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ABSTRACT	

	
	
	
IMPROVING	THE	QUALITY	OF	EXTREME	PRECIPITATION	ESTIMATES	USING	SATELLITE	

PASSIVE	MICROWAVE	RAINFALL	RETRIEVALS	

	
	

Satellite	rainfall	estimates	are	invaluable	in	assessing	global	precipitation.	As	a	part	of	

the	Global	Precipitation	Measurement	 (GPM)	mission,	 a	 constellation	of	orbiting	 sensors,	

dominated	 by	 passive	 microwave	 imagers,	 provides	 a	 full	 coverage	 of	 the	 planet	

approximately	every	2-3	hours.	Several	decades	of	development	have	resulted	 in	passive	

microwave	 rainfall	 retrievals	 that	 are	 indispensable	 in	 addressing	 global	 precipitation	

climatology.	However,	this	prominent	achievement	is	often	overshadowed	by	the	retrieval’s	

performance	 at	 finer	 spatial	 and	 temporal	 scales,	 where	 large	 variability	 in	 cloud	

morphology	poses	an	obstacle	 for	accurate	 rainfall	measurements.	This	 is	especially	 true	

over	 land,	where	rainfall	estimates	are	based	on	an	observed	mean	relationship	between	

high	frequency	(e.g.,	89	GHz)	brightness	temperature	(Tb)	depression	(i.e.,	the	ice-scattering	

signature)	and	rainfall	rate.		

In	 the	 first	 part	 of	 this	 study,	 an	 extreme	 precipitation	 event	 that	 caused	 historical	

flooding	over	south-east	Europe	is	analyzed	using	the	GPM	constellation.	Performance	of	the	

rainfall	retrieval	is	evaluated	against	ground	radar	and	gage	reference.	It	is	concluded	that	

satellite	 observations	 fully	 address	 the	 temporal	 evolution	 of	 the	 event	 but	 greatly	

underestimate	 total	 rainfall	 accumulation	 (by	 factor	 of	 2.5).	 A	 primary	 limitation	 of	 the	

rainfall	algorithm	is	found	to	be	its	inability	to	recognize	variability	in	precipitating	system	
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structure.	This	variability	is	closely	related	to	the	structure	of	the	precipitation	regime	and	

the	large-scale	environment.		

To	address	this	influence	of	rainfall	physics	on	the	overall	retrieval	bias,	the	second	part	

of	this	study	utilizes	TRMM	radar	(PR)	and	radiometer	(TMI)	observations	to	first	confirm	

that	 the	Tb-to-rain-rate	relationship	 is	governed	by	the	amount	of	 ice	 in	 the	atmospheric	

column.	Then,	using	the	Amazon	and	Central	African	regions	as	testbeds,	 it	demonstrates	

that	the	amount	of	ice	aloft	is	strongly	linked	to	a	precipitation	regime.	A	correlation	found	

between	the	 large-scale	environment	and	precipitation	regimes	is	then	further	examined.	

Variables	such	as	Convective	Available	Potential	Energy	(CAPE),	Cloud	Condensation	Nuclei	

(CCN),	wind	shear,	 and	vertical	humidity	profiles	are	 found	 to	be	capable	of	predicting	a	

precipitation	regime	and	explaining	up	to	40%	of	climatological	biases.	Dry	over	moist	air	

conditions	 are	 favorable	 for	 developing	 intense,	well	 organized	 systems	 such	 as	MCSs	 in	

West	Africa	and	the	Sahel.	These	systems	are	characterized	by	strong	Tb	depressions	and	

above	 average	 amounts	 of	 ice	 aloft.	 As	 a	 consequence,	 microwave	 retrieval	 algorithms	

misinterpret	these	non-typical	systems	assigning	them	unrealistically	high	rainfall	rates.	The	

opposite	 is	 true	 in	 the	Amazon	region,	where	observed	raining	systems	exhibit	 relatively	

little	ice	while	producing	high	rainfall	rates.	

Based	 on	 these	 findings,	 in	 the	 last	 part	 of	 the	 study,	 the	 GPM	 operational	 retrieval	

(GPROF)	 for	 the	 GMI	 sensor	 is	 modified	 to	 offer	 additional	 information	 on	 atmospheric	

conditions	 to	 its	 Bayesian-based	 algorithm.	 When	 forming	 an	 estimate,	 the	 modified	

algorithm	is	allowed	to	use	this	ancillary	information	to	filter	out	a	priori	states	that	do	not	

match	the	general	environmental	condition	relevant	to	the	observation	and	thus	reduce	the	

difference	between	the	assumed	and	observed	variability	in	ice-to-rain	ratio.	The	results	are	
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compared	to	the	ground	Multi-Radar	Multi-Sensor	(MRMS)	network	over	the	US	at	various	

spatial	and	temporal	scales	demonstrating	outstanding	potentials	in	improving	the	accuracy	

of	rainfall	estimates	from	satellite-borne	passive	microwave	sensors	over	land.	
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CHAPTER	1	

	

INTRODUCTION	

	
	
	

1.1	Motivation		

Recent	 climate	 records	 suggest	 substantial	 changes	 are	 occurring	 in	 extreme	 rainfall	

events	across	the	globe	[Beniston	et	al.	2007,	Intergovernmental	Panel	on	Climate	Change	

(IPCC)	2007].	These	changes	have	significant	socioeconomic	 impacts	by	directly	affecting	

management	 of	 important	 water-related	 resources	 such	 as	 irrigation,	 flood	 control,	 and	

administering	 freshwater	 supplies	 (Futrel	 et	 al.	 2005;	 NRC	 2010).	 Understanding	 their	

causes	 is	 critical	 for	 both	 science	 and	water	management	 planning	 strategies.	 From	 the	

scientific	perspective,	precipitation	is	seen	as	one	of	the	key	components	in	Earth’s	climate.	

Coupling	 global	 water	 and	 energy	 cycles	 through	 clouds,	 moisture,	 and	 atmospheric	

circulations	[latent	heat	release	(Trenberth	et	al.	2007)],	precipitation	responses	to	changes	

in	 their	 global	 trends.	 Accurate	 knowledge	 of	 precipitation	 intensity	 and	 accumulation,	

especially	 during	 extreme	events,	 is	 essential	 for	 understanding	 the	 variability	 and	 early	

detection	of	these	trends.	From	the	water	resources	perspective,	precipitation	trends	have	a	

major	impact	on	stream	flows	and	water	supply	systems.	Our	ability	to	control	these	flows	

and	supplies	in	a	constantly	changing	climate	is	largely	limited	by	our	skill	to	promptly	detect	

them.	This	often	brings	the	focus	of	observations	to	extreme	events	where	trending	state	of	

the	system	is	naturally	amplified	and	easier	to	discover.	
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The	importance	of	understanding	global	precipitation	trends	and	variability	of	rainfall	

extremes	has	not	been	fully	recognized	until	fairly	recently	(Allen	and	Ingram,	2002;	Sun	et	

al.	 2007).	 Limited	 coverage	 and	 inferior	 technology	 were	 the	 greatest	 challenges	 for	

complete	and	accurate	understanding	of	global	precipitation	extremes.	After	the	launch	of	

the	Global	Precipitation	Measurement	 (GPM)	mission	 in	February	2014,	great	strides	are	

being	made	but	there	are	outstanding	science	issues	that	need	to	be	addressed	before	robust	

guidance	can	be	provided.	

The	GPM	core	 satellite	 carries	 the	 first	 ever	dual-frequency	 radar	 and	 is	 thus	 able	 to	

provide	 high	 quality	 rainfall	 rate	 estimates	 as	 well	 as	 descriptions	 of	 the	 structure	 of	

individual	extreme	events	over	most	of	the	globe.	The	dual	frequency	radar	unfortunately	

covers	only	a	narrow	swath	(approximately	100	km)	and	thus	has	a	very	long	revisit	time	

that	makes	it	difficult	to	detect	extreme	rainfall	accumulations	needed	for	most	applications.	

In	the	GPM	concept,	this	problem	is	addressed	via	the	constellation	of	passive	microwave	

radiometers	 that	 have	 an	 average	 revisit	 time	of	 less	 than	3	 hours.	Key	 to	 their	 success,	

however,	are	unbiased	rainfall	estimates.	

Passive	 microwave	 (PMW)	 measurements	 made	 from	 space	 are	 affected	 by	 both	

atmospheric	 and	 surface	 properties.	 A	 full	 understanding	 of	 the	 difficulties,	 currently	

surrounding	 rainfall	 retrievals	 over	 land,	 requires	 a	 detailed	 understanding	 of	 existing	

algorithms,	most	of	which	aim	to	relate	Tb	(brightness	temperature)	depressions	to	surface	

rainfall	through	a	universal	relationship	between	ice	scattering	and	surface	rainfall.	A	goal	

of	this	research	is	to	understand	these	differences	such	that	the	microphysics	of	clouds	is	

better	captured.	This	will	allow	for	improved	fidelity	of	rainfall	extremes	without	relying	on	

regional	sub-setting	that	ignores	the	underlying	physics.	



	 3	

1.2	Outline	of	Dissertation	

This	 dissertation	 consists	 of	 five	 chapters.	 Following	 the	 motivation	 of	 the	 study	

presented	in	Chapter	1,	Chapters	2	through	4	are	to	be	read	as	stand-alone	papers	with	their	

own	 introductions	 and	 conclusions.	 However,	 each	 chapter	 builds	 on	 the	 preceding	 one.	

Chapters	 2	 and	 3	 in	 their	 present	 form	 were	 published	 in	 the	 Journal	 of	 Hydrology	 in	

December	2015	(Petkovic	and	Kummerow,	2015)	and	 Journal	of	Applied	Meteorology	and	

Climatology	in	March	2017	(Petkovic	and	Kummerow,	2017),	respectively.	

Chapter	 2	 introduces	 a	 version	 of	 the	 operational	 passive	microwave	 (PMW)	 rainfall	

algorithm	 [Goddard	 Profiling	 Algorithm	 (GPROF	 2014)]	 with	 a	 new	 overland	 scheme	

developed	 specifically	 to	 serve	 as	 a	 day-1	 rainfall	 algorithm	 for	 the	 GPM	 mission.	 This	

algorithm	was	designed	to	provide	consistent	precipitation	estimates	over	both	ocean	and	

land	across	diverse	 satellite	platforms	and	with	minor	 improvement	 serves	as	a	primary	

source	of	rainfall	estimates	for	the	entire	mission	to	the	present	day.	With	a	goal	of	building	

a	solid	foundation	for	the	study	as	a	whole,	the	performance	of	this	retrieval	is	tested	with	a	

specific	focus	on	extreme	rainfall	and	the	role	that	precipitation	regimes	may	play	in	overall	

accuracy	 of	 the	 product.	 Choosing	 a	 well-documented	 and	 record	 breaking	 event,	 a	

constellation	of	five	conically	scanning	sensors	demonstrated	an	outstanding	performance	

in	 addressing	 evolution	 of	 long-lasting	 precipitating	 scene	 at	 high	 spatial	 resolution.	

However,	findings	indicated	that,	to	a	large	extent,	strong	negative	biases	(-60%)	are	caused	

by	the	differences	between	the	expected	and	observed	ice-scattering	signals,	suggesting	that	

better	 understanding	 of	 the	 environment	 and	 its	 impact	 on	 rain	 profiles	 is	 the	 key	 for	

successful	retrievals	in	extreme	events.	
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Before	 any	 steps	 towards	 addressing	 this	 issue	 were	 taken,	 the	 study	 first	 tried	 to	

examine	whether	this	was	a	global	or	perhaps	only	a	localized	phenomenon.	Using	a	larger	

data	 sample,	 and	 an	 older	 but	 better-tested	 and	well-understood	 retrieval	 (GPROF	2010	

version	2),	 it	was	found	that	variability	 in	 ice-scattering	signal	 is	responsible	not	only	for	

significant	 biases	 in	 extreme	 events	 but	 is	 likely	 a	 major	 source	 of	 many	 of	 the	 known	

systematic	 errors	 in	 PMW	 retrieval.	 This	 was	 found	 by	 analyzing	 the	 Tropical	 Rainfall	

Measuring	 Mission	 (TRMM)	 satellite	 rainfall	 estimates	 that	 revealed	 a	 substantial	

disagreement	between	its	active	[Precipitation	Radar	(PR)]	and	passive	[TRMM	Microwave	

Imager	(TMI)]	sensors	over	certain	regions.		

Addressed	throughout	Chapter	3,	this	finding	emphasized	the	importance	of	the	cloud	

morphology	on	passive	microwave	signatures.	Seen	as	a	primary	driver	of	cloud	processes,	

the	focus	is	then	brought	to	the	synoptic	state	of	the	atmosphere	and	its	variability	over	the	

regions	 where	 passive	 (TMI)	 and	 active	 (PR)	 microwave	 retrievals	 showed	 greatest	

discrepancies	in	surface	rainfall	estimates.	The	variability	in	the	relationship	between	the	

ice-induced	 scattering	 signal	 and	 the	 surface	 rainfall	 was	 easily	 recognized	 and	 further	

examined	using	the	Amazon	River	and	Central	Africa	regions	as	a	test	bed.	It	is	found	that	

the	systematic	difference	seen	between	PR	and	TMI	rainfall	estimates	is	well	correlated	with	

both	the	precipitating	system	structure	and	the	level	of	its	organization.	Using	radar	profiles	

to	group	raining	scenes	into	three	broad	but	distinct	organizational	categories	revealed	that	

relative	to	the	PR,	deep-organized	systems,	such	as	MCSs	in	West	Africa	and	the	Sahel,	are	

typically	 overestimated	by	PMW	retrieval	while	 the	 shallower	ones,	 commonly	observed	

over	Amazon	region,	are	underestimated.	Results	suggest	that	the	storm	organization	level	

can	 explain	 up	 to	 50%	 of	 the	 regional	 systematic	 difference	 between	 the	 two	 sensors.	
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Because	of	its	potential	for	retrieval	improvement,	the	ability	to	forecast	the	level	of	systems	

organization	is	then	tested.	The	state	of	the	atmosphere	is	found	to	favor	certain	storm	types	

when	 constrained	 by	 CAPE,	 wind	 shear,	 dewpoint	 depression,	 and	 vertical	 humidity	

distribution	–	variables	found	to	be	capable	of	explaining	up	to	40%	of	climatological	biases.	

This	offered	an	effective	solution	for	reducing	the	uncertainties	of	PMW	rainfall	estimates	

presented	in	Chapter	2.	Implementation	of	this	solution	into	the	latest	GPM	PMW	algorithm	

is	presented	and	assessed	in	the	last	part	of	the	study.	

In	 Chapter	 4,	 the	 latest	 version	 of	 GPM	 operational	 retrieval	 for	 the	 GMI	 sensor	 is	

modified	 to	 allow	 both	 the	 observed	 vector	 and	 Bayesian	 a	 priori	 content	 to	 carry	

information	on	atmospheric	conditions.	Qualitative	assessment	of	the	information	content	

offered	to	the	retrieval	and	detailed	analysis	of	the	retrieving	process	were	set	to	provide	

full	 understanding	 on	 how	properties	 of	 no	 radiometric	 signatures	 (e.g.,	 CAPE	 and	wind	

shear)	 reduced	 the	 gap	 between	 assumed	 and	 observed	 variability	 in	 the	 relationship	

between	the	brightness	temperature	and	observed	rainfall.	

Chapter	 5	 summarizes	 the	 research	 objectives,	 the	 key	 findings	 of	 the	 three	 content	

chapters,	and	offers	a	vision	of	a	future	work	that	builds	on	the	results	of	this	study.	
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CHAPTER	2		

	

PERFORMANCE	OF	THE	GPM	PASSIVE	MICROWAVE	RETRIEVAL	IN	THE	BALKAN	FLOOD	

EVENT	OF	2014		

 
 
	

2.1	Background	and	Introduction	

Observations	 of	 precipitation	 are	 an	 important	 focus	 of	water	 resource	management.	

According	 to	 the	 fifth	 assessment	 report	 of	 IPCC	 working	 group	 one	 (IPCCAR5	 WG1),	

observations	 and	 model-projected	 future	 changes	 both	 indicate	 increases	 in	 extreme	

precipitation	 associated	 with	 climate	 change.	 This	 is	 supported	 by	 analysis	 of	 observed	

annual	 maximum	 1-day	 precipitation	 that	 indicates	 a	 significant	 increase	 in	 extreme	

precipitation	globally,	with	a	median	increase	of	approximately	7%	per	1	°C	of	global	mean	

surface	 temperature	 increase	(Westra	et	al.	2013).	Expectations	are	 that	higher	moisture	

content	in	the	atmosphere	leads	to	stronger	extreme	precipitation	as	extreme	precipitation	

typically	scales	with	total	column	moisture.	These	projections,	together	with	consideration	

of	 direct	 (destruction,	 floods,	 etc.)	 and	 indirect	 (contamination,	 diseases,	 damaged	

infrastructure)	 effects	of	 extreme	precipitation,	make	 their	detection	a	priority	 in	hydro-

meteorological	observations.	

Today,	WMO1	as	well	as	national	agencies	utilize	all	available	resources	in	an	effort	to	

provide	the	best	possible	estimates	of	rain	and	snow	accumulations.	Satellite	products	play	

                                                
1 See the list of acronyms 
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an	integral	role	in	this	scheme,	particularly	in	areas	that	are	not	well	instrumented.	Relying	

largely	 on	 passive	 microwave	 measurements,	 significant	 challenges	 exist	 due	 to	 poor	

temporal	sampling	and	 the	 inability	of	 land	retrievals	 to	correctly	address	 these	extreme	

events	 over	 the	 areas	 where	 they	 are	 of	 the	 greatest	 interest.	 The	 launch	 of	 the	 Global	

Precipitation	Measurement	(GPM)	core	satellite	(Hou	et	al.,	2014)	offers	new	potential	 in	

precipitation	observations.	Better	reference	precipitation	from	GPM’s	dual	frequency	radar,	

together	with	 increased	temporal	sampling	provided	by	GPM	constellation	satellites	offer	

great	potential	for	capturing	extreme	events.	New,	three-hourly	observations	are	expected	

to	contribute	towards	improving	the	existing	rainfall	accumulations	and	accompanying	flood	

warnings	systems.	To	meet	these	expectations,	highly	accurate	rainfall	retrievals	are	needed	

with	sufficient	temporal	sampling	over	extended	regions.	A	significant	challenge	remains	to	

test	 whether	 the	 sometimes	 limited	 information	 content	 of	 the	 passive	 microwave	

radiometers	 can	 properly	 retrieve	 rainfall	 rates	 associated	 with	 a	 broad	 spectra	 of	

atmospheric	conditions.		

To	better	understand	the	challenges	of	retrieving	precipitation	over	land	from	passive	

microwave	 algorithms,	 aspects	 of	 the	 physical	 basis	 and	 architecture	 of	 the	 retrieval	 is	

reviewed.	 The	 GPM	 operational	 passive	 microwave	 rainfall	 retrieval	 –	 GPROF_2014	

(Kummerow	et	al.	2015),	was	released	after	 the	 launch	of	GPM	core	satellite	 in	February	

2014.	 It	 is	a	Bayesian	retrieval	that	utilizes	ground	radar	observations	to	relate	observed	

brightness	 temperatures	 (Tbs)	 to	 surface	 rainfall	 rates.	 To	 accomplish	 this,	 an	 a	 priori	

database	 was	 created	 of	 coupled	 NMQ2	 (Zhang	 et	 al.	 2011)	 precipitation	 rates	 and	

                                                
2 National Mosaic and Multi-Sensor Quantitative Precipitation Estimation 
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corresponding	Tbs	(for	each	instrument	in	the	GPM	constellation).	The	retrieval	uses	Bayes’	

theorem	 to	 relate	 the	 Tb	 observation	 vector	 y	 to	 the	 rainfall	 profile	 x	 if	 an	 a	 priori	

distribution	of	x	is	known:	

Pr(x	|	y)	=	Pr(x)	x	Pr(y	|	x)		 	 	 	 	 	 (2.1)	

where	Pr(x)	 is	 the	probability	of	observing	a	certain	 rain	profile	x,	and	Pr(y|x)	 is	 the	

probability	 of	 observing	 the	 y	 vector	 for	 a	 given	 profile	 x.	 This	 can	 also	 be	 cast	 in	 the	

framework	of	an	“expected	value”	problem	as	shown	in	equation	(2.2)	were	the	distances	

between	 the	 observed	 and	 database	 Tb	 vectors	 are	 used	 to	 assign	 weight	 to	 individual	

database	entries.	This	approach	allows	physical	and	consistent	retrievals	across	different	

sensors,	providing	a	statistically	“expected”	rainfall	rate	x:	

	 	 	 (2.2)	

where	 xi	 represents	 all	 database	 profiles,	 y	 is	 the	 observation	 vector,	 H(xi)	 is	 the	

simulated	 observation	 vector	 corresponding	 to	 profile	 xi	 with	 H	 being	 the	 observation	

operator,	O	and	S	are	the	observation	and	model	error	covariance	matrices,	respectively,	

while	A	 is	a	scalar	constant	serving	as	 the	normalization	 factor	 (Kummerow	et	al.	2001).	

While	this	is	usually	advantageous	for	the	purpose	of	generating	robust	rainfall	estimates,	it	

may	not	be	optimal	 for	extreme	rain	events	 that	are	not	well	 represented	 in	 the	a	priori	

(Pr(x))	 database.	 The	 problem	 of	 correctly	 retrieving	 “extremes”	 from	 a	 Bayesian	

methodology	 therefore	depends	upon	the	extent	 that	 the	scheme	can	 identify	 the	correct	

extreme	cases	in	the	database	and	the	extent	to	which	the	scheme	does	not	overly	average	
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database	entries	towards	the	mean	of	the	distribution.	Both	of	these	factors	depend	upon	

the	information	content	of	the	Tb	signal	itself.	

While	the	radiative	properties	of	water	are	well	understood,	the	signal	is	dramatically	

different	over	land	and	ocean.	Over	the	oceans,	a	low	emissivity	surface	provides	significant	

contrast	 between	 the	 radiatively	 cold	 background	 and	 warm	 precipitation	 signatures.	

Unfortunately,	this	is	not	the	case	over	the	land	where	high	emissivity	of	the	surface	and	its	

large	 variability	 mask	 atmospheric	 emission	 signatures	 and	 make	 precipitation	 nearly	

indistinguishable	 from	 the	 background.	 To	 overcome	 this	 problem,	 passive	 microwave	

retrievals	 over	 land	 focus	 on	 ice	 scattering	 signals,	 which	 are	 less	 well	 related	 to	

precipitation	 but	 more	 easily	 detected	 over	 a	 warm	 surface	 background.	 This	 limited	

information	content	weakens	the	linkage	between	satellite	measurements	and	the	a	priori	

database	and	exposes	the	algorithm	to	excessive	averaging.	The	key	for	successful	rainfall	

rate	estimate	over	land	is	therefore	a	good	understanding	of	the	relationship	between	the	

amount	 of	 ice	 in	 the	 cloud	 and	 surface	 rainfall	 rate.	 Currently,	 the	 a	 priori	 database	 is	

constructed	using	one	year	of	ground	radar	observations	from	US	NEXRAD	radar	network	

matched	 to	Tbs	 from	 satellite	 overpasses.	 The	database	 is	 stratified	by	 total	 precipitable	

water	 (TPW)	 and	 land	 surface	 temperature	 obtained	 from	 global	 reanalysis	 data.	 This	

provides	a	broad	set	of	profiles	for	retrieving	a	wide	range	of	rainfall	rates,	including	those	

above	50	mm	h-1,	but	it	implicitly	imposes	a	mean	relationship	between	ice	aloft	and	surface	

precipitation	which	is	representative	of	the	continental	United	States.	Strong	evidence	exists,	

however,	that	the	ratio	of	ice	to	rain	is	regionally	dependent	and	sensitive	to	environmental	

forcing,	 such	 as	 atmospheric	 stability,	 which	 is	 often	 far	 from	 average	 in	 extreme	

precipitation	events.	



	 10	

The	primary	goal	of	this	study	is	to	explore	GPM’s	current	passive	microwave	retrieval	

(GPROF_2014.V1-4)	 performance	 in	 an	 extreme	 precipitation	 event	 and	 provide	 deeper	

understanding	of	its	potential	in	the	case	of	extreme	events.	As	a	second	goal	the	study	seeks	

to	 quantitatively	 evaluate	 the	 differences	 between	 satellite	 retrieval	 and	 ground	

measurements	in	extreme	precipitation	conditions	to	gain	a	better	understanding	of	their	

relationship.	

A	case	of	the	Balkan	floods	of	2014	(described	in	following	section)	is	seen	as	a	perfect	

example	 of	 an	 event	 with	 microphysics	 that	 does	 not	 correspond	 to	 typical	 conditions	

although	its	rain	rates	are	well	within	the	database	range.	This	makes	it	ideal	for	performing	

a	comparison	between	retrieved	satellite	accumulations	and	ground	references	to	provide	

information	on	GPROF	skills	under	non-typical	atmospheric	condition.	Available	gauge	and	

ground	radar	network	over	this	region	(OPERA,	see	section	2.3)	allow	for	understanding	of	

how	each	dataset	interprets	the	flood	event.	

Important	 environmental	 and	 synoptic	 scale	 characteristics	 of	 the	 rain	 systems	 are	

presented	in	the	following	section.	A	more	detailed	description	of	datasets	used	in	this	study	

is	given	in	Section	2.3,	while	results,	discussion,	and	conclusions	are	provided	in	Sections	2.4	

and	2.5.	

2.2.	Events	description	

This	study	chose	two	3-day	rainfall	events	over	the	Balkan	region.	An	extreme	and	a	more	

typical	Balkan	rain	events	were	selected.	
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2.2.1	Flood	event	(14th	–	16th	May	2014)	

The	extreme	precipitation	event	(hereafter	–	“Balkan	flood”	or	“flood	event”)	focuses	on	

a	3-day	period	that	started	at	0000	UTC	14	May	2014,	spread	over	a	significant	area	(see	Fig.	

2.1)	in	the	central	Balkan	and	affected	the	countries	of	Serbia,	Bosnia	and	Herzegovina	(BiH),	

and	 Croatia.	 During	 this	 event,	 historical	 readings	 at	 both	 rain	 and	 river	 gauges	 were	

recorded	throughout	the	region	that	was	devastated	by	floods	and	mudslides.	A	number	of	

fatalities	and	greater	 than	2	billion	dollars	 in	damage3	were	directly	caused	by	 this	 flood	

event.	The	area	itself	contains	two	catchments:	1)	the	Adriatic	–	the	most	southern	15%	of	

the	box	shown	in	Fig.	2.1	that	did	not	flood,	and	2)	the	Black	Sea	–	upper	85%	of	the	box	with	

2	major	rivers	(Danube	and	Sava)	and	a	dozen	regional-size	basins	where	the	majority	of	

flooding	occurred.	The	study	area	(15°-21°E,	42-47°N)	is	defined	by	the	flood	region	and	its	

Black	Sea	upstream	catchment.	It	ranges	in	elevation	from	100	m	in	the	predominantly	flat	

plains	to	the	north,	to	1700	m	in	steep	elevated	terrain	to	the	south	of	45°	N	latitude.	

	

                                                
3 No official estimate available at the time of writing this paper  
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Figure	2.1	Balkan	peninsula.	Boxed	area	marks	the	flood	region	limits.	Shadings	denote	OPERA	network	
coverage:	shaded	in	black	-	areas	beyond	radar	range,	shaded	in	white	-	no	radar	coverage	due	to	beam	
blockage	of	high	terrain.	River	names	are	given	in	blue.	Yellow	marker	indicates	sounding	location.	

2.2.1.1	The	synoptic	environment	and	climatology	

Two	weeks	prior	the	Balkan	flood	event,	the	region	experienced	localized	thunderstorms	

(May	1st	 -	 3rd)	 and	 the	passage	of	 a	 cyclone	 from	 the	west	Mediterranean	 (May	5th)	 that	

brought	 light	 to	moderate	 rain	 to	 the	 region.	A	warm	air	mass	 and	higher	 temperatures	

followed	on	May	7th	–	12th,	which	contributed	to	an	increase	in	melting	of	the	remaining	snow	

accumulation	 in	 the	mountains.	 This	 consequently	 resulted	 in	 increased	 river	 flows	 and	

moderately	saturated	soil.	The	period	from	May	12th	to	14th	was	characterized	by	clear	and	

warm	weather	during	which	a	large	area,	including	most	of	central	and	southeast	Europe,	

experienced	 a	 drop	 in	 the	 geo-potential	 height.	 The	 trough	 formation	 at	 the	 surface	was	

followed	 by	 a	 surface	 cutoff	 Low	 on	 May	 15th	 over	 the	 central	 Balkan,	 which	 was	

accompanied	 by	 extremely	 strong	 and	wide	 500	mb	 level	 depression	whose	 center	was	

positioned	over	the	central	and	western	Balkan.	The	slow	moving	Low	had	its	center	close	

to	the	flood	region	causing	intense	precipitation	and	a	decrease	in	temperature	in	the	period	
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from	May	14th	to	May	18th.	A	strong	positive	west-east	gradient	of	specific	humidity	at	850	

mb	 was	 present	 throughout	 the	 event,	 while	 the	 500	mb	 values	 remained	 uniform	 and	

relatively	low.	The	majority	of	precipitation	occurred	between	May	14th	and	May	17th	with	

rain	 at	 lower	 elevation	 and	 snow	 generally	 above	 1200	 m.	 While	 a	 mean	 monthly	

temperature	over	 the	area	was	only	1	 °C	below	 the	climatological	mean,	 the	event	mean	

temperature	was	7-8	°C	lower.	

