Canadian Workplace and Employee Survey Data

The original survey is described by Patak, Hidiroglou, and Lavallee (1998), where the

data come from a stratified simple random sample of workplaces in which three strata are

defined based on a function of existing tax records that is highly correlated with payroll.

The strata have highly variable sampling rates which leads to informative sampling. The

model of interest relates payroll to employment through the function

ln(payroll) = β0 + β1 ln(total employment) + ε, (43)
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where the error terms are iid(0, σ2). The data consist of employment and payroll numbers

along with sampling weights. Throughout, denote ln(payroll) by y, ln(total employment) by

x, and the sample weights by w. Then fitting model (43) via ordinary least squares (OLS)

yields

ŷ = 10.019 + 0.907x,

with σ̂2 = 0.320. The probability weighted regression yields

ŷ = 9.745 + 0.931x.

The second estimator is weighted to adjust for potential bias that has entered through the

sample selection process. If there is no bias present then the weighted estimates will be

inefficient compared to the unweighted. To test the hypothesis that these procedures are in

fact estimating the same quantities, we extend the model to include sampling weights and

a weight by log of employment interaction term then use the classic F test for sub-models

(e.g. DuMouchel and Duncan (1983)) to test whether or not the smaller model is adequate.

This is a practical test for informativeness in this case because it is powerful for detecting

informativeness in the mean structure for regular linear regression models and very easy to

apply in practice. The OLS estimator for the extended model is

ŷ = 10.888 + 0.722x− 0.0004w + 0.000016wx,

with σ̂2 = 0.2663. The F test gives a p-value < 0.001, and so we reject the null hypothesis of

non-informativeness. To be thorough, the results from the test proposed in Chapter 1 should

be mentioned as well. In this case the two versions of the test statistic produce different

results; using the unweighted log likelihood function and the test statistic T1 we obtain a

p-value of 0.16, and fail to detect informativeness in the design, however, Tw gives a p-value

of 0.002, which is highly significant. It is unclear why there is a discrepancy in this case,

and this kind of problem was not observed in any other simulations or power calculations.

To continue the analysis, we could extend the model further with a quadratic term for

the weights and conduct the F -test again to test for additional informativeness; this test is

not significant, and so we will work with the full interaction model above. Our goal now is

to integrate the weights out of the regression model and obtain a model that is a function
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of x only. In this context, the proposed semiparametric model is

y = β0 + β1x+ γ1f1(x, z) + γ2f2(x, z) + ε, (44)

where z = w, f1(x, z) = w and f2(x, z) = wx, and E [ε | x,w] = 0. Taking expectation we

have

µ(x) = E [y | x] = β0 + β1x+ γ1Γ(x) + γ2xΓ(x),

where Γ(x) = E [w | x].

Figure 5 shows scatterplots of the relationships of interest.
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Figure 5: Scatterplots for log of payroll vs. log of employment (left), and sample weight vs.
log of employment (right).

The scatterplot on the left represents the relationship we want to model; the scatterplot

on the right shows the relationship we will use to integrate out the design weights. Our

approach will be to estimate model (44) using OLS and then estimate Γ(x) using a design-

based estimator. The first step is easy and requires little discussion. The second part

will require a little more discussion and multiple ideas will be considered. The estimated

regression coefficients are (β̂0, β̂1, γ̂1, γ̂2) = (10.888, 0.722,−0.00043, 0.000016). The last two

estimated coefficients are very small, but they are attached to weights which can be quite

large in this example. Partial output from R is included below.
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.8881203 0.1943763 56.016 < 2e-16 ***

lnemploy 0.7218792 0.0461403 15.645 < 2e-16 ***

Weight -0.0004263 0.0001142 -3.731 0.000277 ***

lnemploy:Weight 0.0000160 0.0000534 0.300 0.764948

Next we will estimate Γ(x) using a design-based method. Fuller noted that when the

weights are plotted against x they fall roughly into three intervals. Define the groups by

the intervals (0, 2.67), [2.67, 3.95), and [3.95,∞). With intervals defined in this way we

will investigate two possible estimators for Γ(x). First, recall that Γ(x) = E [w | x], and so

consider estimating the means within each interval with a sample-weighted estimator. For

this problem, a reasonable estimate for Γ(x) is then

Γ̂π(x) =

∑
x<2.67w

2
k∑

x<2.67wk
I{x<2.67}

+

∑
2.67≤x<3.95w

2
k∑

2.67≤x<3.95wk
I{2.67≤x<3.95} +

∑
x≥3.95w

2
k∑

x≥3.95wk
I{x≥3.95}. (45)

A second approach would be to use the kernel regression method proposed in this chapter.

To apply this method I chose a Nadaraya-Watson smoother with a bandwidth of 1/2 to

smooth the sample weights on log of total employment. The two fits can be seen in the

graphs below.
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Figure 6: Γ(x) estimated by weighted means within groups (left) and weighted kernel re-
gression (right).

Combining these design-based fits for Γ(x) with the estimated model coefficients produces

the estimates for µ(x) seen in Figure 7.
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Figure 7: Regression fits using weighted sample weight means for Γ̂(x) (black), and weighted

kernel regression of sample weights on ln(total employment) for Γ̂(x) (red).

63



Estimating E [w | x] by a within-groups mean estimate seems like a very logical thing to

do in this situation, and indeed it accomplishes our goal of integrating out the sample weights.

The semiparametric fit, however, obtains the same thing with a smooth function. The jumps

and angles in the fit that estimates the weights by within-strata design-based mean estimates

are artifacts of the zero-one indicator variables that are present. The semiparametric fit

follows the same trend with a smooth curve. Next we would like to apply error bounds to

µ̂(x).

Since the sample is drawn via stratified sampling within three strata we can approximate

the variance for the design piece by applying a form appropriate for stratified sampling (e.g.

Sarndal, Swennson, and Wretman, 1992, Section 3.7). Applying the error bounds as derived

in equation (40) to the semiparametric fit we obtain the band shown in Figure 8.
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Figure 8: Confidence bands applied to the semiparametric estimate of µ(x)
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3.7 Simulation Study

This section details simulation results comparing the proposed semiparametric model to

the ordinary least-squares model and the weighted ordinary least-squares model, in a scenario

roughly mimicking the data from the Canadian Workplace data set. The data are simulated

by generating a population of 86514 y variables from a linear model that is a function of

x and z, where x and z are jointly normal random variables. The population was then

stratified based on quantiles of z and sampled proportional to z within each of three strata.

