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MODELING THE STREAM TEMPERATURE REGIME 

OF THE EAST FORK OF THE VIRGIN RIVER IN ZION NATIONAL PARK

The following stream temperature study was conducted as part of a general 

study by the Water Rights Branch, Water Resources Division, National Park Service, 

to evaluate the physical habitat of the aquatic organisms within Zion National Park 

(ZION). Stream temperature is an aquatic habitat characteristic that is known to be 

a controlling variable in the successful existence of the Virgin spinedace (Espinosa, 

1978). The Virgin River spinedace, a non-game fish which is endemic to the East 

Fork of the Virgin River, was delineated as the target organism as it has been 

recommended for classification as threatened (50 F.R. 37959).

The first objective of the study was to measure and describe existing stream 

temperatures of the East Fork of the Virgin River at Virgin River Mile (VRM) 157.3. 

Diurnal fluctuations in the stream temperature of 10°C were common. The average 

maximum, mean, and minimum stream temperatures for the study period were 

26.7°C, 21.8°C, and 17.0°C, respectively during which the average flow was 1076 1/s.

A second objective of the study was to predict the response of the daily 

fluctuations and mean daily stream temperature at VRM 157.3 to perturbations in 

stream temperature and discharge at the upstream (eastern) Zion National Park
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boundary. Stream, shading, and site characteristic data were collected along a 9.3 km 

reach on the East Fork and input into TEMP-84, a stream temperature model, for 

simulation of existing and perturbed flows of 283 1/s (10 cfs), 566 1/s (20 cfs), 2,124 

1/s (75 cfs), 2,832 1/s (100 cfs), 14,160 1/s (500 cfs), and 28,320 1/s (1000 cfs). 

Perturbed inflow temperature conditions were delineated as equal to the average 

ambient temperature and groundwater temperature. Modeled results were evaluated 

in terms of the relative change in maximum, mean, and minimum stream temperature 

from that modeled for existing conditions. The relative change was then applied to 

measured stream temperatures to estimate stream temperatures for the selected 

hypothetical condition.

Results from the modeling exercise demonstrated sharply dampened diurnal 

fluctuations at VRM 157.3 from an average of lO.PC under existing conditions to 

4.7°C as the flow increased to 2,832 1/s. As the flow was increased beyond 2,832 1/s, 

the diurnal fluctuation at VRM 157.3 decreases further and approached that of VRM

163.1 at the upstream end of the study reach. Mean stream temperatures at VRM

157.3 decreased by an average of 2.4°C as the flow increased to 14,160 1/s. Flows 

less than baseflow simulated dramatically increased diurnal fluctuations; diurnal 

fluctuations o f 17.3°C were simulated for flows of 283 1/s. Mean stream temperatures 

increased by an average of 1.5°C when inflow was decreased to 283 1/s. Hypothetical 

inflow temperature simulations depicted a clear shift in the diurnal fluctuation at VRM

157.3 in the direction of the change in inflow stream temperature at VRM 163.1. 

Mean stream temperatures increased by an average of 4.6°C when inflow was equal

IV



to the average ambient temperature and decreased by an average of 2.0°C when 

inflow was equal to groundwater temperature.

Karen L. Peterson 
Civil Engineering Department 
Colorado State University 
Fort Collins, CO 80523 
Spring 1991
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Introduction

The Virgin spinedace is a non-game fish that is endemic to the East Fork of 

the Virgin River within Zion National Park (ZION). This organism is considered an 

important water related resc-rce attribute of ZION as it has been recommended to be 

classified as endangered (50 F.R. 37959). In order to ensure the unimpaired existence 

of this native organism, the Water Rights Branch (WRB) of the Water Resources 

Division (WRD) of the National Park Service (NPS) has undertaken the study of the 

physical aquatic habitat of the spinedace and its relationship to differing flow 

conditions.

This document presents the stream temperature study which was conducted as 

part of the general study by the NPS to evaluate the physical habitat of the Virgin 

spinedace. Stream temperature is a critical component of the aquatic habitat. In 

particular, growth rate, timing of the onset of spawning, and breeding are a few of the 

reproductive components of the Virgin spinedace that are related to stream temperature 

(Rinne, 1971), The stream temperature regime also affects the concentration of 

dissolved oxygen and the rate of oxidation of organic matter among other physical 

characteristics of the stream.

The need for maximum, mean, and minimum stream temperatures or an 

estimate of diurnal fluctuation was expressed at a meeting concerning the development



of an aquatic habitat study (Johns, 1987). This information was deemed important as 

the Virgin spinedace have a preferred stream temperature tolerance range beyond 

which they will not exist. This temperature range fluctuates depending on the 

temperature at which the spinedace are acclimated. Acclimated at a temperature 

within the range o f 8.5 to 20°C, the spinedace can survive maximum temperatures 

ranging from 29.3°C to 31.4°C with a 50 percent probability of survival.

The purpose o f this study is to measure the existing stream temperature regime 

of the East Fork at the WRB selected aquatic habitat site and to predict the response 

of stream temperature at this site to changes in stream temperature and discharge at 

the upstream end of the selected study reach. This study is conducted for that time 

period during which maximum stream temperatures occur which is usually July 

(Deacon, 1988). Results from this study are intended to be utilized by fisheries 

biologists to further analyze the effect of flow and inflow temperature on the spinedace 

at the aquatic habitat site.

The objectives are to:

A. Describe the existing stream temperature regime at the aquatic habitat 

site in terms of daily fluctuations and mean daily temperatures during 

the period during which maximum stream temperatures occur.

B. Predict the response of daily fluctuations in stream temperature at the 

aquatic habitat site to perturbations in stream temperature and discharge 

at the upstream (eastern) Zion National Park boundary for the same 

time period as noted in A.



C. Predict the response of mean daily stream temperature at the aquatic 

habitat site to perturbations in stream temperature and discharge at the 

upstream (eastern) Zion National Park boundary for the same time 

period as noted in A.

The objectives of this study were accomplished through field data collection 

during June, July, and August of 1988 and stream temperature modeling of four days 

selected from the study period which was defined as June 29 through July 23. Data 

collection encompassed describing stream, shading, and site characteristic data along 

the East Fork of the Virgin River during the summer of 1988. Measured stream 

temperatures at the aquatic habitat site were used to describe the existing stream 

temperature regime. Stream temperatures for hypothetical flow and inflow 

temperature conditions were simulated utilizing the stream temperature model TEMP- 

84 (Beschta, 1984). The results from hypothetical simulations were analyzed relative 

to TEMP-84 simulations o f existing conditions. These results were then applied to 

measured stream temperature data to predict the expected stream temperatures under 

the given selected hypothetical conditions.

This report initially presents the literature review of stream temperature 

modeling and the selection and overview of the model TEMP-84. An overview of the 

study site topography, vegetation, climate, and flow characteristics is given in Chapter 

3. A description of the field data collection methods is then presented followed by a 

complete description of data analysis techniques used to prepare data for model input. 

TEMP-84 simulations of existing conditions are presented in Chapter 6 along with



sensitivity analysis results illustrating the relative sensitivity of each variable to the 

modeled output. Finally, Chapter 7 presents the results from modeling hypothetical 

flow and inflow temperature conditions and estimates of the stream temperatures one 

might expect given the stated hypothetical conditions. The results are then followed 

by a discussion of the project, conclusions, and recommendations for future research.



Chapter 1. Literature Review

1.1 Virgin River Spinedace and Stream Temperature

The unimpaired existence of the Virgin spinedace (Lepidomeda mollispinis 

mollispinis) is dependent, in part, on the temperature of the stream in which it lives. 

Studies carried out by Espinosa (1978) show that upper lethal temperature (i.e., 

temperature at which a maximum of 50 percent of the fish can be presumed to exist) 

for the spinedace when acclimated at a temperature within the range of 8.5°C to 20°C 

for a given time period ranged from 29.3°C to 31.4°C. Deacon (1987) documented 

Critical Thermal Maximum (CTM), (i.e., the temperature at which the organism loses 

equilibrium) at 30.25°C and 37.02°C when acclimated at 10°C and 25°C respectively. 

It has also been shown that the Virgin River spinedace can survive relatively rapid 

elevations in temperature, 14.5°C in one hour for yearlings, less for juveniles 

(Espinosa, 1978). Another important temperature characteristic is thermal preference 

which is the temperature the organism selects when exposed to a range of temperatures 

after being acclimated at a given temperature. Studies have shown that the thermal 

preference temperature increases as the acclimation temperature increases (Deacon, 

1988). Fry (1947) defines the final thermal preference as that temperature at which 

the preferred temperature is equal to the temperature at which the organism was 

acclimated. This is 23.1 + /-  0.5°C for the Virgin River spinedace (Deacon, 1987).



Time periods during which the temperature regime is critical for maintaining normal 

population sizes are believed to be the spawning period which is mid-May through 

June (Espinosa, 1978) and the period during which maximum stream temperatures 

occur (Deacon, 1988). Research is still needed to precisely define which time periods 

are most critical.

Stream temperature affects the Virgin spinedace as it serves to maintain various 

aspects of aquatic habitat. Changes in stream temperature affect the solubility of 

dissolved gases o f which oxygen is the primary concern; microbial and algal 

metabolism is altered which affects all higher organisms within the food chain; growth 

rate, incubation duration, and species interaction is perturbed; bacteriological activity 

is altered which can result in increased susceptibility to disease; and warm or cold 

sections of stream may prevent the continued migration of an organism (Ward, 1979; 

Currier, 1980).

1.2 Stream Temperature and its Relationship with the Environment

The stream temperature of a volume of water is regulated by the heat transfer 

processes occurring across its boundaries. These heat transfer processes are in turn 

regulated by meteorological conditions, surrounding

topography, surrounding riparian vegetation, and hydrologic conditions (Ward, 1979).

The net heat transfer occurring across water volume boundaries drives the mean 

stream temperature toward the equilibrium temperature (Sullivan, 1988; Edinger, 

1968). Equilibrium temperature is the stream temperature at which the heat gain into 

the stream is equal to the heat loss (Edinger, 1968). At this point thermal stability is



reached and the effect on downstream reaches is an increase in the constancy of the 

temperature regime (Currier 1980).

The extent to which the various environmental factors effect the stream 

temperature is a function of the stream size. Brown (1969), Beschta (1984), and 

Theurer (1984), among others, address the effect of stream size by applying the 

calculated net heat transfer to the ratio o f stream surface area to discharge. Sullivan 

(1988), conducted a dimensional analysis on this ratio and illustrated that stream 

temperature is inversely proportional to stream depth. Several sources have 

documented that small, shallow streams respond rapidly to the microclimate and reach 

a point of equilibrium within short distances from their sources (Macan, 1959; Swift, 

1971; Sullivan, 1988). In contrast, the larger, deeper streams, which have greater 

thermal inertia, required days to equilibrate (Sullivan, 1988). The magnitude of 

diurnal fluctuation is also affected by stream size; Sullivan (1988) documented that 

water temperature fluctuations around the mean decreased rapidly with increased 

depth.

Several studies have documented the effect o f riparian vegetation on stream 

temperature. Levno (1967) documented an increase in the maximum stream 

temperature for a small (less than one cubic foot per second) stream after its 

surroundings had been logged and then scoured by a flood. Similar studies by Swift 

(1971), Brown and Krygier (1970), Macan (1959), Brown (1971), and Moore (1967), 

further support an increase in the magnitude of the diurnal stream temperature 

fluctuation with increased exposure to solar radiation. The majority of the above listed 

studies attribute the response primarily to the increase in solar radiation. Sullivan
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(1988) notes that removal o f riparian vegetation has effects in addition to increasing 

the solar radiation component. Moreover, removal of riparian vegetation increases 

surrounding air temperatures, decreases évapotranspiration rates, and increases the 

water volume within the soil; all of which have an effect on the stream temperature. 

Fowler (1987) notes increased wind passage and wind speeds as a result of canopy 

removal.

Moore (1967) noted mean stream temperatures on east-west oriented streams 

to be slightly higher than mean air temperature while on the north-south oriented 

streams, the mean stream temperatures were slightly cooler than the mean air 

temperatures. Therefore, solar radiation was considered the dominant variable 

regulating stream temperature. Moore further supported this theory by the fact that 

the two streams approached the same mean temperature after three consecutive days 

of complete cloud cover. Solar radiation as the dominant variable in regulating stream 

temperature is supported by Brown and Krygier (1970), Brown (1969), and Pluhowski 

(1970).

Several studies have noted an excellent relationship between mean air 

temperatures and mean water temperatures (Macan, 1959; Sullivan, 1988; Moore, 

1967; Kothandaraman, 1972). Sullivan and Adams (1988) documented, for a variety 

of stream sizes and degree o f vegetation, that mean water temperature adjusts to mean 

daily air temperature with the exact relationship determined by the relative influence 

of various environmental factors such as groundwater flow and riparian canopy 

density. In addition, diurnal water temperature fluctuation was found to be 

proportional to diurnal air temperature with the ratio varying with stream depth.



Kothandaraman (1972) presented a mathematical model which, given a representative 

relationship between air and water temperature, would predict annual cyclic trends in 

stream temperature based on air temperature record.

Heat transfer between the stream and bedrock was delineated by Brown (1969). 

He predicted stream temperature along a 610 m (2000 ft) reach o f a small stream 

within approximately 0.5°C (1°F) when the bedrock heat transfer component was 

accounted for, in contrast to approximately 8.5°C (15°F) when it was neglected 

(Brown, 1971). This was supported by Hauser (1987); stream temperature regime 

studies which accounted for bedrock heat transfer simulated measured temperatures 

significantly closer than those which neglected this heat transfer component. Beschta 

(1984), documenting Brown’s work, stated that 15 to 20 percent of the net solar 

radiation reaching the stream bed could be absorbed by the bedrock at depths less than 

20 cm. The heat stored was then available for release back to the stream during the 

evening.

The influence o f tributary and groundwater influx on stream temperature is a 

function o f the percentage of total flow contributed by the groundwater entering the 

stream and the temperature difference between the main stem and groundwater 

(Currier, 1980). Several studies quantify the effects of groundwater and tributaries 

through mass balance analyses (Brown, 1971; Beschta, 1984; Theurer, 1984; Raphael, 

1962; Sullivan, 1988). Swift (1971) noted a warming response o f the stream as a 

result of influx of warm tributary flow. This effect was witnessed by Macan (1959) 

as high stream temperatures occurred after rainfall due to the warm runoff heated by 

the warm ground surface.
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1.3 Reservoir Effects on Stream Temperature

Construction of a reservoir on a stream has been shown to have considerable 

effect on the stream temperature regime of the downstream system (Ward, 1974; 

Moore, 1967). Four major factors of reservoir operation govern the effect on 

downstream temperature regime: (1) volume of water impounded by the reservoir, (2) 

depth of the impoundment, (3) depth at which water is withdrawn, and (4), the rate 

of withdrawal as compared with the rate o f natural flow (Moore, 1967). Deep 

reservoirs, for which the water is withdrawn from the bottom, generally lower the 

maximum stream temperature during the summer and raise the maximum temperature 

during the winter (Moore, 1967; Ward, 1974). On the other hand, downstream 

temperatures from shallow reservoir releases are generally warmer during late spring 

to early fall and unchanged during other times of the year (Moore, 1967). Overall, 

the effect of a reservoir is to dampen the diurnal fluctuation, increase the seasonal 

constancy, elevate winter temperatures, elevate or depress summer temperatures 

depending on depth of release, alter thermal patterns, alter the natural flow pattern, 

and alter the water temperature gradient between sites (USFWS, 1978; Moore, 1967). 

The stream recovers with distance from the release as it responds to the surrounding 

environmental factors (Ward, 1974). Depending on the size of the impoundment and 

the rate o f recovery o f the stream, a reservoir can affect the stream temperature regime 

for many miles downstream. Comparisons between January mean monthly stream 

temperatures before construction of the Brownlee Reservoir on the Snake River in 

Oregon and January mean monthly stream temperatures after construction showed that
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the stream temperature regime was affected up to 145 miles downstream (Moore, 

1967).

1.4 Modeling Stream Temperature

The accepted approach to simulating stream temperature, used by virtually all 

of the models to be discussed, is application of an energy budget to quantify the net 

heat flux between the stream and its surroundings. Theoretical basis for this approach 

was established by Anderson (1954) through his detailed analysis of an energy budget 

for the purpose of quantifying evaporation on Lake Hefner. Brown’s work (1969) was 

a cornerstone for stream temperature modeling because he established that small 

dynamic streams which have little thermal inertia and respond quickly to changes in 

heat transfer can be successfully simulated with the use o f an accurate energy budget 

analysis.

Raphael (1962) and Delay and Seaders (1966) used stream surface area, water 

volume, tributary inflow and an energy budget encompassing short and long-wave 

radiation, evaporation, and convection in a simple differential equation to calculate the 

change in stream temperature for a given time interval. Raphael utilized his model on 

a long reach (75 miles) and qualitatively showed that the predicted temperatures 

approached actual temperatures. Delay and Seaders (1966) implemented their model 

on a large stream (45,000 liter/sec) and simulated the stream temperature within 0.8°C 

(1.5°F).

Edinger, Duttweiler and Geyer (1968) developed an expression for heat flux 

across the air/water interface as a function of a thermal exchange coefficient and the 

temperature gradient between the equilibrium stream temperature and the actual stream
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temperature. It was theorized that the equilibrium stream temperature changes with 

variations in meteorological conditions and the actual stream temperature responds by 

moving toward this equilibrium value. Studies depicted that a lag time exists between 

exposure of the stream to a change in meteorological conditions and the complete 

response of its temperature. Furthermore, as the depth of the stream increases the 

length of this lag time increases while the amplitude of the diurnal variations decrease.

Brown’s (1969) stream temperature model based, again, on an energy budget 

analysis, encompassed net thermal radiation, evaporative flux, conductive flux, 

convective flux, and advective flux. The first to include heat transfer across the 

substrate, he found that conduction to the substrate can have a considerable effect for 

bedrock-bottomed streams, whereas conduction to the substrate for gravel-bottomed 

streams is insignificant. Brown used his stream temperature model to illustrate that 

the net thermal radiation received at the stream surface is the controlling heat transfer 

variable for small streams during daylight hours. This model, which was developed 

for small streams, simulated actual stream temperatures within 2° to 3°C for a single 

reach 610 m (2000 ft) long with uniform shading and channel geometry.

Morse (1972) developed a mathematical model for solution to stream 

temperature modeling. Considering heat transport by thermal advection, thermal 

dispersion, and interphase energy transfer across system boundaries, he theorized a 

multigradient energy balance equation representing the accumulation of heat within a 

fixed volume, moving, parcel of water. Assuming (1) dispersion terms can be 

ignored, (2) constant longitudinal velocity, and (3), dominance of the longitudinal 

component o f stream temperature, the theoretical energy conservation model was
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simplified to an energy conservation one dimensional partial differential equation. 

Morse (1970) documented the nearly parabolic relationship between water temperature 

and net heat flux with water temperature as the independent variable. The coefficients 

which were solved for, given a determined net heat flux, were then employed in a 

manipulated form of the simplified energy conservation equation to solve for water 

temperature.

In addition to the deterministic model, Morse (1978) has expanded the energy 

conservation partial differential equation into a non-deterministic model which 

encompasses the stochastic nature of stream temperature. The non-deterministic model 

was only partially tested on one set of historical data. Statistical tests at 0.05 level 

showed that hypotheses of normality, stochastic independence and equality between 

means and standard deviations could not be rejected. Advantages of the non- 

deterministic model include reduced data requirements and less computation as no 

simulation is involved.

Crittenden (1977) developed a theoretical energy balance stream temperature 

model for use on a stationary column of water in small clear streams with little 

shading or heat transfer due to groundwater. Predicted temperatures represent those 

that would be reached after several days within the defined environment. He 

calculated direct and diffuse solar radiation through regression equations in terms of 

the angle o f solar elevation. He also addressed, in detail, conduction of heat to the 

substrate and the thermal profile through the water column. A sensitivity analysis 

showed that wind speed had the greatest relative sensitivity with diffusivity of the 

substrate being second. Following, in descending order o f relative sensitivity, are the
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other variables examined in the analysis: solar declination (i.e ., season), stream 

depth, shading angle, initial water temperature, ambient vapor pressure, mean air 

temperature, and stream bed albedo. He concluded that conduction and evaporation 

were the most important forms of heat loss for the water column under study.

Sullivan and Adams (1988) initially developed Tempest for the purpose of 

studying the physics of stream heating and the relative importance of the regulating 

environmental factors. While still based on an energy budget this model approaches 

the problem from a more thermodynamic oriented theory base. It differs from 

previous models as it calculates the diurnal fluctuation around the mean separately 

from calculation of the mean value. This model also boasts a simplified set of data 

input requirements. It emphasizes the controlling variables of stream depth and 

surrounding air temperature and takes an abbreviated view of streamside vegetation 

and topographic shading.

Through the last decade, several coded stream temperature models have been 

developed and are available for use for individual studies. Each predicts downstream 

temperature responses to user defined environmental factors, hydrologic regimes, and 

site descriptions. Use o f the energy balance continues to remain the primary mode for 

quantification of the heat transfer within the study reach. Models differ primarily in 

the treatment of environmental factors, computation o f the individual energy budget 

components, organizational approach to analyzing the system, input data required, and 

the form of the stream temperature regime predicted. The following models for 

natural systems with steady flow conditions were obtained through various federal 

agencies and reviewed for use in this study.
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1.4.1 QUAL2E

QUAL2E, the Enhanced Stream Water Quality Model (Brown 1987), 

developed through cooperative agreement between Tufts University, Department of 

Civil Engineering and the EPA Center for Water Quality Modeling, is a widely used, 

comprehensive stream water quality model. This model, which has been evolving 

since inception in 1971 by the Texas Water Development Board, can simulate dynamic 

and steady state stream temperatures for steady flow branched stream systems. In 

addition to stream temperature QUAL2E can simulate any one or combination o f the 

following constituents: dissolved oxygen, biochemical oxygen demand, algae as 

chlorophyll a, organic Nitrogen as N, Ammonia as N, Nitrite as N, Nitrate as N, 

organic Phosphorus as P, dissolved Phosphorus as P, coliforms, an arbitrary non-

conservative constituent, and three conservative constituents.

1.4.2 Simplified Steadv-State Temperature and Dissolved Oxygen Model

The Simplified Steady-State Temperature and Dissolved Oxygen Model 

(Martin, 1986) developed through the Waterways Experiment Station of the Army 

Corps of Engineers simulates steady state stream temperature conditions for simple 

river systems, branches, and tributaries. Advantages of this model include ease of 

application and minimal data requirements. Its use is appropriate where long term, 

time averaged, stream temperature predictions are suitable for study objectives.

1.4.3 Instream Flow Stream Temperature Model

The Instream Flow Stream Temperature Model (Theurer, Voos, and Miller, 

1984) was developed by the Instream Flow and Aquatic Systems Group in cooperation 

with the Soil Conservation Service and the U. S. Fish and Wildlife Service. It is a
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component of the Instream Flow Incremental Methodology (IFIM). This model 

simulates daily mean stream temperatures and diurnal fluctuations for any size steady 

state flow network. Site specific regression equations are utilized and diurnal 

fluctuations are developed through assumed symmetrical stream temperature versus 

time profiles.

1.4.4 Lagrangian Transport Model

The Lagrangian Transport Model (LTM) (Schoellhamer, 1986) developed by 

the U. S. Geological Survey is a one dimensional transport model which simulates up 

to ten water quality constituents in a stream system. The main program carries out 

transport calculations for steady as well as unsteady branched stream systems. A 

variety of subroutines, in addition to the user written subroutine option, are available 

to carry out the decay and constituent reaction calculations for the water quality 

constituents. The LTM model allows the user to define the flow field in a fixed nodal 

reference frame while taking advantage of the Lagrangian (moving) reference frame 

for water quality constituent calculations. Output consists of stream temperatures 

defined at user specified grid points for user specified increments of time.

1.4.5 JDYN-ROUAL

JDYN-RQUAL (Hauser, 1987) is a one dimensional, steady or unsteady flow, 

water quality modeling system which was developed by Tennessee Valley Authority 

(TVA). It is comprised of two independent models JDYN and RQUAL, which are 

linked together through user control codes. JDYN has been developing since 1978 

into a comprehensive, detailed, unsteady flow regime modeling tool. RQUAL which 

began development in 1982, utilizes JDYN output and has the capacity to simulate
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daily mean and diurnal fluctuations in stream temperature for a branched unsteady or 

steady state flow network. It also can simulate nitrogenous oxygen demand (NOD), 

biochemical oxygen demand (BOD) and dissolved oxygen concentration (DO). JDYN- 

RQUAL was developed for in-house use by TVA. The model is not marketed and 

external use is only supported when the user have interacted with TVA sufficiently 

enough to ensure proper use of the modeling tool.

1.4.6 TEMP-84

Temp-84 (Beschta, 1984) is a comprehensive, one dimensional stream 

temperature model developed through the Watershed Systems Development Group of 

the USDA Forest Service. It was composed to serve as a management tool by 

simulating maximum temperature of streams in response to timber harvesting and 

streamside vegetation management. This model simulates diurnal fluctuations in 

stream temperature at user defined time increments for steady state flow, branching, 

stream systems. Data inputs encompass site characteristics, stream characteristics, and 

characteristics o f streamside vegetation.



Chapter 2. TEMP-84, A Stream Temperature Model

Six stream temperature models were reviewed for the components 

incorporated in the respective solution algorithm and the approach utilized in 

characterizing the flow regime and meteorological conditions. Table 2.1 summarizes 

the results from this review; a star in the table indicates that the model incorporates 

the respective component.

2.1 Model Selection

TEMP-84 was selected among the six models because it allowed the most 

detailed, site specific description of meteorological, topographic, vegetative, and 

stream characteristics. Considering the quick response of small streams’ temperature 

to changes in surrounding conditions (Sullivan, 1988), detail in describing the study 

reach conditions was considered necessary.

TEMP-84 is a physical process computer model developed to simulate 

temperature responses in small mountain streams. It incorporates site, stream, and 

stream-adjacent vegetation characteristics in its solution algorithm. It was developed 

primarily to assist the land manager in evaluating management strategies for streamside 

vegetation in forest harvesting operations.

TEMP-84 encompasses variables important at the study site. Because the 

stream flows through a canyon bordered by steep, nearly vertical (approximately 305
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Table 2.1. A summary of the components incorporated in stream temperature models considered for use
in the East Fork of the Virgin River stream temperature study.

COMPONENTS MODELS

QUAL2E J DYN- 
RQUAL

LTM SIMPLE
STEADY
STATE

IFIM TEMP-84

TOPOGRAPHIC
SHADING

* « *

VEGETATION
SHADING

* « 0

GROUNDWATER
FLOW

« « « 0 0

GROUNDWATER
TEMPERATURE

« « * 0 0

SUBSTRATE HEAT 
TRANSFER

* 0 0

SPATIALLY VARIABLE
METEOROLOGICAL
DATA

* 0 ) 0

DIURNALLY DYNAMIC
METEOROLOGICAL
DATA

* * * *(2) 0

DYNAMIC FLOW 
REGIME

*

ROUTED FLOW 
REGIME

*

CALCULATES SOLAR 
RADIATION

* 0 0

OUTPUTS MAXIMUM 
AND MINIMUM 
TEMPERATURES

« * * 0 0

(1) Climatological data is allowed to vary spatially when simulating
the steady state temperature.

(2) Diurnal variations in air temperature are developed from sinusoidal
approximations and regression equations which incorporate average 
daily air temperatures, solar radiation, relative humidity, and
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m) sandstone walls, incorporating the effects of topographic shading was considered 

a priority. Localized descriptions of ambient temperature were also important 

considering the driving force of ambient air temperature in the heat transfer 

components and the probable variations from cool conditions in the narrow canyon 

upstream to the dry, hot, desert conditions as the canyon widens downstream. 

Incorporating groundwater influx was also a priority as groundwater influx to the 

stream was evident from observations by park employees who had investigated the 

East Fork upstream of the selected study reach.

TEMP-84 does not attempt to model the flow regime. Rather, the discharge, 

velocity, and width are described for each individual section in the data input set. 

While this is not the most accurate method of simulating flow, it is the most 

reasonable considering the long (approximately 9.5 km) length of the study reach and 

the dynamics and frequency of the pool, rapids, run, and riffle sequences. Moreover, 

modeling the flow through routing techniques would demand intense data collection 

beyond the scope of this project.

2.2 TEMP-84 Solution Approach

TEMP-84 is a stream temperature simulation model which, at relatively short 

time intervals (fifteen minutes or less), calculates flow, stream surface area, and 

instantaneous net energy flux. The net energy flux is evaluated for each water parcel 

as it travels from sub-section to sub-section throughout the system. The length of a 

sub-section corresponds to the distance traveled by a water parcel during the time 

interval between computations. Time intervals are kept short to assume constant energy 

transfer rates. Calculated output temperature for each water parcel (input temperature



+  net energy gain) from a sub-section is the inflow water temperature for the adjacent 

downstream sub-section.

TEMP-84 assesses the energy flux occurring during a time interval through an 

energy budget accounting procedure. Incorporated into the budget are the following 

components:

(1) net clear-sky solar radiation

(2) net longwave heat flux

(3) evaporative heat flux at the water surface

(4) convective heat flux at the air-water interface

(5) conductive heat flux between bedrock and water

(6) advective heat flux from groundwater seepage
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The solution equation for the change in stream temperature for each section is as 

follows:

Z^T =AH*SA/Q/D/W *K

where:

Eq. 2.1

A  T is the temperature change (°C)

A H is the net energy flux (Ly/s)

SA is the section’s surface area (m^^)

Q is the streamflow (L/s)

D is water density (1 g/cm^^)

W is the heat capacity of water (1 cal/g/°C)

K is a conversion factor ( 1 m/100 cm) (1000 L/m"̂ )̂



The net energy flux is the sum of the energy budget components which are considered 

constant for each time interval.

Net solar radiation encompasses both direct and diffuse components. Direct 

radiation is calculated by routing the radiation through the atmosphere, accounting for 

transmissivity and optical air mass, to a plane surface above the canopy. Cloud effects 

are not incorporated into the algorithm. The diffuse component is calculated from the 

ratio of direct to diffuse radiation incident on a horizontal surface as a function of the 

zenith angle ((Brooks, 1959) in Reifsnyder and Lull, 1965). Both diffuse and direct 

beam radiation are then routed through the forest canopy. The amount to which the 

radiation is attenuated is determined by the canopy cover coefficient and the path 

length of the radiation through the vegetation. In addition to the forest canopy, 

radiation is also attenuated by overhanging vegetation which provides direct shading. 

At the stream surface the direct and diffuse radiation components are evaluated for that 

portion which is reflected, absorbed, or transmitted by the stream.

Heat transfer between bedrock and the stream is evaluated for the percentage 

of stream which is less than twenty centimeters in depth and comprised of bed material 

greater than twenty-five centimeters in axis. The model assumes all solar radiation 

entering the stream is absorbed within the top twenty centimeters of the water surface 

and the heat storage capacity of particles smaller than twenty-five centimeters is 

negligible. Modeling this energy transfer is carried out by storing heat in those 

portions o f the stream which are less than twenty centimeters in depth and comprised 

of bed material greater than twenty-five centimeters in axis until the net solar radiation 

level decreases to less than or equal to one-half of the daily maximum. The stored
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energy is then released at a uniform rate over an eight-hour period. Justification for 

this energy transfer process lies in observations by Brown (1969) tliat fifteen to twenty 

percent o f the net solar radiation reaching the stream bed could be absorbed by 

bedrock during the day and released back to the stream during the late afternoon and 

evening hours.

Net longwave radiation is calculated as the difference between incoming 

longwave radiation absorbed by the water surface and outgoing longwave radiation 

emitted from the water surface. The Stefan Boltzman radiation law which calculates 

longwave radiation as a function of media emissivity, the Stefan Boltzman constant, 

and the fourth power of the media temperature is implemented in determining both 

incoming and outgoing longwave flux. Incoming longwave flux is the sum of that 

emitted from the atmosphere and surrounding forest canopy. Atmospheric longwave 

radiation, like solar radiation, is routed through the canopy. The longwave radiation 

entering the water is assumed to be absorbed and is not routed through the water 

column. Tennessee Valley Authority (1972) found that water absorbs longwave 

radiation within fractions of a millimeter below the water surface. Longwave radiation 

emitted from the water surface is calculated from the water temperature and an 

assumed water emissivity.

Evaporative heat transfer is calculated from the latent heat of vaporization 

multiplied by an evaporation rate. The evaporation rate is calculated by an empirical 

formula which incorporates the vapor pressure gradient and a wind function 

((Duttweiler (1963) in Ellis, 1981). This formula replaces the evaporation formula 

originally coded in TEMP-84. The original empirical evaporative formula was cited
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from Ryan and Harleman (1973) and Brocard and Harleman (1976). It was developed 

for cooling pond type conditions where free convection resulting from the virtual 

temperature difference between the stream and atmosphere as well as forced (wind 

driven) convection is important. Ryan and Harleman (1973) document that "above a 

heated water surface both forced (wind driven) and free (buoyancy driven) convection 

may be important" whereas "above a natural water surface (i.e. no waste heat input) 

forced convection dominates." In addition, Brocard and Harleman (1976) state that 

the evaporative rate formula, which was originally implemented in TEMP-84, 

"compared well with both laboratory and cooling pond field data." It was evident that 

the originally coded evaporative flux equation was not appropriate for natural stream 

conditions. Accordingly, the literature was reviewed for evaporative rate equations 

applicable to natural conditions. Seven equations were selected and implemented on 

the field data. The calculated evaporation rates from each formula for the modeled 

days were compared to the evaporation rates from the Saint George, Utah, NOAA 

weather station (#7516). A least squares analysis was conducted and the evaporation 

formula which produced the smallest sum of the squared differences between 

calculated and measured evaporation was selected for use in TEMP-84. Table 2.2 

documents the comparison of calculated evaporation rates to NOAA published 

evaporation rates from Saint George, Utah.

The convective heat component includes those energy transfers due to 

conduction and convection across the air-water interface. Convection occurs from the 

dispersive action of molecular and macro air mass turbulence and conduction occurs 

as a result of the sensible heat gradient between the air and water. According to
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Table 2.2. A comparison of evaporation rates calculated from selected evaporation models using ZION
weather conditions to NOAA published evaporation rates for Saint George, UT.

DATE SAINT
GEORGE
cm/day

DUTT-
WEILEÍ
cm/day

MARCINO-
HARBECK
cm/day

QUALIIE

cm/day

ZAYKOV

cm/day

DELAY-
SEADERS

cm/day

BROWN

cm/day

IFIM

cm/day

6-30-88 0.94 0.53 0.23 0.51 0.46 0.15 0.46 0.41

7-08-88 0.79 0.66 0.43 0.69 0.61 0.28 0.86 0.41

7-15-88 0.71 0.84 0.61 0.86 0.76 0.38 1.22 0.46

7-21-88 0.53 0.94 0.84 1.09 0.94 0.53 1.73 0.41

SUM OF
SQUARED
DIFFERENCES: 0.056 0.114 0.083 0.067 0.153 0.564 0.079

SAINT GEORGE: PUBLISHED EVAPORATION * (PAN COEPHCIENT = .69)

DUTTWEILER: E(cm/s) = 2.4 • 10"-7(cm/s/mb) + 1.1 * 10"-7(cm/m/mb) • U(m/s) •
(SWVP(mb) - AVP(mb)),

MARCINO-
HARBECK: E(cm/s) = 1.36 • 10"-2 • U(m/s) • (SWVP(mb) - AVP(mb)) 

referenced in Macagno and Kennedy (1974).

QUALIIE: E(ft/hr) = 6.8 • 10"-4 (ft/hr/in. Hg.) + 2.7 • 10"-4 (ft/hr/in. Hg./mph) •
U(mph) * (SWVPCm. Hg) - AVP (in. Hg)), referenced in EPA/600/3-87/007.

ZAYKOV: E(cm/s) = 1.5 * 10^-2 + 1.08 • 10^-2 * U(m/s) * (SWVP(mb) - AVP(mb ))
referenced in Macagno and Kennedy (1974).

DELAY-SEADERS: Q(BTU/ft"2/hr) = .34 * U(mph) • (SWVP(mb) - AVP(mb)) 
referenced in Delay and Seaders (1966).

BROWN; Q(BTU/ft"2/min) = .6140 * U(m/s) ♦ (SWVP(in. Hg.) - AVP(in. Hg.))
referenced in Brown (1969).

IFIM: Q(J/m 2̂/s) = (40.0 + 15.0 * U(m/s)) * (RH * (1.064)^a(C) - (1.0640)"Tw(C)) 
referenced in FWS/OBS-84/15.

where: Q = evaporative heat flux
E “  evaporation rate
U — wind speed
SWVP= saturated water vapor pressure
AVP= air vapor pressure
Ta = air temperature
Tw = water temperature
RH -  relative humidity
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Bowen (1926), the ratio of heat losses by conduction and convection to evaporative 

heat transfer is equal to a proportion which is a function of the Bowen constant, 

temperature gradient, and vapor pressure gradient between the air and water. TEMP- 

84 utilizes the Bowen ratio and the calculated evaporative heat transfer to calculate the 

conduction/convection heat transfer component across the air/water interface.

Advective heat transfer results from inflow volume and temperature of 

groundwater which is assumed to be constant throughout the entire section for which 

it is defined. It is evaluated in TEMP-84 through a mass balance mixing equation. 

The resulting temperature change due to groundwater influx is added onto the 

temperature change calculated from the energy budget analysis. In calculating the 

energy budget for each sub-section, half the groundwater component entering within 

the sub-section is added to the sub-section inflow discharge. Thus the increase in flow 

as a result o f groundwater is incorporated throughout the study reach.



Chapter 3. Study Site Description

The East Fork of the Virgin River is a tributary to the Virgin River in 

southwest Utah. Following is a description of the East Fork watershed, climate 

conditions, and the selected study reach.

3.1 The Watershed

The East Fork of the Virgin River flows in an east-west direction through Zion 

National Park (ZION) in southwest Utah. It headwaters 56.8 km northeast of ZION 

(Pacific Southwest River Mile Index, 1974) and confluences with the North Fork of 

the Virgin River approximately 4.0 km downstream from where the stream leaves 

ZION. The drainage basin is approximately 64 km in length and approximately 

16 km wide with a total area of approximately 105,000 Ha (405 sq. miles) (Turner, 

1949). Upon confluence of the North and East Forks, the Virgin River continues to 

flow in a southwest direction until it eventually enters Lake Mead.

The East Fork of the Virgin River enters ZION along the east boundary of the 

park at a latitude of 37.2 degrees and longitude of 112.9 degrees. The general 

direction o f the stream is west for approximately 3.2 km and then shifts to an aspect 

of approximately 20 degrees south of west. It flows at this aspect for approximately

8.0 km after which it exits ZION. The average elevation of the stream within ZION
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was calculated at 1241 m, and ranges from 1 3 1 7 m to l2 1 9 m . Elevations within the 

drainage basin ranges from 2438 m to 1219 m (Turner, 1949).

The East Fork headwaters in the Wasatch Formation of the Tertiary located in 

the Markagunt Plateau northeast of ZION. It then flows through the Tropic Formation 

and possibly Dakota sandstone of the Cretaceous (Gregory, 1950). This area is 

mountainous terrain with deeply entrenched drainage systems (Turner, 1949). Within 

this region, the stream flows at a gentle slope through meadowlands, sparse forests, 

and open rural districts, paralleling the Sevier River basin. It then briefly passes 

through Entrada sandstone and Carmel Formation of the Jurassic, and enters the 

Navajo sandstone formation. This area is characterized by sand flood plains sparsely 

vegetated with grasses, cacti, sagebrush, and occasional trees. As the stream passes 

through approximately 37 km of Navajo sandstone, it gradually narrows until the 

stream bed at 6 m to 24 m wide abruptly meets vertical or undercut walls (Gregory, 

1950). As the stream narrows, the sinuosity of the stream increases until sharp 

meandering occurs throughout the narrowest sections.

The East Fork enters ZION in this narrow, meandering state and the Kayenta 

Formation is exposed at the stream level. Approximately 4.8 km downstream of the 

east boundary the Moenave Formation bounds either side of the alluvial flood plain. 

As the stream flows through ZION the canyon gradually widens from approximately 

0.4 km to over 1.6 km at the canyon rim. Near the east park boundary Navajo 

sandstone cliffs tower at heights of 300 m over the mainstem, talus slopes reach the 

stream edge, and an alluvial flood plain is essentially non-existent. By the west park
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boundary, while the Navajo sandstone cliffs still dominate, the alluvial flood plain 

widens and extends 0.4 to 0.8 km on either side of the stream.

Narrow bands of cottonwood, willow, ash, and boxelder are common near the 

stream side. Alluvial benches and terraces are dominated by various sparse grasses, 

scrub brush, pinon, juniper, and cactus. Small drainage areas from spring sources 

harbor oases o f dense, green, virulent vegetation.

3.2 Climate Conditions

The ZION region embodies deep canyons, wide valleys, broad slopes, and 

plateau tops (Gregory, 1950). Typically, the winters are cool and moist with snow 

existing in the high elevations and freezing temperatures occurring occasionally on the 

canyon floor. Between November and February, 1988, monthly average temperatures 

at Zion National Park (NOAA station ^ 7 1 7 ) ranged from 5.3°C (41.6°F) to 9.1°C 

(48.3°F) (NOAA, 1988). Spring is marked with progressively warmer and drier 

conditions and by June ambient conditions are hot and dry. Between March and June, 

1988, monthly average temperatures at ZION increased from 10.4°C (50.7°F) to 

26.4°C (79.5°F) (NOAA, 1988). Generally, the warmest month in ZION is July, 

followed by August and June (Gregory, 1950). Summer days are characterized by 

extreme temperatures, commonly greater than 38°C (100°F), while nights are cool and 

often accompanied by cool down-canyon drafts. Daily fluctuations are easily twenty 

to thirty degrees Celsius and daytime summer heat usually drops suddenly upon sunset. 

In July and August, 1988, the monthly average temperatures at ZION were 30.3°C 

(86.6°F) and 27.3°C (81.1°F) (NOAA, 1988).
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Generally, precipitation in ZION is small with an annual mean of 36.8 cm 

(14.5 inches NOAA, 1988). It is characterized by great annual and seasonal variation 

in place as well as time (Gregory, 1950). Average annual precipitation within the 

drainage basin varies from about 25 cm in the southwest portion to slightly over 50 

cm in the highest regions (Turner, 1949). Generally, April through June tends to be 

dry while July and August are considered wet months (Gregory, 1950). Late July and 

August are characterized by violent convective storms which are locally distributed and 

result in flash flood events. The wettest months of the year tend to be February and 

March (Gregory, 1950).

A characteristic feature for both precipitation and temperature within this region 

is wide annual, seasonal, monthly, and daily variations.

3.3 The Study Reach

The study reach begins 1.3 km below the east boundary of ZION. The 

beginning o f the study reach was not placed along the east boundary because of access 

difficulties; a large waterfall of approximately 25 m vertical drop prevented access 

from downstream and presented a substantial hazardous traverse from the upstream 

end. Thus, the upstream site was selected at the first cross section below the water 

fall which allowed a valid discharge measurement. Virgin River Mile (VRM) 163.1. 

The flow from VRM 163.1 to VRM 162.2 is quite turbulent. It cascades from pool 

to rapids to pool around large, up to thirty foot in axis boulders. This section appears 

to have a significant influx of groundwater as several springs discharge into the main 

stem. In addition, the surrounding vegetation though not tall, is fairly dense and 

appears more lush than downstream reaches. From VRM 162.2 to VRM 160.0, the
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stream sequences between pools, riffles, and runs. This section also has discrete 

spring discharges but not with the frequency of the upstream section. The vegetation 

gradually changes from a lush green to the more sparse, typical semi-arid scene. 

Cottonwoods, willows, ash, and boxelder form narrow bands along the floodplain. 

Grasses, scrub brush, and various species o f cactus also grow along the sandy banks. 

The following section, VRM 160.0 to VRM 159.5 appears to have an increased 

gradient with small steady rapids and a few protruding boulders, and small pools. The 

last section from VRM 159.5 to VRM 157.3 is characterized by flow sequencing 

between riffles and runs with only one or two pools. Generally, the run sections are 

long, 150 m to 300 m, and dominate over the short, 5 m to 30 m, riffle sections.

The downstream end of the study reach was selected based on where the 

Aquatic Habitat study section was placed for studies being conducted by Water Rights 

Branch, Water Resources Division, National Park Service.

The streambed substrate throughout the study reach is primarily cobbles 

interspersed with sand, gravels, and boulders. Sand dominates over cobbles and 

boulders in the pools. The substrate on the streambanks and floodplain is dominated 

by sand with a few interspersed cobbles and boulders.



Chapter 4. Field Data Collection

TEMP-84, the model chosen for this study requires data to describe site, 

stream, and shading characteristics. Data collection techniques and equipment are 

discussed in the following sections. Further description and calibration procedures for 

the equipment is presented in Appendix A.

A preliminary sensitivity analysis of TEMP-84, based on data from 

reconnaissance and professional judgment, was conducted during the early stages of 

data collection. TEMP-84 sensitivity of modeled maximum and minimum stream 

temperature to changes in the value of input variables was integral in the development 

of the various sampling schemes. The preliminary sensitivity analysis was limited to 

those variables for which sampling schemes were required. Table B. 1 in Appendix 

B documents the results of the preliminary sensitivity analysis.