2.2.1.2	Snow,	Rain	and	River	gauge	readings	

The	majority	of	rain	and	river	gauges	in	the	area	of	interest	recorded	historical	levels.	

Climatological	monthly	means	were	exceeded	by	130-400%	at	all	rain	gauges	in	central	and	

western	Serbia	and	central	and	north	BiH	while	3-day	accumulations	exceeded	the	long-term	

mean	May	monthly	values.	Five	climatological	rain	gauges	in	Serbia	reported	historical	levels	

for	24-hour	 accumulations.	The	 greatest	 3-day	 accumulation	 at	 any	 station	was	209	mm	

while	most	of	the	area	received	approximately	1/4th	of	its	average	annual	precipitation	in	

only	72	hours.	According	to	Gumbel’s	method	(Gumbel	1958,	Wolf	1966)	of	extreme	value	

distribution,	the			3-day	rainfall	accumulation	had	return	period	ranging	between	100	-	1000	

years	throughout	most	of	the	flood	region.	Major	rivers	(i.e.	Sava,	Drina,	Bosna)	reached	200-

300%	 of	 their	monthly	 climatological	marks.	 On	May	 15th	 the	maximum	 temperature	 at	

elevations	above	1500	m	remained	below	0°	C,	with	some	stations	exceeding	60	cm	of	new	

snow	accumulations	(e.g.	Kopaonik	mountain:	61cm)	during	the	24-hour	time	interval.	

2.2.2	Non-Flood	event	(1st	–	3rd	May	2014)	

A	3-day	period	(hereafter:	non-flood	event),	starting	at	0000	UTC	1	May	2014,	is	used	to	

study	more	average	conditions	over	the	same	5°	x	6°	area	defined	in	the	case	of	the	flood	

event.	The	event	was	chosen	to	be:	1)	a	72-hour	period	of	frequent	precipitation,	2)	within	
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proximity	(a	couple	weeks)	to	the	flood	event,	and	3)	characterized	by	typical	precipitation	

regimes	for	the	season.	This	provides	a	strong	contrast	in	rain	intensity,	environment,	and	

system	structures	(microphysics	and	thermodynamics)	between	the	two	events.	

2.2.2.1	The	synoptic	environment	and	climatology	

On	May	1st,	at	500	mb,	the	formation	of	a	trough	over	the	central	Europe	occurred	as	a	

consequence	 of	 an	 easterly	 propagating	wave	 that	 simultaneously	 formed	 a	 strong	 ridge	

aligned	with	the	east	Atlantic	coast.	As	the	trough	deepened,	a	cutoff	Low	occurred	over	the	

Apennine	peninsula	on	May	2nd.	This	was	followed	by	the	formation	of	a	surface	 low	and	

cyclonic	circulation	over	most	of	the	Balkan	region	on	May	3rd.	Under	the	influence	of	a	cold	

air	mass	advected	from	the	north-northwest	and	moisture	coming	from	the	southwest	the	

region	 experienced	 scattered	 precipitation	 within	 the	 first	 48	 hours	 followed	 by	 rain	

produced	by	a	more	organized	mid-latitude	system	on	May	3rd.	In	contrast	to	the	flood	event,	

no	 particularly	 strong	 gradients	 in	 specific	 humidity	 were	 observed.	 Daily	 rain	

accumulations	and	temperature	values	were	close	to	their	climatological	values,	with	neither	

moisture	nor	the	persistence	of	the	low	being	atypical	for	this	time	of	the	year.		

2.3.	Data.	

The	 study	 utilizes	 remote	 and	 in	 situ	 rainfall	 measurements	 from	 gauge	 and	 radar	

networks	as	well	as	the	GPM	constellation	of	satellite	radiometers.	Each	dataset	is	available	

in	near	real	time	and,	with	the	exception	of	OPERA	products,	 is	used	in	wide	spectrum	of	

applications.	
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2.3.1	Operational	Program	for	the	Exchange	of	RADAR	information	–	OPERA	

Within	EUMETNET,	 the	operational	 program	 for	weather	 radar	networking	 (OPERA),	

and	 its	 radar	data	 center	have	been	 in	operation	producing	network-wide	 radar	mosaics	

from	volumetric	data	since	2011	(Huuskonen	et	al.	2013).	The	radar	network	spreads	over	

most	 of	 Europe	 and	 exploits	 more	 than	 130	 weather	 radars	 of	 different	 types	 and	

frequencies	distributed	in	21	European	countries.	

This	study	utilizes	OPERA’s	near	surface	rainfall	rate	and	maximum	reflectivity	products,	

both	provided	on	2	km	x	2	km	grid	at	15	min	temporal	resolution.	Within	the	flood	region	

these	composite	 fields	are	 formed	by	combining	measurements	 from	five	Doppler	radars	

(see	 Table	 2.1)	 in	 and	 close	 to	 the	 region,	 working	 at	 C-	 and	 S-band	 single	 polarized	

frequencies.	Their	coverage	is	somewhat	limited	due	to	beam	blockage	along	the	mountain	

range	 in	 the	 southern	 flood	 region	but	 still	 accounts	 for	 approximately	90%	of	 the	 flood	

catchment	area	 (the	Black	Sea	catchment).	 In	Fig.	2.1	black	shading	depicts	 radars	 range	

while	regions	suffering	from	terrain	beam	blockage	are	shown	in	gray.	

Table	 2.1.	 List	 of	 radars	 used	 to	 create	 OPERA’s	 composites,	 their	 IDs,	 coordinates	 and	 band	 of	
operation.	

Radar	name	 Country	 Radar	ID	 WMO	ID	 Lat/Lon	
[°N]/[°E]	

Band	 Range	
[km]	

Lisca	 Slovenia	 LJ41	 14024	 46.06/15.28	 C	 250	
Maly	Javornik	 Slovak	Rep.	 SQ41	 12921	 48.25/	17.15	 C	 240	
Bilogora	 Croatia	 RH42	 14256	 45.88/	17.20	 S	 240	
Osijek	 Croatia	 RH43	 14280	 45.50/	18.56	 S	 240	

Timisoara	 Romania	 RDTM	 13169	 45.77/	21.25	 S	 230	

Currently,	the	OPERA	network	rain	rates	are	based	on	the	traditional	Marshall-Palmer	Z-

R	relationship	only	(Marshall	and	Palmer	(1948):	Z	=	200	R1.6).	Despite	the	potential	lack	of	

fidelity	in	representing	local	gauge	accumulation,	this	provides	consistency	across	different	

regionally	 operated	 systems	 and	 allows	 for	 better	 understanding	 of	 comparison	 results	
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when	the	product	is	compared	against	other	independent	datasets.	It	is	worth	mentioning	

that	a	number	of	storm-specific	factors	may	contribute	to	overall	uncertainty	of	the	OPERA	

dataset.	Some	of	them	include	Z-R	variability	within	the	storm,	the	radar	signal	attenuation,	

and	the	highly	variable	precipitation	field	(Moszkowicz	et	al.	1994;	Krajewski	et	al.	2003;	

Miriovsky	 et	 al.	 2004;	 Lee	 and	 Zawadzki	 2005;	 Berne	 and	 Andrieu	 2005).	 Although	

addressing	this	problem	is	among	top	priorities	of	the	OPERA	project	(Sandford	and	Gaussiat	

2011),	due	to	the	amount	of	processed	data	and	radar	type	variability	across	the	network,	in	

its	current	stage	OPERA	project	does	not	quantify	contributions	from	these	error	sources.	

However,	it	is	expected	that	overall	uncertainty	is	largely	dominated	by	the	assumption	of	a	

constant	Marshall-Palmer	DSD.	To	ensure	the	best	possible	quality,	OPERA	data	in	this	study	

are	 filtered	 using	 accompanying	 quality	 control	 flags,	 which	 resulted	 in	 data	 sample	

reduction	of	approximately	10%	but	 increased	 the	confidence	of	ground	clutter	 removal.	

Missing	 pixels	 in	 the	 radar	 data	 set	 are	 replaced	 by	 interpolating	 between	 the	 closest	

available	(in	time)	measurements	at	the	given	grid	point.	This	resulted	in	negligible	changes	

in	 the	 results	 (less	 than	 0.1%	 of	 rain	 accumulation	 over	 the	 domain).	 During	 manual	

inspection	of	the	data	set,	Local	Area	Network	(LAN)	interference,	known	to	be	often	present	

in	OPERA	products	 (Lopez	 2014),	 is	 noticed	 for	 one	 radar	 (Maly	 Javornik)	 in	 the	 Slovak	

Republic.	These	spurious	retrievals	are	replaced	by	interpolating	values	of	interference-free	

time-adjacent	 pixels.	 In	 most	 cases	 the	 adjacent	 pixels	 had	 value	 of	 zero	 which	 overall	

resulted	in	negligible	changes	to	the	3-day	rainfall	accumulations.	

	



	 17	

2.3.2	Satellite	data	-	GPROF	2014	

Five	conically	scanning	sensors	in	the	GPM	constellation	[AMSR2	(Shimoda	2005),	GMI	

(Hou	et	al.	2014),	and	SSMIS	on	board	of	F16,	F17	and	F18	satellites	operated	by	the	United	

States	Air	Force	Defense	Meteorological	Satellite	Program	(Kunkee	et	al.	2008)]	are	utilized	

to	provide	satellite	data.	Rainfall	rates	 from	29	overpasses	during	the	 flood	event	and	28	

overpasses	during	the	average,	non-flood,	event	over	the	region	of	interest	are	obtained	from	

GPROF_2014	passive	microwave	retrieval	at	spatial	resolution	corresponding	to	37	GHz	of	

each	 sensors	 FOV	with	 an	 average	 temporal	 sampling	 of	 the	 event	 of	 approximately	 2.1	

hours.	 Based	 on	 the	 observations	 of	 the	 flood	 event	 and	 simulated	 channel	 and	 forward	

model	errors,	retrieval	error	is	estimated	to	be	less	than	3%	for	applications	in	this	study.	

2.3.3	Surface	gauge	data	

Surface	24-hour	rain	accumulations	from	25	rain	gauges	located	within	the	flood	region	

are	used	as	a	ground	reference	in	this	study.	Table	2.2	lists	gauge	accumulations	as	given	in	

SYNOP	 reports	 while	 their	 locations	 are	 shown	 in	 Fig.	 2.2	 (blue	 triangles).	
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Figure	2.2	Flood	 region	with	 radar	 coverage	 (in	 gray)	and	distribution	of	 ground	 rain	gauges	 (blue	
triangles	 labeled	 by	 station’s	 WMO	 IDs)	 used	 in	 the	 analysis.	 Yellow	 marker	 indicates	 sounding	
location.	

Although	 rain	 gauge	 observation	 is	 generally	 seen	 as	 the	 most	 accurate	 precipitation	

measurement,	the	complexity	and	amplitude	of	 its	error	requires	rigorous	quality	control	

before	data	can	be	used	for	scientific	purposes.	SYNOP	rain	gauge	data	can	be	affected	by	

both	systematic	and	random	errors	(Lopez	2013).	Systematic	errors	are	usually	 linked	to	

raindrops	 splashing,	 high	 wind	 conditions,	 the	 wetting	 of	 the	 gauge	 walls,	 and	 the	 loss	

through	evaporation.	Random	errors	are	mainly	caused	by	the	discrete	nature	of	the	time	

sampling	and	by	small-scale	variations	of	 the	 turbulent	airflow	around	 the	gauge.	 In	 this	

study	 all	 chosen	 gauges	 are	 maintained	 by	 National	 Hydro-meteorological	 Services	

undergoing	 the	 standard	quality	 control	 procedures	 recommended	 in	 terms	of	 the	 latest	

global	standard	by	WMO.	The	selected	subset	of	the	gauge	network	is	chosen	to	ensure	the	

best	quality	confidence	and	spatio-temporal	coverage	over	the	region.	During	the	extreme	

event	meteorological	conditions	were	such	that	significant	errors	are	not	expected	(e.g.	no	

high	winds	are	detected	throughout	the	region	while	precipitation	was	continuous).	On	the	

other	hand,	the	isolated	convection	seen	during	the	non-flood	event	may	have	easily	resulted	



	 19	

in	significant	random	errors	in	SYNOP	reports.	These	errors	are,	however,	expected	to	be	

relatively	 small	 in	 the	24-hour	 accumulation	due	 to	 the	 averaging	over	4	 to	8	 individual	

measurements	 (Ciach	 2003).	 No	 significant	 differences	 in	 surrounding	 rain	 gauges	 (not	

included	in	this	study)	are	reported	for	the	flood-event	(no	such	a	report	is	expected	for	the	

non-flood	event	due	to	its	mediocrity).	Three	to	six	hourly	gauge	readings	are	verified	using	

monthly	reports	of	national	weather	centers	in	the	region	and	by	comparing	the	reports	from	

surrounding	rain	gauges	(non-SYNOP	ones).	Missing	data	are	found	at	one	gauge	location	

(Banja	Luka,	WMOid:	14542)	for	the	first	day	of	the	flood	event	and	therefore	this	gauge	is	

used	in	daily	accumulation	analysis	only.	
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Table	2.2.	List	of	ground	gauge	station	with	24-hour	and	3-day	accumulations	for	flood	and	an	average	
event	used	to	compare	against	OPERA’s	composites	and	satellite	data.	

Rain	gauge	
Accumulation	[mm]	

Flood	event	 Average	event	

Station	name	 WMO#	 lat/lon	[°]	
May			

Total	
May			

Total	
14th	 15th	 16th	 1st	 2nd	 3rd	

Hungary	
Szentgotthard	 12910	 46.92/16.32	 0.0	 1.3	 16.0	 17.3	 0.0	 0.0	 1.3	 1.3	
Zalaegerszeg	 12915	 46.87/16.80	 0.0	 3.6	 12.4	 16.0	 0.0	 1.2	 2.7	 3.9	
Nagykanizsa	 12925	 46.45/16.97	 0.0	 1.2	 17.8	 19.0	 0.0	 0.7	 6.8	 7.5	
Siofok	 12935	 46.92/18.05	 0.0	 0.0	 8.7	 8.7	 0.0	 4.1	 5.7	 9.8	
Pecs/Pogany	 12942	 46.00/18.23	 12.0	 35.0	 31.0	 78.0	 2.2	 2.9	 28.9	 34.0	
Paks	 12950	 46.58/18.85	 7.0	 9.8	 4.2	 21.0	 0.0	 2.9	 16.1	 19.0	
Baja	 12960	 46.18/19.02	 18.0	 20.0	 4.0	 42.0	 0.2	 1.7	 31.5	 33.3	
Kecskemet	 12970	 46.92/19.75	 7.0	 38.0	 1.0	 46.0	 0.0	 1.9	 13.2	 15.1	
Szeged	 12982	 46.25/20.10	 23.0	 35.7	 7.3	 66.0	 0.0	 2.3	 33.7	 36.0	
Serbia	
Palic	 13067	 46.10/19.77	 20.0	 26.4	 4.6	 51.0	 0.0	 1.4	 32.3	 33.7	
Sombor	 13160	 45.77/19.15	 21.0	 17.0	 7.0	 45.0	 1.8	 2.0	 37.5	 41.3	
Novi	S.	Rim.	 13168	 45.33/19.85	 77.0	 39.0	 28.6	 144.6	 0.0	 2.7	 30.9	 33.6	
Zrenjanin	 13173	 45.37/20.42	 55.0	 29.0	 15.0	 99.0	 5.7	 2.9	 21.7	 30.3	
Kikinda	 13174	 45.85/20.47	 27.0	 34.0	 12.5	 73.5	 0.0	 4.5	 26.0	 30.5	
Loznica	 13262	 44.55/19.23	 129.0	 71.0	 9.0	 209.0	 3.1	 2.3	 28.9	 34.3	
Sr.	Mitrovica	 13266	 45.10/19.55	 56.0	 44.0	 21.0	 121.0	 2.8	 2.2	 33.6	 38.6	
Valjevo	 13269	 44.32/19.92	 105.4	 69.0	 6.2	 180.6	 7.8	 3.4	 243	 35.5	
Beograd	 13274	 44.80/20.47	 112.6	 58.0	 17.0	 187.6	 1.5	 0.0	 23.3	 24.8	
Kragujevac	 13278	 44.02/20.92	 37.0	 43.0	 1.8	 81.8	 7.2	 0.0	 27.0	 34.2	
Sm.	Palanka	 13279	 44.37/20.95	 81.0	 49.0	 7.3	 137.3	 7.1	 0.0	 24.1	 31.2	
Croatia	
Zagreb	Maks.	 14240	 45.82/16.03	 0.0	 16.0	 13.0	 29.0	 1.1	 4.0	 11.7	 16.8	
Bilogora	 14256	 45.88/17.20	 0.1	 10.0	 26.0	 36.1	 0.7	 1.8	 18.1	 20.6	
Slavonski	B.	 14370	 45.17/18.00	 12.5	 36.0	 8.0	 56.5	 2.3	 1.8	 28.2	 32.3	
Gradiste	 14382	 45.15/18.70	 43.0	 45.0	 9.0	 97.0	 2.1	 1.8	 37.4	 41.3	
BiH	
Banja	Luka	 14542	 44.78/17.22	 -	 23	 53	 -	 2.5	 4.3	 25.2	 -	

The	 European	 Climate	 Assessment	 and	 Data	 (ECA&D)	 E-OBS	 daily	 rainfall	 dataset	

(Haylock	et	al.	2008,	Lockhoff	et	al.	2014)	is	used	for	additional	OPERA	quality	control.	This		

high-resolution	 gridded	 precipitation	 product	 is	 based	 on	 combined	 monthly	 and	 daily	

gauge	estimates	using	various	interpolation	and	kriging	techniques.	Although	only	negligible	

differences	are	seen	between	this	product	and	24-hour	gauge	accumulation	values	from	the	

25	SYNOP	gauges	used	for	this	study,	potential	errors	that	may	emerge	from	interpolation	
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techniques	(Haylock	et	al.	2008	and	Kirstetter	et	al.	2010)	do	not	qualify	 this	dataset	 for	

direct	 comparison	 with	 satellite	 and	 radar	 products.	 Techniques	 to	 overcome	 these	

problems	exist	(Lockhoff	et	al.	2014)	but	unfortunately	do	not	apply	to	the	Balkan	region	

and	quality	of	available	data.	Therefore,	E-OBS	dataset	is	used	here	only	in	the	process	of	

removing	OPERA	radar	ground	clutter	and	LAN	interference	(Section	2.3.1).	

2.4.	Data	set	inspection		

To	allow	inspection	of	each	dataset	and	perform	their	inter-comparisons,	both	satellite	

and	radar	data	are	first	uniformly	gridded	into	0.2	km	grids	over	the	study	area	at	the	times	

of	observations.	Rainfall	is	then	accumulated	at	each	grid	point	assuming	that	rain	rates	are	

constant	between	available	measurements.	In	order	to	match	OPERA’s	temporal	sampling,	

the	time	of	the	satellite	overpass	is	rounded	to	the	closest	15min.	This	resulted	in	a	virtual	

overlap	of	two	satellite	overpasses	(GMI	and	F16	on	May	16th	4:00	UTC)	that	in	reality	were	

6	 minutes	 apart.	 Comparison	 between	 satellite	 and	 radar	 accumulations	 are	 made	 only	

where	satellite	measurements	exist.	

2.4.1	Ground	radar	to	gauge	comparisons	

Gauge	 network	 observations	 of	 both	 the	 extreme	 and	 average	 3-day	 raining	 events	

(described	 in	 Section	 2.2)	 are	 used	 to	 evaluate	 remotely	 sensed	 products.	 Despite	 the	

availability	of	close-to-instantaneous	measurements	at	a	number	of	the	gauge	locations,	(e.g.	

tipping	 bucket	 measurements),	 their	 direct	 comparison	 to	 satellite	 estimates	 would	 be	

sparse	 and	 highly	 sensitive	 to	 spatial	 variability	 of	 the	 rainfall	 field	 and	 random	 errors.	

Therefore,	rather	than	comparing	satellite	FOV	to	the	gauge	point	measurements	directly,	a	

two-step	approach	is	used.	In	the	first	step,	ground	radars	are	compared	against	collocated	
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gauge	measurements.	In	the	second	step	(described	in	Section	2.4.2)	satellite	estimates	are	

compared	to	ground	radars.	

Figure	 2.3	 shows	 72-hour	 accumulation	maps	 for	 the	 extreme	 (May	 14th	 –	 16th)	 and		

non-extreme/average	(May	1st	-	3rd)	3-day	events	(panels	a	and	b,	respectively).	The	color	

scale	depicts	radar	estimates	across	the	region,	while	gauge	readings	are	labeled	next	to	the	

station	locations	(details	given	in	Table	2.2).	Scatter	plots	of	daily	accumulations	over	the	

area	for	the	same	two	events	are	given	in	Fig.	2.4.	

 

Figure	2.3	A	3-day	rainfall	accumulations	over	the	flood	region	for	the	Balkan	flood	event	(May	14th	–	
16th)	–	(a),	and	the	average	(non-flood)	3-day	period	(May	1st	–	3rd)	–	(b).	Color	bar	corresponds	to	the	
OPERA	measurements;	ground	rain	gauges	readings	are	labeled	next	to	their	locations	(black	triangles)	
with	more	details	in	Table	2.2;	blue	circles	point	radar	locations.	
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Figure	2.4	Comparison	between	25	gauge	and	OPERA	24-hour	rainfall	accumulations	(diamonds	–	May	
14th,	triangles	–	May	15th,	crosses	–	May	16th)	in	the	Balkan	flood	event	–	panel	a,	and	in	the	average	
(non-flood)	3-day	period	(May	1st	–	3rd)	–	panel	b.	Note	log-axes	on	both	plots.	

Analyses	show	that	the	ground	radars	tend	to	underestimate	gauge	accumulations	by	a	

factor	of	2	during	the	flood	event	but	overestimate	the	same	gauges	by	a	factor	of	1.3	during	

the	average	non-flood	event.	Similar	result	for	May	2012	and	May	2014	is	reported	in	Lopez	

2014	 who	 compared	 the	 OPERA	monthly	 mean	 products	 against	 ground	 gauges	 in	 this	

region.	If	rain	gauges	are	treated	as	more	accurate	measurements,	the	fact	that	OPERA	radar	

retrieval	assumes	constant	particle	size	distribution	(i.e.	Marshall-Palmer	with	Z=	200R1.6)	

during	both	events	implies	that	the	difference	in	the	precipitation	regimes	(e.g.	DSDs)	is	the	

key	variable	to	alter	the	radar	to	gauge	ratio.	This	is	further	corroborated	by	the	fact	that	

radar	to	gauge	biases	are	relatively	constant	over	the	wide	range	of	rain	rates	during	the	

flood	event	characterized	by	tropical-like	environment	as	evident	from	the	mean	00	UTC	and	

12	UTC	Belgrade	soundings	shown	in	Fig.	2.5.	Conversely,	variations	 in	the	bias	on	daily-

scales	are	highly	correlated	with	precipitation	type	during	the	average	non-flood	event.	In	
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Fig.	 2.4b	 during	 the	 first	 two	 days,	 the	 bias	 is	 opposite	 to	 that	 found	 on	 the	 third	 day,	

following	 the	 change	 in	 the	 precipitation	 regime	 from	 isolated	 intense	 storms	 to	 a	more	

organized	mesoscale	convection	(see	Section	2.2).	Studies	such	as	Petersen	et	al.	(1999)	and	

Cifelli	et	al.	(2011)	provide	detailed	understanding	of	drawbacks	related	to	the	use	of	radar	

products	 that	 rely	upon	average	Z-R	relationship	(200R1.6)	 in	 “tropical-like”	environment	

conditions	seen	during	the	Balkan	floods	event	and	a	number	of	Front	Range	flooding	events	

in	Colorado.	Therefore,	based	on	25	gauges	collocated	with	radar	measurements,	an	adjusted	

Z-R	relationship	for	each	24-hour	interval	of	the	two	events	was	calculated	(see	Table	2.3)	

and	used	to	form	the	gauge-adjusted	OPERA	estimates.	For	simplicity,	this	calculation	keeps	

b,	 the	 exponent	 of	 the	 original	 Marshall-Palmer	 Z-R	 relationship	 (Z=aRb),	 constant.	

Significantly	lower	values	of	coefficient	a	during	the	flood	event	(Table	2.3)	imply	that	the	

two	events	were	characterized	by	different	precipitation	regimes.	Sharma	et	al.	2009	show	

that	 an	 increase	 of	 the	 coefficient	 a	 is	 associated	 with	 transitioning	 from	 stratiform	 to	

convective	regimes.	Also,	the	coefficients	of	adjusted	Z-R	relationship	during	the	flood	event	

are	 similar	 to	 those	used	 in	Gochis	 et	 al.	 2014	 for	 tropical-like	 environment	 (Fig.	 2.5)	 to	

match	the	Front	Range	flooding	regimes	in	Colorado.	
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Figure	 2.5	 Flood	 event	 mean	 sounding	 for	 Belgrade	 (WMOid:	 13275;	 for	 location	 see	 Fig.	 2.1).	
Temperature	(blue)	and	dew	point	temperature	(green)	profiles	represent	the	average	of	3-day	00UTC	
(left)	and	12UTC	(right)	soundings	in	period	14th	–	16th	May	2014.	

	

	

Table	2.3.	OPERA	to	gauge	ratio	and	corresponding	gauge	adjusted	Z-R	relationship	for	the	two	72-hour	
events.	Calculations	are	made	using	Marshall-Palmer	DSD	parameter	constant	(Z=200R1.6)	and	basing	
the	adjustment	on	comparison	of	rain	accumulations	between	25	gauge	stations	and	coincide	OPERA	
radar	estimates.	

Period	 OPERA/gauge	
ratio	

Adjusted	Z-R	
relationship	

Balkan	flood	event	
14th	 0.52	 70	R1.6	
15th	 0.46	 58	R1.6	
16th	 0.56	 79	R1.6	

14th	–	16th	 0.52	 70	R1.6	
Average	non-flood	event	

1st		 3.0	 1160	R1.6	
2nd		 3.6	 1553	R1.6	
3rd		 0.71	 		115	R1.6	

1st	–	3rd		 1.12	 		240	R1.6	
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2.4.2	Satellite	constellation	to	ground	radar	comparisons	

Five	microwave	imagers	made	29	overpasses	over	the	region	during	the	3-day	extreme	

precipitation	 event	 (May	 14th	 –	 16th)	 and	 28	 overpasses	 during	 the	 regular	 non-flood		

event	(May	1st	–	3rd).	Visual	inspection	of	each	overpass	rain	rate	field	in	its	native	spatial	

resolutions	provided	qualitative	comparisons	between	satellite	and	ground	radar	estimates.	

An	example	is	given	in	Fig.	2.6	where	corresponding	measurements	of	OPERA	network	(Fig.	