Three different sampling rates were used within each strata, and so the sampling is indeed

informative. Since z is related to x, x will also hold explanatory power for the weights.

The simulation was performed according to the following steps:

• Simulate x ∼ N (100, 102)

• Get z from the model zk = 8xk + η, where η ∼ N (0, 202)

• Get y from the model yk = 100 + 0.5xk + zk + 2zkxk + ε, where ε ∼ N (0, 72)

• Stratify the population into three strata defined by the 40th and 60th percentiles of z

• Take samples of size n1 = 30, n2 = 25, n3 = 90 with probabilities proportional to z

within each stratum

Notes: The Canadian Workplace data comes from a stratified sample in which the strata

are defined using previous tax records, which were not available at the data analysis step,

only inclusion probabilities and a covariate are available; this is the function that the z

variable is playing here — it is used to stratify the data and then it is lost to the analyst

so that we must rely on the relationship between the covariate and the weights to integrate

out the design information.

For illustrative purposes, a single realization of the simulation will be presented, and

then summary tables will follow. The tabled results include coverage rates for (nominally)

95% confidence intervals and mean-square prediction error for prediction across the finite

population of values. To begin, Figure 9 is a scatterplot of y vs. x.
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Figure 9: Scatterplot of y vs. x.

If one were to fit an ordinary least-squares regression line to this scatterplot, the following

fit would result. Compared with the weighted OLS fit (dotted line), there is visually very

little difference between the two fits.
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Figure 10: Scatterplot with weighted (red) and unweighted (black) fits.

Furthermore, standard residual diagnostics do not appear to raise any concerns about

standard model assumptions such as constant variance (notice the random scatter of points

seen in the residuals vs fits plot in Figure 11) and normally distributed errors (Notice that in

the normal probability plot in Figure 11 the theoretical and sample quantiles match almost

perfectly).
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Figure 11: Standardized residuals vs. fitted values (left) and normal probability plot of
standardized residuals (right)

However, the F-test for informative sampling strongly rejects the null hypothesis of non-

informativeness, as can be seen in the following partial output from R.

Model 1: y ~ x

Model 2: y ~ x * w

Res.Df RSS Df Sum of Sq F Pr(>F)

1 143 3171356015

2 141 2307974435 2 863381580 26.373 1.862e-10 ***
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Following the analysis steps outlined in the applications section, we expand the model

to include sample weights and a sample weights by x interaction term, then smooth the

sample weights on x with a (weighted) Nadaraya-Watson smooth and combine the two fits.

In Figure 12 the nonparametric smooth is shown, along with the final semiparametric fit.
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Figure 12: Weighted Nadaraya-Watson smooth of sample weights on x (left), and the result-
ing semiparametric fit (right).
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In the simulation results that follow, prediction will be evaluated at the 0.01%, 1%, 10%,

25%, 50%, 75%, 90%, 99%, and 99.99% quantiles of the distribution of the xk. Below are

95% confidence bounds applied to the OLS fit and the semiparametric fit seen in Figures 10

and 12, with the nine prediction points marked by triangles.
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Figure 13: Confidence bounds applied to the semiparametric fit (left) and the linear model
fit (right), with prediction goals in red triangles.

The linear model confidence bounds fail to capture all of the nine goals except for the

third and seventh points in red; the semiparametric confidence bounds successfully capture

the first seven points. It will be seen later that the coverage rates for the highest two points

are very low, and this is not surprising as the points are on the extreme end of the x scale

and are far beyond the scope of the sample data for this realization.

The process described above is repeated 1000 times and the simulation results are com-

piled into the following tables. The prediction points, xp, are chosen to correspond to the

0.0001, 0.01, 0.10, 0.25, 0.50, 0.75, 0.90, 0.99, 0.9999 quantiles of the x distribution. The

mean square prediction errors are expressed as a ratio of the predictor to the semiparametric

method; thus values larger than one represent worse prediction.
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Table 2: Coverage Rates for 95% Confidence Bounds

xp Semiparametric Model OLS
62 0.975 0.000
76 0.876 0.000
87 0.974 0.318
93 0.756 0.851
100 0.693 0.014
106 0.677 0.011
112 0.630 0.813
123 0.114 0.000
137 0.000 0.000

Table 3: Mean Square Prediction Errors

xp Semiparametric Model OLS WOLS
62 1.00 41.507 32.738
76 1.00 7.091 4.860
87 1.00 4.679 2.241
93 1.00 0.403 0.688
100 1.00 2.735 2.255
106 1.00 4.656 1.978
112 1.00 0.649 1.030
123 1.00 1.456 2.847
137 1.00 1.216 1.690

We can see from Table 3 that the semiparametric model shows significant gains in ac-

curacy at almost all points along the x domain. Furthermore, the confidence intervals have

much better coverage under the semiparametric model as seen in Table 2. Some noteworthy

items are that both models have very bad coverage at the 0.99 and 0.9999 percentiles, they

never capture the highest point, but this is much beyond the scope of a typical sample

data set, and also, even though the semiparametric model has 11% coverage for the 0.99

percentile, the OLS fit has no coverage, and this is still a difficult point to predict as it is

very high in the x range. Rather remarkably, the semiparametric model is able to capture

the points on the
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very low end of the x range with very good accurace, and coverage rates not very far from

95%, while the OLS fit again has no coverage at these x values. This may be because for

large values of x we see small values of the sample weight, and because of this the fit is

unable to adjust upward enough to capture those points. Regardless, for points inside the

range of the data we see reasonable coverage rates, although there is room for improvement,

and overall we see a huge gain in predictive accuracy.
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CHAPTER 4

CONCLUSION

Data from surveys can present unique challenges to analysts because of the sampling

design. Much of the traditional results seen in statistics rely on the data coming from a

random sample, which is almost never true in survey data by design. Due to this compli-

cation, reliable testing procedures for informative sampling are very important in practice.

The test proposed in this dissertation is widely applicable in practice, to effectively any prob-

lem involving a likelihood function, and shows robust behavior and high power compared to

competing tests. Under an informative design, there are two promising ways of adjusting the

analysis appropriately. Additional predictors may be included in the model that contain the

relevant design information, such as in the NHANES example, or we may be able to expand

the model with survey weights and integrate the weights out by modeling them as a smooth

function of model covariates. The second option is far from ideal. If we are able to include

variables that are of scientific interest and remove the design informativeness then our job

is made much easier. When this is not possible, our final option for estimation within the

model-based paradigm, is to integrate the weights out of the model. If we succeed in this

we can significantly reduce the design-induced bias in the model and improve our predictive

abilities.
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APPENDICES

Appendix A: Lemmas and Proofs

Lemma 1. If E [ε | x, z] = 0 then

Cov


 β̂
γ̂

 , Γ̂π(x)

 = 0.