4.0 General Site Characteristics

Latitude, longitude, longitude of the center of the local time zone, stream 

aspect, length of stream sections, mean elevation, and stream gradient are all variables 

which remain constant and were read from tables or measured from USGS topographic 

maps. Relative humidity and windspeed were measured by ZION employees at the 

official NOAA weather station located near the ZION visitor center, approximately 5 

km northwest of VRM 157.3. Average and 1400 hr relative humidities were
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calculated from wet and dry bulb temperature measurements taken in the evening, 

morning, and at 1400 hr. Windspeed measurements were made each day at 1400 hr 

utilizing a stationary anemometer.

4.1 Stream Characteristics

The study reach was broken into four stream characteristic reaches to describe 

width, velocity, and percent of the stream bed less than 20 cm deep and with bed 

material greater than 25 cm in axis. Stream characteristic reach boundaries were 

defined corresponding to the stream reaches described in Section 3.3. Velocity and 

width data were collected four and five times respectively between early June and late 

July. The percent o f the stream less than 20 cm in depth and with bed material greater 

than 25 cm in axis was described once and assumed to remain constant during the 

study period.

4.1.1 Velocity

According to the preliminary sensitivity analysis, an increase in velocity of 100 

percent resulted in less than one percent (0.29°C) increase in the maximum stream 

temperature and less than 0.3 percent (0.05°C) decrease in minimum temperature. As 

the sensitivity of the model did not warrant a rigorous sampling scheme, the float 

method was chosen for describing the average velocity. Student-t test calculations 

demonstrated that two float lengths per reach were required to calculate a sample 

average within + /-  0.3 m/s (1 ft/s) (approx. 50 percent) of the population mean. 

Only one float length was employed in the section between VRM 159.5 and VRM

160.0 as the section was only 0.8 km long and there appeared to be very little variance 

in velocity within the reach.
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Float tests were conducted using oranges thrown in at different points across 

a cross section and above the starting point of the float length. Float lengths were 

straight sections with flow velocities representative of the reach in which they were 

located. The path o f each orange was observed carefully so that the time period 

during which the oranges were controlled by eddies could be subtracted from the travel 

time. Six floats were initiated within each float length.

4.1.2 Width

Stream width was found to be a critical variable in modeling the stream 

temperature with TEMP-84. The preliminary sensitivity analysis illustrated that a 10 

percent increase in width resulted in a 3.3 percent (1 .11°C) increase in the maximum 

stream temperature while the minimum temperature decreased by 1.4 percent (0.24°C). 

Student-t test calculations were used to determine the number of width measurements 

required such that the sample average would be within 10 percent of the population 

mean. Discrete width measurements were made at 30.5 m (100 ft) intervals around 

and within the float lengths. Width was measured by stretching a nylon clad steel tape 

perpendicular to the flow from the right to left edge of water. In the uppermost 

section, VRM 163.1 to VRM 162.2, width measurements were made at 15.2 m (50 

foot) intervals as the width varied noticeably within small distances.

4.1.3 Heat Transfer Across the Streambed

Heat transfer can occur at the streambed when the water depth is less than 20 

cm deep and has bed material comprised of bedrock and non-protruding boulders 

greater than twenty five centimeters in diameter (Beschta, 1984). It was determined 

from the preliminary sensitivity analysis that this variable had very little effect on the
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stream temperature. Moreover, a change of 100 percent for each of the sections 

resulted in less than one percent change in the stream temperature at the end of the 

study reach. The lack o f sensitivity of the stream temperature to this variable justified 

measurement by estimation techniques. Accordingly, the percentage of streambed 

which could transfer heat was estimated by eye at each cross section for which a width 

measurement was made.

4,2 Air Temperature

Hygrothermographs were employed to measure a continuous record of air 

temperature near the beginning, VRM 163.0, and end, VRM 157.5, of the study 

reach. Use o f standard, white, instrument shelters was not permitted on this project 

as the study reach was located within a wilderness study area and a national park; 

white shelters presented a significant visual impairment. As a result, each instrument 

was placed in a tree which satisfied the following criteria: provided shading by 

vegetation but did not inhibit natural canyon wind currents, included a crook in which 

to place the instrument which was accessible, located out of the line of vision of 

hikers, and located in an area that was representative of the ambient air temperature. 

White roofs and white plastic louver side panels were installed on the east and west 

sides of each instrument to provide further shading. Each hygrothermograph was 

calibrated to a mercury maximum/minimum thermometer mounted alongside the 

instrument. The instruments were calibrated whenever the chart was changed. In 

addition to the hygrothermograph, two maximum/minimum thermometers were placed 

at VRM 159.7 and VRM 161.1 to describe the gradient of ambient air temperature
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along the study reach. These thermometers were mounted on tree trunks under heavy 

vegetation to ensure complete shading.

4.3 Stream Temperature

Stream temperatures which vary diumally as well as seasonally were measured 

with continuous recording instruments. Ryan submersible thermographs were placed 

at the upstream end, VRM 163.1, and at the downstream end, VRM 157.3, of the 

study reach. Criteria for stream thermograph site selection was as follows: 

representative of depth and temperature, within definite streamlines of the flow, and 

protected from debris and saltating boulders which are transported during flood events. 

Assurance o f a well mixed stream with regard to temperature at each selected site was 

confirmed by making several point temperature measurements with a hand held 

mercury thermometer across the cross section.

4.4 Groundwater Accretion

Groundwater accretion was determined by utilizing a mass balance analysis. 

In addition to the upstream and downstream ends o f the study reach, discharge 

measurements were made at study section boundaries which appeared to separate 

reaches of differing groundwater inflow. For instance, discharge was measured at 

VRM 162.2 above which there was a significant amount of groundwater activity from 

springs which surfaced above the stream elevation. A discharge measurement was also 

made at VRM 161.5 below which there appeared to be very little groundwater 

activity. On one sampling trip a discharge measurement was made at VRM 160.0 as 

this marked the change from Kayenta to Moenave Formation along the stream.
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4.5 Groundwater Temperature

Groundwater temperature was determined by measuring with a hand held 

mercury thermometer, the temperature of several springs at their respective sources. 

Spring sources measured were located within 20 ft, vertically, from the stream surface 

and were assumed representative of the groundwater temperature near the stream. In 

addition to spring sources above the stream surface, two small artesian flows which 

bubbled through the sand in very shallow water were measured for a description of 

groundwater temperature.

4.6 Shading Characteristics for Each Section

The study reach was broken into seven shading characteristic reaches to 

describe topographic and vegetation shading angles, hillslope angles, tree height, 

canopy coefficients, buffer strip widths, vegetation overhang and percent of bedrock. 

Shading characteristic reach boundaries were defined within the stream characteristic 

reach boundaries (described in Section 3.3) such that topographic and vegetative 

shading characteristics were uniform. Shading characteristic data were defined only 

once as they were assumed to remain constant during the study period.

4.6.1 Topographic Shading

TEMP-84 requires the average angles of topographic shading for southeast, 

south, and southwest directions. Topographic shading during the day was not 

considered critical as the study reach is oriented in an east-west direction and the sun 

travels at a high altitude.

Sample variance information for topographic shading angles was calculated 

from reconnaissance data documented in Table B.2. Student-t test calculations with
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a confidence level of 90 percent demonstrated that five measurements at each azimuth 

were required to calculate a sample average within + /-  five degrees of the population 

mean. The five degree error range was selected because it is within 50 percent of the 

magnitude of the angles measured; according to the sensitivity analysis, a 50 percent 

change in topographic angle results in small if any change of the maximum and 

minimum stream temperatures. Five measurement sites for topographic descriptions 

were established at approximately equal intervals within each reach. Southeast angles, 

required to determine topographic shading at sunrise, were measured at ten degree 

intervals between azimuths of 45 to 115 degrees. Southwest angles, required to 

determine topographic shading during sunset hours, were measured at intervals of ten 

degrees between azimuths of 240 to 310 degrees. South angles, required to determine 

topographic shading during the day, were measured at intervals of ten degrees between 

azimuths of 150 to 210 degrees. All angles were measured from horizontal at the 

water surface to the rim of the topography with a hand held abney level.

4.6.2 Vegetation Shading

TEMP-84 requires average angles of forest shading perpendicular to the stream 

and in the south, southeast, and southwest directions. According to the preliminary 

sensitivity analysis, vegetation variables play a minor role in affecting the stream 

temperature along this study reach. This is due to the relatively sparse vegetation in 

addition to the often dominating topographic angles. As a result, the sampling scheme 

for the topographic shading data was used for the vegetation characteristic data to 

facilitate efficiency in data collection. Vegetation angles were measured perpendicular 

to the stream axis as well as at the southeast, south, and southwest azimuths. Angle
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measurements were made with an abney level from horizontal in the middle of the 

stream to the top of the vegetation.

4.6.3 Tree Height

Tree height was calculated indirectly from measurements of the angle between 

horizontal at eye level and the top of the tree, the distance between where the angle 

measurement was taken and the tree trunk, and the vertical distance from the base of 

the tree to eye level.

4.6.4 Hillslope Angle

The hill slope angle from horizontal was measured with the hand held abney 

level or otherwise estimated.

4.6.5 Canopy Coefficient

The portion of solar radiation blocked from reaching the stream by surrounding 

canopy is described by a canopy coefficient which ranges from zero to one; a 

coefficient value of zero represents no trees while a value of one represents a dense 

forest which provides complete shading. This coefficient was estimated at each data 

collection site.

4 .6 .6  Percentage of Overhanging Vegetation

The percentage of overhanging vegetation was determined by measuring the 

portion o f the stream width at the shading data collection sites which had overhanging 

branches or debris.

4 .6 .7  Buffer Strip Width

The buffer strip width was considered to be continuous as no explicitly defined 

buffer strip existed alongside the stream.
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4,7 Hypothetical Flow Data

Additional data collection was required to calculate velocity and width for 

hypothetical flow conditions. To obtain this data, the channel profile and water 

surface slope were surveyed at each float length using an automatic level, tripod, and 

leveling rod. The channel profile was placed at a cross section within the float length 

where uniform flow could be assumed reasonably. A discharge measurement was 

made at the time of the channel profile so that Manning’s n could be determined 

through calculation. The channel profile and water surface elevation surveys were 

then implemented in Manning’s equation to solve for the velocity and width for a 

given discharge.



Chapter 5. Data Analysis

Field data was collected during June, July, and August, 1988. It was analyzed 

and managed for input to the stream temperature model TEMP-84. Following are 

discussions of the analyses required to prepare the data for model input.

5.1 Study Period

The study period for this research was defined to be that time period during 

which maximum stream temperatures occur. Figure 5.1 portrays maximum, 

minimum, and mean stream temperatures between 6-3-88 and 8-2-88 at the 

downstream end of the study reach. Virgin River Mile (VRM) 157.3.

The stream temperature rose gradually through June which is described by 

Espinosa (1978) to be the spawning period for the Virgin spinedace. By 6-29-88 the 

stream temperature ceased rising and thus initiated the time period during which 

maximum temperatures occur. The end of the stream temperature study period was 

selected as July 23, 1988 because this was the last day the thermograph at VRM 163.1 

was working; on July 23 the instrument seal broken and the instrument incurred water 

damage. This date was close to the initiation of the flood season as the first major 

precipitation event in July occurred 7-27-88.

The study period was broken into four time periods corresponding to calendar 

weeks: 6-29-88 through 7-2-88, 7-3-88 through 7-9-88, 7-10-88 through 7-16-88, and
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Fig. 5.1

□  MINIMUM
DATE

MAXIMUM MEAN

Maximum, minimum, and mean stream temperature measured at Virgin 
River Mile 157.3 between 6-3-88 and 8-2-88.

7-17-88 through 7-23-88. One day from each week was selected for modeling. If 

stream characteristic data was collected during the week, the day on which it was 

collected was modeled. If stream characteristic data was not collected, the day on 

which the weekly maximum stream temperature at VRM 157.3 occurred was modeled. 

Accordingly, 6-30-88 and 7-15-88 were selected for modeling from the first and third 

weeks as stream characteristic data was collected on these days. For the second and 

fourth weeks, 7-8-88 and 7-21-88 were selected as the weekly maximum stream 

temperature occurred on these days. Table 5.1 documents the maximum, minimum, 

and mean stream temperature at VRM 157.3 for each of the days selected for 

modeling.
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Table 5.1 Maximum, minimum, and mean stream temperamres measured at Virgin River Mile 157.3 for 6-30-88, 7-08-88. 7-15-
88. and 7-21-88.

DATE MAXIMUM
TEMP.

C

MINIMUM
TEMP.

C

MEAN
TEMP.

C

6-30-88 27.2 17.8 22.0

7-08-88 27.0 16.7 21.5

7-15-88 26.9 16.2 21.2

7-21-88 27.8 17.5 22.4

5.2 Stream Temperature

Continuous records of stream temperature were collected from 6-3-88 through 

the 8-18-88. The record collected between 8-2-88 and 8-18-88 was not included in 

the analysis because the thermograph sensing probes were often buried as a result of 

active sediment transport during precipitation events. While the record stationed at 

VRM 157.3 was complete, the record stationed at VRM 163.1 was missing data 

between 6-3-88 through 6-24-88 and 7-22-88 through 8-02-88. The latter missing data 

was a result of a broken seal on the instrument allowing water into the inner workings. 

Data missing between 6-3-88 and 6-24-88 resulted from forgetting to initiate the 

battery when the instrument was first mounted.

Figures 5.2, 5.3, and 5.4 depict maximum, minimum, and mean, respectively, 

stream temperatures for VRM 157.3 and VRM 163.1 for the study period of 6-29-88 

through 7-22-88. Table C .l in Appendix C documents daily maximum, minimum, 

and mean stream temperature readings for VRM 163.1 and VRM 157.3.

The average difference in maximum stream temperature between VRM 157.3 

and VRM 163.1 was 5.7°C. At VRM 157.3, the maximum temperature ranged from
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DATE

Fig. 5.2 Measured daily maximum stream temperature at Virgin River Mile 
157.3 and Virgin River Mile 163.1 between 6-29-88 and 7-22-88.

DATE
□  VRM 157.3 +  VRM 163.1

Fig. 5.3 Measured daily minimum stream temperature at Virgin River Mile 
157.3 and Virgin River Mile 163.1 between 6-29-88 and 7-22-88.
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Fig. 5.4

DATE
Q VRM 157.3 VRM 163.1

Measured daily mean stream temperature at Virgin River Mile 157.3 
and Virgin River Mile 163.1 between 6-39-88 and 7-22-88.

23.7°C to 27.8°C with an average of 26.7°C. At VRM 163.1 the range was 19.2°C 

to 21.9°C with an average of 2 1 .rC .

The average difference in minimum stream temperature between VRM 157.3 

and VRM 163.1 was 1.2°C with a standard deviation of 0.5°C. At VRM 157.3, the 

minimum temperature ranged from 15.2°C to 18.8°C with an average of 17.0°C while 

at VRM 163.1 it ranged from 14.7°C to 17.0°C with an average of 15.8°C.

The average difference in mean stream temperature between VRM 157.3 and 

VRM 163.1 was 3.4°C with a standard deviation of 0.4°C. Mean stream temperatures 

ranged from 20.2°C to 23.3°C with an average of 21.8°C at VRM 157.3 and from 

17.6°C to 19.2°C with an average of 18.5°C at VRM 163.1.
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Hourly stream temperatures were read from the charts at VRM 163.1 for the 

days selected for modeling (Table C.2). The calibrated hourly values were used for 

the modeled inflow stream temperature.

5.3 Air Temperature

Continuous recorded air temperature data was first corrected for the difference 

between the hygrothermograph temperature and the adjacent mercury thermometer 

temperature which was recorded each time the hygrothermograph was serviced. The 

difference in temperature was assumed to result from a systematic error of the 

instrument and was applied proportionally over the chart record.

Data collected at VRM 157.5 between 6-4-88 and 6-21-88 was impossible to 

adjust due to inconsistencies in field calibration techniques. Thus, this data was not 

available for use in the analysis.

After making the required adjustments, the air temperatures were calibrated 

to the standard temperature through calibration curves for the respective 

maximum/minimum thermometer. Tables C.3 and C.4 document the recorded, 

adjusted, and calibrated air temperature data for VRM 163.0 and VRM 157.5, 

respectively. Figures 5.5 and 5.6 show the calibrated record of maximum and 

minimum air temperature, respectively, at VRM 163.1 and VRM 157.5. Tables C.5 

through C.12 document the calibrated hourly air temperature readings from the 

hygrothermographs at VRM 163 and VRM 157.5 for the days selected for modeling.

The average difference between maximum temperatures at VRM 163.0 and 

VRM 157.5 was calculated to be 1.35‘’C for 6-29-88 through 7-22-88 while the 

average difference between minimum temperatures was calculated to be 0 .0 1°C.
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VRM 163.0

Fig. 5.5 Measured daily maximum air temperatures at Virgin River Mile 157.5 
and Virgin River Mile 163.0 between 6-29-88 and 7-22-88.

DATE
VRM 157.5

Fig. 5.6 Measured daily minimum air temperatures at Virgin River Mile 157.5 
and Virgin River Mile 163.0 between 6-29-88 and 7-22-88.
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Contrary to what was expected, the air temperature regime at VRM 163.0 did not 

differ greatly from that recorded at VRM 157.5.

To lend credibility to the collected air temperature records, a linear regression 

analysis was conducted between the air temperature record collected utilizing standard 

techniques by Zion National Park (ZION) and those records collected along the study 

reach which were valid. Comparisons were made for air temperature readings at 1400 

hr as this was the time that the actual air temperature was recorded at the ZION 

station. Table C.13 documents the 1400 hr air temperature data recorded at VRM

157.5 and VRM 163.0 and by ZION. Figure 5.7 and 5.8 illustrate 1400 hr air 

temperature of VRM 157.5 and VRM 163.0, respectively, plotted against 1400 hr air 

temperature recorded at ZION. The square of the correlation coefficient for these 

relationships was 0.94 for VRM 157.5 and 0.96 for VRM 163.0. While some scatter 

exists, a definite relationship between air temperature recorded along the study reach 

and at ZION is evident. Some scatter is expected considering the differences in 

microclimate between the sites.

The purpose of the maximum/minimum thermometers located at VRM 159.7 

and VRM 161.5 was to document changes in the air temperature regime along the 

study reach. Data from the maximum/minimum thermometers was difficult to utilize 

as they were read at different times in the day due to the travel time between sites. 

Furthermore, poor site selection prevented representative data. Accordingly, data 

collected by the maximum/minimum thermometers set between the hygrothermographs 

was not used in the analysis. Based on qualitative assessment of the study reach 

surroundings, it was decided to utilize the air temperature record logged at VRM
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163.0 between VRM 163.1 and 161.5. Downstream of VRM 161.5, the canyon 

widens and more closely represents the characteristics of the hygrothermograph site 

at VRM 157.5.

5.4 Topographic Shading Angles

The angle from horizontal at the stream surface to the top of the surrounding 

topography was measured for specified azimuths at five sampling sites within each 

reach delineated for shading characteristic data. The average of the five measurements 

for a given azimuth was calculated along with the sample variance and confidence 

interval defining, according to the Student-t test, the range within which the calculated 

sample average represents the population average with a level of confidence of 90 

percent. Table 5.2 documents the field collected data and calculated average 

topographic shading angle for southeast azimuths. Topographic shading data for south 

and southwest azimuths (Tables C.14 and C.15) are listed in Appendix C. Eighty- 

three percent of the collected 161 data sets satisfied the sampling scheme design error 

range of -I-/- five degree. Ninety-nine percent of the data sets produced an error range 

within + ! -  ten degrees.

TEMP-84 requires southeast, south, and southwest topographic angle inputs for 

each stream section. The orientation of the study reach, ie., east-west, is such that the 

southeast angle is important for determining the time of the local sunrise while the 

southwest angle is important for determining the time of the local sunset. The south 

angle is not critical as the sun travels on a path approximately parallel to the stream 

axis at an altitude greater than the topographic angles.
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Table 5.2. Topographic shading data collected between Virgin River Mile (VRM) 163.1 and VRM 157.3 for
southeast azimuths.

AZIMUTH

SAMPLE 45 55 65 75 85 95 105 115
(deg) (deg) (deg) (deg) (deg) (deg) (deg) (deg)

VRM 163.1 - VRM 162.2

1 43.0 40.0 22.0 22.5 26.0 28.5 27.5 27.0
2 41.5 29.5 29.0 18.5 22.0 23.0 35.0 39.5
3 53.0 50.0 48.0 45.0 43.0 20.5 15.0 19.0
4 33.0 28.0 26.5 24.0 20.0 13.0 20.0 32.5
5 22.0 20.0 18.0 16.0 20.0 28.0 33.0 40.0

AVERAGE: 38.5 33.5 28.7 25.2 26.2 22.6 26.1 31.6
VARIANCE: 135.5 135.8 134.2 132.6 94.2 40.2 72.3 78.4
90%C.I.*: 8.0 8.0 7.9 7.9 6.6 4.3 5.8 6.1

VRM 162.2 - VRM 161.5

1 29.5 19.0 14.0 12.0 18.5 23.0 33.5 37.0
2 32.0 27.0 15.5 12.0 12.0 18.5 22.0 23.5
3 27.0 22.0 15.0 11.0 14.5 18.5 22.0 28.5
4 36.0 35.0 22.0 14.5 9.5 13.0 15.5 24.0
5 29.5 28.5 27.0 14.5 15.0 21.5 26.5 37.5

AVERAGE: 30.8 26.3 18.7 12.8 13.9 18.9 23.9 30.1
VARIANCE: 11.6 38.2 31.5 2.6 11.4 14.7 44.2 46.4
90%C.I.*: 2.3 4.2 3.8 1.1 2.3 2.6 4.5 4.7

VRM 161.5 - VRM 160.7

1 21.0 20.0 19.5 9.5 4.5 12.0 22.0 24.0
2 20.5 18.0 17.0 7.5 21.0 22.5 35.0 38.0
3 21.5 15.0 12.5 11.0 14.5 19.5 31.0 32.0
4 25.5 17.5 12.0 6.5 11.0 23.5 27.0 34.0
5 23.0 23.5 24.5 26.0 25.0 24.0 21.0 39.0

AVERAGE: 22.3 18.8 17.1 12.1 15.2 20.3 27.2 33.4
VARIANCE: 4.1 10.1 26.9 63.4 65.6 24.6 35.2 35.8
90%C.l.*: 1.4 2.2 3.6 5.4 5.5 3.4 4.1 4.1

VRM 160.7 - VRM 160.0

1 10.0 6.0 16.0 23.0 33.5 36.0 37.0 36.5
2 15.0 11.0 9.0 16.0 25.0 31.0 31.0 26.0
3 13.0 10.5 7.5 18.5 25.5 27.5 24.5 23.0
4 12.0 9.0 12.0 21.0 27.5 31.5 29.5 31.5
5 9.5 7.5 6.0 11.5 22.5 22.0 28.0 36.0

AVERAGE: 11.9 8.8 10.1 18.0 26.8 29.6 30.0 30.6
VARUNCE: 5.1 4.3 15.8 20.1 17.2 27.2 21.1 35.9
90%C.I.*: 1.5 1.4 2.7 3.1 2.8 3.6 3.1 4.1

* +/- Confidence Interval for a 90% level of significance.
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Table 5.2 (cont’d). Topographic shading data collected between Virgin River Mile (VRM) 163.1 and VRM
157.3 for southeast azimuths.

AZIMUTH

SAMPLE 45 55 65 75 85 95 105 115
(deg) (deg) (deg) (deg) (deg) (deg) (deg) (deg)

VRM 160.0 - VRM 159.5

1 14.5 5.0 9.0 16.5 18.0 25.5 34.0 30.5
2 13.0 7.5 8.0 15.5 15.5 25.5 28.5 33.5
3 17.0 10.5 7.0 12.5 15.5 14.0 25.5 28.0
4 14.5 16.0 18.0 21.0 24.0 28.0 31.0 34:0
5 35.0 22.0 9.0 14.0 21.0 27.0 27.0 31.0

AVERAGE; 18.8 12.2 10.2 15.9 18.8 24.0 29.2 31.4
VARIANCE: 84.1 46.8 19.7 10.4 13.6 32.4 11.3 5.9
90%C.I.* : 6.3 4.7 3.0 2.2 2.5 3.9 2.3 1.7

VRM 159.5 - VRM 158.4

1 10.0 6.5 8.5 13.5 19.5 24.5 31.0 36.0
2 8.5 8.0 11.0 19.0 27.5 33.0 34.5 35.5
3 8.5 7.0 13.0 19.0 25.0 28.0 27.0 35.0
4 8.5 5.5 10.0 15.5 22.5 22.5 38.5 35t0
5 25.0 21.0 14.5 14.0 18.0 20.0 28.0 29.0

AVERAGE: 12.1 9.6 11.4 16.2 22.5 25.6 31.8 34.1
VARIANCE: 52.4 41.4 5.7 7.1 15.1 25.7 22.6 8.3
90%C.l.* : 5.0 4.4 1.6 1.8 2.7 3.5 3.3 2.0

VRM 158.4- VRM 157.3

1 18.5 16.0 7.0 8.0 14.0 20.5 20.5 24.5
2 16.5 12.5 7.5 10.0 15.0 18.5 20.5 21.0
3 8.5 5.5 6.0 9.5 16.0 27.0 29.0 29.0
4 19.0 12.0 11.0 8.0 14.0 14.0 15.5 26:6
5 14.5 11.0 14.5 15.5 18.5 25.5 34.0 37.0

AVERAGE; 15.4 11.4 9.2 10.2 15.5 21.1 23.9 27.6
VARIANCE: 18.1 14.4 12.3 9.6 3.5 27.9 55.4 36.2
90%C.l.*: 3.3 2.6 2.4 2.1 1.3 3.6 5.1 4.1

• +/- Confidence Interval for a 90% level of significance.

Accordingly, the azimuth at which the local sunrise and sunset occurred was 

figured by comparing for corresponding azimuths, sun altitude calculated by TEMP-84 

to the average topographic altitude calculated from the field data. It was then 

determined between which two azimuths, for which fielddata was collected, the sun 

would rise or set. The average topographic angles for the two azimuths which 

bounded the local sunrise or local sunset were averaged for model input. In cases



where a topographic altitude angle calculated from field data was within one degree 

of the sun’s altitude, the topographic angle itself was used for model input. This 

analysis was conducted for southeast and southwest topographic angles for each 

section on each day modeled.

TEMP-84 establishes the south topographic angle to be representative of 

azimuths between 150 degrees and 210 degrees, clockwise from north. The average 

topographic angles calculated for these azimuths were averaged to obtain a south 

topographic shading angle for each section. Table 5.3 documents the southeast, south, 

and southwest topographic shading angles implemented for each section on each day 

selected for modeling.
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Table 5.3. Average southwest, south, and southeast topographic shading angles for each of the delineated Virgin River
stream reaches.

DATE VRM 163. 1 - 162.2 VRM 162.2 - 161.5 VRM 161.5 - 160.7 VRM 160.0 - 159

SE S SW SE S SW SE S SW SE S SW
deg deg deg deg deg deg deg deg deg deg deg (deg

6-30-88 25.7 44.3 24.0 15.8 41.8 24.2 14.6 25.7 27.6 13.1 26.5 28.7

7-08-88 25.7 44.3 24.0 15.8 41.8 24.2 14.6 25.7 27.7 13.1 26.5 28.7

7-15-88 25.7 44.3 21.6 15.8 41.8 24.2 14.6 25.7 27.7 15.9 26.5 28.7

7-21-88 25.7 44.3 21.6 15.8 41.8 24.2 14.6 25.7 27.7 17.4 26.5 28.7

DATE VRM 159.‘4- 158.4 VRM 158.4 - 157.3
SE S SW SE S SW

deg deg deg deg deg deg

6-30-88 13.8 26.2 25.0 9.7 24.1 21.4

7-08-88 13.8 26.2 25.0 9.7 24.1 21.4

7-15-88 16.2 26.2 22.7 9.7 24.1 21.4

7-21-88 19.4 26.2 20.7 9.7 24.1 21.4
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5.5 Vegetation Shading Angles

In addition to describing the shading resulting from surrounding topography, 

TEMP-84 requires data describing shading resulting from surrounding vegetation. 

This includes data for vegetation shading angles, hillslope angles, forest angles 

perpendicular to the stream axis, buffer width, canopy cover coefficients, percent of 

stream directly shaded, and tree height.

The vegetation shading angle was measured from horizontal at the stream 

surface to the top of the surrounding vegetation at the same azimuths and sampling 

sites for which topographic shading data was collected. For a given azimuth, the 

average of the five measurements within a section was calculated along with the 

sample variance and confidence interval defining, as calculated by the Student-t test, 

the range within which the calculated sample average represents the population 

average with a level of confidence of 90 percent. Table 5.4 documents the field 

collected data and calculated average vegetation shading angle for southeast azimuths. 

Vegetation shading data for south and southwest azimuths (Tables C. 16 and C. 17) are 

listed in Appendix C. Eighty percent of the collected 161 data sets satisfied a range 

of + / -  ten degrees. Ninety-seven percent of the data sets produced an error range of 

less than or equal to ■+•/- fifteen degrees.

TEMP-84 requires southeast, south, and southwest vegetation shading angle 

inputs for each stream section. Vegetation angles are potentially important throughout 

the day in contrast to the topographic angles which are primarily important during 

local sunrise and sunset. The calculated average vegetation shade angles for azimuths 

from 75 degrees, which is approximately sunrise, to 115 degrees, clockwise from
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Table 5.4. Vegetation shading data collected between Virgin River Mile (VRM) 16.31 and VRM 157.3 for
southeast azimuths.

AZIMUTH

SAMPLE 45 55 65 75 85 95 105 115
(deg) (deg) (deg) (deg) (deg) (deg) (deg) (deg)

VRM 163.1 - VRM 162.2

1 19.5 12.0 18.0 17.0 16.5 0.0 12.5 18.0
2 0.0 30.0 29.5 13.0 22.5 38.0 35.0 37.0
3 33.5 0.0 0.0 0.0 0.0 0.0 0.0 11.5
4 45.5 44.5 34.0 27.0 21.5 13.0 21.5 26.5
5 21.5 17.0 18.0 12.5 25.5 30.5 31.0 37.0

AVERAGE: 24.0 20.7 19.9 13.9 17.2 16.3 20.0 26.0
VARIANCE; 288.8 292.7 173.6 94.3 103.0 303.7 201.1 129.:
90%C.I.*; 11.6 11.7 9.0 6.6 6.9 11.9 9.7 7.8

VRM 162.2 - VRM 161.5

1 27.0 16.0 14.0 13.5 19.0 8.0 14.0 13.0
2 33.5 22.0 22.0 12.0 12.5 7.0 12.0 23.0
3 22.5 20.0 21.5 22.5 29.5 25.5 19.0 14.0
4 18.5 22.0 26.5 20.0 8.0 8.0 7.5 14.5
5 35.5 33.0 28.0 13.0 16.0 28.0 30.0 38.5

AVERAGE: 27.4 22.6 22.4 16.2 17.0 15.3 16.5 20.6
VARIANCE; 51.6 39.8 29.9 22.3 65.6 110.2 74.0 116.:
90%C.I.*: 4.9 4.3 3.7 3.2 5.5 7.2 5.9 7.4

VRM 161.5 - VRM 160.7

1 11.0 0.0 0.0 6.0 8.0 14.0 21.0 26.0
2 14.0 13.5 17.0 28.5 30.0 40.5 35.0 21.5
3 18.5 18.0 9.5 7.0 8.0 6.0 8.0 14.5
4 14.5 13.5 15.0 10.0 4.0 10.0 33.0 44.0
5 33.0 34.5 35.0 34.5 29.0 34.0 37.5 41.0

AVERAGE: 18.2 15.9 15.3 17.2 15.8 20.9 26.9 29.4
VARIANCE; 75.6 153.7 164.7 177.1 159.2 236.1 151.8 160.«
90%C.I.*; 5.9 8.5 8.8 9.1 8.6 10.5 8.4 8.7

VRM 160.7 - VRM 160.0

1 22.0 27.0 15.0 9.5 15.5 17.5 21.0 20.0
2 10.5 6.5 9.0 13.0 18.0 19.5 49.5 59.0
3 10.0 16.0 7.0 20.0 22.0 28.5 29.0 26.0
4 11.5 18.0 28.0 36.0 39.5 38.0 39.0 39.5
5 23.0 18.5 13.5 16.5 0.0 13.0 30.0 32.5

AVERAGE: 15.4 17.2 14.5 19.0 19.0 23.3 33.7 35.4
VARIANCE: 42.4 53.6 67.5 105.6 200.9 99.3 118.7 226.'
90%C.I.*: 4.5 5.0 5.6 7.0 9.7 6.8 7.5 10.3

* +/- Confidence Interval for a 90% level of significance.
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Table 5.4 (cont’d). Vegetation shading data collected between Virgin River Mile (VRM) 163.1 and VRM 157.3
for southeast azintuths.

AZIMUTH

SAMPLE 45 55 65 75 85 95 105 115
(deg) (deg) (deg) (deg) (deg) (deg) (deg) (deg)

VRM 160.0 - VRM 159.5

1 11.5 24.0 13.0 14.0 19.0 0.0 16.0 18.5
2 5.0 9.5 14.5 19.5 23.5 25.5 24.0 25.0
3 0.0 12.0 8.5 5.5 6.0 14.0 22.0 29.0
4 15.5 18.0 23.0 30.5 30.5 34.0 35.5 36.0
5 37.0 24.5 10.0 8.0 5.0 0.0 8.0 0.0

AVERAGE; 13.8 17.6 13.8 15.5 16.8 14.7 21.1 21.7
VARIANCE: 203.6 46.4 32.1 99.9 123.3 230.5 103.6 187.5
90%C.I.*: 9.8 4.7 3.9 6.8 7.6 10.4 7.0 9.4

VRM 159.5 - VRM 158.4

1 8.5 8.0 18.0 20.0 20.0 26.0 34.0 32.0
2 5.5 12.5 18.0 23.0 32.0 34.5 30.5 45.0
3 10.0 10.0 13.5 0.0 14.0 17.5 16.5 28.5
4 9.0 5.5 3.0 6.5 17.0 11.5 0.0 0.0
5 27.5 21.0 15.0 0.0 11.0 26.0 13.5 0.0

AVERAGE: 12.1 11.4 13.5 9.9 18.8 23.1 18.9 21.1
VARIANCE: 76.9 35.4 38.3 120.3 65.7 78.2 188.7 408.8
90%C.I.»: 6.0 4.1 4.2 7.5 5.5 6.0 9.4 13.8

VRM 158.4 - VRM 157.3

1 0.0 16.5 8.5 9.0 9.0 10.0 19.5 13.0
2 14.5 9.5 5.5 23.0 17.0 21.0 23.5 27.5
3 5.5 8.0 7.5 10.0 17.0 27.0 29.5 32.0
4 49.5 35.5 31.0 26.0 25.0 20.0 0.0 11.0
5 9.5 19.5 17.5 20.0 24.5 30.0 28.5 29.0

AVERAGE: 15.8 17.8 14.0 17.6 18.5 21.6 20.2 22.5
VARIANCE; 383.2 120.7 111.5 59.3 43.3 59.3 143.7 95.0
90%C.I.*: 13.4 7.5 7.2 5.3 4.5 5.3 8.2 6.7

* +/- Confidence Interval for a 90% level of significance.

North, were averaged for the southeast angle. The average shading angles for 

azimuths between 150 and 210 degrees were averaged to obtain a representative south 

vegetative shading angle. The average shading angles between azimuths of 240 

degrees to approximately sunset at 290 degrees were averaged for the southwest



vegetative angle. Table 5.5 documents southeast, south, and southwest vegetation 

shading angles implemented in TEMP-84 simulations.
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Table 5.5. Average southwest, south, and southeast vegetation shading angles for each of the delineated Virgin River 
stream reaches.

•ANGLE VRM 163.1 - 162.2 VRM 162.2- 161.5 VRM 161.5 - 160.7
deg deg deg

SE 18.9 18.0 20.9
S 38.9 32.9 20.2
sw 22.1 17.3 17.4

ANGLE VRM 160.0 - 159.5 VRM 159.4 - 158.4 VRM 158.4 - 157
deg deg deg

SE 17.3 17.6 19.1
S 20.2 22.1 19.3
SW 13.5 15.2 14.4

Hillslope angles for the left and right side of the stream were either measured 

with the abney level or estimated by eye at each of the five data collection sites within 

a section. The five data points for the left and right side of the stream respectively, 

were then averaged for model input. Hillslope angles ranged from 41.9 degrees at 

the upstream end of the reach to 0.0 degrees at the downstream end. Hillslope data 

and calculated averages are listed in Table C.18.

Forest angles perpendicular to the stream axis for the left and right side of the 

stream were measured at the five data collection sites in each section. Similar to 

topographic and vegetation shading angles, the forest angle was measured with an 

abney level from horizontal at the stream surface to the estimated average forest 

vegetation height alongside the stream. The five measurements per section on the 

right and left side of the stream respectively, were averaged for model input. 

Perpendicular forest angles ranged from 42.7 degrees at the upstream end of the study
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reach to 27.6 degrees towards the downstream end. Forest angle data and calculated 

averages are listed in Table C.18.

Model documentation stated that the buffer width should be considered 

continuous unless it is well defined. Since there is no well defined buffer width along 

the study reach a value of -1 was input which depicts a continuous buffer width.

The canopy cover coefficient represents the canopy density. According to the 

TEMP-84 model documentation it "reflects the amount of energy that is allowed to 

pass directly through the forest canopy without being intercepted by the canopy." A 

value of 0 represents no canopy while a value of 1 represents a dense forest. Values 

for canopy cover coefficients at each of the data collection sites were estimated based 

on the degree to which the vegetation blocked the background from view. Estimated 

canopy cover coefficients within each section were averaged for model input. Canopy 

cover coefficients ranged from 0.65 to 0.35. Table C.18 documents the collected data 

and the calculated canopy cover coefficient for each section.

The percentage of stream directly shaded by overhanging vegetation was 

determined at each of the five data collection sites within each section. It was 

calculated by dividing the length of stream width directly shaded by the total stream 

width. The average percent of stream directly shaded ranged from 3.3 percent to 0.0 

percent over the seven sections. Table C.18 documents the calculated percent of 

stream directly shaded for each section.

Forest vegetation height or tree height was determined by indirect means. The 

vertical distance from eye level to the top of the tree was determined through 

trigonometric calculations. The vertical distance from eye level to the tree base was
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added to obtain the total tree height. The five calculated tree height values, for each 

side of the stream within each section, were averaged to obtain tree height values for 

model input. Tree height ranged from 12.7 m to 4.9 m. Table C. 19 documents Held 

collected data and computations for tree height for the right and left, facing upstream, 

side of the stream.

5.6 Groundwater Accretion

A mass balance analysis was conducted to determine the groundwater accretion. 

Discharge measurements made along the study reach were subtracted to quantify the 

accretion occurring between the two measurement sites. All discharge measurements 

were made within five hours of each other except for the specific measurements cited 

in the following paragraph.

Table 5.6 documents the groundwater accretion data collected for the East Fork 

of the Virgin River within ZION. It delineates the discharge measured at each site 

and the time at which it was taken. Note that on 6-30-88, the discharge at VRM

157.4 was measured on 7-1-88 rather than 6-30-88. Considering that base flow 

conditions existed throughout 6-30-88 and 7-1-88, this discharge measurement was 

assumed acceptable for the analysis. A similar situation exists for the data collected 

on 6-3-88. Due to time constraints, the discharge at VRM 162.2 was not measured 

until the morning of 6-4-88. Again, flow conditions did not change and removing the 

measurement from the analysis was not warranted.

Accretion data collected on 5-27-88 was collected by other members of the 

National Park Service field crew as were the discharge measurements taken at VRM 

157.4. All field crew members were thoroughly trained and experienced in taking



discharge measurements. The accretion data set on 5-27-88 was collected for 

purposes other than the stream temperature study. It incorporates a discharge at VRM 

163.9, ie., the East ZION boundary, while the discharge at VRM 162.2 was omitted.
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Table 5.6. Groundwater accretion data collected along the reach between Virgin River Mile (VRM) 163.1 and VRM
157.3.

srrE DAY TIME DISCHARGE
1/s

DIFF
1/s

SITE DAY TIME DISCHARGE
1/s

DIFF
1/s

VRM 163.9 5-27-88 1411 954 VRM 163.1 6-30-88 1126 957
VRM 163.1 5-27-88 1656 957 3 VRM 162.2 6-30-88 0950 1017 60
VRM 161.5 5-27-88 1853 1056 99 VRM 161.5 6-30-88 0844 1096 79
VRM 157.4 5-27-88 1610 1175 119 VRM 157.4 7-01-88 0948 1005 -91

TOTAL ACC 221 TOTAL ACC 48

SITE DAY TIME DISCHARGE DIFF SITE DAY TIME DISCHARGE DIFF
1/s 1/s 1/s 1/s

VRM 163.1 6-03-88 1644 1076 VRM 163.1 7-15-88 1130 926
VRM 162.2 6-04-88 0814 1113 37 VRM 162.2 7-15-88 1010 991 65
VRM 161.5 6-03-88 1400 1204 91 VRM 160.0 7-15-88 0802 1056 65
VRM 157.4 6-03-88 1700 1252 48 VRM 157.4 7-15-88 1230 1107 51

TOTAL ACC 176 TOTAL ACC 181

SITE DAY TIME DISCHARGE DIFF
1/s 1/s

VRM 163.1 6-24-88 1222 1085
VRM 162.2 6-24-88 1037 1054 -31
VRM 161.5 6-24-88 0920 1127 74
VRM 157.4 6-24-88 n i l 1263 136

TOTAL ACC 178

The data set of 7-15-88 incorporated a discharge at VRM 160.0 where a change 

in the geologic formation bounding the alluvium streambed occurs. The discharge at 

VRM 161.5 was omitted. On afterthought, it was realized that omission of the 

discharge at VRM 161.5 prevented comparison of accretion in the individual reaches 

calculated for 7-15-88 to accretion in the individual reaches of the other data sets. No
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other groundwater accretion data sets were collected for which to compare the 

groundwater accretion upstream and downstream of VRM 160.0.

It was evident for the individual reaches, that neither a trend or consistency in 

groundwater accretion could be deciphered due to fluctuations in the groundwater 

accretion measured and the lack of consistency in site location. The groundwater 

accretion from VRM 163.1 to VRM 162.2 ranged from -31 1/s (-1.1 cfs) to 65 1/s (2.3 

cfs). Accretion from VRM 162.2 to VRM 161.5 seemed to be slightly more stable 

ranging from 74 1/s (2.6 cfs) to 91 1/s (3.2 cfs) while the accretion from VRM 161.5 

to VRM 157.4 ranged from -91 1/s (-3.2 cfs) to 136 1/s (4.8 cfs).

In contrast to the sporadic nature of the data for groundwater accretion of 

individual segments, the groundwater accretion for the entire study reach, from VRM

163.1 to VRM 157.4, was somewhat consistent. Figure 5.9 illustrates the 

groundwater accretion measured between VRM 163.1 and VRM 157.4 plotted against 

time. Three of the five data points have a range of 5.7 1/s (0.2 cfs). The accretion 

calculated for 5-27-88 was slightly higher at a value of 221 1/s (7.8 cfs). Accretion 

for 6-20-88 appears to be an outlying point but is within the precision of the 

measurement, i.e ., approximately + ! -  170 1/s (6 cfs). The five data points were 

averaged to arrive at a groundwater accretion of 161 1/s (5.7 cfs) for the entire study 

reach. This accretion was distributed evenly along the study reach as no justification 

existed for weighting it otherwise. In reality, this calculated accretion represents the 

difference between the total flow accretion through groundwater and overland spring 

flow and the total loss of water through infiltration, evaporation, and 

évapotranspiration.
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Fig. 5.9 Discrete groundwater accretion measurements for the reach of Virgin 
River Mile (VRM) 163.1 to VRM 157.3.

5.7 Groundwater Temperature

Groundwater temperature data collected on 6-3-88 and 7-15-88 was averaged 

to produce groundwater temperature estimates of 14.9°C and 14.5°C respectively. 

Table 5.7 documents spring temperatures measured at the spring source and the 

calculated averages. Data collected on 6-24-88 and 6-30-88 was not valid for analysis 

as a separation in the mercury fluid of the thermometer existed during this time. The 

average groundwater temperature values o f 14.9°C and 14.5°C from 6-3-88 and 7-15- 

88 respectively, were averaged to 14.7°C for model input.