2.6	 top)	 and	GMI	 (Fig.	 2.6	 bottom)	 sensor	 for	 2015	UTC	 15	May	 2014	 are	 shown.	 Black	

shaded	regions	are	the	same	as	 in	Fig.	2.1	while	the	satellite	swath	is	shaded	in	gray	and	

outlined	by	a	black-yellow	line.	
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Figure	2.6	Top:	OPERA	composite	surface	rain	rate	for	2015	UTC	15	May	2014.	Black	shading	marks	
radars	 range;	 black-white	 line	outlines	 flood	 region;	white	 shading	with	black-yellow	 limits	denote	
coincided	GMI	swath.	Bottom:	Corresponding	GPROF	(GMI	orbit	1200)	near	surface	rain	rate	
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If	one	focuses	on	the	northern	half	of	the	flood	area	to	ensure	the	best	performance	of	the	

OPERA	radars	and	to	avoid	mountainous	regions	in	the	south,	one	can	conclude	that	satellite	

and	radar	estimates	match	very	well.	Both	precipitation	system	size	and	distribution	of	rain	

rates	are	in	good	agreement	between	the	instruments,	despite	the	fact	that	the	two	products	

come	from	sensors	that	utilize	different	vertical	sampling,	with	satellite	estimate	based	on	

atmospheric	 integrated	 column	 properties	 at	 a	 relatively	 large	 slant	 angle	 in	 contrast	 to	

radar	 beam	 volume	 sampling.	 Slant	 angle	 of	 the	 GMI	 radiometer	 results	 in	 some	

displacement	of	the	precipitation	features	edges	and	convective	cores	but	within	expected	

ranges.	A	more	detailed	examination	that	includes	regions	outside	the	flood	box,	however,	

reveals	 that	 GMI	 often	misses	 light	 rain	 rates	 (less	 than	 0.2	mm	 h-1)	 as	 well	 as	 intense	

precipitation	 cores	 associated	with	 isolated	 convection.	 The	 radiometer’s	 insensitivity	 to	

light	rain	is	expected	since	the	low	rain	rate	scenes	are	expected	to	be	radiometrically	very	

similar	to	the	non-raining	ones,	while	the	underestimation	in	the	deep	convective	cores	is	

likely	due	to	Bayesian	averaging.	Examples	of	side-by-side	comparisons	between	the	other	

four	sensors	and	OPERA	data	focusing	on	the	flood	region	only	during	the	extreme	event	are	

shown	in	Fig.	2.7.	Except	 for	 the	higher	spatial	resolution	of	 the	GMI	and	AMSR2	sensors	

relative	 to	 the	 DMSP	 sensors,	 the	 same	 conclusions	 as	 in	 the	 GMI	 case	 hold.	 Overall,	

GPROF_2014	shows	qualitatively	good	performance	in	capturing	the	spatial	variability	of	the	

rainfall	 field	 when	 compared	 to	 ground	 radar	measurements.	 The	 same	 conclusion	 was	

made	upon	examination	of	the	non-extreme	event	(not	shown	here).	
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Figure	2.7	Left	 column:	OPERA	composite	surface	rain	rates	over	 the	 flood	region	at	 the	 time	of	 the	
closest	overpasses	of	SSMIS	(onboard	F16,	F17,	F18),	GMI	and	AMSR2	sensors,	with	corresponding	orbit	
numbers:	54532,	38821,	23567,	1200,	and	10586,	respectively.	Shaded	in	white:	region	with	no	valid	
radar	retrieval.	Right	column:	corresponding	GPROF	near	surface	rain	rates.	
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Quantitative	comparisons	between	satellite-	and	ground-based	measurements	are	given	

in	Figs.	2.8	and	2.9.	Figure	2.8	depicts	timelines	of	the	area-mean	total	accumulation	over	the	

flood	region	at	15-min	temporal	resolution	for	each	dataset	during	the	flood	(panel	a)	and	

non-flood	event	(panel	b).	Satellite	observations	(black	line)	are	compared	to:	i)	collocated	

ground	radar	measurements	(red	line),	ii)	ground	radar	measurements	over	the	entire	flood	

region	 using	 OPERA’s	 native	 (15min)	 temporal	 resolution	 and	 a	 Z=200	 R1.6	 relationship	

(yellow	line),	and	iii)	gauge-adjusted	radar	measurements	using	24-hour	Z-R	relationships	

given	in	Table	2.3	(green	line).	The	red	line	represents	simulated	satellite	observations	given	

by	the	ground	radars,	while	the	green	line	serves	as	a	reference	for	“truth”	for	the	size	and	

scale	of	the	events	over	the	entire	region	of	 interest.	The	differences	between	the	OPERA	

overpass	 match	 (red	 line)	 and	 OPERA	 native	 resolution	 (yellow	 line)	 exist	 due	 to	 their	

different	 spatial	 extend.	 The	 two	 lines	 address	 slightly	 different	 areas,	 being	more	 apart	

when	satellite’s	FOV	captures	only	a	small	portion	of	the	flood	region.	
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Figure	2.8	Timelines	of	the	area	mean	rainfall	accumulations	for	the	Balkan	flood	(panel	a)	and	the	non-
flood	(panel	b)	event.	Satellite	estimate	is	given	in	black	with	symbols	marking	the	individual	sensors	
overpasses;	 Red	 -	 OPERA	 observations	 at	 the	 time	 of	 satellite	 overpass	 only;	 Yellow	 -	 OPERA	
observations	in	full	temporal	and	spatial	resolution;	Green	-	OPERA	gauge-adjusted	observations	in	full	
temporal	and	spatial	resolution	(adjusted	Z-R	relationship	is	given	in	Table	2.3).		
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Figure	2.9	Timelines	of	the	area	mean	rainfall	rate	for	Balkan	flood	(a)	and	an	average	(b)	event	with	
their	differences	(c).	Colors	have	same	meaning	as	in	Fig.	2.8	with	differences	(c)	given	in	blue	for	the	
flood	event	and	in	black	for	the	average	non-flood	event.	
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It	is	evident	from	Fig.	2.8	that	the	radar	observations	at	the	satellite	overpass	times	(red)	

are	almost	identical	to	15	min	radar	full-coverage	over	the	region	(yellow).	This	indicates	

that	the	constellation	provides	sufficient	spatial	and	temporal	sampling	to	capture	all	of	the	

rainfall	variability	over	the	region	for	this	event.	The	fact	that	satellite	accumulation	(black)	

in	both	events	fairly	closely	follow	in	shape	the	gauge	adjusted	accumulation	(green),	with	

correlation	of	0.99	between	the	two,	indicates	that	constellation’s	sampling	and	performance	

is	capable	of	addressing	a	life	cycles	of	both	extreme	and	non-extreme	events.	To	support	

previous	 conclusions	 and	 point	 the	 origin	 of	 the	 observed	 differences	 in	 rainfall	

accumulations,	detailed	comparisons	of	area-mean	rain	rates	are	performed	and	presented	

in	Fig.	2.9.	

Studies	that	compare	radar	and	radiometer	products	indicate	that	the	differences	in	their	

rain	rate	estimates	stem	primarily	 from	the	assumptions	 the	algorithms	use	 to	relate	 the	

observed	quantities	to	rainfall	rates.	As	mentioned	earlier,	the	satellite	retrieval	is	built	upon	

the	observed	 ice	scattering	signal.	Similarly,	OPERA	radar	rain	rate	estimates	rely	on	 the	

Marshall	 and	 Palmer	 Z-R	 relationship.	 Therefore,	 to	 the	 first	 order,	 differences	 in	 the	

magnitude	of	the	rain	rate	between	the	satellite	and	ground	radar	retrievals	can	be	caused	

by:	1)	inappropriate	choice	of	Z-R	relationship	in	radar	retrievals,	and	2)	non-representative	

storm	structures	populating	the	a	priori	database.	

Based	on	Table	2.3	and	Fig.	2.4,	the	fact	that	radar	reflectivity	is	proportional	to	the	sixth	

power	of	the	rain	drop	diameter	(Z	~	D6)	suggests	that	the	DSD	was	dominated	by	smaller	

drops	(compared	to	Marshal-Palmer	mean	drop	size)	during	the	flood	event	and	the	third	

day	 of	 non-flood	 event.	 Consequently,	 radar	 retrieval	 underestimated	 gauge-adjusted	

rainfall	 accumulation	 in	 these	 well-organized	 systems	 relating	 observed	 Z	 to	 lower	 rain	
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rates.	On	the	other	hand	the	first	two	days	of	the	non-flood	event,	characterized	by	isolated	

intense	convection,	appear	to	consist	of	DSD	with	mean	drop	diameter	somewhat	larger	than	

expected	by	standard	Marshal-Palmer.	This	difference	in	the	DSD	during	the	two	events	is	

likely	 linked	 to	 microphysical	 properties	 of	 isolated	 and	 organized	 convection	 regimes	

(Rosenfeld	and	Ulbrich	2003,	Bringi	et	al.	2003).	It	is	known	that	inappropriate	hydrometeor	

profiles	lead	to	underestimation	by	passive	microwave	radiometer	algorithms	(Kwon	et	al.	

2008,	 Kubota	 et	 al.	 2009,	 Ryu	 et	 al.	 2012,	 Sohn	 et	 al.	 2013,	 Shige	 et	 al.	 2013,	 2015,	 and	

Taniguchi	et	al.	2013).	While	not	proven	for	the	events	in	this	study,	one	can	infer	that	the	

general	 findings	 related	 to	 precipitation	 systems	 organization	 hold,	 saying	 that	 more	

organized	systems	appear	to	have	smaller	drops	and	less	pronounced	ice	scattering	signal	

for	the	same	rain	amount	than	the	isolated	convective	storms	of	similar	or	greater	top	height.	

This	would	explain	the	satellite’s	underestimates	during	the	flood	event	and	the	last	day	of	

non-extreme	event,	both	described	as	well-organized	regimes	with	presence	of	 ice	phase.	

However,	 the	 amplitude	 of	 this	 negative	 bias	 is	 related	 to	 both	 event’s	 intensity	 and	 a	

complex	link	between	the	environment	and	rainfall	profiles	in	the	database	(contributions	

of	the	two	are	quantitatively	described	in	Section	2.4.4).	Figure	2.10	depicts	the	distribution	

of	the	a	priori	database	profiles	for	the	environmental	conditions	observed	during	the	Balkan	

flood	event	over	the	vegetated	surface	type	accounting	for	60%	of	the	area	over	90%	of	the	

time.	 Colors	 represent	 the	 density	 of	 database	 entries	 within	 a	 given	 rain	 rate	 and	 Tb	

interval,	 while	 magenta	 and	 black	 crosses	 mark	 satellite	 retrieved	 and	 ground	 gauge-

adjusted	observed	values,	respectively.	While	the	correct	answers	appear	to	be	represented	

in	the	database,	the	algorithm	favors	lower	rainfall	rates	underestimating	the	observed	rain	

by	50%	(as	seen	in	Fig.	2.8)	for	the	given	environmental	conditions.	
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Figure	2.10	The	prevalence	of	the	a	priori	database	rain	profiles	relative	to	89GHz	horizontal	brightness	
temperature	(color	shades).	Profiles	correspond	only	to	the	predominant	surface	type	(60%	of	area)	
of	the	Balkan	flood	region	and	the	most	commonly	observed	skin	temperature	(275	–	285	K)	and	total	
column	water	 vapor	 values	 (14-23	 g	 kg-1)	 during	 the	 flood	 event.	 Area-mean	 ground	 radar	 gauge-
adjusted	 observations	 and	 satellite	 retrieved	 vales	 of	 rain	 rate	 are	 marked	 in	 black	 and	 magenta	
crosses,	respectively.	Note	that	the	x-axis	is	log-scaled.		

The	 mechanics	 of	 the	 Bayesian	 scheme	 itself	 account	 for	 two	 primary	 sources	 of		

bias:	1)	a	Bayesian	pull	towards	the	a	priori	database	mean,	which	is	more	pronounced	when	

the	information	content	is	low,	and	2)	incorrect	or	underrepresented	microphysics	in	the	a	

priori	database	relative	to	the	extreme	event.	While	the	pull	towards	the	database	mean	is	

expected	by	definition	 of	 the	 extreme	 event,	 the	 latter	 can	be	 explained	by	 the	 fact	 that,	

perhaps,	the	US	NEXRAD-based	database	builds	on	storms	specific	for	the	US	region	with	

microphysics	 different	 from	 the	 one	 that	 took	 place	 during	 the	 Balkan	 flood	 event.	 In	
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addition,	the	link	between	rainfall	profiles	and	environmental	conditions	used	to	constrain	

the	database	(e.g.	skin	temperature	and	total	column	water	vapor)	may	not	be	suitable	for	

events	such	as	Balkan	flooding.	Thus,	regardless	the	fact	that	the	observed	profiles	exist	in	

the	database,	the	retrieval	failed	to	recognize	them	as	the	most	likely	solution.	Comparison	

of	the	observed	Tb	profiles	with	profiles	that	the	a	priori	database	links	to	the	gauge-adjusted	

rain	 rate	 values	 showed	 significant	 differences	 in	 ice-scattering	 signatures.	 Mismatch	 of	

approximately	10	K	at	high	frequency	channels	(i.e.	91GHz)	implied	~	40%	more	ice	in	the	

column	during	 the	 flood	event	 than	 the	database	entries	 for	 the	observed	environmental	

conditions	 suggest.	 A	 more	 quantitative	 comparison	 between	 the	 bias	 contributors	 (i.e.	

Bayesian	averaging	vs.	microphysics)	is	given	in	the	discussion	section.	

2.4.3	DPR	to	ground	radar	

To	further	address	GPM’s	microwave	imager	constellation	potential,	and	to	verify	that	

precipitation	 regimes	 play	 a	 key	 role	 in	 the	 gauge	 to	 satellite	 discrepancies,	 DPR	

measurements	 are	 introduced	 (Seto	 et	 al.	 2013).	 The	 DPR’s	 attenuation-based	 retrieval	

(Iguchi	et	al.	2000,	2009)	adjusts	its	Z-R	relationship	to	the	observed	precipitation	regime	

though	a	number	of	steps	that	include	effects	of	rain	type,	presence	or	absence	of	a	bright	

band,	and	 the	phase	state,	 all	of	which	 in	essence	 relate	a	 chosen	Z-R	relationship	 to	 the	

environment	and	thermo-dynamical	processes	of	the	system.	It	is	worth	mentioning	that	this	

algorithm,	originally	developed	for	the	TRMM	(Kummerow	et	al.	1998)	precipitation	radar	

(PR),	is	under	an	incremental	development	process	for	the	use	in	the	mid-latitude	rainfall	

systems.	 Thus,	 although	 adjustable,	 the	 initial	 Z-R	 relationship	 is	 likely	 biased	 towards	

tropical	environment	characteristic	by	smaller	mean	drop	size	(lower	Z)	and	larger	rain	rate	

(high	R)	than	typically	seen	in	an	average	mid-latitude	regime.	
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Due	to	relatively	small	sample	size	(only	four	overpasses	during	the	flood	period	and	five	

overpasses	during	 the	non-flood	period)	comparison	between	OPERA	radar	network	and	

DPR	products	was	extended	beyond	the	flood	region.	Thus,	DPR	comparisons	do	not	relate	

exclusively	to	the	events	but	rather	to	a	much	larger,	though	from	a	synoptic	perspective	still	

similar,	 precipitation	 region.	 This	 broader	 comparison	partially	 emphasizes	 the	 role	 that	

OPERA’s	fixed	Z-R	relationship	plays	in	defining	the	gauge	to	radar	biases.	

The	 comparisons	 of	 GMI	 and	 DPR	 to	 ground	 radar	 measurements	 over	 the	 OPERA	

domain	for	four	(five)	satellite	overpasses	for	the	extreme	(average)	event	is	shown	in	Fig.	

2.11a	(2.11b),	with	the	summary	of	pixel	level	analysis	given	in	Table	2.4.	Overall	the	results	

show	 reasonably	 high	 correlation	 between	 the	 satellite	 and	 ground	 data,	 especially	

considering	the	fact	that	random	satellite	overpasses	and	differences	in	scanning	geometry	

prevent	the	exact	colocation	between	OPERA	and	DPR	volumes.	However,	while	DPR	and	

OPERA	 reflectivities	 (not	 shown	 here)	 match	 very	 well	 in	 both	 events,	 their	 rainfall	

accumulations	differ	significantly.	During	the	flood	event	the	DPR	to	OPERA	ratio	is	close	to	

that	of	the	gauge	to	OPERA,	implying	a	good	match	between	satellite	and	gauge	data,	but	a	

similar	ratio	is	also	seen	during	the	average	event	when	DPR	greatly	overestimates	gauges.	

Possible	 explanation	may	 lie	 in	 the	 lack	 of	 the	 full	 dual-frequency	 impacts	 on	 the	 day-1	

algorithm	being	used	here.	
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Figure	2.11	DPR/GMI	 to	OPERA	rainfall	 rate	comparison.	For	conditional	satellite	rain,	 in	nine	GPM	
core-satellite	 flood-region	 overpasses,	 an	 average	 rain	 rate	 of:	 DPR,	 Ku,	 Ka	 and	 GMI	 sensors	 is	
compared	to	ground	radar	observations	over	the	entire	OPERA	domain.	Results	in	panel	a)	include	four	
overpasses	occurred	during	the	3-day	interval	of	the	Balkan	flood	event	(May	14th	–	16th),	while	panel	
b)	depicts	the	same	comparison	made	during	the	average	(non-flood)	event	(May	1st	–	3rd).	Table	2.4	
contains	corresponding	quantitative	comparisons.	

	

Table	2.4.	Summary	of	comparisons	between	collocated	ground	(OPERA)	and	satellite	(DPR/GMI)	
rainfall	estimates	shown	in	Fig.	2.11	given	by	using	a	total	rain.	The	difference	in	total	rain	between	
the	sensors	is	a	consequence	of	sensors	swath	size.	

	 DPR	 Ku	 Ka	 GMI	

Balkan	flood	event	

OPERA	total	rain	(mm)	 345	 345	 128	 1871	
Satellite	total	rain	(mm)	 793	 834	 185	 1626	
Ratio		 2.30	 2.42	 1.41	 0.86	
Correlation		 0.52	 0.50	 0.65	 0.49	

Average	non-flood	event	
OPERA	total	rain	(mm)	 104	 104	 37	 270	
Satellite	total	rain	(mm)	 171	 191	 29	 256	
Ratio		 1.64	 1.83	 0.80	 0.94	
Correlation		 0.51	 0.59	 0.52	 0.28	

	

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
OPERA radars [mm h-1]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
DP

R 
an

d 
G

M
I [

m
m

 h
-1
]

DPR
Ka
Ku
GMI

a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
OPERA radars [mm h-1]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

DP
R 

an
d 

G
M

I [
m

m
 h

-1
]

DPR
Ka
Ku
GMI

b)



	 39	

A	more	detailed	 investigation	 of	DPR	precipitation	profiles	 (using	GPM	2A.DPR	product)	

addresses	 the	 contrast	 in	 precipitation	 regimes	 of	 the	 two	 events.	 According	 to	 DPR	

observations	 over	 the	 flood	 region	 only,	 the	 flood	 event	 is	 characterized	 by	 an	 average	

freezing	level	height	of	1700	m,	a	near	surface	reflectivity	ranging	from	30	dBZ	to	35	dBZ,	

and	95%	of	 total	 rainfall	being	classified	as	 stratiform.	On	 the	other	hand,	 the	 stratiform	

portion	 of	 the	 total	 rain	 during	 the	 average	 event	 is	 70%,	with	 a	mean	 freezing	 level	 at	

approximately	2700m	and	near	surface	reflectivity	in	range	from	27	dBZ	to	32	dBZ.	A	high	

ratio	of	stratiform-to-convective	rain,	and	an	increase	in	reflectivity	below	the	brightband	

seen	during	the	food	event	are	common	for	intense	stationary	flood-related	regimes.	Gochis	

et	al.	2014	offer	extensive	analysis	on	The	Great	Colorado	Flood	of	September	2013	showing	

precipitation	profile	signatures	that	are	in	many	aspects	similar	to	those	presented	here.	

2.4.4	Discussion	

As	suggested	above,	one	can	conclude	that	the	radiometer	underestimation	of	the	flood	

event	 as	well	 as	 the	 organized	 convection	 accumulations	 are	 caused	 by:	 1)	 a	Bayes’	 pull	

towards	the	a	priori	database	mean,	and	2)	a	non-flood	microphysics	of	the	a	priori	database	

rainfall	 profiles.	 In	 the	 second	 case	 the	 entire	 database	 appears	 to	 be	 biased	 towards	

different	type	of	raining	systems	characterized	by	different	ice-to-rain	relationship	form	the	

observed	one.	This	scenario	results	in	biased	rain	rates	regardless	of	their	value	since	the	

algorithm	 links	 observed	 Tbs	 to	 rain	 rate	 values	 that	 are	 not	 related	 to	 the	 scene	 being	

retrieved.	For	the	first	problem,	on	the	other	hand,	the	distribution	of	database’s	rain	rate	is	

such	that	the	observed	values	are	found	only	at	its	tail	and	thus,	given	the	mathematics	of	

the	Bayesian	retrieval,	are	underestimated.	
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Bayesian	retrievals,	by	virtue	of	retrieving	the	expected	value	of	the	parameter,	tend	to	

gravitate	 towards	 the	 center	 of	 the	 distribution.	 This	 can	 cause	 a	 Bayesian	 scheme	 to	

underestimate	 extreme	 precipitation	 events.	 Having	 an	 incorrect	 a	 priori	 distribution	 of	

precipitation,	likewise,	can	lead	to	over-	or	underestimation	depending	upon	biases	in	the	a	

priori	distribution.	To	investigate	the	contribution	of	Bayesian	averaging	versus	errors	in	the	

a	priori	database	upon	the	retrieval’s	bias	seen	in	the	previous	section,	a	synthetic	set	of	rain	

profiles	is	generated	from	the	database.	This	is	accomplished	by	randomly	selecting	entries	

from	the	database	with	a	given	surface	rain	rate	 to	match	 the	observed	(gauge-adjusted)	

probability	density	function	(PDF)	of	rain	rates	during	the	extreme	event.	These	profiles	thus	

have	 the	 correct	 PDF	 of	 rain	 for	 the	 extreme	 event	 while	 statistically	 preserving	 the	

microphysics	of	the	database.	The	retrieval	is	then	run	using	these	synthetic	observations,	

excluding	 the	 true	 answer,	 which	 is	 still	 contained	 in	 the	 entire	 database.	 Thus,	 any	

differences	between	the	retrieved	and	original	rain	rates	in	this	synthetic	experiment	must	

come	 from	the	Bayesian	averaging.	The	comparison	of	gauge-adjusted	and	retrieved	rain	

rates	from	this	experiment	is	shown	in	Fig.	2.12.	The	retrieval	underestimates	the	original	

values	by	25%.	The	remaining	bias	 in	the	retrieval,	or	roughly	35%	of	the	overall	bias,	 is	

therefore	 likely	due	to	the	structural	differences	between	observed	precipitation	systems	

over	the	Balkan	and	those	that	built	the	US-NEXRAD	database.		
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Figure	2.12	Relationship	between	gauge-adjusted	and	synthetically	retrieved	rain	rates	for	six	SSMIS-
F18	overpasses	during	 the	 flooding	event.	Blue	 line	 is	a	 linear	 fit	of	approximately	2500	rain	rates,	
while	red	line	denotes	one	to	one	ratio.	

2.5.	Conclusions	and	summary	

The	 performance	 of	 the	 GPM	 passive	 microwave	 retrieval	 (GPROF_2014.V1-4)	 in	 an	

extreme	precipitation	event	is	tested	to	provide	deeper	understanding	of	its	potentials	and	

guidelines	for	its	future	development.	Being	an	operational	retrieval	for	GPM	mission,	GPROF	

serves	multiple	microwave	imager	sensors	both	conical	and	cross-tracking,	with	the	goal	of	

providing	consistent	precipitation	observations	at	a	wide	range	of	regimes	and	scales	across	

the	 globe.	 Analyzing	 a	 3-day	 flood	 event	 that	 occurred	 in	 the	 central	 Balkan	 region,	 in	

addition	to	an	average	non-flood	event	of	same	duration,	this	study:	1)	provides	qualitative	

and	quantitative	comparison	of	retrieval’s	products	against	two	sets	of	independent	ground	
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measurements,	 and	 2)	 offers	 some	 insight	 about	 the	 impact	 of	 regime	 dependent	

microphysics	 upon	 these	 retrievals.	 The	 latter	 is	 likely	 to	 be	 the	 key	 for	 improving	 the	

accuracy	of	individual	and	combined	satellite	products.	

The	results	show	that	the	constellation	of	five	conically-scanning	sensors	(AMSR2,	GMI,	

and	SSMISs	on	board	of	F16,	F17	and	F18)	provided	sufficient	sampling	and	coverage	for	the	

retrieval	 to	 closely	 reproduce	 rainfall	 rate	 and	 accumulation	 estimates	 given	 by	 ground	

radars.	 However,	 discrepancies	 between	 satellite-,	 radar-,	 and	 gauge	 72-hour	 rain	

accumulation	estimates	during	the	extreme	precipitation	event	reveal	that	both	satellite	and	

ground	 radars	 underestimated	 accumulations	 relative	 to	 gauges	 by	 60%	 and	 50%,	

respectively.	At	the	same	time,	relatively	high	correlations	of	24-hour	accumulations	(0.85)	

are	seen	between	ground	(OPERA)	radars	and	gauges.	Additional	comparisons	related	to	a	

more	 typical,	 non-extreme,	 precipitation	 event	 of	 same	 duration,	 over	 the	 same	 area,	

indicated	 satellite	 underestimate	 (20%)	 and	 radar	 overestimate	 (12%)	 relative	 to	 gauge	

accumulations.	 This	 ambiguous	 result	 is	 explained	by	OPERA’s	 exclusive	 use	 of	Marshal-

Palmer	Z-R	relationship	(Z=200R1.6),	which	is	designed	to	represent	mid-latitude	stratiform	

systems	DSD	rather	than	DSDs	related	to	“tropical-like”	conditions	seen	during	the	Balkan	

extreme	 event.	 A	 similar	 explanation	 holds	 in	 the	 case	 of	 satellite	 retrieval	 where	

microphysics	from	typical	rain	events	(build	upon	the	US	NEXRAD	observations)	leaves	an	

inadequate	link	between	rain	rates	and	corresponding	environmental	conditions	during	this	

extreme	event.	While	upcoming	versions	of	the	DPR	retrieval	will	with	no	doubt	implement		

mid-latitude	 Z-R	 relationships,	 the	 role	 of	 the	 variability	 of	 the	 ice-to-rain	 ratio	 over	 the	

broad	 spectrum	 of	 microphysical	 and	 dynamical	 cloud	 properties	 related	 to	 specific	

environments	remains	to	be	carefully	addressed	in	the	future.	 	
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CHAPTER	3		

	
UNDERSTANDING	THE	SOURCES	OF	SATELLITE	PASSIVE	MICROWAVE	RAINFALL	

RETRIEVAL	SYSTEMATIC	ERRORS	OVER	LAND	

	
	
	

3.1.	Introduction	and	background	

The	measurement	of	precipitation	from	space	dates	back	to	the	advent	of	geostationary	

satellites	(Barrett	1970)	and	their	 infrared	sensors.	Techniques	 for	retrieving	the	surface	

rain	 at	 that	 time	 were	 based	 on	 information	 of	 cloud	 top	 height,	 whose	 relationship	 to	

surface	 rainfall	was	 rather	ambiguous.	The	advantage	of	using	microwave	 frequencies	 to	

penetrate	 clouds	 was	 recognized	 with	 the	 introduction	 of	 Passive	 Microwave	 (PMW)	

sensors.	 If	 sampled	 across	 the	 microwave	 spectrum	 (1-300	 GHz),	 surface-originated	

upwelling	radiation	detected	at	the	top	of	the	atmosphere	(TOA)	can	offer	a	valuable	insight	

to	the	entire	atmospheric	column.	The	Special	Sensor	Microwave	Imager	(SSMI;	Hollinger	et	

al.	1990)	was	the	first	widely	used	multi-channel	sensor	that	allowed	rainfall	to	be	detected	

in	 a	 more	 physical	 sense.	 The	 retrievals	 used	 lower	 frequencies	 (e.g.,	 19	 GHz)	 where	

radiation	 is	 absorbed	 and	 re-emitted	 by	 liquid	 hydrometeors	 to	 derive	 information	 of	

column-integrated	liquid	water,	while	the	upwelling	radiation	at	higher	frequencies	(e.g.,	85	

GHz),	strongly	affected	by	ice	scattering,	offered	insight	into	the	upper	layers	of	convective	

clouds.	 Thus,	 PMW	 retrievals	 employed	 both	 absorption	 and	 scattering	 properties	 of	

hydrometeors	 to	 relate	 the	 observed	 radiances	 at	 TOA	 to	 surface	 rainfall.	 Despite	 the	

improvements,	precipitation	measurements	still	suffered	from	serious	discrepancies	when	
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compared	 to	 ground-based	 products	 (Ferraro	 1997).	 Their	 inability	 to	 fully	 capture	 the	

variability	 of	 scattering	 and	 absorptive	 elements	within	 the	 cloud	was	 seen	 as	 the	main	

obstacle	for	further	improvements.	

The	first	spaceborne	precipitation	radar	(PR)	was	launched	in	1997	aboard	the	Tropical	

Rainfall	Measuring	Mission	(TRMM,	Kummerow	et	al.	2000),	along	with	the	state-of-the-art	

microwave	 radiometer	 (TMI).	With	 high	 spatial	 resolution,	 PR,	 upon	 calibration,	 directly	

measured	the	vertical	profile	of	reflectivity,	which	is	proportional	to	sixth	moment	of	rain	

drop	diameters	in	the	measurement	layers.	For	the	first	time,	PMW	measurements	could	be	

directly	compared	to	radar’s	vertical	samplings	of	the	atmospheric	column,	in	both	time	and	

space.	 Profiling	 capabilities	 of	 PR	 allowed	 for	 better	 understanding	 of	 hydrometeor	

absorption	and	scattering	signatures	relative	to	the	brightness	temperature	(Tb)	vector	by	

PMW.	 Ground	 validation	 sites,	 such	 as	 Kwajalein,	 offered	 valuable	 ground-based	 radar	

rainfall	measurements	as	a	reference	for	both	PR	and	TMI	estimates	(Kim	et	al.	2004;	Houze	

et	al.	2004;	Schumacher	et	al.	2000).	This	greatly	improved	PMW	retrieval	performance	over	

the	 ocean	 where	 a	 low	 surface	 emissivity	 ensures	 a	 strong	 contrast	 between	 a	

radiometrically	cold	background	and	a	warm,	precipitation	related,	atmospheric	signature	

(Ferraro	et	al.,	1995;	Kummerow	et	al.,	2001).	Consequently,	the	PMW	retrieval	output	over	

the	ocean	quickly	came	into	reasonable	agreement	with	independent	estimates	(e.g.,	TRMM	

ground	 radar	 validation	 sites	 at	Kwajalein,	Melbourne,	Houston,	 and	Darwin,	Wolff	 et	 al.	