Proof of Lemma 1. The condition that E [ε | x, z] = 0 ensures that the estimated re-

gression model coefficents are unbiased given x and z, so using the conditional covariance

formula and noting that Γ̂π(x) is constant given Z and I we have

Cov


 β̂
γ̂

 , Γ̂π(x)

 = Cov

E


 β̂

γ̂

 |X,Z, I

 ,E [Γ̂π(x) |X,Z, I
]

+E

Cov


 β̂
γ̂

 , Γ̂π(x) |X,Z, I




= E

E


 β̂ − β

γ̂ − γ

 |X,Z, I

 [Γ̂π(x)− Γ(x)]

+ 0

= E

E


∑
k∈U

 xk

zk

( xk zk

)
Ik


−1

×

∑
k∈U

 xk

zk

 εkIk

 |X,Z, I] [Γ̂π(x)− Γ(x)]

 = 0.
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Billingsley (1995) treats the following inequality as a trivial fact, but to be thorough here

it will be stated as a lemma and proved.

Lemma 2. For a random variable, X, with finite second moment,

E
[
min(|tx|2, |tx|3)

]
≤
∫
{|x|<δ}

|tx|3dP +

∫
{|x|≥δ}

|tx|2dP. (46)

Proof of Lemma 2. In equation (46), equality holds when δ = t−1, since below this point

|tx|3 is the minimum, and above this point |tx|2 is the minimum. That is,

E
[
min(|tx|2, |tx|3)

]
=

∫
{|x|<t−1}

|tx|3dP +

∫
{|x|≥t−1}

|tx|2dP.

Thus the sum on the right hand side is minimized by splitting the integrals at the point

δ = t−1 and the sum can only grow larger for any other choice of δ.

77



Lemma 3. Under B1–B5, for r ≥ 1,

1

Nh

∑
i∈U

K

(
x− xi
h

)r
Γ(xi)) = Γ(x)f(x)

∫
K(u)rdu+O

(
h2 +

1

N

)
.

Proof of Lemma 3. For r ≥ 1

1

Nh

∑
i∈U

K

(
x− xi
h

)r
Γ(xi) =

1

h

∫
K

(
x− y
h

)r
Γ(y)f(y)dy +O

(
1

N

)
=

∫
K(u)rΓ(uh+ x)f(uh+ x)du+O

(
1

N

)
=

∫
K(u)r{Γ(x)f(x) + [Γ′(x)f(x) + Γ(x)f ′(x)]hu

+
1

2
[2Γ′(x)f ′(x) + Γ′′(x)f(x) + Γ(x)f ′′(x)]h2u2 + . . .}du

+O

(
1

N

)
= Γ(x)f(x)

∫
K(u)rdu+O

(
h2 +

1

N

)
.

Lemma 4. Under B1–B4

1

Nh

∑
i∈U

K

(
x− xi
h

)
zi

(
Ii
πi
− 1

)
= Op

(
1√
Nh

)

Proof of Lemma 4. Write

E

( 1

Nh

∑
i∈U

K

(
x− xi
h

)
zi

(
Ii
πi
− 1

))2


=
1

N2h2

∑
i,j∈U

K

(
x− xi
h

)
K

(
x− xj
h

)
zizj

∆ij

πiπj

=
1

N2h2

∑
i∈U

K2

(
x− xi
h

)
z2i

1− πi
πi

+
∑
i 6=j

K

(
x− xi
h

)
K

(
x− xj
h

)
zizj

∆ij

πiπj

≤ 1

N2h2
b2z
λ

∑
i∈U

K2

(
x− xi
h

)
+
b2z maxi 6=j |∆ij|

Nh2λ2

∑
i∈U

K2

(
x− xi
h

)
= O

(
1

Nh

)
.
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Lemma 5. Under B1–B4,

Γ̂π(x) = Γ(x) +
1∑

j∈U K
(x−xj

h

)∑
i∈U

[
zi −

∑
j∈U K

(x−xj
h

)
zj∑

j∈U K
(x−xj

h

) ]K (x− xi
h

)
Ii
πi

+O

(
1

Nh

)
.

Proof of Lemma 5. Using a Taylor series approximation we have

Γ̂π(x) =

∑
i∈U K

(
x−xi
h

)
zi
Ii
πi∑

i∈U K
(
x−xi
h

)
Ii
πi

≡ t̂1

t̂2

= Γ(x) +
1

t2
(t̂1 − t1)−

t1
t22

(t̂2 − t2) +O

(
1

Nh

)
=

1

t2

∑
i∈U

[zi − Γ(x)]K

(
x− xi
h

)
Ii
πi

+O

(
1

Nh

)
.
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Lemma 6. Under B1–B4,

E
[
Γ̂2
π

]
= Γ2 + 2ΓE

[
Γ̂π − Γ

]
+O

(
1

Nh

)
.

Proof of Lemma 6. Define

x =

 1
Nh

(t̂1 − t1)
1
Nh

(t̂2 − t2)


and

fN(x) =

(
x1 + 1

Nh
t1

x2 + 1
Nh
t2

)2

.

Then
1

Nh
E
[
t̂a − ta)2

]
= O

(
1

Nh

)
for a = 1, 2, by Lemma 4. Furthermore, fN(0) is bounded and continuous and has bounded

and continuous first derivatives by Lemma 3, and fN(x) has continuous and bounded first

derivatives by Lemma 4. Thus the conditions of Theorem 5.4.3 of Fuller (1996) hold for

α = 1 and s = 2 and the result is immediate.
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Lemma 7. Assume B1 - B4, then

E

[(
ΓN(x)− Γ̂N(x)

)2]
= O

(
1

Nh

)
.