5.8 Discharge

Discharge was quantified throughout the 1988 field season for purposes other 

than the stream temperature study by direct measurement with pygmy or Price AA



vertical axis current meter at a selected cross section located at VRM 157.4. Base 

flow conditions depicted by a stage value of 0.33 m to 0.34 m, existed throughout the 

stream temperature study period. Between 6-29-88 and 7-22-88, three discharge 

measurements were made: 991 1/s (35 cfs) on 7-1-88, 1048 1/s (37 cfs) on 7-5-88, 

and 1104 1/s (39 cfs) on 7-15-88. The three measurements were averaged at 1076 1/s 

(38 cfs) for a baseflow discharge value at VRM 157.3.
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Table 5.7. Groundwater temperature measured at the source of springs entering the East Fork between Virgin River 
Mile (VRM) 163.1 and VRM 157.3,

SPRING CALIB SPRING CALIB
SPRING # DATE TEMP TEMP SPRING# DATE TEMP TEMP

C C C C

7-S-l-R 6-3-88 16.7 15.6 7-S-l-R 7-15-88 15.3 14.1
7-S-3-R 6-3-88 15.6 14.4 7-S-3-R - -

6-S-l-R 6-4-88 16.9 15.9 6-S-l-R 7-15-88 15.3 14.1
4-S-I-L 6-4-88 15.0 13.8 4-S-l-L 7-15-88 17.2 16.2
3-S-l-R - - 3-S-l-R 7-15-88 15.0 13.8

AVERAGE; 14.9 AVERAGE: 14.5

5.9 Topographic Map Data

Stream section aspect, stream section gradient, stream section length, and mean 

elevation of the entire study reach are model inputs characterizing the study reach. 

They were determined from the Springdale East, Utah and Barracks, Utah USGS 

quadrangle maps. Both maps were to the scale of 1:24,000.

The length of each delineated section was measured with a map wheel which 

was precise to + ! -  6 \  m (200 ft). Each section boundary was assigned a river mile 

which conformed to the Pacific Southwest Inter-Agency Committee (PSIC) River Mile 

Index. Table 5.8 documents each section length measured from USGS quadrangle 

maps and the corresponding river mile.
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Table 5.8. Lengths of the delineated Virgin River reaches as measured from USGS quadrangle maps.

SECTION LENGTH LENGTH 
feet meters

LENGTH
mile

RfVER
MILE

1 5768 1758.0 1.09 VRM 157.3 - VRM 158.4
2 5600 1706.9 1.06 VRM 158.4 - VRM 159.5
3 2411 734.9 0.46 VRM 159.5 - VRM 160.0
4 3500 1066.8 0.66 VRM 160.0 - VRM 160.7
5 4028 1227.7 0.76 VRM 160 .7 -VRM 161.5
6 3600 1097.3 0.68 VRM 161.5 - VRM 162.2
7 4564 1391.0 0.86 VRM 162.2 - VRM 163.1

The stream aspect of each section was estimated on the map and measured with 

a protractor. The aspect was selected such to represent the general direction of the 

stream section; the sinuosity around the general direction was neglected. The model 

requires the aspect to be quantified by the number degrees clockwise from North to 

an imaginary vector directed downstream. Stream aspects were described to the 

nearest degree and are estimated to be accurate within 4-/- 5 degrees. Table 5.9 

documents the stream aspect of each section as determined from USGS quadrangle 

maps.

Table 5.9. Gradient and aspect for the delineated Virgin River reaches as determined from USGS quadrangle maps.
Aspect represents the angle clockwise from North to the vector pointed downstream.

SECTION GRADIENT

VRM 157.3 ■ 
VRM 158.4- 
VRM 159.5 ■ 
VRM 160.0 • 
VRM 160.7 ■ 
VRM 161.5 - 
VRM 162.2 ■

VRM 158.4 
VRM 159.5 
VRM 160.0 
VRM 160.7 
VRM 161.5 
VRM 162.2 
VRM 163.1

ASPECT
m/m (ft/ft) degrees

0.0091 259
0.0097 248
0.0098 251
0.0101 247
0.0105 253
0.0159 275
0.0323 277

The Stream gradient for each study reach section was determined by first 

measuring the length between adjacent contour lines crossed by the stream and 

calculating the corresponding gradient. It was assumed that the gradient between two 

contour lines was constant. Each gradient represented within a given section was then
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weighted by the length to which it corresponded. The weighted gradients were then 

summed and divided by the total length of the given section. Table 5.9 documents the 

gradient of each section as determined from USGS quadrangle maps.

The mean elevation of the study reach was determined in a manner similar to 

that used to calculate study reach stream gradients. The mean elevation between 

adjacent contour lines was calculated and weighted by the distance between the 

corresponding contours. The weighted elevations were summed and divided by the 

total distance between the upstream and downstream contour lines which encompassed 

the study reach. The mean elevation, calculated by this technique was determined to 

be 1241 m.

5.10 Width

The model requires for each section a representative stream width. Width 

measurements were made six times (6-4-88, 6-24-88, 6-30-88, 7-9-88, 7-15-88, and 

7-23-88) throughout the field season. Theoretically, width measurements were 

repeated to establish the variance of the stream width during the study period. 

However, since base flow conditions existed throughout the study period, repeated 

measurements illustrated discrepancies due to different interpretations of which cross 

section was perpendicular to the stream, inconsistency in defining the stream edge, and 

inconsistency in subtracting the width of protruding rocks in the stream surface. To 

alleviate this problem, data collection trips on 7-23-88 and 8-5-88 incorporated 

defining consistent criteria for which to calibrate all width measurements, i.e ., what 

length of protruding rocks to subtract and where the edge of water should be defined. 

Calibration of previous measurements was possible for those measurements which were



well documented in terms of what was included in and subtracted from the width. 

Measurements which were not documented clearly were deleted from the analysis. 

It was assumed that for each measurement, the cross section was correctly judged to 

be perpendicular to the stream flow. All calibrated width measurements for each 

cross section were averaged in order to balance the random errors in the 

measurements as well as determine one width value for each cross section. Table 

C.20 documents the width measurements at designated cross sections and the 

calculated averages. Average stream widths were then grouped according to the 

section in which they were located and averaged again to obtain a section average 

stream width.

Table 5.10 documents for each section, the average width, variance, and 

confidence interval, defining, according to the Student-t test, the range within which 

the calculated sample average represents the population average with a level of 

confidence of 90 percent. All sections had a confidence interval less than 10 percent 

of the width which is consistent with the sampling scheme design. Average section 

width ranged from 6.4 m for the most upstream section to 8.6 m for the most 

downstream section.

6 6

Table 5.10. Calculated average width and computed statistics from stream width data collected within the delineated
Virgin River Mile reaches.

SECTION COUNT AVERAGE
m

VARIANCE
m*2

90%C.I.
m

VRM 163.1 - 162.2 22 6.4 8.0 0.4

VRM 162.2- 160.0 19 8.1 3.9 0.3

VRM 160.9 - 159.5 10 7.5 4.6 0.5

VRM 159.5 - 157.3 22 8.6 12.0 0.5

* Confidence interval for a 90% level of significance.
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5.11 Percent Bedrock

Data for determining the percent of streambed which is at a depth of less than 

twenty centimeters and comprised of bedrock greater than twenty-five centimeters in 

axis was estimated with an approximated precision of + ! -  0.15 m. The cross section’s 

percentage meeting the stated criteria was determined by dividing the measured width 

of bedrock by the average width of the cross section as determined from the width 

analysis. Bedrock percentages within each study reach section were averaged for an 

appropriate value for model input. The largest calculated percentage of bedrock was 

12.7 percent for the section from VRM 158.4 to VRM 159.5. Table C.21 documents 

the calculated percentage of streambed for each section comprised o f depth less than 

twenty centimeters and bedrock greater than twenty-five centimeters in axis.

5.12 Velocity

Stream velocity was characterized by float test measurements utilizing oranges as floats 

on several float lengths throughout the study reach. Float test data represents the 

surface velocity of the stream. To obtain an average stream velocity, a coefficient of 

0.85 was applied to the calculated average surface velocity (Buchanan, 1969).

Velocity data was collected on 6-4-88, 6-24-88, 6-30-88, and 7-15-88. Data 

collected on 6-4-88 was omitted from the data set due to inconsistent measuring 

techniques in implementing the float test. Data points from the remaining data sets 

were also omitted if the delay time due to the influence of eddies on the float was not 

recorded and thus could not be subtracted from the float time. The travel time for 

each float through designated float sections is documented in Table C.22.



Six float tests were conducted within each float length. The travel times for 

each float length were averaged and divided by the distance to obtain an average 

surface velocity for that day. The average surface velocity for each float length, for 

each day, was then grouped according to the section in which it was located and 

averaged for an average velocity per section per day. Table 5.11 documents the 

average surface velocity for each section on each day.
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Table 5.11. Average surface velocity as calculated from velocity data collected within the delineated Virgin River
reaches.

6-24-88 6-30-88 7-15-88 AVERAGE

SECTION AVERAGE AVERAGE AVERAGE AVERAGE
VELOCITY VELOCITY VELOCITY VELOCITY

m/s m/s m/s m/s

VRM 163.1 - 162.2 0.76 0.88 0.78 0.81

VRM 162.2 - 160.0 0.91 0.89 0.91 0.90

VRM 160.0 - 159.5 0.90 0.81 0.97 0.89

VRM 1S9.S - 157.3 0.99 0.84 0.88 0.90

AVERAGE SURFACE VELOCITY FOR ENTIRE STUDY REACH: 0.88

The average surface velocities calculated for 6-24-88, 6-30-88, and 7-15-88, 

for a given section were within 0.18 m/s of each other. This change in velocity 

approximates a maximum of 24 percent of the measured velocity while the rated 

precision of the measurement is 25 percent (Buchanan, 1969). In addition, the flow 

throughout the three data collection trips was at base flow condition as depicted by the 

staff plate reading o f 0.33 m for each day. Upon consideration of the precision of the 

measurements and the base flow conditions, the average surface velocities from the 

three data collection trips were averaged to obtain, for each section, an average surface
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velocity for base flow conditions. The average surface velocity for each section 

differed by less than 0.15 m/s from the average surface velocity of any other section. 

Again, it was decided that delineation with respect to surface velocity between sections 

was not warranted. Accordingly, the average surface velocities from the individual 

sections were combined to obtain an average surface velocity for the study reach of 

0.88 m/s. Applying the correction factor of 0.85 for surface velocity produces an 

average stream velocity of 0.76 m/s.

5.13 Relative Humidity and Wind

Model input requires a single relative humidity value measured at 1300 hour. 

Relative humidity point samples were taken around 1300 hour with a sling 

psychrometer but the data is sporadic with respect to the time it was taken, the 

location at which it was taken, and the measuring technique. Due to these 

inconsistencies in addition to the overall lack of data, relative humidity data collected 

by the ZION weather station was used for model input. Table C.23 documents the 

average, which was calculated by ZION from the maximum and minimum relative 

humidity readings, and 1400 hr relative humidity values measured at the ZION 

weather station. From 6-29-88 through 7-22-88 the measured 1400 hr relative 

humidity ranged from 8 percent to 34 percent with an average of 15.0 percent. Values 

measured at 1400 hr were used for model input as they were measured relatively close 

in time to the desired 1300 hr.

Windspeed data was collected with a hand held anemometer in a similar fashion 

to the relative humidity. Moreover, it was collected sporadically with respect to time 

and location of the measurements. The maximum wind speed measured along the



study reach was 19 km/hr. The majority of windspeeds measured did not reach the 

minimum 8 km/hr mark on the scale of the hand held anemometer. As with the 

relative humidity data, official windspeed data collected at the ZION weather station 

was utilized for model input. Windspeed measurements by ZION were taken as a 

point sample at 1400 hr with a stationary anemometer. The ZION wind data should 

only be considered a rough estimate of the daily average windspeed along the study 

reach. Table C.24 documents the wind data collected by ZION. Windspeed ranged 

from 0.0 to 24 km/hour between 6-29-88 and 7-22-88. The average windspeed was

7.1 km/hour.

5.14 Stream Characteristics under Hypothetical Conditions

Since TEMP-84 does not model flow through the study system, representative 

width and velocity values were simulated for hypothetical flow simulations. The 

computer program, NEWCHAN (BLM, 1985) developed by the Bureau of Land 

Management (BLM), was utilized on channel profile and water surface slope data to 

develop relationships between flow and stream width and stream velocity. Tables 

C.25 through C.27 document the channel profile data of the seven cross sections 

profiled and C.28 documents the water surface slope data. The Manning’s "n" 

roughness coefficient was solved for empirically from flow, channel profile, and water 

surface slopie data for existing conditions. Table 5.12 documents the discharge, water 

surface slope, channel area, and Manning’s n value modeled for existing conditions 

at each cross section .

Utilizing a constant Manning’s n value and water surface slope, a range of 

stage values were input for which the BLM program computed the velocity, channel
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area, hydraulic radius, top width, and wetted perimeter. Tables C.29 through C.36 

document the rating tables with respect to discharge, width, and velocity developed 

for each cross section for flow greater than and less than 2832 1/s (100 cfs). Figure 

5.10 and 5.11 show for cross section one, which is located between VRM 157.3 and 

VRM 158.4, plots of width versus discharge and velocity versus discharge, 

respectively. Similar plots were constructed for the remaining six cross sections and 

were utilized for flow greater than 2832 1/s. Plots were also developed for flow less 

than 2832 1/s.
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Table 5.12. Measured discharge and NEWCHAN (BLM, 1985) modeled values for discharge, water surface slope,
channel area, and Manning's 'n" values for existing conditions on the delineated Virgin River reaches.

WATER
CROSS-
SECTION

LOCATION MEAS.
DISCHARGE

1/s

CALC.
DISCHARGE

1/s

SURFACE
SLOPE

m/m

CHANNEL
AREA
m'2

MANNING'
"n"

H\ VRM 157.3 - 158.4 1033.7 1047.8 0.0042 1.5 0.031

n VRM 158.4- 159.5 1053.5 1062.0 0.0084 1.6 0.046

tri VRM 159.5 - 160.0 1016.7 1008.2 0.0028 2.0 0.045

#4 VRM 160.0 - 160.7 1030.8 1028.0 0.0046 1.7 0.039

#5 VRM 160.7 - 161.5 1127.1 1107.3 0.0046 1.8 0.034

#6 VRM 161.5 - 162.2 1036.5 1045.0 0.0047 1.7 0.036

#7 VRM 162.2 - 163.1 0923.2 0917.6 0.0022 2.1 0.042

Width and velocity values were then read off the respective figure for the 

selected hypothetical flow value. Similar to data analysis for baseflow conditions, 

width and velocity values were grouped according to the section in which the 

respective cross section was located and then averaged for a representative section 

value. Table 5.13 documents the width and velocity values determined for the 

selected hypothetical flows.
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DISCHARGE, Us

Fig. 5.10 NEWCHAN (BLM, 1985) modeled width values plotted against 
discharge values for the reach between Virgin River Mile (VRM) 157.3 
and VRM 158.4.

Fig. 5.11

(Thousands) 
DISCHARGE. Us

NEWCHAN (BLM, 1985) modeled velocity values plotted against 
discharge for the reach between Virgin River Mile (VRM) 157.3 and 
VRM 158.4.
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Table 5.13. NEWCHAN (BLM, 1985) modeled average width and velocity values for the delineated Virgin River
reaches.

28.320 1/s 
(1000 cfs)

14,160 l/s 
(500 cfs)

2.832 l/s
(100 cfs)

SECTION AVERAGE
VELOCITY

m/s

AVERAGE
WIDTH

m

AVERAGE
VELOCITY

m/s

AVERAGE
WIDTH

m

AVERAGE
VELOCITY

m/s

AVERAGE
WIDTH

m

VRM 162.2 - 163.1 1.3 15.6 1.0 14.3 0.6 10.3

VRM 160.0 - 162.2 1.8 14.9 1.5 12.4 0.9 9.3

VRM 159.5 - 160.0 1.2 18.5 1.0 16.0 0.7 8.1

VRM 157.3 - 159.5 1.9 16.6 1.5 13.5 0.9 9.1

2,124 l/s 
(75 cfs)

906 l/s 
(32 cfs)

566 l/s 
(20 cfs)

SECTION AVERAGE
VELOCITY

m/s

AVERAGE
WIDTH

m

AVERAGE
VELOCITY

m/s

AVERAGE
WIDTH

m

AVERAGE
VELOCITY

m/s

AVERAGE
WIDTH

m

VRM 162.2 - 163.1 0.6 9.8 0.4 8.0 0.4 7.0

VRM 160.0 - 162.2 0.8 9.1 0.6 8.6 0.5 8.2

VRM 159.5 - 160.0 0.6 7.6 0.5 6.9 0.4 6.5

VRM 157.3 - 159.5 0.9 8.4 0.6 7.5 0.5 7.3

283 l/s 
(10 cfs)

SECTION AVERAGE
VELOCITY

m/s

AVERAGE
WIDTH

m

VRM 162.2- 163.1 0.3 6.2

VRM 160.0- 162.2 0.4 7.6

VRM 159.5 - 160.0 0.3 5.6

VRM 157.3 - 159.5 0.4 7.0

The percent of the stream that is less than twenty centimeters deep and 

comprised of bedrock greater than twenty-five centimeters in axis was also affected 

by hypothetical flows. For all flows greater than baseflow, this distance was set to 

zero as the flow becomes deep and the amount of bedrock on existing banks is



negligible. For flows less than or equal to baseflow, it was assumed that this distance 

was the same as that calculated for baseflow conditions. This distance was then 

divided by the hypothetical stream width for a corresponding discharge.

Table 5.14 documents percent bedrock and percent overhanging vegetation data 

for the selected hypothetical flows. The percent of stream that is directly shaded by 

overhanging vegetation was assumed to be zero for the smallest hypothetical flow of 

283 1/s (10 cfs). For all other flows, the distance estimated for overhanging 

vegetation was assumed to remain constant equal to that measured for baseflow 

conditions. This distance was then divided by the hypothetical stream width for the 

corresponding discharge.
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Table 5.14. TEMP-84 model input for percent bedrock and percent direct shade for the delineated Virgin River reaches 
for the selected hypothetical flows.

28,320 1/s 
(1000 cfs)

14,160 1/s 
(500 cfs)

2,832 1/s

SECTION % % % %
BEDROCK DIRECT BEDROCK DIRECT

(100 cfs)

%  %  

BEDROCK DIRECT
SHADE SHADE SHADE

VRM 162.2- 163.1 0.0 0.0 0.0 0.0 0.0 0.0

VRM 160.0 - 162.2 0.0 1.1 0.0 1.3 0.0 1.7

VRM 159.5 - 160.0 0.0 0.7 0.0 0.8 0.0 1.5

VRM 157.3 - 159.5 0.0 1.4 0.0 1.7 0.0 2.5

2,124 1/s 
(75 cfs)

906 1/s 
(32 cfs)

566 1/s 
(20 cfs)

SECTION % % 
BEDROCK DIRECT 

SHADE

%  %  

BEDROCK DIRECT 
SHADE

%  %  

BEDROCK DIRECT 
SHADE

VRM 162.2 - 163.1 0.0 0.0 2.6 0.0 3.0 0.0

VRM 160.0 - 162.2 0.0 1.8 5.6 1.9 5.9 2.0

VRM 159.5 - 160.0 0.0 1.6 14.3 1.8 15.2 1.9

VRM 157.3 - 159.5 0.0 2.7 9.5 3.0 9.8 3.1
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Table 5.14 (cont’d). TEMP-84 model input for percent bedrock and percent direct shade for the delineated Virgin River reaches 
for the selected hypothetical flows.

283 1/s 
(10 cfs)

SECTION %
BEDROCK

%

DIRECT
SHADE

VRM 162.2- 163.1 3.4 0.0

VRM 160.0 - 162.2 6.3 0.0

VRM 159.5 - 160.0 17.5 0.0

VRM 157.3 - 159.5 10.2 0.0



Chapter 6. Simulation of Existing Conditions

6.1 Simulation of the Time of Peak Temperature

The initial simulations of existing conditions for 6-30-88, 7-08-88, 7-15-88, 

and 7-21-88, depicted a consistent one to two hour lag of the modeled peak 

temperature behind measured. A detailed sensitivity analysis demonstrated a one hour 

forward shift in the modeled time of peak temperatures and a 5.5 percent (1.8°C) drop 

in the maximum temperature with a 50 percent decrease in velocity. To determine if 

a 50 percent decrease in the velocity input would be justified, the accuracy of the 

velocity field data was evaluated. Moreover, velocities measured by the floating chip 

method were compared to velocities measured by a vertical axis current meter. Table 

D .l in Appendix D documents this comparison. Where the floating chip method 

measured an average velocity of 0.85 m/s, the 30 member set of point velocity 

measurements collected with a vertical axis current meter measured an average velocity 

of 0.57 m/s. The average velocity measured by the vertical axis current meter was 

32 percent less than the average velocity measured by the floating chip method. 

Considering that the floating chip measurement is accurate to -I-/-25 percent 

(Buchanan, 1969) and the velocity measurements by the vertical axis current meters 

are considered accurate to + ! -  15 percent, a decrease in the velocity input value of 50 

percent is not unreasonable. Accordingly, the value of the velocity component utilized
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in simulation of existing conditions, 0.38 m/s, is 50 percent less than the value of 0.76 

m/s determined from data analysis of the field collected velocity measurements. As 

a result, the peak temperatures of the final simulations of existing conditions occur 

within one hour of those measured.

6.2 Simulation of Existing Stream Temperature

TEMP-84 is a physical process model which uses equations to describe the heat 

flux between the stream and surrounding media. It does not incorporate regression 

equations, rating curves, or calibration coefficients. As a result, calibration "tools" 

other than the input data set are not available. Furthermore, clear justification must 

be made for modifying the model input data set. For a model such as TEMP-84, 

simulation of existing conditions serves as a measure of "how well" TEMP-84 

simulates the respective study reach rather than an exercise by which to match modeled 

output to measured values.

Figures 6.1, 6.2, 6.3, and 6.4 depict the modeled and measured diurnal 

fluctuation of the stream temperature at VRM 157.3. Hourly stream temperature 

values for both measured and modeled regimes are logged in Table D.2. In all cases, 

the modeled stream temperature regime illustrated a greater diurnal fluctuation than 

measured. The maximum, mean, and minimum stream temperature for each curve is 

documented in Table D.3. The difference between modeled and measured maximum 

stream temperature ranged from 0.3°C (1.1 percent) on 7-21-88 to 2.0°C (7.4 percent) 

on 6-30-88. The difference between minimum stream temperature values ranged from 

l .lo C  (6.3 percent) on 7-21-88 to 1.8oC (10.1 percent) on 6-30-88. Modeled mean 

temperatures were always less than the measured mean temperatures with a difference
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Measured and TEMP-84 modeled diurnal fluctuation in stream 
temperature at Virgin River Mile 157.3 on 6-30-88.
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Fig. 6.2 Measured and TEMP-84 modeled diurnal fluctuation in stream 
temperature at Virgin River Mile 157.3 on 7-08-88.
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Fig. 6.3 Measured and TEMP-84 modeled diurnal fluctuation in stream 
temperature at Virgin River Mile 157.3 on 7-15-88.
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Measured and TEMP-84 modeled diurnal fluctuation in stream 
temperature at Virgin River Mile 157.4 on 7-21-88.
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ranging from 0.3°C (1.4 percent) on 6-30-88 and 7-08-88 to 1.0°C (4.5 percent) on 

7-21-88.

6.3 Simulation of Heat Flux Components

The difference between each simulation lies in the modeling of the heat flux 

components. Figure 6.5, which was constructed from the modeled heat flux 

components of 6-30-88, shows that the dominating heat flux component is the net solar 

radiation. It is also evident from this figure that heat loss results primarily from the 

evaporative heat flux. Table D.4 documents the hourly values in Ly/min for each of 

the heat transfer components. Figure 6.6 illustrates that the most significant change 

in the individual modeled heat flux components between the four days simulated was 

an increase in the evaporative heat loss. On 6-30-88 the evaporative heat loss was 292 

Ly/day (approx. 0.50 cm/day); on 7-08-88 it was 364 Ly/day (approx. 0.63 cm/day); 

on 7-15-88 it was 442 Ly/day (approx. 0.76 cm/day) and on 7-21-88 it was 480 

Ly/day (approx. 0.83 cm/day). Table D.5 documents the energy transfer rate in 

Ly/day for each component on each day. A large increase in evaporative heat loss 

with a relatively small change in heat transfer from the other components results in a 

lower simulated stream temperature as depicted on 7-15-88 and 7-21-88. The modeled 

evaporation rates were compared to NOAA published evaporation rates for the nearest 

station, Saint George, Utah (NOAA station #7516) at N37.7, E l 13.3 approximately 

97 km southeast of Zion National Park (ZION). The evaporation rates for Saint 

George and the study reach cannot be expected to match identically because the Saint 

George station location is 393 m lower than that of ZION and in a different 

topographic setting. Despite these differences, the comparison does give a rough
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Fig. 6.5 Diurnal fluctuation in TEMP-84 modeled energy budget components for 
existing conditions at Virgin River Mile 157.3 on 6-30-88.
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TEMP-84 modeled daily heat flux at Virgin River Mile 157.3 for 
existing conditions on 6-30-88, 7-08-88, 7-15-88, and 7-21-88.
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indication as to whether the modeled evaporation rates resemble realistic values. On 

7-15-88 and 7-21-88 the modeled evaporation rates were approximately 0.05 cm/day 

and 0.30 cm/day higher respectively, than that measured at Saint George. Conversely, 

on 7-08-88 and 6-30-88, the modeled evaporation was 0.16 cm/day and 0.44 cm/day 

lower respectively, than measured at Saint George.

The convective heat transfer component, a heat input, is directly related to the 

evaporative heat transfer and thus also increases in magnitude over the consecutive 

modeled days. Resulting in heat gain, it counters the evaporative heat loss by a 

proportion determined from air temperature and vapor pressure gradients.

The net solar heat flux decreases as the Julian day increases. After the summer 

solstice, approximately June 20, the solar declination decreases, the zenith angles 

increase, and the days get shorter which results in less available solar radiation. The 

nearest solar radiation data collection stations were located at Las Vegas, NV, N36.05, 

El 15.10 at an elevation of 664 m (NCDC station #23169) and Grand Junction, CO, 

N39.1, E108.3 at an elevation of 1475 m (NCDC station #23066). Modeled results 

for net solar radiation decreased from 733 Ly/day on 6-30-88 to 705 Ly/day on 7-21- 

88. Comparatively, the average daily global radiation for July recorded by the 

National Climatic Data Center was 770 Ly/day at Las Vegas and 625 Ly/day at Grand 

Junction. Considering that ZION lies almost directly between these two solar radiation 

collection stations and the average study reach elevation is also between those of the 

two stations, it seems reasonable that the modeled net solar radiation flux is between 

the measured radiation values.
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Heat transfer studies by Anderson (1954) at Lake Hefner portrayed an 

atmospheric longwave radiation rate at the lake surface of 800 Ly/day, a reflected loss 

of 26 Ly/day and a water body emission rate of 900 Ly/day. This results in a net heat 

loss of 126 Ly/day which is greater than the TEMP-84 modeled longwave radiation 

heat loss of 58 Ly/day on 6-30-88, 51 Ly/day on 7-08-88, 42 Ly/day on 7-15-88, and 

24 Ly/day on 7-21-88.

6.4 Sensitivity Analysis

Knowledge of the input data precision and model sensitivity to the various input 

components allows a better understanding of the existing condition simulations. Table 

6.1 delineates estimates o f the precision associated with each of the TEMP-84 input 

variables. A detailed sensitivity analysis was conducted on TEMP-84 utilizing the data 

input set compiled for 6-30-88.

In conducting the sensitivity analysis, TEMP-84 input variables were divided 

in two groups based on results from the preliminary sensitivity analysis: (1) those 

thought to have a large effect and (2) those thought to have little effect on the modeled 

stream temperature.

Input variables thought to have a large effect on the modeled stream 

temperature were varied by a consistent -I-/- 15 percent to allow a comparative study 

as to which variables the model was most sensitive. The results show that TEMP-84 

was most sensitive to the inflow stream temperature followed by, in decreasing order 

of sensitivity, width, discharge, air temperatur? length, and velocity. The remaining 

variables resulted in less than 0.5°C change in the outflow temperature with a 15 

percent perturbation in the input value. These variables were also perturbed by their



respective rated precision to describe the modeled stream temperature regime with 

respect to the precision of the input data. Results from the sensitivity analysis are 

documented in Table 6.2 and Figures D .l through D.20 in Appendix D.
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Table 6.1. Estimated precision of data collected between Virgin River Mile (VRM) 157.3 and VRM 161,0 for input
to the stream temperature model TEMP-84.

SITE CHARACTERISTICS PRECISION STREAM CHARACTERISTICS PRECISION

Latitude +  !-  .1 deg Stream aspect +  / -  5.0 deg

Longitude + /- . I deg Stream gradient +  / -  20 %

Mean Elevation +  !■ 1 % Length +  /■ 10 %

Relative humidity + /- 50 % Width +  / -  10 %

Windspeed 4-/- 50 % Velocity +  / -  15 %

Flowrate +  / -  10 %
SHADING CHARACTERISTICS PRECISION

Inflow temperature +  / -  5 %

Average topographic angle +  !-  25 % Groundwater temperature +  / -  1  %

Average vegetation angle +  !-  50 % Groundwater inflow +  / -  100 %

Canopy cover coefficient +  !■ 25 % Air temperature +  1- 10 %

Average hillslope angle +  !- 10 % Percent bedrock +  /- 15 %

Tree height +  / -  25 %

Percent directly shaded +  / -  10 %

Perpendicular forest angle +  / -  30 %

Input variables thought to have little effect on the stream temperature were 

varied by a range which encompassed the rated precision of the measured data. It was 

evident that for each variable except the hillslope angle, a large, ie ., greater than or 

equal to 50 percent, change in input was required to make even a 0.5°C change in the 

modeled stream temperature. In fact, tree height, canopy cover, buffer width, 

latitude, longitude, topographic shading, stream gradient, percent bedrock, stream
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Table 6.2. Arithmetic and percent change in TEMP-84 modeled maximum and minimum stream temperature with 
the specified change in the designated variable.

GW TEMP
EXISTING - PERTURBED

LENGTH
EXISTING - PERTURBED

+  \ 5 % -15% +  1 % -7% -1-15% -15% -1-10% -10% -1-15% -15% +  i % -5%

MIN TEMP DIFF, C -0.28 0.29 -O.IO 0.10 -0.21 -0.09 -0.13 0.02 -1.64 1.68 -0.53 -0.53
MAX TEMP DIFF, C -0.27 0.27 -0.10 0.10 -0.61 0.89 -0.48 0.55 -1.47 1.52 -0.48 0.48

MIN TEMP DIFF, % -1.8 1.8 -0.6 0.6 -1.3 -0.6 -0.8 0.1 -10.1 10.3 -3.3 3.3
MAX TEMP DIFF, % -0.9 0.9 -0.3 0.3 -2.1 3.1 -1.6 1.9 -4.8 5.0 -1.6 1.6

STREAM TEMPERATURE 
EXISTING - PERTURBED

AIR TEMPERATURE 
EXISTING - PERTURBED

WIND
EXISTING - PERTURBED

RELATIVE HUMIDITY 
EXISTING - PERTURBED

-M5% -15% -U0% -10% -1-15% -15% -1-50% -50% -1-15% -15% -1-50% -50%

MIN TEMP DIFF, C -0.83 0.74 -0.54 0.50 0.04 -0.04 0.13 -0.13 -0.20 0.21 -0.60 0.67
MAX TEMP DIFF, C -1.09 0.97 -0.71 0.66 0.08 -0.07 0.26 -0.26 -0.20 0.21 -0.58 0.66

MIN TEMP DIFF, % -5.2 4.6 -3.4 3.1 0.3 -0.3 0.8 -0.8 -1.3 1.3 -3.8 4.2
MAX TEMP DIFF, % -3.7 3.3 -2.4 2.2 0.3 -0.2 0.9 -0.9 -0.7 0.7 -2.0 2.3

DISCHARGE WIDTH VELOCITY
EXISTING - PERTURBED EXISTING - PERTURBED EXISTING - PERTURBED

-H5% -15% -1-10% -10% -1-15% -15% -1-10% -10% -1-15% -15% -1-50% -50%

MIN TEMP DIFF, C -0.19 0.23 -0.13 0.15 0.18 -0.19 0.12 -0.12 0 .21 -0.43 0.35 -2.10
MAX TEMP DIFF, C 1.19 -1.42 0.82 -0.92 -1.51 1.63 -1.02 1.08 -0.53 0.59 -1.16 3.55

MIN TEMP DIFF, % -1.2 1.4 -0.8 0.9 1.1 -1.2 0.8 -0.8 1.3 -2.7 2.2 -13.2
MAX TEMP DIFF, % 4.1 -4.9 2.8 -3.2 -5.2 5.6 -3.5 3.7 -1.8 2.0 -4.0 12.2

GW FLOW
EXISTING - PERTURBED

-1-15% -15% -1-100%-100%

MIN TEMP DIFF, C 0.02 -0.02 0.14 -0.17
MAX TEMP DIFF, C 0.27 -0.28 1.63 -2.10

MIN TEMP DIFF, % 0.1 -0.1 0.9 -1.1
MAX TEMP DIFF, % 0.9 -1.0 5.6 -7.2

aspect, direct shading and vegetation shading angle variables demonstrated essentially 

no effect on the modeled stream temperature when perturbed by a relatively large 

amount. The hillslope angle was somewhat sensitive to the modeled stream 

temperature as a 20 degree (approx. 50 percent) increase resulted in a 1 .1°C decrease



in the maximum stream temperature. Results from the sensitivity analysis for these 

variables are documented in Table 6.3 and Figures D.21 through D.45.

8 6

ArilhiTwtic and percem change in TEMP-84 modeled maximum and minimum stream temperature with the specified change 
in the designated variable.

HILLSLOPE ANGLE PERPENDICULAR FOREST ANGLE -  DIRECT SHADING
EXISTING - PERTURBED EXISTING - PERTURBED EXISTING - PERTURBED

-5 deg + 5  deg + 10 deg + 2 0  deg + 5 deg -5 deg +10 deg -10 deg +50% + 100%

MIN TEMP D IF F .C 0.0 0.3 0.3 0.9 0.0 0.3 0.0 0.3 0.0 0.0
MAX TEMP DIFF, C 0.0 0.4 0.4 1.1 0.1 0.3 0.1 0.2 0.2 0.4

MIN TEMP DIFF, % 0.0 1.9 2.1 5.3 0.0 1.8 0.0 1.8 -O.I -0.1
MAX TEMP DIFF. % 0.0 I . l  1.3 3.2 0.2 0.8 0.4 0.6 0.7 1.3

TREE HEIGHT CANOPY COVER BUFFER WIDTH
EXISTING - PERTURBED EXISTING - PERTURBED EXISTING - PERTURBED

• 10 ft +  I 0 f t  + 1 5 f t + 20 ft + 25% -25% + 50% -50% +  20 ft + 4 0  ft + 60  ft

MIN TEM P DIFF. C 0.0 0.0 0.0 0,0 0.0 0.0 0.0 0.1 0.1 0 .0  0.0
MAX TEMP DIFF. C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

MIN TEMP DIFF. % 0.0 0.0 0.0 0.0 -0.2 0.3 -0.3 0.8 0.6 0.3 0.1
MAX TEMP DIFF. % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0

VEGETATION SHADING ANGLE STREAM ASPECT LONGITUDE
EXISTING- PERTURBED EXISTING - PERTURBED EXISTING- PERTURBED

+  15 deg-15 deg +25 deg +35 deg +  5 deg •5 deg + 10 deg -10 deg +0.1 deg •0.1 deg

MIN TEMP DIFF, C 0.0 -0.3 0.0 0.0 0.0 -0.2 0.0 0.0 0.0 0.0
MAX TEMP DIFF. C 0.0 0.0 0.0 0.0 0.0 0 .0  0.0 0.0 0.0 0.0

MIN TEM P DIFF. % 0.0 -2.1 0.0 0.0 0.0 -0.9 0.0 0.0 0.0 0.0
MAX TEMP DIFF, % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TOPOGRAPHIC SHADING ANGLE MEAN ELEVATION LATITUDE
EXISTING- PERTURBED EXISTING - PERTURBED EXISTING- PERTURBED

+ 10 deg -10 deg + 20 deg -20 deg +  10% -10% +20% 20% + 0.1  deg -0.1 deg

MIN TEM P DIFF. C 0.0 0.0 0.0 0.0 0.0 0 .0  0.0 0.0 0.0 0.0
MAX TEMP DIFF. C 0.0 0.0 0.0 0.0 -0.1 0.1 -0.1 0.1 0.0 0.0

MIN TEMP DIFF, % 0.0 -0.2 0.0 -0.2 -0.1 0 .0  -0.1 0.0 0.0 0.0
MAX TEMP DIFF. % 0.0 0.0 0.0 0.0 -0.2 0 .2  -0.3 0.4 0.0 0.0

STREAM GRADIENT 
EXISTING - PERTURBED

+  10% -10% +30% -30% + 50 -50% +  100%

MIN TEMP D IF F .C 0.0  . 0.0 0.0 0.0 0.0 0.0 0.0
MAX TEM P DIFF. C 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MIN TEM P DIFF. % 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MAX TEM P DIFF. % 0.0 0.0 0.0 0.0 0.1 -0.1 0.2

PERCENT BEDROCK 
EXISTING • PERTURBED



Chapter 7. Simulation of Hypothetical Conditions

The purpose of this study is to describe the change in stream temperature 

regime at VRM 157.3 with changes in flow and inflow temperature. Hypothetical 

flow conditions and hypothetical inflow stream temperatures were simulated using 

TEMP-84.

7.1 Hypothetical Flow Simulation

Hypothetical flows of 28,320 1/s (1000 cfs), 14,160 1/s (500 cfs), 2,832 1/s 

(100 cfs), 2,124 1/s (75 cfs), 906 1/s (32 cfs), 566 1/s (20 cfs), and 283 1/s (10 cfs) 

were selected for simulation. The maximum flow of 28,320 1/s represents the 

magnitude of flow for flash flood events as measured during the 1987 and 1988 field 

seasons. The minimum flow, 283 1/s, approximates a low flow for which the stream 

can remain active year round. Width and velocity stream characteristics for 

hypothetical flows were empirically derived as a function of flow. In order to make 

valid comparisons between hypothetical flow and existing flow stream temperature 

regimes, the baseflow rate of 906 1/s (32 cfs) at VRM 163.1 was also modeled using 

empirically derived width and velocity data.

Table 7.1 documents a comparison between empirically derived width and 

velocity values and those developed from field data for baseflow conditions of 906 1/s. 

Empirically derived width values were within twenty-five percent o f those determined



from field data with three of the comparisons being within fifteen percent. 

Empirically derived velocity differed by a maximum of 0.3 m/s (75 percent) and 

minimum of 0.1 m/s (25 percent). While velocity values from the empirical 

relationships were consistently larger than those calculated from field data, empirically 

derived width values fluctuated between being greater than and less than field data.

88

Table 7.1. Comparison of NEWCHAN (BLM, 1985) modeled width and velocity values to those calculated from field
data for the delineated Virgin River reaches.

WIDTH VELOCITY

FIELD
DATA

m

EMPIRICAL
FORMULA

m

FIELD
DATA

m/s

EMPIRICAL
FORMULA

m/s

VRM 157.3 - VRM 159.5 8.7 7.5 0.4 0.6

VRM 159.5 - VRM 160.0 7.5 6.9 0.4 0.5

VRM 160.0 - VRM 162.2 8.1 8.6 0.4 0.6

VRM 162.2 - VRM 163.1 6.4 8.0 0.4 0.5

Figure 7.1 illustrates the difference in modeled stream temperature between 

when field data and empirical data were used for width and velocity input. Similar 

figures for 7-08-88, 7-15-88, and 7-21-88 are filed as Figure E .l, E.2, and E.3 in 

Appendix E. Table E .l documents the maximum, minimum, and mean stream 

temperature for each simulation. Simulations utilizing empirical width and velocity 

values resulted in a maximum stream temperature approximately 1°C greater, a 

minimum temperature within 0.5°C, and a mean temperature within 0 .1°C of that 

modeled with field data. Any difference in peak time between simulated diurnal 

regimes resulted from the difference in velocity input.



89

HOUR
□  MEASURED FIELD DATA ----------EMPIRICAL DATA

Fig. 7.1 Measured and TEMP-84 modeled diurnal fluctuation in stream 
temperature for 6-30-88 at Virgin River Mile 157.3 utilizing field 
collected data and empirically derived data.

The largest flow for simulation was chosen to be 28,320 1/s as it is the order 

of magnitude for flood events measured during the field seasons of 1987 and 1988. 

Figure 7.2 illustrates the diurnal fluctuation in stream temperature for 6-30-88 for 

hypothetical flows greater than baseflow. Also depicted is the measured inflow stream 

temperature at VRM 163.1. Because the modeled stream temperature for both 14,160 

1/s and 28,320 1/s approach the measured inflow stream temperature at VRM 163.1, 

the maximum simulated flow for 7-08-88, 7-15-88, and 7-21-88 was chosen to be 

14,160 1/s. Figures 7.3, 7.4, and 7.5 show, for these days, the modeled diurnal 

fluctuation in stream temperature for hypothetical flows greater than baseflow.
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Fig. 7.3

f  9061/1

Fig. 7.2

HOUR 
X 141601/1o 2124 1/1 A 28321/1 x 14160 l/i v  28320 l/i o VRM 163.1

TEMP-84 modeled stream temperature at Virgin River Mile (VRM)
157.3 for flow greater than and equal to baseflow and measured stream 
temperatures at VRM 163.1 on 6-30-88.

HOUR
28321/1♦ 906 1/1 « 21241/1 “  28321/1 *  14160 l/i □ VRM 163.1

TEMP-84 modeled stream temp, at Virgin River Mile (VRM) 157.3 
for flow greater than and equal to baseflow and measured stream temp, 
at VRM 163.1 on 7-08-88.
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Fig. 7.4

Fig. 7.5

HOUR
♦ 9 0 6 1/i o 21241/i A 28321/i x 14160 !/• cj VRM 163.1

TEMP-84 modeled stream temp, at Virgin River Mile (VRM) 157.3 
for flow greater than and equal to baseflow and measured stream temp, 
at VRM 163.1 on 7-15-88.

HOUR
♦ 906 1/i A 21241/i A 28321/i x  141601/i □ VRM 163.1

TEMP-84 modeled stream temp, at Virgin River Mile (VRM) 157.3
for flow greater than and equal to baseflow and measured stream
temp, at VRM 163.1 on 7-21-88.



The simulated stream temperature regime for the flows greater than baseflow 

are similar between the days selected for modeling. In each case, the stream 

temperature drops as the flow increases and the 14,160 1/s diurnal temperature regime 

approximates that of the inflow stream temperature regime.

Figures 7.6, 7.7, 7.8, and 7.9 illustrate the diurnal fluctuation in stream 

temperature for hypothetical flows less than baseflow. These simulations show a 

significant increase in stream temperature with a decrease in flow. Also, a greater 

variance between modeled stream temperature regimes is evident for a given 

hypothetical condition. Table E.2, E.3, E.4, and E.5 document the hourly stream 

temperature for all simulations of hypothetical flow conditions.
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□  906 l/s (32 Cfs)
HOUR

566 l/s (20 Cfs) O 283 l/s (10 cfs)

Fig. 7.6 TEMP-84 modeled stream temperature at Virgin River Mile 157.3 for
flow less than and equal to baseflow on 6-30-88.
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Fig. 7.7

HOUR
□  906 l/s {32 cfs) 566 l/s (20 cfs) O 283 l/s (10 cfs)

TEMP-84 modeled stream temperature at Virgin River Mile 157.3 for 
flow less than and equal to baseflow on 7-08-88.

Fig. 7.8
□  006 l/s

HOUR 
566 l/s 283 l/s

TEMP-84 modeled stream temperature at Virgin River Mile 157.3 for
flow less than and equal to baseflow on 7-15-88.
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HOUR 
566 l/s

Fig. 7.9
□  906 l/s + 566 l/s O 283 l/s

TEMP-84 modeled stream temperature at Virgin River Mile 157.3 for 
flow less than and equal to baseflow on 7-21-88.

Because TEMP-84 was not calibrated to simulate existing stream temperatures 

at VRM 157.3, the modeled stream temperatures under hypothetical conditions should 

be viewed in terms of a relative change from those modeled for existing conditions and 

not for the actual stream temperatures produced. Accordingly, the percent change 

from that modeled for baseflow conditions, ie., 906 l/s was calculated for the 

maximum, mean, and minimum stream temperature for each hypothetical simulation 

(Table E.6, E.7, and E.8).

To simulate actual stream temperatures for the selected hypothetical conditions, 

the average percent change for each stream temperature characteristic, i .e ., maximum, 

mean, and minimum, under each hypothetical flow simulation, was applied to 

measured stream temperatures at VRM 157.3 (Table 7.2, 7.3, and 7.4).
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Table 7.2. Maximum stream temperature as calculated from the TEMP-84 simulated percent change applied to existing 
conditions.

EXISTING 14,160 1/s 
(500 cfs)

2,832 1/s 
(100 cfs)

1,124 1/s 
(75 cfs)

566 1/s 
(20 cfs)

283 1/s 
(10 cfs)

DATE MAX STR MAX STR MAX STR MAX STR MAX STR MAX STR
TEMP TEMP TEMP TEMP TEMP TEMP

C C C C C C

6-30-88 27.2 20.3 22.4 23.1 29.9 33.7

7-08-88 27.0 20.4 22.1 23.0 29.6 33.0

7-15-88 26.9 20.5 22.4 23.1 29.4 32.5

7-21-88 27.8 21.7 23.5 24.2 29.9 32.4

MEAN 27.2 20.7 22.6 23.4 29.7 32.9
VAR 0.16 0.43 0.38 0.32 0.06 0.35
STD DEV 0.40 0.66 0.62 0.57 0.24 0.59

Table 7.3. Mean stream temperature as calculated from the TEMP-84 simulated percent change applied to existing
conditions.