2005).	However,	comparable	agreement	was	much	harder	to	achieve	over	land	backgrounds	

(Wolff	 et	 al.	 2009).	 Land	 surfaces	 are	 all	 highly	 emissive,	 which	 leads	 to	 Tb	 emission	

signatures	 similar	 to	 rain	 itself.	 With	 no	 obvious	 contrast	 between	 rain	 and	 surface-

background	emission	signals,	rainfall	detection	over	land	is	based	primarily	on	ice-induced	
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scattering	 signatures	 (Wang	 et	 al.,	 2009)	 and	 its	 relationship	 to	 the	 surface	 rain	 rate	

(Ferraro,	1997;	Ferraro	et	al.,	2013).	As	will	be	shown	here,	this	limitation	remains	one	of	

the	greatest	challenges	in	the	global	rainfall	observations	over	land.	TRMM,	however,	played	

a	key	role	in	revealing	many	of	the	PMW	retrieval	shortcomings	including	the	sensitivity	to	

different	 geophysical	 parameters	 related	 to	 rainfall	 such	 as	 variability	 of	 the	 surface	

emissivity	(Ferraro	et	al.	2013;	Petty	and	Li	2013),	as	well	as	the	assumptions	inherent	in	

the	algorithms	used	to	retrieve	rainfall	from	Tb	or	reflectivity	measurements	(Kummerow	

et	al.	2011)	such	as	the	Drop	Size	Distribution	(DSD)	and	hydrometeor	vertical	profile.	While	

many	improvements	have	been	made	over	time	[e.g.,	Grody,	1991;	Ferraro	et	al.,	1994;	Adler	

et	al.,	1994;	Conner	and	Petty,	1998;	Seto	et	al.,	2005,	Kummerow	et	al.	2015],	PMW	retrievals	

essentially	still	rely	on	ice-scattering	signal	to	retrieve	surface	rainfall	and	this	relationship,	

it	turns	out,	is	quite	sensitive	to	storm	system	dynamics.	

The	modern	era	of	satellite	observations	emphasizes	the	importance	of	understanding	

this	 relationship	 even	more	 thoroughly.	 The	 launch	 of	 the	 GPM	 (Hou	 et	 al.	 2014)	 core-

satellite,	with	a	dual-frequency	precipitation	radar	(DPR)	and	the	most	accurate	microwave	

imager	 to	 date	 (GMI),	 affords	 the	 opportunity	 to	 inter-calibrate	 a	 multitude	 of	 PMW	

radiometers	to	the	same	reference.	Blended	products	of	global	rainfall	measurements,	such	

as	 Integrated	Multi-satellitE	Retrievals	 for	GPM	 (IMERG;	Huffman	 et	 al.	 2014,	 2015),	 are	

becoming	available	at	30-min	temporal	resolution	across	the	globe.	Consistent	and	reliable	

retrievals	over	land	are	thus	more	critical	than	ever.	Facing	the	limitation	of	having	to	infer	

surface	precipitation	from	just	the	ice-scattering	signal,	this	study	seeks	to	better	understand	

such	 relationships	 in	 nature,	 and	 explores	 synoptic-scale	 structural	 and	 environmental		
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parameters	 that	may	be	used	 to	characterize	 this	 relationship	between	 the	 ice	scattering	

signal	and	the	surface	rainfall.		

3.1.1	Accuracy	and	bases	of	the	PMW	rainfall	retrieval	over	land	

Validating	satellite	precipitation	retrievals	on	a	global	scale	is	a	complex	and	difficult	task	

(Turk	et	al.	2002).	Recognizing	the	qualitative	performance,	fortunately,	is	much	easier.	A	

comparison	of	TRMM	rainfall	estimates	(PR	and	TMI)	identifies	the	presence	of	large-scale	

systematic	differences	in	the	retrievals	(Berg	et	al.	2006,	2008;	Yamamoto	et	al.	2008;	Adler	

et	al.	2012;	Wang	and	Wolff	2012;	Maggioni	et	al.	2016;	Liu	et	al.	2016).	An	example	is	given	

in	Fig.	3.1,	where	one	year	of	TRMM	data	is	used	to	present	the	difference	in	mean	daily	rain	

rate	of	the	PR	and	Goddard	PROFiling	algorithm	–	GPROF	2010	version	2	(Version	7	for	TMI;	

hereafter	referred	to	as	PMW	retrieval)	algorithms	over	land.	The	comparison	is	made	using	

TRMM	 3G68	 product,	 which	 is	 an	 hourly	 gridded	 product	 containing	 TRMM	 2A12	

(Kummerow	et	al.,	2001),	2A25	(Iguchi	et	al.,	2000),	and	2B31	(Haddad	et	al.,	1997a,	1997b),	

precipitation	estimates	(note	that	this	is	not	a	standard	TRMM	product).	Inspection	of	Fig.	

3.1	reveals	two	types	of	problems:	1)	surface	contamination	(e.g.,	Himalaya	region),	and	2)	

mean-biases	with	a	significant	random	component	over	large	regions.	The	most	pronounced	

error	corresponds	to	regions	in	the	Himalayas.	This,	however,	is	a	surface-screening	problem	

where	 the	 upwelling	microwave	 signal,	 depressed	 by	 accumulated	 snow	 and	 ice	 on	 the	

ground,	 is	erroneously	related	to	 the	rainfall	by	the	PMW	retrieval.	This	 is	easily	verified	

using	the	PR	profiles,	which	show	that	the	majority	of	PMW	“precipitation”	events	are	not	

associated	with	any	echo	in	the	atmosphere	over	this	region.	In	the	past,	PMW	algorithms	

have	employed	a	number	of	screening	steps	taken	prior	to	the	retrieval	process	to	avoid	this	

misinterpretation	(Ferraro	et	al.	1998;	Kummerow	et	al.	2001;	Gopalan	et	al.	2010;	Meyers	
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et	al.	2015).	In	its	most	recent	version,	GPROF	(Kummerow	et	al.	2015)	uses	daily	snow	cover	

updates	to	ameliorate	this	problem.	This	has	improved	precipitation	screening	over	regions	

with	snow	on	the	ground,	resulting	in	systematic	differences	that	are	significantly	lower	than	

those	seen	in	Fig	1	(not	shown	here).	Surface	screening	errors,	however,	are	not	the	topic	of	

this	study.	To	avoid	any	contamination	by	this	type	of	scattering	signature,	the	focus	of	this	

paper	is	on	tropical	regions	marked	in	Fig.	3.1	that	show	opposite	PMW-to-PR	systematic	

differences	but	have	very	similar	surface	backgrounds.	Tropical	Africa	and	South	America	

stand	out	(highlighted	in	Fig.	3.1)	although	a	similar	dipole	is	seen	in	Australia,	as	well	as	

over	Southeast	Asia,	and	 the	Central	and	Eastern	United	States.	While	both	PR	and	PMW	

retrievals	may	be	contributing	to	this	disagreement,	the	PMW	algorithm	must	rely	on	ice-

scattering	signatures	only	and	is	thus	less	reliable	than	the	radar	retrieval.	The	focus	of	this	

study	 is	 therefore	 on	 PMW	 retrieval	 and	 the	 potential	 elements	 that	 contribute	 to	 these	

systematic	differences.	
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Figure	3.1	Mean	daily	rainfall	differences	between	PMW	(TMI)	and	PR	sensors	(TMI-PR)	for	2008	on	a	
0.5°	grid	of	the	3G68	product.	The	figure	reveals	regions	where	PMW	retrieval	(GPROF2010	version	2)	
underestimates	and	overestimates	PR	observations.	

Before	any	hypothesis	is	presented,	the	actual	assignment	of	rain	rates	over	land	surfaces	

in	the	PMW	retrieval	is	briefly	reviewed	(details	can	be	found	in	Kummerow	et	al.	2015).	In	

its	first	step,	the	algorithm	(GPROF	2010)	screens	out	cold	surfaces	(residual	errors	from	

which	still	appear	over	Himalayan	region	 in	Fig.	3.1)	using	the	methodology	described	 in	

Meyers	et	al.	(2015).	Then,	mainly	based	on	the	values	and	spatial	distribution	of	85	GHz	Tb,	

a	 convective-stratiform	 discriminator,	 described	 by	 McCollum	 and	 Ferraro	 (2003)	 and	

modified	by	Gopalan	et	al.	(2010),	is	added.	Once	a	pixel	is	determined	to	be	raining	and	its	

convective-stratiform	 nature	 is	 known,	 regression	 equations	 relate	 the	 85	 GHz	 Tb	

depression	to	the	surface	rainfall	using	following	relationships:		

Rainstrat	[mm		h-1]	=	(1	−	cnvprob	)	⋅	(19.7034	−	0.0708	⋅	Tb85v)	 	 	 	 	 (3.1)	

Rainconv	[mm	h-1]	=	cnvprob	⋅	(165.656−1.63⋅Tb85v	+	6.5035x10−3⋅Tb285v	−9.6682x10−6⋅Tb385v	)		 (3.2)	

S. America Africa 
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where	 cnvprob	 is	 the	 convective	 probability,	 Rainstrat	 and	 Rainconv	 are	 stratiform	 and	

convective	 rain	 rates,	 respectively,	 and	 Tb85v	 is	 85	 GHz	 vertically	 polarized	 channel	

brightness	temperature	in	[K].	The	final	rain	rate	estimate	is	simply	the	sum	of	the	two	(i.e.,	

Rainstrat	+	Rainconv).	Errors	in	PMW	rainfall	estimates	over	land	are	thus	primarily	related	to	

the	variability	of	the	surface	rain	rate	relationship	to	the	85	GHz	Tb	depression.	

It	has	been	suggested	that	systematic	differences	over	these	areas	may	be	a	result	of	the	

differences	between	the	instruments’	capability	to	detect	light	rainfall,	errors	in	assumptions	

about	the	raindrop	size	distribution	(DSD)	in	the	radar	algorithm,	or	presence	of	supercooled	

water.	A	considerable	amount	of	research	has	been	done	on	these	(e.g.,	Olson	et	al.	2006;	

Yang	 et	 al.	 2006;	 Shige	 et	 al.	 2006;	 Seo	 et	 al.	 2007;	Wang	 et	 al.	 2009).	Nevertheless,	 the	

regional	systematic	differences	over	 land	remain	significant.	The	possibility	that	different	

regions	have	systematically	different	ice	contents	and	related	Tb	depressions	for	the	same	

surface	 rainfall	 has	 not	 been	 sufficiently	 explored.	 Therefore,	 this	 study	 will	 focus	 on	

understanding	mean-differences	over	regions	of	generally	similar	atmospheric	and	surface	

background	conditions,	but	opposite	PMW-to-PR	differences.	

Deeper	insight	into	this	problem	is	offered	in	Fig.	3.2	using	the	aforementioned	regions	

of	Africa	 and	 South	America	 as	 a	 test	 bed.	 The	 rainfall	 ratio	 (PR/PMW)	between	 raining	

scenes	detected	by	the	two	sensors	is	plotted	as	a	function	of	rain	rate.	The	black	line	reflects	

a	mean	ratio	of	the	PR	and	PMW	rainfall	over	the	two	regions	after	the	overall	systematic	

difference	 is	 removed.	 Focusing	 to	 the	 mean	 ratio	 only,	 one	 can	 easily	 note	 that	 PMW	

retrieval	 tends	 to	overestimate	PR	at	 low	rain	rates	 (0-5	mm	h-1),	while	underestimating	

higher	ones	(above	5	mm	h-1).	This	is	a	general	property	of	GPROF	retrieval	caused	by	the	

fact	 that	 algorithm	 has	 less	 information	 content	 than	 the	 PR	 and	 thus	 tends	 to	 drive	



	 50	

individual	 pixels	 towards	 the	 mean	 solution.	 However,	 when	 the	 regions	 are	 analyzed	

individually,	the	ratio	is	seen	to	be	consistently	above	(Amazon)	and	below	(Africa)	the	mean	

value,	suggesting	a	clear	regional	dependency	of	the	relationship	on	the	observed	vector	and	

precipitation.	Thus,	according	to	Eq.’s	(3.1)	and	(3.2)	and	Fig.	3.2,	it	can	be	hypothesized	that	

cloud	microphysical	properties	must	be	substantially	different	in	storms	over	the	Amazon,	

compared	to	the	African	region.		

	

Figure	3.2	PR	to	PMW	rainfall	estimate	ratio	(PR/TMI)	as	a	 function	of	rain	rate	 for	Amazon	(blue),	
African	(red)	and	both	regions	combined	(black).	Overestimations	by	PMW	retrieval	are	shaded	in	light	
red;	underestimations	by	PMW	retrieval	are	shaded	in	light	blue.	

In	support	of	this	hypothesis	is	a	global	map	of	annualized	distributions	of	total	lightning	

activity	shown	in	Fig.	3.3	(Stolz	et	al.	2015).	It	can	be	seen	that	higher	lightning	densities	

coincide	with	strong	PMW	overestimations	over	Africa,	while	lower	flash	rates	coincide	with	

PMW	underestimations	over	Amazon	 regions	of	Fig.	3.1.	 It	 is	known	 that	 the	majority	of	

rainfall	over	these	regions	originates	from	a	structurally	different	type	of	system:	Meso-scale	
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Convective	Systems	(MCSs)	(e.g.,	Toracinta	et	al.	2001)	in	Africa,	and	warmer	and	shallower	

storms	over	the	Amazon	region.	Therefore,	it	is	expected	that	the	microphysical	processes	

and	the	cloud	structure	of	storms	in	these	regions	are	likely	different	as	well.	Other	areas	

with	similar	surface	types	but	opposite	systematic	differences	(e.g.	East/West	US)	may	have	

different	lightning	density	ratios	compared	to	the	Amazon-Africa	example.	However,	this	can	

be	explained	by	the	fact	that	cloud	microphysics	and	structure	are	influenced	by	a	number	

of	 factors	 such	 as	 topography,	 mesoscale	 air	 masses,	 and,	 the	 large-scale	 environment.	

Combined,	these	factors	play	a	critical	role	in	the	lifecycle	of	storms	(e.g.,	Rasmussen	et	al.	

2016)	by	suppressing	and	enhancing	the	ice-phase,	and	the	associated	scattering	signal	upon	

which	the	passive	microwave	rainfall	is	predicted.	From	this	perspective,	it	is	worth	noting	

that,	in	addition	to	earlier	studies	(e.g.,	Williams	et	al.	1992,	2005;	Ba	et	al.	1998;	Gilmore	

and	Wicker	 2002;	 Qie	 et	 al.	 2003)	 that	 showed	 positive	 correlations	 between	 lightning,	

microphysics	 and	 the	 amount	of	passive	microwave	 scattering,	 the	most	 recent	 study	by	

Barth	et	al.	(2015),	based	on	data	from	Deep	Convective	Clouds	and	Chemistry	(DC3)	field	

campaign,	links	lightning	flash	rates	to	thermo-dynamical	drivers	of	precipitation	regimes	

over	the	US	Great	Plains.	They	found	substantial	differences	in	flash	rates	of	storms	occurring	

during	periods	of	high	and	low	values	of	shear	and	CAPE.	McCollum	et	al.	(2000)	compared	

Global	 Precipitation	Climatology	Project	 (GPCP)	data	 to	 satellite	 infrared	 and	microwave	

rain	estimates	 to	 find	essentially	 the	same	discrepancies	as	 those	seen	 in	Fig.	3.1.	As	one	

possible	 cause	 they	point	 that	distinct	 environmental	 conditions	exist	over	 these	 regions	

using	the	observed	difference	in	lightning	density	as	supporting	argument.	
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Figure	3.3	The	annualized	distribution	of	total	(cloud-to-ground	plus	cloud-to-cloud)	lightning	activity	
[flashes	km-2	yr-1]	detected	by	the	Lightning	Imaging	Sensor	(LIS)	Very	High	Resolution	Full	Climatology	
(VHRFC)	in	period	1998-2013.	Source:	NASA	–	Global	Hydrological	Resource	Center	(GHRC).	

In	order	to	assess	our	comprehension	of	cloud	dynamics	and	microphysics	in	the	regions	

described	above,	this	study	seeks	to	understand	and	identify	causes	and	potential	predictors	

of	 observed	 systematic	 differences	 of	 passive	 microwave	 precipitation	 relative	 to	 PR	

estimates.	The	 study	will	 focus	on	 the	Amazon	and	African	 regions	 in	order	 to	minimize	

variability	due	to	surface	type,	proximity	to	the	ocean,	and	advected	air	masses.	

3.2.	Data	and	precipitation	climatology	

This	 study	 employs	 one	 year	 (2010)	 of	 TRMM	 PR	 and	 TMI	 data	 to	 detect	 regional	

systematic	differences	of	PMW	retrieval	(shown	in	Figs.	3.1	and	3.2),	and	to	provide	insight	

into	the	vertical	structure	and	character	of	precipitation	regimes.	The	standard	TRMM	PR	

2A25	product	(Iguchi	et	al.	2000,	2009)	provides	the	attenuation-corrected	radar	reflectivity	

(ZE)	profile	(every	250m	from	the	surface	to	20	km),	freezing	level	estimate,	and	near	surface	

rainfall	rate	at	the	PR	native	spatial	resolution	(approximately	5	km).	Precipitation	type	at	

the	pixel	 level	 (convective/stratiform)	 is	given	by	 the	2A23	product	 (Awaka	et	al.	2009).	

PMW	retrieval	surface	rain	rate	estimates	and	corresponding	TMI	brightness	temperatures	

are	 obtained	 from	 the	 GPROF	 (see	 Section	 3.1.1)	 standard	 output	 and	 1B11	 product		
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respectively.	 An	 additional	 year	 (2008)	 of	 the	 same	 data	 sets	 is	 used	 as	 an	 independent	

sample	to	test	the	robustness	of	this	study’s	findings.		

Environmental	 parameters,	 namely	 CAPE,	 wind	 profile,	 temperature,	 dew	 point	 and	

specific	humidity	are	taken	from	the	European	Centre	for	Medium-Range	Weather	Forecasts	

(ECMWF)	 Re-Analysis	 Interim	 (ERA-Interim)	 model	 data	 (Dee	 et	 al.	 2011),	 at	 0.75°	

horizontal	and	6-hour	temporal	resolution,	at	4	pressure	levels	(850,	700,	500	and	200	mb)	

for	 the	 same	 two	years	 as	 the	TRMM	data.	While	model-induced	uncertainties	 exist,	 this	

dataset	 is	 still	 seen	 as	 the	 best	 resource	 based	 on	 its	 consistency,	 coverage	 and	 use	 in	

potential	 applications.	 Thus,	 vertical	 wind	 shear	 is	 defined	 as	 the	 difference	 in	 wind	

magnitude	at	500	mb	and	850	mb	levels.	Low-level	dew	point	depression	 is	defined	as	the	

difference	between	2	m	temperature	and	dew	point.	A	vertical	humidity	deviation	is	defined	

as	the	ratio	between	specific	humidity	at	low-	and	mid-tropospheric	levels.	To	ensure	that	

the	height	 of	 the	planetary	boundary	 layer	 (PBL)	does	not	 affect	 these	 results,	mid-level	

humidity	 is	 taken	 as	 a	 mean	 value	 of	 450	 mb	 and	 500mb,	 while	 low-level	 humidity	 is	

required	to	be	within	the	PBL	(e.g.,	850	mb).	Three	different	humidity	ratios	are	defined	so	

that	the	environment	is	separated	into	three	equally	probable	states:	i)	dry	aloft,	ii)	mean,	

and	iii)	moist	aloft.	The	‘dry	aloft’	profile	is	defined	as	a	state	with	a	ratio	of	low-	to	mid-level	

atmospheric	moisture	greater	than	that	of	the	domain	mean	profile,	while	the	opposite	is	the	

case	for	‘moist	aloft’	profile.	

This	study	focuses	on	 land	regions	 in	South	America	(10S-10N;	50W-80W)	and	Africa	

(10S-10N;	17W-30E)	of	approximately	equal	area,	similar	surface	type	and	elevations.	While	

a	detailed	description	of	data	sets	used	for	the	analysis	can	be	found	in	the	cited	literature,	a		
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brief	 overview	 of	 TRMM	 instrument	 characteristics	 is	 provided	 below	 in	 addition	 to	 the	

climatology	of	the	Amazon	and	African	regions.	

3.2.1	TRMM	instruments.	

TRMM’s	precipitation	radar	is	a	Ku-band	radar	operating	at	frequency	of	13.8	GHz	with	

a	minimum	detectable	reflectivity	of	17	dBZ.	This	provides	reliable	rain	rate	detection	down	

to	0.5	mm	h-1	with	limited	sensitivity	to	frozen	hydrometeors	(e.g.,	fairly	large	ice	particles	

such	as	hail	and	graupel).	With	a	range	resolution	of	250	m,	PR	offers	vertical	sampling	up	

to	20	km	above	the	mean	sea	level	through	its	attenuation	based	retrieval	(version	7,	Iguchi	

et	al.	2000,	2009).	Each	scan	contains	49	5-km	FOV	pixels	forming	a	swath	of	approximately	

250	km.		

TMI	measures	the	microwave	radiances	with	horizontal	(H)	and	vertical	(V)	polarization	

at	nine	channels	(10V/H,	19	V/H,	24,	37	V/H,	and	85	V/H	GHz)	with	footprint	sizes	ranging	

from	63x37	to	5x7	km	(Kummerow	et	al.	1998).		

3.2.2	Climatology	of	precipitation	over	the	Amazon	and	Central	and	West	African	regions	

Central	Africa	is	known	for	deep,	intense,	well-organized	storms	that	produce	as	much	

as	70%	of	total	rainfall	in	that	region.	In	the	form	of	squall	lines	and	mesoscale	convective	

complexes	(MCCs),	these	storms	typically	initiate	near	the	Ethiopian	Highlands,	the	Darfur	

mountains,	and	Jos	Plateau.	While	propagating	toward	the	Atlantic,	they	are	strongly	affected	

by	African	Easterly	Waves,	the	African	Easterly	Jet	and	moisture	convergence	in	the	lower	

troposphere.	 The	 average	 annual	 precipitation,	 ranging	 from	 600	 mm	 to	 2000	 mm,	 is	

unevenly	distributed	between	the	dry	(October-March)	and	wet	(April-September)	seasons	

(Conway	et	al.	2009).	Detailed	descriptions	of	precipitation	systems	over	Central	Africa	can	

be	found	in	studies	by	Payne	and	McGarry	(1977);	Bolton	(1984);	Tetzlaff	and	Peters	(1988);	
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Machado	et	al.,	(1993);	Rowell	and	Milford	(1993);	Laing	and	Fritsch	(1993);	Novella	and	

Thiaw	(2013).	Two	sub-regions,	namely	the	Sahel	(northern-)	and	the	Congo	(equatorial-

Africa),	 are	 often	 characterized	 by	 somewhat	 different	 precipitation	 patterns.	 A	

comprehensive	analysis	of	those	differences	is	given	by	Laing	et	al.	(2011)	who	emphasize	a	

role	that	equatorial	coupled	waves	play	in	development	and	lifecycle	of	the	MCSs	in	Central	

Africa.	They	point	out	that,	in	comparison	to	their	Sahel	counterparts,	equatorial	Mesoscale	

Convective	Systems	(MCSs)	are	often	exposed	to	slowing	equatorial	Kelvin	waves,	Madden–

Julian	Oscillation	(MJO)	signal,	less	continental	mass,	and	weaker	contribution	of	local	shear.	

Therefore,	while	generally	very	similar,	it	may	be	expected	that	typical	precipitation	systems	

in	these	regions	have	different	structures	under	the	same	local	atmospheric	conditions.	

Amazon	 precipitation	 preferentially	 comes	 in	 the	 form	 of	 shallow,	 less	 intense	 but	

persistent	systems	with	more	ocean-like	characteristics.	A	dominant	feature	of	the	rainfall	

variability	is	a	diurnal	cycle	with	seasonal	contrasts	less	pronounced	than	over	the	African	

region.	Most	of	the	rainfall	occurs	between	November	and	May.	Mean	annual	accumulation	

over	the	majority	of	the	area	considered	in	this	study	ranges	between	1000	and	3000	mm.	

Detailed	analysis	of	Amazon	rainfall	systems,	including	occasional	deeper,	continental-like	

systems,	is	given	by	Petersen	et	al.	(2002)	and	sub-cited	literature.	A	literature	review	of	the	

most	important	precipitation	properties	in	this	region	can	be	found	in	Dias	et	al.	2002.	

3.3.	Understanding	the	Origins	of	Systematic	Difference	in	PMW	Retrieval		

Because	the	PMW	algorithm	[Eq.	(3.1)	and	Eq.	(3.2)]	guarantees	similar	rain	rates	 for	

similar	Tb	depressions	at	85	GHz,	an	error	is	introduced	any	time	the	scattering	in	a	cloud	

differs	 from	 the	 average	 assumed	 relation.	 Since	 the	 85	 GHz	 brightness	 temperature	
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decreases	primarily	due	to	ice-scattering	(Vivekanandan	et	al.	1991),	it	is	hypothesized	that	

ice-scattering	 variability	 is	 responsible	 for	 the	 systematic	 differences	 in	 rain	 rates	 seen	

between	the	two	sensors	in	Fig.	3.1.	To	test	this,	PR	reflectivity	above	the	freezing	level	and	

rain	rate	over	the	two	regions	of	Fig.	3.1	are	first	compared	and	then	linked	to	a	proxy	for	

PMW	retrieval	rain	rate	(i.e.,	85	GHz	Tb	depression).	Only	for	this	purpose,	in	order	to	ensure	

that	85	GHz	Tb	depression	is	not	caused	by	any	surface-related	sources,	such	as	standing	

water,	a	Polarization-Corrected	Temperature	(PCT)	is	used.	Before	the	result	is	discussed,	

PCT	and	PR’s	total	reflectivity	above	the	freezing	level	are	defined.	

The	Polarization-Corrected	Temperature	(PCT)	 is	a	 linear	combination	of	 the	vertically	

and	horizontally	polarized	Tbs	that	largely	eliminates	the	contrast	between	land	and	water	

(or	wet	surfaces).	Thus,	PCT	yields	an	atmospheric	scattering	signal	whose	strength	does	not	

depend	on	the	surface	background.	While	a	single	polarization	85	GHz	yields	very	similar	

results	over	 the	Tropics,	 the	PCT	depression	 is	used	here	as	a	proxy	 for	 ice-scattering	 to	

eliminate	possible	contamination	from	standing	water	or	wet	surfaces.	The	PCT	definition	

follows	that	of	Spencer	et	al.	(1989):		

PCT	=	1.818	TBV	–	0.818	TBH	

where	TBV	and	TBH	are	brightness	temperatures	at	the	vertically	and	horizontally	polarized	

TMI	85.5	GHz	channels,	respectively.	To	limit	variability	within	TMI’s	field	of	view	(FOV)	and	

ensure	good	beam	filling,	only	pixels	with	PCT	colder	than	250	K	are	used	(Spencer	et	al.	

1989).	This	criterion	focuses	on	systems	with	a	robust	ice-phase	in	the	precipitating	column	

and	excludes	scenes	that	the	algorithm	has	very	little	sensitivity	to.		
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The	Total	reflectivity	above	freezing	level	(TRFL)	is	simply	the	sum	total	of	all	reflectivity	

values	 in	 range	 gates	 above	 the	 freezing	 level	 observed	 by	 PR.	 Due	 to	 a	 wide	 range	 of	

hydrometeor	properties	(e.g.	type,	phase,	density,	and	size	distribution)	it	provides	only	a	

qualitative	 estimate	 of	 the	 cloud	 content	 in	 the	 freezing	 portion	 of	 atmospheric	 column	

which,	 due	 to	 PR’s	 sensitivity	 threshold	 (17	 dBZ),	 mainly	 relates	 to	 large	 frozen	

hydrometeors.	To	estimate	 this	quantity,	 the	 freezing	 level	 is	obtained	 from	the	2A25	PR	

product	and	used	to	locate	PR	range	bins	with	frozen	hydrometeors.	