Proof of Lemma 7. From Lemma 6 we can write

E

[(
Γ(x)− Γ̂π(x)

)2]
= E

[
Γ̂2
π − 2Γ̂πΓ + Γ2

]
= E

[
Γ̂2
π

]
− 2ΓE

[
Γ̂π

]
+ Γ2

= Γ2 + 2ΓE

[
Γ̂π +O

(
1

Nh

)
− Γ

]
− 2ΓE

[
Γ̂π

]
+ Γ2

= O

(
1

Nh

)
.
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5.1 Appendix B1: Proof of Theorem 1

Proof of Theorem 1. Maximizing la(θ) with respect to θ is equivalent to minimizing the

convex function

−
∑
k∈U

akIk ln f
(
yk | xk;θ0 +N−1/2u

)
+
∑
k∈U

akIk ln f (yk | xk;θ0) , (47)

which is minimized at u = N1/2
(
θ̂a − θ0

)
. The results then follow from Theorem 2.2 of

Hjort and Pollard (1993) and the given assumptions. Expanding the function about u = 0,

we have

−
∑
k∈U

akIk ln f
(
yk | xk;θ0 +N−1/2u

)
+
∑
k∈U

akIk ln f (yk | xk;θ0)

= −
∑
k∈U

akIk ln f (yk | xk;θ0)−
∑
k∈U

∂ ln f
(
yk | xk;θ0 +N−1/2u

)
∂u

Ikak

∣∣∣∣∣
u=0

u√
N

− uT

2
√
N

∑
k∈U

∂2 ln f
(
yk | xk;θ0 +N−1/2u

)
∂u∂uT

Ikak

∣∣∣∣∣
u=0

u√
N

+
∑
k∈U

akIk ln f (yk | xk;θ0) + op(1).

Now taking derivatives with respect to u and setting to zero we have

0 ≡ − 1√
N

∑
k∈U

akIk
∂ ln f

(
yk | xk;θ0 +N−1/2u

)
∂u

∣∣∣∣∣
u=0

− 1

N

∑
k∈U

akIk
∂2 ln f

(
yk | xk;θ0 +N−1/2u

)
∂u∂uT

∣∣∣∣∣
u=0

u+ op(1)

and thus by assumptions A4 and A5

u→ N (0,J−1a KaJ
−1
a )

in distribution, and

u =
√
N(θ̂a − θ0) = J−1a

1√
N

∑
k∈U

akIkD(yk,xk;θ0) + op(1).
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5.2 Appendix B2: Proof of Theorem 2

Proof of Theorem 2. Write c = w when a = 1 and c = 1 when a = w. Then by the expansion

of Theorem 1,

Ta = 2

{
la

(
θ̂a

)
− la (θ0)−

(
θ̂c − θ̂a

)∑
k∈U

akIkD(yk,xk;θ0)

−
(
θ̂a − θ0

)∑
k∈U

akIkD(yk,xk;θ0)

−1

2

(
θ̂c − θ̂a

)T∑
k∈U

akIk
∂2 ln f (yk | xk;θ)

∂θ∂θT

∣∣∣∣
θ=θ0

(
θ̂c − θ̂a

)
−
(
θ̂c − θ̂a

)T∑
k∈U

akIk
∂2 ln f (yk | xk;θ)

∂θ∂θT

∣∣∣∣
θ=θ0

(
θ̂a − θ0

)
−1

2

(
θ̂a − θ0

)T∑
k∈U

akIk
∂2 ln f (yk | xk;θ)

∂θ∂θT

∣∣∣∣
θ=θ0

(
θ̂a − θ0

)
+oP (1)}

= −2N1/2
(
θ̂c − θ̂a

)
JaN

1/2
(
θ̂a − θ0

)
−N1/2

(
θ̂c − θ̂a

)T (
Ja +

1

N

∑
k∈U

akIk
∂2 ln f (yk | xk;θ)

∂θ∂θT

∣∣∣∣
θ=θ0

− Ja

)
N1/2

(
θ̂c − θ̂a

)
−2N1/2

(
θ̂c − θ̂a

)(
Ja +

1

N

∑
k∈U

akIk
∂2 ln f (yk | xk;θ)

∂θ∂θT

∣∣∣∣
θ=θ0

− Ja

)
N1/2

(
θ̂a − θ0

)
+oP (1)

= N1/2
(
θ̂a − θ̂c

)T
JaN

1/2
(
θ̂a − θ̂c

)
+ oP (1).
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Under the additional assumption A5, the remaining results (15) are immediate from (13)

and the distribution of quadratic forms in asymptotically normal random variables.

5.3 Appendix B3: Proof of Theorem 4 and Theorem 5

Proofs of Theorem 4 and Theorem 5. The proofs are identical to those of Theorem 1 and

Theorem 2, noting that as N → ∞, θ̂a remains fixed and the vectors XN = [xTk ]k∈U , IN =

[Ik]k∈U grow exactly as in the non-bootstrap setting.

5.4 Appendix B4: Proof of Theorem 6

Proof of Theorem 6. Let z > 0 and ε > 0 be given. Then

Pr
[∣∣∣GbN

(
z; θ̂a

)
− Lb (z;θ0)

∣∣∣ > ε;θ0

]
= Pr

[∣∣∣GbN

(
z; θ̂a

)
− Lb (z;θ0)

∣∣∣ > ε, ‖θ̂a − θ0‖ ≤ δ;θ0

]
+Pr

[∣∣∣GbN

(
z; θ̂a

)
− Lb (z;θ0)

∣∣∣ > ε, ‖θ̂a − θ0‖ > δ;θ0

]
≤ Pr

[∣∣∣GbN

(
z; θ̂a

)
− Lb

(
z; θ̂a

)∣∣∣ > ε/2, ‖θ̂a − θ0‖ ≤ δ;θ0

]
+Pr

[∣∣∣Lb (z; θ̂a

)
− Lb (z;θ0)

∣∣∣ > ε/2, ‖θ̂a − θ0‖ ≤ δ;θ0

]
+ Pr

[
‖θ̂a − θ0‖ > δ;θ0

]
≤ Pr

 sup
θ:‖θ−θ0‖

|GbN (z;θ)− Lb (z;θ)| > ε/2;θ0


+Pr

[∣∣∣Lb (z; θ̂a

)
− Lb (z;θ0)

∣∣∣ > ε/2;θ0

]
+ Pr

[
‖θ̂a − θ0‖ > δ;θ0

]
.