EXISTING 14,160 1/s 2,832 1/s 1,124 1/s 566 1/s 283 1/s
( 5 0 0  cfs) (100 cfs) (75 cfs) (20 cfs) (10 cfs)

DATE MEAN STR MEAN STR MEAN STR MEAN STR MEAN STR MEAN STR
TEMP TEMP TEMP TEMP TEMP TEMP

C C C C C C

6-30-88 22.0 19.3 20.4 20.7 22.8 24.1

7-08-88 21.5 19.0 20.0 20.2 22.1 23.0

7-15-88 21.2 18.9 19.9 20.1 21.7 22.5

7-21-88 22.4 20.2 21.0 21.3 22.9 23.5

MEAN 21.8 19.4 20.3 20.6 22.4 23.3
VAR 0.28 0.35 0.25 0.30 0.33 0.47
STD DEV 0.53 0.59 0.50 0.55 0.57 0.68



Table 7.4. Minimum stream temperature as calculated from the TEMP-84 simulated percent change applied to existing
conditions.

-----------------------------------------------------------------------------------  f l o w ----------------------------------------------------------------
EXISTING 14,1601/s 2,8321/s 1,1241/s 566 1/s 283 1/s

(500 cfs) (100 cfs) (75cfs) (20 cfs) (lOcfs)

DATE MIN STR MIN STR MIN STR MIN STR MIN STR MINSTR
TEMP TEMP TEMP TEMP TEMP TEMP

C  C  C  C  C  C

6- 30-88 17,8 18.7 18.6 18.5 17,3 16.4

7- 08-88 16,7 17.8 17.7 17.6 16.2 15.2

7-15-88 16.2 17.3 17.2 17.1 15.5 14.5

7-21-88 17.5 18.2 18.0 17.9 17.0 16.3

MEAN 17.1 18.0 17.9 17.8 16.5 15.6
VAR 0.54 0.35 0.34 0.34 0.66 0.83
STD DEV 0.73 0.59 0.59 0.59 0.81 0.91

96

The resulting stream temperatures were quite agreeable between the four days 

modeled; the standard deviation for each set of maximum, mean, and minimum 

temperatures under each hypothetical condition was always less than 1.0°C.

Seeing as the modeled results have inherent errors and each of the four days selected 

represents only a small sample from the population of stream temperatures, the results 

were averaged to provide an estimate of the maximum, mean, and minimum stream 

temperatures expected for each hypothetical condition. Average maximum stream 

temperatures from the four days modeled ranged from 32.9‘'C at 283 1/s to 20.7°C at 

14,160 1/s. Average minimum stream temperatures ranged from 15.6°C at 283 1/s to 

18.0°C at 14,160 1/s while average mean stream temperatures ranged from 23.3°C at 

283 1/s to 19.4‘’C at 14,160 1/s.

Figure 7.10 shows for hypothetical flows, the percent change of modeled 

maximum stream temperature from that modeled for baseflow conditions. The percent 

change in maximum stream temperature for each simulation on each day is tabulated
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in Table E.6. The percent change represents the change in stream temperature from 

existing and thus was calculated by subtracting the modeled hypothetical temperature 

from the modeled existing temperature and then dividing by the modeled existing 

temperature. Accordingly, a positive percent change represents a decrease in 

maximum temperature while a negative percent change represents an increase. The 

average percent change in maximum stream temperature for each flow was 23.9 

percent for 14,160 1/s, 17.0 percent for 2,832 1/s, 14.2 percent for 2,124 1/s, -9.0 

percent for 566 1/s, and -20.9 percent for 283 1/s. Corresponding standard deviations 

associated with each set were 1.56 percent, 1.06 percent, 1.02 percent, 1.01 percent, 

and 3.07 percent for 14,1601/s, 2,832 1/s, 2,214 1/s, 5 6 6 1/s, and 283 1/s respectively.

q:

•10

141601/8

2 ^

2832 1/s 21241/8 5661/8

6-30-88
HYPOTHETICAL FLOW

f V ^  7-00-88 7-15-88

S iiI
283 1/s

Fig 7.10 Percent change in maximum stream temperature at Virgin River Mile
157.3 for TEMP-84 modeled hypothetical flows from that modeled for
baseflow on 6-30-88, 7-08-88, 7-15-88, and 7-21-88.
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Figure 7.11 portrays for hypothetical flows, the percent change of modeled 

mean stream temperature from that modeled for baseflow conditions. The percent 

change in mean stream temperature for each simulation on each day is tabulated in 

Table E.7. Again, positive values represent a decrease in mean stream temperature 

while negative values represent an increase. The percent change in mean stream 

temperature is significantly reduced from the percent change calculated for maximum 

stream temperature. The average percent change in mean temperature for each flow 

was 11.2 percent for 14,160 1/s, 6.7 percent for 2,832 1/s, 5.6 percent for 2,124 1/s, - 

2.8 percent for 566 1/s, and -6.8 percent for 283 1/s. The standard deviations 

associated with each set were 1.19 percent, 0.62 percent, 0.65 percent, 0.64 percent, 

and 1.96 percent for 14,160 1/s, 2,832 1/s, 1,124 1/s, 566 1/s, and 283 1/s.

HYPOTHETICAL FLOW
IZ71 6-30.88 | \  \ |  7-08-88 X / / / À  7-15-88 7-21-88

Fig 7.11 Percent change in mean stream temperature at Virgin River Mile 157.3
for TEMP-84 modeled hypothetical flows from that modeled for
baseflow on 6-30-88, 7-08-88, 7-15-88, and 7-21-88.
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Figure 7.12 illustrates for hypothetical flows, the percent change of modeled 

minimum stream temperature from that modeled for baseflow conditions. The percent 

change in minimum stream temperature for each simulation on each day is tabulated 

in Table E.8. In contrast to simulated maximum and mean stream temperatures, flows 

greater than baseflow illustrated an increase in minimum stream temperature while 

flows less than baseflow illustrated a decrease. The average percent change in 

minimum stream temperature for each flow was -5.6 percent for 14,160 1/s, -4.9 

percent for 2,832 1/s, -4.3 percent for 1,124 1/s, 3.3 percent for 566 1/s, and 8.5 

percent for 283 1/s. The standard deviations associated with each set were 1.45 

percent, 1.43 percent, 1.41 percent, 0.62 percent, and 1.56 percent for 14,160 1/s, 

2,832 1/s, 1,124 1/s, 566 1/s, and 283 1/s, respectively.

r7~71 6-30-88
HYPOTHETICAL FLOW

IV \ I 7-08-88 '̂777X 7-15-88 7-21-88

Fig 7.12 Percent change in minimum stream temperature at Virgin River Mile
157.3 for TEMP-84 modeled hypothetical flows from that modeled for
baseflow on 6-30-88, 7-08-88, 7-15-88, and 7-21-88.
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The time at which peak stream temperatures occur ranges a maximum of two 

hours between the various flows. The stream temperature regime for 14,160 1/s 

consistently lags at least one hour behind the those for lower flows with the maximum 

stream temperature occurring at approximately 1600 hr and minimum stream 

temperature occurring at approximately 0700 hr. The maximum peak temperatures 

for the remaining flows occur between 1700 and 1800 hr while the minimum stream 

temperatures occur at approximately 0800.

7.2 Hypothetical Inflow Stream Temperature Simulation

The average ambient temperature at VRM 163.0 and the groundwater 

temperature were delineated for simulation of hypothetical inflow temperature 

conditions. In order to make valid comparisons, existing conditions were simulated 

utilizing an average inflow stream temperature in contrast to the hourly defined 

diurnal stream temperature regime used in modeling existing conditions. All other 

input variables remained constant. Figure 7.13 compares, for 6-30-88, modeled 

stream temperature utilizing a daily average inflow stream temperature versus an 

hourly defined diurnal stream temperature inflow. Figures E.4 through E.6 illustrate 

similar comparisons for 7-08-88, 7-15-88, and 7-21-88. Table E.9 documents the 

maximum, mean, and minimum stream temperature for each simulation. Simulations 

utilizing an average inflow stream temperature depicted maximum stream temperatures 

l.OoC to 1.5°C higher than those modeled with a diurnal stream temperature inflow. 

Minimum and mean stream temperatures were within 0.3°C and 0.1°C, respectively.

Figure 7.14, 7.15, 7.16, and 7.17, illustrate the diurnal fluctuation in stream 

temperature on 6-30-88, 7-08-88, 7-15-88, and 7-21-88, at VRM 157.3 for existing
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Fig. 7.13
DIURNAL TEMP AVG. TEMP. 18.5 C

Measured and TEMP-84 modeled stream temp, for Virgin River Mile
157.3 utilizing diurnal and average inflow stream temperatures on 6-30-
88.

14.7 C
HOUR 
26.5 C 18.5 C

Fig. 7.14 TEMP-84 modeled stream temp, for Virgin River Mile 157.3 on 6-30- 
88 with inflow at existing, groundwater, and average ambient 
temperature.
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HOUR 
+  27.4 C

Fig. 7.15
□  14.7 C +  27.4 C O 18.3 C

TEMP-84 modeled stream temp, for Virgin River Mile 157.3 on 7-08- 
88 with inflow at existing, groundwater, and average ambient 
temperature.

HOUR 
28.1 C

Fig. 7.16
+  14.7 C O 28.1C  A  17.9 C

TEMP-84 modeled stream temp, for Virgin River Mile 157.3 on 7-15- 
88 with inflow at existing, groundwater, and average ambient 
temperature.
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14.7 C
HOUR 

O 29.2 C

Fig. 7.17
Ù 18.8 C

TEMP-84 modeled stream temp, for Virgin River Mile 157.3 on 7-21- 
88 with inflow at existing, groundwater, and average ambient 
temperature.

conditions and the selected hypothetical inflow temperature conditions. Table E. 10 

and E .l l  document the hourly stream temperatures for each simulation on each day.

In contrast to modeled stream temperature regimes for hypothetical flows, the 

entire twenty-four hour diurnal stream temperature regime for hypothetical inflow 

temperature conditions was shifted by nearly a constant interval from that modeled for 

existing conditions. Inflow at the average ambient temperature, which is 8 to 10°C 

greater than existing inflow temperature, illustrated an increase in modeled stream 

temperature at VRM 157.3 o f approximately 4°C to 5°C. Inflow at groundwater 

temperature, which is approximately 4°C less than existing inflow temperature, 

illustrated a decrease in modeled stream temperature at VRM 157.3 of approximately
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2°C. In both cases, an approximate change in stream temperature of 1°C occurred at 

VRM 157.3 for every 2°C change in the inflow stream temperature.

As discussed with hypothetical flow simulations, TEMP-84 was not calibrated 

to simulate existing conditions at VRM 157.3. Thus, the results from modeling 

hypothetical inflow temperature conditions should be viewed in terms of the relative 

change from that modeled for existing conditions and not for the actual temperatures 

produced. For each simulation, the percent change in maximum, mean, and minimum 

stream temperatures was calculated from that modeled for existing average inflow 

stream temperatures (Table E. 12).

To simulate stream temperatures for the selected hypothetical conditions, the 

average percent change for each stream temperature characteristic, i.e ., maximum, 

mean, and minimum, under each hypothetical inflow condition was applied to the 

measured stream temperature at VRM 157.3 (Table 7.5).

The resulting stream temperatures between the four days modeled were similar; 

the standard deviation for each set of maximum, mean, and minimum temperatures 

under each hypothetical conditions was less than 0.55°C. Because the results have 

inherent errors from the modeling process and each simulation represents only a small 

sample from the population of stream temperatures, the results were averaged to 

provide an estimate of maximum, mean, and minimum stream temperatures for each 

hypothetical condition. Maximum stream temperature ranged from an average of 

31.1°C for average ambient inflow temperatures to 25.6°C under groundwater 

temperature inflow conditions. Mean stream temperatures ranged from an average of 

26.4°C to 19.8°C for average ambient inflow temperature and groundwater



temperature inflow conditions, respectively. Minimum stream temperatures ranged 

from an average of 22.2°C for average ambient temperature inflow to 15.0”C for 

groundwater temperature inflow.

Figure 7.18 depicts for hypothetical inflow stream temperatures, the percent 

change of modeled maximum stream temperature from that modeled for existing
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Table 7.5, Maximum, mean, and minimum stream temperature as calculated from the TEMP-84 simulated percent
change applied to existing conditions.

INFLOW TEMPERATURE INFLOW TEMPERATURE

EXISTING GW TEMP AVG.
AMBIENT

EXISTING GW TEMP AVG.
AMBIENT

DATE MAX STR MAX STR MAX STR MEAN STR MEAN STR MEAN STR
TEMP TEMP TEMP TEMP TEMP TEMP

C C C c C C

6-30-88 27.2 25.4 30.9 22.0 19.8 26.5

7-08-88 27.0 25.4 30.8 21.5 19.6 26.1

7-15-88 26.9 25.5 31.1 21.2 19.4 26.3

7-21-88 27.8 26.2 31.4 22.4 20.5 26.8

MEAN 27.2 25.6 31.1 21.8 19.8 26.4
VARIANCE 0.16 0.15 0.07 0.28 0.23 0.09
STD DEV 0.40 0.39 0.27 0.53 0.48 0.30

INFLOW TEMPERATURE

DATE

EXISTING GW TEMP AVG.
AMBIENT

MIN STR 
TEMP 

C

MIN STR 
TEMP 

C

MIN STR 
TEMP 

C

6-30-88 17.8 15.3 22.8

7-08-88 16.7 14.6 21.8

7-15-88 16.2 14.4 21.7

7-21-88 17.5 15.5 22.3

MEAN 17.1 15.0 22.2
VARIANCE 0.54 0.28 0.26
STD DEV 0.74 0.53 0.51



conditions. The percent change for each simulation on each day is tabulated in Table 

E. 12. Again, the percent change represents the change from existing conditions and 

a positive percent change represents a decrease in stream temperature while a negative 

percent change represents an increase. Inflow at the groundwater temperature resulted 

in an average decrease in maximum stream temperature of 5.9 percent. The standard 

deviation associated with this average was 0.58 percent. In contrast, an inflow at the 

daily average ambient temperature resulted in an average increase in maximum stream 

temperature of -14.1 percent. The standard deviation associated with this average is 

1.10 percent.
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Fig 7.18 Percent change in maximum stream temp, at Virgin River Mile 157.3 
for TEMP-84 modeled hypothetical inflow temps, from that modeled 
for existing conditions on 6-30-88, 7-08-88, 7-15-88, and 
7-21-88.



Figure 7.19 portrays the percent change in the mean stream temperature. The 

percent change for each simulation on each day is tabulated in Table E. 12. The 

average percent decrease in mean stream temperature with groundwater temperature 

inflow was 9.0 percent with an associated standard deviation of 0.83 percent. The 

average percent increase in mean stream temperature with inflow at the average 

ambient temperature was -21.3 percent with an associated standard deviation of 1.88 

percent.
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Fig 7.19 Percent change in mean stream temp, at Virgin River Mile 157.3 for 
TEMP-84 modeled hypothetical inflow temps, from that modeled for 
existing conditions on 6-30-88, 7-08-88, 7-15-88, and 7-21-88.



Finally, figure 7.20 illustrates the percent change in minimum stream 

temperature for the hypothetical inflow temperature simulations. The percent change 

for each simulation on each day is tabulated in Table E. 12. The average decrease in 

minimum stream temperature with an inflow at the groundwater temperature was 12.4 

percent with an associated standard deviation of 1.29 percent. The average increase 

in minimum stream temperature with inflow at the average ambient stream temperature 

was -30.0 percent with an associated standard deviation of 2.91 percent.
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Fig 7.20 Percent change in minimum stream temp, at Virgin River Mile 157.3 
for TEMP-84 modeled hypothetical inflow temps, from that modeled 
for existing conditions on 6-30-88, 7-08-88, 7-15-88, and 7-21-88.



Chapter 8. Discussion

The stream temperature of the East Fork of the Virgin River is dynamic over 

a twenty-four hour period. At VRM 157.3 maximum stream temperatures varied 

between 26°C and 28°C during the month of July while minimum stream temperatures 

varied between 18°C to 16°C. A diurnal fluctuation of 10°C was common. Increased 

solar exposure towards the downstream end of the study reach is the probable cause 

for the average 5.7°C increase between the daily maximum stream temperature at 

VRM 157.3 and that a VRM 163.1. Flow at VRM 163.1 was cooler most likely 

because of the severe vertical canyon walls which provided shading upstream and at 

VRM 163.1 as well as the influx of groundwater upstream of the study reach. 

Downstream from VRM 163.1, the canyon widens and the stream is openly exposed 

to solar radiation; solar radiation is a dominant heat source and effectively heats tlie 

stream. The solar radiation component, which has a strong effect during the day is 

absent between sunset and sunrise.

It appears from the small difference between minimum temperatures at VRM

157.3 and VRM 163.1 that the energy transfer rate during the night is nearly the same 

throughout the study reach. Slight differences in minimum stream temperatures were 

likely due to small differences in air temperatures.
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A sensitivity analysis was conducted to determine the relative effect of the 

respective input variables on the modeled stream temperature. Based on sensitivity 

analysis results, each variable was rated with respect to a large, moderate, small, or 

negligible effect on the modeled stream temperature for this study reach (Table 8.1). 

A large effect was defined for Table 8.1 as greater than 1°C change in either 

maximum or minimum stream temperature with a 15 percent change in the input 

value. A moderate effect was defined as a 0.5°C to 1.0°C change with a 15 percent 

change in the input value. Similarly, a small effect was defined as a 0 .1°C to 0.5“C 

change with an approximate 15 percent change in input value. A negligible effect was 

defined as 0.0°C to 0 .1°C change in modeled stream temperature with a relatively 

large, ie., greater than 50 percent or well outside the precision boundaries of the 

measurement, change in the input value.

TEMP-84 was most sensitive to the inflow stream temperature followed by, in 

decreasing order of sensitivity, the variables of width, discharge, and air temperature 

all of which had a large effect on the resulting modeled stream temperature. TEMP- 

84 was also quite responsive to the variables of length and velocity which had 

moderate effects on the modeled stream temperature. The remaining variables resulted 

in less than 0.5°C change in the outflow temperature with a 15 percent perturbation 

in the input value. The inflow stream temperature is important because it establishes 

the reference temperature to which the modeled change in temperature is applied. 

Width and length values are important because they are used to calculate the surface 

area over which the heat transfer occurs. Discharge quantifies the size of the stream 

and thus establishes the thermal inertia of the system. Air temperature plays a large
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Table 8.1. Sensitivity o f  TEMP-84 input variables in terms o fla rg e , moderate, small, and ngeligible effect on the 
modeled stream tmeperature.

Input
Variable

Change in
Input
Variable

Response o f  
(Existing 

M aximum 
Temp.

Stream Temp.
- Perturbed)

Minimum
Temp.

Rated
Effect

Stream Temperature +  15% -1.5 -1.6 LARGE
-15% 1.5 1.7

Width +  15% -1.5 0 .2 LARGE
-15% 1.6 -0.2

Discharge +  15% 1.2 -0.2 LARGE
-15% -1.4 0.2

Air Temperature +  15% -1.1 -0.8 LARGE
-15% 1.0 0.7

Velocity +  15% -0.5 0 .2 M OD ERA TE
-15% 0.6 -0.4

Length +  15% -0.6 -0.2 M OD ERA TE
-15% 0.9 -0.1

Hillslope Angle + 5 deg (> 1 0 % ) 0.4 0.3 SM ALL
-5 deg ( >  10%) 0.0 0.0

Relative Humidity +  15% -0.2 -0.2 SM ALL
-15% 0.2 0.2

Groundwater Temp. +  15% -0.3 -0.3 SM ALL
-15% 0.3 0.3

Groundwater Flow +  15% 0.3 0.0 SM ALL
-15% -0.3 0 .0

Perpendicular Forest +  5 deg (> 1 5 % ) 0.1 0 .0 SM A LL
Angle -5 deg (> 1 5 % ) 0.3 0.3

Wind + 15% 0.1 0.0 SM A LL
-15% -0.1 0 .0

Mean Elevation +  10% -0.1 0 .0 SM ALL
-10% 0.1 0.0

Tree Height +6.1  m (> 5 0 % ) 0.0 0 .0 N EG U G IBLE

Canopy Cover +  50% 0.0 0.0 N E C U G IB L E
-50% 0.1 0.1

Buffer Width + 2 0  ft 0 .0 0.1 N E G U G IB LE

Latitude +0.1 0 .0 0 .0 N EG U G IB LE
-O.I 0 .0 0 .0

Longitude +0.1 0.0 0 .0 N EG U G IB LE
-0.1 0.0 0 .0

Topographic Angle +  20 deg (> 4 5 % ) 0 .0 0 .0 N EG U G IB LE
-20 deg (> 4 5 % ) 0 .0 0 .0

Stream G radient +30% 0.0 0.0 NEGLIGIBLE
-30% 0.0 0.0

Percent Bedrock +  100% 0.0 0.0 N EG U G IB LE

Stream Aspect +  1 0 d e g (> 5 % ) 0 .0 0 .0 N EG U G IB LE
-10 deg (> 5 % ) 0.0 0 .0

Direct Shading +  100% 0.4 0 .0 N EG U G IB LE

Vegetation Angle +  35 deg (> 9 0 % ) 0.0 0 .0 N EG U G IB LE
-15 deg (> 4 0 % ) 0.0 0 .0
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role in regulating the stream temperature as it is encompassed either directly or 

indirectly in all the heat transfer processes except net solar radiation and advection. 

Velocity was the only variable found to affect the time of the modeled stream 

temperature peak as well as the peak values. Velocity is utilized to calculate the travel 

time of an individual water parcel and thus also serves to determine the start time for 

the parcel. Corresponding to the start time is a start inflow stream temperature which 

directly affects the time and value of the peak temperatures.

The majority of shading characteristic data had a negligible effect on the 

resulting stream temperature. The two variables of hillslope angle and perpendicular 

forest angle demonstrated a small effect. Small to negligible effects were expected for 

these variables as the study reach is oriented in an east-west direction, the sun rides 

at a high altitude, and the vegetation is relatively sparse.

Somewhat surprising was the small effect of wind and relative humidity on the 

modeled stream temperature. The reason for this apparent small effect are the small 

input values of 18 percent input for relative humidity and 3.2 km per hour for wind 

on 6-30-88. A 15 percent change in these variables results in only small changes of

2.7 percent and 0.5 km per hour for relative humidity and wind, respectively. Not 

surprisingly, a 15 percent change has only a small effect on the stream temperature. 

While the value o f relative humidity seems reasonable, 3.2 km seems low for the study 

reach wind component especially with respect to morning and evening time periods 

during which strong convective winds are common. It is likely that the stream 

temperature is more sensitive to windspeed than illustrated in this analysis.
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In simulating existing conditions, the model predicted greater diurnal 

fluctuations in stream temperature with minimum temperatures lower than existing by 

1.1°C to 1.8°C and maximum temperatures greater than existing by 0.3°C to 2.0°C. 

Elevated modeled maximum temperatures may be due to a number of reasons. For 

one, TEMP-84 does not incorporate cloud cover effects and is documented as a model 

to simulate maximum possible stream temperature. Cloud cover was shown by 

Tennessee Valley Authority (1972) to effectively attenuate the solar radiation reaching 

the stream. On 6-30-88 the sky was rated by Zion National Park (ZION) to be 1/10 

to 5/10 cloud covered. On 7-08-88, 7-15-88, and 7-21-88, it was rated at less than 

1/10 cloud cover. Neglecting the effect o f cloud cover in modeling would have the 

greatest consequence for 6-30-88.

Another cause of elevated maximum stream temperatures could be inaccurate 

modeling of the evaporative heat flux. Evaporation is the most dominating heat loss 

variable in the energy balance. Evaporative flux has been studied for many years 

resulting in a large number of empirically derived formulae (Ryan and Harleman, 

1973). Applying empirical formulae to sites other than for which they were derived 

creates a degree of uncertainty in the resulting evaporative flux calculation. 

Duttweiler’s evaporative heat loss equation which provided the best fit to official 

NOAA evaporation data collected in Saint George, UT, possibly underestimates the 

evaporative heat loss occurring in the ZION system.

Cooling from the net longwave flux may also be underestimated. While the 

Stefan Boltzman Radiation Law used in TEMP-84 is an accepted technique for 

modeling longwave flux (TVA, 1972), the emissivities assumed and calculated for air.
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canopy, and water may not be representative of the emissivities for air, canopy, and 

water in ZION. TEMP-84 also assumes a constant density of riparian vegetation for 

calculating longwave radiation emitted from canopy. In ZION the vegetation is not 

of a constant density but rather spotty with trees and bushes located sporadically along 

the study reach. As result, the longwave radiation emitted from the canopy is likely 

overestimated. This overestimate would result in an underestimate of the net longwave 

flux thus underestimating the cooling effect of net longwave flux.

In addition to the inaccuracies of modeling, discrepancies between simulated 

and existing stream temperatures may also be due to a lack of precision in input data. 

Part o f the sensitivity analysis was conducted to determine the uncertainty in modeled 

stream temperature resulting from input data imprecision. This analysis displayed that 

the greatest uncertainty in the modeled maximum stream temperature resulted from the 

imprecision o f groundwater flow and stream width data. The precision range for 

width data allowed for greater than 1.0°C increase in maximum temperature. The 

precision range o f groundwater data allowed a 2.1°C increase. Also causing 

uncertainty in the modeled maximum stream temperature were the variables of stream 

temperature, velocity, relative humidity, air temperature, and discharge. Perturbation 

by their respective rated precision resulted in an increase in maximum stream 

temperature by 0.5°C, 0.5°C, 0.6°C, 0.7°C, and 0.9°C, respectively. Input data error 

meeting the precision range for a combination of these variables could have easily 

caused the over prediction of the maximum temperature of 0.3°C to 2.0°C.

Explanation of why TEMP-84 modeled minimum stream temperatures at values 

less than measured is not clear. During early morning hours to about 0730, the
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energy transfer components, except solar radiation which is zero, were all calculated 

at low rates without any one dominating over the others. During these hours net 

longwave and evaporative flux were cooling while convective heat transfer was 

warming the stream. Evaporative cooling may have been over predicted at night due 

to the lack of site specific empirical coefficients. Or possibly the empirical constant 

utilized in the Bowen ratio does not accurately depict the relationship between 

evaporative and convective heat flux for the ZION system.

Error in input data equal to the precision range of a combination of variables 

could accumulate and also account for the difference of l.T C  to 1.8°C between 

modeled and measured minimum stream temperatures. The sensitivity analysis 

depicted that the precision in stream temperature and relative humidity data allowed 

for the greatest uncertainty in the modeled minimum stream temperatures. 

Perturbation o f the stream temperature by its precision allowed for a 0.5°C decrease 

in minimum temperature while the precision range of relative humidity allowed for a 

0.7°C decrease. Also contributing to the uncertainty of the modeled minimum stream 

temperature was the precision range in air temperature which allowed for a 0.5°C 

decrease in minimum stream temperature.

The difference between modeled and measured mean temperatures ranged from 

0.3°C to 1.0°C. All mean temperatures were determined by calculating the time 

weighted average from the hourly defined record. The mean temperature for 6-30-88 

most closely matched the measured mean temperature because the difference between 

modeled and measured maximum values was balanced by the difference between 

minimum values.
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Statistical applications are difficult to apply to the four simulations as the 

hourly measured and modeled stream temperatures for a twenty-four hour period were 

not random in nature. Thus, it is difficult to determine which of the four simulations 

best models existing conditions.

Simulation of 7-21-88 and 6-30-88 most accurately modeled the measured 

maximum and mean stream temperature, respectively. Minimum temperatures were 

modeled most accurately by simulations of 7-08-88 and 7-21-88. After evaluating the 

four simulations it appeared that the simulation of 7-21-88 most closely modeled 

diurnal fluctuations while 6-30-88 most closely simulated mean stream temperatures.

The timing of modeled peaks for the diurnal fluctuation also indicates of how 

well the measured stream temperature regime was simulated. Lag in the modeled 

diurnal fluctuations likely resulted from a culmination of: imprecision in the time 

corresponding to modeled and measured data points depicted in Figure 6.1 through 

6.4, inaccuracy in the modeled velocity component, and assumptions and 

simplification in the model solution theory itself. Simulation on 6-30-88 depicted peak 

times modeled most closely to measured peak times. Peak times for 7-08-88, 7-15-88, 

and 7-21-88 differ from measured by thirty minutes to one hour.

Hypothetical conditions were simulated for each o f the four days selected for 

modeling. Width, velocity, discharge, percent bedrock, and percent direct shade had 

the same input values over the four days modeled for a given hypothetical condition. 

Differences in simulated diurnal fluctuations for a given hypothetical condition resulted 

from differing meteorological conditions and inflow stream temperatures.



Because each hypothetical simulation represents the change in stream 

temperature from that at baseflow condition and no one hypothetical simulation can 

be judged as absolute, an average percent change in maximum, mean, and minimum 

stream temperature was determined for each hypothetical condition.

The average percent change for maximum, minimum, and mean values applied 

to measured stream temperatures at VRM 157,3 provides an estimate of the stream 

temperatures expected under the selected hypothetical condition. Table 8.2 tabulates 

the resulting average maximum, mean and minimum stream temperatures calculated 

for each hypothetical condition as well as the diurnal fluctuation.
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Table 8.2. Estimates of the maximum, mean, and minimum stream temperatures expected during July at Virgin River
Mile 157.3 for the selected hypothetical flow conditions.

Flow
Condition

Maximum 
Temp, 
deg C

Mean 
Temp, 
deg C

Minimum 
Temp, 
deg C

Diurnal 
Fluct. 
deg C

14,160 1/s 20.7 19.4 18.0 2.7

2,832 1/s 22.6 20.3 17.9 4.7

2,124 1/s 23.4 20.6 17.8 5.6

566 1/s 29.7 22.4 16.5 13.2

283 1/s 32.9 23.3 15.6 17.3

The maximum stream temperatures changed dramatically for flows differing 

from that of baseflow. For a flow of 283 1/s (10 cfs), the estimated maximum stream 

temperature reached a level of 32.9°C which is at least 5°C  higher than that measured 

for baseflow conditions. In contrast, for a flow of 14,160 1/s (500 cfs), the estimated 

maximum stream temperature, 20.7°C, decreased at least 6°C from than that measured 

for baseflow. A shift in stream temperature can dramatically change the existing 

ecological balance and change the character of the aquatic habitat. Often important
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in characterizing aquatic habitat is the maximum stream temperature as aquatic 

organisms frequently have thermal maximum temperatures above which they cannot 

exist. The maximum stream temperatures estimated for 566 1/s (20 cfs) and 283 l/s 

(10 cfs) might be such to prevent existing organisms from further livelihood. 

Similarly, maximum stream temperatures as low as that expected for 2,124 l/s (75 

cfs), 2,832 l/s (100 cfs), and 14,160 l/s (500 cfs) might also alter the selection of 

aquatic life which currently exists.

Mean stream temperatures follow the same pattern as maximum stream 

temperatures, ie., increasing with decreased flow and decreasing with increased flow. 

The mean stream temperature depicted for 283 l/s, 23.3°C, is at least 0.9°C higher and 

the mean stream temperature estimated for 14,160 l/s, 19.4°C, is at least 1.8°C lower 

than that measured for baseflow conditions.

Minimum stream temperatures increased with increased flow while they 

decreased for decreased flow. The minimum stream temperature estimated for 283 l/s, 

15.6°C, is at least 0.6°C lower than that measured for existing conditions. The 

minimum stream temperature estimated for 14,160 l/s, 18.0°C, is at least 0.2°C higher 

than that measured. Minimum stream temperatures did not differ as much as 

maximum stream temperatures because of the low heat transfer rate that occurs during 

the night for all flows.

As expected, the diurnal fluctuation dampens for larger flows with relatively 

low maximum and high minimum stream temperatures. This result corresponds to 

Sullivan’s (1989) work illustrating decreased diurnal fluctuation with increased stream 

size. The larger stream illustrates a greater thermal inertia and is less responsive to
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fluctuations in atmospheric conditions. Equation 2.1, TEMP-84’s simplified basic 

solution theory, predicts this response. As the discharge increases, the increase in 

surface area becomes small compared to the increase in discharge. Accordingly, the 

ratio of surface area to discharge becomes small. As a result, the net heat transfer 

multiplied by a decreasing surface area to discharge ratio produces smaller change in 

temperature and dampened diurnal fluctuations. Eventually, the surface area to 

discharge ratio approaches zero and thus the calculated change in temperature 

approaches zero. When this happens, the modeled stream temperature approximates 

that of the inflow stream temperature; this occurred at approximately 14,160 1/s for 

the study reach. In contrast, for low flows, the surface area to discharge value tends 

to be large producing large temperature changes and increased diurnal fluctuations.

Figure 8.1 depicts a plot of the diurnal fluctuation with respect to flow. 

Change in the diurnal fluctuation transpired most dramatically within the first 2,832 

1/s and then gradually decreased to 2.7°C by 14,160 1/s. In contrast, as the flow 

decreased from baseflow, the diurnal fluctuation increases quickly towards infinity. 

Of course this cannot happen in reality. The probable stream temperature and diurnal 

fluctuation for near zero flow would be equal to the surrounding air temperature and 

its diurnal fluctuation.

The percent change in stream temperature from that modeled for baseflow 

condition is fairly consistent between the four days modeled for the respective 

hypothetical condition. The standard deviation for the average percent change in 

maximum, mean, and minimum stream temperature, respectively, was less than two 

percent for all cases except simulation of maximum stream temperature at 283 1/s.



For this hypothetical condition, the percent change in maximum stream temperature 

ranged from -23.8 percent to -16.6 percent over the four days selected for modeling. 

The standard deviation was 3.07 percent. The percent change in temperature varies 

more for low flow conditions because the flow component is less dominating and the 

change in temperature is more responsive to fluctuations in the heat transfer 

components.
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Fig. 8.1. Trend in diurnal fluctuation of stream temperature at Virgin River Mile
157.3 with respect to flow.

With a decrease in flow from 14,160 l/s to 283 l/s, the average percent change 

in maximum stream temperature decreased from 23.9 percent to -20.9 percent while 

the average percent change in mean stream temperature decreased from 11.2 percent 

to -6.8 percent. In contrast, the average percent change for minimum stream
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temperature increased from -5.6 percent to 8.5 percent. Figure 8.2 illustrates the 

trend o f the average percent change in maximum, mean, and minimum stream 

temperature with respect to flow. Each curve decreases in slope with increased 

discharge showing that the increase/decrease in average percent change for minimum, 

mean, and maximum temperatures becomes small with additional increases in 

discharge. The range in the average percent change for minimum, mean, and 

maximum temperatures occurs to a large degree between 283 1/s and 2,832 1/s. 

Between 2,832 1/s and 14,1601/s, the absolute value of the average percent change for 

minimum, mean, and maximum stream temperature increased by 0.6 percent, 4.5 

percent and 7.0 percent, respectively. Simulations o f 28,320 1/s (1000 cfs) for 6-30- 

88 indicated an increase in the percent change of maximum temperature of 1.3 percent 

from that modeled for 14,160 1/s and no increase/decrease in the percent change for 

mean and minimum stream temperatures. Small increases in the percent change in 

stream temperatures with a large increase in discharge infer that a limiting percent 

change in stream temperature exists beyond which discharge will not affect. An 

estimate for this limiting percent change in temperature can be made from the 

simulated results for 14,1601/s seeing as the increase in percent change in temperature 

between 14,160 1/s and 28,320 1/s on 6-30-88 was less than 1.5 percent ie., 0.5°C. 

The average percent change of 23.9 percent for maximum stream temperature, 11.2 

percent for mean stream temperature, and -5.6 percent for minimum stream 

temperature reached at 14,160 1/s approximates a boundary percent change beyond 

which increases in discharge will not affect.
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Fig. 8.2 Average percent change in maximum, mean, and minimum stream 
temperature at Virgin River Mile 157.3 with respect to flow.

As with the diurnal fluctuation, the average percent change in maximum, mean, 

and minimum temperatures increase in an exponential fashion for flows less than 

baseflow. It is obvious that stream temperature cannot reach infinity as the flow 

approaches zero. It is most probable that as the flow decreases from 283 l/s, the 

maximum, mean, and minimum stream temperatures will approach values equal to 

those of the surrounding air temperature.

The difference in time for peak temperatures is largely due to the change in 

velocity for the different flows. Another factor is that stream temperature output from 

TEMP-84 was reported at hourly intervals. Output values for hypothetical conditions 

were interpolated to delineate stream temperature values within + /-  15 minutes of
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those output for baseflow conditions. Therefore, the times logged for the stream 

temperature values delineated in Figures 7.2 through 7.9 and Tables E.2 through E.5 

are precise to + /-  15 minutes. In addition, the inflow temperature regime at VRM

163.1 also has inherent error in the time logged on the chart as a result of the 

imprecision of the instrument.

Modeled results for hypothetical conditions are not absolute but rather have an 

inherent error due to a lack of precision in model input data as well as model 

shortcomings, assumptions, and simplifications. Specifically, for hypothetical flow 

conditions, a lack of precision exists for width and velocity values as they were 

estimated as function of flow based on empirical relationships. The relationships for 

these variables were determined from Manning’s equation assuming a constant 

Manning’s n roughness coefficient and a constant energy slope. While it is known that 

neither the "n" value nor the energy slope remain constant for varying flows, it was 

the best information available. Furthermore, no data are available for which to 

compare to the empirically derived values to estimate their accuracy. Accordingly, 

the results from modeling the hypothetical conditions should be judged as an indication 

of the response of stream temperature in contrast to an absolute answer.

Simulating the hypothetical inflow stp^am temperature conditions required 

altering the single variable of inflow stream temperature. While the inherent 

inaccuracies o f the model are still present, any inaccuracies from estimated values by 

means other than measured data is averted.

Results from modeling the hypothetical inflow temperature represent the change 

in stream temperature from that of baseflow conditions. Since each individual



simulation has inherent errors and inaccuracies, the percent change in maximum, 

mean, and minimum stream temperatures from the four modeled days were averaged 

for a better overall indication of the response of stream temperature to the respective 

hypothetical inflow temperature condition.

The average percent change for maximum, mean, and minimum stream 

temperature values applied to the measured stream temperatures at VRM 157.3 

provides an estimate for stream temperatures expected under the selected hypothetical 

conditions. Table 8.3 tabulates the resulting average maximum, mean, and minimum 

stream temperatures for each hypothetical condition.
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Table 8.3. Estimates of the maximum, mean, and minimum stream temperatures for the selected hypothetical inflow
temperature conditions at Virgin River Mile 157.3.

Maximum Mean Minimum Diurnal
Inflow Temperature Condition Temperature Temperature Temperature Fluctuation

deg C degC deg C deg C

Groundwater Temperature 25.6 19.8 15.0 10.6

Average Ambient Temperature 31.1 26.4 22.2 8.9

As expected, cooler inflow stream temperatures resulted in cooler downstream 

temperatures while warmer inflow stream temperatures resulted in warmer downstream 

temperatures. For average ambient inflow stream temperatures, the maximum stream 

temperature reached 31.1°C which is at least 3.3°C higher than that measured for 

baseflow conditions. Similarly, the mean stream temperature of 26.4°C is at least 

4.0°C higher and the minimum stream temperature of 22.2°C is at least 4.4°C higher 

than those measured. In contrast, for groundwater temperature inflow, the maximum 

stream temperature of 25.6°C is at least 1.3°C lower, the mean stream temperature of
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19.8°C is at least 1.4°C lower, and the minimum stream temperature of 15.0°C is at 

least 1.2°C lower than those measured for baseflow conditions.

The stream temperature regime over the twenty-four hour period for the 

different inflow temperature conditions were very uniform in shape; each regime 

appeared to differ from the others and existing conditions by a consistent number of 

degrees throughout the twenty-four hours. This results because the inflow stream 

temperature for each simulation serves as a reference temperature around which the 

diurnal fluctuation is modeled. Comparing the absolute temperature difference 

between the individual hypothetical simulations and existing conditions indicated that 

an average stream temperature change of 0.5°C occurred at VRM 157.3 for every one 

degree perturbation in inflow stream temperature at VRM 163.1.

The percent change in maximum, minimum, or mean stream temperature from 

that modeled for existing conditions was quite similar over the four days for a given 

hypothetical inflow temperature condition. The standard deviation for each average 

was less than two percent except for the percent change in minimum stream 

temperature under average ambient inflow temperature conditions. The percent change 

for this hypothetical condition ranged from -27.3 percent to -33.8 percent. The 

standard deviation over the four days modeled was 2.91 percent. Contrary to what 

was seen previously, minimum stream temperatures depicted the largest percent change 

between hypothetical and existing conditions. This is because minimum temperatures 

are less in absolute value than mean or maximum temperatures while the temperature 

difference between hypothetical and existing maximum, mean, and minimum stream
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temperatures, respectively, are the same. Moreover a smaller number is divided into 

the same difference producing a larger percent change.

Overall, the percent change in maximum, mean, and minimum stream 

temperature was greater in absolute value for ambient inflow conditions than 

groundwater temperature inflow conditions. This was expected because the ambient 

inflow temperatures differed by 8°C to 10°C while the groundwater temperature only 

differed by 3°C to 4°C from inflow stream temperatures for existing conditions; as 

depicted by the results, a greater difference in inflow stream temperatures produced 

a greater difference in outflow stream temperature.



Conclusion

The East Fork of the Virgin River flows at an average base rate of 1,076 1/s 

(38 cfs) through a widening canyon in southwest Utah. Ambient conditions are typical 

of the Southwest with high afternoon temperatures and cool evening and night 

temperatures.

The first objective of this study was to describe the existing stream temperature 

regime of the East Fork of the Virgin River within Zion National Park during the 

summer of 1988. Diurnal fluctuations of 10°C at Virgin River Mile (VRM) 157.3 

were common during the study period, June 29 through July 22, 1988. Daily 

maximum stream temperature recorded at VRM 157.3 ranged between 23.7°C and 

27.8“C. Daily minimum stream temperature ranged from 15.2°C to 18.8°C and daily 

mean stream temperatures ranged from 21.2°C to 22.9°C. Average maximum, mean, 

and minimum stream temperatures at VRM 157.3 during the study period were 

26.7°C, 21.8°C, and 17.0°C, respectively. The above documented stream 

temperatures were all recorded during base flow conditions.

The second objective was to predict the response of the daily fluctuations and 

mean daily stream temperature to hypothetical flow and inflow temperature conditions. 

To accomplish this objective, TEMP-84 was utilized to model existing conditions and



selected hypothetical conditions. Modeled results were viewed in terms of the relative 

change in stream temperature from that modeled for existing conditions.

The average percent change in maximum, mean, and minimum stream 

temperature modeled for each hypothetical flow was applied to measured stream 

temperatures to estimate the stream temperatures expected for the selected hypothetical 

flow condition. Table 9.1 documents the resulting stream temperatures.
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Table 9,1. Estimates of the maximum, mean, and minimum stream temperatures expected during July for the selected 
hypothetical flow conditions at Virgin River Mile 157.3.

Flow
Condition

Maximum 
Temperature 
deg C

Mean
Temperature 
deg C

Minimum 
Temperature 
deg C

Diurnal
Fluct.
degC

14,160 1/s 20.7 19.4 18.0 2.7

2,832 1/s 22.6 20.3 17.9 4.7

2,124 1/s 23.4 20.6 17.8 5.6

566 1/s 29.7 22.4 16.5 13.2

283 1/s 32.9 23.3 15.6 17.3

The change in maximum, mean, and minimum stream temperatures for 

hypothetical flows greater than baseflow depicted decreasing maximum and mean 

stream temperatures and increasing minimum stream temperatures. The percent 

change in modeled maximum, mean, and minimum stream temperatures from that 

modeled for existing conditions increases/decreases dramatically between baseflow and 

2,832 1/s (100 cfs). Beyond 2,832 1/s, the percent change in stream temperature 

increases/decreases gradually up to 14,1601/s (500 cfs) and then only slightly between 

14,160 1/s and 28,320 1/s (1000 cfs). These results indicate that a limiting percent 

change in stream temperature exists beyond which increases in discharge will not 

affect. A decrease in maximum stream temperature of 23.9 percent, decrease in mean
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stream temperature of 11.2 percent, and increase in minimum stream temperature of 

5.6 percent, as simulated for 14,160 1/s, is an estimate of the limiting percent change 

in maximum, mean, and minimum stream temperatures for increasing flows. These 

respective percent changes applied to measured stream temperatures result in an 

average maximum stream temperature o f 20.7°C, average mean of 19.4°C, and 

average minimum of 18.0°C.

The response of stream temperatures to hypothetical flows decreasing from that 

of baseflow depicted sharp increases in maximum and mean temperatures and 

decreases in minimum stream temperatures. For 283 1/s (10 cfs), the maximum 

stream temperature increased from the existing maximum stream temperature by 20.9 

percent resulting in a stream temperature of 32.9°C. Mean stream temperatures 

increased by 6.8 percent resulting in a stream temperature o f 23.3°C while minimum 

stream temperatures decreased by 8.5 percent resulting in stream temperature of 

15.6°C.