These	 two	diagnostic	variables	allow	 for	easier	verification	of	 the	hypothesis	 that	 the	

variability	in	ice	scattering	is	the	dominant	error	source.	Figure	3.4	shows	the	relationship	

between	 the	 TRFL	 and	 rain	 given	 by	 PR.	 While	 noisy,	 the	 TRFL	 in	 the	 cloud	 is	 clearly	

depressed	over	the	Amazon	and	enhanced	over	the	African	region	for	a	given	rainfall	rate.		

	

 

Figure	3.4	Total	 reflectivity	 above	 the	 freezing	 level	 as	 a	 function	of	 rain	 rate.	A	 comparison	of	 the	
Amazon	(blue),	African	(red)	and	the	overall	(black)	region	(as	defined	in	Fig.	3.1)	means.	Pixel	data	
are	given	by	diamonds;	mean	values	for	each	rain	rate	bin	is	given	by	crosses.	Note:	only	5%	randomly	
chosen	pixels	are	plotted	(the	means	account	for	full	data	set)	to	avoid	clutter	in	the	figure.	
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Alternatively,	 one	 can	 also	 use	 the	 250	 K	 85	 GHz	 PCT	 depression	 from	 the	 PMW	

instrument	as	a	proxy	for	ice	scattering.	Figure	3.5	depicts	the	relationship	between	this	PCT	

depression	and	TRFL	for	collocated	PMW	and	PR	measurements.	The	comparison	takes	one	

year	of	observations	over	the	two	regions	marked	in	Fig.	3.1.	Although	not	perfectly	aligned,	

the	two	quantities	are	seen	to	be	related.	An	increase	in	PCT	depression	corresponds	to	an	

increase	in	total	reflectivity	above	the	freezing	level.	Stronger	scatter	at	the	bottom	of	the	

plot	is	a	reflection	of	the	variability	in	ice	particle	size	(Bennartz	and	Petty	2001),	as	well	as	

in	Tb	that	is	caused	by	liquid-phase	particles	seen	by	the	radar	above	the	freezing	level	but	

not	contributing	to	the	PCT	depression.	As	the	PCT	depression	increases,	the	scatter	reduces.	

 

Figure	3.5	Relationship	between	the	total	reflectivity	above	the	freezing	level	(PR)	and	85	GHz	Tb	PCT	
250	K	depression	(TMI).	

Clearly,	 Eq.	 (3.1)	 and	 Eq.	 (3.2)	 show	 that	 PMW	 rainfall	 depends	 on	 the	 85	 GHz	

temperature	 depression,	 which	 in	 Fig.	 3.5	 is	 seen	 to	 be	 proportional	 to	 the	 reflectivity	

observed	above	the	freezing	level	(i.e.,	to	the	reflectivity	related	to	frozen	hydrometeors).	At	

the	same	time	Fig.	3.3	suggests	that	the	amplitude	in	the	signal	related	to	the	presence	of	the	
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ice	 in	 clouds,	 typical	 for	Amazon	 and	African	 regions,	 differs.	 This	 is	 consistent	with	 the	

hypothesis	 that	 the	 ice	aloft	 is	 indeed	related	to	 the	variability	 in	 the	PR-to-PMW	rainfall	

difference	over	these	two	regions.	

3.4.	Addressing	the	variability	of	the	ice	aloft	to	rain	rate	relation		

The	 most	 striking	 property	 in	 Fig.	 3.4	 is	 a	 large	 pixel-to-pixel	 variability	 in	 the	

relationship	between	the	total	reflectivity	above	the	freezing	level	and	the	surface	rainfall.	

For	moderate	to	high	rain	rates,	the	reflectivity	can	vary	more	than	15	dBZ	(e.g.,	at	10	mm	h-

1	TRFL	ranges	 from	45	dBZ	 to	58	dBZ).	 It	 is	well	known	 that	 clouds	undergo	substantial	

microphysical	and	thermo-dynamical	changes	through	their	lifecycle	(e.g.,	chapter	14	in	Stull	

2015;	Cotton	et	al	2011).	The	ice-phase	responds	to	these	changes	(Imaoka	and	Nakamura	

2012).	Therefore,	the	pixel-level	variability	in	Fig.	3.4	is	expected,	as	different	lifecycle	stages	

are	captured	by	TRMM’s	random	sampling.	The	goal	of	this	study,	however,	is	not	to	interpret	

this	pixel-level	variability.	Instead,	the	focus	is	on	understanding	the	separation	of	the	two	

mean	relations	in	Fig.	3.4.	Considering	the	sample	size	(over	50,000	pixels)	the	variability	of	

the	relationship	between	the	mean	total	reflectivity	above	the	freezing	level	and	the	surface	

rainfall	over	the	two	regions	is	significant.	

3.4.1	Stratiform/Convective	classification	

The	PR	standard	product	2A23	separates	raining	pixels	into	a	number	of	categories,	the	

majority	of	which	(95%)	fall	into	stratiform	and	convective	classes.	Categorization	is	made	

based	on	criteria	such	as:	presence	of	a	brightband,	precipitation	depth,	reflectivity	value,	

and	 type	of	neighboring	pixels	 (Awaka	et	al.	2009).	The	outcome	 is	 shown	 to	be	 in	good	

agreement	with	 similar	 schemes	 applied	 to	 ground-based	 classifications.	 Thus,	 this	 pixel	
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categorization	 is	 expected	 to	 efficiently	 recognize	 contrasts	 in	 vertical	 structures	 of	

stratiform	and	convective	cloud	types.	Because	of	their	different	ice	structures,	systematic	

differences	of	these	cloud	types	may	be	able	to	explain	the	observed	regional	differences	in	

Fig.	3.4.	

The	PR	reflectivity	profiles	of	stratiform	and	convective	pixels	over	the	Central	African	

and	Amazon	regions	are	compared	in	Fig.	3.6.	As	expected,	the	two	classes	separate	well.	

However,	using	the	freezing	level	height	(4-5	km	according	to	the	brightband)	as	a	reference,	

it	is	easy	to	notice	that	the	reflectivity	above	0	°C	is	significantly	larger	over	the	African	than	

the	Amazon	region	for	both	convective	as	well	as	stratiform	cloud	structures.	This	result	thus	

adds	 little	 to	 our	 existing	 result	 from	 Fig.	 3.4	 that	 Africa	 has	 systematically	 higher	

reflectivities	in	the	ice	region	than	South	America.		

 

Figure	3.6	Mean	PR	reflectivity	profiles	over	4	mm	h-1	0.5°	grid	boxes	within	the	two	regions	marked	in	
Fig.	3.1.	Both	convective	(red)	and	stratiform	(blue)	pixels	tend	to	have	stronger	reflectivity	over	Africa	
compared	to	Amazon.	
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3.4.2	Cloud	cluster	type	classification	

An	alternative	classification	of	clouds	consists	of	the	clustering	method	developed	in	a	

study	by	Elsaesser	et	al.	(2010,	2013).	Elsaesser	et	al.	(2010)	classify	precipitation	regimes	

based	on	a	cloud	type	probability	density	functions	(PDFs),	following	the	notion	that	regimes	

are	characterized	by	distinct	combinations	of	shallow,	mid-level	and	deep	convective	cloud	

types	(as	discussed	in	Johnson	et	al.	1999).	Using	their	approach,	we	tested	self-similar	PDFs	

of	 cloud	 characteristics	 allowing	 them	 to	 group	 into	 three	 clusters.	 In	 the	original	 study,	

tropical	oceanic	clouds	are	clustered	into	classes	defined	by:	1)	Shallow,	2)	Deep-organized,	

and	3)	Deep-unorganized	convection.	To	mimic	this,	we	first	define	a	regular	1°	x	1°	grid	

along	 the	 TRMM	 track,	 and	 then	 seek	 cluster	 centroids,	 or	 ‘‘regimes’’,	 that	minimize	 the	

Euclidean	 distance	 in	 an	 x-dimensional	 space	 of	 standardized	 variables.	 The	 variables,	

following	Elsaesser	et	al.	(2010),	are	chosen	to	be:	1)	echo	top	heights	(ETHs),	2)	convective	

to	stratiform	rainfall	ratio,	and	3)	raining	to	non-raining	pixel	ratios,	all	given	by	PR	over	the	

1°	 grids.	 The	 first	 are	 given	 by	 the	 altitude	 of	 the	 highest	 non-isolated	 range	 bins	 with	

reflectivity	 of	 at	 least	 17	 dBZ	 (more	 details	 in	 Short	 and	 Nakamura	 2000)	with	 shallow	

systems	being	dominated	by	clouds	with	ETHs	less	than	5	km,	deep-organized	systems	with	

ETHs	from	5	to	9	km,	and	deep-organized	ones	with	ETHs	greater	than	9	km.	The	other	two	

variables	are	simply	based	on	the	total	number	of	pixels	within	each	category.	While	the	echo	

top	heights	 represent	a	proxy	 for	 the	amount	of	 ice	 in	 the	cloud	column,	 they	also	relate	

relatively	 well	 to	 the	 level	 of	 cloud	 system	 organization	 (e.g.,	 deeper	 clouds	 yield	 more	

organization,	as	seen	in	Johnson	et	al.	1999).	Application	of	the	clustering	algorithm	results	

in	 the	same	cloud	regimes	described	by	Elsaesser	et	al.	 (2010,	2013).	The	corresponding	
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change	 of	 reflectivity	 with	 height	 and	 Tb	 values	 at	 85	 GHz	 of	 each	 regime	 are	 shown	

in	Fig.	3.7.	

 

Figure	 3.7	 Vertical	 PR	 reflectivity	 profiles	 separated	 by	 1)	 precipitation	 regime:	 shallow	 (a),	 deep-
unorganized	(b),	and	deep-organized	(c);	2)	precipitation	type:	convective	(red)	and	stratiform	(bleu)	
and;	3)	region:	Amazon	(solid	lines)	and	African	(dashed	lines).	

Profile	comparison	suggests	that	unlike	convective/stratiform	profiles,	regime	vertical	

structures	are	extremely	consistent	between	Africa	and	South	America.	For	example,	if	one	

choses	a	vertical	profile	(convective	or	stratiform)	in	Fig.	3.7	to	compare	its	extend	and	shape	

over	 the	 Amazon	 and	 African	 regions,	 it	will	 find	 very	 little	 variability	 between	 the	 two	

regardless	 of	 chosen	 regime.	 Regional	 differences	 must	 therefore	 be	 related	 more	 to	 a	

change	 in	 regime	 frequency	 than	 in	 regime	properties.	High	 frequency	 (i.e.,	 85	GHz)	Tbs	

further	 show	 significantly	 lower	 values	 in	 the	 case	 of	 deep-organized	 cloud	 systems,	

implying	enhanced	 ice	content	of	 this	 regime.	This	 is	 consistent	with	higher	 reflectivities	

detected	throughout	the	column	of	dBZ	profile	above	the	freezing	level	(i.e.	bright	band)	in	

deep-organized	 systems	 (panel	 c)	 compared	 to	 shallow	ones	 (panel	 a).	These	 results	 are	
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generally	 consistent	 with	 clouds	 and	 cloud	 system	 properties	 described	 in	 the	 existing	

literature	(e.g.	Steiner	et	al.	1995,	Houze	et	al.	1990).		

3.4.3	Explaining	the	variability	of	scattering-signal-to-rain-rate	relationship	using	cloud	

clusters	

Consistency	of	the	regimes	with	respect	to	ice	aloft	and	Tb	depressions	between	the	two	

regions	suggests	 that	using	 the	clustering	approach	has	more	potential	 in	addressing	 the	

systematic	 discrepancies	 over	 the	 two	 regions	 than	 the	 simple	 stratiform-convective	

classification.	Figure	3.8	shows	the	probability	of	occurrence	of	each	regime	along	with	the	

total	rain	fraction	of	that	regime.	Additionally,	Fig.	3.9	shows	the	relative	difference	in	total	

rainfall	contribution	separated	by	regime	as	well	as	the	corresponding	scatterplots	showing	

the	differences	within	each	 regime.	The	 results	 suggest	 a	 strong	 correlation	between	 the	

three	 cloud	 system	 types	 and	 rainfall	 differences	 seen	 in	 Fig.	 3.1.	 While	 no	 obvious	

correlation	is	noticeable	between	the	systematic	differences	and	deep-unorganized	regime	

(middle	panels),	PMW	negative	deviations	(purple	areas	in	Fig.	3.1)	coincide	well	with	the	

Relative	Frequency	of	Occurrence	(RFO)	of	 the	shallow	systems	(top	row	in	Fig.	3.8)	and	

PMW	positive	deviations	 (warm	colors	 in	Fig.	3.1)	 coincide	with	RFOs	of	deep-organized	

systems	(bottom	row	in	Fig.	3.8).	The	results	are	 in	agreement	with	the	findings	that	use	

similar	approach	to	describe	tropical	convection	[e.g.,	Mohr	et	al.	(1999);	Zipser	et	al.	(2006);	

Wall	 et	 a.	 (2013);	Houze	et	 al.	 (2015)].	 For	 example,	Mohr	et	al.	 (1999)	 found	 that	well-

organized	 storms,	 MCSs,	 in	 the	 African	 region	 constituted	 10%–20%	 of	 the	 regional	

populations	of	 convective	 systems	but	 contributed	70%–80%	of	 the	 rainfall.	 Zipser	et	 al.	

(2006)	show	the	distribution	of	intense	thunderstorms	that	coincide	well	with	the	relative	

frequency	of	occurrence	of	deep-organized	systems	in	Fig.	3.8.	The	same	study	found	that	
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rains	over	the	Amazon	have	relatively	few	intense	storms,	which	relates	to	properties	of	the	

shallow	systems	seen	here.	

 

Figure	 3.8	 Relative	 frequency	 of	 occurrence	 (left)	 and	 contribution	 to	 the	 total	 PR	 rain	 (right)	 by:	
shallow	(top),	deep-unorganized	(middle)	and	deep-organized	(bottom)	precipitation	regimes	over	the	
Amazon	and	African	regions	in	2010.	
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Figure	3.9	Left:	The	relative	difference	between	PR	and	PMW	total	rainfall	contribution	separated	by	
precipitation	regime.	Right:	Density	scatter	plots	of	the	PMW	and	PR	rainfall	estimates	(log-axes)	for	
each	 of	 the	 regimes.	 In	 shallow	 regime	 (top)	 PMW	 sensor	 underestimates	 PR	 by	 33%;	 in	 deep-
unorganized	regime	(middle)	PMW	underestimates	PR	by	10%;	 in	deep-organized	regime	(bottom)	
PMW	overestimates	PR	by	41%.	

By	 showing	 the	 relative	 difference	 between	 PMW	and	 PR	 total	 rainfall	 estimate	with	

corresponding	rain	rate	plots,	Fig.	3.9	quantifies	 the	contributions	 to	 the	 total	systematic	

difference	by	each	of	the	three	regimes.	Shallow	and	deep-unorganized	regimes	tend	to	be	

underestimated	by	the	PMW	sensor	compared	to	the	PR	(by	33	%	and	10	%,	respectively),	

while	the	deep-organized	regime	rainfall	is	overestimated	(by	41	%).	Most	of	the	areas	with	

positive	differences	in	the	top	two	panels	of	Fig.	3.9	correspond	to	regions	where	shallow	

and	 deep-unorganized	 regimes	 contribute	 less	 than	 50%	 to	 the	 total	 rain.	 Combined	

information	from	Figs.	3.8	and	3.9	suggests	that	cloud	systems	RFO	explains	up	to	50%	of	

the	systematic	differences	over	the	Amazon	and	African	regions.	The	overall	conclusion	is	

that	 PMW	 sensor	 indeed	 tends	 to	 overestimate	 ice-rich	 deep-organized	 convection	 and	
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underestimate	 the	other	 two,	relative	 to	 the	PR.	This,	coupled	the	changes	 in	 the	relative	

frequencies	of	occurrences	of	 these	 systems,	 generally	 explains	 the	 systematic	difference	

seen	in	Fig.	3.1.	

The	above	conclusion	 is	 supported	by	Fig.	3.10,	which	uses	 the	 integrated	reflectivity	

above	the	freezing	level	versus	surface	rainfall,	as	done	for	Fig.	3.4,	to	repeat	the	analysis.	

The	 figure	 clearly	 shows	 that	 deep-organized	 systems	 relate	 to	 positive,	 while	 shallow	

systems	relate	to	negative	deviations	from	the	mean	PR’s	ice-column-estimate-to-rain	ratio	

of	Fig.	3.4.	This	suggests	that	if	one	has	knowledge	on	a	type	of	a	cloud	system,	then	PMW-

to-PR	deviation	of	that	system	may	be	predicted,	at	least	in	the	mean	sense.	Unfortunately,	

PR	measurements	are	not	always	available	to	provide	this	information	to	PMW	algorithms.	

Therefore,	an	alternative	approach	to	link	the	observed	storms	to	the	systematic	differences	

is	 desirable.	 Based	 on	 the	 current	 understanding	 of	 the	 interactions	 of	 storms	 with	 the	

environment,	 a	 potential	 solution	 exists	 if	 the	 environment	 can	 be	 used	 to	 predict	 cloud	

organization	level	(i.e.,	raining	regime).		
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Figure	 3.10	 Same	 as	 Fig.	 3.4	 just	 separated	 by	 the	 system	 type	 (shallow,	 deep-unorganized,	 deep-
organized).	

3.5.	Cloud	System	Types	and	the	Large-scale	Environment.	

Clusters	form	a	convenient	basis	for	understanding	the	relationship	between	systematic	

differences	 and	 the	 synoptic	 state	 of	 the	 atmosphere	 (hereinafter	 also	 referred	 to	 as	 the	

“large-scale	environment”).	Shaped	and	governed	by	thermo-dynamical	and	microphysical	

processes,	precipitation	systems	change	and	evolve	during	their	lifecycle.	By	grouping	the	

storms	into	structurally	self-similar	systems,	clusters	form	subsets	of	data	that	potentially	

have	 less	 pixel-to-pixel	 variability	 induced	 by	 these	 lifecycle	 changes.	 Sampling	 the	

atmospheric	 conditions	 by	 criteria	 that	 are	 well	 known	 to	 play	 a	 key	 role	 in	 cloud	

development	 reveals	 links	 between	 the	 environment	 and	 the	 level	 of	 cloud	 system	

organization.	Using	findings	from	Mohr	et	al.	(1996;	1999),	Petersen	et	at.	(2002),	and	other	

above-mentioned	studies,	a	relationship	between	the	regimes	and	large-scale	parameters	is	

tested.	

Atmospheric	parameters	are	taken	from	ERA-Interim	and	co-located	with	the	existing		

1°	 x	 1°	 raining	 scenes.	 To	 ensure	 that	 environmental	 variables	 are	 not	 affected	 by	
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precipitation	thermodynamics,	the	ERA-Interim	data	preceding	the	time	of	PR	precipitation	

are	used.	Thus,	the	time-gap	between	the	environment	state	and	rainfall	observations	can	be	

as	large	as	6	hours	(temporal	resolution	of	the	3D	Era-Interim).	A	number	of	parameters	and	

their	combinations	(e.g.,	convective	available	potential	energy	–	CAPE,	total	column	water	

vapor	–	TPW,	skin	temperature,	vertical	and	horizontal	winds	at	700	mb,	velocity	of	the	mid-

level	 jet,	 the	 magnitude�of	 the	 low-level	 wind	 shear,	 the	 surface	 equivalent	 potential	

temperature)	are	tested	as	cloud	regime	predictors.	Several	parameters	stand	out:	the	mid-

level	 vertical	wind	 shear,	 vertical	 humidity	deviation,	CAPE,	 and	 the	 low-level	dew	point	

depression.	Results	are	presented	in	Fig.	3.11	and	Table	3.1.	

 

Figure	3.11	Relative	frequency	of	occurrence	(RFO)	of	deep	intense	organized	(red),	shallow	(black),	
and	deep-unorganized	(blue)	systems	as	a	function	of	the	environment.	For	the	exact	values	of	RFOs	
and	the	environments	see	Table	3.1.	
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Table	3.1	Environment	bin	limits	with	the	corresponding	PR	to	PMW	(TMI)	rainfall	estimate	ratios	and	
Relative	Frequency	of	Occurrence	(RFO)	of	the	three	regimes,	for	the	year	2010.	Note:	the	bin	limits	for	
the	vertical	humidity	deviation	are	given	in	the	reversed	order	of	what	they	appear	in	the	panel	a)	of	
Fig.	3.11	(i.e.	lower	bin	limit	values	correspond	to	the	dry-aloft	conditions).	

CAPE	
Bin	limits											[J	kg-1]	 124	 256	 384	 511	 645	 792	 954	 1137	 1369	 1729	 +	∞	
PR/PMW	ratio	 1.50	 1.25	 1.18	 1.16	 1.13	 1.01	 1.03	 0.95	 0.89	 0.88	 0.78	

RFO	Shallow											[%]	 56	 48	 43	 41	 37	 33	 30	 28	 24	 22	 17	
RFO	Deep-
Unorganized		

30	 32	 35	 35	 37	 35	 35	 35	 35	 32	 27	
RFO	Deep-Organized	 14	 19	 21	 24	 26	 33	 34	 38	 41	 46	 55	

VERTICAL	HUMIDITY	DEVIATION	
Bin	limits	 0.11	 0.14	 0.16	 0.18	 0.20	 0.21	 0.23	 0.24	 0.26	 0.29	 +	∞	
PR/PMW	ratio	 0.77	 0.83	 0.87	 0.95	 0.98	 1.02	 1.04	 1.12	 1.18	 1.23	 1.28	

RFO	Shallow											[%]	 27	 20	 24	 27	 29	 30	 33	 37	 42	 47	 61	
RFO	Deep-
Unorganized	

29	 32	 33	 34	 35	 35	 35	 36	 36	 34	 28	
RFO	Deep-Organized	 44	 48	 43	 39	 36	 35	 32	 27	 21	 19	 11	

LOW-LEVEL	DEW	POINT	DEPRESSION	
Bin	limits																	[K]	 0.48	 0.88	 1.26	 1.69	 2.24	 2.99	 4.11	 5.63	 8.24	 12.64	 +	∞	
PR/PMW	ratio	 1.27	 1.20	 1.16	 1.18	 1.14	 1.07	 0.99	 0.91	 0.85	 0.73	 0.65	

RFO	Shallow											[%]	 47	 43	 42	 42	 39	 35	 31	 29	 26	 23	 19	
RFO	Deep-
Unorganized	

32	 32	 31	 34	 36	 37	 34	 34	 34	 31	 30	
RFO	Deep-Organized	 20	 25	 26	 24	 25	 29	 34	 37	 40	 45	 51	

WIND	SHEAR	
Bin	limits												[m	s-1]	 -2.14	 -1.02	 -0.24	 0.43	 1.06	 1.71	 2.39	 3.15	 4.15	 5.68	 +	∞	

PR/PMW	ratio	 1.22	 1.09	 1.09	 1.06	 1.05	 1.06	 1.09	 1.00	 0.96	 0.87	 0.76	

RFO	Shallow											[%]	 47	 41	 39	 38	 36	 35	 34	 30	 29	 25	 19	
RFO	Deep-
Unorganized	

30	 35	 36	 36	 37	 37	 35	 35	 32	 31	 26	
RFO	Deep-Organized	 23	 24	 24	 25	 28	 28	 32	 35	 39	 44	 54	

	

The	 analyses	 show	 that	 high	 CAPE	 values,	 strong	 shear	 and	 dry-aloft	 conditions	 are	

favorable	 precursors	 of	 deep-organized	 convection.	 In	 these	 environments	 intense		

well-organized	 systems	are	2	 to	3	 times	more	 common	 than	any	others.	Conversely,	 low	

CAPE,	week	shear	and	moist-aloft	setup	are	conditions	that	favor	the	shallow	regime.	While	

the	two	more-organized	regimes	(shallow	and	deep-organized)	are	highly	predictable,	it	is	

interesting	to	note	that	deep-unorganized	systems	show	no,	or	very	little,	sensitivity	to	any	
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of	 the	tested	variables.	This	may	not	be	too	detrimental	since	this	 is	also	 the	regime	that	

showed	the	least	disagreement	in	rain	estimates	between	the	two	sensors.	The	role	of	the	

environment	parameters	favoring	specific	cloud	regimes	is	examined	next.	

3.5.1	Wind	shear	and	Convective	Available	Potential	Energy	

A	role	of	CAPE	and	wind	shear	in	cloud	development	is	often	coupled	and	as	such	broadly	

discussed	in	the	literature.	As	a	measure	of	atmospheric	column	potential	energy,	CAPE	is	

widely	used	to	predict	convection	intensity	and	longevity.	Whether	only	a	part	or	most	of	the	

column	energy	is	exploited	in	the	cloud	development	process	depends	on	a	number	of	factors	

where	wind	shear	plays	an	important	role	(e.g.,	Xu	1992;	Xu	and	Moncrieff	1994).	Studies	

and	theoretical	models	of	cloud	system	organization	describe	a	necessary	balance	between	

the	strength	of	the	updrafts	and	their	vertical	tilts	to	allow	for	deep-organized	features	such	

as	MCSs.	By	defining	a	displacement	of	down-welling	motions	relative	to	the	updrafts,	wind	

shear	 controls	 the	 ability	 of	 precipitating	 system	 to	 utilize	 environment	 resources	 (e.g.,	

CAPE).	While	downward	motion	of	the	hydrometeors	straight	through	the	updraft	limits	the	

storm’s	potential	to	propagate	and	feed	on	the	unperturbed	unstable	environment,	too	much	

wind	shear	may	force	the	rainwater	into	dryer	layers	away	of	the	storm‘s	core	and	cause	

evaporation	 that	can	stabilize	 the	atmospheric	column	too	 fast	 (e.g.,	Rotunno	et	al.	1988;	

LeMone	et	al.	1998).	Whether	cold	pool,	updraft	intensity,	front	and	rear	inflows,	or	in-cloud	

thermo-dynamical	processes,	 are	more	 favorable	 for	one	 cloud	 regime	over	 another,	 is	 a	

complex	question	that	cannot	be	simply	answered	by	CAPE	and	wind	shear	alone.	However,	

these	two	variables	have	a	strong	influence	on	all	of	these	factors	and	therefore	serve	as	good	

predictors	of	a	storm’s	organization	level.		
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3.5.2	Low-level	dew	point	depression		

Using	a	low-level	dew	point	depression	as	a	cloud	system	type	predictor	is	motivated	by	

the	 facts	 that	 this	quantity	simultaneously	provides	 information	on	 the	 low-level	 relative	

humidity	and	state	of	the	soil	moisture,	both	of	which	have	been	shown	(e.g.,	Ford	et	al.	2015)	

to	relate	to	the	cloud	system	initiation	and	development.	Near	the	surface	relative	humidity	

is	 a	 relatively	 good	 proxy	 for	 the	 state	 of	 the	 boundary	 layer.	 Soil	 moisture	 and	 2	 m	

temperature	are	also	related	to	the	height	of	the	boundary	layer,	which	plays	an	important	

role	 in	 defining	 the	 cloud	 base	 height.	 This	 further	 influences	 the	 depth	 of	 the	 cloud	

determining	thermo-dynamical	properties	over	the	course	of	the	cloud	lifecycle.	At	the	same	

time	 the	relative	humidity	and	cloud	base	height	strongly	affect	 the	amount	of	 rainwater	

evaporated	before	reaching	the	ground.	This	does	not	only	alter	the	rain	rate	but	also	may	

play	an	important	role	in	further	development	and	organization	of	the	cloud	system	through	

the	downdraft	bursts	and	cold	pools.	Findings	of	Ek	and	Mahrt	(1994)	offer	an	example	of	

the	complex	response	of	cloud	properties	to	the	top	of	a	boundary	layer.	They	found	that	

drier	 soil	 leads	 not	 only	 to	 lower	 boundary-layer	 specific	 humidity	 but	 to	 cooler	

temperatures	at	the	boundary-layer	top	due	to	greater-boundary	 layer	growth.	When	the	

latter	effect	dominates,	the	relative	humidity	at	the	boundary-layer	top	is	greater	over	drier	

soil.	In	contrast,	they	saw	drier	soil	leading	to	lower	relative	humidity	at	the	boundary-layer	

top	when	the	air	above	is	strongly	stratified	or	very	dry.	

Clearly,	 large-scale	 environments	 can	 serve	 as	 predictors	 of	 a	 cloud	 system	 type.	 If	

relationships	between	the	environment,	system	types,	and	PMW	systematic	differences	are	

consistent	and	robust,	then	the	environment	itself	must	have	a	well-defined	relationship	to	

these	differences	as	well.	
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3.6.	Potentials	of	removing	PMW	climatological	errors	

The	 results,	 to	 this	 point,	 demonstrate	 that	 systematic	 deviations	 of	 PMW	 rainfall	

retrieval	 relative	 to	 PR	 rain	 estimates	 over	 land	 are	 caused	 by	 regionally	 dependent	

differences	 of	 the	 ratio	 between	 the	 ice	 scattering	 signature	 and	 surface	 rainfall,	

characterized	 by	 strong	 pixel-level	 variability.	 While	 this	 localized	 variability	 is	 hard	 to	

capture,	grouping	the	pixels	into	classes	(clusters)	of	distinct	mean	PMW-to-PR	deviations	

allowed	for	their	difference	reduction	at	larger	scales.	