By hypothesis, the first probability is zero for all N sufficiently large. The third term goes

to zero as N →∞ because θ̂a
P→ θ0. The second term goes to zero by consistency of θ̂a and

continuity of Lb(z;θ) in θ, since the probabilities depend only on the eigenvalues, which are

continuous functions of θ.
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5.5 Appendix B5: Proof of Theorem 7

Proof of Theorem 7. Under the sequence of alternatives defined by

H1n : θs = θ0 +
d√
N

the results in Theorem 1 will be identical for the “w” subscripts; for the “1” subscript, the

Hjort and Pollard argument is expanded to allow the sequence of alternatives to converge to

the null:

−
∑
k∈U

Ik ln f
(
yk | xk;θ0 +N−1/2u+N−1/2d

)
+
∑
k∈U

Ik ln f
(
yk | xk;θ0 +N−1/2d

)
= −

∑
k∈U

Ik ln f
(
yk | xk;θ0 +N−1/2d

)
−
∑
k∈U

∂ ln f
(
yk | xk;θ0 +N−1/2u+N−1/2d

)
∂u

Ik

∣∣∣∣∣
u=0

u√
N

− uT

2
√
N

∑
k∈U

∂2 ln f
(
yk | xk;θ0 +N−1/2u+N−1/2d

)
∂u∂uT

Ik

∣∣∣∣∣
u=0

u√
N

+
∑
k∈U

Ik ln f
(
yk | xk;θ0 +N−1/2d

)
+ op(N

−1)

= −
∑
k∈U

∂ ln f
(
yk | xk;θ0 +N−1/2u+N−1/2d

)
∂u

Ik

∣∣∣∣∣
u=0

u√
N

− uT

2
√
N

∑
k∈U

∂2 ln f
(
yk | xk;θ0 +N−1/2u+N−1/2d

)
∂u∂uT

Ik

∣∣∣∣∣
u=0

u√
N

+ op(N
−1).
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Now set the derivative with respect to u to zero, and expand both terms about d = 0 to get

0 ≡ − 1√
N

{∑
k∈U

∂ ln f
(
yk | xk;θ0 +N−1/2u

)
∂u

Ik

∣∣∣∣∣
u=0

+
∑
k∈U

Ik
∂

∂d

∂ ln f
(
yk | xk;θ0 +N−1/2u+N−1/2d

)
∂u

∣∣∣∣∣
( u d )=0

d√
N


− 1

N

∑
k∈U

Ik
∂2 ln f

(
yk | xk;θ0 +N−1/2u

)
∂u∂uT

∣∣∣∣∣
u=0

u

− ∂

∂d

{∑
k∈U

Ik
∂2 ln f

(
yk | xk;θ0 +N−1/2u+N−1/2d

)
∂u∂uT

}∣∣∣∣∣
d=0

d√
N

+ op(1)

= − 1√
N

∑
k∈U

IkD(yk,xk;θ0) + J1d+ J1u+ op(1),

so

u = J−11

(
1√
N

∑
k∈U

IkD(yk,xk;θ0)− J1d

)
+ op(1),

Thus, since u =
√
N(θ̂1 − θs) =

√
N(θ̂1 − θ0) − d, the linearization from equation (12)

becomes

N1/2(θ̂1 − θ0) = J−11

1√
N

∑
k∈U

IkD(yk,xk;θ0) + op(1).

The test statistics can be expanded in the same way as under the null hypothesis of

non-informative selection, so

Ta = N1/2(θ̂c − θ̂a)TJaN1/2(θ̂c − θ̂a) + op(1),

where c = w when a = 1 and c = 1 when a = w as before. Under the alternative we have

that N1/2(θ̂c − θ̂a) is a non-zero mean, normally distributed random variable. Specifically

it is mean d, and so using results for quadratic forms and positive definite matrices along

with limiting distributions of quadratic forms of non-central asymptotically normal random

variables (e.g. Hocking (2003)) we can establish the limiting distribution here. For notational

convenience, let Ta = qTJaq in what follows. We know that q is asymptotically normal with
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mean d and covariance Γ. Next write

qTJaq = q∗TΓT/2JaΓ
1/2q∗,

where q∗ ∼ AN (Γ−1/2d, I). Then

q∗TΓT/2JaΓ
1/2q∗ = q∗∗TP TΓT/2JaΓ

1/2Pq∗∗,

where P is an orthogonal matrix of eigenvectors of ΓT/2JaΓ
1/2, and q∗∗ ∼ AN (PΓ−1/2d, I).

Finally, letting Λ be a diagonal matrix of eigenvalues of ΓT/2JaΓ
1/2, we have

qTJaq = q∗∗TΛq∗∗,

and by definition 16.2 of Hocking (2003), and recalling that P is orthogonal, we have that

Ta
L→

p∑
j=1

λajχ
2(1; δj),

where λaj are the eigenvalues of ΓT/2JaΓ
1/2, and δj = [PΓ−1/2d]j, the jth element of

PΓ−1/2d.

5.6 Appendix B6: Proof of Theorem 8

Proof of Theorem 8. The information in the unextended model is

I(X;β, ξ) =

 − 1
N

∑
k∈U

∂2 ln l(yk|xk;β,ξ)
∂β∂βT

− 1
N

∑
k∈U

∂2 ln l(yk|xk;β,ξ)
∂β∂ξ

− 1
N

∑
k∈U

∂2 ln l(yk|xk;β,ξ)
∂ξ∂β

− 1
N

∑
k∈U

∂2 ln l(yk|xk;β,ξ)
∂ξ∂ξT

 = J1.

Under the assumption that the derivatives in the extended model with respect to γ cor-

respond to weighted versions of the derivatives with respect to β, (A7), we can write the
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information in the extended model as

I(X,WX;β, ξ,γ)|γ=0

= − 1

N


∑

k∈U
∂2 ln l(yk|xk;β,ξ)

∂β∂βT
∑

k∈U
∂2 ln l(yk|xk;β,ξ)

∂β∂ξ

∑
k∈U wk

∂2 ln l(yk|xk;β,ξ)
∂β∂βT∑

k∈U
∂2 ln l(yk|xk;β,ξ)

∂ξ∂β

∑
k∈U

∂2 ln l(yk|xk;β,ξ)
∂ξ∂ξT

∑
k∈U wk

∂2 ln l(yk|xk;β,ξ)
∂ξ∂βT∑

k∈U wk
∂2 ln l(yk|xk;β,ξ)

∂β∂βT
∑

k∈U wk
∂2 ln l(yk|xk;β,ξ)

∂β∂ξT
∑

k∈U w
2
k
∂2 ln l(yk|xk;β,ξ)

∂β∂βT

 .