Increasing hypothetical flow conditions produced decreased diurnal fluctuations 

in stream temperature. For flow greater than baseflow, the diurnal fluctuation dropped 

sharply between baseflow and 2,832 1/s and then gradually decreased to 2 .T C  by 

14,160 1/s. In contrast, a decrease in flow from that of baseflow produced an increase 

in the diurnal fluctuation. For flow less than baseflow, the diurnal fluctuation 

increased quickly from an average of 10.2°C at baseflow to 17.3°C at 283 1/s.

Modeled results illustrate that the surface area to flow ratio plays a large role 

in the simulated stream temperature. As flow increases, it eventually becomes great 

enough to drive the ratio of surface area to discharge towards zero and thus cause the
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calculated change in stream temperature to approach zero. For these conditions, 

variations in meteorological conditions have a minimum effect and the outflow stream 

temperatures approach that of the inflow values. For the East Fork of the Virgin 

River, a flow of 14,160 1/s was great enough to result in only small changes as the 

modeled stream temperature was simulated within 1°C of the inflow stream 

temperature values. In contrast, for low flows, the surface area to discharge ratio 

becomes large thus producing relatively large changes in stream temperatures. 

Because the flow is less dominating, the calculated change in stream temperature for 

low flows is much more responsive to variations in the net heat flux and thus shows 

a greater variance between simulations.

Modeled results for hypothetical inflow temperature conditions show that the 

stream temperature at VRM 157.3 will respond dynamically in the direction 

corresponding to the direction of change in the inflow temperature at VRM 163.1. 

Furthermore, each modeled diurnal fluctuation at the downstream end of the study 

reach was offset from the modeled existing diurnal fluctuation by an average of 0.5°C 

for every 1°C difference in inflow temperature.

Again, applying the average percent change in maximum, mean, and minimum 

stream temperature for each hypothetical condition to measured stream temperatures 

provides an estimate of stream temperatures expected for the selected inflow 

temperature condition. Table 9.2 documents the resulting stream temperatures.

Average ambient inflow temperatures modeled increases in maximum, mean, 

and minimum stream temperature o f 14.1 percent, 21.3 percent, and 30.0 percent, 

respectively, from that modeled for existing conditions.
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Table 9.2. Estimates of the maximum, mean, and minimum stream temperatures expected during July for the selected
hypothetical inflow temperature conditions at Virgin River Mile 157.3.

Maximum Mean
Inflow Temperature Condition Temperature Temperature

deg C deg C

Minimum Diurnal
Temperature Fluctuation
deg C deg C

Groundwater Temperature 25.6 

Average Ambient Temperature 31.1

19.8

26.4

15.0

22.2

10.6

8.9

Inflow at groundwater inflow temperature modeled decrease in maximum, 

mean, and minimum stream temperature of 5.9 percent, 9.0 percent and 12.4 percent, 

respectively, from that modeled for existing conditions.



Recommendations for Future Research

In carrying out this research, several problematic situations occurred which 

could be avoided in the future. For instance, forgetting to turn on the Ryan stream 

thermograph battery resulting in no data collection and the broken stream thermograph 

seal resulting in instrument flooding and damage could have been avoided if more 

attention had been given to the instrument conditions during servicing an double 

checking settings and thermograph assembly prior to remounting in the stream.

Further data collection problems were incurred as a result of instrument site 

selection. Data from maximum/minimum mercury thermometers was useless due to 

the unrepresentative site selection. It is difficult to find adequate shading for a 

mercury thermometer while at the same time measuring accurate air temperatures. For 

future research, it is recommended that artificial shade be constructed for the 

thermometers to allow siting in an open location representative of surrounding air 

temperatures. Another problem related to instrument site selection arose when the 

probe to the submersible stream thermograph became buried with sediment deposition 

from flood flow. This situation can be avoided by allowing room for sediment 

deposition when siting the instrument. In this East Fork study reach, at least eight 

inches should have been left between the tip of the probe and the elevation of the 

streambed.
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Problems arose in analysis of air temperature data due to calibrating the 

instrument with different thermometers at the beginning and end of each chart record. 

This can easily be avoided by calibrating the instrument to only one thermometer.

Some data analysis complications arose because of inadequate planning on how 

the data will be analyzed prior to data collection. It is essential that the method for 

data analysis be clearly set thus allowing proper planning for data collection to meet 

data analysis needs. Proper planning could have prevented the sporadic collection of 

relative humidity and wind data which was useless in the analysis. It also would have 

prevented the lack of consistency in site location for discharge measurements which 

made groundwater accretion analysis difficult.

Finally, it is important that the field crew collecting data for the study be 

informed thoroughly on the importance of the data and the guidelines by which it 

should be collected. More complete direction and emphasis to the crew on the 

importance o f taking the downstream discharge at VRM 157.3 on the same day as that 

for which the upstream discharge measurements were made would have prevented the 

need for assuming the same flow over two consecutive days for groundwater accretion 

analysis.

In future research, TEMP-84 can most efficiently be used by placing emphasis 

on those variables for which the model was most sensitive, i.e ., inflow stream 

temperature, width, air temperature, discharge, velocity, and length. For systems that 

differ greatly from that of the East Fork of the Virgin River, a thorough sensitivity 

analysis should be conducted prior to data collection using site representative data to 

re-evaluate the sensitive variables in the system.
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This research indicated that the velocity component is fairly important as it 

controls the time of the modeled peak temperatures. Because the velocity component 

is utilized for tracking and calculating the travel time of the individual water parcels, 

one might implement a dye time test to determine appropriate velocity values. This 

method would describe the travel time from the upstream to the downstream end of 

the study reach.

According to the modeled results, the evaporative flux represents the greatest 

heat transfer from the stream. Because the evaporative heat flux is potentially very 

important, one should determine site specific evaporation coefficients for the empirical 

evaporative flux equation. This would allow more confidence that the evaporative heat 

transfer was being modeled accurately.

Describing the stream characteristics of width, velocity, etc. was found to be 

labor intensive as well as time consuming. One might look into utilizing aerial 

photographs as a possible means to collect stream characteristic data.

Research is needed in modeling the response of stream temperature to 

perturbations in natural conditions during the different time periods of the year. This 

research addressed that time period during which maximum stream temperatures occur. 

Another important time period with respect to fisheries is that time period during 

which spawning occurs.

A future research project exists in modeling the flow regime along with the 

stream temperature regime for a short study reach. This would provide for a more 

accurate accounting of stream characteristics corresponding to flows differing from 

baseflow. It would be interesting to note the differences between results simulated
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with empirically developed data versus those simulated with hydraulically modeled 

data.

Another future research project would be to attempt to measure for the East 

Fork of the Virgin River or a similar stream, stream temperatures for the ranges of 

flow and inflow temperature implemented for hypothetical conditions in this research. 

Measured and modeled results could then be compared.

One could also research the role of air temperature versus solar radiation in 

controlling the stream temperature. Literature is unclear on which of these two 

variables plays a larger role in regulating the stream temperature.

Use of the results from this study for systems other than the study site on 

which this research was conducted, should only be considered upon comparison o f the 

system under question to that of the East Fork of the Virgin River within Zion 

National Park. If the system under question differs noticeably with respect to shading 

characteristics, stream characteristics, or meteorological characteristics from that of the 

East Fork, application of results from this research would not be appropriate as the 

relationship of stream temperature to the variables in TEMP-84 would likely change.
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A variety of instruments were used for collecting data. Ryan Model "J" 

Thermographs which are continuous recording and submersible, were mounted in the 

stream to record the stream temperature. Hygrothermographs which were calibrated 

in the field to maximum/minimum mercury thermometers were utilized to measure the 

air temperature along the study reach. Hand held mercury and alcohol thermometers 

were utilized to measure the temperature of spring flow. An abney level was used to 

measure shading angles while discharge measurements were made utilizing a vertical 

axis current meter.

A. 1 Ryan Model "J" Stream Thermographs

Battery powered Ryan Model "J" Thermographs used to record stream

temperature, were mounted on fence posts which were driven into the streambed.

Each instrument is 4.8 inches in diameter and 8.3 inches in length and has a sensor, 

2.9 inches in length, comprised of a liquid system within a fast response Teflon coated 

probe. The sensor response time is rated at seventy-five seconds for 2/3 span of the

chart. Full span of the chart can be sensed within eight minutes. Each chart spans

thirty degrees centigrade and is marked at one degree intervals. Accuracy is rated at 

+ ! -  2 percent (-1-/- 0.6°C) for temperature and + / -  0.2 percent { + / -  3 minutes/day) 

for time.

Ryan stream thermographs and the various thermometers were calibrated at 

ZION because the instruments had not been received prior to departure for the field 

season. Guidance on calibration techniques was provided by Mr. Gale Murphy, an 

instrument specialist at the Engineering Research Center (ERG) at Colorado State 

University (CSU). To calibrate, the instruments were hung in a water bath contained



in a one and a half foot diameter, two foot tall rubber bucket. A mercury, total 

immersion, precision thermometer which was factory rated to read within 0. TC was 

hung in the "bath" to measure a standard water temperature. The precision 

thermometer was calibrated by ERC prior to use to verify the 0 .1“C rating. The bath 

was manually stirred and the temperature was altered by means of adding ice or hot 

water. At least fifteen minutes was allowed for the bath temperature to stabilize and 

the instruments to come to equilibrium after the bath temperature was altered. The 

relationship between sensed and standard temperatures for each of the instruments was 

developed through linear regression analyses. Field calibration data for the stream 

thermographs are listed in Table A .l.
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Table A.l Field calibration data for Ryan Submersible Thermographs

STANDARD #64624 #64622
TEMP THERM. THERM

C C C

22.3 22.0 21.4
20.8 21.9 21.0
21.2 21.8 21.0
22.0 22.2 21.3
28.2 28.0 26.5
27.6 28.0 26.7
29.9 29.6
17.8 18.8 17.8
6.9 8.7 7.3
7.3 8.5 7.2
7.6 8.6 7.2
12.9 13.3 11.7
13.0 13.3 11.9
13.4 13.8 12.2
29.9 30.3 28.8
30.9 31.1 29.4

Upon completion of the field season, the Ryan stream thermographs and 

various thermometers which had not been damaged in the field were submitted to the 

ERC for professional calibration. The instruments were hung in a temperature bath



of ethylene glycol and water. The temperature of the bath was mechanically 

controlled and the resulting temperatures sensed by the instruments were read and 

recorded. The relationship between sensed and standard temperatures for each of the 

instruments was developed through linear regression analyses. ERC calibration data 

for Ryan stream thermograph #64622 are listed in Table A .2.
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Table A.2 Engineering Research Center calibration data for Ryan Stream Thermograph #64622.

COLORADO STATE UNIVERSITY 
CALIBRATED NOVEMBER 3-8, 1988 
GALE MURPHY, RODNEY WITLER

TEMPERATURE REPORTED IN DEGREES C.

THERMOGRAPHS BATTERY CHECK: OK

STANDARD

11.5
16.6 
20.9 
25.3
30.6

SN 64622

11.1
16.0
20.0
24.2
29.6

Instrument #64622 was set at the downstream end of the study reach, VRM 

157.3. The calibration data and regression generated by the ERC for this instrument 

aligned well with the calibration data developed in the field (Figure A. 1) and was used 

to calibrate the data recorded by instrument #64622.

Instrument #64624 was set at the upstream end of the study reach, VRM 

163.1. It operated through July 22 at which time the water seal broke and the 

instrument was damaged beyond repair. As a result, the instrument could not be 

calibrated at the end of the season by the ERC. Though not verified by the ERC, the 

linear regression equation developed from field data was assumed to be accurate for 

the time period between June 3 and July 22. This is based on the assumption that 

field calibration techniques were acceptable. Similarity between calibration data



146

□  P I ELD DATA
THEP»^F?APH TB43ERATURE. C 

-  ERC REGRSSN CURVE O ERC DATA

Fig. A. 1 Calibration Data and Regression Curve for Ryan Stream Thermograph
men.

developed in the field and calibration data generated by the ERC for instrument 

#64622 supports this assumption. Figure A .2 portrays the calibration data and 

regression line for instrument #64624.

A.2 Hand Held Thermometers

Two mercury hand held thermometers and one alcohol hand held thermometer 

were utilized throughout the summer to measure the temperature of spring flow. The 

mercury thermometers were read with a precision of 0.5°F while the alcohol 

thermometer read with a precision of 0.5°C. Field calibration data are listed in Table 

A.3.

Mercury thermometer #1 was utilized from the beginning of the field season 

through 8-5-88 at which time it broke. Prior to 8-5-88, calibration data was generated



147

P IE LO  DATA
THEPMOGRAPH T B ^E R A T U R E . C

--------- P IE LO  REGPSSN CURVE

Fig. A .2 Calibration Data and Regression Curve for Ryan Stream Thermograph
#64624.

Table A.3 Field calibration data for Mercury #1, Mercury #2, and Alcohol handheld thermometers.

STANDARD ALCOHOL MERCURY#2 STANDARD MERCURY#!
TEMP TEMP TEMP TEMP TEMP

C c C C C

29.7 29.8 30.0 31.2 31.4
27.3 27.5 27.8 29.2 29.2
25.3 25.5 25.6 24.9 25.8
24.0 24.2 24.4 30.0 30.3
22.1 22.5 22.2 24.9 25.3
32.0 31.8 32.2 31.9 31.9
28.8 28.9 28.9 24.6 25.0
29.2 29.1 28.9
27.1 27.3 27.2
22.2 22.5 23.1
30.3 30.8

c i n g  t h e  t h e r m o m e t e r  o u t s i d e ,  u n d e r  c o m p l e t e  s h a d e ,  a l o n g s i d e  t h e  m e r c u r y

precision thermometer with care to keep the bulbs of the thermometers suspended in 

air. The thermometers were read simultaneously at different times of the day over a



period of a four days from July 18 through July 21, to obtain data points throughout 

the diurnal fluctuation of temperature. The resulting regression along with the 

regression equation is shown in Figure A .3. Field calibration results were applied to 

data collected by Mercury thermometer ff\ .
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□  F IE LO  DATA
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--------- F IE L D  REGRSSN CURVE

Fig. A .3. Calibration Data and Regression Curve for Hand Held Mercury 
Thermometer #1.

Mercury thermometer #2 which was of the same make as mercury thermometer 

#1 was utilized after 8-5-88. This thermometer was calibrated at ZION as well as by 

the ERC. The field calibration data consisted of air temperature data, as described 

with the mercury i t \  thermometer, as well as water temperature data collected in the 

water bath. Figure A .4 documents the ERC regression equation and illustrates that



the regression curve developed from the ERC data is of slightly lesser slope, resulting 

in approximately 0.5°C difference from that developed from the field data in the 

range. ERC calibration data for both the mercury #1  and alcohol thermometers are 

listed in Table A.4. Regressions developed from ERC data were implemented for the 

mercury #2 and alcohol thermometers.
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Fig. A .4 Calibration Data and Regression Curve for Hand Held Mercury
Thermometer #2.

All data collected by the Mercury # \  thermometer between 6-24-88 and 7-10- 

88 was omitted from the analysis due to an approximate 3“F separation in the mercury 

fluid o f the thermometer. The separation was noticed on 6-30-88 and corrected on 

7-10-88. To determine when the separation in mercury occurred, a study was



conducted on the difference between simultaneous readings of the Mercury # \  

thermometer and other temperature measuring devices. This analysis illustrated a 

noticeable increase in the difference between the Mercury #1 thermometer 

measurement and that of the instrument being compared beginning 6-24-88. It was 

thus determined that the separation was incurred on 6-24-88 and all data collected 

between this date and 7-10-88 was not valid.
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Table A,4 ERC calibration data for Mercury #2 and Alcohol handheld thermometers.

WEKSLER Alcohol Thermometer 
(degrees C)

Standard Weksler
Temp, Temp.

Mercury Pocket Thermometer 
(degrees C)

Standard Total Tip 
Temp. Emersion Emersion 

Temp. Temp.

-9 -8 -8.4 -7.8
-5 -4 1.9 0.6
1 2 12.1 12.8
7 8 21.1 21.7
12 13 29.9 30.6 30.6
17 18 42.6 43.3 43.3
22 23 30.6 31.1 31.1
27 28 20.7 21.1 21.1
33 34 11.9 12.8
40 41 2.3 2.8

A .3 Hvgrothermographs

Hygrothermographs which were driven by a clock, recorded air temperature 

on a continuous basis according to the response of a bimetal sensor. Temperature was 

plotted on a seven day chart which ranged from 10°F to 110°F and marked at intervals 

of 2“F. The instruments used were fairly old and can only be expected to be accurate 

to within + /-  2°F (Nolan, 1988). Prior to field implementation, the instruments were 

thoroughly checked with respect to operation within a temperature controlled 

environment by Charlie Wilkins, a technician for the Colorado Climate Center in Ft. 

Collins, CO. In addition, the instruments were set in the CSU weather shelter.



Comparisons to the official CSU weather station hygrothermograph and the standard 

mercury thermometer were made during the period of 5-3-88 to 5-15-88. Table A .5 

documents simultaneous air temperature readings from standard mercury thermometer, 

CSU official hygrothermograph and the field implemented hygrothermographs. Point 

readings depicted that the hygrothermographs measured within 2°F of the actual 

temperature measured by the mercury thermometer. Comparisons between the CSU 

hygrothermograph chart and the charts recorded by instrument #63518 and #60516 

document that each of the field instruments read peak temperatures within 2°F of those 

read by the official CSU hygrothermograph (Figure A .5 and A .6).
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Table A.5 Simultaneous air temperature readings from standard mercury thermometer, CSU official 
hygrothermograph, and field implemented hygrothermographs.

DATE TIME STANDARD CSU HYGRO. HYGRO. HYGRO.
TEMP HYGRO. #63518 #60758 #63516
C C C C C

5-10-88 11:10 15.6 14.4 15.6 14.4
5-10-88 16:15 17.5 17.2 17.7
5-11-88 15:15 23.3 23.6 23.3 23.4
5-12-88 12:00 26.7 26.7 27.2
5-12-88 19:00 27.2 28.3 25.6 27.8
5-13-88 7:30 13.9 14.4 14.4 13.9
5-13-88 morning low 11.1 11.1 10.6
5-13-88 16:15 30.0 31.1 31.1 30.6
5-15-88 - 20.6 20.6 21.1 20.8

NOTE; All instruments were located in CSU weather shelter.

A .4 Mercury Maximum/Minimum Thermometers

Weather Measure Model TM45 Minimum-Maximum Thermometers were 

implemented to serve as a reference by which to calibrate hygrothermographs. These 

thermometers consisted of a glass "U" tube filled with mercury, two metal indices, 

one to indicate the maximum temperature and one to indicate the minimum 

temperature, a magnet to reset the indices, and minimum and maximum temperature
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Field Hygrothermograph #63518 Chart

Figure A .5. Comparison of charts recorded by CSU hygrothermograph and field 
hygrothermograph #63518 chart between 5-3-88 and 5-6-88.
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CSU Hygrothermograph Chart

Field Hygrothermograph #63516 Chart

Figure A .6. Comparison of charts recorded by CSU hygrothermograph and field 
hygrothermograph #63516 chart between 5-11-88 and 5-14-88.



scaling. The precision in reading the instruments was + /-  1°C. One of the two 

minimum-maximum thermometers was calibrated in the field as well as professionally 

by the ERC. Regressions developed from the ERC and field collected data are shown 

in Figures A .7 and A .8. For the one comparison available (Figure A .8), little 

difference between the ERC and field data regression existed thus adding support to 

the validity of the field calibration techniques. In all cases, the ERC regression 

equation, which is documented on each figure, was implemented in the data analysis. 

ERC and field calibration data are listed in Tables A .6 and A .7.
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□  EPC DATA
THEOCMETEP TBHPERATUPE.. C

--------- ERC REGRSSN CURVE

Fig. A .7 Calibration Data and Regression Curves for Virgin River Mile 157.5 
Maximum/Minimum Thermometer.
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THEfWOMETBÌ TBwPERATURE. 
EPC REGPSSN CURVE FIELO  DATA

Fig. A .8 Calibration Data and Regression Curve for Virgin River Mile 163.0 
Maximum/Minimum Thermometer.

Table A.6 Engineering Research Center calibration data for maximum/minimum mercury thermometers.

Calibration of Min/Ma» tbermonieters.

Standard: Platinum resistance tbermooeter probe.
Doric DS-100-T5 probe readout.

ALL READIMG IM DECSEES CELSIUS

Standard
Reading

N. Fork 
(coltimn)

161-1
(column)

UES
(column)

Sec. 3 
(column)

I£F
(column)

(+) Min. Uax. Min. Max. Min. Max. Min. Ma 3T Min. Max.

0.7 1 1 5 3 2 1 3 3 -1 -2

5.1 5 5 9 7 6 5 7 7 3 1

9.5 9 9 12 12 11 10 10 11 6 7

13.8 13 13 17 15 14 13 15 14 11 11

20.1 19 19 23 21 20 20 21 20 16 16

24.0 23 23 26 25 23 24 24 24 20 20

29.2 27 28 32 30 29 29 29 29 25 25

33.9 33 34 37 35 34 34 34 34 30 30

38.1 37 38 41 40 38 39 39 38 34 35

44.6 45 45 49 46 45 45 45 44 42 41
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Table A.7. Field calibration data for maximum/minimum mercury thermometers.

STANDARD MAX/MIN MAX/MIN MAX/̂
TEMP VRM VRM VRM

161.1 159.7 163.0
C C C C

31.7 33.5 31.8 32.0
29.7 31.0 29.0 30.0
27.3 29.0 27.0 27.5
25.3 27.2 25.2 25.5
24.0 26.0 24.0 24.2
22.1 24.0 22.0 22.2

A .5 Abney Level

A hand held abney level was used for all angle measurements. The precision 

in reading this instrument was + /-  0.5 degrees.

A .6 Discharge Equipment

A pygmy vertical axis current meter mounted to a top-setting wading rod was 

used to measure discharge. A nylon coated steel tape strung across the stream was 

used to delineate the location of each velocity measurement. Discharge measurements 

were made according the midsection method outlined by the USGS (Buchanan, 1969) 

which are generally accepted to be precise to within ten percent of the calculated 

measurement.
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Table B.1 , Pre-data reeulta of the percent change In the nsdeled mexiaua and Blnliua atreaai
taaperature (deg C) at VRN 157.3 with the epaclfled Increaae In the designated aiodet 
Input variable.

MIN TEMP 
MAX TEMP

XCHC MIN 
XCHG MAX

BASE 1 
TEMP 1 WID10X

WIDTH
UI050X

........
UID100X

.......
BUF10X

■BUFFER
BUF50X

........
BUF100X

.......
CC10X

CANOPY CO 
CC60X

VER.....
CC90X

MIN TEMP 
MAX TEMP

17.4 1 
34.05 1

17.16
35.16

16.29
39.08

•••••••••I
15.33
42.92

17.37
34.03

17.39
34.03

17.41
34.04

17.41
34.06

17.54
33.98

17.58
33.95

XCHG MIN 
XCHG MAX

1
1

-1.38
3.26

-6.38
14.77

•11.90
26.05

-0.17
-0.06

-0.06
•0.06

0.06
-0.03

0.06
0.03

0.80
-0.21

1.03
-0.29

TEMP 1 
....... I-

10DEG 130EG 20DEG 1 
........1

GWIOX GU50X GUIOOX
........

LEN10X LEN50X LENIOOX

17.4
34.05

16.87
33.56

-3.05
-1.44

17.09
33.77

-1.78
-0.82

17.62 I 
34.26 I 

I
1.26 I 
0.62 I

17.4
33.93

0.00
-0.35

17.39
33.43

•0.06
-1.82

17.38 I 
32.85 I 

I
-0.11 I 
-3.52 I

17.13
35.09

-1.55
3.05

16.35
37.77

•6.03
10.93

15.38
40.71

-11.61
19.56

BASE
TEMP

........ L/R VECE ANGLES---I........ TREE HEIGHT...... I........ TOPO ANGLES......
L/RVEG10XL/RVEG50XL/RVE100XI TREE10* TREE50X TREE100X I TOP010X TOP050X TOPO1007.

MIN TEMP 17.4 1 17.39 17.38 17.38 17.39 17.39 17.38 17.4 17.4 17.4
MAX TEMP 34.05 1 34.04 33.99 33.95 34.06 34.06 34.06 34.05 34.05 32.44

XCHG MIN 1 -0.06 -0.11 -0.11 -0.06 -0.06 -0.11 0.00 0.00 0.00
XCHG MAX !

BASE 1

-0.03 -0.18 -0.29 0.03 0.03 0.03 0.00 0.00 -4.73

TEMP I VEG10X VEG50X VEG100X BED 10X BED50X BE0100X VEL10X VEL50X VEL100X

MIN TEMP 17.4 1 17.4 17.4 17.4 17.4 17.4 17.4 1 17.39 17.36 17.35
MAX TEMP 34.05 1 34.05 34.05 34.05 34.03 33.97 33.89 1 34.12 34.34 34.34

XCHG MIN 1 0.00 0.00 0.00 1 0.00 0.00 0.00 1 -0.06 •0.23 -0.29
XCHG MAX 1 0.00 0.00 0.00 1 -0.06 -0.23 -0.47 1 0.21 0.85 0.85
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Table B.2 , Data collected during recomaisance of study reach on 5*19-88.

TIME

1
1

WIDTH ! 
ft I

1
1

DEPTH 1 
ft 1

TOPO. ! 
ANGLE 1 
SE 1 
deg !

TOPO. 1 
ANGLE 1 

S ! 
deg !

TOPO.
ANGLE
SU
deg

10:05 37 1 0.7 ! 27 ! 32 1 13
10:30 26 1 1.1 1 35 ! 25 ! 13
10:50 22 ! 1.2 ! 20 ! 34 ! 16
11:05 23 ! 1.2 I 20 1 34 1 14
11:20 33 ! 0.8 ! 21 ! 27 ! 16
11:38 26 1 1.0 1 21 ! 21 ! 19
11:55 29 ! 1.1 ! 23 ! 29 1 27
12:12 40 ! 0.5 I 26 ! 31 ! 23
12:48 34 ! 0.8 1 25 I 35 1 16
13:03 24 1 1.5 1 33 ! 31 ! 25
13:20 28 ! 0.9 ! 21 1 26 1 23
13:35 28 ! 1.0 1 20 ! 48 ! 16
13:50 23 I 1.2 ! 15 ! 45 ! 13
14:08 25 1 1.2 1 25 ! 37 ! 14

NOTE: Measurements were taken at approximately 15 minute intervals as the 
reach between VRH 157.5 and VRM 162.0 was traversed.
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Table C.1. Dally ■axlau* and aiinlaun atraam taaparature valuea at VRM 163.1 and VRM 157.3.
Hean taa^raturea ara calculated from maxinun and mininun values.

.... VRM 157.3---- ........ 1- .... VRM 163.1---

MAX STR CALIB MIN STR CALIB CALIB 1 MAX STR CALIB MIN STR CALIB CALIB
DATE TEMP MAX TEMP TEMP MIN TEMP MEAN TEMPI TEMP MAX TEMP TEMP MIN TEMP MEAN TEMP

C C C C C 1 C C C C C

6-4 24.0 24.9 14.9 15.5 20.2 1
6-5 23.5 24.4 14.7 15.3 19.8 1
6-6 22.7 23.6 13.9 14.5 19.0 1
6-7 22.7 23.6 14.0 14.6 19.1 1
6-8 22.8 23.7 13.0 13.5 18.6 1
6-9 23.8 24.7 12.2 12.7 18.7 1
6-10 23.4 24.3 13.0 13.5 18.9 1
6-11 23.2 24.1 12.8 13.3 18.7 1
6-12 21.0 21.8 13.0 13.5 17.7 1
6-13 23.7 24.6 13.6 14.1 19.4 1
6-14 24.7 25.6 13.6 14.1 19.9 1
6-15 25.2 26.2 14.5 15.1 20.6 1
6-16 24.0 24.9 14.4 15.0 19.9 1
6-17 18.8 19.5 16.8 17.5 18.5 1
6-18 25.7 26.7 15.6 16.2 21.5 1
6-19 23.0 23.9 17.3 18.0 20.9 1
6-20 23.6 24.5 17.2 17.9 21.2 1
6-21 24.1 25.0 17.0 17.7 21.3 1
6-22 24.7 25.6 17.3 18.0 21.8 1
6-23 26.1 27.1 17.1 17.8 22.4 1
6-24 26.1 27.1 17.8 18.5 22.8 1 22.2 21.8
6-25 24.0 24.9 19.0 19.7 22.3 1 20.0 19.5 18.0 17.4 18.4
6-26 23.3 24.2 18.0 18.7 21.5 1 19.5 19.0 17.3 16.7 17.8
6-27 26.4 27.4 16.7 17.4 22.4 1 21.1 20.6 16.3 15.6 18.1
6-28 24.9 25.9 18.5 19.2 22.5 1 20.9 20.4 17.4 16.8 18.6
6-29 26.8 27.8 18.0 18.7 23.3 1 21.7 21.3 17.1 16.4 18.9
6-30 26.2 27.2 17.1 17.8 22.5 1 22.0 21.6 16.7 16.0 18.8
7-1 26.5 27.5 16.3 16.9 22.2 ! 21.8 21.4 16.5 15.8 18.6
7 2 26.4 27.4 16.9 17.6 22.5 1 22.3 21.9 17.0 16.3 19.1
7-3 22.8 23.7 18.1 18.8 21.2 ! 19.7 19.2 17.6 17.0 18.1
7-4 25.0 26.0 17.3 18.0 22.0 1 21.2 20.7 17.0 16.3 18.5
7-5 23.7 24.6 15.1 15.7 20.2 ! 20.5 20.0 16.0 15.3 17.6
7-6 25.0 26.0 15.9 16.5 21.2 1 21.5 21.0 16.3 15.6 18.3
7-7 25.6 26.6 15.4 16.0 21.3 1 21.7 21.3 16.1 15.4 18.3
7-8 26.0 27.0 16.0 16.6 21.8 1 21.9 21.5 16.2 15.5 18.5
7-9 25.8 26.8 16.7 17.4 22.1 1 21.7 21.3 16.6 15.9 18.6
7-10 25.6 26.6 17.1 17.8 22.2 1 21.4 20.9 17.0 16.3 18.6
7-11 25.7 26.7 17.4 18.1 22.4 1 21.7 21.3 17.0 16.3 18.8
7-12 26.0 27.0 16.5 17.2 22.1 1 21.3 20.8 16.4 15.7 18.3
7-13 25.9 26.9 15.5 16.1 21.5 ! 21.6 21.2 16.1 15.4 18.3
7-14 25.3 26.3 14.6 15.2 20.7 1 21.2 20.7 15.4 14.7 17.7
7-15 25.9 26.9 15.6 16.2 21.6 1 20.4 19.9 16.0 15.3 17.6
7-16 25.8 26.8 15.9 16.5 21.7 1 21.7 21.3 16.1 15.4 18.3
7-17 26.0 27.0 16.2 16.8 21.9 1 22.0 21.6 16.6 15.9 18.7
7-18 26.3 27.3 16.6 17.3 22.3 1 21.9 21.5 16.8 16.1 18.8
7-19 25.8 26.8 15.2 15.8 21.3 1 21.5 21.0 15.9 15.2 18.1
7-20 26.7 27.7 15.9 16.5 22.1 I 22.0 21.6 16.1 15.4 18.5
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Table C.1 (cont'd). Daily maxitiun and minimum stream temperature values at VRH 163.1 and VRH 157.3. 
Hean temperatures are calculated from maxinun and mininun values.

-VRH 157.3- -VRM 163.1-

MAX STR CALIB MIN STR CALIB CALIB
DATE TEMP MAX TEMP TEMP MIN TEMP MEAN TEMP

C C C C C

7-21 26.8 27.8 16.8 17.5 22.6
7-22 26.7 27,7 17.4 18.1 22.9
7-23 25.5 26.5 18.9 19.6 23.1
7-24 26.0 27.0 17.1 17.8 22.4
7-25 26.6 27.6 17.0 17.7 22.6
7-26 25.3 26.3 17.5 18.2 22.2
7-27 23.4 24.3 18.8 19.5 21.9
7-28 26.8 27.8 18.1 18.8 23.3
7-29 26.1 27.1 17.8 18.5 22.8
7-30 23.7 24.6 17.8 18.5 21.6
7-31 24.7 25.6 18.0 18.7 22.2
8-1 24.5 25.4 18.9 19.6 22.5
8-2 24.3 25.2 18.6 19.3 22.3

( STR CALIB MIN STR CALIB CALIB
:mp MAX TEMP TEMP MIN TEMPMEAN TEHF
c C C C C
22.3 21.9 16.9 16.2 19.1
22.1 21.7 17.3 16.7 19.2
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Table C.2 . Hourly readings from stream thermograph at VRM 163.1 on 6-30-88 , 7-08-88, 
7-15-88, and 7-21-88.

6-30-88 CALIB 1 7-8-88 CALIB 1 7-15-88 CALIB ! 7-21-88 CALIB
STREAM STREAM 1 STREAM STREAM 1 STREAM STREAM ! STREAM STREAM

HE TEMP TEMP 1 TEMP TEMP ! TEMP TEMP 1 TEMP TEMP

C C 1 C C 1 C C 1 C C

100 18.7 18.1 1 18.9 18.3 1 18.4 17.8 1 19.3 18.8

200 18.3 17.7 1 18.5 17.9 1 18.0 17.4 1 18.8 18.2
300 18.0 17.4 1 18.1 17.5 ! 17.7 17.1 1 18.5 17.9

AOO 17.7 17.1 ! 17.7 17.1 1 17.4 16.8 I 18.2 17.6
500 17.5 16.9 1 17.5 16.9 1 17.1 16.5 1 17.9 17.3
600 17.2 16.6 1 17.1 16.5 1 16.7 16.0 1 17.6 17.0
700 17.0 16.4 I 16.8 16.1 1 16.4 15.7 1 17.2 16.6

BOO 16.8 16.1 1 16.6 15.9 1 16.2 15.5 1 17.0 16.4

900 16.7 16.0 1 16.3 15.6 1 16.0 15.3 1 16.9 16.3

1000 16.7 16.0 1 16.3 15.6 1 16.0 15.3 ! 16.9 16.3

1100 16.9 16.3 1 16.5 15.8 1 16.1 15.4 1 17.1 16.5
1200 17.6 17.0 1 17.0 16.4 1 16.6 15.9 1 17.6 17.0

1300 18.5 17.9 1 18.0 17.4 ! 17.7 17.1 ! 18.7 18.1

1400 20.0 19.5 1 19.4 18.9 t 19.4 18.9 1 20.0 19.5
1500 21.3 20.9 1 20.7 20.2 1 20.6 20.1 ! 21.3 20.9

1600 21.7 21.3 ! 21.4 21.0 1 21.2 20.8 1 21.9 21.5
1700 22.0 21.6 ! 21.8 21.4 1 21.4 21.0 1 22.3 21.9

1800 21.9 21.5 1 21.8 21.4 1 21.4 21.0 ! 22.2 21.8
1900 21.5 21.1 ! 21.5 21.1 1 21.0 20.5 I 21.8 21.4

2000 21.1 20.6 1 21.0 20.5 ! 20.5 20.0 1 21.5 21.1
2100 20.6 20.1 ! 20.4 19.9 1 20.2 19.7 1 21.0 20.5
2200 20.1 19.6 ! 19.9 19.4 1 19.7 19.2 1 20.6 20.1

2300 19.6 19.1 ! 19.5 19.0 1 19.3 18.8 1 20.2 19.7

2400 19.2 18.7 ! 19.2 18.7 1 20.0 19.5 1 19.8 19.3
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Table C.3. Daily maxinun and mininun air tetnperature readings from hygrothennograph located
at VRM 163.0. Mean temperatures are calculated from maximum and mininun values.

VRM 163.0

MAX AIR ADJUSTED ADJUSTED CALIB ! MIN AIR ADJUSTED ADJUSTED CALIB 1 CALIB
DATE TEMP MAX AIR MAX AIR MAX AIR ! TEMP MIN AIR MIN AIR HIN AIR IMEAN AIR

r F C C ! F F C C i C

5-29-88 69.0 68.5 20.3 19.4 1 41.5 41.0 5.0 3.1 ! 11.2
5-30-88 52.5 51.5 10.8 9.3 ! 41.0 40.0 4.4 2.5 ! 5.9
5-31-88 66.5 65.0 18.3 17.3 1 39.5 38.0 3.3 1.3 ! 9.3
6-1-88 77.0 75.0 23.9 23.2 1 46.0 44.0 6.7 4.9 ! 14.1
6-2-88 86.0 83.5 28.6 28.3 1 51.5 49.0 9.4 7.8 1 18.1
6-3-88 92.5 89.5 31.9 31.8 1 56.5 53.5 11.9 10.5 ! 21.2

6-25-88 90.0 90.2 32.3 32.2 ! 72.0 72.2 22.3 21.6 ! 26.9

6-26-88 88.0 88.3 31.3 31.1 ! 70.0 70.3 21.3 20.5 ! 25.8
6-27-88 89.0 89.5 31.9 31.8 ! 63.5 64.0 17.8 16.7 1 24.3
6-28-88 92.0 92.6 33.7 33.7 ! 71.0 71.6 22.0 21.2 ! 27.4
6-29-88 92.0 92.8 33.8 33.8 1 69.0 69.8 21.0 20.2 ! 27.0
6-30-88 92.0 92.5 33.6 33.4 ! 68.0 68.9 20.5 19.6 1 26.5
7-1-88 95.5 96.1 35.6 35.4 ! 64.0 64.6 18.1 18.0 ! 26.7
7-2-88 95.5 96.3 35.7 35.5 ! 67.0 67.8 19.9 19.8 ! 27.6
7-3-88 86.0 86.9 30.5 30.3 ! 70.5 71.4 21.9 21.8 1 26.0
7-4-88 91.5 92.6 33.7 33.4 1 67.5 68.6 20.3 20.2 ! 26.8
7-5-88 90.0 91.2 32.9 32.7 ! 63.0 64.2 17.9 17.8 ! 25.2
7-6-88 92.0 93.4 34.1 33.9 I 63.0 64.4 18.0 17.9 ! 25.9
7-7-88 93.5 95.0 35.0 34.8 1 62.5 64.1 17.8 17.8 ! 26.3
7-8-88 94.0 95.7 35.4 35.1 1 64.0 65.8 18.8 18.7 I 26.9
7-9-88 99.0 99.0 37.2 36.9 ! 66.5 68.4 20.2 20.1 1 28.5
7-10-88 99.0 98.5 36.9 36.7 ! 73.0 72.5 22.5 22.4 ! 29.5
7-11-88 96.0 95.0 35.0 34.8 ! 74.0 73.0 22.8 22.7 ! 28.7
7-12-88 97.0 95.5 35.3 35.0 ! 71.5 70.0 21.1 21.0 ! 28.0
7-13-88 101.0 99.0 37.2 36.9 ! 69.0 67.0 19.4 19.4 ! 28.2
7-14-88 99.5 97.0 36.1 35.8 ! 67.0 64.5 18.1 18.0 ! 26.9
7-15-88 99.0 99.0 37.2 36.9 ! 69.0 66.1 18.9 18.9 ! 27.9
7-16-88 100.0 99.9 37.7 37.4 ! 67.5 67.4 19.7 19.6 ! 28.5
7-17-88 103.0 102.8 39.3 39.0 ! 71.0 70.8 21.6 21.5 ! 30.2
7-18-88 103.0 102.7 39.3 39.0 1 70.5 70.2 21.2 21.1 ! 30.1
7-19-88 100.5 100.1 37.8 37.6 ! 66.5 66.1 18.9 18.9 1 28.2
7-20-88 102.0 101.5 38.6 38.3 ! 67.5 67.0 19.4 19.4 ! 28.8
7-21-88 101.0 100.4 38.0 37.7 ! 73.0 72.4 22.4 22.3 ! 30.0
7-22-88 99.5 98.8 37.1 36.8 !! 72.0 71.3 21.8 21.7 ! 29.3
7-23-88 97.5 96.7 35.9 35.7 ! 77.5 76.7 24.8 24.7 1 30.2

8-6-88 79.0 79.1 26.2 26.0 11 58.5 58.6 14.8 14.8 ! 20.4
8-7-88 86.0 86.2 30.1 29.9 1! 58.0 58.2 14.6 14.5 1 22.2
8-8-88 89.5 89.8 32.1 31.9 !! 55.0 55.3 12.9 12.9 I 22.4
8-9-88 90.0 90.4 32.4 32.2 1! 58.0 58.4 14.7 14.6 ! 23.4
8-10-88 91.5 92.0 33.3 33.1 1! 59.0 59.5 15.3 15.2 I 24.2
8-11-88 73.0 73.6 23.1 23.0 11 61.0 61.6 16.4 16.4 1 19.7
8-12-88 89.5 89.5 31.9 31.7 1! 60.0 60.0 15.6 15.5 1 23.6
8-13-88 92.0 92.0 33.3 33.1 1! 60.0 60.0 15.6 15.5 1 24.3



165

Table C.3 (cont'd).

Daily fflaxinun and mininun air tenperature readings from hygrothermograph located 
at VRM 163.0. Mean temperatures are calculated from maxinun and mininun values.

VRM 163.0

MAX AIR ADJUSTED ADJUSTED CALIB 1! MIN AIR ADJUSTED ADJUSTED CALIB ! CALIB
DATE TEMP MAX AIR MAX AIR MAX AIR !! TEMP MIN AIR MIN AIR MIN AIR ¡MEAN AIR

F F C C !! F F C C ! C

8-U-88 95.0 95.0 35.0 34.8 !! 59.5 59.5 15.3 15.2 1 25.0
8-15-88 92.5 92.5 33.6 33.4 1! 66.0 66.0 18.9 18.8 ! 26.1
8-16-88 92.5 92.4 33.6 33.3 I! 57.0 56.9 13.8 13.8 ! 23.6
8-17-88 94.5 94.4 34.7 34.4 1! 60.0 59.9 15.5 15.5 ! 24.9
8-18-88 96.5 96.4 35.8 35.5 1! 65.5 65.4 18.6 18.5 ! 27.0
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Table C.4. Daily maximum and minimun air temperature readings from hygrothermograph located
at VRM 157.5. Mean temperatures are calculated from maximum and minimum values.

VRM 157.5

DATE MAX AIR ADJUSTED ADJUSTED CALIB MIN AIR ADJUSTED ADJUSTED CALIB ! CALIB
TEMP MAX AIR MAX AIR MAX AIR TEMP MIN AIR MIN AIR MIN AIR IMEAN AIR

F F C C F F C C ! C

6-22-88 101.0 100.6 38.1 38.4 68.5 68.1 20.1 19.1 ! 28.8
6-23-88 104.0 103.2 39.6 40.0 72.0 71.2 21.8 21.0 ! 30.5
6-24-88 104.0 102.8 39.3 39.7 74.0 72.8 22.7 21.9 ! 30.8
6-25-88 95.0 93.4 34.1 34.1 77.0 75.4 24.1 23.5 ! 28.8
6-26-88 91.5 89.5 31.9 31.8 71.0 69.0 20.6 19.7 ! 25.8
6-27-88 97.0 94.6 34.8 34.9 67.0 64.6 18.1 17.1 ! 26.0
6-28-88 97.5 94.7 34.8 34.9 74.0 71.2 21.8 21.0 ! 28.0
6-29-88 95.0 95.0 35.0 35.1 72.0 69.0 20.6 19.7 ! 27.4
6-30-88 99.5 92.0 33.3 37.0 69.0 61.5 16.4 19.9 ! 28.4
7-1-88 100.0 92.4 33.6 37.3 68.0 60.4 15.8 19.2 ! 28.3
7-2-88 102.0 94.3 34.6 38.3 70.0 62.4 16.9 20.4 i 29.3
7-3-88 93.0 85.3 29.6 33.3 74.0 66.3 19.1 22.6 1 27.9
7-4-88 96.0 88.2 31.2 34.9 70.0 62.3 16.8 20.3 ! 27.6
7-5-88 95.5 87.7 30.9 34.6 67.0 59.2 15.1 18.6 1 26.6
7-6-88 96.0 88.1 31.2 34.8 66.0 58.2 14.6 18.0 ! 26.4
7-7-88 96.0 89.0 31.7 35.3 66.0 58.1 14.5 17.9 ! 26.6
7-8-88 97.5 90.7 32.6 36.3 65.5 58.7 14.8 18.3 ! 27.3
7-9-88 99.0 92.4 33.6 37.3 67.5 60.9 16.1 19.5 ! 28.4
7-10-88 99.0 92.6 33.7 37.4 70.0 63.6 17.6 21.0 ! 29.2
7-11-88 94.5 88.3 31.3 35.0 72.0 65.8 18.8 22.3 ! 28.6
7-12-88 95.0 89.0 31.7 35.3 66.0 60.0 15.6 19.0 ! 27.2
7-13-88 99.0 93.2 34.0 37.7 65.0 59.2 15.1 18.6 ! 28.1
7-14-88 98.0 92.4 33.6 37.3 63.0 57.4 14.1 17.5 ! 27.4
7-15-88 93.5 93.5 34.2 37.9 61.0 61.0 16.1 19.6 ! 28.7
7-16-88 95.0 94.9 34.9 38.7 62.0 61.8 16.6 20.0 ! 29.3
7-17-88 97.0 96.8 36.0 39.7 64.0 63.7 17.6 21.1 ! 30.4
7-18-88 97.5 97.2 36.2 40.0 65.5 65.1 18.4 21.9 ! 30.9
7-19-88 96.0 95.6 35.3 39.1 61.0 60.5 15.8 19.3 ! 29.2
7-20-88 98.0 97.5 36.4 40.1 63.5 62.9 17.2 20.6 ! 30.4
7-21-88 97.5 96.5 35.8 39.6 66.0 65.4 18.6 22.1 ! 30.8
7-22-88 97.0 96.0 35.6 39.3 65.0 64.0 17.8 21.3 ! 30.3
7-23-88 91.5 90.4 32.4 36.1 69.5 68.4 20.2 23.7 ! 29.9
7-24-88 95.5 94.4 34.7 38.4 63.0 61.9 16.6 20.1 ! 29.2
7-25-88 94.5 93.3 34.1 37.8 65.5 64.3 17.9 21.4 ! 29.6
7-26-88 91.5 90.3 32.4 36.1 65.0 63.8 17.7 21.2 ! 28.6
7-27-88 83.5 82.2 27.9 31.5 59.0 57.7 14.3 17.7 ! 24.6
7-28-88 86.0 86.0 30.0 33.7 60.5 59.2 15.1 18.6 ! 26.1
7-29-88 88.5 88.4 31.3 35.0 60.0 59.9 15.5 19.0 ! 27.0
7-30-88 87.5 87.4 30.8 34.4 64.0 63.9 17.7 21.2 ! 27.8
7-31-88 86.0 85.9 29.9 33.6 58.0 57.9 14.4 17.8 1 25.7
8-1-88 85.5 85.3 29.6 33.3 57.0 56.8 13.8 17.2 ! 25.2
8-2-88 84.0 83.8 28.8 32.4 61.5 61.3 16.3 19.7 1 26.1
8-3-88 85.0 84.8 29.3 33.0 57.0 56.8 13.8 17.2 ! 25.1
8-4-88 88.0 87.8 31.0 34.7 62.0 61.8 16.6 20.0 ! 27.3
8-5-88 75.5 75.4 24.1 27.7 63.0 62.9 17.2 20.6 1 24.2
8-6-88 79.0 78.9 26.1 29.7 57.0 56.9 13.8 17.3 ! 23.5
8-7-88 85.0 84.8 29.3 33.0 54.0 53.8 12.1 15.5 ! 24.3
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Table C.4 (cont'd).