It	was	shown	that	clusters	relate	well	with	PMW	to	PR	rainfall	ratio	and	that	the	large-

scale	 environment	 is	 a	 reasonably	 good	 predictor	 of	 the	 cluster	 types.	 Therefore,	 it	 is	

expected	that	both	can	perform	well	if	used	to	predict	their	disagreement.	To	demonstrate	

these	 predictors’	 potential	 in	 reducing	 PMW-to-PR	 differences,	 a	 simple	 experiment	 is	

performed.	A	year	of	TRMM	data	is	used	to	quantify	the	relationship	between	rain	estimate	

of	the	two	sensors	(e.g.,	that	seen	in	Fig.	3.1),	with	respect	to:	a)	environment,	and	b)	clusters.	

For	 each	 given	 environment	 or	 cluster,	 the	 PMW-to-PR	 rainfall	 ratio	 is	 recorded.	 Once	

available,	this	ratio	is	used	to	adjust	the	retrieved	PMW	rain	rate	estimates	of	an	independent	

time	 interval	 when	 similar	 environmental	 or	 cluster	 conditions	 exist.	 The	 results	 are	

presented	below.	

3.6.1	Large-scale	Environment	as	a	variability-predictor	

Before	any	PMW	rainfall	adjustments	are	made,	Fig.	3.12	presents	the	mean	PMW-to-PR	

ratios	 as	 a	 function	 of	 the	 environment	 categories	 used	 in	 Fig.	 3.11.	 Clearly,	 a	 robust	

relationship	 exists,	 supporting	 the	 original	 hypothesis	 that	 the	 large-scale	 environment	

relates	to	differences	between	PMW	and	PR	rainfall	estimates.	Table	3.2	lists	correlations	

between	the	environments,	suggesting	that	none	of	the	four	is	overly	linked	to	the	others.		
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Figure	3.12	PR	to	PMW	rainfall	ratio	as	a	function	of	large-scale	environment	during	the	year	of	2010.	
The	environmental	bins	are	 the	 same	as	 in	Fig.	3.11.	The	bin	 limits	and	exact	values	of	PR	 to	PMW	
rainfall	ratios	are	listed	in	Table	3.1.	
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Table	3.2	Correlation	between	the	 large-scale	environments	of	 the	 four	categories	seen	 in	Fig.	3.12.	
Data	source:	ERA-Interim	reanalysis	data	for	2010.	

	 Humidity	deviation	 Dew	point	depression	 CAPE	 Wind	Shear	
Humidity	deviation	 	 -0.18	 -0.15	 -0.22	
Dew	point	dep.	 -0.18	 	 -0.10	 0.15	

CAPE	 -0.15	 -0.10	 	 0.10	
Wind	Shear	 -0.22	 0.15	 0.10	 	

Multiple	environment	predictors	of	the	PMW-to-PR	rainfall	ratio	are	also	tested	at	once.	

Figure	3.13	depicts	an	example	where	CAPE-defined	environment	is	sampled	by	low-level	

dew	point	depression.	As	the	dew	point	depression	decreases,	an	increase	in	the	ratio	of	the	

two	instruments’	rainfall	is	seen	across	each	of	the	CAPE	environment	bins.	Similar	results	

are	seen	for	any	combination	of	the	environments	(not	shown	here).	

 

Figure	3.13	Ratio	between	PR	and	PMW	rainfall	as	a	function	of	the	environment	defined	by	CAPE	and	
the	 difference	 between	 2m	 temperature	 and	 dew	 point.	 Red	 bars	 denote	 bins	where	 PR	 rainfall	 is	
underestimated	by	PMW	retrieval,	while	blue	bars	denote	the	opposite.	
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Finally,	 to	 quantify	 the	 predictability	 of	 the	 two	 sensor’s	 disagreements,	 Fig.	 3.14	

compares	the	original	(black)	and	adjusted	(red)	PMW	estimates	of	mean	daily	rain	rates	to	

those	of	PR,	for	year	2008,	using	level-3	products	at	10°	resolution.	The	adjustments	of	PMW	

rain	 estimate	 are	 based	 on	 the	 2010	 dataset	 constraining	 the	 PMW-to-PR	 ratio	 by	 two	

environments	at	a	 time.	Using	 the	observed	CAPE	and	wind	shear	as	criteria	 (left	panel),	

improvements	of	approximately	30	%	and	35	%	are	made	in	RMSE	and	systematic	difference	

of	 daily	 rain	 rates,	 respectively,	 while	 regression	 coefficient	 is	 improved	 by	 25%.	

Improvements	 are	 somewhat	 less	 appealing,	 but	 still	 significant	 when	 CAPE	 is	 used	 in	

combination	with	 the	humidity	distribution,	 removing	approximately	20%	of	 the	relative	

bias.	When	individual	grids	are	compared,	with	no	exceptions,	improvement	is	found	across	

the	entire	domain	(not	shown	here).	

 

Figure	3.14	The	PMW	to	PR	conditional	rainfall	comparison	before	(black)	and	after	(red)	PMW	rainfall	
estimate	adjustment.	Scenes	observed	by	both	sensors	as	non-raining	are	excluded.	A	combination	of	
CAPE	and	shear	values	(left	panel),	CAPE	and	humidity	distribution	(right	panel)	is	used	to	predict	and	
then	reduce	the	PR	to	PMW	retrieval	difference	in	GPROF	algorithm	at	10°	x	10°	grid	for	the	regions	
marked	in	Fig.	3.1.	
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3.6.2	Cloud	system	type	as	a	variability-predictor	

Section	3.4c	and	Fig.	3.9	depict	the	PMW-to-PR	rain	ratio	as	a	function	of	a	cloud	system	

type.	The	performance	of	the	cloud	system	type	in	PMW	systematic	difference	removal	 is	

evaluated	in	Fig.	3.15	by	repeating	the	same	test	as	above.	The	RMSE	of	adjusted	rain	rates	

yield	value	of	1.9	mm	day-1	corresponding	to	proximately	40%	of	improvement	relative	to	

the	original	value	of	3.4	mm	day-1.	At	same	time	systematic	differences	over	the	two	regions	

are	reduced	by	almost	50%.	Clearly,	a	significant	reduction	of	both	RMSE	and	bias	confirms	

a	 strong	 relation	 between	 the	 bias-to-cloud-structure	 to	 PMW	 systematic	 differences	 in	

rainfall	estimates	over	land.	

 

Figure	3.15	Same	as	Fig.	3.14	but	now	using	 the	cloud	system	type	as	a	predictor	of	 the	PMW	to	PR	
retrieval	deviation.	

When	 comparing	 the	 two	 predictors,	 cloud	 system	 types	 explain	 more	 variability	

between	the	two	sensors.	However,	their	definition	was	based	on	radar	characteristics	and	

thus	may	not	be	easily	applied	to	radiometer-only	retrievals.		
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3.7.	Summary	

This	paper	tries	to	provide	a	better	understanding	of	systematic	differences	seen	in	PMW	

rainfall	 retrievals	 over	 land.	 The	 study	 explores	 the	 links	 between	 ice	 scattering	 PMW	

signature	 and	 estimate	 of	 surface	 rain	 intensity,	 cloud	 system	 structure,	 and	 large-scale	

environments.	 It	 is	 shown	 that	 observed	 cloud	 physics	 and	 relationship	 between	 Tb	

depression	 and	 surface	 rain	 intensity	 correlate	 well	 with	 regional	 PMW-to-PR	 rainfall	

discrepancies	 in	 tropical	Africa	 and	South	America.	Variability	of	 ice-scattering-signal-to-

rain-rate	relationship	across	these	two	opposing	regions	is	captured	by	grouping	the	pixel-

level	data	 into	 three	 self-similar	 cloud	 classes	of	distinct	 levels	of	organization.	Although	

these	groups	showed	great	potential	in	removing	systematic	differences	seen	between	PMW	

and	PR	rainfall	estimates,	their	diagnosis	is	too	complex	for	PMW	retrieval	applications.	As	

a	natural	driver	of	atmospheric	processes,	the	role	of	a	large-scale	environment	in	defining	

these	distinct	 levels	of	 cloud	organization	 is	evaluated.	When	constrained	by	CAPE,	wind	

shear,	dew	point	depression,	and	vertical	humidity	distribution,	the	environment	is	found	to	

be	in	favor	to	a	certain	storm	types.	Thus,	high	CAPE	values,	as	well	as	dry	aloft	conditions	

are	most	commonly	seen	prior	to	deep-organized	systems.	On	the	other	side,	low	wind	shear	

and	weak	 dew	 point	 depression	 are	 both	 in	 favor	 of	 shallower	 unorganized	 events.	 The	

ability	of	large-scale	environments	to	reduce	climate-scale	PMW	to	PR	rainfall	differences	is	

found	appealing,	lowering	the	current	PMW-to-PR	regional	rainfall	ratios	by	up	to	40%.		

The	possibility	is	left	open	that	other	predictors,	or	combination	of	predictors,	could	be	

used	to	further	improve	upon	these	results,	overcoming	the	lack	of	information	content	that	

observed	vector	currently	offers	to	PMW	retrievals	over	land.	It	is	concluded	that	addressing		
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the	role	of	the	cloud	structure	variability	in	PWM	observations	will	be	an	inevitable	step	in	

future	versions	of	the	PMW	algorithms.	
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CHAPTER	4		

	
IMPROVING	THE	QUALITY	OF	EXTREME	PRECIPITATION	ESTIMATES	FROM	SATELLITE	

PASSIVE	MICROWAVE	RAINFALL	RETRIEVALS	

	
	
	

4.1	Introduction	

Rather	than	uniform	and	continuous,	transitions	of	a	physical	system	from	one	state	to	

another	state	are	often	seen	as	a	series	of	random	perturbations	characterized	by	a	general	

trend.	The	capability	to	recognize	this	trend	is	a	key	for	early	detection	but	is	often	limited	

by	 access	 to	 accurate	 measurements.	 In	 an	 effort	 to	 adapt	 to	 an	 ever-changing	 climate,	

understanding	 fluctuations	 of	 atmospheric	 phenomena,	 especially	 their	 extremes,	 has	 a	

critical	role.	Emerging	from	complex	thermo-dynamical	processes,	changes	in	precipitation	

could	be	thought	of	as	a	reflation	of	transitions	of	the	changing	physical	system.	Diagnosing	

the	onset	of	a	change	in	such	a	complex	system	is	usually	done	by	examining	changes	in	its	

extremes.	 Therefore,	 direct	 observations	 of	 extreme	 precipitation	 at	 global	 scales	 are	

invaluable	in	understanding	the	ever-changing	climate.	Despite	a	long,	albeit	sparse,	record	

[first	known	observations	date	back	2000	BCE	(Wang	and	Zhang,	1988)],	globally	complete	

precipitation	measurements	did	not	become	available	until	the	modern	era	of	satellite	earth-

observing	systems	that	employ	infra-red	and	microwave	radiometric	techniques	(e.g.,	Atlas	

and	Thiele,	1981).	Achieving	measurement	 standards	of	 rainfall	 in	 atypical	 (i.e.	 extreme)	

environments	on	small	spatio-temporal	scales	across	the	globe,	however,	has	turned	out	to	

be	more	difficult	than	anticipated.	Although	satellite	observations	can	have	relatively	large	
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random	 errors	 at	 small	 scales,	 their	 global	 nature	 makes	 them	 suitable	 for	 addressing	

potential	changes	in	global	precipitation	extremes.		

The	first	satellite-born	passive	microwave	(PMW)	instruments	date	back	to	mid	1960s.	

Rainfall	 detection	 from	 space	 began	 with	 the	 Scanning	 Multi-Channel	 Microwave	

Radiometer	launched	onboard	the	Nimbus-7	satellite	in	the	mid	1970s	making	satellite	PMW	

measurements	 an	 indispensable	 part	 of	 global	 rainfall	 records	 until	 the	 present	 day.	

Although	far	from	ideal,	the	relatively	low	cost	of	microwave	imagers	made	them	affordable	

and	a	popular	choice	of	instrument	for	many	past	and	upcoming	space	missions	(NIMBUS,	

DMSP,	 NOAA,	 METOP,	 TRMM,	 GPM,	 JPSS,	 to	 name	 a	 few).	 At	 the	 same	 time,	 passive	

microwave	rainfall	retrievals	became,	either	directly	or	indirectly,	one	of	the	most	important	

components	of	gridded	products	[e.g.,	IMERGE	(Huffman	et	al.	2015),	CMORPH	(Joyce	et	al.	

2004),	TMPA	(Huffman	et	al.	2007),	PERSIANN-CCS	(Hong	et	al.	2004),	GSMaP	(Kubota	et	al.	

2007;	Ushio	et	al.	2009)]	that	are	commonly	used	in	applications	requiring	precipitation	at	

high	spatial	and	temporal	resolutions.	

Continuous	work	 on	 finding	 physical	 relations	 between	 the	 observed	 (i.e.,	 brightness	

temperatures	 (Tb))	 and	 state	 (i.e.,	 rainfall)	 vectors,	 led	 to	PMW	retrievals	 improvements	

from	fairly	simple	regression	models	(e.g.,	Grodi	1976,	Wilheit	et	al.	1976)	to	sophisticated	

algorithms	that	employ	radiative	transfer	and	cloud	resolving	models,	optimal	estimation	

methods,	and	principal	component	analysis	(e.g.,	Petty	and	Li	2013).	Limitations,	however,	

still	exist	(e.g.,	Petkovic	and	Kummerow,	2017),	especially	over	land.	Specifically,	high	and	

variable	 land	 surface	 emissivity	 obstructs	 the	 information	 content	 provided	 by	 PMW	

instruments,	limiting	rainfall	signals	to	an	indirect,	non-unique,	relationship	between	cloud	

ice-scattering	signatures	and	surface	rainfall.	Based	on	the	mean	observed	ratio	between	ice	
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aloft	and	the	surface	rainfall,	these	estimates	can	often	be	inaccurate,	with	more	pronounced	

biases	observed	during	the	extreme	events.	In	addition	to	the	example	given	in	Chapter	2,	a	

difference	 in	mean	 rain	 rate	 estimate	 bias	 between	 ground	 radar	measurements	 and	 an	

operational	satellite	PMW	retrieval	is	shown	in	Fig.	4.1.	The	top	10%	of	rain	rates	for	the	

period	 between	 Sep	 2014	 to	Aug	 2015	 (for	 detailed	 description	 of	 the	 data	 sources	 and	

domain	see	Section	4.4)	are	compared	on	a	0.25°	grid	over	the	Eastern	US,	ensuring	high	

quality	data	and	a	good	understanding	of	related	system	features.	Clearly,	satellite	estimates	

show	negative	bias	over	the	entire	region.	 In	addition,	Fig.	4.2	compares	satellite	Field	Of	

Views	(FOVs)	 to	corresponding	ground	reference	(pixel-to-pixel	comparison).	 It	reveals	a	

negative	(underestimation)	bias	of	28%	for	the	PMW	retrieval	for	the	top	10%	of	rain	events	

as	 defined	 by	 the	 ground	 based	 radars.	 Characterized	 by	 relatively	 high	 correlation	

coefficient	(0.66)	the	retrieval’s	performance	is	consistent	in	its	negative	bias	at	all	rain	rate	

values	(black	crosses	mark	mean	retrieved	rain	rates	for	each	of	ground	reference	rain	rate	

bins).	This	 is	 the	 result	 of	 an	assumed	 relationship	between	 the	 cloud	property	 (i.e.,	 ice-

content)	and	 rain	 rate,	used	 to	 retrieve	 the	 rain,	 that	was	derived	 from	a	broad	 range	of	

observations	 but	 used	 only	 on	 a	 narrow	 portion	 of	 the	 rainfall	 spectrum	 (i.e.	 extreme	

precipitation	regime).	
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Figure	4.1	Mean	rainfall	bias	between	a	ground	reference	(MRMS)	and	PMW	retrieval	(GPROF)	for	the	
top	10%	of	rainfall	rates	over	eastern	CONUS	for	period	Sep	2014	–	Aug	2015	on	0.25°	grid.	The	mean	
MRMS	observed	rainfall	rate	for	the	period	is	3.98	mm	h-1	while	the	mean	PMW	retrieved	rainfall	rate	
is	 2.87	 mm	 h-1.	 The	 overall	 bias	 is	 -28%	 (Negative	 values	 in	 the	 map	 indicate	 satellite’s	 retrieval	
underestimation	of	the	ground	reference.).	
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Figure	4.2	Pixel-level	comparison	of	PMW	rainfall	retrieval	(GPROF)	and	ground	reference	(MRMS)	for	
the	 top	 10%	 of	 rainfall	 rates	 over	 eastern	 CONUS	 for	 period	 Sep	 2014	 –	 Aug	 2015.	 Black	 crosses	
represent	mean	PMW	rainfall	rate	value	for	corresponding	reference	rainfall	rate	bin.	The	overall	bias	
value	for	these	maximum	rain	rates	is	-28%.	The	correlation	coefficient	is	0.66.		

Fixing	 this	 problem	 requires	 a	 better	 understanding	 of	 the	 ice	 content	 in	 extreme	

precipitation	events.	Rather	than	trying	to	improve	the	retrieval	itself,	a	solution	is	seen	in	

complementing	 the	observed	brightness	 temperature	vector	with	 information	that	would	

help	mitigate	ambiguities	in	ice-to-rain	relationship.	In	an	attempt	to	do	so,	this	study	seeks	

to	utilize	more-complex	links	between	observed	cloud	properties	and	common	atmospheric	

parameters	 (e.g.,	 large-scale	 environment).	 Based	 on	 findings	 presented	 in	 Petkovic	 and	

Kummerow	(2017),	it	is	hypothesized	that	such	information	is	correlated	with	the	synoptic	

state	of	the	atmosphere.	Additional	variables	can	mitigate	the	information	gap	between	the	

assumed	and	observed	cloud	property.	To	better	understand	challenges	inherent	in	such	a	
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scheme,	a	general	review	of	the	Bayesian	approach,	the	approach	used	by	the	PMW	retrieval	

validated	in	Figs.	4.1	and	4.2,	is	provided	next.	

4.2.	Understanding	the	sources	of	rainfall	bias	-	theoretical	background	

Developed	by	Bayes	in	18th	century,	a	fairly	simple	statistical	method	is	used	that	utilizes	

the	observed	probability	of	an	event	(an	a	priori	knowledge)	to	predict	the	probability	of	its	

reoccurrence	 if	 similar	 conditions	 exist.	 Using	 the	 definition	 presented	 in	 Rogers	 (2000)	

applied	to	PMW	rainfall	detection,	rain	rate	probability	is	given	by	the	following	equation:	

P	(R	|	Tb)	~	P	(R)	x	P	(Tb	|	R)	/	P	(Tb)	 (4.1)	

where	P(R	 |	Tb)	 is	 the	a	posteriori	 conditional	probability	of	rain	rate	(R)	occurring	with	

observed	brightness	temperature	vector	(Tb);	P(R)	and	P(Tb)	are	a	priori	probabilities	of	

rain	 rate	 and	 brightness	 temperature,	 respectively;	 and	 P(Tb	 |	 R)	 is	 the	 conditional	

probability	of	a	brightness	temperature	vector	observed	with	a	given	rain	rate,	R.	Terms	on	

the	right	hand	side	of	Eq.	(4.1)	are	given	by	a	priori	knowledge	(stored	in	what	is	usually	

referred	 to	 as	 an	 a	 priori	 database),	 while	 the	 left	 hand	 side	 represents	 the	most	 likely	

outcome	(a	prediction).	In	the	PMW	application	(Figs.	4.1	and	4.2)	the	retrieved	rain	rate,	rr,	

is	a	weighted	mean	of	the	entire	spectrum	of	rain	rate	values	where	each	value	is	assigned	a	

weight,	wi,	proportional	to	its	probability	(i.e.	P(R|Tb)):	

!" =
!$%$$ %$$

	,							where				%, = exp −0.5	 34 − 5 !, 6789 34 − 5 !, 	 	 (4.2)	
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In	Eq.	(4.2),	i	is	an	element	of	the	a	priori	database,	S	is	the	Tb	error	covariance	(accounting	

for	both	instrument	and	forward	model	errors),	Tb	is	observed-,	while	F(ri)	is	ri-associated	

brightness	temperature.	

While	 this	 approach,	 in	 general,	 provides	 excellent	 results,	 it	 has	 two	 caveats:	 1)	 the	

solution	is	always	pulled	towards	a	mean	of	the	a	priori	statistics	(defined	by	most	frequently	

observed	rain	rates),	and	2)	events	that	are	underrepresented,	or	do	not	exist	in	the	a	priori	

database,	will	be	assigned	low,	or	even	zero,	probabilities.	The	cause	of	the	first	problem	is	

low	a	priori	probability	of	extreme	rain	rates	observed	in	the	a	priori	database,	while	the	

cause	of	the	second	is	the	low	a	priori	probability	of	observed	Tb	vector	for	a	given	rain	rate	

(i.e.,	P(Tb	|	R)).	

The	 two	 above-mentioned	 problems	 constitute	 the	 bulk	 of	 rainfall	 retrieval	 biases	

discussed	 throughout	 this	 study.	 Unfortunately,	 since	 they	 result	 directly	 from	 Bayes’	

method	definition,	they	can	only	be	diminished,	not	eliminated.	If	the	a	priori	and	observed	

information	 are	 rich	 and	 allowed	 to	 relate	well,	 however,	 the	 performance	 of	 the	 Bayes	

retrieval	will	likewise	improve	significantly.	This	suggests	that	the	sources	of	the	retrieval’s	

bias	could	potentially	be	mitigated	if	the	information	content	of	both	observed	and	a	priori	

vectors	 is	 complemented	by	 elements	 that	 can	 strengthen	 their	 links.	 Seeking	 such	 links	

requires	a	better	understanding	of	the	Tb	(i.e.	observed)	vector	and	rainfall	rate.	

If	the	retrieval	employs	an	observed	relationship	between	two	state	vectors	to	retrieve	

one	when	 the	 other	 is	 available,	 then	 its	 performance	 is	 driven	 by:	 a)	 robustness	 of	 the	

observed	relationship,	and	b)	an	extent	to	which	it	is	utilized.	In	the	over-land	PMW	rainfall	

retrieval	used	in	this	study,	the	most	robust	relationship	is	the	one	between	the	radiometric	

signature	of	the	ice	scattering	aloft	and	the	rain	rate	itself.	Therefore,	using	a	proxy	of	ice	
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amount	 in	 a	 cloud	 to	 relate	 to	 a	 surface	 rain	 rate,	 will	 inherently	 introduce	 noise	 if	 the	

algorithm	cannot	distinguish	between	entries	with	similar	brightness	temperature	vectors	

but	 different	 rainfall	 rates.	 For	 extreme	 rainfall	 rates,	 this	 noise	 translates	 to	 a	 bias	 for	

reasons	 stated	 above.	 Atmospheric	 states,	 described	 by	 CAPE,	 wind	 shear,	 humidity	

distribution,	and	aerosol	concentrations	are	thus	examined	to	assess	if	the	extra	information	

they	provide	allows	the	algorithm	to	better	distinguish	similar	precipitation	profiles.	

4.3.	GPROF	rainfall	retrieval	–	description	and	general	properties	

As	 an	 operational	 passive	 microwave	 rainfall	 retrieval	 for	 the	 Global	 Precipitation	

Measurement	(GPM)	mission	(Hou,	et	al.,	2014),	the	Goddard	PROFiling	(GPROF)	algorithm	

has	 been	 well-documented	 and	 extensively	 analyzed	 over	 the	 past	 two	 decades	 (e.g.,	

Kummerow	et	al.	2010,	1996,	2015,	Meyers	et	al.	2015,	etc.).	Developed	at	NASA	Goddard	in	

the	mid-	‘90s,	from	the	work	of	Kummerow	and	Giglio	(1994),	primarily	for	the	purpose	of	

Tropical	Rainfall	Measurement	Mission	(TRMM)	(Simpson	et	al.,	1988),	GPROF	lived	to	the	

present	 day,	 undergoing	 a	 number	 of	 versions.	At	 the	 time	of	 this	 study,	 its	most	 recent	

version,	 labeled	 by	 NASA’s	 Precipitation	 Processing	 System	 (PPS)	 as	 GPROF.GPM.V4	

developed	for	GPM’s	Microwave	Imager	(GMI)	successfully	serves	a	constellation	of	conical	

and	cross-track	scanning	PMW	instruments	 including	GMI,	SSMISs4	(Kunkee	et	al.,	2008),	

AMSR25	(Shimoda,	2005),	ATMS6	(Muth	et	al.,	2005),	MHS7s	(Edwards	and	Pawlak,	2000)	

                                                
4	Special	Sensor	Microwave	Imager/Sounder	aboard	Defense	Meteorological	Satellite	Program	satellites	

5	Advanced	Microwave	Scanning	Radiometer	2	onboard	the	GCOM-W	satellite	

6	Advanced	Technology	Microwave	Sounder	onboard	the	S-NPP	satellite	

7	Microwave	Humidity	Sounder	onboard	of	MetOp	and	NOAA	satellite	series	
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and	 others.	 While	 more	 details	 on	 prior	 versions	 of	 GPROF	 algorithm	 can	 be	 found	 in	

aforementioned	literature,	a	brief	overview	of	the	up-to-date	algorithm	is	given	below.	

GPROF2014v2	 is	 the	 first	 fully-parametric	 version	 of	 the	 algorithm	 that	 utilizes	 a	

Bayesian	approach	over	both	land	and	ocean	surfaces.	Over	land	(the	focus	of	this	study),	it	

builds	its	a	priori	knowledge	by	employing	hydrometeor	profiles	from	the	DPR	combined	

algorithm	(Grecu	et	al.	2016).	Forward	modeling	of	brightness	temperatures	is	done	through	

radiative	transfer	modeling	(Kummerow	et	al.	2010)	ensuring	a	good	match	with	observed	

GMI	Tbs.	Once	available,	 simulated	Tbs	and	associated	hydrometeor	profiles	are	 coupled	

with	DPR	Ku	rain	rate	and	ancillary	data	to	include	TPW,	surface	type	and	2m	temperature	

to	constitute	GPORF’s	a	priori	database.	In	the	first	step	(often	referred	to	as	preprocessing),	

the	algorithm	uses	the	ancillary	information	(TPW,	surface	type	and	2-meter	temperature)	

to	subset	the	a	priori	database	and	reduce	the	ambiguity	of	Tb-to-rain-rate	relationship.	This	

non-unique	relationship	between	 the	set	of	Tbs	and	 the	rainfall	 rate	 is	 caused	by	similar	

radiometric	 properties	 of	 different	 combinations	 in	 rain	DSDs,	water	 vapor,	 cloud	 liquid	

water	 and	 ice	 content.	McKague	 et	 al.	 (1998),	Berg	 et	 al.	 (2006)	 and	Bennartz	 and	Petty	

(2001)	describe	strong	correlation	between	these	factors	and	the	three	criteria	listed	above.		

In	this	process,	surface	types	are	defined	using	SSM/I	observed	emissivity	climatology	(Aires	

et	al.,	2011)	updated	daily	by	NOAA’s	AutoSnow	product	(Romanov	et	al.,	2000),	while	TPW	

and	2-meter	temperature	come	from	re-analysis	data	sets	such	as	ECMWF	(Dee	et	al.,	2011)	

and	GANAL	(JMA,	2000).	Upon	sub-setting,	the	remaining	database	elements	are	exposed	to	

Bayesian	computation	and	rain	rates	are	assigned	a	weight	proportional	to	their	respective	

probability	given	by	Eq.	(4.2).	The	same	is	done	to	all	other	parameters	(e.g.,	hydrometeor	

profiles,	convective	fraction,	precipitation	phase)	before	outputting	their	weighted	means	as	
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the	retrieval’s	solution.	This	methodology	ensures	the	database	is	consistent	with	our	best	

spaceborne	radar	observations	to	minimize	errors,	which	are	recognized	by	L’Ecuyer	and	

Stephens	(2002),	and	Kummerow	et	al.	(2006)	as	one	of	the	major	error	sources.	The	method	

is	 also	 readily	 adaptable	 to	 other	 sensors	 that	 take	 part	 in	 the	 GPM	 constellation:	 three	

SSMISs	(F16,	F17,	and	F18),	AMSR2	(GCOMW1),	GMI	(GPM),	four	MHSs	(MetOp-A,	MetOp-B,	

NOAA-18,	 and	NOAA-19),	 and	ATMS	 (Suomi-NPP).	The	algorithm	used	 in	 this	 study	 fully	

matches	this	description	except	that	it	replaces	DPR	Ku	surface	rainfall	with	a	more	accurate	

MRMS	dataset	to	build	its	a	priori	database	over	the	continental	United	States.	This	was	done	

to	ensure	that	any	retrieval	biases	against	MRMS	are	the	result	of	the	algorithm	and	not	a	

function	of	the	a	priori	database.	