Letting ar = − 1
N

∑
k∈U rk

∂2 ln l(xk;β,ξ)Q
∂β∂βT

, br = − 1
N

∑
k∈U rk

∂2 ln l(xk;β,ξ)
∂β∂ξ

, and

dr = − 1
N

∑
k∈U rk

∂2 ln l(xk;β,ξ)
∂ξ∂ξT

, we can write the extended model information as

I(X,WX;β, ξ,γ)|γ=0 =


a1 b1 aw

bT1 d1 bTw

aw bw aw2

 .

To get the limiting variance of
√
N(γ̂ − 0) we will need the (3, 3) element of

I−1(X,WX;β, ξ,γ)|γ=0. Denote the (3, 3) element of the inverse by M 4. To obtain this

inverse we will treat the matrix as a 2× 2 block matrix and use the standard block matrix

inverse result. Recalling that the top left 2× 2 block is J1, we have

M 4 =

aw2 −
[
aw bw

]
J−11

 aw

bTw



−1

,

where

J−11 =

 {a1 − b1d−11 bT1 }−1 −{a1 − b1d−11 bT1 }−1b1d−11

−d−11 bT1 {a1 − b1d−11 bT1 }−1 {d1 − b1a−11 bT1 }−1

 .
So,

88



M 4 = {aw2 − aw(a1 − b1d−11 bT1 )−1aw − bwd−11 bT1 (a1 − b1d−11 bT1 )−1aw

− aw(a1 − b1d−11 bT1 )−1b1d
−1
1 bTw + bw(d1 − bT1 a−11 b1)

−1bTw)}−1

= {aw2 − awV −111 aw − 2bwd
−1
1 bT1 V

−1
11 aw + bwV

−1
21 b

T
w}−1

Now the limiting variance of
√
N(β̂w − β̂1) is needed. To obtain this we will need the

(1, 1) element of J−1w KwJ
−1
w − J−11 computed from the original model. This results in

{J−1w KwJ
−1
w − J−11 }[1,1] = {aw − bwd−1w bTw}−1aw2{aw − bwd−1w bTw}−1

−{aw − bwd−1w bTw}−1bwd−1w bTw2{aw − bwd−1w bTw}−1

−{aw − bwd−1w bTw}−1bTw2d−1w bTw{aw − bwd−1w bTw}−1

+{aw − bwd−1w bTw}−1bwd−1w dw2d−1w bTw{aw − bwd−1w bTw}−1

−{a1 − b1d−11 bT1 }−1

= {aw − bwd−1w bTw}−1[aw2 − 2bwd
−1
w bTw2 + bwd

−1
w dw2d−1w bTw]

×{aw − bwd−1w bTw}−1 − {a1 − b1d−11 bT1 }−1 ≡ Γ11.

It remains to find a 1-to-1 relationship between the limiting distributions of
√
N(γ̂1− 0)

and
√
N(β̂w − β̂1), which are

√
N(γ̂1 − 0)

L→ N (0,M 4)

and √
N(β̂w − β̂1)

L→ N (0,Γ11).

In general, there is no obvious or simple transformation linking these two distributions.

However, since M 4 and Γ11 are symmetric and positive definite, in general, the transforma-

tion M
1/2
4 Γ

−1/2
11 can be used since

lim
N→∞

Var
(
M

1/2
4 Γ

−1/2
11

√
N(β̂w − β̂1)

)
= M

T/2
4 Γ

−T/2
11 Γ11Γ

−1/2
11 M

1/2
4 = M 4
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5.7 Appendix B7: Proof of Corollary 9

Proof of Corollary 9. If the maximum likelihood estimates for β and ξ are asymptotically

uncorrelated then the expected double partial derivatives with respect to β and ξ are zero,

thus br = 0. The limiting variances from Theorem 8 become

M 4 = {aw2 − awa−11 aw}−1, (48)

and

Γ11 = a−1w aw2a−1w − a−11 . (49)

The one-to-one transformation linking these distributions is straightforward in this case. The

transformation is {aw2 − awa−11 aw}−1aw since

lim
N→∞

Var
(
{aw2 − awa−11 aw}−1aw(β̂w − β̂1)

)
= {aw2 − awa−11 aw}−1aw{a−1w aw2a−1w − a−11 }aw{aw2 − awa−11 aw}−1

= {aw2 − awa−11 aw}−1{aw2 − awa−11 aw}{aw2 − awa−11 aw}−1

= {aw2 − awa−11 aw}−1.

5.8 Appendix B8: Proof of Theorem 10

Proof of Theorem 10. It follows from the Cramér-Wold Device that if λ1(Γ̂π(x) − Γ(x)) +

λT2

(
β̂ − β, γ̂ − γ

)T
converges in distribution to a univariate normal distribution for

every λ1, λ2 such that at least one is non-zero, then the desired joint asymptotic normality

holds.

To establish joint normality, we will show that the characteristic function for

1√
N

∑
i∈U

λ1
1

t2

[
zi −

t1
t2

]
K

(
x− xi
h

)(
Ii
πi
− 1

)
+
∑
i∈U

λT2

 xi

zi

 εiIi


converges to the characteristic function of a normally distributed random variable. The first
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term in the sum above comes from the linearization of Γ̂π(x) from Lemma 5

Denoting the characteristic function for the above expression with the subscript †, and

letting λ1t
−1
2

[
zi − t−12 t1

]
K
(
x−xi
h

)
= g1i and λT2

(
xi, zi

)T
= g2i, we have

ϕ†(t) = E

[
exp

{
it√
N

∑
k∈U

g1k

(
Ik
πk
− 1

)}
exp

{
it√
N

∑
k∈U

g2kεkIk

}]

= E

[
exp

{
it√
N

∑
k∈U

g1k

(
Ik
πk
− 1

)}
E

[
exp

{
it√
N

∑
k∈U

g2kεkIk

}∣∣∣∣∣xk, zk, Ik
]]

≡ E [AE [B|X,Z, I]] = E
[
AϕBN(t; IN)

]
= E

[
A{ϕBN(t; IN)− ϕB(t) + ϕB(t)}

]
= E

[
A{ϕBN(t; IN)− ϕB(t)}

]
+ EAϕB(t).

Here, ϕB denotes a normal characteristic function. It remains to prove that ϕBN(t; IN) →
ϕB(t), and then application of the dominated convergence theorem will yield the desired

result.