Daily maxinun arxi mininun air temperature readings from hygrothermograph located 
at VRM 157.5. Mean temperatures are calculated from maximum and mininun values.

VRH 157.5

DATE MAX AIR ADJUSTED ADJUSTED CALIB 1 MIN AIR ADJUSTED ADJUSTED CALIB 1 CALIB
TEMP MAX AIR MAX AIR MAX AIR 1 TEMP MIN AIR MIN AIR MIN AIR IMEAN AIR

F F C C 1 F F C C 1 C

8-8-88 87.5 87.3 30.7 34.4 1 52.0 51.8 11.0 14.4 ! 24.4

8-13-88 88.0 87.7 30.9 34.6 1 53.5 53.2 11.8 15.2 ! 24.9
8-14-88 91.5 90.9 32.7 36.4 1! 53.0 52.4 11.3 14.7 1 25.6
8-15-88 89.0 88.1 31.2 34.8 1! 61.0 60.1 15.6 19.1 ! 27.0
8-16-88 90.0 88.8 31.6 35.2 !! 52.0 50.8 10.4 13.8 ! 24.5
8-17-88 92.5 91.0 32.8 36.5 !( 56.5 55.0 12.8 16.2 ! 26.3

8-18-88 94.5 92.7 33.7 37.4 1! 62.0 60.2 15.7 19.1 1 28.3
8-19-88 93.0 90.9 32.7 36.4 1! 64.0 61.9 16.6 20.1 I 28.3
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ie C.5 Hourly readings from Table C.6 . Hourly readings from

hygrothermograph at VRM 163.0 hygrothermograph at VRM 163.0

on 6-•30-88. on 7-08-88.

AIR ADJUSTED ADJUSTED CALIB. AIR ADJUSTED ADJUSTED CALIS.

IHE TEMP TEMP TEMP TEMP TIME TEMP TEMP TEMP TEMP

F F C C F F C C

100 75.5 76.0 24.4 24.3 100 75.5 77.3 25.2 25.0

200 75.0 75.5 24.2 24.0 200 73.5 75.3 24.1 23.9

300 74.0 74.5 23.6 23.5 300 71.0 72.8 22.7 22.6

400 73.0 73.5 23.1 22.9 400 69.0 70.8 21.6 21.5

500 71.5 72.0 22.2 22.1 500 68.0 69.8 21.0 20.9

600 70.0 70.5 21.4 21.3 600 66.5 68.3 20.2 20.1

700 69.0 69.5 20.8 20.7 700 65.0 66.8 19.3 19.3

800 68.0 68.5 20.3 20.2 800 64.0 65.8 18.8 18.7

900 71.0 71.5 21.9 21.8 900 66.0 67.8 19.9 19.8

1000 76.5 77.0 25.0 24.9 1000 73.5 75.3 24.1 23.9

1100 82.0 82.5 28.1 27.9 1100 78.0 79.8 26.6 26.4

1200 83.5 84.0 28.9 28.7 1200 85.5 87.3 30.7 30.5

1300 86.0 86.5 30.3 30.1 1300 87.5 89.3 31.8 31.6

1400 88.0 88.5 31.4 31.2 1400 90.5 92.3 33.5 33.3

1500 89.0 89.5 31.9 31.7 1500 91.5 93.3 34.1 33.8

1600 90.0 90.5 32.5 32.3 1600 93.0 94.8 34.9 34.6

1700 92.0 92.5 33.6 33.4 1700 93.0 94.8 34.9 34.6

1800 92.0 92.5 33.6 33.4 1800 93.5 95.3 35.2 34.9

1900 90.0 90.5 32.5 32.3 1900 93.5 95.3 35.2 34.9

2000 88.0 88.5 31.4 31.2 2000 94.0 95.8 35.4 35.2

2100 78.0 78.5 25.8 25.7 2100 89.5 91.3 32.9 32.7

2200 76.0 76.5 24.7 24.6 2200 79.5 81.3 27.4 27.2

2300 75.0 75.5 24.2 24.0 2300 77.5 79.3 26.3 26.1

2400 76.0 76.5 24.7 24.6 2400 78.0 79.8 26.6 26.4



169

,e C.7 . Hourly readings from Table C.8 . Hourly readings from

hygrothermograph at VRM 163.0 hygrothermograph at VRM 163.0

on 7- 15-88. on 7-21 -88.

AIR ADJUSTED ADJUSTED CALI8. AIR ADJUSTED ADJUSTED CALIB.

[ME TEMP TEMP TEMP TEMP TIME TEMP TEMP TEMP TEMP

F F C C F F C C

100 81.0 78.1 25.6 25.5 100 82.5 81.9 27.7 27.6

200 78.5 75.6 24.2 24.1 200 81.0 80.4 26.9 26.7

300 76.5 73.6 23.1 23.0 300 79.5 78.9 26.1 25.9

400 74.0 71.1 21.7 21.6 400 77.0 76.4 24.7 24.5

500 72.5 69.6 20.9 20.8 500 76.0 75.4 24.1 24.0

600 71.0 68.1 20.1 20.0 600 73.5 72.9 22.7 22.6

700 70.0 67.1 19.5 19.4 700 73.0 72.4 22.4 22.3

800 69.0 66.1 18.9 18.9 800 73.0 72.4 22.4 22.3

900 74.0 71.1 21.7 21.6 900 73.0 72.4 22.4 22.3

1000 82.0 79.1 26.2 26.0 1000 80.0 79.4 26.3 26.2

1100 85.5 82.6 28.1 27.9 1100 85.5 84.9 29.4 29.2

1200 92.5 89.6 32.0 31.8 1200 87.5 86.9 30.5 30.3

1300 94.5 91.6 33.1 32.9 1300 90.5 89.9 32.2 31.9

1400 96.0 93.1 33.9 33.7 1400 92.0 91.4 33.0 32.8

1500 96.0 96.0 35.6 35.3 1500 94.0 93.4 34.1 33.9

1600 98.0 98.0 36.7 36.4 1600 97.0 96.4 35.8 35.5

1700 99.0 99.0 37.2 36.9 1700 100.0 99.4 37.4 37.2

1800 97.5 97.5 36.4 36.1 1800 99.5 98.9 37.2 36.9

1900 98.0 98.0 36.7 36.4 1900 100.5 99.9 37.7 37.4

2000 96.0 96.0 35.6 35.3 2000 100.0 99.4 37.4 37.2

2100 85.0 85.0 29.4 29.3 2100 88.0 87.4 30.8 30.6

2200 81.5 81.5 27.5 27.3 2200 83.5 82.9 28.3 28.1

2300 80.0 80.0 26.7 26.5 2300 82.5 81.9 27.7 27.6

2400 80.0 80.0 26.7 26.5 2400 84.5 83.9 28.8 28.7
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:eC.9 . Hourly readings from Table C.10, Hourly readings from

hygrothermograph at VRH 157.5 hygrothermograph at VRM 157.5

on 6-30-88. on 7-08-88.

AIR ADJUSTED ADJUSTED CALIB. AIR ADJUSTED ADJUSTED CALIB.

[ME TEMP TEMP TEMP TEMP TIME TEMP TEMP TEMP TEMP

F F C C F F C C

100 77.0 71.5 21.9 25.5 100 75.5 68.7 20.4 23.9

200 75.5 70.0 21.1 24.6 200 73.0 66.2 19.0 22.5

300 74.0 68.5 20.3 23.8 300 70.5 63.7 17.6 21.1

400 72.0 66.5 19.2 22.7 400 69.0 62.2 16.8 20.3

500 69.5 64.0 17.8 21.3 500 67.5 60.7 15.9 19.4

600 68.5 63.0 17.2 20.7 600 66.0 59.2 15.1 18.6

700 69.0 61.5 16.4 19.9 700 67.5 60.7 15.9 19.4

800 71.0 63.5 17.5 21.0 800 71.0 64.2 17.9 21.4

900 74.5 67.0 19.4 23.0 900 78.0 71.2 21.8 25.3

1000 81.0 73.5 23.1 26.6 1000 86.0 79.2 26.2 29.8

1100 86.0 78.5 25.8 29.4 1100 91.5 84.7 29.3 32.9

1200 88.5 81.0 27.2 30.8 1200 93.0 36.2 30.1 33.8

1300 90.0 82.5 28.1 31.7 1300 93.5 86.7 30.4 34.1

1400 92.5 85.0 29.4 33.1 1400 95.0 88.2 31.2 34.9

1500 95.0 87.5 30.8 34.5 1500 95.5 88.7 31.5 35.2

1600 96.5 89.0 31.7 35.3 1600 96.0 89.2 31.8 35.5

1700 98.0 90.5 32.5 36.2 1700 97.5 90.7 32.6 36.3

1800 99.5 92.0 33.3 37.0 1800 97.5 90.7 32.6 36.3

1900 95.0 87.5 30.8 34.5 1900 91.5 84.7 29.3 32.9

2000 90.0 82.5 28.1 31.7 2000 90.0 83.2 28.4 32.1

2100 83.0 75.5 24.2 27.7 2100 79.0 72.2 22.3 25.9

2200 77.5 70.0 21.1 24.6 2200 76.0 69.2 20.7 24.2

2300 75.5 68.0 20.0 23.5 2300 80.0 73.2 22.9 26.4

2400 79.0 71.5 21.9 25.5 2400 79.5 72.7 22.6 26.2
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.eC.11 . Hourly readings from TableC.12 . Hourly readings from
hygrothermograph at VRM 157.5 hygrothermograph at VRM 157.5

on 7- 15-88. on 7- 21-88.

AIR ADJUSTED ADJUSTED CALIB. AIR ADJUSTED ADJUSTED CALIB.

IME TEMP TEMP TEMP TEMP TIME TEMP TEMP TEMP TEMP

F F C C F F C C

100 72.5 72.4 22.4 26.0 100 78.5 77.9 25.5 29.1

200 71.0 70.9 21.6 25.2 200 77.0 76.4 24.7 28.3

300 68.5 68.4 20.2 23.7 300 75.0 74.4 23.6 27.1

400 66.0 65.9 18.8 22.3 400 73.0 72.4 22.4 26.0

500 64.0 63.9 17.7 21.2 500 71.5 70.9 21.6 25.2

600 63.0 62.9 17.2 20.6 600 68.5 67.9 19.9 23.5

700 61.0 61.0 16.1 19.6 700 66.5 65.9 18.8 22.3

800 63.5 63.5 17.5 21.0 800 67.5 66.9 19.4 22.9

900 67.0 67.0 19.4 23.0 900 70.5 69.9 21.1 24.6

1000 75.0 75.0 23.9 27.5 1000 76.0 75.4 24.1 27.7

1100 83.0 83.0 28.3 32.0 1100 83.0 82.4 28.0 31.6

1200 87.5 87.5 30.8 34.5 1200 84.5 83.9 28.8 32.5

1300 88.5 88.5 31.4 35.1 1300 86.5 85.9 29.9 33.6

1400 90.0 90.0 32.2 35.9 1400 87.5 86.9 30.5 34.2

1500 91.5 91.5 33.1 36.8 1500 90.0 89.4 31.9 35.6

1600 91.5 91.5 33.1 36.8 1600 93.5 92.5 33.6 37.3

1700 93.0 93.0 33.9 37.6 1700 95.0 94.0 34.4 38.2

1800 93.0 93.0 33.9 37.6 1800 97.5 96.5 35.8 39.6

1900 89.0 89.0 31.7 35.3 1900 90.0 89.0 31.7 35.3

2000 86.5 86.5 30.3 33.9 2000 87.5 86.5 30.3 33.9

2100 85.0 85.0 29.4 33.1 2100 85.5 84.5 29.2 32.8

2200 80.0 80.0 26.7 30.3 2200 78.0 77.0 25.0 28.6

2300 70.0 70.0 21.1 24.6 2300 70.0 69.0 20.6 24.1

2400 68.0 68.0 20.0 23.5 2400 76.0 75.0 23.9 27.5
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Table C.13. Daily KOO hr tanperature readings from field hygrothermographs and Zion National Park.

VRM 157.5 VRM 163.0

1400 AIR ADJUSTED ADJUSTED CALIB 11400 AIR ADJUSTED ADJUSTED CALIB 1 1400 AIR 1400 AIR
DATE TEHP 1400 AIR 1400 AIR 1400 AIR 1 TEMP 1400 AIR 1400 AIR 1400 AIR 1 TEMP TEMP

f F C C 1 F F C C 1 F C

5-28-88 1 73.0 73.0 22.8 22.1 1 88.0 31.1
5-29-88 1 43.0 42.5 5.8 4.0 1 47.0 8.3
5-30-88 1 1 56.0 13.3
5-31-88 1 61.5 60.0 15.6 14.3 1 68.0 20.0
6-1-88 1 73.0 71.0 21.7 20.9 1 80.0 26.7
6-2-88 1 81.0 78.5 25.8 25.3 ! 87.0 30.6
6-3-88 1 89.5 86.5 30.3 30.1 ! 93.0 33.9
6-21-88 1 1 94.0 34.4
6-22-88 96.0 95.6 35.3 35.5 1 1 97.0 36.1
6-23-88 100.0 99.2 37.3 37.6 1 1 101.0 38.3
6-24-88 100.0 98.8 37.1 37.3 1 1 102.0 38.9
6-25-88 86.0 84.4 29.1 28.8 1 81.0 81.2 27.3 26.9 ! 85.0 29.4
6-26-88 87.0 85.0 29.4 29.2 1 84.0 84.3 29.1 28.8 1 89.0 31.7
6-27-88 94.0 91.6 33.1 33.1 1 j 94.0 34.4
6-28-88 94.0 91.2 32.9 32.8 1 88.0 88.6 31.4 31.3 1 95.0 35.0
6-29-88 1 86.0 86.8 30.4 30.2 1
6-30-88 92.5 85.0 29.4 33.1 1 88.5 89.5 31.9 31.8 1 96.0 35.6
7-1-88 97.0 89.4 31.9 35.6 1 91.5 92.1 33.4 33.2 1 100.0 37.8
7-2-88 97.5 89.8 32.1 35.8 1 92.0 92.8 33.8 33.5 1 99.0 37.2
7-3-88 77.0 69.3 20.7 24.3 1 77.0 77.9 25.5 25.4 i 86.0 30.0
7-4-88 92.0 84.2 29.0 32.6 1 89.0 90.1 32.3 32.1 1 95.0 35.0
7-5-88 92.5 84.7 29.3 32.9 1 87.0 88.2 31.2 31.0 1 93.0 33.9
7-6-88 92.5 84.6 29.2 32.9 1 87.0 88.4 31.3 31.1 1 95.0 35.0
7-7-88 93.0 86.0 30.0 33.7 1 88.0 89.5 31.9 31.7 1 97.0 36.1
7-8-88 96.0 89.2 31.8 35.5 1 90.0 91.7 33.2 32.9 1 98.0 36.7
7-9-88 96.0 89.4 31.9 35.6 1 92.0 93.9 34.4 34.1 1 99.0 37.2
7-10-88 95.5 89.1 31.7 35.4 1 96.0 95.5 35.3 35.0 1 99.0 37.2
7-11-88 1 1 95.0 35.0
7-12-88 90.5 84.5 29.2 32.8 1 92.0 90.5 32.5 32.3 1 94.0 34.4
7-13-88 94.5 88.7 31.5 35.2 ! 98.0 96.0 35.6 35.3 ! 97.0 36.1
7-14-88 95.0 89.4 31.9 35.6 1 97.0 94.5 34.7 34.5 ! 99.0 37.2
7-15-88 90.0 90.0 32.2 35.9 1 96.0 93.1 33.9 33.7 ! 100.0 37.8
7-16-88 91.5 91.4 33.0 36.7 1 96.0 95.9 35.5 35.2 i 101.0 38.3
7-17-88 93.5 93.3 34.1 37.8 1 98.0 97.8 36.6 36.3 1 103.0 39.4
7-18-88 1 97.0 96.7 35.9 35.7 ! 101.0 38.3
7-19-88 91.0 90.6 32.6 36.2 1 95.0 94.6 34.8 34.5 1 100.0 37.8
7-20-88 92.0 91.5 33.1 36.8 1 97.5 97.0 36.1 35.8 1 102.0 38.9
7-21-88 87.5 86.9 30.5 34.2 1 92.0 91.4 33.0 32.8 1 99.0 37.2
7-22-88 92.0 91.0 32.8 36.5 1 93.5 92.8 33.8 33.5 I 100.0 37.8
7-23-88 90.5 89.4 31.9 35.6 1 93.0 92.2 33.4 33.2 1 99.0 37.2
7-24-88 90.5 89.4 31.9 35.6 1 1 100.0 37.8
7-25-88 1 1 102.0 38.9
7-26-88 92.0 90.8 32.7 36.4 1 1 101.0 38.3
7-27-88 67.0 65.7 18.7 22.2 1 1 73.0 22.8
7-28-88 80.5 80.5 26.9 30.6 1 1 90.0 32.2
7-29-88 88.0 87.9 31.1 34.7 I 1 97.0 36.1
7-30-88 82.5 82.4 28.0 31.6 1 1 94.0 34.4

ZNP
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Table C.13 (cont'd).

Dally 1400 hr tenperature readings from field hygrothermographs and Zion National Park.

VRM 157.5 VRM 163.0 1 ZNP

DATE
1400 AIR 
TEHP 

F

ADJUSTED 
1400 AIR 

F

ADJUSTED 
1400 AIR 

C

CALIB 
1400 AIR 

C

11400 AIR 
1 TEMP 
1 F

ADJUSTED 
1400 AIR 

F

ADJUSTED 
1400 AIR 

C

CALIB
1400 AIR 

C

1 1400 AIR 
1 TEMP 
1 F

1400 AIR 
TEMP 
C

7-31-88 79.5 79.4 26.3 29.9 1 1 91.0 32.8
8-1-88 1 1 85.0 29.4
8-2-88 82.0 81.8 27.7 31.3 1 1 91.0 32.8
8-3-88 78.0 77.8 25.4 29.0 1 1 86.0 30.0
8-4-88 85.0 84.8 29.3 33.0 1 1 93.0 33.9
8-5-88 71.0 70.9 21.6 25.2 1 76.0 76.0 24.4 24.3 1 81.0 27.2
8-6-88 65.0 64.9 18.3 21.8 1 66.0 66.1 18.9 18.9 1 76.0 24.4

8-7-88 79.5 79.3 26.3 29.9 1 85.0 85.2 29.6 29.4 1 89.0 31.7
8-8-88 1 85.0 85.3 29.6 29.4 1 92.0 33.3
8-9-88 1 87.0 87.4 30.8 30.6 1 94.0 34.4
8-10-88 1 87.0 87.5 30.8 30.6 1 94.0 34.4
8-11-88 1 65.5 65.5 18.6 18.5 1 72.0 22.2
8-12-88 1 84.0 84.0 28.9 28.7 1 86.0 30.0
8-13-88 84.0 83.7 28.7 32.4 1 91.0 91.0 32.8 32.6 1 92.0 33.3
8-14-88 87.5 86.9 30.5 34.2 1 93.5 93.5 34.2 33.9 1 97.0 36.1
8-15-88 1 1 96.0 35.6
8-16-88 84.5 83.3 28.5 32.1 1 88.0 87.9 31.1 30.8 1 93.0 33.9

8-17-88 87.5 86.0 30.0 33.7 1 92.0 91.9 33.3 33.0 1 96.0 35.6
8-18-88 90.0 88.2 31.2 34.9 1 93.0 92.9 33.8 33.6 1 99.0 37.2
8-19-88 88.0 85.9 29.9 33.6 I 1 100.0 37.8
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Table C.14. Field collected data and calculated average topographic
shading angle for South azimuths.

SAMPLE 150 160 
(deg) (deg)

170
(deg)

HZ1nu1n -

180
(deg)

190
(deg)

200
(deg)

210
(deg)

VRM 163.1 - VRM 162.2

1 55.0 55.0 56.5 56.0 44.0 40.0 33.0
2 43.5 46.5 50.5 50.5 47.0 44.0 45.5
3 24.5 32.0 45.5 48.0 49.8 38.5 37.0
4 43.5 45.5 46.5 47.0 44.5 38.0 31.5
5 51.5 52.0 51.0 46.5 38.0 38.0 33.0

AVERAGE: 43.6 46.2 50.0 49.6 44.7 39.7 36.0
VARIANCE: 139.3 78.3 19.0 15.2 19.2 6.5 32.4
90XC.I.*: 8.1 6.1 3.0 2.7 3.0 1.7 3.9

VRM 162.2 - VRM 161.5

1 37.0 33.5 35.5 38.5 33.0 34.5 34.0
2 41.0 42.0 43.5 44.0 38.0 38.5 37.0
3 43.0 41.0 44.0 45.0 46.5 47.0 49.5
4 36.0 41.0 46.5 48.0 42.5 41.0 33.5
5 45.5 46.0 47.5 49.0 47.5 45.0 47.5

AVERAGE: 40.5 40.7 43.4 44.9 41.5 41.2 40.3
VARIANCE: 16.0 20.5 22.3 17.1 36.6 25.1 58.3
90XC.I.*: 2.7 3.1 3.2 2.8 4.1 3.4 5.2

VRM 161.5 - VRM 160.7

1 35.0 39.0 38.0 35.0 28.0 17.5 17.0
2 44.5 42.0 38.0 32.5 24.0 20.0 11.5
3 41.0 32.0 24.5 24.5 20.0 22.0 18.0
4 28.0 22.0 9.5 19.5 22.0 19.0 8.5
5 30.0 30.0 28.0 23.5 27.0 21.0 6.5

AVERAGE: 35.7 33.0 27.6 27.0 24.2 19.9 12.3
VARIANCE: 49.5 62.0 138.4 42.3 11.2 3.1 25.8
90XC.I.*: 4.8 5.4 8.1 4.4 2.3 1.2 3.5

VRM 160.7 - VRM 160.0

1 34.0 25.5 26.0 29.0 31.0 24.5 16.5
2 24.0 29.0 34.0 32.5 27.0 19.5 15.0
3 38.5 40.0 37.0 33.0 31.0 21.0 19.0
4 42.5 40.0 38.0 35.0 26.0 24.0 20.0
5 39.5 39.0 35.5 29.0 28.5 23.0 19.0

AVERAGE: 35.7 34.7 34.1 31.7 28.7 22.4 17.9
VARIANCE: 52.1 48.0 22.8 7.0 5.2 4.4 4.3
90XC.I.*: 4.9 4.7 3.3 1.8 1.6 1.4 1.4

VRM 160.0 - VRM 159.5

1 29.5 33.5 31.5 30.0 33.5 22.5 8.0
2 34.5 29.5 32.5 32.5 22.5 18.0 15.0
3 33.0 34.5 30.0 23.0 24.0 14.5 13.5
4 38.5 39.5 31.0 27.5 28.0 24.0 15.5
5 37.0 31.0 26.5 29.5 26.0 15.5 13.0

AVERAGE: 34.5 33.6 30.3 28.5 26.8 18.9 13.0
VARIANCE: 12.4 14.8 5.3 12.6 18.3 17.7 8.9
90XC.I.*: 2.4 2.6 1.6 2.4 2.9 2.9 2.0

* +/- Confidence Interval for a 90X level of significance.
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Table C.14 (cont'd). Field collected data and calculated average
topographic shading angle for South azimuths.

AZIMUTH

SAMPLE 150 160 170 180 190 200 210
(deg) (deg) (deg) (deg) (deg) (deg) (deg)

VRM 159.5 - VRM 158.4

1 28.5 32.5 33.5 30.0 20.0 18.5 13.5
2 38.0 37.0 32.5 27.5 20.5 22.0 16.0
3 38.0 35.5 31.0 26.0 26.5 22.0 18.0
4 30.0 25.5 29.5 31.5 26.0 23.5 19.5
5 29.0 29.0 25.5 20.5 21.0 21.0 19.5

AVERAGE: 32.7 31.9 30.4 27.1 22.8 21.4 17.3
VARIANCE: 23.7 22.2 9.8 18.2 10.1 3.4 6.6
90XC.I.*: 3.3 3.2 2.1 2.9 2.2 1.3 1.8

VRM 15S.4 - VRM 157.3

1 21.5 19.0 27.0 28.0 28.5 18.5 18.0
2 28.0 32.0 31.0 24.0 20.5 20.5 10.5
3 41.0 41.0 39.0 33.5 26.5 23.0 19.0
4 15.0 21.0 23.0 24.5 19.0 9.5 4.0
5 32.0 30.0 34.5 29.5 24.5 16.0 11.0

AVERAGE: 27.5 28.6 30.9 27.9 23.8 17.5 12.5
VARIANCE: 98.8 79.3 39.1 15.2 16.0 26.6 37.8
9 0 « . I.*: 6.8 6.1 4.3 2.7 2.7 3.5 4.2

* ♦/- Confidence Interval for a 90X level of significance.
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Table C.15. Field collected data and calculated average topographic shading
angle for Southwest azimuths.

SAMPLE 240 250 
(deg) (deg)

260
(deg)

Az1nu1n ■

270
(deg)

280
(deg)

290
(deg)

300
(deg)

310
(deg)

VRM 163.1 - VRM 162.2

1 33.5 29.5 26.0 9.0 11.0 16.0 17.5 25.0
2 52.5 51.5 44.0 25.5 22.0 20.5 21.0 21.5
3 12.0 9.0 7.5 18.0 27.0 31.0 35.5 38.0
4 15.0 11.0 16.5 19.0 30.5 33.0 49.0 51.0
5 24.5 22.0 19.0 12.5 17.5 31.5 39.0 45.5

AVERAGE: 27.5 24.6 22.6 16.8 21.6 26.4 32.4 36.2
VARIANCE: 266.6 295.7 186.9 40.3 59.4 58.4 170.2 162.6
90%C.I.*: 11.2 11.8 9.4 4.3 5.3 5.2 8.9 8.7

VRM 162.2 - VRM 161.5

1 22.5 13.5 11.5 20.0 22.0 30.5 38.5 40.0
2 25.5 13.0 10.5 13.0 18.0 36.5 38.0 43.0
3 24.5 18.5 14.0 14.0 16.0 22.0 22.0 22.0
4 28.0 22.0 16.0 15.5 23.5 27.5 27.5 26.5
5 28.5 17.0 17.5 17.0 18.0 28.0 33.5 32.0

AVERAGE: 25.8 16.8 13.9 15.9 19.5 28.9 31.9 32.7
VARIANCE: 6.2 13.8 8.7 7.6 9.8 27.7 50.2 78.2
90%C.I.*: 1.7 2.5 2.0 1.9 2.1 3.6 4.8 6.1

VRM 161.5 - VRM 160.7

1 7.5 14.5 23.0 26.5 28.5 32.5 40.0 43.5
2 4.0 13.0 17.0 23.5 21.5 20.0 26.0 30.0
3 3.5 14.5 21.0 26.0 25.5 24.5 22.0 30.0
4 15.5 23.0 29.5 32.0 30.5 29.0 29.0 32.0
5 28.5 8.5 23.5 31.0 32.0 23.5 26.5 23.0

AVERAGE: 11.8 14.7 22.8 27.8 27.6 25.9 28.7 31.7
VARIANCE: 110.2 27.6 20.6 12.8 17.6 23.9 46.2 55.2
90%C.I.*: 7.2 3.6 3.1 2.5 2.9 3.3 4.7 5.1

VRM 160.7 - VRM 160.0

1 4.0 10.5 15.5 25.0 28.0 34.0 30.5 27.0
2 6.0 11.0 17.0 22.0 32.0 37.5 40.0 37.0
3 4.0 7.0 16.0 18.5 24.0 29.5 36.5 38.5
4 3.0 8.0 19.5 23.5 24.0 27.0 24.0 26.5
5 5.0 8.0 16.0 21.5 22.0 27.0 29.0 26.0

AVERAGE: 4.4 8.9 16.8 22.1 26.0 31.0 32.0 31.0
VARIANCE: 1.3 3.1 2.6 5.9 16.0 21.4 39.9 38.4
90%C.I.*: 0.8 1.2 1.1 1.7 2.7 3.2 4.3 4.2

VRM 160.0 - VRM 159.5

1 6.0 12.0 20.5 27.0 28.0 26.5 39.5 37.0
2 5.5 9.0 10.5 23.5 28.5 31.0 29.5 37.5
3 19.0 20.0 22.0 25.5 31.5 36.0 32.0 31.5
4 5.5 10.0 11.5 21.0 30.0 33.5 33.5 32.0
5 10.0 13.0 21.5 30.5 41.0 45.5 45.0 44.0

AVERAGE: 9.2 12.8 17.2 25.5 31.8 34.5 35.9 36.4
VARIANCE: 33.6 18.7 32.5 12.9 28.3 50.1 39.4 25.7
90%C.I.*: 4.0 3.0 3.9 2.5 3.6 4.8 4.3 3.5

+/- Confidence Interval for a 90% level of significance.
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Table C.15 (cont'd). Field collected data and calculated average topographic
shading angle for Southwest azimuths.

AZIMUTH

SAMPLE 240 250 260 270 280 290 300 310
(deg) (deg) (deg) (deg) (deg) (deg) (deg) (deg)

VRM 159.5 - VRM 158.4

1 10.0 14.0 22.0 24.0 27.5 35.5 38.0 41.5
2 7.0 16.5 20.0 25.0 26.5 29.5 33.0 37.5
3 6.0 3.5 9.5 16.5 21.5 23.5 26.0 31.0
4 8.5 4.5 10.0 11.0 17.0 23.5 23.0 27.0
5 3.0 7.0 14.0 17.0 21.0 24.0 31.5 31.0

AVERAGE: 6.9 9.1 15.1 18.7 22.7 27.2 30.3 33.6
VARIANCE: 7.1 33.9 32.6 33.7 18.6 28.0 35.0 33.7
90XC.I.*: 1.8 4.0 3.9 4.0 2.9 3.6 4.0 4.0

VRM 158.4 - VRM 157.3

1 6.5 9.0 13.3 14.0 14.5 24.0 25.0 28.5
2 2.5 1.5 5.0 17.5 16.0 28.0 27.0 27.0
3 5.0 4.5 7.0 17.5 19.0 17.5 19.0 29.0
4 6.5 11.5 17.0 23.5 24.5 27.0 27.0 28.0
5 5.0 5.0 9.0 13.0 18.5 25.0 24.0 20.0

AVERAGE: 5.1 6.3 10.3 17.1 18.5 24.3 24.4 26.5
VARIANCE: 2.7 15.6 23.6 16.9 14.6 17.0 10.8 13.8
90XC.I.*: 1.1 2.7 3.3 2.8 2.6 2.8 2.2 2.5

* +/- Confidence Interval for a 90X level of significance.
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Table C.16. Field collected data and calculated average vegetation shading
angle for South azimuths.

SAMPLE 150
(deg)

160
(deg)

170
(deg)

A Z i n U I H  -

180
(deg)

190
(deg)

200
(deg)

210
(deg)

VRM 163.1 - VRM 162. 2

1 62.0 55.5 58.5 38.0 40.0 36.5 36.0
2 38.0 34.5 42.5 51.5 58.0 58.5 52.0
3 29.0 30.5 35.5 30.0 35.5 41.0 40.0
4 25.0 35.0 25.0 0.0 25.0 23.5 19.0
5 48.0 44.5 44.0 41.5 41.0 44.0 43.5

AVERAGE: 40.4 40.0 41.1 32.2 39.9 40.7 38.1
VARIANCE: 224.3 101.5 150.9 383.6 142.6 160.3 148.8
90%C.I.*: 10.2 6.9 8.4 13.4 8.2 8.7 8.3

VRM 162.2 - VRM 161..5

1 19.5 16.0 58.0 58.0 57.0 49.5 46.0
2 28.0 0.0 21.0 27.0 36.0 31.5 16.5
3 16.0 24.0 0.0 0.0 30.0 33.0 31.0
4 37.0 46.0 40.5 39.0 42.5 34.5 30.5
5 47.5 46.0 0.0 48.5 48.5 48.0 44.5

AVERAGE: 29.6 26.4 23.9 34.5 42.8 39.3 33.7
VARIANCE: 166.2 394.8 647.3 503.8 111.1 75.8 145.3
90%C.I.*: 8.8 13.6 17.4 15.4 7.2 6.0 8.2

VRM 161.5 - VRM 160..7

1 32.0 26.5 26.0 25.5 20.5 27.0 27.5
2 22.0 25.0 25.5 19.5 13.0 6.5 0.0
3 17.0 29.0 20.5 19.0 21.0 16.0 17.0
4 24.0 22.0 26.0 22.0 25.5 26.5 26.5
5 12.5 4.0 7.0 7.0 19.0 16.5 31.5

AVERAGE: 21.5 21.3 21.0 18.6 19.8 18.5 20.5
VARIANCE: 54.5 100.0 66.6 48.7 20.3 72.6 159.6
90%C.I.*: 5.1 6.8 5.6 4.8 3.1 5.8 8.6

VRM 160.7 - VRM 160 .0

1 24.5 28.0 27.0 24.0 22.0 16.0 11.0
2 28.0 31.5 32.0 29.5 18.0 17.0 9.0
3 55.5 61.0 61.0 53.0 25.0 20.5 22.5
4 39.5 38.5 21.0 20.0 12.0 9.0 8.0
5 28.0 20.0 19.0 0.0 26.5 46.5 43.0

AVERAGE: 35.1 35.8 32.0 25.3 20.7 21.8 18.7
VARIANCE: 162.2 242.8 289.0 363.7 34.2 208.1 218.2
90%C.I.»: 8.7 10.7 11.6 13.0 4.0 9.9 10.1

VRM 160.0 - VRM 159.5

1 28.5 29.5 28.0 20.0 21.0 21.5 15.0
2 30.5 27.0 25.0 25.0 17.0 17.0 18.0
3 17.5 17.5 15.5 15.5 0.0 0.0 0.0
4 0.0 14.0 3.5 25.5 0.0 17.0 16.5
5 24.0 34.0 34.0 32.0 29.5 45.0 44.0

AVERAGE: 20.1 24.4 21.2 23.6 13.5 20.1 18.7
VARIANCE: 151.2 70.2 142.6 38.7 172.3 261.3 252.2
90XC.I.*: 8.4 5.7 8.2 4.3 9.0 11.1 10.9

+/- Confidence Interval for a 90% level of significance.
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Table C.16 (cont'd). Field collected data and calculated average
vegetation shading angle for South azimuths.

AZIMUTH

SAMPLE 150 160 170 180 190 200 210
(deg) (deg) (deg) (deg) (deg) (deg) (deg)

VRM 159.5 - VRM 158.4

1 31.5 32.5 0.0 0.0 26.0 25.0 16.0
2 45.0 32.5 22.5 18.0 12.0 13.5 0.0
3 32.5 38.0 39.5 32.0 27.5 19.0 0.0
A 31.0 13.5 14.5 23.5 24.5 0.0 11.0
5 27.0 27.5 29.0 38.5 33.0 21.0 15.0

AVERAGE: 33.4 28.8 21.1 22.4 24.6 15.7 8.4
VARIANCE: 46.4 87.0 222.9 218.4 59.9 94.2 62.3
90XC.I.*: 4.7 6.4 10.2 10.1 5.3 6.6 5.4

VRM 158.4 - VRM 157.3

1 18.0 17.0 13.0 8.5 7.0 5.5 0.0
2 35.5 36.5 31.5 22.0 27.5 20.5 15.0
3 31.0 20.0 35.0 20.5 19.5 26.0 23.5
4 21.5 17.5 22.0 19.5 22.0 24.0 15.5
5 39.0 27.0 0.0 23.0 0.0 0.0 13.0

AVERAGE: 29.0 23.6 20.3 18.7 15.2 15.2 13.4
VARIANCE: 80.9 67.9 202.5 34.3 128.6 136.8 72.2
90XC.I.*: 6.2 5.6 9.7 4.0 7.8 8.0 5.8

* */• Confidence Interval for a 90X level of significance.
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Table C.17. Field collected data and calculated average vegetation shading
angle for Southwest azimuths.

SAMPLE 240
(deg)

250
(deg)

260
(deg)

Hzipwin ■

270
(deg)

280
(deg)

290
(deg)

300
(deg)

310
(deg)

VRM 163.1 - VRM 162.,2

1 34.0 0.0 13.5 11.0 8.5 12.0 15.0 13.0
2 54.5 60.0 62.0 28.0 25.0 20.5 10.0 8.0
3 23.5 22.5 12.0 7.0 8.0 12.0 26.0 23.0
4 0.0 32.0 31.0 30.5 31.0 40.0 45.0 43.0
5 37.5 34.0 0.0 12.5 0.0 0.0 12.5 21.5

AVERAGE: 29.9 29.7 23.7 17.8 14.5 16.9 21.7 21.7
VARIANCE: 403.7 469.0 580.7 114.1 167.8 220.1 207.0 179.7
90%C.I.*: 13.7 14.8 16.5 7.3 8.9 10.2 9.8 9.2

VRM 162.2 - VRM 161,.5

1 36.5 5.0 19.5 29.5 26.0 0.0 27.0 43.0
2 10.0 19.5 20.0 13.5 19.0 0.0 38.5 44.5
3 23.0 19.0 13.0 9.5 0.0 13.5 17.5 6.0
4 32.0 30.0 18.0 17.5 18.5 13.5 17.0 19.5
5 29.0 18.0 15.5 10.5 20.0 19.0 21.0 20.0

AVERAGE: 26.1 18.3 17.2 16.1 16.7 9.2 24.2 26.6
VARIANCE: 105.1 79.0 8.6 65.8 96.2 75.6 79.8 276.9
90%C.I.*: 7.0 6.1 2.0 5.6 6.7 5.9 6.1 11.4

VRM 161.5 - VRM 160,.7

1 50.0 0.0 10.5 9.0 9.0 22.0 40.0 39.5
2 7.5 10.0 12.0 13.0 23.5 27.0 19.0 15.0
3 7.5 9.5 6.0 6.5 15.0 14.0 14.0 17.0
4 25.5 20.0 0.0 19.5 5.5 17.0 18.0 22.5
5 36.5 20.0 36.5 34.5 31.0 22.5 18.0

AVERAGE: 22.6 15.2 9.7 16.9 17.5 22.2 22.7 22.4
VARIANCE: 405.1 191.8 55.0 144.2 136.9 48.7 102.7 98.9
90XC.I.*: 16.5 9.5 5.1 8.2 8.0 4.8 6.9 6.8

VRM 160.7 - VRM 160..0

1 5.0 4.0 4.0 9.5 14.5 18.0 19.0 31.0
2 4.0 13.0 18.5 18.5 16.0 15.0 10.5 8.0
3 7.0 7.0 14.0 22.0 13.0 13.0 16.5 20.5
4 10.5 16.5 33.5 34.0 21.5 0.0 0.0 0.0
5 6.5 12.0 12.0 0.0 0.0 14.0 23.0 23.5

AVERAGE: 6.6 10.5 16.4 16.8 13.0 12.0 13.8 16.6
VARIANCE: 6.2 24.8 118.9 165.3 63.1 48.5 80.1 154.9
90XC.I.*: 1.7 3.4 7.5 8.8 5.4 4.8 6.1 8.5

VRM 160.0 - VRM 159,.5

1 8.5 1.5 18.5 0.0 23.0 26.0 14.5 12.0
2 6.5 55.0 9.5 14.0 0.0 0.0 0.0 0.0
3 21.0 24.0 0.0 27.0 29.0 27.0 26.0 22.5
4 0.0 0.0 19.0 0.0 22.0 21.5 26.5 26.5
5 14.0 14.0 23.5 0.0 0.0 0.0 46.0 0.0

AVERAGE: 10.0 18.9 14.1 8.2 14.8 14.9 22.6 12.2
VARIANCE: 62.9 503.3 87.9 147.2 189.7 189.3 287.7 152.1
90%C.I.*: 5.4 15.4 6.4 8.3 9.4 9.4 11.6 8.4

+/- Confidence Interval for a 90% level of significance.



181

Table C.17 (cont'd). Field collected data and calculated average
vegetation shading angle for Southwest azinuths.

AZIMUTH

SAMPLE 240 250 260 270 280 290 300 310
(deg) (deg) (deg) (deg) (deg) (deg) (deg) (deg)

VRM 159.5 - VRM 158,.4

1 11.0 6.5 8.5 0.0 29.5 33.5 34.5 35.0
2 0.0 0.0 21.0 27.0 29.5 30.0 29.5 29.5
3 4.5 7.5 17.5 19.0 22.0 24.0 26.5 0.0
U 13.0 22.5 24.5 26.0 14.0 25.5 22.5 23.5
5 4.5 3.0 15.0 18.0 0.0 0.0 0.0 0.0

AVERAGE: 6.6 7.9 17.3 18.0 19.0 22.6 22.6 17.6
VARIANCE: 28.2 75.4 37.1 117.5 153.9 173.7 178.8 274.7
90XC.I.*: 3.6 5.9 4.2 7.4 8.5 9.0 9.1 11.3

VRM 158.4 - VRM 157.3

1 8.5 19.0 20.0 25.0 26.0 38.0 37.5 29.5
2 4.5 6.0 13.0 28.5 31.5 34.0 35.5 36.5
3 8.0 3.5 3.0 14.0 21.0 31.5 33.0 15.5
4 8.0 6.0 0.0 0.0 10.0 11.0 0.0 0.0
5 0.0 10.5 14.0 9.0 10.0 18.0 14.0 10.0

AVERAGE: 5.8 9.0 10.0 15.3 19.7 26.5 24.0 18.3
VARIANCE: 13.1 37.6 68.5 136.0 92.2 131.5 267.9 217.1
90XC.I.*: 2.5 4.2 5.7 8.0 6.6 7.8 11.2 10.1

* ♦/- Confidence Interval for a 90X level of significance.
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Table C.18. Field collected data and calculated averages for characteristic shading. 

NOTE: LEFT AND RIGHT SIDES OF STREAM ARE DEFINED FACING DOWNSTREAM.

1 PERPENDICULAR ! 1 1 CANOPY COVER
HILLSLOPE ANGLE ! FOREST ANGLE ! BUFFER WIDTH ¡OVERHANG 1 COEFFICIENT

SITE LEFT RIGHT ! LEFT RIGHT ! LEFT RIGHT ! VEGE. ! LEFT RIGHT
(deg) (deg) ! (deg) (deg) ! (ft) (ft) 1 (X) 1

VRM 163.1 - VRM 162.2 ! 1 1 !

1 38.0 37.0 ! 53.5 28.0 ! -1 -1 ! 0.0 ! 0.30 0.30
2 44.0 27.5 ! 57.0 31.0 ! -1 -1 1 0.0 ! 0.40 0.30
3 40.0 39.0 ! 35.5 25.0 ! -1 20 ! 0.0 1 0.50 0.50
4 40.5 36.0 ! 24.0 57.5 ! 20 -1 ! 0.0 1 0.40 0.65
5 47.0 25.0 ! 43.5 28.0 I -1 -1 1 0.0 1 0.50 0.50

AVERAGE: 41.9 32.9 ! 42.7 33.9 ! ! 0.00 ! 0.42 0.45
VARIANCE: 12.8 38.8 ! 180.8 178.6 ! 1 0.00 ! 0.01 0.02
90XC.I.*: 2.5 4.3 !

j
9.2 9.2 1 

1
1
1

0.00 ! 
1

0.06 0.10

VRM 162.2 - VRM 161.5
j
!