4.4.	Data	and	the	a	priori	database	

This	study	employs	1	year	(Sep	2014	through	Aug	2015)	of	GPM-core	satellite	(both	GMI	

and	DPR),	MRMS,	GEOS-Chem	aerosol	 and	ECMWF	reanalysis	data	 to	 explore	GPM	PMW	

rainfall	retrieval	accuracies	in	extreme	precipitation.	The	domain	is	limited	to	the	mid-west	

and	eastern	United	States	(22N-55N,	105W-65W)	to	form	a	geographically	well-understood	

test-bed	and	allow	for	high-quality	data	from	the	MRMS	system.	The	GMI	on	the	core-satellite	

provides	cloud	radiometric	properties,	 the	DPR	provides	cloud	structure	 information,	 the	

ground-based	measurements	serve	as	the	validation	reference	for	satellite	observations	and	

the	a	priori	 surface	rainfall,	while	aerosol	and	reanalysis	sets	provide	necessary	ancillary	

elements.	

GMI	 data.	 With	 its	 13	 MW	 channels	 (10.65H/V,	 18.7H/V,	 23.8V,	 36.5H/V,	 89.0H/V,	

166V/H,	and	183.3	+/-	3V,	7V	GHz)	 the	GMI	 instrument	 (Draper	et	 al.	 2015)	 serves	as	a	
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calibration	 standard	 for	 PMW	 conical-scanning	 radiometers	 in	 GPM	 constellation.	

Brightness	temperatures	used	here	by	GPROF	(either	as	the	observed	vector	or	to	form	the	

a	priori	databases)	are	given	by	GPM	level-1	1C-R	GMI	product	(see	file	specification	for	GPM	

products).	

DPR	 data.	 The DPR instrument, developed by Japan Aerospace Exploration 

Agency�(JAXA) and Japan’s National Institute of Information and Communications 

Technology (NICT), has Ku and Ka precipitation radars operating at 13.6 and 35.5 GHz 

frequency, respectively, with FOVs of approximately 5 km. The Ku band radar (the only 

one used in this study) has cross-track width of 245 km, vertical sampling of 250 m, and 

virtually complete sampling at the surface level (e.g., no gaps between individual FOVs). 

Its algorithm builds on that of TRMM PR (Iguchi et al. 2009) and, with a minimum 

detectable signal set to 18 dBZ, is suitable for detection of rain rates above 0.5 mm h–1. 

MRMS	data.	Multi	Radar/Multi	Sensor	(MRMS;	Zhang	et	al.	2016)	dataset	 is	used	as	a	

reference	dataset.	For	this	purpose,	it	is	specifically	adapted	to	the	satellite	needs,	providing	

high-accuracy	precipitation	rate	estimates	at	0.01°	spatial	and	2-min	 temporal	resolution	

over	the	entire	CONUS	at	the	time	of	the	satellite	overpass.	Each	estimate	is	assigned	a	radar	

quality	index	(i.e.,	a	quality	flag)	and	a	precipitation	type.	Only	the	highest	quality	data	are	

used	to	validate	GPROF	retrievals.	In	each	satellite	overpass,	MRMS	rainfall	rate	grids	are	

collocated	with	individual	satellite	FOVs	mimicking	sensor-specific	antenna	geometry	(i.e.	

antenna	gain	function).	

GEOS-Chem	data.	 To	provide	 estimates	 of	 lower	 tropospheric	CCN	 concentration,	 this	

study	employs	GEOS-Chem	chemical	transport	model	with	the	online	aerosol	microphysics	
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module	TOMAS	(Adams	and	Seinfeld,	2002;	Pierce	and	Adams,	2009;	D’Andrea	et	al.,	2013;	

Pierce	et	al.,	2013).	GEOS-Chem	was	run	globally	for	2014-2015	at	2°	by	2.5°	resolution	using	

GEOS-FP	 re-analysis	 meteorology	 fields	 (GMAO	 Data	 Products).	 GEOS-Chem-TOMAS	

simulates	the	particle	size	distribution	from	3	nm	to	10	μm	in	15	size	bins,	tracking	sulfate,	

sea	salt,	organics,	black	carbon,	and	dust	aerosol	species	within	these	size	ranges.	Kodros	et	

al.	(2016)	provides	a	complete	description	of	emissions	used	in	the	simulations.	Simulated	

CCN	concentrations,	given	at	2°	by	2.5°	grids	at	6-hour	time	resolution,	are	co-located	with	

other	ancillary	data	and	joined	to	both	observed	fields	and	the	a	priori	database.	With	the	

goal	of	 optimizing	 ingestion	of	 aerosol	 information	 to	GPROF	 retrieval	 and	 supported	by	

findings	of	Dusek	et	al.	(2006)	and	Stolz	et	al.	(2015),	only	number	concentration	of	aerosols	

with	diameters	larger	than	40nm	(0.04μm)	are	used	as	a	proxy	for	CCN.	

ECMWF	 data.	 The	 European	 Centre	 for	 Medium-Range	Weather	 Forecasts	 (ECMWF)	

interim	 reanalysis	 (ERA-Interim)	 model	 data	 (Dee	 et	 al.	 2011)	 is	 used	 to	 provide	

environmental	parameters	—	specifically,	2-meter	temperature,	total	column	water	vapor,	

CAPE,	wind	profile,	temperature,	dewpoint,	and	specific	humidity	—	at	0.75°	horizontal	and	

6-h	temporal	resolution,	at	4	pressure	levels	(850,	700,	500,	and	200	mb)	for	the	year	of	GMI	

data.	While	model-induced	uncertainties	exist,	this	dataset	is	still	seen	as	a	robust	resource	

based	on	its	consistency,	coverage,	and	previous	validation	of	the	ECMWF	analyses.	Similar	

to	Petkovic	and	Kummerow	(2017),	vertical	wind	shear	is	defined	as	the	difference	in	wind	

magnitude	 at	 500-	 and	 850-mb	 levels.	 Low-level	 dewpoint	 depression	 is	 defined	 as	 the	

difference	between	2m	temperature	and	dewpoint.	A	vertical	humidity	deviation	is	defined	

as	the	ratio	between	specific	humidity	at	low-	and	mid-tropospheric	levels.	To	ensure	that	

the	 height	 of	 the	 planetary	 boundary	 layer	 (PBL)	 does	 not	 affect	 these	 results,	midlevel	
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humidity	is	taken	as	a	mean	value	of	450	and	500	mb,	while	low-level	humidity	is	required	

to	 be	 within	 the	 PBL	 (e.g.,	 850	 mb).	 To	 minimize	 the	 effect	 of	 precipitation	 on	 the	

atmospheric	 column,	 the	 environmental	 parameters	 to	 be	 used	 as	 cloud	 morphology	

predictors	in	the	a	priori	database	are	chosen	to	correspond	to	the	time	step	preceding	their	

coupled	precipitation	rate.	

Database.	The	above	datasets	are	grouped	 to	build	 the	a	priori	 knowledge	 for	GPROF	

retrieval.	Each	of	14	separate	surface	types	are	treated	separately.	Data	count	distributions	

of	eight	land	surface	classes	occurring	over	the	domain	of	this	study	are	given	in	Fig.	4.3	as	a	

function	of	TPW	and	2-meter	temperature.	

	

 

Figure	4.3	A	priori	databases	sample	size	given	by	surface	type	as	a	function	of	Total	Precipitable	Water	
(TPW)	and	2-meter	temperature.		Water,	ice	and	coastal	surface	type	not	included.	The	overall	number	
of	 elements	 exceeds	 36	millions	 ranging	 from	1.4x106	 for	minimum	 snow	 to	 1.4x109	 for	maximum	
vegetation.	
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4.5.	Complementing	the	retrieval’s	a	priori	knowledge	

Petkovic	and	Kummerow	(2017),	hereinafter	PK2017,	demonstrated	a	relation	between	

large-scale	environment	and	precipitation	system	regime	that	was	related	to	PMW	retrieval	

systematic	errors.	The	authors	found	that	a	strong	link	between	PMW	bias	and	environment	

is	related	to	variability	in	cloud	microphysics	and	morphology.	To	support	these	findings,	

and	demonstrate	that	this	relationship	is	not	specific	only	to	the	Amazon-African	region	(the	

test-bed	used	in	PK2017),	a	 link	between	the	precipitation	regime	and	high	frequency	Tb	

over	the	US	region	is	examined.	Using	the	same	methodology	(see	Elseasser	et	al.	2010)	and	

one	year	of	GPM	data	over	the	US,	all	1°	x	1°	raining	scenes	are	separated	into	shallow,	deep-

unorganized,	and	deep-organized	systems	as	define	by	Elsaesser	et	al,	2010.	Employing	k-

means	clustering	technique,	using	the	same	5-dimensional	space	as	in	PK2017	self-similar	

scenes	 are	 identified.	 Once	 again,	 convective	 to	 total	 rainfall	 ratio	 and	 DPR-Ku	 echo-top	

height	 (with	 height	 bins	 being	 0-5,	 5-9,	 and	 above	 9	 km)	 serve	 as	 the	 key	 properties	 in	

defining	these	structurally-distinct	regimes.	The	result	 for	non-isolated	scenes	(e.g.	 larger	

than	25	km)	is	shown	in	Fig.	4.4	together	with	the	relationship	between	DPR-Ku	echo-top	

height	and	GMI’s	89	GHz	Tb.	
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Figure	4.4	Mean	cloud	top	height	as	a	function	of	mean	89	GHz	GMI	brightness	temperature	over	1°	x	1°	
scenes	over	the	CONUS	for	period	Sep	2014	through	Aug	2015.	The	height	is	estimated	using	DPR	Ku	
echo	top	heights.	Three	colors	identify	regime	type.	

As	expected,	based	on	sensitivity	of	89	GHz	channel	frequency	to	the	presence	of	ice	in	

the	atmospheric	column	and	the	fact	that	deeper	clouds	are	likely	to	have	greater	ice	content,	

echo-top	height	 is	 strongly	 correlated	with	high	 frequency	Tb	depressions.	However,	 the	

more	 important	 finding	 is	 the	 indication	of	a	 clear	 separation	 in	 the	slope	of	echo	 top	 to	

brightness	temperature	relation	shown	in	Fig.	4.4	for	the	three	regimes.	This	suggests	that	

brightness	 temperatures	 are	 strongly	 linked	 to	 variability	 in	 cloud	 organization	 (i.e.	

microphysics	and	dynamics),	similar	to	what	was	found	in	PK2017.	

4.5.1.	Correlation	of	synoptic	state	and	radiometric	properties	of	precipitating	scene	

To	better	understand	the	relationship	between	the	ice	content	(and	thus	Tb	depression)	

and	the	large-scale	environment,	a	closer	look	is	necessary.	While	the	synoptic	environment	

is	indubitably	linked	to	the	storms	morphology,	it	is	not	guaranteed	that	this	link	is	strong	
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enough	to	provide	useful	information	to	the	retrieval.	To	estimate	a	potential	of	the	synoptic	

state	 to	 predict	 storms	 morphology	 relevant	 to	 the	 retrieval,	 the	 analysis	 focused	 on	

variability	of	correlation	coefficient	between	the	ice-signal	(i.e.,	89	GHz	Tb)	and	rainfall	rate	

in	the	retrieval’s	a	priori	is	performed.	

Motivated	by	PK2017	study,	predictors	considered	in	this	analysis	include	those	found	

to	 relate	 with	 PMW	 systematic	 errors	 over	 Amazon-African	 region,	 plus	 the	 aerosol	

concentrations,	 which	 are	 widely	 recognized	 as	 a	 major	 factor	 in	 cloud	 formation.	 The	

environmental	parameters	are	CAPE,	low-level	humidity,	wind	shear,	vertical	distribution	of	

humidity	and	CCN	concentration.	Using	one	environment	at	a	time	to	define	a	synoptic	state,	

five	distinct,	equally	 frequent,	atmospheric	conditions	are	 first	recognized	 for	each	of	 the	

environmental	variables.	Then,	a	corresponding	correlation	coefficient	between	89	GHz	Tb	

and	MRMS	surface	rainfall	rate	is	found	for	each	state.	Defined	to	represent	the	strength	of	a	

relationship,	correlation	coefficient	is	used	here	to	estimate	the	utility	of	each	environmental	

parameter.	The	results	are	listed	in	Table	4.1.	
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Table	4.1	Correlation	coefficient	between	ice	aloft	(as	represented	by	the	89	GHz	Tb)	and	rainfall	rates	
for	the	subsets	of	a	12-month	period	(Sep	2014-Aug	2015)	given	by	large-scale	environment.	Note:	the	
correlation	coefficient	for	the	full	dataset	is	-0.43.	

CAPE	
Quintile	limits	[J	kg-1]	 0	-	30	 30	-	60	 60	-	140	 140	-	485	 485	-	µ	
Correlation		 -0.19	 -0.17	 -0.37	 -0.51	 -0.55	

CCN	
Quintile	limits	[cm-3]	 0	–	690	 690	–	1000	 1000	–	1300	 1280	–	1680	 1680	-	µ	
Correlation		 -0.44	 -0.47	 -0.44	 -0.43	 -0.35	

LOW-LEVEL	DEW	POINT	DEPRESSION	
Quintile	limits	[K]	 0	–	1.9	 1.9	–	2.2	 2.2	–	3.9	 3.9	–	6.7	 6.7	-	µ	
Correlation		 -0.48	 -0.46	 -0.39	 -0.38	 -0.46	

HUMIDITY	DISTRIBUTION	
Quintile	limits	 0	–	0.2	 0.2	–	0.4	 0.4	–	0.7	 0.7	–	1.5		 1.5	-	µ	
Correlation		 -0.51	 -0.50	 -0.49	 -0.38	 -0.20	

WIND	SHEAR		
Quintile	limits	[m	s-1]	 -µ	-	-1.3	 -1.3	–	1.3	 1.3	–	4.0	 4.0	–	7.9	 7.9	-	µ	
Correlation		 -0.48	 -0.48	 -0.47	 -0.43	 -0.27	
	

Upon	 inspection,	 it	 is	 clear	 that	 the	 correlation	 coefficient	 shows	 significant	 change	

across	 each	 of	 the	 five	 environmental	 states.	 Greater	 differences	 in	 coefficient	 value	 are	

evident	 between	 the	 environments	 expected	 to	 strongly	 relate	 to	 a	 specific	 storm	

morphology.	For	example,	the	correlation	coefficient	for	the	last	quintile	of	CAPE	values	is	-

0.55,	while	the	value	in	the	first	two	quintiles	of	this	environment	is	close	to	-0.18.	This	can	

be	explained	by	the	expectation	that	high	CAPE	values	are	more	typical	for	strong,	often	well-

developed,	storms	with	well-defined	ice-to-rain	relationship.	To	better	depict	this	effect,	Fig.	

4.5	compares	ice-to-rain	ratios	of	five	CAPE	subsets	relative	to	the	mean	a	priori	relation.	

While	general	 findings	hold	 for	each	of	 the	 five	synoptic	variables,	CAPE	 is	chosen	as	 the	

easiest	one	to	interpret.	
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Figure	4.5	Mean	relationship	between	the	ice	aloft	and	surface	rainfall	rate	for	the	full	dataset	(red	line)	
and	five	equally	populated	distinct	CAPE	environmental	subsets	(yellow,	blue,	gray,	purple	and	green).	
Correlation	coefficient	for	each	line	is	given	in	Table	4.1.	

The	plot	shows	the	relationship	between	ice	content,	as	represented	by	the	89	GHz	Tb,	

and	 rainfall	 for	 the	 full	 a	 priori	 dataset	 (red	 line)	 and	 its	 five	 subsets	 defined	 by	 CAPE	

environment.	Characterized	by	different	slopes,	each	environment	 line	 indicates	a	unique	

ice-to-rain	relationship	across	both	environmental	and	rainfall	rate	bins.	Choosing	the	same	

example	of	the	two	lowest	CAPE	quintiles	(yellow	and	blue	line	in	Fig.	4.5)	it	is	obvious	that	

for	a	given	89	GHz	Tb	corresponding	to	low	rain	rate	values	(e.g.	250-260	K),	both	of	the	two	

CAPE	 environments	 indicate	 a	 lower	 rain	 rate	 than	 suggested	 by	 the	 mean	 (red	 line)	

relationship.	While	the	opposite	is	true	for	the	other	three	CAPE	subsets	(gray,	purple	and	

green	line)	these	are,	however,	atypical	(i.e.	infrequent)	for	low	rainfall	rate	conditions,	and	
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as	such	would	typically	introduce	a	bias.	This	relation,	although	straightforward,	requires	

additional	attention	when	extreme	rain	rates	are	considered.	

4.5.2.	Links	between	GPROF	biases	and	precipitation	regime	

Concentrating	on	higher	rain	rates	only	(e.g.	above	5	mm	h-1),	which	is	the	focus	of	this	

study,	the	distribution	of	the	five	environment	groups	in	Fig.	4.5	is	such	that	while	clearly	

suggesting	an	increase	in	rain	rates	for	the	same	brightness	temperature	depression	for	four	

CAPE	environments,	the	highest	CAPE	clearly	underestimates	the	precipitation	relative	to	

the	ensemble	mean	(red)	line.	This	is	consistent	with	results	from	the	PK2017	study.	The	

most	vigorous	CAPE	environment	is	indeed	recognized	as	the	one	where	GPROF	rainfall	is	

positively	 biased.	 To	 support	 this	 statement,	 analyses	 similar	 to	 those	 of	 PK2017	 are	

repeated	over	the	[20-40N,	65-101W]	US	region	over	non-ocean	surfaces	(same	as	in	Fig.	

4.1)	 using	 a	 year	 of	MRMS,	 DPR	 and	 GMI	measurements.	 The	 relationship	 between	 five	

environments,	storm	structures	and	GPROF	biases	is	presented	in	Table	4.2.	

Table	4.2.	Mean	values	of	environment	parameters,	brightness	temperature,	total	reflectivity	above	the	
0°	 level,	 mean	 rain	 rate,	 and	 GPROF-to-MRMS	 bias	 for	 the	 Shallow,	 Deep-unorganized	 and	 Deep-
organized.	 Sample	 is	 based	 on	 approximately	 1000	 1°	 x	 1°	 precipitating	 scenes	 occurred	 in	 period	
between	Sep	2014	and	Aug	2015,	over	non-ocean	surfaces	in	[20N-40N,	65-101W]	region.			

	 Shallow	 Deep	unorganized	 Deep	organized	
GPROF/MRMS	ratio	 0.78	 1.06	 1.12	
CAPE	[J	kg-1]	 277	 574	 952	
CCN	[cm-3]	 1200	 1100	 1002	
Dew	point	depression	[K]	 3.64	 4.72	 6.83	
Humidity	distribution	 0.47	 0.38	 0.31	
Wind	shear	[m	s-1]	 7.88	 6.21	 4.20	
89	GHz	Tb	[K]	 266	 260	 250	
Total	Reflectivity	above	0°C	[dBZ]	 47	 72	 99	
Rain	rate	[mm	h-1]	 0.40	 1.07	 1.62	

As	 expected,	 these	 results	 confirm	 the	 findings	 of	 the	 previous	 study	 (PK2017),	with	

shallow	regimes	on	average	being	underestimated	(22%)	and	deep-organized	regimes	being	
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overestimated	(12%).	These	correspond	to	low	and	high	CAPE	values,	respectively.	Besides	

demonstrating	 the	 bias	 that	 is	 sensitive	 to	 the	 environmental	 conditions,	 Table	 4.2	 also	

confirms	 the	 relationships	 of	 the	 bias	 to	 the	 amount	 of	 ice	 typical	 for	 each	 of	 the	 three	

regimes.	

4.5.3.	Links	between	environments	–	independent	information	content.	

The	 theoretical	 aspects	 of	 the	 relationship	 between	 CAPE,	 wind	 shear,	 humidity	

environments	 and	 precipitation	 regimes	 are	 discussed	 in	 PK2017.	 Here,	 the	 attention	 is	

briefly	 given	 to	 the	 CCN	 concentrations,	 which	 according	 to	 Table	 4.2,	 when	 preceding	

shallow	systems	tend	to	be	higher	(by	20%)	compared	to	those	occurring	prior	to	deep	and	

more	organized	convection.	At	the	same	time,	lower	CCN	concentrations	clearly	correspond	

to	higher	rainfall	rates.	One	possible	explanation	for	this	result	is	that	aerosol	concentrations	

over	land,	while	perhaps	suppressing	the	warm	rain	processes,	act	to	invigorate	the	ice	phase	

processes	as	reported	by	various	authors	(e.g.,	Twomey	1977,	Andreae	et	al.	2004,	Storer	et	

al.	2010,	DeMott	et	al.	2011,	Rosenfeld	et	al.	2013)	with	a	recent	study	of	Lin	et	al.	2016	listing	

relevant	 research	 on	 aerosol	 interaction	 with	 continental	 precipitation	 and	 modeled	

sensitivities	based	on	field	campaign	measurements.	

In	order	to	effectively	use	environmental	parameters,	we	focus	here	on	the	correlation	

between	them	(see	Table	4.3).	The	highest	correlation	is	found	between	wind	shear	and	both	

CAPE	and	CCN	concentration	with	values	of	only	0.3.	This	excludes	the	possibility	that	high	

CCN	 concentrations	 are	 exclusively	 related	 to	 very	 stable	 atmospheric	 stratification	 (e.g.,	

inversions),	 which	 are	 typically	 characterized	 by	 low	 CAPE	 and	 shear	 values.	 Low	

correlations	also	 imply	 that	 combinations	of	 environmental	parameters	may	be	useful	 in	

defining	cloud	morphology	and	microphysics.	
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Table	4.3.	Correlation	between	environments	listed	in	Table	4.1.	

	 CAPE	 CCN	
Dew	point	
depression	

Humidity	
distribution	

Wind	
shear	

CAPE	 -	 -0.24	 -0.08	 -0.01	 -0.30	
CCN	 -0.24	 -	 	0.15	 	0.04	 	0.30	

Dew	point	depression	 -0.08	 	0.15	 -	 	0.01	 -0.03	
Humidity	distribution	 -0.01	 	0.04	 	0.01	 -	 	0.04	

Wind	shear	 -0.30	 	0.30	 -0.03	 	0.04	 -	

4.6.	Implementation.	

With	the	goal	of	improving	the	accuracy	of	extreme	precipitation	estimates,	the	top	10%	

of	rain	rates	(at	FOV	scale)	is	used	to	test	the	proposed	approach.	In	order	to	implement	and	

utilize	established	links	between	the	environment	and	the	relative	amount	of	ice	in	raining	

clouds,	environmental	parameters	are	joined	to	both	the	observed	and	a	priori	vectors.	One	

year	of	ECMWF,	GMI,	MRMS	and	GEOS-Chem	data	is	used	to	generate	the	a	priori	knowledge	

which	included	all	observed	FOV	values	and	corresponding	ancillary	fields	over	the	[20-50N,	

65-101W]	US	region.	To	ensure	independence	between	observed	and	a	priori	vectors,	the	

true	answer	is	withheld	from	the	retrieval	for	each	pixel.	In	the	baseline	run,	rain	rates	are	

retrieved	using	the	operational	GPORF2014	version	4	algorithm	as	described	in	Section	4.3.	

To	allow	for	analysis	of	the	Bayesian	weighting,	the	assigned	weight	and	rain	rate	of	each	

database	element	that	took	part	in	Eq.	(4.2)	calculations	are	added	to	the	output.	In	this	run,	

the	database	is	constrained	using	only	TPW,	surface	type	and	2-meter	temperature.	Once	

available,	the	retrieved	values	are	assessed	using	MRMS	rain	rates.	

To	test	each	of	the	five	environments,	using	one	environment	at	a	time,	the	retrieval	is	

run	again	but	with	the	information	on	environment	state	included	in	the	a	priori	knowledge.	

Prior	 to	 employing	 the	 Eq.	 (4.2),	 an	 atmospheric	 property	 is	 used	 to	 separate	 a	 priori	

knowledge	into	ten	equally	frequent	environment	state	categories.	Upon	constraining	the	a	
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priori	 information	 by	 TPW,	 2-meter	 temperature,	 and	 surface	 type,	 database	 elements	

characterized	 by	 environmental	 categories	 other	 than	 the	 category	 of	 an	 observed	

precipitation	scene,	are	considered	as	non-matching	and	ignored.	This	causes	redistribution	

of	weights	assigned	to	the	database	elements	in	Eq.	(4.2)	and,	consequently,	results	in	a	new	

weighted	mean	 value.	 Although	 alternatives	 exist,	 this	 simple	 approach	 is	 seen	 as	 a	 first	

choice	due	to	its	easy	interpretation.	

4.7.	Assessment	

One	year	of	GMI	observations	over	the	US	[20-55N,	65-101W]	region	is	used	to	perform	

five	separate	runs	of	the	GPORF	algorithm	using	one	environment	at	a	time	to	complement	

retrieval’s	existing	a	priori	information	content.	Focusing	on	extreme	precipitation,	retrieved	

values	for	the	top	10%	rain	rates	(at	the	pixel-level)	are	assessed	using	MRMS	dataset	as	a	

reference.	The	results	are	presented	in	Fig.	4.6	and	Table	4.4.	
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Figure	4.6	Assessment	of	GPROF	retrieval	for	top	10%	rain	rates	(by	value)	over	the	US	region	using	
MRMS	as	a	ground	reference.	Top	left	(panel-a)	represents	the	original	GPROF	retrieval	without	any	
adjustments	to	it’s	a	priori	information.	Panels	b)	through	f)	show	reference	to	retrieved	rainfall	rate	
relation	for	CAPE,	wind	shear,	CCN,	dew	point	depression,	and	humidity	distribution,	respectively.	For	
specific	bias	and	correlation	coefficient	values	see	Table	4.4.	

Figure	4.6	offers	side-by-side	comparison	of	the	original	(top	left	panel;	also	given	in	Fig.	

4.1)	against	five	new	GPROF	to	MRMS	rain	rates	relations.	Based	on	corresponding	statistics,	

listed	 in	 Table	 4.4,	 with	 no	 exception,	 the	 overall	 bias	 is	 decreased	 while	 correlation	

coefficients	 increase.	Also,	 the	dispersion	 in	 the	scatter	of	each	of	 the	 five	experiments	 is	

reduced	compared	to	the	original.	This	suggests	that	the	expansion	of	the	retrieval’s	a	priori	

information	allowed	for:	1)	reduction	of	 the	randomness	(i.e.	 improved	precision)	and	2)	

improved	accuracy	(the	overall	bias	is	lower).	Additionally,	comparison	of	mean	retrieved	

rain	 rates	 at	 a	 number	 of	 rain	 rate	 intervals	 (black	 ‘x’	 symbols	 in	 density	 plots)	 reveals	

consistency	of	these	improvements	–	when	compared	to	the	original	run,	mean	values	of	the	

other	five	are	all	closer	to	the	one-to-one	line	(red	lines	in	Fig.	4.6).	
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Table	4.4.	Quantitative	assessment	of	GPROF	retrieval	for	top	10%	rain	rates	(by	value)	over	the	US	
region	using	MRMS	as	a	ground	reference.	Values	correspond	to	individual	panels	in	Fig.	4.6.	Mean	rain	
rate	value	of	the	reference	is	3.89	mm	h-1.	

Environment	criterion	 Correlation	 Mean	rain	rate	
[mm	h-1]	

Bias	improvement	
[%]	

None	(original	algorithm)	 0.66	 2.87	 /	
Humidity	distribution	 0.71	 3.08	 19	
Dew	point	depression	 0.71	 3.09	 20	
CAPE	 0.69	 3.11	 21	
Wind	shear	 0.72	 3.13	 24	
CCN	 0.72	 3.15	 25	
CCN	+	CAPE	 0.77	 3.47	 54	

To	complement	these	results,	biases	between	GPROF	rainfall	and	MRMS	reference	are	

mapped	for	each	environment	criteria	using	a	0.25°	grid.	Simple	subtraction	of	the	original	

from	the	new	map	reveals	regions	where	algorithm	makes	improvements	in	the	top	10%	of	

precipitation	rates.	An	example	depicting	algorithm	performance	for	CAPE	(left)	and	CCN	

concentration	(right	panel)	environments	is	given	in	Fig.	4.7.	

	

 

Figure	 4.7	 Map	 of	 improvements	 in	 high	 precipitation	 rate	 bias	 made	 by	 using	 CCN	 and	 CAPE	
environments	 to	 complement	 GPROF	 algorithm	 a	 priori	 information.	 Positive	 values	 indicate	 bias	
improvements.	