The following argument closely follows those in section 27 of Billingsley (1995) on asymp-

totic normality of sums of independent but not identically distributed random variables. Per

the Billingsley arguments, the following three inequalities will be needed:

(i) For complex {zn} and {wn} of modulus at most 1

∣∣∣∣∣
n∏
i=1

zi −
n∏
i=1

wi

∣∣∣∣∣ ≤
n∑
i=1

|zi − wi|

(ii) |eix − (1 + ix− 1
2
x2)| ≤ min{|x|2, 1

6
|x|3}

(iii) For real x such that |x| ≤ 1/2,

ex − 1− x ≤ x2

The following Lindeberg condition is also needed:

1∑
k∈U N

−1g22kσ
2Ik

∑
k∈U

E
[
(N−1/2g2kεkIk)

21{|N−1/2g2kεkIk|>t
√∑

N−1g22kσ
2Ik}
|xk, zk, Ik

]
→ 0
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as n,N →∞, for all t > 0.

Now, ϕBN(t; IN) =
∏

k∈U ϕε(tN
−1/2g2kIk) =

∏
k∈U E

[
exp{itN−1/2g2kεkIk|xk, zk, Ik}

]
, and

the goal is to show that this product of characteristic functions converges to a normal char-

acteristic function. For each k,

ϕε(tN
−1/2g2kIk) = 1 + itE

[
N−1/2g2kεkIk|xk, zk, Ik

]
− t2

2
E
[
N−1g22kε

2
kIk|xk, zk, Ik

]
+ o(t2),

and by inequality (ii),

∣∣∣∣exp{itN−1/2g2kεkIk} −
(

1 + itN−1/2g2kεkIk −
t2

2
N−1g22kε

2
kIk

)∣∣∣∣
≤ min(|tN−1/2g2kεkIk|2, |tN−1/2g2kεkIk|3).

Thus, by dominated convergence and Lemma 2, we have for δ > 0

∣∣∣∣ϕε(tN−1/2g2kIk)− (1− t2

2
N−1g22kσ

2Ik

)∣∣∣∣
≤ E

[
min(|tN−1/2g2kεkIk|2, |tN−1/2g2kεkIk|3)|xk, zk, Ik

]
≤ E

[
|N−1/2tg2kεkIk|31{|εkIk|<δ}|xk, zk, Ik

]
+E

[
|N−1/2tg2kεkIk|21{|εkIk|≥δ}|xk, zk, Ik

]
≤ δ|t|3N−1g22kσ2Ik + t2E

[
N−1tg22kε

2
kI

2
k1{|εkIk|≥δ}|xk, zk, Ik

]
.

It follows by our assumed Lindeberg condition that

∑
k∈U

∣∣∣∣ϕε(tN−1/2g2kIk)− (1− t2

2
N−1g22kσ

2
kIk

)∣∣∣∣
≤

∑
k∈U

{
δ|t|3N−1g22kσ2Ik + t2E

[
N−1tg22kε

2
kI

2
k1{|εkIk|≥δ}

]}
→ 0.

This fact, combined with inequality (i) gives us the following relationship:

∣∣∣∣∣∏
k∈U

ϕε(tN
−1/2g2kIk)−

∏
k∈U

(
1− t2

2
N−1g22kσ

2
kIk

)∣∣∣∣∣
≤

∑
k∈U

∣∣∣∣ϕε(tN−1/2g2kIk)− (1− t2

2
N−1g22kσ

2
kIk

)∣∣∣∣ = o(1). (50)
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For N sufficiently large, inequalities (i) and (iii) along with B5 also imply that

∣∣∣∣∣∏
k∈U

exp

{
−t

2

2
N−1g22kσ

2Ik

}
−
∏
k∈U

(
1− t2

2
N−1g22kσ

2
kIk

)∣∣∣∣∣
≤

∑
k∈U

∣∣∣∣exp

{
−t

2

2
N−1g22kσ

2Ik

}
−
(

1− t2

2
N−1g22kσ

2
kIk

)∣∣∣∣
≤

∑
k∈U

t4

4
N−2g42kσ

4Ik ≤
t4σ4

4

∑
k∈U g

4
2k

N2
= o(1). (51)

Combining (50) and (51) we have

∏
k∈U

ϕε(tN
−1/2g2kIk) =

∏
k∈U

(
1− t2

2
N−1g22kσ

2
kIk

)
+ o(1)

=
∏
k∈U

exp

{
−t

2

2
N−1g22kσ

2Ik

}
+ o(1)

⇒
∏
k∈U

ϕε(tN
−1/2g2kIk)→ exp

{
−t

2

2
lim
N→∞

N−1
∑
k∈U

g22kσ
2πk

}
,

as N → ∞. This establishes the convergence of ϕBN(t; IN) to ϕB(t), and so by dominated

convergence and assumption B5, we have that

E
[
A{ϕBN(t; IN)− ϕB(t)}

]
+ E [AϕB(t)]→ ϕA(t)ϕB(t),

where ϕA(t) is the characteristic function of a normal random variable. This follows because

|A{ϕBN(t; IN)−ϕB(t)}| ≤ |A||{ϕBN(t; IN)−ϕB(t)}| ≤ |{ϕBN(t; IN)−ϕB(t)}| ≤ 2 implies that

E
[
A{ϕBN(t; IN)− ϕB(t)}

]
→ 0, and assumption B5 implies that E [A]ϕB(t) → ϕA(t)ϕB(t).

Thus since ϕA(t)ϕB(t) is the product of two normal characteristic functions, the result is

proved.
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5.9 Appendix B9: Proof of Theorem 11

Proof of Theorem 11. Since the leading term

1

1
N2h2

(∑
j∈U K

(
x−xi
h

) Ij
πj

)2 → 1

1
N2h2

(∑
j∈U K

(
x−xi
h

))2 ,
as N →∞, we focus on the remaining sum, which is

1

N2h2

∑
i,j∈U

[
yi − Γ̂(x)

]
K

(
x− xi
h

)[
yj − Γ̂(x)

]
K

(
x− xj
h

)
πij − πiπj
πiπj

IiIj
πij

,

and show that this converges to its target. For compactness of notation, let K
(
x−xi
h

)
= Ki

in what follows. Write

n

N2h2
E

∣∣∣∣∣∑
i,j∈U

[
zi − Γ̂(x)

]
Ki

[
zj − Γ̂(x)