1
1

j
1

I
1

1 21.0 37.5 ! 25.0 41.5 ! -1 -1 ! 7.9 ! 0.50 0.60
2 0.0 25.0 ! 47.0 48.5 ! 30 40 ! 0.0 1 0.60 0.50
3 39.0 0.0 ! 33.0 36.0 ! 25 30 ! 0.0 I 0.30 0.40
4 32.0 0.0 ! 42.0 27.0 ! -1 30 1 0.0 I 0.40 0.30
5 47.5 0.0 ! 47.5 28.0 ! -1 -1 ! 0.0 1 0.60 0.50

AVERAGE: 27.9 12.5 ! 38.9 36.2 ! 1 1.58 ! 0.48 0.46
VARIANCE: 337.6 512.5 ! 94.3 82.8 ! j 12.47 1 0.02 0.01
90%C.I.*: 12.6 12.1 ! 

1
6.7 6 . 2  ! 

I
1
1

2.42 ! 
1

0.09 0.08

VRM 161.5 - VRM 160.7
1
!

I
!

1
!

I
1

1 0.0 0.0 ! 35.0 35.0 ! -1 30 1 16.3 1 0.60 0.40
2 0.0 0.0 ! 34.0 29.0 ! -1 -1 ! 0.0 ! 0.50 0.40
3 0.0 0.0 ! 19.0 41.0 ! -1 -1 1 0.0 i 0.60 0.10
4 0.0 0.0 ! 27.0 28.5 ! -1 -1 1 0.0 1 0.50
5 0.0 0.0 ! 30.5 37.0 ! -1 -1 1 0.0 1 0.70 0.50

AVERAGE: 0.0 0.0 I 29.1 34.1 ! 1 3.26 ! 0.58 0.35
VARIANCE: 0.0 0.0 ! 41.8 28.6 ! 1 53.14 ! 0.01 0.03
90XC.I.*: 0.0 0 . 0  ! 

j
4.4 3.7 ! 

1
1
1

5.00 ! 
1

0.06 0.14

VRM 160.7 - VRM 160.0
1
j

1
1

1
1

I
1

1 0.0 0.0 ! 27.5 37.0 ! -1 - 1  i 3.6 i 0.60 0.60
2 0.0 0.0 ! 34.0 23.5 ! -1 -1 • 0.0 ! 0.40 0.60
3 0.0 0.0 ! 33.0 21.0 ! -1 -1 ! 0.0 1 0.40 0.70
4 0.0 0.0 ! 40.0 36.0 ! 20 20 ! 0.0 1 0.60 0.60
5 0.0 0.0 ! 50.0 32.0 ! 30 30 ! 0.0 ! 0.50 0.60

AVERAGE: 0.0 0.0 ! 36.9 29.9 ! ! 0.73 1 0.50 0.62
VARIANCE: 0.0 0.0 ! 73.3 53.1 ! 1 2.64 I 0.01 0 . 0 0
90%C.I.*: 0.0 0.0 ! 

1
5.9 5.0 ! 

1
1
1

1 . 1 1  ! 
{

0.07 0.03

VRM 160.0 - VRM 159.5
1
1

1
1

j
1

1
1

1 0.0 0.0 ! 20.0 45.5 ! 30 20 1 4.7 ! 0.60 0.30
2 0.0 35.0 ! 32.0 31.5 ! -1 15 1 0.0 • 0.60 0.70
3 0.0 11.0 ! 23.0 33.5 ! 15 20 1 0.0 ! 0.40 0.40
4 38.0 0.0 ! 40.0 28.0 ! -1 20 1 0.0 ! 0.60 0.60
5 0.0 10.0 ! 34.5 40.5 ! 30 - 1  1 0.0 ! 0.60 0.60

AVERAGE: 7.6 11.2 ! 29.9 35.8 ! 1 0.93 1 0.56 0.52
VARIANCE: 288.8 204.7 ! 68.3 50.2 ! 1 4.33 I 0.01 0.03
90%C.I.*: 11.7 9.8 1 5.7 4.9 ! f 1.43 1 0.06 0.11

+\- Confidence Interval for a 90% level of significance
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Table C.18 <cont'd). Field collected data and calculated averages for characteristic shading- 

NOTE: LEFT AND RIGHT SIDES OF STREAM ARE DEFINED FACING DOWNSTREAM.

PERPENDICULAR ! 1 I CANOPY COVER
HILLSLOPE ANGLE ! FOREST ANGLE ! BUFFER WIDTH ¡OVERHANG 1 COEFFICIENT

SITE LEFT RIGHT ! LEFT RIGHT ! LEFT RIGHT 1 VEGE. 1 LEFT RIGHT
(deg) (deg) ! (deg) (deg) ! (ft) (ft) 1 (%) 1

VRM 159.5 - VRM 158 4 ! ! ! 1

1 41.0 30.0 ! 37.0 33.5 ! 30 -1 1 0.6 1 0.50 0.40
2 0.0 30.0 ! 28.5 43.5 ! 30 -1 ! 0.0 1 0.60 0.50
3 0.0 30.0 ! 47.5 34.0 ! 30 -1 1 0.0 1 0.75 0.40
4 0.0 0.0 ! 30.5 46.0 ! 30 30 1 8.0 1 0.70 0.40
5 0.0 30.0 ! 37.0 40.5 ! 25 -1 1 0.0 1 0.70 0.60

AVERAGE: 8.2 24.0 ! 36.1 39.5 ! 1 1.72 ! 0.65 0.46
VARIANCE: 336.2 180.0 ! 55.2 31.4 ! 1 12.39 ! 0.01 0.01
90%C.I.*: 12.6 9.2 ! 5.1 3.8 !

j
!
j

2.41 ! 
1

0.07 0.06

VRM 158.4 - VRM 157.3 !
1
1

1
1

!
I

1 0.0 0.0 1 14.4 30.0 ! 30 40 1 0.0 1 0.50 0.60
2 0.0 0.0 ! 33.0 36.0 ! 40 30 1 7.7 1 0.40 0.80
3 31.0 0.0 ! 40.0 33.5 ! 25 30 1 0.0 1 0.60 0.60
4 0.0 0.0 ! 19.0 58.0 ! 30 30 1 0.0 1 0.70 0.60
5 0.0 0.0 ! 31.5 19.5 ! 20 30 1 0.0 1 0.60 0.55

AVERAGE: 6.2 0.0 i 27.6 35.4 ! j 1.54 1 0.56 0.63
VARIANCE: 192.2 0.0 ! 111.6 199.2 ! 1 11.83 ! 0.01 0.01
90%C.I.*: 9.5 0.0 ! 7.2 9.7 ! 1 2.36 i 0.08 0.07

+\- Confidence Interval for a 90% level of significance
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...... RIGHT - FACING UPSTREAM........... !....... LEFT - FACING UPSTREAM-

Table C.19. Field collected data and computations for tree height.

SAMPLE DIST
ft

ANGLE CONSTANT TREE HT TREE HT 
deg ft m

DIST
ft

ANGLE
deg

CONSTANT TREE HT TREE HT 
ft m

VRM 163.1 - VRM 162.2

1 32 38.0 5.15 30.2 9.2 ! 25 43.0 5.15 28.5 8.7
2 25 48.5 5.15 33.4 10.2 ! 18 43.0 5.15 21.9 6.7
3 24 46.0 5.15 30.0 9.1 ! 17 20.0 5.15 11.3 3.5
4 17 44.5 5.15 21.9 6.7 ! 25.0 7.6
5 13 37.5 5.15 15.1 4.6 ! 25 28.5 5.15 18.7 5.7

- I -

AVERAGE: 26.1
VARIANCE: 55.9
90XC.I.*: 5.1

** TREE HEIGHT WAS ESTIMATED BY EYE

VRM 162.2 - VRM 161.5

80.2
24.3
22.6
30.8
9.8

1 70 47.0 5.15
2 42 24.5 5.15
3 35 26.5 5.15
4 38 34.0 5.15
5 28 9.5 5.15

8.0 I 
5.2 ! 
1.6  !

24.4
7.4 
6.9
9.4 
3.0

21.1
42.8
4.8

6.4 
4.0
1.5

20 29.0 5.15 16.2 4.9
29 33.0 5.15 24.0 7.3
42 24.0 5.15 23.8 7.3
25 21.5 5.15 15.0 4.6
28 38.0 5.15 27.0 8.2

21.2 6.5
28.0 2.6
3.6 1.1

35 45.0 5.15 40.2 12.2
27 45.0 5.15 32.2 9.8
46 51.0 5.15 62.0 18.9
25 41.0 5.15 26.9 8.2
33 52.0 5.15 47.4 14.4

AVERAGE:
VARIANCE:
90XC.I.*:

VRM 161.5 - VRM 160.7

1 38 39.0 5.15
2 21 34.5 5.15
3 24 34.5 5.15
4 21 31.0 5.15
5 22 44.0 5.15

33.5
369.2
13.1

35.9
19.6
21.6 
17.8 
26.4

10.2  ! 
68.6 i 
5.7

10.9
6.0
6 .6
5.4
8.0

AVERAGE:
VARIANCE:
90XC.I.*:

VRM 160.7 - VRM 160.0

24.3
52.9
3.5

7.4
4.9
1.1

1 33 31.0 5.15 25.0 7.6 ! 12 30.0 5.15 12.1 3.7
2 43 55.5 5.15 67.7 20.6 ! 39 40.5 5.15 38.5 11.7
3 57 39.5 5.15 52.1 15.9 ! 25 31.0 5.15 20.2 6.1
4 22 49.0 5.15 30.5 9.3 ! 28 26.5 5.15 19.1 5.8
5 50 30.5 5.15 34.6 10.5 ! 43 27.0 5.15 27.1 8.2

AVERAGE: 42.0 12.8 i 23.4 7.1
VARIANCE: 310.4 28.8 ! 99.3 9.2
90%C.I.*: 12.1 3.7 ! 

1
6.8 2.1

VRM 160.0 - VRM 159.5
1
{

1 24 37.0 5.15 23.2 7.1 ! 20 49.5 5.15 28.6 8.7
2 20 36.0 5.15 19.7 6.0 ! 28 32.0 5.15 22.6 6.9
3 36 37.0 5.15 27.1 8.3 ! 26 35.0 5.15 23.4 7.1
4 17 24.5 5.15 12.9 3.9 ! 37 48.0 5.15 46.2 14.1
5 40 34.5 5.15 32.6 9.9 ! 28 24.5 5.15 17.9 5.5

AVERAGE: 23.1 7.0 ! 27.7 8.5
VARIANCE: 55.8 5.2 ! 121.2 11.3
90XC.I.*: 5.1 1.6 ! 7.5 2.3

41.7
189.0
9.4

12.7
17.6
2.9

+/- Confidence Interval for a 90% level of significance.
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Table C.19 (cont'd). Field collected data and computations for tree height.

RIGHT - FACING UPSTREAM--- ........! LEFT - 'ACING UPSTREAM---

SAMPLE DIST ANGLE CONSTANT TREE HT TREE HT i DIST ANGLE CONSTANT TREE HT TREE HT
ft deg ft m ! ft deg ft m

VRM 159.5 - VRM 158.4 1

1 32 46.0 5.15 38.3 11.7 ! 31 25.5 5.15 19.9 6.1
2 35 48.0 5.15 41.4 12.6 ! 23 26.0 5.15 16.4 5.0
3 35 26.5 5.15 22.6 6.9 ! 24 10.0 5.15 9.4 2.9
4 44 43.5 5.15 46.9 14.3 ! 20 45.0 5.15 25.2 7.7
5 43 28.5 5.15 28.5 8.7 ! 21 12.0 5.15 9.6 2.9

AVERAGE: 35.5 10.8 ! 16.1 4.9
VARIANCE: 96.9 9.0 ! 46.0 4.3
90%C.I.*: 6.7 2.1 ! 

!
4.6 1.4

VRM 158.4 - VRM 157.3
1
j

1 30 22.0 5.15 17.3 5.3 ! 17 27.5 5.15 14.0 4.3
2 65 33.0 5.15 47.4 14.4 ! 35 33.0 5.15 27.9 8.5
3 24 33.5 5.15 15.9 4.8 ! 23 18.5 5.15 12.8 3.9
4 50 32.5 5.15 33.4 10.2 ! 42 33.0 5.15 32.4 9.9
5 23 40.5 5.15 24.8 7.6 ! 33 26.5 5.15 21.6 6.6

AVERAGE: 27.7 8.5 ! 21.8 6.6
VARIANCE: 168.8 15.7 ! 72.7 6.8
90XC.I.*: 8.9 2.7 ! 5.8 1.8

* •*•/• Confidence Interval for a 90% level of signi f i canee ,
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Table C.20. Width measurements at designated cross sections within the study reach.

CROSS- 16-4-88 6-24-88 6-30-88 7-9-88 7-15-88 7-23-88
SECTION WIDTH WIDTH WIDTH WIDTH WIDTH WIDTH

FT FT FT FT FT FT AVERAGE

VRM 163.1 - VRM 162 .2

SECTION #1

450 24.5 24.5
400 18.0 18.0
350 20.0 20.0
300 17.5 18.0 17.0 17.5
250 30.0 24.5 24.5 26.3
200 22.0 22.5 21.0 19.0 21.1
150 23.5 20.5 23.0 22.3
100 35.0 33.5 33.0 32.5 33.5
50 29.5 30.0 29.8
0 23.5 23.5 19.0 23.0 22.3

PROFILE 25.0 25.0

SECTION #2

E 18.0 18.0
0 20.0 20.0
C 14.0 14.0
B 24.0 24.0
A 21.0 21.0

0 28.0 26.5 26.5 26.0 26.8
25 27.0 17.0 20.5 18.0 20.6
70 10.5 12.5 13.0 12.0
115 14.0 13.0 15.5 13.5 14.0
165 18.5 19.0 18.5 19.0 18.8
230 16.0 18.5 18.5 17.7
280 23.0 23.0 23.0 23.0

VRM 162.2 - VRM 160 .0

SECTION #1

0 30.5 28.0 29.0 28.5 29.0
100 34.5 35.0 34.0 33.0 34.1
200 24.5 24.5 24.5 24.0 24.4
300 28.0 26.5 26.5 27.0 27.0
400 25.5 29.5 29.0 28.5 28.1
500 26.0 25.5 25.5 25.7

PROFILE 28.5 28.5

SECTION #2

0 33.0 29.5 28.0 28.0 29.6
100 27.0 27.0 25.5 24.5 24.5 25.7
200 25.0 25.0 23.5 23.5 23.5 24.1
300 21.0 23.0 21.5 21.0 21.6
400 25.0 24.5 23.5 24.0 24.3
500 24.5 24.0 23.5 24.0

PROFILE 32.0 32.0

SECTION #3

0 32.0 31.0 32.0 32.1 31.8
100 21.0 20.0 19.0 18.5 18.5 19.4
200 26.5 26.5 25.5 26.0 26.1
300 30.0 29.0 26.5 29.0 28.0 28.5
400 22.0 24.0 25.0 25.0 24.0
500 29.5 29.5 31.5 31.5 30.5

PROFILE 25.5 25.5
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Table C.20 (cont'd). Width measurements at designated cross sections within the 
study reach.

CROSS- 6-4-88 6-24-88 6-30-88 7-9-88 7-15-88 7-23-88
SECTION WIDTH WIDTH WIDTH WIDTH WIDTH WIDTH

FT FT FT FT FT FT AVERAGE

VRM 160.0 - VRM 159 .5

SECTION #1

C 22.0 21.0 21.5
B 17.5 18.0 17.8
A 28.5 28.0 28.3

0 30.0 28.5 26.5 26.0 26.0 27.4
100 26.0 26.0 24.5 25.5 25.5
200 22.0 23.0 22.5 22.5 22.5
300 32.0 31.5 30.5 31.3
400 22.0 23.5 21.5 22.0 22.3
500 25.5 25.5

PROFILE 23.0 23.0

VRM 159.5 - VRM 157.3

SECTION #1

0 36.0 35.5 35.0 34.5 35.3
100 30.0 30.0 28.5 28.5 29.3
200 21.5 25.0 22.5 26.0 23.8
300 32.5 31.5 32.0 27.5 30.9
400 40.0 40.5 38.5 39.5 39.6
500 44.0 43.0 43.5 42.0 43.1
600 31.0 31.0
700 32.5 32.0 32.3

A 36.5 36.5
B 28.0 28.0

PROFILE 25.4 25.4

SECTION *2

0 26.5 26.5 26.0 26.3
100 23.5 24.0 24.0 23.8
200 23.0 23.5 23.0 23.2
300 24.5 24.0 24.0 24.2
400 22.0 21.0 21.5 21.5
500 25.5 25.0 25.0 25.2

A 24.0 24.0
B 16.5 16.5
600 25.5 26.0 25.8
700 29.5 29.5

PROFILE 24.6 24.6
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TableC.21 . Calculated percentage of atreantjed for each section comprised of depth less
than twenty centimeters and bedrock greater than twenty-five centimeters in axis.

CROSS- AVERAGE LENGTH
SECTION WIDTH OF BDRCK BEDROCK

FT FT X

VRM 163.1 - VRM 162.2

450 24.5 0.0 0.0
400 18.0 0.0 0.0
350 20.0 0.5 2.5
300 17.5 0.0 0.0
250 26.3 3.0 11.4
200 21.1 3.0 14.2
150 22.3 3.0 13.4
100 33.5 0.0 0.0
50 29.8 4.5 15.1
0 22.3 0.0 0.0

E 18.0 0.0 0.0
D 20.0 1.0 5.0
C 14.0 0.0 0.0
B 24.0 0.0 0.0
A 21.0 0.0 0.0

0 26.8 0.0 0.0
25 20.6 0.0 0.0
70 12.0 0.0 0.0
115 14.0 0.0 0.0
165 18.8 0.0 0.0
230 17.7 0.0 0.0
280 23.0 0.0 0.0

COUNT 22
AVERAGE 2.8

VRH 160.0 - VRM 159.5

C 21.5 7.0 32.6
B 17.8 0.0 0.0
A 28.3 1.5 5.3

0 27.4 0.0 0.0
100 25.5 4.0 15.7
200 22.5 3.0 13.3
300 31.3 8.0 25.5
400 22.3 0.5 2.2
500 25.5 5.0 19.6

COUNT
AVERAGE

9.0
12.7

CROSS- AVERAGE LENGTH
SECTION WIDTH OF BORCK BEDROCK

FT FT X

VRM 162.2 • VRM 160.0

0 29.0 1.0 3.4
100 34.1 0.0 0.0
200 24.4 1.0 4.1
300 27.0 1.0 3.7
400 28.1 7.0 24.9
500 25.7 2.5 9.7

0 29.6 2.0 6.8
100 25.7 0.0 0.0
200 24.1 3.0 12.4
300 21.6 1.0 4.6
400 24.3 1.5 6.2
500 24.0 0.5 2.1
0 31.8 2.5 7.9

100 19.4 1.5 7.7
200 26.1 1.5 5.7
300 28.5 0.0 0.0
400 24.0 0.0 0.0
500 30.5 2.5 8.2

COUNT 18.0
AVERAGE 6.0

VRM 159.5 - VRM 157.3

0 35.3 6.0 17.0
100 29.3 1.5 5.1
200 23.8 2.0 8.4
300 30.9 3.0 9.7
400 39.6 2.5 6.3
500 43.1 4.0 9.3
600 31.0 3.0 9.7
700 32.3 6.0 18.6

A 36.5 4.0 11.0
B 28.0 4.0 14.3

0 26.3 1.5 5.7
100 23.8 4.5 18.9
200 23.2 1.0 4.3
300 24.2 0.0 0.0
400 21.5 0.0 0.0
500 25.2 0.0 0.0

A 24.0 1.0 4.2
B 16.5 3.0 18.2
600 25.8 0.0 0.0
700 29.5 0.0 0.0

COUNT
AVERAGE

20.0
8.0
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Table C.22. Travel time (seconds) and calculated velocity through 
designated float sections.

FLOAT
#

6-24-88
seconds

6-30-88
seconds

7-15-88
seconds

VRM 163.1 - VRM 162.2

FLOAT SECTION #1 1 75 86
LENGTH; 205 FT 2 62 74 68

3 - 60 65
4 86 72 68
5 89 61 92
6 “ 62 87

VELOCITY: 2.59 3.04 2.64

FLOAT SECTION #2 1 91 65 62
LENGTH: 165 FT 2 72 66 74

3 70 50 67
4 55 60 59
5 53 64 67
6 - - 73

VELOCITY: 2.42 2.70 2.46

VRM 162.2 - VRM 160.0

FLOAT SECTION #1 1 143 131 131
LENGTH: 392 FT 2 130 122 143

3 - 126 120
4 121 115 118
5 127 152 120
6 117 176 130

VELOCITY: 3.07 2.86 3.09

FLOAT SECTION #2 1 170 143 171
LENGTH: 500 FT 2 170 126 170

3 153 161 180
4 170 149 184
5 198 164 178
6 170 242 114

VELOCITY: 2.91 3.05 3.01

FLOAT SECTION #3 1 76 77 127
LENGTH; 268 FT 2 91 76 83

3 85 102 101
4 77 95 87
5 115 98 79
6 - 107 92

VELOCITY: 3.02 2.90 2.83

VRM 160.0 - VRM 159.5

FLOAT SECTION #1 1 108 93 105
LENGTH: 309 FT 2 136 114 99

3 94 118 104
4 99 109 110
5 93 111 96
6 97 156 70

VELOCITY: 2.96 2.64 3.17
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Table C.22 (cont'd). Travel time (seconds) and calculated velocity through 
designated float sections.

FLOAT 6-24-88
seconds

6-30-88
seconds

7-15-88
seconds

VRM 159.5 - VRM 157.3

FLOAT SECTION #1 1 - 145 150
LENGTH: 412 FT 2 - 180 131

3 135 148 132
4 135 142 129
5 153 149 165
6 - 167 137

VELOCITY: 2.92 2.66 2.93

FLOAT SECTION #2 1 155 271 191
LENGTH: 500 FT 2 153 169 193

3 125 138 155
4 123 157 180
5 133 147 164
6 143 177 169

VELOCITY: 3.61 2.83 2.85
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Table C.23. Relative humidity values measured by Zion National Park.

ZION ZION
DATE REL HUM REL HUM

AVERAGE 1400
X X

6-1-88 36 20
6-2-88 32 21
6-3-88 32 18
6-4-88 32 8
6-5-88 22 11
6-6-88 22 11
6-7-88 28 12
6-8-88 20 9
6-9-88 14 7
6-10-88 20 10
6-11-88 19 10
6-12-88 27 18
6-13-88 35 18
6-14-88 20 12
6-15-88 21 13
6-16-88 19 10
6-17-88 53 44
6-18-88 40 24
6-19-88 47 35
6-20-88 36 23
6-21-88 39 26
6-22-88 46 28
6-23-88 22 14
6-24-88 30 18
6-25-88 42 36
6-26-88 38 20
6-27-88 44 24
6-28-88 30 21
6-30-88 28 18
7-1-88 13 8
7-2-88 28 16
7-3-88 16 34
7-4-88 25 17
7-5-88 38 23
7-6-88 24 15
7-7-88 20 15
7-8-88 28 16
7-9-88 22 11
7-10-88 27 16
7-11-88 30 22
7-12-88 20 13
7-13-88 13 8
7-14-88 20 10
7-15-88 17 11
7-16-88 25 13
7-17-88 17 11
7-18-88 18 10
7-19-88 13 9
7-20-88 19 11
7-21-88 28 20
7-22-88 29 19
7-23-88 23 18
7-24-88 26 15
7-25-88 26 15
7-26-88 26 16
7-27-88 75 67
7-28-88 54 36
7-29-88 40 26
7-30-88 26 18
7-31-88 52 32
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Table C.24. Official state of the weather, windspeed, and wind direction data 
collected at Zion National Park weather station.

DATE STATE OF WIND SPO WIND
THE WTHR mph DIRECTION

DATE STATE OF WIND SPD WIND
THE WTHR mph DIRECTION

6-1-88 0 3 S 7-1-88 1 2 S

6-2-88 1 3 NE 7-2-88 1 2 SW
6-3-88 0 3 SW 7-3-88 2 0 0

6-4-88 0 10 sw 7-4-88 1 7 s
6-5-88 1 8 s 7-5-88 2 8 s
6-6-88 0 10 s 7-6-88 2 15 su

6-7-88 0 3 sw 7-8-88 0 4 s
6-8-88 0 3 E 7-9-88 1 2 sw
6-9-88 0 5 s 7-10-88 1 4 s
6-10-88 0 8 sw 7-11-88 0 3 s
6-11-88 1 5 s 7-12-88 0 7 s
6-12-88 2 3 N 7-13-88 0 2 sw
6-13-88 1 3 sw 7-14-88 0 3 s
6-14-88 1 4 W 7-15-88 0 5 s
6-15-88 0 2 NW 7-16-88 0 3 s
6-16-88 2 3 NE 7-17-88 0 5 sw
6-17-88 3 4 NE 7-18-88 1 5 sw
6-18-88 1 0 0 7-19-88 0 4 sw
6-19-88 1 5 NE 7-20-88 0 2 s
6-20-99 2 3 NE 7-21-88 0 8 NW

6-21-88 2 5 NW 7-22-88 0 3 E

6-22-88 1 1 N 7-23-88 1 4 SE
6-23-88 1 1 S 7-24-88 1 8 s
6-24-88 1 1 S 7-25-88 1 6 SE
6-25-88 3 7 N 7-26-88 1 2 SE
6-26-88 1 8 N 7-27-88 2 3 S
6-27-88 1 5 SW 7-28-88 3 4 N

6-28-88 2 2 s 7-29-88 2 10 SW

6-29-88
6-30-88 1 2 s

STATE OF THE WEATHER CODE:

0 Clear (less than 1/10th of sky cloud covered)
1 Scattered clouds (1/10 to 5/10 cloud covered)
2 Broken clouds (6/10 to 9/10 could covered)
3 Overcast (more than 9/10 of sky cloud covered)
4 Foggy
5 Drizzling
6 Raining
7 Snowing or sleeting
8 Showering (showers in sight or occurring at station)
9 Thunderstorm in progress (lightening seen or thunder heard)
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Tabic C.25. Charnel profiles of cross sections #1 and #2.

A relative benchmark was established at 100 ft.

•• CROSS SECTION #1 ••• 
VRM 157.3 - VRN 158.4

-- CROSS SECTION #2 
VRM 158.4 - VRM 159.5

JACKSIGHT: 10.89 ft BACKSIGHT: 12,1 ft
INSTRUMENT HEIGHT: 110.89 ft INSTRUMENT HEIGHT: 112.1 ft

STATION FORE- ELEVATION STATION FORE- ELEVATION

SIGHT (ft) SIGHT (ft)

-0.7 4.1 106.8 -0.7 8.1 104.0

0.0 4.5 106.4 1.0 8.2 103.9

1.3 5.6 105.3 2.4 9.1 103.0

5.1 6.3 104.6 7.7 10.4 101.7

7.1 7.7 103.2 9.2 10.6 101.5

12.2 8.4 102.5 10.3 10.9 101.2

15.9 8.7 102.2 10.9 11.2 100.9

16.7 8.9 102.0 13.1 11.8 100.3

18.7 9.4 101.5 15.5 11.9 100.2

20.9 10.4 100.5 18.5 12.4 99.7

21.6 10.9 100.0 19.3 12.3 99.8

21.9 11.1 99.8 LEW 22.0 12.2 99.9

22.2 11.6 99.3 26.9 12.8 99.3 LEU

24.5 11.7 99.2 28.8 13.1 99.0

27.3 11.6 99.3 30.1 13.2 98.9

30.0 11.6 99.3 31.3 13.4 98.7

32.0 11.8 99.1 33.7 13.5 98.6

35.0 11.8 99.1 34.8 13.5 98.6

37.6 11.8 99.1 36.9 13.5 98.6

40.0 11.9 99.0 39.0 13.7 98.4

42.3 11.9 99.0 42.1 13.5 98.6

44.4 11.9 99.0 45.0 13.6 98.5

46.1 11.7 99.2 47.5 13.6 98.5

46.5 11.1 99.8 REW 48.4 13.3 98.8

47.8 10.6 100.3 48.6 13.6 98.5

50.6 9.8 101.1 50.7 13.6 98.5

51.6 9.0 101.9 51.9 13.5 98.6

53.0 9.0 101.9 52.3 12.8 99.3 REW

55.0 8.3 102.6 53.2 12.1 100.0

57.3 8.0 102.9 54.9 11.6 100.5

59.5 6.3 104.6 55.7 11.1 101.0

61.4 5.9 105.0 58.2 10.2 101.9

65.3 5.7 105.2 61.0 9.4 102.7

66.8 5.2 105.7 63.9 7.8 104.3
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Table C.26, channel profiles of cross sections #3 and #«•

A relative benchmark was established at 100 ft.

-- CROSS SECTION #3 --- 
VRM 159.5 • VRM 160.0

-- CROSS SECTION #4 --- 
VRM 160.0 - VRM 160.7

BACKSIGHT; 12.17 ft
INSTRUMENT HEIGHT: 112.17 ft

BACKSIGHT: 10.19 ft
INSTRUMENT HEIGHT: 110.19 ft

STATION FORE- ELEVATION 
SIGHT (ft)

STATION FORE- ELEVATION 
SIGHT (ft)

0.0 4.9 107.3 80.3 3.8 106.4

5.0 5.7 106.5 76.5 4.1 106.1

7.0 6.4 105.8 72.7 5.7 104.5

8.0 9.6 102.6 69.9 6.0 104.2

11.0 10.8 101.4 68.9 6.5 103.7

13.5 11.0 101.2 67.9 7.3 102.9

15.5 10.6 101.6 66.0 7.7 102.5

19.3 11.7 100.5 62.1 7.9 102.3

21.2 11.7 100.5 61.0 8.2 102.0

23.5 11.9 100.3 58.2 8.5 101.7

23.7 13.9 98.3 52.0 9.2 101.0

24.2 14.1 98.1 LEW 50.0 10.0 100.2

25.4 14.6 97.6 48.5 11.1 99.1 LEW

27.0 15.1 97.1 48.0 12.1 98.1

29.0 15.1 97.1 45.0 12.1 98.1

31.0 15.3 96.9 41.0 11.9 98.3

32.2 15.4 96.8 38.0 11.9 98.3

34.5 15.4 96.8 35.0 12.0 98.2

36.0 15.3 96.9 32.0 11.9 98.3

37.0 15.3 96.9 29.0 11.8 98.4

38.0 15.1 97.1 26.0 11.6 98.6

39.0 15.2 97.0 23.2 11.2 99.0 REW

43.0 14.7 97.5 22.1 10.3 99.9

45.5 14.5 97.7 21.3 9.6 100.6

47.2 14.0 98.2 REW 19.6 9.2 101.0

50.5 13.1 99.1 12.7 5.7 104.5

63.1 13.0 99.2 10.0 5.1 105.1

64.5 12.4 99.8 6.8 4.5 105.7

65.3 11.2 101.0 4.5 3.6 106.6

66.4 11.5 100.7 0.0 3.0 107.2

66.5 9.6 102.6
69.0 9.0 103.2
71.5 8.1 104.1
72.3 6.7 105.5
76.2 5.7 106.5
77.6 5.0 107.2
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Table C.27. Channel Profile of cross section #5, if6, and #7. 

A relative benchmark was established at 100 ft.

....  Cross; Section i t s ..... ....  Crossi Section # 6 ..... ....  Cross Section # 7 .....
VRM 160. 7 - VRM 161.5 VRM 161. 5 - VRM 162.2 VRM 162. 2 - VRM 163.1

BACKSIGHT: 11.1 ft BACKSIGHT: 6.12 ft BACKSIGHT: 11.04 ft
INSTRUMENT HEIGHT: 111.1 ft INSTRUMENT HEIGHT: 106.12 ft INSTRUMENT HEIGHT: 111.04 ft

STATION FORE- ELEVATION STATION FORE- ELEVATION STATION FORE- ELEVATION
SIGHT (ft) SIGHT (ft) SIGHT (ft)

0 6.1 105.0 0 5.1 101.0 0
1.7 6.5 104.6 4.0 5.6 100.5 0.5 0.3 110.74
4.3 7.9 103.2 8.6 6.5 99.6 4.0 4.9 106.14
5.5 8.9 102.2 11.0 7.6 98.5 5.4 5.6 105.44
9.0 10.0 101.1 14.0 8.2 97.9 6.0 6.8 104.24
10.0 10.7 100.4 16.6 9.2 96.9 7.7 7.2 103.84
10.5 10.9 100.2 17.8 9.7 96.4 8.5 7.8 103.24
12.3 11.3 99.8 18.2 10.2 95.9 10.0 8.7 102.34
13.5 11.9 99.2 LEW 18.9 10.3 95.8 14.2 8.8 102.24
13.7 12.6 98.5 22.0 11.2 94.9 LEU 14.9 9.6 101.44
14.5 12.7 98.4 22.8 11.3 94.8 16.9 10.0 101.04
16.0 12.8 98.3 24.1 11.6 94.5 18.0 10.5 100.54
18.0 12.8 98.3 24.8 11.5 94.6 22.3 11.0 100.04
20.0 12.6 98.5 25.0 11.8 94.3 24.2 11.4 99.64
22.0 12.6 98.5 26.8 12.0 94.1 27.3 12.0 99.04 LEW
25.0 12.5 98.6 30.0 11.9 94.2 28.8 12.2 98.84
28.0 12.5 98.6 34.0 11.9 94.2 34.5 13.2 97.84
31.0 12.5 98.6 38.0 12.0 94.1 38.2 12.9 98.14
34.0 12.4 98.7 41.0 11.9 94.2 39.0 13.0 98.04
37.0 12.3 98.8 44.0 11.8 94.3 41.1 12.9 98.14
40.0 12.4 98.7 47.0 11.5 94.6 44.0 12.9 98.14
42.0 12.5 98.6 49.0 11.5 94.6 46.4 13.1 97.94
43.1 12.4 98.7 50.3 11.1 95.0 REU 49.0 12.8 98.24
45.2 11.9 99.2 REU 50.5 10.7 95.4 51.3 12.2 98.84
46.2 11.4 99.7 53.8 10.0 96.1 53.7 11.8 99.24 REU
47.0 9.9 101.2 55.2 9.2 96.9 54.5 11.6 99.44
48.9 8.5 102.6 56.8 8.8 97.3 56.7 11.1 99.94
50.3 6.3 104.8 57.7 8.2 97.9 57.0 6.8 104.24
52.5 4.9 106.2 59.0 7.9 98.2 58.0 6.6 104.44

60.2 6.9 99.2 60.0 6.2 104.84
63.4 6.5 99.6 63.0 3.6 107.44
65.4 6.0 100.1 65.0 2.2 108.84
68.0 5.2 100.9 66.5 1.4 109.64
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Table C.28 Survey of water surface elevations upstream and downstream 
of cross section #1 through #7 along the study reach.

TRANSECT THALWEG LEU REU AVERAGE ELEVATION
FORE- FORE- FORE- FORE-
SIGHT SIGHT SIGHT SIGHT (ft)

CROSS SECTION #1:
VRM 157.3 - VRM 158.,4

BACKSIGHT: 7.25 ft
INSTRUMENT HEIGHT: 107.25 ft

1.00 7.69* 7.69* 7.65 7.69 99.56
2.00 7.42 7.43 7.43 7.43 99.82
3.00 7.34 7.34 7.34 7.34 99.91

CROSS SECTION #2: 
VRM 158.4 - VRM 159..5

BACKSIGHT: 5.49 ft
INSTRUMENT HEIGHT: 105.49 ft

1.00 6.27 6.27 6.27 6.27 99.22
2.00 6.23 6.20 6.23 6.22 99.27
3.00 5.70 5.70 5.71 5.70 99.79

CROSS SECTION #3: 
VRM 159.5 - VRM 160,.0

BACKSIGHT: 6.70 ft
INSTRUMENT HEIGHT: 106.70 ft

1.00 8.69 8.70* 8.71* 8.71 98.00
2.00 8.64 8.66 8.62 8.64 98.06
3.00 - 8.55 8.54 8.55 98.16
4.00 ■ 8.54 8.54 8.54 98.16

CROSS SECTION #4: 
VRM 160.0 - VRM 160 .7

BACKSIGHT: 5.81 ft
INSTRUMENT HEIGHT: 105.81 ft

1.00 6.97 7.00* 6.98* 6.99 98.82
2.00 6.72 6.75* 6.74* 6.75 99.07
3.00 6.50 6.49 6.50 6.50 99.31

CROSS SECTION #5: 
VRM 160.7 - VRM 161 .5

BACKSIGHT: 5.38 ft
INSTRUMENT HEIGHT: 105.38 ft

1.00 6.89* 6.87 6.90* 6.90 98.49
2.00 6.43 6.31* 6.34* 6.33 99.05
3.00 6.23 6.21 6.23 6.22 99.16
4.00 6.07 6.09 6.08 6.07 99.31

Best readings and thus will be used to calculate the water surface elevation.
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Table C.28 (cont'd). Survey of water surface elevations upstream and downstream 
of cross section #1 through #7 along the study reach.

TRANSECT THALWEG LEW REW AVERAGE ELEVATION
FORE- FORE- FORE- FORE-
SIGHT SIGHT SIGHT SIGHT (ft)

CROSS SECTION #6:
VRM 161.5 - VRM 162.2

BACKSIGHT: 6.12 ft
INSTRUMENT HEIGHT: 106.12 ft

1.00 11.20 11.23* 11.23* 11.23 94.89
2.00 11.13 11.15 11.14 11.15 94.98
3.00 10.71* • 10.74 10.71 95.42

CROSS SECTION #7:
VRM 162.2 - VRM 163.1

BACKSIGHT: 6.16 ft
INSTRUMENT HEIGHT: 106.16 ft

1 7.24* 7.25 7.27 7.24 98.92
2 7.18 - - 7.18 98.98
3 7.07* 7.09 7.08 7.07 99.09
4 7.05 7.04 - 7.05 99.12

Best readings and thus will be used to calculate the water surface elevation.
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Table C.29. Rating table for flow greater than 100 cfs at cross section #1 and #2.

- Cross Section #1 ---
VRM 157.3 - VRH 158.4

STAGE DISCH. VEL. TOP
WIDTH

- Cross Section #2 ---
VRM 158.4 - VRM 159.5

STAGE DISCH. VEL. TOP
WIDTH

FT CFS FT/S FT ! FT CFS FT/S FT

0.20 1.6 0.81 15.1 ! 0.20 0.7 0.57 10.9
0.65 24.2 1.95 24.4 ! 0.58 14.3 1.57 23.0
1.10 67.9 2.87 25.8 ! 0.96 42.5 2.31 25.9
1.55 127.7 3.58 27.9 ! 1.34 81.8 2.83 30.0
2.00 202.7 4.15 30.4 ! 1.71 131.9 3.14 37.6
2.45 297.2 4.72 32.2 ! 2.09 204.0 3.56 42.5
2.90 404.6 5.19 34.5 ! 2.47 300.7 4.07 44.5
3.35 507.9 5.35 40.2 ! 2.85 414.3 4.55 46.3
3.80 631.3 5.52 46.5 ! 3.23 537.2 4.93 49.2
4.25 799.3 5.86 50.7 ! 3.61 677.5 5.28 52.1
4.70 1017.9 6.38 51.9 ! 3.99 834.9 5.62 55.0
5.15 1258.2 6.87 53.2 ! 4.36 1010.8 5.95 57.8
5.60 1519.7 7.33 54.4 ! 4.74 1213.6 6.32 59.6
6.05 1736.5 7.46 59.7 ! 5.12 1440.1 6.70 60.9
6.50 1989.6 7.61 65.1 ! 5.50 1683.3 7.07 62.2

Rating table for flow less than 100 cfs at cross section #1 and #2.

- Cross Section #1 ---
VRM 157.3 - VRM 158.4

STAGE DISCH. VEL. TOP
WIDTH

- Cross Section #2 ---
VRM 158.4 - VRM 159.5

STAGE DISCH. VEL. TOP
WIDTH

FT CFS FT/S FT ! FT CFS FT/S FT

0.20 1.6 0.81 15.1 ! 0.20 0.7 0.57 14.3
0.30 3.6 0.94 23.0 ! 0.31 2.8 0.87 20.4
0.39 7.7 1.25 24.1 ! 0.42 6.5 1.18 21.4
0.49 13.0 1.53 24.2 ! 0.52 11.5 1.46 22.3
0.59 19.4 1.79 24.3 ! 0.63 17.4 1.69 23.5
0.68 26.8 2.03 24.4 ! 0.74 24.7 1.91 24.3
0.78 35.0 2.25 24.6 ! 0.85 33.0 2.12 25.0
0.88 44.0 2.45 24.9 ! 0.96 42.3 2.31 25.9
0.97 53.7 2.64 25.3 ! 1.06 52.4 2.48 26.9
1.07 64.2 2.82 25.7 ! 1.17 63.6 2.63 28.0
1.16 75.5 2.98 26.1 ! 1.28 75.8 2.79 29.0
1.26 87.6 3.15 26.5 ! 1.39 87.0 2.86 31.2
1.36 100.3 3.30 26.9 ! 1.49 96.2 2.83 35.5
1.45 113.7 3.44 27.4 ! 1.60 113.1 2.98 36.5
1.55 127.7 3.58 27.9 ! 1.71 131.2 3.13 37.5

Table C.31. Rating table for flow greater than 100 cfs at cross section #3 and #4.

- Cross Section #3 ---
VRM 159.5 - VRM 160.0

STAGE DISCH. VEL. TOP
WIDTH

- Cross Section #4 ---
VRM 160.0 - VRM 160.7

STAGE DISCH. VEL. TOP
WIDTH

FT CFS FT/S FT ! FT CFS FT/S FT

0.20 0.5 0.47 7.5 i 0.20 0.6 0.48 16.1
0.90 14.1 1.20 20.3 ! 0.76 22.4 1.70 24.2
1.60 51.4 1.88 23.8 ! 1.31 71.1 2.60 26.2
2.30 108.1 2.41 26.5 ! 1.87 141.2 3.33 27.7
3.00 179.1 2.48 40.7 ! 2.43 228.8 3.93 29.4
3.70 288.8 2.86 45.7 ! 2.99 325.4 4.31 33.3
4.40 436.4 3.25 49.5 ! 3.54 433.7 4.53 39.4
5.10 602.6 3.49 56.7 ! 4.10 577.1 4.83 44.5
5.80 831.7 3.91 58.5 ! 4.66 739.3 5.06 51.1
6.50 1082.6 4.25 61.5 ! 5.21 970.3 5.53 53.4
7.20 1372.2 4.59 63.7 ! 5.77 1232.4 5.99 55.3
7.90 1705.1 4.96 64.5 ! 6.33 1494.6 6.30 59.2
8.60 2067.0 5.31 65.1 ! 6.89 1789.0 6.59 63.3
9.30 2411.2 5.54 68.5 ! 7.44 2115.4 6.87 67.5
10.00 2759.8 5.69 73.7 ! 8.00 2496.9 7.21 70.7
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Table C.32. Rating table for flow less than 100 cfs at cross section #3 and #4.

- Cross Section #3 ---
VRM 159.5 - VRM 160.0

- Cross Section #4 ---
VRM 160.0 - VRM 160.7

STAGE

FT

DISCH.

CFS

VEL.

FT/S

TOP
WIDTH
FT

STAGE

FT

DISCH.

CFS

VEL.

FT/S

TOP
WIDTH
FT

0.20 0.5 0.47 7.5 0.20 0.6 0.48 16.1
0.35 1.5 0.59 13.4 ! 0.32 2.8 0.81 19.4
0.50 3.8 0.81 15.0 0.44 6.4 1.09 21.3
0.65 7.0 0.98 16.7 ! 0.56 11.3 1.33 22.7
0.80 11.0 1.12 18.9 0.68 17.6 1.56 23.6
0.95 16.1 1.26 20.6 0.80 25.0 1.77 24.5
1.10 22.6 1.42 21.5 0.92 33.5 1.96 25.3
1.25 30.1 1.57 22.4 1.04 43.6 2.17 25.5
1.40 38.6 1.71 23.0 ! 1.15 54.7 2.36 25.8
1.55 48.1 1.84 23.6 1.27 66.8 2.54 26.1
1.70 58.4 1.97 24.2 1.39 79.8 2.71 26.4
1.85 69.6 2.09 24.8 1.51 93.7 2.87 26.7
2.00 81.6 2.20 25.4 1.63 108.6 3.03 27.1
2.15 94.5 2.31 25.9 ! 1.75 124.3 3.18 27.4
2.30 108.1 2.41 26.5 1.87 140.9 3.33 27.7

Table C.33. Rating table for flow greater than 100 cfs at cross section #5 and #6.

- Cross Section #5 ---
VRM 160.7 - VRM 161.5

- Cross Section #6 ---
VRM 161.5 - VRM 162.2

STAGE

FT

DISCH.