Notably,	 areas	 of	 improved	 biases	 dominate	 the	 maps.	 Regions	 where	 the	 retrieval	

performs	worse	 than	originally	 are	 fairly	 small	 and	 generally	 correspond	 to	 the	 areas	 of	

lower	initial	biases	(see	Fig.	4.1).	Maps	for	the	other	three	environments	have	very	similar	

CCN CAPE 
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general	 properties	 (not	 shown	 here).	 A	 relatively	 strong	 variability	 in	 the	magnitude	 of	

improvement	maxima,	and	their	locations,	in	the	two	panels	of	Fig.	4.7	suggests	that	the	two	

environments	address	different	portions	of	extreme	rainfall	bias.	Examples	can	be	seen	over	

New	 Hampshire	 and	 Vermont,	 North	 Ohio,	 Central	 Georgia	 and	 Kentucky	 where	

improvement	is	present	 in	one	but	absent	 in	the	other	map.	This	 is	 in	support	to	the	low	

correlation	 of	 the	 two	 environments	 (Table	 4.3),	 suggesting	 a	 high	 potential	 for	

complementarity.	 To	 test	 this	 potential,	 another	 experiment	 is	 performed	 in	 which	 the	

algorithm	 is	modified	 to	 use	 only	 those	 database	 elements	 that	 are	 close	 enough	 to	 the	

observed	atmospheric	state	defined	by	two	environment	properties.	Results	for	the	example	

of	CAPE	and	CCN	concentration	are	given	in	Fig.	4.8.	
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Figure	 4.8	 Improvement	 of	 the	 top	 10%	 GPROF	 rainfall	 bias	 achieved	 using	 CAPE	 and	 CCN	
concentrations	parameters.	The	top	two	maps	in	the	right	column	indicate	original	and	new	rainfall	
bias	distribution	with	negative	values	corresponding	to	retrieval’s	underestimating	performance.	The	
bottom	map	 is	 the	 difference	 between	 the	 two	 (original	 –	 ‘CCN	 and	 CAPE’),	 where	 positive	 values	
indicating	reduction	in	the	bias.	

CCN and CAPE 

Original 

Original	bias:	-28%			
New	Bias:	-13%	

Original	Correlation:	0.66	
New	Correlation:	0.77	

	Org.	mean	rain	rate:	2.87	mm	h-1	
New	mean	rain	rate:	3.47	mm	h-1	
Ref.	mean	rain	rate:	3.98	mm	h-1	

Original rainfall bias 

New rainfall bias 

CCN and CAPE 

Original 
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Compared	to	any	of	the	individual	environmental	variables,	the	new	criteria	remove	a	

significantly	larger	portion	of	the	original	bias,	bringing	it	down	from	28%	to	only	13%.	This	

corresponds	to	a	change	in	mean	overall	rainfall	rate	of	0.6	mm	h-1,	which	is	more	than	a	half	

of	the	original	discrepancy.	The	correlation	coefficient	also	improves,	increasing	from	0.66	

to	0.77.	Despite	the	fact	that	other	combinations	of	environments	do	not	perform	as	well	as	

this	scenario	(not	shown	here),	they	all	make	improvements	comparable	or	greater	than	any	

of	the	environments	alone.	

4.8.	Discussion.	

A	 positive	 assessment	 of	 the	 retrieval	with	 the	 updated	 a	 priori	 information	 content	

supports	 the	 findings	 presented	 in	 previous	 sections.	 Here,	 we	 assess	 whether	 the	

improvement	 is	 due	 to	 an	 improved	 characterization	 of	 cloud	 ice	 processes	 or	 simply	 a	

statistical	artifact	(e.g.	high	CAPE	values	are	associated	with	high	rain	rates).	Also,	while	the	

extreme	precipitation	estimates	are	improved,	it	is	unclear	what	effect	this	method	has	on	

the	overall	performance	of	the	retrieval.	Each	of	these	questions	is	discussed	separately.	

4.8.1.	Weight	distribution	

To	offer	a	better	insight	on	how	the	change	in	the	a	priori	content	improve	the	retrieval	

itself,	a	closer	look	is	taken	at	the	process	of	forming	the	weighted	mean	value	in	Eq.	(4.2).	If	

the	retrieval	is	improved,	the	weights	assigned	to	pixels	closer	to	the	true	value	should	be	

higher.	 	 If	 instead,	 the	retrieval	result	 is	simply	better	because	the	distribution	of	rainfall	

rates	 in	 the	 reduced	a	 priori	 database	more	 closely	 resembles	 the	 true	 answer,	 then	 no	

impact	on	the	fit	between	observed	and	database	Tbs	should	be	evident.	In	the	first	step	of	

this	 analysis,	 collocated	 ground	 reference	 (i.e.	 MRMS	 value)	 values	 are	 used	 to	 identify	
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rainfall	bias	associated	with	each	of	the	database	elements	for	all	retrieved	pixels.	Then,	for	

each	pixel,	using	an	arbitrarily	determined	bin	width	of	0.1	mm	h-1,	all	weights	falling	within	

the	same	bias	bin	are	averaged.	Zero-weighted	database	elements	are	not	included.	Finally,	

the	overall	mean	weight	values	are	calculated	using	all	pixels	retrieved	by	the	original	and	

modified	a	priori	information.	Their	difference,	given	as	a	function	of	rain	rate	bias,	identifies	

the	origins	of	bias	reductions	seen	in	previous	section.	Once	again,	an	example	where	CAPE	

is	used	to	complement	the	a	priori	content	is	used	to	show	the	effect	(Fig.	4.9).	To	assure	

valid	comparison,	before	subtracting	the	original	from	the	new	weight	mean,	both	sets	are	

standardized	and	normalized.	This	ensured	that	the	area	above	and	below	the	zero	line	is	

equal.	

 

Figure	4.9	Difference	in	distribution	of	Bayes	mean	weights	assigned	using	the	original	and	new,	CAPE	
complemented,	a	priori	information	content.	The	two	distributions	correspond	to	the	results	shown	in	
the	first	two	panels	of	Fig.	4.6.	The	differences	seen	here	are	associated	with	21%	reduction	of	overall	
rainfall	bias	(Table	4.4).	
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The	redistribution	of	weights	corresponds	to	the	overall	bias	reduction	of	21%	(see	Table	

4.4	and	the	second	panel	in	Fig.	4.6).	The	two	areas	(red	and	blue)	in	Fig.	4.9	indicate	that	

after	the	a	priori	knowledge	is	complemented	by	information	on	the	environment’s	CAPE,	

database	elements	with	rainfall	rates	closer	to	the	observed	value	received	more	weight.	At	

the	 same	 time,	 this	 gain	 in	 the	weight	 (blue	 shading)	 is	 compensated	 by	 the	 equivalent	

reduction	(red	shading)	distributed	across	negatively	biased	elements.	Being	very	close	to	

the	ideal	(i.e.	the	gain	maxima	centered	at	zero	biased	elements),	this	distribution	of	weight	

adjustments	 clearly	 indicates	 that	 a	 goal	 of	 identifying	 elements	 that	 relate	 better	 to	 the	

observed	rainfall	scene	properties	is	achieved.	

4.8.2.	The	overall	effect	

The	positive	effect	of	introducing	complementary	information	to	the	a	priori	knowledge	

on	 extreme	 precipitation	 is	 not	 guaranteed	 to	 hold	 when	 the	 full	 rainfall	 spectrum	 is	

considered.	 This	 is	 examined	 by	 testing	 the	 performance	 of	 GPROF	 with	 the	 a	 priori	

complemented	by	CAPE	information.	The	result	is	given	in	Fig.	4.10.	

Increased	correlation	coefficient,	reduced	dispersion,	and	positive	bias	reduction	over	

the	great	majority	of	the	domain,	demonstrate	that	additional	information	content	improves	

the	performance	of	the	retrieval	in	every	aspect.	While	the	overall	retrieval	has	significantly	

lower	bias	than	the	opt	10%	of	rainfall	rates	(only	13%),	making	the	overall	bias	reduction	

less	impressive,	the	true	value	of	the	updated	a	priori	information	is	found	in	its	ability	to	

improve	both	high	and	low	rain	rates.	This	is	depicted	in	Fig.	4.10	by	the	reduced	bias,	and	

increased	correlations	of	the	density	plots.	Similarly,	both	positive	and	negative	bias	regions	

in	 the	 top	 right	 panel	 experience	 reduction	 in	 the	 bias	 upon	 using	 information	 on	 the	

environment	to	improve	the	a	priori	content.	
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Figure	4.10	Comparison	of	GPROF	performance	when	using	the	original	and	CAPE-enhanced	a	priori	
content	to	retrieve	all	rainfall	over	the	eastern	CONUS	in	period	from	Sep	2014	to	Aug	2015.	
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Original	bias:	-13%			
New	Bias:	-10%	

Original	Correlation:	0.75	
New	Correlation:	0.80	

Org.	mean	rain	rate:	0.51	mm	h-1	
New	mean	rain	rate:	0.50	mm	h-1	
Ref.	Mean	rain	rate:	0.57	mm	h-1			

Original rainfall bias 
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4.9.	Summary	and	conclusions	

The	goal	of	this	study	was	to	develop,	understand,	and	test	the	potential	for	improving	

the	 quality	 of	 extreme	 precipitation	 estimates	 from	 satellite	 passive	 microwave	 rainfall	

retrievals	over	land.	Focusing	on	Bayes	approach	and	using	GPROF,	the	operational	PMW	

retrieval	 for	GPM	mission,	 this	 study	builds	on	previous	 findings	 to	hypothesize	 that	 the	

relationship	between	 large-scale	 environment	 and	 satellite	 rainfall	 biases	 can	be	used	 to	

reduce	rainfall	estimate	uncertainty	in	extreme	atmospheric	conditions.	The	idea	of	using	

large-scale	 environmental	 variables	 that	 are	 associated	 with	 the	 potential	 for	 the	

atmosphere	to	produce	extreme	precipitation	is	tested.	This	is	accomplished	by	subsetting	

the	a	priori	information	in	Bayesian	scheme	for	distinct	states	of	CAPE,	CCN	concentrations,	

wind	shear,	and	humidity	distribution,	supporting	the	hypothesis.	Robustness	of	the	links	

between	five	predictors	of	precipitation	system	morphology	is	examined	by	evaluating	the	

skill	of	each	predictor	to	recognize	a	strong	link	between	surface	rainfall	rate	and	Tb	vector.	

Analysis	suggested	that	system	morphology	and	the	retrieval’s	biases	can	indeed	be	linked	

through	 the	 use	 of	 their	 environmental	 predictors	 in	 atmospheric	 states	 favorable	 for	

convection.	

Considering	 three	 structurally	 different	 precipitation	 regimes	 (shallow,	 deep-	

unorganized	 and	 organized)	 it	 is	 found	 that	 extreme	 states	 of	 the	 environments	 lead	 to	

distinct	cloud	morphology.	Those	characterized	by	the	highest	CAPE	and	wind	shear	values,	

as	well	as	large	low-level	humidity	depressions	or	greater	than	average	decreases	in	specific	

humidity	with	the	height,	are	found	to	typically	precede	storms	with	strong	radar	reflectivity	

above	 the	 freezing	 level.	 The	 opposite	 is	 true	 for	 their	 counterparts,	 while	 transitioning	

states	had	less	defined	preference	confirming	the	complexity	of	cloud	microphysics	drivers.	



	 110	

Using	MRMS	rainfall	data	to	assess	its	performance,	it	is	found	that	by	complementing	a	

priori	information	by	co-located	environment	properties,	retrieval	reduces	the	overall	pixel-

level	 bias	 for	 the	most	 extreme	 precipitation	 by	 20%	 to	 30%.	 These	 improvements	 are	

accompanied	by	noticeable	reduction	in	the	random	error	as	well.	The	analysis	of	Bayesian-

averaging	process	revealed	that	added	information	content	successfully	shifts	probability-

based	weight	 toward	database	elements	of	 rain	 rate	values	 similar	 to	 those	given	by	 the	

reference.	This	consequently	reduces	the	overall	bias	in	extreme	rainfall.	A	use	of	more	than	

one	parameter	to	define	an	atmospheric	state	is	also	tested,	yielding	bias	reductions	of	up	to	

50%.	 Finally,	 the	 effect	 of	 using	 this	 approach	 is	 tested	 on	 the	 entire	 rainfall	 spectrum,	

finding	that	the	overall	performance	of	the	GPROF	retrieval	is	preserved,	with	improvements	

in	correlation	coefficient	and	biases	at	both	low	and	high	end	of	rainfall	rate	range.	
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CHAPTER	5		

 
CONCLUSIONS	

 
 
 

5.1	Summary	

With	the	research	goal	of	improving	the	understanding	of	cloud	characteristics	related	to	

the	relative	amount	of	ice	aloft	(as	expressed	through	microwave	Tb	depressions)	to	surface	

rainfall	in	diverse	meteorological	regimes,	this	study	facilitates	improved	PMW	estimates	of	

rainfall,	allowing	for	a	better	understanding	of	precipitation	trends	across	the	globe.	

In	 its	 first	 part	 (Chapter	 2),	 the	 study	 tested	 the	 performance	 of	 the	 GPM	 passive	

microwave	 rainfall	 retrieval	 during	 an	 extreme	 precipitation	 event	 to	 offer	 deeper	

understanding	 of	 the	 algorithm’s	 potentials	 and	 guidelines	 for	 future	 development.	 The	

retrieval	 is	 assessed	 under	 extreme	 precipitation	 conditions	 through	 qualitative	 and	

quantitative	 comparison	 of	 its	 products	 against	 two	 sets	 of	 independent	 ground	

measurements.	The	 results	 showed	 that	a	 constellation	of	as	 few	as	 five	PMW	sensors	 is	

capable	of	providing	sufficient	sampling	and	coverage	for	the	retrieval	to	closely	reproduce	

rainfall	rate	and	accumulation	estimates	given	by	ground	reference.	Discrepancies	between	

satellite-,	 radar-,	 and	gauge	 rain	 accumulation	 estimates,	 however,	 revealed	 that	 satellite	

algorithm	underestimated	accumulations	of	a	 record	breaking	event	by	as	much	as	60%.	

Upon	 additional	 comparisons	 against	 a	 more	 typical,	 non-extreme,	 precipitation	 event,	

which	indicated	satellite	underestimate	of	only	20%,	it	was	concluded	that	this	ambiguous	

result	is	likely	caused	by	differences	in	properties	of	precipitation	systems	structures.	The	
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impact	 of	 regime	 dependent	 cloud	 microphysics	 is	 seen	 as	 the	 key	 for	 the	 accuracy	 of	

individual	and	combined	satellite	products.	This	is	further	confirmed	by	employing	a	ground	

radar	 network	 to	 demonstrate	 similar	 errors	 when	 Marshal-Palmer	 Z-R	 relationship	

(Z=200R1.6)	was	used	in	observations	of	the	two	structurally	different	precipitation	events.	

Similar	 to	 discrepancies	 caused	 when	 the	 Z-R	 relationship	 designed	 to	 represent	 mid-

latitude	stratiform	systems	DSD	is	used	in	“tropical-like”	conditions,	satellite	retrievals	must	

assume	inadequate	links	between	rain	rates	corresponding	to	two	structurally	very	different	

events.	By	eliminating	artifacts	of	the	retrieval’s	Bayesian	approach,	it	is	estimated	that	those	

inadequate	links	contribute	approximately	60%	of	the	total	bias.	Recognized	as	critical	for	

improving	the	accuracy	of	PMW	rainfall	estimates	over	land,	variability	of	the	links	between	

rain	 rate	 and	 atmospheric	 radiometric	 signatures	 is	 investigated	 next.	 This	 is	 done	 by	

providing	better	understanding	of	systematic	differences	seen	in	PMW	rainfall	retrievals	at	

larger	and	coarser	scales.	

In	 Chapter	 3,	 the	 study	 explored	 links	 between	 ice	 scattering	 PMW	 signature	 and	

estimate	of	surface	rain	intensity,	cloud	system	structure,	and	large-scale	environments.	By	

employing	 TRMM	 PMW	 and	 PR	 products,	 it	 is	 found	 that	 observed	 cloud	 physics	 and	

relationship	between	Tb	depression	and	surface	rain	intensity	correlate	well	with	regional	

PMW-to-PR	 rainfall	 discrepancies.	 Variability	 of	 ice-scattering-signal-to-rain-rate	

relationship	 across	 regions	 of	 opposing	 systematic	 differences	 in	 rainfall	 is	 captured	 by	

grouping	 precipitating	 scenes	 into	 three	 self-similar	 cloud	 classes	 of	 distinct	 levels	 of	

organization,	as	defined	by	PR.	The	groups	showed	potential	in	removing	up	to	50%	of	these	

regional	differences.	This	result	is	of	specific	value	for	future	long-term	satellite	climate	data	

records	that	typically	do	not	suffer	from	overall	global	biases	but	are	known	to	be	skewed	
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over	 the	 regions	 of	 characteristic	 precipitation	 regimes.	 For	 this	 not	 to	 become	 a	 simple	

tuning	 exercise,	 however,	 it	 is	 necessary	 to	 find	 radar-independent	 properties	 that	 have	

strong	relations	to	cloud	morphology	and	can	be	utilized	by	any	PMW	sensor.	

As	a	natural	driver	of	atmospheric	processes,	 the	role	of	a	 large-scale	environment	 in	

defining	distinct	levels	of	cloud	organization	is	explored.	When	constrained	by	CAPE,	wind	

shear,	dew	point	depression,	and	vertical	humidity	distribution,	the	environment	is	found	to	

favor	certain	storm	types.	Thus,	high	CAPE	values,	as	well	as	dry	aloft	conditions	are	most	

commonly	 seen	prior	 to	deep-organized	 systems.	On	 the	other	 side,	 low	wind	 shear	 and	

weak	dew	point	depression	favor	shallower	unorganized	events.	The	ability	of	large-scale	

environments	 to	 reduce	 climate-scale	PMW	 to	PR	 rainfall	 differences	 is	 found	 appealing,	

lowering	PMW	regional	biases	by	up	to	40%.	With	the	goal	to	offer	a	solid	foundation	for	

developing	 a	 new	 algorithm	 and	 to	 better	 understand	 how	 large-scale	 links	 translate	 to	

pixel-level	applications,	attention	was	focused	on	exploiting	observed	relationships	between	

large	scale	environmental	drivers	and	cloud	properties.	

In	Chapter	4,	 the	study	 focuses	on	Bayes	approach	and	builds	on	previous	 findings	to	

hypothesize	 that	 the	 relationship	 between	 large-scale	 environment	 and	 satellite	 rainfall	

biases	can	be	effectively	used	to	reduce	rainfall	estimate	uncertainty	in	extreme	atmospheric	

conditions.	 The	 idea	 of	 utilizing	 large-scale	 atmospheric	 attributes	 to	 complement	 the	 a	

priori	 information	 in	Bayesian	scheme	 is	elaborated	 through	modeled	and	observed	data	

using	CAPE,	CCN	concentrations,	wind	shear,	and	humidity	distribution.	

Using	MRMS	data	to	assess	its	performance,	it	is	found	that	by	complementing	a	priori	

information	 with	 collocated	 environment	 properties,	 retrieval	 biases	 of	 extreme	
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precipitation	 at	 the	 pixel-level	 can	 be	 reduced	 by	 20%	 to	 30%.	 A	 use	 of	more	 than	 one	

parameter	to	define	an	atmospheric	state	yielded	bias	reductions	of	up	to	50%.	

These	results	lead	to	the	conclusion	that	large-scale	features	carry	robust	information	

that	 can	 successfully	explain	and	 remove	 large	portion	of	 satellite	precipitation	biases	 in	

extreme	conditions,	while	being	simple	to	implement.	

5.2	Future	work	and	conclusions	

Inspired	by	Chapter	4	of	this	study	and	with	a	goal	of	setting	a	direction	for	the	future	

work,	a	potential	in	using	the	spatial	variability	of	precipitating	scene	to	describe	ice-to-rain	

relation	was	briefly	investigated	but	not	fully	understood.	For	example,	a	reduction	of	the	

overall	bias	in	PMW	extreme	precipitation	estimate	for	a	factor	of	2	is	achieved	by	employing	

a	 high	 frequency	 Tb	 channel	 (e.g.	 89	 GHz)	 to	 form	 a	 histogram	 of	 Tbs	 corresponding	 to	

approximately	100	x	100	km	area	centered	on	a	retrieving	pixel.	This	histogram	is	used	in	a	

similar	manner	as	the	large-scale	environments	throughout	the	study	to	subset	the	a	priori	

information	and	separate	distinct	 ice-to-rain	relationships.	 	While	the	performance	of	 the	

algorithm	 is	 clearly	 improved	 (Fig.	 5.1),	 an	 explanation	 on	 what	 stands	 behind	 this	

remarkable	result	requires	further	parsing	of	the	problem.	
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Figure	5.1	Performance	of	GPROF	retrieval	when	89	GHz	Tb	PDF	is	used	to	complement	the	a	priori	
information	content.	Defined	using	eight	20-degree	bins	the	PDF	complements	the	a	priori	infromation	
via	 arbitrarily	 criterion	where	 scenes	 of	 Tb	 PDFs	 differencing	 by	more	 than	 20%	 from	 that	 of	 the	
observed	one	are	ignored.		

Based	on	 findings	of	Gopalan	et	al	 (2000),	and	McCollum and Ferraro (2003) it	 can	be	

speculated	 that	89	GHz	Tb	PDF	 correlates	well	 to	 the	Convective	vs	 Stratiform	nature	of	

convection	and	therefore	resembles	(to	some	extent)	the	information	given	by	precipitation	

regimes	 shown	 in	 Section	 3.6.2	 as	 a	 good	 predictor	 of	 the	 ice-to-rainfall	 variability.	 It	 is	

expected	that	ground	based	measurements,	such	as	MRMS,	will	offer	a	valuable	insight	to	

this	link.	

In	addition	to	this,	other	findings	shown	in	Chapters	3	and	4,	also	supported	by	recent	

literature,	confirm	the	benefit	of	using	satellite	precipitation	retrievals	as	a	probing	tool	in	

Original 

PDF 89 GHz 

Original bias: -30%   
New Bias: -15% 

Original Correlation: 0.64 
New Correlation: 0.77 

Observed mean rain rate: 3.75 mm h-1 
Original mean rain rate: 2.63 mm h-1  

New mean rain rate: 3.18 mm h-1 
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the	 effort	 of	 improving	 our	 understanding	 of	 cloud	 processes.	 For	 example,	 the	 result	

presented	in	Fig.	3.13,	where	PR	to	TMI	rainfall	ratio	is	given	as	a	function	of	CAPE	and	low-

level	humidity,	depicts	a	complex	link	between	the	bias	and	an	atmospheric	state.	While	the	

highest	(lowest)	CAPE	values	are	characteristic	for	TMI’s	overestimates	(underestimates)	its	

absolute	bias	is	governed	by	the	low-level	humidity.	Dry	low-level	conditions	tend	to	result	

in	lower	PR-to-TMI	ratios	than	those	observed	in	moist	environment,	regardless	the	CAPE.	

This	confirms	that	CAPE	is	not	the	only	factor	to	determine	the	depth	of	convection	and	ice	

amount	 in	 a	 cloud.	 Although	 usually	 sufficient,	 when	 combined	 with	 moist	 low-level	

conditions,	large	CAPE	does	not	necessarily	result	in	deep	convection.	The	most	likely	reason	

is	a	moisture-induced	lowering	of	the	cloud	base	that	deepens	the	warm	cloud	layer.	This	

further	 allows	 for	 longer	 growth	 of	 cloud	 droplets	 through	 the	warm	 layer,	 allowing	 for	

collision	 and	 coalescence	 processes	 (autoconversion).	 Consequently,	 the	 ice-to-surface	

rainfall	 ratio	 is	 changed,	 strongly	 influencing	 the	 TMI’s	 bias.	 This	 explanation	 is	 in	

compliance	with	 findings	of	Stoltz	et	al	2015,	who	considered	additional	effect	of	aerosol	

concentrations,	suggesting	even	more	complex	relationships	than	the	one	presented	here.	

Therefore,	a	continued	investigation	on	extracting	information	from	large-scale	features	to	

help	explaining	pixel-level	variability	should	be	performed.	Special	attention	in	future	work	

should	 be	 placed	 on	 the	 stratiform	 and	 convective	 properties	 of	 the	 cloud	 system	 and	

investigation	of	their	PMW	signatures,	since	directly	observed	large-scale	feature	showed	

great	potential	in	removing	pixel-level	biases.	Also,	rather	than	at	regional-,	future	work	shell	

focus	 on	 investigating	 the	 robustness	 of	 the	 ice-to-rain	 variability	 with	 large-scale	

environments	 at	 global-scales,	 where	 assessing	 of	 the	 retrieval	 shell	 be	 done	 against	

independent	datasets.	The	first	step	in	this	process	will	be	to	apply	regional	relationships	
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found	in	this	study	globally,	and	investigate	differences	in	retrieval’s	performance	over	the	

regions	of	opposite	rainfall	biases	(like	those	shown	in	Fig.	3.1).	Understanding	the	origins	

of	potential	discrepancies	shell	allow	for	better	understanding	of	the	nature	of	convection	

origins	 and	 for	 building	 stronger	 links	 between	 ice-scattering	 signal	 and	 surface	 rainfall.	

Stratiform-convective	 partitioning	 is	 expected	 to	 play	 important	 role	 in	 this	 process.	

Findings	 should	 be	 compared	 against	 independent	 precipitation	 data	 sets	 and	 ideally	

reproduced	by	independent	observing	systems	(e.g.,	ground	radar	networks	and	modeled	

data).	It	is	expected	that	implementation	of	those	and	the	results	presented	in	this	study	will	

result	 in	 ability	 of	 the	 retrieval	 to	 confidently	 diagnose	 individual	 extreme	 precipitation	

events	while	at	same	time	its	global	bias	distribution	will	lose	regional	signatures.	
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LIST	OF	ABBREVIATIONS	

	
	
	

AMSR2	 Advanced	Microwave	Scanning	Radiometer	2	

BiH	 Bosnia	and	Herzegovina		

CAPE	 Convective	Available	Potential	Energy	

CCN	 Cloud	Condensation	Nuclei		

CMORPH	 Climate	Prediction	Center	Morphing	Technique	

CSU	 Colorado	State	University	

DMSP	 Defense	Meteorological	Satellite	Program	

DPR	 GPM	Dual-frequency	precipitation	radar	

DSD	 Drop	Size	Distribution	

E-OBS	 High-resolution	gridded	data	set	of	daily	climate	over	Europe	

ECA&D	 The	European	Climate	Assessment	and	Data	

ECMWF	 European	Centre	for	Medium-Range	Weather	Forecasts	

ERA	-	Interim	 ECMWF	Re-analysis	Interim		

ETH	 Echo	Top	Height	

EUMETNET	 European	Meteorological	Network	

FOV	 Field	Of	View	

GANAL	 Global	Analysis	for	near	real-time	operations	

GMI	 GPM	Microwave	Imager	

GPCP	 Global	Precipitation	Climatology	Project	

GPM	 Global	Precipitation	Measurement	

GPROF	 Goddard	Profiling	Algorithm	

GSMaP	 Global	Satellite	Mapping	of	Precipitation	

IMERG	 Integrated	Multi-satellitE	Retrievals	for	GPM	

IPCC	 Intergovernmental	Panel	on	Climate	Change	

IPCCAR5WG1	 IPCC	Fifth	Assessment	Report	Working	Group	1	

LAN	 Local	Area	Network	
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MJO	 Madden-Julian	Oscillation	

MRMS	 Multi-Radar	Multi	Sensor	

MSC	 Mesoscale	Convective	System	

NASA	 National	Aeronautics	and	Space	Administration	

NMQ	 National	Mosaic	and	Multi-Sensor	Quantitative	Precipitation	Estimation	

OPERA	 Operational	Program	for	the	Exchange	of	RADAR	

PCT	 Polarization-Corrected	Temperature	

PDF	 Probability	Density	Function	

PK2017	 Petković	and	Kummerow	2017	

PMM	 Precipitation	Measurement	Mission	

PMW	 Passive	Microwave	

PPS	 Precipitation	Processing	System	

PR	 TRMM	Precipitation	Radar	

RFO	 Relative	Frequency	of	Occurrence		

RHMSS	 Republic	Hydrometeorological	Service	of	Serbia	

RMSE	 Root	Mean	Square	Error		

SEEVCCC	 South	East	European	Virtual	Climate	Change	Center	

SSMIS	 Special	Sensor	Microwave	Imager/Sounder	

Tb	 Brightness	Temperature	

TMI	 TRMM	Microwave	Radiometer		

TOA	 Top	Of	the	Atmosphere	

TPW	 Total	Precipitable	Water	

TRFL	 Total	Reflectivity	above	the	Freezing	Level	

TRMM	 Tropical	Rainfall	Measuring	Mission	

US	NEXRAD	 United	States	Next-Generation	Radar	

UTC	 Coordinated	Universal	Time	 	

WMO	 World	Meteorological	Organization	

	

	