]
Kj

∆ij

πiπj

IiIj
πij

−
∑
i,j∈U

[zi − Γ(x)]Ki [zj − Γ(x)]Kj
∆ij

πiπj

∣∣∣∣∣
=

n

N2h2
E

∣∣∣∣∣∑
i,j∈U

[
zi − Γ̂(x)

]
Ki

[
zj − Γ̂(x)

]
Kj

∆ij

πiπj

IiIj
πij

+
∑
i,j∈U

[zi − Γ(x)]Ki [zj − Γ(x)]Kj
∆ij

πiπj

(
IiIj − πij

πij

)

−
∑
i,j∈U

[zi − Γ(x)]Ki [zj − Γ(x)]Kj
∆ij

πiπj

IiIj
πij

∣∣∣∣∣
=

n

N2h2
E

∣∣∣∣∣∑
i,j∈U

{[
zi − Γ̂(x)

]
Ki

[
zj − Γ̂(x)

]
Kj − [zi − Γ(x)]Ki [zj − Γ(x)]Kj

}
× ∆ij

πiπj

IiIj
πij

−
∑
i,j∈U

[zi − Γ(x)]Ki [zj − Γ(x)]Kj
∆ij

πiπj

(
IiIj − πij

πij

)∣∣∣∣∣
=

n

N2h2
E |AN −BN | ≤

n

N2h2
E |AN |+

n

N2h2
E |BN | .
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Now

n

N2h2
E |AN | =

n

N2h2
E

∣∣∣∣∣∑
i,j∈U

{
2 [zi − Γ(x)]Ki

[
Γ(x)− Γ̂(x)

]
Kj

+
[
Γ(x)− Γ̂(x)

]
Ki

[
Γ(x)− Γ̂(x)

]
Kj

} ∆ij

πiπj

IiIj
πij

∣∣∣∣
≤ 1

h

(
2nmaxi 6=j |∆ij|

λ2λ∗
+

2n

λ2N

)

×


∑

i∈U(zi − Γ(x))2K2
i

Nh

∑
i∈U E

[
(Γ(x)− Γ̂(x))2

]
K2
i

Nh


+

1

h

(
2nmaxi 6=j |∆ij|

λ2λ∗
+

2n

λ2N

)∑
i∈U E

[
(Γ(x)− Γ̂(x))2

]
K2
i

Nh

= O(1)O

(
1√
Nh3

)
+O(1)O

(
1

Nh2

)
= O

(
1√
Nh3

)
,

by Lemma 7. Next write

n2

N4
E
[
B2
N

]
=

n2

N4h4
E

{∑
i,j∈U

[zi − Γ(x)]Ki [zj − Γ(x)]Kj
∆ij

πiπj

IiIj − πij
πiπj

}2


=
N2

N4h4

∑
i,k∈U

1− πi
πi

1− πk
πk

[zi − Γ(x)]2K2
i [zk − Γ(x)]2K2

k

∆ik

πiπk

+
2n2

N4h4

∑
i∈U

∑
k 6=l

[zi − Γ(x)]2K2
i [zk − Γ(x)]Kk [zl − Γ(x)]Kl

∆kl

πkπl

×E

[
Ii − πi
πi

IkIl − πkl
πkl

]
+

n2

N4h4

∑
i 6=j

∑
k 6=l

∆ij

πiπj

∆kl

πkπl
[zi − Γ(x)]Ki [zj − Γ(x)]Kj [zk − Γ(x)]

×Kk [zl − Γ(x)]KlE

[
IiIj − πij

πij
− IkIl − πkl

πkl

]
= b1N + b2N + b3N .
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Addressing the individual pieces we have

b1N ≤ n2

N4h4λ3

∑
i∈U

(zi − Γ(x))4K4
i

+
n2 maxi 6=j |∆ij|

N4h4λ4

∑
i 6=j

(zi − Γ(x))2K2
i (zj − Γ(x))2K2

j

≤
(

n2

N4h4λ3
+
n2 maxi 6=j |∆ij|

N4h4λ4

)∑
i∈U

(zi − Γ(x))4K4
i

= O

(
1

Nh3

)
+O

(
1

N2h3

)
→ 0

as N →∞ by Lemma 3. Next write

b3N ≤ n2(maxi 6=j |∆ij|)2

h3λ4λ∗2
max

i,j,k,l∈D4

|E [(IiIj − πij)(IkIl − πkl)] |
∑
i∈U

(zi − Γ(x))4K4
i

Nh

= O

(
1

Nh3

)
→ 0

as N →∞ by assumption A3 and Lemma (3). By the Cauchy-Schwarz inequality, b2N → 0

as N →∞, so nN−2|BN | → 0 as N goes to infinity.

5.10 Appendix B10: Proof of Theorem 12

Proof of Theorem 12. Write

E
[
{µ̂(x)− µ(x)}2

]
η−2 = Var (µ̂(x)) = Var

(
xT β̂ + Γ̂Tπ γ̂

)
= [Var

(
xT β̂

)
+ Var

(
Γ̂Tπ γ̂

)
+ 2Cov

(
xT β̂, Γ̂Tπ γ̂

)
]

=
{
O(n−1) +O((Nh)−1) +O((nNh)−1/2)

}
→ 0,

as N → ∞. Further justification for the final line above is as follows: from standard least-

squares regression results, (β̂ − β) and (γ̂ − γ), are both Op(n
−1/2), and thus, Var

(
β̂
)

=
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O(n−1). Furthermore, (Γ̂π(x)− Γ(x)) is Op((nh)−1/2) by Lemma 7, so

Var
(

Γ̂Tπ γ̂
)

= E
[
(Γ̂Tπ γ̂)2

]
− E

[
Γ̂π

]T
E [γ̂]

=
(

Var
(

Γ̂π

)
+ E

[
Γ̂π

])
(Var (γ̂) + E [γ̂]) + E

[
Γ̂π

]T
E [γ̂]

= Var
(

Γ̂π

)
Var (γ̂) + E

[
Γ̂π

]T
Var (γ̂) + Var

(
Γ̂π

)
E [γ̂]

= O

(
1

nNh

)
+O

(
1

n

)
+O

(
1

Nh

)
= O

(
1

Nh

)
.

Finally,

Cov
(
xT β̂, Γ̂Tπ γ̂

)
≤ Var1/2(xT β̂)Var1/2(Γ̂Tπ γ̂) = O

(
1√
n

)
O

(
1√
Nh

)
= O

(
1√
nNh

)
.
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