CFS

VEL.

FT/S

TOP
WIDTH
FT

STAGE

FT

DISCH.

CFS

VEL.

FT/S

TOP
WIDTH
FT

0.50 7.0 1.07 29.9 0.20 1.6 0.68 19.0
0.93 42.2 2.13 31.8 0.65 21.0 1.70 26.5
1.36 99.0 2.93 33.5 1.10 63.2 2.52 29.4
1.79 173.7 3.58 35.4 1.55 122.8 3.16 32.3
2.21 267.4 4.18 36.8 2.00 199.5 3.68 35.8
2.64 379.3 4.74 37.6 2.45 300.5 4.26 37.1
3.07 502.7 5.22 39.1 2.90 415.3 4.73 39.3
3.50 638.6 5.63 41.0 3.35 545.0 5.14 41.9
3.93 790.9 6.01 42.9 3.80 697.6 5.57 43.7
4.36 967.0 6.44 44.0 i 4.25 851.2 5.83 47.4
4.79 1160.3 6.86 44.8 ! 4.70 1043.4 6.22 49.4
5.21 1364.8 7.24 45.8 5.15 1253.7 6.59 51.2
5.64 1582.5 7.59 46.8 5.60 1447.5 6.75 55.7
6.07 1814.1 7.93 47.9 6.05 1672.8 6.96 59.8
6.50 2049.0 8.21 49.4 6.50 1922.4 7.17 63.8

Table C.34. Rating table for flow less than 100 cfs at cross section #5 and #6.

- Cross Section #5 ---
VRM 160.7 - VRM 161.5

- Cross Section #6 ---
VRM 161.5 - VRM 162.2

STAGE

FT

DISCH.

CFS

VEL.

FT/S

!
TOP ! 

WIDTH ! 
FT !

STAGE

FT

DISCH.

CFS

VEL.

FT/S

TOP
WIDTH
FT

0.50 7.0 1.07 29.9 ! 0.20 1.6 0.68 19.0
0.59 12.5 1.34 30.3 ! 0.30 4.1 0.99 20.0
0.68 19.2 1.58 30.7 ! 0.39 7.6 1.24 21.1
0.78 27.0 1.80 31.1 ! 0.49 11.7 1.42 23.1
0.87 35.8 2.01 31.6 1 0.59 16.7 1.56 26.0
0.96 45.7 2.20 31.9 ! 0.68 23.3 1.76 26.7
1.05 56.6 2.38 32.3 ! 0.78 30.7 1.94 27.7
1.15 68.4 2.56 32.7 ! 0.88 39.3 2.11 28.5
1.24 81.1 2.72 33.0 ! 0.97 48.9 2.29 28.9
1.33 94.7 2.88 33.4 ! 1.07 59.5 2.46 29.3
1.42 109.2 3.04 33.7 ! 1.16 70.9 2.63 29.7
1.51 124.7 3.19 34.0 ! 1.26 83.1 2.78 30.1
1.61 140.5 3.33 34.5 ! 1.36 95.7 2.92 30.7
1.70 157.1 3.46 34.9 ! 1.45 108.9 3.04 31.5
1.79 174.5 3.59 35.4 ! 1.55 122.8 3.16 32.3
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Table C.35. Rating table for flow greater than 100 cfs at cross section Ml.

- Cross Section Ml ---
VRM 162.2 - VRM 163.1

STAGE DISCH. VEL. TOP
WIDTH

FT CFS FT/S FT

0.50 3.2 0.68 17.7
1.18 26.1 1.38 24.9
1.86 71.5 1.87 31.7
2.54 141.1 2.29 37.3
3.21 241.7 2.74 39.9
3.89 365.6 3.14 42.2
4.57 491.0 3.37 47.0
5.25 667.9 3.75 48.2
5.93 866.8 4.11 49.2
6.61 1066.7 4.35 52.1
7.29 1296.7 4.60 54.8
7.96 1560.9 4.89 56.4
8.64 1847.9 5.16 58.1
9.32 2162.1 5.43 59.4
10.00 2495.2 5.68 60.9

1 table for flow less than 100 cfs i

VRM 162.2 - VRM 163 .1

STAGE DISCH. VEL. TOP
WIDTH

FT CFS FT/S FT

0.50 3.2 0.68 17.7
0.65 6.5 0.88 19.1
0.79 10.7 1.04 20.5
0.94 15.9 1.19 21.9
1.08 21.8 1.31 23.6
1.23 28.6 1.41 25.5
1.37 36.7 1.52 27.1
1.52 46.0 1.63 28.5
1.67 56.3 1.74 29.9
1.81 67.7 1.84 31.3
1.96 80.3 1.93 32.6
2.10 94.0 2.03 33.9
2.25 109.3 2.13 34.8
2.39 124.9 2.21 36.1
2.54 141.6 2.29 37.4
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TableD.1 . Velocity conparison on 7-10-88 between float test measurements 
and random point samples.

RANDOM POINT SAMPLES BY 
VERTICAL AXIS CURRENT METER:

CROSS SECTION

VERTICALRL 1 1 2 1 3 1 4 1 5
ft/s 1 ft/s 1 ft/s 1 ft/s 1 ft/s

1 2.47 ! 1.67 1 1.44 1 2.07 I 0.87
2 1.29 1 0.9 I 2.62 1 1.64 1 1.64
3 2.08 1 1.64 I 2.13 I 2.62 ! 2.62
4 1.74 I 1.59 1 2.23 1 3.15 I 2.32
5 1.84 1 2.71 ( 1.01 1 1.93 1 1.79
6 2.08 1 0.83 1 EDDY 1 1.35 I 2.03

AVERAGE VELOCITY: 1,87 ft/s

FLOATING CHIP MEASUREMENTS:

VRM 159.5 - VRM 157.3 
FLOAT SECTION «2 
LENGTH: 500 ft

AVERAGE TIME: 
AVERAGE VELOCITY:

153 seconds 
3.27 ft/s *

FLOAT « 1 
!

TIME
seconds

1 I 138
2 ! 153
3 1 152
4 1 152
5 I 143
6 ! 179

(.85) » 2.78 ft/s
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Table 0.2 . Modeled and measured hourly stream temperature values at VRM 157.3 for 
existing conditions on 6-30-88, 7-08-88, 7-15-88, and 7-21-88.

ME

--- 6-30

MODELED
STREAM
TEMP

C

■ 8 8 ....

MEAS. ! 
STREAM ! 
TEMP ! 

C !

--- 7-08

MODELED
STREAM
TEMP

C

• 8 8....

MEAS. 1 
STREAM 1 
TEMP ! 

C 1

---- 7-15

MODELED
STREAM
TEMP

C

- 8 8 ....

MEAS.
STREAM
TEMP

C

--- 7-21

MODELED
STREAM
TEMP

C

- 8 8 ---

MEAS.
STREAM
TEMP

C

210 18.2 19.9 ! 17.9 19.8 ! 17.2 19.7 18.3 20.4

310 17.7 19.6 ! 17.4 19.3 ! 16.7 18.9 18.0 19.8

AIO 17.4 19.1 ! 16.9 18.6 1 16.3 18.3 17.7 19.2
510 17.0 18.6 1 16.5 18.1 1 16.0 17.6 17.4 18.9

610 16.6 18.2 1 16.1 17.6 1 15.7 17.2 17.1 18.4
710 16.2 17.9 ! 15.8 17.2 ! 15.3 16.6 16.7 17.9

810 16.0 17.8 ! 15.6 16.8 ! 14.9 16.3 16.4 17.5

910 16.7 18.3 1 16.4 16.8 ! 15.6 16.2 17.0 17.5

1010 18.0 19.2 ! 17.8 17.4 ! 17.0 16.8 18.2 18.2

Ilio 19.8 21.2 ! 19.7 18.7 ! 18.9 18.0 20.0 19.6

1210 21.8 23.1 ! 21.8 20.7 ! 20.9 20.2 21.9 21.5

1310 24.3 24.6 ! 24.1 22.9 ! 23.2 22.5 24.2 23.1

1410 26.2 26.0 ! 26.0 24.2 ! 25.2 24.1 25.9 25.0
1510 27.9 26.7 ! 27.5 25.7 ! 26.8 25.5 27.3 26.5
1610 28.9 27.2 ! 28.4 26.4 1 27.7 26.5 28.1 27.4
1710 29.2 27.2 ! 28.4 27.0 ! 27.7 26.9 28.1 27.8

1810 28.8 26.2 ! 27.9 26.9 ! 27.1 26.8 27.5 27.8
1910 27.7 25.3 ! 26.7 26.5 1 25.8 26.3 26.3 27.6
2010 26.0 24.3 ! 24.9 25.0 1 24.2 25.0 24.8 26.5
2110 24.2 23.2 ! 23.1 23.8 ! 22.8 23.8 23.1 25.5
2210 22.7 22.1 ! 21.9 22.9 1 21.6 22.7 21.9 24.2
2310 21.1 21.5 ! 20.4 22.0 ! 20.0 22.0 20.6 23.4

10 19.8 20.7 ! 19.4 21.4 ! 18.8 21.4 19.5 22.5
110 18.8 20.0 ! 18.5 20.6 ! 17.8 20.6 18.8 21.7

EAN 21.7 22.0 ! 21,2 21.5 ! 20.5 21.2 21.4 22.4
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Table D.3 . Modeled and measured maxinun, miniffliin, and aiean stream temperatures 
at VRM 157.3 for 6-30-88, 7-08-88, 7-15-88, and 7-21-88.

DATE MAXIMUM -• 
TEMP.

MINIMUM -• 
TEMP.

MEAN
TEMP.

MODEL
C

MEAS.
C

1
1

MODEL
C

MEAS. 1
C I

MODEL
C

MEAS.
C

6-30-88 29.2 27.2 ! 16.0 17.8 1 21.7 22.0

7-08-88 28.4 27.0
\
! 15.6

1
16.7 ! 21.2 21.5

7-15-88 27.7 26.9
1
1 14.9

1
16.2 1 20.5 21.2

7-21-88 28.1 27.8
!
1
1

16.4
1

17.5 !
!

21.4 22.4

Table D.4 . Modeled energy transfer rate in Langley/minute at hourly intervals on 6-30-88.

IME

NET 1 
SOLAR ! 
FLUX 1 

Ly/min 1

NET 1 
LONGWAVE 1 

FLUX 1 
Ly/mi n 1

EVAP
FLUX

Ly/mi n

1
1
!
1

CONV 1 
FLUX I

Ly/mi n !

NET
BEDROCK
FLUX

Ly/min

1
1
!
1

NET
ENERGY
FLUX

Ly/min

132 0.000 1 -0.036 I -0.143 ! 0.042 1 0.004 -0.132
232 0.000 I -0.039 1 -0.136 ! 0.039 1 0.000 1 -0.138
332 0.000 1 -0.043 1 -0.131 1 0.036 1 0.000 1 -0.138
432 0.000 t -0.048 1 -0.125 ! 0.031 ! 0.000 1 -0.144
532 0.000 1 -0.053 1 -0.120 1 0.026 1 0.000 1 -0.144
632 0.006 1 -0.055 1 -0.114 1 0.025 1 0.000 ! -0.138
732 0.046 1 -0.052 ! -0.109 1 0.027 1 0.000 ! -0.090
832 0.410 1 -0.043 I -0.109 1 0.035 1 -0.001 t 0.294
932 0.773 1 -0.030 1 -0.121 1 0.046 1 -0.001 1 0.666
1032 1.073 1 -0.018 1 -0.143 I 0.057 1 -0.003 1 0.972
1132 1.314 1 -0.014 1 -0.171 1 0.061 1 -0.004 ! 1.188
1232 1.474 1 -0.024 I -0.216 1 0.053 1 -0.005 ! 1.290
1332 1.540 1 -0.031 ! -0.257 1 0.048 ! -0.005 ! 1.302
1432 1.509 ! -0.036 1 -0.300 ! 0.045 1 -0.005 1 1.218
1532 1.381 ! -0.038 I -0.332 1 0.044 1 -0.004 ! 1.056
1632 1.167 ! -0.036 I -0.347 ! 0.046 1 -0.003 1 0.828
1732 0.883 1 -0.029 1 -0.346 1 0.051 1 -0.002 1 0.558
1832 0.508 1 -0.029 1 -0.332 1 0.051 1 0.004 1 0.204
1932 0.112 1 -0.038 1 -0.301 1 0.043 1 0.004 1 -0.180
2032 0.014 1 -0.050 1 -0.262 1 0.033 1 0.005 1 -0.258
2132 0.000 1 -0.064 1 -0.229 1 0.021 1 0.005 ! -0.264
2232 0.000 1 -0.068 1 -0.197 1 0.017 1 0.005 1 -0.246
2332 0.000 ! -0.056 1 -0.172 1 0.026 1 0.005 1 -0.198
2432 0.000 1 -0.039 I -0.153 ! 0.040 1 0.005 1 -0.144
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Table D.5 . Modeled energy transfer rate between the air/water interface 
in Langley/day.

DATE NET
SOLAR

Ly/day

j

!
1

NET
LONGWAVE
Ly/day

!
!
!

EVAP
Ly/day

!

!
1

CONV
Ly/day

1

1

1

H

Ly/day

6-30-88 733
!

! -58 1 -292 57 1 442

7-08-88 72A 1 -51 -364 1 80 1 390

7-15-88 713
!
! -42 -442 113 1 345

7-21-88 705 1 -24 -480 149 351
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Fig.

EXISTING 

D . l

+ 15%
HOUR

-15% +  5% -5%

Change in modeled stream temperature at VRM 157.3 with 
±5% and ±15% change in the inflow stream temperature input

(ZZI +5%  ( S 3  + 1 5 % ^ZZZk -5% ^  -15%

Fig. D.2. S e n s itivity of T E M P - 8 4  m o d e l e d  m a x i m u m  and m i n i m u m  temp-

erature to changes in inf l o w  s t r e a m  temperature in terms

arith m e t i c  and percent diffe r e n c e  fro m  exist i n g  condition
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a EXISTING + 15%
HOUR

•15% + 10% - 10%

Fig. D.3. Change in modeled stream temperature at VRM 157.3 with 
±10% and +15% change in the width input.

IZZ] +10% K3 +1 5% ^  -10% ^  -15%

Fig. D.4. Sensitivity of TEMP-84 modeled maximum and minimum temp-
erature to changes in width in terms of arithmetic and
percent difference from existing conditions.
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□ BOSTING
HOUR

+  15% o .15% +  10% - 10%

Fig. D.5. Change in TEMP-84 modeled stream temperature at VRM 157.3 
with +10% and +15% change in the air temperature input.

IZ Z l +10% +15% ^  -10% -15%

Fig. D.6. Sensitivity of TEMP-84 modeled maximum and minimum temp-
erature to changes in air temperature in terms of 
arithmetic and percent difference from existing condi 
tions.
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□ EXISTING
HOUR

+  15% o -15% +  10% • 10%

Fig. D.7. Change in TEMP-84 modeled stream temperature at VRM 157.3 
with ±10% and +15% change in the discharge input.

IZ Z I +10% E 3  +15% ^  -10% ^  -15%

Fig. D.8. Sensitivity of TEMP-84 modeled maximum and minimum temp-
erature to changes in discharge in terms of arithmetic and
percent difference from existing conditions.
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Q EXISTING + 15%
HOUR 
o -15% +  50% -50%

Fig. D.9. Change in TEMP-84 modeled stream temperature at VRM 157.3 
with +15% and +50% change in the relative humidity input.

EZl +15% 1X3 +50% ^  -15% ^  -50%

Fig. D.IO. Sensitivity of TEMP-84 modeled maximum and minimum temp-
erature to changes in relative humidity in terms of arith-
metic and percent difference from existing conditions.
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a EXISTING +  15%
HOUR

-15% + 50% -50%

Fig. D.ll. Change in TEMP-84 modeled stream temperature at VRM 157.3 
with ±15% and ±50% change in the velocity input.

Z23 +15% K 3  +50% ^  -15% ^  -50%

Fig. D.12. Sensitivity of TEMP-84 modeled maximum and minimum temp-
erature to changes in velocity in terms of arithmetic and
percent difference from existing conditions.
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a EXISTING
HOUR

+ 15% o -15% + 100% - 100%

Fig. D.17. Change in TEMP-84 modeled stream temperature at VRM 157.3 
with±15% and ±100% change in the groundwater inflow rate 
input.

Z Z I  +15% S 3 ]  +100% U77X -15% S 3  -100%

Fig. D.18. Sensitivity of TEMP-84 modeled maximum and minimum temp-
erature to changes in groundwater inflow rate in terms of 
arithmetic and percent difference from existing condi - 
tions.
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a EXISTING + 15%
HOUR

-15% + 50% -50%

Fig. D.19. Change in TEMP-84 modeled stream temperature at VRM157.3 
with ±15% and ±50% change in the wind input.
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Fig. D.20. Sensitivity of TEMP-84 modeled maximum and minimum temp-
erature to changes in wind speed in terms of arithmetic
and percent difference from existing conditions.
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-5 OEG
TIME, HR

+ 5 OEG o +10 OEG À +20  OEG'

Fig. D.21. Change in TEMP-84 modeled stream temperature at VRM 157.3 
with ±5, +10, and +20 degree change in the hillslope 
angle input.

Z Z ]  -5 DEG 

Fig. D.22.

[S31 + 5  DEG W Z l +10 DEG ^  +20 DEG

Sensitivity of TEMP-84 modeled maximum and minimum temp-
erature to changes in hillslope angle in terms of arith-
metic and percent difference from existing conditions.
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-5 DEG -10 DEG
TIME, HR

+ 5  DEG -I-10 DEG

Fig. D.23. Change in TEMP-84 modeled stream temperature at VRM 157.3 
with ±5 and ±10 degree change in the forest angle input.
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Fig. D.24. Sensitivity of TEMP-84 modeled maximum and minimum temp-
erature to changes in forest angles in terms of arith-
metic and percent difference from existing conditions.
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TIME, HR 
+  50% « +  100%

Fig. D.25. Change in TEMP-84 modeled stream temperature at VRM 157.3 
with ±50% and ±100% change in the percent directly shaded
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Fig. D.26. Sensitivity of TEMP—84 modeled maximum and minimum temp-
erature to changes in the percent directly shaded in terms 
of arithmetic and percent difference from existing 
^;Onditions.
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-10 FT + 10 FT
TIME, HR

+  15 FT + 20 FT

Fig. D.27. Change in TEMP-84 modeled stream temperature at VRM 157.3 
with +10, +15, and +20 feet change in the tree height 
input.
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20 FT
TIME, HR 

40FT 60 FT

Fig. D.28. Change in TEMP-84 modeled stream temperature at VRM 157.3 
with buffer width values set at 20, 40, and 60 feet.
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Fig. D.29. Sensitivity of TEMP-84 modeled maximum and minimum temp-
erature to changes in the buffer width in terms of arith-
metic and percent difference from existing conditions.
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-25% -50%
TIME, HR

-1-25% -1-50%

Fig. D.30. Change in TEMP-84 modeled stream temperature at VRM 157.3 
with ±25% and ±50% change in canopy cover input.
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Fig. D.31. Sensitivity of TEMP-84 modeled maximum and minimum temp-
erature to changes in the canopy cover in terms of arith-
metic and percent difference from existing conditions.
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a -15 DEG + 15 DEG
TIME, HR

+ 25 DEG + 35 DEG

Fig. D.32. Change in TEMP-84 modeled stream temperature at VRM157.3 
with +15, +25, and +35 degree change in vegetation 
shading angle input.
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Fig. D.33. Sensitivity of TEMP-84 modeled maximum and minimum temp-
erature to changes in the vegetation shading angles in 
terms of arithmetic and percent difference from existing 
conditions.
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□ -.1 OEG
TIME, HR

.1 DEG

Fig. D.34. Change in TEMP-84 modeled stream temperature at VRM 157.3 
with ±0.1 deeree chanee in longitudp input.

a  -.1 DEG
TIME. HR

.1 DEG

Fig. D.35. Change in TEMP-84 modeled stream temperature at VRII 157.3 
with ±0.1 degree change in the latitude input.
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-10% -20%
TIME, HR

- 10 % -1- 2 0 %

Fig. D.40. Change in TEMP-84 modeled stream temperature at VRM 157.3 
with ±10% and ±20% change in the mean elevation.
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Fig. D.41. Sensitivity of TEMP-84 modeled maximum and minimum temp-
erature to changes in the mean elevation in terms of 
arithmetic and percent difference from existing 
conditions.
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a -5%

Fig. D.42.

-10 % -30%
TIME. HR

+ 5 % +  1 0 % + 30%

Change In TEMP-84 modeled stream temperature at VRM157.3 
with +5%, ±10%, and ±30% change in the stream gradient 
input.
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Table E.1 . Modeled and measured maximjn, mininun, and mean stream temperatures at VRM 157.3 
for 6-30-88, 7-08-88, 7-15-88, and 7-21-88.

DATE

MODEL
EMPIRICAL

DATA
C

MAXIMUM

MODEL
FIELD
DATA

C

........ 1

1

MEAS. !
C 1

MODEL
EMPIRICAL
DATA

C

MINIMUM

MODEL
FIELD
DATA

C
MEAS. !

C !

MODEL
EMPIRICAL

DATA
C

MEAN

MODEL
FIELD
DATA

C
MEAS.

C

6-30-88 30.2 29.2 27.2 ! 15.6 16.0 17.8 ! 21.6 21.7 22.0

7-08-88 29.4 28.4 27.0 ! 15.2 15.6 16.7 1 21.2 21.2 21.5

7-15-88 28.6 27.7 26.9 1 14.6 14.9 16.2 I 20.5 20.5 21.2

7-21-88 28.9 28.1 27.8 ! 16.1 16.4 17.5 ! 21.4 21.4 22.4

B FIELD DATA
HOUR

MEASURED EMPIRICAL DATA

Fig. E.l Diurnal fluctuation in stream temperature on 7-08-88 as
measured and as modeled with field data and empirically 
derived data.
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FIELD DATA
HOUR

MEASURED EMPIRICAL DATA

Fig. E.2. Diurnal fluctuation in stream temperature on 7-15-88 as 
measured and as modeled with field data and empirically 
derived data.

o FIELD DATA
HOUR

MEASURED EMPIRICAL DATA

Fig. E.3. Diurnal fluctuation in stream temperature on 7-21-88 as 
measured and as modeled with field data and empirically 
derived data.
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Table E.2 . Modeled stream tenperature at VRM 157.3 for 6-30-&8 under hypothetical
flow condi tions.

FLOW 

75 CFS1000 CFS ! 500 CFS ! 100 CFS 32 CFS ! 20 CFS I 10 CFS

TIME STREAM ! STREAM ! STREAM STREAM STREAM 1 STREAM STREAM

TEMP ! TEMP ! TEMP TEMP TEMP ! TEMP TEMP

C ! C ! C C C 1 C ! C

210 18.1 ! 18.2 ! 18.2 18.1 17.4 1 16.8 16.1

310 17.7 • 17.7 ! 17.8 17.7 17.1 ! 16.5 15.7

410 17.3 1 17.3 ! 17.3 17.2 16.7 1 16.2 15.4

510 17.0 ! 17.0 1 16.9 16.8 16.3 ! 15.8 1 15.1

610 16.8 > 16.8 1 16.6 16.5 15.9 1 15.4 14.8

710 16.5 I 16.5 1 16.4 16.2 15.6 1 15.2 1 14.5

810 16.4 • 16.4 ! 16.3 16.2 15.7 ! 15.5 14.4

910 16.4 ! 16.5 ! 16.7 16.7 16.7 ! 17.2 16.0

1010 16.6 ! 16.9 1 17.8 17.9 18.5 1 19.6 ! 19.1

1110 16.9 ! 17.4 1 19.0 19.4 21.1 ! 22.7 ! 22.6
1210 17.3 1 17.9 1 20.4 21.1 24.0 1 26.2 1 26.7

1310 18.0 1 18.6 ! 21.6 22.5 26.5 I 29.2 1 31.0

1410 18.9 ! 19.5 ! 22.5 23.7 28.5 1 31.6 34.0
1510 20.3 ! 20.7 ! 23.4 24.6 29.7 ! 32.9 1 36.4

1610 21.6 < 22.0 ! 24.1 25.2 30.2 1 33.2 ! 37.4
1710 22.1 • 22.5 ! 24.8 25.7 30.0 1 32.7 1 37.1

1810 22.1 ! 22.5 ! 24.9 25.7 29.3 1 31.3 1 35.6
1910 21.7 ! 21.8 ! 24.0 24.7 27.7 1 28.9 I 33.1
2010 21.1 ! 21.2 ! 22.5 23.0 25.0 I 25.6 1 28.8

2110 20.6 ! 20.6 ! 21.1 21.3 22.4 ! 22.7 1 25.3
2210 20.0 ! 20.0 ! 20.2 20.2 20.4 ! 20.3 1 22.3
2310 19.5 ! 19.5 1 19.5 19.4 18.9 1 18.6 I 19.7

10 19.1 • 19.1 ! 19.0 18.8 18.1 1 17.6 17.9
110 18.7 ! 18.6 ! 18.6 18.4 17.7 ! 17.1 ! 16.6

MEAN 18.9 ! 18.9 » 20.0 20.3 21.6 1 22.4 23.6
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Table E.3 . Modeled stream temperature at VRM 157.3 for 7*08*88 inder
hypothetical flow conditions.

FLOW

500 CFS 1 100 CFS ! 75 CFS 32 CFS 1 20 CFS 10 CFS

TIME STREAM ! STREAM ! STREAM STREAM 1 STREAM STREAM
TEMP ! TEMP ! TEMP TEMP 1 TEMP TEMP

C 1 C ! C C 1 C C

210 18.2 1 18.0 1 17.8 17.1 1 16.4 15.8
310 17.8 ! 17.6 1 17.4 16.6 1 15.9 15.3
410 17.4 ! 17.2 ! 17.1 16.2 1 15.6 14.8
510 17.0 ! 16.8 ! 16.7 15.9 1 15.2 14.4
610 16.7 ! 16.4 1 16.3 15.5 1 14.9 14.0
710 16.4 1 16.2 1 16.0 15.2 1 14.7 13.8
810 16.2 ! 16.1 ! 16.0 15.3 1 15.1 13.9
910 16.3 ! 16.5 ! 16.5 16.5 1 16.9 15.7
1010 16.6 ! 17.6 ! 17.7 18.4 ! 19.4 18.9
1110 17.0 ! 18.9 1 19.3 21.0 1 22.6 22.6
1210 17.5 ! 20.1 1 20.8 23.8 ! 26.0 26.5
1310 18.1 ! 21.2 ! 22.2 26.2 ! 28.8 30.6
1410 19.0 ! 22.1 ! 23.3 28.0 1 31.0 33.3
1510 20.1 ! 22.9 ! 24.1 29.1 1 32.0 35.3
1610 21.3 1 23.6 1 24.7 29.4 1 32.2 35.9
1710 22.0 ! 24.1 ! 25.0 29.2 ! 31.5 35.3
1810 22.2 • 24.1 ! 24.9 28.3 1 30.1 33.7
1910 21.7 ! 23.3 ! 23.9 26.5 1 27.4 30.9
2010 21.1 ! 22.0 ! 22.3 24.1 ! 24.5 27.1
2110 20.5 ! 20.8 ! 20.9 21.8 1 21.7 23.5
2210 19.9 ! 20.0 ! 19.9 19.8 ! 19.5 21.1
2310 19.3 ! 19.3 ! 19.2 18.6 ! 18.2 18.8

10 18.9 ! 18.8 ! 18.7 18.0 ! 17.4 17.3
110 18.6 1 18.4 ! 18.2 17.5 1 16.9 16.3

MEAN 18.7 ! 19.7 1 19.9 21.2 1 21.8 22.7
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Table . Modeled stream temperature at VRM 157.3 for 7-15-88 inder
hypothetical flow conditions.

FLOW

500 CFS 100 CFS 1 75 CFS 32 CFS 20 CFS ! 10 CFS

TIME STREAM STREAM 1 STREAM STREAM STREAM ! STREAM
TEMP TEMP ! TEMP TEMP TEMP ! TEMP

C C ! C C C 1 C

210 17.8 ! 17.6 t 17.4 16.4 15.7 1 14.9

310 17.3 17.2 1 17.0 16.1 15.4 I 14.5
410 16.9 16.7 ! 16.6 15.8 15.1 1 14.2

510 16.6 16.3 1 16.1 15.3 14.7 ! 13.9

610 16.3 16.0 ! 15.8 14.9 14.2 ! 13.5

710 15.9 15.7 ! 15.5 14.6 14.0 I 13.2

810 15.6 15.5 1 15.4 14.7 14.3 ! 13.1
910 15.8 15.8 1 15.8 15.7 15.9 1 14.7

1010 16.2 16.9 1 17.0 17.4 18.3 1 17.7
1110 16.7 18.2 1 18.6 20.0 21.5 1 21.3
1210 17.1 19.6 1 20.3 22.9 25.0 ! 25.2
1310 17.6 20.8 ! 21.7 25.5 27.9 1 29.3
1410 18.6 21.6 1 22.7 27.3 30.1 1 32.1
1510 19.9 22.4 1 23.5 28.3 31.1 1 34.0
1610 21.2 23.1 ! 24.1 28.6 31.2 ! 34.6
1710 21.8 23.7 1 24.6 28.3 30.5 1 33.9
1810 21.8 23.8 ! 24.5 27.6 29.1 1 32.3
1910 21.2 22.9 ! 23.5 25.8 26.7 ! 29.5
2010 20.6 21.5 ! 21.8 23.5 23.8 1 25.9
2110 20.0 20.4 ! 20.4 21.3 21.3 ! 22.8
2210 19.5 19.5 ! 19.5 19.5 19.2 1 20.5
2310 19.1 18.9 ! 18.7 18.3 17.7 ! 18.4

10 18.6 18.3 ! 18.1 17.3 16.6 ! 16.7

110 18.3 17.9 1 17.7 16.7 16.1 ! 15.6

MEAN 18.3 19.2 ! 19.4 20.5 21.0 1 21.7
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Table E.5 . Modeled stream tefnperature at VRM 157.3 for 7*21-88 under
hypothetical flow conditions.

FLOW

500 CFS 100 CFS 1 75 CFS 32 CFS 1 20 CFS 1 10 CFS

TIME STREAM STREAM 1 STREAM STREAM ! STREAM 1 STREAM
TEMP TEMP ! TEMP TEMP 1 TEMP ! TEMP

C C 1 C C ! C 1 C

210 18.8 18.7 1 18.5 17.7 ! 17.1 ! 16.5
310 18.3 18.3 1 18.2 17.5 1 16.9 ! 16.3
410 17.8 17.9 ! 17.8 17.2 ! 16.7 1 16.1
510 17.5 17.4 1 17.3 16.8 1 16.4 1 15.9
610 17.2 17.1 1 16.9 16.4 1 16.0 ! 15.6
710 16.9 16.8 ! 16.6 16.1 t 15.6 1 15.2
810 16.7 16.6 1 16.5 16.1 1 16.0 1 15.0
910 16.7 17.0 ! 17.0 17.0 t 17.5 ! 16.6
1010 17.2 18.0 1 18.1 18.7 ! 19.7 1 19.2
1110 17.7 19.3 1 19.6 21.1 1 22.6 1 22.7

1210 18.2 20.6 1 21.2 23.8 1 25.7 1 26.2
1310 18.7 21.7 ! 22.7 26.1 1 28.3 ! 29.6
1410 19.6 22.6 1 23.6 27.8 1 30.2 t 31.9
1510 20.7 23.3 ! 24.3 28.7 1 31.0 1 33.3
1610 21.9 23.9 1 24.9 28.9 1 31.1 1 33.7
1710 22.5 24.4 1 25.2 28.6 1 30.3 1 33.0
1810 22.6 24.4 1 25.1 27.8 1 28.8 ! 31.5
1910 22.1 23.6 t 24.1 26.2 1 26.5 t 28.6
2010 21.4 22.3 ! 22.5 23.9 1 23.9 ! 25.5
2110 21.0 21.2 1 21.2 21.7 1 21.6 1 22.7
2210 20.5 20.4 ! 20.4 20.2 ! 19.8 1 20.6
2310 19.9 19.8 1 19.6 19.0 ! 18.5 1 18.8

10 19.5 19.2 1 19.1 18.3 1 17.7 ! 17.6
110 19.2 18.9 1 18.7 17.9 1 17.4 ! 16.9

MEAN 19.3 20.1 ! 20.4 { 21.4 1 21.9 ! 22.4
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Table E.6. Percent difference of modeled hypothetical flow maxinun stream 
temperature from modeled existing maximun stream temperature.

FLOU

DATE

500 CFS 1
1
1
!
1
1

100 CFS 1
1
I
1
1
1

75 CFS 1
1
1
1
I
!

20 CFS I
1
!
1
1
1

10 CFS

MAX STR 
TEMP 

X DIFF

MAX STR 
TEMP 

X DIFF

MAX STR
TEMP 

X DIFF

MAX STR 
TEMP 

X DIFF

MAX STR
TEMP 

X DIFF

6-30-88 25.5 17.6 14.9 -9.9 I -23.8

7-08-88 24.5 18.0 15.0 -9.5 -22.1

7-15-88 23.8 1 16.8 14.0 1 -9.1 1 -21.0

7-21-88 21.8 15.6 12.8 -7.6 1 -16.6

MEAN 23.9 1 17.0 14.2 -9.0 -20.9
VARIANCE 2.45 1 1.12 ! 1.04 1.01 1 9.45
STO OEV 1.56 1 1.06 1 1.02 ! 1.01 1 3.07

Table E.7. Percent difference of modeled hypothetical flow mean stream 
temperature from modeled existing mean stream temperature.

FLOU

DATE

500 CFS 100 CFS 75 CFS 20 CFS 10 CFS

MEAN STR 
TEMP 

X DIFF

MEAN STR 
TEMP 

X DIFF

MEAN STR 
TEMP 

X DIFF

MEAN STR 
TEMP 

X DIFF

MEAN STR 
TEMP 

X DIFF

6-30-88 12.5 7.4 6.0 -3.7 -9.3

7-08-88 11.8 7.1 6.1 -2.8 -7.1

7-15-88 10.7 6.3 5.4 -2.4 -5.9

7-21-88 9.8 6.1 4.7 -2.3 -4.7

MEAN 11.2 6.7 5.6 -2.8 -6.8
VARIANCE 1.42 0.39 0.42 0.41 3.85
STD DEV 1.19 0.62 0.65 0.64 1.96

Table E.8. Percent difference of modeled hypothetical flow minimum stream 
temperature from modeled existing minimun stream temperature.

FLOU

DATE

500 CFS 100 CFS 75 CFS 20 CFS 10 CFS

MIN STR 
TEMP 

XDIFF

MIN STR 
TEMP 

X DIFF

MIN STR 
TEMP 

X DIFF

MIN STR 
TEMP 

X DIFF

MIN STR 
TEMP 

X DIFF

6-30-88 -5.1 -4.5 -3.8 2.6 7.7

7-08-88 -6.6 -5.9 -5.3 3.3 9.2

7-15-88 -6.8 -6.2 -5.5 4.1 10.3

7-21-88 -3.7 -3.1 -2.5 3.1 6.8

MEAN -5.6 -4.9 -4.3 3.3 8.5
VARIANCE 2.10 2.03 1.98 0.39 2.42
STD OEV 1.45 1.43 1.41 0.62 1.56
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DIURNAL TEMP
HOUR

MEASURED « AVG. TEMP, 18.3 C

Fig. E.4. Diurnal fluctuation in stream temperature on 7-08-88 as 
measured and as modeled with diurnal inflow stream temp-
erature and average inflow stream temperature.
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□ DIURNAL TEMP 

Fig. E.5.

HOUR
MEASURED o AVG. TEMP, 17.9 C

Diurnal fluctuation in stream temperature on 7-15-88 as 
measured and as modeled with diurnal inflow stream temp-
erature and average inflow stream temperature.

□ DIURNAL TEMP
HOUR

MEASURED o AVG. TEMP, 18.8 0

Fig. E.6. Diurnal fluctuation in stream temperature on 7-21-88 as 
measured and as modeled with diurnal inflow stream temp-
erature and average inflow stream temperature.



239

Table E.9 , Modeled and measured maximum, mininun, and mean stream temperatures at VRM 157.3 
for 6-30-88, 7-08-88, 7-15-88, and 7-21-88.

DATE

MAXIMUM

MODEL MODEL
AVG. DIURNAL
INFLOW INFLOW
TEMP. TEMP.

MINIMUM

MODEL MODEL 
I AVG. DIURNAL 

INFLOW INFLOW
MEAS. ! TEMP. TEMP. MEAS.

C C C 1 C C C I C C C

6-30-88 30.A 29.2 27.2 1 16.3 16.0 17.8 ! 21.7 21.7 22.0

7-08-88 29.7 28.4
!

27.0 ! 15.7 15.6
!

16.7 ! 21.2 21.2 21.5

7-15-88 28.9 27.7 26.9 ! 15.1 14.9
1

16.2 I 20.5 20.5 21.2

7-21-88 29.1 28.1 27.8 ! 16.5 16.4
!

17.5 ! 21.4 21.4 22.4

MEAN

MODEL MODEL 
AVG. DIURNAL 
INFLOW INFLOW
TEMP. TEMP. MEAS.
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Table E.10. Modeled stream temperature at VRM 157.5 for 6-30-88 an 7-08-88 under
hypothetical inflow temperature conditions.

6 -3 0 -8 8 ......... 7 -8 -8 8

--- INFLOW TCMDCDATIIDC ....

GU TEMP ! AVG. ! AVG. GU TEMP ! AVG. ! AVG.
j AMBIENT lEXISTING ¡AMBIENT lEXISTING

1 4 .7 C ! 2 6 .5 C 1 18 .5 C 1 4 .7 C ! 27 .4 C ! 18 .3 C

TIME STREAM ! STREAM ! STREAM TIME STREAM ! STREAM ! STREAM

TEMP ! TEMP ! TEMP TEMP ! TEMP ! INFLOW

C ! C ! C C ! C ! C

210 14 .5 ! 2 1 .4 I 16 .8 210 14 .6 ! 21 .3 ! 16 .6

310 14 .4 1 2 1 .2 ! 1 6 .6 310 14 .3 ! 21.1 ! 16 .4

410 14 .3 ! 21 .1 ! 1 6 .6 410 14.1 ! 2 0 .9 ! 16.1

510 14 .2 ! 21 .1 ! 16 .5 510 13 .9 ! 2 0 .7 ! 16 .0

610 14.1 ! 2 1 .0 ! 16 .4 610 13 .8 ! 2 0 .6 ! 15 .8

710 14 .0 ! 2 0 .9 1 16 .3 710 1 3 .7 ! 20 .5 ! 15 .7

810 14 .0 ! 2 0 .9 ! 16 .3 810 1 3 .7 ! 20 .5 ! 15 .7

910 14 .9 ! 2 1 .8 ! 17 .2 910 1 4 .7 ! 21 .5 ! 16 .7

1010 16 .4 ! 2 3 .3 ! 18 .7 1010 16 .3 ! 23.1 ! 18.4

1110 18 .4 ! 2 5 .2 ! 2 0 .7 1110 18 .5 ! 25 .2 ! 20 .5

1210 2 0 .6 ! 2 7 .3 ! 2 2 .8 1210 2 0 .7  ! 27 .3 ! 2 2 .7

1310 23 .2 ! 2 9 .8 ! 2 5 .4 1310 23 .3 ! 2 9 .7 ! 25 .2

1410 2 5 .3 ! 3 1 .8 1 27 .5 1410 25 .3 ! 3 1 .6 ! 27 .2

1510 2 7 .2 ! 3 3 .5 1 2 9 .3 1510 2 7 .0 ! 33.1 ! 28 .8

1610 28 .2 ! 3 4 .4 ! 3 0 .3 1610 2 7 .9  ! 3 3 .9 ! 2 9 .7

1710 28 .4 ! 3 4 .5 1 3 0 .4 1710 2 7 .9 ! 3 3 .9 ! 2 9 .7

1810 2 7 .7 ! 3 3 .8 ! 2 9 .8 1810 27 .0 ! 33 .1 ! 29 .0

1910 26.1 ! 3 2 .3 1 2 8 .2 1910 2 5 .6 ! 31 .5 ! 27 .4

2010 2 3 .8 ! 3 0 .0 ! 2 5 .9 2010 2 3 .2 ! 29 .2 ! 25 .0

2110 21 .2 ! 27 .5 1 2 3 .3 2110 2 0 .6 ! 2 6 .8 ! 22 .5

2210 19.1 ! 25 .5 ! 2 1 .2 2210 18.8 ! 25.1 ! 2 0 .7

2310 17 .3 ! 2 3 .9 1 19 .5 2310 16 .9 ! 23 .4 ! 18 .9

10 15 .9 ! 22.6 1 18.1 10 15 .3 ! 22 .4 ! 17.8

110 14 .9 ! 2 1 .7 1 17.1 110 14 .9 ! 21 .6 ! 16 .9

MEAN 19.5 ! 26.1

!
! 2 1 .7 MEAN 19 .3 ! 2 5 .7 ! 21 .2
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Table E.11 Modeled stream temperature at VRM 157.5 for 7-15-88 an 7-21-88 under
hypothetical inflow temperature conditions.

.................  7-15-88 ..................  7-21-88

---  INFLOW TEMPERATURE ---  INFLOW TEMPERATURE

GW TEMP ! AVG. 1 AVG. GW TEMP 1 AVG. ! AVG.

IAMB I ENT lEXISTING IAMB I ENT {EXISTING

14.7 C ! 28.1 C j 17.9 C 14 7 C 29.2 C ! 18.8 C

TIME STREAM ! STREAM STREAM TIME STREAM STREAM ! STREAM

TEMP ! TEMP INFLOW TEMP TEMP ! TEMP

C ! C C C C ! C

210 14.2 ! 21.0 15.9 210 15.3 21.7 ! 17.2

310 13.9 ! 20.8 15.7 310 15.1 21.5 ! 17.0

410 13.8 ! 20.6 15.5 410 15.0 21.4 ! 17.0

510 13.7 ! 20.5 15.4 510 14.9 21.4 ! 16.9

610 13.5 1 20.4 1 15.3 610 14.8 21.3 ! 16.8
710 13.4 ! 20.3 15,1 710 14.6 21.1 ! 16.6

810 13.4 ! 20.2 15.1 810 14.6 1 21.0 ! 16.5
910 14.2 ! 21.1 16.0 910 15.4 ! 21.8 ! 17.4

1010 15.8 ! 22.6 ! 17.5 1010 16.7 1 23.2 ! 18.7

1110 17.8 ! 24.6 ! 19.5 1110 18,7 1 25.1 1 20.7

1210 20.0 ! 26.7 21.7 1210 20.7 27.0 1 22.6

1310 22.6 ! 29.2 ! 24.3 1310 23.2 29.3 ! 25.1

1410 24.7 ! 31.1 ! 26.3 1410 25.1 31.0 ! 26.9

1510 26.5 • 32.6 1 28.0 1510 26.6 32.3 ! 28.4

1610 27.4 ! 33.4 j 28.9 1610 27.4 ! 32.9 1 29.1
1710 27.4 ! 3 3 .3 1 28.9 1710 27.4 1 32.8 ! 29.1
1810 26.6 ! 32.5 1 28.1 1810 26.7 ! 32.0 ! 28.4
1910 24.9 ! 30.8 ! 26.4 1910 25.1 30.5 1 26.8
2010 22.6 ! 28.7 ! 24.2 2010 23.1 } 28.6 ! 24.8
2110 20.4 ! 26.6 1 22.0 2110 20.8 1 26.4 ! 22.5
2210 18.7 ! 25.0 1 20.3 2210 19.1 1 25.0 ! 20.9
2310 16.3 ! 23.3 j 18.5 2310 17.4 ! 23.5 ! 19.3

10 15.5 ! 22.1 1 17.2 10 16.3 1 22.5 ! 18.2
110 14.6 ! 21.4 1 16.3 110 15.6 j 21.9 ! 17.5

MEAN 18.8 ! 25.4 ! 20.5 MEAN 19.6 1 25.6 ! 21.4
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Table E.12. Percent change in modeled maximum, mean, and minimum stream 
temperature of hypothetical inflow temperature simulations 
from modeled existing stream temperatures.

GW TEMP

■INFLOW TEMPERATURE ............

......... !.......AVG. AMBIENT
I

DATE MAX
STR TEMP 

X CHG

MEAN
STR TEMP 

X CHG

MIN
STR TEMP 

X CHG

! MAX 
•STR TEMP 
! X CHG

MEAN
STR TEMP 

X CHG

MIN
STR TEMP 

X CHG

6-30-88 6.6 10.1 14.1
!
! -13.5 -20.3 -28.2

7-08-88 6.1 9.0 12.7
!

-14.1 -21.2 -30.6

7-15-88 5.2 8.3 11.3
!
1 -15.6 -23.9 -33.8

7-21-88 5.8 8.4 11.5
1
j -13.1 -19.6 -27.3

MEAN 5.9 9.0 12.4
1 .. 
! -14.1 -21.3 -30.0

VARIANCE 0.34 0.68 1.67 1 1.20 3.55 8.44
STD DEV 0.58 0.83 1.29 ! 1.10 1.88 2.91


